Science.gov

Sample records for indoor climate systems

  1. Multisensor System for Isotemporal Measurements to Assess Indoor Climatic Conditions in Poultry Farms

    PubMed Central

    Bustamante, Eliseo; Guijarro, Enrique; García-Diego, Fernando-Juan; Balasch, Sebastián; Hospitaler, Antonio; Torres, Antonio G.

    2012-01-01

    The rearing of poultry for meat production (broilers) is an agricultural food industry with high relevance to the economy and development of some countries. Periodic episodes of extreme climatic conditions during the summer season can cause high mortality among birds, resulting in economic losses. In this context, ventilation systems within poultry houses play a critical role to ensure appropriate indoor climatic conditions. The objective of this study was to develop a multisensor system to evaluate the design of the ventilation system in broiler houses. A measurement system equipped with three types of sensors: air velocity, temperature and differential pressure was designed and built. The system consisted in a laptop, a data acquisition card, a multiplexor module and a set of 24 air temperature, 24 air velocity and two differential pressure sensors. The system was able to acquire up to a maximum of 128 signals simultaneously at 5 second intervals. The multisensor system was calibrated under laboratory conditions and it was then tested in field tests. Field tests were conducted in a commercial broiler farm under four different pressure and ventilation scenarios in two sections within the building. The calibration curves obtained under laboratory conditions showed similar regression coefficients among temperature, air velocity and pressure sensors and a high goodness fit (R2 = 0.99) with the reference. Under field test conditions, the multisensor system showed a high number of input signals from different locations with minimum internal delay in acquiring signals. The variation among air velocity sensors was not significant. The developed multisensor system was able to integrate calibrated sensors of temperature, air velocity and differential pressure and operated succesfully under different conditions in a mechanically-ventilated broiler farm. This system can be used to obtain quasi-instantaneous fields of the air velocity and temperature, as well as differential

  2. Changes in airborne fungi from the outdoors to indoor air; large HVAC systems in nonproblem buildings in two different climates.

    PubMed

    Kemp, P C; Neumeister-Kemp, H G; Esposito, B; Lysek, G; Murray, F

    2003-01-01

    Little is known about the changes in occurrence and distribution of airborne fungi as they are transported in the airstream from the outdoor air through the heating, ventilation, and air conditioning (HVAC) system to the indoor air. To better understand this, airborne fungi were analyzed in the HVAC systems of two large office buildings in different climate zones. Fungal samples were taken in each of the walk-in chambers of the HVAC systems using a six-stage Andersen Sampler with malt extract agar. Results showed that fungal species changed with different locations in the HVAC systems. The outdoor air intake produced the greatest filtration effect for both the counts and species of outdoor air fungi. The colony forming unit (CFU) counts and species diversity was further reduced in the air directly after the filters. The cooling coils also had a substantial filtration effect. However, in room air the CFU counts were double and the mixture of fungal species was different from the air leaving the HVAC system at the supply air outlet in most locations. Diffusion of outdoor air fungi to the indoors did not explain the changes in the mixture of airborne fungi from the outdoor air to the indoor air, and some of the fungi present in the indoor air did not appear to be transported indoors by the HVAC systems.

  3. Adapting Buildings for Indoor Air Quality in a Changing Climate

    EPA Pesticide Factsheets

    Climate change presents many challenges, including the production of severe weather events. These events and efforts to minimize their effects through weatherization can adversely affect indoor environments.

  4. Carbonyl compounds indoors in a changing climate

    PubMed Central

    2012-01-01

    Background Formic acid, acetic acid and formaldehyde are important compounds in the indoor environment because of the potential for these acids to degrade calcareous materials (shells, eggs, tiles and geological specimens), paper and corrode or tarnish metals, especially copper and lead. Carbonyl sulfide tarnishes both silver and copper encouraging the formation of surface sulfides. Results Carbonyls are evolved more quickly at higher temperatures likely in the Cartoon Gallery at Knole, an important historic house near Sevenoaks in Kent, England where the study is focused. There is a potential for higher concentrations to accumulate. However, it may well be that in warmer climates they will be depleted more rapidly if ventilation increases. Conclusions Carbonyls are likely to have a greater impact in the future. PMID:22439648

  5. Climate change and health: Indoor heat exposure in vulnerable populations

    SciTech Connect

    White-Newsome, Jalonne L.; Sanchez, Brisa N.; Jolliet, Olivier; Zhang, Zhenzhen; Parker, Edith A.; Timothy Dvonch, J.; O'Neill, Marie S.

    2012-01-15

    Introduction: Climate change is increasing the frequency of heat waves and hot weather in many urban environments. Older people are more vulnerable to heat exposure but spend most of their time indoors. Few published studies have addressed indoor heat exposure in residences occupied by an elderly population. The purpose of this study is to explore the relationship between outdoor and indoor temperatures in homes occupied by the elderly and determine other predictors of indoor temperature. Materials and methods: We collected hourly indoor temperature measurements of 30 different homes; outdoor temperature, dewpoint temperature, and solar radiation data during summer 2009 in Detroit, MI. We used mixed linear regression to model indoor temperatures' responsiveness to weather, housing and environmental characteristics, and evaluated our ability to predict indoor heat exposures based on outdoor conditions. Results: Average maximum indoor temperature for all locations was 34.85 Degree-Sign C, 13.8 Degree-Sign C higher than average maximum outdoor temperature. Indoor temperatures of single family homes constructed of vinyl paneling or wood siding were more sensitive than brick homes to outdoor temperature changes and internal heat gains. Outdoor temperature, solar radiation, and dewpoint temperature predicted 38% of the variability of indoor temperatures. Conclusions: Indoor exposures to heat in Detroit exceed the comfort range among elderly occupants, and can be predicted using outdoor temperatures, characteristics of the housing stock and surroundings to improve heat exposure assessment for epidemiological investigations. Weatherizing homes and modifying home surroundings could mitigate indoor heat exposure among the elderly.

  6. Climate change and health: Indoor heat exposure in vulnerable populations☆

    PubMed Central

    White-Newsome, Jalonne L.; Sánchez, Brisa N.; Jolliet, Olivier; Zhang, Zhenzhen; Parker, Edith A.; Dvonch, J. Timothy; O'Neill, Marie S.

    2015-01-01

    Introduction Climate change is increasing the frequency of heat waves and hot weather in many urban environments. Older people are more vulnerable to heat exposure but spend most of their time indoors. Few published studies have addressed indoor heat exposure in residences occupied by an elderly population. The purpose of this study is to explore the relationship between outdoor and indoor temperatures in homes occupied by the elderly and determine other predictors of indoor temperature. Materials and methods We collected hourly indoor temperature measurements of 30 different homes; outdoor temperature, dewpoint temperature, and solar radiation data during summer 2009 in Detroit, MI. We used mixed linear regression to model indoor temperatures’ responsiveness to weather, housing and environmental characteristics, and evaluated our ability to predict indoor heat exposures based on outdoor conditions. Results Average maximum indoor temperature for all locations was 34.85 °C, 13.8 °C higher than average maximum outdoor temperature. Indoor temperatures of single family homes constructed of vinyl paneling or wood siding were more sensitive than brick homes to outdoor temperature changes and internal heat gains. Outdoor temperature, solar radiation, and dewpoint temperature predicted 38% of the variability of indoor temperatures. Conclusions Indoor exposures to heat in Detroit exceed the comfort range among elderly occupants, and can be predicted using outdoor temperatures, characteristics of the housing stock and surroundings PMID:22071034

  7. Exploring the consequences of climate change for indoor air quality

    NASA Astrophysics Data System (ADS)

    Nazaroff, William W.

    2013-03-01

    Climate change will affect the concentrations of air pollutants in buildings. The resulting shifts in human exposure may influence public health. Changes can be anticipated because of altered outdoor pollution and also owing to changes in buildings effected in response to changing climate. Three classes of factors govern indoor pollutant levels in occupied spaces: (a) properties of pollutants; (b) building factors, such as the ventilation rate; and (c) occupant behavior. Diversity of indoor conditions influences the public health significance of climate change. Potentially vulnerable subpopulations include not only the young and the infirm but also those who lack resources to respond effectively to changing conditions. Indoor air pollutant levels reflect the sum of contributions from indoor sources and from outdoor pollutants that enter with ventilation air. Pollutant classes with important indoor sources include the byproducts of combustion, radon, and volatile and semivolatile organic compounds. Outdoor pollutants of special concern include particulate matter and ozone. To ensure good indoor air quality it is important first to avoid high indoor emission rates for all pollutants and second to ensure adequate ventilation. A third factor is the use of air filtration or air cleaning to achieve further improvements where warranted. Reprinted with permission from Climate Change, the Indoor Environment, and Health (2011) by the National Academy of Sciences, Courtesy of the National Academies Press, Washington, DC.

  8. An assessment of indoor geolocation systems

    NASA Astrophysics Data System (ADS)

    Progri, Ilir Fiqiri

    2003-10-01

    Currently there is a need to design, develop, and deploy autonomous and portable indoor geolocation systems to fulfil the needs of military, civilian, governmental and commercial customers where GPS and GLONASS signals are not available due to the limitations of both GPS and GLONASS signal structure designs. The goal of this dissertation is (1) to introduce geolocation systems; (2) to classify the state of the art geolocation systems; (3) to identify the issues with the state of the art indoor geolocation systems; and (4) to propose and assess four WPI indoor geolocation systems. It is assessed that the current GPS and GLONASS signal structures are inadequate to overcome two main design concerns; namely, (1) the near-far effect and (2)the multipath effect. We propose four WPI indoor geolocation systems as an alternative solution to near-far and multipath effects. The WPI indoor geolocation systems are (1) a DSSS/CDMA indoor geolocation system, (2) a DSSS/CDMA/FDMA indoor geolocation system, (3) a DSSS/OFDM/CDMA/FDMA indoor geolocation system, and (4) an OFDM/FDMA indoor geolocation system. Each system is researched, discussed, and analyzed based on its principle of operation, its transmitter, the indoor channel, and its receiver design and issues associated with obtaining an observable to achieve indoor navigation. Our assessment of these systems concludes the following. First, a DSSS/CDMA indoor geolocation system is inadequate to neither overcome the near-far effect not mitigate cross-channel interference due to the multipath. Second, a DSSS/CDMA/FDMA indoor geolocation system is a potential candidate for indoor positioning, with data rate up to 3.2 KBPS, pseudorange error, less than to 2 m and phase error less than 5 mm. Third, a DSSS/OFDM/CDMA/FDMA indoor geolocation system is a potential candidate to achieve similar or better navigation accuracy than a DSSS/CDMA indoor geolocation system and data rate up to 5 MBPS. Fourth, an OFDM/FDMA indoor geolocation

  9. Indoor climate problems in day institutions for children. Practical, Administrative and policy perspectives.

    PubMed

    Steensberg, J

    1985-01-01

    Based on case material from the late 1970s and early 1980s from the Institution of Medical Officers of Health covering a Danish county some examples of practical indoor climate problems in day institutions for children are given. Insufficient ventilation of premises is probably the single most important factor in the development of indoor climate problems. An effective cleaning generally improves the indoor air. The study particularly illustrates the administrative and policy perspectives of the decision making process. Those that make decisions on indoor climate problems unfortunately seem to favour a narrow definition of health, i.e. the absence of overt disease; and they are not always aware that the relationship between indoor climate factors and health effects cannot be proven in an absolute sense. Experts on the scientific aspects are needed but their statements are influenced by personal values and their perception of the reasonable balance between health protection and social costs. One of the main factors influencing the indoor climate situation in Danish day institutions for children has been the lack of an adequate regulatory framework; and the central administration and responsible ministers have failed to use the already existing legislative powers to prevent problems. Decision making in cases on the indoor climate of institutions should be accelerated; we cannot wait for proof before taking preventive measures. The indoor air of institutions is a "public good" to the same extent as the ambient air and the responsible authorities have an obligation to regulate accordingly. When building regulations prove insufficient other central authorities must support local decision makers with more specific directions. Testing of building materials, hazard rating and an approval system is needed. Guidelines on indoor climate requirements for public institutions should be developed. In countries with a built-up system of child institutions and a decreasing birth

  10. A VLES/T-RANS approach to indoor climate simulations

    NASA Astrophysics Data System (ADS)

    Kenjeres, S.; Hanjalic, K.; Gunarjo, S. B.

    2001-11-01

    Demands for better design, control and optimization of indoor climate, particularly in complex and special buildings (occupied residential and office space, atria, hospitals, auditoriums) impose requirements for accurate predictions of air movement, temperature, turbulence and concentration distributions in space and time. A time-dependent RANS (T-RANS) approach is proposed for accurate prediction of flow, scalar transport and wall heat and mass transfer in complex building space. The method resolves in time and space the large-scale coherent motion which is the major carrier of momentum heat and species, whereas the residual ("subscale") turbulence is modelled by an algebraic RANS type stress/flux model. The method is especially advantageous for predicting flows driven or affected by thermal buoyancy, for which the conventional eddy-viscosity/diffusivity RANS models and gradient transport hypotheses are known to fail even in simple generic configurations. The approach was validated in a series of buoyancy-driven flows for which experimental, DNS and LES data are available. Examples of full-scale application to be presented include numerical simulations of real occupied and furnished residential space. The simulation showed that the T-RANS approach can be used as a reliable tool for a variety of applications such as optimization of of heating and ventilation system, indoor quality, safety measures related to smoke and fire spreading, as well as wall heat and mass transfer.

  11. An indoor mesocosm system to study the effect of climate change on the late winter and spring succession of Baltic Sea phyto- and zooplankton.

    PubMed

    Sommer, Ulrich; Aberle, Nicole; Engel, Anja; Hansen, Thomas; Lengfellner, Kathrin; Sandow, Marcel; Wohlers, Julia; Zöllner, Eckart; Riebesell, Ulf

    2007-01-01

    An indoor mesocosm system was set up to study the response of phytoplankton and zooplankton spring succession to winter and spring warming of sea surface temperatures. The experimental temperature regimes consisted of the decadal average of the Kiel Bight, Baltic Sea, and three elevated regimes with 2 degrees C, 4 degrees C, and 6 degrees C temperature difference from that at baseline. While the peak of the phytoplankton spring bloom was accelerated only weakly by increasing temperatures (1.4 days per degree Celsius), the subsequent biomass minimum of phytoplankton was accelerated more strongly (4.25 days per degree Celsius). Phytoplankton size structure showed a pronounced response to warming, with large phytoplankton being more dominant in the cooler mesocosms. The first seasonal ciliate peak was accelerated by 2.1 days per degree Celsius and the second one by 2.0 days per degree Celsius. The over-wintering copepod populations declined faster in the warmer mesocosm, and the appearance of nauplii was strongly accelerated by temperature (9.2 days per degree Celsius). The strong difference between the acceleration of the phytoplankton peak and the acceleration of the nauplii could be one of the "Achilles heels" of pelagic systems subject to climate change, because nauplii are the most starvation-sensitive life cycle stage of copepods and the most important food item of first-feeding fish larvae.

  12. Impact of climate change on the domestic indoor environment and associated health risks in the UK.

    PubMed

    Vardoulakis, Sotiris; Dimitroulopoulou, Chrysanthi; Thornes, John; Lai, Ka-Man; Taylor, Jonathon; Myers, Isabella; Heaviside, Clare; Mavrogianni, Anna; Shrubsole, Clive; Chalabi, Zaid; Davies, Michael; Wilkinson, Paul

    2015-12-01

    There is growing evidence that projected climate change has the potential to significantly affect public health. In the UK, much of this impact is likely to arise by amplifying existing risks related to heat exposure, flooding, and chemical and biological contamination in buildings. Identifying the health effects of climate change on the indoor environment, and risks and opportunities related to climate change adaptation and mitigation, can help protect public health. We explored a range of health risks in the domestic indoor environment related to climate change, as well as the potential health benefits and unintended harmful effects of climate change mitigation and adaptation policies in the UK housing sector. We reviewed relevant scientific literature, focusing on housing-related health effects in the UK likely to arise through either direct or indirect mechanisms of climate change or mitigation and adaptation measures in the built environment. We considered the following categories of effect: (i) indoor temperatures, (ii) indoor air quality, (iii) indoor allergens and infections, and (iv) flood damage and water contamination. Climate change may exacerbate health risks and inequalities across these categories and in a variety of ways, if adequate adaptation measures are not taken. Certain changes to the indoor environment can affect indoor air quality or promote the growth and propagation of pathogenic organisms. Measures aimed at reducing greenhouse gas emissions have the potential for ancillary public health benefits including reductions in health burdens related heat and cold, indoor exposure to air pollution derived from outdoor sources, and mould growth. However, increasing airtightness of dwellings in pursuit of energy efficiency could also have negative effects by increasing concentrations of pollutants (such as PM2.5, CO and radon) derived from indoor or ground sources, and biological contamination. These effects can largely be ameliorated by mechanical

  13. Climate Change, Indoor Environment and Health

    EPA Pesticide Factsheets

    Climate change is becoming a driving force for improving energy efficiency because saving energy can help reduce the greenhouse gas emissions that contribute to climate change. However, it is important to balance energy saving measures with ventilation...

  14. Spatial Database Modeling for Indoor Navigation Systems

    NASA Astrophysics Data System (ADS)

    Gotlib, Dariusz; Gnat, Miłosz

    2013-12-01

    For many years, cartographers are involved in designing GIS and navigation systems. Most GIS applications use the outdoor data. Increasingly, similar applications are used inside buildings. Therefore it is important to find the proper model of indoor spatial database. The development of indoor navigation systems should utilize advanced teleinformation, geoinformatics, geodetic and cartographical knowledge. The authors present the fundamental requirements for the indoor data model for navigation purposes. Presenting some of the solutions adopted in the world they emphasize that navigation applications require specific data to present the navigation routes in the right way. There is presented original solution for indoor data model created by authors on the basis of BISDM model. Its purpose is to expand the opportunities for use in indoor navigation.

  15. NFC internal: an indoor navigation system.

    PubMed

    Ozdenizci, Busra; Coskun, Vedat; Ok, Kerem

    2015-03-27

    Indoor navigation systems have recently become a popular research field due to the lack of GPS signals indoors. Several indoors navigation systems have already been proposed in order to eliminate deficiencies; however each of them has several technical and usability limitations. In this study, we propose NFC Internal, a Near Field Communication (NFC)-based indoor navigation system, which enables users to navigate through a building or a complex by enabling a simple location update, simply by touching NFC tags those are spread around and orient users to the destination. In this paper, we initially present the system requirements, give the design details and study the viability of NFC Internal with a prototype application and a case study. Moreover, we evaluate the performance of the system and compare it with existing indoor navigation systems. It is seen that NFC Internal has considerable advantages and significant contributions to existing indoor navigation systems in terms of security and privacy, cost, performance, robustness, complexity, user preference and commercial availability.

  16. NFC Internal: An Indoor Navigation System

    PubMed Central

    Ozdenizci, Busra; Coskun, Vedat; Ok, Kerem

    2015-01-01

    Indoor navigation systems have recently become a popular research field due to the lack of GPS signals indoors. Several indoors navigation systems have already been proposed in order to eliminate deficiencies; however each of them has several technical and usability limitations. In this study, we propose NFC Internal, a Near Field Communication (NFC)-based indoor navigation system, which enables users to navigate through a building or a complex by enabling a simple location update, simply by touching NFC tags those are spread around and orient users to the destination. In this paper, we initially present the system requirements, give the design details and study the viability of NFC Internal with a prototype application and a case study. Moreover, we evaluate the performance of the system and compare it with existing indoor navigation systems. It is seen that NFC Internal has considerable advantages and significant contributions to existing indoor navigation systems in terms of security and privacy, cost, performance, robustness, complexity, user preference and commercial availability. PMID:25825976

  17. The correlation between indoor and in soil radon concentrations in a desert climate

    NASA Astrophysics Data System (ADS)

    Al-Khateeb, H. M.; Aljarrah, K. M.; Alzoubi, F. Y.; Alqadi, M. K.; Ahmad, A. A.

    2017-01-01

    This study examines the levels and the correlation between indoor and in soil radon concentration in a desert climate. The measurements are carried out, in Jordan desert in AlMafraq district, using the passive integrated technique. An intelligent automated tracks counting system, modified recently by our group, is used to estimate the overlapping tracks and to decrease the counting percentage error. Results show that radon concentration in soil expands from 4.09 to 11.30 kBq m-3, with an average of 7.53 kBq m-3. Indoor radon concentrations vary from 20.2 Bq m-3 in the AlMafraq city to 46.7 Bq m-3 in Housha village and with an average of 29.6 Bq m-3. All of individual indoor radon concentrations are lower than the limit (100 Bq m-3) recommended by WHO except two dwellings in Housha village which found being higher than this limit. A moderate linear correlation (R2=0.66) was observed between indoor and in soil radon concentrations in the investigated region. Our results showed that an in soil radon measurement can be a satisfactory predictor for indoor radon potential.

  18. Envelope as Climate Negotiator: Evaluating adaptive building envelope's capacity to moderate indoor climate and energy

    NASA Astrophysics Data System (ADS)

    Erickson, James

    Through manipulation of adaptable opportunities available within a given environment, individuals become active participants in managing personal comfort requirements, by exercising control over their comfort without the assistance of mechanical heating and cooling systems. Similarly, continuous manipulation of a building skin's form, insulation, porosity, and transmissivity qualities exerts control over the energy exchanged between indoor and outdoor environments. This research uses four adaptive response variables in a modified software algorithm to explore an adaptive building skin's potential in reacting to environmental stimuli with the purpose of minimizing energy use without sacrificing occupant comfort. Results illustrate that significant energy savings can be realized with adaptive envelopes over static building envelopes even under extreme summer and winter climate conditions; that the magnitude of these savings are dependent on climate and orientation; and that occupant thermal comfort can be improved consistently over comfort levels achieved by optimized static building envelopes. The resulting adaptive envelope's unique climate-specific behavior could inform designers in creating an intelligent kinetic aesthetic that helps facilitate adaptability and resiliency in architecture.

  19. Indoor climate and air quality . Review of current and future topics in the field of ISB study group 10

    NASA Astrophysics Data System (ADS)

    Höppe, P.; Martinac, Ivo

    In industrialized countries about 90% of the time is spent indoors. The ambient parameters affecting indoor thermal comfort are air temperature and humidity, air velocity, and radiant heat exchange within an enclosure. In assessing the thermal environment, one needs to consider all ambient parameters, the insulating properties of the occupants' clothing, and the activity level of the occupants by means of heat balance models of the human body. Apart from thermal parameters, air quality (measured and perceived) is also of importance for well-being and health in indoor environments. Pollutant levels are influenced by both outdoor concentrations and by indoor emissions. Indoor levels can thus be lower (e.g. in the case of ozone and SO2) or higher (e.g. for CO2 and formaldehyde) than outdoor levels. Emissions from cooking play an important role, especially in developing countries. The humidity of the ambient air has a wide range of effects on the energy and water balance of the body as well as on elasticity, air quality perception, build-up of electrostatic charge and the formation or mould. However, its effect on the indoor climate is often overestimated. While air-handling systems are commonly used for achieving comfortable indoor climates, their use has also been linked to a variety of problems, some of which have received attention within the context of ''sick building syndrome''.

  20. Skin complaints in buildings with indoor climate problems

    SciTech Connect

    Stenberg, B. )

    1989-01-01

    The Sick Building Syndrome (SBS), as defined by the World Health Organization (WHO), is a combination of both common and unspecific symptoms. Few studies have been published with detailed descriptions of clinical findings. One of the few dermatological references with a close relation to sick buildings is the so-called low humidity occupational dermatoses. Since 1982, an increasing number of outpatients from building with indoor climate problems have been investigated at the Department of Dermatology in Umea, Sweden. The most common findings regarding work-related diseases have been seborrheic dermatitis, facial erythema, periorbital eczema, rosacea, urticaria, and itching folliculitis. It is suggested that physical, chemical, and psychological factors are of importance in producing these symptoms.

  1. EPA Research Funding Aims to Improve Understanding of Climate Change Impacts on Indoor Air Quality

    EPA Pesticide Factsheets

    Harvard College is one of only nine institutions that will share nearly $8 million from the US Environmental Protection Agency to study how climate change affects indoor air quality and the resulting health effects.

  2. Towards a Decentralized Magnetic Indoor Positioning System

    PubMed Central

    Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg

    2015-01-01

    Decentralized magnetic indoor localization is a sophisticated method for processing sampled magnetic data directly on a mobile station (MS), thereby decreasing or even avoiding the need for communication with the base station. In contrast to central-oriented positioning systems, which transmit raw data to a base station, decentralized indoor localization pushes application-level knowledge into the MS. A decentralized position solution has thus a strong feasibility to increase energy efficiency and to prolong the lifetime of the MS. In this article, we present a complete architecture and an implementation for a decentralized positioning system. Furthermore, we introduce a technique for the synchronization of the observed magnetic field on the MS with the artificially-generated magnetic field from the coils. Based on real-time clocks (RTCs) and a preemptive operating system, this method allows a stand-alone control of the coils and a proper assignment of the measured magnetic fields on the MS. A stand-alone control and synchronization of the coils and the MS have an exceptional potential to implement a positioning system without the need for wired or wireless communication and enable a deployment of applications for rescue scenarios, like localization of miners or firefighters. PMID:26690145

  3. Towards a Decentralized Magnetic Indoor Positioning System.

    PubMed

    Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg

    2015-12-04

    Decentralized magnetic indoor localization is a sophisticated method for processing sampled magnetic data directly on a mobile station (MS), thereby decreasing or even avoiding the need for communication with the base station. In contrast to central-oriented positioning systems, which transmit raw data to a base station, decentralized indoor localization pushes application-level knowledge into the MS. A decentralized position solution has thus a strong feasibility to increase energy efficiency and to prolong the lifetime of the MS. In this article, we present a complete architecture and an implementation for a decentralized positioning system. Furthermore, we introduce a technique for the synchronization of the observed magnetic field on the MS with the artificially-generated magnetic field from the coils. Based on real-time clocks (RTCs) and a preemptive operating system, this method allows a stand-alone control of the coils and a proper assignment of the measured magnetic fields on the MS. A stand-alone control and synchronization of the coils and the MS have an exceptional potential to implement a positioning system without the need for wired or wireless communication and enable a deployment of applications for rescue scenarios, like localization of miners or firefighters.

  4. Visual navigation system for autonomous indoor blimps

    NASA Astrophysics Data System (ADS)

    Campos, Mario F.; de Souza Coelho, Lucio

    1999-07-01

    Autonomous dirigibles - aerial robots that are a blimp controlled by computer based on information gathered by sensors - are a new and promising research field in Robotics, offering several original work opportunities. One of them is the study of visual navigation of UAVs. In the work described in this paper, a Computer Vision and Control system was developed to perform automatically very simple navigation task for a small indoor blimp. The vision system is able to track artificial visual beacons - objects with known geometrical properties - and from them a geometrical methodology can extract information about orientation of the blimp. The tracking of natural landmarks is also a possibility for the vision technique developed. The control system uses that data to keep the dirigible on a programmed orientation. Experimental results showing the correct and efficient functioning of the system are shown and have your implications and future possibilities discussed.

  5. Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities

    SciTech Connect

    Morrison, G.C.; Corsi, R.L.; Destaillats, H.; Nazaroff, W.W.; Wells, J.R.

    2006-05-01

    Chemical processes taking place in indoor environments can significantly alter the nature and concentrations of pollutants. Exposure to secondary contaminants generated in these reactions needs to be evaluated in association with many aspects of buildings to minimize their impact on occupant health and well-being. Focusing on indoor ozone chemistry, we describe alternatives for improving indoor air quality by controlling chemical changes related to building materials, ventilation systems, and occupant activities.

  6. Energy system contributions in indoor rock climbing.

    PubMed

    Bertuzzi, Rômulo Cássio de Moraes; Franchini, Emerson; Kokubun, Eduardo; Kiss, Maria Augusta Peduti Dal Molin

    2007-10-01

    The present study cross-sectionally investigated the influence of training status, route difficulty and upper body aerobic and anaerobic performance of climbers on the energetics of indoor rock climbing. Six elite climbers (EC) and seven recreational climbers (RC) were submitted to the following laboratory tests: (a) anthropometry, (b) upper body aerobic power, and (c) upper body Wingate test. On another occasion, EC subjects climbed an easy, a moderate, and a difficult route, whereas RC subjects climbed only the easy route. The fractions of the aerobic (W(AER)), anaerobic alactic (W(PCR)) and anaerobic lactic (W[La(-)]) systems were calculated based on oxygen uptake, the fast component of excess post-exercise oxygen uptake, and changes in net blood lactate, respectively. On the easy route, the metabolic cost was significantly lower in EC [40.3 (6.5) kJ] than in RC [60.1 (8.8) kJ] (P < 0.05). The respective contributions of the W (AER), W (PCR), and W[La(-)] systems in EC were: easy route = 41.5 (8.1), 41.1 (11.4) and 17.4% (5.4), moderate route = 45.8 (8.4), 34.6 (7.1) and 21.9% (6.3), and difficult route = 41.9 (7.4), 35.8 (6.7) and 22.3% (7.2). The contributions of the W (AER), W (PCR), and W[La(-)] systems in RC subjects climbing an easy route were 39.7 (5.0), 34.0 (5.8), and 26.3% (3.8), respectively. These results indicate that the main energy systems required during indoor rock climbing are the aerobic and anaerobic alactic systems. In addition, climbing economy seems to be more important for the performance of these athletes than improved energy metabolism.

  7. A New Indoor Positioning System Architecture Using GPS Signals.

    PubMed

    Xu, Rui; Chen, Wu; Xu, Ying; Ji, Shengyue

    2015-04-29

    The pseudolite system is a good alternative for indoor positioning systems due to its large coverage area and accurate positioning solution. However, for common Global Positioning System (GPS) receivers, the pseudolite system requires some modifications of the user terminals. To solve the problem, this paper proposes a new pseudolite-based indoor positioning system architecture. The main idea is to receive real-world GPS signals, repeat each satellite signal and transmit those using indoor transmitting antennas. The transmitted GPS-like signal can be processed (signal acquisition and tracking, navigation data decoding) by the general receiver and thus no hardware-level modification on the receiver is required. In addition, all Tx can be synchronized with each other since one single clock is used in Rx/Tx. The proposed system is simulated using a software GPS receiver. The simulation results show the indoor positioning system is able to provide high accurate horizontal positioning in both static and dynamic situations.

  8. A New Indoor Positioning System Architecture Using GPS Signals

    PubMed Central

    Xu, Rui; Chen, Wu; Xu, Ying; Ji, Shengyue

    2015-01-01

    The pseudolite system is a good alternative for indoor positioning systems due to its large coverage area and accurate positioning solution. However, for common Global Positioning System (GPS) receivers, the pseudolite system requires some modifications of the user terminals. To solve the problem, this paper proposes a new pseudolite-based indoor positioning system architecture. The main idea is to receive real-world GPS signals, repeat each satellite signal and transmit those using indoor transmitting antennas. The transmitted GPS-like signal can be processed (signal acquisition and tracking, navigation data decoding) by the general receiver and thus no hardware-level modification on the receiver is required. In addition, all Tx can be synchronized with each other since one single clock is used in Rx/Tx. The proposed system is simulated using a software GPS receiver. The simulation results show the indoor positioning system is able to provide high accurate horizontal positioning in both static and dynamic situations. PMID:25938199

  9. Preventing Indoor Air Quality Problems in Educational Facilities: Guidelines for Hot, Humid Climates. Revised.

    ERIC Educational Resources Information Center

    Odom, J. David; DuBose, George

    This manual addresses the errors that occur during new construction that subsequently contribute to indoor air quality (IAQ) problems in newly constructed buildings in hot and humid climates, and offers guidelines for preventing them during the design and construction phases. It defines the roles and responsibilities of the design team, the…

  10. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    Rudd, A.; Bergey, D.

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  11. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    Rudd, Armin; Bergey, Daniel

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  12. Climate system modeling program

    SciTech Connect

    1995-12-31

    The Climate System Modeling Project is a component activity of NSF's Climate Modeling, Analysis and Prediction Program, supported by the Atmospheric Sciences Program, Geosciences Directorate. Its objective is to accelerate progress toward reliable prediction of global and regional climate changes in the decades ahead. CSMP operates through workshops, support for post-docs and graduate students and other collaborative activities designed to promote interdisciplinary and strategic work in support of the overall objective (above) and specifically in three areas, (1) Causes of interdecadal variability in the climate system, (2) Interactions of regional climate forcing with global processes, and (3) Scientific needs of climate assessment.

  13. Steady-state balance model to calculate the indoor climate of livestock buildings, demonstrated for finishing pigs

    NASA Astrophysics Data System (ADS)

    Schauberger, G.; Piringer, M.; Petz, E.

    The indoor climate of livestock buildings is of importance for the well-being and health of animals and their production performance (daily weight gain, milk yield etc). By using a steady-state model for the sensible and latent heat fluxes and the CO2 and odour mass flows, the indoor climate of mechanically ventilated livestock buildings can be calculated. These equations depend on the livestock (number of animals and how they are kept), the insulation of the building and the characteristics of the ventilation system (ventilation rate). Since the model can only be applied to animal houses where the ventilation systems are mechanically controlled (this is the case for a majority of finishing pig units), the calculations were done for an example of a finishing pig unit with 1000 animal places. The model presented used 30 min values of the outdoor parameters temperature and humidity, collected over a 2-year period, as input. The projected environment inside the livestock building was compared with recommended values. The duration of condensation on the inside surfaces was also calculated.

  14. Daily indoor-to-outdoor temperature and humidity relationships: a sample across seasons and diverse climatic regions

    PubMed Central

    Nguyen, Jennifer L.; Dockery, Douglas W.

    2015-01-01

    The health consequences of heat and cold are usually evaluated based on associations with outdoor measurements at the nearest weather reporting station. However, people in the developed world spend little time outdoors, especially during extreme temperature events. We examined the association between indoor and outdoor temperature and humidity in a range of climates. We measured indoor temperature, apparent temperature, relative humidity, dew point, and specific humidity (a measure of moisture content in air) for one calendar year (2012) in a convenience sample of eight diverse locations ranging from the equatorial region (10°N) to the Arctic (64°N). We then compared the indoor conditions to outdoor values recorded at the nearest airport weather station. We found that the shape of the indoor-to-outdoor temperature and humidity relationships varied across seasons and locations. Indoor temperatures showed little variation across season and location. There was large variation in indoor relative humidity between seasons and between locations which was independent of outdoor, airport measurements. On the other hand, indoor specific humidity, and to a lesser extent dew point, tracked with outdoor, airport measurements both seasonally and between climates, across a wide range of outdoor temperatures. Our results suggest that, depending on the measure, season, and location, outdoor weather measurements can be reliably used to represent indoor exposures and that, in general, outdoor measures of actual moisture content in air better capture indoor exposure than temperature and relative humidity. Therefore, absolute measures of water vapor should be examined in conjunction with other measures (e.g. temperature, relative humidity) in studies of the effect of weather and climate on human health. PMID:26054827

  15. Daily indoor-to-outdoor temperature and humidity relationships: a sample across seasons and diverse climatic regions.

    PubMed

    Nguyen, Jennifer L; Dockery, Douglas W

    2016-02-01

    The health consequences of heat and cold are usually evaluated based on associations with outdoor measurements collected at a nearby weather reporting station. However, people in the developed world spend little time outdoors, especially during extreme temperature events. We examined the association between indoor and outdoor temperature and humidity in a range of climates. We measured indoor temperature, apparent temperature, relative humidity, dew point, and specific humidity (a measure of moisture content in air) for one calendar year (2012) in a convenience sample of eight diverse locations ranging from the equatorial region (10 °N) to the Arctic (64 °N). We then compared the indoor conditions to outdoor values recorded at the nearest airport weather station. We found that the shape of the indoor-to-outdoor temperature and humidity relationships varied across seasons and locations. Indoor temperatures showed little variation across season and location. There was large variation in indoor relative humidity between seasons and between locations which was independent of outdoor airport measurements. On the other hand, indoor specific humidity, and to a lesser extent dew point, tracked with outdoor, airport measurements both seasonally and between climates, across a wide range of outdoor temperatures. These results suggest that, in general, outdoor measures of actual moisture content in air better capture indoor conditions than outdoor temperature and relative humidity. Therefore, in studies where water vapor is among the parameters of interest for examining weather-related health effects, outdoor measurements of actual moisture content can be more reliably used as a proxy for indoor exposure than the more commonly examined variables of temperature and relative humidity.

  16. An Indoor Navigation System for the Visually Impaired

    PubMed Central

    Guerrero, Luis A.; Vasquez, Francisco; Ochoa, Sergio F.

    2012-01-01

    Navigation in indoor environments is highly challenging for the severely visually impaired, particularly in spaces visited for the first time. Several solutions have been proposed to deal with this challenge. Although some of them have shown to be useful in real scenarios, they involve an important deployment effort or use artifacts that are not natural for blind users. This paper presents an indoor navigation system that was designed taking into consideration usability as the quality requirement to be maximized. This solution enables one to identify the position of a person and calculates the velocity and direction of his movements. Using this information, the system determines the user's trajectory, locates possible obstacles in that route, and offers navigation information to the user. The solution has been evaluated using two experimental scenarios. Although the results are still not enough to provide strong conclusions, they indicate that the system is suitable to guide visually impaired people through an unknown built environment. PMID:22969398

  17. An indoor navigation system for the visually impaired.

    PubMed

    Guerrero, Luis A; Vasquez, Francisco; Ochoa, Sergio F

    2012-01-01

    Navigation in indoor environments is highly challenging for the severely visually impaired, particularly in spaces visited for the first time. Several solutions have been proposed to deal with this challenge. Although some of them have shown to be useful in real scenarios, they involve an important deployment effort or use artifacts that are not natural for blind users. This paper presents an indoor navigation system that was designed taking into consideration usability as the quality requirement to be maximized. This solution enables one to identify the position of a person and calculates the velocity and direction of his movements. Using this information, the system determines the user's trajectory, locates possible obstacles in that route, and offers navigation information to the user. The solution has been evaluated using two experimental scenarios. Although the results are still not enough to provide strong conclusions, they indicate that the system is suitable to guide visually impaired people through an unknown built environment.

  18. A Tagless Indoor Localization System Based on Capacitive Sensing Technology

    PubMed Central

    Ramezani Akhmareh, Alireza; Lazarescu, Mihai Teodor; Bin Tariq, Osama; Lavagno, Luciano

    2016-01-01

    Accurate indoor person localization is essential for several services, such as assisted living. We introduce a tagless indoor person localization system based on capacitive sensing and localization algorithms that can determine the location with less than 0.2 m average error in a 3 m × 3 m room and has recall and precision better than 70%. We also discuss the effects of various noise types on the measurements and ways to reduce them using filters suitable for on-sensor implementation to lower communication energy consumption. We also compare the performance of several standard localization algorithms in terms of localization error, recall, precision, and accuracy of detection of the movement trajectory. PMID:27618049

  19. Evaluations of indoor noise criteria systems based on human response

    NASA Astrophysics Data System (ADS)

    Bowden, Erica E.; Wang, Lily M.

    2005-09-01

    The goal of this research is to examine human response to background noise, and relate results to indoor noise criteria. In previous work by the authors, subjects completed perception surveys, typing tasks, and proofreading tasks under typical heating, ventilating, and air-conditioning (HVAC) noise conditions. Results were correlated with commonly used indoor noise criteria systems including noise criteria (NC), room criteria (RC) and others. The findings suggested that the types of tasks used and the length of exposure can impact the results. To examine these two issues, the authors conducted a new study in which each test subject completed 38 total hours of testing over multiple days. Subjects were exposed to several background noise exposures over 20, 40, 80, and 240 minute trials. During the trials, subjects completed a variety of performance tasks and answered questions about their perception of the noise, the thermal environment, and various other factors. Findings from this study were used to determine optimum testing conditions for on-going research examining the effects of tonal or fluctuating background noise on performance, annoyance, and spectral perception. Results are being used to evaluate the effectiveness of commonly used indoor noise criteria systems. [Work supported by INCE and ASHRAE.

  20. Pilot climate data system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A usable data base, the Pilot climate Data System (PCDS) is described. The PCDS is designed to be an interactive, easy-to-use, on-line generalized scientific information system. It efficiently provides uniform data catalogs; inventories, and access method, as well as manipulation and display tools for a large assortment of Earth, ocean and atmospheric data for the climate-related research community. Researchers can employ the PCDS to scan, manipulate, compare, display, and study climate parameters from diverse data sets. Software features, and applications of the PCDS are highlighted.

  1. Indoor Air Quality in the Metro System in North Taiwan

    PubMed Central

    Chen, Ying-Yi; Sung, Fung-Chang; Chen, Mei-Lien; Mao, I-Fang; Lu, Chung-Yen

    2016-01-01

    Indoor air pollution is an increasing health concern, especially in enclosed environments such as underground subway stations because of increased global usage by urban populations. This study measured the indoor air quality of underground platforms at 10 metro stations of the Taipei Rapid Transit system (TRTS) in Taiwan, including humidity, temperature, carbon monoxide (CO), carbon dioxide (CO2), formaldehyde (HCHO), total volatile organic compounds (TVOCs), ozone (O3), airborne particulate matter (PM10 and PM2.5), bacteria and fungi. Results showed that the CO2, CO and HCHO levels met the stipulated standards as regulated by Taiwan’s Indoor Air Quality Management Act (TIAQMA). However, elevated PM10 and PM2.5 levels were measured at most stations. TVOCs and bacterial concentrations at some stations measured in summer were higher than the regulated standards stipulated by Taiwan’s Environmental Protection Administration. Further studies should be conducted to reduce particulate matters, TVOCs and bacteria in the air of subway stations. PMID:27918460

  2. D Modelling of AN Indoor Space Using a Rotating Stereo Frame Camera System

    NASA Astrophysics Data System (ADS)

    Kang, J.; Lee, I.

    2016-06-01

    Sophisticated indoor design and growing development in urban architecture make indoor spaces more complex. And the indoor spaces are easily connected to public transportations such as subway and train stations. These phenomena allow to transfer outdoor activities to the indoor spaces. Constant development of technology has a significant impact on people knowledge about services such as location awareness services in the indoor spaces. Thus, it is required to develop the low-cost system to create the 3D model of the indoor spaces for services based on the indoor models. In this paper, we thus introduce the rotating stereo frame camera system that has two cameras and generate the indoor 3D model using the system. First, select a test site and acquired images eight times during one day with different positions and heights of the system. Measurements were complemented by object control points obtained from a total station. As the data were obtained from the different positions and heights of the system, it was possible to make various combinations of data and choose several suitable combinations for input data. Next, we generated the 3D model of the test site using commercial software with previously chosen input data. The last part of the processes will be to evaluate the accuracy of the generated indoor model from selected input data. In summary, this paper introduces the low-cost system to acquire indoor spatial data and generate the 3D model using images acquired by the system. Through this experiments, we ensure that the introduced system is suitable for generating indoor spatial information. The proposed low-cost system will be applied to indoor services based on the indoor spatial information.

  3. Florida State University Receives EPA Funding to Improve Understanding of the Effects of Climate Change on Indoor Air Quality

    EPA Pesticide Factsheets

    ATLANTA - The U.S. Environmental Protection Agency (EPA) today announced that Florida State University in Tallahassee, Fla. has received a $500,000 grant to improve understanding of the effects of climate change on indoor air quality. The grant is a

  4. Comparison of the indoor air quality in mould damaged and reference buildings in a subarctic climate.

    PubMed

    Hyvärinen, A; Reponen, T; Husman, T; Nevalainen, A

    2001-08-01

    The purpose of this study was to search for objective parameters most relevant to indicate microbial problems of buildings in cold climate. Various indoor characteristics were compared in nine buildings with known history of moisture problems and visible mould (index) and in nine matched reference buildings. The concentrations of airborne viable fungal had a clear difference between the two groups of buildings. In this study, airborne concentrations of viable bacteria, formaldehyde, total volatile organic compounds (TVOC) and the occurrence of house dust mites in these index buildings were compared with the levels of the pollutants in matched reference buildings. Fungal growth and flora on moist building materials were also studied. The concentrations of TVOC were slightly higher in the index buildings than in the reference buildings. However, the differences in the concentrations or appearance of any of the studied pollutants were not significant. These parameters do not seem to be relevant indicators of microbial growth or surrogates of microbial exposure. Thus, fungal concentration and composition of fungal genera in the air still seems to be the best indicator for moisture problems among the studied pollutants. In the moist building materials, some fungal genera, such as Ulocladium and Chaetophoma were detected that were not found in indoor air showing that building material samples give additional information on the microflora of the building.

  5. THz channel characterization for future wireless gigabit indoor communication systems

    NASA Astrophysics Data System (ADS)

    Piesiewicz, Radoslaw; Jemai, Jaouhar; Koch, Martin; Kurner, Thomas

    2005-03-01

    Short range wireless communication systems are expanding at rapid rate, finding application in offices, congested urban areas and homes. Development of wireless local area networks is accompanied by a steady increase in the demand for ever higher data rates. This in turn entails the necessity to develop communication systems which operate at higher frequencies. Currently WLAN works at a few GHz, while systems operating at several ten GHz appear already feasible. It can be expected that wireless short-range communication networks will soon push towards the THz frequency range and that systems which handle high-density information and support wider bandwidth communications will be developed in a few years time. Since THz radiation is strongly absorbed by the atmosphere, working distances may be short and individual THz pico-cells may cover only single rooms or at most one building. For an indoor system of practical importance it must be robust against shadowing. Recently, flexible all-plastic mirrors, supporting specular reflections in the THz range have been demonstrated. They are cheap and easy to produce and can be used as frequency selective wall-paper to enhance the reflectivity of walls and hence facilitate non-line-of-sight communication in a THz cell. For this case the spatial and temporal characteristics of the indoor THz propagation channel in a room with randomly placed objects and moving people are derived with ray-tracing methodology and Monte Carlo simulations. Our simulations show that high-gain antennas will be needed for the realization of THz communication in indoor environments. Furthermore, indirect transmission paths between transmitter and receiver, supported by dielectric mirrors make the communication channel much more robust against shadowing.

  6. HVAC system performance and indoor air quality

    SciTech Connect

    Newman, J.L. )

    1991-01-01

    This paper reports that in the mid-seventies, the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) promulgated ASHRAE Standard 90-75 Energy Conservation in New Building Design, which called for revised minimum ventilation rates and the elimination of energy-wasting HVAC systems. Most building codes which cover energy conservation in the late seventies and eighties referred to this standard. This lowering of ventilation rates, coupled with the tighter building envelope (walls, windows, doors and roof) led to a reduction in outside air, both by engineering design and by minimizing infiltration through the structure. The minimum ventilation rates are based on the assumption that average concentrations of tobacco smoke exist in all enclosed spaces (30 percent of the population being smokers at two cigarettes per hour), rather than having separate rates for smoking and nonsmoking areas, as in the 1981 revision of the Standard. If tobacco smoke is ever declared a carcinogen, it will undoubtedly prompt a review of Standard 62-1989, as well as hasten totally smoke-free buildings.

  7. Climate data management system

    SciTech Connect

    Drach, R

    1999-07-13

    The Climate Data Management System is an object-oriented data management system, specialized for organizing multidimensional, gridded data used in climate analysis and simulation. The building blocks of CDMS are variables, container classes, structural classes, and links. All gridded data stored in CDMS is associated with variables. The container objects group variables and structural objects. Variables are defined in terms of structural objects. Most CDMS objects can have attributes, which are scalar or one-dimensional metadata items. Attributes which are stored in the database, that is are persistent, are called external attributes. Some attributes are internal; they are associated with an object but do not appear explicitly in the database.

  8. Ubiquitous Indoor Geolocation: a Case Study of Jewellery Management System

    NASA Astrophysics Data System (ADS)

    Nikparvar, B.; Sadeghi-Niaraki, A.; Azari, P.

    2014-10-01

    Addressing and geolocation for indoor environments are important fields of research in the recent years. The problem of finding location of objects in indoor spaces is proposed to solve in two ways. The first, is to assign coordinates to objects and second is to divide space into cells and detect the presence or absence of objects in each cell to track them. In this paper the second approach is discussed by using Radio Frequency Identification technology to identify and track high value objects in jewellery retail industry. In Ubiquitous Sensor Networks, the reactivity or proactivity of the environment are important issues. Reactive environments wait for a request to response to it. Instead, in proactive spaces, the environment acts in advance to deal with an expected action. In this research, a geo-sensor network containing RFID readers, tags, and antennas which continuously exchange radio frequency signal streams is proposed to manage and monitor jewellery galleries ubiquitously. The system is also equipped with a GIS representation which provides a more user-friendly system to manage a jewellery gallery.

  9. Evaluating Different Green School Building Designs for Albania: Indoor Thermal Comfort, Energy Use Analysis with Solar Systems

    NASA Astrophysics Data System (ADS)

    Dalvi, Ambalika Rajendra

    Improving the conditions of schools in many parts of the world is gradually acquiring importance. The Green School movement is an integral part of this effort since it aims at improving indoor environmental conditions. This would in turn, enhance student- learning while minimizing adverse environmental impact through energy efficiency of comfort-related HVAC and lighting systems. This research, which is a part of a larger research project, aims at evaluating different school building designs in Albania in terms of energy use and indoor thermal comfort, and identify energy efficient options of existing schools. We start by identifying three different climate zones in Albania; Coastal (Durres), Hill/Pre-mountainous (Tirana), mountainous (Korca). Next, two prototypical school building designs are identified from the existing stock. Numerous scenarios are then identified for analysis which consists of combinations of climate zone, building type, building orientation, building upgrade levels, presence of renewable energy systems (solar photovoltaic and solar water heater). The existing building layouts, initially outlined in CAD software and then imported into a detailed building energy software program (eQuest) to perform annual simulations for all scenarios. The research also predicted indoor thermal comfort conditions of the various scenarios on the premise that windows could be opened to provide natural ventilation cooling when appropriate. This study also estimated the energy generated from solar photovoltaic systems and solar water heater systems when placed on the available roof area to determine the extent to which they are able to meet the required electric loads (plug and lights) and building heating loads respectively. The results showed that there is adequate indoor comfort without the need for mechanical cooling for the three climate zones, and that only heating is needed during the winter months.

  10. Optical Indoor Positioning System Based on TFT Technology

    PubMed Central

    Gőzse, István

    2015-01-01

    A novel indoor positioning system is presented in the paper. Similarly to the camera-based solutions, it is based on visual detection, but it conceptually differs from the classical approaches. First, the objects are marked by LEDs, and second, a special sensing unit is applied, instead of a camera, to track the motion of the markers. This sensing unit realizes a modified pinhole camera model, where the light-sensing area is fixed and consists of a small number of sensing elements (photodiodes), and it is the hole that can be moved. The markers are tracked by controlling the motion of the hole, such that the light of the LEDs always hits the photodiodes. The proposed concept has several advantages: Apart from its low computational demands, it is insensitive to the disturbing ambient light. Moreover, as every component of the system can be realized by simple and inexpensive elements, the overall cost of the system can be kept low. PMID:26712753

  11. Power Management Integrated Circuit for Indoor Photovoltaic Energy Harvesting System

    NASA Astrophysics Data System (ADS)

    Jain, Vipul

    In today's world, power dissipation is a main concern for battery operated mobile devices. Key design decisions are being governed by power rather than area/delay because power requirements are growing more stringent every year. Hence, a hybrid power management system is proposed, which uses both a solar panel to harvest energy from indoor lighting and a battery to power the load. The system tracks the maximum power point of the solar panel and regulates the battery and microcontroller output load voltages through the use of an on-chip switched-capacitor DC-DC converter. System performance is verified through simulation at the 180nm technology node and is made to be integrated on-chip with 0.25 second startup time, 79% efficiency, --8/+14% ripple on the load, an average 1micro A of quiescent current (3.7micro W of power) and total on-chip area of 1.8mm2 .

  12. HVAC SYSTEMS AS A TOOL IN CONTROLLING INDOOR AIR QUALITY: A LITERATURE REVIEW

    EPA Science Inventory

    The report gives results of a review of literature on the use of heating, ventilating, and air-conditioning (HVAC) systems to control indoor air quality (IAQ). Although significant progress has been made in reducing the energy consumption of HVAC systems, their effect on indoor a...

  13. Multisensor system for toxic gases detection generated on indoor environments

    NASA Astrophysics Data System (ADS)

    Durán, C. M.; Monsalve, P. A. G.; Mosquera, C. J.

    2016-11-01

    This work describes a wireless multisensory system for different toxic gases detection generated on indoor environments (i.e., Underground coal mines, etc.). The artificial multisensory system proposed in this study was developed through a set of six chemical gas sensors (MQ) of low cost with overlapping sensitivities to detect hazardous gases in the air. A statistical parameter was implemented to the data set and two pattern recognition methods such as Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA) were used for feature selection. The toxic gases categories were classified with a Probabilistic Neural Network (PNN) in order to validate the results previously obtained. The tests were carried out to verify feasibility of the application through a wireless communication model which allowed to monitor and store the information of the sensor signals for the appropriate analysis. The success rate in the measures discrimination was 100%, using an artificial neural network where leave-one-out was used as cross validation method.

  14. Design of natural user interface of indoor surveillance system

    NASA Astrophysics Data System (ADS)

    Jia, Lili; Liu, Dan; Jiang, Mu-Jin; Cao, Ning

    2015-03-01

    Conventional optical video surveillance systems usually just record what they view, but they can't make sense of what they are viewing. With lots of useless video information stored and transmitted, waste of memory space and increasing the bandwidth are produced every day. In order to reduce the overall cost of the system, and improve the application value of the monitoring system, we use the Kinect sensor with CMOS infrared sensor, as a supplement to the traditional video surveillance system, to establish the natural user interface system for indoor surveillance. In this paper, the architecture of the natural user interface system, complex background monitoring object separation, user behavior analysis algorithms are discussed. By the analysis of the monitoring object, instead of the command language grammar, when the monitored object need instant help, the system with the natural user interface sends help information. We introduce the method of combining the new system and traditional monitoring system. In conclusion, theoretical analysis and experimental results in this paper show that the proposed system is reasonable and efficient. It can satisfy the system requirements of non-contact, online, real time, higher precision and rapid speed to control the state of affairs at the scene.

  15. Indoor air pollution by different heating systems: coal burning, open fireplace and central heating.

    PubMed

    Moriske, H J; Drews, M; Ebert, G; Menk, G; Scheller, C; Schöndube, M; Konieczny, L

    1996-11-01

    Investigations of indoor air pollution by different heating systems in private homes are described. Sixteen homes, 7 with coal burning, 1 with open fireplace (wood burning) and 8 with central heating have been investigated. We measured the concentrations of carbon monoxide, carbon dioxide and sedimented dust in indoor air, of total suspended particulates, heavy metals and of polycyclic aromatic hydrocarbons in indoor and outdoor air. Measurements were taken during winter (heating period) and during summer (non-heating period). Generally, we found higher indoor air pollution in homes with coal burning and open fireplace than in homes with central heating. Especially, the concentrations of carbon monoxide, sedimented dust and of some heavy metals were higher. In one case, we found also high indoor air pollution in a home with central heating. This apartment is on the ground floor of a block of flats, and the central heating system in the basement showed a malfunctioning of the exhaust system.

  16. Indoor climate and moisture durability performances of houses with unvented attic roof constructions in a mixed-humid climate.

    SciTech Connect

    Pallin, Simon B.; Boudreaux, Philip R.; Jackson, Roderick K.

    2014-10-01

    A sealed or unvented attic is an energy-efficient envelope component that can reduce the amount of energy a house consumes for space conditioning if the air handler and/or ducts are located in the attic. The attic is typically sealed by using spray foam on the underside of the roof deck and covering the soffit, ridge and gable vents to minimize air leakage from the attic to the outside. This approach can save up to 10% in space-conditioning energy when ducts are located in the attic (DOE 2013). Past research done by ORNL and Florida Solar Energy Center suggests that in more hot, humid climates, an unvented attic could potentially create a more humid, uncomfortable living environment than a vented attic (Colon 2011, Boudreaux, Pallin et al. 2013). Research showed that controlling the higher indoor humidity could reduce the energy savings from the sealed, unvented attic, which in turn would decrease the energy savings payback. Research also showed that the roof assembly (5.5 inches of open-cell foam, 1inch of closed-cell foam, OSB, felt paper, and asphalt shingles) stored moisture, thus acting as a moisture buffer. During the fall and winter, the roof assembly stored moisture and during the spring and summer it released moisture. This phenomenon is not seen in a vented attic, in which the air exchange rate to the outside is greater and, in the winter, helps to dehumidify the attic air. It was also seen that in a vented attic, the direction of water vapor diffusion is on average from the attic to the interior of the house. Air leakage from the attic to the interior also occurs during more of the year in a house with an unvented attic than in one with a vented attic. These discoveries show that the moisture dynamics in a house with an unvented attic are much different from those in a house with a vented attic. This study reports on a series of computer model investigations completed to determine the key variables impacting indoor comfort and the durability of roof

  17. Exploitation of Semantic Building Model in Indoor Navigation Systems

    NASA Astrophysics Data System (ADS)

    Anjomshoaa, A.; Shayeganfar, F.; Tjoa, A. Min

    2009-04-01

    There are many types of indoor and outdoor navigation tools and methodologies available. A majority of these solutions are based on Global Positioning Systems (GPS) and instant video and image processing. These approaches are ideal for open world environments where very few information about the target location is available, but for large scale building environments such as hospitals, governmental offices, etc the end-user will need more detailed information about the surrounding context which is especially important in case of people with special needs. This paper presents a smart indoor navigation solution that is based on Semantic Web technologies and Building Information Model (BIM). The proposed solution is also aligned with Google Android's concepts to enlighten the realization of results. Keywords: IAI IFCXML, Building Information Model, Indoor Navigation, Semantic Web, Google Android, People with Special Needs 1 Introduction Built environment is a central factor in our daily life and a big portion of human life is spent inside buildings. Traditionally the buildings are documented using building maps and plans by utilization of IT tools such as computer-aided design (CAD) applications. Documenting the maps in an electronic way is already pervasive but CAD drawings do not suffice the requirements regarding effective building models that can be shared with other building-related applications such as indoor navigation systems. The navigation in built environment is not a new issue, however with the advances in emerging technologies like GPS, mobile and networked environments, and Semantic Web new solutions have been suggested to enrich the traditional building maps and convert them to smart information resources that can be reused in other applications and improve the interpretability with building inhabitants and building visitors. Other important issues that should be addressed in building navigation scenarios are location tagging and end-user communication

  18. Heating, Ventilation and Air-Conditioning Systems, Part of Indoor Air Quality Design Tools for Schools

    EPA Pesticide Factsheets

    The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.

  19. A Robust Indoor Autonomous Positioning System Using Particle Filter Based on ISM Band Wireless Communications

    NASA Astrophysics Data System (ADS)

    Ikeda, Takeshi; Kawamoto, Mitsuru; Sashima, Akio; Suzuki, Keiji; Kurumatani, Koichi

    In the field of the ubiquitous computing, positioning systems which can provide users' location information have paid attention as an important technical element which can be applied to various services, for example, indoor navigation services, evacuation services, market research services, guidance services, and so on. A lot of researchers have proposed various outdoor and indoor positioning systems. In this paper, we deal with indoor positioning systems. Many conventional indoor positioning systems use expensive infrastructures, because the propagated times of radio waves are used to measure users' positions with high accuracy. In this paper, we propose an indoor autonomous positioning system using radio signal strengths (RSSs) based on ISM band communications. In order to estimate users' positions, the proposed system utilizes a particle filter that is one of the Monte Carlo methods. Because the RSS information is used in the proposed system, the equipments configuring the system are not expensive compared with the conventional indoor positioning systems and it can be installed easily. Moreover, because the particle filter is used to estimate user's position, even if the RSS fluctuates due to, for example, multi-paths, the system can carry out position estimation robustly. We install the proposed system in one floor of a building and carry out some experiments in order to verify the validity of the proposed system. As a result, we confirmed that the average of the estimation errors of the proposed system was about 1.8 m, where the result is enough accuracy for achieving the services mentioned above.

  20. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas

    SciTech Connect

    2015-08-01

    ?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.

  1. ODINS: On-Demand Indoor Navigation System RFID Based.

    PubMed

    Bianchi, Federico; Masciadri, Andrea; Salice, Fabio

    2015-01-01

    This paper presents an On-Demand Indoor Navigation System (ODINS) based on RFID technology. ODINS is a distributed infrastructure where a set of information points (Fixed Stations - FS) provides the direction to a user who has to reach the destination point he/she has previously selected. ODINS system is proposed for residencies hosting people with mild cognitive disabilities and elderly but it can be also applied to structures where people could be disoriented. The destination is configured at some reception points or it is a predefined (e.g. the bed room or a selected "safe" point). The destination is associated with a RFID disposable bracelet assigned to her/him. The path is algorithmically computed and spread to all FSs. Every time the user is disoriented, she/he can search for the closest FS that displays the right directition. FSs should be located in strategic positions and provide a user-friendly interface such as bright arrows. The complexity is "system-side" making ODINS usable for everyone.

  2. Relating human productivity and annoyance to indoor noise criteria systems

    NASA Astrophysics Data System (ADS)

    Bowden, Erica E.; Wang, Lily M.

    2004-05-01

    The goal of this research is to determine a noise criteria system which best relates the effects of background noise to human productivity and annoyance. A number of indoor noise criteria systems are currently used to rate the background noise in built environments, including noise criteria (NC), balanced noise criteria (NCB), room criteria (RC), room criteria Mark II (RC-Mark II), and others. Many questions still remain about the accuracy of these predictors in assessing human response to background noise under the variety of ambient noise situations encountered. To support the use of any individual criterion, subjective testing was performed under a range of background noise situations and statistically related to the various noise criteria predictors listed above. Subjects completed an annoyance survey and performed typing and proofreading tasks in an acoustically controlled environment under 12 simulated background noise settings. These settings varied across three sound levels and four spectral qualities. Subjective testing methodology and results are presented. [Work supported by INCE and ASHRAE.

  3. POSSIBLE ROLE OF INDOOR RADON REDUCTION SYSTEMS IN BACK-DRAFTING RESIDENTIAL COMBUSTION APPLIANCES

    EPA Science Inventory

    The article gives results of a computational sensitivity analysis conducted to identify conditions under which residential active soil depressurization (ASD) systems for indoor radon reduction might contribute to or create back-drafting of natural draft combustion appliances. Par...

  4. HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW

    EPA Science Inventory

    The study evaluates heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). Various literature sources and methods for characterizing HVAC emission sources are reviewed. Available methods include in situ test...

  5. An Adaptive Localization System for Outdoor/Indoor Navigation for Autonomous Robots

    DTIC Science & Technology

    2006-04-01

    An Adaptive Localization System for Outdoor/Indoor Navigation for Autonomous Robots E.B. Pacis, B. Sights, G. Ahuja, G. Kogut, H.R. Everett...TITLE AND SUBTITLE An Adaptive Localization System for Outdoor/Indoor Navigation for Autonomous Robots 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...demonstrated a series of collaborative behaviors of multiple autonomous robots in a force-protection scenario. Stand- alone sensors detected intruder

  6. Development of an indoor location based service test bed and geographic information system with a wireless sensor network.

    PubMed

    Jan, Shau-Shiun; Hsu, Li-Ta; Tsai, Wen-Ming

    2010-01-01

    In order to provide the seamless navigation and positioning services for indoor environments, an indoor location based service (LBS) test bed is developed to integrate the indoor positioning system and the indoor three-dimensional (3D) geographic information system (GIS). A wireless sensor network (WSN) is used in the developed indoor positioning system. Considering the power consumption, in this paper the ZigBee radio is used as the wireless protocol, and the received signal strength (RSS) fingerprinting positioning method is applied as the primary indoor positioning algorithm. The matching processes of the user location include the nearest neighbor (NN) algorithm, the K-weighted nearest neighbors (KWNN) algorithm, and the probabilistic approach. To enhance the positioning accuracy for the dynamic user, the particle filter is used to improve the positioning performance. As part of this research, a 3D indoor GIS is developed to be used with the indoor positioning system. This involved using the computer-aided design (CAD) software and the virtual reality markup language (VRML) to implement a prototype indoor LBS test bed. Thus, a rapid and practical procedure for constructing a 3D indoor GIS is proposed, and this GIS is easy to update and maintenance for users. The building of the Department of Aeronautics and Astronautics at National Cheng Kung University in Taiwan is used as an example to assess the performance of various algorithms for the indoor positioning system.

  7. Received Signal Strength Database Interpolation by Kriging for a Wi-Fi Indoor Positioning System

    PubMed Central

    Jan, Shau-Shiun; Yeh, Shuo-Ju; Liu, Ya-Wen

    2015-01-01

    The main approach for a Wi-Fi indoor positioning system is based on the received signal strength (RSS) measurements, and the fingerprinting method is utilized to determine the user position by matching the RSS values with the pre-surveyed RSS database. To build a RSS fingerprint database is essential for an RSS based indoor positioning system, and building such a RSS fingerprint database requires lots of time and effort. As the range of the indoor environment becomes larger, labor is increased. To provide better indoor positioning services and to reduce the labor required for the establishment of the positioning system at the same time, an indoor positioning system with an appropriate spatial interpolation method is needed. In addition, the advantage of the RSS approach is that the signal strength decays as the transmission distance increases, and this signal propagation characteristic is applied to an interpolated database with the Kriging algorithm in this paper. Using the distribution of reference points (RPs) at measured points, the signal propagation model of the Wi-Fi access point (AP) in the building can be built and expressed as a function. The function, as the spatial structure of the environment, can create the RSS database quickly in different indoor environments. Thus, in this paper, a Wi-Fi indoor positioning system based on the Kriging fingerprinting method is developed. As shown in the experiment results, with a 72.2% probability, the error of the extended RSS database with Kriging is less than 3 dBm compared to the surveyed RSS database. Importantly, the positioning error of the developed Wi-Fi indoor positioning system with Kriging is reduced by 17.9% in average than that without Kriging. PMID:26343673

  8. Received Signal Strength Database Interpolation by Kriging for a Wi-Fi Indoor Positioning System.

    PubMed

    Jan, Shau-Shiun; Yeh, Shuo-Ju; Liu, Ya-Wen

    2015-08-28

    The main approach for a Wi-Fi indoor positioning system is based on the received signal strength (RSS) measurements, and the fingerprinting method is utilized to determine the user position by matching the RSS values with the pre-surveyed RSS database. To build a RSS fingerprint database is essential for an RSS based indoor positioning system, and building such a RSS fingerprint database requires lots of time and effort. As the range of the indoor environment becomes larger, labor is increased. To provide better indoor positioning services and to reduce the labor required for the establishment of the positioning system at the same time, an indoor positioning system with an appropriate spatial interpolation method is needed. In addition, the advantage of the RSS approach is that the signal strength decays as the transmission distance increases, and this signal propagation characteristic is applied to an interpolated database with the Kriging algorithm in this paper. Using the distribution of reference points (RPs) at measured points, the signal propagation model of the Wi-Fi access point (AP) in the building can be built and expressed as a function. The function, as the spatial structure of the environment, can create the RSS database quickly in different indoor environments. Thus, in this paper, a Wi-Fi indoor positioning system based on the Kriging fingerprinting method is developed. As shown in the experiment results, with a 72.2% probability, the error of the extended RSS database with Kriging is less than 3 dBm compared to the surveyed RSS database. Importantly, the positioning error of the developed Wi-Fi indoor positioning system with Kriging is reduced by 17.9% in average than that without Kriging.

  9. Method, system and apparatus for monitoring and adjusting the quality of indoor air

    DOEpatents

    Hartenstein, Steven D.; Tremblay, Paul L.; Fryer, Michael O.; Hohorst, Frederick A.

    2004-03-23

    A system, method and apparatus is provided for monitoring and adjusting the quality of indoor air. A sensor array senses an air sample from the indoor air and analyzes the air sample to obtain signatures representative of contaminants in the air sample. When the level or type of contaminant poses a threat or hazard to the occupants, the present invention takes corrective actions which may include introducing additional fresh air. The corrective actions taken are intended to promote overall health of personnel, prevent personnel from being overexposed to hazardous contaminants and minimize the cost of operating the HVAC system. The identification of the contaminants is performed by comparing the signatures provided by the sensor array with a database of known signatures. Upon identification, the system takes corrective actions based on the level of contaminant present. The present invention is capable of learning the identity of previously unknown contaminants, which increases its ability to identify contaminants in the future. Indoor air quality is assured by monitoring the contaminants not only in the indoor air, but also in the outdoor air and the air which is to be recirculated. The present invention is easily adaptable to new and existing HVAC systems. In sum, the present invention is able to monitor and adjust the quality of indoor air in real time by sensing the level and type of contaminants present in indoor air, outdoor and recirculated air, providing an intelligent decision about the quality of the air, and minimizing the cost of operating an HVAC system.

  10. Arctic Climate Systems Analysis

    SciTech Connect

    Ivey, Mark D.; Robinson, David G.; Boslough, Mark B.; Backus, George A.; Peterson, Kara J.; van Bloemen Waanders, Bart G.; Swiler, Laura Painton; Desilets, Darin Maurice; Reinert, Rhonda Karen

    2015-03-01

    This study began with a challenge from program area managers at Sandia National Laboratories to technical staff in the energy, climate, and infrastructure security areas: apply a systems-level perspective to existing science and technology program areas in order to determine technology gaps, identify new technical capabilities at Sandia that could be applied to these areas, and identify opportunities for innovation. The Arctic was selected as one of these areas for systems level analyses, and this report documents the results. In this study, an emphasis was placed on the arctic atmosphere since Sandia has been active in atmospheric research in the Arctic since 1997. This study begins with a discussion of the challenges and benefits of analyzing the Arctic as a system. It goes on to discuss current and future needs of the defense, scientific, energy, and intelligence communities for more comprehensive data products related to the Arctic; assess the current state of atmospheric measurement resources available for the Arctic; and explain how the capabilities at Sandia National Laboratories can be used to address the identified technological, data, and modeling needs of the defense, scientific, energy, and intelligence communities for Arctic support.

  11. A miniature shoe-mounted orientation determination system for accurate indoor heading and trajectory tracking.

    PubMed

    Zhang, Shengzhi; Yu, Shuai; Liu, Chaojun; Liu, Sheng

    2016-06-01

    Tracking the position of pedestrian is urgently demanded when the most commonly used GPS (Global Position System) is unavailable. Benefited from the small size, low-power consumption, and relatively high reliability, micro-electro-mechanical system sensors are well suited for GPS-denied indoor pedestrian heading estimation. In this paper, a real-time miniature orientation determination system (MODS) was developed for indoor heading and trajectory tracking based on a novel dual-linear Kalman filter. The proposed filter precludes the impact of geomagnetic distortions on pitch and roll that the heading is subjected to. A robust calibration approach was designed to improve the accuracy of sensors measurements based on a unified sensor model. Online tests were performed on the MODS with an improved turntable. The results demonstrate that the average RMSE (root-mean-square error) of heading estimation is less than 1°. Indoor heading experiments were carried out with the MODS mounted on the shoe of pedestrian. Besides, we integrated the existing MODS into an indoor pedestrian dead reckoning application as an example of its utility in realistic actions. A human attitude-based walking model was developed to calculate the walking distance. Test results indicate that mean percentage error of indoor trajectory tracking achieves 2% of the total walking distance. This paper provides a feasible alternative for accurate indoor heading and trajectory tracking.

  12. A miniature shoe-mounted orientation determination system for accurate indoor heading and trajectory tracking

    NASA Astrophysics Data System (ADS)

    Zhang, Shengzhi; Yu, Shuai; Liu, Chaojun; Liu, Sheng

    2016-06-01

    Tracking the position of pedestrian is urgently demanded when the most commonly used GPS (Global Position System) is unavailable. Benefited from the small size, low-power consumption, and relatively high reliability, micro-electro-mechanical system sensors are well suited for GPS-denied indoor pedestrian heading estimation. In this paper, a real-time miniature orientation determination system (MODS) was developed for indoor heading and trajectory tracking based on a novel dual-linear Kalman filter. The proposed filter precludes the impact of geomagnetic distortions on pitch and roll that the heading is subjected to. A robust calibration approach was designed to improve the accuracy of sensors measurements based on a unified sensor model. Online tests were performed on the MODS with an improved turntable. The results demonstrate that the average RMSE (root-mean-square error) of heading estimation is less than 1°. Indoor heading experiments were carried out with the MODS mounted on the shoe of pedestrian. Besides, we integrated the existing MODS into an indoor pedestrian dead reckoning application as an example of its utility in realistic actions. A human attitude-based walking model was developed to calculate the walking distance. Test results indicate that mean percentage error of indoor trajectory tracking achieves 2% of the total walking distance. This paper provides a feasible alternative for accurate indoor heading and trajectory tracking.

  13. Efficacy of the Precise Climate Controller on the reduction of indoor microorganisms

    PubMed Central

    Moungthong, Greetha; Mahakit, Prasit; Chalermwatanachai, Thanit; Thunyaharn, Sudaluck; Monyakul, Veerapol

    2014-01-01

    Background Nowadays, there are many methods to reduce microorganisms in the air, such as dehumidifier, air purifier or humidity and temperature controller. The Precise Climate Controller is an instrument for controlling humidity and temperature, a concept that is demonstrated. Objective To determine the efficacy of this device, in order to reduce the quantity of the fungi and bacteria in the closed system. Methods This study is a perspective experimental study and is conducted as follows - the air sample in the closed system, a 42-cubic-meter room, is collected before the installation of the Precise Climate Controller. Next, the room is fumed with Aspergillus flavus and closed for 2 days. Then the instrument is in use in order to keep the relative humidity (RH) and the temperature constant at 55% RH and 25 degrees Celsius (℃). The air samples are collected every 3 days for 5 times during the period of 15 days to identify the type and calculate the quantity of the microorganisms. Results Before the Precise Climate Controller has been installed. Three species of bacteria are found in the air samples, but none of the fungus exists in the testing room. Once the room has been fumed with a large amount of A. flavus and the instrument is in use for 3 days, nine colonies of A. flavus are identified, but later on when the instrument is in use for 6, 9, 12, and 15 days, the air samples contain neither fungus nor bacteria. Conclusion After keeping the RH and temperature of the closed system constant at 55% RH and 25℃ by using the Precise Climate Controller, it is found that the efficaciousness in controlling the quantity and species of fungi and bacteria is clinically significant. PMID:24809017

  14. A new approach for indoor climate labeling of building materials—emission testing, modeling, and comfort evaluation

    NASA Astrophysics Data System (ADS)

    Wolkoff, Peder; Nielsen, Peter A.

    A labeling system for building materials' primary emission of volatile organic compounds (VOCs) according to their impact on comfort and health has been developed and introduced in Denmark. The system unifies chemical emission testing over time (months), modeling (including a standard room and mathematical modeling of the emission profile, when necessary), and health evaluation. As a first step, the Danish system focuses on comfort, i.e. odor annoyance and mucous membrane irritation, because of their preponderance in the sick building syndrome reporting and the absence of other relevant data on indoor air related health effects. Two design criteria have been set: the labeling system shall be easily comprehensible and at the same time operational and dynamic. The principle is to determine the time value, t( Cm), required to reach the relevant indoor air value, C m (presently, based on odor and mucous membrane irritation thresholds), in a standard room. Odor thresholds are used because they generally are at least one order of magnitude lower than mucous membrane irritation thresholds. t( Cm) is a measure of the period of time during which a new building material may cause indoor air quality problems, unless special precautions are made. The system may also be used for singular VOCs of which a specific health endpoint has been reported. The Danish labeling system is illustrated with the emission testing and comfort evaluation of two sealants using the Field and Laboratory Emission Cell (FLEC)

  15. Endotoxins in indoor air and settled dust in primary schools in a subtropical climate.

    PubMed

    Salonen, Heidi; Duchaine, Caroline; Létourneau, Valérie; Mazaheri, Mandana; Clifford, Sam; Morawska, Lidia

    2013-09-03

    Endotoxins can significantly affect the air quality in school environments. However, there is currently no reliable method for the measurement of endotoxins, and there is a lack of reference values for endotoxin concentrations to aid in the interpretation of measurement results in school settings. We benchmarked the "baseline" range of endotoxin concentration in indoor air, together with endotoxin load in floor dust, and evaluated the correlation between endotoxin levels in indoor air and settled dust, as well as the effects of temperature and humidity on these levels in subtropical school settings. Bayesian hierarchical modeling indicated that the concentration in indoor air and the load in floor dust were generally (<95th percentile) <13 EU/m(3) and <24,570 EU/m(2), respectively. Exceeding these levels would indicate abnormal sources of endotoxins in the school environment and the need for further investigation. Metaregression indicated no relationship between endotoxin concentration and load, which points to the necessity for measuring endotoxin levels in both the air and settled dust. Temperature increases were associated with lower concentrations in indoor air and higher loads in floor dust. Higher levels of humidity may be associated with lower airborne endotoxin concentrations.

  16. An Indoor Monitoring System for Ambient Assisted Living Based on Internet of Things Architecture

    PubMed Central

    Marques, Gonçalo; Pitarma, Rui

    2016-01-01

    The study of systems and architectures for ambient assisted living (AAL) is undoubtedly a topic of great relevance given the aging of the world population. The AAL technologies are designed to meet the needs of the aging population in order to maintain their independence as long as possible. As people typically spend more than 90% of their time in indoor environments, indoor air quality (iAQ) is perceived as an imperative variable to be controlled for the inhabitants’ wellbeing and comfort. Advances in networking, sensors, and embedded devices have made it possible to monitor and provide assistance to people in their homes. The continuous technological advancements make it possible to build smart objects with great capabilities for sensing and connecting several possible advancements in ambient assisted living systems architectures. Indoor environments are characterized by several pollutant sources. Most of the monitoring frameworks instantly accessible are exceptionally costly and only permit the gathering of arbitrary examples. iAQ is an indoor air quality system based on an Internet of Things paradigm that incorporates in its construction Arduino, ESP8266, and XBee technologies for processing and data transmission and micro sensors for data acquisition. It also allows access to data collected through web access and through a mobile application in real time, and this data can be accessed by doctors in order to support medical diagnostics. Five smaller scale sensors of natural parameters (air temperature, moistness, carbon monoxide, carbon dioxide, and glow) were utilized. Different sensors can be included to check for particular contamination. The results reveal that the system can give a viable indoor air quality appraisal in order to anticipate technical interventions for improving indoor air quality. Indeed indoor air quality might be distinctively contrasted with what is normal for a quality living environment. PMID:27869682

  17. An Indoor Monitoring System for Ambient Assisted Living Based on Internet of Things Architecture.

    PubMed

    Marques, Gonçalo; Pitarma, Rui

    2016-11-17

    The study of systems and architectures for ambient assisted living (AAL) is undoubtedly a topic of great relevance given the aging of the world population. The AAL technologies are designed to meet the needs of the aging population in order to maintain their independence as long as possible. As people typically spend more than 90% of their time in indoor environments, indoor air quality (iAQ) is perceived as an imperative variable to be controlled for the inhabitants' wellbeing and comfort. Advances in networking, sensors, and embedded devices have made it possible to monitor and provide assistance to people in their homes. The continuous technological advancements make it possible to build smart objects with great capabilities for sensing and connecting several possible advancements in ambient assisted living systems architectures. Indoor environments are characterized by several pollutant sources. Most of the monitoring frameworks instantly accessible are exceptionally costly and only permit the gathering of arbitrary examples. iAQ is an indoor air quality system based on an Internet of Things paradigm that incorporates in its construction Arduino, ESP8266, and XBee technologies for processing and data transmission and micro sensors for data acquisition. It also allows access to data collected through web access and through a mobile application in real time, and this data can be accessed by doctors in order to support medical diagnostics. Five smaller scale sensors of natural parameters (air temperature, moistness, carbon monoxide, carbon dioxide, and glow) were utilized. Different sensors can be included to check for particular contamination. The results reveal that the system can give a viable indoor air quality appraisal in order to anticipate technical interventions for improving indoor air quality. Indeed indoor air quality might be distinctively contrasted with what is normal for a quality living environment.

  18. Design and optimization of indoor optical wireless positioning systems

    NASA Astrophysics Data System (ADS)

    Bergen, Mark H.; Guerrero, Daniel; Jin, Xian; Hristovski, Blago A.; Chaves, Hugo A. L. F.; Klukas, Richard; Holzman, Jonathan F.

    2016-03-01

    Optical wireless (OW) technologies are an emerging field utilizing optical sources to replace existing radio wavelength technologies. The vast majority of work in OW focuses on communication; however, one smaller emerging field is indoor OW positioning. This emerging field essentially aims to replace GPS indoors. One of the primary competing methods in indoor OW positioning is angle-of-arrival (AOA). AOA positioning uses the received vectors from several optical beacons to triangulate its position. The reliability of this triangulation is fundamentally based on two aspects: the geometry of the optical receiver's location compared to the optical beacon locations, and the ability for the optical receiver to resolve the incident vectors correctly. The optical receiver is quantified based on the standard deviation of the azimuthal and polar angles that define the measured vector. The quality of the optical beacon geometry is quantified using dilution of precision (DOP). This proceeding discusses the AOA standard deviation of an ultra-wide field-of-view (FOV) lens along with the DOP characteristics for several optical beacon geometries. The optical beacon geometries used were simple triangle, square, and hexagon optical beacon geometries. To assist the implementation of large optical beacon geometries it is proposed to use both frequency and wavelength division multiplexing. It is found that with an ultra-wide FOV lens, coupled with the appropriately sized optical beacon geometry, allow for high accuracy positioning over a large area. The results of this work will enable reliable OW positioning deployments.

  19. Hybrid daylight/light-emitting diode illumination system for indoor lighting.

    PubMed

    Ge, Aiming; Qiu, Peng; Cai, Jinlin; Wang, Wei; Wang, Junwei

    2014-03-20

    A hybrid illumination method using both daylight and light-emitting diodes (LEDs) for indoor lighting is presented in this study. The daylight can be introduced into the indoor space by a panel-integration system. The daylight part and LEDs are combined within a specific luminaire that can provide uniform illumination. The LEDs can be turned on and dimmed through closed-loop control when the daylight illuminance is inadequate. We simulated the illumination and calculated the indoor lighting efficiency of our hybrid daylight and LED lighting system, and compared this with that of LED and fluorescent lighting systems. Simulation results show that the efficiency of the hybrid daylight/LED illumination method is better than that of LED and traditional lighting systems, under the same lighting conditions and lighting time; the method has hybrid lighting average energy savings of T5 66.28%, and that of the LEDs is 41.62%.

  20. Assessment of microbiological indoor air quality in an Italian office building equipped with an HVAC system.

    PubMed

    Bonetta, Sa; Bonetta, Si; Mosso, S; Sampò, S; Carraro, E

    2010-02-01

    The purpose of this study was to evaluate the level and composition of bacteria and fungi in the indoor air of an Italian office building equipped with a heating, ventilation and air conditioning (HVAC) system. Airborne bacteria and fungi were collected in three open-space offices during different seasons. The microbial levels in the outdoor air, supply air diffusers, fan coil air flow and air treatment unit humidification water tank were used to evaluate the influence of the HVAC system on indoor air quality (IAQ). A medium-low level of bacterial contamination (50-500 CFU/m(3)) was found in indoor air. Staphylococcus and Micrococcus were the most commonly found genera, probably due to human presence. A high fungal concentration was measured due to a flood that occurred during the winter. The indoor seasonal distribution of fungal genera was related to the fungal outdoor distribution. Significant seasonal and daily variation in airborne microorganisms was found, underlining a relationship with the frequency of HVAC system switching on/off. The results of this monitoring highlight the role of the HVAC system on IAQ and could be useful to better characterise bacterial and fungal population in the indoor air of office buildings.

  1. Effects of indoor environmental factors on respiratory health of children in a subtropical climate.

    PubMed

    Yang, C Y; Chiu, J F; Cheng, M F; Lin, M C

    1997-10-01

    This study was conducted to determine whether indoor environmental factors affected respiratory symptoms in 4164 primary school children in Kaohsiung rural areas of Taiwan. Information on respiratory health symptoms and characteristics of the housing was obtained using a written questionnaire, completed by the parents of children. Multiple logistic regression analysis examined the relationship between respiratory health symptoms (cough, wheezing, bronchitis, asthma, and allergic rhinitis) and housing factors. Home dampness was significantly associated with all respiratory health symptoms. Incense burning and mosquito repellant burning showed effects on the reporting of coughing symptoms. No apparent associations were found with the other indoor factors included in this study or respiratory health symptoms. We conclude that dampness in the home has a pronounced effects on respiratory health symptoms and is a new public health issue in subtropical areas.

  2. Effect of interferences on indoor visible light car-to-car communication systems

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Young; Park, Bong-Seok; Choi, Hyun-Sik; Kim, So Eun; Moon, Inkyu; Lee, Chung Ghiu

    2016-04-01

    We report the effect of interferences on visible light car-to-car communication system. The interferences from floor reflections and fluorescent lamps are taken into account for indoor car-to-car visible light communication (VLC) systems. The system is composed of a white LED lamp as a VLC transmitter and a photo-receiver with an appropriate optical filter as a VLC receiver. The signal power distribution patterns are measured and analyzed at a transmission distance, considering the positions of the transmitter and receiver. Generally, the light from fluorescent lamps in indoor environment affects the DC level of the received signal power, which is more significant at higher receiver positions. The measurements show that the indoor VLC communication performance can be varied depending on floor reflections. Also, the fluorescent ceiling illuminations affect the DC level change of the received VLC signal waveforms.

  3. The Performance Analysis of AN Indoor Mobile Mapping System with Rgb-D Sensor

    NASA Astrophysics Data System (ADS)

    Tsai, G. J.; Chiang, K. W.; Chu, C. H.; Chen, Y. L.; El-Sheimy, N.; Habib, A.

    2015-08-01

    Over the years, Mobile Mapping Systems (MMSs) have been widely applied to urban mapping, path management and monitoring and cyber city, etc. The key concept of mobile mapping is based on positioning technology and photogrammetry. In order to achieve the integration, multi-sensor integrated mapping technology has clearly established. In recent years, the robotic technology has been rapidly developed. The other mapping technology that is on the basis of low-cost sensor has generally used in robotic system, it is known as the Simultaneous Localization and Mapping (SLAM). The objective of this study is developed a prototype of indoor MMS for mobile mapping applications, especially to reduce the costs and enhance the efficiency of data collection and validation of direct georeferenced (DG) performance. The proposed indoor MMS is composed of a tactical grade Inertial Measurement Unit (IMU), the Kinect RGB-D sensor and light detection, ranging (LIDAR) and robot. In summary, this paper designs the payload for indoor MMS to generate the floor plan. In first session, it concentrates on comparing the different positioning algorithms in the indoor environment. Next, the indoor plans are generated by two sensors, Kinect RGB-D sensor LIDAR on robot. Moreover, the generated floor plan will compare with the known plan for both validation and verification.

  4. The 3-year follow-up study in a block of flats - experiences in the use of the Finnish indoor climate classification.

    PubMed

    Tuomainen, M; Tuomainen, A; Liesivuori, J; Pasanen, A-L

    2003-06-01

    Indoor climate of two new blocks of flats was investigated. The case building was built for people with respiratory diseases by following the instructions of the Finnish Classification of Indoor Climate, Construction and Finishing Materials, while the control building was built using conventional building technology. The main indoor air parameters (temperature, relative humidity and levels of CO, CO2, ammonia, total volatile organic compounds, total suspended particles, fungal spores, bacteria and cat, dog and house dust mite allergens) were measured in six apartments of both the buildings on five occasions during the 3-year occupancy. In addition, a questionnaire to evaluate symptoms of the occupants and their satisfaction with their home environment was conducted in connection with indoor air quality (IAQ) measurements. The levels of indoor air pollutants in the case building were, in general, lower than those in the control building. In addition, the asthmatic occupants informed that their symptoms had decreased during the occupancy in the case building. This case study showed that high IAQ is possible to reach by careful design, proper materials and equipment and on high-quality construction with reasonable additional costs. In addition, the study indicated that good IAQ can also be maintained during the occupancy, if sufficient information on factors affecting IAQ and guidance on proper use and care of equipment are available for occupants.

  5. Mobile robot self-localization system using single webcam distance measurement technology in indoor environments.

    PubMed

    Li, I-Hsum; Chen, Ming-Chang; Wang, Wei-Yen; Su, Shun-Feng; Lai, To-Wen

    2014-01-27

    A single-webcam distance measurement technique for indoor robot localization is proposed in this paper. The proposed localization technique uses webcams that are available in an existing surveillance environment. The developed image-based distance measurement system (IBDMS) and parallel lines distance measurement system (PLDMS) have two merits. Firstly, only one webcam is required for estimating the distance. Secondly, the set-up of IBDMS and PLDMS is easy, which only one known-dimension rectangle pattern is needed, i.e., a ground tile. Some common and simple image processing techniques, i.e., background subtraction are used to capture the robot in real time. Thus, for the purposes of indoor robot localization, the proposed method does not need to use expensive high-resolution webcams and complicated pattern recognition methods but just few simple estimating formulas. From the experimental results, the proposed robot localization method is reliable and effective in an indoor environment.

  6. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device.

    PubMed

    He, Xiang; Aloi, Daniel N; Li, Jia

    2015-12-14

    Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer), wireless signal strength indicators (WiFi, Bluetooth, Zigbee), and visual sensors (LiDAR, camera). People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM) framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design.

  7. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device

    PubMed Central

    He, Xiang; Aloi, Daniel N.; Li, Jia

    2015-01-01

    Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer), wireless signal strength indicators (WiFi, Bluetooth, Zigbee), and visual sensors (LiDAR, camera). People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM) framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design. PMID:26694387

  8. Environmental assessment of three egg production systems--Part I: Monitoring system and indoor air quality.

    PubMed

    Zhao, Y; Shepherd, T A; Li, H; Xin, H

    2015-03-01

    To comprehensively assess conventional vs. some alternative laying-hen housing systems under U.S. production conditions, a multi-institute and multi-disciplinary project, known as the Coalition for Sustainable Egg Supply (CSES) study, was carried out at a commercial egg production farm in the Midwestern United States over two single-cycle production flocks. The housing systems studied include a conventional cage house (200,000 hen capacity), an aviary house (50,000 hen capacity), and an enriched colony house (50,000 hen capacity). As an integral part of the CSES project, continual environmental monitoring over a 27-month period described in this paper quantifies indoor gaseous and particulate matter concentrations, thermal environment, and building ventilation rate of each house. Results showed that similar indoor thermal environments in all three houses were maintained through ventilation management and environmental control. Gaseous and particulate matter concentrations of the enriched colony house were comparable with those of the conventional cage house. In comparison, the aviary house had poorer indoor air quality, especially in wintertime, resulting from the presence of floor litter (higher ammonia levels) and hens' activities (higher particulate matter levels) in it. Specifically, daily mean indoor ammonia concentrations had the 95% confidence interval values of 3.8 to 4.2 (overall mean of 4.0) ppm for the conventional cage house; 6.2 to 7.2 (overall mean of 6.7) ppm for the aviary house; and 2.7 to 3.0 (overall mean of 2.8) ppm for the enriched colony house. The 95% confidence interval (overall mean) values of daily mean indoor carbon dioxide concentrations were 1997 to 2170 (2083) ppm for the conventional cage house, 2367 to 2582 (2475) ppm for the aviary house, and 2124 to 2309 (2216) ppm for the enriched colony house. Daily mean indoor methane concentrations were similar for all three houses, with 95% confidence interval values of 11.1 to 11.9 (overall

  9. Indoor positioning system using WLAN channel estimates as fingerprints for mobile devices

    NASA Astrophysics Data System (ADS)

    Schmidt, Erick; Akopian, David

    2015-03-01

    With the growing integration of location based services (LBS) such as GPS in mobile devices, indoor position systems (IPS) have become an important role for research. There are several IPS methods such as AOA, TOA, TDOA, which use trilateration for indoor location estimation but are generally based on line-of-sight. Other methods rely on classification such as fingerprinting which uses WLAN indoor signals. This paper re-examines the classical WLAN fingerprinting accuracy which uses received signal strength (RSS) measurements by introducing channel estimates for improvements in the classification of indoor locations. The purpose of this paper is to improve existing classification algorithms used in fingerprinting by introducing channel estimates when there are a low number of APs available. The channel impulse response, or in this case the channel estimation from the receiver, should characterize a complex indoor area which usually has multipath, thus providing a unique signature for each location which proves useful for better pattern recognition. In this experiment, channel estimates are extracted from a Software-Defined Radio (SDR) environment, thus exploiting the benefits of SDR from a NI-USRP model and LabVIEW software. Measurements are taken from a known building, and several scenarios with one and two access points (APs) are used in this experiment. Also, three granularities in distance between locations are analyzed. A Support Vector Machine (SVM) is used as the algorithm for pattern recognition of different locations based on the samples taken from RSS and channel estimation coefficients.

  10. Indoor anti-occlusion visible light positioning systems based on particle filtering

    NASA Astrophysics Data System (ADS)

    Jiang, Meng; Huang, Zhitong; Li, Jianfeng; Zhang, Ruqi; Ji, Yuefeng

    2015-04-01

    As one of the most popular categories of mobile services, a rapid growth of indoor location-based services has been witnessed over the past decades. Indoor positioning methods based on Wi-Fi, radio-frequency identification or Bluetooth are widely commercialized; however, they have disadvantages such as low accuracy or high cost. An emerging method using visible light is under research recently. The existed visible light positioning (VLP) schemes using carrier allocation, time allocation and multiple receivers all have limitations. This paper presents a novel mechanism using particle filtering in VLP system. By this method no additional devices are needed and the occlusion problem in visible light would be alleviated which will effectively enhance the flexibility for indoor positioning.

  11. Design, Implementation and Evaluation of an Indoor Navigation System for Visually Impaired People

    PubMed Central

    Martinez-Sala, Alejandro Santos; Losilla, Fernando; Sánchez-Aarnoutse, Juan Carlos; García-Haro, Joan

    2015-01-01

    Indoor navigation is a challenging task for visually impaired people. Although there are guidance systems available for such purposes, they have some drawbacks that hamper their direct application in real-life situations. These systems are either too complex, inaccurate, or require very special conditions (i.e., rare in everyday life) to operate. In this regard, Ultra-Wideband (UWB) technology has been shown to be effective for indoor positioning, providing a high level of accuracy and low installation complexity. This paper presents SUGAR, an indoor navigation system for visually impaired people which uses UWB for positioning, a spatial database of the environment for pathfinding through the application of the A* algorithm, and a guidance module. The interaction with the user takes place using acoustic signals and voice commands played through headphones. The suitability of the system for indoor navigation has been verified by means of a functional and usable prototype through a field test with a blind person. In addition, other tests have been conducted in order to show the accuracy of different relevant parts of the system. PMID:26703610

  12. HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW

    EPA Science Inventory

    The paper discusses results of an evaluation of literature on heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). The various literature sources and methods for characterizing HVAC emission sources are re...

  13. HyMoTrack: A Mobile AR Navigation System for Complex Indoor Environments

    PubMed Central

    Gerstweiler, Georg; Vonach, Emanuel; Kaufmann, Hannes

    2015-01-01

    Navigating in unknown big indoor environments with static 2D maps is a challenge, especially when time is a critical factor. In order to provide a mobile assistant, capable of supporting people while navigating in indoor locations, an accurate and reliable localization system is required in almost every corner of the building. We present a solution to this problem through a hybrid tracking system specifically designed for complex indoor spaces, which runs on mobile devices like smartphones or tablets. The developed algorithm only uses the available sensors built into standard mobile devices, especially the inertial sensors and the RGB camera. The combination of multiple optical tracking technologies, such as 2D natural features and features of more complex three-dimensional structures guarantees the robustness of the system. All processing is done locally and no network connection is needed. State-of-the-art indoor tracking approaches use mainly radio-frequency signals like Wi-Fi or Bluetooth for localizing a user. In contrast to these approaches, the main advantage of the developed system is the capability of delivering a continuous 3D position and orientation of the mobile device with centimeter accuracy. This makes it usable for localization and 3D augmentation purposes, e.g. navigation tasks or location-based information visualization. PMID:26712755

  14. Climate Observing Systems: Data System Challenges

    NASA Astrophysics Data System (ADS)

    Karl, T. R.

    2001-12-01

    Existing observing and data systems have provided considerable information about past climate variations and changes. The recent reports by the Intergovernmental Panel on Climate Change, the National Research Council, and the USGCRP National Assessment of Climate Variability and Change are testaments to a vast array of knowledge. These reports also expose some serious deficiencies in our ability to discern past climate variations and change which lead to substantial uncertainties in key climate state, climate feedback, and climate forcing variables. How significant are these uncertainties? For climate trends that have our highest confidence, like the change in mean global surface temperature, the 95 percent confidence intervals amount to about two-thirds of the calculated change. With such large uncertainties it is exceedingly difficult to discern accelerated changes. For other variables, especially variables related to climate feedbacks and forcings (with exceptions for long-lived and well-mixed greenhouse gases like CO2 or CH4) or climate and weather extremes, we often have little or no information to discern trends or cannot objectively assess confidence intervals. Do we know how to reduce existing uncertainties? First and foremost, a climate observation oversight and monitoring capability is needed that tracks the gathering of the data, the processing system, and the performance of the observations, especially time-dependent biases. An organized capability does not now exist, but could be developed at a new and/or existing centers. This center(s) should then have the means and influence to fix problems and be able to establish requirements for new in-situ and satellite observing including related data systems. Such a capability should complement the following: (1) Climate observations from both space-based and in-situ platforms that are taken in ways that address climate needs and adhere to the ten principles outlined by the NRC (1999 Adequacy of Climate

  15. Conceptualizing Climate Change in the Context of a Climate System: Implications for Climate and Environmental Education

    ERIC Educational Resources Information Center

    Shepardson, Daniel P.; Niyogi, Dev; Roychoudhury, Anita; Hirsch, Andrew

    2012-01-01

    Today there is much interest in teaching secondary students about climate change. Much of this effort has focused directly on students' understanding of climate change. We hypothesize, however, that in order for students to understand climate change they must first understand climate as a system and how changes to this system due to both natural…

  16. Very low temperature radiant heating/cooling indoor end system for efficient use of renewable energies

    SciTech Connect

    Ren, Jianbo; Wang, Yiping; Wang, Congrong; Xiong, Weicheng; Zhu, Li

    2010-06-15

    Solar or solar-assisted space heating systems are becoming more and more popular. The solar energy utilization efficiency is high when the collector is coupled with indoor radiant heating suppliers, since in principle, lower supply temperature means lower demand temperature and then the system heat loss is less. A new type radiant end system is put forward for even lower supply temperature compared to the conventional radiant floor heating systems. A three dimensional model was established to investigate its energy supply capacities. Simulation results show that 50 W per meter length tube can be achieved with the medium temperature of 30 C for heating and 15 C for cooling. The predicted results agree well with the actual data from a demonstration building. Furthermore, it is demonstrated that a supply temperature of 22 C in winter and of 17 C in summer already met the indoor requirements. The new end system has good prospects for effective use of local renewable resources. (author)

  17. Development of a New Low-Cost Indoor Mapping System - System Design, System Calibration and First Results

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Stallmann, D.; Tschirschwitz, F.

    2016-06-01

    For mapping of building interiors various 2D and 3D indoor surveying systems are available today. These systems essentially differ from each other by price and accuracy as well as by the effort required for fieldwork and post-processing. The Laboratory for Photogrammetry & Laser Scanning of HafenCity University (HCU) Hamburg has developed, as part of an industrial project, a lowcost indoor mapping system, which enables systematic inventory mapping of interior facilities with low staffing requirements and reduced, measurable expenditure of time and effort. The modelling and evaluation of the recorded data take place later in the office. The indoor mapping system of HCU Hamburg consists of the following components: laser range finder, panorama head (pan-tilt-unit), single-board computer (Raspberry Pi) with digital camera and battery power supply. The camera is pre-calibrated in a photogrammetric test field under laboratory conditions. However, remaining systematic image errors are corrected simultaneously within the generation of the panorama image. Due to cost reasons the camera and laser range finder are not coaxially arranged on the panorama head. Therefore, eccentricity and alignment of the laser range finder against the camera must be determined in a system calibration. For the verification of the system accuracy and the system calibration, the laser points were determined from measurements with total stations. The differences to the reference were 4-5mm for individual coordinates.

  18. Pedestrian mobile mapping system for indoor environments based on MEMS IMU and range camera

    NASA Astrophysics Data System (ADS)

    Haala, N.; Fritsch, D.; Peter, M.; Khosravani, A. M.

    2011-12-01

    This paper describes an approach for the modeling of building interiors based on a mobile device, which integrates modules for pedestrian navigation and low-cost 3D data collection. Personal navigation is realized by a foot mounted low cost MEMS IMU, while 3D data capture for subsequent indoor modeling uses a low cost range camera, which was originally developed for gaming applications. Both steps, navigation and modeling, are supported by additional information as provided from the automatic interpretation of evacuation plans. Such emergency plans are compulsory for public buildings in a number of countries. They consist of an approximate floor plan, the current position and escape routes. Additionally, semantic information like stairs, elevators or the floor number is available. After the user has captured an image of such a floor plan, this information is made explicit again by an automatic raster-to-vector-conversion. The resulting coarse indoor model then provides constraints at stairs or building walls, which restrict the potential movement of the user. This information is then used to support pedestrian navigation by eliminating drift effects of the used low-cost sensor system. The approximate indoor building model additionally provides a priori information during subsequent indoor modeling. Within this process, the low cost range camera Kinect is used for the collection of multiple 3D point clouds, which are aligned by a suitable matching step and then further analyzed to refine the coarse building model.

  19. Potential Of Light Pipes System In Malaysian Climate

    NASA Astrophysics Data System (ADS)

    Abd Kadir, Aslila; Hakim Ismail, Lokman; Kasim, Narimah; Kaamin, Masiri

    2016-11-01

    Light-pipes system are simple structures that allow the transmission of daylight from the outside to the inside of a room. It is a practical application in many buildings where daylight cannot reach due to building design and limited facade to placing windows. Since roof is the element directly exposed to the sunlight, light pipes system could be introduced. This paper examines the illumination levels obtained using light pipes system under Malaysia climate conditions. A light-pipe system that was installed in a test room located in Batu Pahat. Indoor illuminance distributions and concurrent outdoor illuminance were monitored at a 30 minutes interval for 5 days. The results indicated that the amount of daylight penetrated into the building are varied with less than 150lux in the early morning and late evening, and maximum at over 350lux in the noon and early afternoon. The average internal illuminance levels offer by light pipe system met the MS 1525:2007 recommendation for application in Malaysian buildings. These findings indicated that the light pipe system has a potential as a tool for introducing daylight indoors in Malaysia.

  20. Evaporative Cooler Use Influences Temporal Indoor Relative Humidity but Not Dust Mite Allergen Levels in Homes in a Semi-Arid Climate

    PubMed Central

    Johnston, James D.; Tuttle, Steven C.; Nelson, Morgan C.; Bradshaw, Rebecca K.; Hoybjerg, Taylor G.; Johnson, Julene B.; Kruman, Bryce A.; Orton, Taylor S.; Cook, Ryan B.; Eggett, Dennis L.; Weber, K. Scott

    2016-01-01

    Concerns about energy consumption and climate change make residential evaporative coolers a popular alternative to central air conditioning in arid and semi-arid climates. However, evaporative coolers have been shown to significantly increase indoor relative humidity and dust mite allergen levels in some studies, while showing no association in other studies. Improved measurement of temporal fluctuations in indoor relative humidity may help identify factors that promote mite growth in homes in dry climates. Dust samples and continuous indoor relative humidity measurements were collected from homes with central air conditioning and homes with evaporative coolers in Utah. Samples were collected over two seasons, winter/spring (Jan–Apr) and summer (July–Sept), 2014. Dust samples were analyzed for Der p 1 and Der f 1 using a two-site monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) analysis. Housing characteristics including age of home, occupant density, and age of mattresses, furniture, and carpeting were also measured. Positive Der p 1 or Der f 1 samples were found in 25.0% of the homes and there was no difference in mean allergen levels by type of air conditioning. Indoor relative humidity was significantly higher in homes with evaporative coolers compared to those with central air conditioning during the summer. Homes with evaporative coolers also spent significantly more time during summer above 55.0% and 65.0% relative humidity compared to central air homes, but not above 75.0%. Findings from this study suggest that increased humidity from evaporative coolers may not be sufficient to exceed the critical equilibrium humidity or maintain humidity excursions for sufficient duration in relatively larger single-family homes in semi-arid climates to support mite growth and reproduction. PMID:26808528

  1. Evaporative Cooler Use Influences Temporal Indoor Relative Humidity but Not Dust Mite Allergen Levels in Homes in a Semi-Arid Climate.

    PubMed

    Johnston, James D; Tuttle, Steven C; Nelson, Morgan C; Bradshaw, Rebecca K; Hoybjerg, Taylor G; Johnson, Julene B; Kruman, Bryce A; Orton, Taylor S; Cook, Ryan B; Eggett, Dennis L; Weber, K Scott

    2016-01-01

    Concerns about energy consumption and climate change make residential evaporative coolers a popular alternative to central air conditioning in arid and semi-arid climates. However, evaporative coolers have been shown to significantly increase indoor relative humidity and dust mite allergen levels in some studies, while showing no association in other studies. Improved measurement of temporal fluctuations in indoor relative humidity may help identify factors that promote mite growth in homes in dry climates. Dust samples and continuous indoor relative humidity measurements were collected from homes with central air conditioning and homes with evaporative coolers in Utah. Samples were collected over two seasons, winter/spring (Jan-Apr) and summer (July-Sept), 2014. Dust samples were analyzed for Der p 1 and Der f 1 using a two-site monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) analysis. Housing characteristics including age of home, occupant density, and age of mattresses, furniture, and carpeting were also measured. Positive Der p 1 or Der f 1 samples were found in 25.0% of the homes and there was no difference in mean allergen levels by type of air conditioning. Indoor relative humidity was significantly higher in homes with evaporative coolers compared to those with central air conditioning during the summer. Homes with evaporative coolers also spent significantly more time during summer above 55.0% and 65.0% relative humidity compared to central air homes, but not above 75.0%. Findings from this study suggest that increased humidity from evaporative coolers may not be sufficient to exceed the critical equilibrium humidity or maintain humidity excursions for sufficient duration in relatively larger single-family homes in semi-arid climates to support mite growth and reproduction.

  2. A Prototype Climate Information System

    DTIC Science & Technology

    1993-01-01

    Access to the NCDS could also support some of the operational needs of naval bases, such as NEOC. 2. CLICOM CLICOM is a climatic data processing system...developed by the NCDC under a WMO contract (McGuirk and Llanso, 1989). CLICOM is designed primarily for use in developing countries, by personnel with...little technical training. CLICOM currently is used in 37 countries, including 35 sites in the USA. CLICOM software runs on an IBM PC and manuals

  3. Development of an indoor positioning and navigation system using monocular SLAM and IMU

    NASA Astrophysics Data System (ADS)

    Mai, Yu-Ching; Lai, Ying-Chih

    2016-07-01

    The positioning and navigation systems based on Global Positioning System (GPS) have been developed over past decades and have been widely used for outdoor environment. However, high-rise buildings or indoor environments can block the satellite signal. Therefore, many indoor positioning methods have been developed to respond to this issue. In addition to the distance measurements using sonar and laser sensors, this study aims to develop a method by integrating a monocular simultaneous localization and mapping (MonoSLAM) algorithm with an inertial measurement unit (IMU) to build an indoor positioning system. The MonoSLAM algorithm measures the distance (depth) between the image features and the camera. With the help of Extend Kalman Filter (EKF), MonoSLAM can provide real-time position, velocity and camera attitude in world frame. Since the feature points will not always appear and can't be trusted at any time, a wrong estimation of the features will cause the estimated position diverge. To overcome this problem, a multisensor fusion algorithm was applied in this study by using the multi-rate Kalman Filter. Finally, from the experiment results, the proposed system was verified to be able to improve the reliability and accuracy of the MonoSLAM by integrating the IMU measurements.

  4. An Approach for Indoor Wayfinding Replicating Main Principles of AN Outdoor Navigation System for Cyclists

    NASA Astrophysics Data System (ADS)

    Makri, A.; Zlatanova, S.; Verbree, E.

    2015-05-01

    This work presents an approach to enhance navigation in indoor environments based on a landmark concept. It has already been proved by empirical research that by using landmarks the wayfinding task can be significantly simplified. Navigation based on landmarks relies on the presence of landmarks at each point along a route where wayfinders might need assistance. The approach presented here is based on the Dutch system for navigation of cyclists. The landmarks that are used in the proposed approach are special signposts containing the necessary directional information in order to guide the wayfinder in the space. The system is quite simple, efficient and satisfactory in providing navigational assistance in indoor space. An important contribution of this research is the generation of an approach to automatically determine the decision points in indoor environments, which makes it possible to apply it to navigational assistance systems in any building. The proposed system is verified by placing numbered landmark-signs in a specific building. Several tests are performed and the results are analysed. The findings of the experiment are very promising, showing that participants reach the destinations without detours.

  5. Experimental demonstration of a novel indoor optical wireless localization system for high-speed personal area networks.

    PubMed

    Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios

    2015-04-01

    In this Letter, we propose a novel indoor localization system based on optical wireless technology. By using the same architecture as the high-speed full-duplex indoor optical wireless communication system, the "search and scan" process, and the added transmission power and beam footprint information in the "search and scan" message, indoor localization functionality is achieved. Proof-of-concept experiments are carried out, and results show that an average error of <15  cm is achieved with a localization beam size of 1 m. In addition, the major localization-accuracy-limiting factors are analyzed both theoretically and experimentally. When incorporated with the optical wireless communication system, high-speed indoor wireless personal area networks can be achieved.

  6. Indoor characterization of the receiver for the novel InPhoCUS concrete tracker CPV system

    NASA Astrophysics Data System (ADS)

    Pravettoni, Mauro; Cooper, Thomas; Ambrosetti, Gianluca; Steinfeld, Aldo

    2012-10-01

    The Swiss consortium InPhoCUS has been formed between Airlight Energy Manufacturing SA, the Swiss Federal Institute of Technology and the University of Applied Sciences and Arts of Southern Switzerland (thermal modelling and CPV characterization and qualification, respectively). The consortium is developing an innovative 50-meter long, 9-meter wide, 2-axis concentrating system. The secondary tracking axis allows reaching concentration ratios as high as 500X. Indoor characterization of the 5-cell receiver has been performed to test the effects of the cell-to-cell non-uniformity of irradiance. Results are presented in this work and are also helpful in the development of new techniques for the indoor characterization of CPV receivers.

  7. A practical E-PERM (electret passive environmental radon monitor) system for indoor 222Rn measurement.

    PubMed

    Kotrappa, P; Dempsey, J C; Ramsey, R W; Stieff, L R

    1990-04-01

    The technical and scientific basis for the measurement of indoor 222Rn concentration using an E-PERM (Electret passive environmental radon monitor) has been described in our earlier work. The purpose of this paper is to describe further development of a practical and convenient system that can be used routinely for indoor 222Rn measurement. The ion chamber is now made of electrically conducting plastic to minimize the response from natural gamma radiation. A spring-loaded shutter method is used to cover and uncover the electret from outside the chamber. The electret voltage reader has been modified to improve the accuracy and the ease in operation. The calibration, performance, error analysis, and lower limits of detection for these standardized versions of E-PERMs are also described.

  8. Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System

    PubMed Central

    Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul

    2017-01-01

    In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated. PMID:28327513

  9. Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System.

    PubMed

    Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul

    2017-03-22

    In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated.

  10. Indoor Unmanned Airship System Airborne Control Module Design

    NASA Astrophysics Data System (ADS)

    YongXia, Gao; YiBo, Li

    By adopting STC12C5A60S2 SCM as a system control unit, assisted by appropriate software and hardware resources, we complete the airborne control module's design of unmanned airship system. This paper introduces hardware control module's structure, airship-driven composition and software realization. Verified by the China Science and Technology Museum special-shaped airship,this control module can work well.

  11. Indoor air pollution by organic emissions from textile floor coverings. Climate chamber studies under dynamic conditions

    NASA Astrophysics Data System (ADS)

    Sollinger, S.; Levsen, K.; Wünsch, G.

    The time dependence of the emission of organic compounds from a polyamide floor covering with styrene-butadiene-rubber (SBR) backing was studied in three climate chambers (0.03, 1.0 and 38 m 3) at 23°C 5nd 45% RH. While volatile compounds such as toluene reach a maximum concentration in the gas phase within 1 h and decrease in concentration to less than 2% within 60 h, the concentration of less volatile compounds, such as 4-phenylcyclohexene, decreases slowly over a period of months. If the chamber is well mixed and a defined chamber loading is maintained the observed concentrations do not depend on the chamber size, the wall material and air velocity. The concentration of the observed emissions is roughly proportional to the chamber loading. Surprisingly it is not inversely proportional to the air exchange rate. Rather, at high air exchange rates mass transfer from the carpet to the gas phase is enhanced. The "decreasing source models" of Dunn and Tichenor ( Atmospheric Environment22, 885-894, 1988) have been applied to the data. They allow the extrapolation of experimental data beyond the time available for measurement. The model calculations reveal the presence of sink effects. The role of the chamber walls as sinks can be determined more reliably if constant sources of an organic compound are placed into the chamber and their increase in concentration with time is compared with the theoretical predictions neglecting sink effects.

  12. Indoor Tanning Is Not Safe

    MedlinePlus

    ... Indoor Tanning According to the 2015 Youth Risk Behavior Surveillance System, some teens are indoor tanning, including— 7% of all high school students. 11% of high school girls. 16% of girls ...

  13. Optical wireless indoor systems: how to improve data rate

    NASA Astrophysics Data System (ADS)

    Bouchet, M. Olivier; Rouet, M. Claude

    2006-08-01

    Wireless networks are currently replacing connection cables via radio, visible or infrared waves. Modules and base systems are installed to cover zones in relation to a quality of service and availability. There are technological radio solutions: Bluetooth, WiFi, UWB and optics constituted by infrared or visible systems. Optic technology has important advantages: Transmitted data security, radio and medical immunity, etc. Nevertheless, optical systems seem to present a limit because this is basically a line of sight solution and the network management is based on only one wavelength with several users. The solution suggested, in the scope of this document, is to transmit various wavelengths in free space, using optical Multiplexer/Demultiplexer and optical modules, which are compatible in wavelength. Each Emission/reception module could have a defined and personal wavelength, with a link with the terminal identification (MAC address for instance). This approach can improve and give a full duplex data rate with a minimum of a dozen Mbps per user for broadcasting. The application field for the suggested system is potentially included in the following network types: Optic WLAN and Optic WDAN.

  14. A critical analysis of climatic influences on indoor radon concentrations: Implications for seasonal correction.

    PubMed

    Groves-Kirkby, Christopher J; Crockett, Robin G M; Denman, Antony R; Phillips, Paul S

    2015-10-01

    Although statistically-derived national Seasonal Correction Factors (SCFs) are conventionally used to convert sub-year radon concentration measurements to an annual mean, it has recently been suggested that external temperature could be used to derive local SCFs for short-term domestic measurements. To validate this approach, hitherto unanalysed radon and temperature data from an environmentally-stable location were analysed. Radon concentration and internal temperature were measured over periods totalling 1025 days during an overall period of 1762 days, the greatest continuous sampling period being 334 days, with corresponding meteorological data collected at a weather station 10 km distant. Mean daily, monthly and annual radon concentrations and internal temperatures were calculated. SCFs derived using monthly mean radon concentration, external temperature and internal-external temperature-difference were cross-correlated with each other and with published UK domestic SCF sets. Relatively good correlation exists between SCFs derived from radon concentration and internal-external temperature difference but correlation with external temperature, was markedly poorer. SCFs derived from external temperature correlate very well with published SCF tabulations, confirming that the complexity of deriving SCFs from temperature data may be outweighed by the convenience of using either of the existing domestic SCF tabulations. Mean monthly radon data fitted to a 12-month sinusoid showed reasonable correlation with many of the annual climatic parameter profiles, exceptions being atmospheric pressure, rainfall and internal temperature. Introducing an additional 6-month sinusoid enhanced correlation with these three parameters, the other correlations remaining essentially unchanged. Radon latency of the order of months in moisture-related parameters suggests that the principal driver for radon is total atmospheric moisture content rather than relative humidity.

  15. Assessment of indoor climate of Mogiła Abbey in Kraków (Poland) and the application of the analogues method to predict microclimate indoor conditions.

    PubMed

    Frasca, F; Siani, A M; Casale, G R; Pedone, M; Bratasz, Ł; Strojecki, M; Mleczkowska, A

    2016-04-04

    The microclimatic monitoring of the historic church of Mogiła Abbey (Kraków, Poland) was carried out to study the impact of the environmental parameters on the organic and hygroscopic artworks. Specific indexes were proposed to objectively assess the quality of time series of temperature (T), relative humidity (RH), and carbon dioxide (CO2) before applying the exploratory data analysis. The series were used to define the historic environmental conditions as stated in the European Standard EN 15757:2010 and with the use of the climate evaluation chart (CEC). It was found that the percentage of time in which T and RH values are within the allowable limits of the ASHRAE (2011) Class B is more than 85 %. This means that, for about 15 % of the time, there is a high risk of mechanical damage to highly vulnerable objects mainly due to the RH variability. The environment at the chancel resulted moister than that at the cornice, and the fungal growth is possible. In addition, the time-weighted preservation index (TWPI) is computed to evaluate the life expectancy of the objects, taking into account the environmental conditions of the site under study. The method of analogues, developed to predict the evolution of a system given observations of the past and without the knowledge of any equation among variables, was proposed and applied to the time series of temperature, relative humidity, and carbon dioxide with a 1-h sampling time to avoid the influence of the autocorrelation.

  16. Toward multi-Gbps indoor optical wireless multicasting system employing passive diffractive optics.

    PubMed

    Oh, C W; Huijskens, F M; Cao, Z; Tangdiongga, E; Koonen, A M J

    2014-05-01

    This Letter presents the evaluation and demonstration of an optical free-space (FS) multicasting system for multi-Gigabits-per-second (multi-Gbps) indoor transmission. These simultaneous line-of-sight links are formed by infrared beams and are beam-steered using a passive diffraction grating. The experiment has resulted in error-free links (bit error rate <10(-9) at 2.5 Gbps on-off keying) and is scalable to support higher data rates. This system is proposed for short-range optical wireless communication and can be seamlessly integrated in in-building fiber networks.

  17. Environmental assessment of three egg production systems–Part I: Monitoring system and indoor air quality

    PubMed Central

    Zhao, Y.; Shepherd, T. A.; Li, H.; Xin, H.

    2015-01-01

    To comprehensively assess conventional vs. some alternative laying-hen housing systems under U.S. production conditions, a multi-institute and multi-disciplinary project, known as the Coalition for Sustainable Egg Supply (CSES) study, was carried out at a commercial egg production farm in the Midwestern United States over two single-cycle production flocks. The housing systems studied include a conventional cage house (200,000 hen capacity), an aviary house (50,000 hen capacity), and an enriched colony house (50,000 hen capacity). As an integral part of the CSES project, continual environmental monitoring over a 27-month period described in this paper quantifies indoor gaseous and particulate matter concentrations, thermal environment, and building ventilation rate of each house. Results showed that similar indoor thermal environments in all three houses were maintained through ventilation management and environmental control. Gaseous and particulate matter concentrations of the enriched colony house were comparable with those of the conventional cage house. In comparison, the aviary house had poorer indoor air quality, especially in wintertime, resulting from the presence of floor litter (higher ammonia levels) and hens’ activities (higher particulate matter levels) in it. Specifically, daily mean indoor ammonia concentrations had the 95% confidence interval values of 3.8 to 4.2 (overall mean of 4.0) ppm for the conventional cage house; 6.2 to 7.2 (overall mean of 6.7) ppm for the aviary house; and 2.7 to 3.0 (overall mean of 2.8) ppm for the enriched colony house. The 95% confidence interval (overall mean) values of daily mean indoor carbon dioxide concentrations were 1997 to 2170 (2083) ppm for the conventional cage house, 2367 to 2582 (2475) ppm for the aviary house, and 2124 to 2309 (2216) ppm for the enriched colony house. Daily mean indoor methane concentrations were similar for all three houses, with 95% confidence interval values of 11.1 to 11.9 (overall

  18. Integration of Thermal Indoor Conditions into Operational Heat Health Warning Systems

    NASA Astrophysics Data System (ADS)

    Koppe, C.; Becker, P.; Pfafferott, J.

    2009-09-01

    The 2003 heat wave in Western Europe with altogether 35,000 to 50,000 deaths in Europe, several thousands of which occurred in Germany, has clearly pointed out the danger arising from long periods with high heat load. As a consequence, Germany, as many other European countries, has started to implement a Heat Health Warning System (HHWS). The German HHWS is based on the ‘Perceived Temperature'. The 'Perceived Temperature' is determined through a heat budget model of the human organism which includes the main thermophysiologically relevant mechanisms of heat exchange with the atmosphere. The most important meteorological ambience parameters included in the model are air temperature, humidity, wind speed and radiation fluxes in the short-wave and long-wave ranges. In addition to using a heat budget model for the assessment of the thermal load, the German HHWS also takes into account that the human body reacts in different ways to its thermal environment due to physiological adaptation (short-term acclimatisation) and short-term behavioural adaptation. The restriction of such an approach, like the majority of approaches used to issue heat warnings, is that the threshold for a warning is generally derived from meteorological observations and that warnings are issued on the basis of weather forecasts. Both, the observed data and the weather forecasts are only available for outside conditions. The group of people who are most at risk of suffering from a heat wave, however, are the elderly and frail who mainly stay inside. The indoor situation, which varies largely from the conditions outside, is not taken into account by most of the warning systems. To overcome this limitation the DWD, in co-operation with the Fraunhofer Institute for Solar Energy Systems, has developed a model which simulates the thermal conditions in the indoor environment. As air-conditioning in private housing in Germany is not very common, the thermal indoor conditions depend on the outside

  19. Mamdani Fuzzy System for Indoor Autonomous Mobile Robot

    NASA Astrophysics Data System (ADS)

    Khan, M. K. A. Ahamed; Rashid, Razif; Elamvazuthi, I.

    2011-06-01

    Several control algorithms for autonomous mobile robot navigation have been proposed in the literature. Recently, the employment of non-analytical methods of computing such as fuzzy logic, evolutionary computation, and neural networks has demonstrated the utility and potential of these paradigms for intelligent control of mobile robot navigation. In this paper, Mamdani fuzzy system for an autonomous mobile robot is developed. The paper begins with the discussion on the conventional controller and then followed by the description of fuzzy logic controller in detail.

  20. Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    A. Rudd and D. Bergey

    2015-08-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs.

  1. A MISO UCA Beamforming Dimmable LED System for Indoor Positioning

    PubMed Central

    Taparugssanagorn, Attaphongse; Siwamogsatham, Siwaruk; Pomalaza-Ráez, Carlos

    2014-01-01

    The use of a multiple input single output (MISO) transmit beamforming system using dimmable light emitting arrays (LEAs) in the form of a uniform circular array (UCA) of transmitters is proposed in this paper. With this technique, visible light communications between a transmitter and a receiver (LED reader) can be achieved with excellent performance and the receiver's position can be estimated. A hexagonal lattice alignment of LED transmitters is deployed to reduce the coverage holes and the areas of overlapping radiation. As a result, the accuracy of the position estimation is better than when using a typical rectangular grid alignment. The dimming control is done with pulse width modulation (PWM) to obtain an optimal closed loop beamforming and minimum energy consumption with acceptable lighting. PMID:24481234

  2. The indoor air we breathe.

    PubMed Central

    Oliver, L C; Shackleton, B W

    1998-01-01

    Increasingly recognized as a potential public health problem since the outbreak of Legionnaire's disease in Philadelphia in 1976, polluted indoor air has been associated with health problems that include asthma, sick building syndrome, multiple chemical sensitivity, and hypersensitivity pneumonitis. Symptoms are often nonspecific and include headache, eye and throat irritation, chest tightness and shortness of breath, and fatigue. Air-borne contaminants include commonly used chemicals, vehicular exhaust, microbial organisms, fibrous glass particles, and dust. Identified causes include defective building design and construction, aging of buildings and their ventilation systems, poor climate control, inattention to building maintenance. A major contributory factor is the explosion in the use of chemicals in building construction and furnishing materials over the past four decades. Organizational issues and psychological variables often contribute to the problem and hinder its resolution. This article describes the health problems related to poor indoor air quality and offers solutions. Images p398-a p399-a PMID:9769764

  3. A Low Complexity System Based on Multiple Weighted Decision Trees for Indoor Localization.

    PubMed

    Sánchez-Rodríguez, David; Hernández-Morera, Pablo; Quinteiro, José Ma; Alonso-González, Itziar

    2015-06-23

    Indoor position estimation has become an attractive research topic due to growing interest in location-aware services. Nevertheless, satisfying solutions have not been found with the considerations of both accuracy and system complexity. From the perspective of lightweight mobile devices, they are extremely important characteristics, because both the processor power and energy availability are limited. Hence, an indoor localization system with high computational complexity can cause complete battery drain within a few hours. In our research, we use a data mining technique named boosting to develop a localization system based on multiple weighted decision trees to predict the device location, since it has high accuracy and low computational complexity. The localization system is built using a dataset from sensor fusion, which combines the strength of radio signals from different wireless local area network access points and device orientation information from a digital compass built-in mobile device, so that extra sensors are unnecessary. Experimental results indicate that the proposed system leads to substantial improvements on computational complexity over the widely-used traditional fingerprinting methods, and it has a better accuracy than they have.

  4. An adaptive localization system for outdoor/indoor navigation for autonomous robots

    NASA Astrophysics Data System (ADS)

    Pacis, E. B.; Sights, B.; Ahuja, G.; Kogut, G.; Everett, H. R.

    2006-05-01

    Many envisioned applications of mobile robotic systems require the robot to navigate in complex urban environments. This need is particularly critical if the robot is to perform as part of a synergistic team with human forces in military operations. Historically, the development of autonomous navigation for mobile robots has targeted either outdoor or indoor scenarios, but not both, which is not how humans operate. This paper describes efforts to fuse component technologies into a complete navigation system, allowing a robot to seamlessly transition between outdoor and indoor environments. Under the Joint Robotics Program's Technology Transfer project, empirical evaluations of various localization approaches were conducted to assess their maturity levels and performance metrics in different exterior/interior settings. The methodologies compared include Markov localization, global positioning system, Kalman filtering, and fuzzy-logic. Characterization of these technologies highlighted their best features, which were then fused into an adaptive solution. A description of the final integrated system is discussed, including a presentation of the design, experimental results, and a formal demonstration to attendees of the Unmanned Systems Capabilities Conference II in San Diego in December 2005.

  5. A Low Complexity System Based on Multiple Weighted Decision Trees for Indoor Localization

    PubMed Central

    Sánchez-Rodríguez, David; Hernández-Morera, Pablo; Quinteiro, José Ma.; Alonso-González, Itziar

    2015-01-01

    Indoor position estimation has become an attractive research topic due to growing interest in location-aware services. Nevertheless, satisfying solutions have not been found with the considerations of both accuracy and system complexity. From the perspective of lightweight mobile devices, they are extremely important characteristics, because both the processor power and energy availability are limited. Hence, an indoor localization system with high computational complexity can cause complete battery drain within a few hours. In our research, we use a data mining technique named boosting to develop a localization system based on multiple weighted decision trees to predict the device location, since it has high accuracy and low computational complexity. The localization system is built using a dataset from sensor fusion, which combines the strength of radio signals from different wireless local area network access points and device orientation information from a digital compass built-in mobile device, so that extra sensors are unnecessary. Experimental results indicate that the proposed system leads to substantial improvements on computational complexity over the widely-used traditional fingerprinting methods, and it has a better accuracy than they have. PMID:26110413

  6. 3D indoor modeling using a hand-held embedded system with multiple laser range scanners

    NASA Astrophysics Data System (ADS)

    Hu, Shaoxing; Wang, Duhu; Xu, Shike

    2016-10-01

    Accurate three-dimensional perception is a key technology for many engineering applications, including mobile mapping, obstacle detection and virtual reality. In this article, we present a hand-held embedded system designed for constructing 3D representation of structured indoor environments. Different from traditional vehicle-borne mobile mapping methods, the system presented here is capable of efficiently acquiring 3D data while an operator carrying the device traverses through the site. It consists of a simultaneous localization and mapping(SLAM) module, a 3D attitude estimate module and a point cloud processing module. The SLAM is based on a scan matching approach using a modern LIDAR system, and the 3D attitude estimate is generated by a navigation filter using inertial sensors. The hardware comprises three 2D time-flight laser range finders and an inertial measurement unit(IMU). All the sensors are rigidly mounted on a body frame. The algorithms are developed on the frame of robot operating system(ROS). The 3D model is constructed using the point cloud library(PCL). Multiple datasets have shown robust performance of the presented system in indoor scenarios.

  7. An RF-based wearable sensor system for indoor tracking to facilitate efficient healthcare management.

    PubMed

    Yuzhe Ouyang; Shan, Kai; Bui, Francis Minhthang

    2016-08-01

    To understand the utilization of clinical resources and improve the efficiency of healthcare, it is often necessary to accurately locate patients and doctors in a healthcare facility. However, existing tracking methods, such as GPS, Wi-Fi and RFID, have technological drawbacks or impose significant costs, thus limiting their applications in many clinical environments, especially those with indoor enclosures. This paper proposes a low-cost and flexible tracking system that is well suited for operating in an indoor environment. Based on readily available RF transceivers and microcontrollers, our wearable sensor system can facilitate locating users (e.g., patients or doctors) or objects (e.g., medical devices) in a building. The strategic construction of the sensor system, along with a suitably designed tracking algorithm, together provide for reliability and dispatch in localization performance. For demonstration purposes, several simplified experiments, with different configurations of the system, are implemented in two testing rooms to assess the baseline performance. From the obtained results, our system exhibits immense promise in acquiring a user location and corresponding time-stamp, with high accuracy and rapid response. This capability is conducive to both short- and long-term data analytics, which are crucial for improving healthcare management.

  8. A Hybrid Indoor Localization and Navigation System with Map Matching for Pedestrians Using Smartphones

    PubMed Central

    Tian, Qinglin; Salcic, Zoran; Wang, Kevin I-Kai; Pan, Yun

    2015-01-01

    Pedestrian dead reckoning is a common technique applied in indoor inertial navigation systems that is able to provide accurate tracking performance within short distances. Sensor drift is the main bottleneck in extending the system to long-distance and long-term tracking. In this paper, a hybrid system integrating traditional pedestrian dead reckoning based on the use of inertial measurement units, short-range radio frequency systems and particle filter map matching is proposed. The system is a drift-free pedestrian navigation system where position error and sensor drift is regularly corrected and is able to provide long-term accurate and reliable tracking. Moreover, the whole system is implemented on a commercial off-the-shelf smartphone and achieves real-time positioning and tracking performance with satisfactory accuracy. PMID:26690170

  9. A portable system for recording neural activity in indoor and outdoor environments.

    PubMed

    Baluch, Farhan; Itti, Laurent

    2012-01-01

    We present a self-contained portable USB based device that can amplify and record small bioelectric signals from insects and animals. The system combines a purpose built low noise amplifier with off the shelf components to provide a low cost low power system for recording electrophysiological signals. Using open source software the system is programmed as a simple USB device and can be connected to any USB capable computer for recording data. This simple and universal interface provides the ability to connect to a variety of systems. Open source acquisition software was also written to record signals under the linux operating system. Performance analysis shows that our device is able to record good quality signals both indoors and outdoors and delivers this performance at a very low cost. Compared to larger systems our device provides the additional advantage of portability given that it can fit into a pocket and costs a fraction of large systems used in electrophysiology labs.

  10. A Hybrid Indoor Localization and Navigation System with Map Matching for Pedestrians Using Smartphones.

    PubMed

    Tian, Qinglin; Salcic, Zoran; Wang, Kevin I-Kai; Pan, Yun

    2015-12-05

    Pedestrian dead reckoning is a common technique applied in indoor inertial navigation systems that is able to provide accurate tracking performance within short distances. Sensor drift is the main bottleneck in extending the system to long-distance and long-term tracking. In this paper, a hybrid system integrating traditional pedestrian dead reckoning based on the use of inertial measurement units, short-range radio frequency systems and particle filter map matching is proposed. The system is a drift-free pedestrian navigation system where position error and sensor drift is regularly corrected and is able to provide long-term accurate and reliable tracking. Moreover, the whole system is implemented on a commercial off-the-shelf smartphone and achieves real-time positioning and tracking performance with satisfactory accuracy.

  11. IMPACT OF AN INDOOR COOK STOVE INTERVENTION ON MEASURES OF SYSTEMIC INFLAMMATION

    EPA Science Inventory

    Background and Aims: Approximately three billion people use inefficient and poorly-vented indoor cook stoves, which can result in high indoor air pollution concentrations. Few studies have evaluated the cardiovascular effects of indoor biomass burning. Methods: In this pilot s...

  12. Improvement in the Geofencing Service Interface Using Indoor Positioning Systems and Mobile Sensors

    NASA Astrophysics Data System (ADS)

    Nakagawa, M.

    2013-11-01

    The current state of location-based services provides spatial information delivery for mobile users based on position data taken from GPS sensors. However, sometimes the spatial information delivery service includes unwanted information. In particular, push-based or passive information delivery has a high probability that users receive unwanted information. We propose a new spatial information delivery to improve the integrity of spatial information delivery. We conducted an experiment using an Indoor Messaging System and an accelerometer, and concluded that our methodology can detect user behavior without accessing personal information and reduce the amount of spam information.

  13. The Ancient Martian Climate System

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.

    2014-01-01

    Today Mars is a cold, dry, desert planet. The atmosphere is thin and liquid water is not stable. But there is evidence that very early in its history it was warmer and wetter. Since Mariner 9 first detected fluvial features on its ancient terrains researchers have been trying to understand what climatic conditions could have permitted liquid water to flow on the surface. Though the evidence is compelling, the problem is not yet solved. The main issue is coping with the faint young sun. During the period when warmer conditions prevailed 3.5-3.8 Gy the sun's luminosity was approximately 25% less than it is today. How can we explain the presence of liquid water on the surface of Mars under such conditions? A similar problem exists for Earth, which would have frozen over under a faint sun even though the evidence suggests otherwise. Attempts to solve the "Faint Young Sun Paradox" rely on greenhouse warming from an atmosphere with a different mass and composition than we see today. This is true for both Mars and Earth. However, it is not a straightforward solution. Any greenhouse theory must (a) produce the warming and rainfall needed, (b) have a plausible source for the gases required, (c) be sustainable, and (d) explain how the atmosphere evolved to its present state. These are challenging requirements and judging from the literature they have yet to be met. In this talk I will review the large and growing body of work on the early Mars climate system. I will take a holistic approach that involves many disciplines since our goal is to present an integrated view that touches on each of the requirements listed in the preceding paragraph. I will begin with the observational evidence, which comes from the geology, mineralogy, and isotopic data. Each of the data sets presents a consistent picture of a warmer and wetter past with a thicker atmosphere. How much warmer and wetter and how much thicker is a matter of debate, but conditions then were certainly different than

  14. High-speed duplex optical wireless communication system for indoor personal area networks.

    PubMed

    Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios

    2010-11-22

    In this paper a new hybrid wireless access system incorporating high bandwidth line-of-sight free space optical wireless and radio frequency localization is proposed and demonstrated. This system is capable of supporting several gigabits/second up-stream and down-stream data transmission and ideally suited for high bandwidth indoor applications such as personal area networks. A radio frequency signal is used to achieve localization of subscribers, offering limited mobility to subscribers within a practical office scenario. Even with the modest transmitted power of 5 dBm, we demonstrate satisfactory performance of bit error rates better than 10(-9) over the entire room in the presence of strong background light. Using simulations, the effectiveness of the proposed system architecture is investigated and the key performance trade-offs identified. Proof-of-concept experiments have also been carried out to validate simulation model, and initial experimental results successfully demonstrate the feasibility of the system capable of supporting 2.5 Gbps over a 1-2 m optical wireless link (limited by the length of the sliding rail used in the experiment) with a 45 degrees diffused beam in an indoor environment for the first time.

  15. On Calibrating the Sensor Errors of a PDR-Based Indoor Localization System

    PubMed Central

    Lan, Kun-Chan; Shih, Wen-Yuah

    2013-01-01

    Many studies utilize the signal strength of short-range radio systems (such as WiFi, ultrasound and infrared) to build a radio map for indoor localization, by deploying a large number of beacon nodes within a building. The drawback of such an infrastructure-based approach is that the deployment and calibration of the system are costly and labor-intensive. Some prior studies proposed the use of Pedestrian Dead Reckoning (PDR) for indoor localization, which does not require the deployment of beacon nodes. In a PDR system, a small number of sensors are put on the pedestrian. These sensors (such as a G-sensor and gyroscope) are used to estimate the distance and direction that a user travels. The effectiveness of a PDR system lies in its success in accurately estimating the user's moving distance and direction. In this work, we propose a novel waist-mounted based PDR that can measure the user's step lengths with a high accuracy. We utilize vertical acceleration of the body to calculate the user's change in height during walking. Based on the Pythagorean Theorem, we can then estimate each step length using this data. Furthermore, we design a map matching algorithm to calibrate the direction errors from the gyro using building floor plans. The results of our experiment show that we can achieve about 98.26% accuracy in estimating the user's walking distance, with an overall location error of about 0.48 m. PMID:23575036

  16. Energy, Weatherization and Indoor Air Quality

    EPA Pesticide Factsheets

    Climate change presents many challenges, including the production of severe weather events. These events and efforts to minimize their effects through weatherization can adversely affect indoor environments.

  17. A novel sensor-assisted RFID-based indoor tracking system for the elderly living alone.

    PubMed

    Hsu, Chien-Chang; Chen, Jun-Hao

    2011-01-01

    The population of elderly people is increasing rapidly in many developed nations. Providing safe and comfortable care to aging people is an important social goal. Moreover, obtaining correct activity and location information for an elderly person is an important research goal. This work proposes a novel intelligent RFID-based indoor tracking system for elderly people living alone. The proposed system uses environment information for inhabitants and received signal strength of an RFID reader to estimate the probable location of an inhabitant. The proposed system then coordinates with the wireless sensor node of a three-axis accelerometer and uses a genetic algorithm to compute the location of the inhabitant. The proposed system also uses context and gait information to improve inhabitant-tracking accuracy. Experiment results show that the accuracy of the proposed system is better than that of existing RFID-based systems.

  18. A Novel Sensor-Assisted RFID-Based Indoor Tracking System for the Elderly Living Alone

    PubMed Central

    Hsu, Chien-Chang; Chen, Jun-Hao

    2011-01-01

    The population of elderly people is increasing rapidly in many developed nations. Providing safe and comfortable care to aging people is an important social goal. Moreover, obtaining correct activity and location information for an elderly person is an important research goal. This work proposes a novel intelligent RFID-based indoor tracking system for elderly people living alone. The proposed system uses environment information for inhabitants and received signal strength of an RFID reader to estimate the probable location of an inhabitant. The proposed system then coordinates with the wireless sensor node of a three-axis accelerometer and uses a genetic algorithm to compute the location of the inhabitant. The proposed system also uses context and gait information to improve inhabitant-tracking accuracy. Experiment results show that the accuracy of the proposed system is better than that of existing RFID-based systems. PMID:22346631

  19. Weather Climate Interactions and Extreme Events in the Climate System

    NASA Astrophysics Data System (ADS)

    Roundy, P. E.

    2015-12-01

    The most pronounced local impacts of climate change would occur in association with extreme weather events superimposed on the altered climate. Thus a major thrust of recent efforts in the climate community has been to assess how extreme regional events such as cold air outbreaks, heat waves, tropical cyclones, floods, droughts, and severe weather might change with the climate. Many of these types of events are poorly simulated in climate models because of insufficient spatial resolution and insufficient quality parameterization of sub grid scale convection and radiation processes. This talk summarizes examples selected from those discussed below of how weather and climate events can be interconnected so that the physics of natural climate and weather phenomena depend on each other, thereby complicating our ability to simulate extreme events. A major focus of the chapter is on the Madden Julian oscillation (MJO), which is associated with alternating eastward-moving planetary scale regions of enhanced and suppressed moist deep convection favoring warm pool regions in the tropics. The MJO modulates weather events around the world and influences the evolution of interannual climate variability. We first discuss how the MJO evolves together with the seasonal cycle, the El Niño/southern oscillation (ENSO), and the extratropical circulation, then continue with a case study illustration of how El Niño is intrinsically coupled to intraseasonal and synoptic weather events such as the MJO and westerly wind bursts. This interconnectedness in the system implies that modeling many types of regional extreme weather events requires more than simply downscaling coarse climate model signals to nested regional models because extreme outcomes in a region can depend on poorly simulated extreme weather in distant parts of the world. The authors hope that an improved understanding of these types of interactions between signals across scales of time and space will ultimately yield

  20. Climate Change Education in Earth System Science

    NASA Astrophysics Data System (ADS)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory

  1. An Indoor Positioning System Based on Wearables for Ambient-Assisted Living

    PubMed Central

    Belmonte-Fernández, Óscar; Puertas-Cabedo, Adrian; Torres-Sospedra, Joaquín; Montoliu-Colás, Raúl; Trilles-Oliver, Sergi

    2016-01-01

    The urban population is growing at such a rate that by 2050 it is estimated that 84% of the world’s population will live in cities, with flats being the most common living place. Moreover, WiFi technology is present in most developed country urban areas, with a quick growth in developing countries. New Ambient-Assisted Living applications will be developed in the near future having user positioning as ground technology: elderly tele-care, energy consumption, security and the like are strongly based on indoor positioning information. We present an indoor positioning system for wearable devices based on WiFi fingerprinting. Smart-watch wearable devices are used to acquire the WiFi strength signals of the surrounding Wireless Access Points used to build an ensemble of Machine Learning classification algorithms. Once built, the ensemble algorithm is used to locate a user based on the WiFi strength signals provided by the wearable device. Experimental results for five different urban flats are reported, showing that the system is robust and reliable enough for locating a user at room level into his/her home. Another interesting characteristic of the presented system is that it does not require deployment of any infrastructure, and it is unobtrusive, the only device required for it to work is a smart-watch. PMID:28029142

  2. Design of an indoor mapping system using three 2D laser scanners and 6 DOF SLAM

    NASA Astrophysics Data System (ADS)

    Vosselman, G.

    2014-08-01

    We present the design for a new indoor mapping system based on three 2D laser scanners as well as a method to process the range measurements such that the pose of the system and the planes of floor, ceiling and walls can be estimated simultaneously. By the combined use of the measurements of all three scanners the pose of the system can be reconstructed in 3D without the need for an IMU. The six pose parameters are modelled as a continuous function over time such that scan line deformations caused by rapid scanner movements do not lead to biases in the estimated poses. The theoretical feasibility of the approach is demonstrated by analysing reconstruction results derived from simulated sensor data of two indoor models. Assuming a perfectly calibrated sensor and ranging noise of 3 cm, the results on data in 10x20 m corridor show that the plane orientation precision is better than 0.1 degree and that the standard deviation of plane-to-plane distances is below 1.5 cm after three loops in the corridor.

  3. An Indoor Positioning System Based on Wearables for Ambient-Assisted Living.

    PubMed

    Belmonte-Fernández, Óscar; Puertas-Cabedo, Adrian; Torres-Sospedra, Joaquín; Montoliu-Colás, Raúl; Trilles-Oliver, Sergi

    2016-12-25

    The urban population is growing at such a rate that by 2050 it is estimated that 84% of the world's population will live in cities, with flats being the most common living place. Moreover, WiFi technology is present in most developed country urban areas, with a quick growth in developing countries. New Ambient-Assisted Living applications will be developed in the near future having user positioning as ground technology: elderly tele-care, energy consumption, security and the like are strongly based on indoor positioning information. We present an Indoor Positioning System for wearable devices based on WiFi fingerprinting. Smart-watch wearable devices are used to acquire the WiFi strength signals of the surrounding Wireless Access Points used to build an ensemble of Machine Learning classification algorithms. Once built, the ensemble algorithm is used to locate a user based on the WiFi strength signals provided by the wearable device. Experimental results for five different urban flats are reported, showing that the system is robust and reliable enough for locating a user at room level into his/her home. Another interesting characteristic of the presented system is that it does not require deployment of any infrastructure, and it is unobtrusive, the only device required for it to work is a smart-watch.

  4. Indoor weather related to the energy consumption of air conditioned classroom: Monitoring system for energy efficient building plan

    NASA Astrophysics Data System (ADS)

    Rattanongphisat, W.; Suwannakom, A.; Harfield, A.

    2016-08-01

    The current research aims to investigate the relation of indoor weather to energy consumption of air conditioned classroom by design and construct the indoor weather and energy monitoring systems. In this research, a combined temperature and humidity sensor in conjunction with a microcontroller was constructed for the indoor weather monitoring system. The wire sensor network for the temperature-humidity sensor nodes is the Controller Area Network (CAN). Another part is using a nonintrusive method where a wireless current transformer sending the signal to the data collection box then transmitted by the radio frequency to the computer where the Ethernet application software was installed for the energy monitoring system. The results show that the setting air temperature, outdoor ambient temperature and operating time impact to the energy consumption of the air conditioned classroom.

  5. Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems.

    PubMed

    Fernandez-Llatas, Carlos; Lizondo, Aroa; Monton, Eduardo; Benedi, Jose-Miguel; Traver, Vicente

    2015-11-30

    The definition of efficient and accurate health processes in hospitals is crucial for ensuring an adequate quality of service. Knowing and improving the behavior of the surgical processes in a hospital can improve the number of patients that can be operated on using the same resources. However, the measure of this process is usually made in an obtrusive way, forcing nurses to get information and time data, affecting the proper process and generating inaccurate data due to human errors during the stressful journey of health staff in the operating theater. The use of indoor location systems can take time information about the process in an unobtrusive way, freeing nurses, allowing them to engage in purely welfare work. However, it is necessary to present these data in a understandable way for health professionals, who cannot deal with large amounts of historical localization log data. The use of process mining techniques can deal with this problem, offering an easily understandable view of the process. In this paper, we present a tool and a process mining-based methodology that, using indoor location systems, enables health staff not only to represent the process, but to know precise information about the deployment of the process in an unobtrusive and transparent way. We have successfully tested this tool in a real surgical area with 3613 patients during February, March and April of 2015.

  6. Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems

    PubMed Central

    Fernandez-Llatas, Carlos; Lizondo, Aroa; Monton, Eduardo; Benedi, Jose-Miguel; Traver, Vicente

    2015-01-01

    The definition of efficient and accurate health processes in hospitals is crucial for ensuring an adequate quality of service. Knowing and improving the behavior of the surgical processes in a hospital can improve the number of patients that can be operated on using the same resources. However, the measure of this process is usually made in an obtrusive way, forcing nurses to get information and time data, affecting the proper process and generating inaccurate data due to human errors during the stressful journey of health staff in the operating theater. The use of indoor location systems can take time information about the process in an unobtrusive way, freeing nurses, allowing them to engage in purely welfare work. However, it is necessary to present these data in a understandable way for health professionals, who cannot deal with large amounts of historical localization log data. The use of process mining techniques can deal with this problem, offering an easily understandable view of the process. In this paper, we present a tool and a process mining-based methodology that, using indoor location systems, enables health staff not only to represent the process, but to know precise information about the deployment of the process in an unobtrusive and transparent way. We have successfully tested this tool in a real surgical area with 3613 patients during February, March and April of 2015. PMID:26633395

  7. Indoor navigation by people with visual impairment using a digital sign system.

    PubMed

    Legge, Gordon E; Beckmann, Paul J; Tjan, Bosco S; Havey, Gary; Kramer, Kevin; Rolkosky, David; Gage, Rachel; Chen, Muzi; Puchakayala, Sravan; Rangarajan, Aravindhan

    2013-01-01

    There is a need for adaptive technology to enhance indoor wayfinding by visually-impaired people. To address this need, we have developed and tested a Digital Sign System. The hardware and software consist of digitally-encoded signs widely distributed throughout a building, a handheld sign-reader based on an infrared camera, image-processing software, and a talking digital map running on a mobile device. Four groups of subjects-blind, low vision, blindfolded sighted, and normally sighted controls-were evaluated on three navigation tasks. The results demonstrate that the technology can be used reliably in retrieving information from the signs during active mobility, in finding nearby points of interest, and following routes in a building from a starting location to a destination. The visually impaired subjects accurately and independently completed the navigation tasks, but took substantially longer than normally sighted controls. This fully functional prototype system demonstrates the feasibility of technology enabling independent indoor navigation by people with visual impairment.

  8. Indoor Localization Algorithms for an Ambulatory Human Operated 3D Mobile Mapping System

    SciTech Connect

    Corso, N; Zakhor, A

    2013-12-03

    Indoor localization and mapping is an important problem with many applications such as emergency response, architectural modeling, and historical preservation. In this paper, we develop an automatic, off-line pipeline for metrically accurate, GPS-denied, indoor 3D mobile mapping using a human-mounted backpack system consisting of a variety of sensors. There are three novel contributions in our proposed mapping approach. First, we present an algorithm which automatically detects loop closure constraints from an occupancy grid map. In doing so, we ensure that constraints are detected only in locations that are well conditioned for scan matching. Secondly, we address the problem of scan matching with poor initial condition by presenting an outlier-resistant, genetic scan matching algorithm that accurately matches scans despite a poor initial condition. Third, we present two metrics based on the amount and complexity of overlapping geometry in order to vet the estimated loop closure constraints. By doing so, we automatically prevent erroneous loop closures from degrading the accuracy of the reconstructed trajectory. The proposed algorithms are experimentally verified using both controlled and real-world data. The end-to-end system performance is evaluated using 100 surveyed control points in an office environment and obtains a mean accuracy of 10 cm. Experimental results are also shown on three additional datasets from real world environments including a 1500 meter trajectory in a warehouse sized retail shopping center.

  9. Indoor Navigation by People with Visual Impairment Using a Digital Sign System

    PubMed Central

    Legge, Gordon E.; Beckmann, Paul J.; Tjan, Bosco S.; Havey, Gary; Kramer, Kevin; Rolkosky, David; Gage, Rachel; Chen, Muzi; Puchakayala, Sravan; Rangarajan, Aravindhan

    2013-01-01

    There is a need for adaptive technology to enhance indoor wayfinding by visually-impaired people. To address this need, we have developed and tested a Digital Sign System. The hardware and software consist of digitally-encoded signs widely distributed throughout a building, a handheld sign-reader based on an infrared camera, image-processing software, and a talking digital map running on a mobile device. Four groups of subjects—blind, low vision, blindfolded sighted, and normally sighted controls—were evaluated on three navigation tasks. The results demonstrate that the technology can be used reliably in retrieving information from the signs during active mobility, in finding nearby points of interest, and following routes in a building from a starting location to a destination. The visually impaired subjects accurately and independently completed the navigation tasks, but took substantially longer than normally sighted controls. This fully functional prototype system demonstrates the feasibility of technology enabling independent indoor navigation by people with visual impairment. PMID:24116156

  10. Climate Sensitivity of the Community Climate System Model, Version 4

    SciTech Connect

    Bitz, Cecilia M.; Shell, K. M.; Gent, P. R.; Bailey, D. A.; Danabasoglu, G.; Armour, K. C.; Holland, M. M.; Kiehl, J. T.

    2012-05-01

    Equilibrium climate sensitivity of the Community Climate System Model Version 4 (CCSM4) is 3.20°C for 1° horizontal resolution in each component. This is about a half degree Celsius higher than in the previous version (CCSM3). The transient climate sensitivity of CCSM4 at 1° resolution is 1.72°C, which is about 0.2°C higher than in CCSM3. These higher climate sensitivities in CCSM4 cannot be explained by the change to a preindustrial baseline climate. We use the radiative kernel technique to show that from CCSM3 to CCSM4, the global mean lapse-rate feedback declines in magnitude, and the shortwave cloud feedback increases. These two warming effects are partially canceled by cooling due to slight decreases in the global mean water-vapor feedback and longwave cloud feedback from CCSM3 to CCSM4. A new formulation of the mixed-layer, slab ocean model in CCSM4 attempts to reproduce the SST and sea ice climatology from an integration with a full-depth ocean, and it is integrated with a dynamic sea ice model. These new features allow an isolation of the influence of ocean dynamical changes on the climate response when comparing integrations with the slab ocean and full-depth ocean. The transient climate response of the full-depth ocean version is 0.54 of the equilibrium climate sensitivity when estimated with the new slab ocean model version for both CCSM3 and CCSM4. We argue the ratio is the same in both versions because they have about the same zonal mean pattern of change in ocean surface heat flux, which broadly resembles the zonal mean pattern of net feedback strength.

  11. Climate Sensitivity of the Community Climate System Model, Version 4

    DOE PAGES

    Bitz, Cecilia M.; Shell, K. M.; Gent, P. R.; ...

    2012-05-01

    Equilibrium climate sensitivity of the Community Climate System Model Version 4 (CCSM4) is 3.20°C for 1° horizontal resolution in each component. This is about a half degree Celsius higher than in the previous version (CCSM3). The transient climate sensitivity of CCSM4 at 1° resolution is 1.72°C, which is about 0.2°C higher than in CCSM3. These higher climate sensitivities in CCSM4 cannot be explained by the change to a preindustrial baseline climate. We use the radiative kernel technique to show that from CCSM3 to CCSM4, the global mean lapse-rate feedback declines in magnitude, and the shortwave cloud feedback increases. These twomore » warming effects are partially canceled by cooling due to slight decreases in the global mean water-vapor feedback and longwave cloud feedback from CCSM3 to CCSM4. A new formulation of the mixed-layer, slab ocean model in CCSM4 attempts to reproduce the SST and sea ice climatology from an integration with a full-depth ocean, and it is integrated with a dynamic sea ice model. These new features allow an isolation of the influence of ocean dynamical changes on the climate response when comparing integrations with the slab ocean and full-depth ocean. The transient climate response of the full-depth ocean version is 0.54 of the equilibrium climate sensitivity when estimated with the new slab ocean model version for both CCSM3 and CCSM4. We argue the ratio is the same in both versions because they have about the same zonal mean pattern of change in ocean surface heat flux, which broadly resembles the zonal mean pattern of net feedback strength.« less

  12. Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System

    SciTech Connect

    Stenner, Robert D.; Hadley, Donald L.; Armstrong, Peter R.; Buck, John W.; Hoopes, Bonnie L.; Janus, Michael C.

    2001-03-01

    Indoor air quality effects on human health are of increasing concern to public health agencies and building owners. The prevention and treatment of 'sick building' syndrome and the spread of air-borne diseases in hospitals, for example, are well known priorities. However, increasing attention is being directed to the vulnerability of our public buildings/places, public security and national defense facilities to terrorist attack or the accidental release of air-borne biological pathogens, harmful chemicals, or radioactive contaminants. The Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System (IA-NBC-HMAS) was developed to serve as a health impact analysis tool for use in addressing these concerns. The overall goal was to develop a user-friendly fully functional prototype Health Modeling and Assessment system, which will operate under the PNNL FRAMES system for ease of use and to maximize its integration with other modeling and assessment capabilities accessible within the FRAMES system (e.g., ambient air fate and transport models, water borne fate and transport models, Physiologically Based Pharmacokinetic models, etc.). The prototype IA-NBC-HMAS is designed to serve as a functional Health Modeling and Assessment system that can be easily tailored to meet specific building analysis needs of a customer. The prototype system was developed and tested using an actual building (i.e., the Churchville Building located at the Aberdeen Proving Ground) and release scenario (i.e., the release and measurement of tracer materials within the building) to ensure realism and practicality in the design and development of the prototype system. A user-friendly "demo" accompanies this report to allow the reader the opportunity for a "hands on" review of the prototype system's capability.

  13. FOLLOW-UP DURABILITY MEASUREMENTS AND MITIGATION PERFORMANCE IMPROVEMENT TESTS IN 38 EASTERN PENNSYL- VANIA HOUSES HAVING INDOOR REDUCTION SYSTEMS

    EPA Science Inventory

    The report gives results of follow-up tests in 38 difficult- to-mitigate Pennsylvania houses where indoor radon reduction systems had been installed 2 to 4 years earlier. bjectives were to assess system durability, methods for improving performance, and methods for reducing insta...

  14. Performance of a mmWave beamformed phased array system for indoor LOS communication

    NASA Astrophysics Data System (ADS)

    Amjad, Kinnan; Xu, Huaping

    2016-11-01

    Millimeter waves (mmWaves) spectrum ranging from 30GHz to 300GHz is emerging as a potential solution to the bandwidth problem faced by the wireless communication now a days. The advancements in the antenna technology has enabled the fabrication of antenna arrays or phased array systems which when used with techniques like spatial multiplexing and beamforming has enabled the use of mmWaves for both indoor and outdoor communication systems by providing gain and selectivity. This has also opened the doors for its potential use in long range and cellular communications. The 60GHz band also know as the oxygen absorption band due to its higher attenuation and unlicensed operation is a good candidate for use in secure and confined communications. In this paper we have investigated the performance of a beamformed phased array system in the mmWave spectrum. The performance is measured for varying the source and noise location and compared for a Linear and Rectangular array.

  15. Indoor Confined Feedlots.

    PubMed

    Grooms, Daniel L; Kroll, Lee Anne K

    2015-07-01

    Indoor confined feedlots offer advantages that make them desirable in northern climates where high rainfall and snowfall occur. These facilities increase the risk of certain health risks, including lameness and tail injuries. Closed confinement can also facilitate the rapid spread of infectious disease. Veterinarians can help to manage these health risks by implementing management practices to reduce their occurrence.

  16. Impact of simulated climate and building features on the penetration of toxic gases from the ambient into the indoor environment

    EPA Science Inventory

    This research is a combination of experimental results and analysis of formaldehyde penetration across a residential building envelope with the objective of developing an understanding of the factors that govern indoor air concentrations of air toxics and to provide linkages betw...

  17. An Integrated Wireless Wearable Sensor System for Posture Recognition and Indoor Localization

    PubMed Central

    Huang, Jian; Yu, Xiaoqiang; Wang, Yuan; Xiao, Xiling

    2016-01-01

    In order to provide better monitoring for the elderly or patients, we developed an integrated wireless wearable sensor system that can realize posture recognition and indoor localization in real time. Five designed sensor nodes which are respectively fixed on lower limbs and a standard Kalman filter are used to acquire basic attitude data. After the attitude angles of five body segments (two thighs, two shanks and the waist) are obtained, the pitch angles of the left thigh and waist are used to realize posture recognition. Based on all these attitude angles of body segments, we can also calculate the coordinates of six lower limb joints (two hip joints, two knee joints and two ankle joints). Then, a novel relative localization algorithm based on step length is proposed to realize the indoor localization of the user. Several sparsely distributed active Radio Frequency Identification (RFID) tags are used to correct the accumulative error in the relative localization algorithm and a set-membership filter is applied to realize the data fusion. The experimental results verify the effectiveness of the proposed algorithms. PMID:27809230

  18. a New Ubiquitous-Based Indoor Positioning System with Minimum Extra Hardware Using Smart Phones

    NASA Astrophysics Data System (ADS)

    Hassany Pazoky, S.; Chehreghan, A.; Sadeghi Niaraki, A.; Abbaspour, R. Ali

    2014-10-01

    Knowing the position has been an ambition in many areas such as science, military, business, etc. GPS was the realization of this wish in 1970s. Technological advances such as ubiquitous computing, as a conquering perspective, requires any service to work for any user, any place, anytime, and via any network. As GPS cannot provide services in indoor environments, many scientists began to develop indoor positioning systems (IPS). Smart phones penetrating our everyday lives were a great platform to host IPS applications. Sensors in smart phones were another big motive to develop IPS applications. Many researchers have been working on the topic developing various applications. However, the applications introduced lack simplicity. In other words, they need to install a step counter or smart phone on the ankle, which makes it awkward and inapplicable in many situations. In the current study, a new IPS methodology is introduced using only the usual embedded sensors in the smart phones. The robustness of this methodology cannot compete with those of the aforementioned approaches. The price paid for simplicity was decreasing robustness and complicating the methods and formulations. However, methods or tricks to harness the errors to an acceptable range are introduced as the future works.

  19. An Integrated Wireless Wearable Sensor System for Posture Recognition and Indoor Localization.

    PubMed

    Huang, Jian; Yu, Xiaoqiang; Wang, Yuan; Xiao, Xiling

    2016-10-31

    In order to provide better monitoring for the elderly or patients, we developed an integrated wireless wearable sensor system that can realize posture recognition and indoor localization in real time. Five designed sensor nodes which are respectively fixed on lower limbs and a standard Kalman filter are used to acquire basic attitude data. After the attitude angles of five body segments (two thighs, two shanks and the waist) are obtained, the pitch angles of the left thigh and waist are used to realize posture recognition. Based on all these attitude angles of body segments, we can also calculate the coordinates of six lower limb joints (two hip joints, two knee joints and two ankle joints). Then, a novel relative localization algorithm based on step length is proposed to realize the indoor localization of the user. Several sparsely distributed active Radio Frequency Identification (RFID) tags are used to correct the accumulative error in the relative localization algorithm and a set-membership filter is applied to realize the data fusion. The experimental results verify the effectiveness of the proposed algorithms.

  20. High-accuracy indoor positioning system based on visible light communication

    NASA Astrophysics Data System (ADS)

    Wei, Ling; Zhang, Hongming; Yu, Bingyan; Guan, Yang

    2015-11-01

    A visible light communication (VLC)-based high-accuracy indoor positioning system is proposed and demonstrated. In this system, the light-emitting diode identification (LED-ID) indicating the position information of the LED can be transmitted to the receiver by the illumination LED through VLC. In the meantime, with the aid of a camera and angular sensors of the mobile device, a coordinate transform can be employed to calculate the relative position between the receiver and the reference LED so that the position of the receiver can be determined. Finally, the experimental results show that 2-cm positioning accuracy can be achieved and the simulation results indicate that the positioning error can be limited within 4.7 cm when the accuracy of angular sensors is 1 deg.

  1. Ultra-broadband indoor optical wireless communication system with multimode fiber.

    PubMed

    Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios

    2012-05-01

    In this paper we experimentally demonstrate an ultra-broadband indoor full-duplex WDM optical wireless communication system with multimode fiber. The multimode fiber is used because it is employed in most of the already installed in-building fiber distribution networks. Simultaneous error-free (BER<10(-9)) transmission of 4×12.5 Gbps downlink and 800 Mbps uplink has been successfully demonstrated. The experimental results show that, although the use of multimode fiber will induce ~2.4 cm reduction in the maximum error-free beam footprint in the downlink, the bit rate of the uplink can be much higher compared to the system with single-mode fiber.

  2. Climate change: Cropping system changes and adaptations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change impacts the life of every person; however, there is little comprehensive understanding of the direct and indirect effects of climate change on agriculture. Since our food, feed, fiber, and fruit is derived from agricultural systems, understanding the effects of changing temperature, p...

  3. Prototype Expert System for Climate Classification.

    ERIC Educational Resources Information Center

    Harris, Clay

    Many students find climate classification laborious and time-consuming, and through their lack of repetition fail to grasp the details of classification. This paper describes an expert system for climate classification that is being developed at Middle Tennessee State University. Topics include: (1) an introduction to the nature of classification,…

  4. A geographic information systems (GIS) and spatial modeling approach to assessing indoor radon potential at local level.

    PubMed

    Zhou, Joey Y; Laćan, Igor; Liu, Kai-Shen; Waldman, Jed

    2006-04-01

    This study integrates residential radon data from previous studies in Southern California (USA), into a geographic information system (GIS) linked with statistical techniques. A difference (p<0.05) is found in the indoor radon in residences grouped by radon-potential zones. Using a novel Monte Carlo approach, we found that the mean distance from elevated-radon residences (concentration>74 Bq m(-3)) to epicenters of large (> 4 Richter) earthquakes was smaller (p<0.0001) than the average residence-to-epicenter distance, suggesting an association between the elevated indoor-radon and seismic activities.

  5. High-speed indoor optical wireless communication system with single channel imaging receiver.

    PubMed

    Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios

    2012-04-09

    In this paper we experimentally investigate a gigabit indoor optical wireless communication system with single channel imaging receiver. It is shown that the use of single channel imaging receiver rejects most of the background light. This single channel imaging receiver is composed of an imaging lens and a small photo-sensitive area photodiode attached on a 2-axis actuator. The actuator and photodiode are placed on the focal plane of the lens to search for the focused light spot. The actuator is voice-coil based and it is low cost and commercially available. With this single channel imaging receiver, bit rate as high as 12.5 Gbps has been successfully demonstrated and the maximum error-free (BER<10⁻⁹) beam footprint is even larger than 1 m. Compared with our previous experimental results with a single wide field-of-view non-imaging receiver, an improvement in error-free beam footprint of >20% has been achieved. When this system is integrated with our recently proposed optical wireless based indoor localization system, both high speed wireless communication and mobility can be provided to users over the entire room. Furthermore, theoretical analysis has been carried out and the simulation results agree well with the experiments. In addition, since the rough location information of the user is available in our proposed system, instead of searching for the focused light spot over a large area on the focal plane of the lens, only a small possible area needs to be scanned. By further pre-setting a proper comparison threshold when searching for the focused light spot, the time needed for searching can be further reduced.

  6. Climate data system supports FIRE

    NASA Technical Reports Server (NTRS)

    Olsen, Lola M.; Iascone, Dominick; Reph, Mary G.

    1990-01-01

    The NASA Climate Data System (NCDS) at Goddard Space Flight Center is serving as the FIRE Central Archive, providing a centralized data holding and data cataloging service for the FIRE project. NCDS members are carrying out their responsibilities by holding all reduced observations and data analysis products submitted by individual principal investigators in the agreed upon format, by holding all satellite data sets required for FIRE, by providing copies of any of these data sets to FIRE investigators, and by producing and updating a catalog with information about the FIRE holdings. FIRE researchers were requested to provide their reduced data sets in the Standard Data Format (SDF) to the FIRE Central Archive. This standard format is proving to be of value. An improved SDF document is now available. The document provides an example from an actual FIRE SDF data set and clearly states the guidelines for formatting data in SDF. NCDS has received SDF tapes from a number of investigators. These tapes were analyzed and comments provided to the producers. One product which is now available is William J. Syrett's sodar data product from the Stratocumulus Intensive Field Observation. Sample plots from all SDF tapes submitted to the archive will be available to FSET members. Related cloud products are also available through NCDS. Entries describing the FIRE data sets are being provided for the NCDS on-line catalog. Detailed information for the Extended Time Observations is available in the general FIRE catalog entry. Separate catalog entries are being written for the Cirrus Intensive Field Observation (IFO) and for the Marine Stratocumulus IFO. Short descriptions of each FIRE data set will be installed into the NCDS Summary Catalog.

  7. Management system, organizational climate and performance relationships

    NASA Technical Reports Server (NTRS)

    Davis, B. D.

    1979-01-01

    Seven aerospace firms were investigated to determine if a relationship existed among management systems, organizational climate, and organization performance. Positive relationships were found between each of these variables, but a statistically significant relationship existed only between the management system and organizational climate. The direction and amount of communication and the degree of decentralized decision-making, elements of the management system, also had a statistically significant realtionship with organization performance.

  8. The Global Climate Observing System. French contribution

    NASA Astrophysics Data System (ADS)

    Juvanon-Du-Vachat, R.

    2010-09-01

    THE GLOBAL CLIMATE OBSERVING SYSTEM. FRENCH CONTRIBUTION Régis Juvanon du Vachat Société Météorologique de France, c/o D2I/MI, 1, Quai Branly 75007 Paris France is participating fully in the Global Climate Observing System (GCOS). It incorporates the following four components: meteorological and atmospheric, oceanic, terrestrial, spatial, which will be briefly presented, especially in relation with the monitoring of the climate. The presentation will give an overview of the general principles governing the GCOS system and particularly the concepts used to maintain efficiently this climate observing system for a long period of time ("from research networks to operational networks"). The presentation will cover all the four components of the GCOS system. The whole report has been published in the Fifth National Communication from France to the UNFCCC (United Nations Framework Convention on Climate Change). The presentation will give an overview of the different networks of these four domains devoted to the monitoring of climate and maintained by France and highlighting the strengths and weaknesses of this climate observing system.

  9. RE-ENTRAINMENT AND DISPERSION OF EXHAUSTS FROM INDOOR RADON REDUCTION SYSTEMS: ANALYSIS OF TRACER GAS DATA

    EPA Science Inventory

    Tracer gas studies were conducted around four model houses in a wind tunnel, and around one house in the field, to quantify re-entrainment and dispersion of exhaust gases released from residential indoor radon reduction systems. Re-entrainment tests in the field suggest that acti...

  10. System for reducing heat losses from indoor swimming pools by use of automatic covers. Report No. 3

    SciTech Connect

    Not Available

    1994-09-30

    This progress report covers the period July 1, 1994 through September 30, 1994, and summarizes continuing work on developing deloyable covers for indoor swimming pools. This work includes design and development of motor controllers to deploy and roll up pool covers, reels, cover material of polyethylene and foam filled laminates, and plans for field deployment of a system, where energy savings can be monitored.

  11. Strange beta: an assistance system for indoor rock climbing route setting.

    PubMed

    Phillips, C; Becker, L; Bradley, E

    2012-03-01

    This paper applies the mathematics of chaos to the task of designing indoor rock-climbing routes. Chaotic variation has been used to great advantage on music and dance, but the challenges here are quite different, beginning with the representation. We present a formalized system for transcribing rock climbing problems and then describe a variation generator that is designed to support human route-setters in designing new and interesting climbing problems. This variation generator, termed strange beta, uses chaos to introduce novelty. We validated this approach with a large blinded study in a commercial climbing gym, in cooperation with experienced climbers and expert route setters. The results show that strange beta can help a human setter produce routes that are at least as good as, and in some cases better than, those produced in the traditional manner.

  12. strange beta: An assistance system for indoor rock climbing route setting

    NASA Astrophysics Data System (ADS)

    Phillips, C.; Becker, L.; Bradley, E.

    2012-03-01

    This paper applies the mathematics of chaos to the task of designing indoor rock-climbing routes. Chaotic variation has been used to great advantage on music and dance, but the challenges here are quite different, beginning with the representation. We present a formalized system for transcribing rock climbing problems and then describe a variation generator that is designed to support human route-setters in designing new and interesting climbing problems. This variation generator, termed strange beta, uses chaos to introduce novelty. We validated this approach with a large blinded study in a commercial climbing gym, in cooperation with experienced climbers and expert route setters. The results show that strange beta can help a human setter produce routes that are at least as good as, and in some cases better than, those produced in the traditional manner.

  13. System for reducing heat losses from indoor swimming pools by use of automatic covers. Report No. 1

    SciTech Connect

    Not Available

    1994-04-25

    This is a progress report for the period October 1, 1993 through March 31, 1994, for a project to develop cover systems for indoor swimming pools with the objective of reducing energy consumption. Effort has included evaluation of cover materials, development of brakes to tension deployment ropes, better limit of motion switches, reel systems, drive systems for the take up spool, and drive tensioning systems.

  14. Effects of Thermal Mass, Window Size, and Night-Time Ventilation on Peak Indoor Air Temperature in the Warm-Humid Climate of Ghana

    PubMed Central

    Amos-Abanyie, S.; Akuffo, F. O.; Kutin-Sanwu, V.

    2013-01-01

    Most office buildings in the warm-humid sub-Saharan countries experience high cooling load because of the predominant use of sandcrete blocks which are of low thermal mass in construction and extensive use of glazing. Relatively, low night-time temperatures are not harnessed in cooling buildings because office openings remain closed after work hours. An optimization was performed through a sensitivity analysis-based simulation, using the Energy Plus (E+) simulation software to assess the effects of thermal mass, window size, and night ventilation on peak indoor air temperature (PIAT). An experimental system was designed based on the features of the most promising simulation model, constructed and monitored, and the experimental data used to validate the simulation model. The results show that an optimization of thermal mass and window size coupled with activation of night-time ventilation provides a synergistic effect to obtain reduced peak indoor air temperature. An expression that predicts, indoor maximum temperature has been derived for models of various thermal masses. PMID:23878528

  15. Climate Model Diagnostic Analyzer Web Service System

    NASA Astrophysics Data System (ADS)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Li, J.; Zhang, J.; Wang, W.

    2015-12-01

    Both the National Research Council Decadal Survey and the latest Intergovernmental Panel on Climate Change Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with the synergistic use of global satellite observations in order to improve our weather and climate simulation and prediction capabilities. The abundance of satellite observations for fundamental climate parameters and the availability of coordinated model outputs from CMIP5 for the same parameters offer a great opportunity to understand and diagnose model biases in climate models. In addition, the Obs4MIPs efforts have created several key global observational datasets that are readily usable for model evaluations. However, a model diagnostic evaluation process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. In response, we have developed a novel methodology to diagnose model biases in contemporary climate models and implementing the methodology as a web-service based, cloud-enabled, provenance-supported climate-model evaluation system. The evaluation system is named Climate Model Diagnostic Analyzer (CMDA), which is the product of the research and technology development investments of several current and past NASA ROSES programs. The current technologies and infrastructure of CMDA are designed and selected to address several technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. In particular, we have three key technology components: (1) diagnostic analysis methodology; (2) web-service based, cloud-enabled technology; (3) provenance-supported technology. The diagnostic analysis methodology includes random forest feature importance ranking, conditional probability distribution function, conditional sampling, and time-lagged correlation map. We have implemented the

  16. A spatial division clustering method and low dimensional feature extraction technique based indoor positioning system.

    PubMed

    Mo, Yun; Zhang, Zhongzhao; Meng, Weixiao; Ma, Lin; Wang, Yao

    2014-01-22

    Indoor positioning systems based on the fingerprint method are widely used due to the large number of existing devices with a wide range of coverage. However, extensive positioning regions with a massive fingerprint database may cause high computational complexity and error margins, therefore clustering methods are widely applied as a solution. However, traditional clustering methods in positioning systems can only measure the similarity of the Received Signal Strength without being concerned with the continuity of physical coordinates. Besides, outage of access points could result in asymmetric matching problems which severely affect the fine positioning procedure. To solve these issues, in this paper we propose a positioning system based on the Spatial Division Clustering (SDC) method for clustering the fingerprint dataset subject to physical distance constraints. With the Genetic Algorithm and Support Vector Machine techniques, SDC can achieve higher coarse positioning accuracy than traditional clustering algorithms. In terms of fine localization, based on the Kernel Principal Component Analysis method, the proposed positioning system outperforms its counterparts based on other feature extraction methods in low dimensionality. Apart from balancing online matching computational burden, the new positioning system exhibits advantageous performance on radio map clustering, and also shows better robustness and adaptability in the asymmetric matching problem aspect.

  17. A system-level simulator for indoor mmW SAR imaging and its applications.

    PubMed

    Qi, Feng; Ocket, Ilja; Schreurs, Dominique; Nauwelaers, Bart

    2012-10-08

    Recently, the research interest in indoor active millimeter wave (mmW) imaging by applying the synthetic aperture radar (SAR) technique is increasing. However, there is a lack of proper computer-aided design (CAD) tools at the system level, and almost all the R&D activities rely on experiments solely. The high cost of such a system stops many researchers from investigating such a fascinating research topic. Moreover, the experiment-oriented studies may blind the researchers to some details during the imaging process, since in most cases they are only interested in the readout from the receivers and do not know how the waves perform in reality. To bridge such a gap, we propose a modeling approach at mmW frequencies, which is able to simulate the physical process during SAR imaging. We are not going to discuss about advanced image reconstruction algorithms, since they have already been investigated intensively for decades. To distinguish from previous work, for the first time, we model the data acquisition process in a SAR imaging system successfully at mmW frequencies. We show how to perform some system-level studies based on such a simulator via a common PC, including the influence of reflectivity contrast between object and background, sampling step, and antenna's directivity on image quality. The simulator can serve system design purposes and it can be easily extended to THz frequencies.

  18. A Spatial Division Clustering Method and Low Dimensional Feature Extraction Technique Based Indoor Positioning System

    PubMed Central

    Mo, Yun; Zhang, Zhongzhao; Meng, Weixiao; Ma, Lin; Wang, Yao

    2014-01-01

    Indoor positioning systems based on the fingerprint method are widely used due to the large number of existing devices with a wide range of coverage. However, extensive positioning regions with a massive fingerprint database may cause high computational complexity and error margins, therefore clustering methods are widely applied as a solution. However, traditional clustering methods in positioning systems can only measure the similarity of the Received Signal Strength without being concerned with the continuity of physical coordinates. Besides, outage of access points could result in asymmetric matching problems which severely affect the fine positioning procedure. To solve these issues, in this paper we propose a positioning system based on the Spatial Division Clustering (SDC) method for clustering the fingerprint dataset subject to physical distance constraints. With the Genetic Algorithm and Support Vector Machine techniques, SDC can achieve higher coarse positioning accuracy than traditional clustering algorithms. In terms of fine localization, based on the Kernel Principal Component Analysis method, the proposed positioning system outperforms its counterparts based on other feature extraction methods in low dimensionality. Apart from balancing online matching computational burden, the new positioning system exhibits advantageous performance on radio map clustering, and also shows better robustness and adaptability in the asymmetric matching problem aspect. PMID:24451470

  19. Energy-efficient heat recovery systems for air conditioning of indoor swimming pools

    SciTech Connect

    Elsayed, M.M.; El-Refaee, M.M.; Borhan, Y.A.

    1997-12-31

    Analysis of a conventional air-conditioning system for indoor swimming pools during the summer season is presented. The analysis showed that the cooling load is characterized by a large latent heat fraction. As a result, a reheating process must be used downstream of the cooling coil to achieve the proper design comfort condition in the pool area. This, in turn, increases the energy requirement per unit cooling load of the pool. Two heat recovery systems are proposed to reduce this energy. In the first system, ambient air is used for the reheating process in an air-to-air heat exchanger. In the second system, mixed air--recirculated and ambient air--is used for the reheating process. Heat recovery efficiency is defined as an index of the energy savings resulting from the use of the heat recovery system compared to that of a conventional air-conditioning system. At a wide range of ambient conditions it is found that the energy savings could be up to 70% of the energy required to operate a conventional air-conditioning system. A parametric study was carried out to size the air-to-air heat exchanger associated with these heat recovery systems, and the results showed that a heat exchanger having an effectiveness of 0.5 would give satisfactory results. The proposed heat recovery systems are also compared to the case of reheating using the heat rejection from the condenser of the refrigeration machine. The comparison showed that the proposed systems save more energy than reheating using the condenser heat. A typical case study is given to demonstrate the savings in energy consumption when these systems are used.

  20. A Telemetry System Embedded in Clothes for Indoor Localization and Elderly Health Monitoring

    PubMed Central

    Charlon, Yoann; Fourty, Nicolas; Campo, Eric

    2013-01-01

    This paper presents a telemetry system used in a combined trilateration method for the precise indoor localization of the elderly who need health monitoring. The system is based on the association of two wireless technologies: ultrasonic and 802.15.4. The use of the 802.15.4 RF signal gives the reference starting time of the ultrasonic emission (time difference of arrival method). A time of flight measurement of the ultrasonic pulses provides the distances between the mobile node and three anchor points. These distance measurements are then used to locate the mobile node using the trilateration method with an accuracy of a few centimetres. The originality of our work lies in embedding the mobile node in clothes. The system is embedded in clothes in two ways: on a shoe in order to form a “smart” shoe and in a hat in order to form a “smart” hat. Both accessories allow movements, gait speed and distance covered to be monitored for health applications. Experiments in a test room are presented to show the effectiveness of our system. PMID:24008286

  1. A practical indoor context-aware surveillance system with multi-Kinect sensors

    NASA Astrophysics Data System (ADS)

    Jia, Lili; You, Ying; Li, Tiezhu; Zhang, Shun

    2014-11-01

    In this paper we develop a novel practical application, which give scalable services to the end users when abnormal actives are happening. Architecture of the application has been presented consisting of network infrared cameras and a communication module. In this intelligent surveillance system we use Kinect sensors as the input cameras. Kinect is an infrared laser camera which its user can access the raw infrared sensor stream. We install several Kinect sensors in one room to track the human skeletons. Each sensor returns the body positions with 15 coordinates in its own coordinate system. We use calibration algorithms to calibrate all the body positions points into one unified coordinate system. With the body positions points, we can infer the surveillance context. Furthermore, the messages from the metadata index matrix will be sent to mobile phone through communication module. User will instantly be aware of an abnormal case happened in the room without having to check the website. In conclusion, theoretical analysis and experimental results in this paper show that the proposed system is reasonable and efficient. And the application method introduced in this paper is not only to discourage the criminals and assist police in the apprehension of suspects, but also can enabled the end-users monitor the indoor environments anywhere and anytime by their phones.

  2. A telemetry system embedded in clothes for indoor localization and elderly health monitoring.

    PubMed

    Charlon, Yoann; Fourty, Nicolas; Campo, Eric

    2013-09-04

    This paper presents a telemetry system used in a combined trilateration method for the precise indoor localization of the elderly who need health monitoring. The system is based on the association of two wireless technologies: ultrasonic and 802.15.4. The use of the 802.15.4 RF signal gives the reference starting time of the ultrasonic emission (time difference of arrival method). A time of flight measurement of the ultrasonic pulses provides the distances between the mobile node and three anchor points. These distance measurements are then used to locate the mobile node using the trilateration method with an accuracy of a few centimetres. The originality of our work lies in embedding the mobile node in clothes. The system is embedded in clothes in two ways: on a shoe in order to form a "smart" shoe and in a hat in order to form a "smart" hat. Both accessories allow movements, gait speed and distance covered to be monitored for health applications. Experiments in a test room are presented to show the effectiveness of our system.

  3. Indoor ultrafine particle exposures and home heating systems: a cross-sectional survey of Canadian homes during the winter months.

    PubMed

    Weichenthal, Scott; Dufresne, Andre; Infante-Rivard, Claire; Joseph, Lawrence

    2007-05-01

    Exposure to airborne particulate matter has a negative effect on respiratory health in both children and adults. Ultrafine particle (UFP) exposures are of particular concern owing to their enhanced ability to cause oxidative stress and inflammation in the lungs. In this investigation, our objective was to examine the contribution of home heating systems (electric baseboard heaters, wood stoves, forced-air oil/natural gas furnace) to indoor UFP exposures. We conducted a cross-sectional survey in 36 homes in the cities of Montréal, Québec, and Pembroke, Ontario. Real-time measures of indoor UFP concentrations were collected in each home for approximately 14 h, and an outdoor UFP measurement was collected outside each home before indoor sampling. A home-characteristic questionnaire was also administered, and air exchange rates were estimated using carbon dioxide as a tracer gas. Average UFP exposures of 21,594 cm(-3) (95% confidence interval (CI): 14,014, 29,174) and 6660 cm(-3) (95% CI: 4339, 8982) were observed for the evening (1600-2400) and overnight (2400-0800) hours, respectively. In an unadjusted comparison, overnight baseline UFP exposures were significantly greater in homes with electric baseboard heaters as compared to homes using forced-air oil or natural gas furnaces, and homes using wood stoves had significantly greater overnight baseline UFP exposures than homes using forced-air natural gas furnaces. However, in multivariate models, electric oven use (beta=12,253 cm(-3), 95% CI: 3524, 20,982), indoor relative humidity (beta=1136 cm(-3) %, 95% CI: 372, 1899), and indoor smoking (beta=18,192 cm(-3), 95% CI: 2073, 34,311) were the only significant determinants of mean indoor UFP exposure, whereas air exchange rate (beta=4351 cm(-3) h(-1), 95% CI: 1507, 7195) and each 10,000 cm(-3) increase in outdoor UFPs (beta=811 cm(-3), 95% CI: 244,1377) were the only significant determinants of overnight baseline UFP exposures. In general, our findings suggest that

  4. Integration of Directional Antennas in an RSS Fingerprinting-Based Indoor Localization System.

    PubMed

    Guzmán-Quirós, Raúl; Martínez-Sala, Alejandro; Gómez-Tornero, José Luis; García-Haro, Joan

    2015-12-23

    In this paper, the integration of directional antennas in a room-level received signal strength (RSS) fingerprinting-based indoor localization system (ILS) is studied. The sensor reader (SR), which is in charge of capturing the RSS to infer the tag position, can be attached to an omnidirectional or directional antenna. Unlike commonly-employed omnidirectional antennas, directional antennas can receive a stronger signal from the direction in which they are pointed, resulting in a different RSS distributions in space and, hence, more distinguishable fingerprints. A simulation tool and a system management software have been also developed to control the system and assist the initial antenna deployment, reducing time-consuming costs. A prototype was mounted in a real scenario, with a number of SRs with omnidirectional and directional antennas properly positioned. Different antenna configurations have been studied, evidencing a promising capability of directional antennas to enhance the performance of RSS fingerprinting-based ILS, reducing the number of required SRs and also increasing the localization success.

  5. Ultrasonic Multiple-Access Ranging System Using Spread Spectrum and MEMS Technology for Indoor Localization

    PubMed Central

    Segers, Laurent; Tiete, Jelmer; Braeken, An; Touhafi, Abdellah

    2014-01-01

    Indoor localization of persons and objects poses a great engineering challenge. Previously developed localization systems demonstrate the use of wideband techniques in ultrasound ranging systems. Direct sequence and frequency hopping spread spectrum ultrasound signals have been proven to achieve a high level of accuracy. A novel ranging method using the frequency hopping spread spectrum with finite impulse response filtering will be investigated and compared against the direct sequence spread spectrum. In the first setup, distances are estimated in a single-access environment, while in the second setup, two senders and one receiver are used. During the experiments, the micro-electromechanical systems are used as ultrasonic sensors, while the senders were implemented using field programmable gate arrays. Results show that in a single-access environment, the direct sequence spread spectrum method offers slightly better accuracy and precision performance compared to the frequency hopping spread spectrum. When two senders are used, measurements point out that the frequency hopping spread spectrum is more robust to near-far effects than the direct sequence spread spectrum. PMID:24553084

  6. A vision-based automated guided vehicle system with marker recognition for indoor use.

    PubMed

    Lee, Jeisung; Hyun, Chang-Ho; Park, Mignon

    2013-08-07

    We propose an intelligent vision-based Automated Guided Vehicle (AGV) system using fiduciary markers. In this paper, we explore a low-cost, efficient vehicle guiding method using a consumer grade web camera and fiduciary markers. In the proposed method, the system uses fiduciary markers with a capital letter or triangle indicating direction in it. The markers are very easy to produce, manipulate, and maintain. The marker information is used to guide a vehicle. We use hue and saturation values in the image to extract marker candidates. When the known size fiduciary marker is detected by using a bird's eye view and Hough transform, the positional relation between the marker and the vehicle can be calculated. To recognize the character in the marker, a distance transform is used. The probability of feature matching was calculated by using a distance transform, and a feature having high probability is selected as a captured marker. Four directional signals and 10 alphabet features are defined and used as markers. A 98.87% recognition rate was achieved in the testing phase. The experimental results with the fiduciary marker show that the proposed method is a solution for an indoor AGV system.

  7. Integration of Directional Antennas in an RSS Fingerprinting-Based Indoor Localization System

    PubMed Central

    Guzmán-Quirós, Raúl; Martínez-Sala, Alejandro; Gómez-Tornero, José Luis; García-Haro, Joan

    2015-01-01

    In this paper, the integration of directional antennas in a room-level received signal strength (RSS) fingerprinting-based indoor localization system (ILS) is studied. The sensor reader (SR), which is in charge of capturing the RSS to infer the tag position, can be attached to an omnidirectional or directional antenna. Unlike commonly-employed omnidirectional antennas, directional antennas can receive a stronger signal from the direction in which they are pointed, resulting in a different RSS distributions in space and, hence, more distinguishable fingerprints. A simulation tool and a system management software have been also developed to control the system and assist the initial antenna deployment, reducing time-consuming costs. A prototype was mounted in a real scenario, with a number of SRs with omnidirectional and directional antennas properly positioned. Different antenna configurations have been studied, evidencing a promising capability of directional antennas to enhance the performance of RSS fingerprinting-based ILS, reducing the number of required SRs and also increasing the localization success. PMID:26703620

  8. Indoor radiation mapping using the Laser Assisted Ranging and Data System (LARADS). Innovative technology summary report

    SciTech Connect

    1998-11-01

    The US Department of Energy`s (DOE`s) nuclear facilities require characterization and documentation of the results as part of planning and decision-making for decontamination and decommissioning (D and D) projects and to release areas that have been cleaned up. Conducting radiation surveys of indoor and outdoor surfaces and generating accurate survey reports is an important component of the D and D program. The Laser Assisted Ranging and Data System (LARADS) is a characterization technology that provides real-time data on the location and concentration levels of radiological contamination. The system can be utilized with a number of available detection instruments and can be integrated with existing data analysis and mapping software technologies to generate superior quality survey data reports. This innovative technology is competitive with baseline technologies in terms of cost and survey times, but is much more flexible and provides more useful reports. The system also has the capability of electronically logging survey data, making it easy to store and retrieve. Such data are scientifically derived and not subject to interpretation. The LARADS is an extremely attractive alternative to manually generated survey data reports.

  9. Climate change impacts on food system

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cai, X.; Zhu, T.

    2014-12-01

    Food system includes biophysical factors (climate, land and water), human environments (production technologies and food consumption, distribution and marketing), as well as the dynamic interactions within them. Climate change affects agriculture and food systems in various ways. Agricultural production can be influenced directly by climatic factors such as mean temperature rising, change in rainfall patterns, and more frequent extreme events. Eventually, climate change could cause shift of arable land, alteration of water availability, abnormal fluctuation of food prices, and increase of people at risk of malnutrition. This work aims to evaluate how climate change would affect agricultural production biophysically and how these effects would propagate to social factors at the global level. In order to model the complex interactions between the natural and social components, a Global Optimization model of Agricultural Land and Water resources (GOALW) is applied to the analysis. GOALW includes various demands of human society (food, feed, other), explicit production module, and irrigation water availability constraint. The objective of GOALW is to maximize global social welfare (consumers' surplus and producers' surplus).Crop-wise irrigation water use in different regions around the world are determined by the model; marginal value of water (MVW) can be obtained from the model, which implies how much additional welfare benefit could be gained with one unit increase in local water availability. Using GOALW, we will analyze two questions in this presentation: 1) how climate change will alter irrigation requirements and how the social system would buffer that by price/demand adjustment; 2) how will the MVW be affected by climate change and what are the controlling factors. These results facilitate meaningful insights for investment and adaptation strategies in sustaining world's food security under climate change.

  10. The Community Climate System Model: CCSM3

    SciTech Connect

    Collins, W D; Blackmon, M; Bitz, C; Bonan, G; Bretherton, C S; Carton, J A; Chang, P; Doney, S; Hack, J J; Kiehl, J T; Henderson, T; Large, W G; McKenna, D; Santer, B D; Smith, R D

    2004-12-27

    A new version of the Community Climate System Model (CCSM) has been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for atmosphere and land and a 1-degree grid for ocean and sea-ice. The new system incorporates several significant improvements in the scientific formulation. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol radiative forcing, land-atmosphere fluxes, ocean mixed-layer processes, and sea-ice dynamics. There are significant improvements in the sea-ice thickness, polar radiation budgets, equatorial sea-surface temperatures, ocean currents, cloud radiative effects, and ENSO teleconnections. CCSM3 can produce stable climate simulations of millenial duration without ad hoc adjustments to the fluxes exchanged among the component models. Nonetheless, there are still systematic biases in the ocean-atmosphere fluxes in western coastal regions, the spectrum of ENSO variability, the spatial distribution of precipitation in the Pacific and Indian Oceans, and the continental precipitation and surface air temperatures. We conclude with the prospects for extending CCSM to a more comprehensive model of the Earth's climate system.

  11. FIELD COMPARISONS OF DUAL SMPS-APS SYSTEMS TO MEASURE INDOOR-OUTDOOR PARTICLE SIZE DISTRIBUTIONS

    EPA Science Inventory

    Simultaneous measurements of particle size distributions across multiple locations can provide critical information to accurately assess human exposure to particles. These data are very useful to describe indoor-outdoor particle relationships, outdoor particle penetration thro...

  12. Indoor environmental quality in French dwellings and building characteristics

    NASA Astrophysics Data System (ADS)

    Langer, Sarka; Ramalho, Olivier; Derbez, Mickaël; Ribéron, Jacques; Kirchner, Severine; Mandin, Corinne

    2016-03-01

    A national survey on indoor environmental quality covering 567 residences in mainland France was performed during 2003-2005. The measured parameters were temperature, relative humidity, CO2, and the indoor air pollutants: fourteen individual volatile organic compounds (VOC), four aldehydes and particulate matter PM10 and PM2.5. The measured indoor concentrations were analyzed for correlations with the building characteristics: type of dwelling, period of construction, dwelling location, type of ventilation system, building material, attached garage and retrofitting. The median night time air exchange rate (AER) for all dwellings was 0.44 h-1. The night time AER was higher in apartments (median = 0.49 h-1) than in single-family houses (median = 0.41 h-1). Concentration of formaldehyde was approximately 30% higher in dwellings built after 1990 compared with older ones; it was higher in dwellings with mechanical ventilation and in concrete buildings. The VOC concentrations depended on the building characteristics to various extents. The sampling season influenced the majority of the indoor climate parameters and the concentrations of the air pollutants to a higher degree than the building characteristics. Multivariate linear regression models revealed that the indoor-outdoor difference in specific humidity, a proxy for number of occupants and their indoor activities, remained a significant predictor for most gaseous and particulate air pollutants. The other strong predictors were outdoor concentration, smoking, attached garage and AER (in descending order).

  13. A T-DMB navigation system for seamless positioning in both indoor and outdoor environments

    NASA Astrophysics Data System (ADS)

    Moon, Gong Bo; Chun, Se Bum; Hur, Moon Beom; Jee, Gyu-In

    2014-12-01

    The conventional global positioning system (GPS) can often fail to provide position determination for a mobile user in indoor and urban environments. To cope with GPS failure in such environments, a new navigation system which utilizes a terrestrial digital multimedia broadcasting (T-DMB) signal to obtain the mobile user's position is presented. Since the T-DMB transmitters in Korea construct a single frequency network (SFN), which forces the transmitters to be synchronized, the mobile user can measure a time difference of arrival (TDOA) for all audible T-DMB transmitter pairs. The time difference between T-DMB transmitters is converted to a distance difference by multiplying the time difference by the speed of light. Using these measurements and a TDOA positioning method, the mobile user position can be estimated. An experiment with a T-DMB receiver and a data acquisition (DAQ) board is performed in Seoul to analyze the error characteristic of TDOA measurements. It is certified that the measurement error is bounded under 300 m and can be used to determine the mobile user's position with a small standard deviation.

  14. Monitoring of manufacturing processes in the automotive industry using indoor location system

    NASA Astrophysics Data System (ADS)

    Ionescu, LM; Belu, N.; Rachieru, N.; Mazăre, AG; Anghel, D.-C.

    2016-08-01

    This paper presents a method for locating the operators, equipment and parts using radio communications systems. Specifically there will be radio transceiver arranged in a network of active and passive radio receivers placed on personnel, equipment or parts. Based on a radio triangulation method, it is determined the location of the all resources and parts involved in manufacturing process. The transceivers communicate with each other via “routers” - also components of the network. Such a structure may extend over large distances even in indoor spaces where there are obstacles (walls between rooms). The location is done by determining the power of transmission signal for at least three end points. The receiver position is then transmitted over the network through routers, to a central server where all positions of the resources are centralized. Our solution is a non-invasive and low cost method for determining resource position in the factory. The system can be used for both resource planning production for current process more efficient and for further analysis of the movement of resources during previous processes with possible adjustments to the workspace and re-planning of resources for future processes.

  15. Research on field of view of optical receiving antenna based on indoor visible light communication system

    NASA Astrophysics Data System (ADS)

    Gao, Mingguang; Lan, Tian; Zhao, Tao; Zhang, Yilun; Cui, Zhenghua; Ni, Guoqiang

    2015-08-01

    Optical receiving antenna is usually positioned before the detector of an indoor visible light communication (VLC) system in order to collect more optical energy into the detector. Besides optical gain of the antenna, the field of view (FOV) plays also an important role to the performance of a VLC system. In this paper, the signal noise ratio (SNR) and inter-symbol interference (ISI) versus FOV of the antenna are simulated via Line-of-Sight (LOS) and non-Line-of-Sight (NLOS) links within a room with a size of 5m × 5m × 3m. Results show that, the blind area appears while the FOV is less than 40 deg. and the SNR reduces as FOV increases and keeps small when FOV is more than 70 deg.. Furthermore, the average power of ISI rises with the increase of FOV, and the rising trend is relatively moderate when FOV is below 50 deg., while there is a rapid increase between 50 deg. and 70 deg. and finally tends to be stable after 70 deg. Therefore, it is practical to determine the FOV of the optical receiving antenna in the scope of 40 to 50 deg. based on the installment of LED lights on the ceiling here so as to avoid the blind area, attain high SNR, and reduce the influence of ISI. It is also worthwhile in practice to provide an identifiable evidence for the determination of FOV of the optical antenna.

  16. Indoor Tanning

    MedlinePlus

    ... young patients for skin cancer. Indoor Tanning vs. Sunlight The sun's rays contain two types of ultraviolet ... Nemours.org Reading BrightStart! Contact Us Partners Editorial Policy Privacy Policy & Terms of Use Visit the Nemours ...

  17. Measured Cooling Season Results Relating the Impact of Mechanical Ventilation on Energy, Comfort, and Indoor Air Quality in Humid Climates

    SciTech Connect

    Martin, Eric; Amos, Bryan; McIlvaine, Janet; Chasar, David; Widder, Sarah H.; Fonorow, Ken

    2014-08-22

    Conference Paper for ACEEE Summer Study in Buildings discussing results to date of a project evaluating the impact of ventialtion on energy use, comfort, durability, and cost in the hot humid climate.

  18. Thermographic NDT of building envelopes utilizing in-door heating systems

    NASA Astrophysics Data System (ADS)

    Komiyama, Tatsuhito; Nakano, Yonezou; Tanigawa, Yasuo

    2002-03-01

    The deterioration of concrete structures due to drastic changes in environment or due to poor workmanship has become very serious in Japan recently. In particular, since buildings are finished with render or tile on their facades in order to improve durability and appearance in many cases, the number of accidents resulting in injury or death caused by the fall of these finishing materials in increasing continuously. As a method of detecting delaminations of finishing materials, the thermographic survey using thermal imager is widely used because of the advantages of easiness, rate of data sampling and safeness. However, since this method is based on the difference of surface temperature between delaminated areas and sound areas generated by solar radiation, the method cannot be used under cloudy weather. It is a big difference between the construction field and other fields like metals, ceramics and plastics, which can do artificial heating or cooling easily. In order to improve the applicability and limitations of the method, a study was carried out. In ths study, instead of exposing an external wall to the sun, a method of heating the rear side of the wall by using the indoor heating system of the building was discussed and tested. As a result, it was proved that below-surface defects of building facades could be located without solar radiation by controlling the room temperature appropriately. This paper outlines the procedure and results of the study.

  19. Microanalysis of indoor aerosols and the impact of a compact high-efficiency particulate air (HEPA) filter system.

    PubMed

    Abraham, M E

    1999-03-01

    Aerosol particles in municipal atmospheres are of increasing public health concern; however, since most of our time is spent indoors, indoor aerosols must be researched in counterpart. Compact High-Efficiency Particulate Air (HEPA) filter systems are commonly employed in residences to alleviate airborne dust concentrations. In this study, a detailed and original methodology was used to determine concentrations and types of submicrometer aerosols, as well as of large (> 4 microns) dust particles. Scanning electron microscopy was used to quantify and characterize ambient aerosols collected from filtered and non-filtered rooms. Particle concentrations were significantly lower in samples collected in the presence of the filter system (mean 23 to 8 coarse particles liter-1, 63% reduction; 13 to 3 inorganic submicron particles cm-3, 76% reduction; 85 to 33 total submicron particles cm-3, 62% reduction; all P < 0.05). This study provides a new methodology for analysis of indoor aerosols and new data on their physico-chemical characteristics. Since the filter systems are effective at reducing submicron aerosol concentrations, they may improve the health of individuals such as asthmatics, who experience health problems caused by anthropogenic fine particles.

  20. Bayesian based design of real-time sensor systems for high-risk indoor contaminants

    SciTech Connect

    Sreedharan, Priya

    2007-01-01

    The sudden release of toxic contaminants that reach indoor spaces can be hazardousto building occupants. To respond effectively, the contaminant release must be quicklydetected and characterized to determine unobserved parameters, such as release locationand strength. Characterizing the release requires solving an inverse problem. Designinga robust real-time sensor system that solves the inverse problem is challenging becausethe fate and transport of contaminants is complex, sensor information is limited andimperfect, and real-time estimation is computationally constrained.This dissertation uses a system-level approach, based on a Bayes Monte Carloframework, to develop sensor-system design concepts and methods. I describe threeinvestigations that explore complex relationships among sensors, network architecture,interpretation algorithms, and system performance. The investigations use data obtainedfrom tracer gas experiments conducted in a real building. The influence of individual sensor characteristics on the sensor-system performance for binary-type contaminant sensors is analyzed. Performance tradeoffs among sensor accuracy, threshold level and response time are identified; these attributes could not be inferred without a system-level analysis. For example, more accurate but slower sensors are found to outperform less accurate but faster sensors. Secondly, I investigate how the sensor-system performance can be understood in terms of contaminant transport processes and the model representation that is used to solve the inverse problem. The determination of release location and mass are shown to be related to and constrained by transport and mixing time scales. These time scales explain performance differences among different sensor networks. For example, the effect of longer sensor response times is comparably less for releases with longer mixing time scales. The third investigation explores how information fusion from heterogeneous sensors may improve the sensor-system

  1. Indoor acoustic gain design

    NASA Astrophysics Data System (ADS)

    Concha-Abarca, Justo Andres

    2002-11-01

    The design of sound reinforcement systems includes many variables and usually some of these variables are discussed. There are criteria to optimize the performance of the sound reinforcement systems under indoor conditions. The equivalent acoustic distance, the necessary acoustic gain, and the potential acoustic gain are parameters which must be adjusted with respect to the loudspeaker array, electric power and directionality of loudspeakers, the room acoustics conditions, the distance and distribution of the audience, and the type of the original sources. The design and installation of front of the house and monitoring systems have individual criteria. This article is about this criteria and it proposes general considerations for the indoor acoustic gain design.

  2. Iterative positioning algorithm to reduce the impact of diffuse reflection on an indoor visible light positioning system

    NASA Astrophysics Data System (ADS)

    Huang, Heqing; Feng, Lihui; Guo, Peng; Yang, Aiying; Ni, Guoqiang

    2016-06-01

    Recently, indoor visible light localization has become attractive. Unfortunately, its performance is limited by diffuse reflection. The diffuse reflection is estimated by the bilinear interpolation-based method. A received signal strength-based iterative visible light positioning algorithm is proposed to reduce the influence of diffuse reflection by subtracting the estimated diffuse reflection signal from the received signal. Simulations are made to evaluate the proposed iterative positioning algorithm in a typical scenario with different parameters of the field-of-view (FOV) of the receiver and the reflectivity of the wall. Results show that the proposed algorithm can reduce the average positioning error by 12 times in a typical scenario and can reduce the positioning error greatly with various FOV of the receiver and the reflectivity of the wall. The proposed algorithm is effective and robust to reduce the degradation caused by diffuse reflection in a positioning system and will have many potential applications in indoor localization scenarios.

  3. Climate change mitigation through livestock system transitions

    PubMed Central

    Havlík, Petr; Valin, Hugo; Herrero, Mario; Obersteiner, Michael; Schmid, Erwin; Rufino, Mariana C.; Mosnier, Aline; Thornton, Philip K.; Böttcher, Hannes; Conant, Richard T.; Frank, Stefan; Fritz, Steffen; Fuss, Sabine; Kraxner, Florian; Notenbaert, An

    2014-01-01

    Livestock are responsible for 12% of anthropogenic greenhouse gas emissions. Sustainable intensification of livestock production systems might become a key climate mitigation technology. However, livestock production systems vary substantially, making the implementation of climate mitigation policies a formidable challenge. Here, we provide results from an economic model using a detailed and high-resolution representation of livestock production systems. We project that by 2030 autonomous transitions toward more efficient systems would decrease emissions by 736 million metric tons of carbon dioxide equivalent per year (MtCO2e⋅y−1), mainly through avoided emissions from the conversion of 162 Mha of natural land. A moderate mitigation policy targeting emissions from both the agricultural and land-use change sectors with a carbon price of US$10 per tCO2e could lead to an abatement of 3,223 MtCO2e⋅y−1. Livestock system transitions would contribute 21% of the total abatement, intra- and interregional relocation of livestock production another 40%, and all other mechanisms would add 39%. A comparable abatement of 3,068 MtCO2e⋅y−1 could be achieved also with a policy targeting only emissions from land-use change. Stringent climate policies might lead to reductions in food availability of up to 200 kcal per capita per day globally. We find that mitigation policies targeting emissions from land-use change are 5 to 10 times more efficient—measured in “total abatement calorie cost”—than policies targeting emissions from livestock only. Thus, fostering transitions toward more productive livestock production systems in combination with climate policies targeting the land-use change appears to be the most efficient lever to deliver desirable climate and food availability outcomes. PMID:24567375

  4. Climate change mitigation through livestock system transitions.

    PubMed

    Havlík, Petr; Valin, Hugo; Herrero, Mario; Obersteiner, Michael; Schmid, Erwin; Rufino, Mariana C; Mosnier, Aline; Thornton, Philip K; Böttcher, Hannes; Conant, Richard T; Frank, Stefan; Fritz, Steffen; Fuss, Sabine; Kraxner, Florian; Notenbaert, An

    2014-03-11

    Livestock are responsible for 12% of anthropogenic greenhouse gas emissions. Sustainable intensification of livestock production systems might become a key climate mitigation technology. However, livestock production systems vary substantially, making the implementation of climate mitigation policies a formidable challenge. Here, we provide results from an economic model using a detailed and high-resolution representation of livestock production systems. We project that by 2030 autonomous transitions toward more efficient systems would decrease emissions by 736 million metric tons of carbon dioxide equivalent per year (MtCO2e⋅y(-1)), mainly through avoided emissions from the conversion of 162 Mha of natural land. A moderate mitigation policy targeting emissions from both the agricultural and land-use change sectors with a carbon price of US$10 per tCO2e could lead to an abatement of 3,223 MtCO2e⋅y(-1). Livestock system transitions would contribute 21% of the total abatement, intra- and interregional relocation of livestock production another 40%, and all other mechanisms would add 39%. A comparable abatement of 3,068 MtCO2e⋅y(-1) could be achieved also with a policy targeting only emissions from land-use change. Stringent climate policies might lead to reductions in food availability of up to 200 kcal per capita per day globally. We find that mitigation policies targeting emissions from land-use change are 5 to 10 times more efficient--measured in "total abatement calorie cost"--than policies targeting emissions from livestock only. Thus, fostering transitions toward more productive livestock production systems in combination with climate policies targeting the land-use change appears to be the most efficient lever to deliver desirable climate and food availability outcomes.

  5. Development of kinematic 3D laser scanning system for indoor mapping and as-built BIM using constrained SLAM.

    PubMed

    Jung, Jaehoon; Yoon, Sanghyun; Ju, Sungha; Heo, Joon

    2015-10-16

    The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM). The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM) technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m) according to the guidelines of the General Services Administration for BIM accuracy.

  6. Development of Kinematic 3D Laser Scanning System for Indoor Mapping and As-Built BIM Using Constrained SLAM

    PubMed Central

    Jung, Jaehoon; Yoon, Sanghyun; Ju, Sungha; Heo, Joon

    2015-01-01

    The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM). The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM) technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m) according to the guidelines of the General Services Administration for BIM accuracy. PMID:26501292

  7. The climate system as a ticking clock

    SciTech Connect

    Kerr, R.A.

    1990-09-14

    Climate researchers are picking up a more or less regular 2-year beat to the global climate system - one that seems to be heard from every quarter. The most recently discovered example of this climatic ticking - and perhaps the most intriguing - comes from the very core of El Nino. Researchers have found that some aspects of this cycle of alternating warm and relatively cold waters along the equatorial Pacific have a tendency to repeat every 2 years. The overlying winds pulsate at the same pace, as do the globe-girdling effects of the El Nino cycle, from winter warmth in Alaska to heavy rains in Peru and drought in Australia. The climatic ticking in the tropical Pacific is hardly as reliable as the changing of the seasons. Sometimes it is muted, and occasionally it skips a beat. But some researchers nevertheless see hope of using it in the prediction of El Nino and its global effects. In any case, climate researchers are eager to determine what makes El Nino tick. The answer could be an underlying pacemaker of this crucial atmospheric cycle.

  8. A Bluetooth/PDR Integration Algorithm for an Indoor Positioning System

    PubMed Central

    Li, Xin; Wang, Jian; Liu, Chunyan

    2015-01-01

    This paper proposes two schemes for indoor positioning by fusing Bluetooth beacons and a pedestrian dead reckoning (PDR) technique to provide meter-level positioning without additional infrastructure. As to the PDR approach, a more effective multi-threshold step detection algorithm is used to improve the positioning accuracy. According to pedestrians’ different walking patterns such as walking or running, this paper makes a comparative analysis of multiple step length calculation models to determine a linear computation model and the relevant parameters. In consideration of the deviation between the real heading and the value of the orientation sensor, a heading estimation method with real-time compensation is proposed, which is based on a Kalman filter with map geometry information. The corrected heading can inhibit the positioning error accumulation and improve the positioning accuracy of PDR. Moreover, this paper has implemented two positioning approaches integrated with Bluetooth and PDR. One is the PDR-based positioning method based on map matching and position correction through Bluetooth. There will not be too much calculation work or too high maintenance costs using this method. The other method is a fusion calculation method based on the pedestrians’ moving status (direct movement or making a turn) to determine adaptively the noise parameters in an Extended Kalman Filter (EKF) system. This method has worked very well in the elimination of various phenomena, including the “go and back” phenomenon caused by the instability of the Bluetooth-based positioning system and the “cross-wall” phenomenon due to the accumulative errors caused by the PDR algorithm. Experiments performed on the fourth floor of the School of Environmental Science and Spatial Informatics (SESSI) building in the China University of Mining and Technology (CUMT) campus showed that the proposed scheme can reliably achieve a 2-meter precision. PMID:26404277

  9. A spatial decision support system for guiding focal indoor residual interventions in a malaria elimination zone.

    PubMed

    Kelly, Gerard C; Seng, Chang Moh; Donald, Wesley; Taleo, George; Nausien, Johnny; Batarii, Willie; Iata, Harry; Tanner, Marcel; Vestergaard, Lasse S; Clements, Archie C A

    2011-11-01

    A customized geographical information system (GIS) has been developed to support focal indoor residual spraying (IRS) operations as part of a scaled-up campaign to progressively eliminate malaria in Vanuatu. The aims of the GISbased spatial decision support system (SDSS) were to guide the planning, implementation and assessment of IRS at the household level. Additional aims of this study were to evaluate the user acceptability of a SDSS guiding IRS interventions. IRS was conducted on Tanna Island, Republic of Vanuatu between 26 October and 5 December 2009. Geo-referenced household information provided a baseline within the SDSS. An interactive mapping interface was used to delineate operation areas, extract relevant data to support IRS field teams. In addition, it was used as a monitoring tool to assess overall intervention coverage. Surveys and group discussions were conducted during the operations to ascertain user acceptability. Twenty-one operation areas, comprising a total of 187 settlements and 3,422 households were identified and mapped. A total of 3,230 households and 12,156 household structures were sprayed, covering a population of 13,512 individuals, achieving coverage of 94.4% of the households and 95.7% of the population. Village status maps were produced to visualize the distribution of IRS at the sub-village level. One hundred percent of survey respondents declared the SDSS a useful and effective tool to support IRS. The GIS-based SDSS adopted in Tanna empowered programme managers at the provincial level to implement and asses the IRS intervention with the degree of detail required for malaria elimination. Since completion, SDSS applications have expanded to additional provinces in Vanuatu and the neighbouring Solomon Islands supporting not only specific malaria elimination and control interventions, but also the broader public health sector in general.

  10. A Bluetooth/PDR Integration Algorithm for an Indoor Positioning System.

    PubMed

    Li, Xin; Wang, Jian; Liu, Chunyan

    2015-09-25

    This paper proposes two schemes for indoor positioning by fusing Bluetooth beacons and a pedestrian dead reckoning (PDR) technique to provide meter-level positioning without additional infrastructure. As to the PDR approach, a more effective multi-threshold step detection algorithm is used to improve the positioning accuracy. According to pedestrians' different walking patterns such as walking or running, this paper makes a comparative analysis of multiple step length calculation models to determine a linear computation model and the relevant parameters. In consideration of the deviation between the real heading and the value of the orientation sensor, a heading estimation method with real-time compensation is proposed, which is based on a Kalman filter with map geometry information. The corrected heading can inhibit the positioning error accumulation and improve the positioning accuracy of PDR. Moreover, this paper has implemented two positioning approaches integrated with Bluetooth and PDR. One is the PDR-based positioning method based on map matching and position correction through Bluetooth. There will not be too much calculation work or too high maintenance costs using this method. The other method is a fusion calculation method based on the pedestrians' moving status (direct movement or making a turn) to determine adaptively the noise parameters in an Extended Kalman Filter (EKF) system. This method has worked very well in the elimination of various phenomena, including the "go and back" phenomenon caused by the instability of the Bluetooth-based positioning system and the "cross-wall" phenomenon due to the accumulative errors caused by the PDR algorithm. Experiments performed on the fourth floor of the School of Environmental Science and Spatial Informatics (SESSI) building in the China University of Mining and Technology (CUMT) campus showed that the proposed scheme can reliably achieve a 2-meter precision.

  11. Analysis of Connected Climate Systems via Deconvolution

    NASA Astrophysics Data System (ADS)

    Kazemzadeh-Atoufi, M. B.; Reischmann, E.; Rial, J. A.

    2015-12-01

    Deconvolution is a technique most often used in signal and image processing to remove the effects of a system's impulse response and recreate the input signal from a given output. In the context of paleoclimate, deconvolution by spectral division has been used to recover the climate system's impulse response, also known as its transfer function, given the δ18O time series record of the north pole as the input and the south as the output (or vice versa). The working hypothesis of polar synchronization justifies the use of deconvolution methods. Various regularization approaches and spectral analysis show a clear connection of millennial scale periodicity linking the polar climates over the past 100,000 years. Tests of spectral peak consistency across regularization factors and of peak validity indicate that the connection is a result of the data and is not an artifact of the method used. Deconvolution can be applied to other linearly connected climate systems including teleconnected systems. Sea surface temperature dipoles found in the North Atlantic Ocean basin, for example, also display potentially geographically linked features, and correlation between the dipoles themselves suggests synchronization of adjacent dipoles. Having identified this system of synchronized variations with linear phase relations, deconvolution methods can be used to investigate potential transfer functions across different scales.

  12. Online Mapping Systems for Climate Data Delivery

    NASA Astrophysics Data System (ADS)

    Gray, S. T.; Nicholson, C. M.; Bergantino, A. R.

    2009-12-01

    Online, map-based applications have experienced an explosion in popularity over the past decade. The success of these systems is largely due to their ability to provide a spatial framework data exploration, and for the visual context (e.g., satellite images) they offer. Here we detail the development of a new online mapping system for Wyoming that will serve as a portal for the delivery of weather, climate, and water-related data for users across the state. While capitalizing on the success of previous online mapping efforts, this new system also highlights the potential for additional applications and functionality. Known as the Wyoming Internet Map Server (WyoIMS), the system brings together real-time observations and summary products from multiple federal agencies (NOAA-NWS, NRCS, USGS) to provide “one-stop-shopping” for key climatic datasets. Likewise this system is providing a platform for data delivery, archiving, and QC/QA as part of a new statewide hydroclimatic monitoring network. Moving beyond the simple transfer of data, this system also allows users to access information from resources that include state libraries and various databases that contain information related to climate and water resources. Users can, for example, select individual counties, watersheds, irrigation districts, or municipalities and download a wide range of documents and reports specific to those locations. On the whole, WyoIMS has become a catalyst for the development of new climate-related products, and a foundation for decision support with applications in water resources, wildlife management, and agriculture.

  13. Pilot climate data system user's guide

    NASA Technical Reports Server (NTRS)

    Reph, M. G.; Treinish, L. A.; Bloch, L.

    1984-01-01

    Instructions for using the Pilot Climate Data System (PCDS), an interactive, scientific data management system for locating, obtaining, manipulating, and displaying climate-research data are presented. The PCDS currently provides this supoort for approximately twenty data sets. Figures that illustrate the terminal displays which a user sees when he/she runs the PCDS and some examples of the output from this system are included. The capabilities which are described in detail allow a user to perform the following: (1) obtain comprehensive descriptions of a number of climate parameter data sets and the associated sensor measurements from which they were derived; (2) obtain detailed information about the temporal coverage and data volume of data sets which are readily accessible via the PCDS; (3) extract portions of a data set using criteria such as time range and geographic location, and output the data to tape, user terminal, system printer, or online disk files in a special data-set-independent format; (4) access and manipulate the data in these data-set-independent files, performing such functions as combining the data, subsetting the data, and averaging the data; and (5) create various graphical representations of the data stored in the data-set-independent files.

  14. A depth video sensor-based life-logging human activity recognition system for elderly care in smart indoor environments.

    PubMed

    Jalal, Ahmad; Kamal, Shaharyar; Kim, Daijin

    2014-07-02

    Recent advancements in depth video sensors technologies have made human activity recognition (HAR) realizable for elderly monitoring applications. Although conventional HAR utilizes RGB video sensors, HAR could be greatly improved with depth video sensors which produce depth or distance information. In this paper, a depth-based life logging HAR system is designed to recognize the daily activities of elderly people and turn these environments into an intelligent living space. Initially, a depth imaging sensor is used to capture depth silhouettes. Based on these silhouettes, human skeletons with joint information are produced which are further used for activity recognition and generating their life logs. The life-logging system is divided into two processes. Firstly, the training system includes data collection using a depth camera, feature extraction and training for each activity via Hidden Markov Models. Secondly, after training, the recognition engine starts to recognize the learned activities and produces life logs. The system was evaluated using life logging features against principal component and independent component features and achieved satisfactory recognition rates against the conventional approaches. Experiments conducted on the smart indoor activity datasets and the MSRDailyActivity3D dataset show promising results. The proposed system is directly applicable to any elderly monitoring system, such as monitoring healthcare problems for elderly people, or examining the indoor activities of people at home, office or hospital.

  15. A Depth Video Sensor-Based Life-Logging Human Activity Recognition System for Elderly Care in Smart Indoor Environments

    PubMed Central

    Jalal, Ahmad; Kamal, Shaharyar; Kim, Daijin

    2014-01-01

    Recent advancements in depth video sensors technologies have made human activity recognition (HAR) realizable for elderly monitoring applications. Although conventional HAR utilizes RGB video sensors, HAR could be greatly improved with depth video sensors which produce depth or distance information. In this paper, a depth-based life logging HAR system is designed to recognize the daily activities of elderly people and turn these environments into an intelligent living space. Initially, a depth imaging sensor is used to capture depth silhouettes. Based on these silhouettes, human skeletons with joint information are produced which are further used for activity recognition and generating their life logs. The life-logging system is divided into two processes. Firstly, the training system includes data collection using a depth camera, feature extraction and training for each activity via Hidden Markov Models. Secondly, after training, the recognition engine starts to recognize the learned activities and produces life logs. The system was evaluated using life logging features against principal component and independent component features and achieved satisfactory recognition rates against the conventional approaches. Experiments conducted on the smart indoor activity datasets and the MSRDailyActivity3D dataset show promising results. The proposed system is directly applicable to any elderly monitoring system, such as monitoring healthcare problems for elderly people, or examining the indoor activities of people at home, office or hospital. PMID:24991942

  16. Network of Networks and the Climate System

    NASA Astrophysics Data System (ADS)

    Kurths, Jürgen; Boers, Niklas; Bookhagen, Bodo; Donges, Jonathan; Donner, Reik; Malik, Nishant; Marwan, Norbert; Stolbova, Veronika

    2013-04-01

    Network of networks is a new direction in complex systems science. One can find such networks in various fields, such as infrastructure (power grids etc.), human brain or Earth system. Basic properties and new characteristics, such as cross-degree, or cross-betweenness will be discussed. This allows us to quantify the structural role of single vertices or whole sub-networks with respect to the interaction of a pair of subnetworks on local, mesoscopic, and global topological scales. Next, we consider an inverse problem: Is there a backbone-like structure underlying the climate system? For this we propose a method to reconstruct and analyze a complex network from data generated by a spatio-temporal dynamical system. This technique is then applied to 3-dimensional data of the climate system. We interpret different heights in the atmosphere as different networks and the whole as a network of networks. This approach enables us to uncover relations to global circulation patterns in oceans and atmosphere. The global scale view on climate networks offers promising new perspectives for detecting dynamical structures based on nonlinear physical processes in the climate system. This concept is applied to Indian Monsoon data in order to characterize the regional occurrence of strong rain events and its impact on predictability. References: Arenas, A., A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Phys. Reports 2008, 469, 93. Donges, J., Y. Zou, N. Marwan, and J. Kurths, Europhys. Lett. 2009, 87, 48007. Donner, R., Y. Zou, J. Donges, N. Marwan, and J. Kurths, Phys. Rev. E 2010, 81, 015101(R ). Mokhov, I. I., D. A. Smirnov, P. I. Nakonechny, S. S. Kozlenko, E. P. Seleznev, and J. Kurths, Geophys. Res. Lett. 2011, 38, L00F04. Malik, N., B. Bookhagen, N. Marwan, and J. Kurths, Climate Dynamics, 2012, 39, 971. Donges, J., H. Schultz, N. Marwan, Y. Zou, J. Kurths, Eur. J. Phys. B 2011, 84, 635-651. Donges, J., R. Donner, M. Trauth, N. Marwan, H.J. Schellnhuber, and J. Kurths

  17. Quaternion-Based Unscented Kalman Filter for Accurate Indoor Heading Estimation Using Wearable Multi-Sensor System

    PubMed Central

    Yuan, Xuebing; Yu, Shuai; Zhang, Shengzhi; Wang, Guoping; Liu, Sheng

    2015-01-01

    Inertial navigation based on micro-electromechanical system (MEMS) inertial measurement units (IMUs) has attracted numerous researchers due to its high reliability and independence. The heading estimation, as one of the most important parts of inertial navigation, has been a research focus in this field. Heading estimation using magnetometers is perturbed by magnetic disturbances, such as indoor concrete structures and electronic equipment. The MEMS gyroscope is also used for heading estimation. However, the accuracy of gyroscope is unreliable with time. In this paper, a wearable multi-sensor system has been designed to obtain the high-accuracy indoor heading estimation, according to a quaternion-based unscented Kalman filter (UKF) algorithm. The proposed multi-sensor system including one three-axis accelerometer, three single-axis gyroscopes, one three-axis magnetometer and one microprocessor minimizes the size and cost. The wearable multi-sensor system was fixed on waist of pedestrian and the quadrotor unmanned aerial vehicle (UAV) for heading estimation experiments in our college building. The results show that the mean heading estimation errors are less 10° and 5° to multi-sensor system fixed on waist of pedestrian and the quadrotor UAV, respectively, compared to the reference path. PMID:25961384

  18. Quaternion-based unscented Kalman filter for accurate indoor heading estimation using wearable multi-sensor system.

    PubMed

    Yuan, Xuebing; Yu, Shuai; Zhang, Shengzhi; Wang, Guoping; Liu, Sheng

    2015-05-07

    Inertial navigation based on micro-electromechanical system (MEMS) inertial measurement units (IMUs) has attracted numerous researchers due to its high reliability and independence. The heading estimation, as one of the most important parts of inertial navigation, has been a research focus in this field. Heading estimation using magnetometers is perturbed by magnetic disturbances, such as indoor concrete structures and electronic equipment. The MEMS gyroscope is also used for heading estimation. However, the accuracy of gyroscope is unreliable with time. In this paper, a wearable multi-sensor system has been designed to obtain the high-accuracy indoor heading estimation, according to a quaternion-based unscented Kalman filter (UKF) algorithm. The proposed multi-sensor system including one three-axis accelerometer, three single-axis gyroscopes, one three-axis magnetometer and one microprocessor minimizes the size and cost. The wearable multi-sensor system was fixed on waist of pedestrian and the quadrotor unmanned aerial vehicle (UAV) for heading estimation experiments in our college building. The results show that the mean heading estimation errors are less 10° and 5° to multi-sensor system fixed on waist of pedestrian and the quadrotor UAV, respectively, compared to the reference path.

  19. Variable temperature seat climate control system

    DOEpatents

    Karunasiri, Tissa R.; Gallup, David F.; Noles, David R.; Gregory, Christian T.

    1997-05-06

    A temperature climate control system comprises a variable temperature seat, at least one heat pump, at least one heat pump temperature sensor, and a controller. Each heat pump comprises a number of Peltier thermoelectric modules for temperature conditioning the air in a main heat exchanger and a main exchanger fan for passing the conditioned air from the main exchanger to the variable temperature seat. The Peltier modules and each main fan may be manually adjusted via a control switch or a control signal. Additionally, the temperature climate control system may comprise a number of additional temperature sensors to monitor the temperature of the ambient air surrounding the occupant as well as the temperature of the conditioned air directed to the occupant. The controller is configured to automatically regulate the operation of the Peltier modules and/or each main fan according to a temperature climate control logic designed both to maximize occupant comfort during normal operation, and minimize possible equipment damage, occupant discomfort, or occupant injury in the event of a heat pump malfunction.

  20. The Heartbeat of the Oligocene Climate System

    NASA Astrophysics Data System (ADS)

    Pälike, Heiko; Norris, Richard D.; Herrle, Jens O.; Wilson, Paul A.; Coxall, Helen K.; Lear, Caroline H.; Shackleton, Nicholas J.; Tripati, Aradhna K.; Wade, Bridget S.

    2006-12-01

    A 13-million-year continuous record of Oligocene climate from the equatorial Pacific reveals a pronounced “heartbeat” in the global carbon cycle and periodicity of glaciations. This heartbeat consists of 405,000-, 127,000-, and 96,000-year eccentricity cycles and 1.2-million-year obliquity cycles in periodically recurring glacial and carbon cycle events. That climate system response to intricate orbital variations suggests a fundamental interaction of the carbon cycle, solar forcing, and glacial events. Box modeling shows that the interaction of the carbon cycle and solar forcing modulates deep ocean acidity as well as the production and burial of global biomass. The pronounced 405,000-year eccentricity cycle is amplified by the long residence time of carbon in the oceans.

  1. Intensive indoor versus outdoor swine production systems: genotype and supplemental iron effects on blood hemoglobin and selected immune measures in young pigs.

    PubMed

    Kleinbeck, S N; McGlone, J J

    1999-09-01

    The objectives of Exp. 1 were to determine the effects of production system and genotype on pig performance and health. Sows were bred, gestated, farrowed, and lactated in either an intensive indoor or an intensive outdoor production system. The three dam genotypes of pigs used in each environment were PIC Camborough-15 (C-15), PIC Camborough Blue (CB), and Yorkshire x Landrace (YL). All pigs received 100 mg of iron dextran at d 3 of age. Pigs raised in the outdoor unit had higher blood hemoglobin (Hb) concentrations on d 28 of age than pigs raised indoors (11.5 +/- .22 vs 8.16 +/- .26 g/dL, P < .0001). Outdoor-reared pigs had more white blood cells (WBC) on d 3 than indoor-reared pigs (9.7 +/- .38 vs 8.04 +/- .38 cells/microL x 10(3), P < .05), but outdoor pigs had fewer WBC on d 28 of age than indoor-reared pigs (9.8 +/- .5 vs 11.1 +/- .45 cells/microL x 10(3), P < .05). Genetic lines did not differ in plasma immunoglobulin G (IgG) concentrations at 3 or 28 d of age. Environment and age influenced pig Hb levels and WBC numbers. The objectives for Exp. 2 were to determine whether C-15-405 pigs reared outdoors or indoors needed supplemental iron or whether they would receive enough environmental iron, and how the lack of supplemental iron may impact pig Hb and immunity. Indoor and outdoor pigs received either no supplemental iron, 100 mg, or 400 mg of iron dextran on d 3 of age. Blood percentage neutrophils and neutrophil: lymphocyte ratio were lower (P < .05) indoors, and natural killer cell (NK) activity was greater (P < .05) among indoor- than outdoor-reared pigs (NK % cytotoxicity: 15.6 +/- 2.3 vs 9.7 +/- 2.3). Outdoor-reared pigs that received no injected iron had similar Hb at d 28 of age as indoor-reared pigs that received 100 mg of iron dextran (11.1 +/- .36 vs 10.7 +/- .4 g/dL, P = .59). Supplemental iron may not be necessary in an outdoor production system. Outdoor-reared pigs had lower values for some immune measures, but they had similar survival rates

  2. Organizational Climate Assessment: a Systemic Perspective

    NASA Astrophysics Data System (ADS)

    Argentero, Piergiorgio; Setti, Ilaria

    A number of studies showed how the set up of an involving and motivating work environment represents a source for organizational competitive advantage: in this view organizational climate (OC) research occupies a preferred position in current I/O psychology. The present study is a review carried out to establish the breadth of the literature on the characteristics of OC assessment considered in a systemic perspective. An organization with a strong climate is a work environment whose members have similar understanding of the norms and practices and share the same expectations. OC should be considered as a sort of emergent entity and, as such, it can be studied only within a systemic perspective because it is linked with some organizational variables, in terms of antecedents (such as the organization's internal structure and its environmental features) and consequences (such as job performance, psychological well-being and withdrawal) of the climate itself. In particular, when employees have a positive view of their organizational environment, consistently with their values and interests, they are more likely to identify their personal goals with those of the organization and, in turn, to invest a greater effort to pursue them: the employees' perception of the organizational environment is positively related to the key outcomes such as job involvement, effort and performance. OC analysis could also be considered as an effective Organizational Development (OD) tool: in particular, the Survey Feedback, that is the return of the OC survey results, could be an effective instrument to assess the efficacy of specific OD programs, such as Team Building, TQM and Gainsharing. The present study is focused on the interest to investigate all possible variables which are potential moderators of the climate - outcome relationship: therefore future researches in the OC field should consider a great variety of organizational variables, considered in terms of antecedents and effects

  3. Multi-modal low cost mobile indoor surveillance system on the Robust Artificial Intelligence-based Defense Electro Robot (RAIDER)

    NASA Astrophysics Data System (ADS)

    Nair, Binu M.; Diskin, Yakov; Asari, Vijayan K.

    2012-10-01

    We present an autonomous system capable of performing security check routines. The surveillance machine, the Clearpath Husky robotic platform, is equipped with three IP cameras with different orientations for the surveillance tasks of face recognition, human activity recognition, autonomous navigation and 3D reconstruction of its environment. Combining the computer vision algorithms onto a robotic machine has given birth to the Robust Artificial Intelligencebased Defense Electro-Robot (RAIDER). The end purpose of the RAIDER is to conduct a patrolling routine on a single floor of a building several times a day. As the RAIDER travels down the corridors off-line algorithms use two of the RAIDER's side mounted cameras to perform a 3D reconstruction from monocular vision technique that updates a 3D model to the most current state of the indoor environment. Using frames from the front mounted camera, positioned at the human eye level, the system performs face recognition with real time training of unknown subjects. Human activity recognition algorithm will also be implemented in which each detected person is assigned to a set of action classes picked to classify ordinary and harmful student activities in a hallway setting.The system is designed to detect changes and irregularities within an environment as well as familiarize with regular faces and actions to distinguish potentially dangerous behavior. In this paper, we present the various algorithms and their modifications which when implemented on the RAIDER serves the purpose of indoor surveillance.

  4. INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments Using Hybrid Scan Matching Algorithm.

    PubMed

    Gao, Yanbin; Liu, Shifei; Atia, Mohamed M; Noureldin, Aboelmagd

    2015-09-15

    This paper takes advantage of the complementary characteristics of Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) to provide periodic corrections to Inertial Navigation System (INS) alternatively in different environmental conditions. In open sky, where GPS signals are available and LiDAR measurements are sparse, GPS is integrated with INS. Meanwhile, in confined outdoor environments and indoors, where GPS is unreliable or unavailable and LiDAR measurements are rich, LiDAR replaces GPS to integrate with INS. This paper also proposes an innovative hybrid scan matching algorithm that combines the feature-based scan matching method and Iterative Closest Point (ICP) based scan matching method. The algorithm can work and transit between two modes depending on the number of matched line features over two scans, thus achieving efficiency and robustness concurrently. Two integration schemes of INS and LiDAR with hybrid scan matching algorithm are implemented and compared. Real experiments are performed on an Unmanned Ground Vehicle (UGV) for both outdoor and indoor environments. Experimental results show that the multi-sensor integrated system can remain sub-meter navigation accuracy during the whole trajectory.

  5. INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments Using Hybrid Scan Matching Algorithm

    PubMed Central

    Gao, Yanbin; Liu, Shifei; Atia, Mohamed M.; Noureldin, Aboelmagd

    2015-01-01

    This paper takes advantage of the complementary characteristics of Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) to provide periodic corrections to Inertial Navigation System (INS) alternatively in different environmental conditions. In open sky, where GPS signals are available and LiDAR measurements are sparse, GPS is integrated with INS. Meanwhile, in confined outdoor environments and indoors, where GPS is unreliable or unavailable and LiDAR measurements are rich, LiDAR replaces GPS to integrate with INS. This paper also proposes an innovative hybrid scan matching algorithm that combines the feature-based scan matching method and Iterative Closest Point (ICP) based scan matching method. The algorithm can work and transit between two modes depending on the number of matched line features over two scans, thus achieving efficiency and robustness concurrently. Two integration schemes of INS and LiDAR with hybrid scan matching algorithm are implemented and compared. Real experiments are performed on an Unmanned Ground Vehicle (UGV) for both outdoor and indoor environments. Experimental results show that the multi-sensor integrated system can remain sub-meter navigation accuracy during the whole trajectory. PMID:26389906

  6. Precambrian evolution of the climate system.

    PubMed

    Walker, J C

    1990-01-01

    Climate is an important environmental parameter of the early Earth, likely to have affected the origin and evolution of life, the composition and mineralogy of sedimentary rocks, and stable isotope ratios in sedimentary minerals. There is little observational evidence constraining Precambrian climates. Most of our knowledge is at present theoretical. Factors that must have affected the climate include reduced solar luminosity, enhanced rotation rate of the Earth, an area of land that probably increased with time, and biological evolution, particularly as it affected the composition of the atmosphere and the greenhouse effect. Cloud cover is a major uncertainty about the early Earth. Carbon dioxide and its greenhouse effect are the factors that have been most extensively studied. This paper presents a new examination of the biogeochemical cycles of carbon as they may have changed between an Archean Earth deficient in land, sedimentary rocks, and biological activity, and a Proterozoic Earth much like the modern Earth, but lacking terrestrial life and carbonate-secreting plankton. Results of a numerical simulation of this transition show how increasing biological activity could have drawn down atmospheric carbon dioxide by extracting sedimentary organic carbon from the system. Increasing area of continents could further have drawn down carbon dioxide by encouraging the accumulation of carbonate sediments. An attempt to develop a numerical simulation of the carbon cycles of the Precambrian raises questions about sources and sinks of marine carbon and alkalinity on a world without continents. More information is needed about sea-floor weathering processes.

  7. Tipping elements in the Earth's climate system

    SciTech Connect

    Lenton, T.M.; Held, H.; Lucht, W.; Rahmstorf, S.; Kriegler, E. |; Hall, J.W.; Schellnhuber, H.J. |

    2008-02-12

    The term 'tipping point' commonly refers to a critical threshold at which a tiny perturbation can qualitatively alter the state or development of a system. Here the authors introduce the term 'tipping element' to describe large-scale components of the Earth system that may pass a tipping point. They critically evaluate potential policy-relevant tipping elements in the climate system under anthropogenic forcing, drawing on the pertinent literature and a recent international workshop to compile a short list, and they assess where their tipping points lie. An expert elicitation is used to help rank their sensitivity to global warming and the uncertainty about the underlying physical mechanisms. Then the authors explain how, in principle, early warning systems could be established to detect the proximity of some tipping points.

  8. Climate Model Diagnostic Analyzer Web Service System

    NASA Astrophysics Data System (ADS)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2013-12-01

    The latest Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with newly available global observations. The traditional approach to climate model evaluation, which compares a single parameter at a time, identifies symptomatic model biases and errors but fails to diagnose the model problems. The model diagnosis process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. To address these challenges, we are developing a parallel, distributed web-service system that enables the physics-based multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks (i.e., Flask, Gunicorn, and Tornado). The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation and (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, and (4) the calculation of difference between two variables. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use

  9. VLC-Based Positioning System for an Indoor Environment Using an Image Sensor and an Accelerometer Sensor

    PubMed Central

    Huynh, Phat; Yoo, Myungsik

    2016-01-01

    Recently, it is believed that lighting and communication technologies are being replaced by high power LEDs, which are core parts of the visible light communication (VLC) system. In this paper, by taking advantages of VLC, we propose a novel design for an indoor positioning system using LEDs, an image sensor (IS) and an accelerometer sensor (AS) from mobile devices. The proposed algorithm, which provides a high precision indoor position, consists of four LEDs mounted on the ceiling transmitting their own three-dimensional (3D) world coordinates and an IS at an unknown position receiving and demodulating the signals. Based on the 3D world coordinates and the 2D image coordinate of LEDs, the position of the mobile device is determined. Compared to existing algorithms, the proposed algorithm only requires one IS. In addition, by using an AS, the mobile device is allowed to have arbitrary orientation. Last but not least, a mechanism for reducing the image sensor noise is proposed to further improve the accuracy of the positioning algorithm. A simulation is conducted to verify the performance of the proposed algorithm. PMID:27240383

  10. Three Northwest Institutions Receive Funding from EPA for Research to Better Understand the Effects of Climate Change on Indoor Air Quality

    EPA Pesticide Factsheets

    (Seattle - July 28, 2015) On July 21, the U.S. Environmental Protection Agency announced its continued commitment to improving America's indoor air quality by providing almost $8 million to fund nine institutions, including three in the Northwest, research

  11. NAVIS-An UGV Indoor Positioning System Using Laser Scan Matching for Large-Area Real-Time Applications

    PubMed Central

    Tang, Jian.; Chen, Yuwei.; Jaakkola, Anttoni.; Liu, Jinbing.; Hyyppä, Juha.; Hyyppä, Hannu.

    2014-01-01

    Laser scan matching with grid-based maps is a promising tool for real-time indoor positioning of mobile Unmanned Ground Vehicles (UGVs). While there are critical implementation problems, such as the ability to estimate the position by sensing the unknown indoor environment with sufficient accuracy and low enough latency for stable vehicle control, further development work is necessary. Unfortunately, most of the existing methods employ heuristics for quick positioning in which numerous accumulated errors easily lead to loss of positioning accuracy. This severely restricts its applications in large areas and over lengthy periods of time. This paper introduces an efficient real-time mobile UGV indoor positioning system for large-area applications using laser scan matching with an improved probabilistically-motivated Maximum Likelihood Estimation (IMLE) algorithm, which is based on a multi-resolution patch-divided grid likelihood map. Compared with traditional methods, the improvements embodied in IMLE include: (a) Iterative Closed Point (ICP) preprocessing, which adaptively decreases the search scope; (b) a totally brute search matching method on multi-resolution map layers, based on the likelihood value between current laser scan and the grid map within refined search scope, adopted to obtain the global optimum position at each scan matching; and (c) a patch-divided likelihood map supporting a large indoor area. A UGV platform called NAVIS was designed, manufactured, and tested based on a low-cost robot integrating a LiDAR and an odometer sensor to verify the IMLE algorithm. A series of experiments based on simulated data and field tests with NAVIS proved that the proposed IMEL algorithm is a better way to perform local scan matching that can offer a quick and stable positioning solution with high accuracy so it can be part of a large area localization/mapping, application. The NAVIS platform can reach an updating rate of 12 Hz in a feature-rich environment and 2 Hz

  12. NAVIS-An UGV indoor positioning system using laser scan matching for large-area real-time applications.

    PubMed

    Tang, Jian; Chen, Yuwei; Jaakkola, Anttoni; Liu, Jinbing; Hyyppä, Juha; Hyyppä, Hannu

    2014-07-04

    Laser scan matching with grid-based maps is a promising tool for real-time indoor positioning of mobile Unmanned Ground Vehicles (UGVs). While there are critical implementation problems, such as the ability to estimate the position by sensing the unknown indoor environment with sufficient accuracy and low enough latency for stable vehicle control, further development work is necessary. Unfortunately, most of the existing methods employ heuristics for quick positioning in which numerous accumulated errors easily lead to loss of positioning accuracy. This severely restricts its applications in large areas and over lengthy periods of time. This paper introduces an efficient real-time mobile UGV indoor positioning system for large-area applications using laser scan matching with an improved probabilistically-motivated Maximum Likelihood Estimation (IMLE) algorithm, which is based on a multi-resolution patch-divided grid likelihood map. Compared with traditional methods, the improvements embodied in IMLE include: (a) Iterative Closed Point (ICP) preprocessing, which adaptively decreases the search scope; (b) a totally brute search matching method on multi-resolution map layers, based on the likelihood value between current laser scan and the grid map within refined search scope, adopted to obtain the global optimum position at each scan matching; and (c) a patch-divided likelihood map supporting a large indoor area. A UGV platform called NAVIS was designed, manufactured, and tested based on a low-cost robot integrating a LiDAR and an odometer sensor to verify the IMLE algorithm. A series of experiments based on simulated data and field tests with NAVIS proved that the proposed IMEL algorithm is a better way to perform local scan matching that can offer a quick and stable positioning solution with high accuracy so it can be part of a large area localization/mapping, application. The NAVIS platform can reach an updating rate of 12 Hz in a feature-rich environment and 2 Hz

  13. Reducing indoor residential exposures to outdoor pollutants

    SciTech Connect

    Sherman, Max H.; Matson, Nance E.

    2003-07-01

    The basic strategy for providing indoor air quality in residences is to dilute indoor sources with outdoor air. This strategy assumes that the outdoor air does not have pollutants at harmful levels or that the outdoor air is, at least, less polluted than the indoor air. When this is not the case, different strategies need to be employed to ensure adequate air quality in the indoor environment. These strategies include ventilation systems, filtration and other measures. These strategies can be used for several types of outdoor pollution, including smog, particulates and toxic air pollutants. This report reviews the impacts that typical outdoor air pollutants can have on the indoor environment and provides design and operational guidance for mitigating them. Poor quality air cannot be used for diluting indoor contaminants, but more generally it can become an indoor contaminant itself. This paper discusses strategies that use the building as protection against potentially hazardous outdoor pollutants, including widespread pollutants, accidental events, and potential attacks.

  14. Indoor Air '90: the 5th in a series of international conferences on the indoor environment.

    PubMed

    Walkinshaw, D

    1992-01-01

    The 5th International Conference on Indoor Air Quality and Climate: INDOOR AIR '90 continued a series of international scientific conferences begun in 1978 on a complex, interdisciplinary subject increasingly recognized to be of importance to human comfort, health and productivity, and having important implications for building design and furnishing, office equipment, appliances, cleaning, heating, ventilating, humidifying and air-conditioning. INDOOR AIR '90 constituted a week long program of 542 paper and poster presentations and forum discussions, 100 exhibits, and a public forum. This paper summarizes some of the highlights of this conference and links these to some of the studies reported at earlier INDOOR AIR Conference.

  15. The correlation of Acanthamoeba from the ventilation system with other environmental parameters in commercial buildings as possible indicator for indoor air quality

    PubMed Central

    OOI, Soo Shen; MAK, Joon Wah; CHEN, Donald K.F.; AMBU, Stephen

    2016-01-01

    The free-living protozoan Acanthamoeba is an opportunistic pathogen that is ubiquitous in our environment. However, its role in affecting indoor air quality and ill-health of indoor occupants is relatively unknown. The present study investigated the presence of Acanthamoeba from the ventilation system and its correlation with other indoor air quality parameters, used in the industry code of practice and its potential as an indicator for indoor air quality. Indoor air quality assessments were carried out in nine commercial buildings with approval from the building management, and the parameters assessed were as recommended by the Department of Occupational Safety and Health. The presence of Acanthamoeba was determined through dust swabs from the ventilation system and indoor furniture. Logistic regression was performed to study the correlation between assessed parameters and occupants’ complaints. A total of 107 sampling points were assessed and 40.2% of the supplying air diffuser and blowing fan and 15% of the furniture were positive for cysts. There was a significant correlation between Acanthamoeba detected from the ventilation system with ambient total fungus count (r=0.327; p=0.01) and respirable particulates (r=0.276; p=0.01). Occupants’ sick building syndrome experience also correlated with the presence of Acanthamoeba in the ventilation system (r=0.361; p=0.01) and those detected on the furniture (r=0.290; p=0.01). Logistic regression showed that there was a five-fold probability of sick building syndrome among occupants when Acanthamoeba was detected in the ventilation system. PMID:27476379

  16. Indoor Multi-Sensor Acquisition System for Projects on Energy Renovation of Buildings

    PubMed Central

    Armesto, Julia; Sánchez-Villanueva, Claudio; Patiño-Cambeiro, Faustino; Patiño-Barbeito, Faustino

    2016-01-01

    Energy rehabilitation actions in buildings have become a great economic opportunity for the construction sector. They also constitute a strategic goal in the European Union (EU), given the energy dependence and the compromises with climate change of its member states. About 75% of existing buildings in the EU were built when energy efficiency codes had not been developed. Approximately 75% to 90% of those standing buildings are expected to remain in use in 2050. Significant advances have been achieved in energy analysis, simulation tools, and computer fluid dynamics for building energy evaluation. However, the gap between predictions and real savings might still be improved. Geomatics and computer science disciplines can really help in modelling, inspection, and diagnosis procedures. This paper presents a multi-sensor acquisition system capable of automatically and simultaneously capturing the three-dimensional geometric information, thermographic, optical, and panoramic images, ambient temperature map, relative humidity map, and light level map. The system integrates a navigation system based on a Simultaneous Localization and Mapping (SLAM) approach that allows georeferencing every data to its position in the building. The described equipment optimizes the energy inspection and diagnosis steps and facilitates the energy modelling of the building. PMID:27240379

  17. Indoor Multi-Sensor Acquisition System for Projects on Energy Renovation of Buildings.

    PubMed

    Armesto, Julia; Sánchez-Villanueva, Claudio; Patiño-Cambeiro, Faustino; Patiño-Barbeito, Faustino

    2016-05-28

    Energy rehabilitation actions in buildings have become a great economic opportunity for the construction sector. They also constitute a strategic goal in the European Union (EU), given the energy dependence and the compromises with climate change of its member states. About 75% of existing buildings in the EU were built when energy efficiency codes had not been developed. Approximately 75% to 90% of those standing buildings are expected to remain in use in 2050. Significant advances have been achieved in energy analysis, simulation tools, and computer fluid dynamics for building energy evaluation. However, the gap between predictions and real savings might still be improved. Geomatics and computer science disciplines can really help in modelling, inspection, and diagnosis procedures. This paper presents a multi-sensor acquisition system capable of automatically and simultaneously capturing the three-dimensional geometric information, thermographic, optical, and panoramic images, ambient temperature map, relative humidity map, and light level map. The system integrates a navigation system based on a Simultaneous Localization and Mapping (SLAM) approach that allows georeferencing every data to its position in the building. The described equipment optimizes the energy inspection and diagnosis steps and facilitates the energy modelling of the building.

  18. Indoorgml - a Standard for Indoor Spatial Modeling

    NASA Astrophysics Data System (ADS)

    Li, Ki-Joune

    2016-06-01

    With recent progress of mobile devices and indoor positioning technologies, it becomes possible to provide location-based services in indoor space as well as outdoor space. It is in a seamless way between indoor and outdoor spaces or in an independent way only for indoor space. However, we cannot simply apply spatial models developed for outdoor space to indoor space due to their differences. For example, coordinate reference systems are employed to indicate a specific position in outdoor space, while the location in indoor space is rather specified by cell number such as room number. Unlike outdoor space, the distance between two points in indoor space is not determined by the length of the straight line but the constraints given by indoor components such as walls, stairs, and doors. For this reason, we need to establish a new framework for indoor space from fundamental theoretical basis, indoor spatial data models, and information systems to store, manage, and analyse indoor spatial data. In order to provide this framework, an international standard, called IndoorGML has been developed and published by OGC (Open Geospatial Consortium). This standard is based on a cellular notion of space, which considers an indoor space as a set of non-overlapping cells. It consists of two types of modules; core module and extension module. While core module consists of four basic conceptual and implementation modeling components (geometric model for cell, topology between cells, semantic model of cell, and multi-layered space model), extension modules may be defined on the top of the core module to support an application area. As the first version of the standard, we provide an extension for indoor navigation.

  19. Optimization of the Coverage and Accuracy of an Indoor Positioning System with a Variable Number of Sensors

    PubMed Central

    Domingo-Perez, Francisco; Lazaro-Galilea, Jose Luis; Bravo, Ignacio; Gardel, Alfredo; Rodriguez, David

    2016-01-01

    This paper focuses on optimal sensor deployment for indoor localization with a multi-objective evolutionary algorithm. Our goal is to obtain an algorithm to deploy sensors taking the number of sensors, accuracy and coverage into account. Contrary to most works in the literature, we consider the presence of obstacles in the region of interest (ROI) that can cause occlusions between the target and some sensors. In addition, we aim to obtain all of the Pareto optimal solutions regarding the number of sensors, coverage and accuracy. To deal with a variable number of sensors, we add speciation and structural mutations to the well-known non-dominated sorting genetic algorithm (NSGA-II). Speciation allows one to keep the evolution of sensor sets under control and to apply genetic operators to them so that they compete with other sets of the same size. We show some case studies of the sensor placement of an infrared range-difference indoor positioning system with a fairly complex model of the error of the measurements. The results obtained by our algorithm are compared to sensor placement patterns obtained with random deployment to highlight the relevance of using such a deployment algorithm. PMID:27338414

  20. Indoor radon.

    PubMed

    Polpong, P; Bovornkitti, S

    1998-01-01

    The naturally radioactive but chemically inert gas, radon, is formed from the radioactive decay of radium which is part of the uranium series. Radon gas, which has a half life of 3.8 days, must escape from soil particles through air-filled pores in order to enter the atmosphere following the decay of radium. The concentration of radon in the atmosphere varies, depending on the place, time, height above the ground and meteorological conditions. It is thus an inescapable source of radiation exposure, both at home and at work. The potential hazards posed by exposure to radiation from indoor radon gas and its daughter products are of great concern worldwide. Noting of an excessive lung cancer risk among several groups of underground miners exposed to radon and its daughter products, studies on radon concentrations in the workplace and in dwellings have been conducted in many countries. The results have shown that the distribution of radon concentrations are approximately lognormal from which population weighted; the arithmetic mean of radon concentration of 40 Bq.m-3 has been adopted worldwide for dwellings and workplaces. The principal methods for reducing a high indoor radon concentration are: reducing the radon supply by reversing the pressure difference between the building and the soil; raising the resistance of the foundations to soil gas entry; removing the radon sources such as water or underlying soil; diluting the concentration by increasing the ventilation rate; and reducing the concentration of radon progeny by filtering and increasing the circulation of indoor air. Buildings which have a radon concentration higher than 200 Bq.m-3 should be investigated by the national authorities concerned; meanwhile, householders should be advised to take simple temporary precautions, such as increasing ventilation, until a permanent remedy can be effected.

  1. NASA's climate data system primer, version 1.2

    NASA Technical Reports Server (NTRS)

    Closs, James W.; Reph, Mary G.; Olsen, Lola M.

    1989-01-01

    This is a beginner's manual for NASA's Climate Data System (NCDS), an interactive scientific information management system that allows one to locate, access, manipulate, and display climate-research data. Additional information on the use of the system is available from the system itself.

  2. Development of a Pedestrian Indoor Navigation System Based on Multi-Sensor Fusion and Fuzzy Logic Estimation Algorithms

    NASA Astrophysics Data System (ADS)

    Lai, Y. C.; Chang, C. C.; Tsai, C. M.; Lin, S. Y.; Huang, S. C.

    2015-05-01

    This paper presents a pedestrian indoor navigation system based on the multi-sensor fusion and fuzzy logic estimation algorithms. The proposed navigation system is a self-contained dead reckoning navigation that means no other outside signal is demanded. In order to achieve the self-contained capability, a portable and wearable inertial measure unit (IMU) has been developed. Its adopted sensors are the low-cost inertial sensors, accelerometer and gyroscope, based on the micro electro-mechanical system (MEMS). There are two types of the IMU modules, handheld and waist-mounted. The low-cost MEMS sensors suffer from various errors due to the results of manufacturing imperfections and other effects. Therefore, a sensor calibration procedure based on the scalar calibration and the least squares methods has been induced in this study to improve the accuracy of the inertial sensors. With the calibrated data acquired from the inertial sensors, the step length and strength of the pedestrian are estimated by multi-sensor fusion and fuzzy logic estimation algorithms. The developed multi-sensor fusion algorithm provides the amount of the walking steps and the strength of each steps in real-time. Consequently, the estimated walking amount and strength per step are taken into the proposed fuzzy logic estimation algorithm to estimates the step lengths of the user. Since the walking length and direction are both the required information of the dead reckoning navigation, the walking direction is calculated by integrating the angular rate acquired by the gyroscope of the developed IMU module. Both the walking length and direction are calculated on the IMU module and transmit to a smartphone with Bluetooth to perform the dead reckoning navigation which is run on a self-developed APP. Due to the error accumulating of dead reckoning navigation, a particle filter and a pre-loaded map of indoor environment have been applied to the APP of the proposed navigation system to extend its

  3. Wideband optical propagation measurement system for characterization of indoor optical wireless channels

    NASA Astrophysics Data System (ADS)

    Kavehrad, Mohsen; Fadlullah, Jarir

    2010-01-01

    The main objective of the presented research is to characterize an indoor wireless optical communication channel. Until recently, there have not been any comprehensive published measurements results presenting characteristics of this channel for high data rates, e. g. 1Gbit/s. To this end, a measurement setup is implemented, with a high-power laser diode acting as the optical transmitter and an avalanche photodiode acting as the receiver. Using a network analyzer, the laser is modulated by CW frequencies up to 1 GHz, which is the bandwidth of the receiver, as limited by the intrinsic capacitance and the response-time of the avalanche photodiode. A single collimated optical spot with a small elliptical shape on the ceiling is tested. The impacts of receiver orientation and configuration on the channel frequency response are investigated. These measurements will enable us to explore the possibility of higher data transmission rates, potentially beyond 1 Gbps, on indoor optical wireless channels. These channels can be a viable alternative to inherently insecure and interference-prone RF wireless channels, and therefore, could be the basis of next-generation high data rate wireless local area networks.

  4. Processes in Decadal Climate Variability and their Incorporation into a Decadal Climate Prediction System

    NASA Astrophysics Data System (ADS)

    Proemmel, K.; Cubasch, U.; Vamborg, F.

    2012-12-01

    The quality of decadal climate predictions rests fundamentally on the ability of the forecast models realistically to simulate climate and its variability, in particular at decadal timescales. The new German research project "MiKlip - Decadal Predictions" (http://www.fona-miklip.de/en/) aims to develop a system for climate predictions for up to a decade ahead that can then be applied by an operational agency such as the German Meteorological Service DWD. This climate prediction system is based on the MPI-M Earth System Model (MPI-ESM) from the Max Planck Institute for Meteorology in Germany. Different aspects of decadal climate predictions are considered in MiKlip like initialisation strategies, the predictive skill on the regional scale with focus on Europe and Africa and the systematic evaluation of the prediction system. Another part of MiKlip deals with the incorporation of those processes in climate models that are important for the realistic representation of decadal climate variability, and the understanding of the important processes in the numerical prediction system. Processes that have the potential to improve decadal climate predictions are related to e.g. Arctic sea ice, atmospheric chemistry, large volcanic eruptions, atmosphere-ocean coupling, stratosphere and land-atmosphere interaction. The work dealing with the processes can be categorized into assessing the effects of enhanced resolution and of advanced parameterizations and numerics, investigating mechanisms of decadal variability, improvement of existing system components and coupling of additional climate subsystems.

  5. Orbital Noise in the Earth System and Climate Fluctuations

    NASA Technical Reports Server (NTRS)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Frequency noise in the variations of the Earth's obliquity (tilt) can modulate the insolation signal for climate change. Including this frequency noise effect on the incoming solar radiation, we have applied an energy balance climate model to calculate the climate fluctuations for the past one million years. Model simulation results are in good agreement with the geologically observed paleoclimate data. We conclude that orbital noise in the Earth system may be the major cause of the climate fluctuation cycles.

  6. Assessment of the need for dual indoor/outdoor warning systems and enhanced tone alert technologies in the Chemical Stockpile Emergency Preparedness Program

    SciTech Connect

    Sorensen, J.H.

    1992-05-01

    The need for a dual indoor/outdoor warning system as recommended by the program guidance and Alert and Notification (A&N) standard for the Chemical Stockpile Emergency Preparedness Program is analyzed in this report. Under the current program standards, the outdoor warning system consists of omnidirectional sirens and the new indoor system would be an enhanced tone alert (TA) radio system. This analysis identifies various tone-alert technologies, distribution options, and alternative siren configurations. It also assesses the costs and benefits of the options and analyzes what appears to best meet program needs. Given the current evidence, it is recommended that a 10-dB siren system and the special or enhanced TA radio be distributed to each residence and special institution in the immediate response zone as preferred the A&N standard. This approach minimizes the cost of maintenance and cost of the TA radio system while providing a high degree of reliability for indoor alerting. Furthermore, it reaches the population (residential and institutional) in the greatest need of indoor alerting.

  7. Assessment of the need for dual indoor/outdoor warning systems and enhanced tone alert technologies in the Chemical Stockpile Emergency Preparedness Program

    SciTech Connect

    Sorensen, J.H.

    1992-05-01

    The need for a dual indoor/outdoor warning system as recommended by the program guidance and Alert and Notification (A N) standard for the Chemical Stockpile Emergency Preparedness Program is analyzed in this report. Under the current program standards, the outdoor warning system consists of omnidirectional sirens and the new indoor system would be an enhanced tone alert (TA) radio system. This analysis identifies various tone-alert technologies, distribution options, and alternative siren configurations. It also assesses the costs and benefits of the options and analyzes what appears to best meet program needs. Given the current evidence, it is recommended that a 10-dB siren system and the special or enhanced TA radio be distributed to each residence and special institution in the immediate response zone as preferred the A N standard. This approach minimizes the cost of maintenance and cost of the TA radio system while providing a high degree of reliability for indoor alerting. Furthermore, it reaches the population (residential and institutional) in the greatest need of indoor alerting.

  8. Concentrated and piped sunlight for indoor illumination.

    PubMed

    Fraas, L M; Pyle, W R; Ryason, P R

    1983-02-15

    A concept for indoor illumination of buildings using sunlight is described. For this system, a tracking concentrator on the building roof follows the sun and focuses sunlight into a lightguide. A system of transparent lightguides distributes the sunlight to interior rooms. Recent advances in the transparency of acrylic plastic optical fibers suggest that acrylic lightguides could be successfully used for piping sunlight. The proposed system displaces electricity currently used for indoor lighting. It is argued that using sunlight directly for indoor illumination would be about twenty-five times more cost-effective than using sunlight to generate electricity with solar cells for powering electric lamps for indoor lighting.

  9. Gigabit-class optical wireless communication system at indoor distances (1.5 ÷ 4 m).

    PubMed

    Cossu, Giulio; Ali, Wajahat; Corsini, Raffaele; Ciaramella, Ernesto

    2015-06-15

    In this paper we experimentally realized bidirectional optical wireless communication (OWC) link using four channel visible LED board exploiting wavelength division multiplexing (WDM) for the downlink and infrared LED for uplink. We achieved greater than 5 Gbit/s data rate at common indoor distance (1.5 to 4 m) for downlink and 1.5 Gbit/s for uplink using commercially available LEDs. We achieved these results after a careful choice of the LED emission wavelengths and the optical filter spectra. Moreover, we investigate the optimal LED working current and the optimal modulation depth. The bit error ratios of all the channels were maintained lower than the FEC limit (3.8·10(-3)).

  10. The Maintenance of Heating, Ventilating and Air-Conditioning Systems and Indoor Air Quality in Schools: A Guide for School Facility Managers. Technical Bulletin.

    ERIC Educational Resources Information Center

    Wheeler, Arthur E.

    To help maintain good indoor air quality (IAQ) in schools, guidance for the development and implementation of an effective program for maintenance and operation of heating, ventilating, and air-conditioning (HVAC) systems are discussed. Frequently, a building's occupants will complain about IAQ when the temperature or humidity are at uncomfortable…

  11. Solar Powered Automobile Interior Climate Control System

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor)

    2003-01-01

    There is provided a climate control system for a parked vehicle that includes a solar panel, thermostatic switch, fans, and thermoelectric coolers. The solar panel can serve as the sole source of electricity for the system. The system affords convenient installation and removal by including solar panels that are removably attached to the exterior of a vehicle. A connecting wire electrically connects the solar panels to a housing that is removably mounted to a partially opened window on the vehicle. The thermostatic switch, fans, and thermoelectric coolers are included within the housing. The thermostatic switch alternates the direction of the current flow through the thermoelectric coolers to selectively heat or cool the interior of the vehicle. The interior surface of the thermoelectric coolers are in contact with interior heat sinks that have air circulated across them by an interior fan. Similarly, the exterior surface of the thermoelectric coolers are in contact with exterior heat sinks that have air circulated across them by an exterior fan.

  12. State laws prohibiting sales to minors and indoor use of electronic nicotine delivery systems--United States, November 2014.

    PubMed

    Marynak, Kristy; Holmes, Carissa Baker; King, Brian A; Promoff, Gabbi; Bunnell, Rebecca; McAfee, Timothy

    2014-12-12

    Electronic nicotine delivery systems (ENDS), including electronic cigarettes (e-cigarettes) and other devices such as electronic hookahs, electronic cigars, and vape pens, are battery-powered devices capable of delivering aerosolized nicotine and additives to the user. Experimentation with and current use of e-cigarettes has risen sharply among youths and adults in the United States. Youth access to and use of ENDS is of particular concern given the potential adverse effects of nicotine on adolescent brain development. Additionally, ENDS use in public indoor areas might passively expose bystanders (e.g., children, pregnant women, and other nontobacco users) to nicotine and other potentially harmful constituents. ENDS use could have the potential to renormalize tobacco use and complicate enforcement of smoke-free policies. State governments can regulate the sales of ENDS and their use in indoor areas where nonusers might be involuntarily exposed to secondhand aerosol. To learn the current status of state laws regulating the sales and use of ENDS, CDC assessed state laws that prohibit ENDS sales to minors and laws that include ENDS use in conventional smoking prohibitions in indoor areas of private worksites, restaurants, and bars. Findings indicate that as of November 30, 2014, 40 states prohibited ENDS sales to minors, but only three states prohibited ENDS use in private worksites, restaurants, and bars. Of the 40 states that prohibited ENDS sales to minors, 21 did not prohibit ENDS use or conventional smoking in private worksites, restaurants, and bars. Three states had no statewide laws prohibiting ENDS sales to minors and no statewide laws prohibiting ENDS use or conventional smoking in private worksites, restaurants, and bars. According to the Surgeon General, ENDS have the potential for public health harm or public health benefit. The possibility of public health benefit from ENDS could arise only if 1) current smokers use these devices to switch completely

  13. The Community Climate System Model Version 4

    SciTech Connect

    Gent, Peter R.; Danabasoglu, Gokhan; Donner, Leo J.; Holland, Marika M.; Hunke, Elizabeth C.; Jayne, Steve R.; Lawrence, David M.; Neale, Richard; Rasch, Philip J.; Vertenstein, Mariana; Worley, Patrick; Yang, Zong-Liang; Zhang, Minghua

    2011-10-01

    The fourth version of the Community Climate System Model (CCSM4) was recently completed and released to the climate community. This paper describes developments to all the CCSM components, and documents fully coupled pre-industrial control runs compared to the previous version, CCSM3. Using the standard atmosphere and land resolution of 1{sup o} results in the sea surface temperature biases in the major upwelling regions being comparable to the 1.4{sup o} resolution CCSM3. Two changes to the deep convection scheme in the atmosphere component result in the CCSM4 producing El Nino/Southern Oscillation variability with a much more realistic frequency distribution than the CCSM3, although the amplitude is too large compared to observations. They also improve the representation of the Madden-Julian Oscillation, and the frequency distribution of tropical precipitation. A new overflow parameterization in the ocean component leads to an improved simulation of the deep ocean density structure, especially in the North Atlantic. Changes to the CCSM4 land component lead to a much improved annual cycle of water storage, especially in the tropics. The CCSM4 sea ice component uses much more realistic albedos than the CCSM3, and the Arctic sea ice concentration is improved in the CCSM4. An ensemble of 20th century simulations runs produce an excellent match to the observed September Arctic sea ice extent from 1979 to 2005. The CCSM4 ensemble mean increase in globally-averaged surface temperature between 1850 and 2005 is larger than the observed increase by about 0.4 C. This is consistent with the fact that the CCSM4 does not include a representation of the indirect effects of aerosols, although other factors may come into play. The CCSM4 still has significant biases, such as the mean precipitation distribution in the tropical Pacific Ocean, too much low cloud in the Arctic, and the latitudinal distributions of short-wave and long-wave cloud forcings.

  14. Design of an indoor self-positioning system for the visually impaired--simulation with RFID and Bluetooth in a visible light communication system.

    PubMed

    Liu, Xiaohan; Makino, Hideo; Kobayashi, Suguru; Maeda, Yoshinobu

    2007-01-01

    After a public experiment of the indoor guidance system using FLC (fluorescent light communication), we found that FLC provides a promising medium for the installation of a guidance system for the visually impaired. However, precise self-positioning was not satisfactorily achieved. In this article, we propose a new self-positioning method, one that uses a combination of RFID (Radio-frequency identification), Bluetooth and FLC. We analyzed the situation and developed a model that combined the three communication modes. Then we performed a series of experiments and get some results in the first step.

  15. Weakening of atmospheric information flow in a warming climate in the Community Climate System Model

    NASA Astrophysics Data System (ADS)

    Deng, Yi; Ebert-Uphoff, Imme

    2014-01-01

    We introduce a new perspective of climate change by revealing the changing characteristics of atmospheric information flow in a warming climate. The key idea is to interpret large-scale atmospheric dynamical processes as information flow around the globe and to identify the pathways of this information flow using a climate network based on causal discovery and graphical models. We construct such networks using the daily geopotential height data from the Community Climate System Model Version 4.0 (CCSM4.0)'s 20th century climate simulation and 21st century climate projection. We show that in the CCSM4.0 model under enhanced greenhouse gases (GHGs) forcing, prominent midlatitude information pathways in the midtroposphere weaken and shift poleward, while major tropical information pathways start diminishing. Averaged over the entire Northern Hemisphere, the atmospheric information flow weakens. The implications of this weakening for the interconnectivity among different geographical locations and for the intrinsic predictability of the atmosphere are discussed.

  16. Climate Model Diagnostic Analyzer Web Service System

    NASA Astrophysics Data System (ADS)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2014-12-01

    We have developed a cloud-enabled web-service system that empowers physics-based, multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks. The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the observational datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation, (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs, and (3) ECMWF reanalysis outputs for several environmental variables in order to supplement observational datasets. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, (4) the calculation of difference between two variables, and (5) the conditional sampling of one physical variable with respect to another variable. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use, avoiding the hassle of local software installation and environment incompatibility. CMDA will be used as an educational tool for the summer school organized by JPL's Center for Climate Science in 2014. In order to support 30+ simultaneous users during the school, we have deployed CMDA to the Amazon cloud environment. The cloud-enabled CMDA will provide each student with a virtual machine while the user interaction with the system will remain the same

  17. Energy Savings and Peak Demand Reduction of a SEER 21 Heat Pump vs. a SEER 13 Heat Pump with Attic and Indoor Duct Systems

    SciTech Connect

    Cummings, J.; Withers, C.

    2014-03-01

    This report describes results of experiments that were conducted in an unoccupied 1600 square foot house--the Manufactured Housing (MH Lab) at the Florida Solar Energy Center (FSEC)--to evaluate the delivered performance as well as the relative performance of a SEER 21 variable capacity heat pump versus a SEER 13 heat pump. The performance was evaluated with two different duct systems: a standard attic duct system and an indoor duct system located in a dropped-ceiling space.

  18. Integrated regional changes in arctic climate feedbacks: Implications for the global climate system

    USGS Publications Warehouse

    McGuire, A.D.; Chapin, F. S.; Walsh, J.E.; Wirth, C.; ,

    2006-01-01

    The Arctic is a key part of the global climate system because the net positive energy input to the tropics must ultimately be resolved through substantial energy losses in high-latitude regions. The Arctic influences the global climate system through both positive and negative feedbacks that involve physical, ecological, and human systems of the Arctic. The balance of evidence suggests that positive feedbacks to global warming will likely dominate in the Arctic during the next 50 to 100 years. However, the negative feedbacks associated with changing the freshwater balance of the Arctic Ocean might abruptly launch the planet into another glacial period on longer timescales. In light of uncertainties and the vulnerabilities of the climate system to responses in the Arctic, it is important that we improve our understanding of how integrated regional changes in the Arctic will likely influence the evolution of the global climate system. Copyright ?? 2006 by Annual Reviews. All rights reserved.

  19. Pilot climate data system: User's guide for charts subsystem

    NASA Technical Reports Server (NTRS)

    Noll, C. E.

    1984-01-01

    The use of the Pilot Climate Data System's (PCDS) CHARTS Subsystem is described. This facility is an interactive software system for the graphical production and enhancement of text and viewgraph displays.

  20. Design of a multi-sensor sonar system for indoor range measurement as a navigational aid for the blind.

    PubMed

    Choudhury, Maroof H; Barreto, Armando

    2003-01-01

    This paper reports the methodology for the design of a sonar-based ranging and guidance system. The intended application of the system is to help a blind person avoid obstacles as he/she navigates his/her environment. Six sonar transceivers are arranged radially on a headgear worn by the user. The transceivers detect discrete range data at discrete-time sampling instances. A panoramic map of the environment is generated from the discrete-space sensory data. The paper emphasizes the challenges faced during the measurement of omnidirectional ranging information in indoor environments. Situations have been identified where erroneous range readings are generated due to channel cross talk caused by echo bouncing off multiple surfaces. Several sonar control and measurement schemes were developed and tested to avoid these situations. The results and performance of these different control schemes are compared in this paper. A microcontroller-based system commands the sonar ping sequences, acquires the echo return times and computes the ranges. The set of range data is transmitted to a PC, which utilizes the information to build a spatialized audio map of the surrounding obstacles. The hardware and software layout for the system are described in this paper.

  1. Experimental investigation of analog and digital dimming techniques on photometric performance of an indoor Visible Light Communication (VLC) system

    NASA Astrophysics Data System (ADS)

    Zafar, Fahad; Kalavally, Vineetha; Bakaul, Masuduzzaman; Parthiban, R.

    2015-09-01

    For making commercial implementation of light emitting diode (LED) based visible light communication (VLC) systems feasible, it is necessary to incorporate it with dimming schemes which will provide energy savings, moods and increase the aesthetic value of the places using this technology. There are two general methods which are used to dim LEDs commonly categorized as analog and digital dimming. Incorporating fast data transmission with these techniques is a key challenge in VLC. In this paper, digital and analog dimming for a 10 Mb/s non return to zero on-off keying (NRZ-OOK) based VLC system is experimentally investigated considering both photometric and communicative parameters. A spectrophotometer was used for photometric analysis and a line of sight (LOS) configuration in the presence of ambient light was used for analyzing communication parameters. Based on the experimental results, it was determined that digital dimming scheme is preferable for use in indoor VLC systems requiring high dimming precision and data transmission at lower brightness levels. On the other hand, analog dimming scheme is a cost effective solution for high speed systems where dimming precision is insignificant.

  2. Characterization of a multi-user indoor positioning system based on low cost depth vision (Kinect) for monitoring human activity in a smart home.

    PubMed

    Sevrin, Loïc; Noury, Norbert; Abouchi, Nacer; Jumel, Fabrice; Massot, Bertrand; Saraydaryan, Jacques

    2015-01-01

    An increasing number of systems use indoor positioning for many scenarios such as asset tracking, health care, games, manufacturing, logistics, shopping, and security. Many technologies are available and the use of depth cameras is becoming more and more attractive as this kind of device becomes affordable and easy to handle. This paper contributes to the effort of creating an indoor positioning system based on low cost depth cameras (Kinect). A method is proposed to optimize the calibration of the depth cameras, to describe the multi-camera data fusion and to specify a global positioning projection to maintain the compatibility with outdoor positioning systems. The monitoring of the people trajectories at home is intended for the early detection of a shift in daily activities which highlights disabilities and loss of autonomy. This system is meant to improve homecare health management at home for a better end of life at a sustainable cost for the community.

  3. Indoor human thermal adaptation: dynamic processes and weighting factors.

    PubMed

    Luo, M; Cao, B; Ouyang, Q; Zhu, Y

    2017-03-01

    In this study, we explore the correlations between indoor climate change and human thermal adaptation, especially with regard to the timescale and weighting factors of physiological adaptation. A comparative experiment was conducted in China where wintertime indoor climate in the southern region (devoid of space heating) is much colder than in the northern region (with pervasive district heating). Four subject groups with different indoor thermal experiences participated in this climate chamber experiment. The results indicate that previous indoor thermal exposure is an important contributor to occupants' physiological adaptation. More specifically, subjects acclimated to neutral-warm indoors tended to have stronger physiological responses and felt more uncomfortable in moderate cold exposures than those adapted to the cold. As for the driving force of thermal adaptation, physiological acclimation is an important aspect among all the supposed adaptive layers. However, the physiological adaptation speed lags behind changes in the overall subjective perception.

  4. A National Program for Analysis of the Climate System

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Arkin, Phil; Kalnay, Eugenia; Laver, James; Trenberth, Kevin

    2002-01-01

    Perhaps the single greatest roadblock to fundamental advances in our understanding of climate variability and climate change is the lack of robust and unbiased long-term global observations of the climate system. Such observations are critical for the identification and diagnosis of climate variations, and provide the constraints necessary for developing and validating climate models. The first generation of reanalysis efforts, by using fixed analysis systems, eliminated the artificial climate signals that occurred in analyses generated at the operational numerical weather prediction centers. These datasets are now widely used by the scientific community in a variety of applications including atmosphere-ocean interactions, seasonal prediction, climate monitoring, the hydrological cycle, and a host of regional and other diagnostic studies. These reanalyses, however, had problems that made them sub-optimal or even unusable for some applications. Perhaps the most serious problem for climate applications was that, while the assimilation system remained fixed, changes in the observing systems did produce spurious changes in the perceived climate. The first generation reanalysis products also exposed problems with physical consistency of the products and the accurate representation of physical processes in the climate system. Examples are bias in the estimates of ocean surface fluxes, and inadequate representation of polar hydrology. In this talk, I will describe some initial plans for a national program on reananlysis. The program is envisioned to be part of an on-going activity to maintain, improve, and reprocess our record of climate observations. I will discuss various issues affecting the quality of reanalyses, with a special focus on those relevant to the ocean.

  5. The validity and reliability of a novel indoor player tracking system for use within wheelchair court sports.

    PubMed

    Rhodes, James; Mason, Barry; Perrat, Bertrand; Smith, Martin; Goosey-Tolfrey, Victoria

    2014-01-01

    The aim of the current study was to investigate the validity and reliability of a radio frequency-based system for accurately tracking athlete movement within wheelchair court sports. Four wheelchair-specific tests were devised to assess the system during (i) static measurements; (ii) incremental fixed speeds; (iii) peak speeds; and (iv) multidirectional movements. During each test, three sampling frequencies (4, 8 and 16 Hz) were compared to a criterion method for distance, mean and peak speeds. Absolute static error remained between 0.19 and 0.32 m across the session. Distance values (test (ii)) showed greatest relative error in 4 Hz tags (1.3%), with significantly lower errors seen in higher frequency tags (<1.0%). Relative peak speed errors of <2.0% (test (iii)) were revealed across all sampling frequencies in relation to the criterion (4.00 ± 0.09 m · s-(1)). Results showed 8 and 16 Hz sampling frequencies displayed the closest-to-criterion values, whilst intra-tag reliability never exceeded 2.0% coefficient of variation (% CV) during peak speed detection. Minimal relative distance errors (<0.2%) were also seen across sampling frequencies (test (iv)). To conclude, the indoor tracking system is deemed an acceptable tool for tracking wheelchair court match play using a tag frequency of 8 or 16 Hz.

  6. Applying "Climate" system to teaching basic climatology and raising public awareness of climate change issues

    NASA Astrophysics Data System (ADS)

    Gordova, Yulia; Okladnikov, Igor; Titov, Alexander; Gordov, Evgeny

    2016-04-01

    While there is a strong demand for innovation in digital learning, available training programs in the environmental sciences have no time to adapt to rapid changes in the domain content. A joint group of scientists and university teachers develops and implements an educational environment for new learning experiences in basics of climatic science and its applications. This so-called virtual learning laboratory "Climate" contains educational materials and interactive training courses developed to provide undergraduate and graduate students with profound understanding of changes in regional climate and environment. The main feature of this Laboratory is that students perform their computational tasks on climate modeling and evaluation and assessment of climate change using the typical tools of the "Climate" information-computational system, which are usually used by real-life practitioners performing such kind of research. Students have an opportunity to perform computational laboratory works using information-computational tools of the system and improve skills of their usage simultaneously with mastering the subject. We did not create an artificial learning environment to pass the trainings. On the contrary, the main purpose of association of the educational block and computational information system was to familiarize students with the real existing technologies for monitoring and analysis of data on the state of the climate. Trainings are based on technologies and procedures which are typical for Earth system sciences. Educational courses are designed to permit students to conduct their own investigations of ongoing and future climate changes in a manner that is essentially identical to the techniques used by national and international climate research organizations. All trainings are supported by lectures, devoted to the basic aspects of modern climatology, including analysis of current climate change and its possible impacts ensuring effective links between

  7. A Systems Perspective on Responses to Climate Change

    EPA Science Inventory

    The science of climate change integrates many scientific fields to explain and predict the complex effects of greenhouse gas concentrations on the planet’s energy balance, weather patterns, and ecosystems as well as economic and social systems. A changing climate requires respons...

  8. Organizational Climate, Services, and Outcomes in Child Welfare Systems

    ERIC Educational Resources Information Center

    Glisson, Charles; Green, Philip

    2011-01-01

    Objective: This study examines the association of organizational climate, casework services, and youth outcomes in child welfare systems. Building on preliminary findings linking organizational climate to youth outcomes over a 3-year follow-up period, the current study extends the follow-up period to 7 years and tests main, moderating and…

  9. Gauging the System: Trends in School Climate Measurement and Intervention

    ERIC Educational Resources Information Center

    O'Malley, Meagan; Katz, Kristin; Renshaw, Tyler L.; Furlong, Michael J.

    2011-01-01

    Researchers and educators are giving increasing scrutiny to systems-level constructs that contribute to safe, supportive, and effective schools, including school climate. School climate is a multifaceted construct that is commonly conceptualized as school community members' subjective experiences of the structural and contextual elements of a…

  10. Indoor Air Pollution

    MedlinePlus

    ... is known as sick building syndrome. Usually indoor air quality problems only cause discomfort. Most people feel better ... and getting rid of pollutants can improve the quality of your indoor air. Environmental Protection Agency

  11. Controlling Indoor Air Pollution.

    ERIC Educational Resources Information Center

    Nero, Anthony V, Jr.

    1988-01-01

    Discusses the health risks posed by indoor air pollutants, such as airborne combustion products, toxic chemicals, and radioactivity. Questions as to how indoor air might be regulated. Calls for new approaches to environmental protection. (TW)

  12. D Reconstruction of Cultural Tourism Attractions from Indoor to Outdoor Based on Portable Four-Camera Stereo Vision System

    NASA Astrophysics Data System (ADS)

    Shao, Z.; Li, C.; Zhong, S.; Liu, B.; Jiang, H.; Wen, X.

    2015-05-01

    Building the fine 3D model from outdoor to indoor is becoming a necessity for protecting the cultural tourism resources. However, the existing 3D modelling technologies mainly focus on outdoor areas. Actually, a 3D model should contain detailed descriptions of both its appearance and its internal structure, including architectural components. In this paper, a portable four-camera stereo photographic measurement system is developed, which can provide a professional solution for fast 3D data acquisition, processing, integration, reconstruction and visualization. Given a specific scene or object, it can directly collect physical geometric information such as positions, sizes and shapes of an object or a scene, as well as physical property information such as the materials and textures. On the basis of the information, 3D model can be automatically constructed. The system has been applied to the indooroutdoor seamless modelling of distinctive architecture existing in two typical cultural tourism zones, that is, Tibetan and Qiang ethnic minority villages in Sichuan Jiuzhaigou Scenic Area and Tujia ethnic minority villages in Hubei Shennongjia Nature Reserve, providing a new method and platform for protection of minority cultural characteristics, 3D reconstruction and cultural tourism.

  13. 15 Gbit/s indoor optical wireless systems employing fast adaptation and imaging reception in a realistic environment

    NASA Astrophysics Data System (ADS)

    Alsaadi, Fuad E.

    2016-03-01

    Optical wireless systems are promising candidates for next-generation indoor communication networks. Optical wireless technology offers freedom from spectrum regulations and, compared to current radio-frequency networks, higher data rates and increased security. This paper presents a fast adaptation method for multibeam angle and delay adaptation systems and a new spot-diffusing geometry, and also considers restrictions needed for complying with eye safety regulations. The fast adaptation algorithm reduces the computational load required to reconfigure the transmitter in the case of transmitter and/or receiver mobility. The beam clustering approach enables the transmitter to assign power to spots within the pixel's field of view (FOV) and increases the number of such spots. Thus, if the power per spot is restricted to comply with eye safety standards, the new approach, in which more spots are visible within the FOV of the pixel, leads to enhanced signal-to-noise ratio (SNR). Simulation results demonstrate that the techniques proposed in this paper lead to SNR improvements that enable reliable operation at data rates as high as 15 Gbit/s. These results are based on simulation and not on actual measurements or experiments.

  14. A personal perspective on modelling the climate system

    PubMed Central

    Palmer, T. N.

    2016-01-01

    Given their increasing relevance for society, I suggest that the climate science community itself does not treat the development of error-free ab initio models of the climate system with sufficient urgency. With increasing levels of difficulty, I discuss a number of proposals for speeding up such development. Firstly, I believe that climate science should make better use of the pool of post-PhD talent in mathematics and physics, for developing next-generation climate models. Secondly, I believe there is more scope for the development of modelling systems which link weather and climate prediction more seamlessly. Finally, here in Europe, I call for a new European Programme on Extreme Computing and Climate to advance our ability to simulate climate extremes, and understand the drivers of such extremes. A key goal for such a programme is the development of a 1 km global climate system model to run on the first exascale supercomputers in the early 2020s. PMID:27274686

  15. System's flips in climate-related energy (CRE) systems

    NASA Astrophysics Data System (ADS)

    Ramos, Maria-Helena; Creutin, Jean-Dominique; Engeland, Kolbjørn; François, Baptiste; Renard, Benjamin

    2014-05-01

    Several modern environmental questions invite to explore the complex relationships between natural phenomena and human behaviour at a range of space and time scales. This usually involves a number of cause-effect (causal) relationships, linking actions and events. In lay terms, 'effect' can be defined as 'what happened' and 'cause', 'why something happened.' In a changing world or merely moving from one scale to another, shifts in perspective are expected, bringing some phenomena into the foreground and putting others to the background. Systems can thus flip from one set of causal structures to another in response to environmental perturbations and human innovations or behaviors, for instance, as space-time signatures are modified. The identification of these flips helps in better understanding and predicting how societies and stakeholders react to a shift in perspective. In this study, our motivation is to investigate possible consequences of the shift to a low carbon economy in terms of socio-technico systems' flips. The focus is on the regional production of Climate-Related Energy (CRE) (hydro-, wind- and solar-power). We search for information on historic shifts that may help defining the forcing conditions of abrupt changes and extreme situations. We identify and present a series of examples in which we try to distinguish the various tipping points, thresholds, breakpoints and regime shifts that are characteristic of complex systems in the CRE production domain. We expect that with these examples our comprehension of the question will be enriched, providing us the elements needed to better validate modeling attempts, to predict and manage flips of complex CRE production systems. The work presented is part of the FP7 project COMPLEX (Knowledge based climate mitigation systems for a low carbon economy; http://www.complex.ac.uk/).

  16. DataStreme Earth's Climate System: Building a Climate Literate Society through Effective Partnerships

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Geer, I. W.; Weinbeck, R. S.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    Effective partnerships are key to increasing climate and overall environmental literacy. Financial support from NSF, NASA, and NOAA has allowed the American Meteorological Society (AMS) to offer DataStreme courses for almost 20 years. DataStreme Atmosphere, Ocean, and Earth's Climate System (ECS) are offered each fall and spring semester by Local Implementation Teams (LITs) across the country in coordination with AMS Education Program scientists and educators who develop instructional materials, provide logistical support to the LITs, and administer the project. A long-standing partnership with State University of New York's The College at Brockport gives teachers the opportunity to receive 3 tuition-free graduate credits upon successful completion of each DataStreme course and construction of a Plan of Action for educational peer-training. DataStreme ECS investigates the fundamental science of Earth's climate system, explores humans' impact on it, and identifies actions needed in response to climate change. The course provides participants with the knowledge to make informed climate decisions. In fact, according to a recent three-year study conducted by AMS, 98% of DataStreme ECS participants reported an increase in environmental literacy as a result of the course. DataStreme Atmosphere, Ocean, and ECS content has been improved because of AMS partnerships with NOAA and NASA. Specifically, hundreds of NASA and NOAA scientists and faculty from numerous institutions both domestic and abroad have contributed and reviewed DataStreme ECS content. Additional collaborations with Consortium for Ocean Leadership and the U.S. Ice Drilling Program greatly improved the course's paleoclimate content. Looking ahead, the Climate Resilience Toolkit from NOAA's Climate Program Office will further bolster the course this fall. These partnerships have resulted in a powerful, content-rich climate science course for K-12 teachers, building the foundation to a climate literate society.

  17. Light use efficiency for vegetables production in protected and indoor environments

    NASA Astrophysics Data System (ADS)

    Cocetta, Giacomo; Casciani, Daria; Bulgari, Roberta; Musante, Fulvio; Kołton, Anna; Rossi, Maurizio; Ferrante, Antonio

    2017-01-01

    In recent years, there is a growing interest for vegetables production in indoor or disadvantaged climatic zones by using greenhouses. The main problem of crop growing indoor or in environment with limited light availability is the correct choice of light source and the quality of lighting spectrum. In greenhouse and indoor cultivations, plant density is higher than in the open field and plants have to compete for light and nutrients. Nowadays, advanced systems for indoor horticulture use light emitting diodes (LED) for improving crop growth, enhancing the plant productivity and favouring the best nutritional quality formation. In closed environments, as indoor growing modules, the lighting system represents the only source of light and its features are fundamental for obtaining the best lighting performances for plant and the most efficient solution. LED lighting engines are more efficient compared to the lighting sources used traditionally in horticulture and allow light spectrum and intensity modulations to enhance the light use efficiency for plants. The lighting distribution and the digital controls are fundamental for tailoring the spectral distribution on each plant in specific moments of its growth and play an important role for optimizing growth and produce high-quality vegetables. LED lights can increase plant growth and yield, but also nutraceutical quality, since some light intensities increase pigments biosynthesis and enhance the antioxidants content of leaves or fruits: in this regards the selection of LED primary light sources in relation to the peaks of the absorbance curve of the plants is important.

  18. Residential Dehumidification Systems Research for Hot-Humid Climates

    SciTech Connect

    2005-02-01

    Twenty homes were tested and monitored in the hot-humid climate of Houston, Texas, to evaluate the humidity control performance and operating cost of six integrated dehumidification and ventilation systems.

  19. Agro-climatic adaptation of cropping systems under climate change in Shanghai

    NASA Astrophysics Data System (ADS)

    Liang, Zhuoran; Gu, Tingting; Tian, Zhan; Zhong, Honglin; Liang, Yuqi

    2015-09-01

    Climate change affects the heat and water resources required by agriculture, thus shifting cropping rotation and intensity. Shanghai is located in the Taihu Lake basin, a transition zone for various cropping systems. In the basin, moderate climate changes can cause major shifts in cropping intensity and rotation. In the present study, we integrated observational climate data, one regional climate model, land use maps, and agricultural statistics to analyze the relationship between heat resources and multi-cropping potential in Shanghai. The results of agro-climatic assessment showed that climate change over the past 50 years has significantly enhanced regional agroclimatic resources, rendering a shift from double cropping to triple cropping possible. However, a downward trend is evident in the actual multi-cropping index, caused principally by the increasing costs of farming and limitations in the supply of labor. We argue that improving the utilization rate of the enhanced agro-climatic resources is possible by introducing new combinations of cultivars, adopting more laborsaving technologies, and providing incentives to farmers.

  20. INTRODUCTION: Focus on Climate Engineering: Intentional Intervention in the Climate System

    NASA Astrophysics Data System (ADS)

    2009-12-01

    Geoengineering techniques for countering climate change have been receiving much press recently as a `Plan B' if a global deal to tackle climate change is not agreed at the COP15 negotiations in Copenhagen this December. However, the field is controversial as the methods may have unforeseen consequences, potentially making temperatures rise in some regions or reducing rainfall, and many aspects remain under-researched. This focus issue of Environmental Research Letters is a collection of research articles, invited by David Keith, University of Calgary, and Ken Caldeira, Carnegie Institution, that present and evaluate different methods for engineering the Earth's climate. Not only do the letters in this issue highlight various methods of climate engineering but they also detail the arguments for and against climate engineering as a concept. Further reading Focus on Geoengineering at http://environmentalresearchweb.org/cws/subject/tag=geoengineering IOP Conference Series: Earth and Environmental Science is an open-access proceedings service available at www.iop.org/EJ/journal/ees Focus on Climate Engineering: Intentional Intervention in the Climate System Contents Modification of cirrus clouds to reduce global warming David L Mitchell and William Finnegan Climate engineering and the risk of rapid climate change Andrew Ross and H Damon Matthews Researching geoengineering: should not or could not? Martin Bunzl Of mongooses and mitigation: ecological analogues to geoengineering H Damon Matthews and Sarah E Turner Toward ethical norms and institutions for climate engineering research David R Morrow, Robert E Kopp and Michael Oppenheimer On the possible use of geoengineering to moderate specific climate change impacts Michael C MacCracken The impact of geoengineering aerosols on stratospheric temperature and ozone P Heckendorn, D Weisenstein, S Fueglistaler, B P Luo, E Rozanov, M Schraner, L W Thomason and T Peter The fate of the Greenland Ice Sheet in a geoengineered

  1. Ultrasound Indoor Positioning System Based on a Low-Power Wireless Sensor Network Providing Sub-Centimeter Accuracy

    PubMed Central

    Medina, Carlos; Segura, José Carlos; De la Torre, Ángel

    2013-01-01

    This paper describes the TELIAMADE system, a new indoor positioning system based on time-of-flight (TOF) of ultrasonic signal to estimate the distance between a receiver node and a transmitter node. TELIAMADE system consists of a set of wireless nodes equipped with a radio module for communication and a module for the transmission and reception of ultrasound. The access to the ultrasonic channel is managed by applying a synchronization algorithm based on a time-division multiplexing (TDMA) scheme. The ultrasonic signal is transmitted using a carrier frequency of 40 kHz and the TOF measurement is estimated by applying a quadrature detector to the signal obtained at the A/D converter output. Low sampling frequencies of 17.78 kHz or even 12.31 kHz are possible using quadrature sampling in order to optimize memory requirements and to reduce the computational cost in signal processing. The distance is calculated from the TOF taking into account the speed of sound. An excellent accuracy in the estimation of the TOF is achieved using parabolic interpolation to detect of maximum of the signal envelope at the matched filter output. The signal phase information is also used for enhancing the TOF measurement accuracy. Experimental results show a root mean square error (rmse) less than 2 mm and a standard deviation less than 0.3 mm for pseudorange measurements in the range of distances between 2 and 6 m. The system location accuracy is also evaluated by applying multilateration. A sub-centimeter location accuracy is achieved with an average rmse of 9.6 mm. PMID:23486218

  2. Ultrasound indoor positioning system based on a low-power wireless sensor network providing sub-centimeter accuracy.

    PubMed

    Medina, Carlos; Segura, José Carlos; De la Torre, Ángel

    2013-03-13

    This paper describes the TELIAMADE system, a new indoor positioning system based on time-of-flight (TOF) of ultrasonic signal to estimate the distance between a receiver node and a transmitter node. TELIAMADE system consists of a set of wireless nodes equipped with a radio module for communication and a module for the transmission and reception of ultrasound. The access to the ultrasonic channel is managed by applying a synchronization algorithm based on a time-division multiplexing (TDMA) scheme. The ultrasonic signal is transmitted using a carrier frequency of 40 kHz and the TOF measurement is estimated by applying a quadrature detector to the signal obtained at the A/D converter output. Low sampling frequencies of 17.78 kHz or even 12.31 kHz are possible using quadrature sampling in order to optimize memory requirements and to reduce the computational cost in signal processing. The distance is calculated from the TOF taking into account the speed of sound. An excellent accuracy in the estimation of the TOF is achieved using parabolic interpolation to detect of maximum of the signal envelope at the matched filter output. The signal phase information is also used for enhancing the TOF measurement accuracy. Experimental results show a root mean square error (rmse) less than 2 mm and a standard deviation less than 0.3 mm for pseudorange measurements in the range of distances between 2 and 6 m. The system location accuracy is also evaluated by applying multilateration. A sub-centimeter location accuracy is achieved with an average rmse of 9.6 mm.

  3. Quantifying the increasing sensitivity of power systems to climate variability

    NASA Astrophysics Data System (ADS)

    Bloomfield, H. C.; Brayshaw, D. J.; Shaffrey, L. C.; Coker, P. J.; Thornton, H. E.

    2016-12-01

    Large quantities of weather-dependent renewable energy generation are expected in power systems under climate change mitigation policies, yet little attention has been given to the impact of long term climate variability. By combining state-of-the-art multi-decadal meteorological records with a parsimonious representation of a power system, this study characterises the impact of year-to-year climate variability on multiple aspects of the power system of Great Britain (including coal, gas and nuclear generation), demonstrating why multi-decadal approaches are necessary. All aspects of the example system are impacted by inter-annual climate variability, with the impacts being most pronounced for baseload generation. The impacts of inter-annual climate variability increase in a 2025 wind-power scenario, with a 4-fold increase in the inter-annual range of operating hours for baseload such as nuclear. The impacts on peak load and peaking-plant are comparably small. Less than 10 years of power supply and demand data are shown to be insufficient for providing robust power system planning guidance. This suggests renewable integration studies—widely used in policy, investment and system design—should adopt a more robust approach to climate characterisation.

  4. The impacts of climate change in coastal marine systems.

    PubMed

    Harley, Christopher D G; Randall Hughes, A; Hultgren, Kristin M; Miner, Benjamin G; Sorte, Cascade J B; Thornber, Carol S; Rodriguez, Laura F; Tomanek, Lars; Williams, Susan L

    2006-02-01

    Anthropogenically induced global climate change has profound implications for marine ecosystems and the economic and social systems that depend upon them. The relationship between temperature and individual performance is reasonably well understood, and much climate-related research has focused on potential shifts in distribution and abundance driven directly by temperature. However, recent work has revealed that both abiotic changes and biological responses in the ocean will be substantially more complex. For example, changes in ocean chemistry may be more important than changes in temperature for the performance and survival of many organisms. Ocean circulation, which drives larval transport, will also change, with important consequences for population dynamics. Furthermore, climatic impacts on one or a few 'leverage species' may result in sweeping community-level changes. Finally, synergistic effects between climate and other anthropogenic variables, particularly fishing pressure, will likely exacerbate climate-induced changes. Efforts to manage and conserve living marine systems in the face of climate change will require improvements to the existing predictive framework. Key directions for future research include identifying key demographic transitions that influence population dynamics, predicting changes in the community-level impacts of ecologically dominant species, incorporating populations' ability to evolve (adapt), and understanding the scales over which climate will change and living systems will respond.

  5. Prediction of indoor radon concentrations in dwellings in the Oslo region - a model based on geographical information systems

    NASA Astrophysics Data System (ADS)

    Kollerud, R.; Blaasaas, K.; Ganerød, G.; Daviknes, H. K.; Aune, E.; Claussen, B.

    2013-06-01

    The purpose of this study was to develop a method to estimate the radon concentration inside each dwelling in the Oslo region, Norway. The model was based on indoor radon measurements from dwellings at predefined distances from the unmeasured dwellings. The results were evaluated by comparing them with actual indoor measurements, airborne gamma ray spectrometry measurements and bedrock geology. It is the first study to evaluate the reliability between estimated indoor radon in each dwelling with airborne measurements (eK, eTh and eU) and underlying geology around the house in a large population. A total of 28 396 indoor radon measurements showed that 42.2% of the dwellings had a radon value higher than the threshold limit of 100 Bq m-3. 18.9% of the dwellings were above the maximum action level of 200 Bq m-3. A positive correlation was found between indoor radon concentration, bedrock geology and airborne gamma measurements (Pearson correlation: eK: 0.42, eTh: 0.67 and eU: 0.65). Highest correlation was found in areas with alum shale (eU: 0.74). Intraclass Correlation Coefficients (ICCs) showed a good agreement between radon estimates from our method and radon estimates from the regression model with ICC values between 0.54 and 0.67.

  6. Climate Change Impact Assessments for International Market Systems (CLIMARK)

    NASA Astrophysics Data System (ADS)

    Winkler, J. A.; Andresen, J.; Black, J.; Bujdoso, G.; Chmielewski, F.; Kirschke, D.; Kurlus, R.; Liszewska, M.; Loveridge, S.; Niedzwiedz, T.; Nizalov, D.; Rothwell, N.; Tan, P.; Ustrnul, Z.; von Witzke, H.; Zavalloni, C.; Zhao, J.; Zhong, S.

    2012-12-01

    The vast majority of climate change impact assessments evaluate how local or regional systems and processes may be affected by a future climate. Alternative strategies that extend beyond the local or regional scale are needed when assessing the potential impacts of climate change on international market systems, including agricultural commodities. These industries have multiple production regions that are distributed worldwide and are likely to be differentially impacted by climate change. Furthermore, for many industries and market systems, especially those with long-term climate-dependent investments, temporal dynamics need to be incorporated into the assessment process, including changing patterns of international trade, consumption and production, and evolving adaptation strategies by industry stakeholder groups. A framework for conducting climate change assessments for international market systems, developed as part of the CLIMARK (Climate Change and International Markets) project is outlined, and progress toward applying the framework for an impact assessment for the international tart cherry industry is described. The tart cherry industry was selected for analysis in part because tart cherries are a perennial crop requiring long-term investments by the producer. Components of the project include the preparation of fine resolution climate scenarios, evaluation of phenological models for diverse production regions, the development of a yield model for tart cherry production, new methods for incorporating individual decision making and adaptation options into impact assessments, and modification of international trade models for use in impact studies. Innovative aspects of the project include linkages between model components and evaluation of the mega-uncertainty surrounding the assessment outcomes. Incorporation of spatial and temporal dynamics provides a more comprehensive evaluation of climate change impacts and an assessment product of potentially greater

  7. Developing a National Climate Indicators System to Track Climate Changes, Impacts, Vulnerabilities, and Preparedness

    NASA Astrophysics Data System (ADS)

    Kenney, M. A.; Janetos, A. C.; Arndt, D.; Chen, R. S.; Pouyat, R.; Anderson, S. M.

    2013-12-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. Part of the vision, which is now under development, for the sustained National Climate Assessment (NCA) process is a system of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information that is useful to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region. These indicators will be tracked as a part of ongoing assessment activities, with adjustments as necessary to adapt to changing conditions and understanding. The indicators will be reviewed and updated so that the system adapts to new information. The NCA indicator system is not intended to serve as a vehicle for documenting rigorous cause and effect relationships. It is reasonable, however, for it to serve as a guide to those factors that affect the evolution of variability and change in the climate system, the resources and sectors of concern that are affected by it, and how society chooses to respond. Different components of the end-to-end climate issue serve as categories within which to organize an end-to-end system of indicators: Greenhouse Gas Emissions and Sinks, Atmospheric Composition, Physical Climate Variability and Change, Sectors and Resources of Concern, and Adaptation and Mitigation Responses. This framing has several advantages. It can be used to identify the different components of the end-to-end climate issue that both decision-makers and researchers are interested in. It is independent of scale, and therefore allows the indicators themselves to be described at spatial

  8. Massive MIMO-OFDM indoor visible light communication system downlink architecture design

    NASA Astrophysics Data System (ADS)

    Lang, Tian; Li, Zening; Chen, Gang

    2014-10-01

    Multiple-input multiple-output (MIMO) technique is now used in most new broadband communication system, and orthogonal frequency division multiplexing (OFDM) is also utilized within current 4th generation (4G) of mobile telecommunication technology. With MIMO and OFDM combined, visible light communication (VLC) system's diversity gain is increase, yet system capacity for dispersive channels is also enhanced. Moreover, with the emerging massive MIMO-OFDM VLC system, there are significant advantages than smaller systems' such as channel hardening, further increasing of energy efficiency (EE) and spectral efficiency (SE) based on law of large number. This paper addresses one of the major technological challenges, system architecture design, which was solved by semispherical beehive structure (SBS) receiver and so that diversity gain can be identified and applied in Massive MIMO VLC system. Simulation results shows that the proposed design clearly presents a spatial diversity over conventional VLC systems.

  9. HVAC System Automatic Controls and Indoor Air Quality in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Wheeler, Arthur E.

    Fans, motors, coils, and other control components enable a heating, ventilating, and air-conditioning (HVAC) system to function smoothly. An explanation of these control components and how they make school HVAC systems work is provided. Different systems may be compared by counting the number of controlled devices that are required. Control…

  10. Organizational Reward Systems: Implications for Climate.

    DTIC Science & Technology

    1982-09-01

    engage in behaviors that lead to desired reinforcements produces learned helplessness and reduced effort ( Seligman , 1975). Thus, clarity about...Climate 35 Schrauger, J. S. Responses to evaluation as a function of initial self- perceptions. Psychological Bulletin, 1975, 82, 581-596. Seligman , M...Dorothy Benson, Linda Dutton, Deborah Main, and Barbara Olson for their assistance. LIST l/Mandatory LIST 2/ONR Field (continued) Defense Technical

  11. Comments on Current Space Systems Observing the Climate

    NASA Astrophysics Data System (ADS)

    Fisk, L. A.

    2016-07-01

    The Global Climate Observing System (GCOS), which was established in 1992, has been effective in specifying the observations needed for climate studies, and advocating that these observations be made. As a result, there are essential climate variables being observed, particularly from space, and these have formed the basis for our ever-improving models of how the Earth system functions and the human impact on it. We cannot conclude, however, that the current observing system in space is adequate. Climate change is accelerating, and we need to ensure that our observations capture, with completeness and with proper resolution and cadence, the most important changes. Perhaps of most significance, we need to use observations from space to guide the mitigation and adaptation strategies on which at last our civilization seems prepared to embark. And we need to use our observations to educate particularly policy makers on the reality of climate change, so that none deny the need to act. COSPAR is determined to play its part in highlighting the need to strengthen the climate observing system and notably its research component. This is being accomplished through events like the present roundtable, through the work of its Scientific Commission A, its Task Group on GEO (where COSPAR is serving as a member of its Program Board), and by promoting among space agencies and policy-makers the recently released scientific roadmap on Integrated Earth System Science for the period 2016-2025.

  12. Investigations of the Climate System Response to Climate Engineering in a Hierarchy of Models

    NASA Astrophysics Data System (ADS)

    McCusker, Kelly E.

    Global warming due to anthropogenic emissions of greenhouse gases is causing negative impacts on diverse ecological and human systems around the globe, and these impacts are projected to worsen as climate continues to warm. In the absence of meaningful greenhouse gas emissions reductions, new strategies have been proposed to engineer the climate, with the aim of preventing further warming and avoiding associated climate impacts. We investigate one such strategy here, falling under the umbrella of `solar radiation management', in which sulfate aerosols are injected into the stratosphere. We use a global climate model with a coupled mixed-layer depth ocean and with a fully-coupled ocean general circulation model to simulate the stabilization of climate by balancing increasing carbon dioxide with increasing stratospheric sulfate concentrations. We evaluate whether or not severe climate impacts, such as melting Arctic sea ice, tropical crop failure, or destabilization of the West Antarctic ice sheet, could be avoided. We find that while tropical climate emergencies might be avoided by use of stratospheric aerosol injections, avoiding polar emergencies cannot be guaranteed due to large residual climate changes in those regions, which are in part due to residual atmospheric circulation anomalies. We also find that the inclusion of a fully-coupled ocean is important for determining the regional climate response because of its dynamical feedbacks. The efficacy of stratospheric sulfate aerosol injections, and solar radiation management more generally, depends on its ability to be maintained indefinitely, without interruption from a variety of possible sources, such as technological failure, a breakdown in global cooperation, lack of funding, or negative unintended consequences. We next consider the scenario in which stratospheric sulfate injections are abruptly terminated after a multi- decadal period of implementation while greenhouse gas emissions have continued unabated

  13. Developing a System of National Climate Assessment Indicators to Track Climate Change Impacts, Vulnerabilities, and Preparedness

    NASA Astrophysics Data System (ADS)

    Janetos, A. C.; Kenney, M. A.; Chen, R. S.; Arndt, D.

    2012-12-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years (http://globalchange.gov/what-we-do/assessment/). Part of the vision for the sustained National Climate Assessment (NCA) process is a system of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information that is useful to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region. These indicators will be tracked as a part of ongoing assessment activities, with adjustments as necessary to adapt to changing conditions and understanding. The indicators will be reviewed and updated so that the system adapts to new information. The NCA indicator system is not intended to serve as a vehicle for documenting rigorous cause and effect relationships. It is reasonable, however, for it to serve as a guide to those factors that affect the evolution of variability and change in the climate system, the resources and sectors of concern that are affected by it, and how society chooses to respond. Different components of the end-to-end climate issue serve as categories within which to organize an end-to-end system of indicators: Greenhouse Gas Emissions and Sinks Atmospheric Composition Physical Climate Variability and Change Sectors and Resources of Concern Adaptation and Mitigation Responses This framing has several advantages. It can be used to identify the different components of the end-to-end climate issue that both decision-makers and researchers are interested in. It is independent of scale, and therefore allows the indicators themselves to be described at

  14. Indoor Air Quality in Schools.

    ERIC Educational Resources Information Center

    Torres, Vincent M.

    Asserting that the air quality inside schools is often worse than outdoor pollution, leading to various health complaints and loss of productivity, this paper details factors contributing to schools' indoor air quality. These include the design, operation, and maintenance of heating, ventilating, and air conditioning (HVAC) systems; building…

  15. Indoor Air Quality Management Program.

    ERIC Educational Resources Information Center

    Anne Arundel County Public Schools, Annapolis, MD.

    In an effort to provide Indoor Air Quality (IAQ) management guidance, Anne Arundel County Public Schools was selected by the Maryland State Department of Education to develop a program that could be used by other school systems. A major goal was to produce a handbook that was "user friendly." Hence, its contents are a mix of history,…

  16. Performance evaluation of an acoustic indoor localization system based on a fingerprinting technique

    NASA Astrophysics Data System (ADS)

    Aloui, Nadia; Raoof, Kosai; Bouallegue, Ammar; Letourneur, Stephane; Zaibi, Sonia

    2014-12-01

    We present an acoustic location system that adopts the time of arrival of the path of maximum amplitude as a signature and estimates the target position through nonparametric kernel regression. The system was evaluated in experiments for two main configurations: a privacy-oriented configuration with code division multiple access operation and a centralized configuration with time division multiple access operation. The effects of the number and positions of sources on the performance of the privacy-oriented system was studied. Moreover, the effect of the number of fingerprint positions on the performance of both systems was investigated. Results showed that our privacy-oriented scheme provides an accuracy of 8.5 cm with 87% precision, whereas our centralized system provides an accuracy of 2.7 cm for 93% of measurements. A comparison between our privacy-oriented system and another acoustic location system based on code division multiple access operation and lateration was conducted on our test bench and revealed that the cumulative error distribution function of the fingerprint-based system is better than that of the lateration-based system. This result is similar to that found for Wi-Fi radio-based localization. However, our experiments are the first to demonstrate the detrimental effect that reverberation has on naive acoustic localization approaches.

  17. Arctic melt ponds and energy balance in the climate system

    NASA Astrophysics Data System (ADS)

    Sudakov, Ivan

    2017-02-01

    Elements of Earth's cryosphere, such as the summer Arctic sea ice pack, are melting at precipitous rates that have far outpaced the projections of large scale climate models. Understanding key processes, such as the evolution of melt ponds that form atop Arctic sea ice and control its optical properties, is crucial to improving climate projections. These types of critical phenomena in the cryosphere are of increasing interest as the climate system warms, and are crucial for predicting its stability. In this paper, we consider how geometrical properties of melt ponds can influence ice-albedo feedback and how it can influence the equilibria in the energy balance of the planet.

  18. Discontinuous and Continuous Indoor Air Quality Monitoring in Homes with Fireplaces or Wood Stoves as Heating System

    PubMed Central

    de Gennaro, Gianluigi; Dambruoso, Paolo Rosario; Di Gilio, Alessia; Di Palma, Valerio; Marzocca, Annalisa; Tutino, Maria

    2015-01-01

    Around 50% of the world’s population, particularly in developing countries, uses biomass as one of the most common fuels. Biomass combustion releases a considerable amount of various incomplete combustion products, including particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs). The paper presents the results of Indoor Air Quality (IAQ) measurements in six houses equipped with wood burning stoves or fireplaces as heating systems. The houses were monitored for 48-h periods in order to collect PM10 samples and measure PAH concentrations. The average, the maximum and the lowest values of the 12-h PM10 concentration were 68.6 μg/m3, 350.7 μg/m3 and 16.8 μg/m3 respectively. The average benzo[a]pyrene 12-h concentration was 9.4 ng/m3, while the maximum and the minimum values were 24.0 ng/m3 and 1.5 ng/m3, respectively. Continuous monitoring of PM10, PAHs, Ultra Fine Particle (UFP) and Total Volatile Organic Compounds (TVOC) was performed in order to study the progress of pollution phenomena due to biomass burning, their trends and contributions to IAQ. The results show a great heterogeneity of impacts on IAQ in terms of magnitude and behavior of the considered pollutants’ concentrations. This variability is determined by not only different combustion technologies or biomass quality, but overall by different ignition mode, feeding and flame management, which can also be different for the same house. Moreover, room dimensions and ventilation were significant factors for pollution dispersion. The increase of PM10, UFP and PAH concentrations, during lighting, was always detected and relevant. Continuous monitoring allowed singling out contributions of other domestic sources of considered pollutants such as cooking and cigarettes. Cooking contribution produced an impact on IAQ in same cases higher than that of the biomass heating system. PMID:26712773

  19. Discontinuous and Continuous Indoor Air Quality Monitoring in Homes with Fireplaces or Wood Stoves as Heating System.

    PubMed

    de Gennaro, Gianluigi; Dambruoso, Paolo Rosario; Di Gilio, Alessia; Di Palma, Valerio; Marzocca, Annalisa; Tutino, Maria

    2015-12-24

    Around 50% of the world's population, particularly in developing countries, uses biomass as one of the most common fuels. Biomass combustion releases a considerable amount of various incomplete combustion products, including particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs). The paper presents the results of Indoor Air Quality (IAQ) measurements in six houses equipped with wood burning stoves or fireplaces as heating systems. The houses were monitored for 48-h periods in order to collect PM10 samples and measure PAH concentrations. The average, the maximum and the lowest values of the 12-h PM10 concentration were 68.6 μg/m³, 350.7 μg/m³ and 16.8 μg/m³ respectively. The average benzo[a]pyrene 12-h concentration was 9.4 ng/m³, while the maximum and the minimum values were 24.0 ng/m³ and 1.5 ng/m³, respectively. Continuous monitoring of PM10, PAHs, Ultra Fine Particle (UFP) and Total Volatile Organic Compounds (TVOC) was performed in order to study the progress of pollution phenomena due to biomass burning, their trends and contributions to IAQ. The results show a great heterogeneity of impacts on IAQ in terms of magnitude and behavior of the considered pollutants' concentrations. This variability is determined by not only different combustion technologies or biomass quality, but overall by different ignition mode, feeding and flame management, which can also be different for the same house. Moreover, room dimensions and ventilation were significant factors for pollution dispersion. The increase of PM10, UFP and PAH concentrations, during lighting, was always detected and relevant. Continuous monitoring allowed singling out contributions of other domestic sources of considered pollutants such as cooking and cigarettes. Cooking contribution produced an impact on IAQ in same cases higher than that of the biomass heating system.

  20. Use of an Acoustic Orientation System for Indoor Travel with a Spatially Disabled Blind Man.

    ERIC Educational Resources Information Center

    Lancioni, G. E.; And Others

    1996-01-01

    An acoustic orientation system was developed that employed a portable remote control device keyed to trigger audio tones from modules placed at key locations throughout the user's home and work environments. Results found that the system helped a blind subject to move and work successfully in both settings, and the subject found it easy and…

  1. An Indoor Obstacle Detection System Using Depth Information and Region Growth

    PubMed Central

    Huang, Hsieh-Chang; Hsieh, Ching-Tang; Yeh, Cheng-Hsiang

    2015-01-01

    This study proposes an obstacle detection method that uses depth information to allow the visually impaired to avoid obstacles when they move in an unfamiliar environment. The system is composed of three parts: scene detection, obstacle detection and a vocal announcement. This study proposes a new method to remove the ground plane that overcomes the over-segmentation problem. This system addresses the over-segmentation problem by removing the edge and the initial seed position problem for the region growth method using the Connected Component Method (CCM). This system can detect static and dynamic obstacles. The system is simple, robust and efficient. The experimental results show that the proposed system is both robust and convenient. PMID:26512674

  2. Climate information for public health: the role of the IRI climate data library in an integrated knowledge system.

    PubMed

    del Corral, John; Blumenthal, M Benno; Mantilla, Gilma; Ceccato, Pietro; Connor, Stephen J; Thomson, Madeleine C

    2012-09-01

    Public health professionals are increasingly concerned about the potential impact of climate variability and change on health outcomes. Protecting public health from the vagaries of climate requires new working relationships between the public health sector and the providers of climate data and information. The Climate Information for Public Health Action initiative at the International Research Institute for Climate and Society (IRI) is designed to increase the public health community's capacity to understand, use and demand appropriate climate data and climate information to mitigate the public health impacts of the climate. Significant challenges to building the capacity of health professionals to use climate information in research and decision-making include the difficulties experienced by many in accessing relevant and timely quality controlled data and information in formats that can be readily incorporated into specific analysis with other data sources. We present here the capacities of the IRI climate data library and show how we have used it to build an integrated knowledge system in the support of the use of climate and environmental information in climate-sensitive decision-making with respect to health. Initiated as an aid facilitating exploratory data analysis for climate scientists, the IRI climate data library has emerged as a powerful tool for interdisciplinary researchers focused on topics related to climate impacts on society, including health.

  3. Modeling of multi-channel MIMO-VLC systems in the indoor environment

    NASA Astrophysics Data System (ADS)

    Kowalczyk, Marcin

    2016-09-01

    The article presents a concept of simultaneous using multiple channels for data transmission (an approach MIMO- multiple input multiple output) in the visible light communication systems (VLC), which are considered here as their implementation inside buildings, in the aspect of their numerical modeling. There was presented both a mathematical description (a model) of such systems as well as obtained on this basis results in relation to the instances of MIMO-VLC system with two and four channels, respectively. The so-called non-imaging detectors were used at the receiver side . Obtained results allowed to gain a few valuable conclusions that were included in the last section of article.

  4. Follow-up durability measurements and mitigation-performance improvement tests in 38 Eastern Pennsylvania houses having indoor radon-reduction systems. Final report, Oct 89-Feb 90

    SciTech Connect

    Findlay, W.O.; Robertson, A.; Scott, A.G.

    1991-03-01

    The report gives results of follow-up tests in 38 difficult-to-mitigate Pennsylvania houses where indoor radon reduction systems had been installed 2 to 4 years earlier. Objectives were to assess system durability, methods for improving performance, and methods for reducing installation and operating costs. The durability tests indicated that the 38 systems have not experienced any significant degradation in indoor radon levels or in system flows/suctions, except in 6 houses where system fans failed, and in houses where homeowners turned off the systems. Tests to improve performance indicated that nearly all of the elevated residual radon levels are due to re-entrainment back into the house of very-high-radon exhaust gas from the soil depressurization systems, and to radon release from well water. Tests to reduce system costs showed that premitigation sub-slab suction field measurements can help prevent installation of too many suction pipes when communication is good, but suggest a need for too many pipes when communication is poor. Soil depressurization fans could not be turned down to the extent expected in some systems that were over-designed. Between 6 and 42% of the exhausted air was withdrawn from the house.

  5. Performance analysis of precoding-based asymmetrically clipped optical orthogonal frequency division multiplexing wireless system in additive white Gaussian noise and indoor multipath channel

    NASA Astrophysics Data System (ADS)

    Ranjha, Bilal; Zhou, Zhou; Kavehrad, Mohsen

    2014-08-01

    We have compared the bit error rate (BER) performance of precoding-based asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) and pulse amplitude modulated discrete multitone (PAM-DMT) optical wireless (OW) systems in additive white Gaussian noise (AWGN) and indoor multipath frequency selective channel. Simulation and analytical results show that precoding schemes such as discrete Fourier transform, discrete cosine transform, and Zadoff-Chu sequences do not affect the performance of the OW systems in the AWGN channel while they do reduce the peak-to-average power ratio (PAPR) of the OFDM output signal. However, in a multipath indoor channel, using zero forcing frequency domain equalization precoding-based systems give better BER performance than their conventional counterparts. With additional clipping to further reduce the PAPR, precoding-based systems also show better BER performance compared to nonprecoded systems when clipped relative to the peak of nonprecoded systems. Therefore, precoding-based ACO-OFDM and PAM-DMT systems offer better BER performance, zero signaling overhead, and low PAPR compared to conventional systems.

  6. Embedded DSP-based telehealth radar system for remote in-door fall detection.

    PubMed

    Garripoli, Carmine; Mercuri, Marco; Karsmakers, Peter; Jack Soh, Ping; Crupi, Giovanni; Vandenbosch, Guy A E; Pace, Calogero; Leroux, Paul; Schreurs, Dominique

    2015-01-01

    Telehealth systems and applications are extensively investigated nowadays to enhance the quality-of-care and, in particular, to detect emergency situations and to monitor the well-being of elderly people, allowing them to stay at home independently as long as possible. In this paper, an embedded telehealth system for continuous, automatic, and remote monitoring of real-time fall emergencies is presented and discussed. The system, consisting of a radar sensor and base station, represents a cost-effective and efficient healthcare solution. The implementation of the fall detection data processing technique, based on the least-square support vector machines, through a digital signal processor and the management of the communication between radar sensor and base station are detailed. Experimental tests, for a total of 65 mimicked fall incidents, recorded with 16 human subjects (14 men and two women) that have been monitored for 320 min, have been used to validate the proposed system under real circumstances. The subjects' weight is between 55 and 90 kg with heights between 1.65 and 1.82 m, while their age is between 25 and 39 years. The experimental results have shown a sensitivity to detect the fall events in real time of 100% without reporting false positives. The tests have been performed in an area where the radar's operation was not limited by practical situations, namely, signal power, coverage of the antennas, and presence of obstacles between the subject and the antennas.

  7. RELATIONSHIP BETWEEN HVAC SYSTEM OPERATION, AIR EXCHANGE RATE, AND INDOOR-OUTDOOR PARTICULATE MATTER RATIOS

    EPA Science Inventory

    Measurements of duty cycle , the fraction of time the heating and cooling (HVAC) system was operating, were made in each participant's home during the spring season of the RTP Particulate Matter Panel Study. A miniature temperature sensor/data logger combination placed on the ...

  8. Is there a Climate Network - A Backbone of the Climate System? (Invited)

    NASA Astrophysics Data System (ADS)

    Kurths, J.

    2010-12-01

    We consider an inverse problem: Is there a backbone-like structure underlying the climate system? For this we propose a method to reconstruct and analyze a complex network from data generated by a spatio-temporal dynamical system. This technique is then applied to reanalysis and model surface air temperature data. Parameters of this network, as betweenness centrality, uncover relations to global circulation patterns in oceans and atmosphere. We especially study the role of hubs and of long range connections, called teleconnections, in the flows of energy and matter in the climate system. The global scale view on climate networks offers promising new perspectives for detecting dynamical structures based on nonlinear physical processes in the climate system. References Arenas, A., A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Phys. Reports 2008, 469, 93. Donges, J., Y. Zou, N. Marwan, and J. Kurths, Europ. Phys. J. ST 2009, 174, 157-179. Donges, J., Y. Zou, N. Marwan, and J. Kurths, Europhys. Lett. 2009, 87, 48007. Nawrath, J. et al., Phys. Rev. Lett. 2010, 104, 038701. Donner, R., Y. Zou, J. Donges, N. Marwan, and J. Kurths, Phys. Rev. E 2010, 81, 015101(R ).

  9. Incorporating climate-system and carbon-cycle uncertainties in integrated assessments of climate change. (Invited)

    NASA Astrophysics Data System (ADS)

    Rogelj, J.; McCollum, D. L.; Reisinger, A.; Knutti, R.; Riahi, K.; Meinshausen, M.

    2013-12-01

    The field of integrated assessment draws from a large body of knowledge across a range of disciplines to gain robust insights about possible interactions, trade-offs, and synergies. Integrated assessment of climate change, for example, uses knowledge from the fields of energy system science, economics, geophysics, demography, climate change impacts, and many others. Each of these fields comes with its associated caveats and uncertainties, which should be taken into account when assessing any results. The geophysical system and its associated uncertainties are often represented by models of reduced complexity in integrated assessment modelling frameworks. Such models include simple representations of the carbon-cycle and climate system, and are often based on the global energy balance equation. A prominent example of such model is the 'Model for the Assessment of Greenhouse Gas Induced Climate Change', MAGICC. Here we show how a model like MAGICC can be used for the representation of geophysical uncertainties. Its strengths, weaknesses, and limitations are discussed and illustrated by means of an analysis which attempts to integrate socio-economic and geophysical uncertainties. These uncertainties in the geophysical response of the Earth system to greenhouse gases remains key for estimating the cost of greenhouse gas emission mitigation scenarios. We look at uncertainties in four dimensions: geophysical, technological, social and political. Our results indicate that while geophysical uncertainties are an important factor influencing projections of mitigation costs, political choices that delay mitigation by one or two decades a much more pronounced effect.

  10. Design of an HF-Band RFID System with Multiple Readers and Passive Tags for Indoor Mobile Robot Self-Localization

    PubMed Central

    Mi, Jian; Takahashi, Yasutake

    2016-01-01

    Radio frequency identification (RFID) technology has already been explored for efficient self-localization of indoor mobile robots. A mobile robot equipped with RFID readers detects passive RFID tags installed on the floor in order to locate itself. The Monte-Carlo localization (MCL) method enables the localization of a mobile robot equipped with an RFID system with reasonable accuracy, sufficient robustness and low computational cost. The arrangements of RFID readers and tags and the size of antennas are important design parameters for realizing accurate and robust self-localization using a low-cost RFID system. The design of a likelihood model of RFID tag detection is also crucial for the accurate self-localization. This paper presents a novel design and arrangement of RFID readers and tags for indoor mobile robot self-localization. First, by considering small-sized and large-sized antennas of an RFID reader, we show how the design of the likelihood model affects the accuracy of self-localization. We also design a novel likelihood model by taking into consideration the characteristics of the communication range of an RFID system with a large antenna. Second, we propose a novel arrangement of RFID tags with eight RFID readers, which results in the RFID system configuration requiring much fewer readers and tags while retaining reasonable accuracy of self-localization. We verify the performances of MCL-based self-localization realized using the high-frequency (HF)-band RFID system with eight RFID readers and a lower density of RFID tags installed on the floor based on MCL in simulated and real environments. The results of simulations and real environment experiments demonstrate that our proposed low-cost HF-band RFID system realizes accurate and robust self-localization of an indoor mobile robot. PMID:27483279

  11. Design of an HF-Band RFID System with Multiple Readers and Passive Tags for Indoor Mobile Robot Self-Localization.

    PubMed

    Mi, Jian; Takahashi, Yasutake

    2016-07-29

    Radio frequency identification (RFID) technology has already been explored for efficient self-localization of indoor mobile robots. A mobile robot equipped with RFID readers detects passive RFID tags installed on the floor in order to locate itself. The Monte-Carlo localization (MCL) method enables the localization of a mobile robot equipped with an RFID system with reasonable accuracy, sufficient robustness and low computational cost. The arrangements of RFID readers and tags and the size of antennas are important design parameters for realizing accurate and robust self-localization using a low-cost RFID system. The design of a likelihood model of RFID tag detection is also crucial for the accurate self-localization. This paper presents a novel design and arrangement of RFID readers and tags for indoor mobile robot self-localization. First, by considering small-sized and large-sized antennas of an RFID reader, we show how the design of the likelihood model affects the accuracy of self-localization. We also design a novel likelihood model by taking into consideration the characteristics of the communication range of an RFID system with a large antenna. Second, we propose a novel arrangement of RFID tags with eight RFID readers, which results in the RFID system configuration requiring much fewer readers and tags while retaining reasonable accuracy of self-localization. We verify the performances of MCL-based self-localization realized using the high-frequency (HF)-band RFID system with eight RFID readers and a lower density of RFID tags installed on the floor based on MCL in simulated and real environments. The results of simulations and real environment experiments demonstrate that our proposed low-cost HF-band RFID system realizes accurate and robust self-localization of an indoor mobile robot.

  12. Indoor Air Quality and Energy Efficiency

    EPA Pesticide Factsheets

    EPA completed an extensive modeling study to assess the compatibilities and trade-offs between energy, indoor air quality, and thermal comfort objectives for HVAC systems and to formulate strategies for superior performance across all areas.

  13. Modeling lakes and reservoirs in the climate system

    USGS Publications Warehouse

    MacKay, M.D.; Neale, P.J.; Arp, C.D.; De Senerpont Domis, L. N.; Fang, X.; Gal, G.; Jo, K.D.; Kirillin, G.; Lenters, J.D.; Litchman, E.; MacIntyre, S.; Marsh, P.; Melack, J.; Mooij, W.M.; Peeters, F.; Quesada, A.; Schladow, S.G.; Schmid, M.; Spence, C.; Stokes, S.L.

    2009-01-01

    Modeling studies examining the effect of lakes on regional and global climate, as well as studies on the influence of climate variability and change on aquatic ecosystems, are surveyed. Fully coupled atmosphere-land surface-lake climate models that could be used for both of these types of study simultaneously do not presently exist, though there are many applications that would benefit from such models. It is argued here that current understanding of physical and biogeochemical processes in freshwater systems is sufficient to begin to construct such models, and a path forward is proposed. The largest impediment to fully representing lakes in the climate system lies in the handling of lakes that are too small to be explicitly resolved by the climate model, and that make up the majority of the lake-covered area at the resolutions currently used by global and regional climate models. Ongoing development within the hydrological sciences community and continual improvements in model resolution should help ameliorate this issue.

  14. Analysis of Ultra Wide Band (UWB) Technology for an Indoor Geolocation and Physiological Monitoring System

    DTIC Science & Technology

    2007-11-02

    in Figure 3 and Figure 4. Figure 3 is the frequency response and Figure 4 is the transient data from which it is derived. From Fourier analysis...with Matlab ® code and displayed in real time. This experiment demonstrated the feasibility in using PADs as a data communications system for...Contract Number Grant Number Program Element Number Author(s) 1st Lt Ceguiz Alabacak, TUAF Project Number Task Number Work Unit Number Performing

  15. Rainwater catchment system design using simulated future climate data

    NASA Astrophysics Data System (ADS)

    Wallace, Corey D.; Bailey, Ryan T.; Arabi, Mazdak

    2015-10-01

    Rainwater harvesting techniques are used worldwide to augment potable water supply, provide water for small-scale irrigation practices, increase rainwater-use efficiency for sustained crop growth in arid and semi-arid regions, decrease urban stormwater flow volumes, and in general to relieve dependency on urban water resources cycles. A number of methods have been established in recent years to estimate reliability of rainwater catchment systems (RWCS) and thereby properly size the components (roof catchment area, storage tank size) of the system for a given climatic region. These methods typically use historical or stochastically-generated rainfall patterns to quantify system performance and optimally size the system, with the latter accounting for possible rainfall scenarios based on statistical relationships of historical rainfall patterns. To design RWCS systems that can sustainably meet water demand under future climate conditions, this paper introduces a method that employs climatic data from general circulation models (GCMs) to develop a suite of catchment area vs. storage size design curves that capture uncertainty in future climate scenarios. Monthly rainfall data for the 2010-2050 time period is statistically downscaled to daily values using a Markov chain algorithm, with results used only from GCMs that yield rainfall patterns that are statistically consistent with historical rainfall patterns. The process is demonstrated through application to two climatic regions of the Federated States of Micronesia (FSM) in the western Pacific, wherein the majority of the population relies on rainwater harvesting for potable water supply. Through the use of design curves, communities can provide household RWCS that achieve a certain degree of storage reliability. The method described herein can be applied generally to any geographic region. It can be used to first, assess the future performance of existing household systems; and second, to design or modify systems

  16. Web Enabled Collaborative Climate Visualization in the Earth System Grid

    SciTech Connect

    Kendall, Wesley; Glatter, Markus; Huang, Jian; Hoffman, Forrest M; Bernholdt, David E

    2008-01-01

    The recent advances in high performance computing, storage and networking technologies have enabled fundamental changes in current climate research. While sharing datasets and results is already common practice in climate modeling, direct sharing of the analysis and visualization process is also becoming feasible. We report our efforts to develop a capability, coupled with the Earth System Grid (ESG), for sharing an entire executable workspace of visualization among collaborators. Evolutionary history of visualizations of research findings can also be captured and shared. The data intensive nature of the visualization system requires using several advanced techniques of visualization and parallel computing. With visualization clients implemented through standard web browsers, however, the ensuing complexity is made transparent to end-users. We demonstrate the efficacy of our system using cutting edge climate datasets.

  17. A power-efficient ZF precoding scheme for multi-user indoor visible light communication systems

    NASA Astrophysics Data System (ADS)

    Zhao, Qiong; Fan, Yangyu; Deng, Lijun; Kang, Bochao

    2017-02-01

    In this study, we propose a power-efficient ZF precoding scheme for visible light communication (VLC) downlink multi-user multiple-input-single-output (MU-MISO) systems, which incorporates the zero-forcing (ZF) and the characteristics of VLC systems. The main idea of this scheme is that the channel matrix used to perform pseudoinverse comes from the set of optical Access Points (APs) shared by more than one user, instead of the set of all involved serving APs as the existing ZF precoding schemes often used. By doing this, the waste of power, which is caused by the transmission of one user's data in the un-serving APs, can be avoided. In addition, the size of the channel matrix needs to perform pseudoinverse becomes smaller, which helps to reduce the computation complexity. Simulation results in two scenarios show that the proposed ZF precoding scheme has higher power efficiency, better bit error rate (BER) performance and lower computation complexity compared with traditional ZF precoding schemes.

  18. Vapor Transport to Indoor Environments

    EPA Science Inventory

    The indoor environment is an important microenvironment for human exposure to chemicals, both because people spend most of their time indoors and because chemicals are often at higher concentrations indoors versus outdoors. This chapter reviews the major components in estimating ...

  19. Climate observing system studies: An element of the NASA Climate Research Program: Workshop report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Plans for NASA's efforts in climatology were discussed. Targets for a comprehensive observing system for the early 1990's were considered. A program to provide useful data in the near and mid-term, and a program to provide for a feasibility assessment of instruments and methods for the development of a long-term system were discussed. Climate parameters that cannot be measured from space were identified. Long-term calibration, intercomparison, standards, and ground truth were discussed.

  20. Quality characteristics, chemical composition, and sensory properties of butter from cows on pasture versus indoor feeding systems.

    PubMed

    O'Callaghan, Tom F; Faulkner, Hope; McAuliffe, Stephen; O'Sullivan, Maurice G; Hennessy, Deirdre; Dillon, Pat; Kilcawley, Kieran N; Stanton, Catherine; Ross, R Paul

    2016-12-01

    This study evaluated the effects of 3 widely practiced cow feeding systems in the United States, Europe, and Southern Hemisphere regions on the characteristics, quality, and consumer perception of sweet cream butter. Fifty-four multiparous and primiparous Friesian cows were divided into 3 groups (n=18) for an entire lactation. Group 1 was housed indoors and fed a total mixed ration diet (TMR) of grass silage, maize silage, and concentrates; group 2 was maintained outdoors on perennial ryegrass-only pasture (GRS); and group 3 was maintained outdoors on a perennial ryegrass/white clover pasture (CLV). Mid-lactation butter was manufactured in triplicate with milk from each group in June 2015 (137±7d in milk) and was analyzed over a 6-mo storage period at 5°C for textural and thermal properties, fatty acid composition, sensory properties, and volatile compounds. The nutritional value of butters was improved by pasture feeding, and butter from pasture-fed cows had significantly lower thrombogenicity index scores compared with butters from TMR-fed cows. In line with these results, pasture-derived milks (GRS and CLV) produced butter with significantly higher concentrations of conjugated linoleic acid (cis-9,trans-11) and trans-β-carotene than TMR butter. Alterations in the fatty acid composition of butter contributed to significant differences in textural and thermal properties of the butters. Total mixed ration-derived butters had significantly higher hardness scores at room temperature than those of GRS and CLV. Onset of crystallization for TMR butters also occurred at significantly higher temperatures compared with pasture butters. Volatile analysis of butter by gas chromatography-mass spectrometry identified 25 compounds present in each of the butters, 5 of which differed significantly based on feeding system, including acetone, 2-butanone, 1-pentenol, toluene, and β-pinene. Toluene was very significantly correlated with pasture-derived butter. Sensory analysis

  1. An early warning system for high climate sensitivity? (Invited)

    NASA Astrophysics Data System (ADS)

    Pierrehumbert, R.

    2010-12-01

    The scientific case for the clear and present danger of global warming has been unassailable at least since the release of the Charney Report more than thirty years ago, if not longer. While prompt action to begin decarbonizing energy systems could still head off much of the potential warming, it is distinctly possible that emissions will continue unabated in the coming decades, leading to a doubling or more of pre-industrial carbon dioxide concentrations. At present, we are in the unenviable position of not even knowing how bad things will get if this scenario comes to pass, because of the uncertainty in climate sensitivity. If climate sensitivity is high, then the consequences will be dire, perhaps even catastrophic. As the world continues to warm in response to continued carbon dioxide emissions, will we at least be able to monitor the climate and provide an early warning that the planet is on a high-sensitivity track, if such turns out to be the case? At what point will we actually know the climate sensitivity? It has long been recognized that the prime contributor to uncertainty in climate sensitivity is uncertainty in cloud feedbacks. Study of paleoclimate and climate of the past century has not been able to resolve which models do cloud feedback most correctly, because of uncertainties in radiative forcing. In this talk, I will discuss monitoring requirements, and analysis techniques, that might have the potential to determine which climate models most faithfully represent climate feedbacks, and thus determine which models provide the best estimate of climate sensitivity. The endeavor is complicated by the distinction between transient climate response and equilibrium climate sensitivity. I will discuss the particular challenges posed by this issue, particularly in light of recent indications that the pattern of ocean heat storage may lead to different cloud feedbacks in the transient warming stage than apply once the system has reached equilibrium. Apart

  2. Effects of changes in climate on landscape and regional processes, and feedbacks to the climate system.

    PubMed

    Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus; Schaphoff, Sibyll; Sitch, Stephen

    2004-11-01

    Biological and physical processes in the Arctic system operate at various temporal and spatial scales to impact large-scale feedbacks and interactions with the earth system. There are four main potential feedback mechanisms between the impacts of climate change on the Arctic and the global climate system: albedo, greenhouse gas emissions or uptake by ecosystems, greenhouse gas emissions from methane hydrates, and increased freshwater fluxes that could affect the thermohaline circulation. All these feedbacks are controlled to some extent by changes in ecosystem distribution and character and particularly by large-scale movement of vegetation zones. Indications from a few, full annual measurements of CO2 fluxes are that currently the source areas exceed sink areas in geographical distribution. The little available information on CH4 sources indicates that emissions at the landscape level are of great importance for the total greenhouse balance of the circumpolar North. Energy and water balances of Arctic landscapes are also important feedback mechanisms in a changing climate. Increasing density and spatial expansion of vegetation will cause a lowering of the albedo and more energy to be absorbed on the ground. This effect is likely to exceed the negative feedback of increased C sequestration in greater primary productivity resulting from the displacements of areas of polar desert by tundra, and areas of tundra by forest. The degradation of permafrost has complex consequences for trace gas dynamics. In areas of discontinuous permafrost, warming, will lead to a complete loss of the permafrost. Depending on local hydrological conditions this may in turn lead to a wetting or drying of the environment with subsequent implications for greenhouse gas fluxes. Overall, the complex interactions between processes contributing to feedbacks, variability over time and space in these processes, and insufficient data have generated considerable uncertainties in estimating the net

  3. Guiding Climate Change Adaptation Within Vulnerable Natural Resource Management Systems

    NASA Astrophysics Data System (ADS)

    Bardsley, Douglas K.; Sweeney, Susan M.

    2010-05-01

    Climate change has the potential to compromise the sustainability of natural resources in Mediterranean climatic systems, such that short-term reactive responses will increasingly be insufficient to ensure effective management. There is a simultaneous need for both the clear articulation of the vulnerabilities of specific management systems to climate risk, and the development of appropriate short- and long-term strategic planning responses that anticipate environmental change or allow for sustainable adaptive management in response to trends in resource condition. Governments are developing climate change adaptation policy frameworks, but without the recognition of the importance of responding strategically, regional stakeholders will struggle to manage future climate risk. In a partnership between the South Australian Government, the Adelaide and Mt Lofty Ranges Natural Resource Management Board and the regional community, a range of available research approaches to support regional climate change adaptation decision-making, were applied and critically examined, including: scenario modelling; applied and participatory Geographical Information Systems modelling; environmental risk analysis; and participatory action learning. As managers apply ideas for adaptation within their own biophysical and socio-cultural contexts, there would be both successes and failures, but a learning orientation to societal change will enable improvements over time. A base-line target for regional responses to climate change is the ownership of the issue by stakeholders, which leads to an acceptance that effective actions to adapt are now both possible and vitally important. Beyond such baseline knowledge, the research suggests that there is a range of tools from the social and physical sciences available to guide adaptation decision-making.

  4. Operating Water Resources Systems Under Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Ahmad, S.

    2002-12-01

    Population and industrial growth has resulted in intense demands on the quantity and quality of water resources worldwide. Moreover, climate change/variability is making a growing percentage of the earth's population vulnerable to extreme weather events (drought and flood). The 1996 Saguenay flood, 1997 Red River flood, the 1998 ice storm, and recent droughts in prairies are few examples of extreme weather events in Canada. Rising economic prosperity, growth in urban population, aging infrastructure, and a changing climate are increasing the vulnerability of Canadians to even more serious impacts. This growing threat can seriously undermine the social and economic viability of the country. Our ability to understand the impacts of climate change/variability on water quantity, quality, and its distribution in time and space can prepare us for sustainable management of this precious resource. The sustainability of water resources, over the medium to long-term, is critically dependent on the ability to manage (plan and operate) water resource systems under a more variable and perhaps warmer future climate. Studying the impacts of climate change/variability on water resources is complex and challenging. It is further complicated by the fact that impacts vary with time and are different at different locations. This study deals with the impacts of climate change/variability on water resources in a portion of the Red River Basin in Canada, both in terms of change in quantity and spatial-temporal distribution. A System Dynamics model is developed to describe the operation of the Shellmouth Reservoir located on the Red River in Canada. The climate data from Canadian Global Coupled Model, CGCM1 is used. The spatial system dynamics approach, based on distributed parameter control theory, is used to model the impacts of climate change/variability on water resources in time and space. A decision support system is developed to help reservoir operators and decision makers in

  5. Indoor location system based on discriminant-adaptive neural network in IEEE 802.11 environments.

    PubMed

    Fang, Shih-Hau; Lin, Tsung-Nan

    2008-11-01

    This brief paper presents a novel localization algorithm, named discriminant-adaptive neural network (DANN), which takes the received signal strength (RSS) from the access points (APs) as inputs to infer the client position in the wireless local area network (LAN) environment. We extract the useful information into discriminative components (DCs) for network learning. The nonlinear relationship between RSS and the position is then accurately constructed by incrementally inserting the DCs and recursively updating the weightings in the network until no further improvement is required. Our localization system is developed in a real-world wireless LAN WLAN environment, where the realistic RSS measurement is collected. We implement the traditional approaches on the same test bed, including weighted kappa-nearest neighbor (WKNN), maximum likelihood (ML), and multilayer perceptron (MLP), and compare the results. The experimental results indicate that the proposed algorithm is much higher in accuracy compared with other examined techniques. The improvement can be attributed to that only the useful information is efficiently extracted for positioning while the redundant information is regarded as noise and discarded. Finally, the analysis shows that our network intelligently accomplishes learning while the inserted DCs provide sufficient information.

  6. DESYCO: a Decision Support System to provide climate services for coastal stakeholders dealing with climate change impacts.

    NASA Astrophysics Data System (ADS)

    Torresan, S.; Gallina, V.; Giannini, V.; Rizzi, J.; Zabeo, A.; Critto, A.; Marcomini, A.

    2012-04-01

    At the international level climate services are recognized as innovative tools aimed at providing and distributing climate data and information according to the needs of end-users. Furthermore, needs-based climate services are extremely effective to manage climate risks and take advantage of the opportunities associated with climate change impacts. To date, climate services are mainly related to climate models that supply climate data (e.g. temperature, precipitations) at different spatial and time scales. However, there is a significant gap of tools aimed at providing information about risks and impacts induced by climate change and allowing non-expert stakeholders to use both climate-model and climate-impact data. DESYCO is a GIS-Decision Support System aimed at the integrated assessment of multiple climate change impacts on vulnerable coastal systems (e.g. beaches, river deltas, estuaries and lagoons, wetlands, agricultural and urban areas). It is an open source software that manages different input data (e.g. raster or shapefiles) coming from climate models (e.g. global and regional climate projections) and high resolution impact models (e.g. hydrodynamic, hydrological and biogeochemical simulations) in order to provide hazard, exposure, susceptibility, risk and damage maps for the identification and prioritization of hot-spot areas and to provide a basis for the definition of coastal adaptation and management strategies. Within the CLIM-RUN project (FP7) DESYCO is proposed as an helpful tool to bridge the gap between climate data and stakeholder needs and will be applied to the coastal area of the North Adriatic Sea (Italy) in order to provide climate services for local authorities involved in coastal zone management. Accordingly, a first workshop was held in Venice (Italy) with coastal authorities, climate experts and climate change risk experts, in order to start an iterative exchange of information about the knowledge related to climate change, climate

  7. Evaluation of the Australian Community Climate and Earth-System Simulator Chemistry-Climate Model

    NASA Astrophysics Data System (ADS)

    Stone, K. A.; Morgenstern, O.; Karoly, D. J.; Klekociuk, A. R.; French, W. J. R.; Abraham, N. L.; Schofield, R.

    2015-07-01

    Chemistry climate models are important tools for addressing interactions of composition and climate in the Earth System. In particular, they are used for assessing the combined roles of greenhouse gases and ozone in Southern Hemisphere climate and weather. Here we present an evaluation of the Australian Community Climate and Earth System Simulator-Chemistry Climate Model, focusing on the Southern Hemisphere and the Australian region. This model is used for the Australian contribution to the international Chemistry-Climate Model Initiative, which is soliciting hindcast, future projection and sensitivity simulations. The model simulates global total column ozone (TCO) distributions accurately, with a slight delay in the onset and recovery of springtime Antarctic ozone depletion, and consistently higher ozone values. However, October averaged Antarctic TCO from 1960 to 2010 show a similar amount of depletion compared to observations. A significant innovation is the evaluation of simulated vertical profiles of ozone and temperature with ozonesonde data from Australia, New Zealand and Antarctica from 38 to 90° S. Excess ozone concentrations (up to 26.4 % at Davis during winter) and stratospheric cold biases (up to 10.1 K at the South Pole) outside the period of perturbed springtime ozone depletion are seen during all seasons compared to ozonesondes. A disparity in the vertical location of ozone depletion is seen: centered around 100 hPa in ozonesonde data compared to above 50 hPa in the model. Analysis of vertical chlorine monoxide profiles indicates that colder Antarctic stratospheric temperatures (possibly due to reduced mid-latitude heat flux) are artificially enhancing polar stratospheric cloud formation at high altitudes. The models inability to explicitly simulated supercooled ternary solution may also explain the lack of depletion at lower altitudes. The simulated Southern Annular Mode (SAM) index compares well with ERA-Interim data. Accompanying these

  8. ARCAS (ACACIA Regional Climate-data Access System) -- a Web Access System for Climate Model Data Access, Visualization and Comparison

    NASA Astrophysics Data System (ADS)

    Hakkarinen, C.; Brown, D.; Callahan, J.; hankin, S.; de Koningh, M.; Middleton-Link, D.; Wigley, T.

    2001-05-01

    A Web-based access system to climate model output data sets for intercomparison and analysis has been produced, using the NOAA-PMEL developed Live Access Server software as host server and Ferret as the data serving and visualization engine. Called ARCAS ("ACACIA Regional Climate-data Access System"), and publicly accessible at http://dataserver.ucar.edu/arcas, the site currently serves climate model outputs from runs of the NCAR Climate System Model for the 21st century, for Business as Usual and Stabilization of Greenhouse Gas Emission scenarios. Users can select, download, and graphically display single variables or comparisons of two variables from either or both of the CSM model runs, averaged for monthly, seasonal, or annual time resolutions. The time length of the averaging period, and the geographical domain for download and display, are fully selectable by the user. A variety of arithmetic operations on the data variables can be computed "on-the-fly", as defined by the user. Expansions of the user-selectable options for defining analysis options, and for accessing other DOD-compatible ("Distributed Ocean Data System-compatible") data sets, residing at locations other than the NCAR hardware server on which ARCAS operates, are planned for this year. These expansions are designed to allow users quick and easy-to-operate web-based access to the largest possible selection of climate model output data sets available throughout the world.

  9. Indoor Air Quality in Schools

    EPA Pesticide Factsheets

    This web site will educate the public about indoor environmental issues specific to educational facilities and the importance of developing and sustaining comprehensive indoor air quality management programs.

  10. Couplings between changes in the climate system and biogeochemistry

    SciTech Connect

    Menon, Surabi; Denman, Kenneth L.; Brasseur , Guy; Chidthaisong, Amnat; Ciais, Philippe; Cox, Peter M.; Dickinson, Robert E.; Hauglustaine, Didier; Heinze, Christoph; Holland, Elisabeth; Jacob , Daniel; Lohmann, Ulrike; Ramachandran, Srikanthan; Leite da Silva Dias, Pedro; Wofsy, Steven C.; Zhang, Xiaoye

    2007-10-01

    The Earth's climate is determined by a number of complex connected physical, chemical and biological processes occurring in the atmosphere, land and ocean. The radiative properties of the atmosphere, a major controlling factor of the Earth's climate, are strongly affected by the biophysical state of the Earth's surface and by the atmospheric abundance of a variety of trace constituents. These constituents include long-lived greenhouse gases (LLGHGs) such as carbon dioxide (CO{sub 2}), methane (CH{sub 4}) and nitrous oxide (N{sub 2}O), as well as other radiatively active constituents such as ozone and different types of aerosol particles. The composition of the atmosphere is determined by processes such as natural and anthropogenic emissions of gases and aerosols, transport at a variety of scales, chemical and microphysical transformations, wet scavenging and surface uptake by the land and terrestrial ecosystems, and by the ocean and its ecosystems. These processes and, more generally the rates of biogeochemical cycling, are affected by climate change, and involve interactions between and within the different components of the Earth system. These interactions are generally nonlinear and may produce negative or positive feedbacks to the climate system. An important aspect of climate research is to identify potential feedbacks and assess if such feedbacks could produce large and undesired responses to perturbations resulting from human activities. Studies of past climate evolution on different time scales can elucidate mechanisms that could trigger nonlinear responses to external forcing. The purpose of this chapter is to identify the major biogeochemical feedbacks of significance to the climate system, and to assess current knowledge of their magnitudes and trends. Specifically, this chapter will examine the relationships between the physical climate system and the land surface, the carbon cycle, chemically reactive atmospheric gases and aerosol particles. It also

  11. A satellite view of aerosols in the climate system

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Boucher, Olivier

    2002-01-01

    Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Depending on their composition, aerosols can also absorb sunlight in the atmosphere, further cooling the surface but warming the atmosphere in the process. These effects of aerosols on the temperature profile, along with the role of aerosols as cloud condensation nuclei, impact the hydrologic cycle, through changes in cloud cover, cloud properties and precipitation. Unravelling these feedbacks is particularly difficult because aerosols take a multitude of shapes and forms, ranging from desert dust to urban pollution, and because aerosol concentrations vary strongly over time and space. To accurately study aerosol distribution and composition therefore requires continuous observations from satellites, networks of ground-based instruments and dedicated field experiments. Increases in aerosol concentration and changes in their composition, driven by industrialization and an expanding population, may adversely affect the Earth's climate and water supply.

  12. A satellite view of aerosols in the climate system.

    PubMed

    Kaufman, Yoram J; Tanré, Didier; Boucher, Olivier

    2002-09-12

    Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Depending on their composition, aerosols can also absorb sunlight in the atmosphere, further cooling the surface but warming the atmosphere in the process. These effects of aerosols on the temperature profile, along with the role of aerosols as cloud condensation nuclei, impact the hydrologic cycle, through changes in cloud cover, cloud properties and precipitation. Unravelling these feedbacks is particularly difficult because aerosols take a multitude of shapes and forms, ranging from desert dust to urban pollution, and because aerosol concentrations vary strongly over time and space. To accurately study aerosol distribution and composition therefore requires continuous observations from satellites, networks of ground-based instruments and dedicated field experiments. Increases in aerosol concentration and changes in their composition, driven by industrialization and an expanding population, may adversely affect the Earth's climate and water supply.

  13. Phase Synchronization in Coupled Complex Systems - From Neuroscience to Climate

    NASA Astrophysics Data System (ADS)

    Kurths, Juergen

    2001-03-01

    The phenomenon of phase synchronization, especially in weakly coupled complex systems will be explained. Next it will be discussed how to identify epochs of phase synchronization in noisy data. In the second part I will demonstrate the potential of this approach for some examples from natural systems; in particular for brain and muscle activity of Parkinsonian patients, cardio-respiratory interactions in humans and rats and for a chaotically forced climate system.

  14. A Standardized Evaluation System for Decadal Climate Prediction

    NASA Astrophysics Data System (ADS)

    Kadow, C.; Cubasch, U.

    2012-12-01

    The evaluation of decadal prediction systems is a scientific challenge as well as a technical challenge in the climate research. The major project MiKlip (www.fona-miklip.de) for medium-term climate prediction funded by the Federal Ministry of Education and Research in Germany (BMBF) has the aim to create a model system that can provide reliable decadal forecasts on climate and weather. The model system to be developed will be novel in several aspects, with great challenges for the methodology development. This concerns especially the determination of the initial conditions, the inclusion into the model of processes relevant to decadal predictions, the increase of the spatial resolution through regionalisation, the improvement or adjustment of statistical post-processing, and finally the synthesis and validation of the entire model system. Therefore, a standardized evaluation system will be part of the MiKlip system to validate it - developed by the project 'Integrated data and evaluation system for decadal scale prediction' (INTEGRATION). The presentation gives an overview of the different linkages of such a project, shows the different development stages and gives an outlook for users and possible end users in climate service. The technical interface combines all projects inside of MiKlip and invites them to participate in a common evaluation system. The system design and the validation strategy from a standalone tool in the beginning to a user friendly web based system using GRID technologies to an integrated part of the operational MiKlip system for industry and society will give the opportunity to enhance the MiKlip strategy. First results of different possibilities of such a system will be shown to present the scientific background through Taylor diagrams, ensemble skill scores and e.g. climatological means to show the usability and possibilities of MiKlip and the INTEGRATION project.

  15. Indoor Air Quality Manual.

    ERIC Educational Resources Information Center

    Baldwin Union Free School District, NY.

    This manual identifies ways to improve a school's indoor air quality (IAQ) and discusses practical actions that can be carried out by school staff in managing air quality. The manual includes discussions of the many sources contributing to school indoor air pollution and the preventive planning for each including renovation and repair work,…

  16. Your Indoor Spaces

    ERIC Educational Resources Information Center

    Exchange: The Early Childhood Leaders' Magazine Since 1978, 2007

    2007-01-01

    In the July 24, 2007 edition of "ExchangeEveryday", readers were asked to submit great indoor space elements from their early childhood programs. Readers sent photographs and brief descriptions of creative elements of their indoor environments. A sampling of ideas are shown on this article.

  17. An Indoor Pedestrian Positioning Method Using HMM with a Fuzzy Pattern Recognition Algorithm in a WLAN Fingerprint System.

    PubMed

    Ni, Yepeng; Liu, Jianbo; Liu, Shan; Bai, Yaxin

    2016-09-08

    With the rapid development of smartphones and wireless networks, indoor location-based services have become more and more prevalent. Due to the sophisticated propagation of radio signals, the Received Signal Strength Indicator (RSSI) shows a significant variation during pedestrian walking, which introduces critical errors in deterministic indoor positioning. To solve this problem, we present a novel method to improve the indoor pedestrian positioning accuracy by embedding a fuzzy pattern recognition algorithm into a Hidden Markov Model. The fuzzy pattern recognition algorithm follows the rule that the RSSI fading has a positive correlation to the distance between the measuring point and the AP location even during a dynamic positioning measurement. Through this algorithm, we use the RSSI variation trend to replace the specific RSSI value to achieve a fuzzy positioning. The transition probability of the Hidden Markov Model is trained by the fuzzy pattern recognition algorithm with pedestrian trajectories. Using the Viterbi algorithm with the trained model, we can obtain a set of hidden location states. In our experiments, we demonstrate that, compared with the deterministic pattern matching algorithm, our method can greatly improve the positioning accuracy and shows robust environmental adaptability.

  18. An Indoor Pedestrian Positioning Method Using HMM with a Fuzzy Pattern Recognition Algorithm in a WLAN Fingerprint System

    PubMed Central

    Ni, Yepeng; Liu, Jianbo; Liu, Shan; Bai, Yaxin

    2016-01-01

    With the rapid development of smartphones and wireless networks, indoor location-based services have become more and more prevalent. Due to the sophisticated propagation of radio signals, the Received Signal Strength Indicator (RSSI) shows a significant variation during pedestrian walking, which introduces critical errors in deterministic indoor positioning. To solve this problem, we present a novel method to improve the indoor pedestrian positioning accuracy by embedding a fuzzy pattern recognition algorithm into a Hidden Markov Model. The fuzzy pattern recognition algorithm follows the rule that the RSSI fading has a positive correlation to the distance between the measuring point and the AP location even during a dynamic positioning measurement. Through this algorithm, we use the RSSI variation trend to replace the specific RSSI value to achieve a fuzzy positioning. The transition probability of the Hidden Markov Model is trained by the fuzzy pattern recognition algorithm with pedestrian trajectories. Using the Viterbi algorithm with the trained model, we can obtain a set of hidden location states. In our experiments, we demonstrate that, compared with the deterministic pattern matching algorithm, our method can greatly improve the positioning accuracy and shows robust environmental adaptability. PMID:27618053

  19. Controls on the Archean climate system investigated with a global climate model.

    PubMed

    Wolf, E T; Toon, O B

    2014-03-01

    The most obvious means of resolving the faint young Sun paradox is to invoke large quantities of greenhouse gases, namely, CO2 and CH4. However, numerous changes to the Archean climate system have been suggested that may have yielded additional warming, thus easing the required greenhouse gas burden. Here, we use a three-dimensional climate model to examine some of the factors that controlled Archean climate. We examine changes to Earth's rotation rate, surface albedo, cloud properties, and total atmospheric pressure following proposals from the recent literature. While the effects of increased planetary rotation rate on surface temperature are insignificant, plausible changes to the surface albedo, cloud droplet number concentrations, and atmospheric nitrogen inventory may each impart global mean warming of 3-7 K. While none of these changes present a singular solution to the faint young Sun paradox, a combination can have a large impact on climate. Global mean surface temperatures at or above 288 K could easily have been maintained throughout the entirety of the Archean if plausible changes to clouds, surface albedo, and nitrogen content occurred.

  20. Associations between Climate Change and Natural Systems in Australia.

    NASA Astrophysics Data System (ADS)

    Chambers, Lynda E.

    2006-02-01

    In the 2001 Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report numerous studies of processes and species associated with regional temperature change were listed for the Northern Hemisphere (107 in North America, 458 in Europe, and 14 in Asia), but only a handful of studies for the Southern Hemisphere and, sadly, none for Australia were included. This article looks at the progress that Australia has made in addressing these knowledge gaps during the last three years. The article highlights the need for a national approach to the study of the associations between climate change and natural systems and suggests ways in which this could be achieved.

  1. Evaluation of passenger health risk assessment of sustainable indoor air quality monitoring in metro systems based on a non-Gaussian dynamic sensor validation method.

    PubMed

    Kim, MinJeong; Liu, Hongbin; Kim, Jeong Tai; Yoo, ChangKyoo

    2014-08-15

    Sensor faults in metro systems provide incorrect information to indoor air quality (IAQ) ventilation systems, resulting in the miss-operation of ventilation systems and adverse effects on passenger health. In this study, a new sensor validation method is proposed to (1) detect, identify and repair sensor faults and (2) evaluate the influence of sensor reliability on passenger health risk. To address the dynamic non-Gaussianity problem of IAQ data, dynamic independent component analysis (DICA) is used. To detect and identify sensor faults, the DICA-based squared prediction error and sensor validity index are used, respectively. To restore the faults to normal measurements, a DICA-based iterative reconstruction algorithm is proposed. The comprehensive indoor air-quality index (CIAI) that evaluates the influence of the current IAQ on passenger health is then compared using the faulty and reconstructed IAQ data sets. Experimental results from a metro station showed that the DICA-based method can produce an improved IAQ level in the metro station and reduce passenger health risk since it more accurately validates sensor faults than do conventional methods.

  2. Indoor radio channel modeling and mitigation of fading effects using linear and circular polarized antennas in combination for smart home system at 868 MHz

    NASA Astrophysics Data System (ADS)

    Wunderlich, S.; Welpot, M.; Gaspard, I.

    2014-11-01

    The markets for smart home products and services are expected to grow over the next years, driven by the increasing demands of homeowners considering energy monitoring, management, environmental controls and security. Many of these new systems will be installed in existing homes and offices and therefore using radio based systems for cost reduction. A drawback of radio based systems in indoor environments are fading effects which lead to a high variance of the received signal strength and thereby to a difficult predictability of the encountered path loss of the various communication links. For that reason it is necessary to derive a statistical path loss model which can be used to plan a reliable and cost effective radio network. This paper presents the results of a measurement campaign, which was performed in six buildings to deduce realistic radio channel models for a high variety of indoor radio propagation scenarios in the short range devices (SRD) band at 868 MHz. Furthermore, a potential concept to reduce the variance of the received signal strength using a circular polarized (CP) patch antenna in combination with a linear polarized antenna in an one-to-one communication link is presented.

  3. Community Climate System Model (CCSM) Experiments and Output Data

    DOE Data Explorer

    The National Center for Atmospheric Research (NCAR) created the first version of the Community Climate Model (CCM) in 1983 as a global atmosphere model. It was improved in 1994 when NCAR, with support from the National Science Foundation (NSF), developed and incorporated a Climate System Model (CSM) that included atmosphere, land surface, ocean, and sea ice. As the capabilities of the model grew, so did interest in its applications and changes in how it would be managed. A workshop in 1996 set the future management structure, marked the beginning of the second phase of the model, a phase that included full participation of the scientific community, and also saw additional financial support, including support from the Department of Energy. In recognition of these changes, the model was renamed to the Community Climate System Model (CCSM). It began to function as a model with the interactions of land, sea, and air fully coupled, providing computer simulations of Earth's past climate, its present climate, and its possible future climate. The CCSM website at http://www2.cesm.ucar.edu/ describes some of the research that has been done since then: A 300-year run has been performed using the CSM, and results from this experiment have appeared in a special issue of theJournal of Climate, 11, June, 1998. A 125-year experiment has been carried out in which carbon dioxide was described to increase at 1% per year from its present concentration to approximately three times its present concentration. More recently, the Climate of the 20th Century experiment was run, with carbon dioxide and other greenhouse gases and sulfate aerosols prescribed to evolve according to our best knowledge from 1870 to the present. Three scenarios for the 21st century were developed: a "business as usual" experiment, in which greenhouse gases are assumed to increase with no economic constraints; an experiment using the Intergovernmental Panel on Climate Change (IPCC) Scenario A1; and a "policy

  4. An automated, semi-continuous system for measuring indoor radon progeny activity-weighted size distributions, d sub p : 0. 5--500 nm

    SciTech Connect

    Li, Chih-Shan; Hopke, P.K.; Ramamurthi, M.

    1990-05-01

    A system for the detection and measurement of indoor radon progeny activity-weighted size distributions (particle size, d{sub p} > 0.5 nm) and concentration levels has been developed. The system is microcomputer-controlled and involves a combination of multiple wire screen (Graded Screen Array) sampler-detector units operated in parallel. The radioactivity sampled in these units permits the estimation of the radon progeny activity-weighted size distributions and concentration levels on a semi-continuous basis. This paper presents details of the system and describes various stages in the development of the system. Results of field measurements in a residential environment are presented to illustrate the resolution, sensitivity and capabilities of the measurement system. 16 refs., 4 figs., 1 tab.

  5. The Milankovitch theory and climate sensitivity. I - Equilibrium climate model solutions for the present surface conditions. II - Interaction between the Northern Hemisphere ice sheets and the climate system

    NASA Technical Reports Server (NTRS)

    Neeman, Binyamin U.; Ohring, George; Joseph, Joachim H.

    1988-01-01

    A seasonal climate model was developed to test the climate sensitivity and, in particular, the Milankovitch (1941) theory. Four climate model versions were implemented to investigate the range of uncertainty in the parameterizations of three basic feedback mechanisms: the ice albedo-temperature, the outgoing long-wave radiation-temperature, and the eddy transport-meridional temperature gradient. It was found that the differences between the simulation of the present climate by the four versions were generally small, especially for annually averaged results. The climate model was also used to study the effect of growing/shrinking of a continental ice sheet, bedrock sinking/uplifting, and sea level changes on the climate system, taking also into account the feedback effects on the climate of the building of the ice caps.

  6. The UC-LLNL Regional Climate System Model

    SciTech Connect

    Miller, N.L.; Kim, Jinwon

    1996-09-01

    The UC-LLNL Regional Climate System Model has been under development since 1991. The unique system simulates climate from the global scale down to the watershed catchment scale, and consists of data pre- and post- processors, and four model components. The four model components are (1) a mesoscale atmospheric simulation model, (2) a soil-plant-snow model, (3) a watershed hydrology-riverflow model, and (4) a suite of crop response models. The first three model components have been coupled, and the system includes two-way feedbacks between the soil-plant-snow model and the mesoscale atmospheric simulation model. This three-component version of RCSM has been tested, validated, and successfully used for operational quantitative precipitation forecasts and seasonal water resource studies over the southwestern US. We are currently implementation and validating the fourth component, the Decision Support system for Agrotechnology Transfer (DSSAT). A description of the UC-LLNL RCSM and some recent results are presented.

  7. Earth System Grid II, Turning Climate Datasets into Community Resources

    SciTech Connect

    Middleton, Don

    2006-08-01

    The Earth System Grid (ESG) II project, funded by the Department of Energy’s Scientific Discovery through Advanced Computing program, has transformed climate data into community resources. ESG II has accomplished this goal by creating a virtual collaborative environment that links climate centers and users around the world to models and data via a computing Grid, which is based on the Department of Energy’s supercomputing resources and the Internet. Our project’s success stems from partnerships between climate researchers and computer scientists to advance basic and applied research in the terrestrial, atmospheric, and oceanic sciences. By interfacing with other climate science projects, we have learned that commonly used methods to manage and remotely distribute data among related groups lack infrastructure and under-utilize existing technologies. Knowledge and expertise gained from ESG II have helped the climate community plan strategies to manage a rapidly growing data environment more effectively. Moreover, approaches and technologies developed under the ESG project have impacted datasimulation integration in other disciplines, such as astrophysics, molecular biology and materials science.

  8. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions

    SciTech Connect

    Fröhlich-Nowoisky, Janine; Kampf, Christopher J.; Weber, Bettina; Huffman, J. Alex; Pöhlker, Christopher; Andreae, Meinrat O.; Lang-Yona, Naama; Burrows, Susannah M.; Gunthe, Sachin S.; Elbert, Wolfgang; Su, Hang; Hoor, Peter; Thines, Eckhard; Hoffmann, Thorsten; Després, Viviane R.; Pöschl, Ulrich

    2016-12-01

    Aerosols of biological origin play a vital role in the Earth system, particularly in the in-teractions between atmosphere, biosphere, climate, and public health. Airborne bacteria, fungal spores, pollen, and other bioparticles are essential for the reproduction and spread of organisms across various ecosystems, and they can cause or enhance human, animal, and plant diseases. Moreover, they can serve as nuclei for cloud droplets, ice crystals, and precipitation, thus influencing the hydrological cycle and climate. The actual formation, abundance, composition, and effects of biological aerosols and the atmospheric microbi-ome are, however, not yet well characterized and constitute a large gap in the scientific understanding of the interaction and co-evolution of life and climate in the Earth system. This review presents an overview of the state of bioaerosol research and highlights recent advances in terms of bioaerosol identification, characterization, transport, and transfor-mation processes, as well as their interactions with climate, health, and ecosystems, focus-ing on the role bioaerosols play in the Earth system.

  9. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, Janine; Kampf, Christopher J.; Weber, Bettina; Huffman, J. Alex; Pöhlker, Christopher; Andreae, Meinrat O.; Lang-Yona, Naama; Burrows, Susannah M.; Gunthe, Sachin S.; Elbert, Wolfgang; Su, Hang; Hoor, Peter; Thines, Eckhard; Hoffmann, Thorsten; Després, Viviane R.; Pöschl, Ulrich

    2016-12-01

    Aerosols of biological origin play a vital role in the Earth system, particularly in the interactions between atmosphere, biosphere, climate, and public health. Airborne bacteria, fungal spores, pollen, and other bioparticles are essential for the reproduction and spread of organisms across various ecosystems, and they can cause or enhance human, animal, and plant diseases. Moreover, they can serve as nuclei for cloud droplets, ice crystals, and precipitation, thus influencing the hydrological cycle and climate. The sources, abundance, composition, and effects of biological aerosols and the atmospheric microbiome are, however, not yet well characterized and constitute a large gap in the scientific understanding of the interaction and co-evolution of life and climate in the Earth system. This review presents an overview of the state of bioaerosol research, highlights recent advances, and outlines future perspectives in terms of bioaerosol identification, characterization, transport, and transformation processes, as well as their interactions with climate, health, and ecosystems, focusing on the role bioaerosols play in the Earth system.

  10. Regional Water System Vulnerabilities and Strengths for Unavoidable Climate Adaptation

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.; Palaniappan, M.; Christian-Smith, J.; Cooley, H.

    2011-12-01

    A wide range of options are available to help water systems prepare and adapt for unavoidable climate impacts, but these options vary depending on region, climatic conditions, economic status, and technical infrastructure in place. Drawing on case studies from the United States, India, and elsewhere, and from both urban and agricultural water systems, risks to water supply and quality are evaluated and summarized and categories of responses to help improve the effectiveness of adaptation policies are reviewed. Among the issues to be discussed are characteristics unique to developing country cities, such as the predominance of informal actors in the water sector. The formal, or government sector, which often exclusively manages water access and distribution in developed country cities, is only one among many players in the water sector in developing country cities. Informal access to water includes direct access by individuals through private groundwater systems, private water markets using vendors or sales of bottled water, and rainwater harvesting systems on individual homes. In this environment, with already existing pressures on water availability and use, the impacts of climate change on water will be strongly felt. This complicates planning for water supply and demand and risks increasing already prevalent water insecurity, especially for urban poor. In wealthier countries, any planning for water-related climate impacts tends to take the form of "business as usual" responses, such as efforts to expand supply with new infrastructure, manage demand through conservation programs, or simply put off addressing the problem to the next generation of managers and users. These approaches can be effective, but also risk missing unusual, non-linear, or threshold impacts. Examples of more informed and innovative efforts to substantively address climate change risks will be presented.

  11. Economic Value of an Advanced Climate Observing System

    NASA Astrophysics Data System (ADS)

    Wielicki, B. A.; Cooke, R.; Young, D. F.; Mlynczak, M. G.

    2013-12-01

    Scientific missions increasingly need to show the monetary value of knowledge advances in budget-constrained environments. For example, suppose a climate science mission promises to yield decisive information on the rate of human caused global warming within a shortened time frame. How much should society be willing to pay for this knowledge today? The US interagency memo on the social cost of carbon (SCC) creates a standard yardstick for valuing damages from carbon emissions. We illustrate how value of information (VOI) calculations can be used to monetize the relative value of different climate observations. We follow the SCC, setting uncertainty in climate sensitivity to a truncated Roe and Baker (2007) distribution, setting discount rates of 2.5%, 3% and 5%, and using one of the Integrated Assessment Models sanctioned in SCC (DICE, Nordhaus 2008). We consider three mitigation scenarios: Business as Usual (BAU), a moderate mitigation response DICE Optimal, and a strong response scenario (Stern). To illustrate results, suppose that we are on the BAU emissions scenario, and that we would switch to the Stern emissions path if we learn with 90% confidence that the decadal rate of temperature change reaches or exceeds 0.2 C/decade. Under the SCC assumptions, the year in which this happens, if it happens, depends on the uncertain climate sensitivity and on the emissions path. The year in which we become 90% certain that it happens depends, in addition, on our Earth observations, their accuracy, and their completeness. The basic concept is that more accurate observations can shorten the time for societal decisions. The economic value of the resulting averted damages depends on the discount rate, and the years in which the damages occur. A new climate observation would be economically justified if the net present value (NPV) of the difference in averted damages, relative to the existing systems, exceeds the NPV of the system costs. Our results (Cooke et al. 2013

  12. Precambrian evolution of the climate system

    NASA Technical Reports Server (NTRS)

    Walker, James C. G.

    1990-01-01

    This paper presents a new examination of the biogeochemical cycles of carbon as they may have changed between an Archean Earth deficient in land, sedimentary rocks, and biological activity, and a Proterozoic Earth much like the modern Earth, but lacking terrestrial life and carbonate-secreting plankton. Results of a numerical simulation of this transition show how increasing biological activity could have drawn down atmospheric carbon dioxide by extracting sedimentary organic carbon from the system. Increasing area of continents could further have drawn down carbon dioxide by encouraging the accumulation of carbonate sediments. An attempt to develop a numerical simulation of the carbon cycles of the Precambrian raises questions about sources and sinks of marine carbon and alkalinity on a world without continents. More information is needed about sea-floor weathering processes.

  13. Are Ventilation Filters Degrading Indoor Air Quality in California Classrooms?

    SciTech Connect

    Fisk, William J.; Destaillats, H.; Apte, M.G.; Destaillats,, Hugo; Fisk, Michael G. Apte and William J.

    2008-10-01

    Heating, ventilating, and cooling classrooms in California consume substantial electrical energy. Indoor air quality (IAQ) in classrooms affects studenthealth and performance. In addition to airborne pollutants that are emitted directly by indoor sources and those generated outdoors, secondary pollutants can be formed indoors by chemical reaction of ozone with other chemicals and materials. Filters are used in nearly all classroom heating, ventilation and air?conditioning (HVAC) systems to maintain energy-efficient HVAC performance and improve indoor air quality; however, recent evidence indicates that ozone reactions with filters may, in fact, be a source of secondary pollutants. This project quantitatively evaluated ozone deposition in HVAC filters and byproduct formation, and provided a preliminary assessment of the extent towhich filter systems are degrading indoor air quality. The preliminary information obtained will contribute to the design of subsequent research efforts and the identification of energy efficient solutions that improve indoor air quality in classrooms and the health and performance of students.

  14. Urban, Indoor and Subterranean Navigation Sensors and Systems (Capteurs et systemes de navigation urbains, interieurs et souterrains)

    DTIC Science & Technology

    2010-11-01

    ant’s navigation skill has been extensively studied by R. Wehner, 3-39 University of Zürich Figure 3-49 The navigation skills of sea turtles have...capabilities provided by advanced navigation sensors and systems: • Networked and collaborative operations; • Autonomous land, sea and air vehicles...systems, they can form a dead reckoning navigation system. When used as an aid to an inertial navigation system they provide error growth control

  15. NASA's Earth Observing System: The Transition from Climate Monitoring to Climate Change Prediction

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Herring, David D.

    1998-01-01

    Earth's 4.5 billion year history is a study in change. Natural geological forces have been rearranging the surface features and climatic conditions of our planet since its beginning. There is scientific evidence that some of these natural changes have not only led to mass extinctions of species (e.g., dinosaurs), but have also severely impacted human civilizations. For instance, there is evidence that a relatively sudden climate change caused a 300-year drought that contributed to the downfall of Akkadia, one of the most powerful empires in the Middle-East region around 2200 BC. More recently, the "little ice age" from 1200-1400 AD forced the Vikings to abandon Greenland when temperatures there dropped by about 1.5 C, rendering it too difficult to grow enough crops to sustain the population. Today, there is compelling scientific evidence that human activities have attained the magnitude of a geological force and are speeding up the rate of global change. For example, carbon dioxide levels have risen 30 percent since the industrial revolution and about 40 percent of the world's land surface has been transformed by humans. We don't understand the cause-and-effect relationships among Earth's land, ocean, and atmosphere well enough to predict what, if any, impacts these rapid changes will have on future climate conditions. We need to make many measurements all over the world, over a long period of time, in order to assemble the information needed to construct accurate computer models that will enable us to forecast climate change. In 1988, the Earth System Sciences Committee, sponsored by NASA, issued a report calling for an integrated, long-term strategy for measuring the vital signs of Earth's climate system. The report urged that the measurements must all be intimately coupled with focused process studies, they must facilitate development of Earth system models, and they must be stored in an information system that ensures open access to consistent, long-term data

  16. Teaching climate change: A 16-year record of introducing undergraduates to the fundamentals of the climate system and its complexities

    NASA Astrophysics Data System (ADS)

    Winckler, G.; Pfirman, S. L.; Hays, J. D.; Schlosser, P.; Ting, M.

    2011-12-01

    Responding to climate change challenges in the near and far future, will require a wide range of knowledge, skills and a sense of the complexities involved. Since 1995, Columbia University and Barnard College have offered an undergraduate class that strives to provide students with some of these skills. The 'Climate System' course is a component of the three-part 'Earth Environmental Systems' series and provides the fundamentals needed for understanding the Earth's climate system and its variability. Being designed both for science majors and non-science majors, the emphasis of the course is on basic physical explanations, rather than mathematical derivations of the laws that govern the climate system. The course includes lectures, labs and discussion. Laboratory exercises primarily explore the climate system using global datasets, augmented by hands-on activities. Course materials are available for public use at http://eesc.columbia.edu/courses/ees/climate/camel_modules/ and http://ncseonline.org/climate/cms.cfm?id=3783. In this presentation we discuss the experiences, challenges and future demands of conveying the science of the Earth's Climate System and the risks facing the planet to a wide spectrum of undergraduate students, many of them without a background in the sciences. Using evaluation data we reflect how the course, the students, and the faculty have evolved over the past 16 years as the earth warmed, pressures for adaptation planning and mitigation measures increased, and public discourse became increasingly polarized.

  17. Climate balance of biogas upgrading systems

    SciTech Connect

    Pertl, A.; Mostbauer, P.; Obersteiner, G.

    2010-01-15

    One of the numerous applications of renewable energy is represented by the use of upgraded biogas where needed by feeding into the gas grid. The aim of the present study was to identify an upgrading scenario featuring minimum overall GHG emissions. The study was based on a life-cycle approach taking into account also GHG emissions resulting from plant cultivation to the process of energy conversion. For anaerobic digestion two substrates have been taken into account: (1) agricultural resources and (2) municipal organic waste. The study provides results for four different upgrading technologies including the BABIU (Bottom Ash for Biogas Upgrading) method. As the transport of bottom ash is a critical factor implicated in the BABIU-method, different transport distances and means of conveyance (lorry, train) have been considered. Furthermore, aspects including biogas compression and energy conversion in a combined heat and power plant were assessed. GHG emissions from a conventional energy supply system (natural gas) have been estimated as reference scenario. The main findings obtained underlined how the overall reduction of GHG emissions may be rather limited, for example for an agricultural context in which PSA-scenarios emit only 10% less greenhouse gases than the reference scenario. The BABIU-method constitutes an efficient upgrading method capable of attaining a high reduction of GHG emission by sequestration of CO{sub 2}.

  18. Predicting Indoor Heat Exposure Risk during Extreme Heat Events

    PubMed Central

    Quinn, Ashlinn; Tamerius, James D.; Perzanowski, Matthew; Jacobson, Judith S.; Goldstein, Inge; Acosta, Luis; Shaman, Jeffrey

    2014-01-01

    Increased heat-related morbidity and mortality are expected direct consequences of global warming. In the developed world, most fatal heat exposures occur in the indoor home environment, yet little is known of the correspondence between outdoor and indoor heat. Here we show how summertime indoor heat and humidity measurements from 285 low- and middle-income New York City homes vary as a function of concurrent local outdoor conditions. Indoor temperatures and heat index levels were both found to have strong positive linear associations with their outdoor counterparts; however, among the sampled homes a broad range of indoor conditions manifested for the same outdoor conditions. Using these models, we simulated indoor conditions for two extreme events: the 10-day 2006 NYC heat wave and a 9-day event analogous to the more extreme 2003 Paris heat wave. These simulations indicate that many homes in New York City would experience dangerously high indoor heat index levels during extreme heat events. These findings also suggest that increasing numbers of NYC low- and middle-income households will be exposed to heat index conditions above important thresholds should the severity of heat waves increase with global climate change. The study highlights the urgent need for improved indoor temperature and humidity management. PMID:24893319

  19. Does the public deserve free access to climate system science?

    NASA Astrophysics Data System (ADS)

    Grigorov, Ivo

    2010-05-01

    Some time ago it was the lack of public access to medical research data that really stirred the issue and gave inertia for legislation and a new publishing model that puts tax payer-funded medical research in the hands of those who fund it. In today's age global climate change has become the biggest socio-economic challenge, and the same argument resonates: climate affects us all and the publicly-funded science quantifying it should be freely accessible to all stakeholders beyond academic research. Over the last few years the ‘Open Access' movement to remove as much as possible subscription, and other on-campus barriers to academic research has rapidly gathered pace, but despite significant progress, the climate system sciences are not among the leaders in providing full access to their publications and data. Beyond the ethical argument, there are proven and tangible benefits for the next generation of climate researchers to adapt the way their output is published. Through the means provided by ‘open access', both data and ideas can gain more visibility, use and citations for the authors, but also result in a more rapid exchange of knowledge and ideas, and ultimately progress towards a sought solution. The presentation will aim to stimulate discussion and seek progress on the following questions: Should free access to climate research (& data) be mandatory? What are the career benefits of using ‘open access' for young scientists? What means and methods should, or could, be incorporated into current European graduate training programmes in climate research, and possible ways forward?

  20. Development of a 3D Underground Cadastral System with Indoor Mapping for As-Built BIM: The Case Study of Gangnam Subway Station in Korea

    PubMed Central

    Kim, Sangmin; Kim, Jeonghyun; Jung, Jaehoon; Heo, Joon

    2015-01-01

    The cadastral system provides land ownership information by registering and representing land boundaries on a map. The current cadastral system in Korea, however, focuses mainly on the management of 2D land-surface boundaries. It is not yet possible to provide efficient or reliable land administration, as this 2D system cannot support or manage land information on 3D properties (including architectures and civil infrastructures) for both above-ground and underground facilities. A geometrical model of the 3D parcel, therefore, is required for registration of 3D properties. This paper, considering the role of the cadastral system, proposes a framework for a 3D underground cadastral system that can register various types of 3D underground properties using indoor mapping for as-built Building Information Modeling (BIM). The implementation consists of four phases: (1) geometric modeling of a real underground infrastructure using terrestrial laser scanning data; (2) implementation of as-built BIM based on geometric modeling results; (3) accuracy assessment for created as-built BIM using reference points acquired by total station; and (4) creation of three types of 3D underground cadastral map to represent underground properties. The experimental results, based on indoor mapping for as-built BIM, show that the proposed framework for a 3D underground cadastral system is able to register the rights, responsibilities, and restrictions corresponding to the 3D underground properties. In this way, clearly identifying the underground physical situation enables more reliable and effective decision-making in all aspects of the national land administration system. PMID:26690174

  1. Development of a 3D Underground Cadastral System with Indoor Mapping for As-Built BIM: The Case Study of Gangnam Subway Station in Korea.

    PubMed

    Kim, Sangmin; Kim, Jeonghyun; Jung, Jaehoon; Heo, Joon

    2015-12-09

    The cadastral system provides land ownership information by registering and representing land boundaries on a map. The current cadastral system in Korea, however, focuses mainly on the management of 2D land-surface boundaries. It is not yet possible to provide efficient or reliable land administration, as this 2D system cannot support or manage land information on 3D properties (including architectures and civil infrastructures) for both above-ground and underground facilities. A geometrical model of the 3D parcel, therefore, is required for registration of 3D properties. This paper, considering the role of the cadastral system, proposes a framework for a 3D underground cadastral system that can register various types of 3D underground properties using indoor mapping for as-built Building Information Modeling (BIM). The implementation consists of four phases: (1) geometric modeling of a real underground infrastructure using terrestrial laser scanning data; (2) implementation of as-built BIM based on geometric modeling results; (3) accuracy assessment for created as-built BIM using reference points acquired by total station; and (4) creation of three types of 3D underground cadastral map to represent underground properties. The experimental results, based on indoor mapping for as-built BIM, show that the proposed framework for a 3D underground cadastral system is able to register the rights, responsibilities, and restrictions corresponding to the 3D underground properties. In this way, clearly identifying the underground physical situation enables more reliable and effective decision-making in all aspects of the national land administration system.

  2. On Prediction and Predictability of the Arctic Climate System

    NASA Astrophysics Data System (ADS)

    Maslowski, W.; Clement Kinney, J.; Roberts, A.; Higgins, M.; Osinski, R.; Cassano, J. J.; Craig, A.; Gutowski, W. J.; Lettenmaier, D. P.; Lipscomb, W. H.; Tulaczyk, S. M.; Zeng, X.

    2012-12-01

    Arctic sea ice is a key indicator of the state of Earth's climate because of both its sensitivity to warming and its role in amplifying climate change. However, the current system-level understanding and representation of critical arctic processes and feedbacks in state-of-the-art Earth System Models (EaSMs) is still inadequate. This becomes increasingly critical as the perennial and total summer sea ice cover continues its accelerated decline that started in the late 1990s. Growing evidence suggests that the shrinking Arctic ice pack affects pan-Arctic atmospheric and oceanic circulation, snow cover, the Greenland ice sheet, permafrost and vegetation. Such changes could have significant ramifications for global sea level, the global surface energy and moisture budget, atmospheric and oceanic circulations, geosphere-biosphere feedbacks, as well as affecting native coastal communities, and international commerce. We evaluate available results from CMIP5 models against limited observations for their skill in representing recent decadal variability of Arctic sea ice area, thickness, drift and export. We also intercompare results from CMIP5 models with selected CMIP3 models and a hierarchy of regional ice-ocean and fully coupled climate models to demonstrate possible gains or outstanding limitations in representing past and present climate variability in the Arctic. Some of the limitations we have diagnosed in the CMIP3 family of models include: northward oceanic heat fluxes and their interface with the atmosphere, distribution of sea ice area and thickness, variability of sea ice volume in the Arctic Ocean, and freshwater (both solid and liquid) export into the North Atlantic. We argue that the ability of global models to realistically reproduce the above processes affecting recent warming and sea ice melt in the Arctic Ocean distorts predictability of EaSMs and limits the accuracy of their future arctic and global climate predictions. To better understand the past

  3. Raising Climate Literacy of K-12 Teachers with Datastreme Earth's Climate System

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Geer, I.; Weinbeck, R. S.; Mills, E. W.; Nugnes, K. A.

    2014-12-01

    The American Meteorological Society (AMS) DataStreme Project is a free professional development program for in-service K-12 teachers, in which they gain considerable subject matter content and confidence in Earth science instruction. DataStreme Atmosphere, Ocean, and Earth's Climate System (ECS) are offered each fall and spring semester by Local Implementation Teams (LITs) across the country in coordination with a team of AMS Education Program scientists and educators who develop instructional materials, provide logistical support to the LITs, and administer the project. The 3-member LITs mentor about 8 teachers and in some instances an emergency manager, per semester through a given DataStreme course. Teachers may receive 3 tuition-free graduate credits through State University of New York's The College at Brockport upon completion of each DataStreme course. DataStreme is in close alignment with A Framework for K-12 Science Education and the Next Generation Science Standards (NGSS). Investigating the scientific basis of the workings of Earth's atmosphere, ocean, and climate system follows the cross-cutting theme of the Framework and the NGSS and is the cornerstone of the DataStreme courses. In particular, DataStreme ECS explores the fundamental science of Earth's climate system and addresses the societal impacts relevant to today's teachers and students. The course utilizes resources from respected organizations, such as the IPCC and U.S. Global Change Research Program. Key to the NGSS is that students learn disciplinary core ideas in the context of science and engineering practices. In order for the students to learn in this way, the AMS believes that it is important to train the teachers in this context. DataStreme ECS emphasizes investigation of real-word and current NASA and NOAA data. Participants also are made aware of NASA's EdGCM, a research-grade Global Climate Model where they can explore various future climate scenarios in the same way that actual

  4. Climate Considerations Of The Electricity Supply Systems In Industries

    NASA Astrophysics Data System (ADS)

    Asset, Khabdullin; Zauresh, Khabdullina

    2014-12-01

    The study is focused on analysis of climate considerations of electricity supply systems in a pellet industry. The developed analysis model consists of two modules: statistical data of active power losses evaluation module and climate aspects evaluation module. The statistical data module is presented as a universal mathematical model of electrical systems and components of industrial load. It forms a basis for detailed accounting of power loss from the voltage levels. On the basis of the universal model, a set of programs is designed to perform the calculation and experimental research. It helps to obtain the statistical characteristics of the power losses and loads of the electricity supply systems and to define the nature of changes in these characteristics. Within the module, several methods and algorithms for calculating parameters of equivalent circuits of low- and high-voltage ADC and SD with a massive smooth rotor with laminated poles are developed. The climate aspects module includes an analysis of the experimental data of power supply system in pellet production. It allows identification of GHG emission reduction parameters: operation hours, type of electrical motors, values of load factor and deviation of standard value of voltage.

  5. Data management support for selected climate data sets using the climate data access system

    NASA Technical Reports Server (NTRS)

    Reph, M. G.

    1983-01-01

    The functional capabilities of the Goddard Space Flight Center (GSFC) Climate Data Access System (CDAS), an interactive data storage and retrieval system, and the archival data sets which this system manages are discussed. The CDAS manages several climate-related data sets, such as the First Global Atmospheric Research Program (GARP) Global Experiment (FGGE) Level 2-b and Level 3-a data tapes. CDAS data management support consists of three basic functions: (1) an inventory capability which allows users to search or update a disk-resident inventory describing the contents of each tape in a data set, (2) a capability to depict graphically the spatial coverage of a tape in a data set, and (3) a data set selection capability which allows users to extract portions of a data set using criteria such as time, location, and data source/parameter and output the data to tape, user terminal, or system printer. This report includes figures that illustrate menu displays and output listings for each CDAS function.

  6. The exponential eigenmodes of the carbon-climate system

    NASA Astrophysics Data System (ADS)

    Raupach, M. R.

    2012-09-01

    Several basic ratios describing the carbon-climate system are observed to adopt relatively steady values. Examples include the CO2 airborne fraction (the fraction of the total anthropogenic CO2 emission flux that accumulates in the atmosphere) and the ratio T/QE of warming (T) to cumulative total CO2 emissions (QE). This paper explores the reason for such near-constancy in the past, and its likely limitations in future. The contemporary carbon-climate system is often approximated as a first-order linear system, for example in response-function descriptions. All such linear systems have exponential eigenfunctions in time (an eigenfunction being one that, if applied to the system as a forcing, produces a response of the same shape). This implies that, if the carbon-climate system is idealised as a linear system (Lin) forced by exponentially growing CO2 emissions (Exp), then all ratios among fluxes and perturbation state variables are constant. Important cases are the CO2 airborne fraction (AF), the cumulative airborne fraction (CAF), other CO2 partition fractions and cumulative partition fractions into land and ocean stores, the CO2 sink uptake rate (kS, the combined land and ocean CO2 sink flux per unit excess atmospheric CO2), and the ratio T/QE. Further, the AF and the CAF are equal. The Lin and Exp idealisations apply approximately (but not exactly) to the carbon-climate system in the period from the start of industrialisation (nominally 1750) to the present, consistent with the observed near-constancy of the AF, CAF and T/QE in this period. A nonlinear carbon-climate model is used to explore how the likely future breakdown of both the Lin and Exp idealisations will cause the AF, CAF and kS to depart significantly from constancy, in ways that depend on CO2 emissions scenarios. However, T/QE remains approximately constant in typical scenarios, because of compensating interactions between emissions trajectories, carbon-cycle dynamics and non-CO2 gases. This theory

  7. Indoor environment program - 1995 annual report

    SciTech Connect

    Daisey, J.M.

    1996-06-01

    Buildings use approximately one-third of the energy consumed in the United States. The potential energy savings derived from reduced infiltration and ventilation in buildings are substantial, since energy use associated with conditioning and distributing ventilation air is about 5.5 EJ per year. However, since ventilation is the dominant mechanism for removing pollutants from indoor sources, reduction of ventilation can have adverse effects on indoor air quality, and on the health, comfort, and productivity of building occupants. The Indoor Environment Program in LBL`s Energy and Environment Division was established in 1977 to conduct integrated research on ventilation, indoor air quality, and energy use and efficiency in buildings for the purpose of reducing energy liabilities associated with airflows into, within, and out of buildings while maintaining or improving occupant health and comfort. The Program is part of LBL`s Center for Building Science. Research is conducted on building energy use and efficiency, ventilation and infiltration, and thermal distribution systems; on the nature, sources, transport, transformation, and deposition of indoor air pollutants; and on exposure and health risks associated with indoor air pollutants. Pollutants of particular interest include radon; volatile, semivolatile, and particulate organic compounds; and combustion emissions, including environmental tobacco smoke, CO, and NO{sub x}.

  8. Indoor environment program. 1994 annual report

    SciTech Connect

    Daisey, J.M.

    1995-04-01

    Buildings use approximately one-third of the energy consumed in the United States. The potential energy savings derived from reduced infiltration and ventilation in buildings are substantial, since energy use associated with conditioning and distributing ventilation air is about 5.5 EJ per year. However, since ventilation is the dominant mechanism for removing pollutants from indoor sources, reduction of ventilation can have adverse effects on indoor air quality, and on the health, comfort, and productivity of building occupants. The Indoor Environment Program in LBL`s Energy and Environment Division was established in 1977 to conduct integrated research on ventilation, indoor air quality, and energy use and efficiency in buildings for the purpose of reducing energy liabilities associated with airflows into, within, and out of buildings while maintaining or improving occupant health and comfort. The Program is part of LBL`s Center for Building Science. Research is conducted on building energy use and efficiency, ventilation and infiltration, and thermal distribution systems; on the nature, sources, transport, transformation, and deposition of indoor air pollutants; and on exposure and health risks associated with indoor air pollutants. Pollutants of particular interest include radon; volatile, semivolatile, and particulate organic compounds; and combustion emissions, including environmental tobacco smoke, CO, and NO{sub x}.

  9. QUANTIFYING INDOOR MOLDS

    EPA Science Inventory

    There is growing awareness that indoor molds/fungi may be connected to such conditions as asthma, allergies, hemorrhaging, chronic rhinosinusitis, memory loss, and a symptom complex called sick-building-syndrome. In addition, molds cause frequently fatal nosocomical infections. ...

  10. Improving Indoor Air Quality

    EPA Pesticide Factsheets

    Usually the most effective way to improve indoor air quality is to eliminate individual sources of pollution or to reduce their emissions. Some sources, like those that contain asbestos, can be sealed or enclosed.

  11. Urbanism, climate change and health: systems approaches to governance.

    PubMed

    Capon, Anthony G; Synnott, Emma S; Holliday, Sue

    2009-01-01

    Effective action on climate change health impacts and vulnerability will require systems approaches and integrated policy and planning responses from a range of government agencies. Similar responses are needed to address other complex problems, such as the obesity epidemic. Local government, with its focus on the governance of place, will have a key role in responding to these convergent agendas. Industry can also be part of the solution - indeed it must be, because it has a lead role in relevant sectors. Understanding the co-benefits for health of climate mitigation actions will strengthen the case for early action. There is a need for improved decision support tools to inform urban governance. These tools should be based on a systems approach and should incorporate a spatial perspective.

  12. Climate Change and Infrastructure, Urban Systems, and Vulnerabilities

    SciTech Connect

    Wilbanks, Thomas J; Fernandez, Steven J

    2014-01-01

    This Technical Report on Climate Change and Infrastructure, Urban Systems, and Vulnerabilities has been prepared for the U.S. Department of Energy by the Oak Ridge National Laboratory in support of the U.S. National Climate Assessment (NCA). It is a summary of the currently existing knowledge base on its topic, nested within a broader framing of issues and questions that need further attention in the longer run. The report arrives at a number of assessment findings, each associated with an evaluation of the level of consensus on that issue within the expert community, the volume of evidence available to support that judgment, and the section of the report that provides an explanation for the finding. Cross-sectoral issues related to infrastructures and urban systems have not received a great deal of attention to date in research literatures in general and climate change assessments in particular. As a result, this technical report is breaking new ground as a component of climate change vulnerability and impact assessments in the U.S., which means that some of its assessment findings are rather speculative, more in the nature of propositions for further study than specific conclusions that are offered with a high level of confidence and research support. But it is a start in addressing questions that are of interest to many policymakers and stakeholders. A central theme of the report is that vulnerabilities and impacts are issues beyond physical infrastructures themselves. The concern is with the value of services provided by infrastructures, where the true consequences of impacts and disruptions involve not only the costs associated with the clean-up, repair, and/or replacement of affected infrastructures but also economic, social, and environmental effects as supply chains are disrupted, economic activities are suspended, and/or social well-being is threatened. Current knowledge indicates that vulnerability concerns tend to be focused on extreme weather events

  13. Modeling Feedbacks Between Water and Vegetation in the Climate System

    NASA Technical Reports Server (NTRS)

    Miller, James R.; Russell, Gary L.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Not only is water essential for life on earth, but life itself affects the global hydrologic cycle and consequently the climate of the planet. Whether the global feedbacks between life and the hydrologic cycle tend to stabilize the climate system about some equilibrium level is difficult to assess. We use a global climate model to examine how the presence of vegetation can affect the hydrologic cycle in a particular region. A control for the present climate is compared with a model experiment in which the Sahara Desert is replaced by vegetation in the form of trees and shrubs common to the Sahel region. A second model experiment is designed to identify the separate roles of two different effects of vegetation, namely the modified albedo and the presence of roots that can extract moisture from deeper soil layers. The results show that the presence of vegetation leads to increases in precipitation and soil moisture in western Sahara. In eastern Sahara, the changes are less clear. The increase in soil moisture is greater when the desert albedo is replaced by the vegetation albedo than when both the vegetation albedo and roots are added. The effect of roots is to withdraw water from deeper layers during the dry season. One implication of this study is that the insertion of vegetation into the Sahara modifies the hydrologic cycle so that the vegetation is more likely to persist than initially.

  14. Power Grids and Climate Information: supporting transmission system operators

    NASA Astrophysics Data System (ADS)

    De Felice, Matteo; Alessandri, Andrea; Catalano, Franco

    2015-04-01

    The activities of electricity transmission system operators (TSO) may be affected by weather conditions and for this reason the availability of accurate information about past and future states can be useful for power grids management. ENEA is supporting TERNA (Italian TSO) since 2012 providing them weather and climate information related to electricity demand and renewable energies management. The first task has been an assessment on the use of weather and climate information to predict electricity demand at short (1-5 days) and long (1-3 months) time scales. The second task was focused on the possibility to estimate and predict the electricity production coming from photovoltaic (PV) using different data sources (satellite, reanalysis, weather stations, climate models). The outcome of this collaboration has been two-fold: i) we had the occasion to evaluate the "quality" of weather/climate information considering power grid operational aspects and ii) more challenging questions, not considered at the beginning, have been raised, providing further interesting research goals.

  15. The Role of the Nitrogen Cycle in the Climate System

    NASA Astrophysics Data System (ADS)

    Holland, E. A.

    2007-12-01

    The Fourth Assessment Report of Intergovernmental Panel on Climate Change was released earlier this year and has generated world-wide attention This was the first Working Group 1 report to take an explicit look at the global nitrogen cycle and how changes in the N cycle have impacted the climate system. The Working Group 1 report states the following: "Global atmospheric concentrations of carbon dioxide, methane and nitrous oxide have increased markedly as a result of human activities since 1750 and now far exceed pre-industrial values determined from ice cores spanning many thousands of years. It is very likely that the increase in the combined radiative forcing from carbon dioxide, methane and nitrous oxide has been at least six times faster between1960 to 1999 than over any 40 year period during the two 50 millennia prior to the year 1800. " Changes to the cycling of reactive nitrogen, not the stable atmospheric N2, play an important role in the climate system. The most obvious is the rise in the atmospheric abundance of nitrous oxide since 1750. Nitrous oxide is an important atmospheric tracer that allows us to track global changes to the nitrogen cycle. Nitrogen plays a role in many other aspects of the climate system that are not immediately obvious. Biologically available nitrogen is required for carbon uptake which helps fuel both oceanic and terrestrial carbon uptake. Without the nitrogen fueled carbon uptake, the air-borne fraction of the carbon dioxide released from fossil fuel combustion will increase according to the first coupled climate, carbon and nitrogen simulations done with the NCAR Community Climate System Model (CCSM). NOx (NO+NO2) is one of the necessary precursors for ozone formation that has increased more than thirty eight percent since the pre-industrial era. Understanding the role of sources other than fossil fuel emissions, including soil NOx emissions and lightning formation of NOx are important to understanding ozone formation. Recent

  16. The Aerosol-Monsoon Climate System of Asia

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kyu-Myong, Kim

    2012-01-01

    In Asian monsoon countries such as China and India, human health and safety problems caused by air-pollution are worsening due to the increased loading of atmospheric pollutants stemming from rising energy demand associated with the rapid pace of industrialization and modernization. Meanwhile, uneven distribution of monsoon rain associated with flash flood or prolonged drought, has caused major loss of human lives, and damages in crop and properties with devastating societal impacts on Asian countries. Historically, air-pollution and monsoon research are treated as separate problems. However a growing number of recent studies have suggested that the two problems may be intrinsically intertwined and need to be studied jointly. Because of complexity of the dynamics of the monsoon systems, aerosol impacts on monsoons and vice versa must be studied and understood in the context of aerosol forcing in relationship to changes in fundamental driving forces of the monsoon climate system (e.g. sea surface temperature, land-sea contrast etc.) on time scales from intraseasonal variability (weeks) to climate change ( multi-decades). Indeed, because of the large contributions of aerosols to the global and regional energy balance of the atmosphere and earth surface, and possible effects of the microphysics of clouds and precipitation, a better understanding of the response to climate change in Asian monsoon regions requires that aerosols be considered as an integral component of a fully coupled aerosol-monsoon system on all time scales. In this paper, using observations and results from climate modeling, we will discuss the coherent variability of the coupled aerosol-monsoon climate system in South Asia and East Asia, including aerosol distribution and types, with respect to rainfall, moisture, winds, land-sea thermal contrast, heat sources and sink distributions in the atmosphere in seasonal, interannual to climate change time scales. We will show examples of how elevated

  17. Integrated Information Systems Across the Weather-Climate Continuum

    NASA Astrophysics Data System (ADS)

    Pulwarty, R. S.; Higgins, W.; Nierenberg, C.; Trtanj, J.

    2015-12-01

    The increasing demand for well-organized (integrated) end-to-end research-based information has been highlighted in several National Academy studies, in IPCC Reports (such as the SREX and Fifth Assessment) and by public and private constituents. Such information constitutes a significant component of the "environmental intelligence" needed to address myriad societal needs for early warning and resilience across the weather-climate continuum. The next generation of climate research in service to the nation requires an even more visible, authoritative and robust commitment to scientific integration in support of adaptive information systems that address emergent risks and inform longer-term resilience strategies. A proven mechanism for resourcing such requirements is to demonstrate vision, purpose, support, connection to constituencies, and prototypes of desired capabilities. In this presentation we will discuss efforts at NOAA, and elsewhere, that: Improve information on how changes in extremes in key phenomena such as drought, floods, and heat stress impact management decisions for resource planning and disaster risk reduction Develop regional integrated information systems to address these emergent challenges, that integrate observations, monitoring and prediction, impacts assessments and scenarios, preparedness and adaptation, and coordination and capacity-building. Such systems, as illustrated through efforts such as NIDIS, have strengthened the integration across the foundational research enterprise (through for instance, RISAs, Modeling Analysis Predictions and Projections) by increasing agility for responding to emergent risks. The recently- initiated Climate Services Information System, in support of the WMO Global Framework for Climate Services draws on the above models and will be introduced during the presentation.

  18. Linkages between the Urban Environment and Earth's Climate System

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Jin, Menglin

    2003-01-01

    Urbanization is one of the extreme cases of land use change. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in the near future. It is estimated that by the year 2025 60% of the world s population will live in cities (UNFP, 1999). Though urban areas are local in scale, human activity in urban environments has impacts at local, to global scale by changing atmospheric composition; impacting components of the water cycle; and modifying the carbon cycle 2nd ecosystems. For example, urban dwellers are undoubtedly familiar with "high" ozone pollution days, flash flooding in city streets, or heat stress on summer days. However, our understanding of urbanization on the total Earth-climate system is incomplete. Better understanding of how the Earth s weather, oceans, and land work together and the influence of the urban environment on this climate system is critical. This paper highlights some of the major and current issues involving interactions between urban environments and the Earth's climate system. It also captures some of the most current thinking and findings of the authors and key experts in the field.

  19. An investigation of the potential causes for the seasonal and annual variations in indoor radon concentrations.

    PubMed

    Barazza, F; Gfeller, W; Palacios, M; Murith, C

    2015-11-01

    Indoor radon concentrations exhibit strong variations on short and long timescales. Besides human influences, meteorological factors significantly affect the radon concentrations indoors as well as outdoors. In this article, long-term measurements showing strong annual variations are presented, which take a very similar course in different buildings located in largely separated regions in Switzerland. Also, seasonal variations can be very significant. In general, variations in indoor radon levels can primarily be attributed to human influences. On the other hand, specific weather conditions can have a significant impact on indoor radon levels. In order to further investigate the connection between indoor radon levels and meteorological factors, a measuring campaign has been started in two buildings located in two different regions in Switzerland exhibiting different climatic characteristics. Preliminary results of these investigations are presented, which provide evidence for correlations between indoor radon levels and in particular outdoor temperatures, contributing to seasonal and annual as well as short-term variations in indoor radon concentrations.

  20. Use of an indoor air quality model (IAQM) to estimate indoor ozone levels.

    PubMed

    Hayes, S R

    1991-02-01

    Currently, outdoor ozone levels in many U.S. cities exceed the primary health-based national ambient air quality standard. While outdoor ozone levels are an important measure of the severity of those exceedances, people typically spend more than 80 percent of their time indoors, where ozone levels are lower. Indoor ozone levels range from 10 to 80 percent of outdoor levels, with many people receiving a substantial portion of their ozone exposure while indoors. This paper uses an indoor air quality model (IAQM) to estimate indoor ozone levels by microenvironment type (home, office, and vehicle) and configuration (windows open, windows closed, older construction, weatherized, and air conditioned). The formulation of IAQM is discussed, along with specification of model parameters for ozone. The multicompartment version of IAQM is described, with a single-compartment version used for the analyses. IAQM-calculated ozone indoor-outdoor ratios compare well with research-reported values. Results indicate that ozone peak-concentration indoor-outdoor ratios range as follows: home--0.65 (windows open), 0.36 (air conditioned), 0.23 (typical construction, windows closed), and 0.05 (energy-efficient construction, windows closed); office--0.82 (heating, ventilation and air conditioning systems supplying 100 percent outdoor air), 0.60 (typical HVAC), and 0.32 (energy-efficient HVAC); and vehicle--0.41 (85 mph), 0.33 (55 mph), and 0.21 (10 mph). Analysis results are presented to characterize IAQM's sensitivity to assumed model parameters.

  1. Indoor Environmental Control Practices and Asthma Management.

    PubMed

    Matsui, Elizabeth C; Abramson, Stuart L; Sandel, Megan T

    2016-11-01

    Indoor environmental exposures, particularly allergens and pollutants, are major contributors to asthma morbidity in children; environmental control practices aimed at reducing these exposures are an integral component of asthma management. Some individually tailored environmental control practices that have been shown to reduce asthma symptoms and exacerbations are similar in efficacy and cost to controller medications. As a part of developing tailored strategies regarding environmental control measures, an environmental history can be obtained to evaluate the key indoor environmental exposures that are known to trigger asthma symptoms and exacerbations, including both indoor pollutants and allergens. An environmental history includes questions regarding the presence of pets or pests or evidence of pests in the home, as well as knowledge regarding whether the climatic characteristics in the community favor dust mites. In addition, the history focuses on sources of indoor air pollution, including the presence of smokers who live in the home or care for children and the use of gas stoves and appliances in the home. Serum allergen-specific immunoglobulin E antibody tests can be performed or the patient can be referred for allergy skin testing to identify indoor allergens that are most likely to be clinically relevant. Environmental control strategies are tailored to each potentially relevant indoor exposure and are based on knowledge of the sources and underlying characteristics of the exposure. Strategies include source removal, source control, and mitigation strategies, such as high-efficiency particulate air purifiers and allergen-proof mattress and pillow encasements, as well as education, which can be delivered by primary care pediatricians, allergists, pediatric pulmonologists, other health care workers, or community health workers trained in asthma environmental control and asthma education.

  2. Chemistry and Climate in Asia - An Earth System Modeling Project

    NASA Astrophysics Data System (ADS)

    Barth, M. C.; Emmons, L. K.; Massie, S. T.; Pfister, G.; Romero Lankao, P.; Lamarque, J.; Carmichael, G. R.

    2011-12-01

    Asia is one of the most highly populated and economically dynamic regions in the world, with much of the population located in growing mega-cities. It is a region with significant emissions of greenhouse gases, aerosols and other pollutants, which pose high health risks to urban populations. Emissions of these aerosols and gases increased drastically over the last decade due to economic growth and urbanization and are expected to rise further in the near future. As such, the continent plays a role in influencing climate change via its effluent of aerosols and gaseous pollutants. Asia is also susceptible to adverse climate change through interactions between aerosols and clouds, which potentially can have serious implications for freshwater resources. We are developing an integrated inter-disciplinary program to focus on Asia, its climate, air quality, and impact on humans that will include connections with hydrology, ecosystems, extreme weather events, and human health. The primary goal of this project is to create a team to identify key scientific questions and establish networks of specialists to create a plan for future studies to address these questions. A second goal is to establish research facilities and a framework for investigating chemistry and climate over Asia. These facilities include producing high resolution Earth System Model simulations that have been evaluated with meteorological and chemical measurements, producing high-resolution emission inventories, analyzing satellite data, and analyzing the vulnerability of humans to air quality and extreme natural events. In this presentation we will describe in more detail these activities and discuss a future workshop on the impact of chemistry in climate on air quality and human health.

  3. Investigation of advanced pre- and post-equalization schemes in high-order CAP modulation based high-speed indoor VLC transmission system

    NASA Astrophysics Data System (ADS)

    Wang, Yiguang; Chi, Nan

    2016-10-01

    Light emitting diodes (LEDs) based visible light communication (VLC) has been considered as a promising technology for indoor high-speed wireless access, due to its unique advantages, such as low cost, license free and high security. To achieve high-speed VLC transmission, carrierless amplitude and phase (CAP) modulation has been utilized for its lower complexity and high spectral efficiency. Moreover, to compensate the linear and nonlinear distortions such as frequency attenuation, sampling time offset, LED nonlinearity etc., series of pre- and post-equalization schemes should be employed in high-speed VLC systems. In this paper, we make an investigation on several advanced pre- and postequalization schemes for high-order CAP modulation based VLC systems. We propose to use a weighted preequalization technique to compensate the LED frequency attenuation. In post-equalization, a hybrid post equalizer is proposed, which consists of a linear equalizer, a Volterra series based nonlinear equalizer, and a decision-directed least mean square (DD-LMS) equalizer. Modified cascaded multi-modulus algorithm (M-CMMA) is employed to update the weights of the linear and the nonlinear equalizer, while DD-LMS can further improve the performance after the preconvergence. Based on high-order CAP modulation and these equalization schemes, we have experimentally demonstrated a 1.35-Gb/s, a 4.5-Gb/s and a 8-Gb/s high-speed indoor VLC transmission systems. The results show the benefit and feasibility of the proposed equalization schemes for high-speed VLC systems.

  4. Climate change adaptation for the US National Wildlife Refuge System

    USGS Publications Warehouse

    Griffith, Brad; Scott, J. Michael; Adamcik, Robert S.; Ashe, Daniel; Czech, Brian; Fischman, Robert; Gonzalez, Patrick; Lawler, Joshua J.; McGuire, A. David; Pidgorna, Anna

    2009-01-01

    Since its establishment in 1903, the National Wildlife Refuge System (NWRS) has grown to 635 units and 37 Wetland Management Districts in the United States and its territories. These units provide the seasonal habitats necessary for migratory waterfowl and other species to complete their annual life cycles. Habitat conversion and fragmentation, invasive species, pollution, and competition for water have stressed refuges for decades, but the interaction of climate change with these stressors presents the most recent, pervasive, and complex conservation challenge to the NWRS. Geographic isolation and small unit size compound the challenges of climate change, but a combined emphasis on species that refuges were established to conserve and on maintaining biological integrity, diversity, and environmental health provides the NWRS with substantial latitude to respond. Individual symptoms of climate change can be addressed at the refuge level, but the strategic response requires system-wide planning. A dynamic vision of the NWRS in a changing climate, an explicit national strategic plan to implement that vision, and an assessment of representation, redundancy, size, and total number of units in relation to conservation targets are the first steps toward adaptation. This adaptation must begin immediately and be built on more closely integrated research and management. Rigorous projections of possible futures are required to facilitate adaptation to change. Furthermore, the effective conservation footprint of the NWRS must be increased through land acquisition, creative partnerships, and educational programs in order for the NWRS to meet its legal mandate to maintain the biological integrity, diversity, and environmental health of the system and the species and ecosystems that it supports.

  5. Climate change adaptation for the US National Wildlife Refuge System.

    PubMed

    Griffith, Brad; Scott, J Michael; Adamcik, Robert; Ashe, Daniel; Czech, Brian; Fischman, Robert; Gonzalez, Patrick; Lawler, Joshua; McGuire, A David; Pidgorna, Anna

    2009-12-01

    Since its establishment in 1903, the National Wildlife Refuge System (NWRS) has grown to 635 units and 37 Wetland Management Districts in the United States and its territories. These units provide the seasonal habitats necessary for migratory waterfowl and other species to complete their annual life cycles. Habitat conversion and fragmentation, invasive species, pollution, and competition for water have stressed refuges for decades, but the interaction of climate change with these stressors presents the most recent, pervasive, and complex conservation challenge to the NWRS. Geographic isolation and small unit size compound the challenges of climate change, but a combined emphasis on species that refuges were established to conserve and on maintaining biological integrity, diversity, and environmental health provides the NWRS with substantial latitude to respond. Individual symptoms of climate change can be addressed at the refuge level, but the strategic response requires system-wide planning. A dynamic vision of the NWRS in a changing climate, an explicit national strategic plan to implement that vision, and an assessment of representation, redundancy, size, and total number of units in relation to conservation targets are the first steps toward adaptation. This adaptation must begin immediately and be built on more closely integrated research and management. Rigorous projections of possible futures are required to facilitate adaptation to change. Furthermore, the effective conservation footprint of the NWRS must be increased through land acquisition, creative partnerships, and educational programs in order for the NWRS to meet its legal mandate to maintain the biological integrity, diversity, and environmental health of the system and the species and ecosystems that it supports.

  6. Climate Outreach Using Regional Coastal Ocean Observing System Portals

    NASA Astrophysics Data System (ADS)

    Anderson, D. M.; Hernandez, D. L.; Wakely, A.; Bochenek, R. J.; Bickel, A.

    2015-12-01

    Coastal oceans are dynamic, changing environments affected by processes ranging from seconds to millennia. On the east and west coast of the U.S., regional observing systems have deployed and sustained a remarkable diverse array of observing tools and sensors. Data portals visualize and provide access to real-time sensor networks. Portals have emerged as an interactive tool for educators to help students explore and understand climate. Bringing data portals to outreach events, into classrooms, and onto tablets and smartphones enables educators to address topics and phenomena happening right now. For example at the 2015 Charleston Science Technology Engineering and Math (STEM) Festival, visitors navigated the SECOORA (Southeast Coastal Ocean Observing regional Association) data portal to view the real-time marine meteorological conditions off South Carolina. Map-based entry points provide an intuitive interface for most students, an array of time series and other visualizations depict many of the essential principles of climate science manifest in the coastal zone, and data down-load/ extract options provide access to the data and documentation for further inquiry by advanced users. Beyond the exposition of climate principles, the portal experience reveals remarkable technologies in action and shows how the observing system is enabled by the activity of many different partners.

  7. Climate Ocean Modeling on a Beowulf Class System

    NASA Technical Reports Server (NTRS)

    Cheng, B. N.; Chao, Y.; Wang, P.; Bondarenko, M.

    2000-01-01

    With the growing power and shrinking cost of personal computers. the availability of fast ethernet interconnections, and public domain software packages, it is now possible to combine them to build desktop parallel computers (named Beowulf or PC clusters) at a fraction of what it would cost to buy systems of comparable power front supercomputer companies. This led as to build and assemble our own sys tem. specifically for climate ocean modeling. In this article, we present our experience with such a system, discuss its network performance, and provide some performance comparison data with both HP SPP2000 and Cray T3E for an ocean Model used in present-day oceanographic research.

  8. Parallelizing Climate Data Management System, version 3 (CDMS3)

    NASA Astrophysics Data System (ADS)

    Nadeau, D.; Williams, D. N.; Painter, J.; Doutriaux, C.

    2015-12-01

    The Climate Data Management System is an object-oriented data management system, specialized for organizing multidimensional, gridded data used in climate analyses for data observation and simulation. The basic unit of computation in CDMS3 is the variable, which consist of a multidimensional array that represents climate information in four dimensions corresponding to: time, pressure levels, latitudes, and longitudes. As model become more precise in their computation, the volume of data generated becomes bigger and difficult to handle due to the limit of computational resources. Model today can produce data a time frequency of one hourly, three hourly, or six hourly for spatial footprint close to satellite data used run models. The amount of time for scientists to analyze the data and retrieve useful information is more and more unmanageable. Parallelizing libraries such as CMDS3 would ease the burden of working with such big datasets. Multiple approaches of parallelizing are possible. The most obvious one is embarrassingly parallel or pleasingly parallel programming where each computer node processes one file at a time. A more challenging approach is to send a piece of the data to each node for computation and each node will save the results at its right place in a file as a slab of data. This is possible with Hierarchical Data Format 5 (HDF5) using the Message Passing Interface (MPI). A final approach would be the use of Open Multi-Processing API (OpenMP) where a master thread is split in multiple threads for different sections of the main code. Each method has its advantages and disadvantages. This poster bring to light each benefit of these methods and seek to find an optimal solution to compute climate data analyses in a efficient fashion using one or a mixtures of these parallelized methods.

  9. Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings

    PubMed Central

    Wallner, Peter; Munoz, Ute; Tappler, Peter; Wanka, Anna; Kundi, Michael; Shelton, Janie F.; Hutter, Hans-Peter

    2015-01-01

    Energy-efficient buildings need mechanical ventilation. However, there are concerns that inadequate mechanical ventilation may lead to impaired indoor air quality. Using a semi-experimental field study, we investigated if exposure of occupants of two types of buildings (mechanical vs. natural ventilation) differs with regard to indoor air pollutants and climate factors. We investigated living and bedrooms in 123 buildings (62 highly energy-efficient and 61 conventional buildings) built in the years 2010 to 2012 in Austria (mainly Vienna and Lower Austria). Measurements of indoor parameters (climate, chemical pollutants and biological contaminants) were conducted twice. In total, more than 3000 measurements were performed. Almost all indoor air quality and room climate parameters showed significantly better results in mechanically ventilated homes compared to those relying on ventilation from open windows and/or doors. This study does not support the hypothesis that occupants in mechanically ventilated low energy houses are exposed to lower indoor air quality. PMID:26561823

  10. Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings.

    PubMed

    Wallner, Peter; Munoz, Ute; Tappler, Peter; Wanka, Anna; Kundi, Michael; Shelton, Janie F; Hutter, Hans-Peter

    2015-11-06

    Energy-efficient buildings need mechanical ventilation. However, there are concerns that inadequate mechanical ventilation may lead to impaired indoor air quality. Using a semi-experimental field study, we investigated if exposure of occupants of two types of buildings (mechanical vs. natural ventilation) differs with regard to indoor air pollutants and climate factors. We investigated living and bedrooms in 123 buildings (62 highly energy-efficient and 61 conventional buildings) built in the years 2010 to 2012 in Austria (mainly Vienna and Lower Austria). Measurements of indoor parameters (climate, chemical pollutants and biological contaminants) were conducted twice. In total, more than 3000 measurements were performed. Almost all indoor air quality and room climate parameters showed significantly better results in mechanically ventilated homes compared to those relying on ventilation from open windows and/or doors. This study does not support the hypothesis that occupants in mechanically ventilated low energy houses are exposed to lower indoor air quality.

  11. Intersects between Land, Energy, Water and the Climate System

    NASA Astrophysics Data System (ADS)

    Hibbard, K. A.; Skaggs, R.; Wilson, T.

    2012-12-01

    Climate change affects water, and land resources, and with growing human activity, each of these sectors relies increasingly on the others for critical resources. Events such as drought across the South Central U.S. during 2011 demonstrate that climatic impacts within each of these sectors can cascade through interactions between sectors. Energy, water, and land resources are each vulnerable to impacts on either of the other two sectors. For example, energy systems inherently require land and water. Increased electricity demands to contend with climate change can impose additional burdens on overly subscribed water resources. Within this environment, energy systems compete for water with agriculture, human consumption, and other needs. In turn, climate driven changes in landscape attributes and land use affect water quality and availability as well as energy demands. Diminishing water quality and availability impose additional demands for energy to access and purify water, and for land to store and distribute water. In some situations, interactions between water, energy, and land resources make options for reducing greenhouse gas emissions vulnerable to climate change. Energy options such as solar power or biofuel use can reduce net greenhouse gas emissions as well as U.S. dependence on foreign resources. As a result, the U.S. is expanding renewable energy systems. Advanced technology such as carbon dioxide capture with biofuels may offer a means of removing CO2 from the atmosphere. But as with fossil fuels, renewable energy sources can impose significant demands for water and land. For example, solar power mayrequire significant land to site facilities and water for cooling or to produce steam. Raising crops to produce biofuels uses arable land and water that might otherwise be available for food production. Thus, warmer and drier climate can compromise these renewable energy resources, and drought can stress water supplies creating competition between energy

  12. Climate-based health monitoring systems for eco-climatic conditions associated with infectious diseases.

    PubMed

    Pinzon, E; Wilson, J M; Tucker, C J

    2005-09-01

    Despite a century of confidence and optimism in modern medicine and technology inspired by their often successful prevention and control efforts, infectious diseases remain an omnipresent, conspicuous major challenge to public health. Effective detection and control of infectious diseases require predictive and proactive efficient methods that provide early warning of an epidemic activity. Of particular relevance to these efforts is linking information at the landscape and coarser scales to data at the scale of the epidemic activity. In recent years, landscape epidemiology has used satellite remote sensing and geographic information systems as the technology capable of providing, from local to global scales, spatial and temporal climatic patterns that may influence the intensity of a vector-borne disease and predicts risk conditions associated with an epidemic. This article provides a condensed, and selective look at classical material and recent research about remote sensing and GIS (geographic information system) applications in public health.

  13. A View Indoors, Indoor Environment Division's e-Article Series

    EPA Pesticide Factsheets

    The Indoor Environments Division has created partnership with public and private sector entities to help encourage the public to take action to minimize their risk and mitigate indoor air quality problems.

  14. Atmospheric planetary boundary layer feedback in climate system and triggering of climate change at high latitudes

    NASA Astrophysics Data System (ADS)

    Esau, I.; Zilitinkevich, S.

    2009-04-01

    Recent publications have revealed that modern, state-of-the-art climate-change models (CCMs) are not sensitive enough to reproduce some fine features of the observed changes in the surface air temperature (SAT) especially at high latitudes. We propose that this problem results from inaccurate representation of the very shallow long-lived stable (LS) and conventionally neutral (CN) atmospheric planetary boundary layers (PBLs) typical of high latitudes, especially of Polar regions. LS and CN PBLs, not yet included in the context of climate modelling, are almost an order of magnitude shallower than mid-latitudinal nocturnal stable (NS) and truly neutral (TN) PBLs, which are the only concern of the traditional theory of stable PBLs. In is only natural that factually observed shallow PBLs respond to thermal impacts (e.g. to the changes in the surface heat balance) much stronger than much deeper PBLs reproduced by the current PBL schemes. In this paper we investigate analytically the PBL feedback in climate system for all known kinds of PBL: stable (distinguishing between NS and LS), neutral (distinguishing between TN and CN) and also convective). Besides very high sensitivity of LS PBLs, quite consistent with the observed variability in SAT, our analyses reveal that in some specific conditions global warming could cause "strange cases" of local cooling. We also obtained analytically that the daily minimum temperatures are more sensitive to the global warming than the daily maximum temperatures, which, at least partially, explains such observed phenomena as asymmetry in the diurnal temperature trends and almost global reduction of the diurnal temperature range.

  15. Predictability of the Seasonal Climate Associated with ENSO in NCEP Climate Forecast System

    NASA Astrophysics Data System (ADS)

    Zhang, Q.

    2005-05-01

    The predictability of seasonal climate associated with ENSO is studied for NCEP Climate Forecast System (CFS) 23-year retrospective forecasts. Warm-minus-cold composites of the lead 1-6 month sea surface temperature (SST) anomalies show an ENSO-like horse-shoes pattern in the tropical Pacific, comparable with observation. There is a corresponding increased precipitation band along the equator near the dateline extending eastward to the South American coast, as well as the less precipitation over the Maritime Continents and off-equatorial western Pacific. Extended empirical orthogonal function (EEOF) analysis of the SST anomaly recovers ENSO -like dominant mode in the tropics for all seasons. Identification of patterns that optimize the signal-to-noise ratio is obtained by linear regression of the ensemble means on the principal component (PC) time series of SST. The optimized height patterns for boreal winter and spring are similar, although the winter response over the northern extratropics is somewhat weaker. Some subtle changes in amplitude are found in difference of leading initial conditions. The signal-to-noise ratio is significantly greater than unity in the Tropics (all seasons), the northern Pacific and continental North America subtropics (boreal winter and spring), and the southern Pacific subtropics (boreal fall).

  16. A New Paradigm for Assessing the Role of Agriculture in the Climate System and in Climate Change

    NASA Technical Reports Server (NTRS)

    Pielke, Roger A., Sr.; Adegoke, Jimmy O.; Chase, Thomas N.; Marshall, Curtis H.; Matsui, Toshihisa; Niyogi, Dev

    2007-01-01

    This paper discusses the diverse climate forcings that impact agricultural systems, and contrasts the current paradigm of using global models downscaled to agricultural areas (a top-down approach) with a new paradigm that first assesses the vulnerability of agricultural activities to the spectrum of environmental risk including climate (a bottom-up approach). To illustrate the wide spectrum of climate forcings, regional climate forcings are presented including land-use/land-cover change and the influence of aerosols on radiative and biogeochemical fluxes and cloud/precipitation processes, as well as how these effects can be teleconnected globally. Examples are presented of the vulnerability perspective, along with a small survey of the perceived drought impacts in a local area, in which a wide range of impacts for the same precipitation deficits are found. This example illustrates why agricultural assessments of risk to climate change and variability and of other environmental risks should start with a bottom-up perspective.

  17. Climatic controls on arid continental basin margin systems

    NASA Astrophysics Data System (ADS)

    Gough, Amy; Clarke, Stuart; Richards, Philip; Milodowski, Antoni

    2016-04-01

    Alluvial fans are both dominant and long-lived within continental basin margin systems. As a result, they commonly interact with a variety of depositional systems that exist at different times in the distal extent of the basin as the basin evolves. The deposits of the distal basin often cycle between those with the potential to act as good aquifers and those with the potential to act as good aquitards. The interactions between the distal deposits and the basin margin fans can have a significant impact upon basin-scale fluid flow. The fans themselves are commonly considered as relatively homogeneous, but their sedimentology is controlled by a variety of factors, including: 1) differing depositional mechanisms; 2) localised autocyclic controls; 3) geometrical and temporal interactions with deposits of the basin centre; and, 4) long-term allocyclic climatic variations. This work examines the basin margin systems of the Cutler Group sediments of the Paradox Basin, western U.S.A and presents generalised facies models for the Cutler Group alluvial fans as well as for the zone of interaction between these fans and the contemporaneous environments in the basin centre, at a variety of scales. Small-scale controls on deposition include climate, tectonics, base level and sediment supply. It has been ascertained that long-term climatic alterations were the main control on these depositional systems. Models have been constructed to highlight how both long-term and short-term alterations in the climatic regime can affect the sedimentation in the basin. These models can be applied to better understand similar, but poorly exposed, alluvial fan deposits. The alluvial fans of the Brockram Facies, northern England form part of a once-proposed site for low-level nuclear waste decommissioning. As such, it is important to understand the sedimentology, three-dimensional geometry, and the proposed connectivity of the deposits from the perspective of basin-scale fluid flow. The developed

  18. Assessment of climate change effects on Canada's National Park system.

    PubMed

    Suffling, Roger; Scott, Daniel

    2002-03-01

    To estimate the magnitude of climate change anticipated for Canada's 38 National Parks (NPs) and Park Reserves, seasonal temperature and precipitation scenarios were constructed for 2050 and 2090 using the Canadian Centre for Climate Modelling and Analysis (CCCma) coupled model (CGCM1). For each park, we assessed impacts on physical systems, species, ecosystems and people. Important, widespread changes relate to marine and freshwater hydrology, glacial balance, waning permafrost, increased natural disturbance, shorter ice season, northern and upward altitudinal species and biome shifts, and changed visitation patterns. Other changes are regional (e.g., combined East coast subsidence and sea level rise increase coastal erosion and deposition, whereas, on the Pacific coast, tectonic uplift negates sea level rise). Further predictions concern individual parks (e.g., Unique fens of Bruce Peninsular NP will migrate lakewards with lowered water levels, but structural regulation of Lake Huron for navigation and power generation would destroy the fens). Knowledge gaps are the most important findings. For example: we could not form conclusions about glacial mass balance, or its effects on rivers and fjords. Likewise, for the East Coast Labrador Current we could neither estimate temperature and salinity effects of extra iceberg formation, nor the further effects on marine food chains, and breeding park seabirds. We recommend 1) Research on specific large knowledge gaps; 2) Climate change information exchange with protected area agencies in other northern countries; and 3) incorporating climate uncertainty into park plans and management. We discuss options for a new park management philosophy in the face of massive change and uncertainty.

  19. Measure Guideline: Supplemental Dehumidification in Warm-Humid Climates

    SciTech Connect

    Rudd, A.

    2014-10-01

    This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. In older homes in warm-humid climates, cooling loads are typically high and cooling equipment runs a lot to cool the air. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisture being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and some winter days. In warm-humid climates, those long off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and avoids adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.

  20. Measure Guideline: Supplemental Dehumidification in Warm-Humid Climates

    SciTech Connect

    Rudd, Armin

    2014-10-01

    This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. Cooling loads are typically high and cooling equipment runs a lot to cool the air in older homes in warm-humid climates. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisture being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and winter days. In warm-humid climates, those long-off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.

  1. Data Visualization and Analysis for Climate Studies using NASA Giovanni Online System

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Leptoukh, Gregory; Lloyd, Steven

    2008-01-01

    With many global earth observation systems and missions focused on climate systems and the associated large volumes of observational data available for exploring and explaining how climate is changing and why, there is an urgent need for climate services. Giovanni, the NASA GES DISC Interactive Online Visualization ANd ANalysis Infrastructure, is a simple to use yet powerful tool for analysing these data for research on global warming and climate change, as well as for applications to weather. air quality, agriculture, and water resources,

  2. Indoor radon problem in energy efficient multi-storey buildings.

    PubMed

    Yarmoshenko, I V; Vasilyev, A V; Onishchenko, A D; Kiselev, S M; Zhukovsky, M V

    2014-07-01

    Modern energy-efficient architectural solutions and building construction technologies such as monolithic concrete structures in combination with effective insulation reduce air permeability of building envelope. As a result, air exchange rate is significantly reduced and conditions for increased radon accumulation in indoor air are created. Based on radon survey in Ekaterinburg, Russia, remarkable increase in indoor radon concentration level in energy-efficient multi-storey buildings was found in comparison with similar buildings constructed before the-energy-saving era. To investigate the problem of indoor radon in energy-efficient multi-storey buildings, the measurements of radon concentration have been performed in seven modern buildings using radon monitoring method. Values of air exchange rate and other parameters of indoor climate in energy-efficient buildings have been estimated.

  3. A proposed UAV for indoor patient care.

    PubMed

    Todd, Catherine; Watfa, Mohamed; El Mouden, Yassine; Sahir, Sana; Ali, Afrah; Niavarani, Ali; Lutfi, Aoun; Copiaco, Abigail; Agarwal, Vaibhavi; Afsari, Kiyan; Johnathon, Chris; Okafor, Onyeka; Ayad, Marina

    2015-09-10

    Indoor flight, obstacle avoidance and client-server communication of an Unmanned Aerial Vehicle (UAV) raises several unique research challenges. This paper examines current methods and associated technologies adapted within the literature toward autonomous UAV flight, for consideration in a proposed system for indoor healthcare administration with a quadcopter. We introduce Healthbuddy, a unique research initiative towards overcoming challenges associated with indoor navigation, collision detection and avoidance, stability, wireless drone-server communications and automated decision support for patient care in a GPS-denied environment. To address the identified research deficits, a drone-based solution is presented. The solution is preliminary as we develop and refine the suggested algorithms and hardware system to achieve the research objectives.

  4. Continental Heat Gain in the Global Climate System

    NASA Astrophysics Data System (ADS)

    Smerdon, J. E.; Beltrami, H.; Pollack, H. N.; Huang, S.

    2001-12-01

    Observed increases in 20th century surface-air temperatures are one consequence of a net energy flux into all major components of the Earth climate system including the atmosphere, ocean, cryosphere, and lithosphere. Levitus et al. [2001] have estimated the heat gained by the atmosphere, ocean and cryosphere as 18.2x1022 J, 6.6x1021 J, and 8.1x1021 J, respectively, over the past half-century. However the heat gain of the lithosphere via a heat flux across the solid surface of the continents (30% of the Earth's surface) was not addressed in the Levitus analysis. Here we calculate that final component of Earth's changing energy budget, using ground-surface temperature reconstructions for the continents [Huang et al., 2000]. These reconstructions have shown a warming of at least 0.5 K in the 20th century and were used to determine the flux estimates presented here. In the last half-century, the interval of time considered by Levitus et al., there was an average flux of 40 mW/m2 across the land surface into the subsurface, leading to 9.2x1021 J absorbed by the ground. This amount of heat is significantly less than the energy transferred into the oceans, but of the same magnitude as the energy absorbed by the atmosphere or cryosphere. The heat inputs into all the major components of the climate system - atmosphere, ocean, cryosphere, lithosphere - conservatively sum to more than 20x1022 J during the last half-century, and reinforce the conclusion that the warming in this interval has been truly global. Huang, S., Pollack, H.N., and Shen, P.-Y. 2000. Temperature trends over the past five centuries reconstructed from borehole temperatures. Nature. 403. 756-758 Levitus, S., Antonov, J., Wang, J., Delworth, T. L., Dixon, K. and Broccoli, A. 2001. Anthropogenic warming of the Earth's climate system. Science, 292, 267-270

  5. Climate Model Datasets on Earth System Grid II (ESG II)

    DOE Data Explorer

    Earth System Grid (ESG) is a project that combines the power and capacity of supercomputers, sophisticated analysis servers, and datasets on the scale of petabytes. The goal is to provide a seamless distributed environment that allows scientists in many locations to work with large-scale data, perform climate change modeling and simulation,and share results in innovative ways. Though ESG is more about the computing environment than the data, still there are several catalogs of data available at the web site that can be browsed or search. Most of the datasets are restricted to registered users, but several are open to any access.

  6. Impact of climate change on electricity systems and markets

    NASA Astrophysics Data System (ADS)

    Chandramowli, Shankar N.

    Climate change poses a serious threat to human welfare. There is now unequivocal scientific evidence that human actions are the primary cause of climate change. The principal climate forcing factor is the increasing accumulation of atmospheric carbon dioxide (CO2) due to combustion of fossil fuels for transportation and electricity generation. Generation of electricity account for nearly one-third of the greenhouse (GHG) emissions globally (on a CO2-equivalent basis). Any kind of economy-wide mitigation or adaptation effort to climate change must have a prominent focus on the electric power sector. I have developed a capacity expansion model for the power sector called LP-CEM (Linear Programming based Capacity Expansion Model). LP-CEM incorporates both the long-term climate change effects and the state/regional-level macroeconomic trends. This modeling framework is demonstrated for the electric power system in the Northeast region of United States. Some of the methodological advances introduced in this research are: the use of high-resolution temperature projections in a power sector capacity expansion model; the incorporation of changes in sectoral composition of electricity demand over time; the incorporation of the effects of climate change and variability on both the demand and supply-side of power sector using parameters estimated in the literature; and an inter-model coupling link with a macroeconomic model to account for price elasticity of demand and other effects on the broader macro-economy. LP-CEM-type models can be of use to state/regional level policymakers to plan for future mitigation and adaptation measures for the electric power sector. From the simulation runs, it is shown that scenarios with climate change effects and with high economic growth rates have resulted in higher capacity addition, optimal supply costs, wholesale/retail prices and total ratepayers' costs. LP-CEM is also adapted to model the implications of the proposed Clean Power Plan

  7. Managing Risks? Early Warning Systems for Climate Change

    NASA Astrophysics Data System (ADS)

    Sitati, A. M.; Zommers, Z. A.; Habilov, M.

    2014-12-01

    Early warning systems are a tool with which to minimize risks posed by climate related hazards. Although great strides have been made in developing early warning systems most deal with one hazard, only provide short-term warnings and do not reach the most vulnerable. This presentation will review research results of the United Nations Environment Programme's CLIM-WARN project. The project seeks to identify how governments can better communicate risks by designing multi-hazard early warning systems that deliver actionable warnings across timescales. Household surveys and focus group discussions were conducted in 36 communities in Kenya, Ghana and Burkina Faso in order to identify relevant climate related hazards, current response strategies and early warning needs. Preliminary results show significant variability in both risks and needs within and between countries. For instance, floods are more frequent in rural western parts of Kenya. Droughts are frequent in the north while populations in urban areas face a range of hazards - floods, droughts, disease outbreaks - that sometimes occur simultaneously. The majority of the rural population, especially women, the disabled and the elderly, do not have access to modern media such as radio, television, or internet. While 55% of rural populace never watches television, 64% of urban respondents watch television on a daily basis. Communities have different concepts of how to design warning systems. It will be a challenge for national governments to create systems that accommodate such diversity yet provide standard quality of service to all. There is a need for flexible and forward-looking early warning systems that deliver broader information about risks. Information disseminated through the system could not only include details of hazards, but also long-term adaptation options, general education, and health information, thus increasingly both capabilities and response options.

  8. Condensation Risk of Mechanically Attached Roof Systems in Cold Climate Zones

    SciTech Connect

    Pallin, Simon B

    2013-01-01

    systems with thermoplastic membranes are prone to be more effected by interior air intrusion into the roof construction; both due to the wind induced pressure differences and due to the flexibility and elasticity of the membrane (Molleti, Baskaran, Kalinger, & Beaulieu, 2011). Depending on the air permeability of the material underneath the membrane, wind forces increase the risk of fluttering (also referred as billowing) of the thermoplastic membrane. Expectably, the wind induced pressure differences creates a convective air flow into the construction i.e. Page 2 air intrusion. If the conditions are right, moisture from the exchanging air may condensate on surfaces with a temperature below dew-point. The definite path of convective airflows through the building envelope is usually very difficult to determine and therefore simplified models (K nzel, Zirkelbach, & Scfafaczek, 2011) help to estimate an additional moisture loads as a result of the air intrusion. The wind uplifting pressure in combination with wind gusts are important factors for a fluttering roof. Unfortunately, the effect from a fluctuating wind is difficult to estimate as this is a highly dynamic phenomenon and existing standards (ASTM, 2011a) only take into account a steady state approach i.e. there is no guidance or regulations on how to estimate the air intrusion rate. Obviously, a more detailed knowledge on the hygrothermal performance of mechanically attached cool roof system is requested; in consideration to varying surface colors, roof air tightness, climate zones and indoor moisture supply.

  9. Significance of indoor environment for the development of allergic symptoms in children followed up to 18 months of age.

    PubMed

    Gustafsson, D; Andersson, K; Fagerlund, I; Kjellman, N I

    1996-11-01

    The development of symptoms possibly related to allergy or other forms of hypersensitivity was studied in a group of 638 children on two occasions: when the children were 3 and 18 months of age. Standardized questions were used to collect basic information about the child, technical characteristics of the home, and the mother's perception of the indoor climate. All reported exposure factors were analyzed in relation to the child's symptoms at 18 months of age, by logistic regression techniques. A family history of atopy was associated with a high incidence of most of the investigated symptoms. Attendance at a day nursery before 18 months of age increased the risk of recurrent colds and the need for several courses of treatment with antibiotics. If the mother smoked, the children more often suffered from protracted coughing episodes. If the child has a sibling, the risk of developing a wheeze, repeated colds, and the need for antibiotic treatment increased. No building factors, such as size of the home, heating and ventilation system, type of foundation, dampness, or presence of wall-to-wall carpets, showed a significant correlation to symptoms reported in the children. However, if the mothers reported symptoms that are often connected with "sick buildings", the children more often had eczema, dry skin, or reactions to food. The mothers' complaints about indoor air quality and climate and mucous membrane symptoms were significantly related to the type of building and presence of condensation on the windows in winter, a finding which may indicate that indoor climate factors also have some effect on the health of the children. This study reports the prevalences of symptoms until the age of 18 months. At this age, the allergic manifestations are usually nonspecific, and follow-up examinations to 4-5 years of age are needed before any definite conclusions can be drawn about the development of atopic diseases due to indoor climate factors.

  10. Climate-induced tree mortality: Earth system consequences

    USGS Publications Warehouse

    Adams, Henry D.; Macalady, Alison K.; Breshears, David D.; Allen, Craig D.; Stephenson, Nathan L.; Saleska, Scott; Huxman, Travis E.; McDowell, Nathan G.

    2010-01-01

    One of the greatest uncertainties in global environmental change is predicting changes in feedbacks between the biosphere and the Earth system. Terrestrial ecosystems and, in particular, forests exert strong controls on the global carbon cycle and influence regional hydrology and climatology directly through water and surface energy budgets [Bonan, 2008; Chapin et al., 2008].According to new research, tree mortality associated with elevated temperatures and drought has the potential to rapidly alter forest ecosystems, potentially affecting feedbacks to the Earth system [Allen et al., 2010]. Several lines of recent research demonstrate how tree mortality rates in forests may be sensitive to climate change—particularly warming and drying. This emerging consequence of global change has important effects on Earth system processes (Figure 1).

  11. Recent trends in energy flows through the Arctic climate system

    NASA Astrophysics Data System (ADS)

    Mayer, Michael; Haimberger, Leo

    2016-04-01

    While Arctic climate change can be diagnosed in many parameters, a comprehensive assessment of long-term changes and low frequency variability in the coupled Arctic energy budget still remains challenging due to the complex physical processes involved and the lack of observations. Here we draw on strongly improved observational capabilities of the past 15 years and employ observed radiative fluxes from CERES along with state-of-the-art atmospheric as well as coupled ocean-ice reanalyses to explore recent changes in energy flows through the Arctic climate system. Various estimates of ice volume and ocean heat content trends imply that the energy imbalance of the Arctic climate system was >1 Wm-2 during the 2000-2015 period, where most of the extra heat warmed the ocean and a comparatively small fraction was used to melt sea ice. The energy imbalance was partly fed by enhanced oceanic heat transports into the Arctic, especially in the mid 2000s. Seasonal trends of net radiation show a very clear signal of the ice-albedo feedback. Stronger radiative energy input during summer means increased seasonal oceanic heat uptake and accelerated sea ice melt. In return, lower minimum sea ice extent and higher SSTs lead to enhanced heat release from the ocean during fall season. These results are consistent with modeling studies finding an enhancement of the annual cycle of surface energy exchanges in a warming Arctic. Moreover, stronger heat fluxes from the ocean to the atmosphere in fall tend to warm the arctic boundary layer and reduce meridional temperature gradients, thereby reducing atmospheric energy transports into the polar cap. Although the observed results are a robust finding, extended high-quality datasets are needed to reliably separate trends from low frequency variability.

  12. The Indonesian Throughflow and the Global Climate System.

    NASA Astrophysics Data System (ADS)

    Schneider, Niklas

    1998-04-01

    The role of the Indonesian Throughflow in the global climate system is investigated with a coupled ocean-atmosphere model by contrasting simulations with realistic throughflow and closed Indonesian passages.The Indonesian Throughflow affects the oceanic circulation and thermocline depth around Australia and in the Indian Ocean as described in previous studies and explained by Sverdrup transports. An open throughflow thereby increases surface temperatures in the eastern Indian ocean, reduces temperatures in the equatorial Pacific, and shifts the warm pool and centers of deep convection in the atmosphere to the west. This control on sea surface temperature and deep convection affects atmospheric pressure in the entire Tropics and, via atmospheric teleconnections, in the midlatitudes. As a result, surface wind stress in the entire Tropics changes and meridional and zonal gradients of the tropical thermocline and associated currents increase in the Pacific and decrease in the Indian Ocean. The response includes an acceleration of the equatorial undercurrent in the Pacific, and a deceleration in the Indian Ocean. Thus the Indonesian Throughflow exerts significant control over the global climate in general and the tropical climate in particular.Changes of surface fluxes in the Pacific warm pool region are consistent with the notion that shading by clouds, rather than increases of evaporation, limit highest surface temperatures in the open ocean of the western Pacific. In the marginal seas of the Pacific and in the Indian Ocean no such relationship is found. The feedback of the throughflow transport and its wind forcing is negative and suggests that this interplay cannot excite growing solution or lead to self-sustained oscillations of the ocean-atmosphere system.

  13. A Floor-Map-Aided WiFi/Pseudo-Odometry Integration Algorithm for an Indoor Positioning System

    PubMed Central

    Wang, Jian; Hu, Andong; Liu, Chunyan; Li, Xin

    2015-01-01

    This paper proposes a scheme for indoor positioning by fusing floor map, WiFi and smartphone sensor data to provide meter-level positioning without additional infrastructure. A topology-constrained K nearest neighbor (KNN) algorithm based on a floor map layout provides the coordinates required to integrate WiFi data with pseudo-odometry (P-O) measurements simulated using a pedestrian dead reckoning (PDR) approach. One method of further improving the positioning accuracy is to use a more effective multi-threshold step detection algorithm, as proposed by the authors. The “go and back” phenomenon caused by incorrect matching of the reference points (RPs) of a WiFi algorithm is eliminated using an adaptive fading-factor-based extended Kalman filter (EKF), taking WiFi positioning coordinates, P-O measurements and fused heading angles as observations. The “cross-wall” problem is solved based on the development of a floor-map-aided particle filter algorithm by weighting the particles, thereby also eliminating the gross-error effects originating from WiFi or P-O measurements. The performance observed in a field experiment performed on the fourth floor of the School of Environmental Science and Spatial Informatics (SESSI) building on the China University of Mining and Technology (CUMT) campus confirms that the proposed scheme can reliably achieve meter-level positioning. PMID:25811224

  14. Experimental investigation of the formaldehyde removal mechanisms in a dynamic botanical filtration system for indoor air purification.

    PubMed

    Wang, Zhiqiang; Pei, Jingjing; Zhang, Jensen S

    2014-09-15

    Botanical filtration has been proved to be effective for indoor gas pollutant removal. To understand the roles of different transport, storage and removal mechanism by a dynamic botanical air filter, a series of experimental investigations were designed and conducted in this paper. Golden Pothos (Epipremnum aureum) plants was selected for test, and its original soil or activated/pebbles root bed was used in different test cases. It was found that flowing air through the root bed with microbes dynamically was essential to obtain meaningful formaldehyde removal efficiency. For static potted plant as normally place in rooms, the clean air delivery rate (CADR), which is often used to quantify the air cleaning ability of portable air cleaners, was only ∼ 5.1m(3)/h per m(2) bed, while when dynamically with air flow through the bed, the CADR increased to ∼ 233 m(3)/h per m(2) bed. The calculated CADR due to microbial activity is ∼ 108 m(3)/h per m(2) bed. Moisture in the root bed also played an important role, both for maintaining a favorable living condition for microbes and for absorbing water-soluble compounds such as formaldehyde. The role of the plant was to introduce and maintain a favorable microbe community which effectively degraded the volatile organic compounds adsorbed or absorbed by the root bed. The presence of the plant increased the removal efficiency by a factor of two based on the results from the bench-scale root bed experiments.

  15. A floor-map-aided WiFi/pseudo-odometry integration algorithm for an indoor positioning system.

    PubMed

    Wang, Jian; Hu, Andong; Liu, Chunyan; Li, Xin

    2015-03-24

    This paper proposes a scheme for indoor positioning by fusing floor map, WiFi and smartphone sensor data to provide meter-level positioning without additional infrastructure. A topology-constrained K nearest neighbor (KNN) algorithm based on a floor map layout provides the coordinates required to integrate WiFi data with pseudo-odometry (P-O) measurements simulated using a pedestrian dead reckoning (PDR) approach. One method of further improving the positioning accuracy is to use a more effective multi-threshold step detection algorithm, as proposed by the authors. The "go and back" phenomenon caused by incorrect matching of the reference points (RPs) of a WiFi algorithm is eliminated using an adaptive fading-factor-based extended Kalman filter (EKF), taking WiFi positioning coordinates, P-O measurements and fused heading angles as observations. The "cross-wall" problem is solved based on the development of a floor-map-aided particle filter algorithm by weighting the particles, thereby also eliminating the gross-error effects originating from WiFi or P-O measurements. The performance observed in a field experiment performed on the fourth floor of the School of Environmental Science and Spatial Informatics (SESSI) building on the China University of Mining and Technology (CUMT) campus confirms that the proposed scheme can reliably achieve meter-level positioning.

  16. PERFORMANCE EVALUATION OF CEILING RADIANT COOLING SYSTEM IN COMPOSITE CLIMATE

    SciTech Connect

    Sharma, Anuj; Mathur, Jyotirmay; Bhandari, Mahabir S

    2015-01-01

    Radiant cooling systems are proving to be an energy efficient solution due to higher thermal capacity of cooling fluid especially for the buildings that require individual zone controls and where the latent loads are moderate. The Conventional air conditioners work at very low temperature i.e.5-8 c (refrigerant evaporator inlet) while the radiant cooling systems, also referred as high temperature cooling system, work at high temperatures i.e. 14-18 c. The radiant cooling systems can maintain lower MRT (Mean Radiant Temperature) as ceiling panels maintain uniform temperature gradient inside room and provide higher human comfort. The radiant cooling systems are relatively new systems and their operation and energy savings potential are not quantified for a large number of buildings and operational parameters. Moreover, there are only limited numbers of whole building simulation studies have been carried out for these systems to have a full confidence in the capability of modelling tools to simulate these systems and predict the impact of various operating parameters. Theoretically, savings achieve due to higher temperature set point of chilled water, which reduces chiller-running time. However, conventional air conditioner runs continuously to maintain requisite temperature. In this paper, experimental study for performance evaluation of radiant cooling system carried out on system installed at Malaviya National Institute of Technology Jaipur. This paper quantifies the energy savings opportunities and effective temperature by radiant cooling system at different chilled water flow rates and temperature range. The data collected/ analysed through experimental study will used for calibration and validation of system model of building prepared in building performance simulation software. This validated model used for exploring optimized combinations of key parameters for composite climate. These optimized combinations will used in formulation of radiant cooling system

  17. The Mars climate for a photovoltaic system operation

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Flood, Dennis J.

    1989-01-01

    Detailed information on the climatic conditions on Mars are very desirable for the design of photovoltaic systems for establishing outposts on the Martian surface. The distribution of solar insolation (global, direct and diffuse) and ambient temperature is addressed. This data are given at the Viking lander's locations and can also be used, to a first approximation, for other latitudes. The insolation data is based on measured optical depth of the Martian atmosphere derived from images taken of the sun with a special diode on the Viking cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation. The ambient temperature (diurnal and yearly distribution) is based on direct measurements with a thermocouple at 1.6 m above the ground at the Viking lander locations. The insolation and ambient temperature information are short term data. New information about Mars may be forthcoming in the future from new analysis of previously collected data or from future flight missions. The Mars climate data for photovoltaic system operation will thus be updated accordingly.

  18. Evaluation on Thermal Behavior of a Green Roof Retrofit System Installed on Experimental Building in Composite Climate of Roorkee, India

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Deoliya, Rajesh; Chani, P. S.

    2015-12-01

    Green roofs not only provide cooling by shading, but also by transpiration of water through the stomata. However, the evidence for green roofs providing significant air cooling remains limited. No literature investigates the thermal performance of prefab brick panel roofing technology with green roof. Hence, the aim of this research is to investigate the thermal behavior of an experimental room, built at CSIR-Central Building Research Institute (CBRI) campus, Roorkee, India using such roofing technology during May 2013. The study also explores the feasibility of green roof with grass carpets that require minimum irrigation, to assess the expected indoor thermal comfort improvements by doing real-time experimental studies. The results show that the proposed green roof system is suitable for reducing the energy demand for space cooling during hot summer, without worsening the winter energy performance. The cost of proposed retrofit system is about Rs. 1075 per m2. Therefore, green roofs can be used efficiently in retrofitting existing buildings in India to improve the micro-climate on building roofs and roof insulation, where the additional load carrying capacity of buildings is about 100-130 kg/m2.

  19. Three Connected Climate Education Interactives: Carbon Cycle, Earth System Energy Flows, and Climate Change Impacts/Adaptations

    NASA Astrophysics Data System (ADS)

    Sussman, A.

    2015-12-01

    The Pacific Islands Climate Education Partnership (PCEP) serves the U.S. Affiliated Pacific Island (USAPI) Region. The international entities served by PCEP are the state of Hawai'i (USA); three Freely Associated States (the Federated States of Micronesia, the Republic of the Marshall Islands, and the Republic of Palau), and three Territories (Guam, Commonwealth of Northern Mariana Islands, and American Samoa). Funded by NSF, the PCEP aims to educate the region's students and citizens in ways that exemplify modern science and indigenous environmental knowledge, address the urgency of climate change impacts, and focus on adaptation strategies that can increase resiliency with respect to climate change impacts. Unfortunately the vast majority of the science texts used in schools come from the US mainland and feature contexts that do not relate to the lives of Pacific island students. The curricular materials also tend to be older and to have very weak climate science content, especially with respect to tropical islands and climate change. In collaboration with public broadcast station WGBH, PCEP has developed three climate education interactives that sequentially provide an introduction to key climate change education concepts. The first in the series focuses on the global carbon cycle and connects increased atmospheric CO2 with rising global temperatures. The second analyzes Earth system energy flows to explain the key role of the increased greenhouse effect. The third focuses on four climate change impacts (higher temperatures, rising sea level, changes in precipitation, and ocean acidification), and adaptation strategies to increase resiliency of local ecosystems and human systems. While the interactives have a Pacific island visual and text perspective, they are broadly applicable for other education audiences. Learners can use the interactives to engage with the basic science concepts, and then apply the climate change impacts to their own contexts.

  20. WSN system design by using an innovative neural network model to perform thermals forecasting in a urban canyon scenario

    NASA Astrophysics Data System (ADS)

    Giuseppina, Nicolosi; Salvatore, Tirrito

    2015-12-01

    Wireless Sensor Networks (WSNs) were studied by researchers in order to manage Heating, Ventilating and Air-Conditioning (HVAC) indoor systems. WSN can be useful specially to regulate indoor confort in a urban canyon scenario, where the thermal parameters vary rapidly, influenced by outdoor climate changing. This paper shows an innovative neural network approach, by using WSN data collected, in order to forecast the indoor temperature to varying the outdoor conditions based on climate parameters and boundary conditions typically of urban canyon. In this work more attention will be done to influence of traffic jam and number of vehicles in queue.

  1. Building integration of photovoltaic systems in cold climates

    NASA Astrophysics Data System (ADS)

    Athienitis, Andreas K.; Candanedo, José A.

    2010-06-01

    This paper presents some of the research activities on building-integrated photovoltaic (BIPV) systems developed by the Solar and Daylighting Laboratory at Concordia University. BIPV systems offer considerable advantages as compared to stand-alone PV installations. For example, BIPV systems can play a role as essential components of the building envelope. BIPV systems operate as distributed power generators using the most widely available renewable source. Since BIPV systems do not require additional space, they are especially appropriate for urban environments. BIPV/Thermal (BIPV/T) systems may use exterior air to extract useful heat from the PV panels, cooling them and thereby improving their electric performance. The recovered thermal energy can then be used for space heating and domestic hot water (DHW) heating, supporting the utilization of BIVP/T as an appropriate technology for cold climates. BIPV and BIPV/T systems are the subject of several ongoing research and demonstration projects (in both residential and commercial buildings) led by Concordia University. The concept of integrated building design and operation is at the centre of these efforts: BIPV and BIPV/T systems must be treated as part of a comprehensive strategy taking into account energy conservation measures, passive solar design, efficient lighting and HVAC systems, and integration of other renewable energy systems (solar thermal, heat pumps, etc.). Concordia Solar Laboratory performs fundamental research on heat transfer and modeling of BIPV/T systems, numerical and experimental investigations on BIPV and BIPV/T in building energy systems and non-conventional applications (building-attached greenhouses), and the design and optimization of buildings and communities.

  2. Monitoring Indoor Air Quality for Enhanced Occupational Health.

    PubMed

    Pitarma, Rui; Marques, Gonçalo; Ferreira, Bárbara Roque

    2017-02-01

    Indoor environments are characterized by several pollutant sources. Because people spend more than 90% of their time in indoor environments, several studies have pointed out the impact of indoor air quality on the etiopathogenesis of a wide number of non-specific symptoms which characterizes the "Sick Building Syndrome", involving the skin, the upper and lower respiratory tract, the eyes and the nervous system, as well as many building related diseases. Thus, indoor air quality (IAQ) is recognized as an important factor to be controlled for the occupants' health and comfort. The majority of the monitoring systems presently available is very expensive and only allow to collect random samples. This work describes the system (iAQ), a low-cost indoor air quality monitoring wireless sensor network system, developed using Arduino, XBee modules and micro sensors, for storage and availability of monitoring data on a web portal in real time. Five micro sensors of environmental parameters (air temperature, humidity, carbon monoxide, carbon dioxide and luminosity) were used. Other sensors can be added for monitoring specific pollutants. The results reveal that the system can provide an effective indoor air quality assessment to prevent exposure risk. In fact, the indoor air quality may be extremely different compared to what is expected for a quality living environment. Systems like this would have benefit as public health interventions to reduce the burden of symptoms and diseases related to "sick buildings".

  3. Herbs Indoors. Container Gardening.

    ERIC Educational Resources Information Center

    Hatch, Duane

    This package consists of two bilingual instructional booklets for use in helping Indochinese refugees learn basic gardening skills. Included in the package are Cambodian, Vietnamese, and English translations of instructions for raising herbs indoors and Cambodian and English translations of guidelines for container gardening. The herb booklet…

  4. The earth radiation budget satellite system for climate research

    NASA Technical Reports Server (NTRS)

    Woerner, C. V.; Cooper, J. E.; Harrison, E. F.

    1978-01-01

    The mission implications of providing earth radiation budget data for climate studies have been thoroughly studied. The results of these studies indicate the need for a multisensor, multisatellite system consisting of high and midinclination orbits. To meet this need, NASA and NOAA are planning a joint Earth Radiation Budget Satellite System (ERBSS) composed of instruments on two of NOAA's near-polar Sun-synchronous TIROS-N/NOAA A through G series of operational satellites and on an NASA midinclination satellite of the Applications Explorer Mission (AEM) type referred to as ERBS-A/AEM. This paper describes the scientific objectives of ERBSS, the associated data analysis methods, mission analysis (sampling), and instrument definition.

  5. Solar influence on climate during the past millennium: results from transient simulations with the NCAR Climate System Model.

    PubMed

    Ammann, Caspar M; Joos, Fortunat; Schimel, David S; Otto-Bliesner, Bette L; Tomas, Robert A

    2007-03-06

    The potential role of solar variations in modulating recent climate has been debated for many decades and recent papers suggest that solar forcing may be less than previously believed. Because solar variability before the satellite period must be scaled from proxy data, large uncertainty exists about phase and magnitude of the forcing. We used a coupled climate system model to determine whether proxy-based irradiance series are capable of inducing climatic variations that resemble variations found in climate reconstructions, and if part of the previously estimated large range of past solar irradiance changes could be excluded. Transient simulations, covering the published range of solar irradiance estimates, were integrated from 850 AD to the present. Solar forcing as well as volcanic and anthropogenic forcing are detectable in the model results despite internal variability. The resulting climates are generally consistent with temperature reconstructions. Smaller, rather than larger, long-term trends in solar irradiance appear more plausible and produced modeled climates in better agreement with the range of Northern Hemisphere temperature proxy records both with respect to phase and magnitude. Despite the direct response of the model to solar forcing, even large solar irradiance change combined with realistic volcanic forcing over past centuries could not explain the late 20th century warming without inclusion of greenhouse gas forcing. Although solar and volcanic effects appear to dominate most of the slow climate variations within the past thousand years, the impacts of greenhouse gases have dominated since the second half of the last century.

  6. A smart indoor air quality sensor network

    NASA Astrophysics Data System (ADS)

    Wen, Jin

    2006-03-01

    The indoor air quality (IAQ) has an important impact on public health. Currently, the indoor air pollution, caused by gas, particle, and bio-aerosol pollutants, is considered as the top five environmental risks to public health and has an estimated cost of $2 billion/year due to medical cost and lost productivity. Furthermore, current buildings are especially vulnerable for chemical and biological warfare (CBW) agent contamination because the central air conditioning and ventilation system serve as a nature carrier to spread the released agent from one location to the whole indoor environment within a short time period. To assure the IAQ and safety for either new or existing buildings, real time comprehensive IAQ and CBW measurements are needed. With the development of new sensing technologies, economic and reliable comprehensive IAQ and CBW sensors become promising. However, few studies exist that examine the design and evaluation issues related to IAQ and CBW sensor network. In this paper, relevant research areas including IAQ and CBW sensor development, demand control ventilation, indoor CBW sensor system design, and sensor system design for other areas such as water system protection, fault detection and diagnosis, are reviewed and summarized. Potential research opportunities for IAQ and CBW sensor system design and evaluation are discussed.

  7. Organic compounds in indoor air—their relevance for perceived indoor air quality?

    NASA Astrophysics Data System (ADS)

    Wolkoff, Peder; Nielsen, Gunnar D.

    It is generally believed that indoor air pollution, one way or another may cause indoor air complaints. However, any association between volatile organic compounds (VOCs) concentrations and increase of indoor climate complaints, like the sick-building syndrome symptoms, is not straightforward. The reported symptom rates of, in particular, eye and upper airway irritation cannot generally be explained by our present knowledge of common chemically non-reactive VOCs measured indoors. Recently, experimental evidence has shown those chemical reactions between ozone (either with or without nitrogen dioxide) and unsaturated organic compounds (e.g. from citrus and pine oils) produce strong eye and airway irritating species. These have not yet been well characterised by conventional sampling and analytical techniques. The chemical reactions can occur indoors, and there is indirect evidence that they are associated with eye and airway irritation. However, many other volatile and non-volatile organic compounds have not generally been measured which could equally well have potent biological effects and cause an increase of complaint rates, and posses a health/comfort risk. As a consequence, it is recommended to use a broader analytical window of organic compounds than the classic VOC window as defined by the World Health Organisation. It may include hitherto not yet sampled or identified intermediary species (e.g., radicals, hydroperoxides and ionic compounds like detergents) as well as species deposited onto particles. Additionally, sampling strategies including emission testing of building products should carefully be linked to the measurement of organic compounds that are expected, based on the best available toxicological knowledge, to have biological effects at indoor concentrations.

  8. A global empirical system for probabilistic seasonal climate prediction

    NASA Astrophysics Data System (ADS)

    Eden, J. M.; van Oldenborgh, G. J.; Hawkins, E.; Suckling, E. B.

    2015-12-01

    Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a simple empirical system based on multiple linear regression for producing probabilistic forecasts of seasonal surface air temperature and precipitation across the globe. The global CO2-equivalent concentration is taken as the primary predictor; subsequent predictors, including large-scale modes of variability in the climate system and local-scale information, are selected on the basis of their physical relationship with the predictand. The focus given to the climate change signal as a source of skill and the probabilistic nature of the forecasts produced constitute a novel approach to global empirical prediction. Hindcasts for the period 1961-2013 are validated against observations using deterministic (correlation of seasonal means) and probabilistic (continuous rank probability skill scores) metrics. Good skill is found in many regions, particularly for surface air temperature and most notably in much of Europe during the spring and summer seasons. For precipitation, skill is generally limited to regions with known El Niño-Southern Oscillation (ENSO) teleconnections. The system is used in a quasi-operational framework to generate empirical seasonal forecasts on a monthly basis.

  9. An empirical system for probabilistic seasonal climate prediction

    NASA Astrophysics Data System (ADS)

    Eden, Jonathan; van Oldenborgh, Geert Jan; Hawkins, Ed; Suckling, Emma

    2016-04-01

    Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a simple empirical system based on multiple linear regression for producing probabilistic forecasts of seasonal surface air temperature and precipitation across the globe. The global CO2-equivalent concentration is taken as the primary predictor; subsequent predictors, including large-scale modes of variability in the climate system and local-scale information, are selected on the basis of their physical relationship with the predictand. The focus given to the climate change signal as a source of skill and the probabilistic nature of the forecasts produced constitute a novel approach to global empirical prediction. Hindcasts for the period 1961-2013 are validated against observations using deterministic (correlation of seasonal means) and probabilistic (continuous rank probability skill scores) metrics. Good skill is found in many regions, particularly for surface air temperature and most notably in much of Europe during the spring and summer seasons. For precipitation, skill is generally limited to regions with known El Niño-Southern Oscillation (ENSO) teleconnections. The system is used in a quasi-operational framework to generate empirical seasonal forecasts on a monthly basis.

  10. Evolution of the indoor biome.

    PubMed

    Martin, Laura J; Adams, Rachel I; Bateman, Ashley; Bik, Holly M; Hawks, John; Hird, Sarah M; Hughes, David; Kembel, Steven W; Kinney, Kerry; Kolokotronis, Sergios-Orestis; Levy, Gabriel; McClain, Craig; Meadow, James F; Medina, Raul F; Mhuireach, Gwynne; Moreau, Corrie S; Munshi-South, Jason; Nichols, Lauren M; Palmer, Clare; Popova, Laura; Schal, Coby; Täubel, Martin; Trautwein, Michelle; Ugalde, Juan A; Dunn, Robert R

    2015-04-01

    Few biologists have studied the evolutionary processes at work in indoor environments. Yet indoor environments comprise approximately 0.5% of ice-free land area--an area as large as the subtropical coniferous forest biome. Here we review the emerging subfield of 'indoor biome' studies. After defining the indoor biome and tracing its deep history, we discuss some of its evolutionary dimensions. We restrict our examples to the species found in human houses--a subset of the environments constituting the indoor biome--and offer preliminary hypotheses to advance the study of indoor evolution. Studies of the indoor biome are situated at the intersection of evolutionary ecology, anthropology, architecture, and human ecology and are well suited for citizen science projects, public outreach, and large-scale international collaborations.

  11. Change in Water Cycle- Important Issue on Climate Earth System

    NASA Astrophysics Data System (ADS)

    Singh, Pratik

    Change in Water Cycle- Important Issue on Climate Earth System PRATIK KUMAR SINGH1 1BALDEVRAM MIRDHA INSTITUTE OF TECHNOLOGY,JAIPUR (RAJASTHAN) ,INDIA Water is everywhere on Earth and is the only known substance that can naturally exist as a gas, liquid, and solid within the relatively small range of air temperatures and pressures found at the Earth's surface.Changes in the hydrological cycle as a consequence of climate and land use drivers are expected to play a central role in governing a vast range of environmental impacts.Earth's climate will undergo changes in response to natural variability, including solar variability, and to increasing concentrations of green house gases and aerosols.Further more, agreement is widespread that these changes may profoundly affect atmospheric water vapor concentrations, clouds and precipitation patterns.As we know that ,a warmer climate, directly leading to increased evaporation, may well accelerate the hydrological cycle, resulting in an increase in the amount of moisture circulating through the atmosphere.The Changing Water Cycle programmer will develop an integrated, quantitative understanding of the changes taking place in the global water cycle, involving all components of the earth system, improving predictions for the next few decades of regional precipitation, evapotranspiration, soil moisture, hydrological storage and fluxes.The hydrological cycle involves evaporation, transpiration, condensation, precipitation, and runoff. NASA's Aqua satellite will monitor many aspects of the role of water in the Earth's systems, and will do so at spatial and temporal scales appropriate to foster a more detailed understanding of each of the processes that contribute to the hydrological cycle. These data and the analyses of them will nurture the development and refinement of hydrological process models and a corresponding improvement in regional and global climate models, with a direct anticipated benefit of more accurate weather and

  12. Workshop 3 (synthesis): climate variability, water systems and management options.

    PubMed

    Connor, R; Kuylenstierna, J

    2004-01-01

    Addressing climate variability now will better prepare us for future impacts of climate change. Sustained, multi-stakeholder dialogue at local through national levels is an approach that will reach the widest audience, helped by tools that illustrate vulnerability such as the Climate Vulnerability Index. Integrated water resources management deals with managing for variability and change and is therefore highly appropriate for dealing with climate impacts.

  13. Radioactivity in the indoor building environment in Serbia.

    PubMed

    Todorović, Natasa; Bikit, Istvan; Vesković, Miroslav; Krmar, Miodrag; Mrđa, Dusan; Forkapić, Sofija; Hansman, Jan; Nikolov, Jovana; Bikit, Kristina

    2014-01-01

    Measurement of activity concentrations of radionuclides in building materials and radon in indoor space is important in the assessment of population exposures, as most individuals spend 80 % of their time indoors. This paper presents the results of activity concentration measurements of: radon emanated from the soil, radionuclides (226)Ra, (232)Th and (40)K in the soil, indoor radon in the city of Novi Sad (the capital city of Vojvodina) using charcoal canisters and indoor radon in the Vojvodina region using alpha-track detectors and the radioactivity of some building materials. Influences of floor level, space under the rooms, boarding, and the heating system on indoor radon accumulation in the Vojvodina province, situated in the northern part of Serbia, are also presented in this paper. The total effective dose and the activity concentration index are calculated applying the dose criteria recommended by the European Union for building materials.

  14. Follow-up annual alpha-track monitoring in 40 eastern Pennsylvania houses with indoor radon reduction systems (December 1988-December 1989). Final report, December 1988-June 1990

    SciTech Connect

    Scott, A.G.; Robertson, A.

    1990-11-01

    The report gives results of 12-month-long alpha-track detector (ATD) measurements of indoor radon concentrations, between December 1988 and December 1989 in th living areas of 38 of 40 houses where radon reduction techniques has been installed 2-4 years earlier in a previous EPA project. The techniques, installed between June 1985 and June 1987, generally involved active soil depressurization. In the 28 houses in which the mitigation system operated the entire year, the annual average was < 2 pCi/L in 13, and < 4 pCi/L in 22. The residual radon in many houses is due largely to re-entrainment of ASD exhaust. Comparison of these annual ATD results with quarterly results from the past three winters shows that 22 of the 28 houses had annual measurements within 1 pCi/L of the winter-quarter result. There had been no significant degradation in system performance, except where the mitigation fans failed or where the owner had turned off the system. Six of 34 ASD fans have failed to date.

  15. Decomposing the meridional heat transport in the climate system

    NASA Astrophysics Data System (ADS)

    Yang, Haijun; Li, Qing; Wang, Kun; Sun, Yu; Sun, Daoxun

    2015-05-01

    The meridional heat transport (MHT) in the climate system is investigated using a state-of-the-art coupled climate model (CESM1.0). This work decomposes the MHT and studies their physics in detail. The meridional ocean heat transport (OHT) can be decomposed into the contributions from the Euler mean circulation, bolus circulation, sub-mesoscale circulation and dissipation. The Euler mean heat transport dominates the total OHT in most latitudes, except that in the Southern Ocean (40-50°S) where the OHT is determined by the eddy-induced circulation and dissipation. In the Indo-Pacific the OHT is fulfilled by the wind-driven circulation, which dominates the total global OHT in the tropics. In the Atlantic the OHT is carried by both the wind-driven circulation and the thermohaline circulation, and the latter dominates the total OHT in the mid-high latitudes. The meridional atmosphere heat transport consists of the dry static energy (DSE) and latent energy (LE) transport. In the tropics the LE transport is equatorward and compensates partially the poleward DSE transport. In the extratropics, the LE and DSE are poleward and reinforce one another, both of which are dominated by the eddy components. The LE transport can be considered as the "joint air-sea mode" since the ocean controls the moisture supply. It can be also precisely obtained from the evaporation minus precipitation over the ocean and thus this work quantifies the individual ocean basin contributions to the LE transport.

  16. Integrated web system of geospatial data services for climate research

    NASA Astrophysics Data System (ADS)

    Okladnikov, Igor; Gordov, Evgeny; Titov, Alexander

    2016-04-01

    Georeferenced datasets are currently actively used for modeling, interpretation and forecasting of climatic and ecosystem changes on different spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their huge size (up to tens terabytes for a single dataset) a special software supporting studies in the climate and environmental change areas is required. An approach for integrated analysis of georefernced climatological data sets based on combination of web and GIS technologies in the framework of spatial data infrastructure paradigm is presented. According to this approach a dedicated data-processing web system for integrated analysis of heterogeneous georeferenced climatological and meteorological data is being developed. It is based on Open Geospatial Consortium (OGC) standards and involves many modern solutions such as object-oriented programming model, modular composition, and JavaScript libraries based on GeoExt library, ExtJS Framework and OpenLayers software. This work is supported by the Ministry of Education and Science of the Russian Federation, Agreement #14.613.21.0037.

  17. When Poor Indoor Air Causes a Crisis.

    ERIC Educational Resources Information Center

    Spencer, Robert D.

    1998-01-01

    An air quality problem originating with a steam leak in an improperly maintained heating system resulted in unanticipated expenses of $420,000 for the Lakeview (Michigan) School District. Indoor air quality complaints require immediate investigation and action; clear communication to parents, staff, and media representatives; competent…

  18. Exposure to Air Ions in Indoor Environments: Experimental Study with Healthy Adults

    PubMed Central

    Wallner, Peter; Kundi, Michael; Panny, Michael; Tappler, Peter; Hutter, Hans-Peter

    2015-01-01

    Since the beginning of the 20th century there has been a scientific debate about the potential effects of air ions on biological tissues, wellbeing and health. Effects on the cardiovascular and respiratory system as well as on mental health have been described. In recent years, there has been a renewed interest in this topic. In an experimental indoor setting we conducted a double-blind cross-over trial to determine if higher levels of air ions, generated by a special wall paint, affect cognitive performance, wellbeing, lung function, and cardiovascular function. Twenty healthy non-smoking volunteers (10 female, 10 male) participated in the study. Levels of air ions, volatile organic compounds and indoor climate factors were determined by standardized measurement procedures. Air ions affected the autonomous nervous system (in terms of an increase of sympathetic activity accompanied by a small decrease of vagal efferent activity): In the test room with higher levels of air ions (2194/cm3 vs. 1038/cm3) a significantly higher low to high frequency ratio of the electrocardiography (ECG) beat-to-beat interval spectrogram was found. Furthermore, six of nine subtests of a cognitive performance test were solved better, three of them statistically significant (verbal factor, reasoning, and perceptual speed), in the room with higher ion concentration. There was no influence of air ions on lung function and on wellbeing. Our results indicate slightly activating and cognitive performance enhancing effects of a short-term exposure to higher indoor air ion concentrations. PMID:26569277

  19. Exposure to Air Ions in Indoor Environments: Experimental Study with Healthy Adults.

    PubMed

    Wallner, Peter; Kundi, Michael; Panny, Michael; Tappler, Peter; Hutter, Hans-Peter

    2015-11-10

    Since the beginning of the 20th century there has been a scientific debate about the potential effects of air ions on biological tissues, wellbeing and health. Effects on the cardiovascular and respiratory system as well as on mental health have been described. In recent years, there has been a renewed interest in this topic. In an experimental indoor setting we conducted a double-blind cross-over trial to determine if higher levels of air ions, generated by a special wall paint, affect cognitive performance, wellbeing, lung function, and cardiovascular function. Twenty healthy non-smoking volunteers (10 female, 10 male) participated in the study. Levels of air ions, volatile organic compounds and indoor climate factors were determined by standardized measurement procedures. Air ions affected the autonomous nervous system (in terms of an increase of sympathetic activity accompanied by a small decrease of vagal efferent activity): In the test room with higher levels of air ions (2194/cm³ vs. 1038/cm³) a significantly higher low to high frequency ratio of the electrocardiography (ECG) beat-to-beat interval spectrogram was found. Furthermore, six of nine subtests of a cognitive performance test were solved better, three of them statistically significant (verbal factor, reasoning, and perceptual speed), in the room with higher ion concentration. There was no influence of air ions on lung function and on wellbeing. Our results indicate slightly activating and cognitive performance enhancing effects of a short-term exposure to higher indoor air ion concentrations.

  20. Human Performance: Does Indoor Environmental Quality Make a Difference?

    ERIC Educational Resources Information Center

    McIntosh, E. Ken

    2003-01-01

    Asserts that the primary objective of every school must be an indoor environment that creates a sense of wellbeing in order to facilitate learning (e.g., adequate space, good lighting, friendly conditions, an inviting exterior, a consistent climate/temperature, traffic control and parking, and sanitary conditions), noting that the messages sent to…

  1. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national

  2. Mainstreaming of Climate Change into the Ghanaian Tertiary Educational System

    NASA Astrophysics Data System (ADS)

    Nyarko, B. K.

    2013-12-01

    The impact of Climate Change has a far-reaching implication for economies and people living in the fragile Regions of Africa analysts project that by 2020, between 75 million and 250 million people will be exposed various forms of Climate Change Stresses. Education as a key strategy identified under Agenda 21 has been incorporated into the efforts of various educational institutions as a means of mitigating climate change and enhancing sustainability. Climate Change education offers many opportunities and benefits for educators, researchers, learners, and for wider society, but there are also many challenges, which can hinder the successful mainstreaming of climate change education. The study aims at understanding barriers for Climate Change Education in selected tertiary institutions in Ghana. The study was conducted among Geoscience Departments of the 7 main public universities of Ghana. The transcript analysis identified issues that hinders the mainstreaming of Climate Change, these includes existing levels of knowledge and understanding of the concept of climate change, appreciating the threshold concepts, ineffective teaching of Climate Change and some Departments are slow in embracing Climate Change as a discipline. Hence to develop strategies to mainstream climate change education it is important to recognise that increasing the efficiency and delivery of Climate Change education requires greater attention and coordination of activities and updating the educators knowledge and skill's. Various Ministries should be challenged to develop and integrate climate change into education policies. In the design of curriculum, there is a need to integrate Climate Change Education into curricula without compromising already overstretched programmes of study. There is a need to encourage and enhance innovative teaching approaches such as Problem-based learning (PBL) is an approach that challenges students to learn through engagement in a real problem. Institutions and

  3. Assessing the impacts of climate change on natural resource systems

    SciTech Connect

    Frederick, K.D.; Rosenberg, N.J.

    1994-11-30

    This volume is a collection of papers addressing the theme of potential impacts of climatic change. Papers are entitled Integrated Assessments of the Impacts of Climatic Change on Natural Resources: An Introductory Editorial; Framework for Integrated Assessments of Global Warming Impacts; Modeling Land Use and Cover as Part of Global Environmental Change; Assessing Impacts of Climatic Change on Forests: The State of Biological Modeling; Integrating Climatic Change and Forests: Economic and Ecological Assessments; Environmental Change in Grasslands: Assessment using Models; Assessing the Socio-economic Impacts of Climatic Change on Grazinglands; Modeling the Effects of Climatic Change on Water Resources- A Review; Assessing the Socioeconomic Consequences of Climate Change on Water Resources; and Conclusions, Remaining Issues, and Next Steps.

  4. Effect of ventilation systems and air filters on decay rates of particles produced by indoor sources in an occupied townhouse

    NASA Astrophysics Data System (ADS)

    Howard-Reed, Cynthia; Wallace, Lance A.; Emmerich, Steven J.

    Several studies have shown the importance of particle losses in real homes due to deposition and filtration; however, none have quantitatively shown the impact of using a central forced air fan and in-duct filter on particle loss rates. In an attempt to provide such data, we measured the deposition of particles ranging from 0.3 to 10 μm in an occupied townhouse and also in an unoccupied test house. Experiments were run with three different sources (cooking with a gas stove, citronella candle, pouring kitty litter), with the central heating and air conditioning (HAC) fan on or off, and with two different types of in-duct filters (electrostatic precipitator and ordinary furnace filter). Particle size, HAC fan operation, and the electrostatic precipitator had significant effects on particle loss rates. The standard furnace filter had no effect. Surprisingly, the type of source (combustion vs. mechanical generation) and the type of furnishings (fully furnished including carpet vs. largely unfurnished including mostly bare floor) also had no measurable effect on the deposition rates of particles of comparable size. With the HAC fan off, average deposition rates varied from 0.3 h -1 for the smallest particle range (0.3-0.5 μm) to 5.2 h -1 for particles greater than 10 μm. Operation of the central HAC fan approximately doubled these rates for particles <5 μm, and increased rates by 2 h -1 for the larger particles. An in-duct electrostatic precipitator increased the loss rates compared to the fan-off condition by factors of 5-10 for particles <2.5 μm, and by a factor of 3 for 2.5-5.0 μm particles. In practical terms, use of the central fan alone could reduce indoor particle concentrations by 25-50%, and use of an in-duct ESP could reduce particle concentrations by 55-85% compared to fan-off conditions.

  5. Nonlinear problems of complex natural systems: Sun and climate dynamics.

    PubMed

    Bershadskii, A

    2013-01-13

    The universal role of the nonlinear one-third subharmonic resonance mechanism in generation of strong fluctuations in complex natural dynamical systems related to global climate is discussed using wavelet regression detrended data. The role of the oceanic Rossby waves in the year-scale global temperature fluctuations and the nonlinear resonance contribution to the El Niño phenomenon have been discussed in detail. The large fluctuations in the reconstructed temperature on millennial time scales (Antarctic ice core data for the past 400,000 years) are also shown to be dominated by the one-third subharmonic resonance, presumably related to the Earth's precession effect on the energy that the intertropical regions receive from the Sun. The effects of galactic turbulence on the temperature fluctuations are also discussed.

  6. Human physiological responses to wooden indoor environment.

    PubMed

    Zhang, Xi; Lian, Zhiwei; Wu, Yong

    2017-03-02

    Previous studies are mainly focused on non-wooden environments, whereas few are concerned with wooden ones. How wooden indoor environments impact the physiology of the occupants is still unclear. The purpose of this study was to explore the distinct physiological responses to wooden and non-wooden indoor environments, assessed by physiological parameters tests including blood pressure, electrocardiogram measurements, electro-dermal activity, oxyhemoglobin saturation, skin temperature, and near distance vision. Twenty healthy adults participated in this experiment, and their physiological responses were evaluated in a 90minute investigation. The results illustrated that; less tension and fatigue were generated in the wooden rooms than in the non-wooden rooms when the participants did their work. In addition, the study also found that the wooden environments benefit the autonomic nervous system, respiratory system, and visual system. Moreover, wooden rooms play a valuable role in physiological regulation and ease function especially after a consecutive period of work. These results provide an experimental basis to support that wooden environment is beneficial to indoor occupants than the non-wooden indoor environment.

  7. A prediction model of ammonia emission from a fattening pig room based on the indoor concentration using adaptive neuro fuzzy inference system.

    PubMed

    Xie, Qiuju; Ni, Ji-Qin; Su, Zhongbin

    2017-03-05

    Ammonia (NH3) is considered one of the significant pollutions contributor to indoor air quality and odor gas emission from swine house because of the negative impact on the health of pigs, the workers and local environment. Prediction models could provide a reasonable way for pig industries and environment regulatory to determine environment control strategies and give an effective method to evaluate the air quality. The adaptive neuro fuzzy inference system (ANFIS) simulates human's vague thinking manner to solve the ambiguity and nonlinear problems which are difficult to be processed by conventional mathematics. Five kinds of membership functions were used to build a well fitted ANFIS prediction model. It was shown that the prediction model with "Gbell" membership function had the best capabilities among those five kinds of membership functions, and it had the best performances compared with backpropagation (BP) neuro network model and multiple linear regression model (MLRM) both in wintertime and summertime, the smallest value of mean square error (MSE), mean absolute percentage error (MAPE) and standard deviation (SD) are 0.002 and 0.0047, 31.1599 and 23.6816, 0.0564 and 0.0802, respectively, and the largest coefficients of determination (R(2)) are 0.6351 and 0.6483, repectively. The ANFIS prediction model could be served as a beneficial strategy for the environment control system that has input parameters with highly fluctuating, complexity, and non-linear relationship.

  8. Location-adaptive transmission for indoor visible light communication

    NASA Astrophysics Data System (ADS)

    Wang, Chun-yue; Wang, Lang; Chi, Xue-fen

    2016-01-01

    A location-adaptive transmission scheme for indoor visible light communication (VLC) system is proposed in this paper. In this scheme, the symbol error rate ( SER) of less than 10-3 should be guaranteed. And the scheme is realized by the variable multilevel pulse-position modulation (MPPM), where the transmitters adaptively adjust the number of time slots n in the MPPM symbol according to the position of the receiver. The purpose of our scheme is to achieve the best data rate in the indoor different locations. The results show that the location-adaptive transmission scheme based on the variable MPPM is superior in the indoor VLC system.

  9. System for reducing heat losses from indoor swimming pools by use of automatic covers. Final report, October 1, 1993--September 30, 1995

    SciTech Connect

    1996-01-01

    This final report is an account of the principal activities of Lof Energy Systems, Inc. in a two-year project funded by the Energy Related Inventions Program (ERIP) of the U.S. Department of Energy. The primary objective has been the development of a fully practical and economical system for saving energy in indoor swimming pools by use of motorized covers. The goal is wide-spread use of a fully developed product, in institutional swimming pools. Four major tasks, depicted in the accompanying Performance Schedule, have been completed, and one other has been initiated and its completion committed. Principal accomplishments have been the selection and improvement of cover materials and designs, lengthening and strengthening of reels and improvements in motorized components and their control, design and installation of pool covers in full scale demonstration and evaluation of fully developed commercial system, preparation and dissemination of manuals and reports, finalization of arrangements for Underwriters Laboratory certification of products, and final report preparation and submission. Of greatest significance has been the successful demonstration of the fully developed system and the verification and reporting by an energy consultant of the large savings resulting from pool cover use. Probably the best evidence of success of the DOE-ERIP project in advancing this invention to a commercial stage is its acceptance for sale by the Lincoln Equipment Company, a national distributor of swimming pool supplies and equipment. A copy of the relevant page in the Lincoln catalog is included in this report as Annex A. Representatives of that company now offer Tof motorized pool cover systems to their pool owner customers. In addition to the plans for securing UL certification the company expects to continue making design improvements that can increase system reliability, durability, and cost-effectiveness.

  10. The Influence of Climate Change in Active Convergent Systems

    NASA Astrophysics Data System (ADS)

    Scarselli, S.; Simpson, G. H.; Allen, P. A.; Minelli, G.

    2006-12-01

    The link between tectonics, surface erosion, and climate in the evolution of mountain belts has been observed in several natural systems (Sinclair & Allen, 1992; Norris & Cooper, 1997; Pavlis et al., 1997; Willett et al., 2006) and numerous theoretical and applied studies have been carried out in the last several years ( Willett et al., 2002; Simpson, 2004 a, c). This relation is particularly sensitive in active convergent orogenic wedges where the efficiency of surface mass transport and climatic change controls the spatial distribution of deformation and sedimentation and degree of crustal thickening (Beaumont et al., 1992; Willett, 1999; Simpson, 2006). This study focus on the effect of climatic changes, leading to palaeogeographic changes, in an active convergent system. In particular, the effects produced by relative sea-level changes and efficiency of the erosional processes have been tested using a two dimensional mechanical model (Simpson, 2006). The model is suited to study deformation, erosion and sedimentation in fold-thrust belts and foreland basins. Two effects of the relative sea-level changes, and in particular in the case of the relative sea-level drop occurring during deformation, can be potentially important for the mechanical behavior of the surrounding crust. Firstly, gravitational water loads above the deforming rocks could be decreased. Secondly, the replacement of submarine with subaerial conditions could probably increase erosion rates, especially within the river system. Both effects would tend to amplify local deformation rates leading to a major pulse of deformation (Simpson, 2006) and to the formation of complex three dimensional deformation patterns (Simpson, 2004). Finally, this model has been used to evaluate the effect of the Messinian salinity crisis in the Mediterranean basin and in particular in the Northern Apennines evolution (Italy). References: Beaumont, C.; Fullsack, P. & Hamilton J., (1992). In: Thrust Tectonics (Ed by K

  11. [Indoor air and allergic diseases].

    PubMed

    Kunkel, G; Rudolph, R; Muckelmann, R

    1982-01-01

    Allergies may be the source of a variety of clinical symptoms. With regard to indoor air, however, the subject will be limited to inhalative allergies. These are diseases which are caused and supported by allergens entering the human organism via the respiratory pathway. The fundamentals of the origin of inhalative allergies are briefly discussed as well as the antigen-antibody reaction and the differentiation between different allergic reactions (Types I and II). In addition, the importance of repetitive infects of the upper respiratory tract for the occurrence of allergies of the respiratory system is pointed out. The most common allergies develop at the mucosae of the nose (allergic rhinitis) and of the bronchiale (allergic asthma bronchiale). Their symptomatology is discussed. Out of the allergologically interesting components of indoor air the following are to be considered primarily: house dust, components of house dust (house dust mite, trogoderma angustum, tenebrio molitor), epithelia of animals, animal feeds, mildew and occupational substances. Unspecific irritants (chimico-physical irritations) which are not acting as allergens, have to be clearly separated from these most frequent allergens. As a possibility of treatment for the therapeutist and the patient, there is the allergen prophylaxis, i.e. an extensive sanitation of the patient's environment including elimination of the allergens and, in addition, an amelioration of the quality of the air with regard to unspecific irritants. To conclude, some socio-medical aspects of respiratory diseases are discussed.

  12. Climate Observing System Simulation Experiments: Understanding what we have and what we need

    NASA Astrophysics Data System (ADS)

    Weatherhead, E. C.

    2015-12-01

    Observations to monitor the climate and to support climate research are critical to advancing the science of climate change. Some parameters appear to be well monitored, while in other cases, our understanding is directly limited by the lack of quality observations. Detecting trends, attributing change and understanding climate feedbacks require a variety of observations. Making use of historical datasets, we can identify the most critical needs for continued and new observing systems. Decisions about accuracy, spatial resolution, and temporal frequency need to be made judiciously with a careful analysis of the requirements needed to specific scientific questions. This presentation will show initial results from comparing natural variability to the specific questions of detecting trends and addressing climate feedback questions. Combining the high resolution weather Observing System Simulation Exkperiments with the longer timescale needs of climate research, we can make responsible recommendations on future observing systems as well as identify the necessary continuation of existing observing systems.

  13. Outdoor and indoor UFP in primary schools across Barcelona.

    PubMed

    Reche, C; Viana, M; Rivas, I; Bouso, L; Àlvarez-Pedrerol, M; Alastuey, A; Sunyer, J; Querol, X

    2014-09-15

    Indoor and outdoor measurements of real-time ultrafine particles (UFP; N10-700 in this study) number concentration and average diameter were collected twice at 39 primary schools located in Barcelona (Spain), with classrooms naturally ventilated under warm weather conditions. Simultaneous outdoor N concentration measurements at schools under different traffic exposures showed the important role of this source, with higher levels by 40% on average at schools near heavy traffic, highlighting thus the increased exposure of children due to urban planning decisions. A well-defined spatial pattern of outdoor UFP levels was observed. Midday increases in outdoor N levels mainly attributed to nucleation processes have been recorded both at high and low temperatures in several of the outdoor school sites (increasing levels by 15%-70%). The variation of these increases also followed a characteristic spatial pattern, pointing at schools' location as a key variable in terms of UFP load owing to the important contribution of traffic emissions. Indoor N concentrations were to some extent explained by outdoor N concentrations during school hours, together with average temperatures, related with natural ventilation. Outdoor midday increases were generally mimicked by indoor N concentrations, especially under warm temperatures. At specific cases, indoor concentrations during midday were 30%-40% higher than outdoor. The time scale of these observations evidenced the possible role of: a) secondary particle formation enhanced by indoor precursors or conditions, maybe related with surface chemistry reactions mediated by O3, and/or b) UFP from cooking activities. Significant indoor N increases were detected after school hours, probably associated with cleaning activities, resulting in indoor N concentrations up to 3 times higher than those in outdoor. A wide variability of indoor/outdoor ratios of N concentrations and mean UFP sizes was detected among schools and measurement periods

  14. Indoor Environment Program 1991 annual report

    SciTech Connect

    Not Available

    1992-10-01

    Approximately 38% of the energy consumed in the United States is used in buildings. Much of this energy can be saved by reducing buildings` air infiltration and ventilation, since the heat load associated with these processes is about 13 quads per year. However, because ventilation is the dominant mechanism for removing pollutants that originate indoors, reducing ventilation can cause undesirable side effects such as lowering indoor air quality and adversely affecting the health, comfort and productivity of building occupants. The purpose of this research is to increase the energy efficiency of buildings while maintaining or improving occupant health and comfort. The research explores energy use and efficiency of buildings; building ventilation and infiltration; the nature, sources, transport, transformation, and deposition of indoor air pollutants; and exposure and risk assessment for indoor air pollutants. Pollutants of particular interest include radon; volatile, semi-volatile and particulate organic compounds; and combustion emissions, including environmental tobacco smoke, CO, and NO{sub x}. The Program also conducts multidisciplinary studies on relationships between occupant health and comfort symptoms and factors within a building`s environment. Air infiltration and ventilation rates are measured and modeled for residential and commercial buildings in order to understand energy transport and thermal losses from various components of building shells and ventilation systems. Methods for reducing energy losses are based on these studies. The effectiveness of various ventilation systems for pollutant removal is also investigated. Methods for characterizing ventilation and building energy use are developed for experimental and applied uses.

  15. Indoor Environment Program 1991 annual report

    SciTech Connect

    Not Available

    1992-10-01

    Approximately 38% of the energy consumed in the United States is used in buildings. Much of this energy can be saved by reducing buildings' air infiltration and ventilation, since the heat load associated with these processes is about 13 quads per year. However, because ventilation is the dominant mechanism for removing pollutants that originate indoors, reducing ventilation can cause undesirable side effects such as lowering indoor air quality and adversely affecting the health, comfort and productivity of building occupants. The purpose of this research is to increase the energy efficiency of buildings while maintaining or improving occupant health and comfort. The research explores energy use and efficiency of buildings; building ventilation and infiltration; the nature, sources, transport, transformation, and deposition of indoor air pollutants; and exposure and risk assessment for indoor air pollutants. Pollutants of particular interest include radon; volatile, semi-volatile and particulate organic compounds; and combustion emissions, including environmental tobacco smoke, CO, and NO[sub x]. The Program also conducts multidisciplinary studies on relationships between occupant health and comfort symptoms and factors within a building's environment. Air infiltration and ventilation rates are measured and modeled for residential and commercial buildings in order to understand energy transport and thermal losses from various components of building shells and ventilation systems. Methods for reducing energy losses are based on these studies. The effectiveness of various ventilation systems for pollutant removal is also investigated. Methods for characterizing ventilation and building energy use are developed for experimental and applied uses.

  16. Doing Your Homework on Indoor Air Quality Issues.

    ERIC Educational Resources Information Center

    Caldwell, Rick

    2000-01-01

    Explains how administrators at the Georgia Institute of Technology were able to build a new residence hall that included a cost-effective ventilation system providing high quality indoor air. Project considerations, design solutions, and project economies are discussed. (GR)

  17. Indoor localization using FM radio and DTMB signals

    NASA Astrophysics Data System (ADS)

    Wu, H.; Wang, Q.; Zhao, Y.; Ma, X.; Yang, M.; Liu, B.; Tang, R.; Xu, X.

    2016-07-01

    Indoor localization systems based on Wi-Fi signal strength fingerprinting techniques are widely used in office buildings. However, a general problem of these systems pertains to Wi-Fi signal degradation due to the environmental factors. And also, these systems cannot be used in the environments not covered with Wi-Fi signals or the environments with only a single Wi-Fi access point. In this paper, a new indoor location fingerprinting system using both FM radio and Digital Television Terrestrial Multimedia Broadcasting (DTMB) signals is proposed. First, the indoor location fingerprinting using FM radio and DTMB signals is theoretically analyzed to confirm its feasibility. Then, a specially designed combined strength fingerprinting location algorithm is proposed for the location system, which is achieved on the USRP2 platform. Finally, the system is tested in a typical indoor environment. The theoretical analysis and the tests show that the indoor location fingerprinting system using FM radio and DTMB signals has a similar localization accuracy to the Wi-Fi signal strength fingerprinting location system, while it has a wider coverage area, a lower maintenance cost, and more stable signal strength, which makes it a practical indoor positioning method.

  18. Planning for climate change: The need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases.

    PubMed

    Mellor, Jonathan E; Levy, Karen; Zimmerman, Julie; Elliott, Mark; Bartram, Jamie; Carlton, Elizabeth; Clasen, Thomas; Dillingham, Rebecca; Eisenberg, Joseph; Guerrant, Richard; Lantagne, Daniele; Mihelcic, James; Nelson, Kara

    2016-04-01

    Increased precipitation and temperature variability as well as extreme events related to climate change are predicted to affect the availability and quality of water globally. Already heavily burdened with diarrheal diseases due to poor access to water, sanitation and hygiene facilities, communities throughout the developing world lack the adaptive capacity to sufficiently respond to the additional adversity caused by climate change. Studies suggest that diarrhea rates are positively correlated with increased temperature, and show a complex relationship with precipitation. Although climate change will likely increase rates of diarrheal diseases on average, there is a poor mechanistic understanding of the underlying disease transmission processes and substantial uncertainty surrounding current estimates. This makes it difficult to recommend appropriate adaptation strategies. We review the relevant climate-related mechanisms behind transmission of diarrheal disease pathogens and argue that systems-based mechanistic approaches incorporating human, engineered and environmental components are urgently needed. We then review successful systems-based approaches used in other environmental health fields and detail one modeling framework to predict climate change impacts on diarrheal diseases and design adaptation strategies.

  19. Planning for climate change: the need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases

    PubMed Central

    Levy, Karen; Zimmerman, Julie; Elliott, Mark; Bartram, Jamie; Carlton, Elizabeth; Clasen, Thomas; Dillingham, Rebecca; Eisenberg, Joseph; Guerrant, Richard; Lantagne, Daniele; Mihelcic, James; Nelson, Kara

    2016-01-01

    Increased precipitation and temperature variability as well as extreme events related to climate change are predicted to affect the availability and quality of water globally. Already heavily burdened with diarrheal diseases due to poor access to water, sanitation and hygiene facilities, communities throughout the developing world lack the adaptive capacity to sufficiently respond to the additional adversity caused by climate change. Studies suggest that diarrhea rates are positively correlated with increased temperature, and show a complex relationship with precipitation. Although climate change will likely increase rates of diarrheal diseases on average, there is a poor mechanistic understanding of the underlying disease transmission processes and substantial uncertainty surrounding current estimates. This makes it difficult to recommend appropriate adaptation strategies. We review the relevant climate-related mechanisms behind transmission of diarrheal disease pathogens and argue that systems-based mechanistic approaches incorporating human, engineered and environmental components are urgently needed. We then review successful systems-based approaches used in other environmental health fields and detail one modeling framework to predict climate change impacts on diarrheal diseases and design adaptation strategies. PMID:26799810

  20. Indoor air quality medicolegal issues.

    PubMed

    Ross, C S; Lockey, J E

    1994-08-01

    The regulatory and legal communities have begun only recently to address the medicolegal issues surrounding indoor air quality. No single governmental agency is responsible for indoor air quality issues. The focus of the federal government's indoor air quality programs is on the gathering and dissemination of information rather than on the regulation of indoor air pollution. State and local regulatory controls vary but may include antismoking ordinances, building codes, and contractor certification programs. Numerous lawsuits involving various parties and legal theories have been filed on the basis of illness allegedly related to indoor air quality. Further regulatory and legal review of indoor air problems will likely occur in the near future, particularly as a result of the characterization of environmental tobacco smoke as a class A carcinogen.

  1. Investigation of the treatability of the primary indoor volatile organic compounds on activated carbon fiber cloths at typical indoor concentrations.

    PubMed

    Yao, Meng; Zhang, Qiong; Hand, David W; Perram, David L; Taylor, Roy

    2009-07-01

    Volatile organic compounds (VOCs) are a major concern for indoor air pollution because of the impacts on human health. In recent years, interest has increased in the development and design of activated carbon filters for removing VOCs from indoor air. Although extensive information is available on sources, concentrations, and types of indoor VOCs, there is little or no information on the performance of indoor air adsorption systems for removing low concentrations of primary VOCs. Filter designs need to consider various factors such as empty bed contact time, humidity effects, competitive adsorption, and feed concentration variations, whereas adsorption capacities of the indoor VOCs at the indoor concentration levels are important parameters for filter design. A preliminary assessment of the feasibility of using adsorption filters to remove low concentrations of primary VOCs can be performed. This work relates the information (including VOC classes in indoor air, the typical indoor concentrations, and the adsorption isotherms) with the design of a particular adsorbent/adsorbates system. As groundwork for filter design and development, this study selects the primary VOCs in indoor air of residences, schools, and offices in different geographical areas (North America, Europe, and Asia) on the basis of occurrence, concentrations, and health effects. Activated carbon fiber cloths (ACFCs) are chosen as the adsorbents of interest. It is demonstrated that the isotherm of a VOC (e.g., toluene on the ACFC) at typical indoor concentrations-parts per billion by volume (ppbv) level-is different than the isotherm at parts per million by volume (ppmv) levels reported in the publications. The isotherms at the typical indoor concentrations for the selected primary VOCs are estimated using the Dubinin-Radushkevitch equation. The maximum specific throughput for an indoor VOC removal system to remove benzene is calculated as a worst-case scenario. It is shown that VOC adsorption

  2. Pilot system on extreme climate monitoring and early warning for long range forecast in Korea

    NASA Astrophysics Data System (ADS)

    Cho, K.; Park, B. K.; E-hyung, P.; Gong, Y.; Kim, H. K.; Park, S.; Min, S. K.; Yoo, H. D.

    2015-12-01

    Recently, extreme weather/climate events such as heat waves, flooding/droughts etc. have been increasing in frequency and intensity under climate change over the world. Also, they can have substantial impacts on ecosystem and human society (agriculture, health, and economy) of the affected regions. According to future projections of climate, extreme weather and climate events in Korea are expected to occure more frequently with stronger intensity over the 21st century. For the better long range forecast, it is also fundamentally ruquired to develop a supporting system in terms of extreme weather and climate events including forequency and trend. In this context, the KMA (Korea Meteorological Administration) has recently initiated a development of the extreme climate monintoring and early warning system for long range forecast, which consists of three sub-system components; (1) Real-time climate monitoring system, (2) Ensemble prediction system, and (3) Mechanism analysis and display system for climate extremes. As a first step, a pilot system has been designed focusing on temperature extremes such heat waves and cold snaps using daily, monthly and seasonal observations and model prediction output on the global, regional and national levels. In parallel, the skills of the KMA long range prediction system are being evaluated comprehensively for weather and climate extremes, for which varous case studies are conducted to better understand the observed variations of extrem climates and responsible mechanisms and also to assess predictability of the ensemble prediction system for extremes. Details in the KMA extreme climate monitoring and early warning system will be intorduced and some preliminary results will be discussed for heat/cold waves in Korea.

  3. Climate change in the South American Monsoon System: present climate and CMIP5 projections

    NASA Astrophysics Data System (ADS)

    Jones, C.; Carvalho, L. V.

    2013-05-01

    The South American Monsoon System (SAMS) is the most important climatic feature in South America. This study focuses on the large-scale characteristics of the SAMS: seasonal amplitudes, onset and demise dates and durations. Changes in the SAMS are investigated with the gridded precipitation, CFSR reanalyses and fifth phase of the Coupled Model Intercomparison Project (CMIP5) simulations for two scenarios ("historical" and high emission representative concentration pathways "rcp8.5"). Qualitative comparisons with a previous study indicate that some CMIP5 models have significantly improved their representation of the SAMS relative to their CMIP3 versions. Some models exhibit persistent deficiencies in simulating the SAMS. The observations and CMIP5 model simulations (historical experiment) consistently show statistically significant trends indicating the SAMS has larger seasonal amplitudes, early onsets, late demises and longer durations in recent decades. Future changes in the SAMS are analyzed with six CMIP5 model simulations of the rcp8.5 high emission scenario. All simulations unquestionably show significant increases in seasonal amplitudes, early onsets and late demises of the SAMS. The simulations for this scenario project a 30% increase in the amplitude from the current level by 2045-2050. In addition, the rcp8.5 scenario projects an ensemble mean decrease of 14-day in the onset and 17-day increase in the demise date of the SAMS by 2045-2050. The results additionally indicate lack of spatial agreement in model projections of changes in total wet season precipitation over South America during 2070-100. The CMIP5 projections analyzed here suggest increases in total monsoon precipitation over southeast Brazil, Uruguay and northern Argentina

  4. Indoor Radon Measurement in Van

    SciTech Connect

    Kam, E.; Osmanlioglu, A. E.; Celebi, N.; Dogan, I.

    2007-04-23

    In this study, indoor radon concentrations obtained from the radon surveys conducted in the Van. Radon monitoring was performed by applying a passive, time-integrating measuring technique. For this purpose, CR-39 nuclear track detectors were installed in dwellings for 2 months. After the monitoring period, detectors were collected. In order to make the alpha tracks visible, chemical etching was applied to the exposed detectors. Nuclear track numbers and the corresponding indoor radon concentrations were determined. Annual effective dose equivalents and the risk probabilities caused by indoor radon inhalation were calculated, and the found results compared with the indoor radon concentrations' data measured in different provinces of Turkey.

  5. Summertime wind climate in Yerevan: valley wind systems

    NASA Astrophysics Data System (ADS)

    Gevorgyan, Artur

    2017-03-01

    1992-2014 wind climatology analysis in Yerevan is presented with particular focus given to the summertime thermally induced valley wind systems. Persistence high winds are observed in Yerevan during July-August months when the study region is strongly affected by a heat-driven plain-plateau circulation. The local valley winds arrive in Yerevan in the evening hours, generally, from 1500 to 1800 UTC, leading to rapid enhancement of wind speeds and dramatic changes in wind direction. Valley-winds significantly impact the local climate of Yerevan, which is a densely populated city. These winds moderate evening temperatures after hot and dry weather conditions observed during summertime afternoons. On the other hand, valley winds result in significantly higher nocturnal temperatures and more frequent occurrence of warm nights (tn90p) in Yerevan due to stronger turbulent mixing of boundary layer preventing strong surface cooling and temperature drop in nighttime and morning hours. The applied WRF-ARW limited area model is able to simulate the key features of the observed spatial pattern of surface winds in Armenia associated with significant terrain channeling, wind curls, etc. By contrast, ECMWF EPS global model fails to capture mesoscale and local wind systems over Armenia. However, the results of statistical verification of surface winds in Yerevan showed that substantial biases are present in WRF 18-h wind forecasts, as well as, the temporal variability of observed surface winds is not reproduced adequately in WRF-ARW model.

  6. The 21st century Museum Climatic Monitoring System

    NASA Astrophysics Data System (ADS)

    Liu, W.-S.

    2015-08-01

    Technology has provided us work convenience and shaped our quality of life; it has enabled an unprecedented level of access to knowledge by flipping screen of a hand-held electronic device without going elsewhere but stay connected wireless communication. This kind of technology has been broadly acquired at museums in Hong Kong for preserving their valuable collections. Similar gadget was applied on the monitoring system to record climatic conditions of museum's stores and galleries. Sensors have been equipped with chips for the wireless transmission of RH/Temp, without installation of any conduit or LAN lines. Useful and important data will then be grouped into a packet format for efficient delivery. As long as the static IP address of the target workstation has been set, data can be accurately retrieved from one place to another via commercially available browsers, such as: Firefox or Internet Explorer, even on hand-held electronic devices. This paper will discuss the detail of this system, its pros and cons in comparison with the old model. After all, the new technology is highly significant in supporting the current needs and the future developments of the museum service.

  7. Fundamentals of Indoor Air Quality in Buildings

    EPA Pesticide Factsheets

    This module provides the fundamentals to understanding indoor air quality. It provides a rudimentary framework for understanding how indoor and outdoor sources of pollution affect the indoor air quality of buildings.

  8. Coastal upwelling systems under changing climate and high CO2

    NASA Astrophysics Data System (ADS)

    Lachkar, Z.; Gruber, N.; Plattner, G.-K.; Hauri, C.

    2009-04-01

    Eastern Boundary Current Upwelling Systems (EBUS) are major oceanographic ecosystems that are well known for high productivity and for playing an important role in the marine carbon cycle. EBUS are particularly sensitive to human-induced climate change, such as potential shifts in the distribution and the magnitude of upwelling-favorable winds, as well as ocean acidification from rising atmospheric CO2 concentration. However, neither the biological response to changes in wind forcing nor the extent to which coastal waters might become exposed to undersaturated waters due to a shoaling of the CaCO3 saturation horizon are currently well understood. The fact that local environmental and physical conditions substantially vary from one EBUS to another further complicates the story. To address the vulnerability of different EBUS, we investigate the magnitude and effect of ocean acidification and the impacts of changes in upwelling favorable winds on the productivity by conducting eddy-resolving simulations with the Regional Oceanic Modeling System - ROMS -- coupled to a nitrogen based Nutrient-Phytoplankton-Detritus-Zooplankton (NPDZ) biogeochemical model including a representation of the marine carbon cycle for two of the four major EBUS, namely the California and the Canary Current Systems. We examine how potential changes in wind stress will affect the productivity in both upwelling systems and explore past, present and future changes in pH, CaCO3 saturation horizons, and other biogeochemical and ecological processes in response to elevated atmospheric CO2. A particular focus of our analyses is on the rate of change and on the timing when critical thresholds will be passed in the different EBUS.

  9. Mars: A Planet with a Dynamic Climate System (Invited)

    NASA Astrophysics Data System (ADS)

    Haberle, R. M.

    2013-12-01

    Mars is a well-observed planet. Since the 1960s orbiters, landers, rovers, and earth-based telescopic observations show that its climate system is dynamic. Its dynamic nature, largely the result of atmosphere-surface interactions, is most obvious in the seasonal cycles of dust, water, and carbon dioxide that define the planet's climate system. These cycles are linked through the global circulation and MGS, Odyssey, Phoenix, MER, Mars Express, MRO, and now MSL have continuously observed them at Mars for the past 16 years. Their observations show that while the seasonal cycles are largely annually repeatable, there are interannual variations. Planet-encircling dust storms, for example, are quasi-triennial and originate over a broader range of seasons and locations than previously thought. Water moves from pole-to-pole each year in a largely, but not precisely, repeatable pattern that suggests but does not demand non-polar surface reservoirs. And the seasonal CO2 polar caps grow and retreat in a very predictable way with only minor deviations from year-to-year in spite of significant differences in atmospheric dust content. These behaviors suggest a complicated but robust coupled system in which these cycles interact to produce the greatest interannual variability in the dust cycle and least variability in the CO2 cycle. The nature of these interactions is the subject of ongoing research, but clouds, both water ice and CO2 ice, now appear to play a bigger role than believed at the end of the 20th century. There may also be some long-term trends in these cycles as there is evidence from imaging data, for example, that the south polar residual cap may not be stable on decadal to centennial time scales. On even longer time scales, the discovery of as much as 5 mb global equivalent of buried CO2 ice near the south pole, the detection of vast quantities of subsurface water ice at very shallow depths in midlatitudes of both hemispheres, and the presence of remnant glacial

  10. Mars: A Planet with a Dynamic Climate System

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.

    2013-01-01

    Mars is a well-observed planet. Since the 1960s orbiters, landers, rovers, and earth-based telescopic observations show that its climate system is dynamic. Its dynamic nature, largely the result of atmosphere-surface interactions, is most obvious in the seasonal cycles of dust, water, and carbon dioxide that define the planet's climate system. These cycles are linked through the global circulation and MGS, Odyssey, Phoenix, MER, Mars Express, MRO, and now MSL have continuously observed them at Mars for the past 16 years. Their observations show that while the seasonal cycles are largely annually repeatable, there are interannual variations. Planet-encircling dust storms, for example, are quasi-triennial and originate over a broader range of seasons and locations than previously thought. Water moves from pole-to-pole each year in a largely, but not precisely, repeatable pattern that suggests but does not demand non-polar surface reservoirs. And the seasonal CO2 polar caps grow and retreat in a very predictable way with only minor deviations from year-to-year in spite of significant differences in atmospheric dust content. These behaviors suggest a complicated but robust coupled system in which these cycles interact to produce the greatest interannual variability in the dust cycle and least variability in the CO2 cycle. The nature of these interactions is the subject of ongoing research, but clouds, both water ice and CO2 ice, now appear to play a bigger role than believed at the end of the 20th century. There may also be some long-term trends in these cycles as there is evidence from imaging data, for example, that the south polar residual cap may not be stable on decadal to centennial time scales. On even longer time scales, the discovery of as much as 5 mb global equivalent of buried CO2 ice near the south pole, the detection of vast quantities of subsurface water ice at very shallow depths in midlatitudes of both hemispheres, and the presence of remnant glacial