Sample records for indoor climate problems

  1. Preventing Indoor Air Quality Problems in Educational Facilities: Guidelines for Hot, Humid Climates. Revised.

    ERIC Educational Resources Information Center

    Odom, J. David; DuBose, George

    This manual addresses the errors that occur during new construction that subsequently contribute to indoor air quality (IAQ) problems in newly constructed buildings in hot and humid climates, and offers guidelines for preventing them during the design and construction phases. It defines the roles and responsibilities of the design team, the…

  2. Indoor climate and air quality . Review of current and future topics in the field of ISB study group 10

    NASA Astrophysics Data System (ADS)

    Höppe, P.; Martinac, Ivo

    In industrialized countries about 90% of the time is spent indoors. The ambient parameters affecting indoor thermal comfort are air temperature and humidity, air velocity, and radiant heat exchange within an enclosure. In assessing the thermal environment, one needs to consider all ambient parameters, the insulating properties of the occupants' clothing, and the activity level of the occupants by means of heat balance models of the human body. Apart from thermal parameters, air quality (measured and perceived) is also of importance for well-being and health in indoor environments. Pollutant levels are influenced by both outdoor concentrations and by indoor emissions. Indoor levels can thus be lower (e.g. in the case of ozone and SO2) or higher (e.g. for CO2 and formaldehyde) than outdoor levels. Emissions from cooking play an important role, especially in developing countries. The humidity of the ambient air has a wide range of effects on the energy and water balance of the body as well as on elasticity, air quality perception, build-up of electrostatic charge and the formation or mould. However, its effect on the indoor climate is often overestimated. While air-handling systems are commonly used for achieving comfortable indoor climates, their use has also been linked to a variety of problems, some of which have received attention within the context of ''sick building syndrome''.

  3. Indoor climate and air quality. Review of current and future topics in the field of ISB study group 10.

    PubMed

    Höppe, P; Martinac, I

    1998-08-01

    In industrialized countries about 90% of the time is spent indoors. The ambient parameters affecting indoor thermal comfort are air temperature and humidity, air velocity, and radiant heat exchange within an enclosure. In assessing the thermal environment, one needs to consider all ambient parameters, the insulating properties of the occupants' clothing, and the activity level of the occupants by means of heat balance models of the human body. Apart from thermal parameters, air quality (measured and perceived) is also of importance for well-being and health in indoor environments. Pollutant levels are influenced by both outdoor concentrations and by indoor emissions. Indoor levels can thus be lower (e.g. in the case of ozone and SO2) or higher (e.g. for CO2 and formaldehyde) than outdoor levels. Emissions from cooking play an important role, especially in developing countries. The humidity of the ambient air has a wide range of effects on the energy and water balance of the body as well as on elasticity, air quality perception, build-up of electrostatic charge and the formation or mould. However, its effect on the indoor climate is often overestimated. While air-handling systems are commonly used for achieving comfortable indoor climates, their use has also been linked to a variety of problems, some of which have received attention within the context of "sick building syndrome".

  4. Integrated Management of Residential Indoor Air Quality: A Call for Stakeholders in a Changing Climate.

    PubMed

    Levasseur, Marie-Eve; Poulin, Patrick; Campagna, Céline; Leclerc, Jean-Marc

    2017-11-25

    A paradigm change in the management of environmental health issues has been observed in recent years: instead of managing specific risks individually, a holistic vision of environmental problems would assure sustainable solutions. However, concrete actions that could help translate these recommendations into interventions are lacking. This review presents the relevance of using an integrated indoor air quality management approach to ensure occupant health and comfort. At the nexus of three basic concepts (reducing contaminants at the source, improving ventilation, and, when relevant, purifying the indoor air), this approach can help maintain and improve indoor air quality and limit exposure to several contaminants. Its application is particularly relevant in a climate change context since the evolving outdoor conditions have to be taken into account during building construction and renovation. The measures presented through this approach target public health players, building managers, owners, occupants, and professionals involved in building design, construction, renovation, and maintenance. The findings of this review will help the various stakeholders initiate a strategic reflection on the importance of indoor air quality and climate change issues for existing and future buildings. Several new avenues and recommendations are presented to set the path for future research activities.

  5. Integrated Management of Residential Indoor Air Quality: A Call for Stakeholders in a Changing Climate

    PubMed Central

    Levasseur, Marie-Eve; Poulin, Patrick; Campagna, Céline; Leclerc, Jean-Marc

    2017-01-01

    A paradigm change in the management of environmental health issues has been observed in recent years: instead of managing specific risks individually, a holistic vision of environmental problems would assure sustainable solutions. However, concrete actions that could help translate these recommendations into interventions are lacking. This review presents the relevance of using an integrated indoor air quality management approach to ensure occupant health and comfort. At the nexus of three basic concepts (reducing contaminants at the source, improving ventilation, and, when relevant, purifying the indoor air), this approach can help maintain and improve indoor air quality and limit exposure to several contaminants. Its application is particularly relevant in a climate change context since the evolving outdoor conditions have to be taken into account during building construction and renovation. The measures presented through this approach target public health players, building managers, owners, occupants, and professionals involved in building design, construction, renovation, and maintenance. The findings of this review will help the various stakeholders initiate a strategic reflection on the importance of indoor air quality and climate change issues for existing and future buildings. Several new avenues and recommendations are presented to set the path for future research activities. PMID:29186831

  6. Indoor radon problem in energy efficient multi-storey buildings.

    PubMed

    Yarmoshenko, I V; Vasilyev, A V; Onishchenko, A D; Kiselev, S M; Zhukovsky, M V

    2014-07-01

    Modern energy-efficient architectural solutions and building construction technologies such as monolithic concrete structures in combination with effective insulation reduce air permeability of building envelope. As a result, air exchange rate is significantly reduced and conditions for increased radon accumulation in indoor air are created. Based on radon survey in Ekaterinburg, Russia, remarkable increase in indoor radon concentration level in energy-efficient multi-storey buildings was found in comparison with similar buildings constructed before the-energy-saving era. To investigate the problem of indoor radon in energy-efficient multi-storey buildings, the measurements of radon concentration have been performed in seven modern buildings using radon monitoring method. Values of air exchange rate and other parameters of indoor climate in energy-efficient buildings have been estimated. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Skin complaints in buildings with indoor climate problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenberg, B.

    1989-01-01

    The Sick Building Syndrome (SBS), as defined by the World Health Organization (WHO), is a combination of both common and unspecific symptoms. Few studies have been published with detailed descriptions of clinical findings. One of the few dermatological references with a close relation to sick buildings is the so-called low humidity occupational dermatoses. Since 1982, an increasing number of outpatients from building with indoor climate problems have been investigated at the Department of Dermatology in Umea, Sweden. The most common findings regarding work-related diseases have been seborrheic dermatitis, facial erythema, periorbital eczema, rosacea, urticaria, and itching folliculitis. It is suggestedmore » that physical, chemical, and psychological factors are of importance in producing these symptoms.« less

  8. The indoor air we breathe.

    PubMed Central

    Oliver, L C; Shackleton, B W

    1998-01-01

    Increasingly recognized as a potential public health problem since the outbreak of Legionnaire's disease in Philadelphia in 1976, polluted indoor air has been associated with health problems that include asthma, sick building syndrome, multiple chemical sensitivity, and hypersensitivity pneumonitis. Symptoms are often nonspecific and include headache, eye and throat irritation, chest tightness and shortness of breath, and fatigue. Air-borne contaminants include commonly used chemicals, vehicular exhaust, microbial organisms, fibrous glass particles, and dust. Identified causes include defective building design and construction, aging of buildings and their ventilation systems, poor climate control, inattention to building maintenance. A major contributory factor is the explosion in the use of chemicals in building construction and furnishing materials over the past four decades. Organizational issues and psychological variables often contribute to the problem and hinder its resolution. This article describes the health problems related to poor indoor air quality and offers solutions. Images p398-a p399-a PMID:9769764

  9. Central Sensitization and Perceived Indoor Climate among Workers with Chronic Upper-Limb Pain: Cross-Sectional Study

    PubMed Central

    Jakobsen, Markus D.; Jay, Kenneth; Persson, Roger; Andersen, Lars L.

    2015-01-01

    Monitoring of indoor climate is an essential part of occupational health and safety. While questionnaires are commonly used for surveillance, not all workers may perceive an identical indoor climate similarly. The aim of this study was to evaluate perceived indoor climate among workers with chronic pain compared with pain-free colleagues and to determine the influence of central sensitization on this perception. Eighty-two male slaughterhouse workers, 49 with upper-limb chronic pain and 33 pain-free controls, replied to a questionnaire with 13 items of indoor climate complaints. Pressure pain threshold (PPT) was measured in muscles of the arm, shoulder, and lower leg. Cross-sectional associations were determined using general linear models controlled for age, smoking, and job position. The number of indoor climate complaints was twice as high among workers with chronic pain compared with pain-free controls (1.8 [95% CI: 1.3–2.3] versus 0.9 [0.4–1.5], resp.). PPT of the nonpainful leg muscle was negatively associated with the number of complaints. Workers with chronic pain reported more indoor climate complaints than pain-free controls despite similar actual indoor climate. Previous studies that did not account for musculoskeletal pain in questionnaire assessment of indoor climate may be biased. Central sensitization likely explains the present findings. PMID:26425368

  10. The effect of high indoor temperatures on self-perceived health of elderly persons.

    PubMed

    van Loenhout, J A F; le Grand, A; Duijm, F; Greven, F; Vink, N M; Hoek, G; Zuurbier, M

    2016-04-01

    Exposure to high ambient temperatures leads to an increase in mortality and morbidity, especially in the elderly. This relationship is usually assessed with outdoor temperature, even though the elderly spend most of their time indoors. Our study investigated the relationship between indoor temperature and heat-related health problems of elderly individuals. The study was conducted in the Netherlands between April and August 2012. Temperature and relative humidity were measured continuously in the living rooms and bedrooms of 113 elderly individuals. Respondents were asked to fill out an hourly diary during three weeks with high temperature and one cold reference week, and a questionnaire at the end of these weeks, on health problems that they experienced due to heat. During the warmest week of the study period (14-20 August), average living room and bedroom temperatures were approximately 5°C higher than during the reference week. More than half of the respondents perceived their indoor climate as too warm during this week. The most reported symptoms were thirst (42.7%), sleep disturbance (40.6%) and excessive sweating (39.6%). There was a significant relationship between both indoor and outdoor temperatures with the number of hours that heat-related health problems were reported per day. For an increase of 1°C of indoor temperature, annoyance due to heat and sleep disturbance increased with 33% and 24% respectively. Outdoor temperature was associated with smaller increases: 13% and 11% for annoyance due to heat and sleep disturbance, respectively. The relationship between outdoor temperature and heat-related health problems disappeared when indoor and outdoor temperatures were included in one model. The relationship with heat-related health problems in the elderly is stronger with indoor (living room and bedroom) temperature than with outdoor temperature. This should be taken into account when looking for measures to reduce heat exposure in this vulnerable group. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. In search of a common European approach to a healthy indoor environment.

    PubMed

    Adan, Olaf C G; Ng-A-Tham, Julie; Hanke, Wojtek; Sigsgaard, Torben; van den Hazel, Peter; Wu, Felicia

    2007-06-01

    Increasingly, policymakers in Europe and around the world are realizing the importance of healthy indoor environments for public health. Certain member states of the European Union (EU) have already achieved successes in improving indoor environmental quality, such as controlling certain contaminants (e.g., environmental tobacco smoke) or developing nationwide policies that address indoor air generally. However, a common European approach to achieving healthy indoor environments is desirable for several reasons including providing a broader recognition of the problem of unhealthy indoor air, setting a policy example for all 27 EU member states, and achieving greater public health equity across the different European nations. In this article we address the question "Why is it so difficult in the EU to develop a coherent approach on indoor environment?" We identify and describe four main barriers: a) the subsidiarity principle in EU policymaking, introducing decentralization of decision making to the member states; b) fragmentation of the topic of the indoor environment; c) the differences in climate and governance among different member states that make a common policy difficult; and d) economic issues. We discuss potential lessons and recommendations from EU and U.S. successes in achieving healthier indoor environments through various policy mechanisms.

  12. Moisture Durability Assessment of Selected Well-insulated Wall Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pallin, Simon B.; Boudreaux, Philip R.; Kehrer, Manfred

    2015-12-01

    This report presents the results from studying the hygrothermal performance of two well-insulated wall assemblies, both complying with and exceeding international building codes (IECC 2015 2014, IRC 2015). The hygrothermal performance of walls is affected by a large number of influential parameters (e.g., outdoor and indoor climates, workmanship, material properties). This study was based on a probabilistic risk assessment in which a number of these influential parameters were simulated with their natural variability. The purpose of this approach was to generate simulation results based on laboratory chamber measurements that represent a variety of performances and thus better mimic realistic conditions.more » In total, laboratory measurements and 6,000 simulations were completed for five different US climate zones. A mold growth indicator (MGI) was used to estimate the risk of mold which potentially can cause moisture durability problems in the selected wall assemblies. Analyzing the possible impact on the indoor climate due to mold was not part of this study. The following conclusions can be reached from analyzing the simulation results. In a hot-humid climate, a higher R-value increases the importance of the airtightness because interior wall materials are at lower temperatures. In a cold climate, indoor humidity levels increase with increased airtightness. Air leakage must be considered in a hygrothermal risk assessment, since air efficiently brings moisture into buildings from either the interior or exterior environment. The sensitivity analysis of this study identifies mitigation strategies. Again, it is important to remark that MGI is an indicator of mold, not an indicator of indoor air quality and that mold is the most conservative indicator for moisture durability issues.« less

  13. Probabilistic modeling of the indoor climates of residential buildings using EnergyPlus

    DOE PAGES

    Buechler, Elizabeth D.; Pallin, Simon B.; Boudreaux, Philip R.; ...

    2017-04-25

    The indoor air temperature and relative humidity in residential buildings significantly affect material moisture durability, HVAC system performance, and occupant comfort. Therefore, indoor climate data is generally required to define boundary conditions in numerical models that evaluate envelope durability and equipment performance. However, indoor climate data obtained from field studies is influenced by weather, occupant behavior and internal loads, and is generally unrepresentative of the residential building stock. Likewise, whole-building simulation models typically neglect stochastic variables and yield deterministic results that are applicable to only a single home in a specific climate. The

  14. Exploring the consequences of climate change for indoor air quality

    NASA Astrophysics Data System (ADS)

    Nazaroff, William W.

    2013-03-01

    Climate change will affect the concentrations of air pollutants in buildings. The resulting shifts in human exposure may influence public health. Changes can be anticipated because of altered outdoor pollution and also owing to changes in buildings effected in response to changing climate. Three classes of factors govern indoor pollutant levels in occupied spaces: (a) properties of pollutants; (b) building factors, such as the ventilation rate; and (c) occupant behavior. Diversity of indoor conditions influences the public health significance of climate change. Potentially vulnerable subpopulations include not only the young and the infirm but also those who lack resources to respond effectively to changing conditions. Indoor air pollutant levels reflect the sum of contributions from indoor sources and from outdoor pollutants that enter with ventilation air. Pollutant classes with important indoor sources include the byproducts of combustion, radon, and volatile and semivolatile organic compounds. Outdoor pollutants of special concern include particulate matter and ozone. To ensure good indoor air quality it is important first to avoid high indoor emission rates for all pollutants and second to ensure adequate ventilation. A third factor is the use of air filtration or air cleaning to achieve further improvements where warranted. Reprinted with permission from Climate Change, the Indoor Environment, and Health (2011) by the National Academy of Sciences, Courtesy of the National Academies Press, Washington, DC.

  15. National Academy of Sciences (NAS) Study entitled The Effect of Climate Change on Indoor Air Quality and Public Health.

    EPA Science Inventory

    The Institute of Medicine of the NAS is conducting a study to evaluate the state of scientific understanding of the effects of climate change on indoor air quality and public health. General topics may include the likely impacts of climate change in the U.S. on the indoor environ...

  16. Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings.

    PubMed

    Wallner, Peter; Munoz, Ute; Tappler, Peter; Wanka, Anna; Kundi, Michael; Shelton, Janie F; Hutter, Hans-Peter

    2015-11-06

    Energy-efficient buildings need mechanical ventilation. However, there are concerns that inadequate mechanical ventilation may lead to impaired indoor air quality. Using a semi-experimental field study, we investigated if exposure of occupants of two types of buildings (mechanical vs. natural ventilation) differs with regard to indoor air pollutants and climate factors. We investigated living and bedrooms in 123 buildings (62 highly energy-efficient and 61 conventional buildings) built in the years 2010 to 2012 in Austria (mainly Vienna and Lower Austria). Measurements of indoor parameters (climate, chemical pollutants and biological contaminants) were conducted twice. In total, more than 3000 measurements were performed. Almost all indoor air quality and room climate parameters showed significantly better results in mechanically ventilated homes compared to those relying on ventilation from open windows and/or doors. This study does not support the hypothesis that occupants in mechanically ventilated low energy houses are exposed to lower indoor air quality.

  17. Impact of climate change on the domestic indoor environment and associated health risks in the UK.

    PubMed

    Vardoulakis, Sotiris; Dimitroulopoulou, Chrysanthi; Thornes, John; Lai, Ka-Man; Taylor, Jonathon; Myers, Isabella; Heaviside, Clare; Mavrogianni, Anna; Shrubsole, Clive; Chalabi, Zaid; Davies, Michael; Wilkinson, Paul

    2015-12-01

    There is growing evidence that projected climate change has the potential to significantly affect public health. In the UK, much of this impact is likely to arise by amplifying existing risks related to heat exposure, flooding, and chemical and biological contamination in buildings. Identifying the health effects of climate change on the indoor environment, and risks and opportunities related to climate change adaptation and mitigation, can help protect public health. We explored a range of health risks in the domestic indoor environment related to climate change, as well as the potential health benefits and unintended harmful effects of climate change mitigation and adaptation policies in the UK housing sector. We reviewed relevant scientific literature, focusing on housing-related health effects in the UK likely to arise through either direct or indirect mechanisms of climate change or mitigation and adaptation measures in the built environment. We considered the following categories of effect: (i) indoor temperatures, (ii) indoor air quality, (iii) indoor allergens and infections, and (iv) flood damage and water contamination. Climate change may exacerbate health risks and inequalities across these categories and in a variety of ways, if adequate adaptation measures are not taken. Certain changes to the indoor environment can affect indoor air quality or promote the growth and propagation of pathogenic organisms. Measures aimed at reducing greenhouse gas emissions have the potential for ancillary public health benefits including reductions in health burdens related heat and cold, indoor exposure to air pollution derived from outdoor sources, and mould growth. However, increasing airtightness of dwellings in pursuit of energy efficiency could also have negative effects by increasing concentrations of pollutants (such as PM2.5, CO and radon) derived from indoor or ground sources, and biological contamination. These effects can largely be ameliorated by mechanical ventilation with heat recovery (MVHR) and air filtration, where such solution is feasible and when the system is properly installed, operated and maintained. Groups at high risk of these adverse health effects include the elderly (especially those living on their own), individuals with pre-existing illnesses, people living in overcrowded accommodation, and the socioeconomically deprived. A better understanding of how current and emerging building infrastructure design, construction, and materials may affect health in the context of climate change and mitigation and adaptation measures is needed in the UK and other high income countries. Long-term, energy efficient building design interventions, ensuring adequate ventilation, need to be promoted. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  18. Children's well-being at schools: Impact of climatic conditions and air pollution.

    PubMed

    Salthammer, Tunga; Uhde, Erik; Schripp, Tobias; Schieweck, Alexandra; Morawska, Lidia; Mazaheri, Mandana; Clifford, Sam; He, Congrong; Buonanno, Giorgio; Querol, Xavier; Viana, Mar; Kumar, Prashant

    2016-09-01

    Human civilization is currently facing two particular challenges: population growth with a strong trend towards urbanization and climate change. The latter is now no longer seriously questioned. The primary concern is to limit anthropogenic climate change and to adapt our societies to its effects. Schools are a key part of the structure of our societies. If future generations are to take control of the manifold global problems, we have to offer our children the best possible infrastructure for their education: not only in terms of the didactic concepts, but also with regard to the climatic conditions in the school environment. Between the ages of 6 and 19, children spend up to 8h a day in classrooms. The conditions are, however, often inacceptable and regardless of the geographic situation, all the current studies report similar problems: classrooms being too small for the high number of school children, poor ventilation concepts, considerable outdoor air pollution and strong sources of indoor air pollution. There have been discussions about a beneficial and healthy air quality in classrooms for many years now and in recent years extensive studies have been carried out worldwide. The problems have been clearly outlined on a scientific level and there are prudent and feasible concepts to improve the situation. The growing number of publications also highlights the importance of this subject. High carbon dioxide concentrations in classrooms, which indicate poor ventilation conditions, and the increasing particle matter in urban outdoor air have, in particular, been identified as primary causes of poor indoor air quality in schools. Despite this, the conditions in most schools continue to be in need of improvement. There are many reasons for this. In some cases, the local administrative bodies do not have the budgets required to address such concerns, in other cases regulations and laws stand in contradiction to the demands for better indoor air quality, and sometimes the problems are simply ignored. This review summarizes the current results and knowledge gained from the scientific literature on air quality in classrooms. Possible scenarios for the future are discussed and guideline values proposed which can serve to help authorities, government organizations and commissions improve the situation on a global level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Adapting Buildings for Indoor Air Quality in a Changing Climate

    EPA Pesticide Factsheets

    Climate change presents many challenges, including the production of severe weather events. These events and efforts to minimize their effects through weatherization can adversely affect indoor environments.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buechler, Elizabeth D.; Pallin, Simon B.; Boudreaux, Philip R.

    The indoor air temperature and relative humidity in residential buildings significantly affect material moisture durability, HVAC system performance, and occupant comfort. Therefore, indoor climate data is generally required to define boundary conditions in numerical models that evaluate envelope durability and equipment performance. However, indoor climate data obtained from field studies is influenced by weather, occupant behavior and internal loads, and is generally unrepresentative of the residential building stock. Likewise, whole-building simulation models typically neglect stochastic variables and yield deterministic results that are applicable to only a single home in a specific climate. The

  1. Daily indoor-to-outdoor temperature and humidity relationships: a sample across seasons and diverse climatic regions

    PubMed Central

    Nguyen, Jennifer L.; Dockery, Douglas W.

    2015-01-01

    The health consequences of heat and cold are usually evaluated based on associations with outdoor measurements at the nearest weather reporting station. However, people in the developed world spend little time outdoors, especially during extreme temperature events. We examined the association between indoor and outdoor temperature and humidity in a range of climates. We measured indoor temperature, apparent temperature, relative humidity, dew point, and specific humidity (a measure of moisture content in air) for one calendar year (2012) in a convenience sample of eight diverse locations ranging from the equatorial region (10°N) to the Arctic (64°N). We then compared the indoor conditions to outdoor values recorded at the nearest airport weather station. We found that the shape of the indoor-to-outdoor temperature and humidity relationships varied across seasons and locations. Indoor temperatures showed little variation across season and location. There was large variation in indoor relative humidity between seasons and between locations which was independent of outdoor, airport measurements. On the other hand, indoor specific humidity, and to a lesser extent dew point, tracked with outdoor, airport measurements both seasonally and between climates, across a wide range of outdoor temperatures. Our results suggest that, depending on the measure, season, and location, outdoor weather measurements can be reliably used to represent indoor exposures and that, in general, outdoor measures of actual moisture content in air better capture indoor exposure than temperature and relative humidity. Therefore, absolute measures of water vapor should be examined in conjunction with other measures (e.g. temperature, relative humidity) in studies of the effect of weather and climate on human health. PMID:26054827

  2. A model to estimate the cost effectiveness of the indoorenvironment improvements in office work

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seppanen, Olli; Fisk, William J.

    2004-06-01

    Deteriorated indoor climate is commonly related to increases in sick building syndrome symptoms, respiratory illnesses, sick leave, reduced comfort and losses in productivity. The cost of deteriorated indoor climate for the society is high. Some calculations show that the cost is higher than the heating energy costs of the same buildings. Also building-level calculations have shown that many measures taken to improve indoor air quality and climate are cost-effective when the potential monetary savings resulting from an improved indoor climate are included as benefits gained. As an initial step towards systemizing these building level calculations we have developed a conceptualmore » model to estimate the cost-effectiveness of various measures. The model shows the links between the improvements in the indoor environment and the following potential financial benefits: reduced medical care cost, reduced sick leave, better performance of work, lower turn over of employees, and lower cost of building maintenance due to fewer complaints about indoor air quality and climate. The pathways to these potential benefits from changes in building technology and practices go via several human responses to the indoor environment such as infectious diseases, allergies and asthma, sick building syndrome symptoms, perceived air quality, and thermal environment. The model also includes the annual cost of investments, operation costs, and cost savings of improved indoor climate. The conceptual model illustrates how various factors are linked to each other. SBS symptoms are probably the most commonly assessed health responses in IEQ studies and have been linked to several characteristics of buildings and IEQ. While the available evidence indicates that SBS symptoms can affect these outcomes and suspects that such a linkage exists, at present we can not quantify the relationships sufficiently for cost-benefit modeling. New research and analyses of existing data to quantify the financial importance of SBS symptoms would enable more widespread consideration of the effects of IEQ in cost benefit calculations.« less

  3. Introduction to Indoor Air Quality

    MedlinePlus

    ... as conditions caused by outdoor impacts (such as climate change). Many reports and studies indicate that the following ... Air Duct Cleaning Asthma Health, Energy Efficiency and Climate Change Flood Cleanup IAQ at Home Indoor airPLUS Mold ...

  4. Psychosocial dimensions of solving an indoor air problem.

    PubMed

    Lahtinen, Marjaana; Huuhtanen, Pekka; Kähkönen, Erkki; Reijula, Kari

    2002-03-01

    This investigation focuses on the psychological and social dimensions of managing and solving indoor air problems. The data were collected in nine workplaces by interviews (n = 85) and questionnaires (n = 375). Indoor air problems in office environments have traditionally utilized industrial hygiene or technical expertise. However, indoor air problems at workplaces are often more complex issues to solve. Technical questions are inter-related with the dynamics of the work community, and the cooperation and interaction skills of the parties involved in the solving process are also put to the test. In the present study, the interviewees were very critical of the process of solving the indoor air problem. The responsibility for coordinating the problem-managing process was generally considered vague, as were the roles and functions of the various parties. Communication problems occurred and rumors about the indoor air problem circulated widely. Conflicts were common, complicating the process in several ways. The research focused on examining different ways of managing and resolving an indoor air problem. In addition, reference material on the causal factors of the indoor air problem was also acquired. The study supported the hypothesis that psychosocial factors play a significant role in indoor air problems.

  5. Socioeconomic and Outdoor Meteorological Determinants of Indoor Temperature and Humidity in New York City Dwellings

    PubMed Central

    Tamerius, JD; Perzanowski, MS; Acosta, LM; Jacobson, JS; Goldstein, IF; Quinn, JW; Rundle, AG; Shaman, J

    2013-01-01

    Background Numerous mechanisms link outdoor weather and climate conditions to human health. It is likely that many health conditions are more directly affected by indoor rather than outdoor conditions. Yet, the relationship between indoor temperature and humidity conditions to outdoor variability, and the heterogeneity of the relationship among different indoor environments are largely unknown. Methods We use 5–14 day measures of indoor temperature and relative humidity from 327 dwellings in New York City for the years 2008–2011 to investigate the relationship between indoor climate, outdoor meteorological conditions, socioeconomic conditions, and building descriptors. Study households were primarily middle-income and located across the boroughs of Brooklyn, Queens, Bronx, and Manhattan. Results Indoor temperatures are positively associated with outdoor temperature during the warm season and study dwellings in higher socioeconomic status neighborhoods are significantly cooler. During the cool season, outdoor temperatures have little effect on indoor temperatures; however, indoor temperatures can range more than 10 °C between dwellings despite similar outdoor temperatures. Apartment buildings tend to be significantly warmer than houses and dwellings on higher floors are also significantly warmer than dwellings on lower floors. Outdoor specific humidity is positively associated with indoor specific and relative humidity, but there is no consistent relationship between outdoor and indoor relative humidity. Conclusions In New York City, the relationship between indoor and outdoor temperature and humidity conditions vary significantly between dwellings. These results can be used to inform studies of health outcomes for which temperature or humidity is an established factor affecting human health and highlights the need for more research on the determinants of indoor climate. PMID:24077420

  6. Overheating risk assessment of naturally ventilated classroom under the influence of climate change in hot and humid region

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Tsang

    2013-04-01

    Natural ventilation (NV) is considered one of the passive building strategies used for reducing cooling energy demand. The utilization of nature wind for cooling down indoor thermal environment to reach thermal comfort requires knowledge of adequately positioning the building fenestrations, designing inlet-outlet related opening ratios, planning unobstructed cross ventilation paths, and, the most important, assessing the utilization feasibility base on local climatic variables. Furthermore, factors that influence the indoor thermal condition include building envelope heat gain, indoor air velocity, indoor heat gain (e.g. heat discharges from occupant's body, lighting fixture, electrical appliances), and outdoor climate. Among the above, the indoor thermal performance of NV building is significantly dependent to outdoor climate conditions. In hot and humid Taiwan, under college school classrooms are usually operated in natural ventilation mode and are more vulnerable to climate change in regard to maintain indoor thermal comfort. As climate changes in progress, NV classrooms would expect to encounter more events of overheating in the near future, which result in more severe heat stress, and would risk the utilization of natural ventilation. To evaluate the overheating risk under the influence of recent climate change, an actual top floor elementary school classroom with 30 students located at north Taiwan was modeled. Long-term local hourly meteorological data were gathered and further constructed into EnergyPlus Weather Files (EPWs) format for building thermal dynamic simulation to discuss the indoor thermal environmental variation during the period of 1998 to 2012 by retrospective simulation. As indoor thermal environment is an overall condition resulting from a series combination of various factors, sub-hourly building simulation tool, EnergyPlus, coupled with the above fifteen years' EPWs was adopted to predict hourly indoor parameters of mean radiant temperature, air velocity, dry-bulb temperature and relative humidity. These physical quantities are crucial for calculating the thermal indices such as Physiological Equivalent Temperature (PET), New Standard Effective Temperature (SET*), and operative temperature (OT), which were subsequently being used for assessing thermal discomfort. Occurrences and the severity of overheating were assessed by observing the number of hours that surmount the upper limit of the adaptive thermal model proposed by ASHRAE Standard 55 (American Society of Heating, Refrigerating and Air-conditioning Engineers Standard) base on ISO 7730 method to characterize long term indoor thermal discomfort. Preliminary result show that although the degree of increase in overheating risk of NV classrooms was mild, there is a trend revealing that both the occurrences and the severity of thermal discomfort were gradually rising. The study also proposed several building renovation strategies for adapting the climate change to alleviate overheating situation. Efficiencies of these recommended strategies were also analyzed by simulating with the hottest year in comparison with the coldest year.

  7. Airborne viable fungi in school environments in different climatic regions - A review

    NASA Astrophysics Data System (ADS)

    Salonen, Heidi; Duchaine, Caroline; Mazaheri, Mandana; Clifford, Sam; Lappalainen, Sanna; Reijula, Kari; Morawska, Lidia

    2015-03-01

    Elevated levels of fungi in indoor environments have been linked with mould/moisture damage in building structures. However, there is a lack of information about "normal" concentrations and flora as well as guidelines of viable fungi in the school environment in different climatic conditions. We have reviewed existing guidelines for indoor fungi and the current knowledge of the concentrations and flora of viable fungi in different climatic areas, the impact of the local factors on concentrations and flora of viable fungi in school environments. Meta-regression was performed to estimate the average behaviour for each analysis of interest, showing wide variation in the mean concentrations in outdoor and indoor school environments (range: 101-103 cfu/m3). These concentrations were significantly higher for both outdoors and indoors in the moderate than in the continental climatic area, showing that the climatic condition was a determinant for the concentrations of airborne viable fungi. The most common fungal species both in the moderate and continental area were Cladosporium spp. and Penicillium spp. The suggested few quantitative guidelines for indoor air viable fungi for school buildings are much lower than for residential areas. This review provides a synthesis, which can be used to guide the interpretation of the fungi measurements results and help to find indications of mould/moisture in school building structures.

  8. Evaluation of Humidity Control Options in Hot-Humid Climate Homes (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-12-01

    This technical highlight describes NREL research to analyze the indoor relative humidity in three home types in the hot-humid climate zone, and examine the impacts of various dehumidification equipment and controls. As the Building America program researches construction of homes that achieve greater source energy savings over typical mid-1990s construction, proper modeling of whole-house latent loads and operation of humidity control equipment has become a high priority. Long-term high relative humidity can cause health and durability problems in homes, particularly in a hot-humid climate. In this study, researchers at the National Renewable Energy Laboratory (NREL) used the latest EnergyPlus toolmore » equipped with the moisture capacitance model to analyze the indoor relative humidity in three home types: a Building America high-performance home; a mid-1990s reference home; and a 2006 International Energy Conservation Code (IECC)-compliant home in hot-humid climate zones. They examined the impacts of various dehumidification equipment and controls on the high-performance home where the dehumidification equipment energy use can become a much larger portion of whole-house energy consumption. The research included a number of simulated cases: thermostat reset, A/C with energy recovery ventilator, heat exchanger assisted A/C, A/C with condenser reheat, A/C with desiccant wheel dehumidifier, A/C with DX dehumidifier, A/C with energy recovery ventilator, and DX dehumidifier. Space relative humidity, thermal comfort, and whole-house source energy consumption were compared for indoor relative humidity set points of 50%, 55%, and 60%. The study revealed why similar trends of high humidity were observed in all three homes regardless of energy efficiency, and why humidity problems are not necessarily unique in the high-performance home. Thermal comfort analysis indicated that occupants are unlikely to notice indoor humidity problems. The study confirmed that supplemental dehumidification is needed to maintain space relative humidity (RH) below 60% in a hot-humid climate home. Researchers also concluded that while all the active dehumidification options included in the study successfully controlled space relative humidity excursions, the increase in whole-house energy consumption was much more sensitive to the humidity set point than the chosen technology option. In the high-performance home, supplemental dehumidification equipment results in a significant source energy consumption penalty at 50% RH set point (12.6%-22.4%) compared to the consumption at 60% RH set point (1.5%-2.7%). At 50% and 55% RH set points, A/C with desiccant wheel dehumidifier and A/C with ERV and high-efficiency DX dehumidifier stand out as the two cases resulting in the smallest increase of source energy consumption. At an RH set point of 60%, all explicit dehumidification technologies result in similar insignificant increases in source energy consumption and thus are equally competitive.« less

  9. The impact of future climate on historic interiors.

    PubMed

    Lankester, Paul; Brimblecombe, Peter

    2012-02-15

    The socio-economic significance of climate change is widely recognised. However, its potential to affect our cultural heritage has not been discussed in detail (i.e. not explicit in IPCC 4) even though the cultural impacts of future outdoor climate have been the focus of some European Commission projects (e.g. NOAH'S ARK) and World Heritage Centre reports. Recently there have been a few projects that have examined the changing environmental threats to tangible heritage indoors (e.g. Preparing Historic Collections for Climate Change and Climate for Culture). Here we predict future indoor temperature and humidity, and damage arising from changes to climate in historic rooms in Southern England with little climate control, using simple building simulations coupled with high resolution (~5 km) climate predictions. The calculations suggest an increase in indoor temperature over the next century that is slightly less than that outdoors. Annual relative humidity shows little change, but the seasonal cycles suggest drier summers and slightly damper winters indoors. Damage from mould growth and pests is likely to increase in the future, while humidity driven dimensional change to materials (e.g. wood) should decrease somewhat. The results allow collection managers to prepare for the impact of long-term climate change, putting strategic measures in place to prevent increased damage, and thus preserve our heritage for future generations. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Biomimicry as an approach for sustainable architecture case of arid regions with hot and dry climate

    NASA Astrophysics Data System (ADS)

    Bouabdallah, Nabila; M'sellem, Houda; Alkama, Djamel

    2016-07-01

    This paper aims to study the problem of thermal comfort inside buildings located in hot and arid climates. The principal idea behind this research is using concepts based on the potential of nature as an instrument that helps creating appropriate facades with the environment "building skin". The biomimetic architecture imitates nature through the study of form, function, behaviour and ecosystems of biological organisms. This research aims to clarify the possibilities that can be offered by biomimicry architecture to develop architectural bio-inspired building's design that can help to enhance indoor thermal ambiance in buildings located in hot and dry climate which helps to achieve thermal comfort for users.

  11. Assessment of indoor air problems at work with a questionnaire

    PubMed Central

    Reijula, K; Sundman-Digert, C

    2004-01-01

    Aims: To assess the extent of indoor air problems in office environments in Finland. Methods: Complaints and symptoms related to the indoor environment experienced by office workers were collected from 122 workplaces in 1996–99 by using the modified Indoor Air Questionnaire established by the Finnish Institute of Occupational Health. Altogether 11 154 employees took part in the survey. Results: The most common problems were dry air (35% of the respondents), stuffy air (34%), dust or dirt in the indoor environment (25%), and draught (22%). The most common work related symptoms were irritated, stuffy, or runny nose (20%), itching, burning, or irritation of the eyes (17%), and fatigue (16%). Women reported indoor air problems and work related symptoms more often than men. Allergic persons and smokers reported indoor air problems more often, and experienced work related symptoms more often than non-allergic persons and non-smokers. Conclusions: The complaints and work related symptoms associated with indoor air problems were common in office workers. The present questionnaire is a suitable tool for the occupational health personnel in investigating indoor air problems and the data of the survey can be used as a reference when the results of a survey at work are being analysed. PMID:14691270

  12. Climate change and health: Indoor heat exposure in vulnerable populations☆

    PubMed Central

    White-Newsome, Jalonne L.; Sánchez, Brisa N.; Jolliet, Olivier; Zhang, Zhenzhen; Parker, Edith A.; Dvonch, J. Timothy; O'Neill, Marie S.

    2015-01-01

    Introduction Climate change is increasing the frequency of heat waves and hot weather in many urban environments. Older people are more vulnerable to heat exposure but spend most of their time indoors. Few published studies have addressed indoor heat exposure in residences occupied by an elderly population. The purpose of this study is to explore the relationship between outdoor and indoor temperatures in homes occupied by the elderly and determine other predictors of indoor temperature. Materials and methods We collected hourly indoor temperature measurements of 30 different homes; outdoor temperature, dewpoint temperature, and solar radiation data during summer 2009 in Detroit, MI. We used mixed linear regression to model indoor temperatures’ responsiveness to weather, housing and environmental characteristics, and evaluated our ability to predict indoor heat exposures based on outdoor conditions. Results Average maximum indoor temperature for all locations was 34.85 °C, 13.8 °C higher than average maximum outdoor temperature. Indoor temperatures of single family homes constructed of vinyl paneling or wood siding were more sensitive than brick homes to outdoor temperature changes and internal heat gains. Outdoor temperature, solar radiation, and dewpoint temperature predicted 38% of the variability of indoor temperatures. Conclusions Indoor exposures to heat in Detroit exceed the comfort range among elderly occupants, and can be predicted using outdoor temperatures, characteristics of the housing stock and surroundings PMID:22071034

  13. Climate change and health: Indoor heat exposure in vulnerable populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White-Newsome, Jalonne L., E-mail: jalonne@umich.edu; Sanchez, Brisa N., E-mail: brisa@umich.edu; Jolliet, Olivier, E-mail: ojolliet@umich.edu

    2012-01-15

    Introduction: Climate change is increasing the frequency of heat waves and hot weather in many urban environments. Older people are more vulnerable to heat exposure but spend most of their time indoors. Few published studies have addressed indoor heat exposure in residences occupied by an elderly population. The purpose of this study is to explore the relationship between outdoor and indoor temperatures in homes occupied by the elderly and determine other predictors of indoor temperature. Materials and methods: We collected hourly indoor temperature measurements of 30 different homes; outdoor temperature, dewpoint temperature, and solar radiation data during summer 2009 inmore » Detroit, MI. We used mixed linear regression to model indoor temperatures' responsiveness to weather, housing and environmental characteristics, and evaluated our ability to predict indoor heat exposures based on outdoor conditions. Results: Average maximum indoor temperature for all locations was 34.85 Degree-Sign C, 13.8 Degree-Sign C higher than average maximum outdoor temperature. Indoor temperatures of single family homes constructed of vinyl paneling or wood siding were more sensitive than brick homes to outdoor temperature changes and internal heat gains. Outdoor temperature, solar radiation, and dewpoint temperature predicted 38% of the variability of indoor temperatures. Conclusions: Indoor exposures to heat in Detroit exceed the comfort range among elderly occupants, and can be predicted using outdoor temperatures, characteristics of the housing stock and surroundings to improve heat exposure assessment for epidemiological investigations. Weatherizing homes and modifying home surroundings could mitigate indoor heat exposure among the elderly.« less

  14. Simulation of outdoor pond cultures using indoor LED-lighted and temperature-controlled raceway ponds and Phenometrics photobioreactors

    DOE PAGES

    Huesemann, Michael; Dale, T.; Chavis, A.; ...

    2016-12-02

    Two innovative culturing systems, the LED-lighted and temperature-controlled 800 liter indoor raceways at Pacific Northwest National Laboratory (PNNL) and the Phenometrics environmental Photobioreactors™ (ePBRs) were evaluated in terms of their ability to accurately simulate the microalgae growth performance of outdoor cultures subjected to fluctuating sunlight and water temperature conditions. When repeating a 60-day outdoor pond culture experiment (batch and semi-continuous at two dilution rates) conducted in Arizona with the freshwater strain Chlorella sorokiniana DOE 1412 in these two indoor simulators, it was found that ash-free dry weight based biomass growth and productivity in the PNNL climate-simulation ponds was comparatively slightlymore » higher (8–13%) but significantly lower (44%) in the ePBRs. The difference in biomass productivities between the indoor and outdoor ponds was not statistically significant. When the marine Picochlorum soloecismus was cultured in five replicate ePBRs at Los Alamos National Laboratory (LANL) and in duplicate indoor climate-simulation ponds at PNNL, using the same inoculum, medium, culture depth, and light and temperature scripts, the optical density based biomass productivity and the rate of increase in cell counts in the ePBRs was about 35% and 66%, respectively, lower compared than in the indoor ponds. Potential reasons for the divergence in growth performance in these pond simulators, relative to outdoor raceways, are discussed. In conclusion, the PNNL climate-simulation ponds provide reasonably reliable biomass productivity estimates for microalgae strains cultured in outdoor raceways under different climatic conditions.« less

  15. Light use efficiency for vegetables production in protected and indoor environments

    NASA Astrophysics Data System (ADS)

    Cocetta, Giacomo; Casciani, Daria; Bulgari, Roberta; Musante, Fulvio; Kołton, Anna; Rossi, Maurizio; Ferrante, Antonio

    2017-01-01

    In recent years, there is a growing interest for vegetables production in indoor or disadvantaged climatic zones by using greenhouses. The main problem of crop growing indoor or in environment with limited light availability is the correct choice of light source and the quality of lighting spectrum. In greenhouse and indoor cultivations, plant density is higher than in the open field and plants have to compete for light and nutrients. Nowadays, advanced systems for indoor horticulture use light emitting diodes (LED) for improving crop growth, enhancing the plant productivity and favouring the best nutritional quality formation. In closed environments, as indoor growing modules, the lighting system represents the only source of light and its features are fundamental for obtaining the best lighting performances for plant and the most efficient solution. LED lighting engines are more efficient compared to the lighting sources used traditionally in horticulture and allow light spectrum and intensity modulations to enhance the light use efficiency for plants. The lighting distribution and the digital controls are fundamental for tailoring the spectral distribution on each plant in specific moments of its growth and play an important role for optimizing growth and produce high-quality vegetables. LED lights can increase plant growth and yield, but also nutraceutical quality, since some light intensities increase pigments biosynthesis and enhance the antioxidants content of leaves or fruits: in this regards the selection of LED primary light sources in relation to the peaks of the absorbance curve of the plants is important.

  16. Energy, Weatherization and Indoor Air Quality

    EPA Pesticide Factsheets

    Climate change presents many challenges, including the production of severe weather events. These events and efforts to minimize their effects through weatherization can adversely affect indoor environments.

  17. Indoor air quality: A psychosocial perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boxer, P.A.

    1990-05-01

    The incidence of indoor air quality problems has increased dramatically over the past decade. Investigation of these problems has yielded a definitive cause in only one third of the cases. Psychosocial factors may play a key role in the development and propagation of symptoms attributed to poor indoor air quality. Guidelines for managing indoor air quality problems from the organizational perspective are based upon psychosocial principles and elements of risk perception.

  18. Rickets

    MedlinePlus

    ... or produced by the skin when exposed to sunlight. Lack of vitamin D production by the skin ... who: Live in climates with little exposure to sunlight Must stay indoors Work indoors during the daylight ...

  19. Good practices in managing work-related indoor air problems: a psychosocial perspective.

    PubMed

    Lahtinen, Marjaana; Huuhtanen, Pekka; Vähämäki, Kari; Kähkönen, Erkki; Mussalo-Rauhamaa, Helena; Reijula, Kari

    2004-07-01

    Indoor air problems at workplaces are often exceedingly complex. Technical questions are interrelated with the dynamics of the work community, and the cooperation and interaction skills of the parties involved in the problem solving process are also put to the test. The objective of our study was to analyze the process of managing and solving indoor air problems from a psychosocial perspective. This collective case study was based on data from questionnaires, interviews and various documentary materials. Technical inspections of the buildings and indoor air measurements were also carried out. The following four factors best differentiated successful cases from impeded cases: extensive multiprofessional collaboration and participative action, systematic action and perseverance, investment in information and communication, and process thinking and learning. The study also proposed a theoretical model for the role of the psychosocial work environment in indoor air problems. The expertise related to social and human aspects of problem solving plays a significant role in solving indoor air problems. Failures to properly handle these aspects may lead to resources being wasted and result in a problematic situation becoming stagnant or worse. Copyright 2004 Wiley-Liss, Inc.

  20. [Environmental pollution, climate variability and climate change: a review of health impacts on the Peruvian population].

    PubMed

    Gonzales, Gustavo F; Zevallos, Alisson; Gonzales-Castañeda, Cynthia; Nuñez, Denisse; Gastañaga, Carmen; Cabezas, César; Naeher, Luke; Levy, Karen; Steenland, Kyle

    2014-01-01

    This article is a review of the pollution of water, air and the effect of climate change on the health of the Peruvian population. A major air pollutant is particulate matter less than 2.5 μ (PM 2.5). In Lima, 2,300 premature deaths annually are attributable to this pollutant. Another problem is household air pollution by using stoves burning biomass fuels, where excessive indoor exposure to PM 2.5 inside the household is responsible for approximately 3,000 annual premature deaths among adults, with another unknown number of deaths among children due to respiratory infections. Water pollution is caused by sewage discharges into rivers, minerals (arsenic) from various sources, and failure of water treatment plants. In Peru, climate change may impact the frequency and severity of El Niño Southern Oscillation (ENSO), which has been associated with an increase in cases of diseases such as cholera, malaria and dengue. Climate change increases the temperature and can extend the areas affected by vector-borne diseases, have impact on the availability of water and contamination of the air. In conclusion, Peru is going through a transition of environmental risk factors, where traditional and modern risks coexist and infectious and chronic problems remain, some of which are associated with problems of pollution of water and air.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huesemann, Michael; Dale, T.; Chavis, A.

    Two innovative culturing systems, the LED-lighted and temperature-controlled 800 liter indoor raceways at Pacific Northwest National Laboratory (PNNL) and the Phenometrics environmental Photobioreactors™ (ePBRs) were evaluated in terms of their ability to accurately simulate the microalgae growth performance of outdoor cultures subjected to fluctuating sunlight and water temperature conditions. When repeating a 60-day outdoor pond culture experiment (batch and semi-continuous at two dilution rates) conducted in Arizona with the freshwater strain Chlorella sorokiniana DOE 1412 in these two indoor simulators, it was found that ash-free dry weight based biomass growth and productivity in the PNNL climate-simulation ponds was comparatively slightlymore » higher (8–13%) but significantly lower (44%) in the ePBRs. The difference in biomass productivities between the indoor and outdoor ponds was not statistically significant. When the marine Picochlorum soloecismus was cultured in five replicate ePBRs at Los Alamos National Laboratory (LANL) and in duplicate indoor climate-simulation ponds at PNNL, using the same inoculum, medium, culture depth, and light and temperature scripts, the optical density based biomass productivity and the rate of increase in cell counts in the ePBRs was about 35% and 66%, respectively, lower compared than in the indoor ponds. Potential reasons for the divergence in growth performance in these pond simulators, relative to outdoor raceways, are discussed. In conclusion, the PNNL climate-simulation ponds provide reasonably reliable biomass productivity estimates for microalgae strains cultured in outdoor raceways under different climatic conditions.« less

  2. Defining indoor heat thresholds for health in the UK.

    PubMed

    Anderson, Mindy; Carmichael, Catriona; Murray, Virginia; Dengel, Andy; Swainson, Michael

    2013-05-01

    It has been recognised that as outdoor ambient temperatures increase past a particular threshold, so do mortality/morbidity rates. However, similar thresholds for indoor temperatures have not yet been identified. Due to a warming climate, the non-sustainability of air conditioning as a solution, and the desire for more energy-efficient airtight homes, thresholds for indoor temperature should be defined as a public health issue. The aim of this paper is to outline the need for indoor heat thresholds and to establish if they can be identified. Our objectives include: describing how indoor temperature is measured; highlighting threshold measurements and indices; describing adaptation to heat; summary of the risk of susceptible groups to heat; reviewing the current evidence on the link between sleep, heat and health; exploring current heat and health warning systems and thresholds; exploring the built environment and the risk of overheating; and identifying the gaps in current knowledge and research. A global literature search of key databases was conducted using a pre-defined set of keywords to retrieve peer-reviewed and grey literature. The paper will apply the findings to the context of the UK. A summary of 96 articles, reports, government documents and textbooks were analysed and a gap analysis was conducted. Evidence on the effects of indoor heat on health implies that buildings are modifiers of the effect of climate on health outcomes. Personal exposure and place-based heat studies showed the most significant correlations between indoor heat and health outcomes. However, the data are sparse and inconclusive in terms of identifying evidence-based definitions for thresholds. Further research needs to be conducted in order to provide an evidence base for threshold determination. Indoor and outdoor heat are related but are different in terms of language and measurement. Future collaboration between the health and building sectors is needed to develop a common language and an index for indoor heat and health thresholds in a changing climate.

  3. Evaporative Cooler Use Influences Temporal Indoor Relative Humidity but Not Dust Mite Allergen Levels in Homes in a Semi-Arid Climate

    PubMed Central

    Johnston, James D.; Tuttle, Steven C.; Nelson, Morgan C.; Bradshaw, Rebecca K.; Hoybjerg, Taylor G.; Johnson, Julene B.; Kruman, Bryce A.; Orton, Taylor S.; Cook, Ryan B.; Eggett, Dennis L.; Weber, K. Scott

    2016-01-01

    Concerns about energy consumption and climate change make residential evaporative coolers a popular alternative to central air conditioning in arid and semi-arid climates. However, evaporative coolers have been shown to significantly increase indoor relative humidity and dust mite allergen levels in some studies, while showing no association in other studies. Improved measurement of temporal fluctuations in indoor relative humidity may help identify factors that promote mite growth in homes in dry climates. Dust samples and continuous indoor relative humidity measurements were collected from homes with central air conditioning and homes with evaporative coolers in Utah. Samples were collected over two seasons, winter/spring (Jan–Apr) and summer (July–Sept), 2014. Dust samples were analyzed for Der p 1 and Der f 1 using a two-site monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) analysis. Housing characteristics including age of home, occupant density, and age of mattresses, furniture, and carpeting were also measured. Positive Der p 1 or Der f 1 samples were found in 25.0% of the homes and there was no difference in mean allergen levels by type of air conditioning. Indoor relative humidity was significantly higher in homes with evaporative coolers compared to those with central air conditioning during the summer. Homes with evaporative coolers also spent significantly more time during summer above 55.0% and 65.0% relative humidity compared to central air homes, but not above 75.0%. Findings from this study suggest that increased humidity from evaporative coolers may not be sufficient to exceed the critical equilibrium humidity or maintain humidity excursions for sufficient duration in relatively larger single-family homes in semi-arid climates to support mite growth and reproduction. PMID:26808528

  4. Evaporative Cooler Use Influences Temporal Indoor Relative Humidity but Not Dust Mite Allergen Levels in Homes in a Semi-Arid Climate.

    PubMed

    Johnston, James D; Tuttle, Steven C; Nelson, Morgan C; Bradshaw, Rebecca K; Hoybjerg, Taylor G; Johnson, Julene B; Kruman, Bryce A; Orton, Taylor S; Cook, Ryan B; Eggett, Dennis L; Weber, K Scott

    2016-01-01

    Concerns about energy consumption and climate change make residential evaporative coolers a popular alternative to central air conditioning in arid and semi-arid climates. However, evaporative coolers have been shown to significantly increase indoor relative humidity and dust mite allergen levels in some studies, while showing no association in other studies. Improved measurement of temporal fluctuations in indoor relative humidity may help identify factors that promote mite growth in homes in dry climates. Dust samples and continuous indoor relative humidity measurements were collected from homes with central air conditioning and homes with evaporative coolers in Utah. Samples were collected over two seasons, winter/spring (Jan-Apr) and summer (July-Sept), 2014. Dust samples were analyzed for Der p 1 and Der f 1 using a two-site monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) analysis. Housing characteristics including age of home, occupant density, and age of mattresses, furniture, and carpeting were also measured. Positive Der p 1 or Der f 1 samples were found in 25.0% of the homes and there was no difference in mean allergen levels by type of air conditioning. Indoor relative humidity was significantly higher in homes with evaporative coolers compared to those with central air conditioning during the summer. Homes with evaporative coolers also spent significantly more time during summer above 55.0% and 65.0% relative humidity compared to central air homes, but not above 75.0%. Findings from this study suggest that increased humidity from evaporative coolers may not be sufficient to exceed the critical equilibrium humidity or maintain humidity excursions for sufficient duration in relatively larger single-family homes in semi-arid climates to support mite growth and reproduction.

  5. WSN system design by using an innovative neural network model to perform thermals forecasting in a urban canyon scenario

    NASA Astrophysics Data System (ADS)

    Giuseppina, Nicolosi; Salvatore, Tirrito

    2015-12-01

    Wireless Sensor Networks (WSNs) were studied by researchers in order to manage Heating, Ventilating and Air-Conditioning (HVAC) indoor systems. WSN can be useful specially to regulate indoor confort in a urban canyon scenario, where the thermal parameters vary rapidly, influenced by outdoor climate changing. This paper shows an innovative neural network approach, by using WSN data collected, in order to forecast the indoor temperature to varying the outdoor conditions based on climate parameters and boundary conditions typically of urban canyon. In this work more attention will be done to influence of traffic jam and number of vehicles in queue.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, A.

    This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. In older homes in warm-humid climates, cooling loads are typically high and cooling equipment runs a lot to cool the air. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisturemore » being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and some winter days. In warm-humid climates, those long off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and avoids adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin

    This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. Cooling loads are typically high and cooling equipment runs a lot to cool the air in older homes in warm-humid climates. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisturemore » being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and winter days. In warm-humid climates, those long-off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.« less

  8. Effects of climate change on residential infiltration and air pollution exposure.

    PubMed

    Ilacqua, Vito; Dawson, John; Breen, Michael; Singer, Sarany; Berg, Ashley

    2017-01-01

    Air exchange through infiltration is driven partly by indoor/outdoor temperature differences, and as climate change increases ambient temperatures, such differences could vary considerably even with small ambient temperature increments, altering patterns of exposures to both indoor and outdoor pollutants. We calculated changes in air fluxes through infiltration for prototypical detached homes in nine metropolitan areas in the United States (Atlanta, Boston, Chicago, Houston, Los Angeles, Minneapolis, New York, Phoenix, and Seattle) from 1970-2000 to 2040-2070. The Lawrence Berkeley National Laboratory model of infiltration was used in combination with climate data from eight regionally downscaled climate models from the North American Regional Climate Change Assessment Program. Averaged over all study locations, seasons, and climate models, air exchange through infiltration would decrease by ~5%. Localized increased infiltration is expected during the summer months, up to 20-30%. Seasonal and daily variability in infiltration are also expected to increase, particularly during the summer months. Diminished infiltration in future climate scenarios may be expected to increase exposure to indoor sources of air pollution, unless these ventilation reductions are otherwise compensated. Exposure to ambient air pollution, conversely, could be mitigated by lower infiltration, although peak exposure increases during summer months should be considered, as well as other mechanisms.

  9. Indoor Air Problems and Hoarseness in Children.

    PubMed

    Kallvik, Emma; Putus, Tuula; Simberg, Susanna

    2016-01-01

    A well-functioning voice is becoming increasingly important because voice-demanding professions are increasing. The largest proportion of voice disorders is caused by factors in the environment. Moisture damage is common and can initiate microbial growth and/or diffusion of chemicals from building materials. Indoor air problems due to moisture damage are associated with a number of health symptoms, for example, rhinitis, cough, and asthma symptoms. The purpose of this study was to investigate if children attending a day care center, preschool, or school with indoor air problems due to moisture damage were hoarse more often than the children in a control group. Information was collected through electronic and paper questionnaires from the parents of 6- to 9-year-old children (n = 1857) attending 57 different day care centers, preschools, or schools with or without indoor air problems due to moisture damage. The results showed a significant correlation between the degree of indoor air problem due to moisture damage and the frequency of hoarseness. Significant predictors for the child being hoarse every week or more often were dry cough, phlegm cough, and nasal congestion. The results indicate that these symptoms and exposure to indoor air problems due to moisture damage should be included in voice anamnesis. Furthermore, efforts should be made to remediate indoor air problems due to moisture damage and to treat health symptoms. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  10. Air-Sense: indoor environment monitoring evaluation system based on ZigBee network

    NASA Astrophysics Data System (ADS)

    Huang, Yang; Hu, Liang; Yang, Disheng; Liu, Hengchang

    2017-08-01

    In the modern life, people spend most of their time indoors. However, indoor environmental quality problems have always been affecting people’s social activities. In general, indoor environmental quality is also related to our indoor activities. Since most of the organic irritants and volatile gases are colorless, odorless and too tiny to be seen, because we have been unconsciously overlooked indoor environment quality. Consequently, our body suffer a great health problem. In this work, we propose Air-Sense system which utilizes the platform of ZigBee Network to collect and detect the real-time indoor environment quality. What’s more, Air-Sense system can also provide data analysis, and visualizing the results of the indoor environment to the user.

  11. The correlation between indoor and in soil radon concentrations in a desert climate

    NASA Astrophysics Data System (ADS)

    Al-Khateeb, H. M.; Aljarrah, K. M.; Alzoubi, F. Y.; Alqadi, M. K.; Ahmad, A. A.

    2017-01-01

    This study examines the levels and the correlation between indoor and in soil radon concentration in a desert climate. The measurements are carried out, in Jordan desert in AlMafraq district, using the passive integrated technique. An intelligent automated tracks counting system, modified recently by our group, is used to estimate the overlapping tracks and to decrease the counting percentage error. Results show that radon concentration in soil expands from 4.09 to 11.30 kBq m-3, with an average of 7.53 kBq m-3. Indoor radon concentrations vary from 20.2 Bq m-3 in the AlMafraq city to 46.7 Bq m-3 in Housha village and with an average of 29.6 Bq m-3. All of individual indoor radon concentrations are lower than the limit (100 Bq m-3) recommended by WHO except two dwellings in Housha village which found being higher than this limit. A moderate linear correlation (R2=0.66) was observed between indoor and in soil radon concentrations in the investigated region. Our results showed that an in soil radon measurement can be a satisfactory predictor for indoor radon potential.

  12. Climate Change, Indoor Environment and Health

    EPA Pesticide Factsheets

    Climate change is becoming a driving force for improving energy efficiency because saving energy can help reduce the greenhouse gas emissions that contribute to climate change. However, it is important to balance energy saving measures with ventilation...

  13. Indoor Air Quality Guidelines for Pennsylvania Schools.

    ERIC Educational Resources Information Center

    Zimmerman, Robert S., Jr.

    This report provides information and practical guidance on how to prevent indoor air quality (IAQ) problems in schools, and it describes how to implement a practical plan of action using a minimal amount of resources. It includes general guidelines to prevent or help resolve IAQ problems, guidelines on specific indoor contaminants, recommendations…

  14. Indoor Air Quality Basics for Schools.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    This fact sheet details important information on Indoor Air Quality (IAQ) in school buildings, problems associated with IAQ, and various prevention and problem-solving strategies. Most people spend 90 percent of their time indoors, therefore the Environmental Protection Agency ranks IAQ in the top four environmental risks to the public. The…

  15. A View Indoors, Indoor Environment Division's e-Article Series

    EPA Pesticide Factsheets

    The Indoor Environments Division has created partnership with public and private sector entities to help encourage the public to take action to minimize their risk and mitigate indoor air quality problems.

  16. Controlling Pollutants and Sources: Indoor Air Quality Design Tools for Schools

    EPA Pesticide Factsheets

    To protect indoor environmental quality the designer should understand indoor air quality problems and seek to eliminate potential sources of contamination that originate from outdoors as well as indoors.

  17. HVAC--the importance of clean intake section and dry air filter in cold climate.

    PubMed

    Hanssen, S O

    2004-01-01

    HVAC systems, if properly designed, installed, operated and maintained, will improve thermal conditions and air quality indoors. However, the success strongly depends on the design of the system and the quality of the components we use in our HVAC installations. Regrettably, several investigations have revealed that many HVAC installations have a lot of operational and maintenance problems, especially related to moisture, rain and snow entrainment. In short, it seems that too little attention is placed on the design of the intake section, despite the fact that there exists a large number of national and international guidelines and recommendations. This is a serious problem because the air intake is the initial component of the ventilation plant and as such the first line of defense against debris and other outdoor air pollutants. Unfortunately, the design is often an argued compromise between the architect, the civil engineer and the HVAC engineer. In the future, the technical, hygienic and microbiological feature of air intakes must be better ensured in order to avoid the air intake becoming a risk component as regards contamination and indoor air quality. Further, it seems that the magnitude of the problem is not well known, or recognized, by the building designers, engineers and professionals involved in the construction and operation of buildings. This fact needs to be addressed more seriously, because obviously there is a big difference between the idealistic architectonic design, engineering intentions and the real life situation. Several practical recommendations for design and operation of HVAC systems are presented. Following the recommendations will result in less pollution from the HVAC-system and increased indoor environmental quality.

  18. Thermal comfort of people in the hot and humid area of China-impacts of season, climate, and thermal history.

    PubMed

    Zhang, Y; Chen, H; Wang, J; Meng, Q

    2016-10-01

    We conducted a climate chamber study on the thermal comfort of people in the hot and humid area of China. Sixty subjects from naturally ventilated buildings and buildings with split air conditioners participated in the study, and identical experiments were conducted in a climate chamber in both summer and winter. Psychological and physiological responses were observed over a wide range of conditions, and the impacts of season, climate, and thermal history on human thermal comfort were analyzed. Seasonal and climatic heat acclimatization was confirmed, but they were found to have no significant impacts on human thermal sensation and comfort. The outdoor thermal history was much less important than the indoor thermal history in regard to human thermal sensation, and the indoor thermal history in all seasons of a year played a key role in shaping the subjects' sensations in a wide range of thermal conditions. A warmer indoor thermal history in warm seasons produced a higher neutral temperature, a lower thermal sensitivity, and lower thermal sensations in warm conditions. The comfort and acceptable conditions were identified for people in the hot and humid area of China. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Assessment of indoor heat stress variability in summer and during heat warnings: a case study using the UTCI in Berlin, Germany

    NASA Astrophysics Data System (ADS)

    Walikewitz, Nadine; Jänicke, Britta; Langner, Marcel; Endlicher, Wilfried

    2018-01-01

    Humans spend most of their time in confined spaces and are hence primarily exposed to the direct influence of indoor climate. The Universal Thermal Climate Index (UTCI) was obtained in 31 rooms (eight buildings) in Berlin, Germany, during summer 2013 and 2014. The indoor UTCI was determined from measurements of both air temperature and relative humidity and from data of mean radiant temperature and air velocity, which were either measured or modeled. The associated outdoor UTCI was obtained through facade measurements of air temperature and relative humidity, simulation of mean radiant temperature, and wind data from a central weather station. The results show that all rooms experienced heat stress according to UTCI levels, especially during heat waves. Indoor UTCI varied up to 6.6 K within the city and up to 7 K within building. Heat stress either during day or at night occurred on 35 % of all days. By comparing the day and night thermal loads, we identified maximum values above the 32 °C threshold for strong heat stress during the nighttime. Outdoor UTCI based on facade measurements provided no better explanation of indoor UTCI variability than the central weather station. In contrast, we found a stronger relationship of outdoor air temperature and indoor air temperature. Building characteristics, such as the floor level or window area, influenced indoor heat stress ambiguously. We conclude that indoor heat stress is a major hazard, and more effort toward understanding the causes and creating effective countermeasures is needed.

  20. Climate change and developing-country cities: implications for environmental health and equity.

    PubMed

    Campbell-Lendrum, Diarmid; Corvalán, Carlos

    2007-05-01

    Climate change is an emerging threat to global public health. It is also highly inequitable, as the greatest risks are to the poorest populations, who have contributed least to greenhouse gas (GHG) emissions. The rapid economic development and the concurrent urbanization of poorer countries mean that developing-country cities will be both vulnerable to health hazards from climate change and, simultaneously, an increasing contributor to the problem. We review the specific health vulnerabilities of urban populations in developing countries and highlight the range of large direct health effects of energy policies that are concentrated in urban areas. Common vulnerability factors include coastal location, exposure to the urban heat-island effect, high levels of outdoor and indoor air pollution, high population density, and poor sanitation. There are clear opportunities for simultaneously improving health and cutting GHG emissions most obviously through policies related to transport systems, urban planning, building regulations and household energy supply. These influence some of the largest current global health burdens, including approximately 800,000 annual deaths from ambient urban air pollution, 1.2 million from road-traffic accidents, 1.9 million from physical inactivity, and 1.5 million per year from indoor air pollution. GHG emissions and health protection in developing-country cities are likely to become increasingly prominent in policy development. There is a need for a more active input from the health sector to ensure that development and health policies contribute to a preventive approach to local and global environmental sustainability, urban population health, and health equity.

  1. Challenges of using air conditioning in an increasingly hot climate

    NASA Astrophysics Data System (ADS)

    Lundgren-Kownacki, Karin; Hornyanszky, Elisabeth Dalholm; Chu, Tuan Anh; Olsson, Johanna Alkan; Becker, Per

    2018-03-01

    At present, air conditioning (AC) is the most effective means for the cooling of indoor space. However, its increased global use is problematic for various reasons. This paper explores the challenges linked to increased AC use and discusses more sustainable alternatives. A literature review was conducted applying a transdisciplinary approach. It was further complemented by examples from cities in hot climates. To analyse the findings, an analytical framework was developed which considers four societal levels—individual, community, city, and national. The main challenges identified from the literature review are as follows: environmental, organisational, socio-economical, biophysical and behavioural. The paper also identifies several measures that could be taken to reduce the fast growth of AC use. However, due to the complex nature of the problem, there is no single solution to provide sustainable cooling. Alternative solutions were categorised in three broad categories: climate-sensitive urban planning and building design, alternative cooling technologies, and climate-sensitive attitudes and behaviour. The main findings concern the problems arising from leaving the responsibility to come up with cooling solutions entirely to the individual, and how different societal levels can work towards more sustainable cooling options. It is concluded that there is a need for a more holistic view both when it comes to combining various solutions as well as involving various levels in society.

  2. Climate and mortality changes due to reductions in household cooking emissions

    NASA Astrophysics Data System (ADS)

    Bergman, Tommi; Mielonen, Tero; Arola, Antti; Kokkola, Harri

    2016-04-01

    Household cooking is a significant cause for health and environmental problems in the developing countries. There are more than 3 billion people who use biomass for fuel in cooking stoves in their daily life. These cooking stoves use inadequate ventilation and expose especially women and children to indoor smoke. To reduce problems of the biomass burning, India launched an initiative to provide affordable and clean energy solutions for the poorest households by providing clean next-generation cooking stoves. The improved cooking stoves are expected to improve outdoor air quality and to reduce the climate-active pollutants, thus simultaneously slowing the climate change. Previous research has shown that the emissions of black carbon can be decreased substantially, as much as 90 % by applying better technology in cooking stoves. We have implemented reasonable (50% decrease) and best case (90% decrease) scenarios of the reductions in black and organic carbon due to improved cooking stoves in India into ECHAM-HAMMOZ aerosol-climate model. The global simulations of the scenarios will be used to study how the reductions of emissions in India affect the pollutant concentrations and radiation. The simulated reductions in particulate concentrations will also be used to estimate the decrease in mortality rates. Furthermore, we will study how the emission reductions would affect the global climate and mortality if a similar initiative would be applied in other developing countries.

  3. Indoor Air Quality in Schools: Understanding the Problem and Finding the Solution.

    ERIC Educational Resources Information Center

    Bacci, Geoff

    2002-01-01

    Describes issues and solutions involving indoor air quality in school. Includes indoor air quality action plans, the role of the environmental consultant, and resources available to help school districts develop an indoor air quality action plan. (PKP)

  4. The role of building models in the evaluation of heat-related risks

    NASA Astrophysics Data System (ADS)

    Buchin, Oliver; Jänicke, Britta; Meier, Fred; Scherer, Dieter; Ziegler, Felix

    2016-04-01

    Hazard-risk relationships in epidemiological studies are generally based on the outdoor climate, despite the fact that most of humans' lifetime is spent indoors. By coupling indoor and outdoor climates with a building model, the risk concept developed can still be based on the outdoor conditions but also includes exposure to the indoor climate. The influence of non-linear building physics and the impact of air conditioning on heat-related risks can be assessed in a plausible manner using this risk concept. For proof of concept, the proposed risk concept is compared to a traditional risk analysis. As an example, daily and city-wide mortality data of the age group 65 and older in Berlin, Germany, for the years 2001-2010 are used. Four building models with differing complexity are applied in a time-series regression analysis. This study shows that indoor hazard better explains the variability in the risk data compared to outdoor hazard, depending on the kind of building model. Simplified parameter models include the main non-linear effects and are proposed for the time-series analysis. The concept shows that the definitions of heat events, lag days, and acclimatization in a traditional hazard-risk relationship are influenced by the characteristics of the prevailing building stock.

  5. The ecology of microscopic life in household dust

    PubMed Central

    Barberán, Albert; Dunn, Robert R.; Reich, Brian J.; Pacifici, Krishna; Laber, Eric B.; Menninger, Holly L.; Morton, James M.; Henley, Jessica B.; Leff, Jonathan W.; Miller, Shelly L.; Fierer, Noah

    2015-01-01

    We spend the majority of our lives indoors; yet, we currently lack a comprehensive understanding of how the microbial communities found in homes vary across broad geographical regions and what factors are most important in shaping the types of microorganisms found inside homes. Here, we investigated the fungal and bacterial communities found in settled dust collected from inside and outside approximately 1200 homes located across the continental US, homes that represent a broad range of home designs and span many climatic zones. Indoor and outdoor dust samples harboured distinct microbial communities, but these differences were larger for bacteria than for fungi with most indoor fungi originating outside the home. Indoor fungal communities and the distribution of potential allergens varied predictably across climate and geographical regions; where you live determines what fungi live with you inside your home. By contrast, bacterial communities in indoor dust were more strongly influenced by the number and types of occupants living in the homes. In particular, the female : male ratio and whether a house had pets had a significant influence on the types of bacteria found inside our homes highlighting that who you live with determines what bacteria are found inside your home. PMID:26311665

  6. Changes in airborne fungi from the outdoors to indoor air; large HVAC systems in nonproblem buildings in two different climates.

    PubMed

    Kemp, P C; Neumeister-Kemp, H G; Esposito, B; Lysek, G; Murray, F

    2003-01-01

    Little is known about the changes in occurrence and distribution of airborne fungi as they are transported in the airstream from the outdoor air through the heating, ventilation, and air conditioning (HVAC) system to the indoor air. To better understand this, airborne fungi were analyzed in the HVAC systems of two large office buildings in different climate zones. Fungal samples were taken in each of the walk-in chambers of the HVAC systems using a six-stage Andersen Sampler with malt extract agar. Results showed that fungal species changed with different locations in the HVAC systems. The outdoor air intake produced the greatest filtration effect for both the counts and species of outdoor air fungi. The colony forming unit (CFU) counts and species diversity was further reduced in the air directly after the filters. The cooling coils also had a substantial filtration effect. However, in room air the CFU counts were double and the mixture of fungal species was different from the air leaving the HVAC system at the supply air outlet in most locations. Diffusion of outdoor air fungi to the indoors did not explain the changes in the mixture of airborne fungi from the outdoor air to the indoor air, and some of the fungi present in the indoor air did not appear to be transported indoors by the HVAC systems.

  7. An Actor-Network Theory Analysis of Policy Innovation for Smoke-Free Places: Understanding Change in Complex Systems

    PubMed Central

    Borland, Ron; Coghill, Ken

    2010-01-01

    Complex, transnational issues like the tobacco epidemic are major challenges that defy analysis and management by conventional methods, as are other public health issues, such as those associated with global food distribution and climate change. We examined the evolution of indoor smoke-free regulations, a tobacco control policy innovation, and identified the key attributes of those jurisdictions that successfully pursued this innovation and those that to date have not. In doing so, we employed the actor-network theory, a comprehensive framework for the analysis of fundamental system change. Through our analysis, we identified approaches to help overcome some systemic barriers to the solution of the tobacco problem and comment on other complex transnational problems. PMID:20466949

  8. An actor-network theory analysis of policy innovation for smoke-free places: understanding change in complex systems.

    PubMed

    Young, David; Borland, Ron; Coghill, Ken

    2010-07-01

    Complex, transnational issues like the tobacco epidemic are major challenges that defy analysis and management by conventional methods, as are other public health issues, such as those associated with global food distribution and climate change. We examined the evolution of indoor smoke-free regulations, a tobacco control policy innovation, and identified the key attributes of those jurisdictions that successfully pursued this innovation and those that to date have not. In doing so, we employed the actor-network theory, a comprehensive framework for the analysis of fundamental system change. Through our analysis, we identified approaches to help overcome some systemic barriers to the solution of the tobacco problem and comment on other complex transnational problems.

  9. The associations of indoor environment and psychosocial factors on the subjective evaluation of Indoor Air Quality among lower secondary school students: a multilevel analysis.

    PubMed

    Finell, E; Haverinen-Shaughnessy, U; Tolvanen, A; Laaksonen, S; Karvonen, S; Sund, R; Saaristo, V; Luopa, P; Ståhl, T; Putus, T; Pekkanen, J

    2017-03-01

    Subjective evaluation of Indoor Air Quality (subjective IAQ) reflects both building-related and psychosocial factors, but their associations have rarely been studied other than on the individual level in occupational settings and their interactions have not been assessed. Therefore, we studied whether schools' observed indoor air problems and psychosocial factors are associated with subjective IAQ and their potential interactions. The analysis was performed with a nationwide sample (N = 195 schools/26946 students) using multilevel modeling. Two datasets were merged: (i) survey data from students, including information on schools' psychosocial environment and subjective IAQ, and (ii) data from school principals, including information on observed indoor air problems. On the student level, school-related stress, poor teacher-student relationship, and whether the student did not easily receive help from school personnel, were significantly associated with poor subjective IAQ. On the school level, observed indoor air problem (standardized β = -0.43) and poor teacher-student relationship (standardized β = -0.22) were significant predictors of poor subjective IAQ. In addition, school-related stress was associated with poor subjective IAQ, but only in schools without observed indoor air problem (standardized β = -0.44). © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Indoor Air Pollution

    MedlinePlus

    ... is known as sick building syndrome. Usually indoor air quality problems only cause discomfort. Most people feel better ... and getting rid of pollutants can improve the quality of your indoor air. Environmental Protection Agency

  11. Cooperative Agreement Funding for Indoor Air Quality

    EPA Pesticide Factsheets

    The Indoor Environments Division has created partnership with public and private sector entities to help encourage the public to take action to minimize their risk and mitigate indoor air quality problems.

  12. Parent's Guide to School Indoor Air Quality. Revised

    ERIC Educational Resources Information Center

    Healthy Schools Network, Inc., 2012

    2012-01-01

    Air pollution is air pollution, indoors or out. Good indoor air quality (IAQ) contributes to a favorable learning environment for students, protects health, and supports the productivity of school personnel. In schools in poor repair, leaky roofs and crumbling walls have caused additional indoor air quality problems, including contamination with…

  13. Searching for Authentic Context in Designing PISA-like Mathematics Problem: From Indoor to Outdoor Field Experience

    NASA Astrophysics Data System (ADS)

    Siswono, T. Y. E.; Kohar, A. W.; Rosyidi, A. H.; Hartono, S.; Masriyah

    2018-01-01

    Designing problem like in PISA is known as a challenging activity for teachers particularly as the use of authentic context within that type of problem. This paper aims to describe the experiences of secondary mathematics teachers in designing PISA-like problems within an innovative training program focusing on building teachers’ understanding on the concept of mathematical literacy. The teachers were engaged in a set of problem-solving and problem-posing activities using PISA-based problem within indoor and outdoor field experiences. Within indoor field experience, the teachers worked collaboratively in groups on designing PISA-like problems with a given context through problem generation and reformulation techniques. Within outdoor field experience, they worked on designing PISA-like problems with self-chosen context from the place where the outdoor field experience took place. Our analysis indicates that there were improvements on the PISA-like problems designed by teachers based on its level use of context from indoor to outdoor experience. Also, the teachers were relatively successful with creating appropriate and motivating contexts by harnessing a variety of context consisting of personal, occupational, societal, and scientific contexts. However, they still experienced difficulties in turning these contexts into an appropriate problem satisfying PISA framework such as regarding authenticity of context use, language structure, and PISA task profile.

  14. Lawsuits in the Air.

    ERIC Educational Resources Information Center

    Hays, Larry

    2000-01-01

    Discusses why indoor air quality problems in schools should be treated, not only as a health problem issue, but as a potential for legal actions. What types of proof are needed to make a legal claim involving indoor air problems are addressed as are the elements which constitute a "sick building." (GR)

  15. Steady-state balance model to calculate the indoor climate of livestock buildings, demonstrated for finishing pigs

    NASA Astrophysics Data System (ADS)

    Schauberger, G.; Piringer, M.; Petz, E.

    The indoor climate of livestock buildings is of importance for the well-being and health of animals and their production performance (daily weight gain, milk yield etc). By using a steady-state model for the sensible and latent heat fluxes and the CO2 and odour mass flows, the indoor climate of mechanically ventilated livestock buildings can be calculated. These equations depend on the livestock (number of animals and how they are kept), the insulation of the building and the characteristics of the ventilation system (ventilation rate). Since the model can only be applied to animal houses where the ventilation systems are mechanically controlled (this is the case for a majority of finishing pig units), the calculations were done for an example of a finishing pig unit with 1000 animal places. The model presented used 30 min values of the outdoor parameters temperature and humidity, collected over a 2-year period, as input. The projected environment inside the livestock building was compared with recommended values. The duration of condensation on the inside surfaces was also calculated.

  16. Impact of simulated climate and building features on the penetration of toxic gases from the ambient into the indoor environment

    EPA Science Inventory

    This research is a combination of experimental results and analysis of formaldehyde penetration across a residential building envelope with the objective of developing an understanding of the factors that govern indoor air concentrations of air toxics and to provide linkages betw...

  17. Autonomy and Housing Accessibility Among Powered Mobility Device Users

    PubMed Central

    Brandt, Åse; Lexell, Eva Månsson; Iwarsson, Susanne

    2015-01-01

    OBJECTIVE. To describe environmental barriers, accessibility problems, and powered mobility device (PMD) users’ autonomy indoors and outdoors; to determine the home environmental barriers that generated the most housing accessibility problems indoors, at entrances, and in the close exterior surroundings; and to examine personal factors and environmental components and their association with indoor and outdoor autonomy. METHOD. This cross-sectional study was based on data collected from a sample of 48 PMD users with a spinal cord injury (SCI) using the Impact of Participation and Autonomy and the Housing Enabler instruments. Descriptive statistics and logistic regression were used. RESULTS. More years living with SCI predicted less restriction in autonomy indoors, whereas more functional limitations and accessibility problems related to entrance doors predicted more restriction in autonomy outdoors. CONCLUSION. To enable optimized PMD use, practitioners must pay attention to the relationship between client autonomy and housing accessibility problems. PMID:26356666

  18. An initial study of behavioral addiction symptom severity and demand for indoor tanning.

    PubMed

    Becirevic, Amel; Reed, Derek D; Amlung, Michael; Murphy, James G; Stapleton, Jerod L; Hillhouse, Joel J

    2017-10-01

    Indoor tanning remains a popular activity in Western cultures despite a growing body of literature suggesting its link to skin cancer and melanoma. Advances in indoor tanning research have illuminated problematic patterns of its use. With problems such as difficulty quitting, devoting resources toward its use at the expense of healthy activities, and excessive motivation and urges to tan, symptoms of excessive indoor tanning appear consistent with behavioral addiction. The present study bridges the gap between clinical approaches to understanding indoor tanning problems and behavioral economic considerations of unhealthy habits and addiction. Eighty undergraduate females completed both the Behavioral Addiction Indoor Tanning Screener and the Tanning Purchase Task. Results suggest that behavioral economic demand for tanning significantly differs between risk classification groups, providing divergent validity to the Behavioral Addiction Indoor Tanning Screener and offering additional evidence of the sensitivity of the Tanning Purchase Task to differentiating groups according to tanning profiles. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Causes of Indoor Air Quality Problems in Schools: Summary of Scientific Research. Revised Edition.

    ERIC Educational Resources Information Center

    Bayer, Charlene W.; Crow, Sidney A.; Fischer, John

    Understanding the primary causes of indoor air quality (IAQ) problems and how controllable factors--proper heating, ventilation and air-conditioning (HVAC) system design, allocation of adequate outdoor air, proper filtration, effective humidity control, and routine maintenance--can avert problems may help all building owners, operators, and…

  20. Climate Change and Developing-Country Cities: Implications For Environmental Health and Equity

    PubMed Central

    Corvalán, Carlos

    2007-01-01

    Climate change is an emerging threat to global public health. It is also highly inequitable, as the greatest risks are to the poorest populations, who have contributed least to greenhouse gas (GHG) emissions. The rapid economic development and the concurrent urbanization of poorer countries mean that developing-country cities will be both vulnerable to health hazards from climate change and, simultaneously, an increasing contributor to the problem. We review the specific health vulnerabilities of urban populations in developing countries and highlight the range of large direct health effects of energy policies that are concentrated in urban areas. Common vulnerability factors include coastal location, exposure to the urban heat-island effect, high levels of outdoor and indoor air pollution, high population density, and poor sanitation. There are clear opportunities for simultaneously improving health and cutting GHG emissions most obviously through policies related to transport systems, urban planning, building regulations and household energy supply. These influence some of the largest current global health burdens, including approximately 800,000 annual deaths from ambient urban air pollution, 1.2 million from road-traffic accidents, 1.9 million from physical inactivity, and 1.5 million per year from indoor air pollution. GHG emissions and health protection in developing-country cities are likely to become increasingly prominent in policy development. There is a need for a more active input from the health sector to ensure that development and health policies contribute to a preventive approach to local and global environmental sustainability, urban population health, and health equity. PMID:17393341

  1. Characterization of cookstove emissions from various stoves, fuels, and cycles; intervention pathways and implications for climate

    NASA Astrophysics Data System (ADS)

    DeCarlo, P. F.; Jetter, J.; Khan, B.; Zhao, Y.; Yelverton, T.; Hays, M. D.

    2011-12-01

    Nearly half of the world's population relies on inefficient open fire or rudimentary cookstoves to prepare their food. Combustion of biomass or other fuels results in not only high indoor air pollution, but is also a large source of climate forcing species such as black and organic carbon species to the earth's atmosphere. Large-scale intervention programs are now underway to replace inefficient cooking methods with newer technologies. These intervention programs have as a goal the improvement of indoor air pollution and reduction of negative climate impacts. To characterize the current available alternatives, a major cookstove testing program was conducted at the US EPA. This presentation will focus on the characterization of the emission measurements for a variety of different cookstoves, fuels and cooking cycles. The work will focus on the aerosol optical properties measured with a PASS-3, and the climate impacts of various intervention pathways will be discussed.

  2. A contribution towards establishing more comfortable space weather to cope with increased human space passengers for ISS shuttles

    NASA Astrophysics Data System (ADS)

    Kalu, A.

    Space Weather is a specialized scienctific descipline in Meteorology which has recently emerged from man's continued research efforts to create a familiar spacecraft environment which is physiologically stable and life sustaining for astronauts and human passengers in distant space travels. As the population of human passengers in space shuttles rapidly increases, corresponding research on sustained micro-climate of spacecrafts is considered necessary and timely. This is because existing information is not meant for a large population in spacecrafts. The paper therefore discusses the role of meteorology (specifically micrometeorology) in relation to internal communication, spacecraft instrumentation and physiologic comfort of astronauts and space passengers (the later may not necessarily be trained astronauts, but merely business men or tourist space travellers for business transactions in the International Space Station (ISS)). It is recognized that me eorology which is a fundamental science amongt multidiscplinary sciences has been found to be vital in space travels and communication. Space weather therefore appears in slightly different format where temperature and humidity changes and variability within the spacecraft exert very significant influences on the efficiency of astronauts and the effectiveness of the various delicate instrument gadgets aimed at reducing the frequency of computer failures and malfunction of other instruments on which safety of the spacecraft depends. Apart from the engineering and technological problems which space scientists must have to overcome when human population in space shuttles increases as we now expect, based on evidence from successful missions to ISS, the maint enace of physiologic comfort state of astronauts, which, as far as scientifically possible, should be as near as possible to their Earth-Atmosphere condition. This is one of the most important and also most difficult conditions to attain. It demands a mor e detailed research on space thermodynamics as future passengers to the ISS must be assured of their physiologic comfort and safety before they could accept to pay the huge cost for the space travels. The presentation of the paper is divided into the following four basic sections: (a) Take-off or Blast-off (b) Cruising and SpaceWalk (c) Re-entry into the Terrestial Atmosphere, and (d) Landing and Rescue Operations. Experience shows that each of the above four distinct stages of space travel demands a careful assessment of the micro-climate of the indoor spacecraft and these will each be investigated to ensure that relevant micro - climate information that will maintain effective physiologic comfort level of astronauts and specimen will be attained. Finally, the paper discusses a method to predict indoor weather condition in spacecrafts based on observed ambient data especially temperature and humidity and micro-indoor air circulation for differenct timescales during space shuttles to the ISS. An active multidisciplinary research in which Engineers, Meteorologists, Medical Experts, etc., will work together collaboratively on the problem on ambient indoor space weather for increased human population during proposed International Space Station shuttle missions later this century is strongly recommended.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    New inverter-driven ASHPs are gaining ground in colder climates. These systems operate at sub-zero temperatures without the use of electric resistance backup. There are still uncertainties, however, about cold-climate capacity and efficiency in cold weather and questions such as measuring: power consumption, supply, return, and outdoor air temperatures, and air flow through the indoor fan coil. CARB observed a wide range of operating efficiencies and outputs from site to site. Maximum capacities were found to be generally in line with manufacturer's claims as outdoor temperatures fell to -10 degrees F. The reasons for the wide range in heating performance likelymore » include: low indoor air flow rates, poor placement of outdoor units, relatively high return air temperatures, thermostat set back, integration with existing heating systems, and occupants limiting indoor fan speed. Even with lower efficiencies than published in other studies, most of the heat pumps here still provide heat at lower cost than oil, propane, or certainly electric resistance systems.« less

  4. Evaluating Different Green School Building Designs for Albania: Indoor Thermal Comfort, Energy Use Analysis with Solar Systems

    NASA Astrophysics Data System (ADS)

    Dalvi, Ambalika Rajendra

    Improving the conditions of schools in many parts of the world is gradually acquiring importance. The Green School movement is an integral part of this effort since it aims at improving indoor environmental conditions. This would in turn, enhance student- learning while minimizing adverse environmental impact through energy efficiency of comfort-related HVAC and lighting systems. This research, which is a part of a larger research project, aims at evaluating different school building designs in Albania in terms of energy use and indoor thermal comfort, and identify energy efficient options of existing schools. We start by identifying three different climate zones in Albania; Coastal (Durres), Hill/Pre-mountainous (Tirana), mountainous (Korca). Next, two prototypical school building designs are identified from the existing stock. Numerous scenarios are then identified for analysis which consists of combinations of climate zone, building type, building orientation, building upgrade levels, presence of renewable energy systems (solar photovoltaic and solar water heater). The existing building layouts, initially outlined in CAD software and then imported into a detailed building energy software program (eQuest) to perform annual simulations for all scenarios. The research also predicted indoor thermal comfort conditions of the various scenarios on the premise that windows could be opened to provide natural ventilation cooling when appropriate. This study also estimated the energy generated from solar photovoltaic systems and solar water heater systems when placed on the available roof area to determine the extent to which they are able to meet the required electric loads (plug and lights) and building heating loads respectively. The results showed that there is adequate indoor comfort without the need for mechanical cooling for the three climate zones, and that only heating is needed during the winter months.

  5. Limiting the Temperatures in Naturally Ventilated Buildings in Warm Climates. Building Research Establishment Current Paper 7/74.

    ERIC Educational Resources Information Center

    Petherbridge, P.

    Formulas used in the calculation of cooling loads and indoor temperatures are employed to demonstrate the influence of various building parameters--such as thermal transmittance (U-value), solar absorptivity, and thermal storage--on the indoor thermal environment. The analysis leads to guidance on ways of limiting temperatures in naturally…

  6. Getting the Mold Out.

    ERIC Educational Resources Information Center

    Odle, R. Duane; Bieghler, Kelley

    2001-01-01

    Discusses how primary air systems for school climate control can help reduce maintenance costs, possesses a lower initial cost, provides good indoor air quality, and can work for all schools undergoing renovation. Details of one community school's climate control renovation are highlighted. (GR)

  7. Care for Your Air: A Guide to Indoor Air Quality

    EPA Pesticide Factsheets

    Understand indoor air in homes, schools, and offices. Most of us spend much of our time indoors. The air that we breathe in our homes, in schools, and in offices can put us at risk for health problems.

  8. Fact Sheet on Avoiding Indoor Air Quality Problems During Flood Cleanup

    EPA Pesticide Factsheets

    This fact sheet discusses problems caused by microbial growth, and other effects of flooding, on indoor air quality and the steps you can take to lessen these effects. This focuses on residential flood cleanup, but it applies to other building types.

  9. Clearing the Air: Asthma and Indoor Air Exposure (Highlights)

    EPA Pesticide Factsheets

    The National Academy of Sciences Institute of Medicine issued this report in 2000 describing the role of indoor environmental pollutants in the development and exacerbation of asthma. The report concludes that exposure to indoor pollutants is an important contributor to the asthma problem in this nation. Asthma sufferers should consult with their doctor about reducing their exposure indoor air pollutants.

  10. Indoor Air Quality in Schools: Clean Air Is Good Business.

    ERIC Educational Resources Information Center

    Guarneiri, Michele A.

    2003-01-01

    Describes the effect of poor indoor air quality (IAQ) on student health, the cost of safeguarding good IAQ, the cause of poor IAQ in schools, how to tell whether a school has an IAQ problem, and how the U.S. Environmental Protection Agency can help schools improve indoor air quality though the use of their free "Indoor Air Quality Tools for…

  11. An Office Building Occupants Guide to Indoor Air Quality - Printable Version

    EPA Pesticide Factsheets

    This guide is intended to help people who work in office buildings learn about the factors that contribute to indoor air quality and comfort problems and the roles of building managers and occupants in maintaining a good indoor environment.

  12. Indoor mold spore exposure: characteristics of 127 homes in southern California with endogenous mold problems.

    PubMed

    Gallup, J; Kozak, P; Cummins, L; Gillman, S

    1987-01-01

    We are constantly being exposed to molds in our environment. Indoor mold problems occur after prolonged or chronic water damage to a variety of organic materials such as unfinished wood, jutebacked carpeting, wallpaper, books, cardboard, leather, cork, paper, wallboard, and wicker baskets. Mechanisms for spore dispersal (such as air currents or foot traffic on carpets) must also be present. The presence of these organic materials and dispersal mechanisms leads to significant increases in indoor spore levels.

  13. An extended baseline examination of indoor VOCs in a city of low ambient pollution: Perth, Western Australia

    NASA Astrophysics Data System (ADS)

    Maisey, S. J.; Saunders, S. M.; West, N.; Franklin, P. J.

    2013-12-01

    This study of indoor air quality reports VOC concentrations in 386 suburban homes located in Perth Western Australia, a city of low ambient pollution and temperate climate. Details of indoor VOC concentrations, temperature, relative humidity, and information on house characteristics and occupant activities were collected during the sampling periods. The concentration of VOCs observed in typical homes was low and individual compounds rarely exceeded 5 μg m-3. Median individual VOC concentrations ranged from 0.06 μg m-3 for 1,1,1 trichloroethane and butyl ether to 26.6 μg m-3 for cis/trans 2-butene. Recently renovated homes had higher concentrations of VOCs than non renovated homes, including ∑VOCs (p = 0.026), ∑BTEX (p = 0.03), ∑xylene (p = 0.013), toluene (p = 0.05), cyclohexane (p = 0.039), and propyl benzene (p = 0.039). Statistical analyses showed house age and attached garages were not significant factors for any of the VOCs tested. The concentrations of indoor VOCs in Perth were lower than overseas observations and those reported in recent Australian studies, with inferences made to differences in the climate and the occupant behaviour. The results are a baseline profile of indoor VOCs over the period 2006-2011, in an Australian city of low population density and of generally low ambient pollution.

  14. Thermal Effectiveness of Wall Indoor Fountain in Warm Humid Climate

    NASA Astrophysics Data System (ADS)

    Seputra, J. A. P.

    2018-03-01

    Nowadays, many buildings wield indoor water features such as waterfalls, fountains, and water curtains to improve their aesthetical value. Despite the provision of air cooling due to water evaporation, this feature also has adverse effect if applied in warm humid climate since evaporation might increase air humidity beyond the comfort level. Yet, there are no specific researches intended to measure water feature’s effect upon its thermal condition. In response, this research examines the influence of evaporative cooling on indoor wall fountain toward occupant’s thermal comfort in warm humid climate. To achieve this goal, case study is established in Waroeng Steak Restaurant’s dining room in Surakarta-Indonesia. In addition, SNI 03-6572-2001 with comfort range of 20.5–27.1°C and 40-60% of relative humidity is utilized as thermal criterion. Furthermore, Computational Fluid Dynamics (CFD) is employed to process the data and derive conclusions. Research variables are; feature’s height, obstructions, and fan types. As results, Two Bumps Model (ToB) is appropriate when employs natural ventilation. However, if the room is mechanically ventilated, Three Bumps Model (TeB) becomes the best choice. Moreover, application of adaptive ventilation is required to maintain thermal balance.

  15. Night ventilation control strategies in office buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhaojun; Yi, Lingli; Gao, Fusheng

    2009-10-15

    In moderate climates night ventilation is an effective and energy-efficient approach to improve the indoor thermal environment for office buildings during the summer months, especially for heavyweight construction. However, is night ventilation a suitable strategy for office buildings with lightweight construction located in cold climates? In order to answer this question, the whole energy-consumption analysis software EnergyPlus was used to simulate the indoor thermal environment and energy consumption in typical office buildings with night mechanical ventilation in three cities in northern China. The summer outdoor climate data was analyzed, and three typical design days were chosen. The most important factorsmore » influencing night ventilation performance such as ventilation rates, ventilation duration, building mass and climatic conditions were evaluated. When night ventilation operation time is closer to active cooling time, the efficiency of night ventilation is higher. With night ventilation rate of 10 ach, the mean radiant temperature of the indoor surface decreased by up to 3.9 C. The longer the duration of operation, the more efficient the night ventilation strategy becomes. The control strategies for three locations are given in the paper. Based on the optimized strategies, the operation consumption and fees are calculated. The results show that more energy is saved in office buildings cooled by a night ventilation system in northern China than ones that do not employ this strategy. (author)« less

  16. Problems In Indoor Mapping and Modelling

    NASA Astrophysics Data System (ADS)

    Zlatanova, S.; Sithole, G.; Nakagawa, M.; Zhu, Q.

    2013-11-01

    Research in support of indoor mapping and modelling (IMM) has been active for over thirty years. This research has come in the form of As-Built surveys, Data structuring, Visualisation techniques, Navigation models and so forth. Much of this research is founded on advancements in photogrammetry, computer vision and image analysis, computer graphics, robotics, laser scanning and many others. While IMM used to be the privy of engineers, planners, consultants, contractors, and designers, this is no longer the case as commercial enterprises and individuals are also beginning to apply indoor models in their business process and applications. There are three main reasons for this. Firstly, the last two decades have seen greater use of spatial information by enterprises and the public. Secondly, IMM has been complimented by advancements in mobile computing and internet communications, making it easier than ever to access and interact with spatial information. Thirdly, indoor modelling has been advanced geometrically and semantically, opening doors for developing user-oriented, context-aware applications. This reshaping of the public's attitude and expectations with regards to spatial information has realised new applications and spurred demand for indoor models and the tools to use them. This paper examines the present state of IMM and considers the research areas that deserve attention in the future. In particular the paper considers problems in IMM that are relevant to commercial enterprises and the general public, groups this paper expects will emerge as the greatest users IMM. The subject of indoor modelling and mapping is discussed here in terms of Acquisitions and Sensors, Data Structures and Modelling, Visualisation, Applications, Legal Issues and Standards. Problems are discussed in terms of those that exist and those that are emerging. Existing problems are those that are currently being researched. Emerging problems are those problems or demands that are expected to arise because of social changes, technological advancements, or commercial interests. The motivation of this work is to define a set of research problems that are either being investigated or should be investigated. These will hopefully provide a framework for assessing progress and advances in indoor modelling. The framework will be developed in the form of a problem matrix, detailing existing and emerging problems, their solutions and present best practices. Once the framework is complete it will be published online so that the IMM community can discuss and modify it as necessary. When the framework has reached a steady state an empirical benchmark will be provided to test solutions to posed problems. A yearly evaluation of the problem matrix will follow, the results of which will be published.

  17. Indoor Air Quality Science and Technology

    EPA Pesticide Factsheets

    Understand indoor air in homes, schools, and offices. Most of us spend much of our time indoors. The air that we breathe in our homes, in schools, and in offices can put us at risk for health problems. Some pollutants can be chemicals, gases, and living or

  18. AIRBORNE PARTICLE SIZES AND SOURCES FOUND IN INDOOR AIR

    EPA Science Inventory

    As concern about indoor air quality (IAQ) has grown in recent years, understanding indoor aerosols has become increasingly important so that control techniques may be implemented to reduce damaging health effects and soiling problems. This paper begins with a brief look at the me...

  19. Energy-Efficient Management of Mechanical Ventilation and Relative Humidity in Hot-Humid Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Withers, Jr., Charles R.

    2016-12-01

    In hot and humid climates, it is challenging to energy-efficiently maintain indoor RH at acceptable levels while simultaneously providing required ventilation, particularly in high performance low cooling load homes. The fundamental problem with solely relying on fixed capacity central cooling systems to manage moisture during low sensible load periods is that they are oversized for cooler periods of the year despite being 'properly sized' for a very hot design cooling day. The primary goals of this project were to determine the impact of supplementing a central space conditioning system with 1) a supplemental dehumidifier and 2) a ductless mini-split onmore » seasonal energy use and summer peak power use as well as the impact on thermal distribution and humidity control inside a completely furnished lab home that was continuously ventilated in accordance with ASHRAE 62.2-2013.« less

  20. Building America Case Study: Energy Efficient Management of Mechanical Ventilation and Relative Humidity in Hot-Humid Climates, Cocoa, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-01-01

    In hot and humid climates, it is challenging to energy-efficiently maintain indoor RH at acceptable levels while simultaneously providing required ventilation, particularly in high performance low cooling load homes. The fundamental problem with solely relying on fixed capacity central cooling systems to manage moisture during low sensible load periods is that they are oversized for cooler periods of the year despite being 'properly sized' for a very hot design cooling day. The primary goals of this project were to determine the impact of supplementing a central space conditioning system with 1) a supplemental dehumidifier and 2) a ductless mini-split onmore » seasonal energy use and summer peak power use as well as the impact on thermal distribution and humidity control inside a completely furnished lab home that was continuously ventilated in accordance with ASHRAE 62.2-2013.« less

  1. Air- and Dustborne Mycoflora in Houses Free of Water Damage and Fungal Growth

    PubMed Central

    Horner, W. Elliott; Worthan, Anthony G.; Morey, Philip R.

    2004-01-01

    Typically, studies on indoor fungal growth in buildings focus on structures with known or suspected water damage, moisture, and/or indoor fungal growth problems. Reference information on types of culturable fungi and total fungal levels are generally not available for buildings without these problems. This study assessed 50 detached single-family homes in metropolitan Atlanta, Ga., to establish a baseline of “normal and typical” types and concentrations of airborne and dustborne fungi in urban homes which were predetermined not to have noteworthy moisture problems or indoor fungal growth. Each home was visually examined, and samples of indoor and outdoor air and of indoor settled dust were taken in winter and summer. The results showed that rankings by prevalence and abundance of the types of airborne and dustborne fungi did not differ from winter to summer, nor did these rankings differ when air samples taken indoors were compared with those taken outdoors. Water indicator fungi were essentially absent from both air and dust samples. The air and dust data sets were also examined specifically for the proportions of colonies from ecological groupings such as leaf surface fungi and soil fungi. In the analysis of dust for culturable fungal colonies, leaf surface fungi constituted a considerable portion (>20%) of the total colonies in at least 85% of the samples. Thus, replicate dust samples with less than 20% of colonies from leaf surface fungi are unlikely to be from buildings free of moisture or mold growth problems. PMID:15528497

  2. Types of Forecast and Weather-Related Information Used among Tourism Businesses in Coastal North Carolina

    NASA Astrophysics Data System (ADS)

    Ayscue, Emily P.

    This study profiles the coastal tourism sector, a large and diverse consumer of climate and weather information. It is crucial to provide reliable, accurate and relevant resources for the climate and weather-sensitive portions of this stakeholder group in order to guide them in capitalizing on current climate and weather conditions and to prepare them for potential changes. An online survey of tourism business owners, managers and support specialists was conducted within the eight North Carolina oceanfront counties asking respondents about forecasts they use and for what purposes as well as why certain forecasts are not used. Respondents were also asked about their perceived dependency of their business on climate and weather as well as how valuable different forecasts are to their decision-making. Business types represented include: Agriculture, Outdoor Recreation, Accommodations, Food Services, Parks and Heritage, and Other. Weekly forecasts were the most popular forecasts with Monthly and Seasonal being the least used. MANOVA and ANOVA analyses revealed outdoor-oriented businesses (Agriculture and Outdoor Recreation) as perceiving themselves significantly more dependent on climate and weather than indoor-oriented ones (Food Services and Accommodations). Outdoor businesses also valued short-range forecasts significantly more than indoor businesses. This suggests a positive relationship between perceived climate and weather dependency and forecast value. The low perceived dependency and value of short-range forecasts of indoor businesses presents an opportunity to create climate and weather information resources directed at how they can capitalize on positive climate and weather forecasts and how to counter negative effects with forecasted adverse conditions. The low use of long-range forecasts among all business types can be related to the low value placed on these forecasts. However, these forecasts are still important in that they are used to make more financially risky decisions such as investment decisions.

  3. Indoor Air Quality: Maryland Public Schools.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Education, College Park. Office of Administration and Finance.

    Less than adequate indoor air quality in schools can lead to a higher risk of health problems, an increase in student and teacher absenteeism, diminished learning, and even hazardous conditions. An indoor air quality program that addresses the planning, design, maintenance, and operation of public school buildings should be implemented at the…

  4. Role of occupational health services in the assessment and management of indoor air quality problems.

    PubMed

    Carrer, Paolo; Muzi, Giacomo

    2011-01-01

    The role of the occupational health services in the assessment and management of indoor air quality (IAQ) problems in non-industrial sectors (offices, banks, etc.) has been discussed by experts of the ICOH Scientific Committee on IAQ and Health and has been proposed as follow: 1. Collaboration in risk assessment--risk management; 2. Questionnaire survey; 3. Health surveillance (only when periodical health surveillance is already performed for other risks or when specific clinical examination of workers is required); 4. Health promotion (programs for a better IAQ management). A team approach with cooperation between medical and technical experts is recommended in the assessment and management of indoor air quality problems.

  5. Guidelines for Controlling Indoor Air Quality Problems Associated with Kilns, Copiers, and Welding in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Turner, Ronald W.; And Others

    Guidelines for controlling indoor air quality problems associated with kilns, copiers, and welding in schools are provided in this document. Individual sections on kilns, duplicating equipment, and welding operations contain information on the following: sources of contaminants; health effects; methods of control; ventilation strategies; and…

  6. Current and Potential Future Seasonal Trends of Indoor Dwelling Temperature and Likely Health Risks in Rural Southern Africa.

    PubMed

    Kapwata, Thandi; Gebreslasie, Michael T; Mathee, Angela; Wright, Caradee Yael

    2018-05-10

    Climate change has resulted in rising temperature trends which have been associated with changes in temperature extremes globally. Attendees of Conference of the Parties (COP) 21 agreed to strive to limit the rise in global average temperatures to below 2 °C compared to industrial conditions, the target being 1.5 °C. However, current research suggests that the African region will be subjected to more intense heat extremes over a shorter time period, with projections predicting increases of 4⁻6 °C for the period 2071⁻2100, in annual average maximum temperatures for southern Africa. Increased temperatures may exacerbate existing chronic ill health conditions such as cardiovascular disease, respiratory disease, cerebrovascular disease, and diabetes-related conditions. Exposure to extreme temperatures has also been associated with mortality. This study aimed to consider the relationship between temperatures in indoor and outdoor environments in a rural residential setting in a current climate and warmer predicted future climate. Temperature and humidity measurements were collected hourly in 406 homes in summer and spring and at two-hour intervals in 98 homes in winter. Ambient temperature, humidity and windspeed were obtained from the nearest weather station. Regression models were used to identify predictors of indoor apparent temperature (AT) and to estimate future indoor AT using projected ambient temperatures. Ambient temperatures will increase by a mean of 4.6 °C for the period 2088⁻2099. Warming in winter was projected to be greater than warming in summer and spring. The number of days during which indoor AT will be categorized as potentially harmful will increase in the future. Understanding current and future heat-related health effects is key in developing an effective surveillance system. The observations of this study can be used to inform the development and implementation of policies and practices around heat and health especially in rural areas of South Africa.

  7. Indoor Air Quality and Student Performance [and Case Studies].

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    This report examines how indoor air quality (IAQ) affects a child's ability to learn and provides several case studies of schools that have successfully addressed their indoor air problems, the lessons learned from that experience, and what long-term practices and policies emerged from the effort. The report covers the effects from…

  8. How to Create Healthy Indoor Environments in Schools

    ERIC Educational Resources Information Center

    Rhodes, Diane; Di Nella, Frank

    2012-01-01

    A green and healthy indoor environment should be a fundamental concern in the place where kids learn and grow. Good indoor air quality (IAQ) has been shown to have positive effects on student and staff productivity, performance, comfort and attendance. Conversely, poor IAQ in classrooms--caused by mold and moisture issues, problems with HVAC…

  9. Reference Guide. Indoor Air Quality Tools for Schools

    ERIC Educational Resources Information Center

    US Environmental Protection Agency, 2009

    2009-01-01

    Understanding the importance of good indoor air quality (IAQ) in schools is the backbone of developing an effective Indoor Air Quality (IAQ) program. Poor IAQ can lead to a large variety of health problems and potentially affect comfort, concentration, and staff/student performance. In recognition of tight school budgets, this guidance is designed…

  10. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances †

    PubMed Central

    Alarifi, Abdulrahman; Al-Salman, AbdulMalik; Alsaleh, Mansour; Alnafessah, Ahmad; Al-Hadhrami, Suheer; Al-Ammar, Mai A.; Al-Khalifa, Hend S.

    2016-01-01

    In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space. PMID:27196906

  11. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances.

    PubMed

    Alarifi, Abdulrahman; Al-Salman, AbdulMalik; Alsaleh, Mansour; Alnafessah, Ahmad; Al-Hadhrami, Suheer; Al-Ammar, Mai A; Al-Khalifa, Hend S

    2016-05-16

    In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space.

  12. Indoor Air Quality in Apartments

    EPA Pesticide Factsheets

    Apartments can have the same indoor air problems as single-family homes because many of the pollution sources, such as the interior building materials, furnishings, and household products, are similar.

  13. California's program: Indoor air problems aren't amenable to regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wesolowski, J.

    In 1982, California's legislature established an Indoor Air Quality Program (CIAQP) in the Department of Health Services to carry out research on the nature and extent of the indoor air problem (excluding industrial worksites), to find appropriate mitigation measures, and to promote and coordinate the efforts of other state agencies. Since indoor air problems usually are not amenable to regulatory solutions, regulatory authority was not included in the mandate. The program conducts research into a wide range of contaminants--radon, asbestos, formaldehyde, carbon monoxide, volatile organic compounds, environmental tobacco smoke (ETS), as well as into biological aerosols that cause such diseasesmore » as Legionnaires disease, tuberculosis, allergies, and asthma. Studies are also carried out to better understand the Sick Building Syndrome. The research includes field surveys to determine the exposure of the population to specific contaminants and experiments in the laboratory to develop protocols for reducing exposures. The research emphasizes measurement of exposure--concentration multiplied by the time a person is exposed--as opposed to measurement of concentration only.« less

  14. Interior shadings for office indoor visual comfort in humid climate region

    NASA Astrophysics Data System (ADS)

    Dinapradipta, Asri; Sudarma, Erwin; Defiana, Ima; Erwindi, Collinthia

    2018-03-01

    As part of the fenestration system, the interior shadings have also a role to control the indoor environment to maintain indoor visual comfort. As the occupants have personal access to control these, their control behavior then, might enhance or even worsen indoor comfort performance. The controlling behavior might not only influence indoor comfort performance but can also indicate the success or failure of interior shading as a control device element. This paper is intended to report control behavior patterns, as represented by the variety of the slats’ openings of two types of interior shading i.e. Venetian and Vertical blinds and to analyze these on the concurrent impacts to indoor office building’s indoor illuminance and luminance distribution. The purpose of this research is to figure out the shading control patterns as well as to examine the effectiveness of these two types of interior shadings to control indoor visual environment. This study is a quantitative research using experimentation on the slats’ opening of two types of shadings at two identical office rooms. The research results suggested that both types of blinds seem unsuitable for gaining proper illumination values at work planes in humid tropics area. However, these shadings demonstrate good performance for luminance distribution except for that of the closed Venetian blinds.

  15. Indoor Air Quality: Tools for Schools Action Kit.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Indoor Air Div.

    Good indoor air quality contributes to a favorable learning environment for students, productivity for teachers and staff, and a sense of comfort, health, and well-being for all school occupants. The goal of this kit is to provide clear and easily applied guidance that will help prevent Indoor Air Quality (IAQ) problems and resolve such problems…

  16. Parents' Guide to School Indoor Air Quality.

    ERIC Educational Resources Information Center

    Healthy Schools Network, Inc., Albany, NY.

    This parents' guide presents articles on school indoor air pollution, children's health and the symptoms of indoor air pollution, and how schools can improve their air quality. Also included are tips on what to do if the school ignores air quality problems, and some examples of what school districts should be doing to improve their air quality.…

  17. Healthier Schools: A Review of State Policies for Improving Indoor Air Quality. Research Report.

    ERIC Educational Resources Information Center

    Bernstein, Tobie

    Existing indoor air quality (IAQ) policies for schools reflect the variety of institutional, political, social, and economic contexts that exist within individual states. The purpose of this report is to provide a better understanding of the types of policy strategies used by states in addressing general indoor air quality problems. The policies…

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, R.B.

    Indoor air pollution (IAP) is ranked by the Environmental Protection Agency (EPA) among the top five environmental risks to human health. The World Health Organization estimates that nearly one in every six commercial buildings in the United States suffers from sick-building syndrome and that occupants of another one in twelve suffer from building-related illnesses. Indoor air quality (IAQ) problems cost American business $10 billion per year through lowered productivity, absenteeism, and medical costs. Yet despite the importance and high cost of IAQ problems, indoor air is not yet specifically addressed in any federal regulatory program. The reason probably is becausemore » indoor air is a quanitatively different environment in which traditional modes of regulation, based on pollutant-by pollutant risk assessments, are of limited utility. This paper covers the following topics: four factors influencing IAQ regulation; EPA regulation of indoor air; the role of the consumer product safety commission; OSHA and IAQ issues; state regulation and economic concerns; the pressure for legislation.« less

  19. Ventilation Positive Pressure Intervention Effect on Indoor Air Quality in a School Building with Moisture Problems

    PubMed Central

    Vornanen-Winqvist, Camilla; Järvi, Kati; Toomla, Sander; Ahmed, Kaiser; Andersson, Maria A.; Mikkola, Raimo; Marik, Tamás; Salonen, Heidi

    2018-01-01

    This case study investigates the effects of ventilation intervention on measured and perceived indoor air quality (IAQ) in a repaired school where occupants reported IAQ problems. Occupants’ symptoms were suspected to be related to the impurities leaked indoors through the building envelope. The study’s aim was to determine whether a positive pressure of 5–7 Pa prevents the infiltration of harmful chemical and microbiological agents from structures, thus decreasing symptoms and discomfort. Ventilation intervention was conducted in a building section comprising 12 classrooms and was completed with IAQ measurements and occupants’ questionnaires. After intervention, the concentration of total volatile organic compounds (TVOC) and fine particulate matter (PM2.5) decreased, and occupants’ negative perceptions became more moderate compared to those for other parts of the building. The indoor mycobiota differed in species composition from the outdoor mycobiota, and changed remarkably with the intervention, indicating that some species may have emanated from an indoor source before the intervention. PMID:29385772

  20. Ventilation Positive Pressure Intervention Effect on Indoor Air Quality in a School Building with Moisture Problems.

    PubMed

    Vornanen-Winqvist, Camilla; Järvi, Kati; Toomla, Sander; Ahmed, Kaiser; Andersson, Maria A; Mikkola, Raimo; Marik, Tamás; Kredics, László; Salonen, Heidi; Kurnitski, Jarek

    2018-01-30

    This case study investigates the effects of ventilation intervention on measured and perceived indoor air quality (IAQ) in a repaired school where occupants reported IAQ problems. Occupants' symptoms were suspected to be related to the impurities leaked indoors through the building envelope. The study's aim was to determine whether a positive pressure of 5-7 Pa prevents the infiltration of harmful chemical and microbiological agents from structures, thus decreasing symptoms and discomfort. Ventilation intervention was conducted in a building section comprising 12 classrooms and was completed with IAQ measurements and occupants' questionnaires. After intervention, the concentration of total volatile organic compounds (TVOC) and fine particulate matter (PM 2.5 ) decreased, and occupants' negative perceptions became more moderate compared to those for other parts of the building. The indoor mycobiota differed in species composition from the outdoor mycobiota, and changed remarkably with the intervention, indicating that some species may have emanated from an indoor source before the intervention.

  1. Case histories of building material problems caused by condensation at an enclosed swimming pool and an enclosed ice rink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VanGeem, M.G.; Farahmandpour, K.; Gajda, J.

    1999-07-01

    Enclosed swimming pools and ice rinks in winter climates have the potential for high indoor relative humidities and cold building materials. These elements can contribute to condensation and premature deterioration of building materials. Case histories are provided for an enclosed swimming pool and an enclosed ice rink with condensation problems. An evaluation was performed after roof leaks were reported at a recently constructed indoor swimming pool in a Chicago suburb. After a preliminary inspection, it was evident that the reported leaks were related to building moisture problems rather than a roof leak. Exterior brick masonry exhibited heavy efflorescence in themore » area of the swimming pools, and water streaks were visible on the exterior walls below the eaves. The evaluation included laboratory testing, a visual inspection, field tests and measurements, and analyses for condensation potential. Results of the evaluation indicated the presence of condensed moisture as a direct cause of the observed water stains, and masonry efflorescence. Recommended corrective actions developed. A 54-year-old enclosed ice rink in New England was under investigation to determine the cause of a deteriorated wood deck roof. The building did not have dehumidification or air handling systems, and was heated only when occupied. The evaluation included visual inspection and analyses for condensation potential. Results of the evaluation indicated condensation within the wood decking and insulation during winter months, and high relative humidities that prohibited drying during the spring, summer, and fall. These conditions, over an extended number of years, resulted in decay of the wood decking.« less

  2. Causes of Indoor Air Quality Problems in Schools: Summary of Scientific Research.

    ERIC Educational Resources Information Center

    Bayer, Charlene W.; Crow, Sidney A.; Fischer, John

    Research show that one in five U.S. schools has indoor air quality (IAQ) problems; 36 percent have inadequate heating, ventilation, and air conditioning (HVAC) systems; and there appears to be a correlation between IAQs and the proportion of a school's students coming from low-income households. This report examines the IAQ issue in U.S. public…

  3. Bois Forte Indoor Air Quality Program

    EPA Pesticide Factsheets

    The Bois Forte Indoor Air Quality Program acted swiftly and aggressively to tackle mold and moisture problems in its community members’ homes after several residents became ill as a result of environmental exposures.

  4. Characterizing the impact of projected changes in climate and air quality on human exposures to ozone

    EPA Science Inventory

    The impact of climate change on human and environmental health is of critical concern. Population exposures to air pollutants both indoors and outdoors are influenced by a wide range of air quality, meteorological, behavioral, and housing-related factors, many of which are also i...

  5. Low temperature air with high IAQ for dry climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scofield, C.M.; Des Champs, N.H.

    1995-01-01

    This article describes how low temperature supply air and air-to-air heat exchangers can furnish 100% outdoor air with reduced peak energy demands. The use of low temperature supply air systems in arid climates greatly simplifies the air-conditioning design. Risks associated with moisture migration and sweating of duct and terminal equipment are reduced. Insulation and vapor barrier design requirements are not nearly as critical as they are in the humid, ambient conditions that exist in the eastern United States. The introduction of outdoor air to meet ASHRAE Standard 62-1989 becomes far less taxing on the mechanical cooling equipment because of themore » lower enthalpy levels of the dry western climate. Energy costs to assure indoor air quality (IAQ) are lower than for more tropical climates. In arid regions, maintaining acceptable indoor relative humidity (RH) levels becomes a major IAQ concern. For the western United States, coupling an air-to-air heat exchanger to direct (adiabatic) evaporative coolers can greatly reduce low temperature supply air refrigeration energy requirements and winter humidification costs while ensuring proper ventilation.« less

  6. Environmental and occupational allergies.

    PubMed

    Peden, David; Reed, Charles E

    2010-02-01

    Airborne allergens are the major cause of allergic rhinitis and asthma. Daily exposure comes from indoor sources, chiefly at home but occasionally at schools or offices. Seasonal exposure to outdoor allergens, pollens, and molds is another important source. Exposure to unusual substances at work causes occupational asthma, accounting for about 5% of asthma in adults. Indoor and outdoor air pollutants trigger airway inflammation and increase the severity of asthma. Diesel exhaust particles increase the production of IgE antibodies. Identification and reduction of exposure to allergens is a very important part of the management of respiratory allergic diseases. The first section of this chapter discusses domestic allergens, arthropods (mites and cockroaches), molds, and mammals (pets and mice). Indoor humidity and water damage are important factors in the production of mite and mold allergens, and discarded human food items are important sources of proliferation of cockroaches and mice. Means of identifying and reducing exposure are presented. The second section discusses outdoor allergens: pollens and molds. The particular plants or molds and the amount of exposure to these allergens is determined by the local climate, and local pollen and mold counts are available to determine the time and amount of exposure. Climate change is already having an important effect on the distribution and amount of outdoor allergens. The third section discusses indoor and outdoor air pollution and methods that individuals can take to reduce indoor pollution in addition to eliminating cigarette smoking. The fourth section discusses the diagnosis and management of occupational asthma. Copyright 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  7. Effect of residential air-to-air heat and moisture exchangers on indoor humidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barringer, C.G.; McGugan, C.A.

    1989-01-01

    A project was undertaken to develop guidelines for the selection of residential heat and moisture recovery ventilation systems (HRVs) in order to maintain an acceptable indoor humidity for various climatic conditions. These guidelines were developed from reviews on ventilation requirements, HRV performance specifications, and from computer modeling. Space conditions within three house/occupancy models for several types of HRV were simulated for three climatic conditions (Lake Charles, LA; Seattle, WA; and Winnipeg, MB) in order to determine the impact of the HRVs on indoor relative humidity and space-conditioning loads. Results show that when reduction of cooling cost is the main consideration,more » exchangers with moisture recovery are preferable to sensible HRVs. For reduction of heating costs, moisture recovery should be done for ventilation rates greater than about 15 L/s and average winter temperatures less than about (minus) 10{degrees}C if internal moisture generation rates are low. For houses with higher ventilation rates and colder average winter temperatures, exchangers with moisture recovery should be used.« less

  8. Microbial volatile organic compounds in moldy interiors: a long-term climate chamber study.

    PubMed

    Schuchardt, Sven; Strube, Andrea

    2013-06-01

    The present study simulated large-scale indoor mold damage in order to test the efficiency of air sampling for the detection of microbial volatile organic compounds (MVOCs). To do this, a wallpaper damaged by condensation was stored in a climate chamber (representing a hypothetical test room of 40 m(3) volume) and was inoculated with 14 typical indoor fungal strains. The chamber ventilation conditions were adjusted to common values found in moldy homes, and the mold growth was allowed to continue to higher than average values. The MVOC content of the chamber air was analyzed daily for a period of 105 days using coupled gas chromatography/mass spectrometry (GC-MS). This procedure guarantees MVOC profiling without external factors such as outdoor air, building materials, furniture, and occupants. However, only nine MVOCs could be detected during the sampling period, which indicates that the very low concentrated MVOCs are hardly accessible, even under these favorable conditions. Furthermore, most of the MVOCs that were detected cannot be considered as reliable indicators of mold growth in indoor environments. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The Development of a Systematic Process for Enhancing the Awareness of the Potential for Indoor Air Pollution in Schools.

    ERIC Educational Resources Information Center

    Liska, Roger William

    This paper developed methodology to assist school principals in determining the existence of potential indoor air pollution problems and how to alleviate them, as well as a procedure for pollution prevention. Site visits were conducted on 10 South Carolina elementary schools: five with high potential for indoor air pollution; five with low…

  10. Health effects from indoor air pollution: case studies.

    PubMed

    White, L E; Clarkson, J R; Chang, S N

    1987-01-01

    In recent years there has been a growing awareness of the health effects associated with the presence of contaminants in indoor air. Numerous agents can accumulate in public buildings, homes and automobiles as a result of ongoing activities that normally occur in these closed spaces. Ventilation is a major factor in the control of indoor air pollutants since proper movement of air can prevent or minimize the build up of compounds in buildings. The recent emphasis on energy conservation has lead to measures which economize on energy for heating and air conditioning, but which also trap pollutants within a building. Three cases of indoor air pollution were investigated. A typical investigation of indoor air pollutant problems includes the following: interviews with building occupants; history of the building with regard to maintenance, pesticide treatment, etc.; a survey of the building and ventilation; and when warranted, sampling and analysis of air. Each case presented is unique in that atypical situations caused agents to accumulate in a building or section of a building. The indoor air problems in these cases were solved by identifying and removing the source of the offending agent and/or improving the ventilation in the building.

  11. Indoor air quality and health problems associated with damp floor coverings.

    PubMed

    Tuomainen, Anneli; Seuri, Markku; Sieppi, Anne

    2004-04-01

    To study the relationship between a high incidence of bronchial asthma among employees working in an office building and an indoor air problem related to the degradation of polyvinyl chloride (PVC) floor coverings in the building. The indoor air measurements and results of renovations are also described. Employees' symptoms were surveyed by a questionnaire, and the incidence of asthma was calculated from the medical records for 1997-2000. The quality of indoor air was assessed by microbial sampling and by investigation of the building for possible moisture damage. Indoor air was sampled for volatile organic compounds (VOCs) through Tenax adsorbent tubes. In situ volatile emission measurements from the concrete floor were performed via the field and laboratory emission cell (FLEC) method. In an office with approximately 150 employees, eight new cases of asthma were found in 4 years. In addition, the workers complained of respiratory, conjunctival and nasal symptoms. Emissions indicating the degradation of plastic floor coverings (e.g. 2-ethyl-1-hexanol, 1-butanol) were found in the indoor air and floor material samples. The plastic floor coverings, adhesives and the levelling layers were carefully removed from 12 rooms. The VOCs had diffused into the underlying concrete slabs. The concrete was warmed to remove the diffused VOCs from these areas. After the repairs the concentrations of the VOCs indicating the degradation of PVC, decreased, as did the prevalence of the employees' symptoms and several asthma patients' need for medication. The workers in the office building complained of several respiratory, conjunctival and dermal symptoms. The incidence of adult-onset asthma was approximately nine-times higher than that among Finns employed in similar work. The most probable single cause of the indoor air problem was the degradation of the plastic floor coverings.

  12. Bim-Based Indoor Path Planning Considering Obstacles

    NASA Astrophysics Data System (ADS)

    Xu, M.; Wei, S.; Zlatanova, S.; Zhang, R.

    2017-09-01

    At present, 87 % of people's activities are in indoor environment; indoor navigation has become a research issue. As the building structures for people's daily life are more and more complex, many obstacles influence humans' moving. Therefore it is essential to provide an accurate and efficient indoor path planning. Nowadays there are many challenges and problems in indoor navigation. Most existing path planning approaches are based on 2D plans, pay more attention to the geometric configuration of indoor space, often ignore rich semantic information of building components, and mostly consider simple indoor layout without taking into account the furniture. Addressing the above shortcomings, this paper uses BIM (IFC) as the input data and concentrates on indoor navigation considering obstacles in the multi-floor buildings. After geometric and semantic information are extracted, 2D and 3D space subdivision methods are adopted to build the indoor navigation network and to realize a path planning that avoids obstacles. The 3D space subdivision is based on triangular prism. The two approaches are verified by the experiments.

  13. An Innovative Approach To Teaching High School Students about Indoor Air Quality.

    ERIC Educational Resources Information Center

    Neumann, Catherine M.; Bloomfield, Molly M.; Harding, Anna K.; Sherburne, Holly

    1999-01-01

    Describes an innovative approach used to help high school students develop critical thinking and real-world problem-solving skills while learning about indoor air quality. (Contains 13 references.) (Author/WRM)

  14. VLC-based indoor location awareness using LED light and image sensors

    NASA Astrophysics Data System (ADS)

    Lee, Seok-Ju; Yoo, Jong-Ho; Jung, Sung-Yoon

    2012-11-01

    Recently, indoor LED lighting can be considered for constructing green infra with energy saving and additionally providing LED-IT convergence services such as visible light communication (VLC) based location awareness and navigation services. For example, in case of large complex shopping mall, location awareness to navigate the destination is very important issue. However, the conventional navigation using GPS is not working indoors. Alternative location service based on WLAN has a problem that the position accuracy is low. For example, it is difficult to estimate the height exactly. If the position error of the height is greater than the height between floors, it may cause big problem. Therefore, conventional navigation is inappropriate for indoor navigation. Alternative possible solution for indoor navigation is VLC based location awareness scheme. Because indoor LED infra will be definitely equipped for providing lighting functionality, indoor LED lighting has a possibility to provide relatively high accuracy of position estimation combined with VLC technology. In this paper, we provide a new VLC based positioning system using visible LED lights and image sensors. Our system uses location of image sensor lens and location of reception plane. By using more than two image sensor, we can determine transmitter position less than 1m position error. Through simulation, we verify the validity of the proposed VLC based new positioning system using visible LED light and image sensors.

  15. Indoor Air Quality Tools for Schools Action Kit

    EPA Pesticide Factsheets

    The IAQ Tools for Schools Action Kit provides schools with information on how to carry out a practical plan to improve indoor air problems at little- or no-cost using straightforward activities and in-house staff.

  16. Perceived indoor air quality and its relationship to air pollutants in French dwellings.

    PubMed

    Langer, S; Ramalho, O; Le Ponner, E; Derbez, M; Kirchner, S; Mandin, C

    2017-11-01

    Perception of indoor air quality (PIAQ) was evaluated in a nationwide survey of 567 French dwellings, and this survey was combined with measurements of gaseous and particulate matter (PM 10 and PM 2.5 ) indoor air pollutants and indoor climate parameters. The perception was assessed on a nine-grade scale by both the occupants of the dwellings and the inspectors who performed the measurements. The occupants perceived the air quality in their homes as more pleasant than the inspectors. The inspectors perceived the air quality as more unpleasant in dwellings in which the residents smoked indoors. Significant associations between PIAQ and indoor air pollutant concentrations were observed for both the inspectors and, to a lesser extent, the occupants. Introducing confounding parameters, such as building and personal characteristics, into a multivariate model suppressed most of the observed bivariate correlations and identified the tenure status of the occupants and their occupation as the parameters that most influenced their PIAQ. For the inspectors, perceived air quality was affected by the presence of smokers, the season, the type of ventilation, retrofitting, and the concentrations of acetaldehyde and acrolein. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Indoor localization using magnetic fields

    NASA Astrophysics Data System (ADS)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing hallways with different kinds of pillars, doors and elevators. All in all, this dissertation contributes the following: 1) provides a framework for understanding the presence of ambient magnetic fields indoors and utilizing them to solve the indoor localization problem; 2) develops an application that is independent of the user and the smart phones and 3) requires no other infrastructure since it is deployed on a device that encapsulates the sensing, computing and inferring functionalities, thereby making it a novel contribution to the mobile and pervasive computing domain.

  18. Geomagnetism-Aided Indoor Wi-Fi Radio-Map Construction via Smartphone Crowdsourcing.

    PubMed

    Li, Wen; Wei, Dongyan; Lai, Qifeng; Li, Xianghong; Yuan, Hong

    2018-05-08

    Wi-Fi radio-map construction is an important phase in indoor fingerprint localization systems. Traditional methods for Wi-Fi radio-map construction have the problems of being time-consuming and labor-intensive. In this paper, an indoor Wi-Fi radio-map construction method is proposed which utilizes crowdsourcing data contributed by smartphone users. We draw indoor pathway map and construct Wi-Fi radio-map without requiring manual site survey, exact floor layout and extra infrastructure support. The key novelty is that it recognizes road segments from crowdsourcing traces by a cluster based on magnetism sequence similarity and constructs an indoor pathway map with Wi-Fi signal strengths annotated on. Through experiments in real world indoor areas, the method is proved to have good performance on magnetism similarity calculation, road segment clustering and pathway map construction. The Wi-Fi radio maps constructed by crowdsourcing data are validated to provide competitive indoor localization accuracy.

  19. Geomagnetism-Aided Indoor Wi-Fi Radio-Map Construction via Smartphone Crowdsourcing

    PubMed Central

    Li, Wen; Wei, Dongyan; Lai, Qifeng; Li, Xianghong; Yuan, Hong

    2018-01-01

    Wi-Fi radio-map construction is an important phase in indoor fingerprint localization systems. Traditional methods for Wi-Fi radio-map construction have the problems of being time-consuming and labor-intensive. In this paper, an indoor Wi-Fi radio-map construction method is proposed which utilizes crowdsourcing data contributed by smartphone users. We draw indoor pathway map and construct Wi-Fi radio-map without requiring manual site survey, exact floor layout and extra infrastructure support. The key novelty is that it recognizes road segments from crowdsourcing traces by a cluster based on magnetism sequence similarity and constructs an indoor pathway map with Wi-Fi signal strengths annotated on. Through experiments in real world indoor areas, the method is proved to have good performance on magnetism similarity calculation, road segment clustering and pathway map construction. The Wi-Fi radio maps constructed by crowdsourcing data are validated to provide competitive indoor localization accuracy. PMID:29738454

  20. Indoor Air Pollution: An Energy Management Problem?

    ERIC Educational Resources Information Center

    Cousins, David M.; Kulba, John W.

    1987-01-01

    Energy conservation measures have led to airtight buildings and reduced levels of ventilation resulting in indoor air pollution. Five kinds of contaminants--tobacco smoke, combustion products, microorganisms, organic compounds, and radon--are described, their hazards considered, and countermeasures outlined. (MLF)

  1. Cold Climate Foundation Retrofit Experimental Hygrothermal Performance: Cloquet Residential Research Facility Laboratory Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, Louise F.; Harmon, Anna C.

    2015-04-01

    Thermal and moisture problems in existing basements create a unique challenge because the exterior face of the wall is not easily or inexpensively accessible. This approach addresses thermal and moisture management from the interior face of the wall without disturbing the exterior soil and landscaping. the interior and exterior environments. This approach has the potential for improving durability, comfort, and indoor air quality. This project was funded jointly by the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). ORNL focused on developing a full basement wall system experimental database to enable others to validate hygrothermal simulation codes.more » NREL focused on testing the moisture durability of practical basement wall interior insulation retrofit solutions for cold climates. The project has produced a physically credible and reliable long-term hygrothermal performance database for retrofit foundation wall insulation systems in zone 6 and 7 climates that are fully compliant with the performance criteria in the 2009 Minnesota Energy Code. The experimental data were configured into a standard format that can be published online and that is compatible with standard commercially available spreadsheet and database software.« less

  2. Facilitating the 3D Indoor Search and Rescue Problem: An Overview of the Problem and an Ant Colony Solution Approach

    NASA Astrophysics Data System (ADS)

    Tashakkori, H.; Rajabifard, A.; Kalantari, M.

    2016-10-01

    Search and rescue procedures for indoor environments are quite complicated due to the fact that much of the indoor information is unavailable to rescuers before physical entrance to the incident scene. Thus, decision making regarding the number of crew required and the way they should be dispatched in the building considering the various access points and complexities in the buildings in order to cover the search area in minimum time is dependent on prior knowledge and experience of the emergency commanders. Hence, this paper introduces the Search and Rescue Problem (SRP) which aims at finding best search and rescue routes that minimize the overall search time in the buildings. 3D BIM-oriented indoor GIS is integrated in the indoor route graph to find accurate routes based on the building geometric and semantic information. An Ant Colony Based Algorithm is presented that finds the number of first responders required and their individual routes to search all rooms and points of interest inside the building to minimize the overall time spent by all rescuers inside the disaster area. The evaluation of the proposed model for a case study building shows a significant improve in search and rescue time which will lead to a higher chance of saving lives and less exposure of emergency crew to danger.

  3. Indoor Air Quality In Maine Schools: Report of the Task Force To Examine the Establishment and Implementation of State Standards for Indoor Air Quality in Maine Schools.

    ERIC Educational Resources Information Center

    Malcolm, Judith

    Asserting that in Maine and across the nation, school buildings are becoming increasingly plagued with indoor air quality (IAQ) problems which contribute to a variety of illnesses in children and adults, this report from a Maine state legislative task force identifies appropriate policies and identifies actions necessary for the prevention and…

  4. A fast and precise indoor localization algorithm based on an online sequential extreme learning machine.

    PubMed

    Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua

    2015-01-15

    Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics.

  5. Analyzing symptom data in indoor air questionnaires for primary schools.

    PubMed

    Ung-Lanki, S; Lampi, J; Pekkanen, J

    2017-09-01

    Questionnaires on symptoms and perceived quality of indoor environment are used to assess indoor environment problems, but mainly among adults. The aim of this article was to explore best ways to analyze and report such symptom data, as part of a project to develop a parent-administered indoor air questionnaire for primary school pupils. Indoor air questionnaire with 25 questions on child's symptoms in the last 4 weeks was sent to parents in five primary schools with indoor air problems and in five control schools. About 83% of parents (N=1470) in case schools and 82% (N=805) in control schools returned the questionnaire. In two schools, 351 (52%) parents answered the questionnaire twice with a 2-week interval. Based on prevalence of symptoms, their test-retest repeatability (ICC), and on principal component analysis (PCA), the number of symptoms was reduced to 17 and six symptoms scores were developed. Six variants of these six symptom scores were then formed and their ability to rank schools compared. Four symptom scores (respiratory, lower respiratory, eye, and general symptoms) analyzed dichotomized maintained sufficiently well the diversity of symptom data and captured the between-school differences in symptom prevalence, when compared to more complex and numerous scores. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Indoor Temperatures in Low Cost Housing in Johannesburg, South Africa.

    PubMed

    Naicker, Nisha; Teare, June; Balakrishna, Yusentha; Wright, Caradee Yael; Mathee, Angela

    2017-11-18

    Ambient and indoor temperature affects thermal comfort and human health. In a changing climate with a predicted change in temperature extremes, understanding indoor temperatures, both hot and cold, of different housing types is important. This study aimed to assess the hourly, daily and monthly variation in indoor temperatures in different housing types, namely formal houses, informal houses, flats, government-built low-cost houses and old, apartheid era low-cost housing, in five impoverished urban communities in Johannesburg, South Africa. During the cross-sectional survey of the Health, Environment and Development study data loggers were installed in 100 homes (20 per suburb) from February to May 2014. Indoor temperature and relative humidity were recorded on an hourly basis. Ambient outdoor temperatures were obtained from the nearest weather station. Indoor and outdoor temperature and relative humidity levels were compared; and an inter-comparison between the different housing types were also made. Apparent temperature was calculated to assess indoor thermal comfort. Data from 59 retrieved loggers showed a significant difference in monthly mean indoor temperature between the five different housing types ( p < 0.0001). Low cost government-built houses and informal settlement houses had the greatest variation in temperature and experienced temperatures between 4 and 5 °C warmer than outdoor temperatures. Housing types occupied by poor communities experienced indoor temperature fluctuations often greater than that observed for ambient temperatures. Families living in government-built low-cost and informally-constructed homes are the most at risk for indoor temperature extremes. These types of housing should be prioritised for interventions aimed at assisting families to cope with extreme temperatures, gaining optimal thermal comfort and preventing temperature-related health effects.

  7. Respiratory Effects of Indoor Heat and the Interaction with Air Pollution in Chronic Obstructive Pulmonary Disease.

    PubMed

    McCormack, Meredith C; Belli, Andrew J; Waugh, Darryn; Matsui, Elizabeth C; Peng, Roger D; Williams, D'Ann L; Paulin, Laura; Saha, Anik; Aloe, Charles M; Diette, Gregory B; Breysse, Patrick N; Hansel, Nadia N

    2016-12-01

    There is limited evidence of the effect of exposure to heat on chronic obstructive pulmonary disease (COPD) morbidity, and the interactive effect between indoor heat and air pollution has not been established. To determine the effect of indoor and outdoor heat exposure on COPD morbidity and to determine whether air pollution concentrations modify the effect of temperature. Sixty-nine participants with COPD were enrolled in a longitudinal cohort study, and data from the 601 participant days that occurred during the warm weather season were included in the analysis. Participants completed home environmental monitoring with measurement of temperature, relative humidity, and indoor air pollutants and simultaneous daily assessment of respiratory health with questionnaires and portable spirometry. Participants had moderate to severe COPD and spent the majority of their time indoors. Increases in maximal indoor temperature were associated with worsening of daily Breathlessness, Cough, and Sputum Scale scores and increases in rescue inhaler use. The effect was detected on the same day and lags of 1 and 2 days. The detrimental effect of temperature on these outcomes increased with higher concentrations of indoor fine particulate matter and nitrogen dioxide (P < 0.05 for interaction terms). On days during which participants went outdoors, increases in maximal daily outdoor temperature were associated with increases in Breathlessness, Cough, and Sputum Scale scores after adjusting for outdoor pollution concentrations. For patients with COPD who spend the majority of their time indoors, indoor heat exposure during the warmer months represents a modifiable environmental exposure that may contribute to respiratory morbidity. In the context of climate change, adaptive strategies that include optimization of indoor environmental conditions are needed to protect this high-risk group from the adverse health effects of heat.

  8. Respiratory Effects of Indoor Heat and the Interaction with Air Pollution in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Belli, Andrew J.; Waugh, Darryn; Matsui, Elizabeth C.; Peng, Roger D.; Williams, D’Ann L.; Paulin, Laura; Saha, Anik; Aloe, Charles M.; Diette, Gregory B.; Breysse, Patrick N.; Hansel, Nadia N.

    2016-01-01

    Rationale: There is limited evidence of the effect of exposure to heat on chronic obstructive pulmonary disease (COPD) morbidity, and the interactive effect between indoor heat and air pollution has not been established. Objectives: To determine the effect of indoor and outdoor heat exposure on COPD morbidity and to determine whether air pollution concentrations modify the effect of temperature. Methods: Sixty-nine participants with COPD were enrolled in a longitudinal cohort study, and data from the 601 participant days that occurred during the warm weather season were included in the analysis. Participants completed home environmental monitoring with measurement of temperature, relative humidity, and indoor air pollutants and simultaneous daily assessment of respiratory health with questionnaires and portable spirometry. Measurements and Main Results: Participants had moderate to severe COPD and spent the majority of their time indoors. Increases in maximal indoor temperature were associated with worsening of daily Breathlessness, Cough, and Sputum Scale scores and increases in rescue inhaler use. The effect was detected on the same day and lags of 1 and 2 days. The detrimental effect of temperature on these outcomes increased with higher concentrations of indoor fine particulate matter and nitrogen dioxide (P < 0.05 for interaction terms). On days during which participants went outdoors, increases in maximal daily outdoor temperature were associated with increases in Breathlessness, Cough, and Sputum Scale scores after adjusting for outdoor pollution concentrations. Conclusions: For patients with COPD who spend the majority of their time indoors, indoor heat exposure during the warmer months represents a modifiable environmental exposure that may contribute to respiratory morbidity. In the context of climate change, adaptive strategies that include optimization of indoor environmental conditions are needed to protect this high-risk group from the adverse health effects of heat. PMID:27684429

  9. INDOOR AIR QUALITY MODELING (CHAPTER 58)

    EPA Science Inventory

    The chapter discussses indoor air quality (IAQ) modeling. Such modeling provides a way to investigate many IAQ problems without the expense of large field experiments. Where experiments are planned, IAQ models can be used to help design experiments by providing information on exp...

  10. Flood Cleanup to Protect Indoor Air Quality

    EPA Pesticide Factsheets

    During a flood cleanup, the indoor air quality in your home or office may appear to be the least of your problems. However, failure to remove contaminated materials and to reduce moisture and humidity can present serious long-term health risks.

  11. Into Thin Air.

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2001-01-01

    Shows how schools are working to avoid the types of equipment, supplies, and maintenance practices that harm indoor air quality. Simple steps to maintaining a cleaner indoor air environment are highlighted as are steps to reducing the problem air quality and the occurrence of asthma. (GR)

  12. Applying Outdoor Environment to Develop Health, Comfort, and Energy Saving in the Office in Hot-Humid Climate

    PubMed Central

    Chen, Rong; Sung, Wen-Pei; Chang, Hung-Chang; Chi, Yi-Rou

    2013-01-01

    A human life demand set to emerge in the future is the achievement of sustainability by maintaining a comfortable indoor environment without excessive reliance on energy-consuming air conditioners. The major research processes in this study are: (1) measuring indoor air quality and thermal comfort to evaluate the comfort of an indoor environment; (2) implementing questionnaire survey analysis to explore people's environmental self-perceptions and conducting a meta-analysis of the measurement results for air quality and physical aspects; and (3) constructing an indoor monitoring and management system. The experimental and analysis results of this research reveal that most of the office occupants preferred a cooler environment with a lower temperature. Additionally, because the summers in Taiwan are humid and hot, the occupants of an indoor space tend to feel uncomfortable because of the high humidity and poor indoor air quality. Therefore, Variable Air Volume (VAV), two air intakes, and exhaust plant are installed to improve indoor environment. After improvement, a lower temperature (approximately 21.2–23.9°C) indirectly reduces humidity, thereby making the occupants comfortable. Increasing air velocity to 0.1 ~ 0.15 m/s, the carbon dioxide concentrations decrease below the requirement of the WHO. Ninety-five percent of the workers corresponded to the standard comfort zone after this improvement. PMID:24311976

  13. Indoor environmental quality in French dwellings and building characteristics

    NASA Astrophysics Data System (ADS)

    Langer, Sarka; Ramalho, Olivier; Derbez, Mickaël; Ribéron, Jacques; Kirchner, Severine; Mandin, Corinne

    2016-03-01

    A national survey on indoor environmental quality covering 567 residences in mainland France was performed during 2003-2005. The measured parameters were temperature, relative humidity, CO2, and the indoor air pollutants: fourteen individual volatile organic compounds (VOC), four aldehydes and particulate matter PM10 and PM2.5. The measured indoor concentrations were analyzed for correlations with the building characteristics: type of dwelling, period of construction, dwelling location, type of ventilation system, building material, attached garage and retrofitting. The median night time air exchange rate (AER) for all dwellings was 0.44 h-1. The night time AER was higher in apartments (median = 0.49 h-1) than in single-family houses (median = 0.41 h-1). Concentration of formaldehyde was approximately 30% higher in dwellings built after 1990 compared with older ones; it was higher in dwellings with mechanical ventilation and in concrete buildings. The VOC concentrations depended on the building characteristics to various extents. The sampling season influenced the majority of the indoor climate parameters and the concentrations of the air pollutants to a higher degree than the building characteristics. Multivariate linear regression models revealed that the indoor-outdoor difference in specific humidity, a proxy for number of occupants and their indoor activities, remained a significant predictor for most gaseous and particulate air pollutants. The other strong predictors were outdoor concentration, smoking, attached garage and AER (in descending order).

  14. Information for Individuals with Limited English Proficiency

    EPA Pesticide Factsheets

    Access content in Spanish (espanol), Vietnamese(Tieng Viet), Korean, Chinese (simplified or traditional). Includes translated information on climate change, superfund, indoor air quality, and preparing for and recovering from emergencies such as floods.

  15. A Mandate for Change in the Library Environment.

    ERIC Educational Resources Information Center

    Silberman, Richard M.

    1993-01-01

    The problem of indoor air quality and sick-building syndrome in libraries is explained in terms of human health and comfort and the preservation of books and manuscripts. Ventilation and indoor pollutants are discussed, and a proactive strategy of prevention is recommended. (EAM)

  16. Breathing Easier.

    ERIC Educational Resources Information Center

    Smolkin, Rachel

    2003-01-01

    Describes use of Environmental Protection Agency's Tools for Schools tool kit to improve indoor air quality aimed specifically at eliminating asthma triggers such as dust mites and mold. Includes several examples of school district efforts to reduce or eliminate student health problems associated with poor indoor air quality. (PKP)

  17. Simplified tools for evaluating domestic ventilation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maansson, L.G.; Orme, M.

    1999-07-01

    Within an International Energy Agency (IEA) project, Annex 27, experts from 8 countries (Canada, France, Italy, Japan, The Netherlands, Sweden, UK and USA) have developed simplified tools for evaluating domestic ventilation systems during the heating season. Tools for building and user aspects, thermal comfort, noise, energy, life cycle cost, reliability and indoor air quality (IAQ) have been devised. The results can be used both for dwellings at the design stage and after construction. The tools lead to immediate answers and indications about the consequences of different choices that may arise during discussion with clients. This paper presents an introduction tomore » these tools. Examples applications of the indoor air quality and energy simplified tools are also provided. The IAQ tool accounts for constant emission sources, CO{sub 2}, cooking products, tobacco smoke, condensation risks, humidity levels (i.e., for judging the risk for mould and house dust mites), and pressure difference (for identifying the risk for radon or land fill spillage entering the dwelling or problems with indoor combustion appliances). An elaborated set of design parameters were worked out that resulted in about 17,000 combinations. By using multi-variate analysis it was possible to reduce this to 174 combinations for IAQ. In addition, a sensitivity analysis was made using 990 combinations. The results from all the runs were used to develop a simplified tool, as well as quantifying equations relying on the design parameters. A computerized energy tool has also been developed within this project, which takes into account air tightness, climate, window airing pattern, outdoor air flow rate and heat exchange efficiency.« less

  18. A review of ecologic studies of lung cancer and indoor radon.

    PubMed

    Stidley, C A; Samet, J M

    1993-09-01

    Although radon exposure is an established cause of lung cancer among underground miners, the lung cancer risk to the general population from indoor radon remains controversial. This controversy stems in part from the contradictory results of published studies of indoor radon and lung cancer, including 15 ecologic studies, seven of which found a positive association, six no association, and two a negative association. To address the misunderstanding of the indoor radon risk that has resulted from these ecologic studies, the authors discuss the general methodologic problems and limitations of ecologic studies, and the particular limitations of these 15 studies. The authors conclude that the shortcomings of the ecologic studies render them uninformative on the lung cancer risk associated with indoor radon.

  19. Airborne culturable fungi in naturally ventilated primary school environments in a subtropical climate

    NASA Astrophysics Data System (ADS)

    Salonen, Heidi; Duchaine, Caroline; Mazaheri, Mandana; Clifford, Sam; Morawska, Lidia

    2015-04-01

    There is currently a lack of reference values for indoor air fungal concentrations to allow for the interpretation of measurement results in subtropical school settings. Analysis of the results of this work established that, in the majority of properly maintained subtropical school buildings, without any major affecting events such as floods or visible mould or moisture contamination, indoor culturable fungi levels were driven by outdoor concentration. The results also allowed us to benchmark the "baseline range" concentrations for total culturable fungi, Penicillium spp., Cladosporium spp. and Aspergillus spp. in such school settings. The measured concentration of total culturable fungi and three individual fungal genera were estimated using Bayesian hierarchical modelling. Pooling of these estimates provided a predictive distribution for concentrations at an unobserved school. The results indicated that "baseline" indoor concentration levels for indoor total fungi, Penicillium spp., Cladosporium spp. and Aspergillus spp. in such school settings were generally ≤1450, ≤680, ≤480 and ≤90 cfu/m3, respectively, and elevated levels would indicate mould damage in building structures. The indoor/outdoor ratio for most classrooms had 95% credible intervals containing 1, indicating that fungi concentrations are generally the same indoors and outdoors at each school. Bayesian fixed effects regression modelling showed that increasing both temperature and humidity resulted in higher levels of fungi concentration.

  20. Effect of occupant behavior and air-conditioner controls on humidity in typical and high-efficiency homes

    DOE PAGES

    Winkler, Jon; Munk, Jeffrey; Woods, Jason

    2018-04-01

    Increasing insulation levels and improved windows are reducing sensible cooling loads in high-efficiency homes. This trend raises concerns that the resulting shift in the balance of sensible and latent cooling loads may result in higher indoor humidity, occupant discomfort, and stunted adoption of high-efficiency homes. This study utilizes established moisture-buffering and air-conditioner latent degradation models in conjunction with an approach to stochastically model internal gains. Building loads and indoor humidity levels are compared for simulations of typical new construction homes and high-efficiency homes in 10 US cities. The sensitivity of indoor humidity to changes in cooling set point, air-conditioner capacity,more » and blower control parameters are evaluated. The results show that high-efficiency homes in humid climates have cooling loads with a higher fraction of latent loads than the typical new construction home, resulting in higher indoor humidity. Reducing the cooling set point is the easiest method to reduce indoor humidity, but it is not energy efficient, and overcooling may lead to occupant discomfort. Eliminating the blower operation at the end of cooling cycles and reducing the cooling airflow rate also reduce indoor humidity and with a smaller impact on energy use and comfort.« less

  1. Effect of occupant behavior and air-conditioner controls on humidity in typical and high-efficiency homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, Jon; Munk, Jeffrey; Woods, Jason

    Increasing insulation levels and improved windows are reducing sensible cooling loads in high-efficiency homes. This trend raises concerns that the resulting shift in the balance of sensible and latent cooling loads may result in higher indoor humidity, occupant discomfort, and stunted adoption of high-efficiency homes. This study utilizes established moisture-buffering and air-conditioner latent degradation models in conjunction with an approach to stochastically model internal gains. Building loads and indoor humidity levels are compared for simulations of typical new construction homes and high-efficiency homes in 10 US cities. The sensitivity of indoor humidity to changes in cooling set point, air-conditioner capacity,more » and blower control parameters are evaluated. The results show that high-efficiency homes in humid climates have cooling loads with a higher fraction of latent loads than the typical new construction home, resulting in higher indoor humidity. Reducing the cooling set point is the easiest method to reduce indoor humidity, but it is not energy efficient, and overcooling may lead to occupant discomfort. Eliminating the blower operation at the end of cooling cycles and reducing the cooling airflow rate also reduce indoor humidity and with a smaller impact on energy use and comfort.« less

  2. When Poor Indoor Air Causes a Crisis.

    ERIC Educational Resources Information Center

    Spencer, Robert D.

    1998-01-01

    An air quality problem originating with a steam leak in an improperly maintained heating system resulted in unanticipated expenses of $420,000 for the Lakeview (Michigan) School District. Indoor air quality complaints require immediate investigation and action; clear communication to parents, staff, and media representatives; competent…

  3. Inverse Source Data-Processing Strategies for Radio-Frequency Localization in Indoor Environments.

    PubMed

    Gennarelli, Gianluca; Al Khatib, Obada; Soldovieri, Francesco

    2017-10-27

    Indoor positioning of mobile devices plays a key role in many aspects of our daily life. These include real-time people tracking and monitoring, activity recognition, emergency detection, navigation, and numerous location based services. Despite many wireless technologies and data-processing algorithms have been developed in recent years, indoor positioning is still a problem subject of intensive research. This paper deals with the active radio-frequency (RF) source localization in indoor scenarios. The localization task is carried out at the physical layer thanks to receiving sensor arrays which are deployed on the border of the surveillance region to record the signal emitted by the source. The localization problem is formulated as an imaging one by taking advantage of the inverse source approach. Different measurement configurations and data-processing/fusion strategies are examined to investigate their effectiveness in terms of localization accuracy under both line-of-sight (LOS) and non-line of sight (NLOS) conditions. Numerical results based on full-wave synthetic data are reported to support the analysis.

  4. Optimum Installation of Sorptive Building Materials Using Contribution Ratio of Pollution Source for Improvement of Indoor Air Quality.

    PubMed

    Park, Seonghyun; Seo, Janghoo

    2016-04-01

    Reinforcing the insulation and airtightness of buildings and the use of building materials containing new chemical substances have caused indoor air quality problems. Use of sorptive building materials along with removal of pollutants, constant ventilation, bake-out, etc. are gaining attention in Korea and Japan as methods for improving such indoor air quality problems. On the other hand, sorptive building materials are considered a passive method of reducing the concentration of pollutants, and their application should be reviewed in the early stages. Thus, in this research, activated carbon was prepared as a sorptive building material. Then, computational fluid dynamics (CFD) was conducted, and a method for optimal installation of sorptive building materials was derived according to the indoor environment using the contribution ratio of pollution source (CRP) index. The results show that a method for optimal installation of sorptive building materials can be derived by predicting the contribution ratio of pollutant sources according to the CRP index.

  5. Inverse Source Data-Processing Strategies for Radio-Frequency Localization in Indoor Environments

    PubMed Central

    Gennarelli, Gianluca; Al Khatib, Obada; Soldovieri, Francesco

    2017-01-01

    Indoor positioning of mobile devices plays a key role in many aspects of our daily life. These include real-time people tracking and monitoring, activity recognition, emergency detection, navigation, and numerous location based services. Despite many wireless technologies and data-processing algorithms have been developed in recent years, indoor positioning is still a problem subject of intensive research. This paper deals with the active radio-frequency (RF) source localization in indoor scenarios. The localization task is carried out at the physical layer thanks to receiving sensor arrays which are deployed on the border of the surveillance region to record the signal emitted by the source. The localization problem is formulated as an imaging one by taking advantage of the inverse source approach. Different measurement configurations and data-processing/fusion strategies are examined to investigate their effectiveness in terms of localization accuracy under both line-of-sight (LOS) and non-line of sight (NLOS) conditions. Numerical results based on full-wave synthetic data are reported to support the analysis. PMID:29077071

  6. [Sampling of allergens in dust deposited in the workplace].

    PubMed

    Perfetti, L; Galdi, E; Pozzi, V; Moscato, G

    2001-01-01

    Some workplaces share with domestic dwellings many characteristics favouring house dust mite growth. Moreover it has recently been shown that pets owners can bring allergens to public places with their clothes. So it is possible that significant exposure to indoor allergens can occur outside homes, at the workplace. The recent availability of immunoassays with monoclonal antibodies for indoor allergens has enabled many investigators to quantify exposure to such allergens in epidemiological studies. Analysis of allergens in settled dust is a simple method of quantification exposure to indoor allergens. The concentrations of indoor allergens in public places have already been investigated and high levels of indoor allergens have been reported. A study performed by our group in offices (banks and media) in different regions of Italy has also shown significant levels of indoor allergens. Thus, evaluating exposure to indoor allergens at the workplace is critical to evaluate risk factors for sensitization and elicitation of symptoms in sensitized subjects and such data help in addressing correctly the problem of reducing exposure levels.

  7. Youth indoor tanning and skin cancer prevention: lessons from tobacco control.

    PubMed

    Seidenberg, Andrew B; Mahalingam-Dhingra, Aditya; Weinstock, Martin A; Sinclair, Craig; Geller, Alan C

    2015-02-01

    Youth use of ultraviolet-emitting indoor tanning beds represents a present and emerging public health crisis. Nearly 30% of white female high school students report tanning indoors, and a quarter of high school tanners have used a tanning bed more than 20 times in the past year. Despite the significant health risks of tanning beds, including potentially deadly melanoma and eye problems, limited actions have been taken in the U.S. to protect youth. Tobacco control policies and campaigns, which have sharply reduced youth smoking, may provide a useful framework to control indoor tanning among young people. This article describes several evidence-based tobacco control strategies with potential applicability to indoor tanning within the context of the U.S. Further, current tobacco control policies and current indoor tanning policies in the U.S. are compared, and recommendations on how to curtail youth indoor tanning are discussed. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  8. Feasibility study on mental healthcare using indoor plants for office workers

    NASA Astrophysics Data System (ADS)

    Kubota, Tsuyoshi; Matsumoto, Hiroshi; Genjo, Kaori; Nakano, Takaoki

    2017-10-01

    In recent years, it has become a problem that office workers' stresses affect their intellectual productivity. As one of strategies mitigating the stress while working, many studies on the effect of indoor plants introduced into the office have been conducted. The psychological and physiological effects of indoor plants have been expected to mitigate the office workers' stresses. Also, the effects of green amenities such as improvement of productivity, control of the indoor thermal environment, relaxation and recovery of visual fatigue, and improvement of air quality have been expected. In this study, a field investigation on the green amenity effects of indoor plants on office workers' psychological and physiological responses in an actual office was conducted and discussed. This paper describes the measurement results of the physical environment and workers' psychological and physiological responses under the condition with shelves installed with indoor plants in an office room. It was suggested that indoor plants such as mint, basil and begonia, and a combination of red and green plants were effective for mitigating worker's stresses.

  9. Tribal Air Programs in the Pacific Southwest (Region 9)

    EPA Pesticide Factsheets

    The Region 9 Air Division can assist the 148 tribes in Region 9 with air quality planning, permitting, rulemaking, enforcement/compliance, indoor air, monitoring and related technical support, air grants, and climate change.

  10. Education for Sustainability: An Ecological Approach.

    ERIC Educational Resources Information Center

    Companion, Marc

    2002-01-01

    Describes the ecological design in water purification, indoor climate regulation, and repairing polluted bodies of water. Discusses the implications of ecosystems in the classroom in which students study concepts such as homeostasis and self-regulation. (YDS)

  11. A Fast and Precise Indoor Localization Algorithm Based on an Online Sequential Extreme Learning Machine †

    PubMed Central

    Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua

    2015-01-01

    Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics. PMID:25599427

  12. The Design of WORKER'S Behavior Analysis Method in Workplace Using Indoor Positioning Technology

    NASA Astrophysics Data System (ADS)

    Tabata, K.; Konno, H.; Nakajima, M.

    2016-06-01

    This study presents a method for analyzing workers' behavior using indoor positioning technology and field test in the workplace. Recently, various indoor positioning methods, such as Wi-Fi, Bluetooth low energy (BLE), visible light communication, Japan's indoor messaging system, ultra-wide band (UWB), and pedestrian dead reckoning (PDR), have been investigated. The development of these technologies allows tracking of movement of both people and/or goods in indoor spaces, people and/or goods behavior analysis is expected as one of the key technologies for operation optimization. However, when we use these technologies for human tracking, there are some problem as follows. 1) Many cases need to use dedicated facilities (e.g. UWB). 2) When we use smartphone as sensing device, battery depletion is one of the big problem (especially using PDR). 3) the accuracy is instability for tracking (e.g. Wi-Fi). Based on these matters, in this study we designed and developed an indoor positioning system using BLE positioning. And, we adopted smartphone for business use as sensing device, developed a smartphone application runs on android OS. Moreover, we conducted the field test of developed system at Itoki Corporation's ITOKI Tokyo Innovation Center, SYNQA, office (Tokyo, Japan). Over 40 workers participated in this field test, and worker tracking log data were collected for 6 weeks. We analyzed the characteristics of the workers' behavior using this log data as a prototyping.

  13. Indoor air quality in Brazilian universities.

    PubMed

    Jurado, Sonia R; Bankoff, Antônia D P; Sanchez, Andrea

    2014-07-11

    This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC) (n = 15) and naturally ventilated (NV) (n = 15) classrooms. The parameters of interest were indoor carbon dioxide (CO2), temperature, relative humidity (RH), wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively). The average indoor airborne dust concentration exceeded the Brazilian standards (<80 µg/m3) in both NV and AC classrooms. The levels of CO2 in the AC rooms were significantly different from the NV rooms (1433.62 ± 252.80 and 520.12 ± 37.25 ppm, respectively). The indoor air quality in Brazilian university classrooms affects the health of students. Therefore, indoor air pollution needs to be considered as an important public health problem.

  14. Indoor Air Quality in Brazilian Universities

    PubMed Central

    Jurado, Sonia R.; Bankoff, Antônia D. P.; Sanchez, Andrea

    2014-01-01

    This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC) (n = 15) and naturally ventilated (NV) (n = 15) classrooms. The parameters of interest were indoor carbon dioxide (CO2), temperature, relative humidity (RH), wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively). The average indoor airborne dust concentration exceeded the Brazilian standards (<80 μg/m3) in both NV and AC classrooms. The levels of CO2 in the AC rooms were significantly different from the NV rooms (1433.62 ± 252.80 and 520.12 ± 37.25 ppm, respectively). The indoor air quality in Brazilian university classrooms affects the health of students. Therefore, indoor air pollution needs to be considered as an important public health problem. PMID:25019268

  15. Study on the Influence of Building Materials on Indoor Pollutants and Pollution Sources

    NASA Astrophysics Data System (ADS)

    Wang, Yao

    2018-01-01

    The paper summarizes the achievements and problems of indoor air quality research at home and abroad. The pollutants and pollution sources in the room are analyzed systematically. The types of building materials and pollutants are also discussed. The physical and chemical properties and health effects of main pollutants were analyzed and studied. According to the principle of mass balance, the basic mathematical model of indoor air quality is established. Considering the release rate of pollutants and indoor ventilation, a mathematical model for predicting the concentration of indoor air pollutants is derived. The model can be used to analyze and describe the variation of pollutant concentration in indoor air, and to predict and calculate the concentration of pollutants in indoor air at a certain time. The results show that the mathematical model established in this study can be used to analyze and predict the variation law of pollutant concentration in indoor air. The evaluation model can be used to evaluate the impact of indoor air quality and evaluation of current situation. Especially in the process of building and interior decoration, through pre-evaluation, it can provide reliable design parameters for selecting building materials and determining ventilation volume.

  16. Influence of Courtyard Ventilation on Thermal Performance of Office Building in Hot-Humid Climate: A Case Study

    NASA Astrophysics Data System (ADS)

    Abbaas, Esra'a. Sh.; Saif, Ala'eddin A.; Munaaim, MAC; Azree Othuman Mydin, Md.

    2018-03-01

    The influence of courtyard on the thermal performance of Development Department office building in University Malaysia Perlis (UniMAP, Pauh Putra campus) is investigated through simulation study for the effect of ventilation on indoor air temperature and relative humidity of the building. The study is carried out using EnergyPlus simulator interface within OpenStudio and SketchUp plug in software to measure both of air temperature and relative humidity hourly on 21 April 2017 as a design day. The results show that the ventilation through the windows facing the courtyard has sufficient effect on reducing the air temperature compared to the ventilation through external windows since natural ventilation is highly effective on driving the indoor warm air out to courtyard. In addition, the relative humidity is reduced due to ventilation since the courtyard has high ability to remove or dilute indoor airborne pollutants coming from indoor sources. This indicates that the presence of courtyard is highly influential on thermal performance of the building.

  17. A thermal sensation prediction tool for use by the profession

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fountain, M.E.; Huizenga, C.

    1997-12-31

    As part of a recent ASHRAE research project (781-RP), a thermal sensation prediction tool has been developed. This paper introduces the tool, describes the component thermal sensation models, and presents examples of how the tool can be used in practice. Since the main end product of the HVAC industry is the comfort of occupants indoors, tools for predicting occupant thermal response can be an important asset to designers of indoor climate control systems. The software tool presented in this paper incorporates several existing models for predicting occupant comfort.

  18. The Application of Downdraught Cooling in Vernacular Skywell Dwellings in China

    NASA Astrophysics Data System (ADS)

    Xuan, H.; Lv, A. M.

    2017-05-01

    Traditional skywell dwellings in the hot climate regions of China represent an important cultural heritage. Achieving indoor comfort meeting occupants’ expectations, can contribute to the preservation of this unique traditional architecture. Improvement of ventilation and indoor temperatures through natural, sustainable and low impact solutions is an opportunity in achieving building thermal comfort in these traditional dwellings. The existence of skywells provides a good opportunity for the incorporation of downdraught cooling with minor interventions, and thus by avoiding extensive ductwork, saving energy and improving indoor temperatures, it can contribute to the preservation of traditional dwellings. Applicability of downdraught cooling, the history of traditional ventilation solutions, layout and space features of skywell dwelling are discussed and the way of incorporating downdraught cooling as an alternative to air-conditioning into these buildings is investigated.

  19. Organic compounds in indoor air—their relevance for perceived indoor air quality?

    NASA Astrophysics Data System (ADS)

    Wolkoff, Peder; Nielsen, Gunnar D.

    It is generally believed that indoor air pollution, one way or another may cause indoor air complaints. However, any association between volatile organic compounds (VOCs) concentrations and increase of indoor climate complaints, like the sick-building syndrome symptoms, is not straightforward. The reported symptom rates of, in particular, eye and upper airway irritation cannot generally be explained by our present knowledge of common chemically non-reactive VOCs measured indoors. Recently, experimental evidence has shown those chemical reactions between ozone (either with or without nitrogen dioxide) and unsaturated organic compounds (e.g. from citrus and pine oils) produce strong eye and airway irritating species. These have not yet been well characterised by conventional sampling and analytical techniques. The chemical reactions can occur indoors, and there is indirect evidence that they are associated with eye and airway irritation. However, many other volatile and non-volatile organic compounds have not generally been measured which could equally well have potent biological effects and cause an increase of complaint rates, and posses a health/comfort risk. As a consequence, it is recommended to use a broader analytical window of organic compounds than the classic VOC window as defined by the World Health Organisation. It may include hitherto not yet sampled or identified intermediary species (e.g., radicals, hydroperoxides and ionic compounds like detergents) as well as species deposited onto particles. Additionally, sampling strategies including emission testing of building products should carefully be linked to the measurement of organic compounds that are expected, based on the best available toxicological knowledge, to have biological effects at indoor concentrations.

  20. The Green Obligation

    ERIC Educational Resources Information Center

    Adams, Cameron

    2007-01-01

    As the green movement grows, studies provide conclusive evidence about the benefits of environmentally conscious practices indoors and outdoors. Schools are no exception. Many of these studies demonstrate how poor indoor air quality (IAQ) in schools adversely affects many of the nation's 55 million students with health problems such as asthma and…

  1. Regulation and its role in the prevention of building-associated illness.

    PubMed

    Besch, E L

    1989-01-01

    Many groups have as their common goal the maintenance of acceptable indoor air quality, which protects occupants from adverse health effects and discomfort, but no one group possesses the interest or expertise to deal with all of the IAQ issues. Nonetheless, conclusions can be made regarding available alternatives to mitigate indoor air quality problems, including building-associated illness. It has been suggested that congressional action is needed in three areas related to BAI and IAQ: Recognition that controlling outdoor air only--even if "health based"--will not result in substantial improvement of public health; Definition of responsibilities for achieving healthful indoor environments; and Resolution of jurisdictional disputes between various federal agencies. Through their studies of buildings whose occupants complained of building-associated illness, NIOSH and others have concluded that inadequate supply and distribution of outdoor air to indoor spaces are the most common causes of SBS. Nonetheless, there are no reports of follow-up studies which confirm that the recommended ventilation upgrades actually solved the IAQ problems. Other reports indicate that maintenance, energy management, and air distribution are as important as ventilation rate. Corrective action, therefore, should include these issues. Systematic research directed toward providing cost-effective and innovative solutions should be the driving force. Rather than regulation, governments should assist in funding the necessary research, providing educational, technical and legal assistance, and developing policy options directed at reducing indoor air pollutants. In those cases where the specific causes of IAQ problems can be identified, remedial actions should be immediately implemented utilizing available technology. It has been suggested that "sick buildings" resulted from too much emphasis on efficency and safety and not enough on occupant health and well-being. Because health has been defined as "a state of complete physical, mental and social well-being not merely the absence of disease or infirmity," greater emphasis should be given to the concept of control and maintenance of healthy indoor environments (i.e., "healthy buildings") through utilization of quality assurance measures. Also, human response, system performance, and service factors should be utilized to assure an acceptable building performance. Finally, building designers, contractors, owners, managers, and operators must be knowledgeable regarding indoor air quality problems and their consequences and work together to build and maintain healthy buildings. This includes developing training, education, monitoring, and preventive maintenance programs to assure accountability for the proper management of the building systems. The certification (or licensing) of those responsible for providing indoor air quality has been suggested.

  2. Research on Vibration Test in Urban Indoor Substation

    NASA Astrophysics Data System (ADS)

    Ma, Yuchao; Mo, Juan; Xu, Jin; Fan, Baozhen

    2018-01-01

    The problem of vibration and noise of urban indoor substations has becoming more and more socially concerned.The urban indoor substation of 110kV and its conjoined buildings were taken as the research object and the vibration tests of the transformer and each floor slab were respectively carried out.The sound vibration characteristics and sound transmission rules of the urban indoor substation were obtained through the time-frequency analysis and coherence analysis of the test data. The vibration spectrum of transformer body was mainly 100Hz together with its multiplying factors and the vibration characteristics of the floor slab were basically the same as those of the transformer body. it is crucial to control the vibration and noise transmission in the equipment floor of the urban indoor substation.

  3. Endotoxins in indoor air and settled dust in primary schools in a subtropical climate.

    PubMed

    Salonen, Heidi; Duchaine, Caroline; Létourneau, Valérie; Mazaheri, Mandana; Clifford, Sam; Morawska, Lidia

    2013-09-03

    Endotoxins can significantly affect the air quality in school environments. However, there is currently no reliable method for the measurement of endotoxins, and there is a lack of reference values for endotoxin concentrations to aid in the interpretation of measurement results in school settings. We benchmarked the "baseline" range of endotoxin concentration in indoor air, together with endotoxin load in floor dust, and evaluated the correlation between endotoxin levels in indoor air and settled dust, as well as the effects of temperature and humidity on these levels in subtropical school settings. Bayesian hierarchical modeling indicated that the concentration in indoor air and the load in floor dust were generally (<95th percentile) <13 EU/m(3) and <24,570 EU/m(2), respectively. Exceeding these levels would indicate abnormal sources of endotoxins in the school environment and the need for further investigation. Metaregression indicated no relationship between endotoxin concentration and load, which points to the necessity for measuring endotoxin levels in both the air and settled dust. Temperature increases were associated with lower concentrations in indoor air and higher loads in floor dust. Higher levels of humidity may be associated with lower airborne endotoxin concentrations.

  4. The potential effects of climate-change-associated temperature increases on the metabolic rate of a small Afrotropical bird.

    PubMed

    Thompson, Lindy J; Brown, Mark; Downs, Colleen T

    2015-05-15

    Studies have only recently begun to underline the importance of including data on the physiological flexibility of a species when modelling its vulnerability to extinction from climate change. We investigated the effects of a 4°C increase in ambient temperature (Ta), similar to that predicted for southern Africa by the year 2080, on certain physiological variables of a 10-12 g passerine bird endemic to southern Africa, the Cape white-eye Zosterops virens. There was no significant difference in resting metabolism, body mass and intraperitoneal body temperature between birds housed indoors at 4°C above outside ambient temperature and those housed indoors at outside ambient temperature. We conclude that the physiological flexibility of Cape white-eyes will aid them in coping with the 4°C increase predicted for their range by 2080. © 2015. Published by The Company of Biologists Ltd.

  5. Indoor tanning facility density in eighty U.S. cities.

    PubMed

    Palmer, Richard C; Mayer, Joni A; Woodruff, Susan I; Eckhardt, Laura; Sallis, James F

    2002-06-01

    The purpose of this study was to examine the number of tanning facilities in select U.S. cities. The twenty most populated cities from each of 4 U.S. regions were selected for the sample. For each city, data on the number of tanning facilities, climate, and general demographic profile were collected. Data for state tanning facility legislation also were collected. A tanning facility density variable was created by dividing the city's number of facilities by its population size. The 80 cities had an average of 50 facilities each. Results of linear regression analysis indicated that higher density was significantly associated with colder climate, lower median income, and higher proportion of Whites. These data indicate that indoor tanning facilities are prevalent in the environments of U.S. urban-dwellers. Cities having the higher density profile may be logical targets for interventions promoting less or safer use of these facilities.

  6. Modeling of lighting behaviour of a hybrid lighting system in inner spaces of Building of Electrical Engineering

    NASA Astrophysics Data System (ADS)

    Amado, L.; Osma, G.; Villamizar, R.

    2016-07-01

    This paper presents the modelling of lighting behaviour of a hybrid lighting system - HLS in inner spaces for tropical climate. HLS aims to mitigate the problem of high electricity consumption used by artificial lighting in buildings. These systems integrate intelligently the daylight and artificial light through control strategies. However, selection of these strategies usually depends on expertise of designer and of available budget. In order to improve the selection process of the control strategies, this paper analyses the Electrical Engineering Building (EEB) case, initially modelling of lighting behaviour is established for the HLS of a classroom and an office. This allows estimating the illuminance level of the mixed lighting in the space, and energy consumption by artificial light according to different lighting control techniques, a control strategy based on occupancy and a combination of them. The model considers the concept of Daylight Factor (DF) for the estimating of daylight illuminance on the work plane for tropical climatic conditions. The validation of the model was carried out by comparing the measured and model-estimated indoor illuminances.

  7. Fusion of WiFi, smartphone sensors and landmarks using the Kalman filter for indoor localization.

    PubMed

    Chen, Zhenghua; Zou, Han; Jiang, Hao; Zhu, Qingchang; Soh, Yeng Chai; Xie, Lihua

    2015-01-05

    Location-based services (LBS) have attracted a great deal of attention recently. Outdoor localization can be solved by the GPS technique, but how to accurately and efficiently localize pedestrians in indoor environments is still a challenging problem. Recent techniques based on WiFi or pedestrian dead reckoning (PDR) have several limiting problems, such as the variation of WiFi signals and the drift of PDR. An auxiliary tool for indoor localization is landmarks, which can be easily identified based on specific sensor patterns in the environment, and this will be exploited in our proposed approach. In this work, we propose a sensor fusion framework for combining WiFi, PDR and landmarks. Since the whole system is running on a smartphone, which is resource limited, we formulate the sensor fusion problem in a linear perspective, then a Kalman filter is applied instead of a particle filter, which is widely used in the literature. Furthermore, novel techniques to enhance the accuracy of individual approaches are adopted. In the experiments, an Android app is developed for real-time indoor localization and navigation. A comparison has been made between our proposed approach and individual approaches. The results show significant improvement using our proposed framework. Our proposed system can provide an average localization accuracy of 1 m.

  8. Fusion of WiFi, Smartphone Sensors and Landmarks Using the Kalman Filter for Indoor Localization

    PubMed Central

    Chen, Zhenghua; Zou, Han; Jiang, Hao; Zhu, Qingchang; Soh, Yeng Chai; Xie, Lihua

    2015-01-01

    Location-based services (LBS) have attracted a great deal of attention recently. Outdoor localization can be solved by the GPS technique, but how to accurately and efficiently localize pedestrians in indoor environments is still a challenging problem. Recent techniques based on WiFi or pedestrian dead reckoning (PDR) have several limiting problems, such as the variation of WiFi signals and the drift of PDR. An auxiliary tool for indoor localization is landmarks, which can be easily identified based on specific sensor patterns in the environment, and this will be exploited in our proposed approach. In this work, we propose a sensor fusion framework for combining WiFi, PDR and landmarks. Since the whole system is running on a smartphone, which is resource limited, we formulate the sensor fusion problem in a linear perspective, then a Kalman filter is applied instead of a particle filter, which is widely used in the literature. Furthermore, novel techniques to enhance the accuracy of individual approaches are adopted. In the experiments, an Android app is developed for real-time indoor localization and navigation. A comparison has been made between our proposed approach and individual approaches. The results show significant improvement using our proposed framework. Our proposed system can provide an average localization accuracy of 1 m. PMID:25569750

  9. Received Signal Strength Recovery in Green WLAN Indoor Positioning System Using Singular Value Thresholding

    PubMed Central

    Ma, Lin; Xu, Yubin

    2015-01-01

    Green WLAN is a promising technique for accessing future indoor Internet services. It is designed not only for high-speed data communication purposes but also for energy efficiency. The basic strategy of green WLAN is that all the access points are not always powered on, but rather work on-demand. Though powering off idle access points does not affect data communication, a serious asymmetric matching problem will arise in a WLAN indoor positioning system due to the fact the received signal strength (RSS) readings from the available access points are different in their offline and online phases. This asymmetry problem will no doubt invalidate the fingerprint algorithm used to estimate the mobile device location. Therefore, in this paper we propose a green WLAN indoor positioning system, which can recover RSS readings and achieve good localization performance based on singular value thresholding (SVT) theory. By solving the nuclear norm minimization problem, SVT recovers not only the radio map, but also online RSS readings from a sparse matrix by sensing only a fraction of the RSS readings. We have implemented the method in our lab and evaluated its performances. The experimental results indicate the proposed system could recover the RSS readings and achieve good localization performance. PMID:25587977

  10. A survey exploring self-reported indoor and outdoor footwear habits, foot problems and fall status in people with stroke and Parkinson's.

    PubMed

    Bowen, Catherine; Ashburn, Ann; Cole, Mark; Donovan-Hall, Margaret; Burnett, Malcolm; Robison, Judy; Mamode, Louis; Pickering, Ruth; Bader, Dan; Kunkel, Dorit

    Ill-fitting shoes have been implicated as a risk factor for falls but research to date has focused on people with arthritis, diabetes and the general older population; little is known about people with neurological conditions. This survey for people with stroke and Parkinson's explored people's choice of indoor and outdoor footwear, foot problems and fall history. Following ethical approval, 1000 anonymous postal questionnaires were distributed to health professionals, leads of Parkinson's UK groups and stroke clubs in the wider Southampton area, UK. These collaborators handed out survey packs to people with a confirmed diagnosis of stroke or Parkinson's. Three hundred and sixty three completed surveys were returned (218 from people with Parkinson's and 145 from people with stroke). Most respondents wore slippers indoors and walking shoes outdoors and considered comfort and fit the most important factors when buying footwear. Foot problems were reported by 43 % (95 % confidence intervals 36 to 52 %; stroke) and 53 % (95 % confidence interval 46 to 59 %; Parkinson's) of respondents; over 50 % had never accessed foot care support. Fifty percent of all respondents reported falls. In comparison to non-fallers, a greater proportion of fallers reported foot problems (57 %), with greater proportions reporting problems impacting on balance and influencing choice of footwear ( p  < 0.01) in comparison to non-fallers in each case. Forty-seven percent of fallers with foot problems had not accessed foot care support. Many people with stroke and Parkinson's wear slippers indoors. A high percentage of these individuals reported both foot problems and falls impacting on footwear habits and choice of footwear; however many did not receive foot care support. These findings highlight that further exploration of footwear and foot problems in these populations is warranted to provide evidence based advice on safe and appropriate footwear to support rehabilitation and fall prevention.

  11. Correlation between Novel Potential Indoor Risk Factors and Frequency of Doctor's Visit for Respiratory Problem in Taiwan's Tropical Environment.

    PubMed

    Wang, Yu-Hao; Su, Hsing-Hao; Hsu, Lan; Wang, Chung-Yang; Wu, Pi-Hsiung

    2018-01-01

    With a global rising trend in prevalence of allergic diseases, more attention has been paid to investigation of environmental risk factors. Many risk factors have so far been identified. However, novel risk factors specific to Taiwanese environment and lifestyle were still relatively unknown. To investigate the potential effects of a number of little-known indoor risk factors on the frequency of doctor's visit for respiratory problems in context of Taiwanese environment and lifestyle. A cross-sectional, population-based study was performed on a 861 participants around Kaohsiung area, Taiwan. Survey investigation was employed to assess the household environment and the frequency of doctor's visit for respiratory problems. Participants who performed "daily cleaning" was shown to have a significantly (p=0.007) higher mean number of doctor's visits in comparison to those who did not. Similar observation was made for participants who periodically took out beddings (p=0.042). Age had a significant positive correlation (linear regression β 0.089) with frequency of respiratory problems. The habit of daily cleaning was implicated as a potential indoor risk factor due to the unique nature of Taiwanese cleaning habit and close contact with cleaning supplies, which could serve as chemical irritants. Bedding takeout was predicted to be an indicator of chronic allergies rather than an actual risk factor. However, both were controversial in their role as potential indoor risk factor, and required further examination.

  12. Occupant Perceptions and a Health Outcome in Retail Stores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Mingjie; Kim, Yang-Seon; Srebric, Jelena

    Indoor Environmental Quality (IEQ) in commercial buildings, such as retail stores, can affect employee satisfaction, productivity, and health. This study administered an IEQ survey to retail employees and found correlations between measured IEQ parameters and the survey responses. The survey included 611 employees in 14 retail stores located in Pennsylvania (climate zone 5A) and Texas (climate zone 2A). The survey questionnaire featured ratings of different aspects of IEQ, including thermal comfort, lighting and noise level, indoor smells, overall cleanness, and environmental quality. Simultaneously with the survey, on-site physical measurements were taken to collect data of relative humidity levels, air exchangemore » rates, dry bulb temperatures, and contaminant concentrations. This data was analyzed using multinomial logit regression with independent variables being the measured IEQ parameters, employees’ gender, and age. This study found that employee perception of stuffy smells is related to formaldehyde and PM10 concentrations. Furthermore, the survey also asked the employees to report an annual frequency of common colds as a health indicator. The regression analysis showed that the cold frequency statistically correlates with the measured air exchange rates, outdoor temperatures, and indoor PM concentrations. Overall, the air exchange rate is the most influential parameter on the employee perception of the overall environmental quality and self-reported health outcome.« less

  13. Indoor Environment in Residential Prefabricated Buildings

    NASA Astrophysics Data System (ADS)

    Kraus, Michal; Juhásová Šenitková, Ingrid

    2017-10-01

    The contribution presents results of the experimental measurement of indoor air quality in residential prefabricated buildings. People spend about 90% of their life in the indoor environment of buildings. Hygrothermal parameters and indoor air quality are the essential component that define the quality of the indoor environment. The results of case study characterize the quality of the indoor environment of the ordinary occupants in housing unit of residential prefabricated building. A current problem of revitalized prefabricated buildings is inadequate air exchange and related thereto to poor indoor air quality. The experimental measurements were carried out just before and at the beginning of the heating season (from 1st October to 30th November 2016). Heating season was launched in the middle of experimental measurement. The wireless indoor sensor Elgato Eve Room was used for measurements. The obtained values of indoor air temperature [°C], relative humidity [%] and indoor air quality [ppm] are describe and analysis in this study. The results of the study indicate that the values of temperature and indoor air quality meet optimal levels during the experiment with nuances. The mean air temperature in the indoor environment is 22.43 °C. The temperature of the indoor environment is held at the optimum level (18-24 °C) for 94.50% time of the experimental measurements. In addition, the indoor air quality in the context of the content of harmful volatile organic compounds (VOCs) has been excellent for almost 91% time of the total experiment. However, the values of relative humidity were less than the optimum value nearly 40% of the total observed time. The mean 10-minutes values of relative humidity during the heating season is about 10% lower than the mean 10-minutes relative humidity before the heating season.

  14. A Robust Crowdsourcing-Based Indoor Localization System.

    PubMed

    Zhou, Baoding; Li, Qingquan; Mao, Qingzhou; Tu, Wei

    2017-04-14

    WiFi fingerprinting-based indoor localization has been widely used due to its simplicity and can be implemented on the smartphones. The major drawback of WiFi fingerprinting is that the radio map construction is very labor-intensive and time-consuming. Another drawback of WiFi fingerprinting is the Received Signal Strength (RSS) variance problem, caused by environmental changes and device diversity. RSS variance severely degrades the localization accuracy. In this paper, we propose a robust crowdsourcing-based indoor localization system (RCILS). RCILS can automatically construct the radio map using crowdsourcing data collected by smartphones. RCILS abstracts the indoor map as the semantics graph in which the edges are the possible user paths and the vertexes are the location where users may take special activities. RCILS extracts the activity sequence contained in the trajectories by activity detection and pedestrian dead-reckoning. Based on the semantics graph and activity sequence, crowdsourcing trajectories can be located and a radio map is constructed based on the localization results. For the RSS variance problem, RCILS uses the trajectory fingerprint model for indoor localization. During online localization, RCILS obtains an RSS sequence and realizes localization by matching the RSS sequence with the radio map. To evaluate RCILS, we apply RCILS in an office building. Experiment results demonstrate the efficiency and robustness of RCILS.

  15. A Robust Crowdsourcing-Based Indoor Localization System

    PubMed Central

    Zhou, Baoding; Li, Qingquan; Mao, Qingzhou; Tu, Wei

    2017-01-01

    WiFi fingerprinting-based indoor localization has been widely used due to its simplicity and can be implemented on the smartphones. The major drawback of WiFi fingerprinting is that the radio map construction is very labor-intensive and time-consuming. Another drawback of WiFi fingerprinting is the Received Signal Strength (RSS) variance problem, caused by environmental changes and device diversity. RSS variance severely degrades the localization accuracy. In this paper, we propose a robust crowdsourcing-based indoor localization system (RCILS). RCILS can automatically construct the radio map using crowdsourcing data collected by smartphones. RCILS abstracts the indoor map as the semantics graph in which the edges are the possible user paths and the vertexes are the location where users may take special activities. RCILS extracts the activity sequence contained in the trajectories by activity detection and pedestrian dead-reckoning. Based on the semantics graph and activity sequence, crowdsourcing trajectories can be located and a radio map is constructed based on the localization results. For the RSS variance problem, RCILS uses the trajectory fingerprint model for indoor localization. During online localization, RCILS obtains an RSS sequence and realizes localization by matching the RSS sequence with the radio map. To evaluate RCILS, we apply RCILS in an office building. Experiment results demonstrate the efficiency and robustness of RCILS. PMID:28420108

  16. Measurements of Solar Ultraviolet Radiation Exposure at Work and at Leisure in Danish Workers.

    PubMed

    Grandahl, Kasper; Eriksen, Paul; Ibler, Kristina Sophie; Bonde, Jens Peter; Mortensen, Ole Steen

    2018-03-30

    Exposure to solar ultraviolet radiation is the main cause of skin cancer and may well present an occupational health and safety problem. In Denmark, skin cancer is a common disease in the general population, but detailed data on solar ultraviolet radiation exposure among outdoor workers are lacking. The aim of this study was to provide objective measurements of solar ultraviolet radiation exposure on working days and at leisure and compare levels of exposure between groups of mainly outdoor, equal-parts-outdoor-and-indoor and indoor workers. To this end, UV-B dosimeters with an aluminum gallium nitride (AlGaN) photodiode detector were used to measure the solar ultraviolet radiation exposure of 457 workers in the Danish summer season. Presented as semi-annual standard erythemal dose (SED) on working days, respectively, at leisure, the results are for mainly outdoor workers 214.2 SED and 64.8 SED, equal-parts-outdoor-and-indoor workers 131.4 SED and 64.8 SED, indoor workers 55.8 SED and 57.6 SED. The daily SED by month is significantly different (α = 0.05) between mainly outdoor, equal-parts-outdoor-and-indoor and indoor workers and across professional groups; some of which are exposed at very high levels that is roofers 361.8 SED. These findings substantiate that exposure to solar ultraviolet radiation is indeed an occupational health and safety problem in Denmark. © 2018 The Authors. Photochemistry and Photobiology published by Wiley Periodicals, Inc. on behalf of American Society for Photobiology.

  17. a Review of Recent Research in Indoor Modelling & Mapping

    NASA Astrophysics Data System (ADS)

    Gunduz, M.; Isikdag, U.; Basaraner, M.

    2016-06-01

    Indoor modeling and mapping has been an active area of research in last 20 years in order to tackle the problems related to positioning and tracking of people and objects indoors, and provides many opportunities for several domains ranging from emergency response to logistics in micro urban spaces. The outputs of recent research in the field have been presented in several scientific publications and events primarily related to spatial information science and technology. This paper summarizes the outputs of last 10 years of research on indoor modeling and mapping within a proper classification which covers 7 areas, i.e. Information Acquisition by Sensors, Model Definition, Model Integration, Indoor Positioning and LBS, Routing & Navigation Methods, Augmented and Virtual Reality Applications, and Ethical Issues. Finally, the paper outlines the current and future research directions and concluding remarks.

  18. Strategies to Reduce Indoor Tanning

    PubMed Central

    Holman, Dawn M.; Fox, Kathleen A.; Glenn, Jeffrey D.; Guy, Gery P.; Watson, Meg; Baker, Katie; Cokkinides, Vilma; Gottlieb, Mark; Lazovich, DeAnn; Perna, Frank M.; Sampson, Blake P.; Seidenberg, Andrew B.; Sinclair, Craig; Geller, Alan C.

    2015-01-01

    Exposure to ultraviolet radiation from indoor tanning device use is associated with an increased risk of skin cancer, including risk of malignant melanoma, and is an urgent public health problem. By reducing indoor tanning, future cases of skin cancer could be prevented, along with the associated morbidity, mortality, and healthcare costs. On August 20, 2012, the CDC hosted a meeting to discuss the current body of evidence on strategies to reduce indoor tanning as well as research gaps. Using the Action Model to Achieve Healthy People 2020 Overarching Goals as a framework, the current paper provides highlights on the topics that were discussed, including (1) the state of the evidence on strategies to reduce indoor tanning; (2) the tools necessary to effectively assess, monitor, and evaluate the short- and long-term impact of interventions designed to reduce indoor tanning; and (3) strategies to align efforts at the national, state, and local levels through transdisciplinary collaboration and coordination across multiple sectors. Although many challenges and barriers exist, a coordinated, multilevel, transdisciplinary approach has the potential to reduce indoor tanning and prevent future cases of skin cancer. PMID:23683986

  19. Indoor and Outdoor Surface-Growing Fungi Contamination at Higher Institutional Buildings in a Malaysian University

    NASA Astrophysics Data System (ADS)

    Er, C. M.; Sunar, N. M.; Leman, A. M.; Khalid, A.; Ali, R.; Zaidi, E.; Azhar, A. T. S.

    2018-04-01

    Surface-growing indoor and outdoor fungi were assessed using swabbing method to investigate the indoor contamination. The painted wall surface samples were collected from two institutional buildings (B1 and B2) of a university in southern Peninsular Malaysia; indoors and outdoors. The mould concentrations varied widely between indoor and outdoor surface samples of both buildings. The total indoor surface-growing mould concentration (8776.49 CFU/cm2) is significantly higher (p<0.05) than the total concentration of outdoor surface growing mould (209.91 CFU/cm2). Respectively, the mean concentration of indoor surface-growing mould (18920.13 CFU/cm2 for B1 and 3704.67 CFU/cm2 for B2) is significantly higher than their outdoor counterparts (99.95 CFU/cm2 for b1 and for 319.86 CFU/cm2 b2) at these buildings. Besides, various air quality parameters (relative humidity, temperature and air velocity) were also measured indoors and outdoors during the study and violation of the guideline provided by ICOP-IAQ 2010 were proven in indoor environment in both buildings. The results of this assessment showed that the indoor environments of both institutional buildings were contaminated by the surface-growing mould. It also suggested the faulty designs and/or usages of building material in these institutional buildings contributed toward the contamination. An innovative solution is needed to correct the problems.

  20. Correlations of indoor second-hand smoking, household smoking rules, regional deprivation and children mental health: Scottish Health Survey, 2013.

    PubMed

    Shiue, Ivy

    2015-07-01

    It has been known that second-hand smoking and deprivation could cluster together affecting child health. However, little is known on the role of household smoking rules. Therefore, it was aimed to study the relationships among indoor second-hand smoking, household smoking rules, deprivation level and children mental health in a country-wide and population-based setting. Data was retrieved from and analysed in Scottish Health Survey, 2013. Information on demographics, indoor second-hand smoking status, household smoking rules, deprivation level and child mental health by Strengths and Difficulties Questionnaire was obtained by household interview through parents. Statistical analysis included chi-square test and survey-weighted logistic regression modelling. Of 1019 children aged 4-12, 17.9% (n = 182) lived in the 15% most deprivation areas. Deprived areas tended to be where indoor smoking occurred (p < 0.001). The top three sub-regions of the 15% most deprivation for Scottish children are greater Glasgow, Ayrshire & Arran and Forth Valley while the top three sub-regions of exposure to the indoor second-hand smoking are Fife, Forth Valley and Ayrshire & Arran. The top three sub-regions with indoor smoking allowed are greater Glasgow, Western Isles and Borders. Children emotional and behavioural problems were reduced when the strict household smoking rules (not allowed or outdoor areas) applied. One in six Scottish children lived in the 15% most deprivation areas and exposed to indoor second-hand smoking that could have led to emotional and behavioural problems. Public health programs promoting strict household smoking rules should be encouraged in order to optimise children mental health.

  1. CHILDREN'S HEALTH INITIATIVE: TOXIC MOLD (INDOOR ENVIRONMENT MANAGEMENT BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The past 20 years have brought the recognition that an important factor in the health of people in indoor environments is the dampness of the buildings in which they live and work. Furthermore, it is now appreciated that the principal biology responsible for the health problems i...

  2. A Wheelchair User with Visual and Intellectual Disabilities Managing Simple Orientation Technology for Indoor Travel

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; O'Reilly, Mark F.; Singh, Nirbhay N.; Sigafoos, Jeff; Campodonico, Francesca; Oliva, Doretta

    2009-01-01

    Persons with profound visual impairments and other disabilities, such as neuromotor and intellectual disabilities, may encounter serious orientation and mobility problems even in familiar indoor environments, such as their homes. Teaching these persons to develop maps of their daily environment, using miniature replicas of the areas or some…

  3. There's Something in the Air: Indoor Air Quality in Schools.

    ERIC Educational Resources Information Center

    Schmidt, Edward A.

    1994-01-01

    Part 1 of this article, the first in a three-part series of articles that discuss indoor air quality (IAQ) issues affecting schools, provides a general overview of IAQ and discusses the three major health problems associated with IAQ: sick building syndrome, building-related illness, and multiple chemical sensitivity. (MLF)

  4. Science Laboratories and Indoor Air Quality in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Some of the issues surrounding the indoor air quality (IAQ) problems presented by science labs are discussed. Described are possible contaminants in labs, such as chemicals and biological organisms, and ways to lessen accidents arising from these sources are suggested. Some of the factors contributing to comfort, such as temperature levels, are…

  5. Breaking the Mold on Air Quality.

    ERIC Educational Resources Information Center

    NEA Today, 2001

    2001-01-01

    Indoor air quality is a growing problem in aging school buildings. The Environmental Protection Agency (EPA) offers an Indoor Air Quality Tools for Schools kit which is being used at schools nationwide to improve school maintenance. Profiles an aging school in Connecticut in which teachers were becoming ill to illustrate the use of the kit to…

  6. Aldehyde emissions from particleboard and medium density fiberboard products

    Treesearch

    Melissa G. D. Baumann; Linda F. Lorenz; Stuart A. Batterman; Guo-Zheng Zhang

    2000-01-01

    Indoor air quality problems resulting from the emission of volatile organic compounds (VOCs) have become an issue of increasing concern. Emissions from building and furnishing materials, which are frequently constructed from particleboard and medium density fiberboard (MDF), are a potentially important contributor of indoor VOCs. In this research, VOC emissions from...

  7. Very volatile organic compounds: an understudied class of indoor air pollutants.

    PubMed

    Salthammer, T

    2016-02-01

    Very volatile organic compounds (VVOCs), as categorized by the WHO, are an important subgroup of indoor pollutants and cover a wide spectrum of chemical substances. Some VVOCs are components of products commonly used indoors, some result from chemical reactions and some are reactive precursors of secondary products. Nevertheless, there is still no clear and internationally accepted definition of VVOCs. Current approaches are based on the boiling point, and the saturation vapor pressure or refer to analytical procedures. A significant problem is that many airborne VVOCs cannot be routinely analyzed by the usually applied technique of sampling on Tenax TA® followed by thermal desorption GC/MS or by DNPH-sampling/HPLC/UV. Some VVOCs are therefore often neglected in indoor-related studies. However, VVOCs are of high significance for indoor air quality assessment and there is need for their broader consideration in measurement campaigns and material emission testing. © 2014 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  8. Indoor air quality investigation and health risk assessment at correctional institutions.

    PubMed

    Ofungwu, Joseph

    2005-04-01

    A comprehensive indoor air-quality (IAQ) investigation was conducted at a state correctional facility in New Jersey, USA with a lengthy history of IAQ problems. The IAQ investigation comprised preliminary indoor air screening using direct readout instrumentation, indoor air/surface wipe sampling and laboratory analysis, as well as a heating, ventilation, and air-conditioning system evaluation, and a building envelope survey. In addition to air sampling, a human health risk assessment was performed to evaluate the potential for exposure to site-related air contaminants with respect to the inmate and worker populations. The risk assessment results for the prison facility indicated the potential for significant health risks for the inmate population, possibly reflecting the effects of their confinement and extended exposure to indoor air contaminants, as compared to the prison guard and worker population. Based on the results of the risk assessment, several mitigation measures are recommended to minimize prison population health risks and improve indoor air quality at prison facilities.

  9. Residential Indoor Temperature Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booten, Chuck; Robertson, Joseph; Christensen, Dane

    2017-04-07

    In this study, we are adding to the body of knowledge around answering the question: What are good assumptions for HVAC set points in U.S. homes? We collected and analyzed indoor temperature data from US homes using funding from the U.S. Department of Energy's Building America (BA) program, due to the program's reliance on accurate energy simulation of homes. Simulations are used to set Building America goals, predict the impact of new building techniques and technologies, inform research objectives, evaluate home performance, optimize efficiency packages to meet savings goals, customize savings approaches to specific climate zones, and myriad other uses.

  10. 40% Whole-House Energy Savings in the Hot-Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This guide book is a resource to help builders design and construct highly energy-efficient homes, while addressing building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the hot-humid climate can build homes that achieve whole house energy savings of 40% over the Building America benchmark (the 1993 Model Energy Code) with no added overall costs for consumers.

  11. 40% Whole-House Energy Savings in the Mixed-Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baechler, Michael C.; Gilbride, T. L.; Hefty, M. G.

    2011-09-01

    This guide book is a resource to help builders design and construct highly energy-efficient homes, while addressing building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the mixed-humid climate can build homes that achieve whole house energy savings of 40% over the Building America benchmark (the 1993 Model Energy Code) with no added overall costs for consumers.

  12. Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature.

    PubMed

    Mendell, M J; Heath, G A

    2005-02-01

    To assess whether school environments can adversely affect academic performance, we review scientific evidence relating indoor pollutants and thermal conditions, in schools or other indoor environments, to human performance or attendance. We critically review evidence for direct associations between these aspects of indoor environmental quality (IEQ) and performance or attendance. Secondarily, we summarize, without critique, evidence on indirect connections potentially linking IEQ to performance or attendance. Regarding direct associations, little strongly designed research was available. Persuasive evidence links higher indoor concentrations of NO(2) to reduced school attendance, and suggestive evidence links low ventilation rates to reduced performance. Regarding indirect associations, many studies link indoor dampness and microbiologic pollutants (primarily in homes) to asthma exacerbations and respiratory infections, which in turn have been related to reduced performance and attendance. Also, much evidence links poor IEQ (e.g. low ventilation rate, excess moisture, or formaldehyde) with adverse health effects in children and adults and documents dampness problems and inadequate ventilation as common in schools. Overall, evidence suggests that poor IEQ in schools is common and adversely influences the performance and attendance of students, primarily through health effects from indoor pollutants. Evidence is available to justify (i) immediate actions to assess and improve IEQ in schools and (ii) focused research to guide IEQ improvements in schools. There is more justification now for improving IEQ in schools to reduce health risks to students than to reduce performance or attendance risks. However, as IEQ-performance links are likely to operate largely through effects of IEQ on health, IEQ improvements that benefit the health of students are likely to have performance and attendance benefits as well. Immediate actions are warranted in schools to prevent dampness problems, inadequate ventilation, and excess indoor exposures to substances such as NO(2) and formaldehyde. Also, siting of new schools in areas with lower outdoor pollutant levels is preferable.

  13. Particulate matter in the indoor air of classrooms—exploratory results from Munich and surrounding area

    NASA Astrophysics Data System (ADS)

    Fromme, H.; Twardella, D.; Dietrich, S.; Heitmann, D.; Schierl, R.; Liebl, B.; Rüden, H.

    Numerous epidemiological studies have demonstrated the association between particle mass (PM) concentration in outside air and the occurrence of health related problems and/or diseases. However, much less is known about indoor PM concentrations and associated health risks. In particular, data are needed on air quality in schools, since children are assumed to be more vulnerable to health hazards and spend a large part of their time in classrooms. On this background, we evaluated indoor air quality in 64 schools in the city of Munich and a neighbouring district outside the city boundary. In winter 2004-2005 in 92 classrooms, and in summer 2005 in 75 classrooms, data on indoor air climate parameters (temperature, relative humidity), carbon dioxide (CO 2) and various dust particle fractions (PM 10, PM 2.5) were collected; for the latter both gravimetrical and continuous measurements by laser aerosol spectrometer (LAS) were implemented. In the summer period, the particle number concentration (PNC), was determined using a scanning mobility particle sizer (SMPS). Additionally, data on room and building characteristics were collected by use of a standardized form. Only data collected during teaching hours were considered in analysis. For continuously measured parameters the daily median was used to describe the exposure level in a classroom. The median indoor CO 2 concentration in a classroom was 1603 ppm in winter and 405 ppm in summer. With LAS in winter, median PM concentrations of 19.8 μg m -3 (PM 2.5) and 91.5 μg m -3 (PM 10) were observed, in summer PM concentrations were significantly reduced (median PM 2.5=12.7 μg m -3, median PM 10=64.9 μg m -3). PM 2.5 concentrations determined by the gravimetric method were in general higher (median in winter: 36.7 μg m -3, median in summer: 20.2 μg m -3) but correlated strongly with the LAS-measured results. In explorative analysis, we identified a significant increase of LAS-measured PM 2.5 by 1.7 μg m -3 per increase in humidity by 10%, by 0.5 μg m -3 per increase in CO 2 indoor concentration by 100 ppm, and a decrease by 2.8 μg m -3 in 5-7th grade classes and by 7.3 μg m -3 in class 8-11 compared to 1-4th class. During the winter period, the associations were stronger regarding class level, reverse regarding humidity (a decrease by 6.4 μg m -3 per increase in 10% humidity) and absent regarding CO 2 indoor concentration. The median PNC measured in 36 classrooms ranged between 2622 and 12,145 particles cm -3 (median: 5660 particles cm -3). The results clearly show that exposure to particulate matter in school is high. The increased PM concentrations in winter and their correlation with high CO 2 concentrations indicate that inadequate ventilation plays a major role in the establishment of poor indoor air quality. Additionally, the increased PM concentration in low level classes and in rooms with high number of pupils suggest that the physical activity of pupils, which is assumed to be more pronounced in younger children, contributes to a constant process of resuspension of sedimented particles. Further investigations are necessary to increase knowledge on predictors of PM concentration, to assess the toxic potential of indoor particles and to develop and test strategies how to ensure improved indoor air quality in schools.

  14. Field study of exhaust fans for mitigating indoor air quality problems: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimsrud, D.T.; Szydlowski, R.F.; Turk, B.H.

    1986-09-01

    Residential ventilation in the United States housing stock is provided primarily by infiltration, the natural leakage of outdoor air into a building through cracks and holes in the building shell. Since ventilation is the dominant mechanism for control of indoor pollutant concentrations, low infiltration rates caused fluctuation in weather conditions may lead to high indoor pollutant concentrations. Supplemental mechanical ventilation can be used to eliminate these periods of low infiltration. This study examined effects of small continuously-operating exhaust fan on pollutant concentrations and energy use in residences.

  15. Relationship among environmental quality variables, housing variables, and residential needs: a secondary analysis of the relationship among indoor, outdoor, and personal air (RIOPA) concentrations database

    NASA Astrophysics Data System (ADS)

    Garcia, Fausto; Shendell, Derek G.; Madrigano, Jaime

    2017-03-01

    Retrospective descriptive secondary analyses of data from relationships of indoor, outdoor, and personal air (RIOPA) study homes (in Houston, Texas; Los Angeles County, California; and, Elizabeth, New Jersey May 1999-February 2001) were conducted. Data included air exchange rates, associations between indoor and outdoor temperature and humidity, and calculated apparent temperature and humidex. Analyses examined if study homes provided optimum thermal comfort for residents during both heating and cooling seasons when compared to current American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Standards 62/62.1 and 55. Results suggested outdoor temperature, humidex, and apparent temperature during the cooling season potentially served as indicators of indoor personal exposure to parameters of thermal comfort. Outdoor temperatures, humidex, and apparent temperature during the cooling season had statistically significant predictive abilities in predicting indoor temperature. During the heating season, only humidex in Texas and combined data across study states were statistically significant, but with weaker to moderate predicative ability. The high degree of correlation between outdoor and indoor environmental variables provided support for the validity of epidemiologic studies of weather relying on temporal comparisons. Results indicated most RIOPA study residents experienced thermal comfort; however, many values indicated how several residents may have experienced some discomfort depending on clothing and indoor activities. With climate change, increases in temperature are expected, with more days of extreme heat and humidity and, potentially harsher, longer winters. Homes being built or modernized should be created with the appropriate guidelines to provide comfort for residents daily and in extreme weather events.

  16. Relationship among environmental quality variables, housing variables, and residential needs: a secondary analysis of the relationship among indoor, outdoor, and personal air (RIOPA) concentrations database.

    PubMed

    Garcia, Fausto; Shendell, Derek G; Madrigano, Jaime

    2017-03-01

    Retrospective descriptive secondary analyses of data from relationships of indoor, outdoor, and personal air (RIOPA) study homes (in Houston, Texas; Los Angeles County, California; and, Elizabeth, New Jersey May 1999-February 2001) were conducted. Data included air exchange rates, associations between indoor and outdoor temperature and humidity, and calculated apparent temperature and humidex. Analyses examined if study homes provided optimum thermal comfort for residents during both heating and cooling seasons when compared to current American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Standards 62/62.1 and 55. Results suggested outdoor temperature, humidex, and apparent temperature during the cooling season potentially served as indicators of indoor personal exposure to parameters of thermal comfort. Outdoor temperatures, humidex, and apparent temperature during the cooling season had statistically significant predictive abilities in predicting indoor temperature. During the heating season, only humidex in Texas and combined data across study states were statistically significant, but with weaker to moderate predicative ability. The high degree of correlation between outdoor and indoor environmental variables provided support for the validity of epidemiologic studies of weather relying on temporal comparisons. Results indicated most RIOPA study residents experienced thermal comfort; however, many values indicated how several residents may have experienced some discomfort depending on clothing and indoor activities. With climate change, increases in temperature are expected, with more days of extreme heat and humidity and, potentially harsher, longer winters. Homes being built or modernized should be created with the appropriate guidelines to provide comfort for residents daily and in extreme weather events.

  17. Indoor Air Quality Problem Solving Tool

    EPA Pesticide Factsheets

    Use the IAQ Problem Solving Tool to learn about the connection between health complaints and common solutions in schools. This resource provides an easy, step-by-step process to start identifying and resolving IAQ problems found at your school.

  18. Climate change and our environment: the effect on respiratory and allergic disease.

    PubMed

    Barne, Charles; Alexis, Neil E; Bernstein, Jonathan A; Cohn, John R; Demain, Jeffrey G; Horner, Elliot; Levetin, Estelle; Nei, Andre; Phipatanakul, Wanda

    2013-03-01

    Climate change is a constant and ongoing process. It is postulated that human activities have reached a point at which we are producing global climate change. It provides suggestions to help the allergist/environmental physician integrate recommendations about improvements in outdoor and indoor air quality and the likely response to predicted alterations in the earth's environment into his or her patient's treatment plan. It incorporates references retrieved from Pub Med searches for topics, including:climate change, global warming, global climate change, greenhouse gasses, air pollution, particulates, black carbon, soot and sea level, as well as references contributed by the individual authors. Many changes that affect respiratory disease are anticipated.Examples of responses to climate change include energy reduction retrofits in homes that could potentially affect exposure to allergens and irritants, more hot sunny days that increase ozone-related difficulties, and rises in sea level or altered rainfall patterns that increase exposure to damp indoor environments.Climate changes can also affect ecosystems, manifested as the appearance of stinging and biting arthropods in new areas.Higher ambient carbon dioxide concentrations, warmer temperatures, and changes in floristic zones could potentially increase exposure to ragweed and other outdoor allergens,whereas green practices such as composting can increase allergen and irritant exposure. Finally, increased energy costs may resultin urban crowding and human source pollution, leading to changes in patterns of infectious respiratory illnesses. Improved governmental controls on airborne pollutants could lead to cleaner air and reduced respiratory diseases but will meet strong opposition because of their effect on business productivity. The allergy community must therefore adapt, as physician and research scientists always have, by anticipating the needs of patients and by adopting practices and research methods to meet changing environmental conditions.

  19. Energy and cost associated with ventilating office buildings in a tropical climate.

    PubMed

    Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W

    2015-01-01

    Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore's tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore's. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person--which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave--can be much larger than the incremental cost of ventilation.

  20. Causes of Indoor Air Quality Problems in Schools: Summary of Scientific Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayer, C.W.

    2001-02-22

    In the modern urban setting, most individuals spend about 80% of their time indoors and are therefore exposed to the indoor environment to a much greater extent than to the outdoors (Lebowitz 1992). Concomitant with this increased habitation in urban buildings, there have been numerous reports of adverse health effects related to indoor air quality (IAQ) (sick buildings). Most of these buildings were built in the last two decades and were constructed to be energy-efficient. The quality of air in the indoor environment can be altered by a number of factors: release of volatile compounds from furnishings, floor and wallmore » coverings, and other finishing materials or machinery; inadequate ventilation; poor temperature and humidity control; re-entrainment of outdoor volatile organic compounds (VOCs); and the contamination of the indoor environment by microbes (particularly fungi). Armstrong Laboratory (1992) found that the three most frequent causes of IAQ are (1) inadequate design and/or maintenance of the heating, ventilation, and air-conditioning (HVAC) system, (2) a shortage of fresh air, and (3) lack of humidity control. A similar study by the National Institute for Occupational Safety and Health (NIOSH 1989) recognized inadequate ventilation as the most frequent source of IAQ problems in the work environment (52% of the time). Poor IAQ due to microbial contamination can be the result of the complex interactions of physical, chemical, and biological factors. Harmful fungal populations, once established in the HVAC system or occupied space of a modern building, may episodically produce or intensify what is known as sick building syndrome (SBS) (Cummings and Withers 1998). Indeed, SBS caused by fungi may be more enduring and recalcitrant to treatment than SBS from multiple chemical exposures (Andrae 1988). An understanding of the microbial ecology of the indoor environment is crucial to ultimately resolving many IAQ problems. The incidence of SBS related to multiple chemical sensitivity versus bioaerosols (aerosolized microbes), or the contribution of the microorganisms to the chemical sensitivities, is not yet understood. If the inhabitants of a building exhibit similar symptoms of a clearly defined disease with a nature and time of onset that can be related to building occupancy, the disease is generally referred to as ''building-related illness.'' Once the SBS has been allowed to elevate to this level, buildings are typically evacuated and the costs associated with disruption of the building occupants, identification of the source of the problem, and eventual remediation can be significant. Understanding the primary causes of IAQ problems and how controllable factors--proper HVAC system design, allocation of adequate outdoor air, proper filtration, effective humidity control, and routine maintenance--can avert the problems may help all building owners, operators, and occupants to be more productive (Arens and Baughman 1996). This paper provides a comprehensive summary of IAQ research that has been conducted in various types of facilities. However, it focuses primarily on school facilities because, for numerous reasons that will become evident, they are far more susceptible to developing IAQ problems than most other types of facilities; and the occupants, children, are more significantly affected than adults (EPA 1998).« less

  1. A New Indoor Positioning System Architecture Using GPS Signals.

    PubMed

    Xu, Rui; Chen, Wu; Xu, Ying; Ji, Shengyue

    2015-04-29

    The pseudolite system is a good alternative for indoor positioning systems due to its large coverage area and accurate positioning solution. However, for common Global Positioning System (GPS) receivers, the pseudolite system requires some modifications of the user terminals. To solve the problem, this paper proposes a new pseudolite-based indoor positioning system architecture. The main idea is to receive real-world GPS signals, repeat each satellite signal and transmit those using indoor transmitting antennas. The transmitted GPS-like signal can be processed (signal acquisition and tracking, navigation data decoding) by the general receiver and thus no hardware-level modification on the receiver is required. In addition, all Tx can be synchronized with each other since one single clock is used in Rx/Tx. The proposed system is simulated using a software GPS receiver. The simulation results show the indoor positioning system is able to provide high accurate horizontal positioning in both static and dynamic situations.

  2. The Myth of Spatial Reuse with Directional Antennas in Indoor Wireless Networks

    NASA Astrophysics Data System (ADS)

    Lakshmanan, Sriram; Sundaresan, Karthikeyan; Rangarajan, Sampath; Sivakumar, Raghupathy

    Interference among co-channel users is a fundamental problem in wireless networks, which prevents nearby links from operating concurrently. Directional antennas allow the radiation patterns of wireless transmitters to be shaped to form directed beams. Conventionally, such beams are assumed to improve the spatial reuse (i.e. concurrency) in indoor wireless networks. In this paper, we use experiments in an indoor office setting of Wifi Access points equipped with directional antennas, to study their potential for interference mitigation and spatial reuse. In contrast to conventional wisdom, we observe that the interference mitigation benefits of directional antennas are minimal. On analyzing our experimental traces we observe that directional links do not reduce interference to nearby links due to the lack of signal confinement due to indoor multipath fading. We then use the insights derived from our study to develop an alternative approach that provides better interference reduction in indoor networks compared to directional links.

  3. Study on Data Clustering and Intelligent Decision Algorithm of Indoor Localization

    NASA Astrophysics Data System (ADS)

    Liu, Zexi

    2018-01-01

    Indoor positioning technology enables the human beings to have the ability of positional perception in architectural space, and there is a shortage of single network coverage and the problem of location data redundancy. So this article puts forward the indoor positioning data clustering algorithm and intelligent decision-making research, design the basic ideas of multi-source indoor positioning technology, analyzes the fingerprint localization algorithm based on distance measurement, position and orientation of inertial device integration. By optimizing the clustering processing of massive indoor location data, the data normalization pretreatment, multi-dimensional controllable clustering center and multi-factor clustering are realized, and the redundancy of locating data is reduced. In addition, the path is proposed based on neural network inference and decision, design the sparse data input layer, the dynamic feedback hidden layer and output layer, low dimensional results improve the intelligent navigation path planning.

  4. Dow and Mary Davidson residence - A residence in a hot humid climate with major living spaces in rooms without walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holder, L.M. III; Holder, L.M. IV

    Dow Davidson works out of his home while his wife, Mary, home schools their three children. The entire family uses the house full time throughout the year. Dow and Mary Davidson stressed the importance of a home with minimal site disruption while providing for as many human needs as practical. Specific requirements were for harmony with the natural climate and adjacent bird sanctuary. The clients had a strong preference for a pole structural system reflecting buildings they were familiar with in Hawaii. The house was designed as a pole structure utilizing passive solar heating, natural ventilation, night flushing, daylighting, rainwatermore » harvesting, and an outdoor and indoor living area without walled separation from the climate. This type of open indoor/outdoor living is an extension of the Hawaiian experience. Use of the pole structure system provided compatibility between the residence and the neighboring bird habitat. The completed house easily blended with the surrounding vegetation due to the extensive use of natural materials. Exterior walks and drives, made from caliche and mulch (harvested from cedar cut on-site), helped further balance the structure with the terrain and vegetation.« less

  5. Outdoor and indoor UFP in primary schools across Barcelona.

    PubMed

    Reche, C; Viana, M; Rivas, I; Bouso, L; Àlvarez-Pedrerol, M; Alastuey, A; Sunyer, J; Querol, X

    2014-09-15

    Indoor and outdoor measurements of real-time ultrafine particles (UFP; N10-700 in this study) number concentration and average diameter were collected twice at 39 primary schools located in Barcelona (Spain), with classrooms naturally ventilated under warm weather conditions. Simultaneous outdoor N concentration measurements at schools under different traffic exposures showed the important role of this source, with higher levels by 40% on average at schools near heavy traffic, highlighting thus the increased exposure of children due to urban planning decisions. A well-defined spatial pattern of outdoor UFP levels was observed. Midday increases in outdoor N levels mainly attributed to nucleation processes have been recorded both at high and low temperatures in several of the outdoor school sites (increasing levels by 15%-70%). The variation of these increases also followed a characteristic spatial pattern, pointing at schools' location as a key variable in terms of UFP load owing to the important contribution of traffic emissions. Indoor N concentrations were to some extent explained by outdoor N concentrations during school hours, together with average temperatures, related with natural ventilation. Outdoor midday increases were generally mimicked by indoor N concentrations, especially under warm temperatures. At specific cases, indoor concentrations during midday were 30%-40% higher than outdoor. The time scale of these observations evidenced the possible role of: a) secondary particle formation enhanced by indoor precursors or conditions, maybe related with surface chemistry reactions mediated by O3, and/or b) UFP from cooking activities. Significant indoor N increases were detected after school hours, probably associated with cleaning activities, resulting in indoor N concentrations up to 3 times higher than those in outdoor. A wide variability of indoor/outdoor ratios of N concentrations and mean UFP sizes was detected among schools and measurement periods, which seems to be partly associated with climatic conditions and O3 levels, although further research is required. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Indoor anti-occlusion visible light positioning systems based on particle filtering

    NASA Astrophysics Data System (ADS)

    Jiang, Meng; Huang, Zhitong; Li, Jianfeng; Zhang, Ruqi; Ji, Yuefeng

    2015-04-01

    As one of the most popular categories of mobile services, a rapid growth of indoor location-based services has been witnessed over the past decades. Indoor positioning methods based on Wi-Fi, radio-frequency identification or Bluetooth are widely commercialized; however, they have disadvantages such as low accuracy or high cost. An emerging method using visible light is under research recently. The existed visible light positioning (VLP) schemes using carrier allocation, time allocation and multiple receivers all have limitations. This paper presents a novel mechanism using particle filtering in VLP system. By this method no additional devices are needed and the occlusion problem in visible light would be alleviated which will effectively enhance the flexibility for indoor positioning.

  7. 16 CFR 1201.1 - Scope, application and findings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... transmission of light, visual communication, protection from weather, ventilation, and indoor climate control... be subject to the standard. Furthermore, no major change in demand for the architectural products... Commission believes, however, that the competitive impact of the proposed changes would not severely weaken...

  8. 16 CFR 1201.1 - Scope, application and findings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... transmission of light, visual communication, protection from weather, ventilation, and indoor climate control... be subject to the standard. Furthermore, no major change in demand for the architectural products... Commission believes, however, that the competitive impact of the proposed changes would not severely weaken...

  9. 16 CFR 1201.1 - Scope, application and findings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... transmission of light, visual communication, protection from weather, ventilation, and indoor climate control... be subject to the standard. Furthermore, no major change in demand for the architectural products... Commission believes, however, that the competitive impact of the proposed changes would not severely weaken...

  10. [Enclosed environments and health].

    PubMed

    Maroni, M; Barbieri, F

    1989-01-01

    Problems related to Indoor Air Quality are subject of study since about twenty years. New architectural criteria, new building materials and increasing demands of energy saving have progressively changed residences, offices and all non-industrial indoor environments. This paper present a review of the IAQ-related issues from sources characterization, to pollutant assessment and definition of effects on human health.

  11. Recommended Best Practices for Mold Investigations in Minnesota Schools.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Health, St. Paul.

    The Minnesota Department of Health developed this guidance at the request of the Minnesota Department of Children, Families and Learning. The goal of the document is to assist school district staff of Minnesota public schools in responding to problems related to indoor mold. Its focus is on practical, cost-effective methods to identify indoor mold…

  12. Three-dimensional high-precision indoor positioning strategy using Tabu search based on visible light communication

    NASA Astrophysics Data System (ADS)

    Peng, Qi; Guan, Weipeng; Wu, Yuxiang; Cai, Ye; Xie, Canyu; Wang, Pengfei

    2018-01-01

    This paper proposes a three-dimensional (3-D) high-precision indoor positioning strategy using Tabu search based on visible light communication. Tabu search is a powerful global optimization algorithm, and the 3-D indoor positioning can be transformed into an optimal solution problem. Therefore, in the 3-D indoor positioning, the optimal receiver coordinate can be obtained by the Tabu search algorithm. For all we know, this is the first time the Tabu search algorithm is applied to visible light positioning. Each light-emitting diode (LED) in the system broadcasts a unique identity (ID) and transmits the ID information. When the receiver detects optical signals with ID information from different LEDs, using the global optimization of the Tabu search algorithm, the 3-D high-precision indoor positioning can be realized when the fitness value meets certain conditions. Simulation results show that the average positioning error is 0.79 cm, and the maximum error is 5.88 cm. The extended experiment of trajectory tracking also shows that 95.05% positioning errors are below 1.428 cm. It can be concluded from the data that the 3-D indoor positioning based on the Tabu search algorithm achieves the requirements of centimeter level indoor positioning. The algorithm used in indoor positioning is very effective and practical and is superior to other existing methods for visible light indoor positioning.

  13. Exposure of infants to outdoor and indoor air pollution in low-income urban areas - a case study of Delhi.

    PubMed

    Saksena, Sumeet; Singh, P B; Prasad, Raj Kumar; Prasad, Rakesh; Malhotra, Preeti; Joshi, Veena; Patil, R S

    2003-05-01

    Indoor air pollution is potentially a very serious environmental and public health problem in India. In poor communities, with the continuing trend in biofuel combustion coupled with deteriorating housing conditions, the problem will remain for some time to come. While to some extent the problem has been studied in rural areas, there is a dearth of reliable data and knowledge about the situation in urban slum areas. The microenvironmental model was used for assessing daily-integrated exposure of infants and women to respirable suspended particulates (RSP) in two slums of Delhi - one in an area of high outdoor pollution and the other in a less polluted area. The study confirmed that indoor concentrations of RSP during cooking in kerosene-using houses are lesser than that in wood-using houses. However, the exposure due to cooking was not significantly different across the two groups. This was because, perhaps due to socioeconomic reasons, kerosene-using women were found to cook for longer durations, cook inside more often, and that infants in such houses stayed in the kitchen for longer durations. It was observed that indoor background levels during the day and at nighttime can be exceedingly high. We speculate that this may have been due to resuspension of dust, infiltration, unknown sources, or a combination of these factors. The outdoor RSP levels measured just outside the houses (near ambient) were not correlated with indoor background levels and were higher than those reported by the ambient air quality monitoring network at the corresponding stations. More importantly, the outdoor levels measured in this study not only underestimated the daily-integrated exposure, but were also poorly correlated with it.

  14. Thermal comfort in naturally ventilated and air-conditioned buildings in humid subtropical climate zone in China

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhang, Guoqiang

    2008-05-01

    A thermal comfort field study has been carried out in five cities in the humid subtropical climate zone in China. The survey was performed in naturally ventilated and air-conditioned buildings during the summer season in 2006. There were 229 occupants from 111 buildings who participated in this study and 229 questionnaire responses were collected. Thermal acceptability assessment reveals that the indoor environment in naturally ventilated buildings could not meet the 80% acceptability criteria prescribed by ASHRAE Standard 55, and people tended to feel more comfortable in air-conditioned buildings with the air-conditioned occupants voting with higher acceptability (89%) than the naturally ventilated occupants (58%). The neutral temperatures in naturally ventilated and air-conditioned buildings were 28.3°C and 27.7°C, respectively. The range of accepted temperature in naturally ventilated buildings (25.0˜31.6°C) was wider than that in air-conditioned buildings (25.1˜30.3°C), which suggests that occupants in naturally ventilated buildings seemed to be more tolerant of higher temperatures. Preferred temperatures were 27.9°C and 27.3°C in naturally ventilated and air-conditioned buildings, respectively, both of which were 0.4°C cooler than neutral temperatures. This result suggests that people of hot climates may use words like “slightly cool” to describe their preferred thermal state. The relationship between draught sensation and indoor air velocity at different temperature ranges indicates that indoor air velocity had a significant influence over the occupants’ comfort sensation, and air velocities required by occupants increased with the increasing of operative temperatures. Thus, an effective way of natural ventilation which can create the preferred higher air movement is called for. Finally, the indoor set-point temperature of 26°C or even higher in air-conditioned buildings was confirmed as making people comfortable, which supports the regulation in China that in public and office buildings the set-point temperature of air-conditioning system should not be lower than 26°C.

  15. Improving Comfort in Hot-Humid Climates with a Whole-House Dehumidifier, Windermere, Florida (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-11-01

    Maintaining comfort in a home can be challenging in hot-humid climates. At the common summer temperature set point of 75 degrees F, the perceived air temperature can vary by 11 degrees F because higher indoor humidity reduces comfort. Often the air conditioner (AC) thermostat set point is lower than the desirable cooling level to try to increase moisture removal so that the interior air is not humid or "muggy." However, this method is not always effective in maintaining indoor relative humidity (RH) or comfort. In order to quantify the performance of a combined whole-house dehumidifier (WHD) AC system, researchers frommore » the U.S. Department of Energy's Building America team Consortium of Advanced Residential Buildings (CARB) monitored the operation of two Lennox AC systems coupled with a Honeywell DH150 TrueDRY whole-house dehumidifier for a six-month period. By using a WHD to control moisture levels (latent cooling) and optimizing a central AC to control temperature (sensible cooling), improvements in comfort can be achieved while reducing utility costs. Indoor comfort for this study was defined as maintaining indoor conditions at below 60% RH and a humidity ratio of 0.012 lbm/lbm while at common dry bulb set point temperatures of 74 degrees -80 degrees F. In addition to enhanced comfort, controlling moisture to these levels can reduce the risk of other potential issues such as mold growth, pests, and building component degradation. Because a standard AC must also reduce dry bulb air temperature in order to remove moisture, a WHD is typically needed to support these latent loads when sensible heat removal is not desired.« less

  16. Working towards healthy air in dwellings in Europe.

    PubMed

    Franchi, M; Carrer, P; Kotzias, D; Rameckers, E M A L; Seppänen, O; van Bronswijk, J E M H; Viegi, G; Gilder, J A; Valovirta, E

    2006-07-01

    Poor indoor air quality has been implicated in the increase in allergic and respiratory diseases seen in industrialized countries in recent decades. Although air pollution in the workplace is well studied, much less is known about the consequences of poor air quality in homes. In an attempt to halt or slow down the increase in allergic and respiratory diseases, the European Federation of Allergy and Airways Diseases Patients Associations (EFA) carried out the EU-funded project entitled 'Towards Healthy Air in Dwellings in Europe' (THADE). The aims were to: compile an overview of evidence-based data about exposure to indoor air pollution and its health effects, particularly in relation to allergies, asthma and other respiratory diseases such as chronic obstructive pulmonary disease; review cost-effective measures and technology to improve indoor air quality; review legislation and guidelines on indoor air pollution; produce maps of pollutants in dwellings; and recommend an integrated strategy that defines appropriate indoor air quality policies for implementation in Europe. This paper summarizes the information about air quality in dwellings and indoor environment-related diseases collected by expert consultants within the framework of THADE and terminates with recommendations for actions aimed at improving air quality in homes. The results of this project confirmed that air pollution in dwellings is a relevant health problem. It is a complex problem that must be addressed at European and international levels, and it involves the medical profession, scientific societies, patients' organizations, lawmakers, architects and the building industry. The complete THADE report is available at http://www.efanet.org/activities/documents/THADEReport.pdf.

  17. Effects of climatic changes and urban air pollution on the rising trends of respiratory allergy and asthma

    PubMed Central

    2011-01-01

    Over the past two decades there has been increasing interest in studies regarding effects on human health of climate changes and urban air pollution. Climate change induced by anthropogenic warming of the earth's atmosphere is a daunting problem and there are several observations about the role of urbanization, with its high levels of vehicle emissions and other pollutants, and westernized lifestyle with respect to the rising frequency of respiratory allergic diseases observed in most industrialized countries. There is also evidence that asthmatic subjects are at increased risk of developing exacerbations of bronchial obstruction with exposure to gaseous (ozone, nitrogen dioxide, sulfur dioxide) and particulate inhalable components of air pollution. A change in the genetic predisposition is an unlikely cause of the increasing frequency in allergic diseases because genetic changes in a population require several generations. Consequently, environmental factors such as climate change and indoor and outdoor air pollution may contribute to explain the increasing frequency of respiratory allergy and asthma. Since concentrations of airborne allergens and air pollutants are frequently increased contemporaneously, an enhanced IgE-mediated response to aeroallergens and enhanced airway inflammation could account for the increasing frequency of allergic respiratory diseases and bronchial asthma. Scientific societies such as the European Academy of Allergy and Clinical Immunology, European Respiratory Society and the World Allergy Organization have set up committees and task forces to produce documents to focalize attention on this topic, calling for prevention measures. PMID:22958620

  18. Effects of climatic changes and urban air pollution on the rising trends of respiratory allergy and asthma.

    PubMed

    D'Amato, Gennaro

    2011-02-28

    Over the past two decades there has been increasing interest in studies regarding effects on human health of climate changes and urban air pollution. Climate change induced by anthropogenic warming of the earth's atmosphere is a daunting problem and there are several observations about the role of urbanization, with its high levels of vehicle emissions and other pollutants, and westernized lifestyle with respect to the rising frequency of respiratory allergic diseases observed in most industrialized countries.There is also evidence that asthmatic subjects are at increased risk of developing exacerbations of bronchial obstruction with exposure to gaseous (ozone, nitrogen dioxide, sulfur dioxide) and particulate inhalable components of air pollution.A change in the genetic predisposition is an unlikely cause of the increasing frequency in allergic diseases because genetic changes in a population require several generations. Consequently, environmental factors such as climate change and indoor and outdoor air pollution may contribute to explain the increasing frequency of respiratory allergy and asthma. Since concentrations of airborne allergens and air pollutants are frequently increased contemporaneously, an enhanced IgE-mediated response to aeroallergens and enhanced airway inflammation could account for the increasing frequency of allergic respiratory diseases and bronchial asthma.Scientific societies such as the European Academy of Allergy and Clinical Immunology, European Respiratory Society and the World Allergy Organization have set up committees and task forces to produce documents to focalize attention on this topic, calling for prevention measures.

  19. Improving Energy Efficiency of Buildings in the Urals

    NASA Astrophysics Data System (ADS)

    Kiyanets, A. V.

    2017-11-01

    The article is devoted to the results of studies of energy efficiency improvements of the buildings which are constructed under the climatic conditions of the Ural Federal District of the Russian Federation. The relevance of the stated problem is corroborated. The requirements of the existing regulatory legal acts of the Russian Federation on energy conservation and energy efficiency in construction are given. The article specifies that energy efficiency in construction refers to a set of measures aimed at the reduction of energy resources which are consumed by buildings and are necessary to maintain the required microclimate parameters indoors. The main modern measures for improving the energy efficiency of buildings are presented, and their application under the climatic conditions of the Urals are analyzed and calculated. Each of the proposed methods is evaluated. Basing on the research results, it is concluded that most of the currently known measures for improving the energy efficiency of buildings are significantly limited in the Ural Federal District due to the small economic effect connected with the complexity and high cost of their implementation and operation, the peculiarities of climatic conditions and the conditions of the population density of the territories or significant ineffectiveness of the measures themselves; the most promising measures for improving the energy efficiency of buildings under the climatic and economic conditions of the Urals are the measures for reducing heat loss through the building envelopes (for improving the heat-insulation characteristics of the applied materials and structures).

  20. Real-time locating systems (RTLS) in healthcare: a condensed primer

    PubMed Central

    2012-01-01

    Real-time locating systems (RTLS, also known as real-time location systems) have become an important component of many existing ubiquitous location aware systems. While GPS (global positioning system) has been quite successful as an outdoor real-time locating solution, it fails to repeat this success indoors. A number of RTLS technologies have been used to solve indoor tracking problems. The ability to accurately track the location of assets and individuals indoors has many applications in healthcare. This paper provides a condensed primer of RTLS in healthcare, briefly covering the many options and technologies that are involved, as well as the various possible applications of RTLS in healthcare facilities and their potential benefits, including capital expenditure reduction and workflow and patient throughput improvements. The key to a successful RTLS deployment lies in picking the right RTLS option(s) and solution(s) for the application(s) or problem(s) at hand. Where this application-technology match has not been carefully thought of, any technology will be doomed to failure or to achieving less than optimal results. PMID:22741760

  1. Real-time locating systems (RTLS) in healthcare: a condensed primer.

    PubMed

    Kamel Boulos, Maged N; Berry, Geoff

    2012-06-28

    Real-time locating systems (RTLS, also known as real-time location systems) have become an important component of many existing ubiquitous location aware systems. While GPS (global positioning system) has been quite successful as an outdoor real-time locating solution, it fails to repeat this success indoors. A number of RTLS technologies have been used to solve indoor tracking problems. The ability to accurately track the location of assets and individuals indoors has many applications in healthcare. This paper provides a condensed primer of RTLS in healthcare, briefly covering the many options and technologies that are involved, as well as the various possible applications of RTLS in healthcare facilities and their potential benefits, including capital expenditure reduction and workflow and patient throughput improvements. The key to a successful RTLS deployment lies in picking the right RTLS option(s) and solution(s) for the application(s) or problem(s) at hand. Where this application-technology match has not been carefully thought of, any technology will be doomed to failure or to achieving less than optimal results.

  2. Indoor detection of passive targets recast as an inverse scattering problem

    NASA Astrophysics Data System (ADS)

    Gottardi, G.; Moriyama, T.

    2017-10-01

    The wireless local area networks represent an alternative to custom sensors and dedicated surveillance systems for target indoor detection. The availability of the channel state information has opened the exploitation of the spatial and frequency diversity given by the orthogonal frequency division multiplexing. Such a fine-grained information can be used to solve the detection problem as an inverse scattering problem. The goal of the detection is to reconstruct the properties of the investigation domain, namely to estimate if the domain is empty or occupied by targets, starting from the measurement of the electromagnetic perturbation of the wireless channel. An innovative inversion strategy exploiting both the frequency and the spatial diversity of the channel state information is proposed. The target-dependent features are identified combining the Kruskal-Wallis test and the principal component analysis. The experimental validation points out the detection performance of the proposed method when applied to an existing wireless link of a WiFi architecture deployed in a real indoor scenario. False detection rates lower than 2 [%] have been obtained.

  3. Population at high-risk of indoor heatstroke: the usage of cooling appliances among urban elderlies in Japan.

    PubMed

    Kondo, Masahide; Ono, Masaji; Nakazawa, Kouichi; Kayaba, Momoko; Minakuchi, Emiko; Sugimoto, Kazutoshi; Honda, Yasushi

    2013-05-01

    Heatstroke due to a heat wave during the summer is one of the commonly known health impacts of climate change in Japan. The elderly are particularly at high-risk of developing indoor heatstroke with poor prognosis. This study aims to describe the population among elderlies at high-risk of indoor heatstroke by focusing on the usage of cooling appliances. We conducted a web-based household survey in eight urban areas during the winter season of 2011. Households with a person aged 65 and over were selected as samples from panel members of a research firm, and the oldest member of the household was queried about his/her usage of cooling appliances. The population at high-risk of indoor heatstroke is defined as the elderly staying in a room without cooling appliances, or not using the installed cooling appliances, or turning the cooling appliances on only when the room temperature is above 28 °C. 15.4 and 19.1 % of the elderlies living in urban areas of Japan are identified as at high-risk of indoor heatstroke during activity time and sleeping time, respectively, according to the definition of high-risk of indoor heatstroke in this study. These figures are not negligible since the consequences of heatstroke are grave, but its risk can be eliminated by an appropriate usage of cooling appliances. The preventive interventions are needed to protect the elderlies at high-risk of heatstroke.

  4. A review of polychlorinated biphenyls (PCBs) pollution in indoor air environment.

    PubMed

    Dai, Qizhou; Min, Xia; Weng, Mili

    2016-10-01

    Polychlorinated biphenyls (PCBs) were widely used in industrial production due to the unique physical and chemical properties. As a kind of persistent organic pollutants, the PCBs would lead to environment pollution and cause serious problems for human health. Thus, they have been banned since the 1980s due to the environment pollution in the past years. Indoor air is the most direct and important environment medium to human beings; thus, the PCBs pollution research in indoor air is important for the protection of human health. This paper introduces the industrial application and potential harm of PCBs, summarizes the sampling, extracting, and analytical methods of environment monitoring, and compares the indoor air levels of urban areas with those of industrial areas in different countries according to various reports. This paper can provide a basic summary for PCBs pollution control in the indoor air environment. The review of PCBs pollution in indoor air in China is still limited. In this paper, we introduce the industrial application and potential harm of PCBs, summarize the sampling, extracting, and analytical methods of environment monitoring, and compare the indoor air levels of urban areas with industrial areas in different countries according to various reports.

  5. Indoor localization using FM radio and DTMB signals

    NASA Astrophysics Data System (ADS)

    Wu, H.; Wang, Q.; Zhao, Y.; Ma, X.; Yang, M.; Liu, B.; Tang, R.; Xu, X.

    2016-07-01

    Indoor localization systems based on Wi-Fi signal strength fingerprinting techniques are widely used in office buildings. However, a general problem of these systems pertains to Wi-Fi signal degradation due to the environmental factors. And also, these systems cannot be used in the environments not covered with Wi-Fi signals or the environments with only a single Wi-Fi access point. In this paper, a new indoor location fingerprinting system using both FM radio and Digital Television Terrestrial Multimedia Broadcasting (DTMB) signals is proposed. First, the indoor location fingerprinting using FM radio and DTMB signals is theoretically analyzed to confirm its feasibility. Then, a specially designed combined strength fingerprinting location algorithm is proposed for the location system, which is achieved on the USRP2 platform. Finally, the system is tested in a typical indoor environment. The theoretical analysis and the tests show that the indoor location fingerprinting system using FM radio and DTMB signals has a similar localization accuracy to the Wi-Fi signal strength fingerprinting location system, while it has a wider coverage area, a lower maintenance cost, and more stable signal strength, which makes it a practical indoor positioning method.

  6. Thermal (dis)comfort experienced from physiological movements across indoor, transitional and outdoor spaces in Singapore: A pilot study

    NASA Astrophysics Data System (ADS)

    Li Heng, Su; Chow, Winston

    2017-04-01

    Human thermal comfort research is important as climate discomfort can adversely affect both health and work productivity in cities; however, such biometeorological work in low-latitude urban areas is still relatively unstudied hitherto. In the tropical metropolis of Singapore, a suite of policies have been implemented aimed at improving environmental sustainability via increasing car-free commutes and pedestrian movement during work/school journeys, with the consequence that individuals will likely have increased personal exposure through a variety of spaces (and climates) during typical daily activities. As such, research into exploring the thermal (dis)comfort experienced during pedestrian movements across these indoor, outdoor and transitional (semi-outdoor) spaces would yield interesting applied biometerological insights. This pilot study thus investigates how pedestrian thermal comfort varies spatially across a university campus, and how the physical intensity of pedestrian travel affects thermal comfort across these spaces. Over a 10-week period, we profiled six students for both their objective and subjective pedestrian thermal comfort during traverses across different spaces. Data were obtained through use of (a.) of a heat stress sensor, (b.) a fitness tracker, and (b.) a questionnaire survey to record traverse measurements of the microclimate, their physiological data, and their perceived microclimate comfort respectively. Measured climate and physiological data were used to derive commonly-used thermal comfort indices like wet-bulb globe temperature (WBGT) and physiological equivalent temperature (PET). Further, interviews were conducted with all six subjects at the end of the fieldwork period to ascertain details on individual acclimatization behavior and adaptation strategies. The results indicate that (a.) more than 50% of the microclimatic conditions within each indoor, semi-outdoor, and outdoor space exceeded heat stress thresholds of both PET and WBGT, and that participants often were at "high" risk of heat stress from pedestrian movement; (b.) participants were most comfortable with humidity sensations across all spaces compared to other microclimate sensations (e.g. wind, heat, sun); (c.) correlation between microclimate sensation and WBGT varied across participants and across spaces, with stronger correlation between sun sensation votes and WBGT for most participants, and (d.) heart rates of individuals were not significant in estimating and predicting PET for activities such as pedestrian walking. Present results confirm that WBGT applies better to hot climates and outdoor thermal comfort, but not so for hot, humid climates and indoor thermal comfort. Self-reported (subjective) thermal comfort also differed from measured (objective) thermal comfort and across participants because acclimatized individuals can have different sensitivities and acceptance towards (dis)comfort arising from pedestrian movement across spaces. Finally, we suggest that future pedestrian thermal comfort studies employ longitudinal studies and traverse measurements to consider the critical aspects of thermal history and individual sensitivities to on (dis)comfort levels.

  7. 16 CFR § 1201.1 - Scope, application and findings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... transmission of light, visual communication, protection from weather, ventilation, and indoor climate control... be subject to the standard. Furthermore, no major change in demand for the architectural products... Commission believes, however, that the competitive impact of the proposed changes would not severely weaken...

  8. Photoacoustic CO2 sensor system: design and potential for miniaturization and integration in silicon

    NASA Astrophysics Data System (ADS)

    Huber, J.; Wöllenstein, J.

    2015-05-01

    The detection of CO2 indoors has a large impact on today's sensor market. The ambient room climate is important for human health and wellbeing. The CO2 concentration is a main indicator for indoor climate and correlates with the number of persons inside a room. People in Europe spend more than 90% of their time indoors. This leads to a high demand for miniaturized and energy efficient CO2 sensors. To realize small and energy-efficient mass-market sensors, we develop novel miniaturized photoacoustic sensor systems with optimized design for real-time and selective CO2 detection. The sensor system consists of two chambers, a measurement and a detection chamber. The detection chamber consists of an integrated pressure sensor under special gas atmosphere. As pressure sensor we use a commercially available cell phone microphone. We describe a possible miniaturization process of the developed system by regarding the possibility of integration of all sensor parts. The system is manufactured in precision mechanics with IR-optical sapphire windows as optical connections. During the miniaturization process the sapphire windows are replaced by Si chips with a special IR anti-reflection coating. The developed system is characterized in detail with gas measurements and optical transmission investigations. The results of the characterization process offer a high potential for further miniaturization with high capability for mass market applications.

  9. Outdoor, indoor, and personal black carbon exposure from cookstoves burning solid fuels

    PubMed Central

    Downward, George S.; Hu, Wei; Rothman, Nat; Reiss, Boris; Wu, Guoping; Wei, Fusheng; Xu, Jun; Seow, Wei Jie; Brunekreef, Bert; Chapman, Robert S.; Qing, Lan; Vermeulen, Roel

    2015-01-01

    Background Black carbon (BC) emissions from solid fuel combustion are associated with increased morbidity and mortality and are important drivers of climate change. We studied BC measurements, approximated by particulate matter (PM2.5) absorbance, in rural Yunnan province, China whose residents use a variety of solid fuels for cooking and heating including: bituminous and anthracite coal, and wood. Methods Measurements were taken over 2 consecutive 24 h periods from 163 households in 30 villages. PM2.5 absorbance (PMabs) was measured using an EEL 043 Smoke Stain Reflectometer. Results PMabs measurements were higher in wood burning households (16.3 × 10−5 m−1) than bituminous and anthracite coal households (12 and 5.1 × 10−5 m−1 respectively). Among bituminous coal users, measurements varied by a factor of two depending on the coal source. Portable stoves (which are lit outdoors and brought indoors for use) were associated with reduced PMabs levels, but no other impact of stove design was observed. Outdoor measurements were positively correlated with and approximately half the level of indoor measurements (r= 0.49, p<0.01). Conclusion Measurements of BC (as approximated by PMabs) in this population are modulated by fuel type and source. This provides valuable insight into potential morbidity, mortality and climate change contributions of domestic usage of solid fuels. PMID:26452237

  10. The status of indoor air pollution.

    PubMed Central

    Esmen, N A

    1985-01-01

    Indoor air pollution, specifically restricted in its meaning to chemicals in home indoor air environment, presents a new and probably an important challenge to the researchers of the air pollution field. The general overview of this topic suggests that the voluminous data generated in the past ten or so years have only defined the rudiments of the problem, and significant areas of research still exist. Among the important areas where information is lacking, the exposures to contaminants generated by the use of consumer products and through hobbies and crafts represent perhaps the most urgent need for substantial research. PMID:4085429

  11. CFD simulation research on residential indoor air quality.

    PubMed

    Yang, Li; Ye, Miao; He, Bao-Jie

    2014-02-15

    Nowadays people are excessively depending on air conditioning to create a comfortable indoor environment, but it could cause some health problems in a long run. In this paper, wind velocity field, temperature field and air age field in a bedroom with wall-hanging air conditioning running in summer are analyzed by CFD numerical simulation technology. The results show that wall-hanging air conditioning system can undertake indoor heat load and conduct good indoor thermal comfort. In terms of wind velocity, air speed in activity area where people sit and stand is moderate, most of which cannot feel wind flow and meet the summer indoor wind comfort requirement. However, for air quality, there are local areas without ventilation and toxic gases not discharged in time. Therefore it is necessary to take effective measures to improve air quality. Compared with the traditional measurement method, CFD software has many advantages in simulating indoor environment, so it is hopeful for humans to create a more comfortable, healthy living environment by CFD in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Indoor Air Quality Tools for Schools Program: Benefits of Improving Air Quality in the School Environment.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    The U.S. Environmental Protection Agency (EPA) developed the Indoor Air Quality Tools for Schools (IAQ TfS) Program to help schools prevent, identify, and resolve their IAQ problems. This publication describes the program and its advantages, explaining that through simple, low-cost measures, schools can: reduce IAQ-related health risks and…

  13. A Survey and Critical Review of the Literature on Indoor Air Quality, Ventilation and Health Symptoms in Schools. IEQ Strategies[TM].

    ERIC Educational Resources Information Center

    Daisey, Joan M.; Angell, William J.

    This report presents detailed results from a survey and critical review of existing published literature and reports on indoor air quality (IAQ), ventilation, and IAQ- and building-related health problems in schools, particularly California schools. The findings: (1) identify the most commonly reported building-related health symtoms involving…

  14. Summary of human responses to ventilation.

    PubMed

    Seppänen, O A; Fisk, W J

    2004-01-01

    It is known that ventilation is necessary to remove indoor-generated pollutants from indoor air or dilute their concentration to acceptable levels. But as the limit values of all pollutants are not known the exact determination of required ventilation rates based on pollutant concentrations is seldom possible. The selection of ventilation rates has to be based also on epidemiological research, laboratory and field experiments and experience. The existing literature indicates that ventilation has a significant impact on several important human outcomes including: (1) communicable respiratory illnesses; (2) sick building syndrome symptoms; (3) task performance and productivity, and (4) perceived air quality (PAQ) among occupants or sensory panels (5) respiratory allergies and asthma. In many studies, prevalence of sick building syndrome symptoms has also been associated with characteristics of HVAC-systems. Often the prevalence of SBS symptoms is higher in air-conditioned buildings than in naturally ventilated buildings. The evidence suggests that better hygiene, commissioning, operation and maintenance of air handling systems may be particularly important for reducing the negative effects of HVAC systems. Ventilation may also have harmful effects on indoor air quality and climate if not properly designed, installed, maintained and operated. Ventilation may bring indoors harmful substances or deteriorate indoor environment. Ventilation interacts also with the building envelope and may deteriorate the structures of the building. Ventilation changes the pressure differences across the structures of building and may cause or prevent infiltration of pollutants from structures or adjacent spaces. Ventilation is also in many cases used to control the thermal environment or humidity in buildings. The paper summarises the current knowledge on positive and negative effects of ventilation on health and other human responses. The focus is on office-type working environment and residential buildings. The review shows that ventilation has various positive impacts on health and productivity of building occupants. Ventilation reduces the prevalence of airborne infectious diseases and thus the number of sick leave days. In office environment a ventilation rate up to 20-25 L/s per person seem to decrease the prevalence of SBS-symptoms. Air conditioning systems may increase the prevalence of SBS-symptoms relative to natural ventilation if not clean. In residential buildings the air change rate in cold climates should not be below app. 0.5 ach. Ventilation systems may cause pressure differences over the building envelope and bring harmful pollutants indoors.

  15. Indoor air pollution in old people's homes related to some health problems: a survey study.

    PubMed

    Coelho, C; Steers, M; Lutzler, P; Schriver-Mazzuoli, L

    2005-08-01

    The present research reports on a survey of 96 subjects between the ages of 60 and 95 years, living close to Paris in a social collective habitat. The aim was to show, using goodness-of-fit statistical tests (P < 0.1), how old people lifestyles can subject them to generated chemical or bacteriological indoor pollutants. Risk factors due to lifestyles were analyzed in relation to complaints and to health condition. There are many ways that old people are exposed to pollutants: difficulty in maintaining the residence, preference for staying in the kitchens, substantial use of cleaning chemicals. However, the principal risk for health problems is arguably inadequate ventilation (unclean screens, blocked air vents, etc.), which increases the concentration of indoor pollutants. These risks are amplified by ignorance about the hazards of inadequate ventilation. The present investigation suggests that the lifestyle and the behavior of old people could be the cause of an interior air pollution of their housing. Measures realized in representative dwellings selected in relation to results must confirm that these risks would require the installation of an automatic monitoring system of the indoor air near these people.

  16. Development and performance assessment of a luminex xMAP® direct hybridization assay for the detection and identification of indoor air fungal contamination.

    PubMed

    Libert, Xavier; Packeu, Ann; Bureau, Fabrice; Roosens, Nancy H; De Keersmaecker, Sigrid C J

    2017-01-01

    Considered as a public health problem, indoor fungal contamination is generally monitored using classical protocols based on culturing. However, this culture dependency could influence the representativeness of the fungal population detected in an analyzed sample as this includes the dead and uncultivable fraction. Moreover, culture-based protocols are often time-consuming. In this context, molecular tools are a powerful alternative, especially those allowing multiplexing. In this study a Luminex xMAP® assay was developed for the simultaneous detection of 10 fungal species which are most frequently in indoor air and that may cause health problems. This xMAP® assay was found to be sensitive, i.e. its limit of detection is ranging between 0.05 and 0.01 ng of gDNA. The assay was subsequently tested with environmental air samples which were also analyzed with a classical protocol. All the species identified with the classical method were also detected with the xMAP® assay, however in a shorter time frame. These results demonstrate that the Luminex xMAP® fungal assay developed in this study could contribute to the improvement of public health and specifically to the indoor fungal contamination treatment.

  17. Field Performance of Inverter-Driven Heat Pumps in Cold Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, James; Aldrich, Robb

    2015-08-01

    CARB observed a wide range of operating efficiencies and outputs from site to site. Maximum capacities were found to be generally in line with manufacturer's claims as outdoor temperatures fell to -10°F. The reasons for the wide range in heating performance likely include: low indoor air flow rates, poor placement of outdoor units, relatively high return air temperatures, thermostat set back, integration with existing heating systems, and occupants limiting indoor fan speed. Even with lower efficiencies than published in other studies, most of the heat pumps here still provide heat at lower cost than oil, propane, or certainly electric resistancemore » systems.« less

  18. A study on Aspergillus species in houses of asthmatic patients from Sari City, Iran and a brief review of the health effects of exposure to indoor Aspergillus.

    PubMed

    Hedayati, Mohammad T; Mayahi, Sabah; Denning, David W

    2010-09-01

    To study the distribution of Aspergillus spp. in outdoor and indoor air of asthmatic patients' houses, as well as a review on the health effects of exposure to indoor Aspergillus. Open plates containing malt extract agar media were used to isolate fungi from the indoor (n = 360) and outdoor (n = 180) air of 90 asthmatic patients' houses living in Sari City, Iran. Plates were incubated at room temperature for 7-14 days. Cultured Aspergillus spp. were identified by standard mycological techniques. All culture plates grew fungi, a testament to the ubiquitous nature of fungal exposure. Cladosporium spp. (29.2%), Aspergillus spp. (19.0%), and Penicillium spp. (18.3%) were most common inside the houses while Cladosporium spp. (44.5%), Aspergillus spp. (12.4%), and Alternaria spp. (11.1%) were most common outside the houses. Aspergillus flavus (30.1%) and A. fumigatus (23.1%) are the most commonly isolated species in indoor air. Aspergillus flavus (44.5%) and A. fumigatus (42.6%) were the most prevalent Aspergillus spp. outside. The most colony numbers of Aspergillus were isolated from kitchens (30.4%) and the least from bedrooms (21.1%). Aspergillus flavus was the most prevalent species in all sampled rooms except in the kitchen where A. fumigatus was the most common. Aspergillus flavus is the most prevalent species among the Aspergillus spp. in the indoor and outdoor of a warm climate area. In these areas, A. flavus can be a major source of allergen in the air. Therefore, minimizing indoor fungal exposure could play an important role in reducing allergic symptoms in susceptible persons.

  19. Indoor Environmental Control Practices and Asthma Management.

    PubMed

    Matsui, Elizabeth C; Abramson, Stuart L; Sandel, Megan T

    2016-11-01

    Indoor environmental exposures, particularly allergens and pollutants, are major contributors to asthma morbidity in children; environmental control practices aimed at reducing these exposures are an integral component of asthma management. Some individually tailored environmental control practices that have been shown to reduce asthma symptoms and exacerbations are similar in efficacy and cost to controller medications. As a part of developing tailored strategies regarding environmental control measures, an environmental history can be obtained to evaluate the key indoor environmental exposures that are known to trigger asthma symptoms and exacerbations, including both indoor pollutants and allergens. An environmental history includes questions regarding the presence of pets or pests or evidence of pests in the home, as well as knowledge regarding whether the climatic characteristics in the community favor dust mites. In addition, the history focuses on sources of indoor air pollution, including the presence of smokers who live in the home or care for children and the use of gas stoves and appliances in the home. Serum allergen-specific immunoglobulin E antibody tests can be performed or the patient can be referred for allergy skin testing to identify indoor allergens that are most likely to be clinically relevant. Environmental control strategies are tailored to each potentially relevant indoor exposure and are based on knowledge of the sources and underlying characteristics of the exposure. Strategies include source removal, source control, and mitigation strategies, such as high-efficiency particulate air purifiers and allergen-proof mattress and pillow encasements, as well as education, which can be delivered by primary care pediatricians, allergists, pediatric pulmonologists, other health care workers, or community health workers trained in asthma environmental control and asthma education. Copyright © 2016 by the American Academy of Pediatrics.

  20. Indirect health effects of relative humidity in indoor environments.

    PubMed Central

    Arundel, A V; Sterling, E M; Biggin, J H; Sterling, T D

    1986-01-01

    A review of the health effects of relative humidity in indoor environments suggests that relative humidity can affect the incidence of respiratory infections and allergies. Experimental studies on airborne-transmitted infectious bacteria and viruses have shown that the survival or infectivity of these organisms is minimized by exposure to relative humidities between 40 and 70%. Nine epidemiological studies examined the relationship between the number of respiratory infections or absenteeism and the relative humidity of the office, residence, or school. The incidence of absenteeism or respiratory infections was found to be lower among people working or living in environments with mid-range versus low or high relative humidities. The indoor size of allergenic mite and fungal populations is directly dependent upon the relative humidity. Mite populations are minimized when the relative humidity is below 50% and reach a maximum size at 80% relative humidity. Most species of fungi cannot grow unless the relative humidity exceeds 60%. Relative humidity also affects the rate of offgassing of formaldehyde from indoor building materials, the rate of formation of acids and salts from sulfur and nitrogen dioxide, and the rate of formation of ozone. The influence of relative humidity on the abundance of allergens, pathogens, and noxious chemicals suggests that indoor relative humidity levels should be considered as a factor of indoor air quality. The majority of adverse health effects caused by relative humidity would be minimized by maintaining indoor levels between 40 and 60%. This would require humidification during winter in areas with cold winter climates. Humidification should preferably use evaporative or steam humidifiers, as cool mist humidifiers can disseminate aerosols contaminated with allergens. PMID:3709462

  1. VeLoc: Finding Your Car in Indoor Parking Structures.

    PubMed

    Gao, Ruipeng; He, Fangpu; Li, Teng

    2018-05-02

    While WiFi-based indoor localization is attractive, there are many indoor places without WiFi coverage with a strong demand for localization capability. This paper describes a system and associated algorithms to address the indoor vehicle localization problem without the installation of additional infrastructure. In this paper, we propose VeLoc, which utilizes the sensor data of smartphones in the vehicle together with the floor map of the parking structure to track the vehicle in real time. VeLoc simultaneously harnesses constraints imposed by the map and environment sensing. All these cues are codified into a novel augmented particle filtering framework to estimate the position of the vehicle. Experimental results show that VeLoc performs well when even the initial position and the initial heading direction of the vehicle are completely unknown.

  2. A proactive approach for managing indoor air quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, R.E.; Casey, J.M.; Williams, P.L.

    1997-11-01

    Ventilation and maintenance, followed by psychosocial issues, are the factors most often implicated in indoor air quality (IAQ) investigations. The absence of accepted exposure standards and the presence of a wide variety of building designs, ages, ventilation systems, and usages often make IAQ complaint investigations ineffective. Thus, the best approach to achieving IAQ is to prevent problems from occurring. This paper presents the framework for a proactive approach to managing the causes most often implicated in IAQ investigations. It is the aim of this proactive protocol to provide a cost-effective guide for preventing IAQ problems in nonindustrial settings and inmore » buildings for which there are no current IAQ complaints. The proposed protocol focuses on heating, ventilation, and air-conditioning (HVAC) system maintenance and operation; psychosocial factors; and the handling and investigation of complaints. An IAQ manager is designated to implement and manage the protocol. The HVAC system portion of the protocol focuses on proper maintenance of the components often identified as sources of problems in IAQ studies, documentation of the maintenance procedures, and training of individuals responsible for building maintenance. The protocol addresses the psychosocial factors with an environmental survey that rates the occupants` perceptions of the indoor air to identify potential IAQ problems. The psychosocial portion of the protocol also incorporates occupant education and awareness. Finally, a three-step initial investigation procedure for addressing IAQ problems is presented.« less

  3. Integrated Method for Personal Thermal Comfort Assessment and Optimization through Users' Feedback, IoT and Machine Learning: A Case Study †.

    PubMed

    Salamone, Francesco; Belussi, Lorenzo; Currò, Cristian; Danza, Ludovico; Ghellere, Matteo; Guazzi, Giulia; Lenzi, Bruno; Megale, Valentino; Meroni, Italo

    2018-05-17

    Thermal comfort has become a topic issue in building performance assessment as well as energy efficiency. Three methods are mainly recognized for its assessment. Two of them based on standardized methodologies, face the problem by considering the indoor environment in steady-state conditions (PMV and PPD) and users as active subjects whose thermal perception is influenced by outdoor climatic conditions (adaptive approach). The latter method is the starting point to investigate thermal comfort from an overall perspective by considering endogenous variables besides the traditional physical and environmental ones. Following this perspective, the paper describes the results of an in-field investigation of thermal conditions through the use of nearable and wearable solutions, parametric models and machine learning techniques. The aim of the research is the exploration of the reliability of IoT-based solutions combined with advanced algorithms, in order to create a replicable framework for the assessment and improvement of user thermal satisfaction. For this purpose, an experimental test in real offices was carried out involving eight workers. Parametric models are applied for the assessment of thermal comfort; IoT solutions are used to monitor the environmental variables and the users' parameters; the machine learning CART method allows to predict the users' profile and the thermal comfort perception respect to the indoor environment.

  4. Integrated Method for Personal Thermal Comfort Assessment and Optimization through Users’ Feedback, IoT and Machine Learning: A Case Study †

    PubMed Central

    Currò, Cristian; Danza, Ludovico; Ghellere, Matteo; Guazzi, Giulia; Lenzi, Bruno; Megale, Valentino; Meroni, Italo

    2018-01-01

    Thermal comfort has become a topic issue in building performance assessment as well as energy efficiency. Three methods are mainly recognized for its assessment. Two of them based on standardized methodologies, face the problem by considering the indoor environment in steady-state conditions (PMV and PPD) and users as active subjects whose thermal perception is influenced by outdoor climatic conditions (adaptive approach). The latter method is the starting point to investigate thermal comfort from an overall perspective by considering endogenous variables besides the traditional physical and environmental ones. Following this perspective, the paper describes the results of an in-field investigation of thermal conditions through the use of nearable and wearable solutions, parametric models and machine learning techniques. The aim of the research is the exploration of the reliability of IoT-based solutions combined with advanced algorithms, in order to create a replicable framework for the assessment and improvement of user thermal satisfaction. For this purpose, an experimental test in real offices was carried out involving eight workers. Parametric models are applied for the assessment of thermal comfort; IoT solutions are used to monitor the environmental variables and the users’ parameters; the machine learning CART method allows to predict the users’ profile and the thermal comfort perception respect to the indoor environment. PMID:29772818

  5. Discrimination of three genetically close Aspergillus species by using high resolution melting analysis applied to indoor air as case study.

    PubMed

    Libert, Xavier; Packeu, Ann; Bureau, Fabrice; Roosens, Nancy H; De Keersmaecker, Sigrid C J

    2017-04-04

    Indoor air pollution caused by fungal contamination is suspected to have a public health impact. Monitoring of the composition of the indoor airborne fungal contaminants is therefore important. To avoid problems linked to culture-dependent protocols, molecular methods are increasingly being proposed as an alternative. Among these molecular methods, the polymerase chain reaction (PCR) and the real-time PCR are the most frequently used tools for indoor fungal detection. However, even if these tools have demonstrated their appropriate performance, some of them are not able to discriminate between species which are genetically close. A solution to this could be the use of a post-qPCR high resolution melting (HRM) analysis, which would allow the discrimination of these species based on the highly accurate determination of the difference in melting temperature of the obtained amplicon. In this study, we provide a proof-of-concept for this approach, using a dye adapted version of our previously developed qPCR SYBR®Green method to detect Aspergillus versicolor in indoor air, an important airborne fungus in terms of occurrence and cause of health problems. Despite the good performance observed for that qPCR method, no discrimination could previously be made between A. versicolor, Aspergillus creber and Aspergillus sydowii. In this study, we developed and evaluated an HRM assay for the discrimination between A. versicolor, Aspergillus creber and Aspergillus sydowii. Using HRM analysis, the discrimination of the 3 Aspergillus species could be made. No false positive, nor false negatives were observed during the performance assessment including 20 strains of Aspergillus. The limit of detection was determined for each species i.e., 0.5 pg of gDNA for A. creber and A. sydowii, and 0.1 pg of gDNA for A. versicolor. The HRM analysis was also successfully tested on environmental samples. We reported the development of HRM tools for the discrimination of A. versicolor, A. creber and A. sydowii. However, this study could be considered as a study case demonstrating that HRM based on existing qPCR assays, allows a more accurate identification of indoor air contaminants. This contributes to an improved insight in the diversity of indoor airborne fungi and hence, eventually in the causal link with health problems.

  6. Location identification for indoor instantaneous point contaminant source by probability-based inverse Computational Fluid Dynamics modeling.

    PubMed

    Liu, X; Zhai, Z

    2008-02-01

    Indoor pollutions jeopardize human health and welfare and may even cause serious morbidity and mortality under extreme conditions. To effectively control and improve indoor environment quality requires immediate interpretation of pollutant sensor readings and accurate identification of indoor pollution history and source characteristics (e.g. source location and release time). This procedure is complicated by non-uniform and dynamic contaminant indoor dispersion behaviors as well as diverse sensor network distributions. This paper introduces a probability concept based inverse modeling method that is able to identify the source location for an instantaneous point source placed in an enclosed environment with known source release time. The study presents the mathematical models that address three different sensing scenarios: sensors without concentration readings, sensors with spatial concentration readings, and sensors with temporal concentration readings. The paper demonstrates the inverse modeling method and algorithm with two case studies: air pollution in an office space and in an aircraft cabin. The predictions were successfully verified against the forward simulation settings, indicating good capability of the method in finding indoor pollutant sources. The research lays a solid ground for further study of the method for more complicated indoor contamination problems. The method developed can help track indoor contaminant source location with limited sensor outputs. This will ensure an effective and prompt execution of building control strategies and thus achieve a healthy and safe indoor environment. The method can also assist the design of optimal sensor networks.

  7. Presentation of a dummy representing suit for simulation of huMAN heatloss (DRESSMAN).

    PubMed

    Mayer, E; Schwab, R

    2004-09-01

    DRESSMAN designates a novel dummy for climate measurements that allows predicting the human thermal comfort experienced inside rooms (buildings, vehicles, aircraft, railway compartments etc.) on the basis of indoor climate measurements. Measurements can be listed in tabular form and can also be represented by way of color gradations in a virtual 3D human model. Optionally, visualization may be rendered during or after measurement. Due to its very quick response, DRESSMAN is particularly suited for nonstationary processes.

  8. Energy and Cost Associated with Ventilating Office Buildings in a Tropical Climate

    PubMed Central

    Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W.

    2015-01-01

    Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore’s tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore’s. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person — which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave — can be much larger than the incremental cost of ventilation. PMID:25822504

  9. Climate Change and Our Environment: The Effect on Respiratory and Allergic Disease

    PubMed Central

    Barnes, Charles S.; Alexis, Neil E.; Bernstein, Jonathan A.; Cohn, John R.; Demain, Jeffrey G.; Horner, Elliott; Levetin, Estelle; Nel, Andre; Phipatanakul, Wanda

    2013-01-01

    Climate change is a constant and ongoing process. It is postulated that human activities have reached a point at which we are producing global climate change. This article provides suggestions to help the allergist/environmental physician integrate recommendations about improvements in outdoor and indoor air quality and the likely response to predicted alterations in the earth’s environment into their patient’s treatment plan. Many changes that affect respiratory disease are anticipated. Examples of responses to climate change include energy reduction retrofits in homes that could potentially affect exposure to allergens and irritants, more hot sunny days that increase ozone-related difficulties, and rises in sea level or altered rainfall patterns that increase exposure to damp indoor environments. Climate changes can also affect ecosystems, manifested as the appearance of stinging and biting arthropods in new areas. Higher ambient carbon dioxide concentrations, warmer temperatures, and changes in floristic zones could potentially increase exposure to ragweed and other outdoor allergens, whereas green practices such as composting can increase allergen and irritant exposure. Finally, increased energy costs may result in urban crowding and human source pollution, leading to changes in patterns of infectious respiratory illnesses. Improved governmental controls on airborne pollutants could lead to cleaner air and reduced respiratory diseases but will meet strong opposition because of their effect on business productivity. The allergy community must therefore adapt, as physician and research scientists always have, by anticipating the needs of patients and by adopting practices and research methods to meet changing environmental conditions. PMID:23687635

  10. Analysis of indoor air pollutants checklist using environmetric technique for health risk assessment of sick building complaint in nonindustrial workplace

    PubMed Central

    Syazwan, AI; Rafee, B Mohd; Juahir, Hafizan; Azman, AZF; Nizar, AM; Izwyn, Z; Syahidatussyakirah, K; Muhaimin, AA; Yunos, MA Syafiq; Anita, AR; Hanafiah, J Muhamad; Shaharuddin, MS; Ibthisham, A Mohd; Hasmadi, I Mohd; Azhar, MN Mohamad; Azizan, HS; Zulfadhli, I; Othman, J; Rozalini, M; Kamarul, FT

    2012-01-01

    Purpose To analyze and characterize a multidisciplinary, integrated indoor air quality checklist for evaluating the health risk of building occupants in a nonindustrial workplace setting. Design A cross-sectional study based on a participatory occupational health program conducted by the National Institute of Occupational Safety and Health (Malaysia) and Universiti Putra Malaysia. Method A modified version of the indoor environmental checklist published by the Department of Occupational Health and Safety, based on the literature and discussion with occupational health and safety professionals, was used in the evaluation process. Summated scores were given according to the cluster analysis and principal component analysis in the characterization of risk. Environmetric techniques was used to classify the risk of variables in the checklist. Identification of the possible source of item pollutants was also evaluated from a semiquantitative approach. Result Hierarchical agglomerative cluster analysis resulted in the grouping of factorial components into three clusters (high complaint, moderate-high complaint, moderate complaint), which were further analyzed by discriminant analysis. From this, 15 major variables that influence indoor air quality were determined. Principal component analysis of each cluster revealed that the main factors influencing the high complaint group were fungal-related problems, chemical indoor dispersion, detergent, renovation, thermal comfort, and location of fresh air intake. The moderate-high complaint group showed significant high loading on ventilation, air filters, and smoking-related activities. The moderate complaint group showed high loading on dampness, odor, and thermal comfort. Conclusion This semiquantitative assessment, which graded risk from low to high based on the intensity of the problem, shows promising and reliable results. It should be used as an important tool in the preliminary assessment of indoor air quality and as a categorizing method for further IAQ investigations and complaints procedures. PMID:23055779

  11. Analysis of indoor air pollutants checklist using environmetric technique for health risk assessment of sick building complaint in nonindustrial workplace.

    PubMed

    Syazwan, Ai; Rafee, B Mohd; Juahir, Hafizan; Azman, Azf; Nizar, Am; Izwyn, Z; Syahidatussyakirah, K; Muhaimin, Aa; Yunos, Ma Syafiq; Anita, Ar; Hanafiah, J Muhamad; Shaharuddin, Ms; Ibthisham, A Mohd; Hasmadi, I Mohd; Azhar, Mn Mohamad; Azizan, Hs; Zulfadhli, I; Othman, J; Rozalini, M; Kamarul, Ft

    2012-01-01

    To analyze and characterize a multidisciplinary, integrated indoor air quality checklist for evaluating the health risk of building occupants in a nonindustrial workplace setting. A cross-sectional study based on a participatory occupational health program conducted by the National Institute of Occupational Safety and Health (Malaysia) and Universiti Putra Malaysia. A modified version of the indoor environmental checklist published by the Department of Occupational Health and Safety, based on the literature and discussion with occupational health and safety professionals, was used in the evaluation process. Summated scores were given according to the cluster analysis and principal component analysis in the characterization of risk. Environmetric techniques was used to classify the risk of variables in the checklist. Identification of the possible source of item pollutants was also evaluated from a semiquantitative approach. Hierarchical agglomerative cluster analysis resulted in the grouping of factorial components into three clusters (high complaint, moderate-high complaint, moderate complaint), which were further analyzed by discriminant analysis. From this, 15 major variables that influence indoor air quality were determined. Principal component analysis of each cluster revealed that the main factors influencing the high complaint group were fungal-related problems, chemical indoor dispersion, detergent, renovation, thermal comfort, and location of fresh air intake. The moderate-high complaint group showed significant high loading on ventilation, air filters, and smoking-related activities. The moderate complaint group showed high loading on dampness, odor, and thermal comfort. This semiquantitative assessment, which graded risk from low to high based on the intensity of the problem, shows promising and reliable results. It should be used as an important tool in the preliminary assessment of indoor air quality and as a categorizing method for further IAQ investigations and complaints procedures.

  12. Listening to the occupants: a Web-based indoor environmental quality survey.

    PubMed

    Zagreus, Leah; Huizenga, Charlie; Arens, Edward; Lehrer, David

    2004-01-01

    Building occupants are a rich source of information about indoor environmental quality and its effect on comfort and productivity. The Center for the Built Environment has developed a Web-based survey and accompanying online reporting tools to quickly and inexpensively gather, process and present this information. The core questions assess occupant satisfaction with the following IEQ areas: office layout, office furnishings, thermal comfort, indoor air quality, lighting, acoustics, and building cleanliness and maintenance. The survey can be used to assess the performance of a building, identify areas needing improvement, and provide useful feedback to designers and operators about specific aspects of building design features and operating strategies. The survey has been extensively tested and refined and has been conducted in more than 70 buildings, creating a rapidly growing database of standardized survey data that is used for benchmarking. We present three case studies that demonstrate different applications of the survey: a pre/post analysis of occupants moving to a new building, a survey used in conjunction with physical measurements to determine how environmental factors affect occupants' perceived comfort and productivity levels, and a benchmarking example of using the survey to establish how new buildings are meeting a client's design objectives. In addition to its use in benchmarking a building's performance against other buildings, the CBE survey can be used as a diagnostic tool to identify specific problems and their sources. Whenever a respondent indicates dissatisfaction with an aspect of building performance, a branching page follows with more detailed questions about the nature of the problem. This systematically collected information provides a good resource for solving indoor environmental problems in the building. By repeating the survey after a problem has been corrected it is also possible to assess the effectiveness of the solution.

  13. Affordable house designs to improve health in rural Africa: a field study from northeastern Tanzania.

    PubMed

    von Seidlein, Lorenz; Ikonomidis, Konstantin; Mshamu, Salum; Nkya, Theresia E; Mukaka, Mavuto; Pell, Christopher; Lindsay, Steven W; Deen, Jacqueline L; Kisinza, William N; Knudsen, Jakob B

    2017-08-01

    The population of sub-Saharan Africa is currently estimated to be 1245 million and is expected to quadruple by the end of the century, necessitating the building of millions of homes. Malaria remains a substantial problem in this region and efforts to minimise transmission should be considered in future house planning. We studied how building elements, which have been successfully employed in southeast Asia to prevent mosquitos from entering and cooling the house, could be integrated in a more sustainable house design in rural northeastern Tanzania, Africa, to decrease mosquito density and regulate indoor climate. In this field study, six prototype houses of southeast Asian design were built in in the village of Magoda in Muheza District, Tanga Region, Tanzania, and compared with modified and unmodified, traditional, sub-Saharan African houses. Prototype houses were built with walls made of lightweight permeable materials (bamboo, shade net, or timber) with bedrooms elevated from the ground and with screened windows. Modified and unmodified traditional African houses, wattle-daub or mud-block constructions, built on the ground with poor ventilation served as controls. In the modified houses, major structural problems such as leaking roofs were repaired, windows screened, open eaves blocked with bricks and mortar, cement floors repaired or constructed, and rain gutters and a tank for water storage added. Prototype houses were randomly allocated to village households through a free, fair, and transparent lottery. The lottery tickets were deposited in a bucket made of transparent plastic. Each participant could draw one ticket. Hourly measurements of indoor temperature and humidity were recorded in all study houses with data loggers and mosquitoes were collected indoors and outdoors using Furvela tent traps and were identified with standard taxonomic keys. Mosquitoes of the Anopheles gambiae complex were identified to species using PCR. Attitudes towards the new house design were assessed 6-9 months after the residents moved into their new or modified homes through 15 in-depth interviews with household heads of the new houses and five focus group discussions including neighbours of each group of prototype housing. Between July, 2014, and July, 2015, six prototype houses were constructed; one single and one double storey building with each of the following claddings: bamboo, shade net, and timber. The overall reduction of all mosquitoes caught was highest in the double-storey buildings (96%; 95% CI 92-98) followed closely by the reduction found in single-storey buildings (77%; 72-82) and lowest in the modified reference houses (43%; 36-50) and unmodified reference houses (23%; 18-29). The indoor temperature in the new design houses was 2·3°C (95% CI 2·2-2·4) cooler than in the reference houses. While both single and two-storey buildings provided a cooler indoor climate than did traditional housing, two-story buildings provided the biggest reduction in mosquito densities (96%, 95% CI 89-100). Seven people who moved into the prototype houses and seven of their neighbours (three of whom had their houses modified) participated in in-depth interviews. After living in their new prototype houses for 6-9 months, residents expressed satisfaction with the new design, especially the second-storey sleeping area because of the privacy and security of upstairs bedrooms. The new design houses had fewer mosquitoes and were cooler than modified and unmodified traditional homes. New house designs are an underused intervention and hold promise to reduce malaria transmission in sub-Saharan Africa and keep areas malaria-free after elimination. Ruth W Jensens Foundation, Copenhagen and Hanako Foundation, Singapore. Copyright © 2017 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.

  14. Indoor source apportionment in urban communities near industrial sites

    NASA Astrophysics Data System (ADS)

    Tunno, Brett J.; Dalton, Rebecca; Cambal, Leah; Holguin, Fernando; Lioy, Paul; Clougherty, Jane E.

    2016-08-01

    Because fine particulate matter (PM2.5) differs in chemical composition, source apportionment is frequently used for identification of relative contributions of multiple sources to outdoor concentrations. Indoor air pollution and source apportionment is often overlooked, though people in northern climates may spend up to 90% of their time inside. We selected 21 homes for a 1-week indoor sampling session during summer (July to September 2011), repeated in winter (January to March 2012). Elemental analysis was performed using inductively-coupled plasma mass spectrometry (ICP-MS), and factor analysis was used to determine constituent grouping. Multivariate modeling was run on factor scores to corroborate interpretations of source factors based on a literature review. For each season, a 5-factor solution explained 86-88% of variability in constituent concentrations. Indoor sources (i.e. cooking, smoking) explained greater variability than did outdoor sources in these industrial communities. A smoking factor was identified in each season, predicted by number of cigarettes smoked. Cooking factors were also identified in each season, explained by frequency of stove cooking and stovetop frying. Significant contributions from outdoor sources including coal and motor vehicles were also identified. Higher coal and secondary-related elemental concentrations were detected during summer than winter. Our findings suggest that source contributions to indoor concentrations can be identified and should be examined in relation to health effects.

  15. Improved spring model-based collaborative indoor visible light positioning

    NASA Astrophysics Data System (ADS)

    Luo, Zhijie; Zhang, WeiNan; Zhou, GuoFu

    2016-06-01

    Gaining accuracy with indoor positioning of individuals is important as many location-based services rely on the user's current position to provide them with useful services. Many researchers have studied indoor positioning techniques based on WiFi and Bluetooth. However, they have disadvantages such as low accuracy or high cost. In this paper, we propose an indoor positioning system in which visible light radiated from light-emitting diodes is used to locate the position of receivers. Compared with existing methods using light-emitting diode light, we present a high-precision and simple implementation collaborative indoor visible light positioning system based on an improved spring model. We first estimate coordinate position information using the visible light positioning system, and then use the spring model to correct positioning errors. The system can be employed easily because it does not require additional sensors and the occlusion problem of visible light would be alleviated. We also describe simulation experiments, which confirm the feasibility of our proposed method.

  16. Improving indoor air quality through botanical air filtration in energy efficient residences

    NASA Astrophysics Data System (ADS)

    Newkirk, Daniel W.

    According to the U.S. EPA, the average American spends 90% of their time indoors where pollutants are two to five times more prevalent than outside. The consequences of these pollutants are estimated to cost the U.S. 125 billion dollars in lost health and productivity. Background literature suggests botanical air filtration may be able to solve this problem by leveraging the natural ability of plants to purify indoor air. By improving indoor air quality, energy consumption can also be reduced by bringing in less outside air to dilute contaminants within the space. A botanical air filter, called the Biowall, was designed and grown aeroponically in a sealed environmental chamber. Precise measurements of air temperature, air humidity, air quality and energy consumption were made under various lighting levels, plant species and watering strategies to optimize its performance. It was found to reduce indoor air pollutants 60 percent and has the potential to reduce heating and cooling energy consumption by 20 to 30 percent.

  17. Indoor fuel exposure and the lung in both developing and developed countries: An update

    PubMed Central

    2012-01-01

    Synopsis Almost 3 billion people worldwide burn solid fuels indoors. These fuels include biomass and coal. Although indoor solid fuel smoke is likely a greater problem in developing countries, wood burning populations in developed countries may also be at risk from these exposures. Despite the large population at risk worldwide, the effect of exposure to indoor solid fuel smoke has not been adequately studied. Indoor air pollution from solid fuel use is strongly associated with COPD (both emphysema and chronic bronchitis), acute respiratory tract infections, and lung cancer (primarily coal use) and weakly associated with asthma, tuberculosis, and interstitial lung disease. Tobacco use further potentiates the development of respiratory disease among subjects exposed to solid fuel smoke. There is a need to perform additional interventional studies in this field. It is also important to increase awareness about the health effects of solid fuel smoke inhalation among physicians and patients as well as trigger preventive actions through education, research, and policy change in both developing and developed countries. PMID:23153607

  18. [Indoor air studies of mould fungus contamination of homes of selected patients with bronchial asthma (with special regard to evaluation problems)].

    PubMed

    Senkpiel, K; Kurowski, V; Ohgke, H

    1996-02-01

    Investigations of indoor air of the homes of seven patients with asthma bronchiale who showed up with positive reactions following intracutaneous application of fungal allergens revealed that their places of residence were contaminated by fungal and bacterial spores. The number of colony forming units of mesophilic fungal spores of the indoor air ranged from 100 to 1000 CFU/m3 and this was much higher than the mould flora of the outdoor air determined simultaneously. The major fungi species found by the indoor investigation were: Penicillium sp. > Aspergillus sp. > Cladosporium sp., Mucor sp., Chrysonilia sp., Verticillium sp. > Geotrichum sp., Trichoderma sp. In two cases Thermoactinomyces species could be detected in the indoor air. The main cause of fungal contamination were moist building materials on room walls, insufficient air ventilation, bad maintenance of the circulating air-machines and insufficient room hygiene (e.g. biological garbage in the kitchen).

  19. Infiltration as Ventilation: Weather-Induced Dilution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, Max H.; Turner, William J.N.; Walker, Iain S.

    The purpose of outdoor air ventilation is to dilute or remove indoor contaminants to which occupants are exposed. It can be provided by mechanical or natural means. In most homes, especially older homes, weather-driven infiltration provides the dominant fraction of the total ventilation. As we seek to provide good indoor air quality at minimum energy cost, it is important to neither over-ventilate nor under-ventilate. Thus, it becomes critically important to evaluate correctly the contribution infiltration makes to the total outdoor air ventilation rate. Because weather-driven infiltration is dependent on building air leakage and weather-induced pressure differences, a given amount ofmore » air leakage will provide different amounts of infiltration. Varying rates of infiltration will provide different levels of contaminant dilution and hence effective ventilation. This paper derives these interactions and then calculates the impact of weather-driven infiltration for different climates. A new “N-factor” is introduced to provide a convenient method for calculating the ventilation contribution of infiltration for over 1,000 locations across North America. The results of this work could be used in indoor air quality standards (specifically ASHRAE 62.2) to account for the contribution of weather-driven infiltration towards the dilution of indoor pollutants.« less

  20. Influence of three artificial light sources on oviposition and half-life of the Black Soldier Fly, Hermetia illucens (Diptera: Stratiomyidae): Improving small-scale indoor rearing.

    PubMed

    Heussler, Carina D; Walter, Andreas; Oberkofler, Hannes; Insam, Heribert; Arthofer, Wolfgang; Schlick-Steiner, Birgit C; Steiner, Florian M

    2018-01-01

    Hermetia illucens (L.), the Black Soldier Fly, has received increased scientific attention for its potential in circular waste management where larvae can serve as feedstuff for livestock and for biodiesel production. The flies occur naturally in (sub)-tropical and warm-temperate climates, and their mating depends on space and sunlight. Small-scale indoor rearing of Black Soldier Flies has been challenging because they react sensitive to artificial light sources and cage sizes, but recent studies have shown that small-scale rearing under artificial light is feasible. Here, we test the influence of three artificial light sources (light-emitting diodes, fluorescent lamps, and halogen lamps) on small-scale indoor rearing. Three experiments were conducted to compare oviposition traits (pre-oviposition period, total oviposition-period, and egg mass per female) and half-life among the three light sources. Oviposition did not differ among the three light sources, but male and female half-life did. Based on the performance of the light-emitting diodes and their outstanding energy efficiency, we recommend this light source for small-scale indoor rearing of Black Soldier Flies.

  1. QUANTIFYING THE CLIMATE, AIR QUALITY AND HEALTH BENEFITS OF IMPROVED COOKSTOVES: AN INTEGRATED LABORATORY, FIELD AND MODELING STUDY

    EPA Science Inventory

    Expected results and outputs include: extensive dataset of in-field and laboratory emissions data for traditional and improved cookstoves; parameterization to predict cookstove emissions from drive cycle data; indoor and personal exposure data for traditional and improved cook...

  2. Assessing the Allergenic Potential of Molds Found in Water-Damaged Homes in a Mouse Model

    EPA Science Inventory

    Damp/moldy indoor environments, which have resulted from flooding events and may increase as a result of climate change, have been associated with asthma exacerbation. Certain molds found in significantly higher or lower concentrations in asthmatics’ homes compared to control ho...

  3. Effect of thermoneutral housing on fungal-induced respiratory allergic disease in mice

    EPA Science Inventory

    Climate change is projected to increase the number of fungal, bacterial, and pollen agents both indoors and outdoors and may become a significant health impact. Combined with the thermal stress from a rise in global temperatures, it is important to consider how respiratory allerg...

  4. Chapter 7: Impact of Nitrogen and Climate Change Interactions on Ambient Air Pollution and Human Health

    EPA Science Inventory

    Nitrogen oxides (NOX) are important components of ambient and indoor air pollution and are emitted from a range of combustion sources, including on-road mobile sources, electric power generators, and non-road mobile sources. While anthropogenic sources dominate, NOX is also forme...

  5. Development of Smart Ventilation Control Algorithms for Humidity Control in High-Performance Homes in Humid U.S. Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Less, Brennan; Walker, Iain; Ticci, Sara

    Past field research and simulation studies have shown that high performance homes experience elevated indoor humidity levels for substantial portions of the year in humid climates. This is largely the result of lower sensible cooling loads, which reduces the moisture removed by the cooling system. These elevated humidity levels lead to concerns about occupant comfort, health and building durability. Use of mechanical ventilation at rates specified in ASHRAE Standard 62.2-2013 are often cited as an additional contributor to humidity problems in these homes. Past research has explored solutions, including supplemental dehumidification, cooling system operational enhancements and ventilation system design (e.g.,more » ERV, supply, exhaust, etc.). This project’s goal is to develop and demonstrate (through simulations) smart ventilation strategies that can contribute to humidity control in high performance homes. These strategies must maintain IAQ via equivalence with ASHRAE Standard 62.2-2013. To be acceptable they must not result in excessive energy use. Smart controls will be compared with dehumidifier energy and moisture performance. This work explores the development and performance of smart algorithms for control of mechanical ventilation systems, with the objective of reducing high humidity in modern high performance residences. Simulations of DOE Zero-Energy Ready homes were performed using the REGCAP simulation tool. Control strategies were developed and tested using the Residential Integrated Ventilation (RIVEC) controller, which tracks pollutant exposure in real-time and controls ventilation to provide an equivalent exposure on an annual basis to homes meeting ASHRAE 62.2-2013. RIVEC is used to increase or decrease the real-time ventilation rate to reduce moisture transport into the home or increase moisture removal. This approach was implemented for no-, one- and two-sensor strategies, paired with a variety of control approaches in six humid climates (Miami, Orlando, Houston, Charleston, Memphis and Baltimore). The control options were compared to a baseline system that supplies outdoor air to a central forced air cooling (and heating) system (CFIS) that is often used in hot humid climates. Simulations were performed with CFIS ventilation systems operating on a 33% duty-cycle, consistent with 62.2-2013. The CFIS outside airflow rates were set to 0%, 50% and 100% of 62.2-2013 requirements to explore effects of ventilation rate on indoor high humidity. These simulations were performed with and without a dehumidifier in the model. Ten control algorithms were developed and tested. Analysis of outdoor humidity patterns facilitated smart control development. It was found that outdoor humidity varies most strongly seasonally—by month of the year—and that all locations follow the similar pattern of much higher humidity during summer. Daily and hourly variations in outdoor humidity were found to be progressively smaller than the monthly seasonal variation. Patterns in hourly humidity are driven by diurnal daily patterns, so they were predictable but small, and were unlikely to provide much control benefit. Variation in outdoor humidity between days was larger, but unpredictable, except by much more complex climate models. We determined that no-sensor strategies might be able to take advantage of seasonal patterns in humidity, but that real-time smart controls were required to capture variation between days. Sensor-based approaches are also required to respond dynamically to indoor conditions and variations not considered in our analysis. All smart controls face trade-offs between sensor accuracy, cost, complexity and robustness.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arundel, A.V.; Sterling, E.M.; Biggin, J.H.

    A review of the health effects of relative humidity in indoor environments suggests that relative humidity can affect the incidence of respiratory infections and allergies. Experimental studies on airborne-transmitted infectious bacteria and viruses have shown that the survival or infectivity of these organisms is minimized by exposure to relative humidities between 40 and 70%. Nine epidemiological studies examined the relationship between the number of respiratory infections or absenteeism and the relative humidity of the office, residence, or school. The incidence of absenteeism or respiratory infections was found to be lower among people working or living in environments with mid-range versusmore » low or high relative humidities. The indoor size of allergenic mite and fungal populations is directly dependent upon the relative humidity. Mite populations are minimized when the relative humidity is below 50% and reach a maximum size at 80% relative humidity. Most species of fungi cannot grow unless the relative humidity exceeds 60%. Relative humidity also affects the rate of offgassing of formaldehyde from indoor building materials, the rate of formation of acids and salts from sulfur and nitrogen dioxide, and the rate of formation of ozone. The influence of relative humidity on the abundance of allergens, pathogens, and noxious chemicals suggests that indoor relative humidity levels should be considered as a factor of indoor air quality. The majority of adverse health effects caused by relative humidity would be minimized by maintaining indoor levels between 40 and 60%. This would require humidification during winter in areas with cold winter climates. Humidification should preferably use evaporative or steam humidifiers, as cool mist humidifiers can disseminate aerosols contaminated with allergens.« less

  7. Health symptoms in relation to temperature, humidity, and self-reported perceptions of climate in New York City residential environments

    NASA Astrophysics Data System (ADS)

    Quinn, Ashlinn; Shaman, Jeffrey

    2017-07-01

    Little monitoring has been conducted of temperature and humidity inside homes despite the fact that these conditions may be relevant to health outcomes. Previous studies have observed associations between self-reported perceptions of the indoor environment and health. Here, we investigate associations between measured temperature and humidity, perceptions of indoor environmental conditions, and health symptoms in a sample of New York City apartments. We measured temperature and humidity in 40 New York City apartments during summer and winter seasons and collected survey data from the households' residents. Health outcomes of interest were (1) sleep quality, (2) symptoms of heat illness (summer season), and (3) symptoms of respiratory viral infection (winter season). Using mixed-effects logistic regression models, we investigated associations between the perceptions, symptoms, and measured conditions in each season. Perceptions of indoor temperature were significantly associated with measured temperature in both the summer and the winter, with a stronger association in the summer season. Sleep quality was inversely related to measured and perceived indoor temperature in the summer season only. Heat illness symptoms were associated with perceived, but not measured, temperature in the summer season. We did not find an association between any measured or perceived condition and cases of respiratory infection in the winter season. Although limited in size, the results of this study reveal that indoor temperature may impact sleep quality, and that thermal perceptions of the indoor environment may indicate vulnerability to heat illness. These are both important avenues for further investigation.

  8. Environmental health in China: challenges to achieving clean air and safe water

    PubMed Central

    Zhang, Junfeng (Jim); Mauzerall, Denise L.; Zhu, Tong; Liang, Song; Ezzati, Majid; Remais, Justin

    2014-01-01

    The health effects of environmental risks, especially those of air and water pollution, remain a major source of morbidity and mortality in China. Biomass fuel and coal are routinely burned for cooking and heating in almost all rural and many urban households resulting in severe indoor air pollution that contributes greatly to the burden of disease. Many communities lack access to safe drinking water and santiation, and thus the risk of waterborne disease in many regions remains high. At the same time, China is rapidly industrializing with associated increases in energy use and industrial waste. While economic growth resulting from industrialization has improved health and quality of life indicators in China, it has also increased the incidence of environmental disasters and the release of chemical toxins into the environment, with severe impacts on health. Air quality in China's cities is among the worst in the world and industrial water pollution has become a widespread health hazard. Moreover, emissions of climate-warming greenhouse gases from energy use are rapidly increasing. Global climate change will inevitably intensify China's environmental health problems, with potentially catastrophic outcomes from major shifts in temperature and precipitation. Facing the overlap of traditional, modern, and emerging environmental problems, China has committed substantial resources to environmental improvement. China has the opportunity to both address its national environmental health challenges and to assume a central role in the international effort to improve the global environment. PMID:20346817

  9. Conditional Random Field-Based Offline Map Matching for Indoor Environments

    PubMed Central

    Bataineh, Safaa; Bahillo, Alfonso; Díez, Luis Enrique; Onieva, Enrique; Bataineh, Ikram

    2016-01-01

    In this paper, we present an offline map matching technique designed for indoor localization systems based on conditional random fields (CRF). The proposed algorithm can refine the results of existing indoor localization systems and match them with the map, using loose coupling between the existing localization system and the proposed map matching technique. The purpose of this research is to investigate the efficiency of using the CRF technique in offline map matching problems for different scenarios and parameters. The algorithm was applied to several real and simulated trajectories of different lengths. The results were then refined and matched with the map using the CRF algorithm. PMID:27537892

  10. Conditional Random Field-Based Offline Map Matching for Indoor Environments.

    PubMed

    Bataineh, Safaa; Bahillo, Alfonso; Díez, Luis Enrique; Onieva, Enrique; Bataineh, Ikram

    2016-08-16

    In this paper, we present an offline map matching technique designed for indoor localization systems based on conditional random fields (CRF). The proposed algorithm can refine the results of existing indoor localization systems and match them with the map, using loose coupling between the existing localization system and the proposed map matching technique. The purpose of this research is to investigate the efficiency of using the CRF technique in offline map matching problems for different scenarios and parameters. The algorithm was applied to several real and simulated trajectories of different lengths. The results were then refined and matched with the map using the CRF algorithm.

  11. Childhood asthma and indoor allergens: the classroom may be a culprit.

    PubMed

    Epstien, B L

    2001-10-01

    Asthma has become the most common chronic illness among children. Indoor environments appear to play a substantial role in the development of asthma. Recent studies indicate strong evidence of a causal relationship between exposure to certain indoor environmental pollutants and development and/or exacerbation of asthma in susceptible individuals. Allergens of concern include those produced by dust mites, cockroaches, cats, dogs, and molds. It is important to better understand this relationship and take preventive and corrective steps to reduce or eliminate these sources in schools, homes, and day care centers. Measures include tracking of asthma and allergic response incidents; monitoring for the presence of allergens and molds; effective cleaning procedures; prompt repair of water leaks and/or moisture problems; control of indoor relative humidity; and proper operation of heating, ventilation, and air conditioning (HVAC) systems.

  12. Multidimensional Optimization of Signal Space Distance Parameters in WLAN Positioning

    PubMed Central

    Brković, Milenko; Simić, Mirjana

    2014-01-01

    Accurate indoor localization of mobile users is one of the challenging problems of the last decade. Besides delivering high speed Internet, Wireless Local Area Network (WLAN) can be used as an effective indoor positioning system, being competitive both in terms of accuracy and cost. Among the localization algorithms, nearest neighbor fingerprinting algorithms based on Received Signal Strength (RSS) parameter have been extensively studied as an inexpensive solution for delivering indoor Location Based Services (LBS). In this paper, we propose the optimization of the signal space distance parameters in order to improve precision of WLAN indoor positioning, based on nearest neighbor fingerprinting algorithms. Experiments in a real WLAN environment indicate that proposed optimization leads to substantial improvements of the localization accuracy. Our approach is conceptually simple, is easy to implement, and does not require any additional hardware. PMID:24757443

  13. Polluted air--outdoors and indoors.

    PubMed

    Myers, I; Maynard, R L

    2005-09-01

    Many air pollutants which are considered important in ambient (outdoor) air are also found, sometimes at higher levels, in indoor air. With demanding standards having been set for many of these pollutants, both in the workplace and ambient air, consideration of the problems posed by indoor pollution is gaining pace. Studies on exposure to pollutants found in the indoor domestic environment are increasing and are contributing to an already significant compilation of datasets. Improvement in monitoring techniques has helped this process. Documented reports of fatalities from carbon monoxide poisonings are still worrying. However, studies on health effects of non-fatal, long term, low dose, indoor exposure to carbon monoxide and other pollutants, are still inconclusive and too infrequently documented. Of particular concern are the levels of air pollutants found in the domestic indoor environment in developing countries, despite simple interventions such as vented stoves having shown their value. Exposure to biomass smoke is still a level that would be considered unacceptable on health grounds in developed countries. As in the occupational environment, steps need to be taken to control the risks from exposure to the harmful constituents of indoor air in the home. However, the difficulty regarding regulation of the domestic indoor environment is its inherent privacy. Monitoring levels of pollutants in the home and ensuring regulations are adhered to, would likely prove difficult, especially when individual behaviour patterns and activities have the greatest influence on pollutant levels in indoor air. To this end, the Department of Health is developing guidance on indoor air pollution to encourage the reduction of pollutant levels in indoor domestic air. The importance of the effects of domestic indoor air on health and its contribution to the health of the worker are increasingly appreciated. Occupational physicians, by training and interest, are well placed to extend their interests into the environmental field and to focus on this important area.

  14. Dengue Vectors and their Spatial Distribution

    PubMed Central

    Higa, Yukiko

    2011-01-01

    The distribution of dengue vectors, Ae. aegypti and Ae. albopictus, is affected by climatic factors. In addition, since their life cycles are well adapted to the human environment, environmental changes resulting from human activity such as urbanization exert a great impact on vector distribution. The different responses of Ae. aegypti and Ae albopictus to various environments result in a difference in spatial distribution along north-south and urban-rural gradients, and between the indoors and outdoors. In the north-south gradient, climate associated with survival is an important factor in spatial distribution. In the urban-rural gradient, different distribution reflects a difference in adult niches and is modified by geographic and human factors. The direct response of the two species to the environment around houses is related to different spatial distribution indoors and outdoors. Dengue viruses circulate mainly between human and vector mosquitoes, and the vector presence is a limiting factor of transmission. Therefore, spatial distribution of dengue vectors is a significant concern in the epidemiology of the disease. Current technologies such as GIS, satellite imagery and statistical models allow researchers to predict the spatial distribution of vectors in the changing environment. Although it is difficult to confirm the actual effect of environmental and climate changes on vector abundance and vector-borne diseases, environmental changes caused by humans and human behavioral changes due to climate change can be expected to exert an impact on dengue vectors. Longitudinal monitoring of dengue vectors and viruses is therefore necessary. PMID:22500133

  15. Scene Semantic Segmentation from Indoor Rgb-D Images Using Encode-Decoder Fully Convolutional Networks

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Li, T.; Pan, L.; Kang, Z.

    2017-09-01

    With increasing attention for the indoor environment and the development of low-cost RGB-D sensors, indoor RGB-D images are easily acquired. However, scene semantic segmentation is still an open area, which restricts indoor applications. The depth information can help to distinguish the regions which are difficult to be segmented out from the RGB images with similar color or texture in the indoor scenes. How to utilize the depth information is the key problem of semantic segmentation for RGB-D images. In this paper, we propose an Encode-Decoder Fully Convolutional Networks for RGB-D image classification. We use Multiple Kernel Maximum Mean Discrepancy (MK-MMD) as a distance measure to find common and special features of RGB and D images in the network to enhance performance of classification automatically. To explore better methods of applying MMD, we designed two strategies; the first calculates MMD for each feature map, and the other calculates MMD for whole batch features. Based on the result of classification, we use the full connect CRFs for the semantic segmentation. The experimental results show that our method can achieve a good performance on indoor RGB-D image semantic segmentation.

  16. Comparison of background levels of culturable fungal spore concentrations in indoor and outdoor air in southeastern Austria

    NASA Astrophysics Data System (ADS)

    Haas, D.; Habib, J.; Luxner, J.; Galler, H.; Zarfel, G.; Schlacher, R.; Friedl, H.; Reinthaler, F. F.

    2014-12-01

    Background concentrations of airborne fungi are indispensable criteria for an assessment of fungal concentrations indoors and in the ambient air. The goal of this study was to define the natural background values of culturable fungal spore concentrations as reference values for the assessment of moldy buildings. The concentrations of culturable fungi were determined outdoors as well as indoors in 185 dwellings without visible mold, obvious moisture problems or musty odor. Samples were collected using the MAS-100® microbiological air sampler. The study shows a characteristic seasonal influence on the background levels of Cladosporium, Penicillium and Aspergillus. Cladosporium sp. had a strong outdoor presence, whereas Aspergillus sp. and Penicillium sp. were typical indoor fungi. For the region of Styria, the median outdoor concentrations are between 100 and 940 cfu/m³ for culturable xerophilic fungi in the course of the year. Indoors, median background levels are between 180 and 420 cfu/m³ for xerophilic fungi. The I/O ratios of the airborne fungal spore concentrations were between 0.2 and 2.0. For the assessment of indoor and outdoor air samples the dominant genera Cladosporium, Penicillium and Aspergillus should receive special consideration.

  17. Effect of human behavior on economizer efficacy and thermal comfort in southern California

    NASA Astrophysics Data System (ADS)

    Lanning, TIghe Glennon

    California has set a zero net-energy conservation goal for the residential sector that is to be achieved by 2020 (California Energy Commission 2011). To reduce energy consumption in the building sector, modern buildings should fundamentally incorporate sustainable performance standards, involving renewable systems, climate-specific strategies, and consideration of a variety of users. Building occupants must operate in concert with the buildings they inhabit in order to maximize the potential of the building, its systems, and their own comfort. In climates with significant diurnal temperature swings, environmental controls designed to capitalize on this should be considered to reduce cooling-related loads. One specific strategy is the air-side economizer, which uses daily outdoor temperature swings to reduce indoor temperature swings. Traditionally a similar effect could be achieved by using thermal mass to buffer indoor temperature swings through thermal lag. Economizers reduce the amount of thermal mass typically required by naturally ventilated buildings. Fans are used to force cool nighttime air deep into the building, allowing lower mass buildings to take advantage of nighttime cooling. Economizers connect to a thermostat, and when the outdoor temperature dips below a programmed set-point the economizer draws cool air from outside, flushing out the warmed interior air. This type of system can be simulated with reasonable accuracy by energy modeling programs; however, because the system is occupant-driven (as opposed to a truly passive mass-driven system) any unpredictable occupant behavior can reduce its effectiveness and create misleading simulation results. This unpredictably has helped prevent the spread of economizers in the residential market. This study investigated to what extent human behavior affected the performance of economizer-based HVAC systems, based on physical observations, environmental data collections, and energy simulations of a residential building in Los Angeles, California. Tangible measures for alleviating problems, such as user-friendly interface design and the incorporation of human behavior into energy models are recommended based on these observations.

  18. NIOSH testimony on indoor air quality before the Subcommittee on Natural Resources, Agriculture Research and Environment Committee on Science, Space, and Technology, US House of Representatives by P. J. Bierbaum, September 27, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-09-27

    Testimony considered the activities of the National Institute for Occupational Safety and Health (NIOSH) in the area of indoor air quality. Energy conservation concerns in the 1970s forced the construction of buildings with the key element being preventing infiltration of untempered outside air. Many buildings were effectively sealed against air entry. Requests for health-hazard evaluations due to a suspected poor quality of indoor air have increased dramatically in recent years. Indoor-air-quality problems may arise from a variety of sources including human metabolic activity, smoking, structural components of the building and contents, biological contamination, office and mechanical equipment, and outside airmore » pollutants that enter the building. Many times the symptoms and health complaints reported by workers were diverse and not specific enough to readily identify the causative agent. The results from the health hazard evaluations have enabled NIOSH to classify the findings by primary type of problem: contamination from the building materials, 4%; microbial contamination, 5%; other contamination from inside the building, 15%; contamination from outside the building, 10%; inadequate ventilation, 53%; and unknown, 13%. Ergonomic and psychosocial issues often complicated the findings.« less

  19. Thermal and health outcomes of energy efficiency retrofits of homes of older adults.

    PubMed

    Ahrentzen, S; Erickson, J; Fonseca, E

    2016-08-01

    Mitigation of thermal stress and adverse indoor climatic conditions is important to older low-income populations whose age, health, and economic circumstances make them vulnerable to indoor environmental conditions. This research examines whether energy retrofits in affordable housing for older adults can also improve indoor climatic (i.e., temperature, humidity, air infiltration) conditions and whether such improvements correspond with improved health and comfort of residents. An apartment complex for low-income older adults in Phoenix was the study site. In 2010, renovations were undertaken to make it more energy efficient and to replace interior cabinetry, flooring, and paint with materials that had low or no volatile organic compounds (VOCs). Fifty-seven residents from 53 apartment units participated in both baseline (pre-renovation) and 1 year post-renovation data collection trials. Environmental measures included temperature, relative humidity, and air infiltration. Health measures included general health, emotional distress, and sleep. Four questions addressed residents' perceptions of temperature quality. Results demonstrated a 19% reduction in energy consumption following the retrofit. In addition, fixed effects statistical models of the panel data showed significant stabilization of unit temperature from pre-retrofit to 1 year post-retrofit. Reductions in an apartment's temperature extremes of 27.2°C (81°F) and above also corresponded with improvement in occupant's reported health over the same time period, although not with occupant's perceptions of thermal comfort. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Effect of cold indoor environment on physical performance of older women living in the community.

    PubMed

    Lindemann, Ulrich; Oksa, Juha; Skelton, Dawn A; Beyer, Nina; Klenk, Jochen; Zscheile, Julia; Becker, Clemens

    2014-07-01

    the effects of cold on older persons' body and mind are not well documented, but with an increased number of older people with decreasing physical performance, these possible effects need to be understood. to investigate the effect of cold indoor environment on physical performance of older women. cross-sectional experimental study with two test conditions. movement laboratory in a climate chamber. eighty-eight community-dwelling, cognitively unimpaired older women (mean age 78 years). participants were exposed to moderately cold (15°C) and warm/normal (25°C) temperature in a climate chamber in random order with an interval of 1 week. The assessment protocol included leg extensor power (Nottingham Power Rig), sit-to-stand performance velocity (linear encoder), gait speed, walk-ratio (i.e. step length/cadence on an instrumented walk way), maximal quadriceps and hand grip strength. physical performance was lower in 15°C room temperature compared with 25°C room temperature for leg extensor power (P < 0.0001), sit-to-stand performance velocity (P < 0.0001), gait speed (P < 0.0001), walk-ratio (P = 0.016) and maximal quadriceps strength (P = 0.015), but not for hand grip strength. in healthy older women a moderately cold indoor environment decreased important physical performance measures necessary for independent living. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Perceived health problems in swimmers according to the chemical treatment of water in swimming pools.

    PubMed

    Fernández-Luna, Álvaro; Burillo, Pablo; Felipe, José Luis; del Corral, Julio; García-Unanue, Jorge; Gallardo, Leonor

    2016-01-01

    The objective of this study was to determine which chemical treatment used for disinfecting water in indoor swimming pools had the least impact on users' perceptions of health problems, and which generated the greatest satisfaction with the quality of the water. A survey on satisfaction and perceived health problems was given to 1001 users at 20 indoor swimming pools which used different water treatment methods [chlorine, bromine, ozone, ultraviolet lamps (UV) and salt electrolysis]. The findings suggest that there is a greater probability of perceived health problems, such as eye and skin irritation, respiratory problems and skin dryness, in swimming pools treated with chlorine than in swimming pools using other chemical treatment methods. Pools treated with bromine have similar, although slightly better, results. Other factors, such as age, gender, time of day of use (morning and afternoon) and type of user (competitive and recreational), can also affect the probability of suffering health problems. For all of the above, using combined treatment methods as ozone and UV, or salt electrolysis produces a lower probability of perceived health problems and greater satisfaction.

  2. Forensic entomology and the estimation of the minimum time since death in indoor cases.

    PubMed

    Bugelli, Valentina; Forni, David; Bassi, Luciani Alessandro; Di Paolo, Marco; Marra, Damiano; Lenzi, Scilla; Toni, Chiara; Giusiani, Mario; Domenici, Ranieri; Gherardi, Mirella; Vanin, Stefano

    2015-03-01

    Eight cases that occurred indoors in which the insects played an important role in the mPMI estimation are presented. The bodies of socially isolated people and old people living alone were discovered in central Italy between June and November. mPMI ranged from a few days to several weeks. Insects were collected during the body recovery and the postmortem. Climatic data were obtained from the closest meteorological stations and from measurements performed on the site. Sarcophagidae and Calliphoridae species were present in 75% of the cases with Lucilia sericata and Chrysomya albiceps collected in 50% of the cases. Chrysomya albiceps was always found in association with Lucilia species. Scuttle flies (Phoridae) were found in 37.5% of the cases, confirming the ability of these species in indoor body colonization. We show that if sealed environment may delay, the insect arrival dirty houses may create the environment where sarcosaprophagous insects are already present. © 2014 American Academy of Forensic Sciences.

  3. Thermal comfort: research and practice.

    PubMed

    van Hoof, Joost; Mazej, Mitja; Hensen, Jan L M

    2010-01-01

    Thermal comfort--the state of mind, which expresses satisfaction with the thermal environment--is an important aspect of the building design process as modern man spends most of the day indoors. This paper reviews the developments in indoor thermal comfort research and practice since the second half of the 1990s, and groups these developments around two main themes; (i) thermal comfort models and standards, and (ii) advances in computerization. Within the first theme, the PMV-model (Predicted Mean Vote), created by Fanger in the late 1960s is discussed in the light of the emergence of models of adaptive thermal comfort. The adaptive models are based on adaptive opportunities of occupants and are related to options of personal control of the indoor climate and psychology and performance. Both models have been considered in the latest round of thermal comfort standard revisions. The second theme focuses on the ever increasing role played by computerization in thermal comfort research and practice, including sophisticated multi-segmental modeling and building performance simulation, transient thermal conditions and interactions, thermal manikins.

  4. Construction, Part of Indoor Air Quality Design Tools for Schools

    EPA Pesticide Factsheets

    Poor job-site construction practices can frustrate even the best design by allowing moisture and other contaminants to become potential long term problems. Preventive job-site practices will reduce the potential for residual problems with IAQ

  5. Public inquiries about indoor air quality in California.

    PubMed Central

    Macher, J M; Hayward, S B

    1991-01-01

    To identify the indoor air quality issues about which Californians most often sought advice from a health department or a public information agency and to evaluate how well these agencies met the public's needs, members of the California Interagency Working Group (IWG) on Indoor Air Quality kept records of inquiries they received over a 30-month period from mid-1985 through 1987. Members of the IWG answered calls from residents of a least 49 of California's 58 counties. IWG members received more public inquiries about residences than about offices, educational institutions, commercial buildings, or medical facilities. However, each call about a residence probably represented fewer people at risk of exposure to a real or a potential problem than did calls about other types of buildings. Homeowners themselves asked the majority of the questions about residences, whereas a large number of the inquiries about office buildings were made, not by affected office workers, but by building managers, contractors, consultants, or company health and safety officers. The leading topics of concern in the residences were asbestos, chemical and biological contamination, and radon. In offices, chemical contamination, the ventilation system, biological contamination, asbestos, and tobacco smoke were the most frequently mentioned sources of problems. Callers often reported experiencing headaches, allergy symptoms, nose or throat irritation, and respiratory tract problems in connection with their complaints. IWG members directed a third of the calls elsewhere, of which half were referred to consultants or testing laboratories. The IWG's experience in the State of California could help other health departments prepare to face the public's increasing concern about indoor air pollution. PMID:1935848

  6. Updated assessment of the critical environmental factors involved in the prevention of allergic disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, A.R.

    1979-06-01

    The effects of climate, as well as outdoor and indoor pollution, on allergic respiratory symptoms are herein explored. Also, measures utilized in modifying the susceptible individual's milieu are examined. Finally, the potential for ameliorating or preventing the development of allergies in genetically predisposed children is discussed.

  7. Multi-Objectives Optimization of Ventilation Controllers for Passive Cooling in Residential Buildings

    PubMed Central

    Grygierek, Krzysztof; Ferdyn-Grygierek, Joanna

    2018-01-01

    An inappropriate indoor climate, mostly indoor temperature, may cause occupants’ discomfort. There are a great number of air conditioning systems that make it possible to maintain the required thermal comfort. Their installation, however, involves high investment costs and high energy demand. The study analyses the possibilities of limiting too high a temperature in residential buildings using passive cooling by means of ventilation with ambient cool air. A fuzzy logic controller whose aim is to control mechanical ventilation has been proposed and optimized. In order to optimize the controller, the modified Multiobjective Evolutionary Algorithm, based on the Strength Pareto Evolutionary Algorithm, has been adopted. The optimization algorithm has been implemented in MATLAB®, which is coupled by MLE+ with EnergyPlus for performing dynamic co-simulation between the programs. The example of a single detached building shows that the occupants’ thermal comfort in a transitional climate may improve significantly owing to mechanical ventilation controlled by the suggested fuzzy logic controller. When the system is connected to the traditional cooling system, it may further bring about a decrease in cooling demand. PMID:29642525

  8. Inverse modeling methods for indoor airborne pollutant tracking: literature review and fundamentals.

    PubMed

    Liu, X; Zhai, Z

    2007-12-01

    Reduction in indoor environment quality calls for effective control and improvement measures. Accurate and prompt identification of contaminant sources ensures that they can be quickly removed and contaminated spaces isolated and cleaned. This paper discusses the use of inverse modeling to identify potential indoor pollutant sources with limited pollutant sensor data. The study reviews various inverse modeling methods for advection-dispersion problems and summarizes the methods into three major categories: forward, backward, and probability inverse modeling methods. The adjoint probability inverse modeling method is indicated as an appropriate model for indoor air pollutant tracking because it can quickly find source location, strength and release time without prior information. The paper introduces the principles of the adjoint probability method and establishes the corresponding adjoint equations for both multi-zone airflow models and computational fluid dynamics (CFD) models. The study proposes a two-stage inverse modeling approach integrating both multi-zone and CFD models, which can provide a rapid estimate of indoor pollution status and history for a whole building. Preliminary case study results indicate that the adjoint probability method is feasible for indoor pollutant inverse modeling. The proposed method can help identify contaminant source characteristics (location and release time) with limited sensor outputs. This will ensure an effective and prompt execution of building management strategies and thus achieve a healthy and safe indoor environment. The method can also help design optimal sensor networks.

  9. Prompt remediation of water intrusion corrects the resultant mold contamination in a home.

    PubMed

    Rockwell, William

    2005-01-01

    More patients are turning to their allergists with symptoms compatible with allergic rhinitis, allergic sinusitis, and/or bronchial asthma after exposure to mold-contaminated indoor environments. These patients often seek guidance from their allergists in the remediation of the contaminated home or office. The aim of this study was to determine baseline mold spore counts for noncontaminated homes and report a successful mold remediation in one mold-contaminated home. Indoor air quality was tested using volumetric spore counts in 50 homes where homeowners reported no mold-related health problems and in one mold-contaminated home that was remediated. The health of the occupant of the mold-contaminated home also was assessed. Indoor volumetric mold spore counts ranged from 300 to 1200 spores/m3 in the baseline homes. For the successful remediation, the mold counts started at 300 spores/m3, increased to 2800 spores/m3 at the height of the mold contamination, and then fell to 800 spores/m3 after remediation. The occupant's allergic symptoms ceased on complete remediation of the home. Indoor volumetric mold counts taken with the Allergenco MK-3 can reveal a potential indoor mold contamination, with counts above 1000 spores/m3 suggesting indoor mold contamination. Once the presence of indoor mold growth is found, a prompt and thorough remediation can bring mold levels back to near-baseline level and minimize negative health effects for occupants.

  10. Indoor Radon Concentration Related to Different Radon Areas and Indoor Radon Prediction

    NASA Astrophysics Data System (ADS)

    Juhásová Šenitková, Ingrid; Šál, Jiří

    2017-12-01

    Indoor radon has been observed in the buildings at areas with different radon risk potential. Preventive measures are based on control of main potential radon sources (soil gas, building material and supplied water) to avoid building of new houses above recommended indoor radon level 200 Bq/m3. Radon risk (index) estimation of individual building site bedrock in case of new house siting and building protection according technical building code are obligatory. Remedial actions in buildings built at high radon risk areas were carried out principally by unforced ventilation and anti-radon insulation. Significant differences were found in the level of radon concentration between rooms where radon reduction techniques were designed and those where it was not designed. The mathematical model based on radon exhalation from soil has been developed to describe the physical processes determining indoor radon concentration. The model is focused on combined radon diffusion through the slab and advection through the gap from sub-slab soil. In this model, radon emanated from building materials is considered not having a significant contribution to indoor radon concentration. Dimensional analysis and Gauss-Newton nonlinear least squares parametric regression were used to simplify the problem, identify essential input variables and find parameter values. The presented verification case study is introduced for real buildings with respect to various underground construction types. Presented paper gives picture of possible mathematical approach to indoor radon concentration prediction.

  11. [Environmental quality: wellfare, confort and health].

    PubMed

    Vargas Marcos, Francisco; Gallego Pulgarín, Isabel

    2005-01-01

    Different ways of interpreting environmental conditions have led to the development of concepts such as the sick building, indoor air quality or indoor environment quality, for understanding the complexity of the pollutants in enclosed environments and the implications thereof on the health. The "Indoor Environment Quality" proposal is an advancement, operative and conceptual, surpassing amply prior ones, given that it orients the actions toward healthy environments without limiting the idea of pollution to the air alone. The aim is identifying the competence to preventing hazards related to exposure to pollutants within the confines of indoor environments and know the legislative framework useful for taking the actions. Optimum conditions within indoor environments must redound in health, well-being and comfort with regard to both working life as well as the environments in which everyday activities outside of work, extracurricular, leisure-time and entertainment activities are carried out. Today's society is demanding safe, clean, well-climatized places, for this is necessary to integrate the inhabitant's perceptions and demands and achieve an optimum balance among social standards, energy use and sustainable development. Legislation is being further expanded upon in the direction of occupational health and safety and the regulation of chemical substances. Environmental Health carries out prevention and control tasks, takes part in the enforcement of international pollution and waste reduction agreements and promotes measures for carrying out the European Environment and Health Strategy. It is considered useful the elaboration of protocols for the evaluation and administration gives the risks associated to the interior pollutants.

  12. Fungi and bacteria in mould-damaged and non-damaged office environments in a subarctic climate

    NASA Astrophysics Data System (ADS)

    Salonen, Heidi; Lappalainen, Sanna; Lindroos, Outi; Harju, Riitta; Reijula, Kari

    The fungi and bacterial levels of the indoor air environments of 77 office buildings were measured in winter and a comparison was made between the buildings with microbe sources in their structures and those without such sources. Penicillium, yeasts, Cladosporium and non-sporing isolates were the commonest fungi detected in the indoor air and in settled dust, in both the mould-damaged and control buildings. Aspergillus ochraceus, Aspergillus glaucus and Stachybotrys chartarium were found only in environmental samples from the mould-damaged buildings. Some other fungi, with growth requiring of water activity, aw, above 0.85, occurred in both the reference and mould-damaged buildings, but such fungi were commoner in the latter type of buildings. The airborne concentrations of Penicillium, Aspergillus versicolor and yeasts were the best indicators of mould damage in the buildings studied. Penicillium species and A. versicolor were also the most abundant fungi in the material samples. This study showed that the fungi concentrations were very low (2-45 cfu m -3 90% of the concentrations being <15 cfu m -3) in the indoor air of the normal office buildings. Although the concentration range of airborne fungi was wider for the mould-damaged buildings (2-2470 cfu m -3), only about 20% of the samples exceeded 100 cfu m -3. The concentrations of airborne bacteria ranged from 12 to 540 cfu m -3 in the control buildings and from 14 to 1550 cfu m -3 in the mould-damaged buildings. A statistical analysis of the results indicated that bacteria levels are generally <600 cfu m -3 in office buildings in winter and fungi levels are <50 cfu m -3. These normal levels are applicable to subarctic climates for urban, modern office buildings when measurements are made using a six-stage impactor. These levels should not be used in evaluations of health risks, but elevated levels may indicate the presence of abnormal microbe sources in indoor air and a need for additional environmental investigations.

  13. Optimizing lighting, thermal performance, and energy production of building facades by using automated blinds and PV cells

    NASA Astrophysics Data System (ADS)

    Alzoubi, Hussain Hendi

    Energy consumption in buildings has recently become a major concern for environmental designers. Within this field, daylighting and solar energy design are attractive strategies for saving energy. This study seeks the integrity and the optimality of building envelopes' performance. It focuses on the transparent parts of building facades, specifically, the windows and their shading devices. It suggests a new automated method of utilizing solar energy while keeping optimal solutions for indoor daylighting. The method utilizes a statistical approach to produce mathematical equations based on physical experimentation. A full-scale mock-up representing an actual office was built. Heat gain and lighting levels were measured empirically and correlated with blind angles. Computational methods were used to estimate the power production from photovoltaic cells. Mathematical formulas were derived from the results of the experiments; these formulas were utilized to construct curves as well as mathematical equations for the purpose of optimization. The mathematical equations resulting from the optimization process were coded using Java programming language to enable future users to deal with generic locations of buildings with a broader context of various climatic conditions. For the purpose of optimization by automation under different climatic conditions, a blind control system was developed based on the findings of this study. This system calibrates the blind angles instantaneously based upon the sun position, the indoor daylight, and the power production from the photovoltaic cells. The functions of this system guarantee full control of the projected solar energy on buildings' facades for indoor lighting and heat gain. In winter, the system automatically blows heat into the space, whereas it expels heat from the space during the summer season. The study showed that the optimality of building facades' performance is achievable for integrated thermal, energy, and lighting models in buildings. There are blind angles that produce maximum energy from the photovoltaic cells while keeping indoor light within the acceptable limits that prevent undesired heat gain in summer.

  14. Continuous Space Estimation: Increasing WiFi-Based Indoor Localization Resolution without Increasing the Site-Survey Effort.

    PubMed

    Hernández, Noelia; Ocaña, Manuel; Alonso, Jose M; Kim, Euntai

    2017-01-13

    Although much research has taken place in WiFi indoor localization systems, their accuracy can still be improved. When designing this kind of system, fingerprint-based methods are a common choice. The problem with fingerprint-based methods comes with the need of site surveying the environment, which is effort consuming. In this work, we propose an approach, based on support vector regression, to estimate the received signal strength at non-site-surveyed positions of the environment. Experiments, performed in a real environment, show that the proposed method could be used to improve the resolution of fingerprint-based indoor WiFi localization systems without increasing the site survey effort.

  15. Continuous Space Estimation: Increasing WiFi-Based Indoor Localization Resolution without Increasing the Site-Survey Effort †

    PubMed Central

    Hernández, Noelia; Ocaña, Manuel; Alonso, Jose M.; Kim, Euntai

    2017-01-01

    Although much research has taken place in WiFi indoor localization systems, their accuracy can still be improved. When designing this kind of system, fingerprint-based methods are a common choice. The problem with fingerprint-based methods comes with the need of site surveying the environment, which is effort consuming. In this work, we propose an approach, based on support vector regression, to estimate the received signal strength at non-site-surveyed positions of the environment. Experiments, performed in a real environment, show that the proposed method could be used to improve the resolution of fingerprint-based indoor WiFi localization systems without increasing the site survey effort. PMID:28098773

  16. Research of cartographer laser SLAM algorithm

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Liu, Zhengjun; Fu, Yiran; Zhang, Changsai

    2017-11-01

    As the indoor is a relatively closed and small space, total station, GPS, close-range photogrammetry technology is difficult to achieve fast and accurate indoor three-dimensional space reconstruction task. LIDAR SLAM technology does not rely on the external environment a priori knowledge, only use their own portable lidar, IMU, odometer and other sensors to establish an independent environment map, a good solution to this problem. This paper analyzes the Google Cartographer laser SLAM algorithm from the point cloud matching and closed loop detection. Finally, the algorithm is presented in the 3D visualization tool RViz from the data acquisition and processing to create the environment map, complete the SLAM technology and realize the process of indoor threedimensional space reconstruction

  17. Sensor-based demand controlled ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Almeida, A.T.; Fisk, W.J.

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation ratesmore » are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.« less

  18. The impact of indoor air quality and contaminants on respiratory health of older people living in long-term care residences in Porto.

    PubMed

    Mendes, Ana; Papoila, Ana Luísa; Carreiro-Martins, Pedro; Bonassi, Stefano; Caires, Iolanda; Palmeiro, Teresa; Aguiar, Lívia; Pereira, Cristiana; Neves, Paula; Mendes, Diana; Botelho, Maria Amália Silveira; Neuparth, Nuno; Teixeira, João Paulo

    2016-01-01

    persons who are 65 years or older often spend an important part of their lives indoors thus adverse indoor climate might influence their health status. to evaluate the influence of indoor air quality and contaminants on older people's respiratory health. cross-sectional study. 21 long-term care residences (LTC) in the city of Porto, Portugal. older people living in LTC with ≥65 years old. the Portuguese version of BOLD questionnaire was administered by an interviewer to older residents able to participate (n = 143). Indoor air contaminants (IAC) were measured twice, during winter and summer in 135 areas. Mixed effects logistic regression models were used to study the association between the health questionnaire results and the monitored IAC, adjusted for age, smoking habits, gender and number of years living in the LTC. cough (23%) and sputum (12%) were the major respiratory symptoms, and allergic rhinitis (22%) the main self-reported illness. Overall particulate matter up to 2.5 micrometres in size median concentration was above the reference levels both in winter and summer seasons. Peak values of particulate matter up to 10 micrometres in size (PM10), total volatile organic compounds, carbon dioxide, bacteria and fungi exceeded the reference levels. Older people exposed to PM10 above the reference levels demonstrated higher odds of allergic rhinitis (OR = 2.9, 95% CI: 1.1-7.2). high levels of PM10 were associated with 3-fold odds of allergic rhinitis. No association was found between indoor air chemical and biological contaminants and respiratory symptoms. © The Author 2015. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Case study. Health hazards of automotive repair mechanics: thermal and lighting comfort, particulate matter and noise.

    PubMed

    Loupa, G

    2013-01-01

    An indoor environmental quality survey was conducted in a small private automotive repair shop during May 2009 (hot season) and February 2010 (cold season). It was established that the detached building, which is naturally ventilated and lit, had all the advantages of the temperate local climate. It provided a satisfactory microclimatic working environment, concerning the thermal and the lighting comfort, without excessive energy consumption for air-conditioning or lighting. Indoor number concentrations of particulate matter (PM) were monitored during both seasons. Their size distributions were strongly affected by the indoor activities and the air exchange rate of the building. During working hours, the average indoor/outdoor (I/O) number concentration ratio was 31 for PM0.3-1 in the hot season and 69 for the cold season. However I/O PM1-10 number concentration ratios were similar, 33 and 32 respectively, between the two seasons. The estimated indoor mass concentration of PM10 for the two seasons was on average 0.68 mg m(-3) and 1.19 mg m(-3), i.e., 22 and 36 times higher than outdoors, during the hot and the cold seasons, respectively. This is indicative that indoor air pollution may adversely affect mechanics' health. Noise levels were highly variable and the average LEX, 8 h of 69.3 dB(A) was below the European Union exposure limit value 87db (A). Noise originated from the use of manual hammers, the revving up of engines, and the closing of car doors or hoods. Octave band analysis indicated that the prevailing noise frequencies were in the area of the maximum ear sensitivity.

  20. Middle ear effusion in children and the indoor environment: an epidemiological study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iversen, M.; Birch, L.; Lundqvist, G.R.

    Very low air infiltration rates have been found in new Danish day-care institutions built according to the energy conservation measures enforced in the Building Regulations. Complaints from staff in institutions have been numerous, e.g., mainly eyes and upper airways problems. Formaldehyde has been recognized as a causal factor in some cases. Extensive retrofitting has occurred in Denmark for energy conservation reasons. This will lower the air infiltration rates in dwellings and possibly create higher levels of pollutants produced indoors. A prospective study of 337 children was carried out during a 3-month period. The purpose of the study was to evaluatemore » the importance of indoor environmental factors in homes and day-care institutions for the incidence of middle ear effusion (MEE). The indoor environmental factors measured in institutions were carbon dioxide, temperature, and relative humidity. Conditions in the homes were assessed by a questionnaire. Middle ear effusion was measured by tympanometry. No relationship was found between indoor environmental factors and MEE, with the exception of parental smoking at home, which increased the frequency of MEE in children.« less

  1. Manufacturing Credibility: The National Energy Management Institute and the Tobacco Institute's Strategy for Indoor Air Quality

    PubMed Central

    Balbach, Edith D.

    2011-01-01

    Objectives. We studied tobacco industry efforts during the 1980s and 1990s to promote the National Energy Management Institute (NEMI), a nonprofit organization, as an authority on indoor air quality as part of the industry's strategy to oppose smoke-free worksite policies. Methods. We analyzed tobacco industry documents, conducted literature searches in Lexis–Nexis for background and historical literature, and reviewed relevant public health and policy literature. Results. The tobacco industry provided more than US $6 million to NEMI to establish it as an authority on indoor air quality and to work with it to undermine support for smoke-free air policies by promoting ventilation as a solution to indoor air quality problems. Tobacco industry support for NEMI was not publicly disclosed. Conclusions. NEMI was a valuable ally for the tobacco industry through NEMI's ties to organized labor, its technical background, and its status as a third-party actor. NEMI also helped the industry to portray ventilation to improve overall indoor air quality and smoke-free worksites as an either–or choice; in fact, both can improve worker health. PMID:21233427

  2. Manufacturing credibility: the National Energy Management Institute and the Tobacco Institute's strategy for indoor air quality.

    PubMed

    Campbell, Richard B; Balbach, Edith D

    2011-03-01

    We studied tobacco industry efforts during the 1980s and 1990s to promote the National Energy Management Institute (NEMI), a nonprofit organization, as an authority on indoor air quality as part of the industry's strategy to oppose smoke-free worksite policies. We analyzed tobacco industry documents, conducted literature searches in Lexis-Nexis for background and historical literature, and reviewed relevant public health and policy literature. The tobacco industry provided more than US $6 million to NEMI to establish it as an authority on indoor air quality and to work with it to undermine support for smoke-free air policies by promoting ventilation as a solution to indoor air quality problems. Tobacco industry support for NEMI was not publicly disclosed. NEMI was a valuable ally for the tobacco industry through NEMI's ties to organized labor, its technical background, and its status as a third-party actor. NEMI also helped the industry to portray ventilation to improve overall indoor air quality and smoke-free worksites as an either-or choice; in fact, both can improve worker health.

  3. The role of mesophyll conductance during water stress and recovery in tobacco (Nicotiana sylvestris): acclimation or limitation?

    PubMed

    Galle, Alexander; Florez-Sarasa, Igor; Tomas, Magdalena; Pou, Alicia; Medrano, Hipolito; Ribas-Carbo, Miquel; Flexas, Jaume

    2009-01-01

    While the responses of photosynthesis to water stress have been widely studied, acclimation to sustained water stress and recovery after re-watering is poorly understood. In particular, the factors limiting photosynthesis under these conditions, and their possible interactions with other environmental conditions, are unknown. To assess these issues, changes of photosynthetic CO(2) assimilation (A(N)) and its underlying limitations were followed during prolonged water stress and subsequent re-watering in tobacco (Nicotiana sylvestris) plants growing under three different climatic conditions: outdoors in summer, outdoors in spring, and indoors in a growth chamber. In particular, the regulation of stomatal conductance (g(s)), mesophyll conductance to CO(2) (g(m)), leaf photochemistry (chlorophyll fluorescence), and biochemistry (V(c,max)) were assessed. Leaf gas exchange and chlorophyll fluorescence data revealed that water stress induced a similar degree of stomatal closure and decreased A(N) under all three conditions, while V(c,max) was unaffected. However, the behaviour of g(m) differed depending on the climatic conditions. In outdoor plants, g(m) strongly declined with water stress, but it recovered rapidly (1-2 d) after re-watering in spring while it remained low many days after re-watering in summer. In indoor plants, g(m) initially declined with water stress, but then recovered to control values during the acclimation period. These differences were reflected in different velocities of recovery of A(N) after re-watering, being the slowest in outdoor summer plants and the fastest in indoor plants. It is suggested that these differences among the experiments are related to the prevailing climatic conditions, i.e. to the fact that stress factors other than water stress have been superimposed (e.g. excessive light and elevated temperature). In conclusion, besides g(s), g(m) contributes greatly to the limitation of photosynthesis during water stress and during recovery from water stress, but its role is strongly dependent on the impact of additional environmental factors.

  4. Indoor mildew odour in old housing was associated with adult allergic symptoms, asthma, chronic bronchitis, vision, sleep and self-rated health: USA NHANES, 2005-2006.

    PubMed

    Shiue, Ivy

    2015-09-01

    A recent systematic review and meta-analysis has shown the effect of indoor mildew odour on allergic rhinitis risk, but its relation to other common chronic health outcomes in adults has not been investigated. Therefore, it was aimed to examine the relationship of indoor mildew odour and common health outcomes in adults in a national and population-based setting. Data was retrieved from the United States National Health and Nutrition Examination Surveys, 2005-2006, including the available information on demographics, housing characteristics, self-reported health conditions and urinary concentrations of environmental chemicals. T test, chi-squared test and survey-weighted logistic regression modelling were performed. Of all American adults (n = 4979), 744 (15.1%) reported indoor mildew odour or musty smell in their households. People who reported indoor mildew odour or musty smell also reported poorer self-rated health, sleep complaints, chronic bronchitis, asthma attack, itchy rash, sneezing and poor vision. In addition, people who reported indoor mildew odour or musty smell also tended to reside in older housing that were built 20 years earlier. However, there were no significant statistical associations found between indoor mildew odour or musty smell and urinary concentrations of environmental chemicals, which was also found to be associated with old housing. People who lived in older housing with indoor mildew odour or musty smell tended to have chronic health problems. To protect occupants in old housing from chronic illnesses associated with indoor mildew odour, elimination of the odour sources should be explored in future research and therefore public health and housing programs. Graphical abstract Pathway from old housing to musty smell, environmental chemicals and then health outcomes.

  5. Climate change projections of heat stress in Europe: From meteorological variables to impacts on productivity

    NASA Astrophysics Data System (ADS)

    Casanueva, Ana; Kotlarski, Sven; Liniger, Mark A.

    2017-04-01

    Future climate change is likely to have important impacts in many socio-economic sectors. In particular, higher summer temperatures or more prolonged heat waves may be responsible for health problems and productivity losses related to heat stress, especially affecting people exposed to such situations (e.g. working under outside settings or in non-acclimatized workplaces). Heat stress on the body under work load and consequently their productivity loss can be described through heat stress indices that are based on multiple meteorological parameters such as temperature, humidity, wind and radiation. Exploring the changes of these variables under a warmer climate is of prime importance for the Impacts, Adaptation and Vulnerability communities. In particular, the H2020 project HEAT-SHIELD aims at analyzing the impact of climate change on heat stress in strategic industries in Europe (manufacturing, construction, transportation, tourism and agriculture) within an inter-sectoral framework (climate scientists, biometeorologists, physiologists and stakeholders). In the present work we explore present and future heat stress over Europe using an ensemble of the state-of-the-art RCMs from the EURO-CORDEX initiative. Since RCMs cannot be directly used in impact studies due to their partly substantial biases, a standard bias correction method (empirical quantile mapping) is applied to correct the individual variables that are then used to derive heat stress indices. The objectives of this study are twofold, 1) to test the ability of the separately bias corrected variables to reproduce the main characteristics of heat stress indices in present climate conditions and 2) to explore climate change projections of heat stress indices. We use the wet bulb globe temperature (WBGT) as primary heat stress index, considering two different versions for indoor (or in the shade, based on temperature and humidity conditions) and outdoor settings (including also wind and radiation). The WBGT is the most widely used heat stress index for working people and can be easily interpreted by means of ISO standards. Within the HEAT-SHIELD project, climate change projections of the WBGT will be used to assess the impact of climate change on workers' health and productivity.

  6. Effects of Heat Wave on Body Temperature and Blood Pressure in the Poor and Elderly

    PubMed Central

    Kim, Soyeon; Cheong, Hae-Kwan; Ahn, Byungok; Choi, Kyusik

    2012-01-01

    Objectives We aimed to investigate the acute effects of heat stress on body temperature and blood pressure of elderly individuals living in poor housing conditions. Methods Repeated measurements of the indoor temperature, relative humidity, body temperature, and blood pressure were conducted for 20 elderly individuals living in low-cost dosshouses in Seoul during hot summer days in 2010. Changes in the body temperature, systolic blood pressure (SBP) and diastolic blood pressure (DBP) according to variations in the indoor and outdoor temperature and humidity were analyzed using a repeated-measures ANOVA controlling for age, sex, alcohol, and smoking. Results Average indoor and outdoor temperatures were 31.47℃ (standard deviation [SD], 0.97℃) and 28.15℃ (SD, 2.03℃), respectively. Body temperature increased by 0.21℃ (95% confidence interval [CI], 0.16 to 0.26℃) and 0.07℃ (95% CI, 0.04 to 0.10℃) with an increase in the indoor and outdoor temperature of 1℃. DBP decreased by 2.05 mmHg (95% CI, 0.05 to 4.05 mmHg), showing a statistical significance, as the indoor temperature increased by 1℃, while it increased by 0.20 mmHg (95% CI, -0.83 to 1.22 mmHg) as outdoor temperature increased by 1℃. SBP decreased by 1.75 mmHg (95% CI, -1.11 to 4.61 mmHg) and 0.35 mmHg (95% CI, -1.04 to 1.73 mmHg), as the indoor and outdoor temperature increased by 1℃, respectively. The effects of relative humidity on SBP and DBP were not statistically significant for both indoor and outdoor. Conclusions The poor and elderly are directly exposed to heat waves, while their vital signs respond sensitively to increase in temperature. Careful adaptation strategies to climate change considering socioeconomic status are therefore necessary. PMID:22888472

  7. Effects of heat wave on body temperature and blood pressure in the poor and elderly.

    PubMed

    Kim, Young-Min; Kim, Soyeon; Cheong, Hae-Kwan; Ahn, Byungok; Choi, Kyusik

    2012-01-01

    We aimed to investigate the acute effects of heat stress on body temperature and blood pressure of elderly individuals living in poor housing conditions. Repeated measurements of the indoor temperature, relative humidity, body temperature, and blood pressure were conducted for 20 elderly individuals living in low-cost dosshouses in Seoul during hot summer days in 2010. Changes in the body temperature, systolic blood pressure (SBP) and diastolic blood pressure (DBP) according to variations in the indoor and outdoor temperature and humidity were analyzed using a repeated-measures ANOVA controlling for age, sex, alcohol, and smoking. Average indoor and outdoor temperatures were 31.47℃ (standard deviation [SD], 0.97℃) and 28.15℃ (SD, 2.03℃), respectively. Body temperature increased by 0.21℃ (95% confidence interval [CI], 0.16 to 0.26℃) and 0.07℃ (95% CI, 0.04 to 0.10℃) with an increase in the indoor and outdoor temperature of 1℃. DBP decreased by 2.05 mmHg (95% CI, 0.05 to 4.05 mmHg), showing a statistical significance, as the indoor temperature increased by 1℃, while it increased by 0.20 mmHg (95% CI, -0.83 to 1.22 mmHg) as outdoor temperature increased by 1℃. SBP decreased by 1.75 mmHg (95% CI, -1.11 to 4.61 mmHg) and 0.35 mmHg (95% CI, -1.04 to 1.73 mmHg), as the indoor and outdoor temperature increased by 1℃, respectively. The effects of relative humidity on SBP and DBP were not statistically significant for both indoor and outdoor. The poor and elderly are directly exposed to heat waves, while their vital signs respond sensitively to increase in temperature. Careful adaptation strategies to climate change considering socioeconomic status are therefore necessary.

  8. An Approach to Management of Critical Indoor Air Problems in School Buildings.

    ERIC Educational Resources Information Center

    Haverinen, Ulla; Husman, Tuula; Toivola, Mika; Suonketo, Jommi; Pentti, Matti; Lindberg, Ralf; Leinonen, Jouni; Hyvarinen, Anne; Meklin, Teija; Nevalainen, Aino

    1999-01-01

    This study was conducted in a school center in Finland that had been the focus of intense public concern over 2 years because of suspected mold and health problems. Because several attempts to find solutions to the problem within the community were not satisfactory, outside specialists were needed for support in solving the problem. The study…

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apte, Michael G.; Norman, Bourassa; Faulkner, David

    An improved HVAC system for portable classrooms was specified to address key problems in existing units. These included low energy efficiency, poor control of and provision for adequate ventilation, and excessive acoustic noise. Working with industry, a prototype improved heat pump air conditioner was developed to meet the specification. A one-year measurement-intensive field-test of ten of these IHPAC systems was conducted in occupied classrooms in two distinct California climates. These measurements are compared to those made in parallel in side by side portable classrooms equipped with standard 10 SEER heat pump air conditioner equipment. The IHPAC units were found tomore » work as designed, providing predicted annual energy efficiency improvements of about 36 percent to 42 percent across California's climate zones, relative to 10 SEER units. Classroom ventilation was vastly improved as evidenced by far lower indoor minus outdoor CO2 concentrations. TheIHPAC units were found to provide ventilation that meets both California State energy and occupational codes and the ASHRAE minimum ventilation requirements; the classrooms equipped with the 10 SEER equipment universally did not meet these targets. The IHPAC system provided a major improvement in indoor acoustic conditions. HVAC system generated background noise was reduced in fan-only and fan and compressor modes, reducing the nose levels to better than the design objective of 45 dB(A), and acceptable for additional design points by the Collaborative on High Performance Schools. The IHPAC provided superior ventilation, with indoor minus outdoor CO2 concentrations that showed that the Title 24 minimum ventilation requirement of 15 CFM per occupant was nearly always being met. The opposite was found in the classrooms utilizing the 10 SEER system, where the indoor minus outdoor CO2 concentrations frequently exceeded levels that reflect inadequate ventilation. Improved ventilation conditions in the IHPAC lead to effective removal of volatile organic compounds and aldehydes, on average lowering the concentrations by 57 percent relative to the levels in the 10 SEER classrooms. The average IHPAC to 10 SEER formaldehyde ratio was about 67 percent, indicating only a 33 percent reduction of this compound in indoor air. The IHPAC thermal control system provided less variability in occupied classroom temperature than the 10 SEER thermostats. The average room temperatures in all seasons tended to be slightly lower in the IHPAC classrooms, often below the lower limit of the ASHRAE 55 thermal comfort band. State-wide and national energy modeling provided conservative estimates of potential energy savings by use of the IHPAC system that would provide payback a the range of time far lower than the lifetime of the equipment. Assuming electricity costs of $0.15/kWh, the perclassroom range of savings is from about $85 to $195 per year in California, and about $89 to $250 per year in the U.S., depending upon the city. These modelsdid not include the non-energy benefits to the classrooms including better air quality and acoustic conditions that could lead to improved health and learning in school. Market connection efforts that were part of the study give all indication that this has been a very successful project. The successes include the specification of the IHPAC equipment in the CHPS portable classroom standards, the release of a commercial product based on the standards that is now being installed in schools around the U.S., and the fact that a public utility company is currently considering the addition of the technology to its customer incentive program. These successes indicate that the IHPAC may reach its potential to improve ventilation and save energy in classrooms.« less

  10. The Fate of Mengovirus on Fiberglass Filter of Air Handling Units.

    PubMed

    Bandaly, Victor; Joubert, Aurélie; Le Cann, Pierre; Andres, Yves

    2017-12-01

    One of the most important topics that occupy public health problems is the air quality. That is the reason why mechanical ventilation and air handling units (AHU) were imposed by the different governments in the collective or individual buildings. Many buildings create an artificial climate using heating, ventilation, and air-conditioning systems. Among the existing aerosols in the indoor air, we can distinguish the bioaerosol with biological nature such as bacteria, viruses, and fungi. Respiratory viral infections are a major public health issue because they are usually highly infective. We spend about 90% of our time in closed environments such as homes, workplaces, or transport. Some studies have shown that AHU contribute to the spread and transport of viral particles within buildings. The aim of this work is to study the characterization of viral bioaerosols in indoor environments and to understand the fate of mengovirus eukaryote RNA virus on glass fiber filter F7 used in AHU. In this study, a set-up close to reality of AHU system was used. The mengovirus aerosolized was characterized and measured with the electrical low pressure impact and the scanner mobility particle size and detected with RT-qPCR. The results about quantification and the level of infectivity of mengovirus on the filter and in the biosampler showed that mengovirus can pass through the filter and remain infectious upstream and downstream the system. Regarding the virus infectivity on the filter under a constant air flow, mengovirus was remained infectious during 10 h after aerosolization.

  11. Arabidopsis plants grown in the field and climate chambers significantly differ in leaf morphology and photosystem components

    PubMed Central

    2012-01-01

    Background Plants exhibit phenotypic plasticity and respond to differences in environmental conditions by acclimation. We have systematically compared leaves of Arabidopsis thaliana plants grown in the field and under controlled low, normal and high light conditions in the laboratory to determine their most prominent phenotypic differences. Results Compared to plants grown under field conditions, the "indoor plants" had larger leaves, modified leaf shapes and longer petioles. Their pigment composition also significantly differed; indoor plants had reduced levels of xanthophyll pigments. In addition, Lhcb1 and Lhcb2 levels were up to three times higher in the indoor plants, but differences in the PSI antenna were much smaller, with only the low-abundance Lhca5 protein showing altered levels. Both isoforms of early-light-induced protein (ELIP) were absent in the indoor plants, and they had less non-photochemical quenching (NPQ). The field-grown plants had a high capacity to perform state transitions. Plants lacking ELIPs did not have reduced growth or seed set rates, but their mortality rates were sometimes higher. NPQ levels between natural accessions grown under different conditions were not correlated. Conclusion Our results indicate that comparative analysis of field-grown plants with those grown under artificial conditions is important for a full understanding of plant plasticity and adaptation. PMID:22236032

  12. Analysis Thermal Comfort Condition in Complex Residential Building, Case Study: Chiangmai, Thailand

    NASA Astrophysics Data System (ADS)

    Juangjandee, Warangkana

    2017-10-01

    Due to the increasing need for complex residential buildings, it appears that people migrate into the high-density urban areas because the infrastructural facilities can be easily found in the modern metropolitan areas. Such rapid growth of urbanization creates congested residential buildings obstructing solar radiation and wind flow, whereas most urban residents spend 80-90% of their time indoor. Furthermore, the buildings were mostly built with average materials and construction detail. This causes high humidity condition for tenants that could promote mould growth. This study aims to analyse thermal comfort condition in complex residential building, Thailand for finding the passive solution to improve indoor air quality and respond to local conditions. The research methodology will be in two folds: 1) surveying on case study 2) analysis for finding the passive solution of reducing humidity indoor air The result of the survey indicated that the building need to find passive solution for solving humidity problem, that can be divided into two ways which raising ventilation and indoor temperature including increasing wind-flow ventilation and adjusting thermal temperature, for example; improving building design and stack driven ventilation. For raising indoor temperature or increasing mean radiant temperature, daylight can be passive solution for complex residential design for reducing humidity and enhance illumination indoor space simultaneous.

  13. Predictors of coarse particulate matter and associated endotoxin concentrations in residential environments

    NASA Astrophysics Data System (ADS)

    Bari, Md. Aynul; MacNeill, Morgan; Kindzierski, Warren B.; Wallace, Lance; Héroux, Marie-Ève; Wheeler, Amanda J.

    2014-08-01

    Exposure to coarse particulate matter (PM), i.e., particles with an aerodynamic diameter between 2.5 and 10 μm (PM10-2.5), is of increasing interest due to the potential for health effects including asthma, allergy and respiratory symptoms. Limited information is available on indoor and outdoor coarse PM and associated endotoxin exposures. Seven consecutive 24-h samples of indoor and outdoor coarse PM were collected during winter and summer 2010 using Harvard Coarse Impactors in a total of 74 Edmonton homes where no reported smoking took place. Coarse PM filters were subsequently analyzed for endotoxin content. Data were also collected on indoor and outdoor temperature, relative humidity, air exchange rate, housing characteristics and occupants' activities. During winter, outdoor concentrations of coarse PM (median = 6.7 μg/m3, interquartile range, IQR = 3.4-12 μg/m3) were found to be higher than indoor concentrations (median 3.4 μg/m3, IQR = 1.6-5.7 μg/m3); while summer levels of indoor and outdoor concentrations were similar (median 4.5 μg/m3, IQR = 2.3-6.8 μg/m3, and median 4.7 μg/m3, IQR = 2.1-7.9 μg/m3, respectively). Similar predictors were identified for indoor coarse PM in both seasons and included corresponding outdoor coarse PM concentrations, whether vacuuming, sweeping or dusting was performed during the sampling period, and number of occupants in the home. Winter indoor coarse PM predictors also included the number of dogs and indoor endotoxin concentrations. Summer median endotoxin concentrations (indoor: 0.41 EU/m3, outdoor: 0.64 EU/m3) were 4-fold higher than winter concentrations (indoor: 0.12 EU/m3, outdoor: 0.16 EU/m3). Other than outdoor endotoxin concentrations, indoor endotoxin concentration predictors for both seasons were different. Winter endotoxin predictors also included presence of furry pets and whether the vacuum had a high efficiency particulate air (HEPA) filter. Summer endotoxin predictors were problems with mice in the previous 12 months and mean indoor relative humidity levels.

  14. Assessment of Indoor Air Quality Problems in Office-Like Environments: Role of Occupational Health Services.

    PubMed

    Carrer, Paolo; Wolkoff, Peder

    2018-04-12

    There is an increasing concern about indoor air quality (IAQ) and its impact on health, comfort, and work-performance in office-like environments and their workers, which account for most of the labor force. The Scientific Committee on Indoor Air Quality and Health of the ICOH (Int. Comm. Occup. Health) has discussed the assessment and management of IAQ problems and proposed a stepwise approach to be conducted by a multidisciplinary team. It is recommended to integrate the building assessment, inspection by walk-through of the office workplace, questionnaire survey, and environmental measurements, in that order. The survey should cover perceived IAQ, symptoms, and psychosocial working aspects. The outcome can be used for mapping the IAQ and to prioritize the order in which problems should be dealt with. Individual health surveillance in relation to IAQ is proposed only when periodical health surveillance is already performed for other risks (e.g., video display units) or when specific clinical examination of workers is required due to the occurrence of diseases that may be linked to IAQ (e.g., Legionnaire's disease), recurrent inflammation, infections of eyes, respiratory airway effects, and sensorial disturbances. Environmental and personal risk factors should also be compiled and assessed. Workplace health promotion should include programs for smoking cessation and stress and IAQ management.

  15. Assessment of Indoor Air Quality Problems in Office-Like Environments: Role of Occupational Health Services

    PubMed Central

    2018-01-01

    There is an increasing concern about indoor air quality (IAQ) and its impact on health, comfort, and work-performance in office-like environments and their workers, which account for most of the labor force. The Scientific Committee on Indoor Air Quality and Health of the ICOH (Int. Comm. Occup. Health) has discussed the assessment and management of IAQ problems and proposed a stepwise approach to be conducted by a multidisciplinary team. It is recommended to integrate the building assessment, inspection by walk-through of the office workplace, questionnaire survey, and environmental measurements, in that order. The survey should cover perceived IAQ, symptoms, and psychosocial working aspects. The outcome can be used for mapping the IAQ and to prioritize the order in which problems should be dealt with. Individual health surveillance in relation to IAQ is proposed only when periodical health surveillance is already performed for other risks (e.g., video display units) or when specific clinical examination of workers is required due to the occurrence of diseases that may be linked to IAQ (e.g., Legionnaire’s disease), recurrent inflammation, infections of eyes, respiratory airway effects, and sensorial disturbances. Environmental and personal risk factors should also be compiled and assessed. Workplace health promotion should include programs for smoking cessation and stress and IAQ management. PMID:29649167

  16. Moisture buffer capacity of cement-lime plasters with enhanced thermal storage capacity

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Pavlíková, Milena; Pavlík, Zbyšek

    2017-07-01

    Indoor air temperature and relative humidity represent important parameters for health and working efficiency of buildings occupants. Beside the moderation of temperature, investigation of hygric properties of building materials with connection to indoor relative humidity variation became recognized as a relevant factor for energy efficient building maintenance. The moisture buffer value introduced in the Nordtest protocol can be used for estimation of moisture buffer capacity of building materials or their multi-layered systems. In this paper, both the ideal and real moisture buffer values are examined on the basis of simulation of diurnal relative humidity fluctuations in plasters with incorporated PCM admixture. Retrieved data points to a complex effect of the tested plasters on possible moderation of buildings interior climate.

  17. The role of the indoor environment: Residential determinants of allergy, asthma and pulmonary function in children from a US-Mexico border community.

    PubMed

    Svendsen, Erik R; Gonzales, Melissa; Commodore, Adwoa

    2018-03-01

    The El Paso Children's Health Study examined environmental risk factors for allergy and asthma among fourth and fifth grade schoolchildren living in a major United States-Mexico border city. Complete questionnaire information was available for 5210 children, while adequate pulmonary function data were available for a subset of 1874. Herein we studied indoor environmental health risk factors for allergy and asthma. Several indoor environmental risk factors were associated with allergy and asthma. In particular, we found that ant and spider pest problems, pet dogs, fireplace heat, central air conditioning, humidifier use, and cooking with gas stoves were positively associated with both allergy and asthma prevalence. With regards to asthma severity, our analysis indicated that exposure to pet dogs increased monotonically with increasing asthma severity while the lack of any heat source and gas stove use for cooking decreased monotonically with increasing asthma severity. Lung function also decreased among children who lived in homes with reported cockroach pest problem in the past year without concurrent use of pesticides. These effects on pulmonary function were present even after excluding children with a current physician's diagnosis of asthma. Clinicians and public health professionals may need to look closely at the contribution of these indoor risk factors on pulmonary health and quality of life among susceptible populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Modeling the effects of indoor passive smoking at home, work, or other households on adult cardiovascular and mental health: the Scottish Health Survey, 2008-2011.

    PubMed

    Shiue, Ivy

    2014-03-13

    Passive smoking has contributed increased risks of cardiovascular disease, mental health, and mortality, but the cumulative effects from work or other households were less studied. Therefore, it was aimed to model the effects of indoor passive smoking from own home, work, and other households in a country-wide, population-based setting. Data in the Scottish Health Survey between 2008 and 2011 after the law banning smoking in public places were analyzed. Information including demographics, lifestyle factors, and self-reported cardiovascular disease and mental health was obtained by household interview. Analyses included chi-square test and survey-weighted logistic regression modeling. After full adjustment, it was observed that being exposed to indoor passive smoking, in particular in more than two places of exposure, was significantly associated with risks of stroke, angina, heart attack, abnormal heart rhythms, and GHQ ≥ 12. The significance remained for angina, GHQ ≥ 12 and probably heart attack in never smokers. The cumulative risks also impacted on sleep problems, self-recognition, making decisions, self-confidence, under strain constantly, depressed, happiness and self-worth. The significance remained for sleep problems, self-confidence, under strain constantly, depressed, and happiness in never smokers. Elimination of indoor passive smoking from different sources should still be a focus in future public health programs.

  19. Clean the Air and Breathe Easier.

    ERIC Educational Resources Information Center

    Guevin, John

    1997-01-01

    Failure to prevent indoor air quality problems or act promptly can result in increased chances for long- or short-term health problems for staff and students, reduced productivity, faster plant deterioration, and strained school-community relations. Basic pollution control measures include source management, local exhausts, ventilation, exposure…

  20. Markers

    ERIC Educational Resources Information Center

    Healthy Schools Network, Inc., 2011

    2011-01-01

    Dry erase whiteboards come with toxic dry erase markers and toxic cleaning products. Dry erase markers labeled "nontoxic" are not free of toxic chemicals and can cause health problems. Children are especially vulnerable to environmental health hazards; moreover, schools commonly have problems with indoor air pollution, as they are more densely…

  1. Sensor-Data Fusion for Multi-Person Indoor Location Estimation

    PubMed Central

    2017-01-01

    We consider the problem of estimating the location of people as they move and work in indoor environments. More specifically, we focus on the scenario where one of the persons of interest is unable or unwilling to carry a smartphone, or any other “wearable” device, which frequently arises in caregiver/cared-for situations. We consider the case of indoor spaces populated with anonymous binary sensors (Passive Infrared motion sensors) and eponymous wearable sensors (smartphones interacting with Estimote beacons), and we propose a solution to the resulting sensor-fusion problem. Using a data set with sensor readings collected from one-person and two-person sessions engaged in a variety of activities of daily living, we investigate the relative merits of relying solely on anonymous sensors, solely on eponymous sensors, or on their combination. We examine how the lack of synchronization across different sensing sources impacts the quality of location estimates, and discuss how it could be mitigated without resorting to device-level mechanisms. Finally, we examine the trade-off between the sensors’ coverage of the monitored space and the quality of the location estimates. PMID:29057812

  2. Sensor-Data Fusion for Multi-Person Indoor Location Estimation.

    PubMed

    Mohebbi, Parisa; Stroulia, Eleni; Nikolaidis, Ioanis

    2017-10-18

    We consider the problem of estimating the location of people as they move and work in indoor environments. More specifically, we focus on the scenario where one of the persons of interest is unable or unwilling to carry a smartphone, or any other "wearable" device, which frequently arises in caregiver/cared-for situations. We consider the case of indoor spaces populated with anonymous binary sensors (Passive Infrared motion sensors) and eponymous wearable sensors (smartphones interacting with Estimote beacons), and we propose a solution to the resulting sensor-fusion problem. Using a data set with sensor readings collected from one-person and two-person sessions engaged in a variety of activities of daily living, we investigate the relative merits of relying solely on anonymous sensors, solely on eponymous sensors, or on their combination. We examine how the lack of synchronization across different sensing sources impacts the quality of location estimates, and discuss how it could be mitigated without resorting to device-level mechanisms. Finally, we examine the trade-off between the sensors' coverage of the monitored space and the quality of the location estimates.

  3. Development and application of an integrated indoor air quality audit to an international hotel building in Taiwan.

    PubMed

    Kuo, Nae-Wen; Chiang, Hsin-Chen; Chiang, Che-Ming

    2008-12-01

    Indoor air quality (IAQ) has begun to surface as an important issue that affects the comfort and health of people; however, there is little research concerned about the IAQ monitoring of hotels up to now. Hotels are designed to provide comfortable spaces for guests. However, most complaints related to uncomfortable thermal environment and inadequate indoor air quality appear. In addition, microbial pollution can affect the health of tourists such as the Legionnaire's disease and SARS problems. This study is aimed to establish the comprehensive IAQ audit approach for hotel buildings with portable equipment, and one five-star international hotel in Taiwan was selected to exam this integrated approach. Finally, four major problems are identified after the comprehensive IAQ audit. They are: (1) low room temperature (21.8 degrees C), (2) insufficient air exchange rate (<1.5 h(-1)), (3) formaldehyde contamination (>0.02 ppm), and (4) the microbial pollution (total bacteria: 2,624-3,799 CFU/m(3)). The high level of formaldehyde may be due to the emission from the detergent and cleaning agents used for housekeeping.

  4. Estimation of minimum ventilation requirement of dairy cattle barns for different outdoor temperature and its affects on indoor temperature: Bursa case.

    PubMed

    Yaslioglu, Erkan; Simsek, Ercan; Kilic, Ilker

    2007-04-15

    In the study, 10 different dairy cattle barns with natural ventilation system were investigated in terms of structural aspects. VENTGRAPH software package was used to estimate minimum ventilation requirements for three different outdoor design temperatures (-3, 0 and 1.7 degrees C). Variation in indoor temperatures was also determined according to the above-mentioned conditions. In the investigated dairy cattle barns, on condition that minimum ventilation requirement to be achieved for -3, 0 and 1.7 degrees C outdoor design temperature and 70, 80% Indoor Relative Humidity (IRH), estimated indoor temperature were ranged from 2.2 to 12.2 degrees C for 70% IRH, 4.3 to 15.0 degrees C for 80% IRH. Barn type, outdoor design temperature and indoor relative humidity significantly (p < 0.01) affect the indoor temperature. The highest ventilation requirement was calculated for straw yard (13879 m3 h(-1)) while the lowest was estimated for tie-stall (6169.20 m3 h(-1)). Estimated minimum ventilation requirements per animal were significantly (p < 0.01) different according to the barn types. Effect of outdoor esign temperatures on minimum ventilation requirements and minimum ventilation requirements per animal was found to be significant (p < 0.05, p < 0.01). Estimated indoor temperatures were in thermoneutral zone (-2 to 20 degrees C). Therefore, one can be said that use of naturally ventilated cold dairy barns in the region will not lead to problems associated with animal comfort in winter.

  5. A Review of Recent Advances in Research on PM2.5 in China

    PubMed Central

    Zou, Jiale; Yang, Wei; Li, Chun-Qing

    2018-01-01

    PM2.5 pollution has become a severe problem in China due to rapid industrialization and high energy consumption. It can cause increases in the incidence of various respiratory diseases and resident mortality rates, as well as increase in the energy consumption in heating, ventilation, and air conditioning (HVAC) systems due to the need for air purification. This paper reviews and studies the sources of indoor and outdoor PM2.5, the impact of PM2.5 pollution on atmospheric visibility, occupational health, and occupants’ behaviors. This paper also presents current pollution status in China, the relationship between indoor and outdoor PM2.5, and control of indoor PM2.5, and finally presents analysis and suggestions for future research. PMID:29498704

  6. A Review of Recent Advances in Research on PM2.5 in China.

    PubMed

    Lin, Yaolin; Zou, Jiale; Yang, Wei; Li, Chun-Qing

    2018-03-02

    PM 2.5 pollution has become a severe problem in China due to rapid industrialization and high energy consumption. It can cause increases in the incidence of various respiratory diseases and resident mortality rates, as well as increase in the energy consumption in heating, ventilation, and air conditioning (HVAC) systems due to the need for air purification. This paper reviews and studies the sources of indoor and outdoor PM 2.5 , the impact of PM 2.5 pollution on atmospheric visibility, occupational health, and occupants' behaviors. This paper also presents current pollution status in China, the relationship between indoor and outdoor PM 2.5 , and control of indoor PM 2.5 , and finally presents analysis and suggestions for future research.

  7. Dustborne Alternaria alternata antigens in U.S. homes: Results from the National Survey of Lead and Allergens in Housing

    PubMed Central

    Salo, Päivi M.; Yin, Ming; Arbes, Samuel J.; Cohn, Richard D.; Sever, Michelle; Muilenberg, Michael; Burge, Harriet A.; London, Stephanie J.; Zeldin, Darryl C.

    2005-01-01

    Background: Alternaria alternata is one of the most common fungi associated with allergic disease. However, Alternaria exposure in indoor environments is not well characterized. Objective: The primary goals of this study were to examine the prevalence of Alternaria exposure and identify independent predictors of Alternaria antigen concentrations in U.S. homes. Methods: Data for this cross-sectional study were obtained from the National Survey of Lead and Allergens in Housing. A nationally representative sample of 831 housing units in 75 different locations throughout the U.S. completed the survey. Information on housing and household characteristics was obtained by questionnaire and environmental assessments. Concentrations of Alternaria antigens in dust collected from various indoor sites were assessed with a polyclonal anti-Alternaria antibody assay. Results: Alternaria antigens were detected in most (95-99%) of the dust samples. The geometric mean concentration, reflecting the average Alternaria concentration in homes, was 4.88 μg/g (SE=0.13 μg/g). In the multivariable linear regression analysis, the age of the housing unit, geographic region, urbanization, poverty, family race, observed mold and moisture problems, use of dehumidifier, and presence of cats and dogs were independent predictors of Alternaria antigen concentrations. Less frequent cleaning and smoking indoors also contributed to higher Alternaria antigen levels in homes. Conclusion: Exposure to Alternaria alternata antigens in U.S. homes is common. Antigen levels in homes are not only influenced by regional factors but also by residential characteristics. Preventing mold and moisture problems, avoiding smoking indoors, and regular household cleaning may help reduce exposure to Alternaria antigens indoors. PMID:16159634

  8. Self-reported occupational exposure to chemical and physical factors and risk of skin problems: a 3-year follow-up study of the general working population of Norway.

    PubMed

    Alfonso, Jose Hernan; Thyssen, Jacob P; Tynes, Tore; Mehlum, Ingrid Sivesind; Johannessen, Håkon A

    2015-11-01

    Prospective studies on occupational dermatoses in the general working population are sparse. This study investigated prospectively the impact of self-reported occupational exposure to chemicals and physical factors on the risk of skin problems. The cohort comprised respondents drawn randomly from the general population in Norway, who were registered employed in 2006 and 2009 (n = 6,745). Indoor dry air (odds ratio (OR) 1.3; 95% confidence interval (95% CI) 1.1-1.6) was a significant baseline predictor of skin problems at follow-up, whereas exposure to cleaning products (OR 1.7; 95% CI 1.2-2.5), water (OR 1.4; 95% CI 1.1-1.9) and indoor dry air (OR 1.6; 95% CI 1.1-2.1) at both measurement time-points was significantly associated with skin problems. The population risk attributable to these factors was 16%. This study quantified the contribution of occupational exposure factors to skin problems in the general working population of Norway.

  9. Algae façade as green building method: application of algae as a method to meet the green building regulation

    NASA Astrophysics Data System (ADS)

    Poerbo, Heru W.; Martokusumo, Widjaja; Donny Koerniawan, M.; Aulia Ardiani, Nissa; Krisanti, Susan

    2017-12-01

    The Local Government of Bandung city has stipulated a Green Building regulation through the Peraturan Walikota Number 1023/2016. Signed by the mayor in October 2016, Bandung became the first city in Indonesia that put green building as mandatory requirement in the building permit (IMB) process. Green Building regulation is intended to have more efficient consumption of energy and water, improved indoor air quality, management of liquid and solid waste etc. This objective is attained through various design method in building envelope, ventilation and air conditioning system, lighting, indoor transportation system, and electrical system. To minimize energy consumption of buildings that have large openings, sun shading device is often utilized together with low-E glass panes. For buildings in hot humid tropical climate, this method reduces indoor air temperature and thus requires less energy for air conditioning. Indoor air quality is often done by monitoring the carbon dioxide levels. Application of algae as part of building system façade has recently been introduced as replacement of large glass surface in the building façade. Algae are not yet included in the green building regulation because it is relatively new. The research will investigate, with the help of the modelling process and extensive literature, how effective is the implementation of algae in building façade to reduce energy consumption and improve its indoor air quality. This paper is written based on the design of ITB Innovation Park as an ongoing architectural design-based research how the algae-integrated building façade affects the energy consumption.

  10. Wind Movement Comparison Between Student Dormitory 2 and 3 ITERA and The Correlation Toward its Indoor Thermal Comfort

    NASA Astrophysics Data System (ADS)

    Perdana Khidmat, Rendy; Donny Koerniawan, M.; Suhendri

    2018-05-01

    Student dormitory is a semi-private building that designated to occupies large number of habitats. This type of building mostly designated in simple type of vertical housing. In the context of utilization, dormitory surely requires indoor thermal comfort yet in the same way it requires the energy efficiency as well. Building in a tropical climate country is expected to be adequate to adopt a potention from its surrounding in order to switch air conditioner and gain efficiency in energy consume. One of its key factors is wind. This paper tries to describe and investigate wind movement that works on two different type of student dormitory in Sumatera Institute of Technology. The distinct difference between two blocks is one of the tower block utilizes void meanwhile the other are not. This research is conducted by using Computational Fluid Dynamic (CFD) based software. This study is expected to provide an overview of the wind movement and its effect on air temperature and its correlation to the indoor thermal comfort in both buildings.

  11. Scene analysis for a breadboard Mars robot functioning in an indoor environment

    NASA Technical Reports Server (NTRS)

    Levine, M. D.

    1973-01-01

    The problem is delt with of computer perception in an indoor laboratory environment containing rocks of various sizes. The sensory data processing is required for the NASA/JPL breadboard mobile robot that is a test system for an adaptive variably-autonomous vehicle that will conduct scientific explorations on the surface of Mars. Scene analysis is discussed in terms of object segmentation followed by feature extraction, which results in a representation of the scene in the robot's world model.

  12. Based on the CSI regional segmentation indoor localization algorithm

    NASA Astrophysics Data System (ADS)

    Zeng, Xi; Lin, Wei; Lan, Jingwei

    2017-08-01

    To solve the problem of high cost and low accuracy, the method of Channel State Information (CSI) regional segmentation are proposed in the indoor positioning. Because Channel State Information (CSI) stability, and effective against multipath effect, we used the Channel State Information (CSI) to segment location area. The method Acquisition CSI the influence of different link to pinpoint the location of the area. Then the method can improve the accuracy of positioning, and reduce the cost of the fingerprint localization algorithm.

  13. Comparing the Performance of Indoor Localization Systems through the EvAAL Framework.

    PubMed

    Potortì, Francesco; Park, Sangjoon; Jiménez Ruiz, Antonio Ramón; Barsocchi, Paolo; Girolami, Michele; Crivello, Antonino; Lee, So Yeon; Lim, Jae Hyun; Torres-Sospedra, Joaquín; Seco, Fernando; Montoliu, Raul; Mendoza-Silva, Germán Martin; Pérez Rubio, Maria Del Carmen; Losada-Gutiérrez, Cristina; Espinosa, Felipe; Macias-Guarasa, Javier

    2017-10-13

    In recent years, indoor localization systems have been the object of significant research activity and of growing interest for their great expected social impact and their impressive business potential. Application areas include tracking and navigation, activity monitoring, personalized advertising, Active and Assisted Living (AAL), traceability, Internet of Things (IoT) networks, and Home-land Security. In spite of the numerous research advances and the great industrial interest, no canned solutions have yet been defined. The diversity and heterogeneity of applications, scenarios, sensor and user requirements, make it difficult to create uniform solutions. From that diverse reality, a main problem is derived that consists in the lack of a consensus both in terms of the metrics and the procedures used to measure the performance of the different indoor localization and navigation proposals. This paper introduces the general lines of the EvAAL benchmarking framework, which is aimed at a fair comparison of indoor positioning systems through a challenging competition under complex, realistic conditions. To evaluate the framework capabilities, we show how it was used in the 2016 Indoor Positioning and Indoor Navigation (IPIN) Competition. The 2016 IPIN competition considered three different scenario dimensions, with a variety of use cases: (1) pedestrian versus robotic navigation, (2) smartphones versus custom hardware usage and (3) real-time positioning versus off-line post-processing. A total of four competition tracks were evaluated under the same EvAAL benchmark framework in order to validate its potential to become a standard for evaluating indoor localization solutions. The experience gained during the competition and feedback from track organizers and competitors showed that the EvAAL framework is flexible enough to successfully fit the very different tracks and appears adequate to compare indoor positioning systems.

  14. Comparing the Performance of Indoor Localization Systems through the EvAAL Framework

    PubMed Central

    2017-01-01

    In recent years, indoor localization systems have been the object of significant research activity and of growing interest for their great expected social impact and their impressive business potential. Application areas include tracking and navigation, activity monitoring, personalized advertising, Active and Assisted Living (AAL), traceability, Internet of Things (IoT) networks, and Home-land Security. In spite of the numerous research advances and the great industrial interest, no canned solutions have yet been defined. The diversity and heterogeneity of applications, scenarios, sensor and user requirements, make it difficult to create uniform solutions. From that diverse reality, a main problem is derived that consists in the lack of a consensus both in terms of the metrics and the procedures used to measure the performance of the different indoor localization and navigation proposals. This paper introduces the general lines of the EvAAL benchmarking framework, which is aimed at a fair comparison of indoor positioning systems through a challenging competition under complex, realistic conditions. To evaluate the framework capabilities, we show how it was used in the 2016 Indoor Positioning and Indoor Navigation (IPIN) Competition. The 2016 IPIN competition considered three different scenario dimensions, with a variety of use cases: (1) pedestrian versus robotic navigation, (2) smartphones versus custom hardware usage and (3) real-time positioning versus off-line post-processing. A total of four competition tracks were evaluated under the same EvAAL benchmark framework in order to validate its potential to become a standard for evaluating indoor localization solutions. The experience gained during the competition and feedback from track organizers and competitors showed that the EvAAL framework is flexible enough to successfully fit the very different tracks and appears adequate to compare indoor positioning systems. PMID:29027948

  15. Implementing an indoor smoking ban in prison: enforcement issues and effects on tobacco use, exposure to second-hand smoke and health of inmates.

    PubMed

    Lasnier, Benoit; Cantinotti, Michael; Guyon, Louise; Royer, Ann; Brochu, Serge; Chayer, Lyne

    2011-01-01

    To describe the issues encountered during the implementation of an indoor smoking ban in prison and its effects on self-reported tobacco use, perceived exposure to second-hand smoke (SHS) and perceived health status of inmates in Quebec's provincial correctional facilities. Quantitative data were obtained from 113 inmates in three provincial correctional facilities in the province of Quebec, Canada. Qualitative data were obtained from 52 inmates and 27 staff members. Participants were recruited through a self-selection process. Particular efforts were made to enrol proportions of men, women, smokers and non-smokers similar to those generally found among correctional populations. Despite the indoor smoking ban, 93% of inmates who declared themselves smokers reported using tobacco products inside the correctional facilities and 48% did not report any reduction in their tobacco use. Only 46% of smokers declared having been caught smoking inside the facility, and more than half of them (58%) reported no disciplinary consequences to their smoking. A majority of inmates incarcerated before the implementation of the ban (66%) did not perceive a reduction of their exposure to SHS following the indoor ban. Enforcement issues were encountered during the implementation of the indoor ban, notably because of the amendment made to the original regulation (total smoking ban) and tolerance from smokers in the staff towards indoor smoking. They were also related to perceptions that banning indoor smoking is complex and poses management problems. This study's findings emphasize the importance of considering organizational and environmental factors when planning the implementation of an indoor smoking ban in correctional facilities.

  16. An Indoor Location-Based Control System Using Bluetooth Beacons for IoT Systems.

    PubMed

    Huh, Jun-Ho; Seo, Kyungryong

    2017-12-19

    The indoor location-based control system estimates the indoor position of a user to provide the service he/she requires. The major elements involved in the system are the localization server, service-provision client, user application positioning technology. The localization server controls access of terminal devices (e.g., Smart Phones and other wireless devices) to determine their locations within a specified space first and then the service-provision client initiates required services such as indoor navigation and monitoring/surveillance. The user application provides necessary data to let the server to localize the devices or allow the user to receive various services from the client. The major technological elements involved in this system are indoor space partition method, Bluetooth 4.0, RSSI (Received Signal Strength Indication) and trilateration. The system also employs the BLE communication technology when determining the position of the user in an indoor space. The position information obtained is then used to control a specific device(s). These technologies are fundamental in achieving a "Smart Living". An indoor location-based control system that provides services by estimating user's indoor locations has been implemented in this study (First scenario). The algorithm introduced in this study (Second scenario) is effective in extracting valid samples from the RSSI dataset but has it has some drawbacks as well. Although we used a range-average algorithm that measures the shortest distance, there are some limitations because the measurement results depend on the sample size and the sample efficiency depends on sampling speeds and environmental changes. However, the Bluetooth system can be implemented at a relatively low cost so that once the problem of precision is solved, it can be applied to various fields.

  17. An Indoor Location-Based Control System Using Bluetooth Beacons for IoT Systems

    PubMed Central

    Huh, Jun-Ho; Seo, Kyungryong

    2017-01-01

    The indoor location-based control system estimates the indoor position of a user to provide the service he/she requires. The major elements involved in the system are the localization server, service-provision client, user application positioning technology. The localization server controls access of terminal devices (e.g., Smart Phones and other wireless devices) to determine their locations within a specified space first and then the service-provision client initiates required services such as indoor navigation and monitoring/surveillance. The user application provides necessary data to let the server to localize the devices or allow the user to receive various services from the client. The major technological elements involved in this system are indoor space partition method, Bluetooth 4.0, RSSI (Received Signal Strength Indication) and trilateration. The system also employs the BLE communication technology when determining the position of the user in an indoor space. The position information obtained is then used to control a specific device(s). These technologies are fundamental in achieving a “Smart Living”. An indoor location-based control system that provides services by estimating user’s indoor locations has been implemented in this study (First scenario). The algorithm introduced in this study (Second scenario) is effective in extracting valid samples from the RSSI dataset but has it has some drawbacks as well. Although we used a range-average algorithm that measures the shortest distance, there are some limitations because the measurement results depend on the sample size and the sample efficiency depends on sampling speeds and environmental changes. However, the Bluetooth system can be implemented at a relatively low cost so that once the problem of precision is solved, it can be applied to various fields. PMID:29257044

  18. Integration of GIS and Bim for Indoor Geovisual Analytics

    NASA Astrophysics Data System (ADS)

    Wu, B.; Zhang, S.

    2016-06-01

    This paper presents an endeavour of integration of GIS (Geographical Information System) and BIM (Building Information Modelling) for indoor geovisual analytics. The merits of two types of technologies, GIS and BIM are firstly analysed in the context of indoor environment. GIS has well-developed capabilities of spatial analysis such as network analysis, while BIM has the advantages for indoor 3D modelling and dynamic simulation. This paper firstly investigates the important aspects for integrating GIS and BIM. Different data standards and formats such as the IFC (Industry Foundation Classes) and GML (Geography Markup Language) are discussed. Their merits and limitations in data transformation between GIS and BIM are analysed in terms of semantic and geometric information. An optimized approach for data exchange between GIS and BIM datasets is then proposed. After that, a strategy of using BIM for 3D indoor modelling, GIS for spatial analysis, and BIM again for visualization and dynamic simulation of the analysis results is presented. Based on the developments, this paper selects a typical problem, optimized indoor emergency evacuation, to demonstrate the integration of GIS and BIM for indoor geovisual analytics. The block Z of the Hong Kong Polytechnic University is selected as a test site. Detailed indoor and outdoor 3D models of the block Z are created using a BIM software Revit. The 3D models are transferred to a GIS software ArcGIS to carry out spatial analysis. Optimized evacuation plans considering dynamic constraints are generated based on network analysis in ArcGIS assuming there is a fire accident inside the building. The analysis results are then transferred back to BIM software for visualization and dynamic simulation. The developed methods and results are of significance to facilitate future development of GIS and BIM integrated solutions in various applications.

  19. Environmental site assessments and audits: Building inspection requirements

    NASA Astrophysics Data System (ADS)

    Lange, John H.; Kaiser, Genevieve; Thomulka, Kenneth W.

    1994-01-01

    Environmental site assessment criteria were originally developed by organizations that focused, almost exclusively, on surface, subsurface, and pollution source contamination. Many of the hazards associated with indoor environments and building structures were traditionally not considered when evaluating sources and entities of environmental pollution. Since a large number of building materials are potentially hazardous, careful evaluation is necessary. Until recently, little information on building inspection requirements of environmental problems has been published. Traditionally, asbestos has been the main component of concern. The ever-changing environmental standards have dramatically expanded the scope of building surveys. Indoor environmental concerns, for example, currently include formaldehyde, lead-based paint, polychlorinated biphenyls, radon, and indoor air pollution. Environmental regulations are being expanded and developed that specifically include building structures. These regulatory standards are being triggered by an increased awareness of health effects from indoor exposure, fires, spills, and other accidents that have resulted in injury, death, and financial loss. This article discusses various aspects of assessments for building structures.

  20. Performance Analysis of Classification Methods for Indoor Localization in Vlc Networks

    NASA Astrophysics Data System (ADS)

    Sánchez-Rodríguez, D.; Alonso-González, I.; Sánchez-Medina, J.; Ley-Bosch, C.; Díaz-Vilariño, L.

    2017-09-01

    Indoor localization has gained considerable attention over the past decade because of the emergence of numerous location-aware services. Research works have been proposed on solving this problem by using wireless networks. Nevertheless, there is still much room for improvement in the quality of the proposed classification models. In the last years, the emergence of Visible Light Communication (VLC) brings a brand new approach to high quality indoor positioning. Among its advantages, this new technology is immune to electromagnetic interference and has the advantage of having a smaller variance of received signal power compared to RF based technologies. In this paper, a performance analysis of seventeen machine leaning classifiers for indoor localization in VLC networks is carried out. The analysis is accomplished in terms of accuracy, average distance error, computational cost, training size, precision and recall measurements. Results show that most of classifiers harvest an accuracy above 90 %. The best tested classifier yielded a 99.0 % accuracy, with an average error distance of 0.3 centimetres.

  1. NIOSH testimony on indoor air quality: Selected references before the Subcommittee on Superfund, Ocean and Water Protection, Committee on Environment and Public Works, United States Senate by J. Donald Millar, May 26, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-09-01

    The National Institute for Occupational Safety and Health (NIOSH) has compiled the document in response to an increasing number of requests for information about indoor air quality (IAQ), including sick building syndrome. Included in the publication are: NIOSH Congressional testimony that describes the NIOSH IAQ investigations program and summarizes the results of NIOSH research and findings on IAQ problems, NIOSH guidance for conducting indoor air quality investigations, NIOSH journal article on evaluating building ventilation systems, and list of non-NIOSH publications on indoor air quality. As the Federal agency responsible for conducting research and making recommendations for occupational safety and healthmore » standards, NIOSH limits its IAQ activities to the occupational environment. The U.S. Environmental Protection Agency (EPA) also conducts an IAQ program and can be contacted for information regarding both occupational and non-occupational settings.« less

  2. Automatic Recognition of Indoor Navigation Elements from Kinect Point Clouds

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Kang, Z.

    2017-09-01

    This paper realizes automatically the navigating elements defined by indoorGML data standard - door, stairway and wall. The data used is indoor 3D point cloud collected by Kinect v2 launched in 2011 through the means of ORB-SLAM. By contrast, it is cheaper and more convenient than lidar, but the point clouds also have the problem of noise, registration error and large data volume. Hence, we adopt a shape descriptor - histogram of distances between two randomly chosen points, proposed by Osada and merges with other descriptor - in conjunction with random forest classifier to recognize the navigation elements (door, stairway and wall) from Kinect point clouds. This research acquires navigation elements and their 3-d location information from each single data frame through segmentation of point clouds, boundary extraction, feature calculation and classification. Finally, this paper utilizes the acquired navigation elements and their information to generate the state data of the indoor navigation module automatically. The experimental results demonstrate a high recognition accuracy of the proposed method.

  3. Impact of Indoor Physical Environment on Learning Efficiency in Different Types of Tasks: A 3 × 4 × 3 Full Factorial Design Analysis.

    PubMed

    Xiong, Lilin; Huang, Xiao; Li, Jie; Mao, Peng; Wang, Xiang; Wang, Rubing; Tang, Meng

    2018-06-13

    Indoor physical environments appear to influence learning efficiency nowadays. For improvement in learning efficiency, environmental scenarios need to be designed when occupants engage in different learning tasks. However, how learning efficiency is affected by indoor physical environment based on task types are still not well understood. The present study aims to explore the impacts of three physical environmental factors (i.e., temperature, noise, and illuminance) on learning efficiency according to different types of tasks, including perception, memory, problem-solving, and attention-oriented tasks. A 3 × 4 × 3 full factorial design experiment was employed in a university classroom with 10 subjects recruited. Environmental scenarios were generated based on different levels of temperature (17 °C, 22 °C, and 27 °C), noise (40 dB(A), 50 dB(A), 60 dB(A), and 70 dB(A)) and illuminance (60 lx, 300 lx, and 2200 lx). Accuracy rate (AC), reaction time (RT), and the final performance indicator (PI) were used to quantify learning efficiency. The results showed ambient temperature, noise, and illuminance exerted significant main effect on learning efficiency based on four task types. Significant concurrent effects of the three factors on final learning efficiency was found in all tasks except problem-solving-oriented task. The optimal environmental scenarios for top learning efficiency were further identified under different environmental interactions. The highest learning efficiency came in thermoneutral, relatively quiet, and bright conditions in perception-oriented task. Subjects performed best under warm, relatively quiet, and moderately light exposure when recalling images in the memory-oriented task. Learning efficiency peaked to maxima in thermoneutral, fairly quiet, and moderately light environment in problem-solving process while in cool, fairly quiet and bright environment with regard to attention-oriented task. The study provides guidance for building users to conduct effective environmental intervention with simultaneous controls of ambient temperature, noise, and illuminance. It contributes to creating the most suitable indoor physical environment for improving occupants learning efficiency according to different task types. The findings could further supplement the present indoor environment-related standards or norms with providing empirical reference on environmental interactions.

  4. Investigation on Indoor Air Pollution and Childhood Allergies in Households in Six Chinese Cities by Subjective Survey and Field Measurements

    PubMed Central

    Hu, Jinhua; Li, Nianping; Lv, Yang; Liu, Jing; Xie, Jingchao; Zhang, Huibo

    2017-01-01

    Greater attention is currently being paid to the relationship between indoor environment and childhood allergies, however, the lack of reliable data and the disparity among different areas hinders reliable assessment of the relationship. This study focuses on the effect of indoor pollution on Chinese schoolchildren and the relationship between specific household and health problems suffered. The epidemiological questionnaire survey and the field measurement of the indoor thermal environment and primary air pollutants including CO2, fine particulate matter (PM2.5), chemical pollutants and fungi were performed in six Chinese cities. A total of 912 questionnaires were eligible for statistical analyses and sixty houses with schoolchildren aged 9–12 were selected for field investigation. Compared with Chinese national standards, inappropriate indoor relative humidity (<30% or >70%), CO2 concentration exceeding 1000 ppm and high PM2.5 levels were found in some monitored houses. Di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) were the most frequently detected semi-volatile organic compounds (SVOCs) in house dust. Cladosporium, Aspergillus and Penicillium were detected in both indoor air and house dust. This study indicates that a thermal environment with CO2 exceeding 1000 ppm, DEHP and DBP exceeding 1000 μg/g, and high level of PM2.5, Cladosporium, Aspergillus and Penicillium increases the risk of children’s allergies. PMID:28850091

  5. Investigation on Indoor Air Pollution and Childhood Allergies in Households in Six Chinese Cities by Subjective Survey and Field Measurements.

    PubMed

    Hu, Jinhua; Li, Nianping; Lv, Yang; Liu, Jing; Xie, Jingchao; Zhang, Huibo

    2017-08-29

    Greater attention is currently being paid to the relationship between indoor environment and childhood allergies, however, the lack of reliable data and the disparity among different areas hinders reliable assessment of the relationship. This study focuses on the effect of indoor pollution on Chinese schoolchildren and the relationship between specific household and health problems suffered. The epidemiological questionnaire survey and the field measurement of the indoor thermal environment and primary air pollutants including CO₂, fine particulate matter (PM 2.5 ), chemical pollutants and fungi were performed in six Chinese cities. A total of 912 questionnaires were eligible for statistical analyses and sixty houses with schoolchildren aged 9-12 were selected for field investigation. Compared with Chinese national standards, inappropriate indoor relative humidity (<30% or >70%), CO₂ concentration exceeding 1000 ppm and high PM 2.5 levels were found in some monitored houses. Di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) were the most frequently detected semi-volatile organic compounds (SVOCs) in house dust. Cladosporium , Aspergillus and Penicillium were detected in both indoor air and house dust. This study indicates that a thermal environment with CO₂ exceeding 1000 ppm, DEHP and DBP exceeding 1000 μg/g, and high level of PM 2.5 , Cladosporium , Aspergillus and Penicillium increases the risk of children's allergies.

  6. Bringing Outdoor Play Indoors in United Arab Emirates: Mud as a Powerful Binding Element

    ERIC Educational Resources Information Center

    Baker, Fiona S.

    2017-01-01

    Play and learning in the outdoors have been long-standing features of early years care and education. Unfortunately, children around the world no longer have sufficient opportunities for outdoor play for a variety of reasons. In the United Arab Emirates, climatic constraints limit outdoor play for 6 months of the year. One group of preservice…

  7. The Benefits of Mixed Flow Technology: Roof Exhaust Fans.

    ERIC Educational Resources Information Center

    Tetley, Paul A.

    2001-01-01

    Explores the problems associated with laboratory workstation exhaust faced by most colleges and universities and explains how the selection of a proper fume hood exhaust system can prevent or eliminate these problems and provide a clean and safe lab environment. Also highlighted are indoor air quality legal implications. (GR)

  8. Perspective for Future Research Direction About Health Impact of Ambient Air Pollution in China.

    PubMed

    Dong, Guang-Hui

    2017-01-01

    Air pollution has become one of the major risks to human health because of the progressive increase in the use of vehicles powered by fossil fuels. Although lots of works on the health impact of ambient air pollution have been done in China, the following recommendations for future research were identified in this chapter: (1) the synergistic effect of indoor air pollution with climate change; (2) develop new technologies to improve accurate assessment of air pollution exposure; (3) well-designed cohort study of sensitive populations including children, older people, and people with chronic health problems; (4) multi-omics technologies in the underlying mechanisms study; and (5) benefits evaluation of improvement of air quality. In conclusion, China is becoming a suitable study site, providing an ideal opportunity to evaluate the effects of environmental pollution, including air pollution, on human health, which might serve as an example for developing countries where health impacts of air pollution are as serious as in China.

  9. Energy and IAQ Implications of Alternative Minimum Ventilation Rates in California Retail and School Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutton, Spencer M.; Fisk, William J.

    For a stand-alone retail building, a primary school, and a secondary school in each of the 16 California climate zones, the EnergyPlus building energy simulation model was used to estimate how minimum mechanical ventilation rates (VRs) affect energy use and indoor air concentrations of an indoor-generated contaminant. The modeling indicates large changes in heating energy use, but only moderate changes in total building energy use, as minimum VRs in the retail building are changed. For example, predicted state-wide heating energy consumption in the retail building decreases by more than 50% and total building energy consumption decreases by approximately 10% asmore » the minimum VR decreases from the Title 24 requirement to no mechanical ventilation. The primary and secondary schools have notably higher internal heat gains than in the retail building models, resulting in significantly reduced demand for heating. The school heating energy use was correspondingly less sensitive to changes in the minimum VR. The modeling indicates that minimum VRs influence HVAC energy and total energy use in schools by only a few percent. For both the retail building and the school buildings, minimum VRs substantially affected the predicted annual-average indoor concentrations of an indoor generated contaminant, with larger effects in schools. The shape of the curves relating contaminant concentrations with VRs illustrate the importance of avoiding particularly low VRs.« less

  10. Map showing radon potential of rocks and soils in Fairfax County, Virginia

    USGS Publications Warehouse

    Otton, James K.; Schumann, R. Randall; Owen, Douglass E.; Thurman, Nelson; Duval, Joseph S.

    1988-01-01

    Since 1984, indoor radon has gained national attention as a significant health hazard in the United States. Radon is a colorless, odorless, radioactive gas derived from uranium by radioactive decay. The U.S. Environmental Protection Agency (EPA) now projects that 5,000 to 20,000 lung-cancer deaths per year may be attributed to the long-term exposure to indoor radon and its radioactive decay products. Indoor radon has been previously recognized as a health hazard associated with uranium-bearing mill tailings or building materials, but it was not until December 1984 that some natural soils and rocks were found to be sources of indoor radon at levels comparable to those in uranium mines. It is now suspected that elevated indoor radon levels are far more widespread than initially though. The EPA considers 4 picoCuries of radon per liter of air (pCi/L) as the level (in a year-round measurement) at which actions ought to be taken to lower the concentration of indoor radon. All soils and rocks contain measurable amounts of uranium, which generate measurable amounts of radon. Certain soils and rocks, however, have a greater potential to cause indoor radon problems than others because (1) they have a higher uranium content and thus can generate higher levels of radon in soil gas (gas that occupies the pores of the soil), and (2) the permeability of the sol or rack is sufficiently high that radon-bearing soil gas can flow freely and move indoors through the foundation of the structure. This study was designed to demonstrate the correlation between the geologic environment and indoor radon levels and to demonstrate a method of assessment that could be used by other informed workers in areas of their interest. A parallel study by Gundersen and others (1988) of the radon potential of rocks and soils in Montgomery County, Md., used somewhat different methods of assessment because the data available for and assessment of Montgomery County differed.

  11. Moldy buildings, health of their occupants and fungal prevention.

    PubMed

    Mihinova, D; Pieckova, E

    2012-01-01

    Microscopic fungi are important biological pollutants in the indoor environment, they are spread generally: on building materials, carpets, ceiling tiles, insulations, any surfaces, wallpapers, or in heating, ventilation, and air conditioning systems. Molds are able to grow on any materials, as long as moisture and oxygen are available. Exposure to fungi in indoor environments (esp. in water-damaged buildings) can cause adverse health effects, such as allergy, asthma, hypersensitivity pneumonia, mucous membrane irritation, different toxic effects, or even mycoses (in immunocompromised individuals) - alone or in combination. As serious adverse health effects could be caused antifungal prevention is an absolute need.This review article summarizes the occurrence of fungi in the indoor environment of buildings and their contribution to occupants´ health problems, and preventive measures against molds (Tab. 1, Fig. 1, Ref. 48).

  12. The Duluth Clean Indoor Air Ordinance: Problems and Success in Fighting the Tobacco Industry at the Local Level in the 21st Century

    PubMed Central

    Tsoukalas, Theodore; Glantz, Stanton A.

    2003-01-01

    Case study methodology was used to investigate the tobacco industry’s strategies to fight local tobacco control efforts in Duluth, Minn. The industry opposed the clean indoor air ordinance indirectly through allies and front groups and directly in a referendum. Health groups failed to win a strong ordinance because they framed it as a youth issue rather than a workplace issue and failed to engage the industry’s economic claims. Opponents’ overexploitation of weaknesses in the ordinance allowed health advocates to construct a stronger version. Health advocates should assume that the tobacco industry will oppose all local tobacco control measures indirectly, directly, or both. Clean indoor air ordinances should be framed as workplace safety issues. PMID:12893598

  13. Review of Strategies for Thermal Efficiency in Landscape Planning of Cities for Conservation of Energy and Enhanced Climatic Resilience to Urban Warming

    NASA Astrophysics Data System (ADS)

    Imam, Aabshar U. K.; Banerjee, Uttam Kumar

    2017-09-01

    Thermal discomfort, increased energy consumption, and heat related stress are some of the most prominent consequences of urban warming. Instances of heat related deaths have been reported; the elderly and the poor remain especially vulnerable. Urban greening has often been cited as an economically efficient method for inducing ambient cooling. Consequently, increased impetus is given to provision of public green spaces. However, a general increase in urban green cover especially in the form of parks and green spaces may be inadequate to achieve desired results. This article serves to highlight the thermal heterogeneity of landcape elements and stresses on the need for strategic shade provision. The originality of this study lies in the fact that it provides a comparative review of energy conservation potential of public and private green spaces. It is found that large parks may not have substantial cooling effect on the indoor built environment. Moreover, people tend to spend more time indoors than outdoors. Thus the need for greening of private areas has become an undeniable climatic necessity. The potential of shade trees, green walls, and roof gardens for cooling of built environment are discussed with quantitative evidences of their thermal and economic benefits. Parameters incurring cost expenditure and weaknesses of the greening strategies are enumerated for enabling prudent selection/implementation of strategies. Proposals are generated to improve climatic resilience to urban warming and for diligent planning of cities.

  14. An evaluation of indoor and outdoor biological particulate matter

    NASA Astrophysics Data System (ADS)

    Menetrez, M. Y.; Foarde, K. K.; Esch, R. K.; Schwartz, T. D.; Dean, T. R.; Hays, M. D.; Cho, S. H.; Betancourt, D. A.; Moore, S. A.

    The incidences of allergies, allergic diseases and asthma are increasing world wide. Global climate change is likely to impact plants and animals, as well as microorganisms. The World Health Organization, U.S. Environmental Protection Agency, U.S. Department of Agriculture, U.S. Department of Health and Human Services, and the Intergovernmental Panel on Climate Change cite increased allergic reactions due to climate change as a growing concern. Monitoring of indoor and ambient particulate matter (PM) and the characterization of the content for biological aerosol concentrations has not been extensively performed. Samples from urban and rural North Carolina (NC), and Denver (CO), were collected and analyzed as the goal of this research. A study of PM 10 (<10 μm in aerodynamic diameter) and PM 2.5 (<2.5 μm in aerodynamic diameter) fractions of ambient bioaerosols was undertaken for a six month period to evaluate the potential for long-term concentrations. These airborne bioaerosols can induce irritational, allergic, infectious, and chemical responses in exposed individuals. Three separate sites were monitored, samples were collected and analyzed for mass and biological content (endotoxins, (1,3)-β- D-glucan and protein). Concentrations of these bioaerosols were reported as a function of PM size fraction, mass and volume of air sampled. The results indicated that higher concentrations of biologicals were present in PM 10 than were present in PM 2.5, except when near-roadway conditions existed. This study provides the characterization of ambient bioaerosol concentrations in a variety of areas and conditions.

  15. Satellite sound broadcasting system, portable reception

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser; Vaisnys, Arvydas

    1990-01-01

    Studies are underway at JPL in the emerging area of Satellite Sound Broadcast Service (SSBS) for direct reception by low cost portable, semi portable, mobile and fixed radio receivers. This paper addresses the portable reception of digital broadcasting of monophonic audio with source material band limited to 5 KHz (source audio comparable to commercial AM broadcasting). The proposed system provides transmission robustness, uniformity of performance over the coverage area and excellent frequency reuse. Propagation problems associated with indoor portable reception are considered in detail and innovative antenna concepts are suggested to mitigate these problems. It is shown that, with the marriage of proper technologies a single medium power satellite can provide substantial direct satellite audio broadcast capability to CONUS in UHF or L Bands, for high quality portable indoor reception by low cost radio receivers.

  16. Geologic and climatic controls on the radon emanation coefficient

    USGS Publications Warehouse

    Schumann, R.R.; Gundersen, L.C.S.; ,

    1997-01-01

    Geologic, pedologic, and climatic factors, including radium content, grain size, siting of radon parents within soil grains or on grain coatings, and soil moisture conditions, determine a soil's emanating power and radon transport characteristics. Data from field studies indicate that soils derived from similar parent rocks in different regions have significantly different emanation coefficients due to the effects of climate on these soil characteristics. An important tool for measuring radon source strength (i.e., radium content) is ground-based and aerial gamma radioactivity measurements. Regional correlations between soil radium content, determined by gamma spectrometry, and soil-gas or indoor radon concentrations can be traced to the influence of climatic and geologic factors on intrinsic permeability and radon emanation coefficients. Data on soil radium content, permeability, and moisture content, when combined with data on emanation coefficients, can form a framework for development of quantitative predictive models for radon generation in rocks and soils.

  17. Strategies for Limiting Engineers' Potential Liability for Indoor Air Quality Problems.

    PubMed

    von Oppenfeld, Rolf R; Freeze, Mark E; Sabo, Sean M

    1998-10-01

    Engineers face indoor air quality (IAQ) issues at the design phase of building construction as well as during the investigation and mitigation of potential indoor air pollution problems during building operation. IAQ issues that can be identified are "building-related illnesses" that may include problems of volatile organic compounds (VOCs). IAQ issues that cannot be identified are termed "sick building syndrome." Frequently, microorganism-caused illnesses are difficult to confirm. Engineers who provide professional services that directly or indirectly impact IAQ face significant potential liability to clients and third parties when performing these duties. Potential theories supporting liability claims for IAQ problems against engineers include breach of contract and various common law tort theories such as negligence and negligent misrepresentation. Furthermore, an increasing number of federal, state, and local regulations affect IAQ issues and can directly increase the potential liability of engineers. A duty to disclose potential or actual air quality concerns to third parties may apply for engineers in given circumstances. Such a duty may arise from judicial precedent, the Model Guide for Professional Conduct for Engineers, or the Code of Ethics for Engineers. Practical strategies engineers can use to protect themselves from liability include regular training and continuing education in relevant regulatory, scientific, and case law developments; detailed documentation and recordkeeping practices; adequate insurance coverage; contractual indemnity clauses; contractual provisions limiting liability to the scope of work performed; and contractual provisions limiting the extent of liability for engineers' negligence. Furthermore, through the proper use of building materials and construction techniques, an engineer or other design professional can effectively limit the potential for IAQ liability.

  18. Dynamic modeling of human thermal comfort after the transition from an indoor to an outdoor hot environment.

    PubMed

    Katavoutas, George; Flocas, Helena A; Matzarakis, Andreas

    2015-02-01

    Thermal comfort under non-steady-state conditions primarily deals with rapid environmental transients and significant alterations of the meteorological conditions, activity, or clothing pattern within the time scale of some minutes. In such cases, thermal history plays an important role in respect to time, and thus, a dynamic approach is appropriate. The present study aims to investigate the dynamic thermal adaptation process of a human individual, after his transition from a typical indoor climate to an outdoor hot environment. Three scenarios of thermal transients have been considered for a range of hot outdoor environmental conditions, employing the dynamic two-node IMEM model. The differences among them concern the radiation field, the activity level, and the body position. The temporal pattern of body temperatures as well as the range of skin wettedness and of water loss have been investigated and compared among the scenarios and the environmental conditions considered. The structure and the temporal course of human energy fluxes as well as the identification of the contribution of body temperatures to energy fluxes have also been studied and compared. In general, the simulation results indicate that the response of a person, coming from the same neutral indoor climate, varies depending on the scenario followed by the individual while being outdoors. The combination of radiation field (shade or not) with the kind of activity (sitting or walking) and the outdoor conditions differentiates significantly the thermal state of the human body. Therefore, 75% of the skin wettedness values do not exceed the thermal comfort limit at rest for a sitting individual under the shade. This percentage decreases dramatically, less than 25%, under direct solar radiation and exceeds 75% for a walking person under direct solar radiation.

  19. Experimental evaluation of passive cooling using phase change materials (PCM) for reducing overheating in public building

    NASA Astrophysics Data System (ADS)

    Ahmed, Abdullahi; Mateo-Garcia, Monica; McGough, Danny; Caratella, Kassim; Ure, Zafer

    2018-02-01

    Indoor Environmental Quality (IEQ) is essential for the health and productivity of building users. The risk of overheating in buildings is increasing due to increased density of occupancy of people and heat emitting equipment, increase in ambient temperature due to manifestation of climate change or changes in urban micro-climate. One of the solutions to building overheating is to inject some exposed thermal mass into the interior of the building. There are many different types of thermal storage materials which typically includes sensible heat storage materials such as concrete, bricks, rocks etc. It is very difficult to increase the thermal mass of existing buildings using these sensible heat storage materials. Alternative to these, there are latent heat storage materials called Phase Change Materials (PCM), which have high thermal storage capacity per unit volume of materials making them easy to implement within retrofit project. The use of Passive Cooling Thermal Energy Storage (TES) systems in the form of PCM PlusICE Solutions has been investigated in occupied spaces to improve indoor environmental quality. The work has been carried out using experimental set-up in existing spaces and monitored through the summer the months. The rooms have been monitored using wireless temperature and humidity sensors. There appears to be significant improvement in indoor temperature of up to 5°K in the room with the PCM compared to the monitored control spaces. The success of PCM for passive cooling is strongly dependent on the ventilation strategy employed in the spaces. The use of night time cooling to purge the stored thermal energy is essential for improved efficacy of the systems to reduce overheating in the spaces. The investigation is carried within the EU funded RESEEPEE project.

  20. An INS/WiFi Indoor Localization System Based on the Weighted Least Squares.

    PubMed

    Chen, Jian; Ou, Gang; Peng, Ao; Zheng, Lingxiang; Shi, Jianghong

    2018-05-07

    For smartphone indoor localization, an INS/WiFi hybrid localization system is proposed in this paper. Acceleration and angular velocity are used to estimate step lengths and headings. The problem with INS is that positioning errors grow with time. Using radio signal strength as a fingerprint is a widely used technology. The main problem with fingerprint matching is mismatching due to noise. Taking into account the different shortcomings and advantages, inertial sensors and WiFi from smartphones are integrated into indoor positioning. For a hybrid localization system, pre-processing techniques are used to enhance the WiFi signal quality. An inertial navigation system limits the range of WiFi matching. A Multi-dimensional Dynamic Time Warping (MDTW) is proposed to calculate the distance between the measured signals and the fingerprint in the database. A MDTW-based weighted least squares (WLS) is proposed for fusing multiple fingerprint localization results to improve positioning accuracy and robustness. Using four modes (calling, dangling, handheld and pocket), we carried out walking experiments in a corridor, a study room and a library stack room. Experimental results show that average localization accuracy for the hybrid system is about 2.03 m.

  1. An INS/WiFi Indoor Localization System Based on the Weighted Least Squares

    PubMed Central

    Chen, Jian; Ou, Gang; Zheng, Lingxiang; Shi, Jianghong

    2018-01-01

    For smartphone indoor localization, an INS/WiFi hybrid localization system is proposed in this paper. Acceleration and angular velocity are used to estimate step lengths and headings. The problem with INS is that positioning errors grow with time. Using radio signal strength as a fingerprint is a widely used technology. The main problem with fingerprint matching is mismatching due to noise. Taking into account the different shortcomings and advantages, inertial sensors and WiFi from smartphones are integrated into indoor positioning. For a hybrid localization system, pre-processing techniques are used to enhance the WiFi signal quality. An inertial navigation system limits the range of WiFi matching. A Multi-dimensional Dynamic Time Warping (MDTW) is proposed to calculate the distance between the measured signals and the fingerprint in the database. A MDTW-based weighted least squares (WLS) is proposed for fusing multiple fingerprint localization results to improve positioning accuracy and robustness. Using four modes (calling, dangling, handheld and pocket), we carried out walking experiments in a corridor, a study room and a library stack room. Experimental results show that average localization accuracy for the hybrid system is about 2.03 m. PMID:29735960

  2. APFiLoc: An Infrastructure-Free Indoor Localization Method Fusing Smartphone Inertial Sensors, Landmarks and Map Information

    PubMed Central

    Shang, Jianga; Gu, Fuqiang; Hu, Xuke; Kealy, Allison

    2015-01-01

    The utility and adoption of indoor localization applications have been limited due to the complex nature of the physical environment combined with an increasing requirement for more robust localization performance. Existing solutions to this problem are either too expensive or too dependent on infrastructure such as Wi-Fi access points. To address this problem, we propose APFiLoc—a low cost, smartphone-based framework for indoor localization. The key idea behind this framework is to obtain landmarks within the environment and to use the augmented particle filter to fuse them with measurements from smartphone sensors and map information. A clustering method based on distance constraints is developed to detect organic landmarks in an unsupervised way, and the least square support vector machine is used to classify seed landmarks. A series of real-world experiments were conducted in complex environments including multiple floors and the results show APFiLoc can achieve 80% accuracy (phone in the hand) and around 70% accuracy (phone in the pocket) of the error less than 2 m error without the assistance of infrastructure like Wi-Fi access points. PMID:26516858

  3. Floods and Mold Growth

    EPA Pesticide Factsheets

    Mold growth may be a problem after flooding. Excess moisture in the home is cause for concern about indoor air quality primarily because it provides breeding conditions for pests, molds and other microorganisms.

  4. Climate change impact on microclimate of work environment related to occupational health and productivity.

    PubMed

    Marchetti, Enrico; Capone, Pasquale; Freda, Daniela

    2016-01-01

    Climate change is a global emergency that influences human health and occupational safety. Global warming characterized by an increase in temperature of the ambience and humidity affects human health directly impairing body thermoregulation with serious consequences: dehydration, fatigue, heat stroke and even death. Several studies have demonstrated negative effects of climate change on working populations in a wide variety of workplaces with particular regard to outdoor and uncooled indoor workplaces. Most vulnerable workers are outdoor workers in tropical and subtropical countries usually involved in heavy labor during hot seasons. Many of the consequences therefore, regarding working people are possible, even without health symptoms by reducing work productivity. The scope of this review is to investigate effects of climate change on workers both in relation to health and work productivity. This study has been realized by analyzing recent international literature. In order to reduce negative effects of climate change on working populations it is essential to implement preventive measures with a multidisciplinary strategy limiting health risks and improving work productivity.

  5. Indoor Temperatures in Patient Waiting Rooms in Eight Rural Primary Health Care Centers in Northern South Africa and the Related Potential Risks to Human Health and Wellbeing

    PubMed Central

    Wright, Caradee Y.; Street, Renée A.; Cele, Nokulunga; Kunene, Zamantimande; Balakrishna, Yusentha; Albers, Patricia N.; Mathee, Angela

    2017-01-01

    Increased temperatures affect human health and vulnerable groups including infants, children, the elderly and people with pre-existing diseases. In the southern African region climate models predict increases in ambient temperature twice that of the global average temperature increase. Poor ventilation and lack of air conditioning in primary health care clinics, where duration of waiting time may be as long as several hours, pose a possible threat to patients seeking primary health care. Drawing on information measured by temperature loggers installed in eight clinics in Giyani, Limpopo Province of South Africa, we were able to determine indoor temperatures of waiting rooms in eight rural primary health care facilities. Mean monthly temperature measurements inside the clinics were warmer during the summer months of December, January and February, and cooler during the autumn months of March, April and May. The highest mean monthly temperature of 31.4 ± 2.7 °C was recorded in one clinic during February 2016. Maximum daily indoor clinic temperatures exceeded 38 °C in some clinics. Indoor temperatures were compared to ambient (outdoor) temperatures and the mean difference between the two showed clinic waiting room temperatures were higher by 2–4 °C on average. Apparent temperature (AT) incorporating relative humidity readings made in the clinics showed ‘realfeel’ temperatures were >4 °C higher than measured indoor temperature, suggesting a feeling of ‘stuffiness’ and discomfort may have been experienced in the waiting room areas. During typical clinic operational hours of 8h00 to 16h00, mean ATs fell into temperature ranges associated with heat–health impact warning categories of ‘caution’ and ‘extreme caution’. PMID:28067816

  6. Indoor Temperatures in Patient Waiting Rooms in Eight Rural Primary Health Care Centers in Northern South Africa and the Related Potential Risks to Human Health and Wellbeing.

    PubMed

    Wright, Caradee Y; Street, Renée A; Cele, Nokulunga; Kunene, Zamantimande; Balakrishna, Yusentha; Albers, Patricia N; Mathee, Angela

    2017-01-06

    Increased temperatures affect human health and vulnerable groups including infants, children, the elderly and people with pre-existing diseases. In the southern African region climate models predict increases in ambient temperature twice that of the global average temperature increase. Poor ventilation and lack of air conditioning in primary health care clinics, where duration of waiting time may be as long as several hours, pose a possible threat to patients seeking primary health care. Drawing on information measured by temperature loggers installed in eight clinics in Giyani, Limpopo Province of South Africa, we were able to determine indoor temperatures of waiting rooms in eight rural primary health care facilities. Mean monthly temperature measurements inside the clinics were warmer during the summer months of December, January and February, and cooler during the autumn months of March, April and May. The highest mean monthly temperature of 31.4 ± 2.7 °C was recorded in one clinic during February 2016. Maximum daily indoor clinic temperatures exceeded 38 °C in some clinics. Indoor temperatures were compared to ambient (outdoor) temperatures and the mean difference between the two showed clinic waiting room temperatures were higher by 2-4 °C on average. Apparent temperature (AT) incorporating relative humidity readings made in the clinics showed 'realfeel' temperatures were >4 °C higher than measured indoor temperature, suggesting a feeling of 'stuffiness' and discomfort may have been experienced in the waiting room areas. During typical clinic operational hours of 8h00 to 16h00, mean ATs fell into temperature ranges associated with heat-health impact warning categories of 'caution' and 'extreme caution'.

  7. Towards fish-eye camera based in-home activity assessment.

    PubMed

    Bas, Erhan; Erdogmus, Deniz; Ozertem, Umut; Pavel, Misha

    2008-01-01

    Indoors localization, activity classification, and behavioral modeling are increasingly important for surveillance applications including independent living and remote health monitoring. In this paper, we study the suitability of fish-eye cameras (high-resolution CCD sensors with very-wide-angle lenses) for the purpose of monitoring people in indoors environments. The results indicate that these sensors are very useful for automatic activity monitoring and people tracking. We identify practical and mathematical problems related to information extraction from these video sequences and identify future directions to solve these issues.

  8. Going Straight to the Source.

    ERIC Educational Resources Information Center

    Crawford, Gary N.

    1998-01-01

    Explains how a well-designed heating and air conditioning system with good facility maintenance can prevent most indoor air quality problems in schools. Stresses attention to issues of leak prevention and sanitation. (GR)

  9. The Navajo Nation Radon Program

    EPA Pesticide Factsheets

    The Bois Forte Indoor Air Quality Program acted swiftly and aggressively to tackle mold and moisture problems in its community members’ homes after several residents became ill as a result of environmental exposures.

  10. HyMoTrack: A Mobile AR Navigation System for Complex Indoor Environments.

    PubMed

    Gerstweiler, Georg; Vonach, Emanuel; Kaufmann, Hannes

    2015-12-24

    Navigating in unknown big indoor environments with static 2D maps is a challenge, especially when time is a critical factor. In order to provide a mobile assistant, capable of supporting people while navigating in indoor locations, an accurate and reliable localization system is required in almost every corner of the building. We present a solution to this problem through a hybrid tracking system specifically designed for complex indoor spaces, which runs on mobile devices like smartphones or tablets. The developed algorithm only uses the available sensors built into standard mobile devices, especially the inertial sensors and the RGB camera. The combination of multiple optical tracking technologies, such as 2D natural features and features of more complex three-dimensional structures guarantees the robustness of the system. All processing is done locally and no network connection is needed. State-of-the-art indoor tracking approaches use mainly radio-frequency signals like Wi-Fi or Bluetooth for localizing a user. In contrast to these approaches, the main advantage of the developed system is the capability of delivering a continuous 3D position and orientation of the mobile device with centimeter accuracy. This makes it usable for localization and 3D augmentation purposes, e.g. navigation tasks or location-based information visualization.

  11. HyMoTrack: A Mobile AR Navigation System for Complex Indoor Environments

    PubMed Central

    Gerstweiler, Georg; Vonach, Emanuel; Kaufmann, Hannes

    2015-01-01

    Navigating in unknown big indoor environments with static 2D maps is a challenge, especially when time is a critical factor. In order to provide a mobile assistant, capable of supporting people while navigating in indoor locations, an accurate and reliable localization system is required in almost every corner of the building. We present a solution to this problem through a hybrid tracking system specifically designed for complex indoor spaces, which runs on mobile devices like smartphones or tablets. The developed algorithm only uses the available sensors built into standard mobile devices, especially the inertial sensors and the RGB camera. The combination of multiple optical tracking technologies, such as 2D natural features and features of more complex three-dimensional structures guarantees the robustness of the system. All processing is done locally and no network connection is needed. State-of-the-art indoor tracking approaches use mainly radio-frequency signals like Wi-Fi or Bluetooth for localizing a user. In contrast to these approaches, the main advantage of the developed system is the capability of delivering a continuous 3D position and orientation of the mobile device with centimeter accuracy. This makes it usable for localization and 3D augmentation purposes, e.g. navigation tasks or location-based information visualization. PMID:26712755

  12. Health effects of indoor odorants.

    PubMed Central

    Cone, J E; Shusterman, D

    1991-01-01

    People assess the quality of the air indoors primarily on the basis of its odors and on their perception of associated health risk. The major current contributors to indoor odorants are human occupant odors (body odor), environmental tobacco smoke, volatile building materials, bio-odorants (particularly mold and animal-derived materials), air fresheners, deodorants, and perfumes. These are most often present as complex mixtures, making measurement of the total odorant problem difficult. There is no current method of measuring human body odor, other than by human panel studies of expert judges of air quality. Human body odors have been quantitated in terms of the "olf" which is the amount of air pollution produced by the average person. Another quantitative unit of odorants is the "decipol," which is the perceived level of pollution produced by the average human ventilated by 10 L/sec of unpolluted air or its equivalent level of dissatisfaction from nonhuman air pollutants. The standard regulatory approach, focusing on individual constituents or chemicals, is not likely to be successful in adequately controlling odorants in indoor air. Besides the current approach of setting minimum ventilation standards to prevent health effects due to indoor air pollution, a standard based on the olf or decipol unit might be more efficacious as well as simpler to measure. PMID:1821378

  13. 3D modeling of building indoor spaces and closed doors from imagery and point clouds.

    PubMed

    Díaz-Vilariño, Lucía; Khoshelham, Kourosh; Martínez-Sánchez, Joaquín; Arias, Pedro

    2015-02-03

    3D models of indoor environments are increasingly gaining importance due to the wide range of applications to which they can be subjected: from redesign and visualization to monitoring and simulation. These models usually exist only for newly constructed buildings; therefore, the development of automatic approaches for reconstructing 3D indoors from imagery and/or point clouds can make the process easier, faster and cheaper. Among the constructive elements defining a building interior, doors are very common elements and their detection can be very useful either for knowing the environment structure, to perform an efficient navigation or to plan appropriate evacuation routes. The fact that doors are topologically connected to walls by being coplanar, together with the unavoidable presence of clutter and occlusions indoors, increases the inherent complexity of the automation of the recognition process. In this work, we present a pipeline of techniques used for the reconstruction and interpretation of building interiors based on point clouds and images. The methodology analyses the visibility problem of indoor environments and goes in depth with door candidate detection. The presented approach is tested in real data sets showing its potential with a high door detection rate and applicability for robust and efficient envelope reconstruction.

  14. Joint terminals and relay optimization for two-way power line information exchange systems with QoS constraints

    NASA Astrophysics Data System (ADS)

    Wu, Xiaolin; Rong, Yue

    2015-12-01

    The quality-of-service (QoS) criteria (measured in terms of the minimum capacity requirement in this paper) are very important to practical indoor power line communication (PLC) applications as they greatly affect the user experience. With a two-way multicarrier relay configuration, in this paper we investigate the joint terminals and relay power optimization for the indoor broadband PLC environment, where the relay node works in the amplify-and-forward (AF) mode. As the QoS-constrained power allocation problem is highly non-convex, the globally optimal solution is computationally intractable to obtain. To overcome this challenge, we propose an alternating optimization (AO) method to decompose this problem into three convex/quasi-convex sub-problems. Simulation results demonstrate the fast convergence of the proposed algorithm under practical PLC channel conditions. Compared with the conventional bidirectional direct transmission (BDT) system, the relay-assisted two-way information exchange (R2WX) scheme can meet the same QoS requirement with less total power consumption.

  15. "It Was Not Me That Was Sick, It Was the Building": Rhetorical Identity Management Strategies in the Context of Observed or Suspected Indoor Air Problems in Workplaces.

    PubMed

    Finell, Eerika; Seppälä, Tuija; Suoninen, Eero

    2018-07-01

    Suffering from a contested illness poses a serious threat to one's identity. We analyzed the rhetorical identity management strategies respondents used when depicting their health problems and lives in the context of observed or suspected indoor air (IA) problems in the workplace. The data consisted of essays collected by the Finnish Literature Society. We used discourse-oriented methods to interpret a variety of language uses in the construction of identity strategies. Six strategies were identified: respondents described themselves as normal and good citizens with strong characters, and as IA sufferers who received acknowledge from others, offered positive meanings to their in-group, and demanded recognition. These identity strategies located on two continua: (a) individual- and collective-level strategies and (b) dissolved and emphasized (sub)category boundaries. The practical conclusion is that professionals should be aware of these complex coping strategies when aiming to interact effectively with people suffering from contested illnesses.

  16. A Pilot Study to Understand the Variation in Indoor Air Quality in Different Economic Zones of Delhi University

    NASA Astrophysics Data System (ADS)

    Garg, Abhinav; Ghosh, Chirashree

    Today, one of the most grave environmental health problems being faced by the urban population is the poor air quality one breathes in. To testify the above statement, the recent survey report, World health statistics (WHO, 2012) reflects the fact that childhood mortality ratio from acute respiratory infection is one of the top leading causes of death in developing countries like India. Urban areas have a complex social stratification which ultimately results in forming different urban economic zones. This research attempts to understand the Indoor Air Quality (IAQ) by taking into consideration different lifestyle of occupants inhabiting these economic zones. The Study tries to evaluate the outdoor and indoor air quality by understanding the variation of selected pollutants (SPM, SOx, NOx) for the duration of four months - from October, 2012-January, 2013. For this, three economic zones (EZ) of Delhi University’s North Campus, were selected - Urban Slum (EZ I), Clerical (EZ II) and Faculty residence (EZ III). The statistical study indicates that Urban Slum (EZ I) was the most polluted site reporting maximum concentration of outdoor pollutants, whereas no significant difference in pollution load was observed in EZ II and EZ III. Further, the indoor air quality was evaluated by quantifying the indoor and outdoor pollution concentration ratios that shows EZ III have most inferior indoor air quality, followed by EZ I and EZ II. Moreover, it was also observed that ratio (phenomenon of infiltration) was dominant at the EZ II but was low for the EZ I and EZ III. With the evidence of high Indoor air pollution, the risk of pulmonary diseases and respiratory infections also increases, calling for an urgent requisite for making reforms to improve IAQ. Key words: Urban Area, Slum, IAQ, SOx, NOx, SPM

  17. Molds

    MedlinePlus

    Molds are fungi that can be found both outdoors and indoors. They grow best in warm, damp and humid conditions. If ... spots in your house, you will probably get mold. Molds can cause health problems. Inhaling or touching ...

  18. Comparative Performance of Two Ventilation Strategies in a Hot-Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widder, Sarah; Martin, Eric; Chasar, Dave

    2017-02-01

    In fiscal year 2013, Pacific Northwest National Laboratory (PNNL), Florida Solar Energy Center (FSEC), and Florida Home Energy and Resources Organization (Florida HERO) began a collaborative effort to evaluate the impact of ventilation rate on interior comfort conditions, space-conditioning energy use, and indoor air contaminant concentrations. Relevant parameters were measured in 10 homes in Gainesville, Florida, along with corresponding outdoor conditions, to characterize the impact of differing ventilation rates. This report provides information about the data collection method and results from more than 1 year of data collection during a period from summer 2013 through summer 2014. Indoor air qualitymore » was sampled in three discrete periods with the first occurring in August/September 2013, the second occurring in March/April 2014, and the third occurring in August 2014.« less

  19. Comparative Performance of Two Ventilation Strategies in a Hot-Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widder, Sarah; Martin, Eric; Chasar, Dave

    In fiscal year 2013, Pacific Northwest National Laboratory (PNNL), Florida Solar Energy Center (FSEC), and Florida Home Energy and Resources Organization (Florida HERO) began a collaborative effort to evaluate the impact of ventilation rate on interior comfort conditions, space-conditioning energy use, and indoor air contaminant concentrations. Relevant parameters were measured in 10 homes in Gainesville, Florida, along with corresponding outdoor conditions, to characterize the impact of differing ventilation rates. This report provides information about the data collection method and results from more than 1 year of data collection during a period from summer 2013 through summer 2014. Indoor air qualitymore » was sampled in three discrete periods with the first occurring in August/September 2013, the second occurring in March/April 2014, and the third occurring in August 2014.« less

  20. Experimental evaluation of drying characteristics of sewage sludge and hazelnut shell mixtures

    NASA Astrophysics Data System (ADS)

    Pehlivan, Hüseyin; Ateş, Asude; Özdemir, Mustafa

    2016-11-01

    In this study the drying behavior of organic and agricultural waste mixtures has been experimentally investigated. The usability of sewage sludge as an organic waste and hazelnut shell as an agricultural waste was assessed in different mixture range. The paper discusses the applicability of these mixtures as a recovery energy source. Moisture content of mixtures has been calculated in laboratory and plant conditions. Indoor and outdoor solar sludge drying plants were constructed in pilot scale for experimental purposes. Dry solids and climatic conditions were constantly measured. A total more than 140 samples including for drying has been carried out to build up results. Indoor and outdoor weather conditions are taken into consideration in winter and summer. The most effective drying capacity is obtained in mixture of 20 % hazelnut shell and 80 % sewage sludge.

  1. Reducing urban heat island effects to improve urban comfort and balance energy consumption in Bucharest (Romania)

    NASA Astrophysics Data System (ADS)

    Constantinescu, Dan; Ochinciuc, Cristina Victoria; Cheval, Sorin; Comşa, Ionuţ; Sîrodoev, Igor; Andone, Radu; Caracaş, Gabriela; Crăciun, Cerasella; Dumitrescu, Alexandru; Georgescu, Mihaela; Ianoş, Ioan; Merciu, Cristina; Moraru, Dan; Opriş, Ana; Paraschiv, Mirela; Raeţchi, Sonia; Saghin, Irina; Schvab, Andrei; Tătui-Văidianu, Nataşa

    2017-04-01

    In the recent decades, extreme temperature events and derived hazards are frequent and trigger noteworthy impacts in Romania, especially over the large urban areas. The cities produce significant disturbances of many elements of the regional climate, and generates adverse effects such as Urban Heat Islands (UHI). This presentation condenses the outputs of an ongoing research project (REDBHI) developed through (2013-2017) focused on developing a methodology for monitoring and forecasting indoor climate and energy challenges related to the intensity of UHI of Bucharest (Romania), based on relevant urban climate zones (UCZs). Multi-criteria correlations between the UHI and architectural, urban and landscape variables were determined, and the vulnerability of buildings expressed in the form of transfer function between indoor micro-climate and outdoor urban environment. The vulnerability of civil buildings was determined in relation with the potential for amplifying the thermal hazards intensity through the anthropogenic influence. The project REDBHI aims at developing innovative and original products, with direct applicability, which can be used in any urban settlement and have market potential with regards to energy design and consulting. The concrete innovative outcomes consist of a) localization of the Bucharest UCZs according to the UHI intensity, identifying reference buildings and sub-zones according to urban anthropic factors and landscape pattern; b) typology of representative buildings with regards to energy consumption and CO2 emitted as a result of building exploitation; c) 3D modelling of the reference buildings and of the thermal/energy reaction to severe climatic conditions d) empirical validation of the dynamic thermal/energy analysis; d) development of an pilot virtual studio capable to simulate climate alerts, analyse scenarios and suggest measures to mitigate the UHI effects, and disseminate the outcomes for educational purposes; e) compendium of technical solutions for mitigating the UHI impacts and sustainable reconfiguration of urban settlements, comprising packages of architectural and urban and landscape planning solutions. This study was funded by the Romanian Programme Partnership in Priority Domains, PN - II - PCCA - 2013 - 4 - 0509 - Reducing UHI effects to improve urban comfort and balance energy consumption in Bucharest (REDBHI).

  2. Environmental monitoring in four European museums

    NASA Astrophysics Data System (ADS)

    Camuffo, Dario; Van Grieken, Rene; Busse, Hans-Jürgen; Sturaro, Giovanni; Valentino, Antonio; Bernardi, Adriana; Blades, Nigel; Shooter, David; Gysels, Kristin; Deutsch, Felix; Wieser, Monika; Kim, Oliver; Ulrych, Ursula

    In a European multidisciplinary research project concerning environmental diagnostics, museums have been selected, having different climate and pollution conditions, i.e.: Correr Museum, Venice (Italy); Kunsthistorisches Museum, Vienna (Austria); Royal Museum of Fine Arts, Antwerp (Belgium); Sainsbury Centre for Visual Arts, Norwich (UK). Some field tests investigated the microclimate, the gaseous and particulate air pollution and the biological contamination to suggest mitigative techniques that may reduce the potential for damage in the long run. Potential risk factors are generated by imbalance in temperature and humidity, generated by heating, air conditioning or ventilating system (HVAC), or the building structures, exchange of outside air, or large visitor numbers. HVAC may also enhance indoor gaseous pollution. Plants and carpets represent potential niches for bacterial colonisation. Pollutants and particles have been recognised having partly external and partly internal origin. Tourism has a direct negative impact, i.e. transport of external particles, release of heat, vapour and CO 2, as well as generation of turbulence, which increases the deposition rate of particulate matter. However, the main problem is that the microclimate has been planned for the well being of visitors during only the visiting time, disregarding the needs of conservation that requires a constant climate by day and by night. In some of these cases, better environmental niches have been obtained with the help of showcases. In other cases, showcases worsened the situation, especially when incandescent lamps were put inside.

  3. Hygrothermal Analysis of Indoor Environment of Residential Prefabricated Buildings

    NASA Astrophysics Data System (ADS)

    Kraus, Michal

    2017-10-01

    Recent studies show that the relative humidity and the indoor air temperature constitute an important determinant of the quality of indoor air. Hygrothermal microclimate has a significant impact on occupant’s health and their comfort. The study presents the results of experimental measurement of indoor air temperature and relative humidity in selected apartment in prefabricated panel house situated in Ostrava, Czechia. The contribution describes and analysis the relation between indoor air temperature [°C] and relative humidity [%] in this apartment. The experimental object is selected with respect to the housing stock in the Czech Republic. A third of the housing stock in the Czech Republic is composed of prefabricated panel houses. Regeneration and revitalization of these buildings were in the focus of interest during recent years. Building modifications, such as thermal insulation of building envelope or window replacement, lead to a significantly higher level of airtightness of these objects. Humidity and indoor air temperature are measured in 10-minute cycles for two periods. The values of temperature and humidity are measured for the non-heating and the heating season. The length of each experimental period is 30 days. The mean value of indoor air temperature is 22.21 °C and average relative humidity is 45.87% in the non-heating period. The values of 22.62 °C and 35.20% represent average values for the heating period. A slight increase of the average temperature of the indoor environment (+1.85%) is observed. The decrease of the relative humidity is evident at first glance. The relative humidity of the internal environment is approximately 10% lower in the heating period. Long-term decline of relative humidity below 30% brings many problems. It is necessary to take measures to increase of relative humidity in residential prefabricated building. The aquarium appears to be ineffective. The solution may be forced artificial ventilation or humidifiers.

  4. A Blueprint for IAQ.

    ERIC Educational Resources Information Center

    Quraishi, Arif; Kapfer, Tom

    1999-01-01

    Presents practical solutions to school indoor-air-quality problems. Areas where school administrators should set IAQ goals and provide resources are listed, and tips for HVAC maintenance and cleaning to reduce air pollutants are provided. (GR)

  5. Coordinator's Guide for Indoor Air Quality

    EPA Pesticide Factsheets

    IAQ Tools for Schools Action Kit - IAQ Coordinator's Guide. This guidance is designed to present practical and often low-cost actions you can take to identify and address existing or potential air quality problems.

  6. What Is Asthma?

    MedlinePlus

    ... AirNow.gov is a website that monitors outdoor air quality and informs the public of health risks from ... provide feedback, or report a problem. Asthma Indoor Air Quality Home Page Asthma Home Take the Asthma Quiz ...

  7. strange beta: An assistance system for indoor rock climbing route setting

    NASA Astrophysics Data System (ADS)

    Phillips, C.; Becker, L.; Bradley, E.

    2012-03-01

    This paper applies the mathematics of chaos to the task of designing indoor rock-climbing routes. Chaotic variation has been used to great advantage on music and dance, but the challenges here are quite different, beginning with the representation. We present a formalized system for transcribing rock climbing problems and then describe a variation generator that is designed to support human route-setters in designing new and interesting climbing problems. This variation generator, termed strange beta, uses chaos to introduce novelty. We validated this approach with a large blinded study in a commercial climbing gym, in cooperation with experienced climbers and expert route setters. The results show that strange beta can help a human setter produce routes that are at least as good as, and in some cases better than, those produced in the traditional manner.

  8. Strange Beta: Chaotic Variations for Indoor Rock Climbing Route Setting

    NASA Astrophysics Data System (ADS)

    Phillips, Caleb; Bradley, Elizabeth

    2011-04-01

    In this paper we apply chaotic systems to the task of sequence variation for the purpose of aiding humans in setting indoor rock climbing routes. This work expands on prior work where similar variations were used to assist in dance choreography and music composition. We present a formalization for transcription of rock climbing problems and a variation generator that is tuned for this domain and addresses some confounding problems, including a new approach to automatic selection of initial conditions. We analyze our system with a large blinded study in a commercial climbing gym in cooperation with experienced climbers and expert route setters. Our results show that our system is capable of assisting a human setter in producing routes that are at least as good as, and in some cases better than, those produced traditionally.

  9. An engineering approach to controlling indoor air quality.

    PubMed

    Woods, J E

    1991-11-01

    Evidence is accumulating that indicates air quality problems in residential and commercial buildings are nearly always associated with inadequacies in building design and methods of operation. Thus, the very systems depended on to control the indoor environment can become indirect sources of contamination if diligence is not exercised at each stage of a building's life: a) planning and design, b) construction and commissioning, c) operation, and d) demolition or renovation. In this paper, an engineering perspective is presented in which the existing building stock is characterized in terms of its environmental performance. Preliminary data indicate that 20 to 30% of the existing buildings have sufficient problems to manifest as sick-building syndrome or building-related illness, while another 10 to 20% may have undetected problems. Thus, only about 50 to 70% of the existing buildings qualify as healthy buildings. Two methods and three mechanisms of control are described to achieve "acceptable" indoor air quality: source control and exposure control. If sources cannot be removed, some level of occupant exposure will result. To control exposures with acceptable values, the primary sensory receptors of the occupants (i.e., thermal, ocular, auditory, and olfactory) cannot be excessively stimulated. The three exposure control mechanisms are conduction, radiation, and convection. To achieve acceptable occupant responses, it is often practical to integrate the mechanisms of radiation and convection in heating, ventilating, and air conditioning systems that are designed to provide acceptable thermal, acoustic, and air quality conditions within occupied spaces.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. An engineering approach to controlling indoor air quality.

    PubMed Central

    Woods, J E

    1991-01-01

    Evidence is accumulating that indicates air quality problems in residential and commercial buildings are nearly always associated with inadequacies in building design and methods of operation. Thus, the very systems depended on to control the indoor environment can become indirect sources of contamination if diligence is not exercised at each stage of a building's life: a) planning and design, b) construction and commissioning, c) operation, and d) demolition or renovation. In this paper, an engineering perspective is presented in which the existing building stock is characterized in terms of its environmental performance. Preliminary data indicate that 20 to 30% of the existing buildings have sufficient problems to manifest as sick-building syndrome or building-related illness, while another 10 to 20% may have undetected problems. Thus, only about 50 to 70% of the existing buildings qualify as healthy buildings. Two methods and three mechanisms of control are described to achieve "acceptable" indoor air quality: source control and exposure control. If sources cannot be removed, some level of occupant exposure will result. To control exposures with acceptable values, the primary sensory receptors of the occupants (i.e., thermal, ocular, auditory, and olfactory) cannot be excessively stimulated. The three exposure control mechanisms are conduction, radiation, and convection. To achieve acceptable occupant responses, it is often practical to integrate the mechanisms of radiation and convection in heating, ventilating, and air conditioning systems that are designed to provide acceptable thermal, acoustic, and air quality conditions within occupied spaces.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1821369

  11. Toxicity of airborne dust as an indicator of moisture problems in school buildings.

    PubMed

    Tirkkonen, Jenni; Täubel, Martin; Leppänen, Hanna; Peltonen, Matti; Lindsley, William; Chen, Bean T; Hyvärinen, Anne; Hirvonen, Maija-Riitta; Huttunen, Kati

    2017-02-01

    Moisture-damaged indoor environments are thought to increase the toxicity of indoor air particulate matter (PM), indicating that a toxicological assay could be used as a method for recognizing buildings with indoor air problems. We aimed to test if our approach of analyzing the toxicity of actively collected indoor air PM in vitro differentiates moisture-damaged from non-damaged school buildings. We collected active air samples with NIOSH Bioaerosol Cyclone Samplers from moisture-damaged (index) and non-damaged (reference) school buildings (4 + 4). The teachers and pupils of the schools were administered a symptom questionnaire. Five samples of two size fractions [Stage 1 (>1.9 μm) and Stage 2 (1-1.9 μm)] were collected from each school. Mouse RAW264.7 macrophages were exposed to the collected PM for 24 h and subsequently analyzed for changes in cell metabolic activity, production of nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin (IL)-6. The teachers working in the moisture-damaged schools reported respiratory symptoms such as cough (p = 0.01) and shortness of breath (p = 0.01) more often than teachers from reference schools. Toxicity of the PM sample as such did not differentiate index from reference building,s but the toxicity adjusted for the amount of the particles tended to be higher in moisture-damaged schools. Further development of the method will require identification of other confounding factors in addition to the necessity to adjust for differences in particle counts between samples.

  12. Indoor air quality in green-renovated vs. non-green low-income homes of children living in a temperate region of US (Ohio).

    PubMed

    Coombs, Kanistha C; Chew, Ginger L; Schaffer, Christopher; Ryan, Patrick H; Brokamp, Cole; Grinshpun, Sergey A; Adamkiewicz, Gary; Chillrud, Steve; Hedman, Curtis; Colton, Meryl; Ross, Jamie; Reponen, Tiina

    2016-06-01

    Green eco-friendly housing includes approaches to reduce indoor air pollutant sources and to increase energy efficiency. Although sealing/tightening buildings can save energy and reduce the penetration of outdoor pollutants, an adverse outcome can be increased buildup of pollutants with indoor sources. The objective of this study was to determine the differences in the indoor air quality (IAQ) between green and non-green homes in low-income housing complexes. In one housing complex, apartments were renovated using green principles (n=28). Home visits were conducted immediately after the renovation, and subsequently at 6 months and at 12 months following the renovation. Of these homes, eight homes had pre-renovation home visits; this allowed pre- and post-renovation comparisons within the same homes. Parallel visits were conducted in non-green (control) apartments (n=14) in a nearby low-income housing complex. The IAQ assessments included PM2.5, black carbon, ultrafine particles, sulfur, total volatile organic compounds (VOCs), formaldehyde, and air exchange rate. Data were analyzed using linear mixed-effects models. None of the indoor pollutant concentrations were significantly different between green and non-green homes. However, we found differences when comparing the concentrations before and after renovation. Measured immediately after renovation, indoor black carbon concentrations were significantly lower averaging 682 ng/m(3) in post-renovation vs. 2364 ng/m(3) in pre-renovation home visits (p=0.01). In contrast, formaldehyde concentrations were significantly higher in post-renovated (0.03 ppm) than in pre-renovated homes (0.01 ppm) (p=0.004). Questionnaire data showed that opening of windows occurred less frequently in homes immediately post-renovation compared to pre-renovation; this factor likely affected the levels of indoor black carbon (from outdoor sources) and formaldehyde (from indoor sources) more than the renovation status itself. To reduce IAQ problems and potentially improve health, careful selection of indoor building materials and ensuring sufficient ventilation are important for green building designs. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Indoor particle dynamics in a school office: determination of particle concentrations, deposition rates and penetration factors under naturally ventilated conditions.

    PubMed

    Cong, X C; Zhao, J J; Jing, Z; Wang, Q G; Ni, P F

    2018-05-09

    Recently, the problem of indoor particulate matter pollution has received much attention. An increasing number of epidemiological studies show that the concentration of atmospheric particulate matter has a significant effect on human health, even at very low concentrations. Most of these investigations have relied upon outdoor particle concentrations as surrogates of human exposures. However, considering that the concentration distribution of the indoor particulate matter is largely dependent on the extent to which these particles penetrate the building and on the degree of suspension in the indoor air, human exposures to particles of outdoor origin may not be equal to outdoor particle concentration levels. Therefore, it is critical to understand the relationship between the particle concentrations found outdoors and those found in indoor micro-environments. In this study, experiments were conducted using a naturally ventilated office located in Qingdao, China. The indoor and outdoor particle concentrations were measured at the same time using an optical counter with four size ranges. The particle size distribution ranged from 0.3 to 2.5 μm, and the experimental period was from April to September, 2016. Based on the experimental data, the dynamic and mass balance model based on time was used to estimate the penetration rate and deposition rate at air exchange rates of 0.03-0.25 h -1 . The values of the penetration rate and deposition velocity of indoor particles were determined to range from 0.45 to 0.82 h -1 and 1.71 to 2.82 m/h, respectively. In addition, the particulate pollution exposure in the indoor environment was analyzed to estimate the exposure hazard from indoor particulate matter pollution, which is important for human exposure to particles and associated health effects. The conclusions from this study can serve to provide a better understanding the dynamics and behaviors of airborne particle entering into buildings. And they will also highlight effective methods to reduce exposure to particles in office buildings.

  14. [Measurement model of carbon emission from forest fire: a review].

    PubMed

    Hu, Hai-Qing; Wei, Shu-Jing; Jin, Sen; Sun, Long

    2012-05-01

    Forest fire is the main disturbance factor for forest ecosystem, and an important pathway of the decrease of vegetation- and soil carbon storage. Large amount of carbonaceous gases in forest fire can release into atmosphere, giving remarkable impacts on the atmospheric carbon balance and global climate change. To scientifically and effectively measure the carbonaceous gases emission from forest fire is of importance in understanding the significance of forest fire in the carbon balance and climate change. This paper reviewed the research progress in the measurement model of carbon emission from forest fire, which covered three critical issues, i. e., measurement methods of forest fire-induced total carbon emission and carbonaceous gases emission, affecting factors and measurement parameters of measurement model, and cause analysis of the uncertainty in the measurement of the carbon emissions. Three path selections to improve the quantitative measurement of the carbon emissions were proposed, i. e., using high resolution remote sensing data and improving algorithm and estimation accuracy of burned area in combining with effective fuel measurement model to improve the accuracy of the estimated fuel load, using high resolution remote sensing images combined with indoor controlled environment experiments, field measurements, and field ground surveys to determine the combustion efficiency, and combining indoor controlled environment experiments with field air sampling to determine the emission factors and emission ratio.

  15. Fine PM measurements: personal and indoor air monitoring.

    PubMed

    Jantunen, M; Hänninen, O; Koistinen, K; Hashim, J H

    2002-12-01

    This review compiles personal and indoor microenvironment particulate matter (PM) monitoring needs from recently set research objectives, most importantly the NRC published "Research Priorities for Airborne Particulate Matter (1998)". Techniques and equipment used to monitor PM personal exposures and microenvironment concentrations and the constituents of the sampled PM during the last 20 years are then reviewed. Development objectives are set and discussed for personal and microenvironment PM samplers and monitors, for filter materials, and analytical laboratory techniques for equipment calibration, filter weighing and laboratory climate control. The progress is leading towards smaller sample flows, lighter, silent, independent (battery powered) monitors with data logging capacity to store microenvironment or activity relevant sensor data, advanced flow controls and continuous recording of the concentration. The best filters are non-hygroscopic, chemically pure and inert, and physically robust against mechanical wear. Semiautomatic and primary standard equivalent positive displacement flow meters are replacing the less accurate methods in flow calibration, and also personal sampling flow rates should become mass flow controlled (with or without volumetric compensation for pressure and temperature changes). In the weighing laboratory the alternatives are climatic control (set temperature and relative humidity), and mechanically simpler thermostatic heating, air conditioning and dehumidification systems combined with numerical control of temperature, humidity and pressure effects on flow calibration and filter weighing.

  16. Natural ventilation systems to enhance sustainability in buildings: a review towards zero energy buildings in schools

    NASA Astrophysics Data System (ADS)

    Gil-Baez, Maite; Barrios-Padura, Ángela; Molina-Huelva, Marta; Chacartegui, Ricardo

    2017-11-01

    European regulations set the condition of Zero Energy Buildings for new buildings since 2020, with an intermediate milestone in 2018 for public buildings, in order to control greenhouse gases emissions control and climate change mitigation. Given that main fraction of energy consumption in buildings operation is due to HVAC systems, advances in its design and operation conditions are required. One key element for energy demand control is passive design of buildings. On this purpose, different recent studies and publications analyse natural ventilation systems potential to provide indoor air quality and comfort conditions minimizing electric power consumption. In these passive systems are of special relevance their capacities as passive cooling systems as well as air renovation systems, especially in high-density occupied spaces. With adequate designs, in warm/mild climates natural ventilation systems can be used along the whole year, maintaining indoor air quality and comfort conditions with small support of other heating/cooling systems. In this paper is analysed the state of the art of natural ventilation systems applied to high density occupied spaces with special focus on school buildings. The paper shows the potential and applicability of these systems for energy savings and discusses main criteria for their adequate integration in school building designs.

  17. Reversible Self-Actuated Thermo-Responsive Pore Membrane

    PubMed Central

    Park, Younggeun; Gutierrez, Maria Paz; Lee, Luke P.

    2016-01-01

    Smart membranes, which can selectively control the transfer of light, air, humidity and temperature, are important to achieve indoor climate regulation. Even though reversible self-actuation of smart membranes is desirable in large-scale, reversible self-regulation remains challenging. Specifically, reversible 100% opening/closing of pore actuation showing accurate responsiveness, reproducibility and structural flexibility, including uniform structure assembly, is currently very difficult. Here, we report a reversible, thermo-responsive self-activated pore membrane that achieves opening and closing of pores. The reversible, self-actuated thermo-responsive pore membrane was fabricated with hybrid materials of poly (N-isopropylacrylamide), (PNIPAM) within polytetrafluoroethylene (PTFE) to form a multi-dimensional pore array. Using Multiphysics simulation of heat transfer and structural mechanics based on finite element analysis, we demonstrated that pore opening and closing dynamics can be self-activated at environmentally relevant temperatures. Temperature cycle characterizations of the pore structure revealed 100% opening ratio at T = 40 °C and 0% opening ratio at T = 20 °C. The flexibility of the membrane showed an accurate temperature-responsive function at a maximum bending angle of 45°. Addressing the importance of self-regulation, this reversible self-actuated thermo-responsive pore membrane will advance the development of future large-scale smart membranes needed for sustainable indoor climate control. PMID:27991563

  18. Reversible Self-Actuated Thermo-Responsive Pore Membrane

    NASA Astrophysics Data System (ADS)

    Park, Younggeun; Gutierrez, Maria Paz; Lee, Luke P.

    2016-12-01

    Smart membranes, which can selectively control the transfer of light, air, humidity and temperature, are important to achieve indoor climate regulation. Even though reversible self-actuation of smart membranes is desirable in large-scale, reversible self-regulation remains challenging. Specifically, reversible 100% opening/closing of pore actuation showing accurate responsiveness, reproducibility and structural flexibility, including uniform structure assembly, is currently very difficult. Here, we report a reversible, thermo-responsive self-activated pore membrane that achieves opening and closing of pores. The reversible, self-actuated thermo-responsive pore membrane was fabricated with hybrid materials of poly (N-isopropylacrylamide), (PNIPAM) within polytetrafluoroethylene (PTFE) to form a multi-dimensional pore array. Using Multiphysics simulation of heat transfer and structural mechanics based on finite element analysis, we demonstrated that pore opening and closing dynamics can be self-activated at environmentally relevant temperatures. Temperature cycle characterizations of the pore structure revealed 100% opening ratio at T = 40 °C and 0% opening ratio at T = 20 °C. The flexibility of the membrane showed an accurate temperature-responsive function at a maximum bending angle of 45°. Addressing the importance of self-regulation, this reversible self-actuated thermo-responsive pore membrane will advance the development of future large-scale smart membranes needed for sustainable indoor climate control.

  19. Thermal comfort in air-conditioned buildings in hot and humid climates--why are we not getting it right?

    PubMed

    Sekhar, S C

    2016-02-01

    While there are plenty of anecdotal experiences of overcooled buildings in summer, evidence from field studies suggests that there is indeed an issue of overcooling in tropical buildings. The findings suggest that overcooled buildings are not a consequence of occupant preference but more like an outcome of the HVAC system design and operation. Occupants' adaptation in overcooled indoor environments through additional clothing cannot be regarded as an effective mitigating strategy for cold thermal discomfort. In the last two decades or so, several field studies and field environmental chamber studies in the tropics provided evidence for occupants' preference for a warmer temperature with adaptation methods such as elevated air speeds. It is important to bear in mind that indoor humidity levels are not compromised as they could have an impact on the inhaled air condition that could eventually affect perceived air quality. This review article has attempted to track significant developments in our understanding of the thermal comfort issues in air-conditioned office and educational buildings in hot and humid climates in the last 25 years, primarily on occupant preference for thermal comfort in such climates. The issue of overcooled buildings, by design intent or otherwise, is discussed in some detail. Finally, the article has explored some viable adaptive thermal comfort options that show considerable promise for not only improving thermal comfort in tropical buildings but are also energy efficient and could be seen as sustainable solutions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Reference Guide for Indoor Air Quality in Schools

    EPA Pesticide Factsheets

    IAQ Tools for Schools Action Kit - IAQ Reference Guide. This guidance is designed to present practical and often low-cost actions you can take to identify and address existing or potential air quality problems.

  1. Students' Perceived Heat-Health Symptoms Increased with Warmer Classroom Temperatures.

    PubMed

    Bidassey-Manilal, Shalin; Wright, Caradee Y; Engelbrecht, Jacobus C; Albers, Patricia N; Garland, Rebecca M; Matooane, Mamopeli

    2016-06-07

    Temperatures in Africa are expected to increase by the end of the century. Heat-related health impacts and perceived health symptoms are potentially a problem, especially in public schools with limited resources. Students (n = 252) aged ~14-18 years from eight high schools completed an hourly heat-health symptom log over 5 days. Data loggers measured indoor classroom temperatures. A high proportion of students felt tired (97.2%), had low concentration (96.8%) and felt sleepy (94.1%) during at least one hour on any day. There were statistically significant correlations, when controlling for school cluster effect and time of day, between indoor temperatures ≥32 °C and students who felt tired and found it hard to breathe. Consistently higher indoor classroom temperatures were observed in classrooms constructed of prefabricated asbestos sheeting with corrugated iron roof and converted shipping container compared to brick classrooms. Longitudinal studies in multiple seasons and different classroom building types are needed.

  2. Sources of indoor air pollution and respiratory health in preschool children.

    PubMed

    Fuentes-Leonarte, Virginia; Ballester, Ferran; Tenías, José Maria

    2009-01-01

    We carried out bibliographic searches in PubMed and Embase.com for the period from 1996 to 2008 with the aim of reviewing the scientific literature on the relationship between various sources of indoor air pollution and the respiratory health of children under the age of five. Those studies that included adjusted correlation measurements for the most important confounding variables and which had an adequate population size were considered to be more relevant. The results concerning the relationship between gas energy sources and children's respiratory health were heterogeneous. Indoor air pollution from biomass combustion in the poorest countries was found to be an important risk factor for lower respiratory tract infections. Solvents involved in redecorating, DYI work, painting, and so forth, were found to be related to an increased risk for general respiratory problems. The distribution of papers depending on the pollution source showed a clear relationship with life-style and the level of development.

  3. Investigation of practical and theoretical accuracy of wireless indoor-positioning system UBISENSE

    NASA Astrophysics Data System (ADS)

    Wozniak, Marek; Odziemczyk, Waldemar; Nagorski, Kamil

    2013-04-01

    The development of Real Time Locating Systems has become an important add-on to many existing location aware systems. While Global Navigation Satelite System has solved most of the outdoor problems, it fails to repeat this success indoors. Wireless indoor positioning systems have become very popular in recent years. One of them is UBISENSE system. This system requires to carry an identity tag that is detected by sensors, which typically use triangulation to determine location. This paper presents the results of the investigation of accuracy of tag position using precise geodetic measurements and geometric analysis. Experimental measurements were carried out on the field polygon using precise tacheometer TCRP 1201+ and complete equipment of Ubisense. Results of experimental measurements were analyzed and presented graphically using Surfer 8. The paper presents the results of the investigation the teoretical and practical positioning accuracy according to the various working conditions.

  4. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, William Jowett

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind`s interactions with a building`s superstructure andmore » the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport.« less

  5. Footwear suitability in Turkish preschool-aged children.

    PubMed

    Yurt, Yasin; Sener, Gul; Yakut, Yavuz

    2014-06-01

    Unsuitable footwear worn in childhood may cause some foot problems by interfering normal development of foot. To compare footwear suitability rate of indoor and outdoor footwear at all points in preschool children and investigate factors which could affect footwear suitability. A cross-sectional survey study. A total of 1000 healthy preschool children (4-6 years old) participated in this study. Indoor and outdoor footwear of children were evaluated through Turkish version of Footwear Assessment Score. Effect of factors like age, sex, number of siblings, educational and occupational situation of parents, and behavior of school management about selecting footwear was investigated. Children got better footwear score for outdoor than indoor ones (p < 0.001). Boys got statistically better footwear score for both indoor and outdoor ones than girls (p < 0.001). Also significant difference in footwear score was found in favor of children who were going to schools that gave guidance about selecting footwear for both indoor and outdoor in comparison to children going to other schools (p < 0.001). For healthy foot development, parents need an education about suitable footwear for their children. Performing education programs and investigation of their effect with comprehensive follow-up studies in future is essential. This study reflects footwear habits of Turkish preschool children and factors affecting this issue. Results may give way to education programs about suitable footwear worn in childhood for healthy foot development. © The International Society for Prosthetics and Orthotics 2013.

  6. Human Exposure Assessment for Air Pollution.

    PubMed

    Han, Bin; Hu, Li-Wen; Bai, Zhipeng

    2017-01-01

    Assessment of human exposure to air pollution is a fundamental part of the more general process of health risk assessment. The measurement methods for exposure assessment now include personal exposure monitoring, indoor-outdoor sampling, mobile monitoring, and exposure assessment modeling (such as proximity models, interpolation model, air dispersion models, and land-use regression (LUR) models). Among these methods, personal exposure measurement is considered to be the most accurate method of pollutant exposure assessment until now, since it can better quantify observed differences and better reflect exposure among smaller groups of people at ground level. And since the great differences of geographical environment, source distribution, pollution characteristics, economic conditions, and living habits, there is a wide range of differences between indoor, outdoor, and individual air pollution exposure in different regions of China. In general, the indoor particles in most Chinese families comprise infiltrated outdoor particles, particles generated indoors, and a few secondary organic aerosol particles, and in most cases, outdoor particle pollution concentrations are a major contributor to indoor concentrations in China. Furthermore, since the time, energy, and expense are limited, it is difficult to measure the concentration of pollutants for each individual. In recent years, obtaining the concentration of air pollutants by using a variety of exposure assessment models is becoming a main method which could solve the problem of the increasing number of individuals in epidemiology studies.

  7. Ventilation scheme, room location and meteorological factors influence indoor birch pollen concentrations

    NASA Astrophysics Data System (ADS)

    Jochner, Susanne; Matiu, Michael; Michaelis, Rico; Menzel, Annette

    2017-04-01

    Allergenic pollen, often in co-occurrence with air pollutants from traffic and industries aggravating its pollen allergenicity, constitutes a major health risk for the urban population during the pollen season. Airborne pollen concentrations are traditionally monitored with fixed pollen traps mounted >10 m above ground on flat roof tops. However, the personal exposure of allergic people mostly depends on their main residences and the local emission patterns. Consequently, the assessment of indoor pollen is essential for human health since people stay most of the day inside buildings. In our study, hourly indoor birch pollen concentrations were measured on eight days in April 2015 with portable pollen traps in five rooms of a university building at Freising, Germany. A traditional pollen trap on the roof of the building provided the background birch pollen concentration which was compared to the respective outdoor values right in front of the rooms. The office and lab rooms were characterised by different aspects and window ventilation schemes. Meteorological data were equally measured at a nearby climate station and directly in front of the windows. The observed flowering phenology of 56 birch trees in the nearer surrounding partly explained daily peaks in airborne pollen concentrations. As expected, outdoor pollen concentrations were larger than indoor concentrations: Mean indoor/outdoor (I/O) ratio was highest (0.75) in a south oriented room with fully opened window and additional mechanical ventilation, followed by two rooms with fully opened windows orientated to the west and north (0.35, 0.12) and lowest in east oriented neighbouring rooms with tilted window (0.19) and with windows only opened for short ventilation (0.07). The latter two rooms even had a birch tree directly flowering in front of the façade. Hourly I/O ratios depended on meteorology and increased with outside temperature and wind speed oriented perpendicular to the window opening. As also known from literature, indoor concentrations additionally depended on the previously measured concentrations, indicative of accumulation of pollen inside the rooms. Two follow-up studies on grass pollen at the TUM building in Freising (2015) and a KIT building in Garmisch-Partenkirchen (2016) largely confirmed these findings on indoor concentrations of allergenic pollen.

  8. Guidelines on Thermal Comfort of Air Conditioned Indoor Environment

    NASA Astrophysics Data System (ADS)

    Miura, Toyohiko

    The thermal comfort of air conditioned indoor environment for workers depended, of course, on metabolic rate of work, race, sex, age, clothing, climate of the district and state of acclimatization. The attention of the author was directed to the seasonal variation and the sexual difference of comfortable temperature and a survey through a year was conducted on the thermal comfort, and health conditions of workers engaged in light work in a precision machine factory, in some office workers. Besides, a series of experiments were conducted for purpose of determinning the optimum temperature of cooling in summer time in relation to the outdoor temperature. It seemed that many of workers at present would prefer somewhat higher temperature than those before the World War II. Forty years ago the average homes and offices were not so well heated as today, and clothing worn on the average was considerably heavier.

  9. Creating mold-free buildings: a key to avoiding health effects of indoor molds.

    PubMed

    Small, Bruce M

    2003-08-01

    In view of the high costs of building diagnostics and repair subsequent to water damage--as well as the large medical diagnostic and healthcare costs associated with mold growth in buildings--commitment to a philosophy of proactive preventive maintenance for home, apartment, school, and commercial buildings could result in considerable cost savings and avoidance of major health problems among building occupants. The author identifies common causes of mold growth in buildings and summarizes key building design and construction principles essential for preventing mold contamination indoors. Physicians and healthcare workers must be made aware of conditions within buildings that can give rise to mold growth, and of resulting health problems. Timely advice provided to patients already sensitized by exposure to molds could save these individuals, and their families, from further exposures as a result of inadequate building maintenance or an inappropriate choice of replacement housing.

  10. Numerical study of the vertical shading devices effect on the thermal performance of promotional apartments in hot dry climate of Algeria

    NASA Astrophysics Data System (ADS)

    Berkouk, Djihed; Bouzir, Tallal Abdel Karim; Mazouz, Said

    2018-05-01

    The bioclimatic architecture considers the local climatic conditions in order to reconcile maximally the comfort condition of the occupants. Through the several simulations effectuated by the TRNSYS software, this paper shows that the new architecture produced in the south of Algeria following the northern cities tendency is not fully adapted to the hot dry climate of the southern regions, such as the city of Biskra. In these regions, the passive techniques design influence strongly on the thermal architectural space performance. In this regard, diverse of the vertical shading devices size were proposed to evaluate the impact of this passive technique on the thermal performance of the promotional apartments situated in the city of Biskra. The comparative analysis between the simulation results says that the effectiveness of the vertical shading devices on the thermal performance spaces is reducing the indoor air temperature during the summer period. In addition, this analysis shows that promotional apartments are unsuitable for the desert climate.

  11. Hourly test reference weather data in the changing climate of Finland for building energy simulations.

    PubMed

    Jylhä, Kirsti; Ruosteenoja, Kimmo; Jokisalo, Juha; Pilli-Sihvola, Karoliina; Kalamees, Targo; Mäkelä, Hanna; Hyvönen, Reijo; Drebs, Achim

    2015-09-01

    Dynamic building energy simulations need hourly weather data as input. The same high temporal resolution is required for assessments of future heating and cooling energy demand. The data presented in this article concern current typical values and estimated future changes in outdoor air temperature, wind speed, relative humidity and global, diffuse and normal solar radiation components. Simulated annual and seasonal delivered energy consumptions for heating of spaces, heating of ventilation supply air and cooling of spaces in the current and future climatic conditions are also presented for an example house, with district heating and a mechanical space cooling system. We provide details on how the synthetic future weather files were created and utilised as input data for dynamic building energy simulations by the IDA Indoor Climate and Energy program and also for calculations of heating and cooling degree-day sums. The information supplied here is related to the research article titled "Energy demand for the heating and cooling of residential houses in Finland in a changing climate" [1].

  12. A Study on a Novel Phase Change Material Panel Based on Tetradecanol/Lauric Acid/Expanded Perlite/Aluminium Powder for Building Heat Storage

    PubMed Central

    Wang, Enyu; Kong, Xiangfei; Rong, Xian; Yao, Chengqiang; Yang, Hua; Qi, Chengying

    2016-01-01

    Phase change material (PCM) used in buildings can reduce the building energy consumption and indoor temperature fluctuation. A composite PCM has been fabricated by the binary eutectic mixture of tetradecanol (TD) and lauric acid (LA) absorbed into the expanded perlite (EP) using vacuum impregnation method, and its thermal conductivity was promoted by aluminium powder (AP) additive. Besides, the styrene-acrylic emulsion has been mixed with the composite PCM particles to form the protective film, so as to solve the problem of leakage. Thus, a novel PCM panel (PCMP) has been prepared using compression moulding forming method. The thermal property, microstructure characteristic, mechanical property, thermal conductivity, thermal reliability and leakage of the composite PCM have been investigated and analysed. Meanwhile, the thermal performance of the prepared PCMP was tested through PCMPs installed on the inside wall of a cell under outdoor climatic conditions. The composite PCM has a melting temperature of 24.9 °C, a freezing temperature of 25.2 °C, a melting latent heat of 78.2 J/g and a freezing latent heat of 81.3 J/g. The thermal conductivity test exposed that the thermal conductivity has been enhanced with the addition of AP and the latent heat has been decreased, but it still remains in a high level. The leakage test result has proven that liquid PCM leaking has been avoided by the surface film method. The thermal performance experiment has shown the significant function of PCMP about adjusting the indoor temperature and reducing the heats transferring between the wall inside and outside. In view of the thermal performance, mechanical property and thermal reliability results, it can be concluded that the prepared PCMP has a promising building application potential. PMID:28774020

  13. Field study on behaviors and adaptation of elderly people and their thermal comfort requirements in residential environments.

    PubMed

    Hwang, R-L; Chen, C-P

    2010-06-01

    This study investigated the thermal sensation of elderly people in Taiwan, older than 60 years, in indoor microclimate at home, and their requirements for establishing thermal comfort. The study was conducted using both a thermal sensation questionnaire and measurement of indoor climatic parameters underlying the thermal environment. Survey results were compared with those reported by Cheng and Hwang (2008, J. Tongji Univ., 38, 817-822) for non-elders to study the variation between different age groups in requirements of indoor thermal comfort. The results show that the predominant strategy of thermal adaptation for elders was window-opening in the summer and clothing adjustment in the winter. The temperature of thermal neutrality was 25.2 degrees C and 23.2 degrees C for the summer and the winter, respectively. Logistically regressed probit modeling on percentage of predicted dissatisfied (PPD) against mean thermal sensation vote revealed that the sensation votes corresponding to a PPD of 20% were +/- 0.75 for elders, about +/- 0.10 less than the levels projected by ISO 7730 model. The range of operative temperature for 80% thermal acceptability for elders in the summer was 23.2-27.1 degrees C, narrower than the range of 23.0-28.6 degrees C reported for non-elders. This is likely a result of a difference in the selection of adaptive strategies. Taiwan in the last decade has seen a rapid growth in the elderly population in its societal structure, and as such the quality of indoor thermal comfort increasingly concerns the elderly people. This study presents the results from field-surveying elders residing in major geographical areas of Taiwan, and discusses the requirements of these elders for indoor thermal comfort in different seasons. Through a comparison with the requirements by non-elders, this study demonstrates the unique sensitivity of elders toward indoor thermal quality and the selection of adaptive strategies that need to be considered when a thermal comfort zone is attempted in a household of members consisting of different age groups.

  14. Indoor air quality in Portuguese archives: a snapshot on exposure levels.

    PubMed

    Pinheiro, A C; Viegas, C; Viegas, S; Veríssimo, C; Brandão, J; Macedo, M F

    2012-01-01

    Indoor air quality recently entered legislation in Portugal. Several parameters must be evaluated and kept within limits in order to obtain a certification for air quality and energy consumption. Certification parameters were analyzed in two Portuguese archives in order to assess indoor air quality both for people attending or working on these premises and for maintenance of a written heritage that must be retained for future generations. Carbon monoxide (CO) and carbon dioxide (CO₂), formaldehyde, and fungal counts were kept within stipulated limits. Relative humidity (RH), volatile organic compounds (VOC), particulate matter (PM₁₀), and ozone (O₃) showed values above legislated levels and justified the implementation of corrective measures. In terms of conservation, studies on the limit values are still needed, but according to the available international guidelines, some of the analyzed parameters such as PM₁₀, O₃, and RH were also above desirable values. Corrective measures were proposed to these institutions. Although this study was only of a short duration, it proved valuable in assessing potential eventual problems and constitutes the first Portuguese indoor air quality assessment taking into consideration both aspects of an archive such as human health and heritage safekeeping.

  15. Improving IMES Localization Accuracy by Integrating Dead Reckoning Information

    PubMed Central

    Fujii, Kenjiro; Arie, Hiroaki; Wang, Wei; Kaneko, Yuto; Sakamoto, Yoshihiro; Schmitz, Alexander; Sugano, Shigeki

    2016-01-01

    Indoor positioning remains an open problem, because it is difficult to achieve satisfactory accuracy within an indoor environment using current radio-based localization technology. In this study, we investigate the use of Indoor Messaging System (IMES) radio for high-accuracy indoor positioning. A hybrid positioning method combining IMES radio strength information and pedestrian dead reckoning information is proposed in order to improve IMES localization accuracy. For understanding the carrier noise ratio versus distance relation for IMES radio, the signal propagation of IMES radio is modeled and identified. Then, trilateration and extended Kalman filtering methods using the radio propagation model are developed for position estimation. These methods are evaluated through robot localization and pedestrian localization experiments. The experimental results show that the proposed hybrid positioning method achieved average estimation errors of 217 and 1846 mm in robot localization and pedestrian localization, respectively. In addition, in order to examine the reason for the positioning accuracy of pedestrian localization being much lower than that of robot localization, the influence of the human body on the radio propagation is experimentally evaluated. The result suggests that the influence of the human body can be modeled. PMID:26828492

  16. Reducing chemical exposures at home: opportunities for action

    PubMed Central

    Zota, Ami R; Singla, Veena; Adamkiewicz, Gary; Mitro, Susanna D; Dodson, Robin E

    2017-01-01

    Indoor environments can influence human environmental chemical exposures and, ultimately, public health. Furniture, electronics, personal care and cleaning products, floor coverings and other consumer products contain chemicals that can end up in the indoor air and settled dust. Consumer product chemicals such as phthalates, phenols, flame retardants and per- and polyfluorinated alkyl substances are widely detected in the US general population, including vulnerable populations, and are associated with adverse health effects such as reproductive and endocrine toxicity. We discuss the implications of our recent meta-analysis describing the patterns of chemical exposures and the ubiquity of multiple chemicals in indoor environments. To reduce the likelihood of exposures to these toxic chemicals, we then discuss approaches for exposure mitigation: targeting individual behaviour change, household maintenance and purchasing decisions, consumer advocacy and corporate responsibility in consumer markets, and regulatory action via state/federal policies. There is a need to further develop evidence-based strategies for chemical exposure reduction in each of these areas, given the multi-factorial nature of the problem. Further identifying those at greatest risk; understanding the individual, household and community factors that influence indoor chemical exposures; and developing options for mitigation may substantially improve individuals’ exposures and health. PMID:28756396

  17. Investigation of air pollutants in rural nursery school - a case study

    NASA Astrophysics Data System (ADS)

    Mainka, Anna; Zajusz-Zubek, Elwira; Kozielska, Barbara; Brągoszewska, Ewa

    2018-01-01

    Children's exposure to air pollutants is an important public health challenge. Indoor air quality (IAQ) in nursery school is believed to be different from elementary school. Moreover, younger children are more vulnerable to air pollution than higher grade children because they spend more time indoors, and their immune systems and bodies are less mature. The purpose of this study was to evaluate the indoor air quality (IAQ) at naturally ventilated rural nursery schools located in Upper Silesia, Poland. We investigated the concentrations of volatile organic compounds (VOCs), particulate matter (PM), bacterial and fungal bioaerosols, as well as carbon dioxide (CO2) concentrations in younger and older children's classrooms during the winter and spring seasons. The concentration of the investigated pollutants in indoor environments was higher than those in outdoor air. The results indicate the problem of elevated concentrations of PM2.5 and PM10 inside the examined classrooms, as well as that of high levels of CO2 exceeding 1,000 ppm in relation to outdoor air. The characteristics of PM and CO2 levels were significantly different, both in terms of classroom occupation (younger or older children) and of season (winter or spring).

  18. Indoor air quality at the Correr Museum, Venice, Italy.

    PubMed

    Camuffo, D; Brimblecombe, P; Van Grieken, R; Busse, H J; Sturaro, G; Valentino, A; Bernardi, A; Blades, N; Shooter, D; De Bock, L; Gysels, K; Wieser, M; Kim, O

    1999-09-15

    Two multidisciplinary field surveys, one in winter and the other in summer have monitored the indoor microclimate, air pollution, deposition and origin of the suspended particulate matter and microorganisms of the Correr Museum, Venice. In addition, this study was focused to identify the problems caused by the heating and air conditioning system (HAC) and the effects due to the presence of carpets. Heating and air conditioning systems (HACs), when chiefly designed for human welfare, are not suitable for conservation and can cause dangerous temperature and humidity fluctuations. Improvements at the Correr Museum have been achieved with the assistance of environmental monitoring. The carpet has a negative influence as it retains particles and bacteria which are resuspended each time people walk on it. The indoor/outdoor pollutants ratio is greater in the summertime, when doors and windows are more frequently open to allow for better ventilation, illustrating that this ratio is mainly governed by the free exchange of the air masses. The chemical composition, size and origin of the suspended particulate matter have been identified, as well as the bacteria potentially dangerous to the paintings. Some general suggestions for improving indoor air quality are reported in the conclusions.

  19. Predicting indoor pollutant concentrations, and applications to air quality management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzetti, David M.

    Because most people spend more than 90% of their time indoors, predicting exposure to airborne pollutants requires models that incorporate the effect of buildings. Buildings affect the exposure of their occupants in a number of ways, both by design (for example, filters in ventilation systems remove particles) and incidentally (for example, sorption on walls can reduce peak concentrations, but prolong exposure to semivolatile organic compounds). Furthermore, building materials and occupant activities can generate pollutants. Indoor air quality depends not only on outdoor air quality, but also on the design, maintenance, and use of the building. For example, ''sick building'' symptomsmore » such as respiratory problems and headaches have been related to the presence of air-conditioning systems, to carpeting, to low ventilation rates, and to high occupant density (1). The physical processes of interest apply even in simple structures such as homes. Indoor air quality models simulate the processes, such as ventilation and filtration, that control pollutant concentrations in a building. Section 2 describes the modeling approach, and the important transport processes in buildings. Because advection usually dominates among the transport processes, Sections 3 and 4 describe methods for predicting airflows. The concluding section summarizes the application of these models.« less

  20. Association between Four-Level Categorisation of Indoor Exposure and Perceived Indoor Air Quality.

    PubMed

    Tähtinen, Katja; Lappalainen, Sanna; Karvala, Kirsi; Remes, Jouko; Salonen, Heidi

    2018-04-04

    The aim of this study was to develop and test a tool for assessing urgency of indoor air quality (IAQ) measures. The condition of the 27 buildings were investigated and results were categorized. Statistical test studied the differences between the categories and the employees’ complaints about their work environment. To study the employees’ experiences of the work premises, a validated indoor air (IA) questionnaire was used. This study reveals a multifaceted problem: many factors affecting IAQ may also affect perceived IAQ, making it difficult to separate the impurity sources and ventilation system deficiencies affecting to employee experiences. An examination of the relationship between the categories and perceived IAQ revealed an association between the mould odour perceived by employees and mould detected by the researcher. A weak link was also found between the assessed categories and environmental complaints. However, we cannot make far-reaching conclusions regarding the assessed probability of abnormal IA exposure in the building on the basis of employee experiences. According to the results, categorising tool can partly support the assessment of the urgency for repairs when several factors that affect IAQ are taken into account.

  1. Association between Four-Level Categorisation of Indoor Exposure and Perceived Indoor Air Quality

    PubMed Central

    Tähtinen, Katja; Lappalainen, Sanna; Karvala, Kirsi; Remes, Jouko; Salonen, Heidi

    2018-01-01

    The aim of this study was to develop and test a tool for assessing urgency of indoor air quality (IAQ) measures. The condition of the 27 buildings were investigated and results were categorized. Statistical test studied the differences between the categories and the employees’ complaints about their work environment. To study the employees’ experiences of the work premises, a validated indoor air (IA) questionnaire was used. This study reveals a multifaceted problem: many factors affecting IAQ may also affect perceived IAQ, making it difficult to separate the impurity sources and ventilation system deficiencies affecting to employee experiences. An examination of the relationship between the categories and perceived IAQ revealed an association between the mould odour perceived by employees and mould detected by the researcher. A weak link was also found between the assessed categories and environmental complaints. However, we cannot make far-reaching conclusions regarding the assessed probability of abnormal IA exposure in the building on the basis of employee experiences. According to the results, categorising tool can partly support the assessment of the urgency for repairs when several factors that affect IAQ are taken into account. PMID:29617335

  2. An Indoor Pedestrian Positioning Method Using HMM with a Fuzzy Pattern Recognition Algorithm in a WLAN Fingerprint System

    PubMed Central

    Ni, Yepeng; Liu, Jianbo; Liu, Shan; Bai, Yaxin

    2016-01-01

    With the rapid development of smartphones and wireless networks, indoor location-based services have become more and more prevalent. Due to the sophisticated propagation of radio signals, the Received Signal Strength Indicator (RSSI) shows a significant variation during pedestrian walking, which introduces critical errors in deterministic indoor positioning. To solve this problem, we present a novel method to improve the indoor pedestrian positioning accuracy by embedding a fuzzy pattern recognition algorithm into a Hidden Markov Model. The fuzzy pattern recognition algorithm follows the rule that the RSSI fading has a positive correlation to the distance between the measuring point and the AP location even during a dynamic positioning measurement. Through this algorithm, we use the RSSI variation trend to replace the specific RSSI value to achieve a fuzzy positioning. The transition probability of the Hidden Markov Model is trained by the fuzzy pattern recognition algorithm with pedestrian trajectories. Using the Viterbi algorithm with the trained model, we can obtain a set of hidden location states. In our experiments, we demonstrate that, compared with the deterministic pattern matching algorithm, our method can greatly improve the positioning accuracy and shows robust environmental adaptability. PMID:27618053

  3. A survey of the views of US veterinary teaching faculty to owned cat housing practices.

    PubMed

    Salo, Allen L; Stone, Elizabeth

    2015-12-01

    According to the American Pet Products Association, in the USA there are an estimated 86.4 million owned cats, and approximately 40% of these are allowed to roam outdoors. Little has been written about the contribution of owned cats to problems attributed to feral cats, including wildlife predation, spread of zoonotic diseases and overpopulation. A recent study found that 64% of cats have visited the veterinarian within the past year, suggesting frequent opportunity for veterinarians to communicate risks and benefits of indoor vs outdoor living. We conducted the following survey to evaluate current views about this role of veterinarians, by surveying veterinary school faculty (n = 158). Our objectives were to assess (i) the degree to which veterinary teaching faculty believe that the issue of clients maintaining owned cats indoors vs outdoors is appropriate for discussion with students within the veterinary school curriculum; (ii) the degree of agreement and understanding there is among the faculty as to the reasons that clients maintain cats either inside or outside the home; and (iii) the degree to which veterinary faculty believe owned cats that are allowed to go outdoors contribute to various identified problems. The results indicated that many participants believed that the discussion of maintaining cats indoors is relevant to the profession, that it belongs in the veterinary school curriculum, that they understand client motivations, that they feel that more practicing veterinarians should discuss cat housing practices with clients and that cat overpopulation continues to be a significant concern for owned cats being outdoors. Additional ways to help maintain the health and wellbeing of cats that are primarily housed indoors is briefly discussed, including through such means as environmental enrichment or by providing cats access to safe areas while outdoors. © ISFM and AAFP 2014.

  4. [Development and current status of atmospheric pollution].

    PubMed

    Elichegaray, C; Bouallala, S; Maitre, A; Ba, M

    2009-02-01

    Air quality is a public health issue and this article includes a reminder of the related causes and issues and a description of the monitoring of ambient air quality in France. It also provides a review of major developments in recent years of the pollutants measured. Emissions of major air pollutants have declined significantly since the 1970s, and this is reflected in an overall improvement in the quality of ambient air. Nevertheless, various forms of air pollution remain a concern (in the case of photochemical pollution) and health data show that air pollution is still a cause of morbidity and mortality. The fight against air pollution must remain a priority and requires multi-pollutant and multi-effect approaches. The National Health and Environment Program adopted during the Grenelle environment stakeholder consultation processes includes targets for reducing human exposure to air pollution, especially particulate matter, as well as measures to improve indoor air quality. In a context dominated by the struggle against the emission of greenhouse gases, problems of air quality should not be underestimated and policies relating to climate protection must be taken into account.

  5. Use of Assisted Photogrammetry for Indoor and Outdoor Navigation Purposes

    NASA Astrophysics Data System (ADS)

    Pagliari, D.; Cazzaniga, N. E.; Pinto, L.

    2015-05-01

    Nowadays, devices and applications that require navigation solutions are continuously growing. For instance, consider the increasing demand of mapping information or the development of applications based on users' location. In some case it could be sufficient an approximate solution (e.g. at room level), but in the large amount of cases a better solution is required. The navigation problem has been solved from a long time using Global Navigation Satellite System (GNSS). However, it can be unless in obstructed areas, such as in urban areas or inside buildings. An interesting low cost solution is photogrammetry, assisted using additional information to scale the photogrammetric problem and recovering a solution also in critical situation for image-based methods (e.g. poor textured surfaces). In this paper, the use of assisted photogrammetry has been tested for both outdoor and indoor scenarios. Outdoor navigation problem has been faced developing a positioning system with Ground Control Points extracted from urban maps as constrain and tie points automatically extracted from the images acquired during the survey. The proposed approach has been tested under different scenarios, recovering the followed trajectory with an accuracy of 0.20 m. For indoor navigation a solution has been thought to integrate the data delivered by Microsoft Kinect, by identifying interesting features on the RGB images and re-projecting them on the point clouds generated from the delivered depth maps. Then, these points have been used to estimate the rotation matrix between subsequent point clouds and, consequently, to recover the trajectory with few centimeters of error.

  6. PILA: Sub-Meter Localization Using CSI from Commodity Wi-Fi Devices

    PubMed Central

    Tian, Zengshan; Li, Ze; Zhou, Mu; Jin, Yue; Wu, Zipeng

    2016-01-01

    The aim of this paper is to present a new indoor localization approach by employing the Angle-of-arrival (AOA) and Received Signal Strength (RSS) measurements in Wi-Fi network. To achieve this goal, we first collect the Channel State Information (CSI) by using the commodity Wi-Fi devices with our designed three antennas to estimate the AOA of Wi-Fi signal. Second, we propose a direct path identification algorithm to obtain the direct signal path for the sake of reducing the interference of multipath effect on the AOA estimation. Third, we construct a new objective function to solve the localization problem by integrating the AOA and RSS information. Although the localization problem is non-convex, we use the Second-order Cone Programming (SOCP) relaxation approach to transform it into a convex problem. Finally, the effectiveness of our approach is verified based on the prototype implementation by using the commodity Wi-Fi devices. The experimental results show that our approach can achieve the median error 0.7 m in the actual indoor environment. PMID:27735879

  7. PILA: Sub-Meter Localization Using CSI from Commodity Wi-Fi Devices.

    PubMed

    Tian, Zengshan; Li, Ze; Zhou, Mu; Jin, Yue; Wu, Zipeng

    2016-10-10

    The aim of this paper is to present a new indoor localization approach by employing the Angle-of-arrival (AOA) and Received Signal Strength (RSS) measurements in Wi-Fi network. To achieve this goal, we first collect the Channel State Information (CSI) by using the commodity Wi-Fi devices with our designed three antennas to estimate the AOA of Wi-Fi signal. Second, we propose a direct path identification algorithm to obtain the direct signal path for the sake of reducing the interference of multipath effect on the AOA estimation. Third, we construct a new objective function to solve the localization problem by integrating the AOA and RSS information. Although the localization problem is non-convex, we use the Second-order Cone Programming (SOCP) relaxation approach to transform it into a convex problem. Finally, the effectiveness of our approach is verified based on the prototype implementation by using the commodity Wi-Fi devices. The experimental results show that our approach can achieve the median error 0.7 m in the actual indoor environment.

  8. Building Air Quality Guide: A Guide for Building Owners and Facility Managers

    EPA Pesticide Factsheets

    The Building Air Quality, developed by the EPA and the National Institute for Occupational Safety and Health, provides practical suggestions on preventing, identifying, and resolving indoor air quality (IAQ) problems in public and commercial buildings.

  9. Mitigating and Tracking Black Carbon Exposure at Schools in the Mountain View Corridor of Salt Lake City

    NASA Astrophysics Data System (ADS)

    Roberts, P. T.; Brown, S. G.; Vaughn, D.; DeWinter, J. L.

    2015-12-01

    Black carbon (BC) is a short lived climate forcer and is associated with human health effects. We measured BC inside and outside at four schools in Salt Lake City during two studies in 2011-2014. In addition, PM2.5 was measured indoor and outdoor at one school, and gaseous air toxics outdoor at one school. The schools are within 500 m of a planned major freeway, and two of them will adjoin the freeway. The objectives included determining the outdoor and indoor concentrations of BC, the likely sources of BC, and once the freeway is built, the change in ambient BC at the schools. We determined the current state of air quality outdoors at these schools, to provide baseline data for comparison when the major freeway is operational, and indoors as a baseline before installing improved filtration to reduce BC in classrooms. Using MATES IV cancer risk values, we found that diesel particulate matter, as indicated by ambient, outdoor BC measurements, was responsible for 84% of the cancer risk at the schools. The HVAC system was moderately effective at filtrating PM mass (73% reduction), but very poor at filtering BC (7%-34% reduction), indicating that air toxics risk is similar indoors and outdoors. Improved filtration devices could potentially mitigate this risk, and improved filtration systems have been recommended for the schools. Lastly, we used the difference in absorption at two Aethalometer channels to determine that the majority of BC (> 90%) during the spring through fall is from fossil fuel emissions.

  10. Environmental risks for nontuberculous mycobacteria. Individual exposures and climatic factors in the cystic fibrosis population.

    PubMed

    Prevots, D Rebecca; Adjemian, Jennifer; Fernandez, Aisling G; Knowles, Michael R; Olivier, Kenneth N

    2014-09-01

    Persons with cystic fibrosis are at high risk of pulmonary nontuberculous mycobacterial infection, with a national prevalence estimated at 13%. The risk of nontuberculous mycobacteria associated with specific environmental exposures, and the correlation with climatic conditions in this population has not been described. To describe the association of pulmonary nontuberculous mycobacteria with individual exposures to water and soil aerosols, and the population associations of these infections with climatic factors. We conducted a nested case-control study within a cohort study of pulmonary nontuberculous mycobacteria prevalence at 21 geographically diverse national cystic fibrosis centers. Incident nontuberculous mycobacterial infection cases (at least one prior negative culture followed by one positive culture) were age- and sex-matched to culture-negative controls. Exposures to water and soil were assessed by administering a standardized questionnaire. Cohort prevalence at each of the 21 centers was correlated with climatic conditions in the same area through linear regression modeling. Overall, 48 cases and 85 control subjects were enrolled. Indoor swimming was associated with incident infection (adjusted odds ratio, 5.9, 95% confidence interval, 1.3-26.1), although only nine cases (19%) and five control subjects (6%) reported indoor swimming in the 4 months prior to infection. Exposure to showering and municipal water supply was common among both cases and control subjects: 77% of cases and 76% of control subjects reported showering at least daily. In linear regression, average annual atmospheric water vapor content was significantly predictive of center prevalence (P = 0.0019), with R(2) = 0.40. Atmospheric conditions explain more of the variation in disease prevalence than individual behaviors. The risk of specific exposures may vary by geographic region due to differences in conditions favoring mycobacterial growth and survival. However, because exposure to these organisms is ubiquitous and behaviors are similar among persons with and without pulmonary nontuberculous mycobacteria, genetic susceptibility beyond cystic fibrosis is likely to be important for disease development. Common individual risk factors in high-risk populations remain to be identified.

  11. The epidemiology of occupational heat exposure in the United States: a review of the literature and assessment of research needs in a changing climate

    NASA Astrophysics Data System (ADS)

    Gubernot, Diane M.; Anderson, G. Brooke; Hunting, Katherine L.

    2014-10-01

    In recent years, the United States has experienced record-breaking summer heat. Climate change models forecast increasing US temperatures and more frequent heat wave events in the coming years. Exposure to environmental heat is a significant, but overlooked, workplace hazard that has not been well-characterized or studied. The working population is diverse; job function, age, fitness level, and risk factors to heat-related illnesses vary. Yet few studies have examined or characterized the incidence of occupational heat-related morbidity and mortality. There are no federal regulatory standards to protect workers from environmental heat exposure. With climate change as a driver for adaptation and prevention of heat disorders, crafting policy to characterize and prevent occupational heat stress for both indoor and outdoor workers is increasingly sensible, practical, and imperative.

  12. Mitigation of Short-Lived Climate Pollutants from Residential Coal Heating and Combined Heating/Cooking Stoves: Impacts on the Cryosphere, Policy Options, and Co-benefits

    NASA Astrophysics Data System (ADS)

    Chafe, Z.; Anenberg, S.; Klimont, Z.; Kupiainen, K.; Lewis, J.; Metcalfe, J.; Pearson, P.

    2017-12-01

    Residential solid fuel combustion for cooking, heating, and other energy services contributes to indoor and outdoor air pollution, and creates impacts on the cryosphere. Solid fuel use often occurs in colder climates and at higher elevations, where a wide range of combustion emissions can reduce reflectivity of the snow- and ice-covered surfaces, causing climatic warming. Reducing short-lived climate pollutants (SLCPs), such as black carbon (BC), could have substantial climate and health co-benefits, especially in areas where emissions influence the cryosphere. A review of existing literature and emissions estimates, conducted as part of the Warsaw Summit on BC and Other Emissions from Residential Coal Heating Stoves and Combined Cooking/Heating Stoves, found little nationally-representative data on the fuels and technologies used for heating and combined cooking/heating. The GAINS model estimates that 24 million tonnes of coal equivalent were combusted by households for space heating globally in 2010, releasing 190 kilotons (kt) BC. Emissions from combined cooking/heating are virtually unknown. Policy instruments could mitigate cryosphere-relevant emissions of SLCPs from residential heating or cooking. These include indoor air quality guidelines, stove emission limits, bans on the use of specific fuels, regulatory codes that stipulate when burning can occur, stove changeout programs, and voluntary public education campaigns. These measures are being implemented in countries such as Chile (fuelwood moisture reduction campaign, energy efficiency, heating system improvements), Mongolia (stove renovation, fuel switching), Peru (improved stove programs), Poland (district heating, local fuel bans), United States (stove emission regulation) and throughout the European Community (Ecodesign Directive). Few, if any, of these regulations are likely to reduce emissions from combined cooking/heating. This research team found no global platform to create and share model standards, policies, regulatory instruments, or fiscal approaches that could reduce cryosphere impacts. There has been little coordination between the cookstove and heating stove communities; better communication and success sharing could harmonize efforts and lead to greater mitigation of cryosphere-relevant emissions.

  13. Design and Implementation of an Intelligent Windowsill System Using Smart Handheld Device and Fuzzy Microcontroller

    PubMed Central

    Wang, Jing-Min; Yang, Ming-Ta; Chen, Po-Lin

    2017-01-01

    With the advance of science and technology, people have a desire for convenient and comfortable living. Creating comfortable and healthy indoor environments is a major consideration for designing smart homes. As handheld devices become increasingly powerful and ubiquitous, this paper proposes an innovative use of smart handheld devices (SHD), using MIT App Inventor and fuzzy control, to perform the real-time monitoring and smart control of the designed intelligent windowsill system (IWS) in a smart home. A compact weather station that consists of environment sensors was constructed in the IWS for measuring of indoor illuminance, temperature-humidity, carbon dioxide (CO2) concentration and outdoor rain and wind direction. According to the measured environment information, the proposed system can automatically send a command to a fuzzy microcontroller performed by Arduino UNO to fully or partly open the electric curtain and electric window for adapting to climate changes in the indoor and outdoor environment. Moreover, the IWS can automatically close windows for rain splashing on the window. The presented novel control method for the windowsill not only expands the SHD applications, but greatly enhances convenience to users. To validate the feasibility and effectiveness of the IWS, a laboratory prototype was built and confirmed experimentally. PMID:28398266

  14. Design and Implementation of an Intelligent Windowsill System Using Smart Handheld Device and Fuzzy Microcontroller.

    PubMed

    Wang, Jing-Min; Yang, Ming-Ta; Chen, Po-Lin

    2017-04-11

    With the advance of science and technology, people have a desire for convenient and comfortable living. Creating comfortable and healthy indoor environments is a major consideration for designing smart homes. As handheld devices become increasingly powerful and ubiquitous, this paper proposes an innovative use of smart handheld devices (SHD), using MIT App Inventor and fuzzy control, to perform the real-time monitoring and smart control of the designed intelligent windowsill system (IWS) in a smart home. A compact weather station that consists of environment sensors was constructed in the IWS for measuring of indoor illuminance, temperature-humidity, carbon dioxide (CO₂) concentration and outdoor rain and wind direction. According to the measured environment information, the proposed system can automatically send a command to a fuzzy microcontroller performed by Arduino UNO to fully or partly open the electric curtain and electric window for adapting to climate changes in the indoor and outdoor environment. Moreover, the IWS can automatically close windows for rain splashing on the window. The presented novel control method for the windowsill not only expands the SHD applications, but greatly enhances convenience to users. To validate the feasibility and effectiveness of the IWS, a laboratory prototype was built and confirmed experimentally.

  15. Association between Clean Indoor Air Laws and Voluntary Smokefree Rules in Homes and Cars

    PubMed Central

    Cheng, Kai-Wen; Okechukwu, Cassandra A.; McMillen, Robert; Glantz, Stanton A.

    2013-01-01

    Objectives This study examines the influence that smokefree workplaces, restaurants, and bars on the adoption of smokefree rules in homes and cars and whether the adoptions of home and car smokefree rule are associated. Methods Bivariate probit models were used to jointly estimate the likelihood of living in a smokefree home and having a smokefree car as a function of law coverage and other variables. Household data are from the nationally representative Social Climate Survey of Tobacco Control 2001, 2002, and 2004–2009; clean indoor air law data comes from the American Nonsmokers’ Rights Foundation Tobacco Control Laws Database. Results Both “full coverage” and “partial coverage” smokefree legislations are associated with an increased likelihood of having voluntary home and car smokefree rules compared with “no coverage”. The association between “full coverage” and smokefree rule in homes and cars is 5% and 4%, respectively, and the association between “partial coverage” and smokefree rule in homes and cars is 3% and 4%, respectively. There is a positive association between the adoption of home and car smokefree rules. Conclusions Clean indoor air laws provide the additional benefit of encouraging voluntary adoption of smokefree rules in homes and cars. PMID:24114562

  16. Atmospheric composition and micro-climate in the Alhambra monument, Granada (Spain), in the context of preventive conservation

    NASA Astrophysics Data System (ADS)

    Horemans, B.; Schalm, O.; De Wael, K.; Cardell, C.; Van Grieken, R.

    2012-07-01

    The world famous Alhambra monument in Granada, Southern Spain, listed as UNESCO world cultural heritage since 1984, represents probably the most beautiful example of Islamic art and architecture from the Middle Ages in Europe. It is visited by ca. 2 million people annually. Granada is situated in a natural basin, surrounded by mountains with altitudes up to 3500 m. Due to this topography and the prevailing low wind speeds, pollution-derived and especially traffic-derived particulate matter often accumulates in the urban air. In order to evaluate the potential conservation risks from the surrounding air, the atmospheric composition in the Alhambra monument was evaluated. Indoor temperature and relative humidity fluctuations were evaluated for their potential degenerative effects. Furthermore, the atmospheric composition in the Alhambra was analyzed in terms of inorganic gases (NO2, SO2, O3, and NH3) and black carbon. It was found that the open architecture protected the indoor environments from developing a potentially harmful microclimate, such as the build-up of humidity resulting from the huge number of daily tourists. On the downside, the strong ventilation made the indoor air hardly different from outdoor air, as characterized by strong diurnal temperature and relative humidity gradients and high traffic-derived pollutant levels.

  17. Predictive monitoring and diagnosis of periodic air pollution in a subway station.

    PubMed

    Kim, YongSu; Kim, MinJung; Lim, JungJin; Kim, Jeong Tai; Yoo, ChangKyoo

    2010-11-15

    The purpose of this study was to develop a predictive monitoring and diagnosis system for the air pollutants in a subway system using a lifting technique with a multiway principal component analysis (MPCA) which monitors the periodic patterns of the air pollutants and diagnoses the sources of the contamination. The basic purpose of this lifting technique was to capture the multivariate and periodic characteristics of all of the indoor air samples collected during each day. These characteristics could then be used to improve the handling of strong periodic fluctuations in the air quality environment in subway systems and will allow important changes in the indoor air quality to be quickly detected. The predictive monitoring approach was applied to a real indoor air quality dataset collected by telemonitoring systems (TMS) that indicated some periodic variations in the air pollutants and multivariate relationships between the measured variables. Two monitoring models--global and seasonal--were developed to study climate change in Korea. The proposed predictive monitoring method using the lifted model resulted in fewer false alarms and missed faults due to non-stationary behavior than that were experienced with the conventional methods. This method could be used to identify the contributions of various pollution sources. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. The diversity and distribution of fungi on residential surfaces.

    PubMed

    Adams, Rachel I; Miletto, Marzia; Taylor, John W; Bruns, Thomas D

    2013-01-01

    The predominant hypothesis regarding the composition of microbial assemblages in indoor environments is that fungal assemblages are structured by outdoor air with a moderate contribution by surface growth, whereas indoor bacterial assemblages represent a mixture of bacteria entered from outdoor air, shed by building inhabitants, and grown on surfaces. To test the fungal aspect of this hypothesis, we sampled fungi from three surface types likely to support growth and therefore possible contributors of fungi to indoor air: drains in kitchens and bathrooms, sills beneath condensation-prone windows, and skin of human inhabitants. Sampling was done in replicated units of a university-housing complex without reported mold problems, and sequences were analyzed using both QIIME and the new UPARSE approach to OTU-binning, to the same result. Surfaces demonstrated a mycological profile similar to that of outdoor air from the same locality, and assemblages clustered by surface type. "Weedy" genera typical of indoor air, such as Cladosporium and Cryptococcus, were abundant on sills, as were a diverse set of fungi of likely outdoor origin. Drains supported more depauperate assemblages than the other surfaces and contained thermotolerant genera such as Exophiala, Candida, and Fusarium. Most surprising was the composition detected on residents' foreheads. In addition to harboring Malassezia, a known human commensal, skin also possessed a surprising richness of non-resident fungi, including plant pathogens such as ergot (Claviceps purperea). Overall, fungal richness across indoor surfaces was high, but based on known autecologies, most of these fungi were unlikely to be growing on surfaces. We conclude that while some endogenous fungal growth on typical household surfaces does occur, particularly on drains and skin, all residential surfaces appear - to varying degrees - to be passive collectors of airborne fungi of putative outdoor origin, a view of the origins of the indoor microbiome quite different from bacteria.

  19. Control of asthma triggers in indoor air with air cleaners: a modeling analysis.

    PubMed

    Myatt, Theodore A; Minegishi, Taeko; Allen, Joseph G; Macintosh, David L

    2008-08-06

    Reducing exposure to environmental agents indoors shown to increase asthma symptoms or lead to asthma exacerbations is an important component of a strategy to manage asthma for individuals. Numerous investigations have demonstrated that portable air cleaning devices can reduce concentrations of asthma triggers in indoor air; however, their benefits for breathing problems have not always been reproducible. The potential exposure benefits of whole house high efficiency in-duct air cleaners for sensitive subpopulations have yet to be evaluated. We used an indoor air quality modeling system (CONTAM) developed by NIST to examine peak and time-integrated concentrations of common asthma triggers present in indoor air over a year as a function of natural ventilation, portable air cleaners, and forced air ventilation equipped with conventional and high efficiency filtration systems. Emission rates for asthma triggers were based on experimental studies published in the scientific literature. Forced air systems with high efficiency filtration were found to provide the best control of asthma triggers: 30-55% lower cat allergen levels, 90-99% lower risk of respiratory infection through the inhalation route of exposure, 90-98% lower environmental tobacco smoke (ETS) levels, and 50-75% lower fungal spore levels than the other ventilation/filtration systems considered. These results indicate that the use of high efficiency in-duct air cleaners provide an effective means of controlling allergen levels not only in a single room, like a portable air cleaner, but the whole house. These findings are useful for evaluating potential benefits of high efficiency in-duct filtration systems for controlling exposure to asthma triggers indoors and for the design of trials of environmental interventions intended to evaluate their utility in practice.

  20. Control of asthma triggers in indoor air with air cleaners: a modeling analysis

    PubMed Central

    Myatt, Theodore A; Minegishi, Taeko; Allen, Joseph G; MacIntosh, David L

    2008-01-01

    Background Reducing exposure to environmental agents indoors shown to increase asthma symptoms or lead to asthma exacerbations is an important component of a strategy to manage asthma for individuals. Numerous investigations have demonstrated that portable air cleaning devices can reduce concentrations of asthma triggers in indoor air; however, their benefits for breathing problems have not always been reproducible. The potential exposure benefits of whole house high efficiency in-duct air cleaners for sensitive subpopulations have yet to be evaluated. Methods We used an indoor air quality modeling system (CONTAM) developed by NIST to examine peak and time-integrated concentrations of common asthma triggers present in indoor air over a year as a function of natural ventilation, portable air cleaners, and forced air ventilation equipped with conventional and high efficiency filtration systems. Emission rates for asthma triggers were based on experimental studies published in the scientific literature. Results Forced air systems with high efficiency filtration were found to provide the best control of asthma triggers: 30–55% lower cat allergen levels, 90–99% lower risk of respiratory infection through the inhalation route of exposure, 90–98% lower environmental tobacco smoke (ETS) levels, and 50–75% lower fungal spore levels than the other ventilation/filtration systems considered. These results indicate that the use of high efficiency in-duct air cleaners provide an effective means of controlling allergen levels not only in a single room, like a portable air cleaner, but the whole house. Conclusion These findings are useful for evaluating potential benefits of high efficiency in-duct filtration systems for controlling exposure to asthma triggers indoors and for the design of trials of environmental interventions intended to evaluate their utility in practice. PMID:18684328

  1. Assessing indoor air quality in New York City nail salons.

    PubMed

    Pavilonis, Brian; Roelofs, Cora; Blair, Carly

    2018-05-01

    Nail salons are an important business and employment sector for recent immigrants offering popular services to a diverse range of customers across the United States. However, due to the nature of nail products and services, salon air can be burdened with a mix of low levels of hazardous airborne contaminants. Surveys of nail technicians have commonly found increased work-related symptoms, such as headaches and respiratory irritation, that are consistent with indoor air quality problems. In an effort to improve indoor air quality in nail salons, the state of New York recently promulgated regulations to require increased outdoor air and "source capture" of contaminants. Existing indoor air quality in New York State salons is unknown. In advance of the full implementation of the rules by 2021, we sought to establish reliable and usable baseline indoor air quality metrics to determine the feasibility and effectiveness of the requirement. In this pilot study, we measured total volatile organic compounds (TVOC) and carbon dioxide (CO 2 ) concentrations in 10 nail salons located in New York City to assess temporal and spatial trends. Within salon contaminant variation was generally minimal, indicating a well-mixed room and similar general exposure despite the task being performed. TVOC and CO 2 concentrations were strongly positively correlated (ρ = 0.81; p < 0.01) suggesting that CO 2 measurements could potentially be used to provide an initial determination of acceptable indoor air quality for the purposes of compliance with the standard. An almost tenfold increase in TVOC concentration was observed when the American National Standards Institute/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ANSI/ASHRAE) target CO 2 concentration of 850 ppm was exceeded compared to when this target was met.

  2. Daily and peak 1 h indoor air pollution and driving factors in a rural Chinese village.

    PubMed

    Fischer, Susan L; Koshland, Catherine P

    2007-05-01

    We investigate wintertime indoor air quality and personal exposures to carbon monoxide (CO) in a rural village in Jilin province, where relatively homogeneous climatic and sociocultural factors facilitate investigation of household structural, fuel-related, and behavioral determinants of air pollution as well as relationships between different measures of air quality. Our time-resolved wintertime measurements of carbon monoxide and respirable particles (RSP) enable exploration of peak pollution periods in a village in Jilin Province, China, characterized by household use of both coal and biomass, as well as several "improved" (gas or electric) fuels. Our data indicate a 6-fold increase in peak 1 h PM (1.9 mg/m3) concentrations relative to 24 h mean PM (0.31 mg/m3). Peak 1 h CO concentrations (20.5 ppm) routinely approached and often (27%) exceeded the World Health Organization's 1 h guideline of 26 ppm, although the vast majority (95%) of kitchens were within China's residential indoor air quality guideline for CO on a 24 h basis. Choice of heating fuel and household smoking status were significant predictors of indoor air quality. Whether solid or "improved" (gas or electric) fuel was used for cooking had an even stronger effect, but in the opposite direction from expected, on both peak and daily average measures of air pollution. Peak pollution period concentrations of CO and PM were strongly correlated to daily concentrations of CO and RSP, respectively. Our results suggestthat due to the primary role of heating as a determinant of wintertime indoor air quality in northern Chinese villages, health-oriented interventions limited to provision of improved cooking fuel are insufficient. Our results illustrate that peak pollution periods may routinely exceed exposure regulations and evacuation limits, although this and previous studies document typical 24 h CO concentrations in rural Chinese kitchens to be within guidelines. Within a given village and for a given pollutant, daily pollutant concentrations may be strong predictors of peak pollution period concentrations.

  3. Influence of Honey Bee Genotype and Wintering Method on Wintering Performance of Varroa destructor (Parasitiformes: Varroidae)-Infected Honey Bee (Hymenoptera: Apidae) Colonies in a Northern Climate.

    PubMed

    Bahreini, Rassol; Currie, Robert W

    2015-08-01

    The objective of this study was to assess the effectiveness of a cooperative breeding program designed to enhance winter survival of honey bees (Apis mellifera L.) when exposed to high levels of varroa (Varroa destructor Anderson and Trueman) in outdoor-wintered and indoor-wintered colonies. Half of the colonies from selected and unselected stocks were randomly assigned to be treated with late autumn oxalic acid treatment or to be left untreated. Colonies were then randomly assigned to be wintered either indoors (n = 37) or outdoors (n = 40). Late autumn treatment with oxalic acid did not improve wintering performance. However, genotype of bees affected colony survival and the proportion of commercially viable colonies in spring, as indicated by greater rates of colony survival and commercially viable colonies for selected stock (43% survived and 33% were viable) in comparison to unselected stock (19% survived and 9% were viable) across all treatment groups. Indoor wintering improved spring bee population score, proportion of colonies surviving, and proportion of commercially viable colonies relative to outdoor wintering (73% of selected stock and 41% of unselected stock survived during indoor wintering). Selected stock showed better "tolerance" to varroa as the selected stock also maintained higher bee populations relative to unselected stock. However, there was no evidence of "resistance" in selected colonies (reduced mite densities). Collectively, this experiment showed that breeding can improve tolerance to varroa and this can help minimize colony loss through winter and improve colony wintering performance. Overall, colony wintering success of both genotypes of bees was better when colonies were wintered indoors than when colonies were wintered outdoors. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Problems in the estimation of human exposure to components of acid precipitation precursors.

    PubMed Central

    Ferris, B G; Spengler, J D

    1985-01-01

    Problems associated with estimation of human exposure to ambient air pollutants are discussed. Ideally, we would prefer to have some indication of actual dose. For most pollutants this is not presently feasible. Specific problems discussed are adequacy of outdoor monitors; the need to correct for exposures and time spent indoors; the need to have particle size distributions described and the chemistry of the particles presented. These indicate the need to develop lightweight accurate and reliable personal monitors. Images FIGURE 1. PMID:4076094

  5. APPLICATION OF RADON REDUCTION METHODS

    EPA Science Inventory

    The document is intended to aid homeowners and contractors in diagnosing and solving indoor radon problems. It will also be useful to State and Federal regulatory officials and many other persons who provide advice on the selection, design and operation of radon reduction methods...

  6. PROTEOMIC ANALYSIS OF ALLERGENS FROM METARHIZIUM ANISOPLIAE

    EPA Science Inventory

    Introduction

    The goal of this project is the identification and characterization of allergens from the fungus Metarhizium anisopliae, using mass spectrometry (MS). The US EPA, under the "Children at Risk" program, is currently addressing the problem of indoor fungal bioaer...

  7. An Air of Concern.

    ERIC Educational Resources Information Center

    Singer, Terry E.; Shonkwiler, Tonja; Birr, David

    1998-01-01

    Examines how indoor air quality (IAQ) problems can create difficulties for a school both administratively, and legally. Discusses how to identify the IAQ symptoms and the Occupational Safety and Health Administration's industry standards for IAQ, as well as tips for reducing liability risk. (GR)

  8. INVESTIGATION OF CONTACT VACUUMING FOR REMEDIATION OF FUNGALLY CONTAMINATED DUCT MATERIALS

    EPA Science Inventory

    Environmental fungi become a potential Indoor Air Quality (IAQ) problem when adequate moisture and nutrients are present in building materials. Because of their potential to rapidly spread contamination throughout a building, ventilation system materials are of particular signifi...

  9. Libraries and the Environment.

    ERIC Educational Resources Information Center

    LaRue, James; And Others

    1991-01-01

    Three articles address issues that relate to libraries and the environment. Highlights include recycling projects; buying recycled paper products and other ecology-minded purchasing ideas; energy-efficient libraries; indoor pollution problems; a list of environmental information sources; designing library buildings; and activities that libraries…

  10. PROTEOMIC ANALYSIS OF ALLERGENS FROM METARHIZIUM ANISOPLIEA

    EPA Science Inventory

    The goal of this project is the identification and characterization of allergens from the fungus M. Anisopliae, using mass spectrometry (MS). The US EPA, under the "Children at Risk" program, is currently addressing the problem of indoor fungal bioaerosol contamination. One of ...

  11. Validating the Heat Stress Indices for Using In Heavy Work Activities in Hot and Dry Climates.

    PubMed

    Hajizadeh, Roohalah; Golbabaei, Farideh; Farhang Dehghan, Somayeh; Beheshti, Mohammad Hossein; Jafari, Sayed Mohammad; Taheri, Fereshteh

    2016-01-01

    Necessity of evaluating heat stress in the workplace, require validation of indices and selection optimal index. The present study aimed to assess the precision and validity of some heat stress indices and select the optimum index for using in heavy work activities in hot and dry climates. It carried out on 184 workers from 40 brick kilns workshops in the city of Qom, central Iran (as representative hot and dry climates). After reviewing the working process and evaluation the activity of workers and the type of work, environmental and physiological parameters according to standards recommended by International Organization for Standardization (ISO) including ISO 7243 and ISO 9886 were measured and indices were calculated. Workers engaged in indoor kiln experienced the highest values of natural wet temperature, dry temperature, globe temperature and relative humidity among studied sections (P<0.05). Indoor workplaces had the higher levels of all environmental parameters than outdoors (P=0.0001), except for air velocity. The wet-bulb globe temperature (WBGT) and heat stress index (HSI) indices had the highest correlation with other physiological parameters among the other heat stress indices. Relationship between WBGT index and carotid artery temperature (r=0.49), skin temperature (r=0.319), and oral temperature (r=0.203) was statistically significant (P=0.006). Since WBGT index, as the most applicable index for evaluating heat stress in workplaces is approved by ISO, and due to the positive features of WBGT such as ease of measurement and calculation, and with respect to some limitation in application of HSI; WBGT can be introduced as the most valid empirical index of heat stress in the brick workshops.

  12. Analysis of feature selection with Probabilistic Neural Network (PNN) to classify sources influencing indoor air quality

    NASA Astrophysics Data System (ADS)

    Saad, S. M.; Shakaff, A. Y. M.; Saad, A. R. M.; Yusof, A. M.; Andrew, A. M.; Zakaria, A.; Adom, A. H.

    2017-03-01

    There are various sources influencing indoor air quality (IAQ) which could emit dangerous gases such as carbon monoxide (CO), carbon dioxide (CO2), ozone (O3) and particulate matter. These gases are usually safe for us to breathe in if they are emitted in safe quantity but if the amount of these gases exceeded the safe level, they might be hazardous to human being especially children and people with asthmatic problem. Therefore, a smart indoor air quality monitoring system (IAQMS) is needed that able to tell the occupants about which sources that trigger the indoor air pollution. In this project, an IAQMS that able to classify sources influencing IAQ has been developed. This IAQMS applies a classification method based on Probabilistic Neural Network (PNN). It is used to classify the sources of indoor air pollution based on five conditions: ambient air, human activity, presence of chemical products, presence of food and beverage, and presence of fragrance. In order to get good and best classification accuracy, an analysis of several feature selection based on data pre-processing method is done to discriminate among the sources. The output from each data pre-processing method has been used as the input for the neural network. The result shows that PNN analysis with the data pre-processing method give good classification accuracy of 99.89% and able to classify the sources influencing IAQ high classification rate.

  13. Mapping the radon potential of the united states: Examples from the Appalachians

    USGS Publications Warehouse

    Gundersen, L.C.S.; Schumann, R.R.; ,

    1997-01-01

    The geologic radon potential of the United States was recently assessed by the U.S. Geological Survey. Results indicate that approximately 33% of the U.S. population lives within geologic provinces where the average indoor radon levels have the potential to be greater than 4 pCi/L (147 Bq/m3). Rock types most commonly associated with high indoor radon include: 1) Uraniferous metamorphosed sediments, volcanics, and granite intrusives, especially those that are highly deformed or sheared. 2) Glacial deposits derived from uranium-bearing rocks and sediments. 3) Carboniferous, black shales. 4) Soils derived from carbonate rock, especially in karstic terrain. 5) Uraniferous fluvial, deltaic, marine, and lacustrine deposits. Different geologic terrains of the eastern United States illustrate some of the problems inherent in correlating indoor radon with geology. The Central and Southern Appalachian Highlands of the eastern United States have not been glaciated and most soils there are saprolitic, derived directly from the underlying bedrock. Regression analyses of bedrock geologic and radon parameters yield positive correlations (R > 0.5 to 0.9) and indicate that bedrock geology can account for a significant portion of the indoor radon variation. In glaciated areas of the United States such as the northern Appalachian Highlands and Appalachian Plateau, the correlation of bedrock geology to indoor radon is obscured or is positive only in certain cases. In these glaciated areas of the country, it is the type, composition, thickness, and permeability of glacial deposits, rather than the bedrock geology, that controls the radon source.

  14. An Accurate Direction Finding Scheme Using Virtual Antenna Array via Smartphones.

    PubMed

    Wang, Xiaopu; Xiong, Yan; Huang, Wenchao

    2016-10-29

    With the development of localization technologies, researchers solve the indoor localization problems using diverse methods and equipment. Most localization techniques require either specialized devices or fingerprints, which are inconvenient for daily use. Therefore, we propose and implement an accurate, efficient and lightweight system for indoor direction finding using common smartphones and loudspeakers. Our method is derived from a key insight: By moving a smartphone in regular patterns, we can effectively emulate the sensitivity and functionality of a Uniform Antenna Array to estimate the angle of arrival of the target signal. Specifically, a user only needs to hold his smartphone still in front of him, and then rotate his body around 360 ∘ duration with the smartphone at an approximate constant velocity. Then, our system can provide accurate directional guidance and lead the user to their destinations (normal loudspeakers we preset in the indoor environment transmitting high frequency acoustic signals) after a few measurements. Major challenges in implementing our system are not only imitating a virtual antenna array by ordinary smartphones but also overcoming the detection difficulties caused by the complex indoor environment. In addition, we leverage the gyroscope of the smartphone to reduce the impact of a user's motion pattern change to the accuracy of our system. In order to get rid of the multipath effect, we leverage multiple signal classification to calculate the direction of the target signal, and then design and deploy our system in various indoor scenes. Extensive comparative experiments show that our system is reliable under various circumstances.

  15. Decreased work ability associated to indoor air problems--An intervention (RCT) to promote health behavior.

    PubMed

    Vuokko, Aki; Selinheimo, Sanna; Sainio, Markku; Suojalehto, Hille; Järnefelt, Heli; Virtanen, Marianna; Kallio, Eila; Hublin, Christer; Karvala, Kirsi

    2015-07-01

    Indoor air problems may induce respiratory irritation and inflammation. In occupational settings, long-lasting non-specific building-related symptomatology, not fully medically explained, is encountered. The symptomatology may lead to illness, avoidance behavior and decreased work ability. In Finland, investigations of workers suspected of occupational asthma have revealed excess disability. There are no well-established clinical practices for the condition. The aim was to develop a clinical intervention for patients with non-specific indoor air-related symptoms and decreased work ability. A randomized controlled trial including psychoeducation and promotion of health behavior was carried out in 55 patients investigated for causal relationship between work-related respiratory symptoms and moisture damaged workplaces. Inclusion criteria for disability was the work ability score (WAS)≤7 (scale 0-10) and indoor air-related sick leave ≥14 days the preceding year. After medical evaluation and the 3-session counseling intervention, follow-up at 6-months was assessed using self-evaluated work-ability, sick leave days, quality of life, and illness worries as outcome measures. The mean symptom history was 55.5 months. 82% (45 out of 55) had asthma with normal lung function tests in most cases, although reporting abundant asthma symptoms. 81% of patients (39/48) had symptomatology from multiple organ systems without biomedical explanation, despite environmental improvements at work place. At the psychological counseling sessions, 15 (60%) patients of the intervention (INT, n=25) group showed concerns of a serious disease and in 5 (20%), concerns and fears had led to avoidance and restricted personal life. In the 6-month follow-up, the outcomes in the INT group did not differ from the treatment as usual group. No intervention effects were found. Patients shared features with medically unexplained symptoms and sick building syndrome or idiopathic environmental intolerance. Long environment-attributed non-specific symptom history and disability may require more intensive interventions. There is a need for improved recognition and early measures to prevent indoor-associated disability. Single-center randomized controlled trial (ISRCTN33165676). Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Correlates of tanning facility densities in North Carolina.

    PubMed

    Treme, Julianne; Allen, Samuel K

    2013-01-01

    The indoor tanning industry is currently receiving increased attention from policymakers, but this industry has not been well researched. Our study examines economic, demographic, and climate-related variables to better understand variations among North Carolina counties in terms of the number of tanning beds and booths per capita during a recent 3-year period. This study used regression analysis to estimate the magnitude and statistical significance of correlations between the density of tanning beds and other relevant variables from 2007 through 2009. The number of indoor tanning beds per capita in a county is positively correlated with the county's unemployment rate and with the proportion of the county's population that consists of white females 18-49 years of age; there is also a weakly positive correlation with the number of days per year of hot weather in the county. All else being equal, tanning beds are marginally more common in counties with higher rates of unemployment, with a greater number of days when the temperature exeeds 90 degrees Fahrenheit, and with residents who are more likely to engage in risky behaviors (as measured by the gonorrhea infection rate and the percentage of the population who smoke cigarettes). The data span a 3-year period (2007-2009) during which economic conditions were depressed. Economic, demographic, geographic, and climate-related factors should be considered when policies that affect the tanning industry in North Carolina are being developed and implemented.

  17. Differential effects of air conditioning type on residential endotoxin levels in a semi-arid climate.

    PubMed

    Johnston, J D; Kruman, B A; Nelson, M C; Merrill, R M; Graul, R J; Hoybjerg, T G; Tuttle, S C; Myers, S J; Cook, R B; Weber, K S

    2017-09-01

    Residential endotoxin exposure is associated with protective and pathogenic health outcomes. Evaporative coolers, an energy-efficient type of air conditioner used in dry climates, are a potential source of indoor endotoxins; however, this association is largely unstudied. We collected settled dust biannually from four locations in homes with evaporative coolers (n=18) and central air conditioners (n=22) in Utah County, Utah (USA), during winter (Jan-Apr) and summer (Aug-Sept), 2014. Dust samples (n=281) were analyzed by the Limulus amebocyte lysate test. Housing factors were measured by survey, and indoor temperature and relative humidity measures were collected during both seasons. Endotoxin concentrations (EU/mg) were significantly higher in homes with evaporative coolers from mattress and bedroom floor samples during both seasons. Endotoxin surface loads (EU/m 2 ) were significantly higher in homes with evaporative coolers from mattress and bedroom floor samples during both seasons and in upholstered furniture during winter. For the nine significant season-by-location comparisons, EU/mg and EU/m 2 were approximately three to six times greater in homes using evaporative coolers. A plausible explanation for these findings is that evaporative coolers serve as a reservoir and distribution system for Gram-negative bacteria or their cell wall components in homes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Indoor dampness and molds and development of adult-onset asthma: a population-based incident case-control study.

    PubMed Central

    Jaakkola, Maritta S; Nordman, Henrik; Piipari, Ritva; Uitti, Jukka; Laitinen, Jukka; Karjalainen, Antti; Hahtola, Paula; Jaakkola, Jouni J K

    2002-01-01

    Previous cross-sectional and prevalent case-control studies have suggested increased risk of asthma in adults related to dampness problems and molds in homes. We conducted a population-based incident case-control study to assess the effects of indoor dampness problems and molds at work and at home on development of asthma in adults. We recruited systematically all new cases of asthma during a 2.5-year study period (1997-2000) and randomly selected controls from a source population consisting of adults 21-63 years old living in the Pirkanmaa Hospital district, South Finland. The clinically diagnosed case series consisted of 521 adults with newly diagnosed asthma and the control series of 932 controls, after we excluded 76 (7.5%) controls with a history of asthma. In logistic regression analysis adjusting for confounders, the risk of asthma was related to the presence of visible mold and/or mold odor in the workplace (odds ratio, 1.54; 95% confidence interval, 1.01-2.32) but not to water damage or damp stains alone. We estimated the fraction of asthma attributable to workplace mold exposure to be 35.1% (95% confidence interval, 1.0-56.9%) among the exposed. Present results provide new evidence of the relation between workplace exposure to indoor molds and adult-onset asthma. PMID:12003761

  19. [Influence of Moxa Smoke on Indoor Air Quality and Strategies for Its Control].

    PubMed

    Yu, Chang; Wu, Qiao-Feng; Tang, Yong; Yu, Shu-Guang

    2018-02-25

    Moxibustion is an effective therapy for treatment of a lot of clinical problems, but the ignited moxa-induced smoke containing harmful substances may bring about indoor air pollution to affect both patients' and medical workers' health. However, there is no standards about controlling indoor air quality (IAQ) for moxibustion rooms in China. In the present study, the authors reviewed newly-published articles about some substances released from moxa smoke as inhalable particles (PM 10 and PM 2.5), formaldehyde, benzene, methylbenzene, xylene, bene[α]pyrene, total volatile organic compounds, CO, CO 2 , NO, SO 2 , NH 3 , O 3 , etc. some of which affect IAQ. On this account, the authors put forward some strategies for controlling IAQ in moxibustion clinics including setting united safe standards, enhancing ventilation, controlling moxibustion material quality and strengthening scientific research on the safety of moxa smoke control, fully playing the superiority of moxibustion therapy and reducing its unfavorable aspects in clinical practice in the future.

  20. Sources of Indoor Air Pollution and Respiratory Health in Preschool Children

    PubMed Central

    Fuentes-Leonarte, Virginia; Ballester, Ferran; Tenías, José Maria

    2009-01-01

    We carried out bibliographic searches in PubMed and Embase.com for the period from 1996 to 2008 with the aim of reviewing the scientific literature on the relationship between various sources of indoor air pollution and the respiratory health of children under the age of five. Those studies that included adjusted correlation measurements for the most important confounding variables and which had an adequate population size were considered to be more relevant. The results concerning the relationship between gas energy sources and children's respiratory health were heterogeneous. Indoor air pollution from biomass combustion in the poorest countries was found to be an important risk factor for lower respiratory tract infections. Solvents involved in redecorating, DYI work, painting, and so forth, were found to be related to an increased risk for general respiratory problems. The distribution of papers depending on the pollution source showed a clear relationship with life-style and the level of development. PMID:20168984

  1. Students’ Perceived Heat-Health Symptoms Increased with Warmer Classroom Temperatures

    PubMed Central

    Bidassey-Manilal, Shalin; Wright, Caradee Y.; Engelbrecht, Jacobus C.; Albers, Patricia N.; Garland, Rebecca M.; Matooane, Mamopeli

    2016-01-01

    Temperatures in Africa are expected to increase by the end of the century. Heat-related health impacts and perceived health symptoms are potentially a problem, especially in public schools with limited resources. Students (n = 252) aged ~14–18 years from eight high schools completed an hourly heat-health symptom log over 5 days. Data loggers measured indoor classroom temperatures. A high proportion of students felt tired (97.2%), had low concentration (96.8%) and felt sleepy (94.1%) during at least one hour on any day. There were statistically significant correlations, when controlling for school cluster effect and time of day, between indoor temperatures ≥32 °C and students who felt tired and found it hard to breathe. Consistently higher indoor classroom temperatures were observed in classrooms constructed of prefabricated asbestos sheeting with corrugated iron roof and converted shipping container compared to brick classrooms. Longitudinal studies in multiple seasons and different classroom building types are needed. PMID:27338423

  2. Indoor Tanning and Problem Behavior

    ERIC Educational Resources Information Center

    Bagdasarov, Zhanna; Banerjee, Smita; Greene, Kathryn; Campo, Shelly

    2008-01-01

    Objective: The authors examined factors predicting college students' use of tanning beds. Participants and Methods: Undergraduate students (N = 745) at a large Northeastern university participated in the study by answering a survey measuring tanning behavior and other psychosocial variables, including sensation seeking, self-esteem, tanning image…

  3. An Innovative Multi-Agent Search-and-Rescue Path Planning Approach

    DTIC Science & Technology

    2015-03-09

    search problems from search theory and artificial intelligence /distributed robotic control, and pursuit-evasion problem perspectives may be found in...Dissanayake, “Probabilistic search for a moving target in an indoor environment”, In Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2006, pp...3393-3398. [7] H. Lau, and G. Dissanayake, “Optimal search for multiple targets in a built environment”, In Proc. IEEE/RSJ Int. Conf. Intelligent

  4. Vapor intrusion risk of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME) and ethyl tert-butyl ether (ETBE): A modeling study.

    PubMed

    Ma, Jie; Xiong, Desen; Li, Haiyan; Ding, Yi; Xia, Xiangcheng; Yang, Yongqi

    2017-06-15

    Vapor intrusion of synthetic fuel additives represents a critical yet still neglected problem at sites contaminated by petroleum fuel releases. This study used an advanced numerical model to investigate the vapor intrusion potential of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME), and ethyl tert-butyl ether (ETBE). Simulated indoor air concentration of these compounds can exceed USEPA indoor air screening level for MTBE (110μg/m 3 ). Our results also reveal that MTBE has much higher chance to cause vapor intrusion problems than TAME and ETBE. This study supports the statements made by USEPA in the Petroleum Vapor Intrusion (PVI) Guidance that the vertical screening criteria for petroleum hydrocarbons may not provide sufficient protectiveness for fuel additives, and ether oxygenates in particular. In addition to adverse impacts on human health, ether oxygenate vapor intrusion may also cause aesthetic problems (i.e., odour and flavour). Overall, this study points out that ether oxygenates can cause vapor intrusion problems. We recommend that USEPA consider including the field measurement data of synthetic fuel additives in the existing PVI database and possibly revising the PVI Guidance as necessary. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Characterizing the impact of projected changes in climate and ...

    EPA Pesticide Factsheets

    The impact of climate change on human and environmental health is of critical concern. Population exposures to air pollutants both indoors and outdoors are influenced by a wide range of air quality, meteorological, behavioral, and housing-related factors, many of which are also impacted by climate change. An integrated methodology for modeling changes in human exposures to tropospheric ozone (O3) owing to potential future changes in climate and demographics was implemented by linking existing modeling tools for climate, weather, air quality, population distribution, and human exposure. Human exposure results from the Air Pollutants Exposure Model (APEX) for 12 US cities show differences in daily maximum 8-h (DM8H) exposure patterns and levels by sex, age, and city for all scenarios. When climate is held constant and population demographics are varied, minimal difference in O3 exposures is predicted even with the most extreme demographic change scenario. In contrast, when population is held constant, we see evidence of substantial changes in O3 exposure for the most extreme change in climate. Similarly, we see increases in the percentage of the population in each city with at least one O3 exposure exceedance above 60 p.p.b and 70 p.p.b thresholds for future changes in climate. For these climate and population scenarios, the impact of projected changes in climate and air quality on human exposure to O3 are much larger than the impacts of changing demographics.

  6. Practical Implementation of Semi-Automated As-Built Bim Creation for Complex Indoor Environments

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Jung, J.; Heo, J.

    2015-05-01

    In recent days, for efficient management and operation of existing buildings, the importance of as-built BIM is emphasized in AEC/FM domain. However, fully automated as-built BIM creation is a tough issue since newly-constructed buildings are becoming more complex. To manage this problem, our research group has developed a semi-automated approach, focusing on productive 3D as-built BIM creation for complex indoor environments. In order to test its feasibility for a variety of complex indoor environments, we applied the developed approach to model the `Charlotte stairs' in Lotte World Mall, Korea. The approach includes 4 main phases: data acquisition, data pre-processing, geometric drawing, and as-built BIM creation. In the data acquisition phase, due to its complex structure, we moved the scanner location several times to obtain the entire point clouds of the test site. After which, data pre-processing phase entailing point-cloud registration, noise removal, and coordinate transformation was followed. The 3D geometric drawing was created using the RANSAC-based plane detection and boundary tracing methods. Finally, in order to create a semantically-rich BIM, the geometric drawing was imported into the commercial BIM software. The final as-built BIM confirmed that the feasibility of the proposed approach in the complex indoor environment.

  7. Sources and perceptions of indoor and ambient air pollution in rural Alaska.

    PubMed

    Ware, Desirae; Lewis, Johnnye; Hopkins, Scarlett; Boyer, Bert; Noonan, Curtis; Ward, Tony

    2013-08-01

    Even though Alaska is the largest state in the United States, much of the population resides in rural and underserved areas with documented disparities in respiratory health. This is especially true in the Yukon-Kuskokwim (southwest) and Ahtna (southcentral) Regions of Alaska. In working with community members, the goal of this study was to identify the air pollution issues (both indoors and outdoors) of concern within these two regions. Over a two-year period, 328 air quality surveys were disseminated within seven communities in rural Alaska. The surveys focused on understanding the demographics, home heating practices, indoor activities, community/outdoor activities, and air quality perceptions within each community. Results from these surveys showed that there is elevated potential for PM10/PM2.5 exposures in rural Alaska communities. Top indoor air quality concerns included mold, lack of ventilation or fresh air, and dust. Top outdoor air pollution concerns identified were open burning/smoke, road dust, and vehicle exhaust (e.g., snow machines, ATVs, etc.). These data can now be used to seek additional funding for interventions, implementing long-term, sustainable solutions to the identified problems. Further research is needed to assess exposures to PM10/PM2.5 and the associated impacts on respiratory health, particularly among susceptible populations such as young children.

  8. Climate change and temperature extremes: A review of heat- and cold-related morbidity and mortality concerns of municipalities.

    PubMed

    Gronlund, Carina J; Sullivan, Kyle P; Kefelegn, Yonathan; Cameron, Lorraine; O'Neill, Marie S

    2018-08-01

    Cold and hot weather are associated with mortality and morbidity. Although the burden of temperature-associated mortality may shift towards high temperatures in the future, cold temperatures may represent a greater current-day problem in temperate cities. Hot and cold temperature vulnerabilities may coincide across several personal and neighborhood characteristics, suggesting opportunities for increasing present and future resilience to extreme temperatures. We present a narrative literature review encompassing the epidemiology of cold- and heat-related mortality and morbidity, related physiologic and environmental mechanisms, and municipal responses to hot and cold weather, illustrated by Detroit, Michigan, USA, a financially burdened city in an economically diverse metropolitan area. The Detroit area experiences sharp increases in mortality and hospitalizations with extreme heat, while cold temperatures are associated with more gradual increases in mortality, with no clear threshold. Interventions such as heating and cooling centers may reduce but not eliminate temperature-associated health problems. Furthermore, direct hemodynamic responses to cold, sudden exertion, poor indoor air quality and respiratory epidemics likely contribute to cold-related mortality. Short- and long-term interventions to enhance energy and housing security and housing quality may reduce temperature-related health problems. Extreme temperatures can increase morbidity and mortality in municipalities like Detroit that experience both extreme heat and prolonged cold seasons amidst large socioeconomic disparities. The similarities in physiologic and built-environment vulnerabilities to both hot and cold weather suggest prioritization of strategies that address both present-day cold and near-future heat concerns. Copyright © 2018. Published by Elsevier B.V.

  9. Climate change and occupational allergies: an overview on biological pollution, exposure and prevention.

    PubMed

    D'Ovidio, Maria Concetta; Annesi-Maesano, Isabella; D'Amato, Gennaro; Cecchi, Lorenzo

    2016-01-01

    Climate change, air pollution, temperature increase and other environmental variables are modifying air quality, contributing to the increase of prevalence of allergic respiratory diseases. Allergies are complex diseases characterized by multilevel interactions between individual susceptibility, response to immune modulation and environmental exposures to physical, chemical and biological agents. Occupational allergies introduce a further complexity to these relationships by adding occupational exposure to both the indoor and outdoor ones in the living environment. The aim of this paper is to overview climate-related allergy affecting environmental and occupational health, as literature data are scanty in this regard, and to suggest a management model of this risk based on a multidisciplinary approach, taking the case of biological pollution, with details on exposure and prevention. The management of climate-related occupational allergy should take into account preventive health strategies, environmental, public and occupational interventions, as well as to develop, implement, evaluate, and improve guidelines and standards protecting workers health under changing climatic conditions; new tools and strategies based on local conditions will have to be developed. Experimental studies and acquisition of environmental and personal data have to be matched to derive useful information for the scope of occupational health and safety.

  10. The effect of ventilation strategies of child care centers on indoor air quality and respiratory health of children in Singapore.

    PubMed

    Zuraimi, M S; Tham, K W; Chew, F T; Ooi, P L

    2007-08-01

    This paper reports the effects of ventilation strategies on indoor air quality (IAQ) and respiratory health of children within 104 child care centers (CCCs) in a hot and humid climate. The CCCs were categorized by ventilation strategies: natural (NV), air-conditioned and mechanically ventilated (ACMV), air-conditioned using split units (AC), and hybrid (NV and AC operated intermittently). The concentration levels of IAQ parameters in NV CCCs are characterized by the influence of the outdoors and good dilution of indoor pollutants. The lower ventilation rates in air-conditioned CCCs result in higher concentrations of occupant-related pollutants but lower outdoor pollutant ingress. This study also revealed lower prevalence for most asthma and allergy, and respiratory symptoms in children attending NV CCCs. In multivariate analyses controlled for the effects of confounders, the risk of current rhinitis among children is significantly higher if they attend mechanically ventilated CCCs compared to NV CCCs. Air-conditioned CCCs were also associated with higher adjusted prevalence ratio of severe phlegm and cough symptoms and lower respiratory illness. Finally, children attending CCCs with hybrid ventilation are at high risk for almost all the respiratory symptoms studied. This large field study indicates that different ventilation strategies employed by child care centers can cause significant variations in the indoor air quality and prevalence of asthma, allergies and respiratory symptoms of attending children. The higher prevalence rates of allergic and respiratory symptoms among young children, whose immune system is still under-developed, in child care centers, whether fully or partially air-conditioned, suggest that ventilation and plausible growth and propagation mechanisms of allergens and infectious agents be further investigated.

  11. Mold-Resistant Construction.

    ERIC Educational Resources Information Center

    Huckabee, Christopher

    2003-01-01

    Asserts that one of the surest ways to prevent indoor air quality and mold issues is to use preventive construction materials, discussing typical resistance to dealing with mold problems (usually budget-related) and describing mold-resistant construction, which uses concrete masonry, brick, and stone and is intended to withstand inevitable…

  12. Floor Health

    ERIC Educational Resources Information Center

    High, Jacalyn

    2010-01-01

    Poor indoor air quality (IAQ) in schools and universities contributes to absenteeism and reduced performance. The American Lung Association estimates that U.S. students miss more than 14 million school days a year because of asthma, allergies and other respiratory problems exacerbated by poor IAQ. Fortunately, maintenance departments in education…

  13. Healthy Buildings?

    ERIC Educational Resources Information Center

    Grubb, Deborah

    Health problems related to school buildings can be categorized in five major areas: sick-building syndrome; health-threatening building materials; environmental hazards such as radon gas and asbestos; lead poisoning; and poor indoor air quality due to smoke, chemicals, and other pollutants. This paper provides an overview of these areas,…

  14. Clean Air by Design.

    ERIC Educational Resources Information Center

    Crawford, Gary N.

    1995-01-01

    Planning new construction is an opportunity to recognize indoor environmental quality (IEQ) issues. Provides an overview of some common IEQ issues associated with construction projects. A building's heating, ventilating, and air-conditioning (HVAC) system is by far the single most common cause of IEQ problems and complaints. (MLF)

  15. Big Jobs: Planning for Competence

    ERIC Educational Resources Information Center

    Jones, Nancy P.

    2005-01-01

    Three- to five-year-olds grow emotionally participating in meaningful and challenging physical, social, and problem-solving activities outdoors in an early childhood program on a farm. Caring for animals, planting, raking, shoveling, and engaging in meaningful indoor activities, under adult supervision, children learn to work collaboratively,…

  16. Human migration in solar homes for seasonal comfort and energy conservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.

    1987-01-01

    Every new and existing dwelling can benefit from spaces and migratory pathways that are responsive to and aligned with the natural energies of the building environment. Conceptual planning and architectural design attuned to these natural energies can increase comfort, energy conservation, and indoor and outdoor use of space. Of special importance is responsiveness to daily and seasonal microclimatic changes. The aim of this article is to provide themes and examples especially related to human migration patterns as determined by activity and response to climate.

  17. Use of a Box Model to Estimate the Airborne Concentration of Volatilized DDT in an Experimental Hut in a Tropical Climate

    DTIC Science & Technology

    2012-06-19

    long -­‐ lasting   insecticidal   netting  (LLIN)  have  been  an   effective  tandem  in  vector  control...1.  Introduction     1.1   Background                  The  use  of   indoor   residual   spraying  (IRS...ingestion  or  skin  contact.  9,10    However,  the  widespread

  18. Chapter 3: Photovoltaic Module Stability and Reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Dirk; Kurtz, Sarah

    2017-01-01

    Profits realized from investment in photovoltaic will benefit from decades of reliable operation. Service life prediction through accelerated tests is only possible if indoor tests duplicate power loss and failure modes observed in fielded systems. Therefore, detailing and quantifying power loss and failure modes is imperative. In the first section, we examine recent trends in degradation rates, the gradual power loss observed for different technologies, climates and other significant factors. In the second section, we provide a summary of the most commonly observed failure modes in fielded systems.

  19. Prevalence of house dust mite allergens in low-income homes with evaporative coolers in a semiarid climate.

    PubMed

    Johnston, James D; Barney, Taylor P; Crandall, Justin H; Brown, Marinn A; Westover, Tarah R; Paulson, Sterling M; Smith, Madeleine S; Weber, K Scott

    2018-01-02

    House dust mites are typically absent in homes in arid and semiarid climates due to low humidity. Evaporative "swamp" cooling significantly increases indoor humidity in dry climates and is suspected of promoting dust mite survival in these regions. We investigated the prevalence and concentration of mite allergens in dust from low-income homes (N = 22) with evaporative coolers in Utah County, Utah. Overall, 15 homes (68.2%) were positive for either Der p 1 or Der f 1 in at least 1 location. Geometric mean allergen levels in mattresses were 0.107 and 0.087 ug/g dust for Der p 1 and Der f 1, respectively. In furniture, levels were 0.143 and 0.165 ug/g dust for Der p1 and Der f 1, respectively. The percentage of positive homes in this study was much higher than previously reported in larger homes with swamp coolers in the same community. These results suggest socioeconomic factors may play a role in dust mite allergen prevalence in homes with evaporative coolers in dry climates.

  20. Quality assurance strategies for investigating IAQ problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collett, C.W.; Ross, J.A.; Sterling, E.M.

    Thousands of buildings have now been investigated throughout North America and western Europe. The evaluative strategies and protocols used by various investigators have been described in the scientific and protocols used by various investigators have been described in the scientific and technical literature, including those used by government agencies, private consultants, researchers, and physicians. Review of these strategies shows a consistency and commonly in approach, despite differences in terminology and organization. Most of the published protocols recognize the need to employ a multidisciplinary approach to the evaluation of indoor environmental problems, an approach that views buildings as complex, dynamic systems.more » The multidisciplinary approaches advocated by investigators gather information about the physical building (architectural), the mechanical systems that control indoor environmental conditions (engineering), the type and extent of occupant health and comfort concerns (medical), the objective quality of the air (industrial hygiene) and the occupants subjective perceptions of conditions in their work environment (social science). These components have generally been organized into a series of steps or phases, with each phase extending the information gathered from the preceding phase until a point when the causes of problems may be identified.« less

Top