Science.gov

Sample records for indoor radon concentration

  1. Predicting indoor radon-222 concentration

    SciTech Connect

    Stowe, M.H.

    1994-12-31

    Radon, a cause of lung cancer among miners, is being investigated as a source of lung cancer in the general population due to long-term low-level exposures in residences. Assessment of cumulative residential radon exposure entails measurements in past residences, some of which no longer exist or are not accessible. Estimates of radon concentrations in these missing homes are necessary for analysis of the radon-lung cancer association. Various approaches have been used by researchers attempting to predict the distribution of radon measurements in homes from specified geological and building characteristics. This study has modelled the set of basement radon measurements of 3788 Connecticut homes with several of these approaches, in addition to a descriptive tree method not previously utilized, and compared their validity on a random subset of homes not used in model construction. Each geographical and geological variable was more predictive of radon concentration than any of the housing characteristics. The single variable which explained the largest fraction of the variability in radon readings was the mean radon concentration for the zipcode area in which the house was located (R{sup 2} = .157). Soil characteristics at individual housing sites were not available for these analyses. They would be expected to increase the predictive power of the models. Multiple regression models, both additive and multiplicative, were not able to explain more than 22% of the variation in radon readings. Variables found to be significant in these models were zipcode mean, residential radon mean of bedrock unit, building age, type of foundation walls, type of water supply, aeroradioactivity reading, and lithology of the bedrock. A site potential index, based upon a classification of the bedrock underlying the house, was a better predictor of indoor radon level than other single geological variables, yet only explained 8% of the radon variability.

  2. Unusually high indoor radon concentrations

    NASA Astrophysics Data System (ADS)

    Ennemoser, O.; Ambach, W.; Brunner, P.; Schneider, P.; Oberaigner, W.; Purtscheller, F.; Stingl, V.

    Measurements of indoor radon concentrations in the village Umhausen (2600 inhabitants, Ötztal valley, Tyrol, Austria) revealed unusually high indoor radon concentrations up to 274,000 Bq m -3. The medians measured on the basements were 3750 Bq m -3 in winter and 361 Bq m -3 in summer, those on the ground floors were 1180 Bq m -3 and 210 Bq m -3, respectively. Seventy-one per cent of the houses showed basement radon concentrations above the Austrian action level of 400 Bq m -3 in winter, 33% in summer. There are indications that the high radon concentrations are due to a giant rock slide about 8700 years ago. The unusually high radon concentrations in Umhausen coincide with a statistically significant increase in lung cancer mortality. For the period 1970-1991 the age and sex standardized mortality rate is 3.85 (95% confidence interval: 2.9 to 5.1). The control population is the total population of Tyrol (630,000 inhabitants).

  3. Control of indoor radon and radon progeny concentrations

    SciTech Connect

    Sextro, R.G.

    1985-05-01

    There are three general categories of techniques for the control of radon and radon progeny concentrations in indoor air - restriction of radon entry, reduction of indoor radon concentrations by ventilation or air cleaning, and removal of airborne radon progeny. The predominant radon entry process in most residences appears to be pressure driven flow of soil gas through cracks or other openings in the basement, slab, or subfloor. Sealing these openings or ventilation of the subslab or subfloor space are methods of reducing radon entry rates. Indoor radon concentrations may be reduced by increased ventilation. The use of charcoal filters for removal of radon gas in the indoor air by adsorption has also been proposed. Concentrations of radon progeny, which are responsible for most of the health risks associated with radon exposures, can be controlled by use of electrostatic or mechanical filtration. Air circulation can also reduce radon progeny concentrations in certain cases. This paper reviews the application and limitations of each of these control measures and discusses recent experimental results.

  4. Indoor radon concentrations in Taiwanese homes

    SciTech Connect

    Hung, I.F.; Yu, C.C.; Tung, C.J. ); Yang, Y.C.; Chou, K.D. )

    1994-10-01

    Many air pollutants may be present in the indoor environment. Commonly reported pollutants are carbon monoxide, nitrogen dioxide, volatile organic compounds, radon and its progeny, asbestos fibers and airborne particles. Among these indoor pollutants, radon and its progeny have been known to increase the risk of lung cancer in the U.S. Various studies also found in general higher concentrations of air pollutants in the indoor environment. It is a serious concern to us because of the long periods of time we spend indoors. In this study, the alpha-track radon monitor was used in the screening of higher risk buildings in Taipei and Hsinchu city. None of the homes in the 32 buildings surveyed in these cities had air concentrations of radon exceeding the action level of 4 pCi/l recommended by the U.S. Environmental Protection Agency. Different sources to indoor radon concentrations are the underlying soil, building materials, outdoor air, water and gaseous fuels. Ventilation of the homes and seasonal variations are major factors of higher radon concentrations. 16 refs., 2 figs., 3 tabs.

  5. A review on mathematical models for estimating indoor radon concentrations.

    PubMed

    Park, Ji Hyun; Kang, Dae Ryong; Kim, Jinheum

    2016-01-01

    Radiation from natural sources is one of causes of the environmental diseases. Radon is the leading environmental cause of lung cancer next to smoking. To investigate the relationship between indoor radon concentrations and lung cancer, researchers must be able to estimate an individual's cumulative level of indoor radon exposure and to do so, one must first be able to assess indoor radon concentrations. In this article, we outline factors affecting indoor radon concentrations and review related mathematical models based on the mass balance equation and the differential equations. Furthermore, we suggest the necessities of applying time-dependent functions for indoor radon concentrations and developing stochastic models.

  6. Seasonal indoor radon concentration in Eskisehir, Turkey.

    PubMed

    Sogukpinar, H; Algin, E; Asici, C; Altinsoz, M; Cetinkaya, H

    2014-12-01

    Indoor radon concentrations are subject to seasonal variation, which directly depends on weather conditions. The seasonal indoor radon concentrations were measured and the annual effective dose was estimated for the city centre of Eskisehir, Turkey. In order to reflect annual averages measurements were performed over all seasons (winter, spring, summer and autumn) including also the entire year. Measurements were carried out using Kodak-Pathe LR 115 Type II passive alpha track detectors in 220 different houses. A total of 534 measurements including measurements of different seasons were taken between 2010 and 2011. The radon concentrations for winter ranged from 34 to 531 Bq m(-3), for spring ranged from 22 to 424 Bq m(-3), for summer ranged from 25 to 320 Bq m(-3), and for autumn ranged from 19 to 412 Bq m(-3). Yearly measurements ranged from 19 to 338 Bq m(-3). In this study the average annual effective total dose from radon and its decay products was calculated to be 3.398 mSv y(-1).

  7. Indoor radon and decay products: Concentrations, causes, and control strategies

    SciTech Connect

    Nero, A.V.; Gadgil, A.J.; Nazaroff, W.W.; Revzan, K.L.

    1990-11-01

    This report is another in the on going technical report series that addresses various aspects of the DOE Radon Research Program. It provides an overview of what is known about the behavior of radon and its decay products in the indoor environment and examines the manner in which several important classes of factors -- structural, geological, and meteorological -- affect indoor radon concentrations. Information on US indoor radon concentrations, currently available monitoring methods and novel radon control strategies are also explored. 238 refs., 22 figs., 9 tabs.

  8. Indoor radon.

    PubMed

    Polpong, P; Bovornkitti, S

    1998-01-01

    The naturally radioactive but chemically inert gas, radon, is formed from the radioactive decay of radium which is part of the uranium series. Radon gas, which has a half life of 3.8 days, must escape from soil particles through air-filled pores in order to enter the atmosphere following the decay of radium. The concentration of radon in the atmosphere varies, depending on the place, time, height above the ground and meteorological conditions. It is thus an inescapable source of radiation exposure, both at home and at work. The potential hazards posed by exposure to radiation from indoor radon gas and its daughter products are of great concern worldwide. Noting of an excessive lung cancer risk among several groups of underground miners exposed to radon and its daughter products, studies on radon concentrations in the workplace and in dwellings have been conducted in many countries. The results have shown that the distribution of radon concentrations are approximately lognormal from which population weighted; the arithmetic mean of radon concentration of 40 Bq.m-3 has been adopted worldwide for dwellings and workplaces. The principal methods for reducing a high indoor radon concentration are: reducing the radon supply by reversing the pressure difference between the building and the soil; raising the resistance of the foundations to soil gas entry; removing the radon sources such as water or underlying soil; diluting the concentration by increasing the ventilation rate; and reducing the concentration of radon progeny by filtering and increasing the circulation of indoor air. Buildings which have a radon concentration higher than 200 Bq.m-3 should be investigated by the national authorities concerned; meanwhile, householders should be advised to take simple temporary precautions, such as increasing ventilation, until a permanent remedy can be effected.

  9. Distribution of indoor radon concentrations in Pennsylvania, 1990-2007

    USGS Publications Warehouse

    Gross, Eliza L.

    2013-01-01

    Median indoor radon concentrations aggregated according to geologic units and hydrogeologic settings are useful for drawing general conclusions about the occurrence of indoor radon in specific geologic units and hydrogeologic settings, but the associated data and maps have limitations. The aggregated indoor radon data have testing and spatial accuracy limitations due to lack of available information regarding testing conditions and the imprecision of geocoded test locations. In addition, the associated data describing geologic units and hydrogeologic settings have spatial and interpretation accuracy limitations, which are a result of using statewide data to define conditions at test locations and geologic data that represent a broad interpretation of geologic units across the State. As a result, indoor air radon concentration distributions are not proposed for use in predicting individual concentrations at specific sites nor for use as a decision-making tool for property owners to decide whether to test for indoor radon concentrations at specific property locations.

  10. Measurements of indoor radon concentrations and assessment of radiation exposure

    NASA Astrophysics Data System (ADS)

    Medici, F.; Rybach, L.

    1994-02-01

    In the past decade many international studies have established that the radioactive gas radon is responsible to a large extent for the radiation dose absorbed by the population. Consequently the Swiss Federal Health Office started and sponsored a research program called RAPROS (Radon Programm Schweiz, 1987-1991) to assess the relevant aspects of radon exposure in Switzerland. The average indoor radon concentration in Swiss living rooms is about 60-70 Bq m -3, this corresponds to an annual dose of about 2.2 mSv, but values largely exceeding 1000 Bq m -3 were also found. Often very strong temporal fluctuations of indoor radon concentrations were measured. The ground directly underneath buildings is the main radon source of indoor radon. The material properties that influence the radon production and transport in soils are: radium content, emanating coefficient and soil gas permeability; among them only the last one can vary over many orders of magnitude. The permeability is consequently the decisive factor that enables radon transport in the subsurface. To characterize the radon potential of soils a radon availability index ( RAV) was introduced. Our investigations have also shown that in karst systems the radon concentration in the air is often increased to 10-100 times higher than in buildings. This radon-charged air is able to travel over considerable distances through faults and cavities in the underground and reach living rooms built over karstified areas.

  11. Development of a model for radon concentration in indoor air.

    PubMed

    Jelle, Bjørn Petter

    2012-02-01

    A model is developed for calculation of the radon concentration in indoor air. The model takes into account various important parameters, e.g. radon concentration in ground, radon diffusion resistance of radon barrier, air permeance of ground, air pressure difference between outdoor ground and indoor at ground level, ventilation of the building ground and number of air changes per hour due to ventilation. Characteristic case studies are depicted in selected 2D and 3D graphical plots for easy visualization and interpretation. The radon transport into buildings might be dominated by diffusion, pressure driven flow or a mixture of both depending on the actual values of the various parameters. The results of our work indicate that with realistic or typical values of the parameters, most of the transport of radon from the building ground to the indoor air is due to air leakage driven by pressure differences through the construction. By incorporation of various and realistic values in the radon model, valuable information about the miscellaneous parameters influencing the indoor radon level is gained. Hence, the presented radon model may be utilized as a simple yet versatile and powerful tool for examining which preventive or remedial measures should be carried out to achieve an indoor radon level below the reference level as set by the authorities.

  12. Indoor radon concentrations in the town of Niksic, Montenegro.

    PubMed

    Antovic, N; Vukotic, P; Zekic, R; Ilic, R

    2007-01-01

    Indoor radon was systematically surveyed in the town of Niksic-the second largest town in Montenegro-which has some of its settlements built above red bauxite deposits. The radon concentrations were measured in 55 homes in 2002/03, in the summer and winter period, using CR-39 etched track detectors. The average annual radon concentrations were found to be lognormally distributed (geometric mean = 66.2 Bq m(-3), geometric standard deviation = 3.0) within the range from 10 to 966 Bq m(-3), with arithmetic mean of 122.7 Bq m(-3) and median of 61.7 Bq m(-3). Although the annual mean radon concentrations above the action level of 400 Bq m(-3) are found only in four dwellings, the indoor radon levels in the town of Niksic are relatively high when compared with the average in the South European countries, as well as with indoor radon levels in other regions in Montenegro.

  13. An electrical circuit model for simulation of indoor radon concentration.

    PubMed

    Musavi Nasab, S M; Negarestani, A

    2013-01-01

    In this study, a new model based on electric circuit theory was introduced to simulate the behaviour of indoor radon concentration. In this model, a voltage source simulates radon generation in walls, conductivity simulates migration through walls and voltage across a capacitor simulates radon concentration in a room. This simulation considers migration of radon through walls by diffusion mechanism in one-dimensional geometry. Data reported in a typical Greek house were employed to examine the application of this technique of simulation to the behaviour of radon.

  14. Problems with Estimating Annual Mean Indoor Radon Concentrations

    SciTech Connect

    Marusiakova, Miriam; Hulka, Jiri

    2010-09-30

    Radon and its progeny in dwellings is responsible for the majority of the total radiation dose among the general population. The indoor radon concentration varies considerably during the daytime, individual days, seasons and even years. It is affected by many factors such as ventilation, soil concentration, quality of house insulation and others.The annual mean value of the radon concentration in buildings is important in order to estimate the effective dose to inhabitants. However, it is not always possible to perform radon measurements over a period of one year. Thus estimates based on short-term continuous measurements are suggested.We analyse hourly radon measurements obtained from one uninhabited rural house in Teleci in the Czech Republic. We study the behaviour of the radon concentration with time and its relationship to meteorological variables such as outdoor temperature, wind speed or pressure. Further we discuss various estimates of the annual mean radon concentration and their properties.

  15. Problems with Estimating Annual Mean Indoor Radon Concentrations

    NASA Astrophysics Data System (ADS)

    Marušiaková, Miriam; Hůlka, Jińrí

    2010-09-01

    Radon and its progeny in dwellings is responsible for the majority of the total radiation dose among the general population. The indoor radon concentration varies considerably during the daytime, individual days, seasons and even years. It is affected by many factors such as ventilation, soil concentration, quality of house insulation and others. The annual mean value of the radon concentration in buildings is important in order to estimate the effective dose to inhabitants. However, it is not always possible to perform radon measurements over a period of one year. Thus estimates based on short-term continuous measurements are suggested. We analyse hourly radon measurements obtained from one uninhabited rural house in Telecí in the Czech Republic. We study the behaviour of the radon concentration with time and its relationship to meteorological variables such as outdoor temperature, wind speed or pressure. Further we discuss various estimates of the annual mean radon concentration and their properties.

  16. Modeling of indoor radon concentration from radon exhalation rates of building materials and validation through measurements.

    PubMed

    Kumar, Amit; Chauhan, R P; Joshi, Manish; Sahoo, B K

    2014-01-01

    Building materials are the second major source of indoor radon after soil. The contribution of building materials towards indoor radon depends upon the radium content and exhalation rates and can be used as a primary index for radon levels in the dwellings. The radon flux data from the building materials was used for calculation of the indoor radon concentrations and doses by many researchers using one and two dimensional model suggested by various researchers. In addition to radium content, the radon wall flux from a surface strongly depends upon the radon diffusion length (L) and thickness of the wall (2d). In the present work the indoor radon concentrations from the measured radon exhalation rate of building materials calculated using different models available in literature and validation of models was made through measurement. The variation in the predicted radon flux from different models was compared with d/L value for wall and roofs of different dwellings. The results showed that the radon concentrations predicted by models agree with experimental value. The applicability of different model with d/L ratio was discussed. The work aims to select a more appropriate and general model among available models in literature for the prediction of indoor radon. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Measurement of Indoor Radon-222 and Radon-220 Concentrations in Central Japan

    SciTech Connect

    Oka, Mitsuaki; Shimo, Michikuni; Tokonami, Shinji; Sorimachi, Atsuyuki; Takahashi, Hiromichi; Ishikawa, Tetsuo

    2008-08-07

    A passive-type radon/thoron detector was used for measuring indoor radon and thoron concentrations at 90 dwellings in Aichi and Gifu prefectures in central Japan during 90 days from December, 2006 to March, 2007. The radon and thoron concentrations were 21.1 Bq/m3 and 25.1 Bq/m3, respectively. The dose due to radon and thoron in dwellings was roughly evaluated as 0.7 mSv/y and 2.4 mSv/y, respectively. The examination of the geological factor and house condition having an effect on indoor radon concentration was performed.

  18. Bayesian Prediction of Mean Indoor Radon Concentrations for Minnesota Counties

    SciTech Connect

    Price, P.N.; Nero, A.V.; Gelman, A.

    1995-08-01

    Past efforts to identify areas having higher than average indoor radon concentrations by examining the statistical relationship between local mean concentrations and physical parameters such as the soil radium concentration have been hampered by the noise in local means caused by the small number of homes monitored in some or most areas, In the present paper, indoor radon data from a survey in Minnesota are analyzed in such a way as to minimize the effect of finite sample size within counties, in order to determine the true county-to-county variation of indoor radon concentrations in the state and the extent to which this variation is explained by the variation in surficial radium concentration among counties, The analysis uses hierarchical modeling, in which some parameters of interest (such as county geometric mean (GM) radon concentrations) are assumed to be drawn from a single population, for which the distributional parameters are estimated from the data. Extensions of this technique, known as a random effects regression and mixed effects regression, are used to determine the relationship between predictive variables and indoor radon concentrations; the results are used to refine the predictions of each county's radon levels, resulting in a great decrease in uncertainty. The true county-to-county variation of GM radon levels is found to be substantially less than the county-to-county variation of the observed GMs, much of which is due to the small sample size in each county. The variation in the logarithm of surficial radium content is shown to explain approximately 80% of the variation of the logarithm of GM radon concentration among counties. The influences of housing and measurement factors, such as whether the monitored home has a basement and whether the measurement was made in a basement, are also discussed. This approach offers a self-consistent statistical method for predicting the mean values of indoor radon concentrations or other geographically

  19. Variance of indoor radon concentration: Major influencing factors.

    PubMed

    Yarmoshenko, I; Vasilyev, A; Malinovsky, G; Bossew, P; Žunić, Z S; Onischenko, A; Zhukovsky, M

    2016-01-15

    Variance of radon concentration in dwelling atmosphere is analysed with regard to geogenic and anthropogenic influencing factors. Analysis includes review of 81 national and regional indoor radon surveys with varying sampling pattern, sample size and duration of measurements and detailed consideration of two regional surveys (Sverdlovsk oblast, Russia and Niška Banja, Serbia). The analysis of the geometric standard deviation revealed that main factors influencing the dispersion of indoor radon concentration over the territory are as follows: area of territory, sample size, characteristics of measurements technique, the radon geogenic potential, building construction characteristics and living habits. As shown for Sverdlovsk oblast and Niška Banja town the dispersion as quantified by GSD is reduced by restricting to certain levels of control factors. Application of the developed approach to characterization of the world population radon exposure is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A theoretical investigation of the distribution of indoor radon concentrations

    NASA Astrophysics Data System (ADS)

    Rabi, R.; Oufni, L.

    2017-05-01

    Inhalation of radon (222Rn) and its decay products are a major source of natural radiation exposure. It is known from recent surveys in many countries that radon and its progeny contribute significantly to total inhalation dose and it is fairly established that radon when inhaled in large quantity causes lung disorder. In recent times, numerical modelling has become the cost effective replacement of experimental methods for the prediction and visualization of indoor pollutant distribution. The aim of this study is to implement the Finite Volume Method (FVM) for studying the radon distribution indoor. The findings show that the radon concentration which is distributed in a non-homogeneous way in the room is due to the difference in the radon concentration of different sources (wall, floor and ceiling). Moreover, the radon concentration is much larger near walls, and decreases in the middle of the room because of the effect of air velocity. We notice that the simulation results of radon concentration are in agreement with the results of other experimental studies. The annual effective dose of radon in the model room has been also investigated.

  1. A theoretical investigation of the distribution of indoor radon concentrations

    NASA Astrophysics Data System (ADS)

    Rabi, R.; Oufni, L.

    2016-11-01

    Inhalation of radon (222Rn) and its decay products are a major source of natural radiation exposure. It is known from recent surveys in many countries that radon and its progeny contribute significantly to total inhalation dose and it is fairly established that radon when inhaled in large quantity causes lung disorder. In recent times, numerical modelling has become the cost effective replacement of experimental methods for the prediction and visualization of indoor pollutant distribution. The aim of this study is to implement the Finite Volume Method (FVM) for studying the radon distribution indoor. The findings show that the radon concentration which is distributed in a non-homogeneous way in the room is due to the difference in the radon concentration of different sources (wall, floor and ceiling). Moreover, the radon concentration is much larger near walls, and decreases in the middle of the room because of the effect of air velocity. We notice that the simulation results of radon concentration are in agreement with the results of other experimental studies. The annual effective dose of radon in the model room has been also investigated.

  2. Bayesian Prediction of Mean Indoor Radon Concentrations for Minnesota Counties

    SciTech Connect

    Price, P.N.; Nero, A.V.; Gelman, A.

    1996-02-01

    Past efforts to identify areas with higher than average indoor radon concentrations by examining the statistical relationship between local mean concentrations and physical parameters such as the soil radium concentration have been hampered by the variation in local means caused by the small number of homes monitored in most areas. In this paper, indoor radon data from a survey in Minnesota are analyzed to minimize the effect of finite sample size within counties, to determine the true county-to-county variation of indoor radon concentrations in the state, and to find the extent to which this variation is explained by the variation in surficial radium concentration among counties. The analysis uses hierarchical modeling, in which some parameters of interest (such as county geometric mean (GM) radon concentrations) are assumed to be drawn from a single population, for which the distributional parameters are estimated from the data. Extensions of this technique, known as a random effects regression and mixed effects regression, are used to determine the relationship between predictive variables and indoor radon concentrations; the results are used to refine the predictions of each county's radon levels, resulting in a great decrease in uncertainty. The true county-to-county variation of GM radon levels is found to be substantially less than the county-to-county variation of the observed GMs, much of which is due to the small sample size in each county. The variation in the logarithm of surficial radium content is shown to explain approximately 80% of the variation of the logarithm of GM radon concentration among counties. The influences of housing and measurement factors, such as whether the monitored home has a basement and whether the measurement was made in a basement, are also discussed. The statistical method can be used to predict mean radon concentrations, or applied to other geographically distributed environmental parameters.

  3. Bayesian prediction of mean indoor radon concentrations for Minnesota counties.

    PubMed

    Price, P N; Nero, A V; Gelman, A

    1996-12-01

    Past efforts to identify areas with higher than average indoor radon concentrations by examining the statistical relationship between local mean concentrations and physical parameters such as the soil radium concentration have been hampered by the variation in local means caused by the small number of homes monitored in most areas. In this paper, indoor radon data from a survey in Minnesota are analyzed to minimize the effect of finite sample size within counties, to determine the true county-to-county variation of indoor radon concentrations in the state, and to find the extent to which this variation is explained by the variation in surficial radium concentration among counties. The analysis uses hierarchical modeling, in which some parameters of interest (such as county geometric mean radon concentrations) are assumed to be drawn from a single population, for which the distributional parameters are estimated from the data. Extensions of this technique, known as random effects regression and mixed effects regression, are used to determine the relationship between predictive variables and indoor radon concentrations; the results are used to refine the predictions of each county's radon levels, resulting in a great decrease in uncertainty. The true county-to-county variation of geometric mean radon levels is found to be substantially less than the county-to-county variation of the observed geometric means, much of which is due to the small sample size in each county. The variation in the logarithm of surficial radium content is shown to explain approximately 80% of the variation of the logarithm of geometric mean radon concentration among counties. The influences of housing and measurement factors, such as whether the monitored home has a basement and whether the measurement was made in a basement, are also discussed. The statistical method can be used to predict mean radon concentrations, or applied to other geographically distributed environmental parameters.

  4. Reconstruction of national distribution of indoor radon concentration in Russia using results of regional indoor radon measurement programs.

    PubMed

    Yarmoshenko, I; Malinovsky, G; Vasilyev, A; Zhukovsky, M

    2015-12-01

    The aim of the paper is a reconstruction of the national distribution and estimation of the arithmetic average indoor radon concentration in Russia using the data of official annual 4-DOZ reports. Annual 4-DOZ reports summarize results of radiation measurements in 83 regions of Russian Federation. Information on more than 400,000 indoor radon measurements includes the average indoor radon isotopes equilibrium equivalent concentration (EEC) and number of measurements by regions and by three main types of houses: wooden, one-storey non-wooden, and multi-storey non-wooden houses. To reconstruct the national distribution, all-Russian model sample was generated by integration of sub-samples created using the results of each annual regional program of indoor radon measurements in each type of buildings. According to indoor radon concentration distribution reconstruction, all-Russian average indoor radon concentration is 48 Bq/m(3). Average indoor radon concentration by region ranges from 12 to 207 Bq/m(3). The 95-th percentile of the distribution is reached at indoor radon concentration 160 Bq/m(3). Copyright © 2015. Published by Elsevier Ltd.

  5. Predictors of Indoor Radon Concentrations in Pennsylvania, 1989–2013

    PubMed Central

    Casey, Joan A.; Ogburn, Elizabeth L.; Rasmussen, Sara G.; Irving, Jennifer K.; Pollak, Jonathan; Locke, Paul A.

    2015-01-01

    Background Radon is the second-leading cause of lung cancer worldwide. Most indoor exposure occurs by diffusion of soil gas. Radon is also found in well water, natural gas, and ambient air. Pennsylvania has high indoor radon concentrations; buildings are often tested during real estate transactions, with results reported to the Department of Environmental Protection (PADEP). Objectives We evaluated predictors of indoor radon concentrations. Methods Using first-floor and basement indoor radon results reported to the PADEP between 1987 and 2013, we evaluated associations of radon concentrations (natural log transformed) with geology, water source, building characteristics, season, weather, community socioeconomic status, community type, and unconventional natural gas development measures based on drilled and producing wells. Results Primary analysis included 866,735 first measurements by building, with the large majority from homes. The geologic rock layer on which the building sat was strongly associated with radon concentration (e.g., Axemann Formation, median = 365 Bq/m3, IQR = 167–679 vs. Stockton Formation, median = 93 Bq/m3, IQR = 52–178). In adjusted analysis, buildings using well water had 21% higher concentrations (β = 0.191, 95% CI: 0.184, 0.198). Buildings in cities (vs. townships) had lower concentrations (β = –0.323, 95% CI: –0.333, –0.314). When we included multiple tests per building, concentrations declined with repeated measurements over time. Between 2005 and 2013, 7,469 unconventional wells were drilled in Pennsylvania. Basement radon concentrations fluctuated between 1987 and 2003, but began an upward trend from 2004 to 2012 in all county categories (p < 0.001), with higher levels in counties having ≥ 100 drilled wells versus counties with none, and with highest levels in the Reading Prong. Conclusions Geologic unit, well water, community, weather, and unconventional natural gas development were associated with indoor radon

  6. Predictors of Indoor Radon Concentrations in Pennsylvania, 1989-2013.

    PubMed

    Casey, Joan A; Ogburn, Elizabeth L; Rasmussen, Sara G; Irving, Jennifer K; Pollak, Jonathan; Locke, Paul A; Schwartz, Brian S

    2015-11-01

    Radon is the second-leading cause of lung cancer worldwide. Most indoor exposure occurs by diffusion of soil gas. Radon is also found in well water, natural gas, and ambient air. Pennsylvania has high indoor radon concentrations; buildings are often tested during real estate transactions, with results reported to the Department of Environmental Protection (PADEP). We evaluated predictors of indoor radon concentrations. Using first-floor and basement indoor radon results reported to the PADEP between 1987 and 2013, we evaluated associations of radon concentrations (natural log transformed) with geology, water source, building characteristics, season, weather, community socioeconomic status, community type, and unconventional natural gas development measures based on drilled and producing wells. Primary analysis included 866,735 first measurements by building, with the large majority from homes. The geologic rock layer on which the building sat was strongly associated with radon concentration (e.g., Axemann Formation, median = 365 Bq/m3, IQR = 167-679 vs. Stockton Formation, median = 93 Bq/m3, IQR = 52-178). In adjusted analysis, buildings using well water had 21% higher concentrations (β = 0.191, 95% CI: 0.184, 0.198). Buildings in cities (vs. townships) had lower concentrations (β = -0.323, 95% CI: -0.333, -0.314). When we included multiple tests per building, concentrations declined with repeated measurements over time. Between 2005 and 2013, 7,469 unconventional wells were drilled in Pennsylvania. Basement radon concentrations fluctuated between 1987 and 2003, but began an upward trend from 2004 to 2012 in all county categories (p < 0.001), with higher levels in counties having ≥ 100 drilled wells versus counties with none, and with highest levels in the Reading Prong. Geologic unit, well water, community, weather, and unconventional natural gas development were associated with indoor radon concentrations. Future studies should include direct environmental

  7. Relationships between indoor radon concentrations, thermal retrofit and dwelling characteristics.

    PubMed

    Collignan, Bernard; Le Ponner, Eline; Mandin, Corinne

    2016-12-01

    A monitoring campaign was conducted on a sample of more than 3400 dwellings in Brittany, France from 2011 to 2014. The measurements were collected using one passive dosimeter per dwelling over two months during the heating season, according to the NF ISO 11665-8 (2013) standard. Moreover, building characteristics such as the period of construction, construction material, type of foundation, and thermal retrofit were determined using a questionnaire. The final data set consisted of 3233 houses with the measurement results and the questionnaire answers. Multivariate linear regression models were applied to explore the relationships between the indoor radon concentrations and building characteristics, particularly the thermal retrofit. The geometric mean of the indoor radon concentration was 155 Bq m(-3) (with a geometric standard deviation of 3). The houses that had undergone a thermal retrofit had a higher average radon concentration than those that had not, which may have been due to a decrease in air permeability of the building envelope following rehabilitation work that did not systematically include proper management of the ventilation. Other building characteristics, primarily the building material and the foundation type, were associated with the indoor radon concentration. The indoor radon concentrations were higher in older houses built with granite or other stone, with a slab-on-grade foundation and without any ventilation system.

  8. Indoor Radon Concentration Levels in Najran Region, Saudi Arabia

    SciTech Connect

    Alyami, S. H.; Al-Ghamdi, S. S.; Baig, M. R.; Al-Garawi, M.S.

    2010-07-07

    Measurement of indoor radon concentration was performed in Najran region in the south west of Saudi Arabia, using CR-39 dosimeter. Despite many previous studies on indoor radon concentrations in Saudi Arabia, the data available are still limited. The objective of this study, which is the first of its kind in the region, is to have preliminary data of radon in this region. Such measurement will contribute towards further studies in this region of Saudi Arabia. The indoor radon concentration was measured in the villages of Fara Al-Jabal and Badr Al-Janoob (about 2000 m above sea level), Hadadah and Al-Khanig (about 1700 m above sea level). It was found that radon distribution in these villages is normal skewed to the right, with a range of 9{+-}5 to 163{+-}32 Bqm{sup -3} and an average of 49{+-}2 Bqm{sup -3}. It was also found that the average radon concentration is independent of altitude. Our findings show that the values are below the safe limit of 150 Bqm{sup -3} set by the Environmental Protection Agency (EPA) of the USA

  9. Indoor Radon Concentration Levels in Najran Region, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alyami, S. H.; Al-Ghamdi, S. S.; Baig, M. R.; Al-Garawi, M. S.

    2010-07-01

    Measurement of indoor radon concentration was performed in Najran region in the south west of Saudi Arabia, using CR-39 dosimeter. Despite many previous studies on indoor radon concentrations in Saudi Arabia, the data available are still limited. The objective of this study, which is the first of its kind in the region, is to have preliminary data of radon in this region. Such measurement will contribute towards further studies in this region of Saudi Arabia. The indoor radon concentration was measured in the villages of Fara Al-Jabal and Badr Al-Janoob (about 2000 m above sea level), Hadadah and Al-Khanig (about 1700 m above sea level). It was found that radon distribution in these villages is normal skewed to the right, with a range of 9±5 to 163±32 Bqm-3 and an average of 49±2 Bqm-3. It was also found that the average radon concentration is independent of altitude. Our findings show that the values are below the safe limit of 150 Bqm-3 set by the Environmental Protection Agency (EPA) of the USA

  10. Factors affecting indoor radon concentrations in the United Kingdom.

    PubMed

    Gunby, J A; Darby, S C; Miles, J C; Green, B M; Cox, D R

    1993-01-01

    Data collected in a nationwide study on natural radiation exposure in UK dwellings (Wrixon et al. 1988) were re-analyzed to investigate the effects of rock type and various building and lifestyle characteristics, taken into account simultaneously, on indoor radon concentrations. A multiplicative model which takes into consideration the outdoor radon concentration is used. Indoor radon concentrations were found to be influenced by type of rock underlying the dwelling, double glazing, house type, floor level of rooms in which measurements were taken, window opening habits in the main bedroom, building materials used in the construction of the walls, floor type, and draught proofing. However, these eight factors together account for only 22% of the variation between dwellings. Estimates of the size of the effect associated with each factor are given.

  11. Measurement of indoor and outdoor radon concentrations during Superstorm Sandy.

    PubMed

    Kotrappa, Payasada; Paul, Prateek; Stieff, Alex; Stieff, Frederick

    2013-12-01

    Superstorm Sandy affected much of the US East Coast extending over 1800 km. It passed over the test location in the State of Maryland on 29 October 2012. Being 350 km away from the regions of highest intensity the storm was of lower intensity at the test location. Continuous radon monitors and passive radon monitors were used for the measurement. The test location was the basement of a single family home representing the indoor concentration. A partially opened garage of the same test home represented the outdoor radon concentration. In 24 h, the atmospheric pressure dropped from 990 to 960 mbar and the indoor radon concentration increased from 70 to 1500 Bq m(-3) and returned to the normal of 70 Bq m(-3) at the end of the storm. Throughout the storm, the outdoor radon concentration was not significantly affected. Probable reasons for such surprisingly large changes are discussed. However, the outdoor temperature dropped from 13°C to 7°C during the radon peak.

  12. A statistical evaluation of the influence of housing characteristics and geogenic radon potential on indoor radon concentrations in France.

    PubMed

    Demoury, C; Ielsch, G; Hemon, D; Laurent, O; Laurier, D; Clavel, J; Guillevic, J

    2013-12-01

    Radon-222 is a radioactive natural gas produced by the decay of radium-226, known to be the main contributor to natural background radiation exposure. Effective risk management needs to determine the areas in which the density of buildings with high radon levels is likely to be highest. Predicting radon exposure from the location and characteristics of a dwelling could also contribute to epidemiological studies. Beginning in the nineteen-eighties, a national radon survey consisting in more than 10,000 measurements of indoor radon concentrations was conducted in French dwellings by the Institute for Radiological Protection and Nuclear Safety (IRSN). Housing characteristics, which may influence radon accumulation in dwellings, were also collected. More recently, the IRSN generated a French geogenic radon potential map based on the interpretation of geological features. The present study analyzed the two datasets to investigate the factors influencing indoor radon concentrations using statistical modeling and to determine the optimum use of the information on geogenic radon potential that showed the best statistical association with indoor radon concentration. The results showed that the variables associated with indoor radon concentrations were geogenic radon potential, building material, year of construction, foundation type, building type and floor level. The model, which included the surrounding geogenic radon potential (i.e. the average geogenic radon potential within a disc of radius 20 km centered on the indoor radon measurement point) and variables describing house-specific factors and lifestyle explained about 20% of the overall variability of the logarithm of radon concentration. The surrounding geogenic radon potential was fairly closely associated with the local average indoor radon concentration. The prevalence of exposure to radon above specific thresholds and the average exposures to radon clearly increased with increasing classes of geogenic radon

  13. Unusually high indoor radon concentrations from a giant rock slide.

    PubMed

    Ennemoser, O; Ambach, W; Brunner, P; Schneider, P; Oberaigner, W; Purtscheller, F; Stingl, V; Keller, G

    1994-07-18

    In a village in western Tyrol, Austria (Umhausen, approximately 2600 inhabitants) unusually high indoor radon concentrations were measured. The medians were found to be 3750 Bq/m3 (basements) and 1160 Bq/m3 (ground floors) in winter, and 361 Bq/m3 (basements) and 210 Bq/m3 (ground floors) in summer. Maximum radon concentrations of up to 274,000 Bq/m3 were registered. The unusually high radon concentrations are due to the geology of the locality. The part of Umhausen with the highest radon concentrations is built on an alluvial fan of a giant rock slide (granitic gneiss). Measurements of the radon exhalation rate from soil showed a median of 0.4 Bq/m2/s, measurements of the radium content of rock samples yielded a median of 125 Bq/kg. The material of the rock slide is heavily fractured so that an elevated emanating power and an increased diffusion coefficient for radon in soil must be assumed. Given a diffusion coefficient of 8 x 10(-6) m2/s and an emanating power of 0.3, the median exhalation rate of 0.4 Bq/m2/s is obtained at a radium concentration of 125 Bq/kg. The rock slide is therefore considered to be the main source of radon. The abnormally high radon concentrations in Umhausen coincide with a statistically significant increase in lung cancer mortality (age and sex standardized mortality rate = 3.9, 95% C.I.: 2.9-5.1); the control population is the population of the entire Tyrol (630,000 inhabitants).

  14. An investigation of the potential causes for the seasonal and annual variations in indoor radon concentrations.

    PubMed

    Barazza, F; Gfeller, W; Palacios, M; Murith, C

    2015-11-01

    Indoor radon concentrations exhibit strong variations on short and long timescales. Besides human influences, meteorological factors significantly affect the radon concentrations indoors as well as outdoors. In this article, long-term measurements showing strong annual variations are presented, which take a very similar course in different buildings located in largely separated regions in Switzerland. Also, seasonal variations can be very significant. In general, variations in indoor radon levels can primarily be attributed to human influences. On the other hand, specific weather conditions can have a significant impact on indoor radon levels. In order to further investigate the connection between indoor radon levels and meteorological factors, a measuring campaign has been started in two buildings located in two different regions in Switzerland exhibiting different climatic characteristics. Preliminary results of these investigations are presented, which provide evidence for correlations between indoor radon levels and in particular outdoor temperatures, contributing to seasonal and annual as well as short-term variations in indoor radon concentrations.

  15. Estimating the radon concentration in water and indoor air.

    PubMed

    Maged, A F

    2009-05-01

    The paper presents the results of radon concentration measurements in the vicinity of water, indoor air and in contact to building walls. The investigations were carried out using CR-39 track detectors. Samples of ground water flowing out of many springs mostly in Arabian Gulf area except one from Germany have been studied. The results are compared with international recommendations and the values are found to be lower than the recommended value. Measuring the mean indoor radon concentrations in air and in contact to building walls in the dwellings of Kuwait University Campus were found 24.2 +/- 7.7, and 462 +/- 422 Bq m(-3) respectively. These values lead to average effective dose equivalent rates of 1.3 +/- 0.4 and 23 +/- 21 mSv year(-1), respectively.

  16. Factors affecting yearly variations of indoor radon concentrations

    SciTech Connect

    Steck, D.J.; Baynes, S.A.

    1996-06-01

    Since indoor radon exposures take place over many years while radon measurement periods are shorter, we are studying the yearly variation of indoor radon concentrations in approximately 100 houses located throughout Minnesota. Most houses were initially measured for one or more years in the late 1980`s and for 5 consecutive years starting in 1990. Two houses have been monitored for 12 y. Each year, two alpha track detectors were placed on the two lowest livable levels. The year-to-year variations averaged about 35% (corrected for instrumental uncertainties) in both basements and first floors. The minimum observed variation was 5% and the maximum was 130%. Some homes have shown substantial variation associated with Structural modifications. While most homes show no obvious systematic trends, a few houses have shown temporal trends that may be associated with aging or climate. We are studying possible correlation between year-to-year radon variation, climatic variables (yearly-average and seasonal such as heating/cooling degree days, precipitation, soil moisture), and structural changes.

  17. Indoor radon concentration in geothermal areas of central Italy.

    PubMed

    Ciolini, R; Mazed, D

    2010-09-01

    The indoor radon ((222)Rn) activity concentration was measured between January and June in the schools of two geothermal areas in Tuscany, central Italy. One of these areas (the Larderello area) is characterized by a large number of geothermal power plants, covering about 9% of the world's geothermal power production. In contrast, the other area, Monte Pisano, has not any such facilities. About 250 measurements were made using track etch detectors. Only a slight difference in the concentrations between the two major sampling areas (98 Bq m(-3) for Larderello area and 43 Bq m(-3) for Monte Pisano area) was found, and this was related to different geological characteristics of the ground and not the presence of the geothermal plants. The measured radon concentrations were always well below the intervention levels in both areas, and health risks for students and personnel in the examined schools were excluded. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Variation of indoor radon concentration and ambient dose equivalent rate in different outdoor and indoor environments.

    PubMed

    Stojanovska, Zdenka; Boev, Blazo; Zunic, Zora S; Ivanova, Kremena; Ristova, Mimoza; Tsenova, Martina; Ajka, Sorsa; Janevik, Emilija; Taleski, Vaso; Bossew, Peter

    2016-05-01

    Subject of this study is an investigation of the variations of indoor radon concentration and ambient dose equivalent rate in outdoor and indoor environments of 40 dwellings, 31 elementary schools and five kindergartens. The buildings are located in three municipalities of two, geologically different, areas of the Republic of Macedonia. Indoor radon concentrations were measured by nuclear track detectors, deployed in the most occupied room of the building, between June 2013 and May 2014. During the deploying campaign, indoor and outdoor ambient dose equivalent rates were measured simultaneously at the same location. It appeared that the measured values varied from 22 to 990 Bq/m(3) for indoor radon concentrations, from 50 to 195 nSv/h for outdoor ambient dose equivalent rates, and from 38 to 184 nSv/h for indoor ambient dose equivalent rates. The geometric mean value of indoor to outdoor ambient dose equivalent rates was found to be 0.88, i.e. the outdoor ambient dose equivalent rates were on average higher than the indoor ambient dose equivalent rates. All measured can reasonably well be described by log-normal distributions. A detailed statistical analysis of factors which influence the measured quantities is reported.

  19. Influence of indoor air conditions on radon concentration in a detached house.

    PubMed

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-02-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50-60%.

  20. Radon in indoor concentrations and indoor concentrations of metal dust particles in museums and other public buildings.

    PubMed

    Carneiro, G L; Braz, D; de Jesus, E F; Santos, S M; Cardoso, K; Hecht, A A; Dias da Cunha, Moore K

    2013-06-01

    The aim of this study was to evaluate the public and occupational exposure to radon and metal-bearing particles in museums and public buildings located in the city of Rio de Janeiro, Brazil. For this study, four buildings were selected: two historic buildings, which currently house an art gallery and an art museum; and two modern buildings, a chapel and a club. Integrated radon concentration measurements were performed using passive radon detectors with solid state nuclear track detector-type Lexan used as nuclear track detector. Air samplers with a cyclone were used to collect the airborne particle samples that were analyzed by the particle-induced X-ray emission technique. The average unattached-radon concentrations in indoor air in the buildings were above 40 Bq/m(3), with the exception of Building D as measured in 2009. The average radon concentrations in indoor air in the four buildings in 2009 were below the recommended reference level by World Health Organization (100 Bq/m(3)); however, in 2011, the average concentrations of radon in Buildings A and C were above this level, though lower than 300 Bq/m(3). The average concentrations of unattached radon were lower than 148 Bq/m(3) (4pCi/L), the USEPA level recommended to take action to reduce the concentrations of radon in indoor air. The unattached-radon average concentrations were also lower than the value recommended by the European Union for new houses. As the unattached-radon concentrations were below the international level recommended to take action to reduce the radon concentration in air, it was concluded that during the period of sampling, there was low risk to human health due to the inhalation of unattached radon in these four buildings.

  1. Indoor Radon Measurement in Van

    SciTech Connect

    Kam, E.; Osmanlioglu, A. E.; Celebi, N.; Dogan, I.

    2007-04-23

    In this study, indoor radon concentrations obtained from the radon surveys conducted in the Van. Radon monitoring was performed by applying a passive, time-integrating measuring technique. For this purpose, CR-39 nuclear track detectors were installed in dwellings for 2 months. After the monitoring period, detectors were collected. In order to make the alpha tracks visible, chemical etching was applied to the exposed detectors. Nuclear track numbers and the corresponding indoor radon concentrations were determined. Annual effective dose equivalents and the risk probabilities caused by indoor radon inhalation were calculated, and the found results compared with the indoor radon concentrations' data measured in different provinces of Turkey.

  2. The Concept of Equivalent Radon Concentration for Practical Consideration of Indoor Exposure to Thoron

    PubMed Central

    Chen, Jing; Moir, Deborah

    2012-01-01

    To consider the total exposure to indoor radon and thoron, a concept of equivalent radon concentration for thoron is introduced, defined as the radon concentration that delivers the same annual effective dose as that resulting from the thoron concentration. The total indoor exposure to radon and thoron is then the sum of the radon concentration and the equivalent radon concentration for thoron. The total exposure should be compared to the radon guideline value, and if it exceeds the guideline value, appropriate remedial action is required. With this concept, a separate guideline for indoor thoron exposure is not necessary. For homes already tested for radon with radon detectors, Health Canada’s recommendation of a 3-month radon test performed during the fall/winter heating season not only ensures a conservative estimate of the annual average radon concentration but also covers well any potentially missing contribution from thoron exposure. In addition, because the thoron concentration is much lower than the radon concentration in most homes in Canada, there is no real need to re-test homes for thoron. PMID:22470292

  3. The concept of equivalent radon concentration for practical consideration of indoor exposure to thoron.

    PubMed

    Chen, Jing; Moir, Deborah

    2012-01-01

    To consider the total exposure to indoor radon and thoron, a concept of equivalent radon concentration for thoron is introduced, defined as the radon concentration that delivers the same annual effective dose as that resulting from the thoron concentration. The total indoor exposure to radon and thoron is then the sum of the radon concentration and the equivalent radon concentration for thoron. The total exposure should be compared to the radon guideline value, and if it exceeds the guideline value, appropriate remedial action is required. With this concept, a separate guideline for indoor thoron exposure is not necessary. For homes already tested for radon with radon detectors, Health Canada's recommendation of a 3-month radon test performed during the fall/winter heating season not only ensures a conservative estimate of the annual average radon concentration but also covers well any potentially missing contribution from thoron exposure. In addition, because the thoron concentration is much lower than the radon concentration in most homes in Canada, there is no real need to re-test homes for thoron.

  4. Estimation of indoor radon concentration based on radon flux from soil and groundwater.

    PubMed

    Ramola, R C; Prasad, Ganesh; Gusain, G S

    2011-09-01

    The indoor radon concentration was estimated based on the radon flux in soil and groundwater. The indoor radon concentration in Budhakedar area of Garhwal Himalaya, India is estimated to be 3.0-131.4 Bq/m(3) in summer and 4.6-92.4 Bq/m(3) in winter. Based on the available data from study area, the calculated value of diffusion coefficient for the soil ranges from 0.1×10(-2) to 3.0×10(-2)cm(2) s(-1) in the summer season and 0.1×10(-2) to 0.4×10(-2)cm(2) s(-1) in the winter season. The calculated value of diffusion flux in the study area is found to vary from 0.1×10(-2) to 16.1×10(-2)Bq m(-2) s(-1) in summer season and 0.1×10(-2)-12.2×10(-2)Bq m(-2) s(-1) in winter season. The formulation was tested by comparing the results of radon values from two different seasons of a year. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Indoor Radon and Its Decay Products: Concentrations, Causes, and Control Strategies

    SciTech Connect

    Nero, A.V.; Gadgil, A.J.; Nazaroff, W.W.; Revzan, K.L.

    1990-01-01

    This report is an introduction to the behavior of radon 222 and its decay products in indoor air. This includes review of basic characteristics of radon and its decay products and of features of the indoor environment itself, all of which factors affect behavior in indoor air. The experimental and theoretical evidence on behavior of radon and its decay products is examined, providing a basis for understanding the influence of geological, structural, and meteorological factors on indoor concentrations, as well as the effectiveness of control techniques. We go on to examine three important issues concerning indoor radon. We thus include (1) an appraisal of the concentration distribution in homes, (2) an examination of the utility and limitations of popular monitoring techniques and protocols, and (3) an assessment of the key elements of strategies for controlling radon levels in homes.

  6. Procedure for the characterization of radon potential in existing dwellings and to assess the annual average indoor radon concentration.

    PubMed

    Collignan, Bernard; Powaga, Emilie

    2014-11-01

    Risk assessment due to radon exposure indoors is based on annual average indoor radon activity concentration. To assess the radon exposure in a building, measurement is generally performed during at least two months during heating period in order to be representative of the annual average value. This is because radon presence indoors could be very variable during time. This measurement protocol is fairly reliable but may be a limiting in the radon risk management, particularly during a real estate transaction due to the duration of the measurement and the limitation of the measurement period. A previous field study defined a rapid methodology to characterize radon entry in dwellings. The objective of this study was at first, to test this methodology in various dwellings to assess its relevance with a daily test. At second, a ventilation model was used to assess numerically the air renewal of a building, the indoor air quality all along the year and the annual average indoor radon activity concentration, based on local meteorological conditions, some building characteristics and in-situ characterization of indoor pollutant emission laws. Experimental results obtained on thirteen individual dwellings showed that it is generally possible to obtain a representative characterization of radon entry into homes. It was also possible to refine the methodology defined in the previous study. In addition, numerical assessments of annual average indoor radon activity concentration showed generally a good agreement with measured values. These results are encouraging to allow a procedure with a short measurement time to be used to characterize long-term radon potential in dwellings.

  7. Characterization of radon entry rates and indoor concentrations in underground structures

    SciTech Connect

    Borak, T.B.; Whicker, F.W.; Fraley, L.; Gadd, M.S.; Ibrahim, S.A.; Monette, F.A.; Morris, R.; Ward, D.C.

    1992-12-31

    An experimental facility has been designed to comprehensively determine the influence of soil and meterological conditions on the transport of radon into underground structures. Two identical basements are equipped to continuously monitor pressure differentials, temperatures, soil moisture, precipitation, barometric pressure, wind speed, wind direction, natural ventiliation rates, and radon concentrations. A computerized data acquisition system accumulates and processes data at the rate of 6000 points per day. The experimental design is based on performing experiments in one structure, with the other used as a control. Indoor radon concentrations have temporal variations ranging from 150 to 1400 Bq m{sup -3}. The corresponding entry rate of radon ranges from 300 to 10,000 Bq h{sup -1}. When the radon entry rate is high, the indoor radon concentration decreases, whereas elevated radon concentrations seem to be associated with slow but persistent radon entry rates. This inverse relationship is partially due to compensation from enhanced natural ventilation during periods when the radon entry rate is high. Correlations between measured variables in the soil and indoor-outdoor atmospheres are used to interpret these data. This laboratory has the capability to generate essential data required for developing and testing radon transport models.

  8. Estimation of annual effective dose from indoor radon/thoron concentrations and measurement of radon concentrations in soil.

    PubMed

    Mehra, Rohit; Bala, Pankaj

    2014-01-01

    Radon short-lived decay products generated from the earth is one of the serious indoor air and soil pollutants. The RAD-7 Electronic Radon Detector with a special accessory is used for the purpose of measurement. The radon and thoron concentrations in the houses of the study area are found to vary from 35±0.5 to 315.2±5.35 Bq m(-3) and 66.1±2.3 to 1710±139.36 Bq m(-3) with the average values of 98.65±1.9 and 388.19±11 Bq m(-3), respectively. From indoor air, the total annual effective dose is calculated and it varies from 0.88 to 7.94 mSv y(-1). The preliminary investigation shows that the thoron concentration is higher than the radon concentration in the houses of the study area. In general, the values of the indoor air are within the recommended action level of the International Commission on Radiological Protection, 2009.

  9. The correlation between indoor and in soil radon concentrations in a desert climate

    NASA Astrophysics Data System (ADS)

    Al-Khateeb, H. M.; Aljarrah, K. M.; Alzoubi, F. Y.; Alqadi, M. K.; Ahmad, A. A.

    2017-01-01

    This study examines the levels and the correlation between indoor and in soil radon concentration in a desert climate. The measurements are carried out, in Jordan desert in AlMafraq district, using the passive integrated technique. An intelligent automated tracks counting system, modified recently by our group, is used to estimate the overlapping tracks and to decrease the counting percentage error. Results show that radon concentration in soil expands from 4.09 to 11.30 kBq m-3, with an average of 7.53 kBq m-3. Indoor radon concentrations vary from 20.2 Bq m-3 in the AlMafraq city to 46.7 Bq m-3 in Housha village and with an average of 29.6 Bq m-3. All of individual indoor radon concentrations are lower than the limit (100 Bq m-3) recommended by WHO except two dwellings in Housha village which found being higher than this limit. A moderate linear correlation (R2=0.66) was observed between indoor and in soil radon concentrations in the investigated region. Our results showed that an in soil radon measurement can be a satisfactory predictor for indoor radon potential.

  10. Soil features and indoor radon concentration prediction: radon in soil gas, pedology, permeability and 226Ra content.

    PubMed

    Lara, E; Rocha, Z; Santos, T O; Rios, F J; Oliveira, A H

    2015-11-01

    This work aims at relating some physicochemical features of soils and their use as a tool for prediction of indoor radon concentrations of the Metropolitan Region of Belo Horizonte (RMBH), Minas Gerais, Brazil. The measurements of soil gas radon concentrations were performed by using an AlphaGUARD monitor. The (226)Ra content analysis was performed by gamma spectrometry (high pure germanium) and permeabilities were performed by using the RADON-JOK permeameter. The GEORP indicator and soil radon index (RI) were also calculated. Approximately 53 % of the Perferric Red Latosols measurement site could be classified as 'high risk' (Swedish criteria). The Litholic Neosols presented the lowest radon concentration mean in soil gas. The Perferric Red Latosols presented significantly high radon concentration mean in soil gas (60.6 ± 8.7 kBq m(-3)), high indoor radon concentration, high RI, (226)Ra content and GEORP. The preliminary results may indicate an influence of iron formations present very close to the Perferric Red Latosols in the retention of uranium minerals. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Preliminary Results of Indoor Radon/thoron Concentrations and Terrestrial Gamma Doses in Gejiu, Yunnan, China

    SciTech Connect

    Ishikawa, Tetsuo; Tokonami, Shinji; Kobayashi, Yosuke; Yoshinaga, Shinji; Sun Quafu; Min Xiangdong

    2008-08-07

    A preliminary survey on indoor radon/thoron and external gamma ray dose rate was conducted for houses in Gejiu city and its neighboring village in Yunnan Province, China. As a result of the radon/thoron measurements for about 50 houses, very high thoron concentrations were found in some hoses (maximum: 7,900 Bq/m{sup 3}). The mean annual dose from thoron decay products was estimated to be larger than that from radon decay products (2.9 mSv vs. 1.6 mSv). Further dosimetric and epidemiological studies are needed to investigate the possible effects of radon and thoron.

  12. Prediction of indoor radon concentration based on residence location and construction

    SciTech Connect

    Maekelaeinen, I.; Voutilainen, A.; Castren, O.

    1992-12-31

    We have constructed a model for assessing indoor radon concentrations in houses where measurements cannot be performed. It has been used in an epidemiological study and to determine the radon potential of new building sites. The model is based on data from about 10,000 buildings. Integrated radon measurements were made during the cold season in all the houses; their geographic coordinates were also known. The 2-mo measurement results were corrected to annual average concentrations. Construction data were collected from questionnaires completed by residents; geological data were determined from geological maps. Data were classified according to geographical, geological, and construction factors. In order to describe different radon production levels, the country was divided into four zones. We assumed that the factors were multiplicative, and a linear concentration-prediction model was used. The most significant factor in determining radon concentration was the geographical region, followed by soil type, year of construction, and type of foundation. The predicted indoor radon concentrations given by the model varied from 50 to 440 Bq m{sup -3}. The lower figure represents a house with a basement, built in the 1950s on clay soil, in the region with the lowest radon concentration levels. The higher value represents a house with a concrete slab in contact with the ground, built in the 1980s, on gravel, in the region with the highest average radon concentration.

  13. Indoor radon and thoron concentrations in some towns of central and South Serbia.

    PubMed

    Vuckovic, Biljana; Gulan, Ljiljana; Milenkovic, Biljana; Stajic, Jelena M; Milic, Gordana

    2016-12-01

    This study presents the results of indoor radon and thoron activity concentrations of some municipalities in central and south part of Serbia: Krusevac, Brus, Blace and Kursumlija. Measurements were carried out in 60 dwellings during the winter season. Passive discriminative radon-thoron detectors known as UFO detectors were used. The mean values of indoor radon and thoron concentrations were 82 Bq m(-3) and 42 Bq m(-3), respectively. Population-weighted mean values were 76 Bq m(-3) and 40 Bq m(-3), respectively. 26.7% of dwellings had radon concentration higher than 100 Bq m(-3) (one location had even more than 300 Bq m(-3)). There are no statistically significant correlations of indoor radon and thoron concentrations neither with the period of house construction, nor with the existence of a basement. The results of this study represent the first step of investigating radon and thoron levels in these parts of Serbia and therefore could be the basis for creating a radon map. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. An approach to define potential radon emission level maps using indoor radon concentration measurements and radiogeochemical data positive proportion relationships.

    PubMed

    Drolet, Jean-Philippe; Martel, Richard; Poulin, Patrick; Dessau, Jean-Claude; Lavoie, Denis; Parent, Michel; Lévesque, Benoît

    2013-10-01

    The aim of this paper is to present the first step of a new approach to make a map of radonprone areas showing different potential radon emission levels in the Quebec province. This map is a tool intended to assist the Quebec government in identifying populations with a higher risk of indoor radon gas exposure. This map of radon-prone areas used available radiogeochemical information for the province of Quebec: (1) Equivalent uranium (eU) concentration from airborne surface gamma-ray surveys; (2) uranium concentration measurements in sediments; and (3) bedrock and surficial geology. Positive proportion relationships (PPR) between each individual criterion and the 1417 available basement radon concentrations were demonstrated. It was also shown that those criteria were reliable indicators of radon-prone areas. The three criteria were discretized into 3, 2 and 2 statistically significant different classes respectively. For each class, statistical heterogeneity was validated by Kruskal-Wallis one way analyses of variance on ranks. Maps of radon-prone areas were traced down for each criterion. Based on this statistical study and on the maps of radon-prone areas in Quebec, 18% of the dwellings located in areas with an equivalent uranium (eU) concentration from airborne surface gamma-ray surveys under 0.75 ppm showed indoor radon concentrations above 150 Bq/m3. This percentage increases to 33% when eU concentrations are between 0.75 ppm and 1.25 ppm and exceeds 40% when eU concentrations are above 1.25 ppm. A uranium concentration in sediments above 20 ppm showed an indoor radon concentration geometric mean of 215 Bq/m3 with more than 69% of the dwellings exceeding 150 Bq/m3 or more than 50% of dwellings exceeding the Canadian radon guideline of 200 Bq/m3. It is also shown that the radon emission potential is higher where a uranium-rich bedrock unit is not covered by a low permeability (silt/clay) surficial deposit.

  15. High variability of indoor radon concentrations in uraniferous bedrock areas in the Balkan region.

    PubMed

    Zunić, Z S; Ujić, P; Nađđerđ, L; Yarmoshenko, I V; Radanović, S B; Komatina Petrović, S; Celiković, I; Komatina, M; Bossew, P

    2014-12-01

    In this work the strong influence of geological factors on the variability of indoor radon is found in two of three geologically very different regions of South-Eastern Europe. A method to estimate the annual mean concentration when one seasonal measurement is missing is proposed. Large differences of radon concentrations in different rooms of the same house and significant difference in radon concentrations in one season comparing it to the others are noted in certain cases. Geological factors that can lead to such behavior are discussed.

  16. Update of Ireland's national average indoor radon concentration - Application of a new survey protocol.

    PubMed

    Dowdall, A; Murphy, P; Pollard, D; Fenton, D

    2017-04-01

    In 2002, a National Radon Survey (NRS) in Ireland established that the geographically weighted national average indoor radon concentration was 89 Bq m(-3). Since then a number of developments have taken place which are likely to have impacted on the national average radon level. Key among these was the introduction of amending Building Regulations in 1998 requiring radon preventive measures in new buildings in High Radon Areas (HRAs). In 2014, the Irish Government adopted the National Radon Control Strategy (NRCS) for Ireland. A knowledge gap identified in the NRCS was to update the national average for Ireland given the developments since 2002. The updated national average would also be used as a baseline metric to assess the effectiveness of the NRCS over time. A new national survey protocol was required that would measure radon in a sample of homes representative of radon risk and geographical location. The design of the survey protocol took into account that it is not feasible to repeat the 11,319 measurements carried out for the 2002 NRS due to time and resource constraints. However, the existence of that comprehensive survey allowed for a new protocol to be developed, involving measurements carried out in unbiased randomly selected volunteer homes. This paper sets out the development and application of that survey protocol. The results of the 2015 survey showed that the current national average indoor radon concentration for homes in Ireland is 77 Bq m(-3), a decrease from the 89 Bq m(-3) reported in the 2002 NRS. Analysis of the results by build date demonstrate that the introduction of the amending Building Regulations in 1998 have led to a reduction in the average indoor radon level in Ireland. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. DEVELOPMENT OF A LUMPED-PARAMETER MODEL OF INDOOR RADON CONCENTRATIONS

    EPA Science Inventory

    The report describes a simplified, lumped-parameter model to characterize indoor radon concentrations from data that are more readily available than those required for existing mathematical models. he lumped-parameter model was developed from numerous sensitivity analyses with th...

  18. Variation of indoor radon concentrations in two-storey houses in Nowshera District, Pakistan.

    PubMed

    Khan, F; Wazir, Z; Tufail, M; Nusrat, M

    2015-01-01

    A study was performed for the measurement of indoor radon concentration in two-storey houses in district Nowshera in the Khyber Pakhtunkhwa province of Pakistan. This area was not previously surveyed for such kind of study. The aim was to find some correlation of radon levels in first and second storey houses in the area. The measurements were carried out for 1 y from 1 December 2012 to 30 November 2013 using CR-39 detector. The area was divided into four parts, namely, Jhangera, Nowshera city, Akora Khattak and Pabbi. In the first storey houses, radon concentration ranged from 29 to 103 Bq m(-3) with the mean value of 64 ± 12 Bq m(-3) and that in the second storey houses ranged from 25 to 92 Bq m(-3) with the mean value of 56 ± 11 Bq m(-3). Relatively higher values of indoor radon levels in the first stories than the second stories were observed in all four parts of the study area. The effective doses received by the residents of the area were estimated for each part. The mean annual effective doses received by the inhabitants of the area from indoor radon ranged from 0.68 to 2.88 mSv with the mean value of 1.68 ± 0.32 mSv. The doses received by the people of the area were within the ICRP-65 recommended range (3-10 mSv).

  19. Low air exchange rate causes high indoor radon concentration in energy-efficient buildings.

    PubMed

    Vasilyev, A V; Yarmoshenko, I V; Zhukovsky, M V

    2015-06-01

    Since 1995, requirements on energy-efficient building construction were established in Russian Building Codes. In the course of time, utilisation of such technologies became prevailing, especially in multi-storey building construction. According to the results of radon survey in buildings constructed meeting new requirements on energy efficiency, radon concentration exceeds the average level in early-constructed buildings. Preponderance of the diffusion mechanism of radon entry in modern multi-storey buildings has been experimentally established. The experimental technique of the assessment of ventilation rate in dwellings under real conditions was developed. Based on estimates of average ventilation rate, it was approved that measures to increase energy efficiency lead to reduction in ventilation rate and accumulation of higher radon concentrations indoors. Obtained ventilation rate values have to be considered as extremely low.

  20. Evaluation of indoor aerosol control devices and their effects on radon progeny concentrations. Revision

    SciTech Connect

    Sextro, R.G.; Offermann, F.J.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.L.; Yater, J.

    1984-11-01

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles, and their concomitant effects on radon progeny concentrations have been investigated. The experiments were conducted in a room-size chamber using cigarette smoke and radon injection from an external source. Of the devices examined the electrostatic precipitators and extended surface filters had significant particle removal rates, while the particle removal rates for several small panel-filters, an ion-generator, and a pair of mixing fans were found to be essentially negligible. The evaluation of radon progeny control produced similar results; the air cleaners which were effective in removing particles were also effective in reducing radon progeny concentrations. At the low particle concentrations, deposition of the unattached radon progeny on room surfaces was found to be a significant removal mechanism. Deposition rates of attached and unattached progeny have been estimated from these data, and were used to calculate the equilibrium factors for total and unattached progeny concentrations as a function of particle concentration. While particle removal reduces total airborne radon progeny concentrations, the relative alpha decay dose to the lungs appears to change very little as the particle concentration decreases due to the greater radiological importance of unattached progeny.

  1. Indoor radon activity concentration measurements in the great historical museums of University of Naples, Italy.

    PubMed

    Quarto, Maria; Pugliese, Mariagabriella; Loffredo, Filomena; La Verde, Giuseppe; Roca, Vincenzo

    2016-01-01

    Indoor radon activity concentrations were measured in seven Museums of University of Naples, very old buildings of great historical value. The measurements were performed using a time-integrated technique based on LR-115 solid-state nuclear track detectors. The annual average concentrations were found to range from 40 up to 1935 Bq m(-3) and in 26 % of measurement sites, the values were higher than 500 Bq m(-3) which is the limit value of Italian legislation for workplace. Moreover, we analysed the seasonal variations of radon concentrations observing the highest average in cold weather than in warm.

  2. Predicting New Hampshire Indoor Radon Concentrations from geologic information and other covariates

    SciTech Connect

    Apte, M.G.; Price, P.N.; Nero, A.V.; Revzan, K.L.

    1998-05-01

    Generalized geologic province information and data on house construction were used to predict indoor radon concentrations in New Hampshire (NH). A mixed-effects regression model was used to predict the geometric mean (GM) short-term radon concentrations in 259 NH towns. Bayesian methods were used to avoid over-fitting and to minimize the effects of small sample variation within towns. Data from a random survey of short-term radon measurements, individual residence building characteristics, along with geologic unit information, and average surface radium concentration by town, were variables used in the model. Predicted town GM short-term indoor radon concentrations for detached houses with usable basements range from 34 Bq/m{sup 3} (1 pCi/l) to 558 Bq/m{sup 3} (15 pCi/l), with uncertainties of about 30%. A geologic province consisting of glacial deposits and marine sediments, was associated with significantly elevated radon levels, after adjustment for radium concentration, and building type. Validation and interpretation of results are discussed.

  3. Bagged neural network model for prediction of the mean indoor radon concentration in the municipalities in Czech Republic.

    PubMed

    Timkova, Jana; Fojtikova, Ivana; Pacherova, Petra

    2017-01-01

    The purpose of the study is to determine radon-prone areas in the Czech Republic based on the measurements of indoor radon concentration and independent predictors (rock type and permeability of the bedrock, gamma dose rate, GPS coordinates and the average age of family houses). The relationship between the mean observed indoor radon concentrations in monitored areas (∼22% municipalities) and the independent predictors was modelled using a bagged neural network. Levels of mean indoor radon concentration in the unmonitored areas were predicted using the bagged neural network model fitted for the monitored areas. The propensity to increased indoor radon was determined by estimated probability of exceeding the action level of 300Bq/m(3).

  4. Large-scale radon hazard evaluation in the Oslofjord region of Norway utilizing indoor radon concentrations, airborne gamma ray spectrometry and geological mapping.

    PubMed

    Smethurst, Mark Andrew; Strand, Terje; Sundal, Aud Venke; Rudjord, Anne Liv

    2008-12-15

    We test whether airborne gamma ray spectrometer measurements can be used to estimate levels of radon hazard in the Oslofjord region of Norway. We compile 43,000 line kilometres of gamma ray spectrometer data from 8 airborne surveys covering 10,000 km2 and compare them with 6326 indoor radon measurements. We find a clear spatial correlation between areas with elevated concentrations of uranium daughters in the near surface of the ground and regions with high incidence of elevated radon concentrations in dwellings. This correlation permits cautious use of the airborne data in radon hazard evaluation where direct measurements of indoor radon concentrations are few or absent. In radon hazard evaluation there is a natural synergy between the mapping of radon in indoor air, bedrock and drift geology mapping and airborne gamma ray surveying. We produce radon hazard forecast maps for the Oslofjord region based on a spatial union of hazard indicators from all four of these data sources. Indication of elevated radon hazard in any one of the data sets leads to the classification of a region as having an elevated radon hazard potential. This approach is inclusive in nature and we find that the majority of actual radon hazards lie in the assumed elevated risk regions.

  5. Measurements of indoor radon concentration levels in dwellings in Bethlehem, Palestine.

    PubMed

    Leghrouz, Amin A; Abu-Samreh, Mohammad M; Shehadeh, Ayah K

    2013-02-01

    Indoor radon level measurements were carried out in 42 dwellings in Bethlehem, Palestine, using CR-39 solid state nuclear track detectors. The measurements were performed during winter and spring seasons of the year 2010, for a period ranging from 97-118 d using a total of 100 detectors. The detectors were installed in living rooms, bedrooms, kitchens, and storage areas of 39 houses, as well as in three schools, selected randomly in the surveyed area. The results of indoor radon levels and the annual effective dose in houses were found to vary from 26 - 611 Bq m(-3) and 0.65 - 14.1 m Sv y(-1), with average values of 117.0 Bq m(-3) and 2.95 m Sv y(-1), respectively. The mean values of radon concentration levels in bedrooms, kitchens, living rooms, basements, and storage areas are, respectively, 106.5, 113.1, 101.5, and 164.2 Bq m(-3). The corresponding mean values of annual effective dose for the bedrooms, kitchens, living rooms, basements, and storage areas are 2.66, 2.83, 2.54, 14.1 m Sv y(-1), respectively. In schools, the radon levels are found to vary from 31 - 400 Bq m(-3) with an average value of 125.1 Bq m(-3). The average annual effective dose in schools is found to be 3.12 mSv y(-1). This value is higher than the assigned international value. In general, the results show that radon concentration levels in 83% of the investigated dwellings are lower than the indoor radon action level of 150 Bq m(-3) for the United States.

  6. Distribution of indoor radon concentrations and elements of a strategy for control

    SciTech Connect

    Nero, A.V. Jr.

    1986-05-01

    Indoor radon concentrations vary widely in the US housing stock, with normal concentrations estimated to cause a significant risk of lung cancer by comparison with environmental exposures normally considered, and high concentrations causing risks that exceed even those from cigarette smoking. The probability distribution, i.e., the number of houses at various concentrations, can be estimated from an analysis of the US indoor radon data accumulated to date. Such an analysis suggests that in about a million houses, occupants are receiving exposures greater than those experienced by uranium miners. The form of the frequency distribution, including not only the average concentration, but also the number of houses with high levels, has substantial influence on strategies for control of indoor radon. Such strategies require three major elements: formulation of control objectives in terms of guidelines for remedial action and for new houses; selection of means for identifying homes with high concentrations; and a framework for deciding what types of control measures are appropriate to particular circumstances and how rapidly they should be employed.

  7. Hierarchical modeling of indoor radon concentration: how much do geology and building factors matter?

    PubMed

    Borgoni, Riccardo; De Francesco, Davide; De Bartolo, Daniela; Tzavidis, Nikos

    2014-12-01

    Radon is a natural gas known to be the main contributor to natural background radiation exposure and only second to smoking as major leading cause of lung cancer. The main concern is in indoor environments where the gas tends to accumulate and can reach high concentrations. The primary contributor of this gas into the building is from the soil although architectonic characteristics, such as building materials, can largely affect concentration values. Understanding the factors affecting the concentration in dwellings and workplaces is important both in prevention, when the construction of a new building is being planned, and in mitigation when the amount of Radon detected inside a building is too high. In this paper we investigate how several factors, such as geologic typologies of the soil and a range of building characteristics, impact on indoor concentration focusing, in particular, on how concentration changes as a function of the floor level. Adopting a mixed effects model to account for the hierarchical nature of the data, we also quantify the extent to which such measurable factors manage to explain the variability of indoor radon concentration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A COMPARATIVE STUDY OF DIURNAL VARIATION OF RADON AND THORON CONCENTRATIONS IN INDOOR ENVIRONMENT.

    PubMed

    Pant, Preeti; Kandari, Tushar; Prasad, Mukesh; Ramola, R C

    2016-10-01

    The diurnal measurements of radon and thoron concentrations were performed in the indoor environment of Nuclear Research Laboratory, Badshahi Thaul, Tehri Garhwal, Uttarakhand, India by using AlphaGUARD, Portable Radon Monitor (SMART RnDuo) and RAD7. Using AlphaGUARD, the radon concentration was found to vary from 8 to 94 Bq m(-3) with an average of 41.5±22.2 Bq m(-3) Using Portable Radon Monitor (SMART RnDuo), the concentration was found to vary from 2 to 101 Bq m(-3) with an average of 41.7±23.6 Bq m(-3), and with RAD7, the concentration was found to vary from 3 to 99 Bq m(-3) with an average of 40±20.3 Bqm(-3) While the thoron concentration using Portable Radon Monitor (SMART RnDuo) was found to vary from 4 to 65 Bq m(-3) with an average of 17.3±12.9 Bqm(-3), and using RAD7, the concentration was found to vary from 5 to 90 Bq m(-3) with an average of 29.8±17.3 Bq m(-3). © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Natural radioactivity, radon exhalation rates and indoor radon concentration of some granite samples used as construction material in Turkey.

    PubMed

    Aykamis, Ahmet S; Turhan, Seref; Aysun Ugur, F; Baykan, Umut N; Kiliç, Ahmet M

    2013-11-01

    It is very important to determine the levels of the natural radioactivity in construction materials and radon exhalation rate from these materials for assessing potential exposure risks for the residents. The present study deals with 22 different granite samples employed as decoration stones in constructions in Turkey. The natural radioactivity in granite samples was measured by gamma-ray spectrometry with an HPGe detector. The activity concentrations of (226)Ra, (232)Th and (40)K were found to be in the range of 10-187, 16-354 and 104-1630 Bq kg(-1), respectively. The radon surface exhalation rate and the radon mass exhalation rate estimated from the measured values of (226)Ra content and material properties varied from 1.3 to 24.8 Bq m(-2) h(-1) with a mean of 10.5±1.5 Bq m(-2) h(-1) and 0.03-0.64 Bq kg(-1) h(-1) with a mean of 0.27±0.04 Bq kg(-1) h(-1), respectively. Radon concentrations in the room caused from granite samples estimated using a mass balance equation varied from 23 to 461 Bq m(-3) with a mean of 196±27 Bq m(-3). Also the gamma index (Iγ), external indoor annual effective dose (Eγ) and annual effective dose due to the indoor radon exposure (ERn) were estimated as the average value of 1.1±0.1, 0.16±0.02 mSv and 5.0±0.7 mSv, respectively, for the granite samples.

  10. Prediction of indoor radon concentrations in dwellings in the Oslo region - a model based on geographical information systems

    NASA Astrophysics Data System (ADS)

    Kollerud, R.; Blaasaas, K.; Ganerød, G.; Daviknes, H. K.; Aune, E.; Claussen, B.

    2013-06-01

    The purpose of this study was to develop a method to estimate the radon concentration inside each dwelling in the Oslo region, Norway. The model was based on indoor radon measurements from dwellings at predefined distances from the unmeasured dwellings. The results were evaluated by comparing them with actual indoor measurements, airborne gamma ray spectrometry measurements and bedrock geology. It is the first study to evaluate the reliability between estimated indoor radon in each dwelling with airborne measurements (eK, eTh and eU) and underlying geology around the house in a large population. A total of 28 396 indoor radon measurements showed that 42.2% of the dwellings had a radon value higher than the threshold limit of 100 Bq m-3. 18.9% of the dwellings were above the maximum action level of 200 Bq m-3. A positive correlation was found between indoor radon concentration, bedrock geology and airborne gamma measurements (Pearson correlation: eK: 0.42, eTh: 0.67 and eU: 0.65). Highest correlation was found in areas with alum shale (eU: 0.74). Intraclass Correlation Coefficients (ICCs) showed a good agreement between radon estimates from our method and radon estimates from the regression model with ICC values between 0.54 and 0.67.

  11. Effect of soil moisture on seasonal variation in indoor radon concentration: modelling and measurements in 326 Finnish houses

    PubMed Central

    Arvela, H.; Holmgren, O.; Hänninen, P.

    2016-01-01

    The effect of soil moisture on seasonal variation in soil air and indoor radon is studied. A brief review of the theory of the effect of soil moisture on soil air radon has been presented. The theoretical estimates, together with soil moisture measurements over a period of 10 y, indicate that variation in soil moisture evidently is an important factor affecting the seasonal variation in soil air radon concentration. Partitioning of radon gas between the water and air fractions of soil pores is the main factor increasing soil air radon concentration. On two example test sites, the relative standard deviation of the calculated monthly average soil air radon concentration was 17 and 26 %. Increased soil moisture in autumn and spring, after the snowmelt, increases soil gas radon concentrations by 10–20 %. In February and March, the soil gas radon concentration is in its minimum. Soil temperature is also an important factor. High soil temperature in summer increased the calculated soil gas radon concentration by 14 %, compared with winter values. The monthly indoor radon measurements over period of 1 y in 326 Finnish houses are presented and compared with the modelling results. The model takes into account radon entry, climate and air exchange. The measured radon concentrations in autumn and spring were higher than expected and it can be explained by the seasonal variation in the soil moisture. The variation in soil moisture is a potential factor affecting markedly to the high year-to-year variation in the annual or seasonal average radon concentrations, observed in many radon studies. PMID:25899611

  12. Effect of soil moisture on seasonal variation in indoor radon concentration: modelling and measurements in 326 Finnish houses.

    PubMed

    Arvela, H; Holmgren, O; Hänninen, P

    2016-02-01

    The effect of soil moisture on seasonal variation in soil air and indoor radon is studied. A brief review of the theory of the effect of soil moisture on soil air radon has been presented. The theoretical estimates, together with soil moisture measurements over a period of 10 y, indicate that variation in soil moisture evidently is an important factor affecting the seasonal variation in soil air radon concentration. Partitioning of radon gas between the water and air fractions of soil pores is the main factor increasing soil air radon concentration. On two example test sites, the relative standard deviation of the calculated monthly average soil air radon concentration was 17 and 26%. Increased soil moisture in autumn and spring, after the snowmelt, increases soil gas radon concentrations by 10-20 %. In February and March, the soil gas radon concentration is in its minimum. Soil temperature is also an important factor. High soil temperature in summer increased the calculated soil gas radon concentration by 14%, compared with winter values. The monthly indoor radon measurements over period of 1 y in 326 Finnish houses are presented and compared with the modelling results. The model takes into account radon entry, climate and air exchange. The measured radon concentrations in autumn and spring were higher than expected and it can be explained by the seasonal variation in the soil moisture. The variation in soil moisture is a potential factor affecting markedly to the high year-to-year variation in the annual or seasonal average radon concentrations, observed in many radon studies. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Indoor radon survey in Visegrad countries.

    PubMed

    Műllerová, Monika; Kozak, Krzysztof; Kovács, Tibor; Smetanová, Iveta; Csordás, Anita; Grzadziel, Dominik; Holý, Karol; Mazur, Jadwiga; Moravcsík, Attila; Neznal, Martin; Neznal, Matej

    2016-04-01

    The indoor radon measurements were carried out in 123 residential buildings and 33 schools in Visegrad countries (Slovakia, Hungary and Poland). In 13.2% of rooms radon concentration exceeded 300Bqm(-3), the reference value recommended in the Council Directive 2013/59/EURATOM. Indoor radon in houses shows the typical radon behavior, with a minimum in the summer and a maximum in the winter season, whereas in 32% of schools the maximum indoor radon was reached in the summer months. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Indoor radon measurements in Turkey dwellings.

    PubMed

    Celebi, N; Ataksor, B; Taskın, H; Bingoldag, N Albayrak

    2015-12-01

    In this work, indoor radon radioactivity concentration levels have been measured in dwellings of Turkey within the frame of the National Radon Monitoring Programme. The (222)Rn concentrations were measured with time-integrating passive nuclear etched track detectors in 7293 dwellings in 153 residential units of 81 provinces, and the radon map of Turkey was prepared. Indoor radon concentrations were distributed in the range of 1-1400 Bq m(-3). The arithmetic mean of the radon gas concentration was found to be 81 Bq m(-3); the geometric mean was 57 Bq m(-3) with a geometric standard deviation of 2.3.

  15. Predicted indoor radon concentrations from a Monte Carlo simulation of 1,000,000 granite countertop purchases.

    PubMed

    Allen, J G; Zwack, L M; MacIntosh, D L; Minegishi, T; Stewart, J H; McCarthy, J F

    2013-03-01

    Previous research examining radon exposure from granite countertops relied on using a limited number of exposure scenarios. We expanded upon this analysis and determined the probability that installing a granite countertop in a residential home would lead to a meaningful radon exposure by performing a Monte Carlo simulation to obtain a distribution of potential indoor radon concentrations attributable to granite. The Monte Carlo analysis included estimates of the probability that a particular type of granite would be purchased, the radon flux associated with that type, the size of the countertop purchased, the volume of the home where it would be installed and the air exchange rate of that home. One million countertop purchases were simulated and 99.99% of the resulting radon concentrations were lower than the average outdoor radon concentrations in the US (14.8 Bq m(-3); 0.4  pCi l(-1)). The median predicted indoor concentration from granite countertops was 0.06 Bq m(-3) (1.59 × 10(-3) pCi l(-1)), which is over 2000 times lower than the US Environmental Protection Agency's action level for indoor radon (148 Bq m(-3); 4 pCi l(-1)). The results show that there is a low probability of a granite countertop causing elevated levels of radon in a home.

  16. Indoor radon: deadliest pollutant

    SciTech Connect

    Pool, R.

    1988-04-29

    Radon in individual homes may be the greatest source of radiation that people are exposed to during a lifetime. In areas where radon concentrations in homes are high, people may be exposed to more radiation than were the Russian people living in the vicinity of Chernobyl Nuclear Power Plant. Studies indicate that the radon exposure contributes to 5000 to 20,000 deaths per year from lung cancer and that smoking may have a lethal interaction with the radon exposure. One study found an average annual concentration of radon in living spaces of 1.5 picocuries per liter. 7% of U.S. homes were found to have a radon concentration above the 4 picocuries per liter level set by the Environmental Protection Agency, and 1 - 3% of the homes have levels above 8 picocuries. Some ways are described for changing the air pressure in a house so that air is not constantly drawn from the permeable soil where the radon originates.

  17. Study of Relation between Indoor Radon in Multi-storey Building and Outdoor Factors

    SciTech Connect

    Muellerova, Monika; Holy, Karol

    2010-01-05

    A continuous radon monitoring in indoor and outdoor air was carried out for the period of one year. The relation between indoor radon and indoor-outdoor temperature difference, as well as between indoor radon and outdoor radon was investigated. The best correlation was obtained between indoor and outdoor radon concentrations.

  18. High indoor radon concentrations in an alpine region of western Tyrol

    SciTech Connect

    Ennemoser, O.; Ambach, W.; Auer, T.; Brunner, P.; Schneider, P.; Oberaigner, W.; Purtscheller, F.; Stingl, V.

    1994-08-01

    In a village in western Tyrol, Austria (Umhausen, 2,600 inhabitants), unusually high indoor radon concentrations were measured, and the lung cancer mortality rate was found to be higher than that of the total population of Tyrol (620,000 inhabitants). Annual means of radon concentrations were found to be particularly high in the area between the two rivers Oetztaler Ache and Hairlachbach, geologically in alluvial fan of a giant rock slide of granitic gneisses (area A, median of annual means on the ground floors: 1,868 Bq m{sup {minus}3}); radon concentrations were comparatively low in the rest of the village (area B, median of annual means on the ground floors: 182 Bq m{sup {minus}3}). On the basis of these medians, the annual exposures were calculated according to the ICRP model (area A: 58.8 x 10{sup 5} Bq h m{sup {minus}3}; area B: 5.7 x 10{sup 5} Bq h m{sup {minus}3}). Data taken from the Cancer Registry of Tyrol were used to determine the age- and sex-standardized lung cancer mortality rate (area A: 6.17; area B: 1.43). 7 refs., 3 figs., 3 tabs.

  19. High indoor radon concentrations in an Alpine region of western Tyrol.

    PubMed

    Ennemoser, O; Ambach, W; Auer, T; Brunner, P; Schneider, P; Oberaigner, W; Purtscheller, F; Stingl, V

    1994-08-01

    In a village in western Tyrol, Austria (Umhausen, 2,600 inhabitants), unusually high indoor radon concentrations were measured, and the lung cancer mortality rate was found to be higher than that of the total population of Tyrol (620,000 inhabitants). Annual means of radon concentrations were found to be particularly high in the area between the two rivers Otztaler Ache and Hairlachbach, geologically an alluvial fan of a giant rock slide of granitic gneisses (area A, median of annual means on the ground floors: 1,868 Bq m-3); radon concentrations were comparatively low in the rest of the village (area B, median of annual means on the ground floors: 182 Bq m-3). On the basis of these medians, the annual exposures were calculated according to the ICRP model (area A: 58.8 x 10(5) Bq h m-3; area B: 5.7 x 10(5) Bq h m-3). Data taken from the Cancer Registry of Tyrol were used to determine the age- and sex-standardized lung cancer mortality rate (area A: 6.17; area B: 1.43).

  20. Seasonal Variation of Indoor Radon Concentration in the Tropics: Comparative studies between Kuala Lumpur, Malaysia and Kerala, India

    SciTech Connect

    Mahat, R. H.; Amin, Y. M.; Jojo, P. J.; Pereira, C. E.

    2011-03-30

    The radiation dose received by man from indoor radon and its progeny is the largest at more than 50% of total dose received. The seasonal variation of indoor radon concentration in Kerala, India and Kuala Lumpur, Malaysia were studied. The Southwest coast of the Kerala state in India is known to have very high levels of natural background radiation owing to the rare earths rich monazite sand available in large amount. Kuala Lumpur, Malaysia used to be a famous tin mining area where it was done using open cast system. One-year measurements of radon concentration in houses were done for these two regions. It was found that there is considerable seasonal variation in the levels of radon in Kerala but the variation in Kuala Lumpur is only less than 10%.

  1. Seasonal Variation of Indoor Radon Concentration in the Tropics: Comparative studies between Kuala Lumpur, Malaysia and Kerala, India

    NASA Astrophysics Data System (ADS)

    Mahat, R. H.; Jojo, P. J.; Pereira, C. E.; Amin, Y. M.

    2011-03-01

    The radiation dose received by man from indoor radon and its progeny is the largest at more than 50% of total dose received. The seasonal variation of indoor radon concentration in Kerala, India and Kuala Lumpur, Malaysia were studied. The Southwest coast of the Kerala state in India is known to have very high levels of natural background radiation owing to the rare earths rich monazite sand available in large amount. Kuala Lumpur, Malaysia used to be a famous tin mining area where it was done using open cast system. One-year measurements of radon concentration in houses were done for these two regions. It was found that there is considerable seasonal variation in the levels of radon in Kerala but the variation in Kuala Lumpur is only less than 10%.

  2. Multi-scale variability and long-range memory in indoor Radon concentrations from Coimbra, Portugal

    NASA Astrophysics Data System (ADS)

    Donner, Reik V.; Potirakis, Stelios; Barbosa, Susana

    2014-05-01

    The presence or absence of long-range correlations in the variations of indoor Radon concentrations has recently attracted considerable interest. As a radioactive gas naturally emitted from the ground in certain geological settings, understanding environmental factors controlling Radon concentrations and their dynamics is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we re-analyze two high-resolution records of indoor Radon concentrations from Coimbra, Portugal, each of which spans several months of continuous measurements. In order to evaluate the presence of long-range correlations and fractal scaling, we utilize a multiplicity of complementary methods, including power spectral analysis, ARFIMA modeling, classical and multi-fractal detrended fluctuation analysis, and two different estimators of the signals' fractal dimensions. Power spectra and fluctuation functions reveal some complex behavior with qualitatively different properties on different time-scales: white noise in the high-frequency part, indications of some long-range correlated process dominating time scales of several hours to days, and pronounced low-frequency variability associated with tidal and/or meteorological forcing. In order to further decompose these different scales of variability, we apply two different approaches. On the one hand, applying multi-resolution analysis based on the discrete wavelet transform allows separately studying contributions on different time scales and characterize their specific correlation and scaling properties. On the other hand, singular system analysis (SSA) provides a reconstruction of the essential modes of variability. Specifically, by considering only the first leading SSA modes, we achieve an efficient de-noising of our environmental signals, highlighting the low-frequency variations together with some distinct scaling on sub-daily time-scales resembling

  3. Exposure to unusually high indoor radon levels

    SciTech Connect

    Rasheed, F.N. )

    1993-03-27

    Unusually high indoor radon concentrations were reported in a small village in western Tyrol, Austria. The authors have measured the seasonal course of indoor radon concentrations in 390 houses of this village. 71% of houses in winter and 33% in summer, showed radon values on the ground floor above the Austrian action level of 400 Bq/cm[sup 3]. This proportion results in an unusually high indoor radon exposure of the population. The radon source was an 8,700-year-old rock slide of granite gneiss, the largest of the alpine crystalline rocks. It has a strong emanating power because its rocks are heavily fractured and show a slightly increased uranium content. Previous reports show increased lung cancer mortality, myeloid leukemia, kidney cancer, melanoma, and prostate cancer resulting from indoor radon exposure. However, many studies fail to provide accurate information on indoor radon concentrations, classifying them merely as low, intermediate, and high, or they record only minor increases in indoor radon concentrations. Mortality data for 1970-91 were used to calculate age and sex standardized mortality rates (SMR) for 51 sites of carcinoma. The total population of Tyrol were controls. A significantly higher risk was recorded for lung cancer. The high SMR for lung cancer in female subjects is especially striking. Because the numbers were low for the other cancer sites, these were combined in one group to calculate the SMR. No significant increase in SMR was found for this group.

  4. Is high indoor radon concentration correlated with specific activity of radium in nearby soil? A study in Kosovo and Metohija.

    PubMed

    Gulan, Ljiljana; Stajic, Jelena M; Bochicchio, Francesco; Carpentieri, Carmela; Milic, Gordana; Nikezic, Dragoslav; Zunic, Zora S

    2017-07-05

    This paper presents indoor radon concentrations and specific activities of natural radionuclides measured in soils of Kosovo and Metohija. The measurements of radon concentration were performed during two consecutive 6-month periods in two rooms of 63 houses using CR-39 detectors. The annual radon concentration ranged from 30 to 810 Bq m(-3) with the average value of 128 Bq m(-3). Almost 15% of the houses had radon concentration higher than 200 Bq m(-3). The difference between radon concentrations measured in the two 6-month periods was analyzed, showing, as expected, a slightly higher radon concentration in the "winter period" than in the "summer period". The variation between different rooms of the same houses was also analyzed, showing that 20% of the dwellings had a significantly higher radon concentration (>100 Bq m(-3)) in one room compared to the other (the coefficient of variation ranged up to 96%). The specific activities of natural radionuclides in the nearby soil were determined by gamma spectrometry. The estimated average value (and standard deviation) of (226)Ra, (232)Th, and (40)K specific activities were 32 (13), 35 (16), and 582 (159) Bq kg(-1), respectively. The correlation between indoor (222)Rn and (226)Ra content in soil was investigated. Only a weak correlation was found (Spearman's rho = 0.220) indicating that other factors might affect diffusion and accumulation of radon indoors, as confirmed also by the high variability between the rooms of the same houses.

  5. Indoor radon concentrations in Poland as determined in short-term (two-day) measurements.

    PubMed

    Zalewski, M; Mnich, Z; Karpińska, M; Kapała, J; Zalewski, P

    2001-01-01

    The aim of the present work was to obtain a pattern of 222Rn concentration distributions in typical buildings in Poland. In the investigations, the environmental passive detectors of the PICO-RAD type were used. The study encompassed buildings that were typical for Poland. The distribution of airborne 222Rn concentrations indoors is of a log-normal type. A total 1171 detectors were measured. Measurements were made in 319 basements, the remaining 852 measurements were carried out in the inhabited part of the houses. The radon concentrations in the basements in Bq x m(-3) ranged from 6 to 1300 with the arithmetic mean AM = 60, geometric mean GM = 30 and median M = 28, whereas those in the inhabited parts of the house (above the ground level) were: AM = 25, GM = 17 and M = 16 with the highest record value of 420.

  6. Survey of Indoor Radon Concentrations in California Elementary Schools. Final Report.

    ERIC Educational Resources Information Center

    Zhou, Joey Y.; Liu, Kai-Shen; Waldman, Jed

    This paper reports on the concentrations of radon found within a sample of 378 elementary schools in California. Long-term alpha-track radon detectors were placed in 6,485 classrooms within participating schools to detect radon levels for between 220 to 366 days. Only classrooms were tested. Results show that about 5.6 percent of the schools…

  7. Theoretical modeling of indoor radon concentration and its validation through measurements in South-East Haryana, India.

    PubMed

    Singh, Prabhjot; Sahoo, B K; Bajwa, B S

    2016-04-15

    A three dimensional semi-empirical model deduced from the existing 1-D model has been used to predict indoor radon concentration with theoretical calculations. Since the major contributor of radon concentration in indoors originates from building materials used in construction of walls and floor which are mostly derived from soil. In this study different building materials have been analyzed for radon exhalation, diffusion length along with physical dimensions of observation area to calculate indoor radon concentration. Also calculated values have been validated by comparing with experimental measurements. The study has been carried out in the mud, brick and cement houses constructed from materials available locally in South-East region of Haryana. This region is also known for its protruding land structure consisting volcanic, felsite and granitic rocks in plane. Further, exhalation (Jw) ratio from wall and floor comparison has been plotted for each selected village dwelling to identify the high radon emanating source (building material) from the study region. All those measured factors might be useful in building construction code development and selection of material to be used in construction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Indoor concentration of radon, thoron and their progeny around granite regions in the state of Karnataka, India.

    PubMed

    Sannappa, J; Ningappa, C

    2014-03-01

    An extensive studies on the indoor activity concentrations of thoron, radon and their progeny in the granite region in the state of Karnataka, India, has been carried out since, 2007 in the scope of a lung cancer epidemiological study using solid-state nuclear track detector-based double-chamber dosemeters (LR-115, type II plastic track detector). Seventy-four dwellings of different types were selected for the measurement. The dosemeters containing SSNTD detectors were fixed 2 m above the floor. After an exposure time of 3 months (90 d), films were etched to reveal tracks. From the track density, the concentrations of radon and thoron were evaluated. The value of the indoor concentration of thoron and radon in the study area varies from 16 to 170 Bq m(-3) and 18 to 300 Bq m(-3) with medians of 66 and 82.3 Bq m(-3), respectively, and that of their progeny varies from 1.8 to 24 mWL with a median of 3.6 mWL and 1.6 to 19.6 mWL, respectively. The concentrations of indoor thoron, radon and their progeny and their equivalent effective doses are discussed.

  9. Indoor radon, geogenic radon surrogates and geology - Investigations on their correlation.

    PubMed

    Friedmann, H; Baumgartner, A; Bernreiter, M; Gräser, J; Gruber, V; Kabrt, F; Kaineder, H; Maringer, F J; Ringer, W; Seidel, C; Wurm, G

    2017-01-01

    The indoor radon concentration was measured in most houses in a couple of municipalities in Austria. At the same time the activity concentration of radium in soil, the soil gas radon concentration, the permeability of the ground and the ambient dose equivalent rate were also measured and the geological situations (geological units) were recorded too. From the indoor radon concentration and different house and living parameters a radon potential (Austrian radon potential) was derived which should represent the radon concentration in a standard room. Another radon potential (Neznal radon potential) was calculated from the soil gas radon concentration and the permeability. The aim of the investigation was to correlate all the different variables and to test if the use of surrogate data (e.g. geological information, ambient dose equivalent rate, etc.) can be used to judge the radon risk for an area without performing numerous indoor measurements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Indoor radon in the region of Brussels

    SciTech Connect

    Tondeur, F.; Gerardy, I.; Christiaens, D.; Hallez, S.; Flemal, J.M.

    1999-12-01

    The indoor radon ({sup 222}Rn) concentration has been measured by charcoal detectors in 278 buildings in the region of Brussels, Belgium. The correlation with the nature of the subsoil can be studied in detail thanks to the available geotechnical map. With a geometrical mean indoor radon concentration of 19 Bq m{sup {minus}3}, Brussels can be considered as generally unaffected by the radon problem. No value higher than 400 Bq m{sup {minus}3} (the EU reference level for existing houses) was measured in an occupied room. However, two factors that may enhance the risk are identified: the absence of a basement or a ventilated crawl space, and the presence of loess, under the house. About one third of the houses without basements or ventilated crawl spaces built on loess show an indoor radon concentration above 200 Bq m{sup {minus}3} (the EU reference level for new houses).

  11. Determination of indoor radon concentrations at the elementary schools of Fatih district in Istanbul

    SciTech Connect

    Kurt, A. Yalcin, L. Sahin Oktem, Y. Akkus, B. Bozkurt, E. Hafizoglu, N. Ozturk, F. C. Aytan, O. Ertoprak, A.

    2016-03-25

    Radon is an odorless, tasteless, colorless noble radioactive gas which is produced within the radioactive decay chain of Uranium. The Radon forms in rocks, diffuses into soil and then escapes into atmosphere. When human exposure to high concentration of radon gas from inside, risk of developing lung cancer is increased. There are many methods to determine {sup 222}Rn concentration in the air. In this study, radon concentration of confined air spaces were measured by using LR-115 solid state nuclear track detectors. 509 LR-115 nuclear trace detectors were placed to 25 schools in Fatih District and they effective dose values were calculated. The results of measurements showed that the radon concentration varies between 40-395 Bq/m{sup 3}. This results compared with Turkey’s limits (400 Bq/m{sup 3}) are low, conversely higher compared with WHO’s limits (100 Bq/m{sup 3}).

  12. Determination of indoor radon concentrations at the elementary schools of Fatih district in Istanbul

    NASA Astrophysics Data System (ADS)

    Kurt, A.; Yalcin, L. Sahin; Oktem, Y.; Akkus, B.; Bozkurt, E.; Hafizoglu, N.; Ozturk, F. C.; Aytan, O.; Ertoprak, A.

    2016-03-01

    Radon is an odorless, tasteless, colorless noble radioactive gas which is produced within the radioactive decay chain of Uranium. The Radon forms in rocks, diffuses into soil and then escapes into atmosphere. When human exposure to high concentration of radon gas from inside, risk of developing lung cancer is increased. There are many methods to determine 222Rn concentration in the air. In this study, radon concentration of confined air spaces were measured by using LR-115 solid state nuclear track detectors. 509 LR-115 nuclear trace detectors were placed to 25 schools in Fatih District and they effective dose values were calculated. The results of measurements showed that the radon concentration varies between 40-395 Bq/m3. This results compared with Turkey's limits (400 Bq/m3) are low, conversely higher compared with WHO's limits (100 Bq/m3).

  13. Improved predictive mapping of indoor radon concentrations using ensemble regression trees based on automatic clustering of geological units.

    PubMed

    Kropat, Georg; Bochud, Francois; Jaboyedoff, Michel; Laedermann, Jean-Pascal; Murith, Christophe; Palacios Gruson, Martha; Baechler, Sébastien

    2015-09-01

    According to estimations around 230 people die as a result of radon exposure in Switzerland. This public health concern makes reliable indoor radon prediction and mapping methods necessary in order to improve risk communication to the public. The aim of this study was to develop an automated method to classify lithological units according to their radon characteristics and to develop mapping and predictive tools in order to improve local radon prediction. About 240 000 indoor radon concentration (IRC) measurements in about 150 000 buildings were available for our analysis. The automated classification of lithological units was based on k-medoids clustering via pair-wise Kolmogorov distances between IRC distributions of lithological units. For IRC mapping and prediction we used random forests and Bayesian additive regression trees (BART). The automated classification groups lithological units well in terms of their IRC characteristics. Especially the IRC differences in metamorphic rocks like gneiss are well revealed by this method. The maps produced by random forests soundly represent the regional difference of IRCs in Switzerland and improve the spatial detail compared to existing approaches. We could explain 33% of the variations in IRC data with random forests. Additionally, the influence of a variable evaluated by random forests shows that building characteristics are less important predictors for IRCs than spatial/geological influences. BART could explain 29% of IRC variability and produced maps that indicate the prediction uncertainty. Ensemble regression trees are a powerful tool to model and understand the multidimensional influences on IRCs. Automatic clustering of lithological units complements this method by facilitating the interpretation of radon properties of rock types. This study provides an important element for radon risk communication. Future approaches should consider taking into account further variables like soil gas radon measurements as

  14. Indoor/outdoor radon decay products associated aerosol particle-size distributions and their relation to total number concentrations.

    PubMed

    Moriizumi, Jun; Yamada, Shinya; Xu, Yang; Matsuki, Satoru; Hirao, Shigekazu; Yamazawa, Hiromi

    2014-07-01

    The activity size distributions of indoor and outdoor radioactive aerosol associated with short-lived radon decay products were observed at Nagoya, Japan, for some periods from 2010 to 2012, following the indoor observation by Mostafa et al. [Mostafa, A. M. A., Tamaki, K., Moriizumi, J., Yamazawa, H. and Iida, T. The weather dependence of particle size distribution of indoor radioactive aerosol associated with radon decay products. Radiat. Prot. Dosim. 146: (1-3), 19-22 (2011)]. The tendency of smaller indoor activity median aerodynamic diameter (AMAD) after rainfalls showed in the previous study was not consistently obtained, while the consistent tendency of less indoor radioactive particles with diameters in the accumulation mode was observed again after rainfalls. The indoor aerosols showed activity size distributions similar to the outdoor ones. Non-radioactive aerosol particle concentrations measured with a laser particle counter suggested a somewhat liner relationship with AMAD. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. A critical analysis of climatic influences on indoor radon concentrations: Implications for seasonal correction.

    PubMed

    Groves-Kirkby, Christopher J; Crockett, Robin G M; Denman, Antony R; Phillips, Paul S

    2015-10-01

    Although statistically-derived national Seasonal Correction Factors (SCFs) are conventionally used to convert sub-year radon concentration measurements to an annual mean, it has recently been suggested that external temperature could be used to derive local SCFs for short-term domestic measurements. To validate this approach, hitherto unanalysed radon and temperature data from an environmentally-stable location were analysed. Radon concentration and internal temperature were measured over periods totalling 1025 days during an overall period of 1762 days, the greatest continuous sampling period being 334 days, with corresponding meteorological data collected at a weather station 10 km distant. Mean daily, monthly and annual radon concentrations and internal temperatures were calculated. SCFs derived using monthly mean radon concentration, external temperature and internal-external temperature-difference were cross-correlated with each other and with published UK domestic SCF sets. Relatively good correlation exists between SCFs derived from radon concentration and internal-external temperature difference but correlation with external temperature, was markedly poorer. SCFs derived from external temperature correlate very well with published SCF tabulations, confirming that the complexity of deriving SCFs from temperature data may be outweighed by the convenience of using either of the existing domestic SCF tabulations. Mean monthly radon data fitted to a 12-month sinusoid showed reasonable correlation with many of the annual climatic parameter profiles, exceptions being atmospheric pressure, rainfall and internal temperature. Introducing an additional 6-month sinusoid enhanced correlation with these three parameters, the other correlations remaining essentially unchanged. Radon latency of the order of months in moisture-related parameters suggests that the principal driver for radon is total atmospheric moisture content rather than relative humidity.

  16. Uranium-238 and thorium-232 series concentrations in soil, radon-222 indoor and drinking water concentrations and dose assessment in the city of Aldama, Chihuahua, Mexico.

    PubMed

    Colmenero Sujo, L; Montero Cabrera, M E; Villalba, L; Rentería Villalobos, M; Torres Moye, E; García León, M; García-Tenorio, R; Mireles García, F; Herrera Peraza, E F; Sánchez Aroche, D

    2004-01-01

    High-resolution gamma spectrometry was used to determine the concentration of 40K, 238U and 232Th series in soil samples taken from areas surrounding the city of Aldama, in Chihuahua. Results of indoor air short-time sampling, with diffusion barrier charcoal detectors, revealed relatively high indoor radon levels, ranging from 29 to 422 Bq/m3; the radon concentrations detected exceeded 148 Bq/m3 in 76% of the homes tested. Additionally, liquid scintillation counting showed concentrations of radon in drinking water ranging from 4.3 to 42 kBq/m3. The high activity of 238U in soil found in some places may be a result of the uranium milling process performed 20 years ago in the area. High radon concentrations indoor and in water may be explained by assuming the presence of uranium-bearing rocks underneath of the city, similar to a felsic dike located near Aldama. The estimated annual effective dose of gamma radiation from the soil and radon inhalation was 3.83 mSv.

  17. Indoor radon prediction from soil gas measurements.

    PubMed

    Varley, N R; Flowers, A G

    1998-06-01

    This study of radon levels in southwest England investigates the correlation between indoor and soil gas radon concentrations and considers the influence of geology, meteorological variables, spatial and depth variations. This paper examines the value of soil gas measurements as an indicator of potential indoor radon concentrations and highlights a number of factors that need to be considered. Only a very weak correlation was obtained between the overall 222Rn concentration in soil gas and inside the home. However, for high soil gas concentrations a stronger correlation with the indoor level was observed. Typically, the soil gas concentration was between a factor of 10 and 1,000 times greater than that indoors. Levels as low as 10 kBq m(-3) in the soil could produce an indoor concentration above the UK action level of 200 Bq m(-3). The moisture content and the inhomogeneity of soil permeability were identified as chiefly responsible for any perturbation of a soil gas concentration associated with a particular geology. Alone, measured soil gas concentrations have only a limited use in the prediction of indoor 222Rn concentrations.

  18. Correlation of soil radon and permeability with indoor radon potential in Ottawa.

    PubMed

    Chen, Jing; Falcomer, Renato; Bergman, Lauren; Wierdsma, Jessica; Ly, Jim

    2009-08-01

    Soil gas radon and soil gas permeability measurements were conducted at 32 sites across the five most populated communities in the city of Ottawa where indoor radon measurements were available for 167 houses. A soil radon index (SRI) determined from the soil radon concentration and the soil gas permeability was used to characterise radon availability from soil to air. This study demonstrated that the average SRI in a community area correlates with the indoor radon potential (the percentage of homes above 200 Bq m(-3)) in that community. Soil gas radon concentrations together with soil gas permeability measurements can be a useful tool for the prediction of the indoor radon potential in the development of a Canadian radon risk map.

  19. A finite element model development for simulation of the impact of slab thickness, joints, and membranes on indoor radon concentration.

    PubMed

    Muñoz, E; Frutos, B; Olaya, M; Sánchez, J

    2017-10-01

    The focus of this study is broadly to define the physics involved in radon generation and transport through the soil and other materials using different parameter-estimation tools from the literature. The effect of moisture in the soil and radon transport via water in the pore space was accounted for with the application of a porosity correction coefficient. A 2D finite element model is created, which reproduces the diffusion and advection mechanisms resulting from specified boundary conditions. A comparison between the model and several analytical and numerical solutions obtained from the literature and field studies validates the model. Finally, the results demonstrate that the model can predict radon entry through different building boundary conditions, such as concrete slabs with or without joints, variable slab thicknesses and diffusion coefficients, and the use of several radon barrier membranes. Cracks in the concrete or the radon barrier membrane have been studied to understand how indoor concentration is affected by these issues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Potential health effects of indoor radon exposure.

    PubMed Central

    Radford, E P

    1985-01-01

    Radon-222 is a ubiquitous noble gas arising from decay of radium-226 normally present in the earth's crust. Alpha radiation from inhaled short-lived daughters of radon readily irradiates human bronchial epithelium, and there is now good evidence of excess risk of lung cancer in underground miners exposed to higher concentrations. In homes, radon levels are highly variable, showing approximately log-normal distributions and often a small fraction of homes with high concentrations of radon and radon daughters. Factors affecting indoor concentrations include type of bedrock under dwellings, house foundation characteristics, radon dissolved in artesian water, and ventilation and degree of air movement in living spaces. Despite much recent work, exposures to radon daughters by the general public are not well defined. From application of risk assessments in miners to home conditions, it appears that about 25% or more of lung cancers among nonsmokers over the age of 60, and about 5% in smokers, may be attributable to exposure to radon daughters at home. It may be necessary to take remedial action to reduce this hazard in those dwellings with elevated levels of radon, and new construction should take account of this problem. PMID:4085431

  1. Potential health effects of indoor radon exposure.

    PubMed

    Radford, E P

    1985-10-01

    Radon-222 is a ubiquitous noble gas arising from decay of radium-226 normally present in the earth's crust. Alpha radiation from inhaled short-lived daughters of radon readily irradiates human bronchial epithelium, and there is now good evidence of excess risk of lung cancer in underground miners exposed to higher concentrations. In homes, radon levels are highly variable, showing approximately log-normal distributions and often a small fraction of homes with high concentrations of radon and radon daughters. Factors affecting indoor concentrations include type of bedrock under dwellings, house foundation characteristics, radon dissolved in artesian water, and ventilation and degree of air movement in living spaces. Despite much recent work, exposures to radon daughters by the general public are not well defined. From application of risk assessments in miners to home conditions, it appears that about 25% or more of lung cancers among nonsmokers over the age of 60, and about 5% in smokers, may be attributable to exposure to radon daughters at home. It may be necessary to take remedial action to reduce this hazard in those dwellings with elevated levels of radon, and new construction should take account of this problem.

  2. Study of indoor radon concentrations and associated health risks in the five districts of Hazara division, Pakistan.

    PubMed

    Khan, Fayaz; Ali, Nawab; Khan, Ehsan U; Khattak, Nimat U; Raja, Iftikhar A; Baloch, Muzahir A; Rajput, Muhammad U

    2012-11-01

    A total of 200 indoor air samples were collected to measure radon concentration levels and its contribution to the mean effective doses during different seasons of the period 2009-2010 at different sites of the five districts of Hazara division, Pakistan. The major portion of the region is mountainous and is full of thick forests which receives heavy snow fall in winter. The need for conducting the present survey relied on the fact that occupants spend their lives in poorly ventilated indoor environments of the region, especially in the winter season when they use wood fire inside their residences. The measurements of indoor air samples were taken with RAD-7, a solid state α-detector. Radon concentrations in the whole region range from 41 Bq m(-3) to 254 Bq m(-3) with a geometric mean of 128 Bq m(-3). Radon progenies were measured with a surface barrier detector through alpha spectroscopy from which the Equilibrium Factor (EF) for radon and Radon Decay Products (RDPs) for the smoke-bearing as well as smoke-free indoor environments were deduced. The respective mean values of EF were calculated as 0.49 ± 0.08 and 0.40 ± 0.07. The mean effective doses from indoor air of Abbottabad, Mansehra, Haripur, Battgram and Kohistan districts were calculated as 3.5 ± 1.2, 3.7 ± 0.7, 3.9 ± 1.0, 3.6 ± 1.1 and 3.9 ± 0.7 mSv a(-1) respectively, with the maximum value of 5.1 ± 1.8 mSv a(-1) in Kohistan district during winter and the minimum value of 2.9 ± 1.0 mSv a(-1) in Abbottabad district during summer. The annual exposure dose to the inhabitants of the locality lies below the upper bound of 10 mSv a(-1), as recommended by ICRP-65, and may not pose any significant threat to the public health.

  3. Methodology developed to make the Quebec indoor radon potential map.

    PubMed

    Drolet, Jean-Philippe; Martel, Richard; Poulin, Patrick; Dessau, Jean-Claude

    2014-03-01

    This paper presents a relevant approach to predict the indoor radon potential based on the combination of the radiogeochemical data and the indoor radon measurements in the Quebec province territory (Canada). The Quebec ministry of health asked for such a map to identify the radon-prone areas to manage the risk for the population related to indoor radon exposure. Three radiogeochemical criteria including (1) equivalent uranium (eU) concentration from airborne surface gamma-ray surveys, (2) uranium concentration measurements in sediments, (3) bedrock and surficial geology were combined with 3082 basement radon concentration measurements to identify the radon-prone areas. It was shown that it is possible to determine thresholds for the three criteria that implied statistically significant different levels of radon potential using Kruskal-Wallis one way analyses of variance by ranks. The three discretized radiogeochemical datasets were combined into a total predicted radon potential that sampled 98% of the studied area. The combination process was also based on Kruskal-Wallis one way ANOVA. Four statistically significant different predicted radon potential levels were created: low, medium, high and very high. Respectively 10 and 13% of the dwellings exceed the Canadian radon guideline of 200 Bq/m(3) in low and medium predicted radon potentials. These proportions rise up to 22 and 45% respectively for high and very high predicted radon potentials. This predictive map of indoor radon potential based on the radiogeochemical data was validated using a map of confirmed radon exposure in homes based on the basement radon measurements. It was shown that the map of predicted radon potential based on the radiogeochemical data was reliable to identify radon-prone areas even in zones where no indoor radon measurement exists.

  4. Indoor radon risk potential of Hawaii

    USGS Publications Warehouse

    Reimer, G.M.; Szarzi, S.L.

    2005-01-01

    A comprehensive evaluation of radon risk potential in the State of Hawaii indicates that the potential for Hawaii is low. Using a combination of factors including geology, soils, source-rock type, soil-gas radon concentrations, and indoor measurements throughout the state, a general model was developed that permits prediction for various regions in Hawaii. For the nearly 3,100 counties in the coterminous U.S., National Uranium Resource Evaluation (NURE) aerorad data was the primary input factor. However, NURE aerorad data was not collected in Hawaii, therefore, this study used geology and soil type as the primary and secondary components of potential prediction. Although the radon potential of some Hawaiian soils suggests moderate risk, most houses are built above ground level and the radon soil potential is effectively decoupled from the house. Only underground facilities or those with closed or recirculating ventilation systems might have elevated radon potential. ?? 2005 Akade??miai Kiado??.

  5. Variation of soil radon concentrations in southern Ontario.

    PubMed

    Chen, J; Ly, J; Bergman, L; Wierdsma, J; Klassen, R A

    2008-01-01

    Radon has been identified as the second leading cause of lung cancer after tobacco smoking. Information on indoor radon concentrations is required to assess the lung cancer burden due to radon exposure. However, radon data in highly populated southern Ontario are very limited. Since radon in soil is believed to be the main source of radon in homes, measurements of soil gas radon concentrations can be used to estimate variations in radon potential of indoor environments. This study reports a transect survey of natural background variation in soil radon levels across southern Ontario. The results indicate that radon risk could be high in some areas of southern Ontario.

  6. Estimation of mean annual effective dose through radon concentration in the water and indoor air of Islamabad and Murree.

    PubMed

    Ali, N; Khan, E U; Akhter, P; Khan, F; Waheed, A

    2010-09-01

    Different samples of water, indoor air and soil gas have been collected from Islamabad (33 degrees 38'N, 73 degrees 09'E, altitude of 1760 ft.), the capital of Pakistan and Murree (33 degrees 53'N, 73 degrees 23'E, altitude of 7323 ft.), lying on a geological fault line and are analysed for the estimation of mean effective dose through radon concentrations by using RAD-7, a solid state alpha-detector. The variation of radon concentration in water, indoor air and soil gas in Islamabad region ranges from 25.90-158.40 kBq m(-3), 43.26-97.04 Bq m(-3) and 17.34-72.52 kBq m(-3), having mean values 88.63 kBq m(-3), 70.67 Bq m(-3) and 45.08 kBq m(-3)(,) respectively. It ranges from 1.64-10.20 kBq m(-3), 18.48-42.08 Bq m(-3) and 0.61-3.89 kBq m(-3) with mean values 4.38 kBq m(-3), 28.63 Bq m(-3) and 1.70 kBq m(-3)(,) respectively in Murree and its surroundings. The total mean annual effective doses from water and indoor air of Islamabad and Murree regions are 2.023 and 0.733 mSv a(-1), respectively. These doses are within the recommended limits of the world organisations.

  7. Environmental and indoor study of Radon concentration in San Joaquin area, Querétaro, México

    NASA Astrophysics Data System (ADS)

    Kotsarenko, A.; Hernandez Silva, G.; Hinojo Alonso, N. A.; Yutsis, V.; Grimalsky, V.; Koshevaya, S.; Martínez Reyes, J.

    2012-04-01

    Highly contaminated zone with a maximum over 57,000 Bq/m3 was discovered in low-populated area "Agua de Venados" during the 2009-2011 soil Radon survey in San Joaquin, Querétaro state, Mexico. Indoor Radon monitoring accomplished in 2 different époques in a nearby 4 dwellings have shown increased Radon contamination in 1 of the 4 building (up to 300 Bq/m3) during a raining season and a highly elevated indoor level (over 400 Bq/m3) already in 3 buildings during a dry season. Averaged diurnal indoor Radon variations are in a correlation with atmosphere pressure and air humidity and are independent on air temperature. The daily interval 5-10 a.m. was estimated as a maximum risky period in terms of Radon contamination hazard for inhabitants in mentioned zone.

  8. A model for indoor radon variations

    SciTech Connect

    Arvela, H.; Winqvist, K. )

    1989-01-01

    The model relates radon concentration to variations in source strength, air exchange rate, and meteorological factors. The diffusion source represents radon diffused from building materials or from soil. The pressure-difference driven flow represents radon flowing with soil pore air and driven by the stack effect. In a house with diffusion source, the radon concentration decreases when the air exchange rate increases due to increasing temperature differences, whereas the flow source causes an increasing concentration. This is due to the fact that the effect of the source strength increase is stronger than the decreasing effect of air exchange of concentration. The winter-summer concentration ratio depends on the combination of the two types of source. A pure pressure-difference driven flow gives a winter-summer ratio of 2-3 (winter -5{degree}C, summer +15{degree}C, wind speed 3 m/s). A strong contribution of a diffusion source is needed to cause a summer concentration higher than the winter concentration. The model is in agreement with the winter-summer concentration ratios measured. This ratio increases with the increasing winter concentration. The results indicate that radon concentration must be taken into account in analyses of seasonal variations of indoor radon. In houses with a diffusion source, the diurnal maximum occurs in the afternoon; in houses with a pressure-difference driven flow, the maximum is reached in the early morning.

  9. Indoor radon problem in energy efficient multi-storey buildings.

    PubMed

    Yarmoshenko, I V; Vasilyev, A V; Onishchenko, A D; Kiselev, S M; Zhukovsky, M V

    2014-07-01

    Modern energy-efficient architectural solutions and building construction technologies such as monolithic concrete structures in combination with effective insulation reduce air permeability of building envelope. As a result, air exchange rate is significantly reduced and conditions for increased radon accumulation in indoor air are created. Based on radon survey in Ekaterinburg, Russia, remarkable increase in indoor radon concentration level in energy-efficient multi-storey buildings was found in comparison with similar buildings constructed before the-energy-saving era. To investigate the problem of indoor radon in energy-efficient multi-storey buildings, the measurements of radon concentration have been performed in seven modern buildings using radon monitoring method. Values of air exchange rate and other parameters of indoor climate in energy-efficient buildings have been estimated. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Radon ((222)Rn) concentration in indoor air near the coal mining area of Nui Beo, North of Vietnam.

    PubMed

    Nhan, Dang Duc; Fernando, Carvalho P; Thu Ha, Nguyen Thi; Long, Nguyen Quang; Thuan, Dao Dinh; Fonseca, Heloisa

    2012-08-01

    Concentrations of radioactive radon gas ((222)Rn) were measured using passive monitors based on LR115 solid state track detectors during June-July 2010 in indoor air of dwellings in the Nui Beo coal mining area, mostly in Cam Pha and Ha Long coastal towns, Quang Ninh province, in the North of Vietnam. Global results of (222)Rn concentrations indoors varied from ≤6 to 145 Bq m(-3) averaging 46 ± 26 Bq m(-3) (n = 37), with a median value of 47 Bq m(-3). This was similar to outdoor (222)Rn concentrations in the region, averaging 43 ± 19 Bq m(-3) (n = 10), with a median value of 44 Bq m(-3). Indoor (222)Rn concentrations in the coastal town dwellings only were in average lower although not significantly different from indoor (222)Rn concentrations measured at the coal storage field near the harbor, 67 ± 4 Bq m(-3) (n = 3). Furthermore, there was no significant difference in the average (222)Rn concentration in indoor air measured in the coastal towns region and those at the touristic Tuan Chau Island located about 45 km south of the coal mine, in the Ha Long Bay. The indoor (222)Rn concentration in a floating house at the Bai Tu Long Bay, and assumed as the best estimate of the baseline (222)Rn in surface air, was 27 ± 3 Bq m(-3) (n = 3). Indoor average concentration of (222)Rn in dwellings at the Ha Noi city, inland and outside the coal mining area, was determined at 30 Bq m(-3). These results suggest that (222)Rn exhalation from the ground at the Nui Beo coal mining area may have contributed to generally increase (222)Rn concentration in the surface air of that region up to 1.7 times above the baseline value measured at the Bai Tu Long Bay and Ha Noi. The average indoor concentration of (222)Rn in Cam Pha-Ha Long area is about one-third of the value of the so-called Action Level set up by the US EPA of 148 Bq m(-3). Results suggest that there is no significant public health risk from (222)Rn exposure in the study region.

  11. Spatial indoor radon distribution in Mexico City.

    PubMed

    Franco-Marina, Francisco; Villalba-Caloca, Jaime; Segovia, Nuria; Tavera, Leticia

    2003-12-30

    We present a spatial analysis of residential radon concentrations in the Mexico City Metropolitan Area, which we intend to use to assign radon exposure in an ongoing case-control study. As part of a probabilistic household survey, carried out between May and June 1999, 501 dwellings were selected for indoor placement of solid state nuclear track detectors (LR 115) in a cup array over a period of approximately 90 days. As part of the sampling design, the city was grid partitioned into nine zones and a sample of dwellings was selected in each zone. All zones were simultaneously surveyed. The stratified sampling design allowed us to obtain radon geometric means, adjusted for household characteristics, week of detector placement and number of days of measurement for these zones. Additionally, adjusted geometric means were estimated for the 100 census tracts surveyed and this information was used to obtain a more detailed spatial distribution of residential radon levels through kriging interpolation and surface contouring. Radon levels depended on the room of placement, the floor level and the ventilation habits but not on building materials. Regarding the city zone, the highest adjusted geometric mean was found in the southwest (136 Bqm(-3)), where 46% of the households had an estimated radon level in excess of 200 Bqm(-3). In the rest of the city, the geometric mean concentration ranged between 41 and 98 Bqm(-3). A more detailed spatial distribution showed that, in general, most of the eastern and middle zones of the city had estimated radon geometric means below 74 Bqm(-3), while the western ones had geometric means above this concentration. Very high geometric means, exceeding 111 Bqm(-3) and even reaching 288 Bqm(-3), are estimated for some areas located in the southern and western zones of Mexico City. The obtained spatial distribution shows that the areas with very high estimated residential radon concentrations are close to inactive volcanic mountains. We

  12. Geographical Correlations between Indoor Radon Concentration and Risks of Lung Cancer, Non-Hodgkin's Lymphoma, and Leukemia during 1999-2008 in Korea.

    PubMed

    Ha, Mina; Hwang, Seung-Sik; Kang, Sungchan; Park, No-Wook; Chang, Byung-Uck; Kim, Yongjae

    2017-03-24

    Indoor radon is the second most important risk factor for lung cancer and may also be a risk factor for hematopoietic cancers, particularly in children and adolescents. The present study measured indoor radon concentration nationwide at 5553 points during 1989-2009 and spatially interpolated using lognormal kriging. The incidences of lung cancer, non-Hodgkin's lymphoma (NHL), and leukemia, stratified by sex and five-year age groups in each of the 234 administrative regions in the country during 1999-2008, were obtained from the National Cancer Registry and used to calculate the standardized incidence ratios. After considering regional deprivation index values and smoking rates by sex in each region as confounding variables, the cancer risks were estimated based on Bayesian hierarchical modeling. We found that a 10 Bq/m³ increase in indoor radon concentration was associated with a 1% increase in the incidence of lung cancer in male and a 7% increase in NHL in female children and adolescents in Korea aged less than 20 years. Leukemia was not associated with indoor radon concentration. The increase in NHL risk among young women requires confirmation in future studies, and the radon control program should consider children and adolescents.

  13. Study of indoor radon distribution using measurements and CFD modeling.

    PubMed

    Chauhan, Neetika; Chauhan, R P; Joshi, M; Agarwal, T K; Aggarwal, Praveen; Sahoo, B K

    2014-10-01

    Measurement and/or prediction of indoor radon ((222)Rn) concentration are important due to the impact of radon on indoor air quality and consequent inhalation hazard. In recent times, computational fluid dynamics (CFD) based modeling has become the cost effective replacement of experimental methods for the prediction and visualization of indoor pollutant distribution. The aim of this study is to implement CFD based modeling for studying indoor radon gas distribution. This study focuses on comparison of experimentally measured and CFD modeling predicted spatial distribution of radon concentration for a model test room. The key inputs for simulation viz. radon exhalation rate and ventilation rate were measured as a part of this study. Validation experiments were performed by measuring radon concentration at different locations of test room using active (continuous radon monitor) and passive (pin-hole dosimeters) techniques. Modeling predictions have been found to be reasonably matching with the measurement results. The validated model can be used to understand and study factors affecting indoor radon distribution for more realistic indoor environment.

  14. Reduction of Radon Progeny in Indoor Air.

    DTIC Science & Technology

    1986-03-01

    methods that can be used to lower radon progeny concentra- tions in homes. V.- Radon in Indoor Air. Radon -222 occurs midway through the Uranium -238...as metals and remain at the site of their formation, radon is a noble gas and is thus able to diffuse away from its forma- tion site. It is through... radon progeny reduction by forced ventilation alone was evaluated because the 1/4 inch metal pre-filter screens for this air cleaner remained installed

  15. A study on the correlation between soil radon potential and average indoor radon potential in Canadian cities.

    PubMed

    Chen, Jing; Ford, Ken L

    2017-01-01

    Exposure to indoor radon is identified as the main source of natural radiation exposure to the population. Since radon in homes originates mainly from soil gas radon, it is of public interest to study the correlation between radon in soil and radon indoors in different geographic locations. From 2007 to 2010, a total of 1070 sites were surveyed for soil gas radon and soil permeability. Among the sites surveyed, 430 sites were in 14 cities where indoor radon information is available from residential radon and thoron surveys conducted in recent years. It is observed that indoor radon potential (percentage of homes above 200 Bq m(-3); range from 1.5% to 42%) correlates reasonably well with soil radon potential (SRP: an index proportional to soil gas radon concentration and soil permeability; average SRP ranged from 8 to 26). In five cities where in-situ soil permeability was measured at more than 20 sites, a strong correlation (R(2) = 0.68 for linear regression and R(2) = 0.81 for non-linear regression) was observed between indoor radon potential and soil radon potential. This summary report shows that soil gas radon measurement is a practical and useful predictor of indoor radon potential in a geographic area, and may be useful for making decisions around prioritizing activities to manage population exposure and future land-use planning. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  16. Indoor radon correlated with soil and subsoil radon potential—a case study

    NASA Astrophysics Data System (ADS)

    Keller, G.; Schneiders, H.; Schütz, M.; Siehl, A.; Stamm, R.

    1992-03-01

    High indoor radon concentrations in a uranium-radium low-level area in the Eifel region, Germany, near the village of Döttingen are caused by ascending radon migration following the convection of groundwater and soil gas along pathways (fractures and faults) in the bedrock sediments of Lower Devonian age. Positive radon anomalies in the soil gas are found to coincide with the locations of houses showing the highest concentrations. These houses are older buildings without concrete foundation slabs. Normally radon concentrations in soil gas are highly correlated with the values of emanated radon calculated on the basis of radium content in the surrounding soils and rocks (diffusive radon potential). However, close to zones of tectonic fractures and faults around the maar-type volcano of Döttingen abnormally high radon concentrations, which were transported by circulating groundwater and postvolcanic exhalation of CO2 (convective radon potential) were detected.

  17. Geogenic and anthropogenic impacts on indoor radon in the Techa River region.

    PubMed

    Yarmoshenko, I; Malinovsky, G; Vasilyev, A; Onischenko, A; Seleznev, A

    2016-11-15

    Indoor radon concentration was studied in the 14 settlements located near the Techa River, which was contaminated by radioactive wastes in 1950-s. Results of the radon survey were used for analysis of the relationship between the indoor radon and main geologic factors (Pre-Jurassic formations, Quaternary sediments and faults), local geogenic radon potential and anthropogenic factors. Main influencing factors explain 58% of the standard deviation of indoor radon concentration. Association of the air exchange influence over radon concentration with underlying geological media was related to different contributions of geogenic advective and diffusive radon entries. The properties of geological formation to transfer radon gas in interaction with the house can be considered within the radon geogenic potential concept. The study of the radon exposure of the Techa River population can be used to estimate the contribution of natural radon to the overall radiation exposure of the local population during the period of radioactive waste discharges.

  18. Understanding the origin of radon indoors: Building a predictive capability

    SciTech Connect

    Sextro, R.G.

    1985-12-01

    Indoor radon concentrations one to two orders of magnitude higher than the US average of approx.60 Bq m/sup -3/ (approx.1.5 pCi L/sup -1/) are not uncommon, and concentrations greater than 4000 Bq m/sup -3/ have been observed in houses in areas with no known artificially-enhanced radon sources. In general, source categories for indoor radon are well known: soil, domestic water, building materials, outdoor air, and natural gas. Soil is thought to be a major source of indoor radon, either through molecular diffusion (usually a minor component) or convective flow of soil gas. While soil gas flow into residences has been demonstrated, no detailed understanding of the important factors affecting the source strength of radon from soil has yet emerged. Preliminary work in this area has identified a number of likely issues, including the concentration of radium in the soil, the emanating fraction, soil type, soil moisture content, and other factors that would influence soil permeability and soil gas transport. Because a significant number of dwellings are expected to have indoor radon concentrations above guideline levels, a predictive capability is needed that would help identify geographical areas having the potential for high indoor concentrations. This paper reviews the preliminary work that has been done to identify important soil and building characteristics that influence the migration of radon and outlines the areas of further research necessary for development of a predictive method. 32 refs., 4 figs.

  19. DEVELOPMENT OF ALTERNATE PERFORMANCE STANDARD FOR RADON RESISTANT CONSTRUCTION BASED ON SHORT-TERM/LONG- TERM INDOOR RADON CONCENTRATIONS - VOLUME 2: APPENDICES

    EPA Science Inventory

    The report gives results of a study of short- and long-term variations in radon concentration in about 80 houses in Florida. The study involves comparative sampling using the most common radon measurement technologies during the past year. he study, providing the most detailed da...

  20. DEVELOPMENT OF ALTERNATE PERFORMANCE STANDARD FOR RADON RESISTANT CONSTRUCTION BASED ON SHORT-TERM/LONG- TERM INDOOR RADON CONCENTRATIONS - VOLUME 2: APPENDICES

    EPA Science Inventory

    The report gives results of a study of short- and long-term variations in radon concentration in about 80 houses in Florida. The study involves comparative sampling using the most common radon measurement technologies during the past year. he study, providing the most detailed da...

  1. DEVELOPMENT OF ALTERNATE PERFORMANCE STANDARD FOR RADON RESISTANT CONSTRUCTION BASED ON SHORT-TERM/LONG- TERM INDOOR RADON CONCENTRATIONS - VOLUME 1: TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of a study of short- and long-term variations in radon concentration in about 80 houses in Florida. The study involves comparative sampling using the most common radon measurement technologies during the past year. he study, providing the most detailed da...

  2. DEVELOPMENT OF ALTERNATE PERFORMANCE STANDARD FOR RADON RESISTANT CONSTRUCTION BASED ON SHORT-TERM/LONG- TERM INDOOR RADON CONCENTRATIONS - VOLUME 1: TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of a study of short- and long-term variations in radon concentration in about 80 houses in Florida. The study involves comparative sampling using the most common radon measurement technologies during the past year. he study, providing the most detailed da...

  3. A Geostatistical Approach to Assess the Spatial Association between Indoor Radon Concentration, Geological Features and Building Characteristics: The Case of Lombardy, Northern Italy

    PubMed Central

    Borgoni, Riccardo; Tritto, Valeria; Bigliotto, Carlo; de Bartolo, Daniela

    2011-01-01

    Radon is a natural gas known to be the main contributor to natural background radiation exposure and second to smoking, a major leading cause of lung cancer. The main source of radon is the soil, but the gas can enter buildings in many different ways and reach high indoor concentrations. Monitoring surveys have been promoted in many countries in order to assess the exposure of people to radon. In this paper, two complementary aspects are investigated. Firstly, we mapped indoor radon concentration in a large and inhomogeneous region using a geostatistical approach which borrows strength from the geologic nature of the soil. Secondly, knowing that geologic and anthropogenic factors, such as building characteristics, can foster the gas to flow into a building or protect against this, we evaluated these effects through a multiple regression model which takes into account the spatial correlation of the data. This allows us to rank different building typologies, identified by architectonic and geological characteristics, according to their proneness to radon. Our results suggest the opportunity to differentiate construction requirements in a large and inhomogeneous area, as the one considered in this paper, according to different places and provide a method to identify those dwellings which should be monitored more carefully. PMID:21655128

  4. High indoor radon variations and the thermal behavior of eskers.

    PubMed

    Arvela, H; Voutilainen, A; Honkamaa, T; Rosenberg, A

    1994-09-01

    Measurements of indoor radon concentrations in houses built on the Pispala esker in the city of Tampere were taken. The objective was to find connections between indoor radon concentrations, esker topography, and meteorological factors. The results show that not only the permeable soil but also subterranean air-flows in the esker strongly affect the indoor radon concentrations. The difference in temperature between the soil air inside the esker and the outdoor air compels the subterranean air to stream between the upper and lower esker areas. In winter, the radon concentrations are amplified in the upper esker areas where air flows out from the esker. In summer, concentrations are amplified in certain slope zones. In addition, wind direction affects the soil air and indoor radon concentrations when hitting the slopes at right angles. Winter-summer concentration ratios are typically in the range of 3-20 in areas with amplified winter concentration, and 0.1-0.5 in areas with amplified summer concentrations. A combination of winter and summer measurements provides the best basis for making mitigation decisions. On eskers special attention must be paid to building technology because of radon.

  5. High indoor radon variations and the thermal behavior of eskers

    SciTech Connect

    Arvela, H.; Voutilainen, A.; Honkamaa, T.; Rosenberg, A.

    1994-09-01

    Measurements of indoor radon concentrations in houses built on the Pispala esker in the city of Tampere were taken. The objective was to find connections between indoor radon concentrations, esker topography, and meteorological factors. The results show that not only the permeable soil but also subterranean air-flows in the esker strongly affect the indoor radon concentrations. The difference in temperature between the soil air inside the esker and the outdoor air compels the subterranean air to stream between the upper and lower esker areas. In winter, the radon concentrations are amplified in the upper esker areas where air flows out from the esker. In summer, concentrations are amplified in certain slope zones. In addition, wind direction affects the soil air and indoor radon concentrations when hitting the slopes at right angles. Winter-summer concentration ratios are typically in the range of 3-20 in areas with amplified winter concentration, and 0.1-0.5 in areas with amplified summer concentrations. A combination of winter and summer measurements provides the best basis for making mitigation decisions. On eskers special attention must be paid to building technology because of radon. 9 refs., 7 figs., 1 tab.

  6. Seasonal Variation or Indoor Radon in Artvin-Turkey

    SciTech Connect

    Yeslbagg, Y. Ue.; Kuecuekoemeroglu, A.; Kurnaz, A.; Uzderya, F.

    2010-01-21

    Indoor radon studies have been conducted in Artvin, Eastern alack sea region of Turkey using SSNTD type nuclear track detector (CR-39). Radon measurements were done for 4 seasons in 73 dwellings, selected as uniformly distributed as possible. The radon concentrations vary from 21 aq m{sup -3} to 321 aq m{sup -3} with the annual mean concentration of 132 aq m{sup -3} for Artvin. Seasonal variation indoor radon shows high in winter low values in summer. The resulting estimated annual effective dose-equivalent due to inhalation of radon for inhabitants is 3.32 mSv y{sup -1} and the total annual effective dose lies in the range of the action level (3-10 mSv y{sup -1}) recommended by the ICRP.

  7. Normal and seasonally amplified indoor radon levels

    SciTech Connect

    Gammage, R.B.; Dudney, C.S.; Wilson, D.L.; King, D.

    1995-01-01

    Winter and summer indoor radon measurements are reported for 121 houses in Freehold, New Jersey. When presented as winter:summer ratios of indoor radon, the data closely approximate a lognormal distribution. The geometric mean is 1.49. Freehold is located on the fairly flat coastal plain. The winter:summer ratios are believed to represent the norm for regions of the U.S. with cold winters and hot summers. The Freehold data set can be compared to corresponding data sets from other locations to suggest seasonal perturbations of indoor radon arising from unusual causes.

  8. Annual average indoor radon variations over two decades.

    PubMed

    Steck, D J

    2009-01-01

    Long-term exposure to elevated radon (222Rn) concentrations has been linked to increased lung cancer risk. Year-long measurements of contemporary radon concentrations have been the "gold standard" for epidemiologists trying to reconstruct past radon exposures and for homeowners trying to estimate future radon exposure. Random variations and persistent temporal trends can affect remedial action decisions and risk coefficients derived from epidemiological studies. Temporal fluctuations are possible when changes occur in a home's structure, climate, environment, or occupants. The annual-average temporal radon behavior was studied at 196 sites in 98 Minnesota houses. Seventeen hundred year-long indoor radon measurements were made from 1983 to 2000 to determine year-to-year radon fluctuations and long-term temporal trends. Ten year-long measurements over a span of 13 years were made at the typical site. The median radon concentration was 120 Bq m-3. The median radon concentration of the group of houses showed little year-to-year variation and no persistent temporal trends. At individual sites, year-to-year radon variations ranged from 3 to 110%. The median variation was 26%. Climate, exposure to wind, and radon concentration affected year-to-year variation, but house age, construction, or measurement floor did not. Some individual sites showed significantly larger radon changes when modifications were made to the house structure and heating-ventilation systems. Year-long radon measurements on the first floor provided better estimates of cumulative radon exposure than screening measurements. The radon variations observed in this study provide uncertainty estimates for year-long measurements that could help improve remediation decision protocols and refine risk estimates from epidemiological studies.

  9. Measurement of soil gas radon and its correlation with indoor radon around some areas of Upper Siwaliks, India.

    PubMed

    Singh, Joga; Singh, Harmanjit; Singh, Surinder; Bajwa, B S

    2010-03-01

    Radon is a radioactive gas which makes the primary contribution to the natural radiation to which people are exposed. For that reason, great importance is attributed to the determination of radon concentration levels in water, indoor air and soil gas and outdoors. In this paper, measurements of radon concentration in soil gas have been carried out around some areas of the Upper Siwaliks of the Kala Amb, Nahan and Morni Hills, India, using a portable AlphaGUARD PQ 2000 device into which the soil gas is drawn using active pumping. The soil gas radon concentration around the Upper Siwaliks was found to vary from 11.5 +/- 0.9 to 78.47 +/- 3.1 kBq m(-3). The annual average indoor radon concentration in the study area was measured in the range from 71.7 +/- 21.0 to 421.7 +/- 33.6 Bq m( - 3) using LR-115 type II cellulose nitrate films in the bare mode. The values of soil gas radon concentration in the study area were compared with those from the adjoining low-radioactive areas of Punjab. Since the soil or bedrock beneath a building is one of the sources of radon gas in the indoor air, an effort has been made to find a possible correlation between soil gas radon with the indoor radon. A satisfactory positive correlation has been observed between soil gas radon and indoor radon in the study area.

  10. Indoor Radon: The Deadliest Pollutant.

    ERIC Educational Resources Information Center

    Kerr, Richard A.

    1988-01-01

    Describes the origin, occurrence, and effects of radon gas. Cites studies which attribute 5,000 to 20,000 deaths per year to radon exposure and the synergistic effect between radon and smoking. Explains ways to reduce risks. (RT)

  11. Indoor Radon: The Deadliest Pollutant.

    ERIC Educational Resources Information Center

    Kerr, Richard A.

    1988-01-01

    Describes the origin, occurrence, and effects of radon gas. Cites studies which attribute 5,000 to 20,000 deaths per year to radon exposure and the synergistic effect between radon and smoking. Explains ways to reduce risks. (RT)

  12. Fluctuation of Indoor Radon and VOC Concentrations Due to Seasonal Variations

    EPA Science Inventory

    This research was conducted to better characterize the spatial and temporal variability of vapor intrusion by collecting a full year’s dataset of weekly measurements of subslab soil gas, external soil gas, and indoor air, on a single house that is impacted by vapor intrusion of r...

  13. Fluctuation of Indoor Radon and VOC Concentrations Due to Seasonal Variations

    EPA Science Inventory

    This research was conducted to better characterize the spatial and temporal variability of vapor intrusion by collecting a full year’s dataset of weekly measurements of subslab soil gas, external soil gas, and indoor air, on a single house that is impacted by vapor intrusion of r...

  14. Investigation of Relation Between Outdoor Temperature and Radon Concentration in Buildings

    SciTech Connect

    Muellerova, M.; Holy, K.

    2007-11-26

    The results of measurements of radon concentration variations in two types of buildings in Slovakia are reported. The AlphaGUARD radon monitor was used for continuous monitoring of radon activity concentration in indoor air. The analysis showed that the indoor radon in both buildings had very different responses to outdoor temperature.

  15. Some remarks on the indoor radon distribution in a country.

    PubMed

    Hámori, K; Tóth, E; Losonci, A; Minda, M

    2006-08-01

    From the point of view of indoor radon activity concentrations, a country is characterized correctly by two parameters (GM and GSD) of a lognormal distribution if and only if hypothesis tests do not reject the distribution of the local radon activity concentrations as a lognormal one. The authors introduce a way to obtain an empirical distribution using a stratum system covering almost the whole country and in each stratum the lognormal model is acceptable according to hypothesis tests. The sample for the analysis is provided by the measurement of radon level in 15,619 Hungarian homes.

  16. Indoor Radon Radioactivity at the University of Brunei Darussalam

    NASA Astrophysics Data System (ADS)

    Sheng, T. K.; Jer, H. S.

    - Indoor radon radioactivity in the rooms on the ground floor and first floor of the Physics Department, Faculty of Science, Universiti Brunei Darussalam was measured using a system that consists of an air filter pump, ZnS detector, photomultiplier tube and counter. Ground floor rooms' radon radioactivity was found to be about three times higher than that of the first floor. The maximum ground floor indoor radioactivity is only 0.39 Bqm-3, a value relatively low and safe compared to the mean outdoor radon concentration of 1.41 Bqm-3 measured (HU and TAN, 2000). The main source of radon emanation originates from the ground soil rather than the building materials.

  17. Experimental assessment of indoor radon and soil gas variability: the RADON project

    NASA Astrophysics Data System (ADS)

    Barbosa, S. M.; Pereira, A. J. S. C.; Neves, L. J. P. F.; Steinitz, G.; Zafrir, H.; Donner, R.; Woith, H.

    2012-04-01

    Radon is a radioactive noble gas naturally present in the environment, particularly in soils derived from rocks with high uranium content. Radon is formed by alpha decay from radium within solid mineral grains, but can migrate via diffusion and/or advection into the air space of soils, as well as into groundwater and the atmosphere. The exhalation of radon from the pore space of porous materials into the atmosphere of indoor environments is well known to cause adverse health effects due to the inhalation of radon's short-lived decay products. The danger to human health is particularly acute in the case of poorly ventilated dwellings located in geographical areas of high radon potential. The RADON project, funded by the Portuguese Science Foundation (FCT), aims to evaluate the temporal variability of radon in the soil and atmosphere and to examine the influence of meteorological effects in radon concentration. For that purpose an experimental monitoring station is being installed in an undisturbed dwelling located in a region of high radon potential near the old uranium mine of Urgeiriça (central Portugal). The rationale of the project, the set-up of the experimental radon monitoring station, and preliminary monitoring results will be presented.

  18. A comparative study of the indoor radon level with the radon exhalation rate from soil in Alexandria city.

    PubMed

    Abd El-Zaher, Mohamed

    2013-05-01

    The assessment of the radiological risk related to the inhalation of radon and radon its progeny is based mainly on the integrated measurement of radon in both indoor and outdoor environments. The exhalation of radon from the earth's crust and building materials forms the main source of radon in the indoor environment. This study has been undertaken for the purpose of health risk assessment. In this comparative study, the indoor radon level, radium content, radon exhalation rate and concentration of soil radon are measured using the Can Technique. Soil samples were collected simultaneously from different geological formations of the same area for laboratory measurement of the radon exhalation rate. The radon exhalation rate was measured in the laboratory using LR-115 type II plastic track detectors. The indoor radon concentrations in this study area were found to vary from 44±9 to 132±31 Bq m(-3) with an average of 72±29 Bq m(-3). The seasonal variations of the indoor radon reveal the maximum values in the winter and in summer in different dwellings of Alexandria city. The annual effective dose varies from 0.75 to 2.2 mSv with an average value of 1.34 mSv. The radon exhalation rate was found to vary in the ranges 8.31-233.70×10(-3) Bq kg(-1) h(-1), 0.48-15.37 Bq m(-2) h(-1) with an average 47.97×10(-3) Bq kg(-1) h(-1), (3.14 Bq m(-2) h(-1)). The radium content in soil varies from 3.14 to 39.60 Bq kg(-1) with an average of 11.55 Bq kg(-1). The significance of this study is discussed in details from the point of view of radiation protection.

  19. Soil radium, soil gas radon and indoor radon empirical relationships to assist in post-closure impact assessment related to near-surface radioactive waste disposal.

    PubMed

    Appleton, J D; Cave, M R; Miles, J C H; Sumerling, T J

    2011-03-01

    Least squares (LS), Theil's (TS) and weighted total least squares (WTLS) regression analysis methods are used to develop empirical relationships between radium in the ground, radon in soil and radon in dwellings to assist in the post-closure assessment of indoor radon related to near-surface radioactive waste disposal at the Low Level Waste Repository in England. The data sets used are (i) estimated ²²⁶Ra in the < 2 mm fraction of topsoils (eRa226) derived from equivalent uranium (eU) from airborne gamma spectrometry data, (ii) eRa226 derived from measurements of uranium in soil geochemical samples, (iii) soil gas radon and (iv) indoor radon data. For models comparing indoor radon and (i) eRa226 derived from airborne eU data and (ii) soil gas radon data, some of the geological groupings have significant slopes. For these groupings there is reasonable agreement in slope and intercept between the three regression analysis methods (LS, TS and WTLS). Relationships between radon in dwellings and radium in the ground or radon in soil differ depending on the characteristics of the underlying geological units, with more permeable units having steeper slopes and higher indoor radon concentrations for a given radium or soil gas radon concentration in the ground. The regression models comparing indoor radon with soil gas radon have intercepts close to 5 Bq m⁻³ whilst the intercepts for those comparing indoor radon with eRa226 from airborne eU vary from about 20 Bq m⁻³ for a moderately permeable geological unit to about 40 Bq m⁻³ for highly permeable limestone, implying unrealistically high contributions to indoor radon from sources other than the ground. An intercept value of 5 Bq m⁻³ is assumed as an appropriate mean value for the UK for sources of indoor radon other than radon from the ground, based on examination of UK data. Comparison with published data used to derive an average indoor radon: soil ²²⁶Ra ratio shows that whereas the published data are

  20. Indoor Radon Measurements in Mexico City

    SciTech Connect

    Bogard, James S; Espinosa Garcia, Guillermo

    2008-01-01

    Mexico City is one of the most populated cities in the world with almost 22 million inhabitants, located at an altitude of 2200 m. The old city was founded on an ancient lake and the zone is known by its high seismicity; indoor radon determination is an important public health issue. In this paper the data of indoor radon levels in Mexico City, measured independently by two research groups, both using Nuclear Track Detector systems but different methodologies, are correlated. The measurements were done during similar exposure periods of time, at family houses from the political administrative regions of the city. The results indicate a correlation coefficient between the two sets of data of R = 0.886. Most of the differences between the two sets of data are inherent to houses having extreme (very high or very low indoor radon) included in the statistics of each group. The total average indoor radon found in Mexico City considering the two methods was 87 Bq m{sup -3}.

  1. Indoor radon and lung cancer in China

    SciTech Connect

    Blot, W.J.; Xu, Z.Y.; Boice, J.D. Jr.; Zhao, D.Z.; Stone, B.J.; Sun, J.; Jing, L.B.; Fraumeni, J.F. Jr. )

    1990-06-20

    Radon has long been known to contribute to risk of lung cancer, especially in undergound miners who are exposed to large amounts of the carcinogen. Recently, however, lower amounts of radon present in living areas have been suggested as an important cause of lung cancer. In an effort to clarify the relationship of low amounts of radon with lung cancer risk, we placed alpha-track radon detectors in the homes of 308 women with newly diagnosed lung cancer and 356 randomly selected female control subjects of similar age. Measurements were taken after 1 year. All study participants were part of the general population of Shenyang, People's Republic of China, an industrial city in the northeast part of the country that has one of the world's highest rates of lung cancer in women. The median time of residence in the homes was 24 years. The median household radon level was 2.3 pCi/L of air; 20% of the levels were greater than 4 pCi/L. Radon levels tended to be higher in single-story houses or on the first floor of multiple-story dwellings, and they were also higher in houses with increased levels of indoor air pollution from coal-burning stoves. However, the levels were not higher in homes of women who developed lung cancer than in homes of controls, nor did lung cancer risk increase with increasing radon level. No association between radon and lung cancer was observed regardless of cigarette-smoking status, except for a nonsignificant trend among heavy smokers. No positive associations of lung cancer cell type with radon were observed, except for a nonsignificant excess risk of small cell cancers among the more heavily exposed residents. Our data suggest that projections from surveys of miners exposed to high radon levels may have overestimated the overall risks of lung cancer associated with levels typically seen in homes in this Chinese city.

  2. A COMPARISON OF RADON INDOOR MEASUREMENTS WITH INTERPOLATED RADON SOIL GAS VALUES USING THE INVERSE WEIGHTING METHOD ON MEASURED RESULTS.

    PubMed

    Kabrt, F; Baumgartner, A; Stietka, M; Friedmann, H; Gruber, V; Ringer, W; Maringer, F J

    2017-09-15

    The European Basic Safety Standards demand the prediction of areas where a significant number of households exceed the reference level for the radon activity concentration. Therefore, radon maps are established which are based on indoor and soil gas measurements. In this study results of soil gas measurements are interpolated to get a value for the radon activity concentration in the soil gas at the coordinates of an indoor measurement and enable a direct comparison of both results. For the interpolation the inverse weighting value is applied. This way a prediction of the indoor radon activity concentration at the location of indoor measurements is attempted for verification. Quotients between the radon activity concentration in soil gas and indoors are analyzed. Building characteristics are also taken into account to evaluate parameters which lead to the reference level being exceeded. The results assist in the interpretation of soil gas measurements regarding the prediction of indoor radon activity concentrations. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Effect of energy-efficient measures in building construction on indoor radon in Russia.

    PubMed

    Vasilyev, A; Yarmoshenko, I

    2016-06-29

    The effect of implementation of energy-efficient measures in building construction was studied. Analysis includes study of indoor radon in energy-efficient buildings in Ekaterinburg, Russia, and results of radiation measurements in 83 regions of Russia conducted within the regional programmes. The forecast distribution of radon concentration in Ekaterinburg was built with regard to the city development programme. With Ekaterinburg taken as representative case, forecast distribution of radon concentration in Russia in 2030 was built. In comparison with 2000, average radon concentration increases by a factor of 1.42 in 2030 year; percentage above the reference level 300 Bq/m(3) increases by a factor of 4 in 2030 year. It is necessary to perceive such an increase with all seriousness and to prepare appropriate measures for optimization of protection against indoor radon. Despite the high uncertainty, reconstructed distribution of radon concentration can be applied for justification of measures to be incorporated in the radon mitigation strategy.

  4. Radon as an Anthropogenic Indoor Air Pollutant

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin; Crockett, Robin

    2016-04-01

    Radon is generally regarded as a naturally occurring radiological hazard but we report here measurements of significant, hazardous radon concentrations that arise from man-made sources, including granite ornaments/artefacts, uranium glass and glazed objects as well radium dial watches. This presentation concerns an examination and assessment of health risks from radium and uranium found in historical artefacts, many of which were once viewed as everyday items, and the radon that emanates from them. Such objects were very popular in industrialised countries such as the USA, UK and European countries) particularly between and including the two World Wars but are still readily available. A watch collection examined gave rise to a hazardous radon concentration of 13.24 kBq•m-3 approximately 67 times the Domestic Action Level of 200 Bq•m-3.The results for an aircraft altimeter are comparable to those of the watches, indicating radon activity equivalent to several watches, and also indicate an equilibrium concentration in the 16.3 m3 room ca. 33 times the UK domestic Action Level. Results from a granite block indicate a radon emanation of 19.7 Bq•kg-1, but the indicated equilibrium concentration in the 16.3 m3 room is only ca. 1.7% of the UK domestic Action Level. Uranium-glazed crockery and green uranium glass were scoped for radon activity. The former yielded a radon concentration of ca. 44 Bq•m-3 in a small (7 L) sealed container. The latter yielded a lower radon concentration in a larger (125 L) sealed container of ca. 6 Bq•m-3. This is barely above the background radon concentration in the laboratory, which was typically ca. 1-2 Bq•m-3. Individual items then are capable of giving rise to radon concentrations in excess of the UK Domestic Action Level in rooms in houses, particularly if poorly ventilated. We highlight the gap in the remediation protocols, which are focused on preventing radon entering buildings from outside, with regard to internally

  5. Geographical distribution of indoor radon and related geological characteristics in Bonghwa County, a provisional radon-prone area in Korea.

    PubMed

    Lee, E R; Chang, B U; Kim, H J; Song, M H; Kim, Y J

    2015-12-01

    The detailed indoor radon survey was conducted during a year (from September 2012 to August 2013) quarterly in Bonghwa county, one of the provisional radon-prone areas in Korea. The surveyed area was selected on the basis of previously conducted nationwide radon survey results. In order to minimise statistical and environmental uncertainties, ∼3 % of the entire dwellings were carefully selected based on the statistical annual report of Bonghwa county. The measurement is carried out by using solid-state nuclear track detector. The range of indoor radon concentration in each dwelling was 4.36-858 Bq m(-3) and that of annual effective dose due to inhaled radon of the resident in each dwelling was 0.19-23.5 mSv y(-1). Each dwelling was determined for geology criterion using one-way Analysis of Variance for the purpose of comparing indoor radon distribution with geology. Geographical distribution of indoor radon is closely related to the geological characteristics of basement rocks. In addition, the comparison between geographical distribution of indoor radon and terrestrial gamma radiation was done.

  6. The Spanish indoor radon mapping strategy.

    PubMed

    Sainz-Fernandez, C; Fernandez-Villar, A; Fuente-Merino, I; Gutierrez-Villanueva, J L; Martin-Matarranz, J L; Garcia-Talavera, M; Casal-Ordas, S; Quindós-Poncela, L S

    2014-11-01

    Indoor radon mapping still represents a valuable tool for drawing the picture of the exposure of general public due to radon and radon progeny inhalation in a residential context. The information provided by means of a map is useful not only as awareness and strategic element for authorities and policy-makers, but also as a scientific start-up point in the design of epidemiological and other specific studies on exposure to natural radiation. The requirements for a good mapping are related to harmonisation criteria coming from European recommendations, as well as to national/local characteristics and necessities. Around 12,000 indoor radon measurements have been made since the Spanish national radon programme began at the end of the 1980s. A significant proportion of them resulted from the last campaign performed from 2009 to 12. This campaign completed the first version of a map based on a grid 10 × 10 km(2). In this paper, the authors present the main results of a new map together with the criteria adopted to improve the number of measurements and the statistical significance of them.

  7. Indoor radon and lung cancer in China.

    PubMed

    Blot, W J; Xu, Z Y; Boice, J D; Zhao, D Z; Stone, B J; Sun, J; Jing, L B; Fraumeni, J F

    1990-06-20

    Radon has long been known to contribute to risk of lung cancer, especially in undergound miners who are exposed to large amounts of the carcinogen. Recently, however, lower amounts of radon present in living areas have been suggested as an important cause of lung cancer. In an effort to clarify the relationship of low amounts of radon with lung cancer risk, we placed alpha-track radon detectors in the homes of 308 women with newly diagnosed lung cancer and 356 randomly selected female control subjects of similar age. Measurements were taken after 1 year. All study participants were part of the general population of Shenyang, People's Republic of China, an industrial city in the northeast part of the country that has one of the world's highest rates of lung cancer in women. The median time of residence in the homes was 24 years. The median household radon level was 2.3 pCi/L of air; 20% of the levels were greater than 4 pCi/L. Radon levels tended to be higher in single-story houses or on the first floor of multiple-story dwellings, and they were also higher in houses with increased levels of indoor air pollution from coal-burning stoves. However, the levels were not higher in homes of women who developed lung cancer than in homes of controls, nor did lung cancer risk increase with increasing radon level. No association between radon and lung cancer was observed regardless of cigarette-smoking status, except for a nonsignificant trend among heavy smokers. No positive associations of lung cancer cell type with radon were observed, except for a nonsignificant excess risk of small cell cancers among the more heavily exposed residents. Our data suggest that projections from surveys of miners exposed to high radon levels may have overestimated the overall risks of lung cancer associated with levels typically seen in homes in this Chinese city. However, further studies in other population groups are needed to clarify the carcinogenic potential of indoor radon.

  8. Indoor radon exposure and lung cancer: a review of ecological studies.

    PubMed

    Yoon, Ji Young; Lee, Jung-Dong; Joo, So Won; Kang, Dae Ryong

    2016-01-01

    Lung cancer has high mortality and incidence rates. The leading causes of lung cancer are smoking and radon exposure. Indeed, the World Health Organization (WHO) has categorized radon as a carcinogenic substance causing lung cancer. Radon is a natural, radioactive substance; it is an inert gas that mainly exists in soil or rock. The gas decays into radioactive particles called radon progeny that can enter the human body through breathing. Upon entering the body, these radioactive elements release α-rays that affect lung tissue, causing lung cancer upon long-term exposure thereto. Epidemiological studies first outlined a high correlation between the incidence rate of lung cancer and exposure to radon progeny among miners in Europe. Thereafter, data and research on radon exposure and lung cancer incidence in homes have continued to accumulate. Many international studies have reported increases in the risk ratio of lung cancer when indoor radon concentrations inside the home are high. Although research into indoor radon concentrations and lung cancer incidence is actively conducted throughout North America and Europe, similar research is lacking in Korea. Recently, however, studies have begun to accumulate and report important data on indoor radon concentrations across the nation. In this study, we aimed to review domestic and foreign research into indoor radon concentrations and to outline correlations between indoor radon concentrations in homes and lung cancer incidence, as reported in ecological studies thereof. Herein, we noted large differences in radon concentrations between and within individual countries. For Korea, we observed tremendous differences in indoor radon concentrations according to region and year of study, even within the same region. In correlation analysis, lung cancer incidence was not found to be higher in areas with high indoor radon concentrations in Korea. Through our review, we identified a need to implement a greater variety of

  9. Radon concentrations in a spa in Serbia.

    PubMed

    Manic, G; Petrovic, S; Vesna, Manic; Popovic, Dragana; Todorovic, Dragana

    2006-05-01

    The paper presents the results of indoor radon concentration survey in 201 homes and offices in Niska Banja (the Spa of Nis), a well-known health resort and a spa in the South-East of Serbia. Radon indoor concentrations were determined by active charcoal method, according to standard EPA procedure. The indoor radon concentrations were in the range of up to 200 Bq/m(3) (47%), from 200-600 Bq/m(3) (26%) and over 600 Bq/m(3) (27%). Three areas of extremely high average radon concentrations were found (1,340-4,340 Bq/m(3)), with a maximum above 13,000 Bq/m(3). The content of natural radionuclides ((226)Ra, (214)Pb, (214)Bi, (235)U, (228)Ac, (212)Pb, (212)Bi, (208)Tl, (40)K) and (137)Cs, as well as the content of total uranium, thorium and potassium in mud used in peloidotherapy in the Health Institute "Niska Banja" was determined, too. The activities of the radionuclides were determined on an HPGe detector, by standard gamma spectroscopy. The results indicated considerably high amounts of total uranium and thorium (0.021 g/kg mud and 0.003 g/kg mud, respectively), due to the karsts origin of the soil.

  10. Characterization of radon levels in indoor air

    SciTech Connect

    George, A.C.

    1982-01-01

    The purpose is to describe the different types of monitoring and sampling techniques that can determine the radiation burden of the general public from radon and its decay products. This is accomplished by measuring the range and distribution of radon and radon decay products through broad surveys using simple and convenient integrating monitoring instruments. For in-depth studies of the behavior of radon decay products and calculation of the radiation dose to the lung, fewer and more intensive and complex measurements of the particle size distribution and respiratory deposition of the radon decay products are required. For diagnostic purposes, the paper describes measurement techniques of the sources and exhalation rate of radon and the air exchange inside buildings. Measurement results form several studies conducted in ordinary buildings in different geographical areas of the United States, using the described monitoring techniques, indicate that the occupants of these buildings are exposed to radon and radon decay product concentrations, varying by as much as a factor of 20.

  11. FIRST STEP TOWARDS THE GEOGRAPHICAL DISTRIBUTION OF INDOOR RADON IN DWELLINGS IN ALBANIA.

    PubMed

    Tushe, K Bode; Bylyku, E; Xhixha, G; Dhoqina, P; Daci, B; Cfarku, F; Xhixha, M Kaçeli; Strati, V

    2016-12-01

    The realisation of the geographical distribution of the indoor radon concentrations in dwellings represents a valuable tool necessary for assessing the public exposure. In this work are reported the results of the indoor radon obtained in the first stage of the survey involving 247 measurements. From the preliminary information on ∼10 % of the territory, covering the biggest cities in Albania results on indoor radon concentrations ranging from 14 to 1238 Bq m(-3) with an arithmetic mean of 120±67 Bq m(-3) The population-weighted average indoor radon concentration was calculated to be 101 Bq m(-3) The adopted survey strategy highlighted the necessity for the future stages to spread the measurements in order to cover the entire territory of Albania, instead of remaining focused only on the demographic criteria. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Soil-gas and indoor radon distribution related to geology in Frederick County, Maryland

    SciTech Connect

    Szarzi, S.L.; Reimer, G.M.; Been, J.M.

    1992-12-31

    Soil-gas radon concentrations vary in response to geologic controls in Frederick County, Maryland, and the variation leads to different radon availabilities for potential indoor accumulations. Quartzites, which form from the core of ridges and mountains of the southern and western part of the county, have a mean soil-gas radon concentration of 26 kBq m{sup -3} (700 pCi L{sup -1}). Phyllites, found in the Piedmont province in the eastern part of the county, have a mean soil-gas radon concentration of 59 kBq m{sup -3} (1600 pCi L{sup -1}). Many indoor radon measurements for homes in the southeast portion of the county, made by means of charcoal canisters, exceeded 1850 Bq m{sup -3} (50 pCi L{sup -1}). Homes built in areas where the soil-gas radon concentrations were greater than 75 kBq m{sup -3} (2000 pCi L{sup -1}) may have indoor radon concentrations that exceed 150 Bq m{sup -3} (4 pCi L{sup -1}), the current action level recommended by the U.S. Environmental Protection Agency. Data obtained in studies like ours throughout the United States are essential to identify {open_quotes}hot spots{close_quotes} which may produce elevated indoor radon levels of significant risk.

  13. Indoor and soil gas radon simultaneous measurements for the purpose of detail analysis of radon entry pathways into houses.

    PubMed

    Froňka, A

    2011-05-01

    Detailed knowledge of radon transport mechanisms from the subsoil into the indoor environment is essential for the correct interpretation of results of short-term indoor radon measurements and for proper and effective design of radon mitigation systems. Radon transfer factor time variations have been studied based on simultaneous continuous indoor and soil gas radon measurements within the framework of complex radon diagnosis of individual buildings. In this context, the key influencing factors have been identified and analysed in order to provide satisfactory explanation on radon entry variations under different measurement conditions. Moreover, a new significant manner of radon entry into the indoor environment has been identified and will be discussed in detail.

  14. SOME RESULTS FROM THE DEMONSTRATION OF INDOOR RADON REDUCTION MEASURES IN BLOCK BASEMENT HOUSES

    EPA Science Inventory

    Active soil ventilation techniques have been tested in 26 block-wall basement houses in eastern Pennsylvania with significantly elevated indoor radon concentrations, generally above 740 Bq/m3, and the results indicate that radon levels can be reduced substantially often below the...

  15. SOME RESULTS FROM THE DEMONSTRATION OF INDOOR RADON REDUCTION MEASURES IN BLOCK BASEMENT HOUSES

    EPA Science Inventory

    Active soil ventilation techniques have been tested in 26 block-wall basement houses in eastern Pennsylvania with significantly elevated indoor radon concentrations, generally above 740 Bq/m3, and the results indicate that radon levels can be reduced substantially often below the...

  16. Indoor radon measurements in the dwellings of Punjab and Himachal Pradesh, India.

    PubMed

    Rani, Asha; Singh, Surinder; Duggal, Vikas

    2013-01-01

    The measurement of indoor radon concentrations were performed in the dwellings of the Punjab and Himachal Pradesh, India by using LR-115 type II Solid-State Nuclear Track Detectors in the bare mode. The annual average indoor radon concentrations in the dwellings are found to vary from 114 to 400 Bq m(-3) with an average of 194 Bq m(-3). In ∼22 % of the dwellings the indoor radon activity concentration values lies in the range of action level (200-300 Bq m(-3)) and in ∼11 % of the dwellings above the upper limit of action level recommended by the International Commission on Radiological Protection (ICRP). The annual effective dose (AED) varies from 2.88 to 10.08 mSv with an average of 4.88 mSv. In most of the villages, the AED lies in the range of action level (3-10 mSv) recommended by the ICRP. The seasonal variation in indoor radon reveals the maximum values in winter and minimum in summer. The winter/summer ratio of indoor radon ranges from 1.15 to 1.62 with an average of 1.31. Analysis of ventilation conditions reveal that the indoor radon concentration values are more in poorly ventilated dwellings compared with the well-ventilated ones.

  17. Radon concentrations in elementary schools in Kuwait.

    PubMed

    Maged, A F

    2006-03-01

    Measurements of indoor radon concentrations were performed in 25 classrooms in the capital city of Kuwait from September 2003 to March 2004 using track etch detectors. The investigation was focused on area, ventilation, windows, air conditioners, fans, and floor number. All the schools have nearly the same design. Mean indoor radon concentration was higher for case subjects (classrooms) than for control subjects (locations in inert gas, p < 0.001). The mean alpha dose equivalent rate for case subjects, 0.97 +/- 0.25 mSv y, was higher than the radiation dose equivalent rate value of control subjects, 0.43 +/- 0.11 mSv y. The average radon concentrations were found to be 16 +/- 4 Bq m for the first floor and 19 +/- 4.8 Bq m for the second floor after subtraction of the control. These values lead to average effective dose equivalent rates of 0.40 +/- 0.10 and 0.48 +/- 0.12 mSv y, respectively. The equilibrium factor between radon and its progeny was found to be 0.6 +/- 0.2.

  18. Comparison of Northern Ireland radon maps based on indoor radon measurements and geology with maps derived by predictive modelling of airborne radiometric and ground permeability data.

    PubMed

    Appleton, J D; Miles, J C H; Young, M

    2011-03-15

    Publicly available information about radon potential in Northern Ireland is currently based on indoor radon results averaged over 1-km grid squares, an approach that does not take into account the geological origin of the radon. This study describes a spatially more accurate estimate of the radon potential of Northern Ireland using an integrated radon potential mapping method based on indoor radon measurements and geology that was originally developed for mapping radon potential in England and Wales. A refinement of this method was also investigated using linear regression analysis of a selection of relevant airborne and soil geochemical parameters from the Tellus Project. The most significant independent variables were found to be eU, a parameter derived from airborne gamma spectrometry measurements of radon decay products in the top layer of soil and exposed bedrock, and the permeability of the ground. The radon potential map generated from the Tellus data agrees in many respects with the map based on indoor radon data and geology but there are several areas where radon potential predicted from the airborne radiometric and permeability data is substantially lower. This under-prediction could be caused by the radon concentration being lower in the top 30 cm of the soil than at greater depth, because of the loss of radon from the surface rocks and soils to air. Copyright © 2011. Published by Elsevier B.V.

  19. Radon

    MedlinePlus

    ... Risks . Accessed August 19, 2016. U.S. EPA. Indoor Air Quality. What about Radon and Radioactivity in Granite Countertops ? Accessed August 19, 2016 U.S. EPA. Indoor Air Quality. A Citizen's Guide to Radon . Accessed August 19, ...

  20. Determination of indoor radon and soil radioactivity levels in Giresun, Turkey.

    PubMed

    Celik, N; Cevik, U; Celik, A; Kucukomeroglu, B

    2008-08-01

    Indoor radon survey and gamma activity measurements in soil samples were carried out in the Giresun province (Northeastern Turkey). The result of analysis of variance showed a relationship between indoor radon and radium content in soil (R(2)=0.54). It was found that indoor radon activity concentration ranged from 52 to 360 Bq m(-3) with an average value of 130 Bq m(-3). A model built by BEIR VI was used to predict the number of lung cancer deaths due to indoor radon exposure. It was found that indoor radon is responsible for 8% of all lung cancer deaths occurring in this province. (137)Cs activity concentration was measured 21 years after the Chernobyl accident. The results showed that (137)Cs activity concentration ranged from 41 to 1304 Bq kg(-1) with an average value of 307 Bq kg(-1). The indoor radon results and the geology of the studied area were discussed. Annual effective doses to the both radionuclides of natural origin and (137)Cs were estimated.

  1. Indoor radon measurements in the New York Capital District.

    PubMed

    Fleischer, R L; Turner, L G

    1984-05-01

    Radon-222 concentrations have been measured in 21 "energy-efficient" homes and 14 conventional homes in the New York Capital District. Usual concentrations are averaged over six-month or 12-month periods using solid-state track detectors. Full-year averages are available for 23 of the homes, and the winter-to-summer variations have been observed. In a number of cases, 222Rn emanations from various construction materials and soil samples have been measured and correlations sought with indoor 222Rn. Two major patterns emerge. The living areas of the energy-efficient homes without heat-storage masses have median radon concentrations that are 1.6 times those for conventional homes, and the energy-efficient homes with heat-storage masses have four to five times the 222Rn of conventional homes.

  2. Factors contributing to elevated indoor radon in the Paso Del Norte region of the Texas-Mexico border: information for physicians.

    PubMed

    Cech, Irina; Burau, Keith D; Al-Hashimi, Radhiya

    2009-07-01

    We collected sample data on radon concentrations concurrently in the air, water, and soil in the northern part of the Texas-Mexico border (both sides) popularly known as Paso Del Norte. These field data were used to statistically correlate relative contributions of yard soil, tap water, location, and house features to concentrations of radon indoors. Indoor air radon concentrations in some homes were up to nine-fold the limit recommended by the US Environmental Protection Agency (USEPA). Concentrations of radon in tap water were up to nearly three-fold the recommended limit. Apartments and manufactured homes had generally greater concentrations of indoor radon. Statistically significant associations were indicated between indoor radon air levels and radon in the soil (P < 0.001); radon in the water and radium in water (P = 0.016); radon air levels and apartment living (P = 0.010); and mobile homes vs. wood, brick, and stucco construction (P = 0.016). Radon soil gas, apartment living, and the aluminum plank wall environment of mobile homes were associated with elevated indoor radon in the homes studied. Physician's attention is invited to the potential nontrivial risk from radon, as it becomes trapped inside enclosed structures. This article is intended to serve as a resource for primary care physicians who want to better understand the distribution and contributing factors for indoor radon. The Surgeon General recommends every US home be tested for radon as of January 13, 2005.

  3. A nation-wide survey on indoor radon from 2007 to 2010 in Japan.

    PubMed

    Suzuki, Gen; Yamaguchi, Ichiro; Ogata, Hiromitsu; Sugiyama, Hideo; Yonehara, Hidenori; Kasagi, Fumiyoshi; Fujiwara, Saeko; Tatsukawa, Yoshimi; Mori, Ippei; Kimura, Shinzo

    2010-01-01

    In two previous nation-wide surveys in the late 1980s and early 1990s, Japanese indoor radon concentrations increased in homes built after the mid 1970s. In order to ascertain whether this trend continued, a nation-wide survey was conducted from 2007 to 2010. In total 3,900 houses were allocated to 47 prefectures by the Neyman allocation method and 3,461 radon measurements were performed (88.7% success). The fraction of reinforced concrete / concrete block buildings was 32.4%, similar to the value from national statistics. Arithmetic mean (standard deviation, SD) and geometric mean (geometric SD) of radon concentration after adjusting for seasonal fluctuation were 14.3 (14.7) and 10.8 (2.1) Bq/m(3). The corresponding population-weighted values were 13.7 (12.3) and 10.4 (2.0) Bq/m(3), respectively. It was estimated that only 0.1% of dwellings exceed 100 Bq/m(3), a new WHO reference level for indoor radon. Radon concentrations were highest in houses constructed in the mid 1980s and decreased thereafter. In conclusion, arithmetic mean indoor radon in the present survey was slightly lower than in previous surveys and significant reductions in indoor radon concentrations in both wooden and concrete houses can be attributed to alterations in Japanese housing styles in recent decades.

  4. Exposure to radon and radon progeny in the indoor environment. Final report

    SciTech Connect

    Socolow, R.H.

    1994-10-01

    This report discusses the work done by the Center for Energy and Environmental Studies at Princeton University as part of the radon research program. It involves radon measurements in various buildings, as well as the use of natural ventilation to mitigate radon levels. The report is divided into four chapters: The use of radon entry rate measurements to understand radon concentration in buildings; Use of natural basement ventilation to control radon in single family dwellings; The effect of natural ventilation on radon and radon progeny levels in houses; and Comparison of natural and forced ventilation for radon mitigation in houses.

  5. A geographic information systems (GIS) and spatial modeling approach to assessing indoor radon potential at local level.

    PubMed

    Zhou, Joey Y; Laćan, Igor; Liu, Kai-Shen; Waldman, Jed

    2006-04-01

    This study integrates residential radon data from previous studies in Southern California (USA), into a geographic information system (GIS) linked with statistical techniques. A difference (p<0.05) is found in the indoor radon in residences grouped by radon-potential zones. Using a novel Monte Carlo approach, we found that the mean distance from elevated-radon residences (concentration>74 Bq m(-3)) to epicenters of large (> 4 Richter) earthquakes was smaller (p<0.0001) than the average residence-to-epicenter distance, suggesting an association between the elevated indoor-radon and seismic activities.

  6. Evaluation of radon occurrence in groundwater from 16 geologic units in Pennsylvania, 1986–2015, with application to potential radon exposure from groundwater and indoor air

    USGS Publications Warehouse

    Gross, Eliza L.

    2017-05-11

    Results from 1,041 groundwater samples collected during 1986‒2015 from 16 geologic units in Pennsylvania, associated with 25 or more groundwater samples with concentrations of radon-222, were evaluated in an effort to identify variations in radon-222 activities or concentrations and to classify potential radon-222 exposure from groundwater and indoor air. Radon-222 is hereafter referred to as “radon.” Radon concentrations in groundwater greater than or equal to the proposed U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) for public-water supply systems of 300 picocuries per liter (pCi/L) were present in about 87 percent of the water samples, whereas concentrations greater than or equal to the proposed alternative MCL (AMCL) for public water-supply systems of 4,000 pCi/L were present in 14 percent. The highest radon concentrations were measured in groundwater from the schists, gneisses, and quartzites of the Piedmont Physiographic Province.In this study, conducted by the U.S. Geological Survey in cooperation with the Pennsylvania Department of Health and the Pennsylvania Department of Environmental Protection, groundwater samples were aggregated among 16 geologic units in Pennsylvania to identify units with high median radon concentrations in groundwater. Graphical plots and statistical tests were used to determine variations in radon concentrations in groundwater and indoor air. Median radon concentrations in groundwater samples and median radon concentrations in indoor air samples within the 16 geologic units were classified according to proposed and recommended regulatory limits to explore potential radon exposure from groundwater and indoor air. All of the geologic units, except for the Allegheny (Pa) and Glenshaw (Pcg) Formations in the Appalachian Plateaus Physiographic Province, had median radon concentrations greater than the proposed EPA MCL of 300 pCi/L, and the Peters Creek Schist (Xpc), which is in the Piedmont

  7. Indoor radon measurements in Erzurum province of Turkey

    NASA Astrophysics Data System (ADS)

    Durak, R.; Kiran, D.; Kavaz, E.; Ekinci, N.

    2016-04-01

    Indoor radon measurements were carried out in dwellings in Erzurum province during the winter months of February 2012 to early April 2012 and the summer months of July 2012 to early September 2012. Nuclear track detector LR-115 was used for the measurements. According to the results of investigations, it was understood that the indoor radon concentration averages in dwellings are in the range of 11 ± 6 Bq m-3 - 380 ± 91 Bq m-3 in winter season and 8 ± 3 Bq m-3 - 356 ± 64 Bq m-3 in summer season. We found that the 222Rn effective dose values in the studied dwellings in winter season range from 0.278 to 9.59 mSv y-1. Also, the 222Rn effective dose values in the studied dwellings in summer season range from 0.202 to 8.98 mSv y-1. These values are within the ICPR recommended values. The radon activity has not been found to vary with seasonal changes, but also with the age, the construction mode of houses, the ventilation conditions and with specific sites and geological materials.

  8. Estimation of the indoor radon and the annual effective dose from granite samples

    NASA Astrophysics Data System (ADS)

    Sola, P.; Srinuttrakul, W.; Kewsuwan, P.

    2015-05-01

    Inhalation of radon and thoron daughters increases the risk of lung cancer. The main sources of indoor radon are building materials. The aim of this research is to estimate the indoor radon and the annual effective dose from the building materials. Eighteen granite samples bought from the markets in Thailand were measured using an ionization chamber (ATMOS 12 DPX) for the radon concentration in air. Radon exhalation rates were calculated from the radon concentration in chamber. The indoor radon from the granite samples ranged from 10.04 to 55.32 Bq·m-2·h-1 with an average value of 20.30 Bq·m-2·h-1 and the annual effective dose ranged from 0.25 to 1.39 mSv·y-1 with an average value of 0.48 mSv·y-1. The results showed that the annual effective doses of three granite samples were higher than the annual exposure limit for the general public (1 mSv·y-1) recommended by the International Commission on Radiological Protection (ICRP). In addition, the relationship between the colours and radon exhalation rates of granite samples was also explained.

  9. Regional variations pattern of indoor radon levels in some areas of Punjab and Haryana.

    PubMed

    Singh, Harmanjit; Singh, Joga; Singh, Surinder; Bajwa, B S

    2008-01-01

    The indoor radon concentration levels and their regional variations pattern, for two consecutive half-year periods, in a wide range of dwellings of some regions of Punjab and Haryana states have been studied. The objective was to find the relation between the variations of indoor radon levels with the sub-soil and local geology, type of building materials utilised in the dwellings of the region. Keeping this in view, indoor radon measurements have been carried out in the dwellings of 30 villages around the Tusham Ring Complex, Bhiwani district, Haryana, known to be composed of acidic volcanics and associated granites, along with 11 villages of Amritsar District, Punjab. The indoor radon concentration in the dwellings around Tusham (Haryana) was found to vary from 120 +/- 95 to 915 +/- 233 Bq m(-3), whereas radon levels varied from 60 +/- 37 to 235 +/- 96 Bq m(-3) for the dwellings studied in Punjab. We believe that local geology including embedded granitic rocks, and sub-soil, as well as building materials having higher radioactive content, is the major contributor for the higher indoor radon levels observed particularly in the dwelling around Tusham Ring complex, where some dwellings are showing higher radon concentrations than the ICRP recommendations. The environmental samples from some areas of Punjab state and around the Tusham Ring Complex of Haryana state have also been analysed for radon exhalation studies. Higher values for radon exhalation rates have been observed for the Tusham's soil/rock specimens, as compared with soil samples of the Amritsar region of Punjab.

  10. Surface-deposition and distribution of the radon-decay products indoors.

    PubMed

    Espinosa, G; Tommasino, L

    2015-05-01

    The exposure to radon-decay products is of great concern both in dwellings and workplaces. The model to estimate the lung dose refers to the deposition mechanisms and particle sizes. Unfortunately, most of the dose data available are based on the measurement of radon concentration and the concentration of radon decay products. These combined measurements are widely used in spite of the fact that accurate dose assessments require information on the particle deposition mechanisms and the spatial distribution of radon decay products indoors. Most of the airborne particles and/or radon decay products are deposited onto indoor surfaces, which deposition makes the radon decay products unavailable for inhalation. These deposition processes, if properly known, could be successfully exploited to reduce the exposure to radon decay products. In spite of the importance of the surface deposition of the radon decay products, both for the correct evaluation of the dose and for reducing the exposure; little or no efforts have been made to investigate these deposition processes. Recently, two parallel investigations have been carried out in Rome and at Universidad Nacional Autónoma de México (UNAM) in Mexico City respectively, which address the issue of the surface-deposited radon decay products. Even though these investigations have been carried independently, they complement one another. It is with these considerations in mind that it was decided to report both investigations in the same paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Characteristics of indoor radon and its progeny in a Japanese dwelling while using air appliances.

    PubMed

    Pornnumpa, C; Tokonami, S; Sorimachi, A; Kranrod, C

    2015-11-01

    Characteristics of radon and its progeny were investigated in different air conditions by turning four types of indoor air appliances on and off in a two-story concrete Japanese dwelling. The four appliances were air conditioner, air cleaner, gas heater and cooker hood. The measurements were done using two devices: (1) a Si-based semiconductor detector for continuous measurement of indoor radon concentration and (2) a ZnS(Ag) scintillation counting system for equilibrium-equivalent radon concentration. Throughout the entire experiment, the cooker hood was the most effective in decreasing indoor radon concentration over a long period of time and the less effective was the air conditioner, while the air cleaner and gas heater did not affect the concentration of radon. However, the results measured in each air condition will differ according to the lifestyles and activities of the inhabitants. In this study, indoor radon and its progeny in a Japanese dwelling will be characterised by the different air conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Indoor radon measurements in the uranium regions of Poli and Lolodorf, Cameroon.

    PubMed

    Saïdou; Abdourahimi; Tchuente Siaka, Y F; Bouba, O

    2014-10-01

    The objective of this work is to carry out indoor radon measurements in the uranium regions of Poli and Lolodorf in which lie the uranium deposits of Kitongo and Lolodorf, prior to their impending exploitation. The indoor radon concentration was measured in 103 and 50 dwellings located respectively in Poli and Lolodorf using E-PERM electret chamber detectors. Indoor radon distributions in Poli and Lolodorf follow the lognormal law. Radon concentrations range respectively in Poli and Lolodorf between 29 and 2240 Bq m(-3) and 24-4390 Bq m(-3) with corresponding median values of 165 Bq m(-3) and 331 Bq m(-3). Corresponding arithmetic and geometric means are respectively 294 Bq m(-3) and 200 Bq m(-3) for the uranium region of Poli, 687 Bq m(-3) and 318 Bq m(-3) for the uranium region of Lolodorf. For the uranium region of Poli, 80% of dwellings have radon concentration above the reference level of 100 Bq m(-3) and 20% of dwellings show a radon concentration above 300 Bq m(-3). For the uranium region of Lolodorf, 80% of dwellings have radon concentration above 100 Bq m(-3) and 50% of dwellings show a radon concentration above 300 Bq m(-3). Thus radon monitoring and mitigation plan are required to better protect people against harmful effects of radon.

  13. Soil and building material as main sources of indoor radon in Băiţa-Ştei radon prone area (Romania).

    PubMed

    Cosma, Constantin; Cucoş-Dinu, Alexandra; Papp, Botond; Begy, Robert; Sainz, Carlos

    2013-02-01

    Radon contributes to over than 50% of the natural radiation dose received by people. In radon risk areas this contribution can be as high as 90-95%, leading to an exposure to natural radiation 5-10 times higher than normal. This work presents results from radon measurements (indoor, soil and exhalation from building materials) in Băiţa-Ştei, a former uranium exploitation area in NW Romania. In this region, indoor radon concentrations found were as high as 5000 Bq m(-3) and soil radon levels ranged from 20 to 500 kBq m(-3). An important contribution from building materials to indoor radon was also observed. Our results indicate two independent sources of indoor radon in the surveyed houses of this region. One source is coming from the soil and regular building materials, and the second source being uranium waste and local radium reached material used in building construction. The soil as source of indoor radon shows high radon potential in 80% of the investigated area. Some local building materials reveal high radon exhalation rate (up to 80 mBq kg(-1) h(-1) from a sandy-gravel material, ten times higher than normal material). These measurements were used for the radon risk classification of this area by combining the radon potential of the soil with the additional component from building materials. Our results indicate that Băiţa-Ştei area can be categorized as a radon prone area. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  14. Indoor radon levels in selected hot spring hotels in Guangdong, China.

    PubMed

    Song, Gang; Zhang, Boyou; Wang, Xinming; Gong, Jingping; Chan, Daniel; Bernett, John; Lee, S C

    2005-03-01

    Guangdong is one of the provinces that have most hot springs in China, and many hotels have been set up near hot springs, with spring water introduced into the bath inside each hotel room for hot spring bathing to attract tourists. In the present study, we measured radon in indoor and outdoor air, as well as in hot spring waters, in four hot spring hotels in Guangdong by using NR-667A (III) continuous radon detector. Radon concentrations ranged 53.4-292.5 Bq L(-1) in the hot spring water and 17.2-190.9 Bq m(-3) in outdoor air. Soil gas intrusion, indoor hot spring water use and inefficient ventilation all contributed to the elevated indoor radon levels in the hotel rooms. From the variation of radon levels in closed unoccupied hotel rooms, soil gas intrusion was found to be a very important source of indoor radon in hotel rooms with floors in contact with soils. When there was spring water bathing in the bathes, average radon levels were 10.9-813% higher in the hotel rooms and 13.8-489% higher in bathes compared to their corresponding average levels when there was no spring water use. Spring water use in the hotel rooms had radon transfer coefficients from 1.6x10(-4) to 5.0x10(-3). Radon in some hotel rooms maintained in concentrations much higher than guideline levels might thus have potential health risks to the hotel workers, and technical and management measures should be taken to lower their exposure of radon through inhalation.

  15. An indoor radon survey of the X-ray rooms of Mexico City hospitals

    SciTech Connect

    Juarez, Faustino; Reyes, Pedro G.; Espinosa, Guillermo

    2013-07-03

    This paper presents the results of measurements of indoor radon concentrations in the X-ray rooms of a selection of hospitals in the metropolitan area of Mexico City. The metropolitan area of Mexico City is Mexico's largest metropolitan area by population; the number of patients requiring the use of X-rays is also the highest. An understanding of indoor radon concentrations in X-ray rooms is necessary for the estimation of the radiological risk to which patients, radiologists and medical technicians are exposed. The indoor radon concentrations were monitored for a period of six months using nuclear track detectors (NTD) consisting of a closed-end cup system with CR-39 (Lantrack Registered-Sign ) polycarbonate as detector material. The indoor radon concentrations were found to be between 75 and 170 Bq m{sup -3}, below the USEPA-recommended indoor radon action level for working places of 400 Bq m{sup -3}. It is hoped that the results of this study will contribute to the establishment of recommended action levels by the Mexican regulatory authorities responsible for nuclear safety.

  16. An indoor radon survey of the X-ray rooms of Mexico City hospitals

    NASA Astrophysics Data System (ADS)

    Juárez, Faustino; Reyes, Pedro G.; Espinosa, Guillermo

    2013-07-01

    This paper presents the results of measurements of indoor radon concentrations in the X-ray rooms of a selection of hospitals in the metropolitan area of Mexico City. The metropolitan area of Mexico City is Mexico's largest metropolitan area by population; the number of patients requiring the use of X-rays is also the highest. An understanding of indoor radon concentrations in X-ray rooms is necessary for the estimation of the radiological risk to which patients, radiologists and medical technicians are exposed. The indoor radon concentrations were monitored for a period of six months using nuclear track detectors (NTD) consisting of a closed-end cup system with CR-39 (Lantrack®) polycarbonate as detector material. The indoor radon concentrations were found to be between 75 and 170 Bq m-3, below the USEPA-recommended indoor radon action level for working places of 400 Bq m-3. It is hoped that the results of this study will contribute to the establishment of recommended action levels by the Mexican regulatory authorities responsible for nuclear safety.

  17. Active-passive measurements and CFD based modelling for indoor radon dispersion study.

    PubMed

    Chauhan, Neetika; Chauhan, R P

    2015-06-01

    Computational fluid dynamics (CFD) play a significant role in indoor pollutant dispersion study. Radon is an indoor pollutant which is radioactive and inert gas in nature. The concentration level and spatial distribution of radon may be affected by the dwelling's ventilation conditions. Present work focus at the study of indoor radon gas distribution via measurement and CFD modeling in naturally ventilated living room. The need of the study is the prediction of activity level and to study the effect of natural ventilation on indoor radon. Two measurement techniques (Passive measurement using pin-hole dosimeters and active measurement using continuous radon monitor (SRM)) were used for the validation purpose of CFD results. The CFD simulation results were compared with the measurement results at 15 points, 3 XY planes at different heights along with the volumetric average concentration. The simulation results found to be comparable with the measurement results. The future scope of these CFD codes is to study the effect of varying inflow rate of air on the radon concentration level and dispersion pattern. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Association of School District Policies for Radon Testing and Radon-Resistant New Construction Practices with Indoor Radon Zones.

    PubMed

    Foster, Stephanie; Everett Jones, Sherry

    2016-12-13

    Radon is a naturally occurring, colorless, odorless, and tasteless radioactive gas. Without testing, its presence is unknown. Using nationally representative data from the 2012 School Health Policies and Practices Study, we examined whether the prevalence of school district policies for radon testing and for radon-resistant new construction practices varied by district location in relation to the U.S. Environmental Protection Agency Map of Radon Zones. Among school districts located in counties with high predicted average indoor radon, 42.4% had policies for radon testing and 37.5% had policies for radon-resistant new construction practices. These findings suggest a critical need for improved awareness among policy makers regarding potential radon exposure for both students and school staff.

  19. Association of School District Policies for Radon Testing and Radon-Resistant New Construction Practices with Indoor Radon Zones

    PubMed Central

    Foster, Stephanie; Everett Jones, Sherry

    2016-01-01

    Radon is a naturally occurring, colorless, odorless, and tasteless radioactive gas. Without testing, its presence is unknown. Using nationally representative data from the 2012 School Health Policies and Practices Study, we examined whether the prevalence of school district policies for radon testing and for radon-resistant new construction practices varied by district location in relation to the U.S. Environmental Protection Agency Map of Radon Zones. Among school districts located in counties with high predicted average indoor radon, 42.4% had policies for radon testing and 37.5% had policies for radon-resistant new construction practices. These findings suggest a critical need for improved awareness among policy makers regarding potential radon exposure for both students and school staff. PMID:27983613

  20. The distribution of indoor radon in Transylvania (Romania) - influence of the natural and anthropogenic factors

    NASA Astrophysics Data System (ADS)

    Cucos Dinu, Alexandra; Baciu, Calin; Dicu, Tiberius; Papp, Botond; Moldovan, Mircea; Bety Burghele, Denissa; Tenter, Ancuta; Szacsvai, Kinga

    2017-04-01

    Exposure to radon in homes and workplaces is now recognized as the most important natural factor in causing lung cancer. Radon activity is usually higher in buildings than in the outside atmosphere, as it may be released from building materials and soil beneath the constructions, and the concentration builds-up indoor, due to the low air renewal rates. Indoor radon levels can vary from one to multiple orders of magnitude over time and space, as it depends on several natural and anthropogenic factors, such us the radon concentration in soil under the construction, the weather conditions, the degree of containment in the areas where individuals are exposed, building materials, outside air, tap water and even city gas, the architecture, equipment (chimney, mechanical ventilation systems, etc.), the environmental parameters of the building (temperature, pressure, etc.), and on the occupants' lifestyle. The study presents the distribution of indoor radon in Transylvania, Romania, together with the measurements of radon in soil and soil water. Indoor radon measurements were performed by using CR-39 track detectors exposed for 3 months on ground-floor level of dwellings, according to the NRPB Measurement Protocol. Radon concentrations in soil and water were measured using the LUK3C device. A complete map was plotted at the date, based on 3300 indoor radon measurements, covering an area of about 42% of the Romanian territory. The indoor radon concentrations ranged from 5 to 3287 Bq m-3, with an updated preliminary arithmetic mean of 179 Bq m-3, and a geometric mean of 122 Bq m-3. In about 11% of the investigated grid cells the indoor radon concentrations exceed the threshold of 300 Bq m-3. The soil gas radon concentration varies from 0.8 to 169 kBq m-3, with a geometric mean of 26 kBq m-3. For water samples, the results show radon concentrations within the range of 0.3 - 352.2 kBq m-3, with a geometric mean of 7.7 Bq L-1. A weak correlation between the three sets of values

  1. Nanomaterial containing wall paints can increase radon concentration in houses located in radon prone areas.

    PubMed

    Haghani, M; Mortazavi, S M J; Faghihi, R; Mehdizadeh, S; Moradgholi, J; Darvish, L; Fathi-Pour, E; Ansari, L; Ghanbar-Pour, M R

    2013-09-01

    Nowadays, extensive technological advancements have made it possible to use nanopaints which show exciting properties. In IR Iran excessive radon levels (up to 3700 Bq m-3) have been reported in homes located in radon prone areas. Over the past decades, concerns have been raised about the risk posed by residential radon exposure. This study aims at investigating the effect of using nanomaterial containing wall paints on radon concentration in homes. Two wooden model houses were used in this study. Soil samples from Ramsar high background radiation areas were used for simulating the situation of a typical house in radon-prone areas. Conventional water-soluble wall paint was used for painting the walls of the 1st house model; while the 2nd house model was painted with the same wall paint with montmorillonitenanoclay. Three days after sealing the house models, radon level was measured by using a portable radon survey meter. The mean radon level inside the 1st house model (conventional paint) was 515.3 ± 17.8 Bq/m(3) while the mean radon concentration in the 2nd house model (nano-painted house model) was 570.8 ± 18.5 Bq/m(3). The difference between these means was statistically significant (P<0.001). To the best of our knowledge, this study is the first investigation on the effect of nano-material containing wall paints on indoor radon concentrations.  It can be concluded that nano-material-containing wall paints should not be used in houses with wooden walls located in radon prone areas. Although the mechanism of this effect is not clearly known, decreased porosity in nano-paints might be a key factor in increasing the radon concentration in homes.

  2. Nanomaterial Containing Wall Paints Can Increase Radon Concentration in Houses Located in Radon Prone Areas

    PubMed Central

    Haghani, M.; Mortazavi, S. M. J.; Faghihi, R.; Mehdizadeh, S.; Moradgholi, J.; Darvish, L.; Fathi-Pour, E.; Ansari, L.; Ghanbar-pour, M. R.

    2013-01-01

    Background: Nowadays, extensive technological advancements have made it possible to use nanopaints which show exciting properties. In IR Iran excessive radon levels (up to 3700 Bq m–3) have been reported in homes located in radon prone areas. Over the past decades, concerns have been raised about the risk posed by residential radon exposure. Objective: This study aims at investigating the effect of using nanomaterial containing wall paints on radon concentration in homes. Methods: Two wooden model houses were used in this study. Soil samples from Ramsar high background radiation areas were used for simulating the situation of a typical house in radon-prone areas. Conventional water-soluble wall paint was used for painting the walls of the 1st house model; while the 2nd house model was painted with the same wall paint with montmorillonitenanoclay. Results: Three days after sealing the house models, radon level was measured by using a portable radon survey meter. The mean radon level inside the 1st house model (conventional paint) was 515.3 ± 17.8 Bq/m3 while the mean radon concentration in the 2nd house model (nano-painted house model) was 570.8 ± 18.5 Bq/m3. The difference between these means was statistically significant (P<0.001). Conclusion: To the best of our knowledge, this study is the first investigation on the effect of nano-material containing wall paints on indoor radon concentrations.  It can be concluded that nano-material-containing wall paints should not be used in houses with wooden walls located in radon prone areas. Although the mechanism of this effect is not clearly known, decreased porosity in nano-paints might be a key factor in increasing the radon concentration in homes. PMID:25505754

  3. From the European indoor radon map towards an atlas of natural radiation

    PubMed Central

    Tollefsen, T.; Cinelli, G.; Bossew, P.; Gruber, V.; De Cort, M.

    2014-01-01

    In 2006, the Joint Research Centre of the European Commission launched a project to map radon at the European level, as part of a planned European Atlas of Natural Radiation. It started with a map of indoor radon concentrations. As of May 2014, this map includes data from 24 countries, covering a fair part of Europe. Next, a European map of geogenic radon, intended to show ‘what earth delivers’ in terms of radon potential (RP), was started in 2008. A first trial map has been created, and a database was established to collect all available data relevant to the RP. The Atlas should eventually display the geographical distribution of physical quantities related to natural radiation. In addition to radon, it will comprise maps of quantities such as cosmic rays and terrestrial gamma radiation. In this paper, the authors present the current state of the radon maps and the Atlas. PMID:25063783

  4. Radon concentration of waters in Greece and Cyprus

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, D.; Vogiannis, E.; Louizi, A.

    2009-04-01

    Radon (222Rn) is a radioactive gas generated by the decay of the naturally occurring 238U series. It is considered very important from radiological point of view, since it is the most significant natural source of human radiation exposure (approximately 50% from all natural sources). Radon is present in soil, rocks, building materials and waters. Through diffusion and convection, radon migrates and emanates to the atmosphere. Outdoors, radon concentrates at low levels (in the order of 10 Bq/m3). However indoors, radon accumulates significantly. It is trivial to observe indoor environments with high radon levels (in the order of 400 Bq/m3 or higher). Radon accumulation indoors, depends on the composition of the underlying soil and rock formation, on building materials, meteorological parameters, ventilation, heating and water use. Although soil and building materials are the most significant radon sources, there have been reported elevated radon concentrations in building structures due to entering water. It is the radon concentrations in the entering water, the volume and the way of water usage, separated or in combination, that result in large amounts of radon in indoor air. Moreover, radon is a factor of stomach radiation burden due to water consumption. This burden is estimated by measurements of radon concentrations in waters. Due to the health impact of radon exposure, the reporting team continuously measures radon. This work focused on the radon concentrations exposure due to water consumption and use in Greece and Cyprus. Various locations in Greece and Cyprus were accessed taking into consideration existing natural radioactivity data (mainly radon in water), however under the restriction of the capability of movement. Radon in water was measured by Alpha Guard (Genitron Ltd) via a special unit (Aqua Kit). This unit consists of a vessel used for forced degassing of radon diluted in water samples, a security vessel used for water drop deposition. Vessels and

  5. A Comparative Study of Indoor Radon Contributed by Diffusive and Advective Transport through Intact Concrete

    NASA Astrophysics Data System (ADS)

    Chauhan, R. P.; Kumar, Amit

    The present work is aimed that out of diffusive and advective transport which is dominant process for indoor radon entry under normal room conditions. For this purpose the radon diffusion coefficient and permeability of concrete were measured by specially designed experimental set up. The radon diffusion coefficient of concrete was measured by continuous radon monitor. The measured value was (3.78 ± 0.39)×10-8 m2/s and found independent of the radon gas concentration in source chamber. The radon permeability of concrete varied between 1.85×10-17 to 1.36×10-15 m2 for the bulk pressure difference fewer than 20 Pa to 73.3 kPa. From the measured diffusion coefficient and absolute permeability, the radon flux from the concrete surface having concentrations gradient 12-40 kBq/m3 and typical floor thickness 0.1 m was calculated by the application of Fick and Darcy laws. Using the measured flux attributable to diffusive and advective transport, the indoor radon concentration for a typical Indian model room having dimension (5×6×7) m3 was calculated under average room ventilation (0.63 h-1). The results showed that the contribution of diffusive transport through intact concrete is dominant over the advective transport, as expected from the low values of concrete permeability.

  6. Energy-efficient reconstructions and indoor radon: the impact assessed by CDs/DVDs.

    PubMed

    Pressyanov, Dobromir; Dimitrov, Dimitar; Dimitrova, Ivelina

    2015-05-01

    Recent modelling suggests that the expense of energy-efficient building reconstructions can be the enhanced indoor radon levels and the related adverse health impact. Here we show that a couple of home-stored CDs/DVDs can be used to check by direct measurements whether a significant change in radon level occurred in the past after building reconstruction. Radon is continuously absorbed in the polycarbonate material of CDs/DVDs and its average concentration can be determined by etching alpha tracks at a certain depth in the disk. With two disks, one bought before and one after the reconstruction, a change in radon concentration can be detected retrospectively. Within a pilot study of 20 rooms in 16 buildings that underwent energy-efficient interventions years in the past, we observed significant increase in radon concentration (at 95% confidence level) in 35% of the cases, and no case with significant decrease. Direct indication of a radon problem emerged after some of the energy-efficient building interventions was observed. The CD/DVD based approach provides a tool for assessment of the effect of different energy-efficient reconstruction approaches on indoor radon in very short terms and could be useful for finding radon-safe energy-efficient options.

  7. Systematic indoor radon and gamma measurements in kindergartens and play schools in Slovenia

    SciTech Connect

    Vaupotic, J.; Krizman, M.; Pezdic, J.

    1994-05-01

    Systematic measurements of indoor radon concentrations and gamma dose rates were carried out in the 730 kindergartens and play schools in Slovenia that, together, care for 65,600 children. The main method for indoor radon measurement was direct sampling in alpha scintillation cells, but in cases with an increased instantaneous radon concentration, the additional methods of track-etch detectors and alpha spectroscopy were applied. In 528 kindergartens and play schools (72%), radon concentrations were below 100 Bq m{sup -3}, with a geometric mean of 58 Bq m{sup -3}. In 16 kindergartens and play schools (2.2%), radon concentrations exceeded 800 Bq m{sup -3}. In all cases, the main reason for a high indoor radon concentration was the geological structure of the soil. Gamma dose rates were measured with a portable scintillation counter, but in the Ljubljana region thermoluminescence dosimeters were also exposed. The results ranged from 30 to 295 nGy h{sup -1}, with a geometric mean of 88 nGy h{sup -1}. 17 refs., 7 figs., 1 tab.

  8. Indoor-atmospheric radon-related radioactivity affected by a change of ventilation strategy.

    PubMed

    Kobayashi, Tsuneo

    2006-12-01

    The present author has kept observation for concentrations of atmospheric radon, radon progeny and thoron progeny for several years at the campus of Fukushima Medical University. Accidentally, in the midst of an observation term, i.e., February 2005, the facility management group of the university changed a strategy for the manner of ventilation, probably because of a recession: (I) tidy everyday ventilation of 7:30-24:00 into (II) shortened weekday ventilation of 8: 00-21 : 00 with weekend halts. This change of ventilation manner brought a clear alteration for the concentrations of radon-related natural radioactivity in indoor air. The present paper concerns an investigation of the effect of the ventilation strategy on the indoor-atmospheric radon-related radioactivity.

  9. Radon and thoron concentrations in public workplaces in Brisbane, Australia.

    PubMed

    Alharbi, Sami H; Akber, Riaz A

    2015-06-01

    Radon and thoron are radioactive gases that can emanate from soil and building materials, and it can accumulate in indoor environments. The concentrations of radon and thoron in the air from various workplace categories in Brisbane, Australia were measured using an active method. The average radon and thoron concentrations for all workplace categories were 10.5 ± 11.3 and 8.2 ± 1.4 Bq m(-3), respectively. The highest radon concentration was detected in a confined area, 86.6 ± 6.0 Bq m(-3), while the maximum thoron level was found in a storage room, 78.1 ± 14.0 Bq m(-3). At each site, the concentrations of radon and thoron were measured at two heights, 5 cm and 120 cm above the floor. The effect of the measurement heights on the concentration level was significant in the case of thoron. The monitoring of radon and thoron concentrations showed a lower radon concentration during work hours than at other times of the day. This can be attributed to the ventilation systems, including the air conditioner and natural ventilation, which normally operate during work hours. The diurnal variation was less observed in the case of thoron, as the change in its concentration during and after the working hours was insignificant. The study also investigated the influence of the floor level and flooring type on indoor radon and thoron concentrations. The elevated levels of radon and thoron were largely found in basements and ground floor levels and in rooms with concrete flooring.

  10. Radon Concentration by SSNTD in South-East Sicily Buildings

    NASA Astrophysics Data System (ADS)

    Immè, G.; Catalano, R.; Gianino, C.; Filincieri, R.; Mangano, G.; Morelli, D.

    Radon levels in buildings vary widely from area to area also depending on local geology. Thus, it is important to assess the radon prone area of a geographic region on the basis of geological data and to search for any possible correlation between the local geology and the indoor radon concentrations. We report about indoor radon measurements in Ragusa, a municipality of the SE Sicily, placed in the Hyblean Plateau (northern region of the African Plate), carried out in collaboration with schools. The survey was performed using Solid State Nuclear Track Detectors (SSNTD), CR-39 type, and a well-established methodology for chemical etching and reading, developed at the Radioactivity Laboratory of the Department of Physics - University of Catania.

  11. Simultaneous measurements of indoor radon, radon-thoron progeny and high-resolution gamma spectrometry in Greek dwellings.

    PubMed

    Clouvas, A; Xanthos, S; Antonopoulos-Domis, M

    2006-01-01

    Simultaneous indoor radon, radon-thoron progeny and high-resolution in situ gamma spectrometry measurements, with portable high-purity Ge detector were performed in 26 dwellings of Thessaloniki, the second largest town of Greece, during March 2003-January 2005. The radon gas was measured with an AlphaGUARD ionisation chamber (in each of the 26 dwellings) every 10 min, for a time period between 7 and 10 d. Most of the values of radon gas concentration are between 20 and 30 Bq m(-3), with an arithmetic mean of 34 Bq m(-3). The maximum measured value of radon gas concentration is 516 Bq m(-3). The comparison between the radon gas measurements, performed with AlphaGUARD and short-term electret ionisation chamber, shows very good agreement, taking into account the relative short time period of the measurement and the relative low radon gas concentration. Radon and thoron progeny were measured with a SILENA (model 4s) instrument. From the radon and radon progeny measurements, the equilibrium factor F could be deduced. Most of the measurements of the equilibrium factor are within the range 0.4-0.5. The mean value of the equilibrium factor F is 0.49 +/- 0.10, i.e. close to the typical value of 0.4 adopted by UNSCEAR. The mean equilibrium equivalent thoron concentration measured in the 26 dwellings is EEC(thoron) = 1.38 +/- 0.79 Bq m(-3). The mean equilibrium equivalent thoron to radon ratio concentration, measured in the 26 dwellings, is 0.1 +/- 0.06. The mean total absorbed dose rate in air, owing to gamma radiation, is 58 +/- 12 nGy h(-1). The contribution of the different radionuclides to the total indoor gamma dose rate in air is 38% due to 40K, 36% due to thorium series and 26% due to uranium series. The annual effective dose, due to the different source terms (radon, thoron and external gamma radiation), is 1.05, 0.39 and 0.28 mSv, respectively.

  12. Measurement of Radon Concentration in Selected Houses in Ibadan, Nigeria

    NASA Astrophysics Data System (ADS)

    Usikalu, M. R.; Olatinwo, V.; Akpochafor, M.; Aweda, M. A.; Giannini, G.; Massimo, V.

    2017-05-01

    Radon is a natural radioactive gas without colour or odour and tasteless. The World Health Organization (WHO) grouped radon as a human lung carcinogen. For this reason, there has been a lot of interest on the effects of radon exposure to people all over the world and Nigeria is no exception. The aim of this study is to investigate the radon concentration in selected houses in three local government areas of Ibadan. The indoor radon was measured in both mud and brick houses. Fifty houses were considered from the three Local government areas. A calibrated portable continuous radon monitor type (RAD7) manufactured by Durridge company was used for the measurement. A distance of 100 to 200 m was maintained between houses in all the locations. The living room was kept closed during the measurements. The mean radon concentration measured in Egbeda is 10.54 ±1.30 Bqm -3; Lagelu is 16.90 ± 6.31 Bqm -3 and Ona-Ara is 17.95 ± 1.72 Bqm -3. The mean value of the annual absorbed dose and annual effective dose for the locations in the three local government areas was 0.19 mSvy-1 and 0.48 mSvy-1 respectively. The radon concentration for location 10 in Ono-Ara local government exceeded the recommended limit. However, the overall average indoor radon concentration of the three local governments was found to be lower than the world average value of 40 Bqm -3. Hence, there is need for proper awareness about the danger of radon accumulation in dwelling places.

  13. Lung Cancer Attributable to Indoor Radon Exposures in Two Radon--Prone Areas, Stei (Romania) and Torrelodones (Spain)

    SciTech Connect

    Dinu, Alexandra; Cosma, Constantin; Vasiliniuc, Stefan; Sainz, Carlos; Poncela, Luis Santiago Quindos

    2009-05-22

    Radon and radon progeny are present indoors, in houses and others dwellings, representing the most important contribution to dose from natural sources of radiation. Most studies have demonstrated an increased risk of lung cancer at high concentration of radon for both smokers and nonsmokers. For medium and low concentrations which are the typical residential radon levels, recent researches have also demonstrated increased risks of lung cancer for people exposed. The work presents a comparative analysis of the radon exposure data in the two radon--prone areas, Stei, Transylvania, (Romania), in the near of old Romanian uranium mines and in the granitic area of Torrelodones town, Sierra de Guadarrama (Spain). One important difference between the two studied areas is related to the houses built using uranium waste as construction material in Stei area. Measurements of indoor radon were performed in 280 dwellings (Romania) and 91 dwellings (Spain) by using nuclear track detectors, CR 39. The highest value measured in Stei area was 2650 Bq{center_dot}m{sup -3}. and 366 Bq{center_dot}m{sup -3} in the Spanish region. The results are compute with the BEIR VI report estimates using the age-duration model at an exposure rate below 2650 Bq{center_dot}m{sup -3}. A total of 233 lung cancer deaths were calculated in the Stei area for a period of 13 years (1994-2006), which is 116.82% higher than observed from the national statistics. In comparison, in Torrelodones area, a number of 276 deaths caused by lung cancer were estimated along a period of 13 years, which is 2.09 times higher than the number observed by authorities. This represents a significantly evidence that elevated risk can strongly be associated with cumulated radon exposure.

  14. Anomalously high radon concentrations in dwellings located on permeable glacial sediments.

    PubMed

    Sundal, A V; Jensen, C L; Anestad, K; Strand, T

    2007-09-01

    Indoor radon concentrations were measured in different seasons in 104 dwellings located on a highly permeable ice-marginal moraine in Kinsarvik, Western Norway. The measurements revealed the highest indoor radon levels ever detected in Norway and extreme variations in seasonal and short-term indoor radon levels. Annual average indoor radon concentrations up to 56 000 Bq m(-3) and a mean value of 4340 Bq m(-3) for the whole residential area are reported. By using the ICRP conversion factors to effective dose, these indoor radon values correspond to a total annual effective dose of 930 mSv and 72 mSv, respectively. By using the conversion as recommended by UNSCEAR, the effective doses would be about 50% higher. The indoor radon concentrations are found to be strongly influenced by thermally induced flows of radon-bearing soil air directed towards the upper part of the ice-marginal deposit in winter and towards the area of lowest elevation in summer. The pattern of seasonal variations observed suggests that in areas where thermal convection may occur, annual average indoor radon levels should be derived from measurements performed both in summer and in winter.

  15. Factors affecting atmospheric radon concentration, human health.

    PubMed

    Tchorz-Trzeciakiewicz, D E; Kłos, M

    2017-04-15

    We studied the influence of terrain, geology and weather condition on radon concentration in the atmosphere and occurrence of radon density currents. The survey was carried out in Kowary (SW Poland) and in the spoil tip formed during uranium mining. The measurements of radon concentration were performed using SSNTD LR-115. The measurements of uranium thorium and potassium content in soil were carried out using gamma ray spectrometer Exploranium RS-230. We noticed that terrain and stability of weather condition had significant impact on atmospheric radon concentration. The seasonal variations of radon concentrations in Kowary differ from those usually registered in temperate climate. Based on our analyses, the increase of radon concentration in winter and spring was caused by inversion occurring in that area during these seasons. The observed seasonal variations of radon concentrations in the spoil tip were consistent with those characteristic for temperate climate (the highest radon concentration registered in spring and summer and the lowest in winter and autumn). The spoil tip is located above 900m a.s.l. and is not cover by grass or trees. These circumstances promoted radon exhalation. The air movement above the spoil tip area is intensive, even in winter time. The average atmospheric radon concentration in the spoil tip was 318Bqm(-3). The performed research did not reveal occurrence of radon density currents and flow of radon from the spoil tip to lower lying areas in Kowary. We noticed interdependence of atmospheric radon concentration measured at the height of 1.5 above the ground and uranium content in soil and no correlation between thorium content and radon concentration. The lung cancer in residents of Kowary which is more common than in Poland can be associated with increased concentrations of radon. The average radon concentration in the atmosphere in Kowary was 79Bq m(-3).

  16. Preliminary results of indoor radon survey in V4 countries.

    PubMed

    Muűllerová, M; Kozak, K; Kovács, T; Csordás, A; Grzadziel, D; Holý, K; Mazur, J; Moravcsík, A; Neznal, M; Neznal, M; Smetanová, I

    2014-07-01

    The measurements of radon activity concentration carried out in residential houses of V4 countries (Hungary, Poland and Slovakia) show that radon levels in these countries considerably exceed the world average. Therefore, the new radon data and statistical analysis are required from these four countries. Each partner chose a region in their own country, where radon concentration in residential buildings was expected to be higher. The results of the survey carried out in the period from March 2012 to May 2012 show that radon concentrations are <200 Bq m(-3) in ∼87% of cases. However, dwellings with radon concentration ∼800 Bq m(-3) were found in Poland and Slovakia. It was also found that the distribution of radon frequency follows that of houses according to the year of their construction.

  17. Radon level and indoor gamma doses in dwellings of Trabzon, Turkey.

    PubMed

    Kurnaz, A; Küçükömeroğlu, B; Cevik, U; Celebi, N

    2011-10-01

    The seasonal variations of the indoor radon activity concentrations were determined in the 97 dwellings of Trabzon, Turkey. The annual average indoor radon activity concentration varied from 8 to 583 Bq/m³. The average winter/summer ratio of radon activity concentrations was 3.62. The gamma activity concentrations in the soil samples were determined as 41, 38, 443 and 25 Bq/kg for ²²⁶Ra, ²³²Th, ⁴⁰K and ¹³⁷Cs, respectively. The average gamma dose rate in air and the annual effective dose equivalent for outdoor occupancy were calculated as 63 nGy/h and 77 μSv/y, respectively.

  18. Correlation analysis of the natural radionuclides in soil and indoor radon in Vojvodina, Province of Serbia.

    PubMed

    Forkapic, S; Maletić, D; Vasin, J; Bikit, K; Mrdja, D; Bikit, I; Udovičić, V; Banjanac, R

    2017-01-01

    The most dominant source of indoor radon is the underlying soil, so the enhanced levels of radon are usually expected in mountain regions and geology units with high radium and uranium content in surface soils. Laboratory for radioactivity and dose measurement, Faculty of Sciences, University of Novi Sad has rich databases of natural radionuclides concentrations in Vojvodina soil and also of indoor radon concentrations for the region of Vojvodina, Northern Province of Serbia. In this paper we present the results of correlative and multivariate analysis of these results and soil characteristics in order to estimate the geogenic radon potential. The correlative and multivariate analysis were done using Toolkit for Multivariate Analysis software package TMVA package, within ROOT analysis framework, which uses several comparable multivariate methods for our analysis. The evaluation ranking results based on the best signal efficiency and purity, show that the Boosted Decision Trees (BDT) and Multi Layer Preceptor (MLP), based on Artificial Neural Network (ANN), are multivariate methods which give the best results in the analysis. The BDTG multivariate method shows that variables with the highest importance are radio-nuclides activity on 30 cm depth. Moreover, the multivariate regression methods give a good approximation of indoor radon activity using full set of input variables. On several locations in the city of Novi Sad the results of indoor radon concentrations, radon emanation from soil, gamma spectrometry measurements of underlying soil and geology characteristics of soil were analyzed in detail in order to verify previously obtained correlations for Vojvodina soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Overview of current radon and radon daughter research at LBL

    SciTech Connect

    Not Available

    1983-01-01

    This report provides a brief summary of radon and radon daughter research at Lawrence Berkeley Laboratory. The radon and radon daughter research program has two broad goals: (1) the study of sources of radon and its subsequent transport into houses, and (2) research on the behavior of radon daughters in indoor environments. Additional research effort is directed to several auxiliary areas, including development of instrumentation and monitoring techniques, studies of indoor air movement, and measurement and control of indoor particulate concentrations.

  20. Radon concentrations in different types of dwellings in Israel.

    PubMed

    Epstein, L; Koch, J; Riemer, T; Orion, I; Haquin, G

    2014-12-01

    The average radon concentration in Israeli dwellings was assessed by combining the results of a 2006 radon survey in single-family houses with the results of a 2011 radon survey in apartments of multistorey buildings. Both surveys were based on long-term measurements using CR-39 detectors. The survey in multistorey buildings was intended to assess the influence of recent practices in the local building industry on the radon concentrations. These practices include the use of building materials with higher concentrations of the natural radionuclides in the last 20 y than before, as well as the improvement in sealing techniques over that period. Another practice in place since the early 1990 s is the building of a shielded area in every apartment that is known as an RSS (residential secure space). The RSS is a room built from massive concrete walls, floor and ceiling that can be hermetically sealed and is intended to protect its residents from a missile attack. The influence of the above-mentioned features on radon concentrations was estimated by dividing the participating apartments into two groups: apartments in buildings >20 y, built using building materials with low concentrations of the natural radionuclides, regular sealing and without an RSS and apartments in buildings newer than 10 y, built using building materials with higher concentrations of the natural radionuclides, improved sealing and including an RSS. It was found that the average radon concentration in apartments in new buildings was significantly higher than in old buildings and the average radon concentration in single-family houses was significantly higher than in apartments in multistorey buildings. Doses due to indoor radon were estimated on the basis of the updated information included in the 2009 International Commission on Radiological Protection statement on radon.

  1. A study of Monitoring and Mapping for Radon-Concentration Distribution in Gyeongju - 12201

    SciTech Connect

    Park, Chan Hee; Lee, Jung Min; Jang, So Young; Kim, Shin Jae; Moon, Joo Hyun

    2012-07-01

    Radon is one of the most important contributors to the radiation exposure in humans. This study measured the indoor radon concentrations at the 17 elementary school auditoriums that were sampled from those in the city of Gyeongju, Korea. The reason that an elementary school was selected as a measurement object is that many students and teachers stay for a long time in a day and it's easy to identify the characteristics of the auditorium building such as the essential building. The measurement shows that most of the indoor radon concentrations at the 17 elementary school auditoriums did not exceed 148 Bq/m{sup 3} that is the action level recommended by U.S. Environmental Protection Agency. This study measured the indoor radon concentrations at the elementary school auditoriums in Gyeongju. The measurements were analyzed according to the bedrock type and the time intervals per day. In this study, it was found that the indoor radon concentrations over off-duty hours were generally higher that those over on-duty hours, and the indoor radon concentration in the area whose bedrock is volcanic rock was higher than those in the area of the other types of bedrock. As mentioned above, attention has to be paid to an elementary school since many young students and teachers stay for more 6 hours a day at it. Hence, it is necessary to continuously monitor and properly manage the indoor radon concentrations in the elementary schools. (authors)

  2. Indoor air-assessment: Indoor concentrations of environmental carcinogens

    SciTech Connect

    Gold, K.W.; Naugle, D.F.; Berry, M.A.

    1991-01-01

    In the report, indoor concentration data are presented for the following general categories of air pollutants: radon-222, environmental tobacco smoke (ETS), asbestos, gas phase organic compounds, formaldehyde, polycyclic aromatic hydrocarbons (PAH), pesticides, and inorganic compounds. These pollutants are either known or suspect carcinogens (i.e., radon-222, asbestos) or more complex mixtures or classes of compounds which contain known or suspect carcinogens. Concentration data for individual carcinogenic compounds in complex mixtures are usually far from complete. The data presented for complex mixtures often include compounds which are not carcinogenic or for which data are insufficient to evaluate carcinogenicity. Their inclusion is justified, however, by the possibility that further work may show them to be carcinogens, cocarcinogens, initiators or promotors, or that they may be employed as markers (e.g., nicotine, acrolein) for the estimation of exposure to complex mixtures.

  3. Effect of indoor-generated airborne particles on radon progeny dynamics.

    PubMed

    Trassierra, C Vargas; Stabile, L; Cardellini, F; Morawska, L; Buonanno, G

    2016-08-15

    In order to investigate the interaction between radon progeny and particles, an experimental campaign was carried out in a radon chamber at the Italian National Institute of Ionizing Radiation Metrology, quantifying the amount of attached and unattached radon daughters present in air, as well as the equilibrium factor in the presence of particles generated through indoor sources. A fixed radon concentration was maintained, while particles were generated using incense sticks, mosquito coils and gas combustion. Aerosols were characterized in terms of particle concentrations and size distributions. Simultaneously, radon concentration and attached/unattached potential alpha energy concentration in the air were continuously monitored by two different devices, based on alpha spectroscopy techniques. The presence of particles was found to affect the attached fraction of radon decay products, in such a way that the particles acted as a sink for radionuclides. In terms of sources which emit large particles (e.g. incense, mosquito coils), which greatly increase particle surface area concentrations, the Equilibrium Factor was found to double with respect to the background level before particle generation sessions. On the contrary, the radon decay product dynamics were not influenced by gas combustion processes, mainly due to the small surface area of the particles emitted. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Machine learning for the analysis of indoor radon distribution, compared with ordinary kriging.

    PubMed

    Pegoretti, S; Verdi, L

    2009-12-01

    Having a reliable forecasting tool is necessary to correctly identify radon prone areas, especially in cases where the variable of interest is the indoor radon concentration. An appropriate characterisation of the features of the buildings becomes fundamental. In this work, the results obtained (in global and local scale) using the following approaches for estimating the concentration of indoor radon at locations that were not sampled were compared: geostatistical model, based on ordinary kriging, and machine learning (ML) technique. In the first case, algorithms designed for the specific and fine treatment (by modelling the variographic structure) of the spatial component of the phenomenon were used, whereas in the second case a model that can also exploit information linked to other variables that characterise each single dwelling in which the measure was conducted was used. For locations having large errors, the ML approach provides better results, due to the information related to 'soil contact' and 'building material'.

  5. Radon

    MedlinePlus

    ... comes from the natural breakdown of uranium in soil, rock, and water. Radon is the second leading cause of lung cancer in the United States. There are low levels of radon outdoors. Indoors, there can be high levels. Radon can enter ...

  6. Dose estimation derived from the exposure to radon, thoron and their progeny in the indoor environment

    PubMed Central

    Ramola, R. C.; Prasad, Mukesh; Kandari, Tushar; Pant, Preeti; Bossew, Peter; Mishra, Rosaline; Tokonami, S.

    2016-01-01

    The annual exposure to indoor radon, thoron and their progeny imparts a major contribution to inhalation doses received by the public. In this study, we report results of time integrated passive measurements of indoor radon, thoron and their progeny concentrations that were carried out in Garhwal Himalaya with the aim of investigating significant health risk to the dwellers in the region. The measurements were performed using recently developed LR-115 detector based techniques. The experimentally determined values of radon, thoron and their progeny concentrations were used to estimate total annual inhalation dose and annual effective doses. The equilibrium factors for radon and thoron were also determined from the observed data. The estimated value of total annual inhalation dose was found to be 1.8 ± 0.7 mSv/y. The estimated values of the annual effective dose were found to be 1.2 ± 0.5 mSv/y and 0.5 ± 0.3 mSv/y, respectively. The estimated values of radiation doses suggest no important health risk due to exposure of radon, thoron and progeny in the study area. The contribution of indoor thoron and its progeny to total inhalation dose ranges between 13–52% with mean value of 30%. Thus thoron cannot be neglected when assessing radiation doses. PMID:27499492

  7. Dose estimation derived from the exposure to radon, thoron and their progeny in the indoor environment

    NASA Astrophysics Data System (ADS)

    Ramola, R. C.; Prasad, Mukesh; Kandari, Tushar; Pant, Preeti; Bossew, Peter; Mishra, Rosaline; Tokonami, S.

    2016-08-01

    The annual exposure to indoor radon, thoron and their progeny imparts a major contribution to inhalation doses received by the public. In this study, we report results of time integrated passive measurements of indoor radon, thoron and their progeny concentrations that were carried out in Garhwal Himalaya with the aim of investigating significant health risk to the dwellers in the region. The measurements were performed using recently developed LR-115 detector based techniques. The experimentally determined values of radon, thoron and their progeny concentrations were used to estimate total annual inhalation dose and annual effective doses. The equilibrium factors for radon and thoron were also determined from the observed data. The estimated value of total annual inhalation dose was found to be 1.8 ± 0.7 mSv/y. The estimated values of the annual effective dose were found to be 1.2 ± 0.5 mSv/y and 0.5 ± 0.3 mSv/y, respectively. The estimated values of radiation doses suggest no important health risk due to exposure of radon, thoron and progeny in the study area. The contribution of indoor thoron and its progeny to total inhalation dose ranges between 13–52% with mean value of 30%. Thus thoron cannot be neglected when assessing radiation doses.

  8. Comparative survey of outdoor, residential and workplace radon concentrations.

    PubMed

    Barros, Nirmalla; Field, Dan W; Steck, Daniel J; Field, R William

    2015-02-01

    This study investigated radon concentrations in above-ground (i.e. first floor) workplace in Missouri and compared them with above-ground radon concentrations in nearby homes and outdoor locations. This study also examined the potential utility of using home and outdoor radon concentrations to predict the radon concentration at a nearby workplace (e.g. county agencies and schools). Even though workplace radon concentrations were not statistically different from home radon concentrations, the radon concentration at a particular home, or outdoor location, was a poor predictor of the radon concentration at a nearby workplace. Overall, 9.6 and 9.9 % of homes and workplace, respectively, exhibited radon concentrations of ≥148 Bq m(-3). Because of the percentage of workplace with elevated radon concentrations, the results suggest that additional surveys of workplace radon concentrations are needed, especially in areas of high radon potential, to assess the contribution of workplace radon exposure to an individual's overall radon exposure.

  9. TESTING OF INDOOR RADON REDUCTION TECHNIQUES IN 19 MARYLAND HOUSES

    EPA Science Inventory

    The report gives results of testing of indoor radon reduction techniques in 19 existing houses in Maryland. The focus was on passive measures: various passive soil depressurization methods, where natural wind and temperature effects are utilized to develop suction in the system; ...

  10. TESTING OF INDOOR RADON REDUCTION TECHNIQUES IN 19 MARYLAND HOUSES

    EPA Science Inventory

    The report gives results of testing of indoor radon reduction techniques in 19 existing houses in Maryland. The focus was on passive measures: various passive soil depressurization methods, where natural wind and temperature effects are utilized to develop suction in the system; ...

  11. The Italian national survey of indoor radon exposure.

    PubMed

    Sciocchetti, G; Scacco, F; Baldassini, P G; Battella, C; Bovi, M; Monte, L

    1985-10-01

    An investigation is being developed by the Comitato Nazionale per la Ricerca e per lo Sviluppo dell'Energia Nucleare e delle Energie Alternative, ENEA, to assess the indoor exposure of the Italian population. The programme, which started in 1982, includes regional and local surveys in all the administrative districts and intensive investigations of factors which influence indoor radon levels. The survey is organized by statistical areas of sampling to obtain representative samples of houses. The definition of the areas takes into account basic parameters e.g. geolithological environments, radon soil gas from underlying soils and rocks, specific activities of local building materials, climatic and seasonal variations, building technology, types of houses and town planning. The collected data may also be used for the compilation of radon risk maps to plan special monitoring and remedial actions if needed. Preliminary results concerning the above items are discussed.

  12. Calibration of the Politrack® system based on CR39 solid-state nuclear track detectors for passive indoor radon concentration measurements.

    PubMed

    Kropat, G; Baechler, S; Bailat, C; Barazza, F; Bochud, F; Damet, J; Meyer, N; Palacios Gruson, M; Butterweck, G

    2015-11-01

    Swiss national requirements for measuring radon gas exposures demand a lower detection limit of 50 kBq h m(-3), representing the Swiss concentration average of 70 Bq m(-3) over a 1-month period. A solid-state nuclear track detector (SSNTD) system (Politrack, Mi.am s.r.l., Italy) has been acquired to fulfil these requirements. This work was aimed at the calibration of the Politrack system with traceability to international standards and the development of a procedure to check the stability of the system. A total of 275 SSNTDs was exposed to 11 different radon exposures in the radon chamber of the Secondary Calibration Laboratory at the Paul Scherrer Institute, Switzerland. The exposures ranged from 50 to 15000 kBq h m(-3). For each exposure of 20 detectors, 5 SSNTDs were used to monitor possible background exposures during transport and storage. The response curve and the calibration factor of the whole system were determined using a Monte Carlo fitting procedure. A device to produce CR39 samples with a reference number of tracks using a (241)Am source was developed for checking the long-term stability of the Politrack system. The characteristic limits for the detection of a possible system drift were determined following ISO Standard 11929. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Measurement of Radon in Indoor Air.

    ERIC Educational Resources Information Center

    Downey, Daniel M.; Simolunas, Glenn

    1988-01-01

    Describes a laboratory experiment to teach the principles of air sampling, gamma ray spectroscopy, nuclear decay, and radioactive equilibrium. Analyzes radon by carbon adsorption and gamma ray counting. Provides methodology and rate of decay equations. (MVL)

  14. Measurement of Radon in Indoor Air.

    ERIC Educational Resources Information Center

    Downey, Daniel M.; Simolunas, Glenn

    1988-01-01

    Describes a laboratory experiment to teach the principles of air sampling, gamma ray spectroscopy, nuclear decay, and radioactive equilibrium. Analyzes radon by carbon adsorption and gamma ray counting. Provides methodology and rate of decay equations. (MVL)

  15. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres

    SciTech Connect

    Hopke, P.K.

    1992-07-01

    This report covers the second year of the 28 month grant current grant to Clarkson University to study the chemical and physical behavior of the polonium 218 atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and it dose to the cells in the respiratory tract are to be fully assessed. Two areas of radon progeny behavior are being pursued; laboratory studies under controlled conditions to better understand the fundamental physical and chemical process that affect the progeny's atmospheric behavior and studies in actual indoor environments to develop a better assessment of the exposure of the occupants of that space to the size and concentration of the indoor radioactive aerosol. This report describes the progress toward achieving these objectives.

  16. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres

    SciTech Connect

    Hopke, P.K.

    1990-01-01

    The chemical and physical behavior of the {sup 218}Po atom immediately following its formation by the alpha decay of radon must be understood if the exposure to radon progeny is to be fully assessed. Two areas of radon progeny behavior will be studied; laboratory studies and studies in actual indoor environments. Laboratory studies include: Measure the neutralization rate of {sup 218}Po{sup +}{sub x} in O{sub 2} at low radon concentrations. Determine the formation rates of {center dot}OH, {center dot}O, or other oxidative radicals formed by the radiolysis of air following radon decay. Examine the formation of particles by the radiolytic oxidation of substances and measure the rate of ion-induced nucleation in the sulfuric acid-water vapor system with and without NH{sub 3} additions using a thermal diffusion cloud chamber. Exposure studies include: Initiate measurements of the activity size distribution in actual homes with occupants present; Initiate a prospective study of the utility of measurement of deposited {sup 210}Pb embedded in glass surfaces as a measure of the long-term, integrated exposure of the population to radon, and acquire the components and begin to develop the methodology to determine the hygroscopicity of the indoor aerosol.

  17. alpha-Radiation dose at bronchial bifurcations of smokers from indoor exposure to radon progeny.

    PubMed Central

    Martell, E A

    1983-01-01

    Synergistic interactions of indoor radon progeny with the cigarette smoking process have been evaluated experimentally. Smoking enhances the air concentration of submicron particles and attached radon decay products. Fractionation in burning cigarettes gives rise to the association of radon progeny with large particles in mainstream cigarette smoke, which are selectively deposited in "hot spots" at bronchial bifurcations. Because smoke tars are resistant to dissolution in lung fluid, attached radon progeny undergo substantial radioactive decay at bifurcations before clearance. Radon progeny inhaled during normal breathing between cigarettes make an even larger contribution to the alpha-radiation dose at bifurcations. Progressive chemical and radiation damage to the epithelium at bifurcations gives rise to prolonged retention of insoluble 210Pb-enriched smoke particles produced by tobacco trichome combustion. The high incidence of lung cancer in cigarette smokers is attributed to the cumulative alpha-radiation dose at bifurcations from indoor radon and thoron progeny--218Po, 214Po, 212Po, and 212Bi--plus that from 210Po in 210Pb-enriched smoke particles. It is estimated that a carcinogenic alpha-radiation dose of 80-100 rads (1 rad = 0.01 J/kg = 0.01 Gy) is delivered to approximately equal to 10(7) cells (approximately equal to 10(6) cells at individual bifurcations) of most smokers who die of lung cancer. PMID:6572389

  18. Radon in indoor air of primary schools: determinant factors, their variability and effective dose.

    PubMed

    Madureira, Joana; Paciência, Inês; Rufo, João; Moreira, André; de Oliveira Fernandes, Eduardo; Pereira, Alcides

    2016-04-01

    Radon is a radioactive gas, abundant in granitic areas, such as in the city of Porto at the north-east of Portugal. This gas is a recognized carcinogenic agent, being appointed by the World Health Organization as the leading cause of lung cancer after smoking. The aim of this preliminary survey was to determine indoor radon concentrations in public primary schools, to analyse the main factors influencing their indoor concentration levels and to estimate the effective dose in students and teachers in primary schools. Radon concentrations were measured in 45 classrooms from 13 public primary schools located in Porto, using CR-39 passive radon detectors for about 2-month period. In all schools, radon concentrations ranged from 56 to 889 Bq/m(3) (mean = 197 Bq/m(3)). The results showed that the limit of 100 Bq/m(3) established by WHO IAQ guidelines was exceeded in 92 % of the measurements, as well as 8 % of the measurements exceeded the limit of 400 Bq/m(3) established by the national legislation. Moreover, the mean annual effective dose was calculated as 1.25 mSv/y (ranging between 0.58 and 3.07 mSv/y), which is below the action level (3-10 mSv). The considerable variability of radon concentration observed between and within floors indicates a need to monitor concentrations in several rooms for each floor. A single radon detector for each room can be used, provided that the measurement error is considerably lower than variability of radon concentration between rooms. The results of the present survey will provide useful baseline data for adopting safety measures and dealing effectively with radiation emergencies. In particular, radon remediation techniques should be used in buildings located in the highest radon risk areas of Portugal. The results obtained in the current study concerning radon levels and their variations will be useful to optimize the design of future research surveys.

  19. Measurements of the deposition rates of radon daughters on indoor surfaces

    SciTech Connect

    Toohey, R.E.; Essling, M.A.; Rundo, J.; Hengde, W.

    1983-01-01

    The deposition rates of radon daughters on indoor surfaces have been measured by exposing the window of a proportional counter to the air of a house with high concentrations of radon and its daughters. Deposition velocities for unattached RaA and RaB of approximately 4 mm sec/sup -1/ were obtained by dividing the deposition rates by the concentrations of unattached daughters in the air. These results agree with those obtained by other workers but are dependent on the assumptions made about the fractions of the daughters which are attached to the atmospheric aerosol.

  20. Diffusion of radon through concrete block walls: A significant source of indoor radon

    USGS Publications Warehouse

    Lively, R.S.; Goldberg, L.F.

    1999-01-01

    Basement modules located in southern Minnesota have been the site of continuous radon and environmental measurements during heating seasons since 1993. Concentrations of radon within the basement modules ranged from 70 Bq.m-3 to over 4000 Bq.m-3 between November to April during the three measurement periods. In the soil gas for the same times, concentrations of radon ranged between 25,000 and 70,000 Bq.m-3. Levels of radon within the basement modules changed by factors of five or more within 24 h, in concert with pressure gradients of 4 to 20 Pa that developed between the basement modules and their surroundings. Diffusion is identified as the principal method by which radon is transferred into and out of the basement modules, and appears to be relatively independent of insulating materials and vapour retarders. The variability of radon and correlations with differential pressure gradients may be related to air currents in the block walls and soil that interrupt radon diffusing inward. This yields a net decrease of radon in the basement modules by decay and outward diffusion. Levels of radon within the basement modules increase when the pressure differential is zero and air flow ceases, allowing diffusion gradients to be re-established. Radon levels in both the soil and the basement modules then increase until an equilibrium is achieved.

  1. Lung cancer deaths from indoor radon and the cost effectiveness and potential of policies to reduce them

    PubMed Central

    Read, Simon; McGale, Paul; Darby, Sarah

    2009-01-01

    Objective To determine the number of deaths from lung cancer related to radon in the home and to explore the cost effectiveness of alternative policies to control indoor radon and their potential to reduce lung cancer mortality. Design Cost effectiveness analysis. Setting United Kingdom. Data sources Epidemiological data on risks from indoor radon and from smoking, vital statistics on deaths from lung cancer, survey information on effectiveness and costs of radon prevention and remediation. Main outcome measures Estimated number of deaths from lung cancer related to indoor radon, lifetime risks of death from lung cancer before and after various potential interventions to control radon, the cost per quality adjusted life year (QALY) gained from different policies for control of radon, and the potential of those policies to reduce lung cancer mortality. Results The mean radon concentration in UK homes is 21 becquerels per cubic metre (Bq/m3). Each year around 1100 deaths from lung cancer (3.3% of all deaths from lung cancer) are related to radon in the home. Over 85% of these arise from radon concentrations below 100 Bq/m3 and most are caused jointly by radon and active smoking. Current policy requiring basic measures to prevent radon in new homes in selected areas is highly cost effective, and such measures would remain cost effective if extended to the entire UK, with a cost per QALY gained of £11 400 ( €12 200; $16 913). Current policy identifying and remediating existing homes with high radon levels is, however, neither cost effective (cost per QALY gained £36 800) nor effective in reducing lung cancer mortality. Conclusions Policies requiring basic preventive measures against radon in all new homes throughout the UK would be cost effective and could complement existing policies to reduce smoking. Policies involving remedial work on existing homes with high radon levels cannot prevent most radon related deaths, as these are caused by moderate exposure

  2. AN OVERVIEW OF INDOOR RADON RISK REDUCTION IN THE UNITED STATES

    EPA Science Inventory

    Radon in the indoor environment is a recognized environmental hazard. The Environmental Protection Agency (EPA) has established several programs to develop, demonstrate, and transfer radon mitigation technology. Administration and management of these programs are shared by EPA's ...

  3. AN OVERVIEW OF INDOOR RADON RISK REDUCTION IN THE UNITED STATES

    EPA Science Inventory

    Radon in the indoor environment is a recognized environmental hazard. The Environmental Protection Agency (EPA) has established several programs to develop, demonstrate, and transfer radon mitigation technology. Administration and management of these programs are shared by EPA's ...

  4. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres

    SciTech Connect

    Hopke, P.K.

    1992-07-01

    This report describes studies on the chemical and physical behavior of the [sup 218]Po atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity in the sub-10 nm size range result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and its dose to the cells in the respiratory tract are to be fully assessed. The specific tasks of the controlled laboratory studies are to determine the formation rates of [center dot]OH radicals formed by the radiolysis of air following radon decay, to examine the formation of particles by the radiolytic oxidation of substances like SO[sub 2] ethylene, and H[sub 2]S to lower vapor pressure compounds and determine the role of gas phase additives such as H[sub 2]O and NH[sub 3] in determining the particle size, to measure the rate of ion-induced nucleation using a thermal diffusion cloud chamber, and to measure the neutralization rate of [sup 218]Po[sub x][sup +] in O[sub 2] at low radon concentrations. Tasks of the exposure studies in occupied indoor spaces are to initiate measurements of the activity size distributions in actual homes with occupants present so that the variability of the indoor activity size distributions can be assessed with respect to indoor aerosol sources and general lifestyle variations of the occupants, to initiate a prospective study of the utility of measurement of deposited [sup 210]Pb embedded in glass surfaces as a measure of the long-term, integrated exposure of the population to radon, and to develop the methodology to determine the hygroscopicity of the indoor aerosol so that the changes in deposition efficiency of the radioactive indoor aerosol with hygroscopic growth in the respiratory tract can be assessed.

  5. Log-normality of indoor radon data in the Walloon region of Belgium.

    PubMed

    Cinelli, Giorgia; Tondeur, François

    2015-05-01

    The deviations of the distribution of Belgian indoor radon data from the log-normal trend are examined. Simulated data are generated to provide a theoretical frame for understanding these deviations. It is shown that the 3-component structure of indoor radon (radon from subsoil, outdoor air and building materials) generates deviations in the low- and high-concentration tails, but this low-C trend can be almost completely compensated by the effect of measurement uncertainties and by possible small errors in background subtraction. The predicted low-C and high-C deviations are well observed in the Belgian data, when considering the global distribution of all data. The agreement with the log-normal model is improved when considering data organised in homogeneous geological groups. As the deviation from log-normality is often due to the low-C tail for which there is no interest, it is proposed to use the log-normal fit limited to the high-C half of the distribution. With this prescription, the vast majority of the geological groups of data are compatible with the log-normal model, the remaining deviations being mostly due to a few outliers, and rarely to a "fat tail". With very few exceptions, the log-normal modelling of the high-concentration part of indoor radon data is expected to give reasonable results, provided that the data are organised in homogeneous geological groups.

  6. An updated review of case-control studies of lung cancer and indoor radon-Is indoor radon the risk factor for lung cancer?

    PubMed

    Sheen, Seungsoo; Lee, Keu Sung; Chung, Wou Young; Nam, Saeil; Kang, Dae Ryong

    2016-01-01

    Lung cancer is a leading cause of cancer-related death in the world. Smoking is definitely the most important risk factor for lung cancer. Radon ((222)Rn) is a natural gas produced from radium ((226)Ra) in the decay series of uranium ((238)U). Radon exposure is the second most common cause of lung cancer and the first risk factor for lung cancer in never-smokers. Case-control studies have provided epidemiological evidence of the causative relationship between indoor radon exposure and lung cancer. Twenty-four case-control study papers were found by our search strategy from the PubMed database. Among them, seven studies showed that indoor radon has a statistically significant association with lung cancer. The studies performed in radon-prone areas showed a more positive association between radon and lung cancer. Reviewed papers had inconsistent results on the dose-response relationship between indoor radon and lung cancer risk. Further refined case-control studies will be required to evaluate the relationship between radon and lung cancer. Sufficient study sample size, proper interview methods, valid and precise indoor radon measurement, wide range of indoor radon, and appropriate control of confounders such as smoking status should be considered in further case-control studies.

  7. State Indoor Radon Grant (SIRG) Program

    EPA Pesticide Factsheets

    Each year EPA distributes grant funds to the States and Tribes to support their radon risk reduction programs. The State and Tribal programs are critical to the Agency's national risk reduction effort and its achievements. These SIRG funds are put to a wid

  8. Radium-226 concentration in spring water sampled in high radon regions.

    PubMed

    Onishchenko, Aleksandra; Zhukovsky, Michael; Veselinovic, Nenad; Zunic, Zora S

    2010-01-01

    Water (226)Ra concentration in springs was measured in regions with high indoor radon: Ural, North Caucasus (Russia), Niska Banja (Serbia), Piestany (Slovakia), and Issyk-Kul (Kyrgyzstan). This paper presents the results for (226)Ra concentration above 0.03 Bq l(-1). Radium in water could indicate indoor radon problem in the region and water investigation is useful at the initial stage of radon survey. Even low (226)Ra concentration in water (0.1-0.6 Bq l(-1)) caused high (226)Ra activity in travertine (up to 1500 Bq kg(-1)), which resulted in indoor radon concentration above 2000 Bq m(-3) (Niska Banja). Copyright 2009 Elsevier Ltd. All rights reserved.

  9. Influence of surficial soil and bedrock on indoor radon in New York State homes. Task 2, Subtask 2 of an investigation of infiltration and indoor air quality in New York State homes

    SciTech Connect

    Kunz, C.

    1989-10-01

    Radon can enter a building from soil and bedrock through cracks or openings in the basement. Extrapolation from data obtained from studies of miners exposed to high concentrations of radon and other carcinogens over long periods indicates that radon gas in the home poses an increased risk of lung cancer. The project was initiated to determine the characteristics of soil and bedrock that contribute to the availability of radon for infiltration into the home, and the feasibility of using soil characteristics in mapping areas at higher risk for above-average indoor radon in New York State. After conducting soil surveys across the State, the researchers choose four areas for further study. Fifteen homes in each area were tested for indoor air concentrations of radon, air infiltration into the home, radon concentrations in the soil, and the permeability of the soil for gas flow. The researchers concluded that these parameters could be combined to obtain a Radon Index Number to predict mean indoor radon levels for a given area with similar soil geology. However, this measure has a limited ability to predict indoor radon levels for a particular home due to variations in construction as well as differences in soil and bedrock.

  10. Systematic indoor radon and gamma-ray measurements in Slovenian schools

    SciTech Connect

    Vaupotic, J.; Sikovec, M.; Kobal, I.

    2000-05-01

    During the winter months of 1992/93 and 1993/94, instantaneous indoor radon concentrations and gamma dose rates were measured in 890 schools in Slovenia attended in total by about 280,000 pupils. Under closed conditions, the room to be surveyed was closed for more than 12 h prior to sampling, the air was sampled into alpha scintillation cells with a volume of 700 cm{sup 3}, and alpha activity was measured. An arithmetic mean of 168 Bq m{sup {minus}3} and a geometric mean of 82 Bq m{sup {minus}3} were obtained. In 67% of schools, indoor radon concentrations were below 100 Bq m{sup {minus}3}, and in 8.7% (77 schools with about 16,000 pupils) they exceeded 400 Bq m{sup {minus}3}, which is the proposed Slovene action level. In the majority of cases, radon concentrations were high due to the geological characteristics of the ground. Approximately 70% of schools with high radon levels were found in the Karst region. Gamma dose rates were measured using a portable scintillation counter. An arithmetic mean of 102 nGy h{sup {minus}1} and a geometric mean of 95 nGy h{sup {minus}1} were obtained. No extraordinarily high values were recorded.

  11. Mapping soil gas radon concentration: a comparative study of geostatistical methods.

    PubMed

    Buttafuoco, Gabriele; Tallarico, Adalisa; Falcone, Giovanni

    2007-08-01

    Understanding soil gas radon spatial variations can allow the constructor of a new house to prevent radon gas flowing from the ground. Indoor radon concentration distribution depends on many parameters and it is difficult to use its spatial variation to assess radon potential. Many scientists use to measure outdoor soil gas radon concentrations to assess the radon potential. Geostatistical methods provide us a valuable tool to study spatial structure of radon concentration and mapping. To explore the structure of soil gas radon concentration within an area in south Italy and choice a kriging algorithm, we compared the prediction performances of four different kriging algorithms: ordinary kriging, lognormal kriging, ordinary multi-Gaussian kriging, and ordinary indicator cokriging. Their results were compared using an independent validation data set. The comparison of predictions was based on three measures of accuracy: (1) the mean absolute error, (2) the mean-squared error of prediction; (3) the mean relative error, and a measure of effectiveness: the goodness-of-prediction estimate. The results obtained in this case study showed that the multi-Gaussian kriging was the most accurate approach among those considered. Comparing radon anomalies with lithology and fault locations, no evidence of a strict correlation between type of outcropping terrain and radon anomalies was found, except in the western sector where there were granitic and gneissic terrain. Moreover, there was a clear correlation between radon anomalies and fault systems.

  12. Air conditioning impact on the dynamics of radon and its daughters concentration.

    PubMed

    Kozak, Krzysztof; Grządziel, Dominik; Połednik, Bernard; Mazur, Jadwiga; Dudzińska, Marzenna R; Mroczek, Mariusz

    2014-12-01

    Radon and its decay products are harmful pollutants present in indoor air and are responsible for the majority of the effective dose due to ionising radiation that people are naturally exposed to. The paper presents the results of the series of measurements of radon and its progeny (in unattached and attached fractions) as well as indoor air parameters: temperature, relative humidity, number and mass concentrations of fine aerosol particles. The measurements were carried out in the auditorium (lecture hall), which is an indoor air quality laboratory, in controlled conditions during two periods of time: when air conditioning (AC) was switched off (unoccupied auditorium) and when it was switched on (auditorium in normal use). The significant influence of AC and of students' presence on the dynamics of radon and its progeny was confirmed. A decrease in the mean value of radon and its attached progeny was found when AC was working. The mean value of radon equilibrium factor F was also lower when AC was working (0.49) than when it was off (0.61). The linear correlations were found between attached radon progeny concentration and particle number and mass concentration only when the AC was switched off. This research is being conducted with the aim to study the variability of radon equilibrium factor F which is essential to determine the effective dose due to radon and its progeny inhalation. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Modeled atmospheric radon concentrations from uranium mines

    SciTech Connect

    Droppo, J.G.

    1985-04-01

    Uranium mining and milling operations result in the release of radon from numerous sources of various types and strengths. The US Environmental Protection Agency (EPA) under the Clean Air Act, is assessing the health impact of air emissions of radon from underground uranium mines. In this case, the radon emissions may impact workers and residents in the mine vicinity. To aid in this assessment, the EPA needs to know how mine releases can affect the radon concentrations at populated locations. To obtain this type of information, Pacific Northwest Laboratory used the radon emissions, release characteristics and local meterological conditions for a number of mines to model incremental radon concentrations. Long-term, average, incremental radon concentrations were computed based on the best available information on release rates, plume rise parameters, number and locations of vents, and local dispersion climatology. Calculations are made for a model mine, individual mines, and multiple mines. Our approach was to start with a general case and then consider specific cases for comparison. A model underground uranium mine was used to provide definition of the order of magnitude of typical impacts. Then computations were made for specific mines using the best mine-specific information available for each mine. These case study results are expressed as predicted incremental radon concentration contours plotted on maps with local population data from a previous study. Finally, the effect of possible overlap of radon releases from nearby mines was studied by calculating cumulative radon concentrations for multiple mines in a region with many mines. The dispersion model, modeling assumptions, data sources, computational procedures, and results are documented in this report. 7 refs., 27 figs., 18 tabs.

  14. Distribution of radon concentrations in child-care facilities in South Korea.

    PubMed

    Lee, Cheol-Min; Kwon, Myung-Hee; Kang, Dae-Ryong; Park, Tae-Hyun; Park, Si-Hyun; Kwak, Jung-Eun

    2017-02-01

    This study was conducted to provide fundamental data on the distribution of radon concentrations in child day-care facilities in South Korea and to help establish radon mitigation strategies. For this study, 230 child-care centers were randomly chosen from all child-care centers nationwide, and alpha track detectors were used to examine cumulative radon exposure concentrations from January to May 2015. The mean radon concentration measured in Korean child-care centers is approximately 52 Bq m(-3), about one-third of the upper limit of 148 Bq m(-3), which is recommended by South Korea's Indoor Air Quality Control in Public Use Facilities, etc. Act and the U.S. Environmental Protection Agency (EPA). Furthermore, this concentration is about 50% lower than 102 Bq m(-3), which is the measured concentration of radon in houses nationwide from December 2013 to February 2014. Our results indicate that the amount of ventilation, as a major determining factor for indoor radon concentrations, is strongly correlated with the fluctuation of indoor radon concentrations in Korean child-care centers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. DNA damage in oral epithelial cells of individuals chronically exposed to indoor radon ((222)Rn) in a hydrothermal area.

    PubMed

    Linhares, Diana Paula Silva; Garcia, Patrícia Ventura; Silva, Catarina; Barroso, Joana; Kazachkova, Nadya; Pereira, Rui; Lima, Manuela; Camarinho, Ricardo; Ferreira, Teresa; Dos Santos Rodrigues, Armindo

    2016-11-09

    Hydrothermal areas are potentially hazardous to humans as volcanic gases such as radon ((222)Rn) are continuously released from soil diffuse degassing. Exposure to radon is estimated to be the second leading cause of lung cancer, but little is known about radon health-associated risks in hydrothermal regions. This cross-sectional study was designed to evaluate the DNA damage in the buccal epithelial cells of individuals chronically exposed to indoor radon in a volcanic area (Furnas volcano, Azores, Portugal) with a hydrothermal system. Buccal epithelial cells were collected from 33 individuals inhabiting the hydrothermal area (Ribeira Quente village) and from 49 individuals inhabiting a non-hydrothermal area (Ponta Delgada city). Indoor radon was measured with Ramon 2.2 detectors. Chromosome damage was measured by micronucleus cytome assay, and RAPD-PCR was used as a complementary tool to evaluate DNA damage, using three 10-mer primers (D11, F1 and F12). Indoor radon concentration correlated positively with the frequency of micronucleated cells (r s = 0.325, p = 0.003). Exposure to radon is a risk factor for the occurrence micronucleated cells in the inhabitants of the hydrothermal area (RR = 1.71; 95% CI, 1.2-2.4; p = 0.003). One RAPD-PCR primer (F12) produced differences in the banding pattern, a fact that can indicate its potential for detecting radon-induced specific genomic alterations. The observed association between chronic exposure to indoor radon and the occurrence of chromosome damage in human oral epithelial cells evidences the usefulness of biological surveillance to assess mutations involved in pre-carcinogenesis in hydrothermal areas, reinforcing the need for further studies with human populations living in these areas.

  16. Indoor radon periodicities and their physical constraints: a study in the Coimbra region (Central Portugal).

    PubMed

    Neves, L J P F; Barbosa, S M; Pereira, A J S C

    2009-10-01

    Indoor radon activities were measured during a period of 6 months, as well as several physical environmental variables (temperature, pressure, humidity and rainfall). The location was a small room at an administrative building of the University of Coimbra, usually undisturbed by human activities and situated over bedrock of low-uranium Triassic red sandstones. A low average activity of radon was observed (36 Bq m(-3)), however showing a very well marked daily periodicity (10+/-5 Bq m(-3)), with maximum values occurring more frequently between 9 and 10 a.m. Daily variations are shown to have no relation with earth tides, and their amplitudes exhibit a significant correlation with outdoor temperature; no dependence on barometric pressure was found. Rainfall disturbs the observed daily radon cycles through a strong reduction of their amplitude, but has no effect on the long-term variability of the gas concentration.

  17. A prediction model for assessing residential radon concentration in Switzerland.

    PubMed

    Hauri, Dimitri D; Huss, Anke; Zimmermann, Frank; Kuehni, Claudia E; Röösli, Martin

    2012-10-01

    Indoor radon is regularly measured in Switzerland. However, a nationwide model to predict residential radon levels has not been developed. The aim of this study was to develop a prediction model to assess indoor radon concentrations in Switzerland. The model was based on 44,631 measurements from the nationwide Swiss radon database collected between 1994 and 2004. Of these, 80% randomly selected measurements were used for model development and the remaining 20% for an independent model validation. A multivariable log-linear regression model was fitted and relevant predictors selected according to evidence from the literature, the adjusted R², the Akaike's information criterion (AIC), and the Bayesian information criterion (BIC). The prediction model was evaluated by calculating Spearman rank correlation between measured and predicted values. Additionally, the predicted values were categorised into three categories (50th, 50th-90th and 90th percentile) and compared with measured categories using a weighted Kappa statistic. The most relevant predictors for indoor radon levels were tectonic units and year of construction of the building, followed by soil texture, degree of urbanisation, floor of the building where the measurement was taken and housing type (P-values <0.001 for all). Mean predicted radon values (geometric mean) were 66 Bq/m³ (interquartile range 40-111 Bq/m³) in the lowest exposure category, 126 Bq/m³ (69-215 Bq/m³) in the medium category, and 219 Bq/m³ (108-427 Bq/m³) in the highest category. Spearman correlation between predictions and measurements was 0.45 (95%-CI: 0.44; 0.46) for the development dataset and 0.44 (95%-CI: 0.42; 0.46) for the validation dataset. Kappa coefficients were 0.31 for the development and 0.30 for the validation dataset, respectively. The model explained 20% overall variability (adjusted R²). In conclusion, this residential radon prediction model, based on a large number of measurements, was demonstrated to be robust

  18. Mitigation of elevated indoor radon gas resulting from underground air return usage.

    PubMed

    Kearfott, K J; Metzger, R L; Kraft, K R; Holbert, K E

    1992-12-01

    Underground air returns have been found to be active transportation pathways for radon gas entry into homes. Several homes for which underground air returns were contributing to elevated indoor 222Rn concentrations were evaluated for possible mitigation. Two houses with such problems were successfully mitigated by inserting flexible ducts into the returns. In one of these houses, the initial mitigation attempt resulted in an exacerbation of the problem due to leakage of the ducting. This was solved by re-sleeving the returns using a stronger material. Mitigation of elevated indoor radon gas caused by use of underground air returns by inserting flexible ducts is not possible for all situations, especially those for which the returns are small, filled with debris, misaligned, or inaccessible.

  19. MODELING INDOOR CONCENTRATIONS AND EXPOSURE

    EPA Science Inventory

    The paper discusses the use of an indoor air quality model, EXPOSURE, to predict pollutant concentrations and exposures. The effects of indoor air pollutants depend on the concentrations of the pollutants and the exposure of individuals to the pollutants. The air pollutant concen...

  20. Long-term radon concentrations estimated from 210Po embedded in glass

    USGS Publications Warehouse

    Lively, R.S.; Steck, D.J.

    1993-01-01

    Measured surface-alpha activity on glass exposed in radon chambers and houses has a linear correlation to the integrated radon exposure. Experimental results in chambers and houses have been obtained on glass exposed to radon concentrations between 100 Bq m-3 and 9 MBq m-3 for periods of a few days to several years. Theoretical calculations support the experimental results through a model that predicts the fractions of airborne activity that deposit and become embedded or adsorbed. The combination of measured activity and calculated embedded fraction for a given deposition environment can be applied to most indoor areas and produces a better estimate for lifetime radon exposure than estimates based on short-term indoor radon measurements.

  1. Long-term radon concentrations estimated from 210Po embedded in glass.

    PubMed

    Lively, R S; Steck, D J

    1993-05-01

    Measured surface-alpha activity on glass exposed in radon chambers and houses has a linear correlation to the integrated radon exposure. Experimental results in chambers and houses have been obtained on glass exposed to radon concentrations between 100 Bq m-3 and 9 MBq m-3 for periods of a few days to several years. Theoretical calculations support the experimental results through a model that predicts the fractions of airborne activity that deposit and become embedded or adsorbed. The combination of measured activity and calculated embedded fraction for a given deposition environment can be applied to most indoor areas and produces a better estimate for lifetime radon exposure than estimates based on short-term indoor radon measurements.

  2. Variation of annual effective dose due to radon level in indoor air in Marwar region of Rajasthan, India

    SciTech Connect

    Rani, Asha; Mittal, Sudhir; Mehra, Rohit

    2015-08-28

    In the present work, indoor radon and thoron measurements have been carried out from different locations of Jodhpur and Nagaur districts of Northern Rajasthan, India using RAD7, a solid state alpha detector. The radon and thoron concentration in indoor air varies from 8.75 to 61.25 Bq m{sup −3} and 32.7 to 147.2 Bq m{sup −3} with the mean value of 32 and 73 Bq m{sup −3} respectively. The observed indoor radon concentration values are well below the action level recommended by International Commission on Radiological Protection (200-300 Bq m{sup −3}) and Environmental Protection Agency (148 Bq m{sup −3}). The survey reveals that the thoron concentration values in the indoor air are well within the International Commission on Radiological Protection (2005). The calculated total annual effective dose due to radon level in indoor air varies from 0.22 to 1.54 mSv y{sup −1} with the mean value of 0.81 mSv y{sup −1} which is less than even the lower limit of action level 3-10 mSv y{sup −1} recommended by International Commission on Radiological Protection (2005)

  3. FOLLOW-UP ANNUAL ALPHA-TRACK MONITORING IN 40 EASTERN PENNSYLVANIA HOUSES WITH INDOOR RADON REDUCTION SYSTEMS (DECEMBER 1988 - DECEMBER 1989)

    EPA Science Inventory

    The report gives results of 12-month-long alpha-track detector (ATD) measurements of indoor radon concentrations, between December 1988 and December 1989 in the living areas of 38 of 40 houses where radon reduction techniques had been installed 2-4 years earlier in a previous EPA...

  4. FOLLOW-UP ALPHA-TRACK MONITORING IN 40 EASTERN PENNSYLVANIA HOUSES WITH INDOOR RADON REDUCTION SYSTEMS (WINTER 1988-89)

    EPA Science Inventory

    The report gives results of 4-month-long alpha-track detector (ATD) measurements of indoor radon concentrations, completed during the winter of 1988-89 in 38 of 40 houses where radon reduction techniques had been installed 2-4 years previously during an earlier EPA project. The t...

  5. Indoor radon measurements in the granodiorite area of Bergama (Pergamon)-Kozak, Turkey.

    PubMed

    Karadeniz, Ozlem; Yaprak, Günseli; Akal, Cüneyt; Emen, Ipek

    2012-04-01

    Indoor radon levels in 20 dwellings of rural areas at the Kozak-Bergama (Pergamon) granodiorite area in Turkey were measured by the alpha track etch integrated method. These dwellings were monitored for eight successive months. Results show that the radon levels varied widely in the area ranging from 11±1 to 727±11 Bq m(-3) and the geometric mean was found to be 63 Bq m(-3) with a geometric standard deviation of 2 Bq m(-3). A log-normal distribution of the radon concentration was obtained for the studied area. Estimated annual effective doses due to the indoor radon ranged from 0.27 to 18.34 mSv y(-1) with a mean value of 1.95 mSv y(-1), which is lower than the effective dose values 3-10 mSv given as the range of action levels recommended by International Commission on Radiation Protection. All dosimetric calculations were performed based on the guidance of the UNSCEAR 2000 report.

  6. The use of mechanical ventilation with heat recovery for controlling radon and radondaughter concentrations in houses

    NASA Astrophysics Data System (ADS)

    Nazaroff, W. W.; Boegel, M. L.; Hollowell, C. D.; Roseme, G. D.

    An energy research house in Maryland was found to have radon concentrations far in excess of recommended guidelines. A mechanical ventilation system with heat recovery was installed in this house to test its effectiveness as an energy-efficient control technique for indoor radon. Radon concentration was monitored continuously for 2 weeks under varying ventilation conditions [0.07-0.8 air changes per hour (ach)] and radondaughter concentrations were measured by grab-sample techniques about nine times daily during this period. At ventilation rates of 0.6 ach and higher, radon-daughter levels dropped below guidelines for indoor concentrations. Comparison with other studies indicates that indoor radon buildup may be a problem in a considerable portion of houses characterized by their low infiltration rates. The use of mechanical ventilation systems with air-to-air heat exchangers may offer a practical, cost-effective and energy-efficient means of alleviating not only the radon problem specifically but also the general deterioration of indoor air quality in many houses designed or retrofitted to achieve low infiltration.

  7. Air radon concentration decrease in a waste water treatment plant.

    PubMed

    Juste, B; Ortiz, J; Verdú, G; Martorell, S

    2015-06-01

    (222)Rn is a naturally occurring gas created from the decay of (226)Ra. The long-term health risk of breathing radon is lung cancer. One particular place where indoor radon concentrations can exceed national guidelines is in wastewater treatment plants (WWTPs) where treatment processes may contribute to ambient airborne concentrations. The aim of this paper was to study the radon concentration decrease after the application of corrective measures in a Spanish WWTP. According to first measures, air radon concentration exceeded International Commission Radiologica1 Protection (ICRP) normative (recommends intervention between 400 and 1000 Bq m(-3)). Therefore, the WWTP improved mechanical forced ventilation to lower occupational exposure. This measure allowed to increase the administrative controls, since the limitation of workers access to the plant changed from 2 h d(-1) (considering a maximum permissible dose of 20 mSv y(-1) averaged over 5 y) to 7 h d(-1). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Lung Cancer Attributable to Indoor Radon Exposure in France: Impact of the Risk Models and Uncertainty Analysis

    PubMed Central

    Catelinois, Olivier; Rogel, Agnès; Laurier, Dominique; Billon, Solenne; Hemon, Denis; Verger, Pierre; Tirmarche, Margot

    2006-01-01

    Objective The inhalation of radon, a well-established human carcinogen, is the principal—and omnipresent—source of radioactivity exposure for the general population of most countries. Scientists have thus sought to assess the lung cancer risk associated with indoor radon. Our aim here is to assess this risk in France, using all available epidemiologic results and performing an uncertainty analysis. Methods We examined the exposure–response relations derived from cohorts of miners and from joint analyses of residential case-control studies and considered the interaction between radon and tobacco. The exposure data come from measurement campaigns conducted since the beginning of the 1980s by the Institute for Radiation Protection and Nuclear Safety and the Directorate-General of Health in France. We quantified the uncertainties associated with risk coefficients and exposures and calculated their impact on risk estimates. Results The estimated number of lung cancer deaths attributable to indoor radon exposure ranges from 543 [90% uncertainty interval (UI), 75–1,097] to 3,108 (90% UI, 2,996–3,221), depending on the model considered. This calculation suggests that from 2.2% (90% UI, 0.3–4.4) to 12.4% (90% UI, 11.9–12.8) of these deaths in France may be attributable to indoor radon. Discussion In this original work we used different exposure–response relations from several epidemiologic studies and found that regardless of the relation chosen, the number of lung cancer deaths attributable to indoor radon appears relatively stable. Smokers can reduce their risk not only by reducing their indoor radon concentration but also by giving up smoking. PMID:16966089

  9. Indoor air: Radon exposure. (Latest citations from Pollution Abstracts). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning indoor exposure to radon and its control. Articles address radon levels in homes, schools, and occupational sites. Sources of radon discussed include soils, rock strata, building materials, water supplies, combustion sources, and tobacco smoke. Risk assessment studies, toxicity, and control of radon exposure are also addressed as related topics. (Contains a minimum of 205 citations and includes a subject term index and title list.)

  10. Exposure to atmospheric radon.

    PubMed Central

    Steck, D J; Field, R W; Lynch, C F

    1999-01-01

    We measured radon (222Rn) concentrations in Iowa and Minnesota and found that unusually high annual average radon concentrations occur outdoors in portions of central North America. In some areas, outdoor concentrations exceed the national average indoor radon concentration. The general spatial patterns of outdoor radon and indoor radon are similar to the spatial distribution of radon progeny in the soil. Outdoor radon exposure in this region can be a substantial fraction of an individual's total radon exposure and is highly variable across the population. Estimated lifetime effective dose equivalents for the women participants in a radon-related lung cancer study varied by a factor of two at the median dose, 8 mSv, and ranged up to 60 mSv (6 rem). Failure to include these doses can reduce the statistical power of epidemiologic studies that examine the lung cancer risk associated with residential radon exposure. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9924007

  11. Exposure to atmospheric radon.

    PubMed

    Steck, D J; Field, R W; Lynch, C F

    1999-02-01

    We measured radon (222Rn) concentrations in Iowa and Minnesota and found that unusually high annual average radon concentrations occur outdoors in portions of central North America. In some areas, outdoor concentrations exceed the national average indoor radon concentration. The general spatial patterns of outdoor radon and indoor radon are similar to the spatial distribution of radon progeny in the soil. Outdoor radon exposure in this region can be a substantial fraction of an individual's total radon exposure and is highly variable across the population. Estimated lifetime effective dose equivalents for the women participants in a radon-related lung cancer study varied by a factor of two at the median dose, 8 mSv, and ranged up to 60 mSv (6 rem). Failure to include these doses can reduce the statistical power of epidemiologic studies that examine the lung cancer risk associated with residential radon exposure.

  12. Risk of leukaemia or cancer in the central nervous system among children living in an area with high indoor radon concentrations: results from a cohort study in Norway.

    PubMed

    Del Risco Kollerud, R; Blaasaas, K G; Claussen, B

    2014-09-23

    Over the past few years, there has been growing interest in assessing the relationship between exposure to radon at home and the risk of childhood cancer. Previous studies have produced conflicting results, probably because of limitations assessing radon exposure, too few cancer cases and poorly documented health statistics. We used a cohort approach of 0-15-year-old children to examine whether residential radon exposure was associated with childhood leukaemia and cancer in the central nervous system in the Oslo region. The study was based on Norwegian population registers and identified cancer cases from The Cancer Registry of Norway. The residence of every child was geo-coded and assigned a radon exposure. In all, 712 674 children were followed from 1967 to 2009 from birth to date of cancer diagnosis, death, emigration or 15 years of age. A total of 864 cancer cases were identified, 437 children got leukaemia and 427 got cancer in the central nervous system.Conclusions or interpretation:No association was found for childhood leukaemia. An elevated nonsignificant risk for cancer in the central nervous system was observed. This association should be interpreted with caution owing to the crude exposure assessment and possibilities of confounding.

  13. Risk of leukaemia or cancer in the central nervous system among children living in an area with high indoor radon concentrations: results from a cohort study in Norway

    PubMed Central

    Del Risco Kollerud, R; Blaasaas, K G; Claussen, B

    2014-01-01

    Background: Over the past few years, there has been growing interest in assessing the relationship between exposure to radon at home and the risk of childhood cancer. Previous studies have produced conflicting results, probably because of limitations assessing radon exposure, too few cancer cases and poorly documented health statistics. Methods: We used a cohort approach of 0–15-year-old children to examine whether residential radon exposure was associated with childhood leukaemia and cancer in the central nervous system in the Oslo region. The study was based on Norwegian population registers and identified cancer cases from The Cancer Registry of Norway. The residence of every child was geo-coded and assigned a radon exposure. Results: In all, 712 674 children were followed from 1967 to 2009 from birth to date of cancer diagnosis, death, emigration or 15 years of age. A total of 864 cancer cases were identified, 437 children got leukaemia and 427 got cancer in the central nervous system. Conclusions or interpretation: No association was found for childhood leukaemia. An elevated nonsignificant risk for cancer in the central nervous system was observed. This association should be interpreted with caution owing to the crude exposure assessment and possibilities of confounding. PMID:25117818

  14. Nanoaerosols Including Radon Decay Products in Outdoor and Indoor Air at a Suburban Site

    PubMed Central

    Smerajec, Mateja; Vaupotič, Janja

    2012-01-01

    Nanoaerosols have been monitored inside a kitchen and in the courtyard of a suburban farmhouse. Total number concentration and number size distribution (5–1000 nm) of general aerosol particles, as measured with a Grimm Aerosol SMPS+C 5.400 instrument outdoors, were mainly influenced by solar radiation and use of farming equipment, while, indoors, they were drastically changed by human activity in the kitchen. In contrast, activity concentrations of the short-lived radon decay products 218Po, 214Pb, and 214Bi, both those attached to aerosol particles and those not attached, measured with a Sarad EQF3020-2 device, did not appear to be dependent on these activities, except on opening and closing of the kitchen window. Neither did a large increase in concentration of aerosol particles smaller than 10 or 20 nm, with which the unattached radon products are associated, augment the fraction of the unattached decay products significantly. PMID:22523488

  15. Distance to faults as a proxy for radon gas concentration in dwellings.

    PubMed

    Drolet, Jean-Philippe; Martel, Richard

    2016-02-01

    This research was done to demonstrate the usefulness of the local structural geology characteristics to predict indoor radon concentrations. The presence of geologic faults near dwellings increases the vulnerability of the dwellings to elevated indoor radon by providing favorable pathways from the source uranium-rich bedrock units to the surface. Kruskal-Wallis one-way analyses of variance by ranks were used to determine the distance where faults have statistically significant influence on indoor radon concentrations. The great-circle distance between the 640 spatially referenced basement radon concentration measurements and the nearest fault was calculated using the Haversine formula and the spherical law of cosines. It was shown that dwellings located less than 150 m from a major fault had a higher radon potential. The 150 m threshold was determined using Kruskal-Wallis ANOVA on: (1) all the basement radon measurements dataset and; (2) the basement radon measurements located on uranium-rich bedrock units only. The results indicated that 22.8% of the dwellings located less than 150 m from a fault exceeded the Canadian radon guideline of 200 Bq/m(3) when using all the basement radon measurements dataset. This percentage fell to 15.2% for the dwellings located between 150 m and 700 m from a fault. When using only the basement radon measurements located on uranium-rich bedrock units, these percentages were 30.7% (0-150 m) and 17.5% (150 m-700 m). The assessment and management of risk can be improved where structural geology characteristics base maps are available by using this proxy indicator. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Review of low-energy construction, air tightness, ventilation strategies and indoor radon: results from Finnish houses and apartments.

    PubMed

    Arvela, H; Holmgren, O; Reisbacka, H; Vinha, J

    2014-12-01

    Low-energy and passive house construction practices are characterised by increased insulation, high air tightness of the building shell and controlled mechanical ventilation with heat recovery. As a result of the interaction of mechanical ventilation and high air tightness, the pressure difference in a building can be markedly enhanced. This may lead to elevated indoor radon levels. Minor leakages in the foundation can affect the radon concentration, even in the case where such leaks do not markedly reduce the total air tightness. The potential for high pressures to affect indoor radon concentrations markedly increases when the air tightness ACH50, i.e. the air change per hour induced by a pressure difference of 50 Pa, is <1.0 h(-1). Pressure differences in Finnish low-rise residential houses having mechanical supply and exhaust ventilation with heat recovery (MSEV) are typically 2-3 Pa, clearly lower than the values of 5-9 Pa in houses with only mechanical exhaust ventilation (MEV). In MSEV houses, radon concentrations are typically 30% lower than in MEV houses. In new MSEV houses with an ACH50 of 0.6 h(-1), the limit for passive construction, the analytical estimates predict an increase of 100% in the radon concentration compared with older houses with an ACH50 of 4.0 h(-1). This poses a challenge for efficient radon prevention in new construction. Radon concentrations are typically 30% lower in houses with two storeys compared with only one storey. The introduction of an MSEV ventilation strategy in typically very airtight apartments has markedly reduced pressure differences and radon concentrations.

  17. The RAGENA dynamic model of radon generation, entry and accumulation indoors.

    PubMed

    Font, Ll; Baixeras, C

    2003-05-20

    The complexity generated by the existence of a great number of parameters and processes affecting the generation of radon in the source, its transport in the source medium, its entry into a dwelling and its accumulation in the different rooms of a dwelling has led to the development of partial models and experimental studies that are focused on a given aspect. However, in order to model radon levels and dynamics in real houses, it is necessary to take into account all the parameters and processes affecting radon levels. This is the objective of the dynamic RAGENA model of radon generation, entry and accumulation indoors. The model has been adapted to a Mediterranean climate house under dynamic conditions, and the indoor radon and soil radon dynamics have been compared to experimental results. It has been found (i) that the model gives a soil radon dynamics similar to that obtained experimentally, (ii) a remarkable model-experiment agreement indoors and (iii) that the indoor radon dynamics is given by a permanent radon entry from building materials and a dynamic removal through ventilation, which is driven by indoor-outdoor temperature differences and wind speed.

  18. Seasonally enhanced indoor radon in karst regions of the southern Applachians

    SciTech Connect

    Gammage, R.B.; Dudney, C.S.; Wilson, D.L.

    1992-06-01

    The ratios of winter/summer indoor radon levels for houses in different regions of the southern Appalachians are characterized by individual log-normal distributions with geometric means both above and below unity. In some counties and cities, subpopulations of houses have unusually exaggerated winter/summer ratios of indoor radon, as well as high indoor radon levels, during periods of either warm or cool weather. It is proposed that in many instances, houses are communicating with larger than normal underground reservoirs of radon-bearing air in hilly karst terrains; differences between the outdoor and underground air temperatures are believed to provide the aerostatic pressure differences for seasonally directed underground transport and subsequently elevated indoor radon.

  19. Seasonally enhanced indoor radon in karst regions of the southern Applachians

    SciTech Connect

    Gammage, R.B.; Dudney, C.S.; Wilson, D.L.

    1992-01-01

    The ratios of winter/summer indoor radon levels for houses in different regions of the southern Appalachians are characterized by individual log-normal distributions with geometric means both above and below unity. In some counties and cities, subpopulations of houses have unusually exaggerated winter/summer ratios of indoor radon, as well as high indoor radon levels, during periods of either warm or cool weather. It is proposed that in many instances, houses are communicating with larger than normal underground reservoirs of radon-bearing air in hilly karst terrains; differences between the outdoor and underground air temperatures are believed to provide the aerostatic pressure differences for seasonally directed underground transport and subsequently elevated indoor radon.

  20. Comparative survey of outdoor, residential and workplace radon concentrations

    PubMed Central

    Barros, Nirmalla; Field, Dan W.; Steck, Daniel J.; Field, R. William

    2015-01-01

    This study investigated radon concentrations in above-ground (i.e. first floor) workplace in Missouri and compared them with above-ground radon concentrations in nearby homes and outdoor locations. This study also examined the potential utility of using home and outdoor radon concentrations to predict the radon concentration at a nearby workplace (e.g. county agencies and schools). Even though workplace radon concentrations were not statistically different from home radon concentrations, the radon concentration at a particular home, or outdoor location, was a poor predictor of the radon concentration at a nearby workplace. Overall, 9.6 and 9.9 % of homes and workplace, respectively, exhibited radon concentrations of ≥148 Bq m−3. Because of the percentage of workplace with elevated radon concentrations, the results suggest that additional surveys of workplace radon concentrations are needed, especially in areas of high radon potential, to assess the contribution of workplace radon exposure to an individual's overall radon exposure. PMID:24936021

  1. Variation in the annual average radon concentration measured in homes in Mesa County, Colorado

    SciTech Connect

    Rood, A.S.; George, J.L.; Langner, G.H. Jr.

    1990-04-01

    The purpose of this study is to examine the variability in the annual average indoor radon concentration. The TMC has been collecting annual average radon data for the past 5 years in 33 residential structures in Mesa County, Colorado. This report is an interim report that presents the data collected up to the present. Currently, the plans are to continue this study in the future. 62 refs., 3 figs., 12 tabs.

  2. A comparison study between radon concentration in schools and other workplaces.

    PubMed

    Clouvas, A; Xanthos, S

    2012-04-01

    The Nuclear Technology Laboratory of the Aristotle University of Thessaloniki has since 1999 an open research project of indoor radon measurements in Greek workplaces. Since now 1380 measurements in 690 workplaces have been performed. Most (75 %) of the workplaces were offices in schools. The remaining 25 % were offices, mainly in public buildings. In the present study, a possible correlation between radon concentration in schools and other workplaces is investigated and discussed.

  3. The Influence of Internal Wall and Floor Covering Materials and Ventilation Type on Indoor Radon and Thoron Levels in Hospitals of Kermanshah, Iran

    PubMed Central

    Pirsaheb, Meghdad; Najafi, Farid; Haghparast, Abbas; Hemati, Lida; Sharafi, Kiomars; Kurd, Nematullah

    2016-01-01

    Background Building materials and the ventilation rate of a building are two main factors influencing indoor radon and thoron levels (two radioactive gases which have the most important role in human natural radiation exposure within dwellings). Objectives This analytical descriptive study was intended to determine the relationship between indoor radon and thoron concentrations and the building materials used in interior surfaces, as well as between those concentrations and the type of ventilation system (natural or artificial). Materials and Methods 102 measurements of radon and thoron levels were taken from different parts of three hospital buildings in the city of Kermanshah in the west of Iran, using an RTM-1688-2 radon meter. Information on the type of building material and ventilation system in the measurement location was collected and then analyzed using Stata 8 software and multivariate linear regression. Results In terms of radon and thoron emissions, travertine and plaster were found to be the most appropriate and inappropriate covering for walls, respectively. Furthermore, granite and travertine were discovered to be inappropriate materials for flooring, while plastic floor covering was found suitable. Natural ventilation performed better for radon, while artificial ventilation worked better for thoron. Conclusions Internal building materials and ventilation type affect indoor radon and thoron concentrations. Therefore, the use of proper materials and adequate ventilation can reduce the potential human exposure to radon and thoron. This is of utmost importance, particularly in buildings with a high density of residents, including hospitals. PMID:28180013

  4. Indoor radon and lung cancer in the radium dial workers

    SciTech Connect

    Neuberger, J.S.; Rundo, J.

    1996-12-31

    Internally deposited radium has long been known to have tumorigenic effects in the form of sarcomas of the bone and carcinomas of the paranasal sinuses and mastoid air cells. However, the radium dial workers were also exposed to radiation hazards other than that occurring from ingestion of the radium paint, viz., external gamma radiation and elevated concentrations of airborne radon. The uranium miners were also exposed to high concentrations of radon in the 1950s and later, and numerous cases of lung cancer have occurred in that population. However, unlike the atmosphere in the uranium mines, the air in the dial painting plants was probably rather clean and perhaps not much different from the air in many houses. In view of the current concern over the possibility of lung cancer fin the general population being caused by radon (progeny) in houses, it is important to examine the mortality due to this usually fatal disease in the dial workers and to attempt to relate it to their exposure to radon, to the extent that this is possible.

  5. A study of radon-222 concentrations in North Carolina groundwater

    SciTech Connect

    Evans, James Philip

    1992-01-01

    The groundwater of 400 North Carolina homes was sampled to ascertain the distribution and extent of 222Rn in North Carolina groundwater. Arithmetic mean (AM) and geometric mean (GM) concentrations of 1,816 pCi L-1 and 656 pCi L-1 were found for the state. These results indicate that two-thirds of 114°C. homes served by groundwater exceed the EPA proposed 300 pCi L-1 maximum contaminant level (MCL). Only 2% of NC homes exceeded 10,000 pCi L-1. The Eastern region had the lowest radon concentrations by far, with a GM of 2-)0 pCi L-1. The Central region and Western region had GM`s of 794 pCi L-1 and 1,032 pCi L-1 respectively. The groundwater data approached a log normal distribution. No consistent trends were noted in the relationship between indoor radon concentrations and groundwater radon concentrations. A correlation coefficient of 0.00921 revealed a very weak linear relationship.

  6. Variable spacial and seasonal hazards of airborne radon

    NASA Astrophysics Data System (ADS)

    Mose, Douglas G.; Mushrush, George W.

    The concentrations of indoor radon in the basements of homes located in northern Virginia average about 1.4 times the first-floor radon concentration. Basement indoor radon concentrations exhibit seasonal variations which can be related to home use patterns of the occupants. Little indoor radon difference was seen between homes that have concrete block basement walls and poured concrete basement walls, but homes that use oil or gas furnaces for heating have a 25% lower indoor radon than homes that use electrical heating systems. Particular geological units seem to be associated with elevated indoor radon concentrations, and several units are associated with indoor radon concentrations that exceed 4 pCi l-1 (the U.S. Environmental Agency "Action Level") in more than 40% of the homes. Comparative studies between indoor radon and total-gamma aeroradioactivity show that aeroradioactivity can be accurately used to estimate community radon hazards.

  7. Study of epidemiological risk of lung cancer in Mexico due indoor radon exposure

    NASA Astrophysics Data System (ADS)

    Ángeles, A.; Espinosa, G.

    2014-07-01

    In this work the lifetime relative risks (LRR) of lung cancer due to exposure to indoor 222Rn on the Mexican population is calculated. Cigarette smoking is the number one risk factor for lung cancer (LC), because that, to calculate the number of cases of LC due to exposure to 222Rn is necessary considers the number of cases of LC for smoking cigarette. The lung cancer mortality rates published by the "Secretaría de Salud" (SSA), the mexican population data published by the "Consejo Nacional de Población" (CONAPO), smoking data in the mexican population, published by the "Comisión Nacional Contra las Adicciones" (CONADIC), the "Organización Panamericana de la Salud" (OPS) and indoor 222Rn concentrations in Mexico published in several recent studies are used. To calculate the lifetime relative risks (LRR) for different segments of the Mexican population, firstly the Excess Relative Risk (ERR) is calculated using the method developed by the BEIR VI committee and subsequently modified by the USEPA and published in the report "EPA Assessment of Risks from Radon in Homes". The excess relative risks were then used to calculate the corresponding lifetime relative risks, again using the method developed by the BEIR VI committee. The lifetime relative risks for Mexican male and female eversmokers and Mexican male and female never-smokers were calculated for radon concentrations spanning the range found in recent studies of indoor radon concentrations in Mexico. The lifetime relative risks of lung cancer induced by lifetime exposure to the mexican average indoor radon concentration were estimated to be 1.44 and 1.40 for never-smokers mexican females and males respectively, and 1.19 and 1.17 for ever-smokers Mexican females and males respectively. The Mexican population LRR values obtained in relation to the USA and Canada LRR published values in ever-smokers for both gender are similar with differences less than 4%, in case of never-smokers in relation with Canada

  8. POSSIBLE ROLE OF INDOOR RADON REDUCTION SYSTEMS IN BACK-DRAFTING RESIDENTIAL COMBUSTION APPLIANCES

    EPA Science Inventory

    The article gives results of a computational sensitivity analysis conducted to identify conditions under which residential active soil depressurization (ASD) systems for indoor radon reduction might contribute to or create back-drafting of natural draft combustion appliances. Par...

  9. POSSIBLE ROLE OF INDOOR RADON REDUCTION SYSTEMS IN BACK-DRAFTING RESIDENTIAL COMBUSTION APPLIANCES

    EPA Science Inventory

    The article gives results of a computational sensitivity analysis conducted to identify conditions under which residential active soil depressurization (ASD) systems for indoor radon reduction might contribute to or create back-drafting of natural draft combustion appliances. Par...

  10. Measurement and apportionment of radon source terms for modeling indoor environments

    SciTech Connect

    Harley, N.H.

    1992-01-01

    This research has two main goals; (1) to quantify mechanisms for radon entry into homes of different types and to determine the fraction of indoor radon attributable to each source and (2) to model and calculate the dose (and therefore alpha particle fluence) to cells in the human and animal tracheobronchial tree that is pertinent to induction of bronchogenic carcinoma from inhaled radon daughters. The dosimetry has been extended to include organs other than the lung.

  11. Groundwater treatment as a source of indoor radon.

    PubMed

    Jantsikene, Alar; Kiisk, Madis; Suursoo, Siiri; Koch, Rein; Lumiste, Liie

    2014-11-01

    New Viimsi Parish water treatment plant (Northern Estonia) was investigated in order to determine whether the open filter columns serve as a source of (222)Rn generation in the treatment process and whether they influence indoor air (222)Rn activity concentrations. (222)Rn measurements of indoor (222)Rn were performed at different locations of the treatment plant; water samples from incoming raw water, from all the purification stages, consumers water and solid filter material from two filtration stages were analyzed.

  12. Shelter and indoor air in the twenty-first century: Radon, smoking and lung cancer risks

    SciTech Connect

    Fabrikant, J.I.

    1988-04-01

    This document describes the relationship between indoor radon exposure, cigarette smoking, and lung cancer. The author explains the sources of radon, the tissues at risk, the human populations most likely to be affected, and the estimates of lung cancer in the population. 6 refs., 2 tabs. (TEM)

  13. Lung cancer mortality and radon concentration in a chronically exposed neighborhood in Chihuahua, Mexico: a geospatial analysis.

    PubMed

    Hinojosa de la Garza, Octavio R; Sanín, Luz H; Montero Cabrera, María Elena; Serrano Ramirez, Korina Ivette; Martínez Meyer, Enrique; Reyes Cortés, Manuel

    2014-01-01

    This study correlated lung cancer (LC) mortality with statistical data obtained from government public databases. In order to asses a relationship between LC deaths and radon accumulation in dwellings, indoor radon concentrations were measured with passive detectors randomly distributed in Chihuahua City. Kriging (K) and Inverse-Distance Weighting (IDW) spatial interpolations were carried out. Deaths were georeferenced and Moran's I correlation coefficients were calculated. The mean values (over n = 171) of the interpolation of radon concentrations of deceased's dwellings were 247.8 and 217.1 Bq/m(3), for K and IDW, respectively. Through the Moran's I values obtained, correspondingly equal to 0.56 and 0.61, it was evident that LC mortality was directly associated with locations with high levels of radon, considering a stable population for more than 25 years, suggesting spatial clustering of LC deaths due to indoor radon concentrations.

  14. Lung Cancer Mortality and Radon Concentration in a Chronically Exposed Neighborhood in Chihuahua, Mexico: A Geospatial Analysis

    PubMed Central

    Hinojosa de la Garza, Octavio R.; Sanín, Luz H.; Montero Cabrera, María Elena; Serrano Ramirez, Korina Ivette; Martínez Meyer, Enrique; Reyes Cortés, Manuel

    2014-01-01

    This study correlated lung cancer (LC) mortality with statistical data obtained from government public databases. In order to asses a relationship between LC deaths and radon accumulation in dwellings, indoor radon concentrations were measured with passive detectors randomly distributed in Chihuahua City. Kriging (K) and Inverse-Distance Weighting (IDW) spatial interpolations were carried out. Deaths were georeferenced and Moran's I correlation coefficients were calculated. The mean values (over n = 171) of the interpolation of radon concentrations of deceased's dwellings were 247.8 and 217.1 Bq/m3, for K and IDW, respectively. Through the Moran's I values obtained, correspondingly equal to 0.56 and 0.61, it was evident that LC mortality was directly associated with locations with high levels of radon, considering a stable population for more than 25 years, suggesting spatial clustering of LC deaths due to indoor radon concentrations. PMID:25165752

  15. Indoor residential radon exposure and risk of childhood acute myeloid leukaemia

    PubMed Central

    Steinbuch, M; Weinberg, C R; Buckley, J D; Robison, L L; Sandler, D P

    1999-01-01

    Exposure to radon has been identified as a risk factor for lung cancer in uranium miners, but evidence of adverse health effects due to indoor radon exposure is inconsistent. Ecological studies have suggested a correlation between indoor radon levels and leukaemia incidence. We evaluated the risk associated with indoor residential radon exposure within a larger interview-based case–control study of risk factors for childhood acute myeloid leukaemia (AML). A total of 173 cases and 254 controls met the eligibility criteria, and information was collected through telephone interviews with parents and analysis of alpha-track radon detectors placed in the home for a period of 1 year. No association was observed between radon exposure and risk of AML, with adjusted odds ratios of 1.2 (95% confidence interval (CI) 0.7–1.8) for 37–100 Bq m–3 and 1.1 (95% CI 0.6–2.0) for > 100 Bq m–3 compared with < 37 Bq m–3. Although there was an inverse association between radon level and AML risk among children < 2 years at diagnosis, among children ≥2 years, AML risk was increased among those with higher radon exposure. The observed association after age 2 is most likely due to chance. Overall, there was no association between residential radon and risk of childhood AML. © 1999 Cancer Research Campaign PMID:10555766

  16. Indoor residential radon exposure and risk of childhood acute myeloid leukaemia.

    PubMed

    Steinbuch, M; Weinberg, C R; Buckley, J D; Robison, L L; Sandler, D P

    1999-11-01

    Exposure to radon has been identified as a risk factor for lung cancer in uranium miners, but evidence of adverse health effects due to indoor radon exposure is inconsistent. Ecological studies have suggested a correlation between indoor radon levels and leukaemia incidence. We evaluated the risk associated with indoor residential radon exposure within a larger interview-based case-control study of risk factors for childhood acute myeloid leukaemia (AML). A total of 173 cases and 254 controls met the eligibility criteria, and information was collected through telephone interviews with parents and analysis of alpha-track radon detectors placed in the home for a period of 1 year. No association was observed between radon exposure and risk of AML, with adjusted odds ratios of 1.2 (95% confidence interval (CI) 0.7-1.8) for 37-100 Bq m(-3) and 1.1 (95% CI 0.6-2.0) for > 100 Bq m(-3) compared with < 37 Bq m(-3). Although there was an inverse association between radon level and AML risk among children < 2 years at diagnosis, among children > or = 2 years, AML risk was increased among those with higher radon exposure. The observed association after age 2 is most likely due to chance. Overall, there was no association between residential radon and risk of childhood AML.

  17. Radon concentrations in residential housing in Hiroshima and Nagasaki

    SciTech Connect

    Yonehara, Hidenori; Aoyama, Takashi; Radford, E.P.

    1995-05-01

    A measurement of indoor radon ({sup 222}Rn) concentrations in Hiroshima and Nagasaki was carried out to assess the variability of exposure expected among atomic bomb survivors. Two hundred dwellings, mostly belonging to members of the fixed cohort of atomic bomb survivors under study by the Radiation Effects Research Foundations, were selected for this measurement. The geometric mean values of the radon concentrations for 100 dwellings in Hiroshima and 99 dwellings in Nagasaki measured by Track-Etcho Type SF detectors were 56.8 Bq m{sup {minus}3} and 28.5 Bq m{sup {minus}3}, respectively. No statistically significant difference was observed between lung cancer mortalities in the low-dose range in the two cities. However, apparent values of the mortality rate for low dose range in Hiroshima are consistently greater than those in Nagasaki. The exposure to radon and its progeny and the atomic bomb radiation effect might have some cooperative effects on the lung cancer incidence.

  18. A practical E-PERM (electret passive environmental radon monitor) system for indoor 222Rn measurement.

    PubMed

    Kotrappa, P; Dempsey, J C; Ramsey, R W; Stieff, L R

    1990-04-01

    The technical and scientific basis for the measurement of indoor 222Rn concentration using an E-PERM (Electret passive environmental radon monitor) has been described in our earlier work. The purpose of this paper is to describe further development of a practical and convenient system that can be used routinely for indoor 222Rn measurement. The ion chamber is now made of electrically conducting plastic to minimize the response from natural gamma radiation. A spring-loaded shutter method is used to cover and uncover the electret from outside the chamber. The electret voltage reader has been modified to improve the accuracy and the ease in operation. The calibration, performance, error analysis, and lower limits of detection for these standardized versions of E-PERMs are also described.

  19. Investigations of enhanced outdoor radon concentration in Johanngeorgenstadt (Saxony).

    PubMed

    Dushe, C; Kümmel, M; Schulz, H

    2003-05-01

    Since the beginning of the nineties, the German Federal Office for Radiation Protection (Bundesamt für Strahlenschutz, BfS) has performed extensive measurements of long-term radon concentration in areas influenced by mining. In the region of Johanngeorgenstadt (Saxony) enhanced long-term radon concentrations were measured in the surrounding area of a waste rock pile. To find the explanation for the enhanced radon concentrations both short- and long-term investigations of radon exhalation were performed. To gain information about the local distribution of the radon level, the radon concentrations were measured at a height of 15 cm above ground level. The radon exhalation rate was continuously measured at the toe and the plateau of the waste rock pile. It has been found that radon is extensively released through both diurnal and pronounced seasonal variations. The exhalation pattern is governed by convection processes triggered by the temperature gradient between the waste rock pile and the atmosphere.

  20. The use of volunteer radon measurements for radon mapping purposes: an examination of sampling bias issues.

    PubMed

    Burke, Orlaith; Murphy, Patrick

    2011-09-01

    National and regional radon surveys are used in many nations to produce maps detailing the spatial variation of indoor radon concentrations. National surveys which are designed to be representative use either a geographically-weighted or a population-weighted sampling scheme. Additionally, many countries collect a large number of data on indoor radon concentrations from volunteers who have chosen to have the indoor radon concentration measured in their own dwellings. This work examines the representativeness of volunteer-based samples in radon measurement and explores the effect of potential volunteer bias on radon mapping results. We also investigate the influence that media attention has on volunteer sampling of indoor radon concentrations. The result of our work indicates that volunteer measurements are biased due to over-sampling of high radon areas. Consequently such volunteer radon measurements should not be used for radon mapping purposes.

  1. Lung Cancer Attributable to Indoor Radon Exposures in Two Radon—Prone Areas, Ştei (Romania) and Torrelodones (Spain)

    NASA Astrophysics Data System (ADS)

    Dinu, Alexandra; Cosma, Constantin; Sainz, Carlos; Poncela, Luis Santiago Quindós; Vasiliniuc, Ştefan

    2009-05-01

    Radon and radon progeny are present indoors, in houses and others dwellings, representing the most important contribution to dose from natural sources of radiation. Most studies have demonstrated an increased risk of lung cancer at high concentration of radon for both smokers and nonsmokers. For medium and low concentrations which are the typical residential radon levels, recent researches have also demonstrated increased risks of lung cancer for people exposed. The work presents a comparative analysis of the radon exposure data in the two radon—prone areas, Ştei, Transylvania, (Romania), in the near of old Romanian uranium mines and in the granitic area of Torrelodones town, Sierra de Guadarrama (Spain). One important difference between the two studied areas is related to the houses built using uranium waste as construction material in Ştei area. Measurements of indoor radon were performed in 280 dwellings (Romania) and 91 dwellings (Spain) by using nuclear track detectors, CR 39. The highest value measured in Ştei area was 2650 Bqṡm-3. and 366 Bqṡm-3 in the Spanish region. The results are compute with the BEIR VI report estimates using the age-duration model at an exposure rate below 2650 Bqṡm-3. A total of 233 lung cancer deaths were calculated in the Ştei area for a period of 13 years (1994-2006), which is 116.82% higher than observed from the national statistics. In comparison, in Torrelodones area, a number of 276 deaths caused by lung cancer were estimated along a period of 13 years, which is 2.09 times higher than the number observed by authorities. This represents a significantly evidence that elevated risk can strongly be associated with cumulated radon exposure.

  2. The effects of geology and the impact of seasonal correction factors on indoor radon levels: a case study approach.

    PubMed

    Gillmore, Gavin K; Phillips, Paul S; Denman, Antony R

    2005-01-01

    Geology has been highlighted by a number of authors as a key factor in high indoor radon levels. In the light of this, this study examines the application of seasonal correction factors to indoor radon concentrations in the UK. This practice is based on an extensive database gathered by the National Radiological Protection Board over the years (small-scale surveys began in 1976 and continued with a larger scale survey in 1988) and reflects well known seasonal variations observed in indoor radon levels. However, due to the complexity of underlying geology (the UK arguably has the world's most complex solid and surficial geology over the shortest distances) and considerable variations in permeability of underlying materials it is clear that there are a significant number of occurrences where the application of a seasonal correction factor may give rise to over-estimated or under-estimated radon levels. Therefore, the practice of applying a seasonal correction should be one that is undertaken with caution, or not at all. This work is based on case studies taken from the Northamptonshire region and comparisons made to other permeable geologies in the UK.

  3. Monitoring trends in civil engineering and their effect on indoor radon.

    PubMed

    Ringer, W

    2014-07-01

    In this paper, the importance of monitoring new building concepts is discussed. The effect of energy-efficient construction technologies on indoor radon is presented in more detail. Comparing the radon levels of about 100 low-energy and passive houses in Austria with radon levels in conventional new houses show that, in energy-efficient new houses, the radon level is about one-third lower than in conventional new houses. Nevertheless, certain features or bad practice may cause high radon levels in energy-efficient new houses. Recommendations to avoid adverse effects were set up. Furthermore, the paper deals with the effect of thermal retrofitting on indoor radon. Results from a Swiss study where 163 dwellings were measured before and after thermal retrofit yield an increase of the radon level of 26% in average. Among the various retrofit measures, replacing windows has the greatest impact on the indoor radon level. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Measurements of radon concentrations in Spa waters in Amasya, Turkey

    SciTech Connect

    Yigitoglu, I. Ucar, B.; Oner, F.; Yalim, H. A.

    2016-04-18

    The aim of this study is to determine the radon concentrations in thermal waters in the Amasya basin in Turkey and to explore the relationship between radon anomalies and active geological faults. The radon concentration measurements were performed in four thermal Spas around Amasya basin. The water samples were collected from tap waters in thermal water sources. The obtained radon concentrations ranged from 0.15 ± 0.12 to 0.71 ± 0.32 BqL{sup −1} for Spa waters. The relationship between the radon concentration anomalies and earthquakes that occurred in the sampling period are discussed.

  5. Radon concentration in houses over a closed Hungarian uranium mine.

    PubMed

    Somlai, János; Gorjánácz, Zorán; Várhegyi, András; Kovács, Tibor

    2006-08-31

    High radon concentration (average 410 kBq m-3) has been measured in a tunnel of a uranium mine, located 15-55 m below the village of Kovágószolos, Hungary. The mine was closed in 1997; the artificial ventilation of the tunnel was then terminated and recultivation works begun. In this paper, a study has been made as to whether the tunnel has an influence on the radon concentration of surface dwellings over the mining tunnel. At different distances from the surface projection of the mining tunnel, radon concentration, the gamma dose, radon exhalation and radon concentration of soil gas were measured. The average radon concentration in the dwellings was 483 Bq m-3. Significantly higher radon concentrations (average 667 Bq m-3) were measured in houses within +/-150 m from the surface projection of the mining tunnel +50 m, compared with the houses further than the 300-m belt (average 291 Bq m-3). The average radon concentration of the soil gas was 88.8 kBq m-3, the average radon exhalation was 71.4 Bq m-2 s-1 and higher values were measured over the passage as well. Frequent fissures crossing the passage and running up to the surface and the high radon concentration generated in the passage (average 410 kBq m-3) may influence the radon concentration of the houses over the mining tunnel.

  6. The relation of seismic activity and radon concentration

    SciTech Connect

    Kulali, Feride E-mail: iskender@fef.sdu.edu.tr; Akkurt, İskender E-mail: iskender@fef.sdu.edu.tr; Vogiannis, Efstratios

    2014-10-06

    Radon, which is the largest source of natural ionizing radiation, reaches to surface as gas or dissolved form in the ground water. Emanation of radon can has a profile is disposed to increasing or decreasing depending on the effects of meteorological events or crust movements. In this work, the radon concentration in soil gas, which is transported from soil to AlphaGUARD, is continuously measured in Mytilene (Greece). A graph of radon concentration is prepared for comparison with simultaneous earthquake data. As a consequence of comparison, we determined that the radon concentration indicates anomalies before the earthquakes.

  7. MEASUREMENT OF INDOOR RADON-THORON IN AIR AND EXHALATION FROM SOIL IN THE ENVIRONMENT OF WESTERN HARYANA, INDIA.

    PubMed

    Mann, Nisha; Kumar, Amit; Kumar, Sushil; Chauhan, R P

    2016-10-01

    Measurement of indoor radon and thoron is important because the inhalation of radon-thoron and their daughters contributes more than 50 % of the total dose from natural sources. One of the important parameters to find out the contribution of soil and building materials towards indoor radon is radon exhalation rates, which can be used for estimation of indoor radon levels. The indoor radon and thoron levels from the air and radon exhalation rates from soil samples collected from two districts (Hisar and Fatehabad) of Western Haryana are measured using pin-hole-based radon-thoron dosimeter and LR-115 solid-state nuclear track detector by canister technique. The results show that the indoor radon and thoron levels from Hisar district varied from 11 to 112 and 11 to 80 Bq m(-3), while for Fatehabad district from 5 to 24 and 59 to 105 Bq m(-3), respectively, in summer season. In winter season, indoor radon and thoron levels from Hisar district varied from 15 to 43 and 32 to 102 Bq m(-3), while for Fatehabad district from 18 to 31 and 11 to 80 Bq m(-3), respectively. The indoor radon levels of 95 % locations lie well below the limit recommended by International Commission of Radiation Protection, 2011. The radon mass exhalation rate varied from 6 to 56 mBq kg(-1) h(-1) The radon mass exhalation rates from the soil samples were lower than the worldwide average, i.e. 56 mBq kg(-1) h(-1) There exists a poor correlation between indoor radon and exhalation rates. More investigations of measurement of radionuclide contents from rock and stone of study area can improve the understanding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Impact of radon gas concentration in the aerosoles profile

    SciTech Connect

    Lukaj, Edmond Vila, Floran; Mandija, Florian

    2016-03-25

    Radon gases relased from building materials and from earth surface are the major responsibility of air ionization. Radon nuclear decay can produce an alpha particle with high energy and Radon progeny. This particle and gamma rays can deliver particles in the air and produce ions with different polarities. This ions, because of induced electric charge, can attach with air aerosols and charge them with their electric charge. The charged aerosols can interact with the other aerosols and ions. Because of this exchange, the air conductivity and the aerosol profiles will change dependently by Radon gas concentration and gamma radiation. Observations show an increase in concentration of Radon during the night, and a decrease during the daylight time. The Radon gas concentration changed hour by hour can induce aerosol profile to change. This dependency between the aerosol profiles and the Radon gas concentrations is discussed.

  9. Indoor air quality in the Karns research houses: baseline measurements and impact of indoor environmental parameters on formaldehyde concentrations

    SciTech Connect

    Matthews, T. G.; Fung, K. W.; Tromberg, B. J.; Hawthorne, A. R.

    1985-12-01

    Baseline indoor air quality measurements, a nine-month radon study, and an environmental parameters study examining the impact of indoor temperature (T) and relative humidity (RH) levels on formaldehyde (CH2O) concentrations have been performed in three unoccupied research homes located in Karns, Tennessee. Inter-house comparison measurements of (1) CH2O concentration, (2) CH20 emission rates from primary CH20 emission sources, (3) radon and radon daughter concentrations, and (4) air exchange rates indicate that the three homes are similar. The results of the nine-month radon study indicate indoor concentrations consistently below the EPA recommended level of 4 pCi/L. Evidence was found that crawl-space concentrations may be reduced using heat pump systems whose outdoor units circulate fresh air through the crawl-spaoe. The modeled results of the environmental parameters study indicate approximate fourfold increases in CH20 concentrations from 0.07 to 0.27 ppm for seasonal T and RH conditions of 20°C, 30% RH and 29°C, 80% RH, respectively. Evaluation of these environmental parameters study data with steady-state CH2O concentration models developed from laboratory studies of the environmental dependence of CH2O emissions from particleboard underlayment indicate good correlations between the laboratory and field studies.

  10. RAETRAD MODEL OF RADON GAS GENERATION, TRANSPORT, AND INDOOR ENTRY

    EPA Science Inventory

    The report describes the theoretical basis, implementation, and validation of the Radon Emanation and Transport into Dwellings (RAETRAD) model, a conceptual and mathematical approach for simulating radon (222Rn) gas generation and transport from soils and building foundations to ...

  11. RAETRAD MODEL OF RADON GAS GENERATION, TRANSPORT, AND INDOOR ENTRY

    EPA Science Inventory

    The report describes the theoretical basis, implementation, and validation of the Radon Emanation and Transport into Dwellings (RAETRAD) model, a conceptual and mathematical approach for simulating radon (222Rn) gas generation and transport from soils and building foundations to ...

  12. Design and Fabrication of A Modern Radon-Tight Chamber for Radon Concentration Measurements

    NASA Astrophysics Data System (ADS)

    Alhalemi, Ahmed; Jaafar, M. S.

    2010-07-01

    A modern radon-tight chamber (RTC) has been designed and fabricated to meet the request and requirements for both the Professional Continuous Radon Monitor (PCRM), and the RAD7 radon detector. The chamber is cubic shaped, made of Perspex with a volume of about 0.125 m3. The RTC was also equipped with a thermometer and a humidity sensor. A pair of gloves was attached on one side of the chamber's lateral opening for operating the PCRM. In addition, a fan was installed to circulate the air, and to distribute the radon gas to ensure homogeneity after the air inside the chamber is evacuated with nitrogen gas. At the end of the monitoring period, the results of the concentration of the radon emanated from a sample placed inside the chamber will then be available in any of three forms: numerical display on the control panel of the radon detector, printed report on the accessory printer, or transferred into a file on a personal computer via the RS-232 Serial port without disturbing the radon concentration inside the chamber. Computer software is provided by the manufacturer for this purpose. The result of analysis was presented in a one-way ANOVA that indicated that the radon concentration means are not difference for the three different positions of the PCRM (P > 0.05). Thus, this RTC can be used to measure the radon concentration and its progeny; in addition, it can be used for research and useful studies on radon exhalation from building materials.

  13. Application of polystyrene films for indoor radon dosimetry as SSNTD.

    PubMed

    Hadad, Kamal; Sarshough, Samira; Faghihi, Reza; Taheri, Mehran

    2013-04-01

    In this study, the sensitivities and calibration factors of polystyrene (PS) to (220)Rn and (222)Rn have been investigated. The sensitivity of compact disks (CD/DVD) as thick polycarbonates (PC) to (220)Rn and (222)Rn has been also obtained by applying a new etching condition. Five different brands of X-ray radiology and MRI films with polystyrene base and four brands of CD/DVDs have been studied to assess their applicability as a passive detector for indoor radon monitoring. The comparison between the sensitivities of PS samples, CD/DVDs (as thick PC) and Lexan PC to (222)Rn and (220)Rn shows an improved sensitivity of PS over conventional PC currently being used as solid state nuclear track detectors (SSNTD). The sensitivity of X-ray radiology PS films to (222)Rn and (220)Rn was found to be 8.77±0.591 and 0.028±0.006 (cm(-2)kBq(-1)d(-1)m(3)). The sensitivities of MRI PS films to Rn-222 and Rn-220 was found to be 12.2±1.25 and 0.360±0.090 (cm(-2)kBq(-1)d(-1)m(3)). The CD/DVD PC found to have a sensitivity of 0.178±0.013 and 0.0024±0.00013 (cm(-2)kBq(-1)d(-1)m(3)) to (222)Rn and (220)Rn respectively.

  14. Variation with socioeconomic status of indoor radon levels in Great Britain: The less affluent have less radon.

    PubMed

    Kendall, Gerald M; Miles, Jon C H; Rees, David; Wakeford, Richard; Bunch, Kathryn J; Vincent, Tim J; Little, Mark P

    2016-11-01

    We demonstrate a strong correlation between domestic radon levels and socio-economic status (SES) in Great Britain, so that radon levels in homes of people with lower SES are, on average, only about two thirds of those of the more affluent. This trend is apparent using small area measures of SES and also using individual social classes. The reasons for these differences are not known with certainty, but may be connected with greater underpressure in warmer and better-sealed dwellings. There is also a variation of indoor radon levels with the design of the house (detached, terraced, etc.). In part this is probably an effect of SES, but it appears to have other causes as well. Data from other countries are also reviewed, and broadly similar effects seen in the United States for SES, and in other European countries for detached vs other types of housing. Because of correlations with smoking, this tendency for the lower SES groups to experience lower radon levels may underlie the negative association between radon levels and lung cancer rates in a well-known ecological study based on US Counties. Those conducting epidemiological studies of radon should be alert for this effect and control adequately for SES. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Analysis of radon concentration in drinking water in Baoji (China) and the associated health effects.

    PubMed

    Xinwei, L

    2006-01-01

    This paper presents the results of radon concentration measurements in drinking water from the municipal water supply system and private wells located in Baoji, China. The measurements were carried out on 69 samples. The mean values of tap water and well water were found to be 12 kBq m(-3) with a maximum of 18 kBq m(-3) and 41 kBq m(-3) with a maximum of 127 kBq m(-3), respectively. The well water samples obtained from different depth-well (water-bearing levels), i.e. shallow well (well depth under 10 m) water, middle well (well depth 10-30 m) water and deep well water, have respective mean values of 24, 34 and 56 kBq m(-3). The contributions of the observed radon concentration in drinking water to indoor radon account for 2.8-13.2% of the mean value of Shaanxi indoor radon concentration and the effective dose to the dweller owing to inhalation of radon emanating from household water is 0.03-0.14 mSv y(-1).

  16. Probability mapping of indoor radon-prone areas using disjunctive kriging.

    PubMed

    Raspa, G; Salvi, F; Torri, G

    2010-01-01

    After a reference to the use of maps of radon-prone areas for indoor radon risk management, and to the methods used to produce them, there is a brief illustration of the geostatistical method of disjunctive kriging (DK) introduced by G. Matheron as a substitute for conditional expectation. There are some good reasons of using this method for the mapping of radon-prone areas as follows: (1) spatial correlation is exploited; (2) unbiasedness is conserved even in the conditions of quasi-stationarity; (3) lognormality of the data is not required; (4) choosing the point estimation allows drawing up smooth probability maps. An application of DK is also presented for the production of probability maps in a campaign of indoor radon measurements conducted by Institute for Environmental Protection and Research, in the provinces of Rome and Viterbo (Central Italy). In the application, it is assessed in particular how much the spatial correlation, even though low, influences the results.

  17. Reducing indoor radon levels in a UK test house using different ventilation strategies

    SciTech Connect

    Welsh, P.A.

    1995-12-31

    This paper reports on some of the most recent tests involving a number of studies in an unoccupied radon test house. The house has a suspended timber floor and naturally elevated indoor radon levels, peaking at times above 6000 Bqm{sup -3}. Various sensors monitor how different ventilation strategies affect indoor radon levels and the building environment. Data from five different scenarios is presented. Initially the house was monitored as purchased with poor natural underfloor ventilation. This was followed by testing whole house pressurisation, improved natural underfloor ventilation, and two types of mechanical underfloor ventilation. The results from these and future studies may be used to make a more informed choice of remedy, based on a whole number of aspects, not only radon reduction as is frequently the case.

  18. Testing of indoor radon-reduction techniques in central Ohio houses: Phase 1 (Winter 1987-1988). Report for October 1987-August 1988 (Final)

    SciTech Connect

    Findlay, W.O.; Robertson, A.; Scott, A.G.

    1989-07-01

    The U.S. Environmental Protection Agency (EPA) has a program to demonstrate practical, cost-effective methods to reduce indoor radon concentrations in housing to 150 Bq/cu m (4 pCi/L) or less. The complete program will evaluate the full range of radon-reduction methods, i.e., house ventilation, sealing of entry routes, soil ventilation, radon removal from water, and air cleaning in the full range of housing substructure types and building styles, and geological conditions across the continental United States. The program described in the report demonstrated certain radon-reduction methods in housing and geology typical of southern Ohio in particular, and the central Great Plains States in general. The testing of radon-mitigation systems in Ohio houses is envisioned as taking place in two phases. The report describes Phase 1, which was carried out in 16 existing houses in the Dayton area during the 1987-1988 heating season.

  19. Indoor radon risk associated to post-tectonic biotite granites from Vila Pouca de Aguiar pluton, northern Portugal.

    PubMed

    Martins, L M O; Gomes, M E P; Teixeira, R J S; Pereira, A J S C; Neves, L J P F

    2016-11-01

    At Vila Pouca de Aguiar area, northern Portugal, crops out a post-tectonic Variscan granite pluton, related with the Régua-Vila Real-Verín fault zone, comprising three types of biotite granites. Among these granites, PSG granite yield the highest average contents of U, probably due to its enrichment in accessory U-bearing minerals such as zircon. In the proximity of faults and joints, these granites are often affected by different degrees of hydrothermal alteration, forming reddish altered rocks, commonly known as "episyenites". These altered rocks are probably associated to the occurrence of hydrothermal processes, which led to uranium enrichment in the most advanced stages of episyenitization. In these granites, both average gamma absorbed dose rates in outdoor and indoor air are higher than those of the world average. Furthermore, even in the worst usage scenario, all these granites can be used as a building material, since their annual effective doses are similar to the limit defined by the European Commission. The geometric mean of radon activity of 91 dwellings located at the Vila Pouca de Aguiar pluton is 568Bqm(-3), exceeding that of other northern Portuguese granites. Measurements carried out during a winter season, indicate that 62.6% of the analysed dwellings yield higher indoor radon average values than the Portuguese legislation limit (400Bqm(-3)), and annual effective doses due higher than the world's average value (1.2mSvy(-1)). The interaction of geogenic, architectural and anthropogenic features is crucial to explain the variance in the geometric mean of radon activity of dwellings from Vila Pouca de Aguiar pluton, but the role of geologic faults is probably the most important decisive factor to increase the indoor radon concentration in dwellings. Hence, the development of awareness campaigns in order to inform population about the incurred radiological risks to radon exposure are highly recommended for this specific area. Copyright © 2016

  20. Estimation of past radon exposure to indoor radon from embedded (210)Po in household glass.

    PubMed

    Gusain, G S; Rautela, B S; Ramola, R C

    2012-11-01

    In the present investigation, the surface-deposited polonium activities were measured in houses in the Ukhimath region of Garhwal Himalaya, India. The surface-deposited (210)Po activity concentrations were found to vary from 0.7 to 15.40 Bq m(-2) with an average of 5.95 Bq m(-2). The radon concentration estimated on the basis of (210)Po activity was found to vary from 0.29 to 700 Bq m(-3) with an average value 242 Bq m(-3). The contemporary radon concentration in the area was found to vary from 13 to 181 Bq m(-3) with an average of 46 Bq m(-3). The annual effective dose due to (210)Po activity in houses in the Garhwal Himalaya region was found to vary from 0.61 to 13.33 mSv with an average of 5.15 mSv. Some worldwide studies have shown the relation between the increased risk of lung cancer and smoking habits. Data on smoking have also been collected from the same dwellings. The significance of this work is also discussed in detail from a radiation protection point of view.

  1. Radon Concentration in the Drinking Water of Aliabad Katoul, Iran

    PubMed Central

    Adinehvand, Karim; Sahebnasagh, Amin; Hashemi-Tilehnoee, Mehdi

    2016-01-01

    Background According to the world health organization, radon is a leading cause of cancer in various internal organs and should be regarded with concern. Objectives The aim of this study is to evaluate the concentration of soluble radon in the drinking water of the city of Aliabad Katoul, Iran. Materials and Methods The radon concentration was measured by using a radon meter, SARADTM model RTM 1688-2, according to accepted standards of evaluation. Results The mean radon concentration in the drinking water of Aliabad Katoul is 2.90 ± 0.57 Bq/L. Conclusions The radon concentration in Aliabad Katoul is below the limit for hazardous levels, but some precautions will make conditions even safer for the local populace. PMID:27651948

  2. Normal seasonal variations for atmospheric radon concentration: a sinusoidal model.

    PubMed

    Hayashi, Koseki; Yasuoka, Yumi; Nagahama, Hiroyuki; Muto, Jun; Ishikawa, Tetsuo; Omori, Yasutaka; Suzuki, Toshiyuki; Homma, Yoshimi; Mukai, Takahiro

    2015-01-01

    Anomalous radon readings in air have been reported before an earthquake activity. However, careful measurements of atmospheric radon concentrations during a normal period are required to identify anomalous variations in a precursor period. In this study, we obtained radon concentration data for 5 years (2003-2007) that can be considered a normal period and compared it with data from the precursory period of 2008 until March 2011, when the 2011 Tohoku-Oki Earthquake occurred. Then, we established a model for seasonal variation by fitting a sinusoidal model to the radon concentration data during the normal period, considering that the seasonal variation was affected by atmospheric turbulence. By determining the amplitude in the sinusoidal model, the normal variation of the radon concentration can be estimated. Thus, the results of this method can be applied to identify anomalous radon variations before an earthquake.

  3. Factors underlying residential radon concentration: Results from Galicia, Spain

    SciTech Connect

    Barros-Dios, J.M.; Gastelu-Iturri, J.; Figueiras, A.

    2007-02-15

    Radon causes lung cancer when inhaled for prolonged periods of time. A range of factors influence residential radon concentration and this study therefore sought to ascertain which dwelling-related factors exert an influence on radon levels. A cross-sectional study was conducted from 2001 to 2003 which analyzed 983 homes of as many subjects randomly selected from the 1991 census. Sampling was carried out by district and stratified by population density to ensure that more detectors were placed in the most heavily populated areas. Radon concentration and different dwelling characteristics were measured in each of the homes selected. Bivariate and multivariate analyses were performed to ascertain which factors influenced radon concentration. The geometric mean of radon concentration was 69.5 Bq/m{sup 3}, and 21.3% of homes had concentrations above 148 Bq/m{sup 3}. Factors shown to influence radon concentration in the bivariate analysis were: age of dwelling; interior building material; exterior building material; and storey on which the detector was placed. Explanatory variables in the multivariate analysis were: age of dwelling; number of storeys; distance off floor; and interior building material. The model was significant, but the variability explained was around 10%. These results highlight the fact that the study area is an area of high radon emission and that factors other than those directly related with the characteristics of the dwelling also influence radon concentration.

  4. STUDY OF RADIATION EXPOSURE DUE TO RADON, THORON AND THEIR PROGENY IN THE INDOOR ENVIRONMENT OF RAJPUR REGION OF UTTARAKHAND HIMALAYA.

    PubMed

    Kandari, Tushar; Aswal, Sunita; Prasad, Mukesh; Pant, Preeti; Bourai, A A; Ramola, R C

    2016-10-01

    In the present study, the measurements of indoor radon, thoron and their progeny concentrations have been carried out in the Rajpur region of Uttarakhand, Himalaya, India by using LR-115 solid-state nuclear track detector-based time-integrated techniques. The gas concentrations have been measured by single-entry pin-hole dosemeter technique, while for the progeny concentrations, deposition-based Direct Thoron and Radon Progeny Sensor technique has been used. The radiation doses due to the inhalation of radon, thoron and progeny have also been determined by using obtained concentrations of radon, thoron and their progeny in the study area. The average radon concentration varies from 75 to 123 Bq m(-3) with an overall average of 89 Bq m(-3) The average thoron concentration varies from 29 to 55 Bq m(-3) with an overall average of 38 Bq m(-3) The total annual effective dose received due to radon, thoron and their progeny varies from 2.4 to 4.1 mSv y(-1) with an average of 2.9 mSv y(-1) While the average equilibrium factor for radon and its progeny was found to be 0.39, for thoron and its progeny, it was 0.06. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Variations in radon concentration in groundwater of Kumaon Himalaya, India.

    PubMed

    Bourai, A A; Gusain, G S; Rautela, B S; Joshi, V; Prasad, G; Ramola, R C

    2012-11-01

    The radon content in groundwater sources depends on the radium concentration in the rock of the aquifer. Radon was measured in water in many parts of the world, mostly for the risk assessment due to consumption of drinking water. The exposure to radon through drinking water is largely by inhalation and ingestion. Airborne radon can be released during normal household activities and can pose a greater potential health risk than radon ingested with water. Transport of radon through soil and bedrock by water depends mainly on the percolation of water through the pores and along fracture planes of bedrock. In this study, the radon concentration in water from springs and hand pumps of Kumaun Himalaya, India was measured using the radon emanometry technique. Radon concentration was found to vary from 1 to 392 Bq l(-1) with a mean of 50 Bq l(-1) in groundwater in different lithotectonic units. The radon level was found to be higher in the area consisting of granite, quartz porphyry, schist, phyllites and lowest in the area having sedimentary rocks, predominantly dominated by quartzite rocks.

  6. A double chamber system for producing constant radon concentration.

    PubMed

    Haider, B; Peter, J

    1995-01-01

    An experimental arrangement of a radon chamber with an intrinsic constancy of the relative radon concentration is described. The system consists of a reference chamber and an auxiliary storage chamber. The only active device is a timer-controlled pump or valve which feeds radon gas from the storage into the reference chamber. The switching pattern of the timer is extracted from model calculations and theoretically performs an exact compensation of the radon loss by radioactive decay. If the calculations are done in real time and online, every known external event influencing the radon concentration can be compensated. This paper presents a simple timer circuit and a computer code which generates the timer program. The influence of the air flow stability and the leakage of the chambers are discussed. It is planned to apply this theoretical approach to provide a constant radon gas concentration for an actual chamber.

  7. Radon concentrations in kindergartens and schools in two cities: Kalisz and Ostrów Wielkopolski in Poland.

    PubMed

    Bem, Henryk; Bem, Ewa Maria; Krawczyk, Joanna; Płotek, Marcin; Janiak, Sławomira; Mazurek, Daria

    Plastic PicoRad detectors with activated charcoal have been used for radon monitoring in local kindergartens and schools in two cities, Kalisz and Ostrów Wielkopolski, in the region of Greater Poland. Detectors were exposed for a standard time of 48 h during the autumn and winter of 2011 in 103 rooms (Kalisz) and 55 rooms (Ostrów Wlkp), respectively. The detectors were calibrated in the certified radon chamber of the Central Laboratory for Radiological Protection in Warsaw, Poland. The arithmetic and geometric means of indoor radon concentrations in the examined rooms were 46.0 and 30.3 Bq/m(3) for Kalisz and 48.9 and 29.8 Bq/m(3) for Ostrów Wlkp, respectively. The measured levels of the indoor radon concentrations were relatively low, since the main source of indoor radon for these low storey (max. three storeys) buildings is radon escaping from the underlying soil with a low (226)Ra concentration (~15 Bq/m(3)). Therefore, the calculated annual effective doses from that source for the children in Kalisz and Ostrów Wlkp were also low 0.35 mSv.

  8. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres. Final project report

    SciTech Connect

    Hopke, P.K.

    1996-09-01

    This report completes Clarkson University`s study of the chemical and physical behavior of the {sup 218}Po atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity in the sub-10 nm size range result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and it dose to the cells in the respiratory tract are to be fully assessed. In order to pursue this general goal, two areas of radon progeny behavior are being pursued; laboratory studies under controlled conditions to better understand the fundamental physical and chemical processes that affect the progeny`s atmospheric behavior and studies in actual indoor environments to develop a better assessment of the exposure of the occupants of that space to the size and concentration of the indoor radioactive aerosol. Thus, two sets of specific goals have been established for this project. The specific tasks of the controlled laboratory studies are (1) Determine the formation rates of {circ}OH radicals formed by the radiolysis of air following radon decay; (2) Examine the formation of particles by the radiolytic oxidation of substances like SO{sub 2}, ethylene, and H{sub 2}S to lower vapor pressure compounds and determine the role of gas phase additives such as H{sub 2}O and NH{sub 3} in determining the particle size; (3) Measure the rate of ion-induced nucleation using a thermal diffusion cloud chamber, and (4) Measure the neutralization rate of {sup 218}PoO{sub x}{sup +} in O{sub 2} at low radon concentrations.

  9. Investigating Indoor Radon Levels and Influencing Factors in Primary Schools of Zulfi City, Saudi Arabia

    SciTech Connect

    Al-Ghamdi, S. S.; Al-Garawi, M. S.; Al-Mosa, Tahani M.; Baig, M. R.

    2011-10-27

    Measurement of indoor Concentrations were performed in Zulfi city of Saudi Arabia, using CR-39 track etch detectors. This investigation focused on the influence of different parameters, namely different locations, school categories, school building types, and room type as well as on the existence of differences in radon concentration at floor levels. We divided the Zulfi city into five regions, keeping in mind their geographical locations between Tuwaiq Mountains and Al-Thuwayrat sands. The measured average radon concentrations for regions 1-5 respectively are: 87.0{+-}14.2 Bq/m{sup 3}, 83.4{+-}6.0 Bq/m{sup 3}, 61.6{+-}6.4 Bq/m{sup 3}, 63.7{+-}5.4 Bq/m{sup 3} and 87.5{+-}6.Bq/m{sup 3} and the minimum concentrations are 28.0 Bq/m{sup 3}, 5.5 Bq/m{sup 3}, 1.1 Bq/m{sup 3}, 1.0 Bq/m{sup 3} and 24 Bq/m{sup 3} respectively. These results are still within normal limits and below the action level of 148 Bqm{sup -3} set by the U.S. Environmental Protection Agency (EPA). A test of significance using Minitab program was applied to investigate if radon levels in regions are significantly different from each other. We tried all combinations, and found the following results. The ''within regions''(different location) test yielded, region 2 is not significant versus region ''1''(p = 0.783) and versus region ''5''(P = 0.646), whereas it is significant versus region ''3''(P = 0.0160) and also versus region ''4''(p = 0.018). We investigated government and rented school's building also and none was found significantly different (p = 0.052). Floors of the same building were tested in order to examine the radon concentration as a function of storey level. No significant difference was observed at floor levels (p = 0.009). When girl's schools versus Boys and kindergartens schools were tested they were found significantly different. It is believed that this significant difference is due to geographical nature of the area, since most of the girl's schools were selected from regions 2 and

  10. Investigating Indoor Radon Levels and Influencing Factors in Primary Schools of Zulfi City, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Ghamdi, S. S.; Al-Garawi, M. S.; Al-Mosa, Tahani M.; Baig, M. R.

    2011-10-01

    Measurement of indoor Concentrations were performed in Zulfi city of Saudi Arabia, using CR-39 track etch detectors. This investigation focused on the influence of different parameters, namely different locations, school categories, school building types, and room type as well as on the existence of differences in radon concentration at floor levels. We divided the Zulfi city into five regions, keeping in mind their geographical locations between Tuwaiq Mountains and Al-Thuwayrat sands. The measured average radon concentrations for regions 1-5 respectively are: 87.0±14.2 Bq/m3, 83.4±6.0 Bq/m3, 61.6±6.4 Bq/m3, 63.7±5.4 Bq/m3 and 87.5±6.Bq/m3 and the minimum concentrations are 28.0 Bq/m3, 5.5 Bq/m3, 1.1 Bq/m3, 1.0 Bq/m3 and 24 Bq/m3 respectively. These results are still within normal limits and below the action level of 148 Bqm-3 set by the U.S. Environmental Protection Agency (EPA). A test of significance using Minitab program was applied to investigate if radon levels in regions are significantly different from each other. We tried all combinations, and found the following results. The "within regions" (different location) test yielded, region 2 is not significant versus region "1" (p = 0.783) and versus region "5" (P = 0.646), whereas it is significant versus region "3" ( P = 0.0160) and also versus region "4" (p = 0.018). We investigated government and rented school's building also and none was found significantly different (p = 0.052). Floors of the same building were tested in order to examine the radon concentration as a function of storey level. No significant difference was observed at floor levels (p = 0.009). When girl's schools versus Boys and kindergartens schools were tested they were found significantly different. It is believed that this significant difference is due to geographical nature of the area, since most of the girl's schools were selected from regions 2 and 3, these regions are relatively close to the Tuwaiq mountains whereas other

  11. Seasonal variation of indoor radon-222 levels in dwellings in Ramallah province and East Jerusalem suburbs, Palestine.

    PubMed

    Leghrouz, Amin A; Abu-Samreh, Mohammad M; Shehadeh, Ayah K

    2012-01-01

    This study presents the seasonal variations of indoor radon levels in dwellings located in the Ramallah province and East Jerusalem suburbs, Palestine. The measurements were performed during the summer and winter of the year 2006/2007 using CR-39 solid-state-nuclear-track detectors. The total number of investigated buildings is 75 in summer and 81 in winter. A total number of 142 dosemeters are installed in dwellings for each season for a period of almost 100 d. The radon concentration levels in summer varied from 43 to 192 Bq m(-3) for buildings in the Ramallah province and from 30 to 655 Bq m(-3) for East Jerusalem suburbs. In winter, the radon concentration levels are found to vary from 38 to 375 Bq m(-3) in the Ramallah buildings and from 35 to 984 Bq m(-3) in East Jerusalem suburbs. The obtained results for radon concentration levels in most places are found to be within the accepted international levels.

  12. Radon concentration in waters of geothermal Euganean basin--Veneto, Italy.

    PubMed

    Bertolo, A; Bigliotto, C

    2004-01-01

    Since ancient times the warm thermal waters of Euganean basin, Italy, have been used for therapeutic purposes. The radioactive characteristics, assumed in depth, are due, in particular, to radon gas, which when released during the therapies in the indoor thermal room, determines exposure for the workers. The preliminary results of the project, the purpose of which is to analyze the totality of thermal springs, are presented. The concentrations, obtained by gamma spectrometry, show a high variability, and are comparable to those in other thermal springs in Italy and abroad. Possible correlations with geophysical factors, such as the temperature and depth of springs, have been investigated. A geostatistical analysis of the radon data has also been carried out, through the study of the experimental variogram, obtained by kriging one map of the radon concentration: such an approach is useful not only for mapping but also for giving one possible interpretation of the examined phenomenon through structural geologic characteristics.

  13. Developing geologic tools for finding very high indoor radon, examples from the midwestern and eastern United States

    SciTech Connect

    Gundersen, L.C.S.; Schumann, R.R.

    1995-12-31

    A three-year study of the Geologic Radon Potential of the United States was recently released by the U.S. Geological Survey (USGS) in cooperation with the U.S. Environmental Protection Agency (EPA). These geologic radon potential assessments were made using 5 types of data: 1. building architecture; 2. aerial radiometric surveys; 3. soil characteristics, 4. indoor radon; and 5. geology. These estimates predict the land`s potential to produce radon. Building upon the knowledge gained in this national study of geologic radon potential, the USGS is cooperating with the Department of Energy, Lawrence Berkeley Laboratory, and the EPA to develop a quantitative methodology for assessing the percentage of hmes (as a function of area) that exceed > 20 pCi/L in the current housing stock of the United States. In this paper, we present and contrast the geologic radon potential of two areas of the United States where indoor radon occurrences greater than 20 pCi/L are not uncommon. The Central and Southern Appalachian Highlands are south of the limit of glaciation and bedrock geologic parameters statistically account for a significant amount of the variation seen in indoor radon. Geology, soil radon, and surface gamma radiation have been compared with indoor radon and regression analyses indicate high positive correlations (R<0.5 to 0.9). In glaciated areas such as the northern Appalachian Highlands and the Central Lowlands area of the midwestern United States, the correlation of bedrock geology to indoor radon is obscured. Our most recent investigations indicate that glacial deposit morphology and radionuclide residence in the source rock can be used successfully to predict the magnitude and variation of indoor radon.

  14. Identifying areas with potential for high indoor radon levels: analysis of the national airborne radiometric reconnaissance data for California and the Pacific Northwest

    SciTech Connect

    Moed, B.A.; Nazaroff, W.W.; Nero, A.V.; Schwehr, M.B.; Van Heuvelen, A.

    1984-04-01

    Radon-222 is an important indoor air pollutant which, through the inhalation of its radioactive decay products, accounts for nearly half of the effective dose equivalent to the public from natural ionizing radiation. Indoor radon concentrations vary widely, largely because of local and regional differences in the rate of entry from sources. The major sources are soil and rock near building foundations, earth-based building materials, and domestic water; of these, soil and rock are thought to be predominant in many buildings with higher-than-average concentrations. Thus, one key factor in determining radon source potential is the concentration of radium, the progenitor of radon, in surficial rocks and soils. Aerial radiometric data were analyzed, collected for the National Uranium Resource Evaluation Program, for seven Western states to: (1) provide information on the spatial distribution of radium contents in surficial geologic materials for those states; and (2) investigate approaches for using the aerial data, which have been collected throughout the contiguous United States and Alaska, to identify areas where high indoor radon levels may be common. Radium concentrations were found to be relatively low in central and western portions of Washington, Oregon, and northern California; they were found to be relatively high in central and southern California. A field validation study, conducted along two flight-line segments near Spokane, Washington, showed close correspondence between the aerial data, in situ measurements of both radium content and radon flux from soil, and laboratory measurements of both radium content of and radon emanation rate from soil samples. 99 references, 11 figures, 3 tables.

  15. RADON REDUCTION AND RADON-RESISTANT CONSTRUCTION DEMONSTRATIONS IN NEW YORK - VOLUME 1: TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of radon reduction and radon-resistant construction demonstrations in New York. The existing house evaluation demonstrated radon mitigation techniques where indoor radon concentrations exceeded 4 pCi/L. Results demonstrated that sealing all accessible fou...

  16. RADON REDUCTION AND RADON-RESISTANT CONSTRUCTION DEMONSTRATIONS IN NEW YORK - VOLUME 1: TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of radon reduction and radon-resistant construction demonstrations in New York. The existing house evaluation demonstrated radon mitigation techniques where indoor radon concentrations exceeded 4 pCi/L. Results demonstrated that sealing all accessible fou...

  17. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres. Progress report, May 1, 1993--January 31, 1994

    SciTech Connect

    Hopke, P.K.

    1993-01-01

    Progress is reported on the chemical and physical behavior of the {sup 218}Po atom immediately following its formation by the alpha decay of radon. Two areas of radon progeny behavior are being pursued; laboratory studies under controlled conditions to better understand the fundamental physical and chemical processes that affect the progeny`s atmospheric behavior and studies in actual indoor environments to develop a better assessment of the exposure of the occupants of that space to the size and concentration of the indoor radioactive aerosol. The specific tasks addressed were to determine the formation rates of {center_dot}OH radicals formed by the radiolysis of air following radon decay, to examine the formation of particles by the radiolytic oxidation of substances like SO{sub 2}, ethylene, and H{sub 2}S to lower vapor pressure compounds and determine the role of gas phase additives such as H{sub 2}O and NH{sub 3} in determining the particle size, to measure the rate of ion-induced nucleation using a thermal diffusion cloud chamber, and to measure the neutralization rate of {sup 218}PoO{sub x}{sup +} in O{sub 2} at low radon concentrations. Initial measurements were conducted of the activity size distributions in actual homes with occupants present so that the variability of the indoor activity size distributions can be assessed with respect to indoor aerosol sources and general lifestyle variations of the occupants. A prospective study of the utility of measurement of deposited {sup 210}Pb embedded in glass surfaces as a measure of the long-term, integrated exposure of the population to radon are described. Methodology was developed to determine the hygroscopicity of the indoor aerosol so that the changes in deposition efficiency of the radioactive indoor aerosol with hygroscopic growth in the respiratory tract can be assessed.

  18. The ORNL Indoor Air Quality Study: Re-cap, Context, and Assessment on Radon

    SciTech Connect

    Tonn, Bruce Edward; Rose, Erin M.; Ternes, Mark P.

    2015-10-01

    As part of the retrospective evaluation of the U.S. Department of Energy s low-income Weatherization Assistance Program that was led by Oak Ridge National Laboratory (ORNL), an assessment of the impacts of weatherization on indoor air quality (IAQ) was conducted. This assessment included nearly 500 treatment and control homes across the country. Homes were monitored for carbon monoxide, radon, formaldehyde, temperature and humidity pre- and post-weatherization. This report focuses on the topic of radon and addresses issues not thoroughly discussed in the original IAQ report. The size, scope and rigor of the radon component of the IAQ study are compared to previous studies that assessed the impacts of weatherization on indoor radon levels. It is found that the ORNL study is by far the most extensive study conducted to date, though the ORNL results are consistent with the findings of the other studies. However, the study does have limitations related to its reliance on short-term measurements of radon and inability to attribute changes in radon levels in homes post-weatherization to specific weatherization measures individually or in combination.

  19. TESTING OF INDOOR RADON REDUCTION TECHNIQUES IN BASEMENT HOUSES HAVING ADJOINING WINGS

    EPA Science Inventory

    The report gives results of tests of indoor radon reduction techniques in 12 existing Maryland houses, with the objective of determining when basement houses with adjoining wings require active soil depressurization (ASD) treatment of both wings, and when treatment of the basemen...

  20. TESTING OF INDOOR RADON REDUCTION TECHNIQUES IN BASEMENT HOUSES HAVING ADJOINING WINGS

    EPA Science Inventory

    The report gives results of tests of indoor radon reduction techniques in 12 existing Maryland houses, with the objective of determining when basement houses with adjoining wings require active soil depressurization (ASD) treatment of both wings, and when treatment of the basemen...

  1. Indoor radon progeny aerosol size measurements in urban, suburban, and rural regions

    SciTech Connect

    Tu, K.W.; Knutson, E.O.; George, A.C. )

    1991-01-01

    By using direct and indirect methods, the authors conducted size distribution measurements of radon progeny particles in a variety of indoor environments in urban, suburban, and rural areas. The radon progeny particle size distribution owing to indoor activities has two definable source categories: (1) gas combustion from stoves and kerosene heaters - particles were found to be smaller than 0.1 {mu}m in diameter, mostly in the range 0.02-0.08 {mu}m; and (2) cigarette smoking and food frying - particles were found to be larger, in the size range 0.1-0.2 {mu}m. The radon progeny particle size distribution, without significant indoor activities, such as cooking, was found to be larger in rural areas than in urban or suburban areas. The modal diameters of the size spectra in the rural areas were two to three times larger than those in urban or suburban areas, around 0.3-0.4 bs. 0.1-0.2 {mu}m. Results obtained by applying the attachment theory to the measured number-weighted size spectra from an electrical aerosol size analyzer support this finding. These results, if confirmed by more extensive studies, will be useful for the assessment of the risk from the inhalation of radon progeny in various indoor environments.

  2. TESTING OF INDOOR RADON REDUCTION TECHNIQUES IN CENTRAL OHIO HOUSES: PHASE 2 (WINTER 1988-1989)

    EPA Science Inventory

    The report gives results of tests of developmental indoor radon reduction techniques in nine slab-on-grade and four crawl-space houses near Dayton. Ohio. he slab-on-grade tests indicated that, when there is a good layer of aggregate under the slab, the sub-slab ventilation (SSV) ...

  3. TESTING OF INDOOR RADON REDUCTION TECHNIQUES IN CENTRAL OHIO HOUSES: PHASE 2 (WINTER 1988-1989)

    EPA Science Inventory

    The report gives results of tests of developmental indoor radon reduction techniques in nine slab-on-grade and four crawl-space houses near Dayton. Ohio. he slab-on-grade tests indicated that, when there is a good layer of aggregate under the slab, the sub-slab ventilation (SSV) ...

  4. Comparative analysis of radon, thoron and thoron progeny concentration measurements.

    PubMed

    Janik, Miroslaw; Tokonami, Shinji; Kranrod, Chutima; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Hosoda, Masahiro; McLaughlin, James; Chang, Byung-Uck; Kim, Yong Jae

    2013-07-01

    This study examined correlations between radon, thoron and thoron progeny concentrations based on surveys conducted in several different countries. For this purpose, passive detectors developed or modified by the National Institute of Radiological Sciences (NIRS) were used. Radon and thoron concentrations were measured using passive discriminative radon-thoron detectors. Thoron progeny measurements were conducted using the NIRS-modified detector, originally developed by Zhuo and Iida. Weak correlations were found between radon and thoron as well as between thoron and thoron progeny. The statistical evaluation showed that attention should be paid to the thoron equilibrium factor for calculation of thoron progeny concentrations based on thoron measurements. In addition, this evaluation indicated that radon, thoron and thoron progeny were independent parameters, so it would be difficult to estimate the concentration of one from those of the others.

  5. Measurements of radon activity concentration in mouse tissues and organs.

    PubMed

    Ishimori, Yuu; Tanaka, Hiroshi; Sakoda, Akihiro; Kataoka, Takahiro; Yamaoka, Kiyonori; Mitsunobu, Fumihiro

    2017-05-01

    The purpose of this study is to investigate the biokinetics of inhaled radon, radon activity concentrations in mouse tissues and organs were determined after mice had been exposed to about 1 MBq/m(3) of radon in air. Radon activity concentrations in mouse blood and in other tissues and organs were measured with a liquid scintillation counter and with a well-type HP Ge detector, respectively. Radon activity concentration in mouse blood was 0.410 ± 0.016 Bq/g when saturated with 1 MBq/m(3) of radon activity concentration in air. In addition, average partition coefficients obtained were 0.74 ± 0.19 for liver, 0.46 ± 0.13 for muscle, 9.09 ± 0.49 for adipose tissue, and 0.22 ± 0.04 for other organs. With these results, a value of 0.414 for the blood-to-air partition coefficient was calculated by means of our physiologically based pharmacokinetic model. The time variation of radon activity concentration in mouse blood during exposure to radon was also calculated. All results are compared in detail with those found in the literature.

  6. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres. Progress report, July 1, 1991--June 30, 1992

    SciTech Connect

    Hopke, P.K.

    1992-07-01

    This report covers the second year of the 28 month grant current grant to Clarkson University to study the chemical and physical behavior of the polonium 218 atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and it dose to the cells in the respiratory tract are to be fully assessed. Two areas of radon progeny behavior are being pursued; laboratory studies under controlled conditions to better understand the fundamental physical and chemical process that affect the progeny`s atmospheric behavior and studies in actual indoor environments to develop a better assessment of the exposure of the occupants of that space to the size and concentration of the indoor radioactive aerosol. This report describes the progress toward achieving these objectives.

  7. Measurement and apportionment of radon source terms for modeling indoor environments

    SciTech Connect

    Harley, N.H.

    1992-01-01

    During the present 2 1/2 year contract period, we have made significant Progress in modeling the source apportionment of indoor [sup 222]Rn and in [sup 222]Rn decay product dosimetry. Two additional areas were worked on which we believe are useful for the DOE Radon research Program. One involved an analysis of the research house data, grouping the hourly house [sup 222]Rn measurements into 2 day, 7 day and 90 day intervals to simulate the response of passive monitors. Another area requiring some attention resulted in a publication of 3 years of our indoor/outdoor measurements in a high-rise apartment. Little interest has been evinced in apartment measurements yet 20% of the US population lives in multiple-family dwellings, not in contact with the ground. These data together with a summary of all other published data on apartments showed that apartments have only about 50% greater [sup 222]Rn concentration than the measured outdoor [sup 222]Rn. Apartment dwellers generally represent a low risk group regarding [sup 222]Rn exposure. The following sections describe the main projects in some detail.

  8. Annual variation in the atmospheric radon concentration in Japan.

    PubMed

    Kobayashi, Yuka; Yasuoka, Yumi; Omori, Yasutaka; Nagahama, Hiroyuki; Sanada, Tetsuya; Muto, Jun; Suzuki, Toshiyuki; Homma, Yoshimi; Ihara, Hayato; Kubota, Kazuhito; Mukai, Takahiro

    2015-08-01

    Anomalous atmospheric variations in radon related to earthquakes have been observed in hourly exhaust-monitoring data from radioisotope institutes in Japan. The extraction of seismic anomalous radon variations would be greatly aided by understanding the normal pattern of variation in radon concentrations. Using atmospheric daily minimum radon concentration data from five sampling sites, we show that a sinusoidal regression curve can be fitted to the data. In addition, we identify areas where the atmospheric radon variation is significantly affected by the variation in atmospheric turbulence and the onshore-offshore pattern of Asian monsoons. Furthermore, by comparing the sinusoidal regression curve for the normal annual (seasonal) variations at the five sites to the sinusoidal regression curve for a previously published dataset of radon values at the five Japanese prefectures, we can estimate the normal annual variation pattern. By fitting sinusoidal regression curves to the previously published dataset containing sites in all Japanese prefectures, we find that 72% of the Japanese prefectures satisfy the requirements of the sinusoidal regression curve pattern. Using the normal annual variation pattern of atmospheric daily minimum radon concentration data, these prefectures are suitable areas for obtaining anomalous radon variations related to earthquakes.

  9. Study on the influence of CR-39 detector size on radon progeny detection in indoor environments

    NASA Astrophysics Data System (ADS)

    Pereira, L. A.; Hadler, J. C.; Lixandrão F., A. L.; Guedes, S.; Takizawa, R. H.

    2014-11-01

    It is well known that radon daughters up to 214Po are the real contaminants to be considered in case of indoor radon contamination. Assemblies consisting of 6 circular bare sheets of CR-39, a nuclear track detector, with radius varying from 0.15 to 1.2 cm were exposed far from any material surface for periods of approximately 6 months in 13 different indoor rooms (7 workplaces and 6 dwellings), where ventilation was moderate or poor. It was observed that track density was as greater as smaller was the detector radius. Track density data were fitted using an equation deduced based on the assumption that the behavior of radon and its progeny in the air was described by Fick's Law, i.e., when the main mechanism of transport of radon progeny in the air is diffusion. As many people spend great part of their time in closed or poorly ventilated environments, the confirmation they present equilibrium between radon and its progeny is an interesting start for dosimetric calculations concerning this contamination.

  10. Study on the influence of CR-39 detector size on radon progeny detection in indoor environments

    SciTech Connect

    Pereira, L. A.; Hadler, J. C.; Lixandrão F, A. L.; Guedes, S.; Takizawa, R. H.

    2014-11-11

    It is well known that radon daughters up to {sup 214}Po are the real contaminants to be considered in case of indoor radon contamination. Assemblies consisting of 6 circular bare sheets of CR-39, a nuclear track detector, with radius varying from 0.15 to 1.2 cm were exposed far from any material surface for periods of approximately 6 months in 13 different indoor rooms (7 workplaces and 6 dwellings), where ventilation was moderate or poor. It was observed that track density was as greater as smaller was the detector radius. Track density data were fitted using an equation deduced based on the assumption that the behavior of radon and its progeny in the air was described by Fick's Law, i.e., when the main mechanism of transport of radon progeny in the air is diffusion. As many people spend great part of their time in closed or poorly ventilated environments, the confirmation they present equilibrium between radon and its progeny is an interesting start for dosimetric calculations concerning this contamination.

  11. Indoor particulate reactive oxygen species concentrations.

    PubMed

    Khurshid, Shahana S; Siegel, Jeffrey A; Kinney, Kerry A

    2014-07-01

    Despite the fact that precursors to reactive oxygen species (ROS) are prevalent indoors, the concentration of ROS inside buildings is unknown. ROS on PM2.5 was measured inside and outside twelve residential buildings and eleven institutional and retail buildings. The mean (± s.d.) concentration of ROS on PM2.5 inside homes (1.37 ± 1.2 nmoles/m(3)) was not significantly different from the outdoor concentration (1.41 ± 1.0 nmoles/m(3)). Similarly, the indoor and outdoor concentrations of ROS on PM2.5 at institutional buildings (1.16 ± 0.38 nmoles/m(3) indoors and 1.68 ± 1.3 nmoles/m(3) outdoors) and retail stores (1.09 ± 0.93 nmoles/m(3) indoors and 1.12 ± 1.1 nmoles/m(3) outdoors) were not significantly different and were comparable to those in residential buildings. The indoor concentration of particulate ROS cannot be predicted based on the measurement of other common indoor pollutants, indicating that it is important to separately assess the concentration of particulate ROS in air quality studies. Daytime indoor occupational and residential exposure to particulate ROS dominates daytime outdoor exposure to particulate ROS. These findings highlight the need for further study of ROS in indoor microenvironments. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. National Weatherization Assistance Program Impact Evaluation: Impact of Exhaust-Only Ventilation on Radon and Indoor Humidity - A Field Investigation

    SciTech Connect

    Pigg, Scott

    2014-09-01

    The study described here sought to assess the impact of exhaust-only ventilation on indoor radon and humidity in single-family homes that had been treated by the Weatherization Assistance Program (WAP).

  13. Measurement and apportionment of radon source terms for modeling indoor environments. Annual progress report, March 1991--February 1992

    SciTech Connect

    Harley, N.H.

    1992-02-01

    This research has two main goals; (1) to quantify mechanisms for radon entry into homes of different types and to determine the fraction of indoor radon attributable to each source and (2) to model and calculate the dose (and therefore alpha particle fluence) to cells in the human and animal tracheobronchial tree that is pertinent to induction of bronchogenic carcinoma from inhaled radon daughters. The dosimetry has been extended to include organs other than the lung.

  14. Indoor concentration modeling of aerosol strong acidity

    SciTech Connect

    Zelenka, M.; Waldman, J.; Suh, H.; Koutrakis, P.

    1993-01-01

    A model for estimating indoor concentrations of acid aerosol was applied to data collected during the summer of 1989, in a densely populated location in New Jersey. The model, from a study of a semi-rural community in Pennsylvania, was used to estimate indoor concentrations of aerosol strong acidity (H+) at an elderly care residence in suburban New Jersey. The purpose of the present work is to assess the applicability of the model for predicting H+ exposures in a suburban environment and to evaluate the models performance for daytime and nighttime periods. Indoor and outdoor samples were taken at an elderly care home between June 20 and July 30, 1989. The indoor and outdoor monitoring schedule collected two 12-h samples per day. Samples were taken with the Indoor Denuder Sampler (IDS). Samples were analyzed for indoor and outdoor concentrations of aerosol strong acidity (H+), ammonia (NH3), and anion determination. The model generally underestimated the indoor H+ concentration. Slight improvement was seen in the model estimate of H+ for the nighttime period (7:00 pm to 7:00 am, local time). The model applied to the site in New Jersey did not predict the indoor H+ concentrations as well as it did for the experiment from which it was developed.

  15. Aerosol microphysics of indoor radon. Final report, [March 1, 1987--September 30, 1991

    SciTech Connect

    Marlow, W.H.

    1991-12-31

    To determine the potential impact of airborne radioactivity on human health, understanding is required of where in the aerosol size spectrum the radioactive daughter atoms of radon become located. Objective of this program is to contribute to the ability to account for airborne radioactivity associated with indoor aerosols via quantitative descriptions of the rates of interaction and growth for aerosol particles. Progress is reported in the following areas: aerosol electrical charging and radon daughter deposition, effects of SO{sub 2} on {sup 218}Po ion mobility spectrum, and aerosol and cluster coagulation.

  16. Concentrated and piped sunlight for indoor illumination.

    PubMed

    Fraas, L M; Pyle, W R; Ryason, P R

    1983-02-15

    A concept for indoor illumination of buildings using sunlight is described. For this system, a tracking concentrator on the building roof follows the sun and focuses sunlight into a lightguide. A system of transparent lightguides distributes the sunlight to interior rooms. Recent advances in the transparency of acrylic plastic optical fibers suggest that acrylic lightguides could be successfully used for piping sunlight. The proposed system displaces electricity currently used for indoor lighting. It is argued that using sunlight directly for indoor illumination would be about twenty-five times more cost-effective than using sunlight to generate electricity with solar cells for powering electric lamps for indoor lighting.

  17. Radon Policy in Finland, Achievements and Challenges

    SciTech Connect

    Arvela, Hannu; Maekelaeinen, Ilona; Reisbacka, Heikki

    2008-08-07

    Finland is a country of high indoor radon concentrations. Since 1980 the authority regulations, guidance, radon mapping and research work supporting decision making have been developed continuously. Clear regulations directed to citizens and authorities form the basis for radon policy. Active mapping work and measurement ordered by private home owners has resulted in 100.000 houses measured. National indoor radon data base forms a good basis for decision making, communication and research. The number of new houses provided with radon preventive constructions has increased remarkably. New radon campaigns has increased measurement and mitigation activity. Furher increasing of public awareness is the key challenge.

  18. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres. Progress report, July 1, 1992--March 31, 1993

    SciTech Connect

    Hopke, P.K.

    1992-07-01

    This report describes studies on the chemical and physical behavior of the {sup 218}Po atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity in the sub-10 nm size range result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and its dose to the cells in the respiratory tract are to be fully assessed. The specific tasks of the controlled laboratory studies are to determine the formation rates of {center_dot}OH radicals formed by the radiolysis of air following radon decay, to examine the formation of particles by the radiolytic oxidation of substances like SO{sub 2} ethylene, and H{sub 2}S to lower vapor pressure compounds and determine the role of gas phase additives such as H{sub 2}O and NH{sub 3} in determining the particle size, to measure the rate of ion-induced nucleation using a thermal diffusion cloud chamber, and to measure the neutralization rate of {sup 218}Po{sub x}{sup +} in O{sub 2} at low radon concentrations. Tasks of the exposure studies in occupied indoor spaces are to initiate measurements of the activity size distributions in actual homes with occupants present so that the variability of the indoor activity size distributions can be assessed with respect to indoor aerosol sources and general lifestyle variations of the occupants, to initiate a prospective study of the utility of measurement of deposited {sup 210}Pb embedded in glass surfaces as a measure of the long-term, integrated exposure of the population to radon, and to develop the methodology to determine the hygroscopicity of the indoor aerosol so that the changes in deposition efficiency of the radioactive indoor aerosol with hygroscopic growth in the respiratory tract can be assessed.

  19. Use of Artificial Neural Network for the Simulation of Radon Emission Concentration of Granulated Blast Furnace Slag Mortar.

    PubMed

    Jang, Hong-Seok; Xing, Shuli; Lee, Malrey; Lee, Young-Keun; So, Seung-Young

    2016-05-01

    In this study, an artificial neural networks study was carried out to predict the quantity of radon of Granulated Blast Furnace Slag (GBFS) cement mortar. A data set of a laboratory work, in which a total of 3 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were three different GBFS ratios (0%, 20%, 40%). Measurement radon of moist cured specimens was measured at 3, 10, 30, 100, 365 days by sensing technology for continuous monitoring of indoor air quality (IAQ). ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of two input parameters that cover the cement, GBFS and age of samples and, an output parameter which is concentrations of radon emission of mortar. The results showed that ANN can be an alternative approach for the predicting the radon concentration of GBFS mortar using mortar ingredients as input parameters.

  20. Consideration of measurement error when using commercial indoor radon determinations for selecting radon action levels

    USGS Publications Warehouse

    Reimer, G.M.; Szarzi, S.L.; Dolan, Michael P.

    1998-01-01

    An examination of year-long, in-home radon measurement in Colorado from commercial companies applying typical methods indicates that considerable variation in precision exists. This variation can have a substantial impact on any mitigation decisions, either voluntary or mandated by law, especially regarding property sale or exchange. Both long-term exposure (nuclear track greater than 90 days), and short-term (charcoal adsorption 4-7 days) exposure methods were used. In addition, periods of continuous monitoring with a highly calibrated alpha-scintillometer took place for accuracy calibration. The results of duplicate commercial analysis show that typical results are no better than ??25 percent with occasional outliers (up to 5 percent of all analyses) well beyond that limit. Differential seasonal measurements (winter/summer) by short-term methods provide equivalent information to single long-term measurements. Action levels in the U.S. for possible mitigation decisions should be selected so that they consider the measurement variability; specifically, they should reflect a concentration range similar to that adopted by the European Community.

  1. RADON GENERATION AND TRANSPORT THROUGH CONCRETE FOUNDATIONS

    EPA Science Inventory

    The report gives results of an examination of radon generation and transport through Florida residential concretes for their contribution to indoor radon concentrations. Radium concentrations in the 11 concretes tested were all <2.5 pCi/g and radon emanation coefficients were all...

  2. RADON GENERATION AND TRANSPORT THROUGH CONCRETE FOUNDATIONS

    EPA Science Inventory

    The report gives results of an examination of radon generation and transport through Florida residential concretes for their contribution to indoor radon concentrations. Radium concentrations in the 11 concretes tested were all <2.5 pCi/g and radon emanation coefficients were all...

  3. Human exposure to indoor radon: a survey in the region of Guarda, Portugal.

    PubMed

    Louro, Alina; Peralta, Luís; Soares, Sandra; Pereira, Alcides; Cunha, Gilda; Belchior, Ana; Ferreira, Luís; Monteiro Gil, Octávia; Louro, Henriqueta; Pinto, Paulo; Rodrigues, António Sebastião; Silva, Maria João; Teles, Pedro

    2013-04-01

    Radon ((222)Rn) is a radioactive gas, abundant in granitic areas, such as the city of Guarda at the northeast of Portugal. This gas is recognised as a carcinogenic agent, being appointed by the World Health Organization as the second leading cause of lung cancer after tobacco smoke. Therefore, the knowledge of radon concentrations inside the houses (where people stay longer) is important from the point of view of radiological protection. The main goal of this study was to assess the radon concentration in an area previously identified with a potentially high level of residential radon. The radon concentration was measured using CR-39 detectors, exposed for a period of 2 months in 185 dwellings in the Guarda region. The radon concentration in studied dwellings, ranged between 75 and 7640 Bq m(-3), with a geometric mean of 640 Bq m(-3) and an arithmetic mean of 1078 Bq m(-3). Based on a local winter-summer radon concentration variation model, these values would correspond to an annual average concentration of 860 Bq m(-3). Several factors contribute to this large dispersion, the main one being the exact location of housing construction in relation to the geochemical nature of the soil and others the predominant building material and ventilation. Based on the obtained results an average annual effective dose of 15 mSv y(-1) is estimated, well above the average previously estimated for Portugal.

  4. Soil gas radon, indoor radon and gamma dose rate in CZ: contribution to geostatistical methods for European atlas of natural radiations.

    PubMed

    Barnet, Ivan; Fojtíková, Ivana

    2008-01-01

    A comparison of Czech indoor radon data, soil gas radon data and gamma dose rate was performed on the data sets of 92,276 indoor radon measurements in existing dwellings (National Radiation Protection Institute - NRPI), database of 9500 test sites of soil gas radon measurements (Czech Geological Survey - CGS) georeferenced to levels of gamma dose rate map. Three methods were used for the study of soil gas Rn-indoor Rn relationship: (1) based on the vectorised point soil gas and indoor data related to vectorised areas of gammadose rate, (2) vectorised soil gas-indoor data based on vectorised geological units and (3) soil gas and indoor data related to grid squares 10 x 10 km2. The first and second methods seem to express the closer correlation compared with the third one, however the correlation using the third method is influenced by the representativeness of data value in the square of 100 km2 area. On the other hand, the third method can be used for the overview coverage of the continental areas with lack of input information.

  5. Contribution of (222)Rn-bearing water to indoor radon and indoor air quality assessment in hot spring hotels of Guangdong, China.

    PubMed

    Song, Gang; Wang, Xinming; Chen, Diyun; Chen, Yongheng

    2011-04-01

    This study investigates the contribution of radon ((222)Rn)-bearing water to indoor (222)Rn in thermal baths. The (222)Rn concentrations in air were monitored in the bathroom and the bedroom. Particulate matter (PM, both PM(10) and PM(2.5)) and carbon dioxide (CO(2)) were also monitored with portable analyzers. The bathrooms were supplied with hot spring water containing 66-260 kBq m(-3) of (222)Rn. The results show that the spray of hot spring water from the bath spouts is the dominant mechanism by which (222)Rn is released into the air of the bathroom, and then it diffuses into the bedroom. Average (222)Rn level was 110-410% higher in the bedrooms and 510-1200% higher in the bathrooms compared to the corresponding average levels when there was no use of hot spring water. The indoor (222)Rn levels were influenced by the (222)Rn concentrations in the hot spring water and the bathing times. The average (222)Rn transfer coefficients from water to air were 6.2 × 10(-4)-4.1 × 10(-3). The 24-h average levels of CO(2) and PM(10) in the hotel rooms were 89% and 22% higher than the present Indoor Air Quality (IAQ) standard of China. The main particle pollutant in the hotel rooms was PM(2.5). Radon and PM(10) levels in some hotel rooms were at much higher concentrations than guideline levels, and thus the potential health risks to tourists and especially to the hotel workers should be of great concern, and measures should be taken to lower inhalation exposure to these air pollutants.

  6. Use of linear regression models to determine influence factors on the concentration levels of radon in occupied houses

    NASA Astrophysics Data System (ADS)

    Buermeyer, Jonas; Gundlach, Matthias; Grund, Anna-Lisa; Grimm, Volker; Spizyn, Alexander; Breckow, Joachim

    2016-09-01

    This work is part of the analysis of the effects of constructional energy-saving measures to radon concentration levels in dwellings performed on behalf of the German Federal Office for Radiation Protection. In parallel to radon measurements for five buildings, both meteorological data outside the buildings and the indoor climate factors were recorded. In order to access effects of inhabited buildings, the amount of carbon dioxide (CO2) was measured. For a statistical linear regression model, the data of one object was chosen as an example. Three dummy variables were extracted from the process of the CO2 concentration to provide information on the usage and ventilation of the room. The analysis revealed a highly autoregressive model for the radon concentration with additional influence by the natural environmental factors. The autoregression implies a strong dependency on a radon source since it reflects a backward dependency in time. At this point of the investigation, it cannot be determined whether the influence by outside factors affects the source of radon or the habitant’s ventilation behavior resulting in variation of the occurring concentration levels. In any case, the regression analysis might provide further information that would help to distinguish these effects. In the next step, the influence factors will be weighted according to their impact on the concentration levels. This might lead to a model that enables the prediction of radon concentration levels based on the measurement of CO2 in combination with environmental parameters, as well as the development of advices for ventilation.

  7. {sup 210}Po as a long-term integrating radon indicator in the indoor environment. Final report

    SciTech Connect

    Not Available

    1992-12-31

    Exposure to radon (Rn-222) decay products in the indoor environment is suspected of being a significant lung cancer agent in many countries. But quantification of the contemporary lung cancer risk (i.e. probability) on an individual basis is not an easy task. Only past exposures are relevant and assessing individual exposures in retrospect is associated with large uncertainties, if possible at all. One way to extend the validity of contemporary measurements to past decades is to measure long-lived decay products of radon, the long-lived radon daughters. After our laboratory had exemplified the correlation between implanted Po-210 and the estimated radon exposures in six different dwellings, the US Department of Energy and the Swedish Radiation Protection Institute granted funds for a one-year study, ``{sup 210}Po as a Long-Term Integrating Radon Indicator in the Indoor Environment.`` In this report the work performed under these two contracts is reported.

  8. S. 792: This Act may be cited as the Indoor Radon Abatement Reauthorization Act of 1991, introduced in the United States Senate, One Hundred Second Congress, First Session, April 9, 1991

    SciTech Connect

    Not Available

    1991-01-01

    This bill was introduced into the Senate of the United States on April 9, 1991 to reauthorize the Indoor Radon Abatement Act of 1988. This legislation amends the Toxic Substances Control Act. The following sections are clarified and expanded: Priority radon areas; Citizens guide; Model construction standards; Technical assistance; Grant assistance; Radon in schools; Regional radon training centers; Federal buildings; Radon information; Mandatory radon proficiency program; Medical community outreach; Federal Housing; National radon educational efforts; Radon in work places; and Citizens suits.

  9. INDOOR AIR CONCENTRATION UNIT CONVERSIONS

    EPA Science Inventory

    Migration of volatile chemicals from the subsurface into overlying buildings is called vapor intrusion (VI). Volatile organic chemicals in contaminated soils or groundwater can emit vapors, which can migrate through subsurface soils and may enter the indoor air of overlying buil...

  10. Diurnal variations of radon and thoron activity concentrations and effective doses in dwellings in Niška Banja, Serbia.

    PubMed

    Vaupotič, J; Streil, T; Tokonami, S; Žunic, Z S

    2013-12-01

    In Niška Banja, a spa town in a radon-prone area in southern Serbia, radon ((222)Rn) and thoron ((220)Rn) activity concentrations were measured continuously for one day in indoor air of 10 dwellings with a SARAD RTM 2010-2 Radon/Thoron Monitor, and equilibrium factor between radon and its decay products and the fraction of unattached radon decay products with a SARAD EQF 3020-2 Equilibrium Factor Monitor. Radon concentration in winter time ranged from 26 to 73 100 Bq m(-3) and that of thoron, from 10 to 8650 Bq m(-3). In the same period, equilibrium factor and the unattached fraction varied in the range of 0.08 to 0.90 and 0.01 to 0.27, respectively. One-day effective doses were calculated and were in winter conditions from 4 to 2599 μSv d(-1) for radon and from 0.2 to 73 μSv d(-1) for thoron.

  11. New Methods of Energy Efficient Radon Mitigation

    SciTech Connect

    Fisk, W.J.; Prill, R.J.; Wooley, J.; Bonnefous, Y.C.; Gadgil, A.J.; Riley, W.J.

    1994-05-01

    Two new radon mitigation techniques are introduced and their evaluation in a field study complemented by numerical model predictions is described. Based on numerical predictions, installation of a sub gravel membrane at the study site resulted in a factor of two reduction in indoor radon concentrations. Experimental data indicated that installation of 'short-circuit' pipes extending between the subslab gravel and outdoors, caused an additional factor of two decrease in the radon concentration. Consequently, the combination of these two passive radon mitigation features, called the membrane and short-circuit (MASC) technique, was associated with a factor of four reduction in indoor radon concentration. The energy-efficient active radon mitigation method, called efficient active subslab pressurization (EASP), required only 20% of the fan energy of conventional active subslab depressurization and reduced the indoor radon concentration by approximately a factor of 15, including the numerically-predicted impact of the sub-gravel membrane.

  12. Measurements of radon concentrations in the lunar atmosphere

    NASA Technical Reports Server (NTRS)

    Brodzinski, R. L.; Jackson, P. O.; Langford, J. C.

    1977-01-01

    The radon concentrations in the lunar atmosphere were determined by measuring the Po-210 progeny activity in artifacts returned from the moon. Experiments performed on a section of the polished aluminum strut from Surveyor 3 and data obtained from the Apollo 16 Cosmic Ray Detector Experiment Teflon thermal shield are compared with other values of the lunar radon concentration obtained at different times and different locations and by various techniques. Possible sources and release mechanisms compatible with all of the data are discussed. An experimental procedure to determine the relative retention coefficients of various types of material for radon progeny in a simulated lunar environment is described. The results of several experiments are given, and their effect on lunar radon progeny measurements is discussed. An analytical procedure is given for the analysis of a Teflon matrix for trace constituents.

  13. Indoor Radon in Micro-geological Setting of an Indigenous Community in Canada: A Pilot Study for Hazard Identification.

    PubMed

    Sarkar, Atanu; Wilton, Derek Hc; Fitzgerald, Erica

    2017-04-01

    Radon is the second leading cause of lung cancer after smoking. In Canada, the health authorities have no access to comprehensive profile of the communities built over uranium-rich micro-geological settings. The present indoor radon monitoring guideline is unable to provide an accurate identification of health hazards due to discounting several parameters of housing characteristics. To explore indoor radon levels in a micro-geological setting known for high uranium in bedrock and to develop a theoretical model for a revised radon testing protocol. We surveyed a remote Inuit community in Labrador, located in the midst of uranium belt. We selected 25 houses by convenience sampling and placed electret-ion-chamber radon monitoring devices in the lowest levels of the house (basement/crawl space). The standard radon study questionnaire developed and used by Health Canada was used. 7 (28%) houses had radon levels above the guideline value (range 249 to 574 Bq/m(3)). Housing characteristics, such as floors, sump holes, ventilation, and heating systems were suspected for high indoor radon levels and health consequences. There is a possibility of the existence of high-risk community in a low-risk region. The regional and provincial health authorities would be benefited by consulting geologists to identify potentially high-risk communities across the country. Placing testing devices in the lowest levels provides more accurate assessment of indoor radon level. The proposed protocol, based on synchronized testing of radon (at the lowest level of houses and in rooms of normal occupancy) and thorough inspection of the houses will be a more effective lung cancer prevention strategy.

  14. The influence of thoron on instruments measuring radon activity concentration.

    PubMed

    Michielsen, N; Bondiguel, S

    2015-11-01

    Thoron, the isotope 220 of radon, is a radionuclide whose concentration may influence the measurement of the activity concentration of (222)Rn in the air. If in the case of continuous and active sampling measuring instruments, using a pump for example, the influence of thoron on radon measurement is obvious and is taken into account in the apparatus, it is often assumed that in the case of a passive sampling, by diffusion through a filter for example, this thoron influence is negligible. This is due to the very short radioactive half-life of thoron, 55.6 s (3.82 d for (222)Rn), and the assumption that the diffusion time of thoron in the detection chamber is long enough beside that of the thoron half-life. The objective of this study is to check whether this assumption is true or not for different kinds of commercial electronic apparatus used to measure radon activity concentration from soil to dwellings. First of all, the devices were calibrated in activity concentration of radon, and then they were exposed to a controlled thoron atmosphere. The experiments concerning the thoron aimed to investigate the sensitivity to thoron in the radon measuring mode of the apparatus. Results of these experiments show that all devices have a very quick answer to thoron atmosphere, even though the sensitivities vary from one instrument to another. Results clearly show that this influence on radon measurement due to the thoron is observed also after the exposition because of the decay of (212)Pb and its progenies. In conclusion, the sensitivity to thoron in the radon measuring mode depends strongly on the type of instruments. The results of the present investigation show that for some apparatus, the influence of thoron cannot be disregarded especially when measuring radon in soil.

  15. Potential for ion-induced nucleation of volatile organic compounds by radon decay in indoor environments

    SciTech Connect

    Daisey, J.M.

    1991-11-01

    There is considerable interest in the unattached'' fraction of radon progeny in indoor air because of its significance to the estimation of the risks of radon exposure. Because of its high mobility in air, the unattached fraction is more efficiently deposited in the respiratory tract. Variation in the diameter of the unattached'' fraction and in its diffusion coefficient can be due to clustering of other atmospheric species around the {sup 218}PoO{sub 2}{sup +} ion. The purpose of this study was to investigate the potential for the formation of clusters of vapor phase organic compounds, found in indoor air, around the {sup 218}PoO{sub 2}{sup +} ion and to determine which were most likely to form clusters. A secondary purpose was to provide a compilation of measurements of indoor organic compounds for future experiments and theoretical calculations by the radon research community. The classical charged liquid droplet theory (Thomson equation) was used to estimate the Gibbs free energy of ion-induced nucleation and to provide an indication of the indoor organic compounds most likely to undergo ion-induced nucleation. Forty-four volatile and semi-volatile organic compounds out of the more than 300 which have been reported in indoor air were investigated. Water vapor was included for comparison. The results indicate that there is a potential for the formation of clusters of organic compounds around the {sup 218}PoO{sub 2}{sup +} ion. The compounds with the greatest potential for cluster formation are the volatile oxidized hydrocarbons (e.g., n-butanol, phenol, hexanal, nonanal, benzaldehyde, the ketones and the acetates) and the semi-volatile organic compounds (pentachlorophenol, nicotine, chlordane, chlorpyrifos).

  16. Potential for ion-induced nucleation of volatile organic compounds by radon decay in indoor environments

    SciTech Connect

    Daisey, J.M.

    1991-11-01

    There is considerable interest in the ``unattached`` fraction of radon progeny in indoor air because of its significance to the estimation of the risks of radon exposure. Because of its high mobility in air, the unattached fraction is more efficiently deposited in the respiratory tract. Variation in the diameter of the ``unattached`` fraction and in its diffusion coefficient can be due to clustering of other atmospheric species around the {sup 218}PoO{sub 2}{sup +} ion. The purpose of this study was to investigate the potential for the formation of clusters of vapor phase organic compounds, found in indoor air, around the {sup 218}PoO{sub 2}{sup +} ion and to determine which were most likely to form clusters. A secondary purpose was to provide a compilation of measurements of indoor organic compounds for future experiments and theoretical calculations by the radon research community. The classical charged liquid droplet theory (Thomson equation) was used to estimate the Gibbs free energy of ion-induced nucleation and to provide an indication of the indoor organic compounds most likely to undergo ion-induced nucleation. Forty-four volatile and semi-volatile organic compounds out of the more than 300 which have been reported in indoor air were investigated. Water vapor was included for comparison. The results indicate that there is a potential for the formation of clusters of organic compounds around the {sup 218}PoO{sub 2}{sup +} ion. The compounds with the greatest potential for cluster formation are the volatile oxidized hydrocarbons (e.g., n-butanol, phenol, hexanal, nonanal, benzaldehyde, the ketones and the acetates) and the semi-volatile organic compounds (pentachlorophenol, nicotine, chlordane, chlorpyrifos).

  17. MEASUREMENT OF RADON CONCENTRATION IN DWELLINGS IN THE REGION OF HIGHEST LUNG CANCER INCIDENCE IN INDIA.

    PubMed

    Zoliana, B; Rohmingliana, P C; Sahoo, B K; Mishra, R; Mayya, Y S

    2016-10-01

    Indoor radon/thoron concentration has been measured in Aizawl district, Mizoram, India, which has the highest lung cancer incidence rates among males and females in India. Simultaneously, radon flux emanated from the surrounding soil of the dwellings was observed in selected places. The annual average value of concentration of radon(thoron) of Aizawl district is 48.8(22.65) Bq m(-3) with a geometric standard deviation of 1.25(1.58). Measured radon flux from the soil has an average value of 22.6 mBq m(-2) s(-1) These results were found to be much below the harmful effect or action level as indicated by the World Health Organisation. On the other hand, food habit and high-level consumption of tobacco and its products in the district have been found to increase the risk of lung cancer incidence in the district. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Soil radon measurements in the Canadian cities.

    PubMed

    Chen, J; Moir, D; MacLellan, K; Leigh, E; Nunez, D; Murphy, S; Ford, K

    2012-08-01

    Radon has been identified as the second leading cause of lung cancer after tobacco smoking. Information on indoor radon concentrations is required to assess the lung cancer burden due to radon exposure. Since radon in soil is believed to be the main source of radon in homes, measurements of soil gas radon concentrations can be used to estimate variations in radon potential of indoor environments. This study reports surveys of natural background variation in soil radon levels in four cities, Montreal, Gatineau, Kingston and the largest Canadian city of Toronto. A total of 212 sites were surveyed. The average soil gas radon concentrations varied significantly from site to site, and ranged from below detection limit to 157 kBq m(-3). For each site, the soil radon potential (SRP) index was determined with the average soil radon concentration and average soil permeability measured. The average SRP indexes are 20±16, 12±11, 8±9 and 12±10 for Montreal, Gatineau, Kingston and Toronto, respectively. The results provide additional data for the validation of an association between indoor and soil radon potentials and for the development of radon potential map of Canada.

  19. Towards a Brazilian radon map: consortium radon Brazil.

    PubMed

    Silva, N C; Bossew, P; Ferreira Filho, A L; Campos, T F C; Pereira, A J S C; Yoshimura, E M; Veiga, L H S; Campos, M P; Rocha, Z; Paschuk, S A; Bonotto, D M

    2014-07-01

    Recently, the idea of generating radon map of Brazil has emerged. First attempts of coordinating radon surveys--carried out by different groups across the country--and initial discussions on how to proceed on a larger scale were made at the First Brazilian Radon Seminary, Natal, September 2012. Conventionally, it is believed that indoor radon is no major problem in Brazil, because the overall benign climate usually allows high ventilation rates. Nevertheless, scattered measurements have shown that moderately high indoor radon concentrations (up to a few hundred Bq m⁻³) do occur regionally. Brazilian geology is very diverse and there are regions where an elevated geogenic radon potential exists or is expected to exist. Therefore, a Brazilian Radon Survey is expected to be a challenge, although it appears an important issue, given the rising concern of the public about the quality of its environment.

  20. Estimation of annual effective dose due to radon and thoron concentrations in mud dwellings of Mrima Hill, Kenya.

    PubMed

    Chege, M W; Hashim, N O; Merenga, A S; Meisenberg, O; Tschiersch, J

    2015-11-01

    This study presents radon and thoron concentration measurements and the corresponding effective dose rates in mud dwellings located in the high background radiation area of Mrima Hill, Kenya. Discriminative technique was used for simultaneous measurement of radon and thoron. The effective dose was evaluated based on the concentration of the isotopes and the time spent indoors. Radon concentration ranged from 16 to 56 Bq m(-3) with an average of 35±14 Bq m(-3) and a corresponding annual effective dose of 0.67 mSv y(-1), while that of thoron ranged from 132 to 1295 Bq m(-3) with an average of 652±397 Bq m(-3) and an effective dose of 13.7 mSv y(-1).

  1. Transport of radon from soil into residences

    SciTech Connect

    Nazaroff, W.W.; Nero, A.V.

    1984-02-01

    To develop effective monitoring and control programs for indoor radon it is important to understand the causes of the broad range of concentrations that has been observed. Measurements of indoor radon concentration and air-exchange rate in dwellings in several countries indicate that this variability arises largely from differences among structures in the rate of radon entry. Recent evidence further suggests that the major source of indoor radon in many circumstances is the soil adjacent to the building foundation and that pressure-driven flow, rather than molecular diffusion, is the dominant transport process by which radon enters the buildings. Key factors affecting radon transport from soil are radon production in soil, flow-inducing mechanisms, soil permeability, and building substructure type. 24 references, 1 figure.

  2. Geologic controls on radon

    SciTech Connect

    Gates, A.E.; Gundersen, L.C.S.

    1992-01-01

    This text provides a review of recent research on geological controls of [sup 222]Rn concentrations in soil gas in relation to the problem of high indoor radon concentrations in houses. The importance of the subject matter is highlighted in the preface by the observation that the US Environmental Protection Agency (EPA) estimates that 15,000 to 25,000 deaths result from radon-induced lung cancer each year in the United States. The text contains 8 Chapters: (1) Geology of radon in the United States; (2) Sensitivity of soil radon to geology and the distribution of radon and uranium in the Hylas Zone Area, Virginia; (3) Geologic and environmental implications of high soil-gas radon concentrations in The Great Valley, Jefferson and Berkeley Counties, West Virginia; (4) Soil radon distribution in glaciated areas: an example from the New Jersey Highlands; (5) Radon in the coastal plain of Texas, Alabama, and New Jersey; (6) Effects of weather and soil characteristics on temporal variations in soil-gas radon concentrations; (7) A theoretical model for the flux of radon from rock to ground water; (8) The influence of season, bedrock, overburden, and house construction on airborne levels of radon in Maine homes. The individual chapters are written by different authors in the form of self-contained research papers, each of which is followed by a comprehensive list of references.

  3. Integrated Field-Scale, Lab-Scale, and Modeling Studies for Improving the Ability to Assess the Groundwater to Indoor Air Pathway at Chlorinated Solvent-Impacted Groundwater Sites

    DTIC Science & Technology

    2012-08-01

    Monitoring of Indoor Air Radon Concentrations with Time .................................14 Radon Concentrations in Soil Gas... Radon soil gas concentration contours [pCi/L] ...........................................................15 Figure 13. SF6 in indoor air with a constant...calibrations ect. August 2010- present* *SF6 started in December 2010, Radon started in February 2011 All available soil gas and

  4. Measurement of radon concentration in super-Kamiokande's buffer gas

    NASA Astrophysics Data System (ADS)

    Nakano, Y.; Sekiya, H.; Tasaka, S.; Takeuchi, Y.; Wendell, R. A.; Matsubara, M.; Nakahata, M.

    2017-09-01

    To precisely measure radon concentrations in purified air supplied to the Super-Kamiokande detector as a buffer gas, we have developed a highly sensitive radon detector with an intrinsic background as low as 0.33 ± 0.07 mBq /m3 . In this article, we discuss the construction and calibration of this detector as well as results of its application to the measurement and monitoring of the buffer gas layer above Super-Kamiokande. In March 2013, the chilled activated charcoal system used to remove radon in the input buffer gas was upgraded. After this improvement, a dramatic reduction in the radon concentration of the supply gas down to 0.08 ± 0.07 mBq /m3 . Additionally, the Rn concentration of the in-situ buffer gas has been measured 28.8 ± 1.7 mBq /m3 using the new radon detector. Based on these measurements we have determined that the dominant source of Rn in the buffer gas arises from contamination from the Super-Kamiokande tank itself.

  5. [Radon and domestic exposure].

    PubMed

    Melloni, B; Vergnenègre, A; Lagrange, P; Bonnaud, F

    2000-12-01

    Radon is a noble gas derived from the decay of radium, which itself is a decay product of uranium. The decay products of radon can collect electrostatically on dust particles in the air and, if these particles are inhaled and attach to bronchial epithelium, produce a high local radiation dose. Alpha particles can induce DNA double-strand breaks and the development of cancer. A causal relation between lung cancer and radon exposure and its progeny has been demonstrated in epidemiological studies of miners. Radon exposure became a public health issue almost 15 years ago. Most radon exposure occurs indoors, predominantly in the home. There is however, a wide range of radon concentration values in different countries. The highest level occurs in areas with granite and permeable soils. The risk for smoking, the leading cause of lung cancer, is far greater than for radon, the second leading cause. The estimates obtained from case-control studies of indoor radon are very contradictory. Scientific knowledge of effects of low levels of exposure to radon and the role of cigarette smoking, as a combined factor, must be studied. Smoking and radon probably interact in a multiplicative fashion.

  6. Indoor radon measurements in south west England explained by topsoil and stream sediment geochemistry, airborne gamma-ray spectroscopy and geology.

    PubMed

    Ferreira, Antonio; Daraktchieva, Zornitza; Beamish, David; Kirkwood, Charles; Lister, T Robert; Cave, Mark; Wragg, Joanna; Lee, Kathryn

    2016-05-20

    best result is obtained by including the soil geochemistry with geology and AGR (TSG + G + AGR, ca. 47%). However, adding G and AGR to the TSG model only slightly improves the prediction (ca. +7%), suggesting that the geochemistry of soils already contain most of the information given by geology and airborne datasets together, at least with regard to the explanation of indoor radon. From the present analysis performed in the SW of England, it may be concluded that each one of the four datasets is likely to be useful for radon mapping purposes, whether alone or in combination with others. The present work also suggest that the complete soil geochemistry dataset (TSG) is more effective for indoor radon modelling than using just the U (+Th, K) concentration in soil. Copyright © 2016 Natural Environment Research Council. Published by Elsevier Ltd.. All rights reserved.

  7. Environmental radon studies in Mexico.

    PubMed

    Segovia, N; Gaso, M I; Armienta, M A

    2007-04-01

    Radon has been determined in soil, groundwater, and air in Mexico, both indoors and outdoors, as part of geophysical studies and to estimate effective doses as a result of radon exposure. Detection of radon has mainly been performed with solid-state nuclear track detectors (SSNTD) and, occasionally, with active detection devices based on silicon detectors or ionization chambers. The liquid scintillation technique, also, has been used for determination of radon in groundwater. The adjusted geometric mean indoor radon concentration (74 Bq m-3) in urban developments, for example Mexico City, is higher than the worldwide median concentration of radon in dwellings. In some regions, particularly hilly regions of Mexico where air pollution is high, radon concentrations are higher than action levels and the effective dose for the general population has increased. Higher soil radon levels have been found in the uranium mining areas in the northern part of the country. Groundwater radon levels are, in general, low. Soil-air radon contributing to indoor atmospheres and air pollution is the main source of increased exposure of the population.

  8. A novel algorithm for quick and continuous tracing the change of radon concentration in environment

    NASA Astrophysics Data System (ADS)

    Tan, Yanliang; Xiao, Detao

    2011-04-01

    Several measurements of the radon concentration are performed by RAD7 in the University of South China. We find that 30-40 min is needed for RAD7 for tracing the concentration of the standard radon chamber. There are two reasons. The first is that the sufficient time of air cycle is needed for the radon concentration in internal cell of RAD7 equal to that of the environment; and the second is that the sufficient decay time is needed for the 218Po concentration in internal cell of RAD7 equal to that of the radon. We used a zeroth order approximation to describe the evolution of the environment radon concentration, and obtained a novel algorithm for quick and continuous tracing the change of radon concentration. The corrected radon concentration obtained through this method is in good agreement with the reference value. This method can be applied to develop and improve the instruments for tracing the change of radon concentration quickly.

  9. Calculating flux to predict future cave radon concentrations.

    PubMed

    Rowberry, Matt D; Martí, Xavi; Frontera, Carlos; Van De Wiel, Marco J; Briestenský, Miloš

    2016-06-01

    Cave radon concentration measurements reflect the outcome of a perpetual competition which pitches flux against ventilation and radioactive decay. The mass balance equations used to model changes in radon concentration through time routinely treat flux as a constant. This mathematical simplification is acceptable as a first order approximation despite the fact that it sidesteps an intrinsic geological problem: the majority of radon entering a cavity is exhaled as a result of advection along crustal discontinuities whose motions are inhomogeneous in both time and space. In this paper the dynamic nature of flux is investigated and the results are used to predict cave radon concentration for successive iterations. The first part of our numerical modelling procedure focuses on calculating cave air flow velocity while the second part isolates flux in a mass balance equation to simulate real time dependence among the variables. It is then possible to use this information to deliver an expression for computing cave radon concentration for successive iterations. The dynamic variables in the numerical model are represented by the outer temperature, the inner temperature, and the radon concentration while the static variables are represented by the radioactive decay constant and a range of parameters related to geometry of the cavity. Input data were recorded at Driny Cave in the Little Carpathians Mountains of western Slovakia. Here the cave passages have developed along splays of the NE-SW striking Smolenice Fault and a series of transverse faults striking NW-SE. Independent experimental observations of fault slip are provided by three permanently installed mechanical extensometers. Our numerical modelling has revealed four important flux anomalies between January 2010 and August 2011. Each of these flux anomalies was preceded by conspicuous fault slip anomalies. The mathematical procedure outlined in this paper will help to improve our understanding of radon migration

  10. Radon: Is it a problem

    SciTech Connect

    Hart, B.L.; Mettler, F.A.; Harley, N.H. )

    1989-09-01

    Radon gas is a major source of radiation exposure to the general public. Radon-222 is a product of uranium-238, present in varying concentrations in all soils. Radon enters buildings from soil, water, natural gas, and building materials. Its short-lived breakdown products, termed radon daughters, include alpha-emitting solids that can deposit in the lungs. Firm evidence links lung cancer risk in miners with high exposure to radon daughters. The amount of risk associated with the much lower but chronic doses received in buildings is difficult to establish. By some extrapolations, radon daughters may be responsible for a significant number of lung cancer deaths. The existence or extent of synergism with smoking is unresolved. Local conditions can cause high levels of radon in some buildings, and measures that reduce indoor radon are of potential value. 39 references.

  11. Radon

    EPA Pesticide Factsheets

    Exposure to radon is the second leading cause of lung cancer after smoking. Radon is a colorless, odorless, tasteless and invisible gas produced by the decay of naturally occurring uranium in soil and water.

  12. Radon

    MedlinePlus

    ... move to air, groundwater, and surface water. Radon-222 has a radioactive half-life of about 4 ... The main isotope of health concern is radon-222 ( 222 Rn). Many scientists believe that the alpha ...

  13. Comparison of five-minute radon-daughter measurements with long-term radon and radon-daughter concentrations

    SciTech Connect

    Young, J.A.; Jackson, P.O.; Thomas, V.W.

    1983-01-01

    Five-minute air filter radon daughter measurements were made in 84 buildings in Edgemont, South Dakota, in which annual average radon daughter concentrations have been determined from six 100-hour Radon Progeny Integrating Sampling Unit (RPISU) measurements. Averaging radon concentrations were also determined in 50 of these buildings using Terradex Track Etch detectors. The standard deviation of the difference between the (natural) logarithms of the RPISU annual averages and the logarithms of the air filter measurements (SD-ln) was found to be 0.52. This SD-ln is considerably smaller than the SD-ln of 0.71 between the RPISU annual averages and the air filter measurements reported by ALARA at Grand Junction, Colorado; presumably because a considerable number of air filter measurements in Edgemont were disregarded because of short turnover times or high wind speeds. Using the SD-ln of 0.52 it can be calculated that there would only be a 5% probability in Edgemont that the RPISU annual average would be greater than 0.015 WL if the five-minute measurement were equal to 0.010 WL. This indicates that the procedure used in Edgemont of clearing buildings from remedial action if the five-minute measurement were less than 0.010 WL was reasonable. There was about a 28% probability that the RPISU annual average would be less than 0.015 WL if the five-minute measurement were 0.033 WL, indicating that the procedure of performing an engineering assessment if the average of two five-minute measurements was greater than 0.033 WL was also reasonable. Comparison indicates that the average of two RPISU measurements taken six months apart would provide a dependable estimate of the annual average.

  14. Geological factors controlling radon hazardous concentration in groundwater

    NASA Astrophysics Data System (ADS)

    Przylibski, T. A.

    2009-04-01

    Radon waters are classified as waters containing more than 100 Bq/L of Rn-222. In many regions radon groundwaters are commonly used as a tap waters. Exploitation of radon groundwater without removing radon out of water in the intake may be hazardous for the consumers. Radon removing is relatively simple and cheap, and may be achieved trough the degassing of tapped water. The following factors are crucial for the genesis of radon (Rn-222) and changes in its concentration in groundwaters: the content of parent Ra-226 in the reservoir rock, the emanation coefficient of the reservoir rock, mixing of various groundwater components. Simplifying the geochemical characterisctics of Ra-226, one can say that the highest radium contents outside uranium deposits could be expected above all in crystalline rocks such as granites, ryolites and gneisses, and among sedimentary rocks - in fine-grained rocks - mudstones and clay rocks. Therefore the highest content of Rn-222 is characteristic of groundwaters flowing through the abovementioned rocks. What is very important for the genesis of groundwater dissolved Rn-222 is not only the total content of Ra-226 in the aquifer, but also the distribution of this isotope's atoms in relation to the surface of mineral grains (crystals) and crack surfaces. Only if Ra-226 atoms lie in the outer zone of grains (crystals), they can be the source of Rn-222 atoms released directly or indirectly into pores and fissures. If the pores and fissures are filled with free groundwater, then the radon dissolved in this water can migrate with it. Therefore particularly high Rn-222 concentration values can be expected in groundwaters circulating in zones of strongly cracked reservoir rocks, i.e. in the weathering zone, reaching the depth of several dozen meters below ground surface, as well as in zones of brittle tectonic deformations. The number of Rn-222 atoms formed in groundwater as a result of the decay of Ra-226 ion (Ra2+) dissolved in this water

  15. Variability of radon and thoron equilibrium factors in indoor environment of Garhwal Himalaya.

    PubMed

    Prasad, Mukesh; Rawat, Mukesh; Dangwal, Anoop; Kandari, Tushar; Gusain, G S; Mishra, Rosaline; Ramola, R C

    2016-01-01

    The measurements of radon, thoron and their progeny concentrations have been carried out in the dwellings of Uttarkashi and Tehri districts of Garhwal Himalaya, India using LR-115 detector based pin-hole dosimeter and DRPS/DTPS techniques. The equilibrium factors for radon, thoron and their progeny were calculated by using the values measured with these techniques. The average values of equilibrium factor between radon and its progeny have been found to be 0.44, 0.39, 0.39 and 0.28 for rainy, autumn, winter and summer seasons, respectively. For thoron and its progeny, the average values of equilibrium factor have been found to be 0.04, 0.04, 0.04 and 0.03 for rainy, autumn, winter and summer seasons, respectively. The equilibrium factor between radon and its progeny has been found to be dependent on the seasonal changes. However, the equilibrium factor for thoron and progeny has been found to be same for rainy, autumn and winter seasons but slightly different for summer season. The annual average equilibrium factors for radon and thoron have been found to vary from 0.23 to 0.80 with an average of 0.42 and from 0.01 to 0.29 with an average of 0.07, respectively. The detailed discussion of the measurement techniques and the explanation for the results obtained is given in the paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Preliminary results regarding the first map of residential radon in some regions in Romania.

    PubMed

    Cosma, C; Cucoş Dinu, A; Dicu, T

    2013-07-01

    Radon represents the most important contribution of population exposure to natural ionising radiation. This article presents the first indoor radon map in some regions of Romania based on 883 surveyed buildings in the Ştei-BăiŢa radon-prone region and 864 in other regions of Romania. Indoor radon measurements were performed in the last 10 y by using CR-39 nuclear track detectors exposed for 3-12 months on ground floor levels of dwellings. Excluding the Ştei-BăiŢa radon-prone region, an average indoor radon concentration of 126 Bq m(-3) was calculated for Romanian houses. In the Ştei-BăiŢa radon-prone area, the average indoor concentration was 292 Bq m(-3). About 21 % of the investigated dwellings in the Ştei-BăiŢa radon-prone region exceed the threshold of 400 Bq m(-3), while 5 % of the dwellings in other areas of Romania exceed the same threshold. As expected, indoor radon concentration is not uniformly distributed throughout Romania. The map shows a high variability among surveyed regions, mainly due to the differences in geology. The radon emanation rate is substantially influenced by the soil characteristics, such as the soil permeability and soil gas radon concentration. Since higher permeability enables the increased migration of soil gas and radon from the soil into the building, elevated levels of indoor radon can be expected in more permeable soil environments.

  17. Radon Concentration in the Cataniapo-Autana River Basin, Amazonas State, Venezuela

    NASA Astrophysics Data System (ADS)

    Sajo-Bohus, L.; Greaves, E. D.; Alvarez, H.; Liendo, J.; Vásquez, G.

    2007-10-01

    Radon activity concentration is measured in rivers of the Autana-Cataniapo hydrologic basin. The region experiments mining and it is forecasted that the basin will be perturbed. Radon activity monitoring is one of the methods to measure environmental changes. Values of radon concentration in water range between 0.4 and 30 Bq L-1.

  18. Measurement of potential alpha energy exposure and potential alpha energy concentration and estimating radiation dose of radon in Sari city in the north region of Iran.

    PubMed

    Rahimi, Seyed Ali; Nikpour, Behzad

    2014-12-01

    In dwellings in Sari city in the northern region of Iran, the potential alpha energy exposure (PAEE) and potential alpha energy concentration (PAEC) have been measured and the radiation dose due to radon and its progenies has been estimated. In this study, the dosemeters DOSEman and SARAD GmbH (Germany), which are sensitive to alpha particles, were used. The population of the city of Sari is 495,369 people and the density of population is 116.5 people per km(2). A percentage of the total household population of Sari in areas of geographically different samples was selected. The PAEE, PAEC and radon concentration in four different seasons in a year in homes for sampling were measured. The mean PAEE due to indoor radon in homes of four cities in Sari city was estimated to be 28.23 Bq m(-3) and the mean PAEC was estimated to be 27.11 Bq m(-3). Also the mean indoor radon level was found to be 29.95 Bq m(-3). The annual dose equivalent is ∼0.0151 μSv y(-1). Measurement results show that the average PAEE, PAEC and radon concentration are higher in winter than in other seasons. This difference could be due to stillness and lack of air movement indoors in winter.

  19. An automated, semi-continuous system for measuring indoor radon progeny activity-weighted size distributions, d sub p : 0. 5--500 nm

    SciTech Connect

    Li, Chih-Shan; Hopke, P.K.; Ramamurthi, M.

    1990-05-01

    A system for the detection and measurement of indoor radon progeny activity-weighted size distributions (particle size, d{sub p} > 0.5 nm) and concentration levels has been developed. The system is microcomputer-controlled and involves a combination of multiple wire screen (Graded Screen Array) sampler-detector units operated in parallel. The radioactivity sampled in these units permits the estimation of the radon progeny activity-weighted size distributions and concentration levels on a semi-continuous basis. This paper presents details of the system and describes various stages in the development of the system. Results of field measurements in a residential environment are presented to illustrate the resolution, sensitivity and capabilities of the measurement system. 16 refs., 4 figs., 1 tab.

  20. RE-ENTRAINMENT AND DISPERSION OF EXHAUSTS FROM INDOOR RADON REDUCTION SYSTEMS: ANALYSIS OF TRACER GAS DATA

    EPA Science Inventory

    Tracer gas studies were conducted around four model houses in a wind tunnel, and around one house in the field, to quantify re-entrainment and dispersion of exhaust gases released from residential indoor radon reduction systems. Re-entrainment tests in the field suggest that acti...

  1. On indoor radon contamination monitoring with SSNTDs: Experimental results concerning plate-out and self-plate-out effects

    NASA Astrophysics Data System (ADS)

    Bigazzi, G.; Hadler, J. C.; Paulo, S. R.

    1989-08-01

    Measurements of the alpha activities of 222Rn and its daughters were performed, both inside a glass recipient and in closed rooms, employing SSNTDs (CR-39 and nuclear emulsion). The experimental results presented here show that plate-out and self-plate-out effects should be taken into account when SSNTDs are employed in indoor radon contamination monitoring.

  2. RE-ENTRAINMENT AND DISPERSION OF EXHAUSTS FROM INDOOR RADON REDUCTION SYSTEMS: ANALYSIS OF TRACER GAS DATA

    EPA Science Inventory

    Tracer gas studies were conducted around four model houses in a wind tunnel, and around one house in the field, to quantify re-entrainment and dispersion of exhaust gases released from residential indoor radon reduction systems. Re-entrainment tests in the field suggest that acti...

  3. STUDY OF RADIATION EXPOSURE DUE TO RADON, THORON AND PROGENY IN THE INDOOR ENVIRONMENT OF YAMUNA AND TONS VALLEYS OF GARHWAL HIMALAYA.

    PubMed

    Prasad, Mukesh; Rawat, Mukesh; Dangwal, Anoop; Prasad, Ganesh; Mishra, Rosaline; Ramola, R C

    2016-10-01

    Long-term measurements of indoor radon, thoron and their progeny concentrations have been carried out in dwellings of Yamuna and Tons Valleys of Uttarkashi, Garhwal Himalaya to investigate the health risk associated with inhalation of radon, thoron and progeny. The experimentally determined values of radon, thoron and progeny concentrations were used to estimate the annual inhalation doses and annual effective doses. The annual inhalation dose has been found to vary from 0.8 to 3.9 mSv y(-1) with an average of 1.8 mSv y(-1) The annual effective dose from the exposure to radon and its progeny in the study area has been found to vary from 0.1 to 2.4 mSv with an average of 1.2±0.6 mSv. Similarly, the annual effective dose due to thoron and its progeny has been found to vary from 0.2 to 1.5 mSv with an average of 0.6±0.4. The measurement techniques and results obtained are discussed in detail. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Indoor characterization of reflective concentrator optics

    NASA Astrophysics Data System (ADS)

    Schmid, Tobias; Frick, Manuel; Hornung, Thorsten; Nitz, Peter

    2013-09-01

    We report about the indoor characterization of small point focusing mirrors at Fraunhofer ISE. The goal is to determine the mean slope error of the concentrator. This is achieved by measuring the concentration distribution in the focal plane of such a mirror. We modified and expanded a test site which is used for Fresnel lens characterization [1]. A modified version of the method presented in [2] is employed to measure the concentration distribution. By comparing ray tracing simulation results of the ideal mirror to the measurement, the mean slope error can be deduced.

  5. Consumer's Guide to Radon Reduction

    MedlinePlus

    ... provide feedback, or report a problem. Radon Indoor Air Quality Home Page Radon Home Local Radon Zones and State Contact Information Individuals and Families Radon Publications Home Buyers and ... Air Bed Bugs Chemicals and Toxics Climate Change Environmental ...

  6. Assessing the risks from exposure to radon in dwellings

    SciTech Connect

    Walsh, P.J.; Lowder, W.M.

    1983-07-01

    The factors used to assess the radiation dose and health risks from human exposure to radon in dwellings are critically reviewed in this summary. Sources of indoor radon and determinants of air concentrations and exposure levels are given as well as the uncertainties that exist in their formulation. Methods of assessing health effects from inhalation of radon and its progeny are discussed with emphasis on dosimetry of radon daughters and formulation of risk per dose values. Finally, methods of assessing risks for general population exposures to indoor radon concentrations are treated.

  7. Quantitative aspects of highly emanating geologic materials and their role in creating high indoor radon. Final report, April 1, 1994--March 31, 1996

    SciTech Connect

    Gundersen, L.C.S.; Schumann, R.R.; Gates, A.E.; Price, P.

    1996-12-31

    Indoor radon hot spots, areas where indoor radon commonly exceeds 20 pCi/L, are often caused by unusually highly emanating soils or rock and their interaction with ambient climatic conditions and a building`s architecture. Highly emanating soils and rocks include glacial deposits; dry fractured clays; black shales; limestone-derived soils; karst and cave areas, fractured or sheared granitic crystalline rocks; mine tailings; uraniferous backfill; and most uranium deposits. The above list probably accounts for 90% of the Nation`s indoor radon over 20 pCi/L. In several of these high indoor radon areas, there appears to be a link between the nature of the radon source in the ground, the architecture of the home, and the relative magnitude and ease of mitigation of the indoor air problem. Quantification of geologic materials in terms of their radon potential with respect to climatic and architectural considerations has never been accomplished. Recent studies have attempted semi-quantitative rankings but rigorous analysis has not been done. In this investigation the authors have attempted to develop the quantitative aspects of geologic materials for prediction of very high indoor radon at several scales of observation from national to census tract.

  8. Modelling of radon concentration peaks in thermal spas: application to Polichnitos and Eftalou spas (Lesvos Island--Greece).

    PubMed

    Vogiannis, Efstratios; Nikolopoulos, Dimitrios

    2008-11-01

    A mathematical model was developed for the description of radon concentration peaks observed in thermal spas. Modelling was based on a pragmatic mix of estimation and measurement of involved physical parameters. The model utilised non-linear first order derivative mass balance differential equations. The equations were described and solved numerically by the use of specially developed computer codes. To apply and check the model, measurements were performed in two thermal spas in Greece (Polichnitos and Eftalou-Lesvos Island). Forty different measurement sets were collected to estimate the concentration variations of indoor-outdoor radon, radon in the entering thermal water, the ventilation rate, the bathtub surface and the bath volume. Turbulence and diffusive phenomena involved in radon concentration variations were attributed to a time varying contact interfacial area (equivalent area). This area was approximated with the use of a mathematical function. Other model parameters were estimated from the literature. Through numerical solving and use of non-linear statistics, the time variations of the equivalent area were estimated for every measurement set. Computationally applied non-linear uncertainty analysis showed less sensitive variations of the coefficients of the equivalent area compared to parameters of the model. Modelled and measured radon concentration peaks were compared by the use of three statistical criteria for the goodness-of-fit. All the investigated peaks exhibited low error probability (***p<0.001) for all criteria. It was concluded that the present modelling achieved to predict the measured radon concentration peaks. Through adequate selection of model parameters the model may be applied to other thermal spas.

  9. Measurement and apportionment of radon source terms for modeling indoor environments. Final progress report, March 1990--August 1992

    SciTech Connect

    Harley, N.H.

    1992-12-31

    During the present 2 1/2 year contract period, we have made significant Progress in modeling the source apportionment of indoor {sup 222}Rn and in {sup 222}Rn decay product dosimetry. Two additional areas were worked on which we believe are useful for the DOE Radon research Program. One involved an analysis of the research house data, grouping the hourly house {sup 222}Rn measurements into 2 day, 7 day and 90 day intervals to simulate the response of passive monitors. Another area requiring some attention resulted in a publication of 3 years of our indoor/outdoor measurements in a high-rise apartment. Little interest has been evinced in apartment measurements yet 20% of the US population lives in multiple-family dwellings, not in contact with the ground. These data together with a summary of all other published data on apartments showed that apartments have only about 50% greater {sup 222}Rn concentration than the measured outdoor {sup 222}Rn. Apartment dwellers generally represent a low risk group regarding {sup 222}Rn exposure. The following sections describe the main projects in some detail.

  10. Potential for ion-induced nucleation of volatile organic compounds by radon decay in indoor environments

    SciTech Connect

    Daisey, J.M. ); Hopke, P.K. )

    1993-07-01

    The theoretical potential for the formation of clusters of vapor-phase organic compounds found in indoor air around the [sup 218]PoO[sub x][sup +] ion was investigated as well as which compounds were most likely to form clusters. A compilation of measurements of indoor organic compounds has been made for future experiments and theoretical calculations by the radon research community. Forty-four volatile and semivolatile organic compounds out of the more than 300 that have been reported in indoor air were investigated. Water vapor was included for comparison. The results indicate that there is a potential for the formation of clusters of organic compounds around the [sup 218]PoO[sub x][sup +] ion. The compounds with the greatest potential for cluster formation are the volatile oxidized hydrocarbons (e.g., n-butanol, phenol, hexanal, nonanal, benzaldehyde, the ketones, and the acetates) and the semivolatile organic compounds (pentachlorophenol, nicotine, chlordane, chlorpyrifos). Although the estimated diameters are consistent with the measured diameters for the unattached fraction, the state of experimental and theoretical knowledge in this area is not sufficiently developed to judge the quantitative validity of these predictions. 48 refs., 1 fig., 5 tabs.

  11. Measurement of radon concentration in some water samples belonging to some adjoining areas of Pathankot, Punjab

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Sharma, Sumit

    2015-08-01

    The study of radon concentration was measured in some areas of Pathankot district, Punjab, India, from the health hazard point of view due to radon. The exposure to radon through drinking water is largely by inhalation and ingestion. RAD 7, an electronic solid state silicon detector (Durridgeco., USA) was used to measure the radon concentration in drinking water samples of the study area. The recorded values of radon concentration in these water samples are below the recommended limit by UNSCEAR and European commission. The recommended limit of radon concentration in water samples is 4 to 40 Bq/l given by UNSCEAR [1] and European commission has recommended the safe limit for radon concentration in water sample is 100 Bq/l [2].

  12. Measurement of radon concentration in some water samples belonging to some adjoining areas of Pathankot, Punjab

    SciTech Connect

    Kumar, Ajay Sharma, Sumit

    2015-08-28

    The study of radon concentration was measured in some areas of Pathankot district, Punjab, India, from the health hazard point of view due to radon. The exposure to radon through drinking water is largely by inhalation and ingestion. RAD 7, an electronic solid state silicon detector (Durridgeco., USA) was used to measure the radon concentration in drinking water samples of the study area. The recorded values of radon concentration in these water samples are below the recommended limit by UNSCEAR and European commission. The recommended limit of radon concentration in water samples is 4 to 40 Bq/l given by UNSCEAR [1] and European commission has recommended the safe limit for radon concentration in water sample is 100 Bq/l [2].

  13. Radon exhalation from sub-slab aggregate used in home construction in Canada.

    PubMed

    Bergman, Lauren; Lee, Jaeyoung; Sadi, Baki; Chen, Jing

    2015-06-01

    Exposure to elevated levels of radon in homes has been shown to result in an increased risk of developing lung cancer. The two largest contributors to indoor radon are radon in soil gas, formed from the rocks and soil surrounding the home, and building materials such as aggregate. This study measured the surface radon exhalation rates for 35 aggregate samples collected from producers across Canada. The radon exhalation rates ranged from 2.3 to 479.9 Bq m(-2) d(-1), with a mean of 80.7±112 Bq m(-2) d(-1). Using a simple, conservative analysis, the aggregate contribution to radon concentrations in an unfinished basement was determined. The maximum estimated radon concentration was 32.5±2.7 Bq m(-3), or ~16 % of the Canadian Radon Guideline. It can be concluded that under normal conditions radon exhalation from aggregate contributes very little to the total radon concentration in indoor air.

  14. Radon: The Invisible Invader.

    ERIC Educational Resources Information Center

    School Leader, 1987

    1987-01-01

    A brief background on indoor radon and the health risks associated with radon exposure, with special emphasis on nonresidential buildings. One school district's experience in radon testing and monitoring is included. (MLF)

  15. Radon: The Invisible Invader.

    ERIC Educational Resources Information Center

    School Leader, 1987

    1987-01-01

    A brief background on indoor radon and the health risks associated with radon exposure, with special emphasis on nonresidential buildings. One school district's experience in radon testing and monitoring is included. (MLF)

  16. Mitigating factors on air concentrations of radon emanating from different granite samples

    SciTech Connect

    Qari, T.M.; Mamoon, A.M.; Abdul-Fattah, A.F. )

    1991-11-01

    Continuous exposure to increased air concentrations of radon in living areas is to be avoided according to the Environmental Protection Agency (EPA) and several published reports. Radon concentrations in ambient air are influenced by several factors related to the nature of the radon source itself, environmental conditions, and the presence of mitigating factors, if any. In this study, crushed granite samples of different types, particle diameters, and moisture contents were compared in simplified test systems with regard to radon emanation from the samples. The effects of selected mitigating factors, namely, ventilation and different barriers to diffusion of emanated radon were determined.

  17. The weather dependence of particle size distribution of indoor radioactive aerosol associated with radon decay products.

    PubMed

    Mostafa, A M A; Tamaki, K; Moriizumi, J; Yamazawa, H; Iida, T

    2011-07-01

    This study was performed to measure the activity size distribution of aerosol particles associated with short-lived radon decay products in indoor air at Nagoya University, Nagoya, Japan. The measurements were performed using a low pressure Andersen cascade impactor under variable meteorological conditions. The results showed that the greatest activity fraction was associated with aerosol particles in the accumulation size range (100-1000 nm) with a small fraction of nucleation mode (10-100 nm). Regarding the influence of the weather conditions, the decrease in the number of accumulation particles was observed clearly after rainfall without significant change in nucleation particles, which may be due to a washout process for the large particles.

  18. A physiologically based assessment of human exposure to radon released from groundwater.

    PubMed

    Yu, Donghan; Kim, Jin Kyu

    2004-02-01

    Most of the indoor radon comes directly from the soil beneath the foundation of a basement. Recently, radon from groundwater was found to make some contribution to the total inhalation risk associated with radon in indoor air. This study presents a realistic exposure assessment of a human to indoor radon released from groundwater. First, the prediction of indoor radon concentration released from groundwater was based on a three-compartment model that was developed to describe the transfer and distribution of the radon released from groundwater in a house through showers, washing clothes, and flushing toilets. Second, a physiologically based pharmacokinetic (PBPK) model for inhaled radon was developed and used to estimate tissue group concentrations in a human body. The PBPK model provides reasonable predictions of uptake, excretion, and distribution of retained radon among tissue groups in the body. Hence, the approach using the PBPK model combined with realistic indoor exposure scenarios predicts the radon concentrations in tissue groups in the body associated with the indoor radon pollution. The results obtained from the study will help increase the quantitative understanding of the risk assessment issues associated with the indoor radon released from the groundwater.

  19. Pilot study of the application of Tellus airborne radiometric and soil geochemical data for radon mapping.

    PubMed

    Appleton, J D; Miles, J C H; Green, B M R; Larmour, R

    2008-10-01

    The scope for using Tellus Project airborne gamma-ray spectrometer and soil geochemical data to predict the probability of houses in Northern Ireland having high indoor radon concentrations is evaluated, in a pilot study in the southeast of the province, by comparing these data statistically with in-house radon measurements. There is generally good agreement between radon maps modelled from the airborne radiometric and soil geochemical data using multivariate linear regression analysis and conventional radon maps which depend solely on geological and indoor radon data. The radon maps based on the Tellus Project data identify some additional areas where the radon risk appears to be relatively high compared with the conventional radon maps. One of the ways of validating radon maps modelled on the Tellus Project data will be to carry out additional indoor measurements in these areas.

  20. Variation of radon entry rate into two detached houses

    NASA Astrophysics Data System (ADS)

    Keskikuru, T.; Kokotti, H.; Lammi, S.; Kalliokoski, P.

    The influence of various factors on the concentration of indoor and its variation were investigated statistically in two different types and location of houses. In the single-storey slab-on-grade house (A), the variation of indoor radon closely followed the difference in indoor-outdoor temperature. The measured pressure difference across the wall and wind speed were significant variables ( p<0.00), but these factors explained the variation of the radon concentration only slightly. In the two-storey hillside basement house (B), the most significant variable difference in indoor-attic space explained 28% of the variation of the indoor radon. In both houses, the coefficient of determination increased slightly when the average wind speed increased, but in house B the coefficient decreased with high wind speed. In house A, the highest concentration of indoor radon was observed as the wind-induced internal transport of radon. In house B, the highest concentration of indoor radon occurred and the highest coefficient of determination (100 R2%=89%) was observed when the wind was blowing towards the slope-side of the esker, causing increased soil gas pressure and air flow in soil. According to this study, the effect of the wind speed on the concentration of indoor radon and on the coefficient of determination was difficult to foresee because the effect of the wind on soil depended strongly on the wind direction and location of the houses.

  1. Radon-Induced Health Effects

    NASA Astrophysics Data System (ADS)

    Muirhead, C. R.

    The following sections are included: * Lung Cancer * Studies of miners * Estimates of lifetime risk associated with indoor radon exposure * Factors that may affect risk estimates * Sex and age at exposure * Joint effect of radon and smoking * Exposure rate * Epidemiological studies of lung cancer and indoor radon exposure * Cancers Other Than Lung * Dosimetry * Epidemiological studies * Studies of miners * Indoor radon exposure * Concluding Remarks * References

  2. UTILITY OF SHORT-TERM BASEMENT SCREENING RADON MEASUREMENTS TO PREDICT YEAR-LONG RESIDENTIAL RADON CONCENTRATIONS ON UPPER FLOORS.

    PubMed

    Barros, Nirmalla; Steck, Daniel J; William Field, R

    2016-11-01

    This study investigated temporal and spatial variability between basement radon concentrations (measured for ∼7 d using electret ion chambers) and basement and upper floor radon concentrations (measured for 1 y using alpha track detectors) in 158 residences in Iowa, USA. Utility of short-term measurements to approximate a person's residential radon exposure and effect of housing/occupant factors on predictive ability were evaluated. About 60 % of basement short-term, 60 % of basement year-long and 30 % of upper floor year-long radon measurements were equal to or above the United States Environmental Protection Agency's radon action level of 148 Bq m(-3) Predictive value of a positive short-term test was 44 % given the year-long living space concentration was equal to or above this action level. Findings from this study indicate that cumulative radon-related exposure was more closely approximated by upper floor year-long measurements than short-term or year-long measurements in the basement. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Novel method of measurement of radon exhalation from building materials.

    PubMed

    Awhida, A; Ujić, P; Vukanac, I; Đurašević, M; Kandić, A; Čeliković, I; Lončar, B; Kolarž, P

    2016-11-01

    In the era of the energy saving policy (i.e. more air tight doors and windows), the radon exhaled from building materials tends to increase its concentration in indoor air, which increases the importance of the measurement of radon exhalation from building materials. This manuscript presents a novel method of the radon exhalation measurement using only a HPGe detector or any other gamma spectrometer. Comparing it with the already used methods of radon exhalation measurements, this method provides the measurement of the emanation coefficient, the radon diffusion length and the radon exhalation rate, all within the same measurement, which additionally defines material's radon protective properties. Furthermore it does not necessitate additional equipment for radon or radon exhalation measurement, which simplifies measurement technique, and thus potentially facilitates introduction of legal obligation for radon exhalation determination in building materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Contribution of radon and radon daughters to respiratory cancer.

    PubMed Central

    Harley, N; Samet, J M; Cross, F T; Hess, T; Muller, J; Thomas, D

    1986-01-01

    This article reviews studies on the contribution of radon and radon daughters to respiratory cancer and proposes recommendations for further research, particularly a national radon survey. The steady-state outdoor radon concentration averages 200 pCi/m3, and indoor levels are about 4 times higher. The primary source of radon in homes is the underlying soil; entry depends on multiple variables and reduced ventilation for energy conservation increases indoor radon levels. Occupational exposures are expressed in units of radon daughter potential energy concentration or working level (WL). Cumulative exposure is the product of the working level and the time exposed. The unit for cumulative exposure is the working level month (WLM). The occupational standard for radon exposure is 4 WLM/year, and 2 WLM/year has been suggested as a guideline for remedial action in homes. Epidemiologic studies show that miners with cumulative radon daughter exposures somewhat below 100 WLM have excess lung cancer mortality. Some 3% to 8% of miners studied have developed lung cancer attributable to radon daughters. All of the underground mining studies show an increased risk of lung cancer with radon daughter exposure. All cell types of lung cancer increased with radon exposure. If radon and smoking act in a multiplicative manner, then the risk for smokers could be 10 times that for nonsmokers. The potential risk of lung cancer appears to be between 1 and 2 per 10,000/WLM, which yields a significant number of lung cancers as some 220 million persons in the United States are exposed on average to 10 to 20 WLM/lifetime. PMID:3830103

  5. Testing of indoor radon reduction techniques in central Ohio houses: Phase 2 (Winter 1988-1989). Final report, September 1988-May 1989

    SciTech Connect

    Findlay, W.O.; Robertson, A.; Scott, A.G.

    1990-05-01

    The report gives results of tests of developmental indoor radon reduction techniques in nine slab-on-grade and four crawl-space houses near Dayton, Ohio. The slab-on-grade tests indicated that, when there is a good layer of aggregate under the slab, the sub-slab ventilation (SSV) mitigation technique, with only one or two suction pipes, can generally reduce indoor concentrations below 2 pCi/L (86 to 99% reduction). These reductions can be achieved even when: there are forced-air supply ducts under the slab; the slab is large (up to 2600 sq ft); and the foundation walls are hollow block. Operating the SSV system in suction always gave greater reductions than did operating in pressure. The crawl-space tests demonstrated that depressurizing under a plastic liner over the crawl-space floor was able to reduce living-area radon concentrations below 2 pCi/L (81 to 96% reduction). The performance of such sub-liner depressurization gave better reductions than did crawl-space ventilation (blowing air into, or out of, the crawl space). Completely covering the crawl-space floor with plastic sheeting was not always necessary to get adequate performance.

  6. Shelter and indoor air in the twenty-first century--radon, smoking, and lung cancer risks

    SciTech Connect

    Fabrikant, J.I. )

    1990-06-01

    Recognition that radon and its daughter products may accumulate to high levels in homes and in the workplace has led to concern about the potential lung cancer risk resulting from indoor domestic exposure. While such risks can be estimated with current dosimetric and epidemiological models for excess relative risks, it must be recognized that these models are based on data from occupational exposure and from underground miners' mortality experience. Several assumptions are required to apply risk estimates from an occupational setting to the indoor domestic environment. Analyses of the relevant data do not lead to a conclusive description of the interaction between radon daughters and cigarette smoking for the induction of lung cancer. The evidence compels the conclusion that indoor radon daughter exposure in homes represents a potential life-threatening public health hazard, particularly in males, and in cigarette smokers. Resolution of complex societal interactions will require public policy decisions involving the governmental, scientific, financial, and industrial sectors. These decisions impact the home, the workplace, and the marketplace, and they extend beyond the constraints of science. Risk identification, assessment, and management require scientific and engineering approaches to guide policy decisions to protect the public health. Mitigation and control procedures are only beginning to receive attention. Full acceptance for protection against what could prove to be a significant public health hazard in the twenty-first century will certainly involve policy decisions, not by scientists, but rather by men and women of government and law.

  7. Spatial and temporal variation in factors governing the radon source potential of soil

    SciTech Connect

    Sextro, R.G.; Nazaroff, W.W.; Turk, B.H.

    1988-10-01

    Soil is the predominant source of radon in most US homes, particularly for those homes with elevated indoor concentrations. Three factors help govern the indoor radon concentration, the radon production rate in the soil, the air permeability of the soil surrounding the building substructure, and the coupling between the soil and the building. In order to evaluate the spatial and temporal variability of the first two factors, soil permeabilities and soil gas radon concentrations have been measured at different locations and as a function of time. The spatial variability in permeability measurements at an individual homesite was seen to range from approximately a factor of ten to more than four orders of magnitude. Similarly, spatial variations in soil gas radon concentrations are less than a factor of two at some homesites to a factor of /approximately/200 at others. The temporal changes in permeability and soil gas radon at a given sampling location are somewhat smaller, yielding variations ranging from less than a factor of two to a factor of /approximately/90 in the case of permeability, and from less than a factor of three to a factor of /approximately/40 for soil gas radon concentrations. A method of combining measurements of soil gas radon and air permeability to provide a characteristic parameter -- the radon source potential -- has been developed and is briefly reviewed. Calculated indoor radon concentrations, based on measured values of radon source potential at a few sample homesites, correlate with the measured indoor radon concentrations. 8 refs., 4 figs., 3 tabs.

  8. Radon monitoring and hazard prediction in Ireland

    NASA Astrophysics Data System (ADS)

    Elio, Javier; Crowley, Quentin; Scanlon, Ray; Hodgson, Jim; Cooper, Mark; Long, Stephanie

    2016-04-01

    Radon is a naturally occurring radioactive gas which forms as a decay product from uranium. It is the largest source of natural ionizing radiation affecting the global population. When radon is inhaled, its short-lived decay products can interact with lung tissue leading to DNA damage and development of lung cancer. Ireland has among the highest levels of radon in Europe and eighth highest of an OECD survey of 29 countries. Every year some two hundred and fifty cases of lung cancer in Ireland are linked to radon exposure. This new research project will build upon previous efforts of radon monitoring in Ireland to construct a high-resolution radon hazard map. This will be achieved using recently available high-resolution airborne gamma-ray spectrometry (radiometric) and soil geochemistry data (http://www.tellus.ie/), indoor radon concentrations (http://www.epa.ie/radiation), and new direct measurement of soil radon. In this regard, legacy indoor radon concentrations will be correlated with soil U and Th concentrations and other geogenic data. This is a new approach since the vast majority of countries with a national radon monitoring programme rely on indoor radon measurements, or have a spatially limited dataset of soil radon measurements. Careful attention will be given to areas where an indicative high radon hazard based on geogenic factors does not match high indoor radon concentrations. Where such areas exist, it may imply that some parameter(s) in the predictive model does not match that of the environment. These areas will be subjected to measurement of radon soil gas using a combination of time averaged (passive) and time dependant (active) measurements in order to better understand factors affecting production, transport and accumulation of radon in the natural environment. Such mapping of radon-prone areas will ultimately help to inform when prevention and remediation measures are necessary, reducing the radon exposure of the population. Therefore, given

  9. Influence of Blasted Uranium Ore Heap on Radon Concentration in Confined Workspaces of Shrinkage Mining Stope

    NASA Astrophysics Data System (ADS)

    Ye, Y. J.; Liang, T.; Ding, D. X.; Lei, B.; Su, H.; Zhang, Y. F.

    2017-07-01

    A calculation model for radon concentration in shrinkage mining stopes under various ventilation conditions was established in this study. The model accounts for the influence of permeability and area of the blasted ore heap, ventilation air quantity, and airflow direction on radon concentration in a confined workspace; these factors work together to allow the engineer to optimize the ventilation design. The feasibility and effectiveness of the model was verified by applying it to mines with elevated radon radiation exposure. The model was found to accurately changes in radon concentration according to the array of influence factors in underground uranium mines.

  10. Radon Concentrations in Drinking Water in Beijing City, China and Contribution to Radiation Dose

    PubMed Central

    Wu, Yun-Yun; Ma, Yong-Zhong; Cui, Hong-Xing; Liu, Jian-Xiang; Sun, Ya-Ru; Shang, Bing; Su, Xu

    2014-01-01

    222Rn concentrations in drinking water samples from Beijing City, China, were determined based on a simple method for the continuous monitoring of radon using a radon-in-air monitor coupled to an air-water exchanger. A total of 89 water samples were sampled and analyzed for their 222Rn content. The observed radon levels ranged from detection limit up to 49 Bq/L. The calculated arithmetic and geometric means of radon concentrations in all measured samples were equal to 5.87 and 4.63 Bq/L, respectively. The average annual effective dose from ingestion of radon in drinking water was 2.78 μSv, and that of inhalation of water-borne radon was 28.5 μSv. It is concluded that it is not the ingestion of waterborne radon, but inhalation of the radon escaping from water that is a substantial part of the radiological hazard. Radon in water is a big concern for public health, especially for consumers who directly use well water with very high radon concentration. PMID:25350007

  11. Radon concentrations in drinking water in Beijing City, China and contribution to radiation dose.

    PubMed

    Wu, Yun-Yun; Ma, Yong-Zhong; Cui, Hong-Xing; Liu, Jian-Xiang; Sun, Ya-Ru; Shang, Bing; Su, Xu

    2014-10-27

    (222)Rn concentrations in drinking water samples from Beijing City, China, were determined based on a simple method for the continuous monitoring of radon using a radon-in-air monitor coupled to an air-water exchanger. A total of 89 water samples were sampled and analyzed for their (222)Rn content. The observed radon levels ranged from detection limit up to 49 Bq/L. The calculated arithmetic and geometric means of radon concentrations in all measured samples were equal to 5.87 and 4.63 Bq/L, respectively. The average annual effective dose from ingestion of radon in drinking water was 2.78 μSv, and that of inhalation of water-borne radon was 28.5 μSv. It is concluded that it is not the ingestion of waterborne radon, but inhalation of the radon escaping from water that is a substantial part of the radiological hazard. Radon in water is a big concern for public health, especially for consumers who directly use well water with very high radon concentration.

  12. Canadian population risk of radon induced lung cancer: a re-assessment based on the recent cross-Canada radon survey

    PubMed Central

    Chen, J.; Moir, D.; Whyte, J.

    2012-01-01

    Exposure to indoor radon has been determined to be the second leading cause of lung cancer after tobacco smoking. Canadian population risk of radon induced lung cancer was assessed in 2005 with the radon distribution characteristics determined from a radon survey carried out in the late 1970s in 19 cities. In that survey, a grab sampling method was used to measure radon levels. The observed radon concentration in 14 000 Canadian homes surveyed followed a log–normal distribution with a geometric mean (GM) of 11.2 Bq m–3 and a geometric standard deviation (GSD) of 3.9. Based on the information from that survey, it was estimated that ∼10 % of lung cancers in Canada resulted from indoor radon exposure. To gain a better understanding of radon concentrations in homes across the country, a national residential radon survey was launched in April 2009. In the recent survey, long-term (3 month or longer) indoor radon measurements were made in roughly 14 000 homes in 121 health regions across Canada. The observed radon concentrations follow, as expected, a log–normal distribution with a GM of 41.9 Bq m–3 and a GSD of 2.8. Based on the more accurate radon distribution characteristics obtained from the recent cross-Canada radon survey, a re-assessment of Canadian population risk for radon induced lung cancer was undertaken. The theoretical estimates show that 16 % of lung cancer deaths among Canadians are attributable to indoor radon exposure. These results strongly suggest the ongoing need for the Canadian National Radon Program. In particular, there is a need for a focus on education and awareness by all levels of government, and in partnership with key stakeholders, to encourage Canadians to take action to reduce the risk from indoor radon exposure. PMID:22874897

  13. Assessing exposure to granite countertops--Part 2: Radon.

    PubMed

    Allen, Joseph G; Minegishi, Taeko; Myatt, Theodore A; Stewart, James H; McCarthy, John F; Macintosh, David L

    2010-05-01

    Radon gas ((222)Rn) is a natural constituent of the environment and a risk factor for lung cancer that we are exposed to as a result of radioactive decay of radium ((226)Ra) in stone and soil. Granite countertops, in particular, have received recent media attention regarding their potential to emit radon. Radon flux was measured on 39 full slabs of granite from 27 different varieties to evaluate the potential for exposure and examine determinants of radon flux. Flux was measured at up to six pre-selected locations on each slab and also at areas identified as potentially enriched after a full-slab scan using a Geiger-Muller detector. Predicted indoor radon concentrations were estimated from the measured radon flux using the CONTAM indoor air quality model. Whole-slab average emissions ranged from less than limit of detection to 79.4 Bq/m(2)/h (median 3.9 Bq/m(2)/h), similar to the range reported in the literature for convenience samples of small granite pieces. Modeled indoor radon concentrations were less than the average outdoor radon concentration (14.8 Bq/m(3); 0.4 pCi/l) and average indoor radon concentrations (48 Bq/m(3); 1.3 pCi/l) found in the United States. Significant within-slab variability was observed for stones on the higher end of whole slab radon emissions, underscoring the limitations of drawing conclusions from discrete samples.

  14. Measurements of radon gas concentrations in dwellings of Al-Madinah Al-Munawarah province in Saudi Arabia.

    PubMed

    Mohamed, R I; Alfull, Z Z; Dawood, N D

    2014-01-01

    Indoor radon concentration levels in a large number of dwellings in Al-Madinah Al-Munawarah Province have been measured. Al-Madinah Al-Munawarah is in the western region of Saudi Arabia. It is the second holiest city in Islam after Mecca, because it is the burial place of the Islamic Prophet Muhammad. The city was divided into four regions: western (contains nine sites), eastern (contains six sites), northern (contains nine sites) and southern (contains five sites). Radon gas concentration was measured using the closed chamber technique employing 2×2 cm(2) sheets of CR-39 solid-state nuclear track detectors. The detectors were kept for a period of 5 to 6 months from September 2010 to February 2011 in order to expose to radon gas. The results of the survey in the western and eastern sites showed that the overall minimum, maximum and average radon concentration levels were 20±1.6, 27±3.2 and 21±2.5 Bq m(-3), respectively. The lowest average radon concentration (20±1.6 Bq m(-3)) was found in Al Anabes and Al Suqya in the western region and Bani Dhafar in the eastern region, while the highest average concentration (27±3.2 Bq m(-3)) was found in Teeyba in the western region and Al 'Aridh in the eastern region, with an average of 21±2.5 Bq m(-3) in the western and eastern sites of Al-Madinah Al-Munawarah. Also in the northern region, the minimum radon concentration was 20±1.6 Bq m(-3) in Oyun, while the maximum was 42±1.6 Bq m(-3) in Sayyed al Shuhadd and Hai Nasr. In the southern region, the minimum radon concentration was 25±2.6 Bq m(-3) at Hai Al Hejrah, while the maximum value was 37±2.6 Bq m(-3) at Al Awali and Dawadia. The average radon concentration was 26±2.5 Bq m(-3) for Al-Madinah Al-Munawarah (western, eastern, northern and southern regions). The corresponding annual effective dose E (mSv y(-1)) to public from (222)Rn and its progeny was estimated to be 0.66 mSv y(-1) as an average value for Al-Madinah Al-Munawarah. The authors concluded that all

  15. Follow-up annual alpha-track monitoring in 40 eastern Pennsylvania houses with indoor radon reduction systems (December 1988-December 1989). Final report, December 1988-June 1990

    SciTech Connect

    Scott, A.G.; Robertson, A.

    1990-11-01

    The report gives results of 12-month-long alpha-track detector (ATD) measurements of indoor radon concentrations, between December 1988 and December 1989 in th living areas of 38 of 40 houses where radon reduction techniques has been installed 2-4 years earlier in a previous EPA project. The techniques, installed between June 1985 and June 1987, generally involved active soil depressurization. In the 28 houses in which the mitigation system operated the entire year, the annual average was < 2 pCi/L in 13, and < 4 pCi/L in 22. The residual radon in many houses is due largely to re-entrainment of ASD exhaust. Comparison of these annual ATD results with quarterly results from the past three winters shows that 22 of the 28 houses had annual measurements within 1 pCi/L of the winter-quarter result. There had been no significant degradation in system performance, except where the mitigation fans failed or where the owner had turned off the system. Six of 34 ASD fans have failed to date.

  16. CONTRIBUTIONS OF BUILDING MATERIALS TO INDOOR RADON LEVELS IN FLORIDA BUILDINGS

    EPA Science Inventory

    The report documents work to characterize potential radon sources in concretes and recommend related changes to Florida's building materials radium standard. (NOTE: The Florida Standard for Radon-resistant Residential Building Construction originally contained a provision to limi...

  17. CONTRIBUTIONS OF BUILDING MATERIALS TO INDOOR RADON LEVELS IN FLORIDA BUILDINGS

    EPA Science Inventory

    The report documents work to characterize potential radon sources in concretes and recommend related changes to Florida's building materials radium standard. (NOTE: The Florida Standard for Radon-resistant Residential Building Construction originally contained a provision to limi...

  18. Radon and radon daughter measurements in solar buildings.

    PubMed

    George, A C; Knutson, E O; Franklin, H

    1983-08-01

    Measurements of radon and radon daughters in 11 buildings in five states, using active or passive solar heating, showed no significant excess in concentrations over the levels measured in buildings with conventional heating systems. Radon levels in two buildings using rock storage in their active solar systems exceeded the U.S. Nuclear Regulatory Commission's limit of 3 pCi/l. for continuous exposure in uncontrolled areas. In the remainder of the buildings, radon concentrations were found to be at levels considered to be normal. It appears that the slightly elevated indoor radon concentrations result from the local geological formations and from the tightening of the buildings rather than as a result of the solar heating technology.

  19. Effectiveness of a passive subslab ventilation system in reducing radon concentrations in a home

    SciTech Connect

    Holford, D.J.; Freeman, H.D.

    1996-10-01

    The effectiveness of a passive subslab ventilation system in reducing radon concentrations in an occupied home was investigated by measuring radon concentrations and pressure differentials during a 1-year period when a passive subslab ventilation system was being cycled on and off. Radon concentrations in the house were 30% lower during periods when the stack was open to the atmosphere. The effect was most pronounced when the home was unoccupied and during the winter and spring months. Furnace use and wind speed were the best predictors of transient changes in basement radon concentrations, whether the stack was open or closed. Pressure differential measurements show that subslab depressurization occurs when the stack is open during the winter and spring months due to bouyancy-driven air flow up the stack, but not during the summer. Numerical simulations of gas flow and radon transport into the house from the surrounding soil were calibrated to observed pressure differentials and radon concentrations. The model predicts that peak radon concentrations caused by furnace use will be reduced by flow out of the stack. However, the model is unable to account for the reduction in average radon concentrations observed while the stack is open in the winter. 19 refs., 16 figs., 1 tab.

  20. Daily and seasonal variations in radon activity concentration in the soil air.

    PubMed

    Műllerová, Monika; Holý, Karol; Bulko, Martin

    2014-07-01

    Radon activity concentration in the soil air in the area of Faculty of Mathematics, Physics and Informatics (FMPI) in Bratislava, Slovak Republic, has been continuously monitored since 1994. Long-term measurements at a depth of 0.8 m and short-term measurements at a depth of 0.4 m show a high variability in radon activity concentrations in the soil. The analysis of the data confirms that regular daily changes in radon activity concentration in the soil air depend on the daily changes in atmospheric pressure. It was also found that the typical annual courses of the radon activity concentration in the soil air (with summer minima and winter maxima) were disturbed by mild winter and heavy summer precipitation. Influence of precipitation on the increase in the radon activity concentration in the soil air was observed at a depth of 0.4 m and subsequently at a depth of 0.8 m.

  1. Correlation of radon and thoron concentrations with natural radioactivity of soil in Zonguldak, Turkey

    NASA Astrophysics Data System (ADS)

    Koray, Abdullah; Akkaya, Gizem; Kahraman, Ayşegül

    2017-02-01

    Radon and thoron gases are produced by the decay of the radioactive elements those are radium and thorium in the soil. In this study, the correlations between soil radon and thoron concentration with their parent nuclide (226Ra and 232Th) concentrations in collected soil samples from the same locations were evaluated. The result of the measurement shows that the distribution of radon and thoron in soil showed the same tendency as 226Ra and 232Th distribution. It was found a weak correlation between the radon and the 226Ra concentration (R =0.57), and between the thoron and the 232Th concentration (R=0.64). No strong correlation was observed between soil-gas radon and thoron concentration (R = 0.29).

  2. Radon Resources for Home Buyers and Sellers

    MedlinePlus

    ... provide feedback, or report a problem. Radon Indoor Air Quality Home Page Radon Home Local Radon Zones and State Contact Information Individuals and Families Radon Publications Home Buyers and ... Air Bed Bugs Chemicals and Toxics Climate Change Environmental ...

  3. Radioactivity in the indoor building environment in Serbia.

    PubMed

    Todorović, Natasa; Bikit, Istvan; Vesković, Miroslav; Krmar, Miodrag; Mrđa, Dusan; Forkapić, Sofija; Hansman, Jan; Nikolov, Jovana; Bikit, Kristina

    2014-01-01

    Measurement of activity concentrations of radionuclides in building materials and radon in indoor space is important in the assessment of population exposures, as most individuals spend 80 % of their time indoors. This paper presents the results of activity concentration measurements of: radon emanated from the soil, radionuclides (226)Ra, (232)Th and (40)K in the soil, indoor radon in the city of Novi Sad (the capital city of Vojvodina) using charcoal canisters and indoor radon in the Vojvodina region using alpha-track detectors and the radioactivity of some building materials. Influences of floor level, space under the rooms, boarding, and the heating system on indoor radon accumulation in the Vojvodina province, situated in the northern part of Serbia, are also presented in this paper. The total effective dose and the activity concentration index are calculated applying the dose criteria recommended by the European Union for building materials.

  4. A RAPID SPECTROSCOPIC TECHNIQUE FOR DETERMINING THE POTENTIAL ALPHA ENERGY CONCENTRATION OF RADON DECAY PRODUCTS

    SciTech Connect

    Revzan, K. L.; Nazaroff, W. W.

    1981-07-01

    We consider the application of alpha spectroscopy to the rapid determination of the potential alpha energy concentration (PAEC) of radon decay products indoors. Two count totals are obtained after a single counting period. The PAEC is then estimated by a linear combination of the count totals, the two coefficients being determined by analysis of the dependence of the statistical and procedural errors on the equilibrium conditions and the sampling, delay, and counting times. For a total measurement time of 11 min, the procedural error is unlikely to exceed 20% for equilibrium conditions commonly found indoors; the statistical error is less than 20% at a PAEC of 0.005 WL, assuming a product of detector efficiency and flow rate of at least 1.0 l/min. An analysis is made of techniques based on a total alpha count, and the results are compared with those obtained with the rapid spectroscopic technique; the latter is clearly preferable when the measurement time does not exceed 15 min.

  5. National and regional distributions of airborne radon concentrations in US homes

    SciTech Connect

    Marcinowski, F.; Lucas, R.M.; Yeager, W.M.

    1994-06-01

    The National Residential Radon Survey was conducted during 1989 and 1990 to provide data on the frequency distribution of annual average radon concentrations in U.S. residences nationwide, in U.S. Environmental Protection Agency defined Regions, and in subgroups of the housing stock. The National Residential Radon Survey also provided housing and demographic data and a preliminary assessment of the relationship of housing and geographical characteristics to residential radon concentrations. This paper focuses solely on the national and regional estimates of annual average radon concentrations. A stratified, three-stage sampling procedure was used to select housing units for the survey. Data were collected through personal interviews with residents and placement of alpha track detectors in each level of the residences for 12 mo. The survey found an arithmetic annual average radon concentration in U.S. homes of 46.3 {plus_minus} 4.4 Bq m{sup {minus}3} (1.25 {plus_minus} 0.12 pCi L{sup {minus}}). About 6.0 {plus_minus} 1.4% of homes (5.8 million) had radon levels greater than the U.S. Environmental Protection Agency`s action level for mitigation of 148 Bq m{sup {minus}3} (4 pCi L{sup {minus}1}). Concentrations varied significantly across Environmental Protection Agency Regions. A lognormal distribution was found to closely approximate the major distributions of radon concentrations. 9 refs., 2 figs., 8 tabs.

  6. Exposure to indoor background radiation and urinary concentrations of 8-hydroxydeoxyguanosine, a marker of oxidative DNA damage.

    PubMed Central

    Sperati, A; Abeni, D D; Tagesson, C; Forastiere, F; Miceli, M; Axelson, O

    1999-01-01

    We investigated whether exposure to indoor [gamma]-radiation and radon might be associated with enough free radical formation to increase urinary concentrations of 8-hydroxydeoxyguanosine (8-OHdG), a sensitive marker of DNA damage, due to a hydroxyl radical attack at the C8 of guanine. Indoor radon and [gamma]-radiation levels were measured in 32 dwellings for 6 months by solid-state nuclear track detectors and thermoluminescent dosimeters, respectively. Urine samples for 8-OHdG determinations were obtained from 63 healthy adult subjects living in the measured dwellings. An overall tendency toward increasing levels of 8-OHdG with increasing levels of radon and [gamma]-radiation was seen in the females, presumably due to their estimated longer occupancy in the dwellings measured. Different models were considered for females, with the steepest slopes obtained for [gamma]-radiation with a coefficient of 0.500 (log nmol/l of 8-OHdG for each unit increase of [gamma]-radiation on a log scale) (p<0.01), and increasing to 0.632 (p = 0.035), but with larger variance, when radon was included in the model. In conclusion, there seems to be an effect of indoor radioactivity on the urinary excretion of 8-OHdG for females, who are estimated to have a higher occupancy in the dwellings measured than for males, for whom occupational and other agents may also influence 8-OHdG excretion. ree radicals; [gamma]-radiation; radon. PMID:10064551

  7. Layered neural networks based analysis of radon concentration and environmental parameters in earthquake prediction.

    PubMed

    Negarestani, A; Setayeshi, S; Ghannadi-Maragheh, M; Akashe, B

    2002-01-01

    A layered neural network (LNN) has been employed to estimate the radon concentration in soil related to the environmental parameters. This technique can find any functional relationship between the radon concentration and the environmental parameters. Analysis of the data obtained from a site in Thailand indicates that this approach is able to differentiate time variation of radon concentration caused by environmental parameters from those arising by anomaly phenomena in the earth (e.g. earthquake). This method is compared with a linear computational technique based on impulse responses from multivariable time series. It is indicated that the proposed method can give a better estimation of radon variations related to environmental parameters that may have a non-linear effect on the radon concentration in soil, such as rainfall.

  8. Quantile regression and Bayesian cluster detection to identify radon prone areas.

    PubMed

    Sarra, Annalina; Fontanella, Lara; Valentini, Pasquale; Palermi, Sergio

    2016-11-01

    Albeit the dominant source of radon in indoor environments is the geology of the territory, many studies have demonstrated that indoor radon concentrations also depend on dwelling-specific characteristics. Following a stepwise analysis, in this study we propose a combined approach to delineate radon prone areas. We first investigate the impact of various building covariates on indoor radon concentrations. To achieve a more complete picture of this association, we exploit the flexible formulation of a Bayesian spatial quantile regression, which is also equipped with parameters that controls the spatial dependence across data. The quantitative knowledge of the influence of each significant building-specific factor on the measured radon levels is employed to predict the radon concentrations that would have been found if the sampled buildings had possessed standard characteristics. Those normalised radon measures should reflect the geogenic radon potential of the underlying ground, which is a quantity directly related to the geological environment. The second stage of the analysis is aimed at identifying radon prone areas, and to this end, we adopt a Bayesian model for spatial cluster detection using as reference unit the building with standard characteristics. The case study is based on a data set of more than 2000 indoor radon measures, available for the Abruzzo region (Central Italy) and collected by the Agency of Environmental Protection of Abruzzo, during several indoor radon monitoring surveys. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Results of simultaneous radon and thoron measurements in 33 metropolitan areas of Canada

    PubMed Central

    Chen, Jing; Bergman, Lauren; Falcomer, Renato; Whyte, Jeff

    2015-01-01

    Radon has been identified as the second leading cause of lung cancer after tobacco smoking. 222Rn (radon gas) and 220Rn (thoron gas) are the most common isotopes of radon. In order to assess thoron contribution to indoor radon and thoron exposure, a survey of residential radon and thoron concentrations was initiated in 2012 with ∼4000 homes in the 33 census metropolitan areas of Canada. The survey confirmed that indoor radon and thoron concentrations are not correlated and that thoron concentrations cannot be predicted from widely available radon information. The results showed that thoron contribution to the radiation dose varied from 0.5 to 6 % geographically. The study indicated that, on average, thoron contributes ∼3 % of the radiation dose due to indoor radon and thoron exposure in Canada. Even though the estimated average thoron concentration of 9 Bq m−3 (population weighted) in Canada is low, the average radon concentration of 96 Bq m−3 (population weighted) is more than double the worldwide average indoor radon concentration. It is clear that continued efforts are needed to further reduce the exposure and effectively reduce the number of lung cancers caused by radon. PMID:24748485

  10. Results of simultaneous radon and thoron measurements in 33 metropolitan areas of Canada.

    PubMed

    Chen, Jing; Bergman, Lauren; Falcomer, Renato; Whyte, Jeff

    2015-02-01

    Radon has been identified as the second leading cause of lung cancer after tobacco smoking. (222)Rn (radon gas) and (220)Rn (thoron gas) are the most common isotopes of radon. In order to assess thoron contribution to indoor radon and thoron exposure, a survey of residential radon and thoron concentrations was initiated in 2012 with ∼4000 homes in the 33 census metropolitan areas of Canada. The survey confirmed that indoor radon and thoron concentrations are not correlated and that thoron concentrations cannot be predicted from widely available radon information. The results showed that thoron contribution to the radiation dose varied from 0.5 to 6% geographically. The study indicated that, on average, thoron contributes ∼3% of the radiation dose due to indoor radon and thoron exposure in Canada. Even though the estimated average thoron concentration of 9 Bq m(-3) (population weighted) in Canada is low, the average radon concentration of 96 Bq m(-3) (population weighted) is more than double the worldwide average indoor radon concentration. It is clear that continued efforts are needed to further reduce the exposure and effectively reduce the number of lung cancers caused by radon.

  11. Reduction of radon daughter concentrations in structures. [UMTRA project

    SciTech Connect

    Not Available

    1982-12-01

    A structure was identified in Salt Lake City wherein uranium mill tailings had been used in the construction and where unusually high levels of radon daughter concentrations (RDC's) existed. The physical and radiological characteristics of the structure were assessed. Ventilation techniques were investigated to assess their effectiveness in reducing RDC's. A preferred set of equipment was identified, installed in the structure and operated to reduce RDC's. Parametric studies were conducted to determine if supplying fresh air or recirculating air through electrostatic precipitators is more effective in reducing RDC's. Fresh air was found to be more effective in reducing RDC's. RDC's have been reduced to levels at or near the target of 0.03 working level under optimal ventilation conditions. Natural gas consumption with the new equipment is about 39% higher than with the original equipment. Electrical energy usage and electrical demand are respectively 50 and 44% higher with the new equipment than with the original equipment. 16 refs., 14 figs., 8 tabs.

  12. Radon daughter considerations in a nuclear power plant

    SciTech Connect

    VanderMey, T.J.

    1987-07-01

    A boiling water reactor in the start-up phase experienced a significant number of personnel contamination monitor alarms caused by radon daughter plateout on hard hats, clothing, and shoes. Alarm frequencies were compared to environmental conditions and ventilation system operations to determine the effects of various factors on radon plateout. High normal ventilation, radon daughter concentrations in the plant were found to be similar to outdoor concentrations, and alarm frequencies were inversely related to relative humidity. When ventilation systems were shutdown, indoor radon levels and personnel contamination monitor alarm rates increased significantly. In this paper some suggestions for accounting for radon daughter contamination in monitoring and training programs are presented.

  13. Radon levels in underground workplaces: a map of the Italian regions.

    PubMed

    Rossetti, Marta; Esposito, Massimo

    2015-04-01

    The indoor radon exposition is a widely recognised health hazard, so specific laws and regulations have been produced in many countries and so-called radon-risk maps have consequently been produced. In Italy the regulation applies to general workplaces and a national survey was carried out in the 1990s to evaluate the exposure to radon in dwellings. Failing a national coordinated mapping programme, some Italian regions performed a survey to identify radon-prone areas, nevertheless with different methodologies. In this work a national map of the average annual radon concentration levels in underground workplaces, obtained from the results of 8695 annual indoor radon measurements carried out by U-Series laboratory between 2003 and 2010, was presented. Due to underground locations, the mean radon concentration is higher than that from previous map elaborated for dwellings and a significant radon concentration was also found in Regions traditionally considered as low-risk areas.

  14. Preliminary investigation of radon concentration in surface water and drinking water in Shenzhen City, South China.

    PubMed

    Li, Ting; Wang, Nanping; Li, Shijun

    2015-11-01

    A radon survey in surface water and drinking water was conducted using a portable degassing system associated with an ionisation chamber AlphaGUARD (PQ2000) for understanding levels of dissolved radon ((222)Rn) concentration in different types of water sources and risk assessment of radon in drinking water in Shenzhen City (SC) with a population of 10 628 900 in 2013, Guangdong Province of China. The measurements show that arithmetic means ± standard deviations of radon ((222)Rn) concentration are 52.05 ± 6.64, 0.29 ± 0.26, 0.15 ± 0.23 and 0.37 ± 0.42 kBq m(-3) in spring water, surface water, large and small public water supplies, respectively. Only radon concentrations of two water samples collected in mountainous areas are more than 11.10 kBq m(-3), exceeding the limit of radon concentration in drinking water stipulated by the national standard of China (GB5749-2006). The annual effective doses due to radon in drinking water were also calculated. The investigation suggests that there are no risks caused by radon in the drinking water in SC. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Estimating the risk of lung cancer from inhalation of radon daughters indoors: review and evaluation. Final report, October 1986-April 1988

    SciTech Connect

    Borak, T.B.; Johnson, J.A.

    1988-06-01

    A review of the dosimetric models and epidemiological studies with regard to the relation between indoor radon exposure and lung cancer indicates that the Working Level is an appropriate unit for indoor radon exposure; that the uncertainty in applying risk estimates derived from uranium miner data may be reduced by determining nose vs. mouth breathing ratios, residential aerosol characteristics, and lung cancer risk vs. age at exposure; that there is persuasive evidence of an association between radon exposure indoors and lung cancer; and that epidemiological studies in progress may provide a basis for revision or validation of current models but only is experimental designs are employed that will permit pooling of data to obtain greater statistical power.

  16. Origin of radon concentration of Csalóka Spring in the Sopron Mountains (West Hungary).

    PubMed

    Freiler, Ágnes; Horváth, Ákos; Török, Kálmán; Földes, Tamás

    2016-01-01

    We examined the Csalóka Spring, which has the highest radon concentration in the Sopron Mountains (West Hungary) (, yearly average of 227 ± 10 Bq L(-1)). The main rock types here are gneiss and micaschist, formed from metamorphism of former granitic and clastic sedimentary rocks respectively. The aim of the study was to find a likely source of the high radon concentration in water. During two periods (2007-2008 and 2012-2013) water samples were taken from the Csalóka Spring to measure its radon concentration (from 153 ± 9 Bq L(-1) to 291 ± 15 Bq L(-1)). Soil and rock samples were taken within a 10-m radius of the spring from debrish and from a deformed gneiss outcrop 500 m away from the spring. The radium activity concentration of the samples (between 24.3 ± 2.9 Bq kg(-1) and 145 ± 6.0 Bq kg(-1)) was measured by gamma-spectroscopy, and the specific radon exhalation was determined using radon-chamber measurements (between 1.32 ± 0.5 Bq kg(-1) and 37.1 ± 2.2 Bq kg(-1)). Based on these results a model calculation was used to determine the maximum potential radon concentration, which the soil or the rock may provide into the water. We showed that the maximum potential radon concentration of these mylonitic gneissic rocks (cpot = 2020 Bq L(-1)) is about eight times higher than the measured radon concentration in the water. However the maximum potential radon concentration for soils are significantly lower (41.3 Bq L(-1)) Based on measurements of radon exhalation and porosity of rock and soil samples we concluded that the source material can be the gneiss rock around the spring rather than the soil there. We determined the average radon concentration and the time dependence of the radon concentration over these years in the spring water. We obtained a strong negative correlation (-0.94 in period of 2007-2008 and -0.91 in 2012-2013) between precipitation and radon concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Compilation of geogenic radon potential map of Pest County, Hungary

    NASA Astrophysics Data System (ADS)

    Szabó, K. Zs.; Pásztor, L.; Horváth, Á.; Bakacsi, Zs.; Szabó, J.; Szabó, Cs.

    2010-05-01

    222Rn and its effect on the human health have recently received major importance in environmental studies. This natural radioactive gas accounts for about 9% of lung cancer death and about 2% of all deaths from cancer in Europe due to indoor radon concentrations. It moves into the buildings from the natural decay chain of uranium in soils, rocks and building materials. Radon mapping regionalizes the average hazard from radon in a selected area as a radon risk map. Two major methods (concerning the applied radon data) have been used for mapping. One uses indoor radon data whereas the other is based on soil gas radon data. The outputs of the second approach are the geogenic radon potential maps. The principal objective of our work is to take the first step in geogenic radon mapping in Hungary. Soil samples collected in Pest County (Central Region of Hungary) in the frame of a countrywide soil survey (Soil Information and Monitoring System) were studied to have empirical information of the potential radon risk. As the first two steps radium concentration of soil samples, collected at 43 locations sampling soil profiles by genetic horizons from the surface level down to 60-150 cm, were determined using HPGe gamma-spectroscopy technique, as well as measurement of radon exhalation on the soil samples were carried out applying closed radon accumulation chamber coupled with RAD7 radon monitor detector. From these data the exhalation coefficient was calculated, which shows how many percent of the produced radon can come out from the sample. This rate strongly depends on the depth: at circa 100 cm a drastic decrease have been noticed, which is explained by the change in soil texture. The major source of indoor radon is the soil gas radon concentration (Barnet et al., 2005). We estimated this value from the measured radon exhalation and calculated soil porosity and density. The soil gas radon concentration values were categorized after Kemski et al. (2001) and then the

  18. Using soil gas radon and geology to estimate regional radon potential

    USGS Publications Warehouse

    Reimer, G.M.

    1992-01-01

    Two important parameters have been identified in order to estimate the radon potential of a region. They are the soil gas radon concentration and the geological rock type from which soils are derived. A simple soil gas collection and analytical technique has been developed to provide information on soil gas radon concentrations. The application of these techniques has demonstrated a clear relationship between the estimate of the radon potential and indoor radon measurements. This information is particularly important when evaluating the radon potential of areas that will be subject to population expansion in the future. Other factors, such as gamma radiation measurements and soil permeability can be included to improve the estimate of radon potential, but geology and soil gas measurements are the most important factors. Although this approach is useful for regional estimates, it can also be used for site-specific evaluations.

  19. Air cleaning and radon decay product mitigation

    SciTech Connect

    Hopke, P.K.; Li, C.S.; Ramamurthi, M.

    1990-12-31

    We evaluated air cleaning as a means to mitigate risks arising from exposure to indoor radon progeny in several single-family houses in the northeastern United States, using a new, automated, semi-continuous activity-weighted size distribution measurement system. Measurements included radon concentration, condensation nuclei count, and activity-weighted size distribution of radon decay products. Measurements were made with and without the air cleaning system operating. The influence of particles generated by various sources common to normal indoor activities on radon progeny behavior was evaluated. Aerosols were generated by running water in a shower, burning candles, smoking cigarettes, vacuuming, opening doors, and cooking. Both a filtration unit and an electrostatic precipitator were evaluated. Using a room model, the changes in attachment rates, average attachment diameters, and deposition rates of the ``unattached`` fraction with and without the air cleaning systems were calculated. The air cleaner typically reduced the radon progeny concentrations by 50 to 60%.

  20. Air cleaning and radon decay product mitigation

    SciTech Connect

    Hopke, P.K. ); Li, C.S. . John B. Pierce Foundation Lab.); Ramamurthi, M. )

    1990-01-01

    We evaluated air cleaning as a means to mitigate risks arising from exposure to indoor radon progeny in several single-family houses in the northeastern United States, using a new, automated, semi-continuous activity-weighted size distribution measurement system. Measurements included radon concentration, condensation nuclei count, and activity-weighted size distribution of radon decay products. Measurements were made with and without the air cleaning system operating. The influence of particles generated by various sources common to normal indoor activities on radon progeny behavior was evaluated. Aerosols were generated by running water in a shower, burning candles, smoking cigarettes, vacuuming, opening doors, and cooking. Both a filtration unit and an electrostatic precipitator were evaluated. Using a room model, the changes in attachment rates, average attachment diameters, and deposition rates of the unattached'' fraction with and without the air cleaning systems were calculated. The air cleaner typically reduced the radon progeny concentrations by 50 to 60%.

  1. Radon concentration distributions in shallow and deep groundwater around the Tachikawa fault zone.

    PubMed

    Tsunomori, Fumiaki; Shimodate, Tomoya; Ide, Tomoki; Tanaka, Hidemi

    2017-06-01

    Groundwater radon concentrations around the Tachikawa fault zone were surveyed. The radon concentrations in shallow groundwater samples around the Tachikawa fault segment are comparable to previous studies. The characteristics of the radon concentrations on both sides of the segment are considered to have changed in response to the decrease in groundwater recharge caused by urbanization on the eastern side of the segment. The radon concentrations in deep groundwater samples collected around the Naguri and the Tachikawa fault segments are the same as those of shallow groundwater samples. However, the radon concentrations in deep groundwater samples collected from the bedrock beside the Naguri and Tachikawa fault segments are markedly higher than the radon concentrations expected from the geology on the Kanto plane. This disparity can be explained by the development of fracture zones spreading on both sides of the two segments. The radon concentration distribution for deep groundwater samples from the Naguri and the Tachikawa fault segments suggests that a fault exists even at the southern part of the Tachikawa fault line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. [Optimization of the indoor air conditioning in the places of excessive radon release].

    PubMed

    Malykhin, V M

    1994-01-01

    The experimental modelling covered ventilation and air purification as well as air pollution with radon and such derivatives as polonium-218b, lead-214 and bismuth-214. The modelling was designed for industrial conditions with higher radon release in technologic conversion at enterprises processing uranium. The investigators obtained some information to optimize air processing and to lower the workers exposure to radon and its derivatives.

  3. Radon-hazard potential of Utah

    SciTech Connect

    Black, B.D.; Solomon, B.J. )

    1993-04-01

    Radon is a naturally occurring radioactive gas formed by decay of uranium, and occurs in nearly all geologic materials. Although radon has been shown to be a significant cause of lung cancer in miners, the health hazard from accumulation of radon gas in buildings has only recently been recognized. Indoor-radon hazards depend on both geologic and non-geologic factors. Although non-geologic factors such as construction type, weather, and lifestyles are difficult to measure, geologic factors such as uranium concentration, soil permeability, and depth to ground water can be quantified. Uranium-enriched geologic materials, such as black shales, marine sandstones, and certain granitic, metamorphic, and volcanic rocks, are generally associated with a high radon-hazard potential. Impermeable soil or shallow ground water impedes radon movement and is generally associated with a low radon-hazard potential. A numerical rating system based on these geologic factors has been developed to map radon-hazard potential in Utah. A statewide map shows that the radon-hazard potential of Utah is generally moderate. Assessments of hazard potential from detailed field investigations correlate well with areas of this map. Central Utah has the highest radon-hazard potential, primarily due to uranium-enriched Tertiary volcanic rocks. The radon-hazard potential of eastern Utah is moderate to high, but is generally restricted by low uranium levels. Western Utah, where valley basins with impermeable soils and shallow ground water are common, has the lowest radon-hazard potential.

  4. AN INDOOR PESTICIDE AIR AND SURFACE CONCENTRATION MODEL

    EPA Science Inventory

    A thorough assessment of human exposure to environmental chemicals requires consideration of all processes in the sequence from source to dose. For assessment of exposure to pesticides following their use indoors, data and models are needed to estimate pesticide concentrations...

  5. AN INDOOR PESTICIDE AIR AND SURFACE CONCENTRATION MODEL

    EPA Science Inventory

    A thorough assessment of human exposure to environmental chemicals requires consideration of all processes in the sequence from source to dose. For assessment of exposure to pesticides following their use indoors, data and models are needed to estimate pesticide concentrations...

  6. Soil gas radon concentrations measurements in terms of great soil groups.

    PubMed

    Içhedef, Mutlu; Saç, Müslim Murat; Camgöz, Berkay; Bolca, Mustafa; Harmanşah, Çoşkun

    2013-12-01

    In this study, soil gas radon concentrations were investigated according to locations, horizontal soil layers and great soil groups around Tuzla Fault, Seferihisar-İzmir. Great soil groups are a category that described the horizontal soil layers under soil classification system and distributions of radon concentration in the great soil groups are firstly determined by the present study. According to the obtained results, it has been showed that the radon concentrations in the Koluvial soil group are higher than the other soil groups in the region. Also significant differences on location in same great soil group were determined. The radon concentrations in the Koluvial soil groups were measured with respect to soil layers structures (A, B, C1, and C2). It has been observed that the values increase with depth of soil (C2>C1>B>A). The main reason may be due to the meteorological factors that have limited effect on radon escape from deep layers. Although fault lines pass thought the study area radon concentrations were varied location to location, layer to layer and great group to great group. The study shows that a detailed location description should be performed before soil radon measurements for earthquake predictions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Determination of radon concentration levels in well water in Konya, Turkey.

    PubMed

    Erdogan, M; Eren, N; Demirel, S; Zedef, V

    2013-10-01

    Radon ((222)Rn) measurements were undertaken in 16 samples of well water representing different depths and different types of aquifers found at the city centre of Konya, Central Turkey. The radon activity concentrations of the well water samples collected in the spring and summer seasons of 2012 were measured by using the radon gas analyser (AlphaGUARD PQ 2000PRO). The radon concentrations for spring and summer seasons are 2.29 ± 0.17 to 27.25 ± 1.07 and 1.44 ± 0.18 to 27.45 ± 1.25 Bq l(-1), respectively. The results at hand revealed that the radon concentration levels of the waters strictly depend on the seasons and are slightly variable with depth. Eleven of the 16 well water samples had radon concentration levels below the safe limit of 11.11 Bq l(-1) recommended by the United States Environmental Protection Agency. However, all measured radon concentration levels are well below the 100 Bq l(-1) safe limit declared by the World Health Organisation. The doses resulting from the consumption of these waters were calculated. The calculated minimum and maximum effective doses are 0.29 and 5.49 µSv a(-1), respectively.

  8. Radon survey in the high natural radiation region of Niska Banja, Serbia.

    PubMed

    Zunic, Z S; Yarmoshenko, I V; Birovljev, A; Bochicchio, F; Quarto, M; Obryk, B; Paszkowski, M; Celiković, I; Demajo, A; Ujić, P; Budzanowski, M; Olko, P; McLaughlin, J P; Waligorski, M P R

    2007-01-01

    A radon survey has been carried out around the town of Niska Banja (Serbia) in a region partly located over travertine formations, showing an enhanced level of natural radioactivity. Outdoor and indoor radon concentrations were measured seasonally over the whole year, using CR-39 diffusion type radon detectors. Outdoor measurements were performed at 56 points distributed over both travertine and alluvium sediment formations. Indoor radon concentrations were measured in 102 living rooms and bedrooms of 65 family houses. In about 50% of all measurement sites, radon concentration was measured over each season separately, making it possible to estimate seasonal variations, which were then used to correct values measured over different periods, and to estimate annual values. The average annual indoor radon concentration was estimated at over 1500 Bq/m3 and at about 650 Bq/m3 in parts of Niska Banja located over travertine and alluvium sediment formations, respectively, with maximum values exceeding 6000 Bq/m3. The average value of outdoor annual radon concentration was 57 Bq/m3, with a maximum value of 168 Bq/m3. The high values of indoor and outdoor radon concentrations found at Niska Banja make this region a high natural background radiation area. Statistical analysis of our data confirms that the level of indoor radon concentration depends primarily on the underlying soil and building characteristics.

  9. Effects of vegetation on radon transport processes in soil

    SciTech Connect

    Borak, T.B.

    1991-01-01

    This research was conducted to measure radon concentrations. Radon concentrations in soil gas were measured on a weekly schedule. Samples were extracted through the tubes used for measuring pressure differentials at depths of 30, 100, 180 cm. The average soil moisture content was measured with the neutron gauge. Other soil parameters such as soil temperature and meteorological data were analyzed in order to determine their influence on soil radon concentrations. For indoor radon concentrations, 15 minute measurements were used to obtain a monthly average for one structure from January 1989--August 1990. Also measured were wind speed and pressure differential correlations with radon concentration. The salient features of the data obtained thus far are as follows: radon gas concentrations in the silty clay surrounding the structures increased with depth; monthly averaged radon concentrations in the underground structures do not exhibit obvious seasonal variations; indoor radon concentrations are not correlation with pressure differences between the structure and surrounding soil; for these structures the radon entry rate has two components; one that is constant and the other that changes with time; and the wind speeds that increase the radon entry rate, also increase the ventilation rate. 11 figs.

  10. Measurement and determination of radon source potential: A literature review

    SciTech Connect

    Tanner, A.B.

    1994-04-01

    Radon source potential may be estimated for areas of a nation, state, county, housing development, or building lot. The critical characteristics of the soil are its radium concentration, emanation coefficient, permeability to gas, and diffusion coefficient for radon under typical conditions. This report summarizes and evaluates available information on radon potential mapping and site-specific characterization. More than 100 reports have been found that bear on radon potential mapping, and indicate fair to good agreement with indoor radon results where correlations have been possible.

  11. Radon in Schools

    MedlinePlus

    ... cannot ignore this problem." Kathryn Whitfill, National PTA President. The EPA ranks indoor radon among the most ... our children demands no less. Keith Geiger, NEA President. Top of Page Radon gas decays into radioactive ...

  12. Radon exhalation rate of some building materials used in Egypt.

    PubMed

    Maged, A F; Ashraf, F A

    2005-09-01

    Indoor radon has been recognized as one of the health hazards for mankind. Common building materials used for construction of houses, which are considered as one of the major sources of this gas in indoor environment, have been studied for exhalation rate of radon. Non-nuclear industries, such as coal fired power plants or fertilizer production facilities, generate large amounts of waste gypsum as by-products. Compared to other building materials waste gypsum from fertilizer production facilities (phosphogypsum) shows increased rates of radon exhalation. In the present, investigation solid state alpha track detectors, CR-39 plastic detectors, were used to measure the indoor radon concentration and the radon exhalation rates from some building materials used in Egypt. The indoor radon concentration and the radon exhalation rate ranges were found to be 24-55 Bq m(-3 )and 11-223 mBq m(-2) h(-1), respectively. The effective dose equivalent range for the indoor was found 0.6-1.4 mSv y(-1). The equilibrium factor between radon and its daughters increased with the increase of relative humidity.

  13. Use of a geographic information system (GIS) for targeting radon screening programs in South Dakota.

    PubMed

    Kearfott, Kimberlee J; Whetstone, Zachary D; Rafique Mir, Khwaja M

    2016-01-01

    Because (222)Rn is a progeny of (238)U, the relative abundance of uranium may be used to predict the areas that have the potential for high indoor radon concentration and therefore determine the best areas to conduct future surveys. Geographic Information System (GIS) mapping software was used to construct maps of South Dakota that included levels of uranium concentrations in soil and stream water and uranium deposits. Maps of existing populations and the types of land were also generated. Existing data about average indoor radon levels by county taken from a databank were included for consideration. Although the soil and stream data and existing recorded average indoor radon levels were sparse, it was determined that the most likely locations of elevated indoor radon would be in the northwest and southwest corners of the state. Indoor radon levels were only available for 9 out of 66 counties in South Dakota. This sparcity of data precluded a study of correlation of radon to geological features, but further motivates the need for more testing in the state. Only actual measurements should be used to determine levels of indoor radon because of the strong roles home construction and localized geology play in radon concentration. However, the data visualization method demonstrated here is potentially useful for directing resources relating to radon screening campaigns. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  14. Use of a geographic information system (GIS) for targeting radon screening programs in South Dakota

    PubMed Central

    Kearfott, Kimberlee J.; Whetstone, Zachary D.; Rafique Mir, Khwaja M.

    2016-01-01

    Because 222Rn is a progeny of 238U, the relative abundance of uranium may be used to predict the areas that have the potential for high indoor radon concentration and therefore determine the best areas to conduct future surveys. Geographic Information System (GIS) mapping software was used to construct maps of South Dakota that included levels of uranium concentrations in soil and stream water and uranium deposits. Maps of existing populations and the types of land were also generated. Existing data about average indoor radon levels by county taken from a databank were included for consideration. Although the soil and stream data and existing recorded average indoor radon levels were sparse, it was determined that the most likely locations of elevated indoor radon would be in the northwest and southwest corners of the state. Indoor radon levels were only available for 9 out of 66 counties in South Dakota. This sparcity of data precluded a study of correlation of radon to geological features, but further motivates the need for more testing in the state. Only actual measurements should be used to determine levels of indoor radon because of the strong roles home construction and localized geology play in radon concentration. However, the data visualization method demonstrated here is potentially useful for directing resources relating to radon screening campaigns. PMID:26472478

  15. Interpretation of radon concentration in the Serrazzano zone of the Larderello geothermal field

    SciTech Connect

    Semprini, L.; Kruger, P.; D'Amore, F.

    1982-01-01

    Wellhead concentrations of radon were made at 22 wells in the south-west region of the Larderello geothermal fields by two analytical methods, a field measurement and a laboratory measurement. The radon concentrations were correlated with average specific volume of superheated steam for each well estimated from available thermodynamic parameters of the reservoir. The correlation was improved by adjusting the specific volume of steam by a mass steam saturation value calculated at the boiling front from chemical fluid composition for each well by a method developed by D'Amore and Celati. A compressible flow model for radon transport developed by Sakakura et al. was also tested. The results confirm that radon behavior in geothermal systems is characterized by thermodynamic conditions in the reservoir. In the Serrazzano zone, abnormally high values of radon concentration with respect to estimated specific volume in four of the 22 wells were observed in an area of proposed low permeability. The high values may also result from higher emanating power or lower porosity in this zone. A cross-section normal to the zone of low permeability between the two basins shows a similar radon profile as noted in a Geysers production zone. A comparison of these data with the set obtained in 1976 by D'Amore shows relatively constant radon concentration despite several wells having large variations in gas/steam ratios.

  16. PARAMETRIC ANALYSIS OF THE INSTALLATION AND OPERATING COSTS OF ACTIVE SOIL DEPRESSURIZATION SYSTEMS FOR RESIDENTIAL RADON MITIGATION

    EPA Science Inventory

    The report gives results of a recent analysis showing that cost- effective indoor radon reduction technology is required for houses with initial radon concentrations < 4 pCi/L, because 78-86% of the national lung cancer risk due to radon is associated with those houses. ctive soi...

  17. PARAMETRIC ANALYSIS OF THE INSTALLATION AND OPERATING COSTS OF ACTIVE SOIL DEPRESSURIZATION SYSTEMS FOR RESIDENTIAL RADON MITIGATION

    EPA Science Inventory

    The report gives results of a recent analysis showing that cost- effective indoor radon reduction technology is required for houses with initial radon concentrations < 4 pCi/L, because 78-86% of the national lung cancer risk due to radon is associated with those houses. ctive soi...

  18. Automobile proximity and indoor residential concentrations of BTEX and MTBE

    SciTech Connect

    Corsi, Dr. Richard; Morandi, Dr. Maria; Siegel, Dr. Jeffrey; Hun, Diana E

    2011-01-01

    Attached garages have been identified as important sources of indoor residential air pollution. However, the literature lacks information on how the proximity of cars to the living area affects indoor concentrations of gasoline-related compounds, and the origin of these pollutants. We analyzed data from the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study and evaluated 114 residences with cars in an attached garage, detached garage or carport, or without cars. Results indicate that homes with cars in attached garages were affected the most. Concentrations in homes with cars in detached garages and residences without cars were similar. The contribution from gasoline-related sources to indoor benzene and MTBE concentrations appeared to be dominated by car exhaust, or a combination of tailpipe and gasoline vapor emissions. Residing in a home with an attached garage could lead to benzene exposures ten times higher than exposures from commuting in heavy traffic.

  19. Estimation of uranium and radon concentration in some drinking water samples of Upper Siwaliks, India.

    PubMed

    Singh, Joga; Singh, Harmanjit; Singh, Surinder; Bajwa, B S

    2009-07-01

    Uranium and radon concentration was assessed in water samples taken from hand pumps, natural sources and wells collected from some areas of Upper Siwaliks, Northern India. Fission track registration technique was used to estimate the uranium content of water samples. The uranium concentration in water samples was found to vary from 1.08 +/- 0.03 to 19.68 +/- 0.12 microg l(-1). These values were compared with safe limit values recommended for drinking water. Most of the water samples were found to have uranium concentration below the safe limit of 15 microg l(-1) (WHO, World Health Organization, Guidelines for drinking-water quality (3rd ed.). Geneva, Switzerland: WHO, 2004). The radon estimation in these water samples was made using alpha-scintillometry to study its correlation with uranium. The radon concentration in these samples was found to vary from 0.87 +/- 0.29 to 32.10 +/- 1.79 Bq l(-1). The recorded values of radon concentration were within the recommended safe limit of 4 to 40 Bq l(-1) (UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiations, Sources and effects of ionizing radiation. New York: United Nations, 1993). No direct correlation was found between uranium concentration and radon concentration in water samples belonging to Upper Siwaliks. The values of uranium and radon concentration in water were compared with that from the adjoining areas of Punjab state, India.

  20. A new technique for measuring the concentrations of airborne radon progeny by using an imaging plate.

    PubMed

    Zhang, H; Chen, B; Zhao, C; Zhuo, W

    2012-11-01

    A new technique was developed for measuring the concentrations of airborne radon progeny by using an imaging plate (IP). The concentrations of radon progeny collected on the sampling filter were measured with the IP at 2-5-, 6-20- and 21-30-min intervals after sampling, and the alpha disintegrations were automatically counted by a self-developed image analysis software. To reduce the overlapping impact on alpha counts, a plastic separator with a 0.5-mm thickness was set between the sampling filter and the IP. The lower limit of detection for the equilibrium equivalent concentration of radon was estimated to be ∼3.5 Bq m(-3) for a 10-min sampling at 10 l min(-1). Comparison experiments showed that results measured with the new technique were well consistent with those measured with the alpha spectrometer. It indicates that the new technique is a useful method for accurate measurements of airborne radon progeny concentrations.

  1. Correlative and multivariate analysis of increased radon concentration in underground laboratory.

    PubMed

    Maletić, Dimitrije M; Udovičić, Vladimir I; Banjanac, Radomir M; Joković, Dejan R; Dragić, Aleksandar L; Veselinović, Nikola B; Filipović, Jelena

    2014-11-01

    The results of analysis using correlative and multivariate methods, as developed for data analysis in high-energy physics and implemented in the Toolkit for Multivariate Analysis software package, of the relations of the variation of increased radon concentration with climate variables in shallow underground laboratory is presented. Multivariate regression analysis identified a number of multivariate methods which can give a good evaluation of increased radon concentrations based on climate variables. The use of the multivariate regression methods will enable the investigation of the relations of specific climate variable with increased radon concentrations by analysis of regression methods resulting in 'mapped' underlying functional behaviour of radon concentrations depending on a wide spectrum of climate variables.

  2. The Distribution of Exposure to Radon: Effects of Population Mobility

    SciTech Connect

    Gadgil, A.J.; Rein, S.; Nero, A.V.; Wollenberg Jr., H.A.

    1993-01-01

    The distribution of population exposures to radon, rather than the distribution of indoor radon concentrations, determines the fraction of population exposed to exceptionally high risk from radon exposures. Since this fraction at high risk has prompted the development of public policies on radon, it is important to first determine the magnitude of this fraction, and then how it much would decrease with different implementation program options for radon mitigation. This papers presents an approach to determining the distribution of population exposures to radon from public domain data, and illustrates it with application to the state of Minnesota. During this work, we are led to define a radon entry potential index which appears useful in the search for regions with high radon houses.

  3. Radon remediation and prevention status in 23 European countries.

    PubMed

    Holmgren, O; Arvela, H; Collignan, B; Jiránek, M; Ringer, W

    2013-12-01

    Radon remediation and prevention aim at reducing indoor radon concentrations in the existing and new buildings. This paper gives an estimate of the number of dwellings where remediation or preventive measures have been applied so far in Europe. Questionnaires were sent to contact persons in national radiation protection authorities and radon-related research institutes. Answers from 23 European countries were obtained. Approximately 26 000 dwellings have been remediated in total. Millions of dwellings remain to be remediated and the number is increasing due to the rare use of radon prevention. These facts imply a need for an efficient radon strategy to promote radon remediation. Moreover, the importance of radon prevention in new construction and the regulations concerning radon in the national building codes should be emphasised.

  4. Development of a System to Perform, Record, and Analyze Measurements of Radon Concentrations on a Large Scale.

    DTIC Science & Technology

    1990-10-01

    rate of radon gas through air is much higher than through water. Strong and Levins measured the emanation rate of radon gas from columns of uranium mill...19 passive detectors attempt to average the radon concentrations * over longer periods. Ionization chambers are large metal containers, generally...floor which separates the interior from the crawl space is only wooden planks, and does not provide an airtight seal. Thus radon emanating out of the

  5. Determination of radon and radium concentrations in drinking water samples around the city of Kutahya.

    PubMed

    Sahin, Latife; Cetinkaya, Hakan; Murat Saç, Müslim; Içhedef, Mutlu

    2013-08-01

    The concentration of radium and radon has been determined in drinking water samples collected from various locations of Kutahya city, Turkey. The water samples are taken from public water sources and tap water, with the collector chamber method used to measure the radon and radium concentration. The radon concentration ranges between 0.1 and 48.6±1.7 Bq l(-1), while the radium concentration varies from a minimum detectable activity of <0.02-0.7±0.2 Bq l(-1) in Kutahya city. In addition to the radon and radium levels, parameters such as pH, conductivity and temperature of the water, humidity, pressure, elevation and the coordinates of the sampling points have also been measured and recorded. The annual effective dose from radon and radium due to typical water usage has been calculated. The resulting contribution to the annual effective dose due to radon ingestion varies between 0.3 and 124.2 μSv y(-1); the contribution to the annual effective dose due to radium ingestion varies between 0 and 143.3 μSv y(-1); the dose contribution to the stomach due to radon ingestion varies between 0.03 and 14.9 μSv y(-1). The dose contribution due to radon inhalation ranges between 0.3 and 122.5 μSv y(-1), assuming a typical transfer of radon in water to the air. For the overwhelming majority of the Kutahya population, it is determined that the average radiation exposure from drinking water is less than 73.6 µSv y(-1).

  6. Residential, soil and water radon surveys in north-western part of Romania.

    PubMed

    Cucoş Dinu, Alexandra; Papp, Botond; Dicu, Tiberius; Moldovan, Mircea; Burghele, Denissa Bety; Moraru, Ionuţ Tudor; Tenţer, Ancuţa; Cosma, Constantin

    2017-01-01

    The exposure to radon and radon decay products in homes and at workplaces represents the greatest risk from natural ionizing radiation. The present study brings forward the residential, soil and water radon surveys in 5 counties of Romania. Indoor radon measurements were performed by using CR-39 track detectors exposed for 3 months on ground-floor level of dwellings, according to the NRPB Measurements Protocol. Radon concentrations in soil and water were measured using the LUK3C device. The indoor radon concentrations ranged from 5 to 2592 Bq⋅m(-3) with an updated preliminary arithmetic mean of 133 Bq⋅m(-3), and a geometric mean of 90 Bq⋅m(-3). In about 6% of the investigated grid cells the indoor radon concentrations exceed the threshold of 300 Bq⋅m(-3). The soil gas radon concentration varies from 0.8 to 169 kBq⋅m(-3), with a geometric mean of 28.4 kBq⋅m(-3). For water samples, the results show radon concentrations within the range of 0.3-352 kBq⋅m(-3) with a geometric mean of 7.7 Bq⋅L(-1). The indoor radon map was plotted on a reference grid developed by JRC with the resolution 10 × 10 km(2). Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Radon concentration levels in ground water from Toluca, Mexico.

    PubMed

    Olguin, M T; Segovia, N; Tamez, E; Alcántara, M; Bulbulian, S

    1993-03-25

    Concentration levels of 222Rn have been analysed in water samples from deep wells of the aquifers around the City of Toluca, Mexico. The 222Rn source is the decay of 226Ra within the solid matrix of the aquifer. With a half life of 1600 years the 226Ra continuously releases 222Rn to the pores, from which it diffuses into the main body of water. This paper describes the methods used for sampling and measuring solubilized and 226Ra-supported 222Rn in the water samples, in order to evaluate possible health hazards due to the presence of radon in the drinking water supplies. The relationship of 222Rn with the hydrogeologic characteristics of the zone is also described. The analytical method involves laboratory extraction of 222Rn into toluene. Alpha disintegrations of 222Rn and contributions from short-lived daughters are counted by the liquid scintillation technique. The system was calibrated using a 226Ra standard solution. Results up to 11.3 Bq/l of 222Rn were obtained in the water samples.

  8. A means to make open-face charcoal detectors respond correctly to varying concentration radon fields

    SciTech Connect

    Distenfeld, C.H.

    1995-12-31

    Ronca-Battista and D. Gray 87, outlined the poor response of open-face charcoal detectors to varying concentration radon fields. At worst, for two day exposures with open-face charcoal canisters, their Table 4 indicated a 75% under-response for radon concentrations that were 10 times higher during the first day of two, 10:1. TCS has made similar measurements with open-faced and diffusion barrier detectors in 20:1, 1:20, and 1:1 fields. For the worst case 20:1, measurements indicate TCS two day open-face canisters under respond by 50%, while the Cohen and TCS diffusion barrier devices under responded by about 37%. The reasons for the under response are radon diffusion out of the charcoal due to the forces of lower concentration during the second half of the exposure, and uncompensated radioactive decay of radon gas.

  9. MEASUREMENT OF RADON, THORON AND THEIR PROGENY CONCENTRATIONS IN THE DWELLINGS OF PAURI GARHWAL, UTTARAKHAND, INDIA.

    PubMed

    Joshi, Veena; Dutt, Sanjay; Yadav, Manjulata; Mishra, Rosaline; Ramola, R C

    2016-10-01

    It is well known that inhalation of radon, thoron and their progeny contributes more than 50 % of natural background radiation dose to human being. The time-integrated passive measurements of radon, thoron and their progeny concentrations were carried out in the dwellings of Pauri Garhwal, Uttarakhand, India. The measurements of radon and thoron concentrations were performed by LR-115 detector-based single-entry pin-hole dosemeter, while for the measurement of progeny concentrations, LR-115 deposition-based direct radon and thoron progeny sensors technique was used. The experimental techniques and results obtained are discussed in detail. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Predictive analysis of shaft station radon concentrations in underground uranium mine: A case study.

    PubMed

    Zhao, Guoyan; Hong, Changshou; Li, Xiangyang; Lin, Chunping; Hu, Penghua

    2016-07-01

    This paper presented a method for predicting shaft station radon concentrations in a uranium mine of China through theoretical analysis, mathematical derivation and Monte-Carlo simulation. Based upon the queuing model for tramcars, the average waiting time of tramcars and average number of waiting tramcars were determined, which were further used in developing the predictive model for calculating shaft station radon concentrations. The results exhibit that the extent of variation of shaft station radon concentration in the case study mine is not significantly affected by the queuing process of tramcars, and is always within the allowable limit of 200 Bq m(-3). Thus, the empirical limit of 100,000 T annual ore-hoisting yields has no value in ensuring radiation safety for this mine. Moreover, the developed model has been validated and proved useful in assessing shaft station radon levels for any uranium mine with similar situations.

  11. Radon concentrations in homes in an area of dolomite bedrock: Door County, Wisconsin

    SciTech Connect

    Hawk, K.; Stieglitz, R.D.; Norman, J.C.

    1993-12-31

    A statewide survey by the Wisconsin Department of Health and Social Services with U.S.E.P.A. assistance reported an anomalously high percentage of homes in Door County with radon concentrations in excess of 20 pCi/L. The results were of interest because the county is underlain by marine sedimentary rocks rather than the igneous and metamorphic crystalline types usually associated with elevated radon concentrations. A voluntary population of 55 homes was tested for radon using activated charcoal canisters. This population was also asked to provide questionnaire response data on family, home, and socioeconomic aspects. The data were separated into socioeconomic, energy efficiency, radon access, and karst level categories and statistically analyzed. A subpopulation was selected from the larger population for detailed site investigation, which included additional in-home air testing and, at some sites, water supply analysis and in-ground testing for radon. The field investigations collected information on the geology, soil, topography, and home construction and use. The results of the investigation verified and characterized the radon occurrences in Door County. The presence or absence of karst features is shown to be statistically significant to radon levels. 23 refs., 5 figs., 3 tabs.

  12. Constraints for Using Radon-in-Water Concentrations as an Indicator for Groundwater Discharge into Surface Water Bodies

    NASA Astrophysics Data System (ADS)

    Petermann, Eric; Schubert, Michael

    2015-04-01

    The radon (222-Rn) activity concentration of surface water is a favourable indicator for the detection of groundwater discharge into surface water bodies since radon is highly enriched in groundwater relative to surface waters. Hence, positive radon-in-water anomalies are interpreted as groundwater discharge locations. For this approach, usually, radon time-series are recorded along transects in near-surface waters. Time-series of radon-in-water concentration are commonly measured by permanent radon extraction from a water pump stream and continuous monitoring of the resulting radon-in-air concentration by means of a suitable radon detector. Radon-in-water concentrations are derived from the recorded radon-in-air signal by making allowances for water/air partitioning of radon. However, several constraints arise for this approach since undesirable factors are influencing the radon-in-water concentration. Consequently, corrections are required to remove the effect of these undesirable factors from the radon signal. First, an instrument inherent response delay between actual changes in the radon-in-water concentration and the related radon-in-air signal was observed during laboratory experiments. The response delay is due to (i) the water/air transfer kinetics of radon and (ii) the delayed decay equilibrium between radon and its progeny polonium (218-Po), which is actually being measured by most radon-in-air monitors. We developed a physical model, which considers all parameters that are responsible for the response delay. This model allows the reconstruction of radon-in-water time-series based on radon-in-air records. Second, on a time-scale of several hours the tidal stage is known as a major driver for groundwater discharge fluctuations due to varying hydraulic gradients between groundwater and surface water during a tidal cycle. Consequently, radon-in-water time-series that are detected on tidal coasts are not comparable among each other without normalization

  13. Radon Assessment of Occupational Facilities, Homestead ARB, FL

    DTIC Science & Technology

    2013-11-21

    Consultative Letter 3. DATES COVERED (From – To) May 2013 – August 2013 4. TITLE AND SUBTITLE Radon Assessment of Occupational Facilities...unlimited. Case Number: 88ABW-2013-4919, 21 Nov 2013 13. SUPPLEMENTARY NOTES 14. ABSTRACT An assessment of indoor radon concentrations was...established in AFI 48-148 for long-term monitoring. Historical results indicate a radon risk characterization category of “medium,” requiring all

  14. Study of temporal variation of radon concentrations in public drinking water supplies

    SciTech Connect

    York, Emma L.

    1995-01-01

    The Environmental Protection Agency (EPA) has proposed a Maximum Contaminant Level (MCL) for radon-222 in public drinking water supplies of 300 pCi/L. Proposed monitoring requirements include collecting quarterly grab samples for the first year, then annual samples for the remainder of the compliance cycle provided first year quarterly samples average below the MCL. The focus of this research was to study the temporal variation of groundwater radon concentrations to investigate how reliably one can predict an annual average radon concentration based on the results of grab samples. Using a "slow-flow" collection method and liquid scintillation analysis, biweekly water samples were taken from ten public water supply wells in North Carolina (6 month - 11 month sampling periods). Based on study results, temporal variations exist in groundwater radon concentrations. Statistical analysis performed on the data indicates that grab samples taken from each of the ten wells during the study period would exhibit groundwater radon concentrations within 30% of their average radon concentration.

  15. A complexity measure based method for studying the dependance of 222Rn concentration time series on indoor air temperature and humidity.

    PubMed

    Mihailovic, D T; Udovičić, V; Krmar, M; Arsenić, I

    2014-02-01

    We have suggested a complexity measure based method for studying the dependence of measured (222)Rn concentration time series on indoor air temperature and humidity. This method is based on the Kolmogorov complexity (KL). We have introduced (i) the sequence of the KL, (ii) the Kolmogorov complexity highest value in the sequence (KLM) and (iii) the KL of the product of time series. The noticed loss of the KLM complexity of (222)Rn concentration time series can be attributed to the indoor air humidity that keeps the radon daughters in air.

  16. Thoron activity level and radon measurement by a nuclear track detector.

    PubMed

    Planinić, J; Faj, Z; Vuković, B

    1993-03-01

    Radon activity concentrations in the air were measured with LR-115 nuclear track detectors at three locations in Osijek. The respective equilibrium factors and the effective dose equivalents were determined. Indoor concentrations were from 9.8 to 58.2 Bq m-3 and relative errors of the track etching method were near 19 per cent. The indoor alpha potential energy of the radon and thoron progenies was measured with an ISD detector. Independent measurements, performed with a Radhome semiconductor detector, showed that the indoor thoron concentration was nearly 20 per cent of the radon one.

  17. Radon concentration in thermal water as an indicator of seismic activity.

    PubMed

    Gregoric, Asta; Zmazek, Boris; Vaupotic, Janja

    2008-10-01

    Radon concentration in thermal springs at Hotavlje and Bled has been measured from October 2005 to June 2008 and from October 2005 to September 2007, respectively. At both locations several anomalies in radon concentration were observed, that might have been caused by seismic events. In this study all earthquakes with ratio (D/R) between strain radius (D) and distance to the epicenter (R) greater than 0.5 were taken into account. Five earthquakes occurred in the vicinity of Bled in this period, the strongest at a distance of 17 km with the magnitude ML=3.8 and four radon anomalies were observed. At Hotavlje fourteen earthquakes occurred in the vicinity with D/R ratio from 0.5 to 2.9. During this period three radon anomalies were observed.

  18. Radon Concentration in Groundwater in the Central Region of Gyeongju, Korea - 13130

    SciTech Connect

    Lee, Jung Min; Lee, A. Rim; Park, Chan Hee; Moon, Joo Hyun

    2013-07-01

    Radon is a naturally occurring radioactive gas that is a well known cause of lung cancer through inhalation. Nevertheless, stomach cancer can also occur if radon-containing water is ingested. This study measured the radon concentration in groundwater for drinking or other domestic uses in the central region of Gyeongju, Korea. The groundwater samples were taken from 11 points chosen from the 11 administrative districts in the central region of Gyeongju by selecting a point per district considering the demographic distribution including the number of tourists who visit the ancient ruins and archaeological sites. The mean radon concentrations in the groundwater samples ranged from 14.38 to 9050.73 Bq.m{sup -3}, which were below the recommendations by the U.S. EPA and WHO. (authors)