Science.gov

Sample records for induce aid expression

  1. Plasmodium chabaudi infection induces AID expression in transitional and marginal zone B cells

    PubMed Central

    Wilmore, Joel R.; Maue, Alexander C.

    2016-01-01

    Abstract Introduction Endemic Burkitt's lymphoma (eBL) is associated with Epstein–Barr virus and repeated malaria infections. A defining feature of eBL is the translocation of the c‐myc oncogene to the control of the immunoglobulin promoter. Activation‐induced cytidine deaminase (AID) has been shown to be critical for this translocation. Malaria infection induces AID in germinal center B cells, but whether malaria infection more broadly affects AID activation in extrafollicular B cells is unknown. Methods We either stimulated purified B cells from AID‐green fluorescence protein (GFP) reporter mice or infected AID‐GFP mice with Plasmodium chabaudi, AID fluorescence was monitored in B cell subsets by flow cytometry. Results In vitro analysis of B cells from these mice revealed that CpG (a Toll‐like receptor 9 ligand) was a potent inducer of AID in both mature and immature B cell subsets. Infection of AID‐GFP mice with Plasmodium chabaudi demonstrated that AID expression occurs in transitional and marginal zone B cells during acute malaria infection. Transitional B cells were also capable of differentiating into antibody secreting cells when stimulated in vitro with CpG when isolated from a P. chabaudi‐infected mouse. Conclusions These data suggest that P. chabaudi is capable of inducing AID expression in B cell subsets that do not participate in the germinal center reaction, suggesting an alternative role for malaria in the etiology of eBL. PMID:27980783

  2. Activation-induced cytidine deaminase (AID) expression in human B-cell precursors is essential for central B-cell tolerance

    PubMed Central

    Cantaert, Tineke; Schickel, Jean-Nicolas; Bannock, Jason M.; Ng, Yen-Shing; Massad, Christopher; Oe, Tyler; Wu, Renee; Lavoie, Aubert; Walter, Jolan E.; Notarangelo, Luigi D.; Al-Herz, Waleed; Kilic, Sara Sebnem; Ochs, Hans D.; Nonoyama, Shigeaki; Durandy, Anne; Meffre, Eric

    2015-01-01

    SUMMARY Activation-induced cytidine deaminase (AID), the enzyme mediating class switch recombination (CSR) and somatic hypermutation (SHM) of immunoglobulin genes, is essential for the removal of developing autoreactive B cells. How AID mediates central B-cell tolerance remains unknown. We report that AID enzymes were produced in a discrete population of immature B cells that expressed recombination-activating gene 2 (RAG2), suggesting that they undergo secondary recombination to edit autoreactive antibodies. However, most AID+ immature B cells lacked anti-apoptotic MCL-1 and were deleted by apoptosis. AID inhibition using lentiviral-encoded short hairpin (sh)RNA in B cells developing in humanized mice resulted in a failure to remove autoreactive clones. Hence, B-cell intrinsic AID expression mediates central B-cell tolerance potentially through its RAG-coupled genotoxic activity in self-reactive immature B cells. PMID:26546282

  3. Relation of activation-induced deaminase (AID) expression with antibody response to A(H1N1)pdm09 vaccination in HIV-1 infected patients.

    PubMed

    Cagigi, Alberto; Pensieroso, Simone; Ruffin, Nicolas; Sammicheli, Stefano; Thorstensson, Rigmor; Pan-Hammarström, Qiang; Hejdeman, Bo; Nilsson, Anna; Chiodi, Francesca

    2013-04-26

    The relevance of CD4+T-cells, viral load and age in the immunological response to influenza infection and vaccination in HIV-1 infected individuals has previously been pointed out. Our study aimed at assessing, in the setting of 2009 A(H1N1)pdm09 influenza vaccination, whether quantification of activation-induced deaminase (AID) expression in blood B-cells may provide additional indications for predicting antibody response to vaccination in HIV-1 infected patients with similar CD4+T-cell counts and age. Forty-seven healthy controls, 37 ART-treated and 17 treatment-naïve HIV-1 infected patients were enrolled in the study. Blood was collected prior to A(H1N1)pdm09 vaccination and at 1, 3 and 6 months after vaccination. Antibody titers to A(H1N1)pdm09 vaccine were measured by hemagglutination inhibition (HI) assay while the mRNA expression levels of AID were measured by quantitative real time PCR. Upon B-cell activation in vitro, AID increase correlated to antibody response to the A(H1N1)pdm09 vaccine at 1 month after vaccination in all individuals. In addition, the maximum expression levels of AID were significantly higher in those individuals who still carried protective levels of A(H1N1)pdm09 antibodies after 6 months from vaccination. No correlation was found between CD4+T-cell counts or age at vaccination or HIV-1 viral load and levels of A(H1N1)pdm09 antibodies. Assessing AID expression before vaccination may be an additional useful tool for defining a vaccination strategy in immune-compromised individuals at risk of immunization failure.

  4. The AIDS scare in India could be aid-induced.

    PubMed

    Mohan, S

    1996-01-01

    Peter Piot, head of the Joint United Nations Program on HIV/AIDS (UNAIDS), told the World AIDS Conference in Vancouver that India had 3 million people infected with HIV. The Indian government, however, gave no estimate because it has no baseline data upon which a realistic projection can be made. The National AIDS Control Organization (NACO) officially questioned Dr. Piot on the basis of his estimates. Piot attributes his figure to World Health Organization estimates made in consultation with NACO at the end of 1994 that there were 1.75 million people living with HIV in India. Alarmist reports have appeared in the media based upon Dr. Piot's comments. Some health experts, however, believe that the figures are being inflated by the West to pressure India into accepting vaccine trials and other research on HIV-infected people. For now, neither the Indian government nor the country's general population seem concerned about the reported statistics.

  5. AID-expressing epithelium is protected from oncogenic transformation by an NKG2D surveillance pathway

    PubMed Central

    Pérez-García, Arantxa; Pérez-Durán, Pablo; Wossning, Thomas; Sernandez, Isora V; Mur, Sonia M; Cañamero, Marta; Real, Francisco X; Ramiro, Almudena R

    2015-01-01

    Activation-induced deaminase (AID) initiates secondary antibody diversification in germinal center B cells, giving rise to higher affinity antibodies through somatic hypermutation (SHM) or to isotype-switched antibodies through class switch recombination (CSR). SHM and CSR are triggered by AID-mediated deamination of cytosines in immunoglobulin genes. Importantly, AID activity in B cells is not restricted to Ig loci and can promote mutations and pro-lymphomagenic translocations, establishing a direct oncogenic mechanism for germinal center-derived neoplasias. AID is also expressed in response to inflammatory cues in epithelial cells, raising the possibility that AID mutagenic activity might drive carcinoma development. We directly tested this hypothesis by generating conditional knock-in mouse models for AID overexpression in colon and pancreas epithelium. AID overexpression alone was not sufficient to promote epithelial cell neoplasia in these tissues, in spite of displaying mutagenic and genotoxic activity. Instead, we found that heterologous AID expression in pancreas promotes the expression of NKG2D ligands, the recruitment of CD8+ T cells, and the induction of epithelial cell death. Our results indicate that AID oncogenic potential in epithelial cells can be neutralized by immunosurveillance protective mechanisms. PMID:26282919

  6. B-cell receptor activation inhibits AID expression through calmodulin inhibition of E-proteins.

    PubMed

    Hauser, Jannek; Sveshnikova, Natalia; Wallenius, Anders; Baradaran, Sanna; Saarikettu, Juha; Grundström, Thomas

    2008-01-29

    Upon encountering antigens, B-lymphocytes can adapt to produce a highly specific and potent antibody response. Somatic hypermutation, which introduces point mutations in the variable regions of antibody genes, can increase the affinity for antigen, and antibody effector functions can be altered by class switch recombination (CSR), which changes the expressed constant region exons. Activation-induced cytidine deaminase (AID) is the mutagenic antibody diversification enzyme that is essential for both somatic hypermutation and CSR. The mutagenic AID enzyme has to be tightly controlled. Here, we show that engagement of the membrane-bound antibodies of the B-cell receptor (BCR), which signals that good antibody affinity has been reached, inhibits AID gene expression and that calcium (Ca(2+)) signaling is essential for this inhibition. Moreover, we show that overexpression of the Ca(2+) sensor protein calmodulin inhibits AID gene expression, and that the transcription factor E2A is required for regulation of the AID gene by the BCR. E2A mutated in the binding site for calmodulin, and thus showing calmodulin-resistant DNA binding, makes AID expression resistant to the inhibition through BCR activation. Thus, BCR activation inhibits AID gene expression through Ca(2+)/calmodulin inhibition of E2A.

  7. AIDS-associated Kaposi's sarcoma (KS) cells express oncostatin M (OM)-specific receptor but not leukemia inhibitory factor/OM receptor or interleukin-6 receptor. Complete block of OM-induced KS cell growth and OM binding by anti-gp130 antibodies.

    PubMed Central

    Murakami-Mori, K; Taga, T; Kishimoto, T; Nakamura, S

    1995-01-01

    Oncostatin M (OM), which shares functional similarity and structural homology to leukemia inhibitory factor (LIF) and interleukin-6 (IL-6), functions as a potent growth factor for AIDS-associated Kaposi's sarcoma-derived cells (AIDS-KS cells). OM was also suggested to bind to the LIF receptor (LIF/OM receptor), which consists of a signal transducing subunit for LIF and IL-6 (gp130) and a LIF receptor alpha-subunit. Recent studies indicate that IL-6 has growth-stimulating activity for AIDS-KS cells. However, we find that AIDS-KS cell growth is exclusively induced by OM and not by LIF or IL-6. We also observed the lack of binding properties of AIDS-KS cells for LIF and IL-6. Scatchard plots revealed the existence of two affinity classes of OM receptor sites on AIDS-KS cells, with Kd values of 6-12 pM (high affinity) and 521-815 pM (low affinity). In competition binding studies, we find that the OM-specific receptor, but not the LIF/OM receptor, contributes to the OM-specific growth stimulation of AIDS-KS cells. We also noted that anti-gp130 antibodies can completely abolish OM-induced growth stimulation of AIDS-KS cells as well as OM binding to AIDS-KS cells. PCR amplification clearly revealed high levels of gp130 expression in AIDS-KS cells, while the transcript of LIF receptor alpha-subunit or IL-6 receptor alpha-subunit was not observed. Therefore, we conclude that (a) AIDS-KS cells express the OM-specific receptor with high and low affinity, but not the LIF/OM receptor; (b) gp130 on AIDS-KS cells plays a key role in OM binding and signaling on the OM-specific receptor; and (c) the lack of biological response of AIDS-KS cells to IL-6 and LIF can be explained by the absence of the IL-6 and LIF/OM receptors. All this evidence shows the correlation of OM-specific biological activity with expression of the OM-specific receptor and the involvement of gp130 on this receptor, as based on findings in in vitro growth assays and binding experiments for AIDS-KS cells. Images

  8. HIV-1-induced AIDS in monkeys.

    PubMed

    Hatziioannou, Theodora; Del Prete, Gregory Q; Keele, Brandon F; Estes, Jacob D; McNatt, Matthew W; Bitzegeio, Julia; Raymond, Alice; Rodriguez, Anthony; Schmidt, Fabian; Mac Trubey, C; Smedley, Jeremy; Piatak, Michael; KewalRamani, Vineet N; Lifson, Jeffrey D; Bieniasz, Paul D

    2014-06-20

    Primate lentiviruses exhibit narrow host tropism, reducing the occurrence of zoonoses but also impairing the development of optimal animal models of AIDS. To delineate the factors limiting cross-species HIV-1 transmission, we passaged a modified HIV-1 in pigtailed macaques that were transiently depleted of CD8(+) cells during acute infection. During adaptation over four passages in macaques, HIV-1 acquired the ability to antagonize the macaque restriction factor tetherin, replicated at progressively higher levels, and ultimately caused marked CD4(+) T cell depletion and AIDS-defining conditions. Transient treatment with an antibody to CD8 during acute HIV-1 infection caused rapid progression to AIDS, whereas untreated animals exhibited an elite controller phenotype. Thus, an adapted HIV-1 can cause AIDS in macaques, and stark differences in outcome can be determined by immunological perturbations during early infection.

  9. AID induces intraclonal diversity and genomic damage in CD86+ chronic lymphocytic leukemia cells

    PubMed Central

    Huemer, Michael; Rebhandl, Stefan; Zaborsky, Nadja; Gassner, Franz J; Hainzl, Stefan; Weiss, Lukas; Hebenstreit, Daniel; Greil, Richard; Geisberger, Roland

    2014-01-01

    The activation-induced cytidine deaminase (AID) mediates somatic hypermutation and class switch recombination of the Ig genes by directly deaminating cytosines to uracils. As AID causes a substantial amount of off-target mutations, its activity has been associated with lymphomagenesis and clonal evolution of B-cell malignancies. Although it has been shown that AID is expressed in B-cell chronic lymphocytic leukemia (CLL), a clear analysis of in vivo AID activity in this B-cell malignancy remained elusive. In this study performed on primary human CLL samples, we report that, despite the presence of a dominant VDJ heavy chain region, a substantial intraclonal diversity was observed at VDJ as well as at IgM switch regions (Sμ), showing ongoing AID activity in vivo during disease progression. This AID-mediated heterogeneity was higher in CLL subclones expressing CD86, which we identified as the proliferative CLL fraction. Finally, CD86 expression correlated with shortened time to first treatment and increased γ-H2AX focus formation. Our data demonstrate that AID is active in CLL in vivo and thus, AID likely contributes to clonal evolution of CLL. PMID:25179679

  10. Alternative splicing regulates activation-induced cytidine deaminase (AID): implications for suppression of AID mutagenic activity in normal and malignant B cells

    PubMed Central

    Wu, Xiaosheng; Darce, Jaime R.; Chang, Sook Kyung; Nowakowski, Grzegorz S.

    2008-01-01

    The mutagenic enzyme activation-induced cytidine deaminase (AID) is required for immunoglobulin class switch recombination (CSR) and somatic hypermutation (SHM) in germinal center (GC) B cells. Deregulated expression of AID is associated with various B-cell malignancies and, currently, it remains unclear how AID activity is extinguished to avoid illegitimate mutations. AID has also been shown to be alternatively spliced in malignant B cells, and there is limited evidence that this also occurs in normal blood B cells. The functional significance of these splice variants remains unknown. Here we show that normal GC human B cells and blood memory B cells similarly express AID splice variants and show for the first time that AID splicing variants are singly expressed in individual normal B cells as well as malignant B cells from chronic lymphocytic leukemia patients. We further demonstrate that the alternative AID splice variants display different activities ranging from inactivation of CSR to inactivation or heightened SHM activity. Our data therefore suggest that CSR and SHM are differentially switched off by varying the expression of splicing products of AID at the individual cell level. Most importantly, our findings suggest a novel tumor suppression mechanism by which unnecessary AID mutagenic activities are promptly contained for GC B cells. PMID:18684869

  11. HIV/AIDS and professional freedom of expression in Japan.

    PubMed

    Matsuda, Masami

    2002-07-01

    A senior physician with a government role in Japan made a widely reported and misleading statement about Thailand's policy on HIV/AIDS patients. He claimed that in Thailand the policy is to spend public money on the prevention of HIV infection while allowing AIDS patients to die untreated. The author, a community nursing specialist in Japan with first-hand knowledge of HIV/AIDS policy in Thailand, thought that this statement would influence attitudes negatively in Japan. However, speaking out about this misrepresentation of the facts carried certain risks. Although freedom of expression is valued in Japan, in practice it is not easy to contradict senior medical professionals. The author uses his experience of this difficult professional situation to teach nurses how to approach speaking out in the public interest.

  12. Induction of the alkylation-inducible aidB gene of Escherichia coli by anaerobiosis.

    PubMed Central

    Volkert, M R; Hajec, L I; Nguyen, D C

    1989-01-01

    Induction of the adaptive response to alkylation damage results in the expression of four genes arranged in three transcriptional units: the ada-alkB operon and the alkA and aidB genes. Adaptive-response induction requires the ada gene product and occurs when cells are treated with methylating agents. In previous studies we noted that aidB, but not alkA or ada-alkB, was induced in the absence of alkylation damage as cells were grown to stationary phase. In this note we present evidence that aidB is induced by anaerobiosis. Thus, aidB is subject to dual regulation by ada-dependent alkylation induction and ada-independent anaerobic induction. PMID:2492508

  13. BCR and Endosomal TLR Signals Synergize to Increase AID Expression and Establish Central B Cell Tolerance.

    PubMed

    Kuraoka, Masayuki; Snowden, Pilar B; Nojima, Takuya; Verkoczy, Laurent; Haynes, Barton F; Kitamura, Daisuke; Kelsoe, Garnett

    2017-02-14

    Activation-induced cytidine deaminase (AID) is required to purge autoreactive immature and transitional-1 (immature/T1) B cells at the first tolerance checkpoint, but how AID selectively removes self-reactive B cells is unclear. We now show that B cell antigen receptor (BCR) and endosomal Toll-like receptor (TLR) signals synergize to elicit high levels of AID expression in immature/T1 B cells. This synergy is restricted to ligands for endocytic TLR and requires phospholipase-D activation, endosomal acidification, and MyD88. The first checkpoint is significantly impaired in AID- or MyD88-deficient mice and in mice doubly heterozygous for AID and MyD88, suggesting interaction of these factors in central B cell tolerance. Moreover, administration of chloroquine, an inhibitor of endosomal acidification, results in a failure to remove autoreactive immature/T1 B cells in mice. We propose that a BCR/TLR pathway coordinately establishes central tolerance by hyper-activating AID in immature/T1 B cells that bind ligands for endosomal TLRs.

  14. The cellular context of AID expressing cells in fish lymphoid tissues.

    PubMed

    Saunders, Holly L; Oko, Andrea L; Scott, Amanda N; Fan, Chia Wei; Magor, Brad G

    2010-06-01

    It has long been held that the cold-blooded vertebrates lack mammalian-like germinal centers, though they do have affinity maturation and the immunoglobulin mutator activation-induced cytidine deaminase or AID. Using AID as a marker of sites of somatic hypermutation, we have identified discrete cell clusters of up to several thousand cells, in the spleen and kidney of channel catfish (Ictalurus punctatus), which may be primordial germinal centers. In situ hybridization revealed that AID expressing cells are interspersed or surrounded by a population of pigmented CSF1-R expressing cells called melano-macrophages. Significantly, melano-macrophages or associated reticular cells have been previously noted for their ability to retain soluble antigen on or near their surface for several weeks following vaccination. Laser capture microdissection and RT-PCR were used to establish that these cell clusters also contained cells expressing Ig heavy chain transcripts as well as transcripts of TcRbeta and the putative CD4 homologue of fish. These observations, coupled with past work showing that mutations develop in B-cell lineages in fishes, allow us to develop a model for how affinity maturation may have evolved in early gnathostome vertebrates.

  15. Nicotine-induced locomotor sensitization: pharmacological analyses with candidate smoking cessation aids.

    PubMed

    Goutier, Wouter; Kloeze, Margreet; McCreary, Andrew C

    2016-03-01

    There are a number of approved therapeutics for the management of alcohol dependence, which might also convey the potential as smoking cessation aids. The present study investigated the effect of a few of these therapeutics and potential candidates (non-peptide vasopressin V1b antagonists) on the expression of nicotine-induced behavioral sensitization in Wistar rats. The following compounds were included in this evaluation: rimonabant, bupropion, topiramate, acamprosate, naltrexone, mecamylamine, nelivaptan (SSR-149415, V1b antagonist) and two novel V1b antagonists. Following the development of nicotine-induced locomotor sensitization and a withdrawal period, the expression of sensitization was assessed in the presence of one of the examined agents given 30 minutes prior to the nicotine challenge injection. Acamprosate, naltrexone, rimonabant, mecamylamine, nelivaptan and V1b antagonist 'compound 2' significantly antagonized the expression of nicotine-induced sensitization. Whereas topiramate showed a trend for effects, the V1b antagonist 'compound 1' did not show any significant effects. Bupropion failed to block sensitization but increased activity alone and was therefore tested in development and cross-sensitization studies. Taken together, these findings provide pre-clinical evidence that these molecules attenuated the expression of nicotine-induced sensitization and should be further investigated as putative treatments for nicotine addiction. Moreover, V1b antagonists should be further investigated as a potential novel smoking cessation aid. © 2014 Society for the Study of Addiction.

  16. The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans.

    PubMed

    Zhang, Liangyu; Ward, Jordan D; Cheng, Ze; Dernburg, Abby F

    2015-12-15

    Experimental manipulation of protein abundance in living cells or organisms is an essential strategy for investigation of biological regulatory mechanisms. Whereas powerful techniques for protein expression have been developed in Caenorhabditis elegans, existing tools for conditional disruption of protein function are far more limited. To address this, we have adapted the auxin-inducible degradation (AID) system discovered in plants to enable conditional protein depletion in C. elegans. We report that expression of a modified Arabidopsis TIR1 F-box protein mediates robust auxin-dependent depletion of degron-tagged targets. We document the effectiveness of this system for depletion of nuclear and cytoplasmic proteins in diverse somatic and germline tissues throughout development. Target proteins were depleted in as little as 20-30 min, and their expression could be re-established upon auxin removal. We have engineered strains expressing TIR1 under the control of various promoter and 3' UTR sequences to drive tissue-specific or temporally regulated expression. The degron tag can be efficiently introduced by CRISPR/Cas9-based genome editing. We have harnessed this system to explore the roles of dynamically expressed nuclear hormone receptors in molting, and to analyze meiosis-specific roles for proteins required for germ line proliferation. Together, our results demonstrate that the AID system provides a powerful new tool for spatiotemporal regulation and analysis of protein function in a metazoan model organism. © 2015. Published by The Company of Biologists Ltd.

  17. AID-induced remodeling of immunoglobulin genes and B cell fate.

    PubMed

    Laffleur, Brice; Denis-Lagache, Nicolas; Péron, Sophie; Sirac, Christophe; Moreau, Jeanne; Cogné, Michel

    2014-03-15

    Survival and phenotype of normal and malignant B lymphocytes are critically dependent on constitutive signals by the B cell receptor (BCR) for antigen. In addition, either antigen ligation of the BCR or various mitogenic stimuli result in B cell activation and induction of activation-induced deaminase (AID). AID activity can in turn mediate somatic hypermutation (SHM) of immunoglobulin (Ig) V regions and also deeply remodel the Ig heavy chain locus through class switch recombination (CSR) or locus suicide recombination (LSR). In addition to changes linked to affinity for antigen, modifying the class/isotype (i.e. the structure and function) of the BCR or suddenly deleting BCR expression also modulates the fate of antigen-experienced B cells.

  18. [Nonketotic hyperglycemic coma induced by somatostatin in an AIDS patient].

    PubMed

    Vandercam, B; Hermans, M P; Coumans, P; Jacques, D; Gala, J L; Kolanowski, J

    1995-10-14

    A 33-year-old woman with AIDS was treated with somatostatin (continuous infusion 6 mg/day) for intractable diarrhoea. Improvement was insufficient and the dose was increased to 12 mg/day 5 days later. Hyperosmolar non-ketotic coma occurred two days later (blood glucose 53 mmol/l, bicarbonate 8 mmol/l, pH of arterial blood 7.2). Search for urinary ketones was negative. Klebsiella pneumonia was isolated in the urine sample. Somatostatin was withdrawn and the patient improved with parenteral nutrition and intravenous insulin. Glucose tolerance was verified after recovery and was normal. Somatostatin is known to impair glucose tolerance and as shown in this case should also be recognized as a cause of hyperosmolar non-ketotic coma. Increasing use of somatostatin, particularly in HIV patients often given other hyperglycaemia inducing drugs such as didanosine, pentamidine, dapsone, and phenytoin should be accompanied with careful monitoring of blood glucose levels.

  19. Expression of activation-induced cytidine deaminase in oral epithelial dysplasia and oral squamous cell carcinoma.

    PubMed

    Miyazaki, Yuji; Fujinami, Masahiro; Inoue, Harumi; Kikuchi, Kentaro; Ide, Fumio; Kusama, Kaoru

    2013-01-01

    Oral epithelial dysplasia is thought to be a precursor state of carcinogenesis and may harbor gene alterations. Recently, it was reported that gene editing enzyme, activation-induced cytidine deaminase (AID), is expressed in precursor and cancer epithelial cells during carcinogenesis associated with chronic inflammation/infection and that this enzyme induces mutation of tumor-suppressor genes. Thus, AID may have a role in carcinogenesis via oral epithelial dysplasia. In this study, we classified oral mucosal epithelium exhibiting epithelial dysplasia as squamous intraepithelial neoplasia (SIN) grades 1-3, according to the 2005 World Health Organization classification, and used immunohistochemical techniques to examine AID expression in oral mucosal epithelium exhibiting SIN and oral cancer tissues. AID was observed in prickle cells in oral mucosal epithelium with epithelial dysplasia and in oral cancer cells. Additionally, to investigate the mechanism of AID expression and its role in cancer progression, we incubated the oral cancer cell line HSC-2 with inflammatory cytokines. In the HSC-2 cell line, AID expression was enhanced by TNF-α via NF-κB activation and promoted expression of N-cadherin by regulating Snail expression. These findings suggest that AID has a role in the development of oral epithelial dysplasia and promotes progression of oral cancer.

  20. Activation-induced cytidine deaminase (AID) is localized to subnuclear domains enriched in splicing factors

    SciTech Connect

    Hu, Yi Ericsson, Ida Doseth, Berit Liabakk, Nina B. Krokan, Hans E. Kavli, Bodil

    2014-03-10

    Activation-induced cytidine deaminase (AID) is the mutator enzyme in adaptive immunity. AID initiates the antibody diversification processes in activated B cells by deaminating cytosine to uracil in immunoglobulin genes. To some extent other genes are also targeted, which may lead to genome instability and B cell malignancy. Thus, it is crucial to understand its targeting and regulation mechanisms. AID is regulated at several levels including subcellular compartmentalization. However, the complex nuclear distribution and trafficking of AID has not been studied in detail previously. In this work, we examined the subnuclear localization of AID and its interaction partner CTNNBL1 and found that they associate with spliceosome-associated structures including Cajal bodies and nuclear speckles. Moreover, protein kinase A (PKA), which activates AID by phosphorylation at Ser38, is present together with AID in nuclear speckles. Importantly, we demonstrate that AID physically associates with the major spliceosome subunits (small nuclear ribonucleoproteins, snRNPs), as well as other essential splicing components, in addition to the transcription machinery. Based on our findings and the literature, we suggest a transcription-coupled splicing-associated model for AID targeting and activation. - Highlights: • AID and its interaction partner CTNNBL1 localize to Cajal bodies and nuclear speckles. • AID associates with its activating kinase PKA in nuclear speckles. • AID is linked to the splicing machinery in switching B-cells. • Our findings suggest a transcription-coupled splicing associated mechanism for AID targeting and activation.

  1. Decrease in topoisomerase I is responsible for activation-induced cytidine deaminase (AID)-dependent somatic hypermutation.

    PubMed

    Kobayashi, Maki; Sabouri, Zahra; Sabouri, Somayeh; Kitawaki, Yoko; Pommier, Yves; Abe, Takaya; Kiyonari, Hiroshi; Honjo, Tasuku

    2011-11-29

    Somatic hypermutation (SHM) and class-switch recombination (CSR) of the Ig gene require both the transcription of the locus and the expression of activation-induced cytidine deaminase (AID). During CSR, AID decreases the amount of topoisomerase I (Top1); this decrease alters the DNA structure and induces cleavage in the S region. Similarly, Top1 is involved in transcription-associated mutation at dinucleotide repeats in yeast and in triplet-repeat contraction in mammals. Here, we report that the AID-induced decrease in Top1 is critical for SHM. Top1 knockdown or haploinsufficiency enhanced SHM, whereas Top1 overexpression down-regulated it. A specific Top1 inhibitor, camptothecin, suppressed SHM, indicating that Top1's activity is required for DNA cleavage. Nonetheless, suppression of transcription abolished SHM, even in cells with Top1 knockdown, suggesting that transcription is critical. These results are consistent with a model proposed for CSR and triplet instability, in which transcription-induced non-B structure formation is enhanced by Top1 reduction and provides the target for irreversible cleavage by Top1. We speculate that the mechanism for transcription-coupled genome instability was adopted to generate immune diversity when AID evolved.

  2. Hyper-inducible expression system for streptomycetes.

    PubMed

    Herai, Sachio; Hashimoto, Yoshiteru; Higashibata, Hiroki; Maseda, Hideaki; Ikeda, Haruo; Omura, Satoshi; Kobayashi, Michihiko

    2004-09-28

    Streptomycetes produce useful enzymes and a wide variety of secondary metabolites with potent biological activities (e.g., antibiotics, immunosuppressors, pesticides, etc.). Despite their importance in the pharmaceutical and agrochemical fields, there have been no reports for practical expression systems in streptomycetes. Here, we developed a "P(nitA)-NitR" system for regulatory gene expression in streptomycetes based on the expression mechanism of Rhodococcus rhodochrous J1 nitrilase, which is highly induced by an inexpensive and safe inducer, epsilon-caprolactam. Heterologous protein expression experiments demonstrated that the system allowed suppressed basal expression and hyper-inducible expression, yielding target protein levels of as high as approximately 40% of all soluble protein. Furthermore, the system functioned in important streptomycete strains. Thus, the P(nitA)-NitR system should be a powerful tool for improving the productivity of various useful products in streptomycetes.

  3. Synthetic tetracycline-inducible regulatory networks: computer-aided design of dynamic phenotypes.

    PubMed

    Sotiropoulos, Vassilios; Kaznessis, Yiannis N

    2007-01-09

    Tightly regulated gene networks, precisely controlling the expression of protein molecules, have received considerable interest by the biomedical community due to their promising applications. Among the most well studied inducible transcription systems are the tetracycline regulatory expression systems based on the tetracycline resistance operon of Escherichia coli, Tet-Off (tTA) and Tet-On (rtTA). Despite their initial success and improved designs, limitations still persist, such as low inducer sensitivity. Instead of looking at these networks statically, and simply changing or mutating the promoter and operator regions with trial and error, a systematic investigation of the dynamic behavior of the network can result in rational design of regulatory gene expression systems. Sophisticated algorithms can accurately capture the dynamical behavior of gene networks. With computer aided design, we aim to improve the synthesis of regulatory networks and propose new designs that enable tighter control of expression. In this paper we engineer novel networks by recombining existing genes or part of genes. We synthesize four novel regulatory networks based on the Tet-Off and Tet-On systems. We model all the known individual biomolecular interactions involved in transcription, translation, regulation and induction. With multiple time-scale stochastic-discrete and stochastic-continuous models we accurately capture the transient and steady state dynamics of these networks. Important biomolecular interactions are identified and the strength of the interactions engineered to satisfy design criteria. A set of clear design rules is developed and appropriate mutants of regulatory proteins and operator sites are proposed. The complexity of biomolecular interactions is accurately captured through computer simulations. Computer simulations allow us to look into the molecular level, portray the dynamic behavior of gene regulatory networks and rationally engineer novel ones with useful

  4. Flavin-Induced Oligomerization in Escherichia coli Adaptive Response Protein AidB

    SciTech Connect

    Hamill, Michael J.; Jost, Marco; Wong, Cintyu; Elliott, Sean J.; Drennan, Catherine L.

    2011-11-21

    The process known as 'adaptive response' allows Escherichia coli to respond to small doses of DNA-methylating agents by upregulating the expression of four proteins. While the role of three of these proteins in mitigating DNA damage is well understood, the function of AidB is less clear. Although AidB is a flavoprotein, no catalytic role has been established for the bound cofactor. Here we investigate the possibility that flavin plays a structural role in the assembly of the AidB tetramer. We report the generation and biophysical characterization of deflavinated AidB and of an AidB mutant that has greatly reduced affinity for flavin adenine dinucleotide (FAD). Using fluorescence quenching and analytical ultracentrifugation, we find that apo AidB has a high affinity for FAD, as indicated by an apparent dissociation constant of 402.1 {+-} 35.1 nM, and that binding of substoichiometric amounts of FAD triggers a transition in the AidB oligomeric state. In particular, deflavinated AidB is dimeric, whereas the addition of FAD yields a tetramer. We further investigate the dimerization and tetramerization interfaces of AidB by determining a 2.8 {angstrom} resolution crystal structure in space group P3{sub 2} that contains three intact tetramers in the asymmetric unit. Taken together, our findings provide strong evidence that FAD plays a structural role in the formation of tetrameric AidB.

  5. [HIV/AIDS: expression of nursing students imaginary through photography].

    PubMed

    Leyva, Juan M; Mestres, Lourdes; Lluva, Alicia; De Dios, Rosa

    2014-06-01

    Caring for people with HIV is an exercise of reflection and self-analysis in relation to our own beliefs about it. Along with the personal and social values, future nursing professional' beliefs have an important paper in the field of stigmatized diseases such as HIV infection, and may have an impact on nursing care. The aim of this study is to deeply know the meaning of the possibility of living with HIV among nursing students, bringing us a closer understanding of the subjective beliefs that give meaning to the act of caring. Qualitative study with a phenomenological approach. Data collection was done through photographs and reflective stories. Living with HIV would change their lives, associating it to illness and fear of social rejection. Planning the future appears difficult, generating kind of uncertainty. However, some light of hope and social change is also observed. The possibility of acquiring HIV is lived as a negative experience associated with old fashioned experiences. It is necessary to facilitate forms of expression to visualize the internal processes of the opinions and invite discussion and permeation to other perspectives that may have an impact, direct or indirect, in nursing care.

  6. Nbs1 ChIP-Seq Identifies Off-Target DNA Double-Strand Breaks Induced by AID in Activated Splenic B Cells

    PubMed Central

    Linehan, Erin K.; Schrader, Carol E.; Stavnezer, Janet

    2015-01-01

    Activation-induced cytidine deaminase (AID) is required for initiation of Ig class switch recombination (CSR) and somatic hypermutation (SHM) of antibody genes during immune responses. AID has also been shown to induce chromosomal translocations, mutations, and DNA double-strand breaks (DSBs) involving non-Ig genes in activated B cells. To determine what makes a DNA site a target for AID-induced DSBs, we identify off-target DSBs induced by AID by performing chromatin immunoprecipitation (ChIP) for Nbs1, a protein that binds DSBs, followed by deep sequencing (ChIP-Seq). We detect and characterize hundreds of off-target AID-dependent DSBs. Two types of tandem repeats are highly enriched within the Nbs1-binding sites: long CA repeats, which can form Z-DNA, and tandem pentamers containing the AID target hotspot WGCW. These tandem repeats are not nearly as enriched at AID-independent DSBs, which we also identified. Msh2, a component of the mismatch repair pathway and important for genome stability, increases off-target DSBs, similar to its effect on Ig switch region DSBs, which are required intermediates during CSR. Most of the off-target DSBs are two-ended, consistent with generation during G1 phase, similar to DSBs in Ig switch regions. However, a minority are one-ended, presumably due to conversion of single-strand breaks to DSBs during replication. One-ended DSBs are repaired by processes involving homologous recombination, including break-induced replication repair, which can lead to genome instability. Off-target DSBs, especially those present during S phase, can lead to chromosomal translocations, deletions and gene amplifications, resulting in the high frequency of B cell lymphomas derived from cells that express or have expressed AID. PMID:26263206

  7. Higher Expression of Activation-induced Cytidine Deaminase Is Significantly Associated with Merkel Cell Polyomavirus-negative Merkel Cell Carcinomas

    PubMed Central

    Matsushita, Michiko; Iwasaki, Takeshi; Nonaka, Daisuke; Kuwamoto, Satoshi; Nagata, Keiko; Kato, Masako; Kitamura, Yukisato; Hayashi, Kazuhiko

    2017-01-01

    Background Merkel cell carcinomas (MCCs), clinically aggressive neuroendocrine skin cancers, are divided into Merkel cell polyomavirus (MCPyV)-positive and -negative tumors, which show different clinicopathological features and may develop through different mechanisms of carcinogenesis. Aberrant expression of activation-induced cytidine deaminase (AID) as a genomic modulator was demonstrated through pathogen-related NF-κB signal in Helicobacter pylori-associated gastric cancer, adult T cell leukemia/lymphoma (HTLV-1), hepatoma (HCV), and Burkitt lymphoma (EBV). Methods To elucidate the relation of aberrant AID expression in MCPyV-positive and -negative MCCs, we evaluated immunohistochemical expressions of AID and AID-regulating factors between 24 MCPyV-positive and 17 MCPyV-negative MCCs. Results AID expression was significantly higher in MCPyV-negative MCCs than MCPyV-positive ones (P = 0.026), although expression of NF-κB p65 (phospho S536) (AID-enhancer) was significantly higher in MCPyV-positive MCCs than MCPyV-negative ones (P = 0.034). Expressions of PAX5 and c-Myb were not significantly different between these subgroups. Expressions of AID and AID-regulating factors were not correlated to prognosis of MCC patients. Conclusion Our findings suggest that although pathogen-induced AID expression through upregulation of NF-κB may be relevant to carcinogenesis of MCPyV-positive MCCs, the significantly higher aberrant AID expression in MCPyV-negative MCCs is consistent with the fact that MCPyV-negative MCCs have an extremely higher mutation burden than MCPyV-positive ones. PMID:28959124

  8. Higher Expression of Activation-induced Cytidine Deaminase Is Significantly Associated with Merkel Cell Polyomavirus-negative Merkel Cell Carcinomas.

    PubMed

    Matsushita, Michiko; Iwasaki, Takeshi; Nonaka, Daisuke; Kuwamoto, Satoshi; Nagata, Keiko; Kato, Masako; Kitamura, Yukisato; Hayashi, Kazuhiko

    2017-09-01

    Merkel cell carcinomas (MCCs), clinically aggressive neuroendocrine skin cancers, are divided into Merkel cell polyomavirus (MCPyV)-positive and -negative tumors, which show different clinicopathological features and may develop through different mechanisms of carcinogenesis. Aberrant expression of activation-induced cytidine deaminase (AID) as a genomic modulator was demonstrated through pathogen-related NF-κB signal in Helicobacter pylori-associated gastric cancer, adult T cell leukemia/lymphoma (HTLV-1), hepatoma (HCV), and Burkitt lymphoma (EBV). To elucidate the relation of aberrant AID expression in MCPyV-positive and -negative MCCs, we evaluated immunohistochemical expressions of AID and AID-regulating factors between 24 MCPyV-positive and 17 MCPyV-negative MCCs. AID expression was significantly higher in MCPyV-negative MCCs than MCPyV-positive ones (P = 0.026), although expression of NF-κB p65 (phospho S536) (AID-enhancer) was significantly higher in MCPyV-positive MCCs than MCPyV-negative ones (P = 0.034). Expressions of PAX5 and c-Myb were not significantly different between these subgroups. Expressions of AID and AID-regulating factors were not correlated to prognosis of MCC patients. Our findings suggest that although pathogen-induced AID expression through upregulation of NF-κB may be relevant to carcinogenesis of MCPyV-positive MCCs, the significantly higher aberrant AID expression in MCPyV-negative MCCs is consistent with the fact that MCPyV-negative MCCs have an extremely higher mutation burden than MCPyV-positive ones.

  9. The clinical characteristics and prognostic significance of AID, miR-181b, and miR-155 expression in adult patients with de novo B-cell acute lymphoblastic leukemia.

    PubMed

    Zhou, Guangquan; Cao, Yang; Dong, Weimin; Lin, Yan; Wang, Qi; Wu, Wei; Hua, Xiaoying; Ling, Yun; Xie, Xiaobao; Hu, Shaoyan; Cen, Jiannong; Gu, Weiying

    2017-01-31

    This study aimed to investigate clinical characteristics and prognostic significance of activation-induced cytidine deaminase (AID) gene, miR-181b and miR-155 expression in de novo adult B-cell acute lymphoblastic leukemia (B-ALL) patients. Results showed that AID and miR-155 expression were higher in B-ALL patients than healthy controls, while miR-181b expression was lower in B-ALL patients. In addition, Ph(+) B-ALLs had higher AID expression than Ph(-) B-ALLs, and its high expression was associated with BCR-ABL. Moreover, B-ALL patients with AID(high) or miR-181b(low) expression had a shorter overall survival (OS). AID(high) with miR-181b(low), AID(high) with miR-155(low), miR-181b(low), miR-155(low), AID(high) with miR-181b(low) and miR-155(low) expression were associated with shorter OS. Combination of the three molecules are more accurate predictors for unfavorable OS compared with univariate group. Therefore, AID, miR-181b and miR-155 provide clinical prognosis of adult de novo B-ALL patients and may refine their molecular risk classification.

  10. HIV-induced immunodeficiency and mortality from AIDS-defining and non-AIDS-defining malignancies

    PubMed Central

    2009-01-01

    Objective To evaluate deaths from AIDS-defining malignancies (ADM) and non-AIDS-defining malignancies (nADM) in the D:A:D Study and to investigate the relationship between these deaths and immunodeficiency. Design Observational cohort study. Methods Patients (23 437) were followed prospectively for 104 921 person-years. We used Poisson regression models to identify factors independently associated with deaths from ADM and nADM. Analyses of factors associated with mortality due to nADM were repeated after excluding nADM known to be associated with a specific risk factor. Results Three hundred five patients died due to a malignancy, 298 prior to the cutoff for this analysis (ADM: n=110; nADM: n=188). The mortality rate due to ADM decreased from 20.1/1000 person-years of follow-up [95% confidence interval (CI) 14.4, 25.9] when the most recent CD4 cell count was <50 cells/μl to 0.1 (0.03, 0.3)/1000 person-years of follow-up when the CD4 cell count was more than 500 cells/μl; the mortality rate from nADM decreased from 6.0 (95% CI 3.3, 10.1) to 0.6 (0.4, 0.8) per 1000 person-years of follow-up between these two CD4 cell count strata. In multivariable regression analyses, a two-fold higher latest CD4 cell count was associated with a halving of the risk of ADM mortality. Other predictors of an increased risk of ADM mortality were homosexual risk group, older age, a previous (non-malignancy) AIDS diagnosis and earlier calendar years. Predictors of an increased risk of nADM mortality included lower CD4 cell count, older age, current/ex-smoking status, longer cumulative exposure to combination antiretroviral therapy, active hepatitis B infection and earlier calendar year. Conclusion The severity of immunosuppression is predictive of death from both ADM and nADM in HIV-infected populations. PMID:18832878

  11. Polymorphism in glutamate cysteine ligase catalytic subunit (GCLC) is associated with sulfamethoxazole-induced hypersensitivity in HIV/AIDS patients.

    PubMed

    Wang, Danxin; Curtis, Amanda; Papp, Audrey C; Koletar, Susan L; Para, Michael F

    2012-07-23

    Sulfamethoxazole (SMX) is a commonly used antibiotic for prevention of infectious diseases associated with HIV/AIDS and immune-compromised states. SMX-induced hypersensitivity is an idiosyncratic cutaneous drug reaction with genetic components. Here, we tested association of candidate genes involved in SMX bioactivation and antioxidant defense with SMX-induced hypersensitivity. Seventy seven single nucleotide polymorphisms (SNPs) from 14 candidate genes were genotyped and assessed for association with SMX-induced hypersensitivity, in a cohort of 171 HIV/AIDS patients. SNP rs761142 T > G, in glutamate cysteine ligase catalytic subunit (GCLC), was significantly associated with SMX-induced hypersensitivity, with an adjusted p value of 0.045. This result was replicated in a second cohort of 249 patients (p = 0.025). In the combined cohort, heterozygous and homozygous carriers of the minor G allele were at increased risk of developing hypersensitivity (GT vs TT, odds ratio = 2.2, 95% CL 1.4-3.7, p = 0.0014; GG vs TT, odds ratio = 3.3, 95% CL 1.6 - 6.8, p = 0.0010). Each minor allele copy increased risk of developing hypersensitivity 1.9 fold (95% CL 1.4 - 2.6, p = 0.00012). Moreover, in 91 human livers and 84 B-lymphocytes samples, SNP rs761142 homozygous G allele carriers expressed significantly less GCLC mRNA than homozygous TT carriers (p < 0.05). rs761142 in GCLC was found to be associated with reduced GCLC mRNA expression and with SMX-induced hypersensitivity in HIV/AIDS patients. Catalyzing a critical step in glutathione biosynthesis, GCLC may play a broad role in idiosyncratic drug reactions.

  12. Induction of homologous recombination between sequence repeats by the activation induced cytidine deaminase (AID) protein.

    PubMed

    Buerstedde, Jean-Marie; Lowndes, Noel; Schatz, David G

    2014-07-08

    The activation induced cytidine deaminase (AID) protein is known to initiate somatic hypermutation, gene conversion or switch recombination by cytidine deamination within the immunoglobulin loci. Using chromosomally integrated fluorescence reporter transgenes, we demonstrate a new recombinogenic activity of AID leading to intra- and intergenic deletions via homologous recombination of sequence repeats. Repeat recombination occurs at high frequencies even when the homologous sequences are hundreds of bases away from the positions of AID-mediated cytidine deamination, suggesting DNA end resection before strand invasion. Analysis of recombinants between homeologous repeats yielded evidence for heteroduplex formation and preferential migration of the Holliday junctions to the boundaries of sequence homology. These findings broaden the target and off-target mutagenic potential of AID and establish a novel system to study induced homologous recombination in vertebrate cells.DOI: http://dx.doi.org/10.7554/eLife.03110.001.

  13. Activation-Induced Cytidine Deaminase Expression in Human B Cell Precursors Is Essential for Central B Cell Tolerance.

    PubMed

    Cantaert, Tineke; Schickel, Jean-Nicolas; Bannock, Jason M; Ng, Yen-Shing; Massad, Christopher; Oe, Tyler; Wu, Renee; Lavoie, Aubert; Walter, Jolan E; Notarangelo, Luigi D; Al-Herz, Waleed; Kilic, Sara Sebnem; Ochs, Hans D; Nonoyama, Shigeaki; Durandy, Anne; Meffre, Eric

    2015-11-17

    Activation-induced cytidine deaminase (AID), the enzyme-mediating class-switch recombination (CSR) and somatic hypermutation (SHM) of immunoglobulin genes, is essential for the removal of developing autoreactive B cells. How AID mediates central B cell tolerance remains unknown. We report that AID enzymes were produced in a discrete population of immature B cells that expressed recombination-activating gene 2 (RAG2), suggesting that they undergo secondary recombination to edit autoreactive antibodies. However, most AID+ immature B cells lacked anti-apoptotic MCL-1 and were deleted by apoptosis. AID inhibition using lentiviral-encoded short hairpin (sh)RNA in B cells developing in humanized mice resulted in a failure to remove autoreactive clones. Hence, B cell intrinsic AID expression mediates central B cell tolerance potentially through its RAG-coupled genotoxic activity in self-reactive immature B cells.

  14. Stepping toward a Macaque Model of HIV-1 Induced AIDS

    PubMed Central

    Kimata, Jason T.

    2014-01-01

    HIV-1 exhibits a narrow host range, hindering the development of a robust animal model of pathogenesis. Past studies have demonstrated that the restricted host range of HIV-1 may be largely due to the inability of the virus to antagonize and evade effector molecules of the interferon response in other species. They have also guided the engineering of HIV-1 clones that can replicate in CD4 T-cells of Asian macaque species. However, while replication of these viruses in macaque hosts is persistent, it has been limited and without progression to AIDS. In a new study, Hatziioannou et al., demonstrate for the first time that adapted macaque-tropic HIV-1 can persistently replicate at high levels in pigtailed macaques (Macaca nemestrina), but only if CD8 T-cells are depleted at the time of inoculation. The infection causes rapid disease and recapitulates several aspects of AIDS in humans. Additionally, the virus undergoes genetic changes to further escape innate immunity in association with disease progression. Here, the importance of these findings is discussed, as they relate to pathogenesis and model development. PMID:25256394

  15. [New aspects of hearing aid fitting in noise-induced hearing loss].

    PubMed

    Kiessling, J

    2006-07-01

    In the past hearing aid fitting frequently turned out to be a problem in patients with noise-induced hearing loss. Selective amplification in the high frequency range and at the same time natural sound and appropriate wearing comfort (open fitting) could not be achieved in numerous cases. Today these problems can be tackled by modern hearing aid technology providing us with efficient feedback suppression algorithms making open fittings possible for many more patients. This development is particularly beneficial for patients with noise-induced hearing loss. Unfortunately, open fitting is in opposition to wearing hearing aids at noisy workplaces. Tight fittings, however, can be used at work if a special listening program for noisy conditions is available. This dilemma is discussed and possible solutions are pointed out.

  16. Inducible gene expression systems and plant biotechnology.

    PubMed

    Corrado, Giandomenico; Karali, Marianthi

    2009-01-01

    Plant biotechnology relies heavily on the genetic manipulation of crops. Almost invariantly, the gene of interest is expressed in a constitutive fashion, although this may not be strictly necessary for several applications. Currently, there are several regulatable expression systems for the temporal, spatial and quantitative control of transgene activity. These molecular switches are based on components derived from different organisms, which range from viruses to higher eukaryotes. Many inducible systems have been designed for fundamental and applied research and since their initial development, they have become increasingly popular in plant molecular biology. This review covers a broad number of inducible expression systems examining their properties and relevance for plant biotechnology in its various guises, from molecular breeding to pharmaceutical and industrial applications. For each system, we examine some advantages and limitations, also in relation to the strategy on which they rely. Besides being necessary to control useful genes that may negatively affect crop yield and quality, we discuss that inducible systems can be also used to increase public acceptance of GMOs, reducing some of the most common concerns. Finally, we suggest some directions and future developments for their further diffusion in agriculture and biotechnology.

  17. Hearing Aid-Induced Plasticity in the Auditory System of Older Adults: Evidence From Speech Perception.

    PubMed

    Lavie, Limor; Banai, Karen; Karni, Avi; Attias, Joseph

    2015-10-01

    We tested whether using hearing aids can improve unaided performance in speech perception tasks in older adults with hearing impairment. Unaided performance was evaluated in dichotic listening and speech-in-noise tests in 47 older adults with hearing impairment; 36 participants in 3 study groups were tested before hearing aid fitting and after 4, 8, and 14 weeks of hearing-aid use. The remaining 11 participants served as a control group and were similarly evaluated but were not fitted with hearing aids. Three protocols were compared in the study groups: amplification for the nondominant ear, amplification for the dominant ear, and bilateral amplification. Subsequently, after 4 weeks, all participants were afforded bilateral amplification. In the study groups, unaided dichotic listening scores improved significantly in the nondominant ear by 8 weeks and onward. Significant improvements were also observed for unaided speech identification in noise, with some gains apparent after 4 weeks of hearing-aid use. No gains were observed in the control group. Using hearing aids for a relatively short period can induce changes in the way older adults process auditory inputs in perceptual tasks such as speech identification in noise and dichotic listening. These changes suggest that the central auditory system of older adults retains the potential for behaviorally relevant plasticity.

  18. Activation-induced deoxycytidine deaminase (AID) co-transcriptional scanning at single-molecule resolution

    NASA Astrophysics Data System (ADS)

    Senavirathne, Gayan; Bertram, Jeffrey G.; Jaszczur, Malgorzata; Chaurasiya, Kathy R.; Pham, Phuong; Mak, Chi H.; Goodman, Myron F.; Rueda, David

    2015-12-01

    Activation-induced deoxycytidine deaminase (AID) generates antibody diversity in B cells by initiating somatic hypermutation (SHM) and class-switch recombination (CSR) during transcription of immunoglobulin variable (IgV) and switch region (IgS) DNA. Using single-molecule FRET, we show that AID binds to transcribed dsDNA and translocates unidirectionally in concert with RNA polymerase (RNAP) on moving transcription bubbles, while increasing the fraction of stalled bubbles. AID scans randomly when constrained in an 8 nt model bubble. When unconstrained on single-stranded (ss) DNA, AID moves in random bidirectional short slides/hops over the entire molecule while remaining bound for ~5 min. Our analysis distinguishes dynamic scanning from static ssDNA creasing. That AID alone can track along with RNAP during transcription and scan within stalled transcription bubbles suggests a mechanism by which AID can initiate SHM and CSR when properly regulated, yet when unregulated can access non-Ig genes and cause cancer.

  19. Putting the diet back into diet-induced obesity: diet-induced hypothalamic gene expression.

    PubMed

    Mercer, Julian G; Archer, Zoë A

    2008-05-06

    A wealth of detailed mechanistic information relating to obesity and body weight regulation has emerged from study of single gene mutation models, and continues to be generated by engineered rodent models targeting specific genes. However, as an early step in translational research, many researchers are turning to models of diet-induced obesity. Interpretation of data generated from such models is not aided by the variety of diets and rodent strains employed in these studies and a strong case could be made for rationalisation. Differences in experimental protocol, which may deploy a single obligatory solid diet, a choice of solid diets, or liquid/solid combinations, and which may or may not allow a preferred macronutrient composition to be selected, mean that different models of diet-induced obesity achieve that obesity by different routes. The priority should be to mimic the palatability- and choice-driven over-consumption that probably underlies the majority of human obesity. Some of the hypothalamic energy balance genes apparently 'recognise' developing diet-induced obesity as indicated by counter-regulatory changes in expression levels. However, substantial changes in gene expression on long-term exposure to obesogenic diets are not able to prevent weight gain. Forebrain reward systems are widely assumed to be overriding hypothalamic homeostatic energy balance systems under these circumstances. More mechanism-based research at the homeostatic/reward/diet interface may enable diets to be manipulated with therapeutic benefit, or define the contribution of these interactions to susceptibility to diet-induced obesity.

  20. Salt induced gene expression in Prosopis farcta

    SciTech Connect

    Heimer, I.M.; Golan, A.; Lips, H.

    1987-04-01

    The authors hypothesize that in facultative halophytes, the genes which impart salt tolerance are expressed when the plants are exposed to salt. As a first step towards possible identification of these genes, they examined salt induced changes of gene expression in the facultative halophyte Prosopis farcta at the protein level, by SDS-PAGE. Exposure to salt of aseptically grown, two-week old seedlings, was carried out in one of two ways: (1) a one step transfer of seedlings from medium without salt to that with the indicated concentrations followed by 5 hr or 24 hr incubation periods. During the last 2 hrs of each incubation period the seedlings were pulse-labelled with /sup 35/S Sulfate or L-Methionine; (2) a gradual increase of the salt concentration at 50 mM increments at 2-4 day intervals. Two days after reaching the desired salt concentration, the seedlings were pulse-labelled for 2 hrs with /sup 35/S sulfate or L-methionine. Protein from roots were extracted and analyzed. Polypeptides were visualized by staining with coomassie blue or by fluorography. Qualitative as well as quantitative changes of gene expression as induced by salt could be observed. Their significance regarding salt tolerance will be discussed.

  1. Hyperbaric oxygen treatment induces antioxidant gene expression.

    PubMed

    Godman, Cassandra A; Joshi, Rashmi; Giardina, Charles; Perdrizet, George; Hightower, Lawrence E

    2010-06-01

    Although the underlying molecular causes of aging are not entirely clear, hormetic agents like exercise, heat, and calorie restriction may generate a mild pro-oxidant stress that induces cell protective responses to promote healthy aging. As an individual ages, many cellular and physiological processes decline, including wound healing and reparative angiogenesis. This is particularly critical in patients with chronic non-healing wounds who tend to be older. We are interested in the potential beneficial effects of hyperbaric oxygen as a mild hormetic stress on human microvascular endothelial cells. We analyzed global gene expression changes in human endothelial cells following a hyperbaric exposure comparable to a clinical treatment. Our analysis revealed an upregulation of antioxidant, cytoprotective, and immediate early genes. This increase coincided with an increased resistance to a lethal oxidative stress. Our data indicate that hyperbaric oxygen can induce protection against oxidative insults in endothelial cells and may provide an easily administered hormetic treatment to help promote healthy aging.

  2. Facial Expression Recognition in Children with Cochlear Implants and Hearing Aids.

    PubMed

    Wang, Yifang; Su, Yanjie; Yan, Song

    2016-01-01

    Facial expression recognition (FER) is an important aspect of effective interpersonal communication. In order to explore whether the development of FER was delayed in hearing impaired children, 44 child participants completed labeling, and matching tasks to identify four basic emotions (happiness, sadness, anger, and fear). Twenty-two participants had either a cochlear implant (CI) or a hearing aid (HA) while 22 had normal hearing and participants were matched across conditions by age and gender. The results showed that children with a CI or HA were developmentally delayed not only in their emotion-labeling (verbal) tasks but also in their emotion-matching (nonverbal) tasks. For all participants, the emotion-labeling task was more difficult than the emotion-matching task. Additionally, the relative difficulty of recognizing four different emotional expressions was similar between verbal and nonverbal tasks.

  3. Facial Expression Recognition in Children with Cochlear Implants and Hearing Aids

    PubMed Central

    Wang, Yifang; Su, Yanjie; Yan, Song

    2016-01-01

    Facial expression recognition (FER) is an important aspect of effective interpersonal communication. In order to explore whether the development of FER was delayed in hearing impaired children, 44 child participants completed labeling, and matching tasks to identify four basic emotions (happiness, sadness, anger, and fear). Twenty-two participants had either a cochlear implant (CI) or a hearing aid (HA) while 22 had normal hearing and participants were matched across conditions by age and gender. The results showed that children with a CI or HA were developmentally delayed not only in their emotion-labeling (verbal) tasks but also in their emotion-matching (nonverbal) tasks. For all participants, the emotion-labeling task was more difficult than the emotion-matching task. Additionally, the relative difficulty of recognizing four different emotional expressions was similar between verbal and nonverbal tasks. PMID:28066306

  4. Expression and Function of the Chemokine, CXCL13, and Its Receptor, CXCR5, in Aids-Associated Non-Hodgkin's Lymphoma.

    PubMed

    Widney, Daniel P; Gui, Dorina; Popoviciu, Laura M; Said, Jonathan W; Breen, Elizabeth C; Huang, Xin; Kitchen, Christina M R; Alcantar, Juan M; Smith, Jeffrey B; Detels, Roger; Martínez-Maza, Otoniel

    2010-01-01

    Background. The homeostatic chemokine, CXCL13 (BLC, BCA-1), helps direct the recirculation of mature, resting B cells, which express its receptor, CXCR5. CXCL13/CXCR5 are expressed, and may play a role, in some non-AIDS-associated B cell tumors. Objective. To determine if CXCL13/CXCR5 are associated with AIDS-related non-Hodgkin's lymphoma (AIDS-NHL). Methods. Serum CXCL13 levels were measured by ELISA in 46 subjects who developed AIDS-NHL in the Multicenter AIDS Cohort Study and in controls. The expression or function of CXCL13 and CXCR5 was examined on primary AIDS-NHL specimens or AIDS-NHL cell lines. Results. Serum CXCL13 levels were significantly elevated in the AIDS-NHL group compared to controls. All primary AIDS-NHL specimens showed CXCR5 expression and most also showed CXCL13 expression. AIDS-NHL cell lines expressed CXCR5 and showed chemotaxis towards CXCL13. Conclusions. CXCL13/CXCR5 are expressed in AIDS-NHL and could potentially be involved in its biology. CXCL13 may have potential as a biomarker for AIDS-NHL.

  5. Gravity-Induced Gene Expression in Plants.

    NASA Astrophysics Data System (ADS)

    Sederoff, Heike; Heber, Steffen; Howard, Brian; Myburg-Nichols, Henrietta; Hammond, Rebecca; Salinas-Mondragon, Raul; Brown, Christopher S.

    Plants sense changes in their orientation towards the vector of gravity and respond with directional growth. Several metabolites in the signal transduction cascade have been identified. However, very little is known about the interaction between these sensing and signal transduction events and even less is known about their role in the differential growth response. Gravity induced changes in transcript abundance have been identified in Arabidopsis whole seedlings and root apices (Moseyko et al. 2002; Kimbrough et al. 2004). Gravity induced transcript abundance changes can be observed within less than 1 min after stimulation (Salinas-Mondragon et al. 2005). Gene expression however requires not only transcription but also translation of the mRNA. Translation can only occur when mRNA is associated with ribosomes, even though not all mRNA associated with ribosomes is actively translated. To approximate translational capacity we quantified whole genome transcript abundances in corn stem pulvini during the first hour after gravity stimulation in total and poly-ribosomal fractions. As in Arabidopsis root apices, transcript abundances of several clusters of genes responded to gravity stimulation. The vast majority of these transcripts were also found to associate with polyribosomes in the same temporal and quantitative pattern. These genes are transcriptionally regulated by gravity stimulation, but do not exhibit translational regulation. However, a small group of genes showed increased transcriptional regulation after gravity stimulation, but no association with polysomes. These transcripts likely are translationally repressed. The mechanism of translational repression for these transcripts is unknown. Based on the hypothesis that the genes essential for gravitropic responses should be expressed in most or all species, we compared the temporal gravity induced expression pattern of all orthologs identified between maize and Arabidopsis. A small group of genes showed high

  6. Expression of polyalanine stretches induces mitochondrial dysfunction.

    PubMed

    Toriumi, Kazuya; Oma, Yoko; Kino, Yoshihiro; Futai, Eugene; Sasagawa, Noboru; Ishiura, Shoichi

    2008-05-15

    In recent years, several novel types of disorders have been characterized, including what have been termed polyalanine diseases, in which patients have expanded triplet repeats in specific genes, resulting in the translation of aberrantly elongated polyalanine stretches. In this study, we showed that yellow fluorescent protein (YFP)-fused elongated polyalanine stretches localized exclusively to the cytoplasm and formed aggregates. Additionally, the polyalanine stretches themselves were toxic. We sought to identify proteins that bound directly to the polyalanine stretches, as factors that might be involved in triggering cell death. Many mitochondrial proteins were identified as polyalanine-binding proteins. We showed that one of the identified proteins, succinate dehydrogenase subunit A, was decreased in the mitochondria of cells expressing polyalanine stretches; as a result, succinate oxidative activity was decreased. Furthermore, the polyalanine stretches also associated directly with mitochondria. This suggests that polya-lanine stretches might directly induce cell death. Additionally, the mitochondrial membrane potential was reduced in cells expressing polyalanine stretches. We propose a novel mechanism by which polyalanine stretches may cause cytotoxicity through mitochondrial dysfunction. This may be a common mechanism underlying the pathogenesis of all polyalanine diseases.

  7. An inducible expression system for high-level expression of recombinant proteins in slow growing mycobacteria.

    PubMed

    Leotta, Lisa; Spratt, Joanne M; Kong, Carlyn U; Triccas, James A

    2015-09-01

    A novel protein expression vector utilising the inducible hspX promoter of Mycobacterium tuberculosis was constructed and evaluated in this study. High-level induction of three mycobacterial antigens, comprising up to 9% of bacterial sonicate, was demonstrated in recombinant Mycobacterium bovis BCG when grown under low-oxygen tension, which serves to enhance hspX promoter activity. Recombinant proteins were efficiently purified from bacterial lysates in a soluble form by virtue of a C-terminal 6-histidine tag. Purification of the immunodominant M. tuberculosis Ag85B antigen using this system resulted in a recombinant protein that stimulated significant IFN-γ release from Ag85B-reactive T cells generated after vaccination of mice with an Ag85B-expressing vaccine. Further, the M. tuberculosis L-alanine dehydrogenase (Ald) protein purified from recombinant BCG displayed strong enzymatic activity in recombinant form. This study demonstrated that high levels of native-like recombinant mycobacterial proteins can be produced in mycobacterial hosts, and this may aid the analysis of mycobacterial protein function and the development of new treatments.

  8. Teachers' perceptions of implementation of aided AAC to support expressive communication in South African special schools: a pilot investigation.

    PubMed

    Tönsing, Kerstin M; Dada, Shakila

    2016-12-01

    Although the provision of assistive technology for students with disabilities has been mandated in South African education policy documents, limited data are available on the implementation of aided augmentative and alternative communication (AAC) in classrooms. This pilot investigation used a concurrent mixed-methods survey design to determine the extent to which aided AAC was implemented to foster students' expressive communication in preschool to Grade 3 classrooms in special schools from six urban school districts in the Gauteng (the smallest, most affluent and most densely populated of the nine South African provinces), and also obtained teachers' perceptions of this process. A total of 26 teachers who taught students who used aided AAC for expression participated. Although there is evidence of provision and also implementation of aided AAC in classrooms, various limitations still exist. Teachers identified an array of factors that influenced the implementation of aided AAC, including those related to themselves, the classroom context, the characteristics of aided AAC, students using AAC, and other stakeholders. These factors are discussed in the light of international literature as well as the local context, and are used as a basis to suggest a research agenda for AAC in the South African education system.

  9. AIDS virus reverse transcriptase defined by high level expression in Escherichia coli.

    PubMed Central

    Larder, B; Purifoy, D; Powell, K; Darby, G

    1987-01-01

    The causative agent of AIDS the human immunodeficiency virus (HIV) encodes as part of its pol gene a reverse transcriptase (RT) which has a key role in the replication of the virus and thus constitutes an ideal target for antiviral chemotherapy. The purified HIV RT from virus particles consists of two related polypeptides of 66 and 51 kd mol. wt and similar polypeptides are found on expression of the complete HIV pol gene using prokaryotic systems. Here we describe the expression of the 66-kd protein in Escherichia coli and demonstrate that this polypeptide alone has authentic RT activity. Thus, a central HIV pol gene segment encodes and is sufficient for high levels of RT activity. The RT has been purified from E. coli extracts using a purification procedure involving two chromotography steps resulting in an enzyme preparation near homogeneity. Deletion of the C-terminal region of the RT thought to encode the RNase H domain resulted in loss of polymerase activity. Images Fig. 2. Fig. 4. PMID:2446866

  10. Systems analysis of MVA-C induced immune response reveals its significance as a vaccine candidate against HIV/AIDS of clade C.

    PubMed

    Gómez, Carmen Elena; Perdiguero, Beatriz; Jiménez, Victoria; Filali-Mouhim, Abdelali; Ghneim, Khader; Haddad, Elias K; Quakkelaar, Esther D; Quakkerlaar, Esther D; Delaloye, Julie; Harari, Alexandre; Roger, Thierry; Duhen, Thomas; Dunhen, Thomas; Sékaly, Rafick P; Melief, Cornelis J M; Calandra, Thierry; Sallusto, Federica; Lanzavecchia, Antonio; Wagner, Ralf; Pantaleo, Giuseppe; Esteban, Mariano

    2012-01-01

    Based on the partial efficacy of the HIV/AIDS Thai trial (RV144) with a canarypox vector prime and protein boost, attenuated poxvirus recombinants expressing HIV-1 antigens are increasingly sought as vaccine candidates against HIV/AIDS. Here we describe using systems analysis the biological and immunological characteristics of the attenuated vaccinia virus Ankara strain expressing the HIV-1 antigens Env/Gag-Pol-Nef of HIV-1 of clade C (referred as MVA-C). MVA-C infection of human monocyte derived dendritic cells (moDCs) induced the expression of HIV-1 antigens at high levels from 2 to 8 hpi and triggered moDCs maturation as revealed by enhanced expression of HLA-DR, CD86, CD40, HLA-A2, and CD80 molecules. Infection ex vivo of purified mDC and pDC with MVA-C induced the expression of immunoregulatory pathways associated with antiviral responses, antigen presentation, T cell and B cell responses. Similarly, human whole blood or primary macrophages infected with MVA-C express high levels of proinflammatory cytokines and chemokines involved with T cell activation. The vector MVA-C has the ability to cross-present antigens to HIV-specific CD8 T cells in vitro and to increase CD8 T cell proliferation in a dose-dependent manner. The immunogenic profiling in mice after DNA-C prime/MVA-C boost combination revealed activation of HIV-1-specific CD4 and CD8 T cell memory responses that are polyfunctional and with effector memory phenotype. Env-specific IgG binding antibodies were also produced in animals receiving DNA-C prime/MVA-C boost. Our systems analysis of profiling immune response to MVA-C infection highlights the potential benefit of MVA-C as vaccine candidate against HIV/AIDS for clade C, the prevalent subtype virus in the most affected areas of the world.

  11. Histone deacetylase inhibitors upregulate B cell microRNAs that silence AID and Blimp-1 expression for epigenetic modulation of antibody and autoantibody responses.

    PubMed

    White, Clayton A; Pone, Egest J; Lam, Tonika; Tat, Connie; Hayama, Ken L; Li, Guideng; Zan, Hong; Casali, Paolo

    2014-12-15

    Class-switch DNA recombination (CSR) and somatic hypermutation (SHM), which require activation-induced cytidine deaminase (AID), and plasma cell differentiation, which requires B lymphocyte-induced maturation protein-1 (Blimp-1), are critical for the generation of class-switched and hypermutated (mature) Ab and autoantibody responses. We show that histone deacetylase inhibitors valproic acid and butyrate dampened AICDA/Aicda (AID) and PRDM1/Prdm1 (Blimp-1) mRNAs by upregulating miR-155, miR-181b, and miR-361 to silence AICDA/Aicda, and miR-23b, miR-30a, and miR-125b to silence PRDM1/Prdm1, in human and mouse B cells. This led to downregulation of AID, Blimp-1, and X-box binding protein 1, thereby inhibiting CSR, SHM, and plasma cell differentiation without altering B cell viability or proliferation. The selectivity of histone deacetylase inhibitor-mediated silencing of AICDA/Aicda and PRDM1/Prdm1 was emphasized by unchanged expression of HoxC4 and Irf4 (important inducers/modulators of AICDA/Aicda), Rev1 and Ung (central elements for CSR/SHM), and Bcl6, Bach2, or Pax5 (repressors of PRDM1/Prdm1 expression), as well as unchanged expression of miR-19a/b, miR-20a, and miR-25, which are not known to regulate AICDA/Aicda or PRDM1/Prdm1. Through these B cell-intrinsic epigenetic mechanisms, valproic acid blunted class-switched and hypermutated T-dependent and T-independent Ab responses in C57BL/6 mice. In addition, it decreased class-switched and hypermutated autoantibodies, ameliorated disease, and extended survival in lupus MRL/Fas(lpr/lpr) mice. Our findings outline epigenetic mechanisms that modulate expression of an enzyme (AID) and transcription factors (Blimp-1 and X-box binding protein 1) that are critical to the B cell differentiation processes that underpin Ab and autoantibody responses. They also provide therapeutic proof-of-principle in autoantibody-mediated autoimmunity. Copyright © 2014 by The American Association of Immunologists, Inc.

  12. Benzoic Acid-Inducible Gene Expression in Mycobacteria

    PubMed Central

    Dragset, Marte S.; Barczak, Amy K.; Kannan, Nisha; Mærk, Mali; Flo, Trude H.; Valla, Svein; Rubin, Eric J.; Steigedal, Magnus

    2015-01-01

    Conditional expression is a powerful tool to investigate the role of bacterial genes. Here, we adapt the Pseudomonas putida-derived positively regulated XylS/Pm expression system to control inducible gene expression in Mycobacterium smegmatis and Mycobacterium tuberculosis, the causative agent of human tuberculosis. By making simple changes to a Gram-negative broad-host-range XylS/Pm-regulated gene expression vector, we prove that it is possible to adapt this well-studied expression system to non-Gram-negative species. With the benzoic acid-derived inducer m-toluate, we achieve a robust, time- and dose-dependent reversible induction of Pm-mediated expression in mycobacteria, with low background expression levels. XylS/Pm is thus an important addition to existing mycobacterial expression tools, especially when low basal expression is of particular importance. PMID:26348349

  13. Gene Expression Profiles of HIV/AIDS Patients with Qi-Yin Deficiency and Dampness-Heat Retention

    PubMed Central

    Liu, Sa; Chen, Yulong; Xu, Qianlei; Chen, Jianshe; Wang, Changhai; Wang, Zhao; Ma, Suna; Wu, Xingwei; Zhang, Ning

    2016-01-01

    Abstract Objectives: Traditional Chinese Medicine (TCM) applied in the clinic as a complementary and alternative therapy has helped improve immunity and reduce side effects and symptomatic treatment in patients with HIV/AIDS. However, the mechanisms of TCM syndromes are not clear. Transcriptomics enables the study of such TCM syndromes. Design: This study compared the messenger RNA (mRNA) expressions of healthy persons and patients with HIV/AIDS who had two common TCM syndromes, qi-yin deficiency and dampness-heat retention, to find the difference in HIV/AIDS with TCM syndromes. Results: Comparison with healthy persons identified 113 mRNAs—41 enhanced and 72 decreased—in the qi-yin deficiency group. Additionally, 76 mRNAs were found in the dampness-heat retention group: 14 increased and 62 decreased. Functional genetic analysis of the mRNAs indicated that two TCM syndromes were correlated with cell apoptosis, immunoinflammatory responses, and lymphocyte activation. Differentially expressed mRNAs in the qi-yin deficiency group were obviously associated with cellular activity, communication, protein localization, cellular ion homeostasis, and regulation of cell motion, whereas mRNAs in the dampness-heat retention group were associated with sequence-specific DNA binding, cellular response to stress, and hemopoietic or lymphoid organ development. Conclusions: These results suggest that the formation of different TCM syndromes in patients with HIV/AIDS were founded on biological transcriptomics, which reveal mechanisms of the formation of these syndromes in HIV/AIDS. Differentially expressed mRNAs in two TCM syndrome groups tended to normalize after TCM intervention, which indicates that TCM might remit symptoms by changing genetic expression. PMID:27759429

  14. Successfully treated HIV-infected patients have differential expression of NK cell receptors (NKp46 and NKp30) according to AIDS status at presentation.

    PubMed

    Bisio, Francesca; Bozzano, Federica; Marras, Francesco; Di Biagio, Antonio; Moretta, Lorenzo; De Maria, Andrea

    2013-04-01

    Differences in innate immune responses may be associated with different capabilities of controlling HIV infection, not necessarily reflected by CD4(+) T-cell counts alone. We investigated by cytofluorometry the expression of NK cell receptors and ligands in 19 treated HIV-infected patients with CD4(+)<220 ml(-1) at presentation (11 AIDS, 8 non-AIDS) and 10 healthy donors. Expression of NKp46 and NKp30 was significantly higher in non-AIDS vs. AIDS patients. Overall, the level of NKp46 expression directly correlated with the degree of NK cell cytotoxicity. As compared to healthy donors, in both groups, there was a similar increase of CD69 and HLA-DR expression in NK cells that directly correlated with the presence of activation markers (HLA-DR) on CD4(+) and CD8(+) T cells. As compared to AIDS, in non-AIDS patients in vitro activated CD4(+) showed higher expression of MIC-A (NKG2D ligand), with significantly higher Nectin-2/DNAM-1 and MIC-A/NKG2D ratios. Thus, NK cell responses in AIDS and non-AIDS patients with similar CD4(+) counts significantly differ despite similar treatment. This suggests an involvement of innate mechanisms, in preventing AIDS-defining opportunistic infections in HIV infection and further suggests, that CD4(+) absolute counts alone, may be inadequate to explain differences in the clinical outcome.

  15. Inducing a concurrent motor load reduces categorization precision for facial expressions.

    PubMed

    Ipser, Alberta; Cook, Richard

    2016-05-01

    Motor theories of expression perception posit that observers simulate facial expressions within their own motor system, aiding perception and interpretation. Consistent with this view, reports have suggested that blocking facial mimicry induces expression labeling errors and alters patterns of ratings. Crucially, however, it is unclear whether changes in labeling and rating behavior reflect genuine perceptual phenomena (e.g., greater internal noise associated with expression perception or interpretation) or are products of response bias. In an effort to advance this literature, the present study introduces a new psychophysical paradigm for investigating motor contributions to expression perception that overcomes some of the limitations inherent in simple labeling and rating tasks. Observers were asked to judge whether smiles drawn from a morph continuum were sincere or insincere, in the presence or absence of a motor load induced by the concurrent production of vowel sounds. Having confirmed that smile sincerity judgments depend on cues from both eye and mouth regions (Experiment 1), we demonstrated that vowel production reduces the precision with which smiles are categorized (Experiment 2). In Experiment 3, we replicated this effect when observers were required to produce vowels, but not when they passively listened to the same vowel sounds. In Experiments 4 and 5, we found that gender categorizations, equated for difficulty, were unaffected by vowel production, irrespective of the presence of a smiling expression. These findings greatly advance our understanding of motor contributions to expression perception and represent a timely contribution in light of recent high-profile challenges to the existing evidence base.

  16. HDAC Inhibitors Upregulate B Cell microRNAs that Silence AID and Blimp-1 Expression for Epigenetic Modulation of Antibody and Autoantibody Responses

    PubMed Central

    White, Clayton A; Pone, Egest J; Lam, Tonika; Tat, Connie; Hayama, Ken L; Li, Guideng; Zan, Hong; Casali, Paolo

    2014-01-01

    Class-switch DNA recombination (CSR) and somatic hypermutation (SHM), which require AID, and plasma cell differentiation, which requires Blimp-1, are critical for the generation of class-switched and hypermutated (mature) antibody and autoantibody responses. We showed here that the histone deacetylase (HDAC) inhibitors (HDI) valproic acid (VPA) and butyrate upregulated miR-155, miR-181b and miR-361, which silenced AICDA/Aicda (AID) mRNA, and miR-23b, miR-30a and miR-125b, which silenced PRDM1/Prdm1 (Blimp-1) mRNA, in human and mouse B cells. This led to downregulation of AID, Blimp-1 and Xbp-1 expression, thereby dampening CSR, SHM and plasma cell differentiation without altering B cell viability or proliferation. The selectivity of HDI-mediated silencing of AICDA/Aicda and PRDM1/Prdm1 was emphasized by unchanged expression of HoxC4 and Irf4 (important inducers/modulators of AICDA/Aicda), Rev1 and Ung (central elements for CSR/SHM), and Bcl6, Bach2 or Pax5 (repressors of PRDM1/Prdm1 expression), as well as unchanged expression of miR-19a/b, miR-20a and miR-25, which are not known to regulate AICDA/Aicda or PRDM1/Prdm1. Through these B cell intrinsic epigenetic mechanisms, VPA blunted class-switched and hypermutated T-dependent and T-independent antibody responses in C57BL/6 mice. In addition, it decreased class-switched and hypermutated autoantibodies, ameliorated disease and extended survival in lupus MRL/Faslpr/lpr mice. Our findings outline epigenetic mechanisms that modulate expression of an enzyme (AID) and transcription factors (Blimp-1 and Xbp-1) that critical to the B cell differentiation processes that underpin antibody and autoantibody responses. They also provide therapeutics proof-of-principle in autoantibody-mediated autoimmunity. PMID:25392531

  17. Vocalization Induced CFos Expression in Marmoset Cortex

    PubMed Central

    Miller, Cory T.; DiMauro, Audrey; Pistorio, Ashley; Hendry, Stewart; Wang, Xiaoqin

    2010-01-01

    All non-human primates communicate with conspecifics using vocalizations, a system involving both the production and perception of species-specific vocal signals. Much of the work on the neural basis of primate vocal communication in cortex has focused on the sensory processing of vocalizations, while relatively little data are available for vocal production. Earlier physiological studies in squirrel monkeys had shed doubts on the involvement of primate cortex in vocal behaviors. The aim of the present study was to identify areas of common marmoset (Callithrix jacchus) cortex that are potentially involved in vocal communication. In this study, we quantified cFos expression in three areas of marmoset cortex – frontal, temporal (auditory), and medial temporal – under various vocal conditions. Specifically, we examined cFos expression in these cortical areas during the sensory, motor (vocal production), and sensory–motor components of vocal communication. Our results showed an increase in cFos expression in ventrolateral prefrontal cortex as well as the medial and lateral belt areas of auditory cortex in the vocal perception condition. In contrast, subjects in the vocal production condition resulted in increased cFos expression only in dorsal premotor cortex. During the sensory–motor condition (antiphonal calling), subjects exhibited cFos expression in each of the above areas, as well as increased expression in perirhinal cortex. Overall, these results suggest that various cortical areas outside primary auditory cortex are involved in primate vocal communication. These findings pave the way for further physiological studies of the neural basis of primate vocal communication. PMID:21179582

  18. Regulation and pharmacokinetics of inducible recombinant TRAIL expression.

    PubMed

    Dong, Aiwen; Hu, Jie; Zhao, Lili; Xu, Huiling; Liu, Xinyuan

    2007-12-01

    TRAIL is a potent antitumor agent, but its potential toxicity to normal human tissues limits its clinical applications in future. Therapy of human tumors might benefit from the use of vectors enabling tight control of TRAIL expression in vivo. To this aim, we constructed an adenoviral vector carrying the RU486-dependent gene switch system for the regulable expression of recombinant TRAIL. Only was apoptotic recombinant TRAIL expressed and cytotoxicity observed upon binding of RU 486 to the inducible promoter. Expression levels and kinetics of recombinant TRAIL expression could be achieved by modulating the concentration of the inducer. As a broad implication, our data provide an alternative approach to circumvent the potential toxicity of TRAIL in future human trials and this system may be utilized to treat human cancer using a long-term expression vector.

  19. An IPTG Inducible Conditional Expression System for Mycobacteria

    PubMed Central

    Ravishankar, Sudha; Ambady, Anisha; Ramu, Haripriya; Mudugal, Naina Vinay; Tunduguru, Ragadeepthi; Anbarasu, Anand; Sharma, Umender K.; Sambandamurthy, Vasan K.; Ramaiah, Sudha

    2015-01-01

    Conditional expression strains serve as a valuable tool to study the essentiality and to establish the vulnerability of a target under investigation in a drug discovery program. While essentiality implies an absolute requirement of a target function, vulnerability provides valuable information on the extent to which a target function needs to be depleted to achieve bacterial growth inhibition followed by cell death. The critical feature of an ideal conditional expression system is its ability to tightly regulate gene expression to achieve the full spectrum spanning from a high level of expression in order to support growth and near zero level of expression to mimic conditions of gene knockout. A number of bacterial conditional expression systems have been reported for use in mycobacteria. The utility of an isopropylthiogalactoside (IPTG) inducible system in mycobacteria has been reported for protein overexpression and anti-sense gene expression from a replicating multi-copy plasmid. Herein, we report the development of a versatile set of non-replicating IPTG inducible vectors for mycobacteria which can be used for generation of conditional expression strains through homologous recombination. The role of a single lac operator versus a double lac operator to regulate gene expression was evaluated by monitoring the expression levels of β-galactosidase in Mycobacterium smegmatis. These studies indicated a significant level of leaky expression from the vector with a single lac operator but none from the vector with double lac operator. The significance of the double lac operator vector for target validation was established by monitoring the growth kinetics of an inhA, a rpoB and a ftsZ conditional expression strain grown in the presence of different concentrations of IPTG. The utility of this inducible system in identifying target specific inhibitors was established by screening a focussed library of small molecules using an inhA and a rpoB conditional expression

  20. Expression of DNA damage-inducible genes of Escherichia coli upon treatment with methylating, ethylating and propylating agents.

    PubMed

    Volkert, M R; Gately, F H; Hajec, L I

    1989-03-01

    Several alkylation-inducible genes have been identified by construction of Mu-d1 (Apr lac) fusions to genes whose expression is increased in response to alkylation treatment, but not UV treatment. We have examined the induction of 4 different alkylation-inducible genes by treatment with a variety of methylating and ethylating agents, and a propylating agent. We have compared the induction of the alkylation-inducible genes with the induction of the sulA gene, which is a component of the SOS response to DNA damage. We find that the Ada-regulated adaptive response genes (ada-alkB, alkA and aidB) are induced primarily in response to methylation treatment. The ada-independent aidC gene is induced upon treatment with agents that alkylate predominantly by SN1 nucleophilic attack. aidC induction occurs only when cells are not aerated during treatment. The SOS response, as indicated by sulA induction, is strongly induced by all types of alkylating agents used.

  1. Herbicide safener-inducible gene expression in Arabidopsis thaliana.

    PubMed

    De Veylder, L; Van Montagu, M; Inzé, D

    1997-05-01

    The potential use of a new chemical-inducible gene expression system in Arabidopsis thaliana has been examined. The system is based on the maize In2-2 promoter which is activated by benzenesulfonamide herbicide safeners. Plants transformed with the beta-glucuronidase (gus) reporter gene under the control of the In2-2 promoter were grown in the presence of different safeners and the induced GUS activity pattern was studied histochemically. In the absence of safeners, the In2-2 promoter was not active. Application of different safeners induced distinct gus expression patterns, including expression in the root, hydathodes, and the shoot apical meristem. Plants maintained continuously on inducing concentrations of the safeners were retarded in growth. The growth inhibition effects of the Sa5 safener could be overcome in a sulfonylurea-resistant background. In2-2 promoter activity could also be induced by the sulfonylurea herbicide chlorsulfuron. In the sulfonylurea-resistant background, which derives from herbicide-resistant acetolactate synthase activity, induction of the In2-2 promoter by chlorsulfuron was lower. Furthermore, branched-chain amino acids, known to inhibit acetolactate synthase activity, also induced In2-2 promoter activity. Our data suggest a strong correlation between In2-2 expression and inhibition of the acetolactate synthase activity.

  2. Stretch-induced VEGF expression in the heart.

    PubMed Central

    Li, J; Hampton, T; Morgan, J P; Simons, M

    1997-01-01

    Vascular endothelial growth factor (VEGF) is an endothelial cell mitogen involved in vascular development and angiogenesis. Recently we have observed increased VEGF expression in the normal myocardium after myocardial infarction in a rat heart. This study was designed to explore the mechanism responsible for this increase in VEGF expression. Induction of myocardial stretch in an isolated perfused Langendorff preparation by inflation of an intraventricular balloon to an end-diastolic load of 35 mmHg for 30 min resulted in a nearly sixfold increase in VEGF message level not only in the chamber subjected to stretch (left ventricle) but also in the unstretched right ventricle, thus raising the possibility of a soluble factor mediating stretch- induced induction of VEGF expression. This was further confirmed by demonstrating that coronary venous effluent collected from the stretched heart and used to perfuse isolated hearts in which no balloon was present was able to induce VEGF expression in these normal hearts. Inhibition of TGF-beta activity using a neutralizing antibody, but not antagonists/inhibitors of endothelin and angiotensin II, eliminated stretch-induced increase in VEGF expression. Staurosporine, a protein kinase C inhibitor, also blocked stretch-induced increase of VEGF expression. Measurement of TGF-beta concentration in the perfusate demonstrated increased amounts of the cytokine after myocardial stretch, and addition of TGF-beta protein to the perfusion buffer resulted in increased VEGF expression in control hearts. These results suggest that stretch-induced increase of VEGF expression in the heart is mediated at least in part by TGF-beta. PMID:9202052

  3. Expression of tak1 and tram induces synergistic pro-inflammatory signalling and adjuvants DNA vaccines.

    PubMed

    Larsen, Karen Colbjørn; Spencer, Alexandra J; Goodman, Anna L; Gilchrist, Ashley; Furze, Julie; Rollier, Christine S; Kiss-Toth, Endre; Gilbert, Sarah C; Bregu, Migena; Soilleux, Elizabeth J; Hill, Adrian V S; Wyllie, David H

    2009-09-18

    Improving vaccine immunogenicity remains a major challenge in the fight against developing country diseases like malaria and AIDS. We describe a novel strategy to identify new DNA vaccine adjuvants. We have screened components of the Toll-like receptor signalling pathways for their ability to activate pro-inflammatory target genes in transient transfection assays and assessed in vivo adjuvant activity by expressing the activators from the DNA backbone of vaccines. We find that a robust increase in the immune response necessitates co-expression of two activators. Accordingly, the combination of tak1 and tram elicits synergistic reporter activation in transient transfection assays. In a mouse model this combination, but not the individual molecules, induced approximately twofold increases in CD8+ T-cell immune responses. These results indicate that optimal immunogenicity may require activation of distinct innate immune signalling pathways. Thus this strategy offers a novel route to the discovery of a new generation of adjuvants.

  4. Regulation of hepcidin expression by inflammation-induced activin B

    PubMed Central

    Kanamori, Yohei; Sugiyama, Makoto; Hashimoto, Osamu; Murakami, Masaru; Matsui, Tohru; Funaba, Masayuki

    2016-01-01

    Activin B is induced in response to inflammation in the liver and enhances hepcidin expression, but the source of activin B and the molecular mechanism underlying hepcidin induction are not clear yet. Lipopolysaccharide (LPS)-induced inflammation induced inhibin βB but not inhibin α or inhibin βA expression in the liver, implicating activin B induction. Immunoreactive inhibin βB was detected in endothelial cells and Kupffer cells in LPS-treated liver. Activin B, but not activin A or activin AB, directly increased hepcidin expression. Activin B induced phosphorylation and activation of Smad1/5/8, the BMP-regulated (BR)-Smads. The stimulation of hepcidin transcription by activin B was mediated by ALK2 and ActRIIA, receptors for the TGF-β family. Unexpectedly, activin B-induced hepcidin expression and BR-Smad phosphorylation were resistant to the effects of LDN-193189, an ALK2/3/6 inhibitor. ALK2 and ActRIIA complex formation in response to activin B may prevent the approach of LDN-193189 to ALK2 to inhibit its activity. Activin B also induced phosphorylation of Smad2/3, the TGF-β/activin-regulated (AR)-Smad, and increased expression of connective tissue growth factor, a gene related to liver fibrogenesis, through ALK4 and ActRIIA/B. Activin B-induced activation of the BR-Smad pathway was also detected in non-liver-derived cells. The present study reveals the broad signaling of activin B, which is induced in non-parenchymal cells in response to hepatic inflammation, in hepatocytes. PMID:27922109

  5. p53 inhibits the upregulation of sirtuin 1 expression induced by c-Myc.

    PubMed

    Yuan, Fang; Liu, Lu; Lei, Yonghong; Tang, Peifu

    2017-10-01

    Sirtuin 1 (Sirt1), a conserved NAD(+) dependent deacetylase, is a mediator of life span by calorie restriction. However, Sirt1 may paradoxically increase the risk of cancer. Accordingly, the expression level of Sirt1 is selectively elevated in numerous types of cancer cell; however, the mechanisms underlying the differential regulation remain largely unknown. The present study demonstrated that oncoprotein c-Myc was a direct regulator of Sirt1, which accounts for the upregulation of Sirt1 expression only in the cells without functional p53. In p53 deficient cells, the overexpression of c-Myc increased Sirt1 mRNA and protein expression levels as well as its promoter activity, whereas the inhibitor of c-Myc, 10058-F4, induced decreased Sirt1 basal mRNA and protein expression levels. Deletion/mutation mapping analyses revealed that c-Myc bound to the conserved E-box[-189 to -183 base pair (bp)] of the Sirt1 promoter. In addition, p53 and c-Myc shared at least response element and the presence of p53 may block the binding of c-Myc to the Sirt1 promoter, thus inhibit the c-Myc mediated upregulation of Sirt1 promoter activity. The present study indicated that the expression level of Sirt1 was tightly regulated by oncoprotein c-Myc and tumor suppressor p53, which aids an improved understanding of its expression regulation and tumor promoter role in certain conditions.

  6. Lotus hairy roots expressing inducible arginine decarboxylase activity.

    PubMed

    Chiesa, María A; Ruiz, Oscar A; Sánchez, Diego H

    2004-05-01

    Biotechnological uses of plant cell-tissue culture usually rely on constitutive transgene expression. However, such expression of transgenes may not always be desirable. In those cases, the use of an inducible promoter could be an alternative approach. To test this hypothesis, we developed two binary vectors harboring a stress-inducible promoter from Arabidopsis thaliana, driving the beta-glucuronidase reporter gene and the oat arginine decarboxylase. Transgenic hairy roots of Lotus corniculatus were obtained with osmotic- and cold-inducible beta-glucuronidase and arginine decarboxylase activities. The increase in the activity of the latter was accompanied by a significant rise in total free polyamines level. Through an organogenesis process, we obtained L. corniculatus transgenic plants avoiding deleterious phenotypes frequently associated with the constitutive over-expression of arginine decarboxylation and putrescine accumulation.

  7. Emotional facial activation induced by unconsciously perceived dynamic facial expressions.

    PubMed

    Kaiser, Jakob; Davey, Graham C L; Parkhouse, Thomas; Meeres, Jennifer; Scott, Ryan B

    2016-12-01

    Do facial expressions of emotion influence us when not consciously perceived? Methods to investigate this question have typically relied on brief presentation of static images. In contrast, real facial expressions are dynamic and unfold over several seconds. Recent studies demonstrate that gaze contingent crowding (GCC) can block awareness of dynamic expressions while still inducing behavioural priming effects. The current experiment tested for the first time whether dynamic facial expressions presented using this method can induce unconscious facial activation. Videos of dynamic happy and angry expressions were presented outside participants' conscious awareness while EMG measurements captured activation of the zygomaticus major (active when smiling) and the corrugator supercilii (active when frowning). Forced-choice classification of expressions confirmed they were not consciously perceived, while EMG revealed significant differential activation of facial muscles consistent with the expressions presented. This successful demonstration opens new avenues for research examining the unconscious emotional influences of facial expressions. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Flavonoids induce the expression of acetylcholinesterase in cultured osteoblasts.

    PubMed

    Xu, Miranda L; Bi, Cathy W C; Kong, Ava Y Y; Dong, Tina T X; Wong, Yung H; Tsim, Karl W K

    2016-11-25

    Flavonoids, a group of natural compounds mainly derived from plants, are known to possess osteogenic effects in bone cells. Here, we aimed to test if flavonoid could induce a cholinergic enzyme, acetylcholinesterase (AChE), as well as bone differentiation. In cultured rat osteoblasts, twenty flavonoids, deriving from Chinese herbs and having known induction of alkaline phosphatase (ALP(1)) expression, were tested for its induction activity on AChE expression. Eleven flavonoids showed the induction, and five of them had robust activation of AChE expression, including baicalin, calycosin, genistin, hyperin and pratensein: the induction of AChE included the levels of mRNA, protein and enzymatic activity. Moreover, the flavonoid-induced AChE expression in cultured osteoblast was in proline-rich membrane anchor (PRiMA)-linked tetrameric globular form (G4) only. In parallel, the expression of PRiMA was also induced by the application of flavonoids. The flavonoid-induced AChE in the cultures was not affected by estrogen receptor blocker, ICI 182,780. Taken together, the induction of PRiMA-linked AChE in osteoblast should be independent to classical estrogen signaling pathway.

  9. A novel cold-inducible expression system for Bacillus subtilis.

    PubMed

    Thuy Le, Ai Thi; Schumann, Wolfgang

    2007-06-01

    Production of recombinant proteins at low temperatures is one strategy to prevent formation of protein aggregates and the use of an expensive inducer such as IPTG. We report on the construction of two expression vectors both containing the cold-inducible des promoter of Bacillus subtilis, where one allows intra- and the other extracellular synthesis of recombinant proteins. Production of recombinant proteins started within the first 30min after temperature downshock to 25 degrees C and continued for about 5h.

  10. Integrity of immunoglobulin variable region is supported by GANP during AID-induced somatic hypermutation in germinal center B cells.

    PubMed

    Eid, Mohammed Mansour Abbas; Shimoda, Mayuko; Singh, Shailendra Kumar; Almofty, Sarah Ameen; Pham, Phuong; Goodman, Myron F; Maeda, Kazuhiko; Sakaguchi, Nobuo

    2017-05-24

    Immunoglobulin (Ig) affinity maturation depends on somatic hypermutation (SHM) in variable (V) regions initiated by activation-induced cytidine deaminase (AID). AID induces transition mutations by C→U deamination on both strands, causing C:G→T:A. Error-prone repairs of U by base excision and mismatch repairs create transversion mutations at C/G and mutations at A/T sites. In Neuberger's model, it remained to clarify how transition/transversion repair is regulated. We investigate role of AID-interacting GANP (germinal-center associated nuclear protein) in IgV SHM profile. GANP enhances transition mutation of nontranscribed-strand G and reduces mutation at A, restricted to GYW of AID hotspot motif. It reduces DNA polymerase η hotspot mutations associated with mismatch repairs followed by uracil-DNA glycosylase. Mutation comparison between IgV complementary and framework regions by Statistical Bayesian estimation demonstrates GANP supports to preserve IgV framework region genomic sequences. GANP works to maintain antibody structure by reducing drastic changes in IgV framework region in affinity maturation. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society for Immunology.

  11. Thiostrepton-induced gene expression in Streptomyces lividans.

    PubMed Central

    Murakami, T; Holt, T G; Thompson, C J

    1989-01-01

    Thiostrepton induced the expression of four proteins (17, 19, 30, and 56 kilodaltons) of unknown function in Streptomyces lividans. The chromosomal gene which encoded the 19-kilodalton protein (tipA) was cloned and sequenced. Transcription of the tipA promoter was induced at least 200-fold by thiostrepton. The tipA 200-fold by thiostrepton. The tipA transcriptional start site (located by S1 mapping and primer extension experiments) was preceded by a 45-base-pair imperfect inverted-repeat sequence which included the -10 and -35 regions of the promoter. Under noninducing conditions in vivo, this might form a cruciform structure which is not recognized by RNA polymerase. A 143-base-pair fragment including this region was cloned into a promoter probe vector, pIJ486. In this plasmid, pAK114, the thiostrepton-inducible tipA promoter controlled the expression of a kanamycin resistance gene encoding an aminoglycoside phosphotransferase. As little as 1 ng of thiostrepton spotted on a lawn of S. lividans(pAK114) induced kanamycin-resistant growth. Other thiostreptonlike antibiotics also induced tipA, but structurally unrelated antibiotics which inhibit translation had no effect. In S. lividans, the promoter could be induced by thiostrepton during either growth or stationary phase. The tipA promoter should be a valuable tool for expression studies in streptomycetes. Images PMID:2537819

  12. Inducing a Concurrent Motor Load Reduces Categorization Precision for Facial Expressions

    PubMed Central

    2015-01-01

    Motor theories of expression perception posit that observers simulate facial expressions within their own motor system, aiding perception and interpretation. Consistent with this view, reports have suggested that blocking facial mimicry induces expression labeling errors and alters patterns of ratings. Crucially, however, it is unclear whether changes in labeling and rating behavior reflect genuine perceptual phenomena (e.g., greater internal noise associated with expression perception or interpretation) or are products of response bias. In an effort to advance this literature, the present study introduces a new psychophysical paradigm for investigating motor contributions to expression perception that overcomes some of the limitations inherent in simple labeling and rating tasks. Observers were asked to judge whether smiles drawn from a morph continuum were sincere or insincere, in the presence or absence of a motor load induced by the concurrent production of vowel sounds. Having confirmed that smile sincerity judgments depend on cues from both eye and mouth regions (Experiment 1), we demonstrated that vowel production reduces the precision with which smiles are categorized (Experiment 2). In Experiment 3, we replicated this effect when observers were required to produce vowels, but not when they passively listened to the same vowel sounds. In Experiments 4 and 5, we found that gender categorizations, equated for difficulty, were unaffected by vowel production, irrespective of the presence of a smiling expression. These findings greatly advance our understanding of motor contributions to expression perception and represent a timely contribution in light of recent high-profile challenges to the existing evidence base. PMID:26618622

  13. Expression of glucocorticoid-induced leucine zipper (GILZ) in cardiomyocytes.

    PubMed

    Aguilar, David C; Strom, Josh; Xu, Beibei; Kappeler, Kyle; Chen, Qin M

    2013-06-01

    Glucocorticoids (GCs) are frequently prescribed pharmacological agents most notably for their immunosuppressive effects. Endogenous GCs mediate biological processes such as energy metabolism and tissue development. At the cellular level, GCs bind to the glucocorticoid receptor (GR), a cytosolic protein that translocates to the nuclei and functions to alter transcription upon ligand binding. Among a long list of genes activated by GCs is the glucocorticoid-induced leucine zipper (GILZ). GC-induced GILZ expression has been well established in lymphocytes and mediates GC-induced apoptosis. Unlike lymphocytes, cardiomyocytes respond to GCs by gaining resistance against apoptosis. We determined GILZ expression in cardiomyocytes in vivo and in vitro. Expression of GILZ in mouse hearts as a result of GC administration was confirmed by Western blot analyses. GCs induced dose- and time-dependent elevation of GILZ expression in primary cultured rat cardiomyocytes, with dexamethasone (Dex) as low as 0.1 μM being effective. Time course analysis indicated that GILZ protein levels increased at 8 h and peaked at 48 h after exposure to 1 μM Dex. H9c2(2-1) cell line showed a similar response of GILZ induction by Dex as primary cultured rat cardiomyocytes, providing a convenient model for studying the biological significance of GILZ expression. With corticosterone (CT), an endogenous form of corticosteroids in rodents, 0.1-2.5 μM was found to induce GILZ in H9c2(2-1) cells. Time course analysis with 1 μM CT indicated induction of GILZ at 6 h with peak expression at 18 h. Inhibition of the GR by mifepristone led to blunting of GILZ induction by GCs. Our data demonstrate GILZ induction in cardiomyocytes both in vivo and in vitro by GCs, pointing to H9c2(2-1) cells as a valid model for studying the biological function of GILZ in cardiomyocytes.

  14. Expression of Glucocorticoid Induced Leucine Zipper (GILZ) in Cardiomyocytes

    PubMed Central

    Aguilar, David C.; Strom, Josh; Xu, Beibei; Kappeler, Kyle; Chen, Qin M.

    2014-01-01

    Glucocorticoids (GCs) are frequently prescribed pharmacological agents most notably for their immunosuppressive effects. Endogenous GCs mediate biological processes such as energy metabolism and tissue development. At the cellular level, GCs bind to the Glucocorticoid Receptor (GR), a cytosolic protein that translocates to the nuclei and functions to alter transcription upon ligand binding. Amongst a long list of genes activated by GCs is the Glucocorticoid Induced Leucine Zipper (GILZ). GC induced GILZ expression has been well established in lymphocytes and mediates GC induced apoptosis. Unlike lymphocytes, cardiomyocytes respond to GCs by gaining resistance against apoptosis. We determined GILZ expression in cardiomyocytes in vivo and in vitro. Expression of GILZ in mouse hearts as a result of GC administration was confirmed by Western blot analyses. GCs induced dose and time dependent elevation of GILZ expression in primary cultured rat cardiomyocytes, with dexamethasone (Dex) as low as 0.1 M being effective. Time course analysis indicated that GILZ protein levels increased at 8 hr and peaked at 48 hr after exposure to 1 M Dex. H9c2(2-1) cell line showed a similar response of GILZ induction by Dex as primary cultured rat cardiomyocytes, providing a convenient model for studying the biological significance of GILZ expression. With corticosterone (CT), an endogenous form of corticosteroids in rodents, 0.1–2.5 M was found to induce GILZ in H9c2(2-1) cells. Time course analysis with 1 M CT indicated induction of GILZ at 6 hr with peak expression at 18 hr. Inhibition of the GR by mifepristone led to blunting of GILZ induction by GCs. Our data demonstrate GILZ induction in cardiomyocytes both in vivo and in vitro by GCs, pointing to H9c2(2-1) cells as a valid model for studying the biological function of GILZ in cardiomyocytes. PMID:23090754

  15. Fatigue Hardening Behavior of 1.5 GPa Grade Transformation-Induced Plasticity-Aided Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Sugimoto, Koh-Ichi; Hojo, Tomohiko

    2016-11-01

    Low cycle fatigue hardening/softening behavior of a 0.2 pct C-1.5 pct Si-1.5 pct Mn-1.0 pct Cr-0.2 pct Mo-0.05 pct Nb transformation-induced plasticity (TRIP)-aided steel consisting of a wide lath martensite structure matrix and a narrow lath martensite-metastable retained austenite mixture was investigated. The steel exhibited notable fatigue hardening in the same way as TRIP-aided bainitic ferrite steel, although conventional martensitic steel such as SCM420 steel with the same tensile strength exhibited fatigue softening. The considerable fatigue hardening of this steel is believed to be associated mainly with the compressive internal stress that results from a difference in flow stress between the matrix and the martensite-austenite-like phase, with a small contribution from the strain-induced transformation and dislocation hardenings.

  16. TLR4 mediates LPS-induced VEGF expression in odontoblasts.

    PubMed

    Botero, Tatiana M; Shelburne, Charles E; Holland, G Rex; Hanks, Carl T; Nör, Jacques E

    2006-10-01

    Lipopolysaccharide (LPS) from gram-negative bacteria cell walls such as Prevotella intermedia and Escherichia coli induce vascular endothelial growth factor (VEGF) expression in odontoblasts, but not in undifferentiated dental pulp cells. CD14 and TLR4 are responsible for LPS signaling in macrophages, but their expression levels and function in dental pulp cells are unknown. We showed here that murine odontoblast-like cells (MDPC-23) express CD14 and TLR4 by immunohistochemistry and flow cytometry. In contrast, undifferentiated dental pulp cells (OD-21) presented low or no expression of these two receptors. MDPC-23 cells showed CD14 and TLR4 up-regulation upon exposure to LPS, as determined by real time PCR. Dominant negative murine TLR4 (DN-mTLR4) transfected MDPC-23 cells did not show upregulated VEGF expression in response to LPS stimulation. These results demonstrate that odontoblast-like cells express CD14 and TLR4, and that LPS-induced VEGF expression is mediated, at least in part, by TLR4 signaling.

  17. Zinc pyrithione induces apoptosis and increases expression of Bim.

    PubMed

    Mann, J J; Fraker, P J

    2005-03-01

    We demonstrate herein that zinc pyrithione can induce apoptosis at nanomolar concentrations. Zinc pyrithione was a potent inducer of cell death causing greater than 40-60% apoptosis among murine thymocytes, murine splenic lymphocytes and human Ramos B and human Jurkat T cells. Conversely, the addition of a zinc chelator protected thymocytes against zinc pyrithione induced apoptosis indicating these responses were specific for zinc. Zinc-induced apoptosis was dependent on transcription and translation which suggested possible regulation by a proapoptotic protein. Indeed, zinc induced a 1.9 and 3.4 fold increase respectively in expression of the BimEL and BimL isoforms and also stimulated production of the most potent isoform, BimS. This increase in Bim isoform expression was dependent on transcription being blocked by treatment with actinomycin D. Overexpression of Bcl-2 or Bcl-xL provided substantial protection of Ramos B and Jurkat T cells against zinc-induced apoptosis. Zinc also activated the caspase cascade demonstrated by cleavage of caspase 9. Addition of specific inhibitors for caspase 9 and caspase 3 also blocked zinc-induced apoptosis. The data herein adds to the growing evidence that free or unbound zinc could be harmful to cells of the immune system.

  18. Talk radio as the soundtrack of our lives: Participatory HIV/AIDS communication, public self-expression and Positive Talk.

    PubMed

    Burger, Mariekie

    2015-01-01

    article explores a wider range of participatory principles and the potential workings of these in an internally initiated communication initiative aimed at addressing the epidemic. More specifically, this article investigates ways in which radio listeners experience the reality broadcast genre--the talk radio show, Positive Talk--as participatory communication. Positive Talk is not an externally initiated project, as it is not part of a pre-planned, goal-oriented project that is owned and controlled outside the target community. In contrast, it has been initiated by Criselda Kananda, an individual not linked to any of the existing initiatives outside the community. She started the show to earn a living. She became a well-known person, is fairly knowledgeable in the field and was granted this opportunity as she is HIV-positive. In order to investigate how radio listeners use the show to engage in HIV/AIDS communication, 20 in-depth interviews were held with avid listeners of the show. The respondents indicated that they appreciate ordinary people phoning in. When expressing their opinions about the show, they found Kananda's life story credible, believed her public and private life to be congruent, valued Kananda's personality and respectful manner and could identify with the views expressed. In the article, it is argued that these ideas are largely in line with the principles of participatory communication tied to democracy, the participatory turn, the ordinary, validation of identity and respectful dialogue. Although the findings of this qualitative study cannot be generalised to the whole listening population of the show, they indicate that it is worth investigating the value of communication initiatives that emerge spontaneously from communities (instead of those strategically engineered from outside the general population) as a future direction of HIV/AIDS communication in the country.

  19. Expression of Ley antigen in human immunodeficiency virus-infected human T cell lines and in peripheral lymphocytes of patients with acquired immune deficiency syndrome (AIDS) and AIDS-related complex (ARC)

    PubMed Central

    1988-01-01

    Ley determinant (Fuc alpha 1----2Gal beta 1----4[Fuc alpha 1---- 3]GlcNAc beta 1----R) defined by mAb BM-1 is highly expressed in human immunodeficiency virus (HIV)-infected T cell lines and in CD3+ peripheral mature T cells of patients with acquired immune deficiency syndrome (AIDS) or with AIDS-related complex (ARC). Ley expression increased greatly in the CD3+ population in the advanced stage of AIDS when the CD4+ population decreased greatly. Six other carbohydrate antigens tested by their respective mAbs were not detected in these same cells. None of the carbohydrate antigens tested by the seven mAbs used in this study were found in noninfected T cell lines and in normal peripheral blood lymphocytes. PMID:3258005

  20. Development of inducer-free expression plasmids based on IPTG-inducible promoters for Bacillus subtilis.

    PubMed

    Tran, Dinh Thi Minh; Phan, Trang Thi Phuong; Huynh, Thanh Kieu; Dang, Ngan Thi Kim; Huynh, Phuong Thi Kim; Nguyen, Tri Minh; Truong, Tuom Thi Tinh; Tran, Thuoc Linh; Schumann, Wolfgang; Nguyen, Hoang Duc

    2017-07-25

    Besides Escherichia coli, Bacillus subtilis is an important bacterial species for the production of recombinant proteins. Recombinant genes are inserted into shuttle expression vectors which replicate in both E. coli and in B. subtilis. The ligation products are first transformed into E. coli cells, analyzed for correct insertions, and the correct recombinant plasmids are then transformed into B. subtilis. A major problem using E. coli cells can be the strong basal level of expression of the recombinant protein which may interfere with the stability of the cells. To minimize this problem, we developed strong expression vectors being repressed in E. coli and inducer-free in B. subtilis. In general, induction of IPTG-inducible expression vectors is determined by the regulatory lacI gene encoding the LacI repressor in combination with the lacO operator on the promoter. To investigate the inducer-free properties of the vectors, we constructed inducer-free expression plasmids by removing the lacI gene and characterized their properties. First, we examined the ability to repress a reporter gene in E. coli, which is a prominent property facilitating the construction of the expression vectors carrying a target gene. The β-galactosidase (bgaB gene) basal levels expressed from Pgrac01-bgaB could be repressed at least twice in the E. coli cloning strain. Second, the inducer-free production of BgaB from four different plasmids with the Pgrac01 promoter in B. subtilis was investigated. As expected, BgaB expression levels of inducer-free constructs are at least 37 times higher than that of the inducible constructs in the absence of IPTG, and comparable to those in the presence of the inducer. Third, using efficient IPTG-inducible expression vectors containing the strong promoter Pgrac100, we could convert them into inducer-free expression plasmids. The BgaB production levels from the inducer-free plasmid in the absence of the inducer were at least 4.5 times higher than that of

  1. iAID: an improved auxin-inducible degron system for the construction of a 'tight' conditional mutant in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Tanaka, Seiji; Miyazawa-Onami, Mayumi; Iida, Tetsushi; Araki, Hiroyuki

    2015-08-01

    Isolation of a 'tight' conditional mutant of a gene of interest is an effective way of studying the functions of essential genes. Strategies that use ubiquitin-mediated protein degradation to eliminate the product of a gene of interest, such as heat-inducible degron (td) and auxin-inducible degron (AID), are powerful methods for constructing conditional mutants. However, these methods do not work with some genes. Here, we describe an improved AID system (iAID) for isolating tight conditional mutants in the budding yeast Saccharomyces cerevisiae. In this method, transcriptional repression by the 'Tet-OFF' promoter is combined with proteolytic elimination of the target protein by the AID system. To provide examples, we describe the construction of tight mutants of the replication factors Dpb11 and Mcm10, dpb11-iAID, and mcm10-iAID. Because Dpb11 and Mcm10 are required for the initiation of DNA replication, their tight mutants are unable to enter S phase. This is the case for dpb11-iAID and mcm10-iAID cells after the addition of tetracycline and auxin. Both the 'Tet-OFF' promoter and the AID system have been shown to work in model eukaryotes other than budding yeast. Therefore, the iAID system is not only useful in budding yeast, but also can be applied to other model systems to isolate tight conditional mutants.

  2. Transgenic expression of the deoxynucleotide carrier causes mitochondrial damage that is enhanced by NRTIs for AIDS.

    PubMed

    Lewis, William; Haase, Chad P; Miller, Yoon K; Ferguson, Brandy; Stuart, Tami; Ludaway, Tomika; McNaught, Jamie; Russ, Rodney; Steltzer, Jeffrey; Santoianni, Robert; Long, Robert; Fiermonte, Giuseppe; Palmieri, Ferdinando

    2005-08-01

    Nucleoside reverse transcriptase inhibitors (NRTIs) are antiretrovirals for AIDS with limiting mitochondrial side effects. The mitochondrial deoxynucleotide carrier (DNC) transports phosphorylated nucleosides for mitochondrial DNA replication and can transport phosphorylated NRTIs into mitochondria. Transgenic mice (TG) that exclusively overexpress DNC in the heart tested DNC's role in mitochondrial dysfunction from NRTIs. Two TG lines were created that overexpressed the human DNC gene in murine myocardium. Cardiac and mitochondrial structure and function were examined by magnetic resonance imaging, echocardiography, electrocardiography, transmission electron microscopy, and plasma lactate. Antiretroviral combinations (HAART) that contained NRTIs (stavudine (2', 3'-didehydro-2', 3'-deoxythymidine or d4T)/lamivudine/indinavir; or zidovudine (3' azido-3'-deoxythymidine or AZT)/lamivudine/indinavir; 35 days) were administered to simulate AIDS therapy. In parallel, a HAART combination without NRTIs (nevirapine/efavirenz/indinavir; 35 days) served as an NRTI-sparing, control regimen. Untreated DNC TGs exhibited normal cardiac function but abnormal mitochondrial ultrastructure. HAART that contained NRTIs caused cardiomyopathy in TGs with increased left ventricle mass and volume, heart rate variability, and worse mitochondrial ultrastructural defects. In contrast, treatment with an NRTI-sparing HAART regimen caused no cardiac changes. Data suggest the DNC is integral to mitochondrial homeostasis in vivo and may relate mechanistically to mitochondrial dysfunction in patients treated with HAART regimens that contain NRTIs.

  3. Does expressed acceptance reflect genuine attitudes? A bogus pipeline study of the effects of mortality salience on acceptance of a person with AIDS.

    PubMed

    Grover, Kristin W; Miller, Carol T

    2012-01-01

    The present study examined whether expressed acceptance of a person with AIDS reflects genuine acceptance or a desire to appear to be accepting. Theory and research on the effects of mortality salience on acceptance of stigmatized people provided the framework for investigating this question. After writing about death or another aversive topic, participants indicated their acceptance of a target with AIDS while connected to physiological equipment that they believed could detect lies (bogus pipeline) or was simply measuring physiological responses to participation in the study. As predicted, participants in the mortality salience/bogus pipeline condition indicated significantly less acceptance of the target with AIDS than participants in the other three conditions, suggesting that acceptance of a person with AIDS is at least partially a result of wanting to appear to be accepting, without necessarily genuinely accepting someone with AIDS.

  4. An inducible transcription factor activates expression of human immunodeficiency virus in T cells

    NASA Astrophysics Data System (ADS)

    Nabel, Gary; Baltimore, David

    1987-04-01

    Human immunodeficiency virus (HIV) production from latently infected T lymphocytes can be induced with compounds that activate the cells to secrete lymphokines1,2. The elements in the HIV genome which control activation are not known but expression might be regulated through a variety of DNA elements. The cis-acting control elements of the viral genome are enhancer and promoter regions. The virus also encodes trans-acting factors specified by the tat-III (refs 3-6) and art genes7. We have examined whether products specific to activated T cells might stimulate viral transcription by binding to regions on viral DNA. Activation of T cells, which increases HIV expression up to 50-fold, correlated with induction of a DNA binding protein indistinguishable from a recognized transcription factor, called NF-κB (ref. 8), with binding sites in the viral enhancer. Mutation of these binding sites abolished inducibility. That NF-κB acts in synergy with the viral tat-III gene product to enhance HIV expression in T cells may have implications for the pathogenesis of AIDS (acquired immune deficiency syndrome).

  5. Dexmedetomidine Attenuates Lipopolysaccharide Induced MCP-1 Expression in Primary Astrocyte.

    PubMed

    Liu, Huan; Davis, Jacques R J; Wu, Zhi-Lin; Faez Abdelgawad, Amro

    2017-01-01

    Background. Neuroinflammation which presents as a possible mechanism of delirium is associated with MCP-1, an important proinflammatory factor which is expressed on astrocytes. It is known that dexmedetomidine (DEX) possesses potent anti-inflammatory properties. This study aimed to investigate the potential effects of DEX on the production of MCP-1 in lipopolysaccharide-stimulated astrocytes. Materials and Methods. Astrocytes were treated with LPS (10 ng/ml, 50 ng/ml, 100 ng/ml, and 1000 ng/ml), DEX (500 ng/mL), LPS (100 ng/ml), and DEX (10, 100, and 500 ng/mL) for a duration of three hours; expression levels of MCP-1 were measured by real-time PCR. The double immunofluorescence staining protocol was utilized to determine the expression of α2-adrenoceptors (α2AR) and glial fibrillary acidic protein (GFAP) on astrocytes. Results. Expressions of MCP-1 mRNA in astrocytes were induced dose-dependently by LPS. Administration of DEX significantly inhibited the expression of MCP-1 mRNA (P < 0.001). Double immunofluorescence assay showed that α2AR colocalize with GFAP, which indicates the expression of α2-adrenoceptors in astrocytes. Conclusions. DEX is a potent suppressor of MCP-1 in astrocytes induced with lipopolysaccharide through α2A-adrenergic receptors, which potentially explains its beneficial effects in the treatment of delirium by attenuating neuroinflammation.

  6. Dexmedetomidine Attenuates Lipopolysaccharide Induced MCP-1 Expression in Primary Astrocyte

    PubMed Central

    Liu, Huan; Faez Abdelgawad, Amro

    2017-01-01

    Background. Neuroinflammation which presents as a possible mechanism of delirium is associated with MCP-1, an important proinflammatory factor which is expressed on astrocytes. It is known that dexmedetomidine (DEX) possesses potent anti-inflammatory properties. This study aimed to investigate the potential effects of DEX on the production of MCP-1 in lipopolysaccharide-stimulated astrocytes. Materials and Methods. Astrocytes were treated with LPS (10 ng/ml, 50 ng/ml, 100 ng/ml, and 1000 ng/ml), DEX (500 ng/mL), LPS (100 ng/ml), and DEX (10, 100, and 500 ng/mL) for a duration of three hours; expression levels of MCP-1 were measured by real-time PCR. The double immunofluorescence staining protocol was utilized to determine the expression of α2-adrenoceptors (α2AR) and glial fibrillary acidic protein (GFAP) on astrocytes. Results. Expressions of MCP-1 mRNA in astrocytes were induced dose-dependently by LPS. Administration of DEX significantly inhibited the expression of MCP-1 mRNA (P < 0.001). Double immunofluorescence assay showed that α2AR colocalize with GFAP, which indicates the expression of α2-adrenoceptors in astrocytes. Conclusions. DEX is a potent suppressor of MCP-1 in astrocytes induced with lipopolysaccharide through α2A-adrenergic receptors, which potentially explains its beneficial effects in the treatment of delirium by attenuating neuroinflammation. PMID:28286770

  7. Differential expression of perforin in cytotoxic lymphocyte in HIV/AIDS patients of China.

    PubMed

    Qi, Wang; Yongjun, Jiang; Yanan, Wang; Zining, Zhang; Xiaoxu, Han; Jing, Liu; Hong, Shang

    2006-07-01

    Cytotoxic lymphocytes are critical in the control of HIV replication, it has been shown that perforin is the key effector of killing machinery for CTLs and NK cells, so we investigated the circulating levels of perforin in CD8+ T cells and NK cells by flow cytometry intracellular stain in Chinese HIV infected individuals, its association with disease progression was analyzed. Our results showed that NK cells express perforin more efficiently than CD8+ T cells, CD8+ T cells expressed perforin higher than that of healthy controls, but NK cells expressed lower perforin than that of healthy controls, both were not correlated with disease progression. but significantly associated with their numbers, anti-retrovirus therapy had no evident effects on peforin expression in CD8+ T cells, but enhanced perfrin expression in NK cells, perforin expression in CD8+ T cells and CD16+ NK cells correlate with CD4+ T cell counts significantly in HAART-treated group. Therefore, different mechanisms may be involved in regulating peripheral perforin expression in different cell types.

  8. Comparison of RANTES expression in Crohn's disease and ulcerative colitis: an aid in the differential diagnosis?

    PubMed

    Ansari, N; Abdulla, J; Zayyani, N; Brahmi, U; Taha, S; Satir, A A

    2006-10-01

    RANTES (regulated on activation, normal T cell expressed and secreted) expression is increased in inflammatory bowel disease (IBD). RANTES is produced at higher levels in granulomatous conditions, so increased RANTES expression can be expected in Crohn's disease compared with ulcerative colitis. To compare RANTES expression between intestinal biopsy specimens of patients with Crohn's disease and those with ulcerative colitis. A prospective study of patients presenting with lower gastrointestinal symptoms at the Bahrain Specialist Hospital from July 2004 to April 2005 was carried out. Endoscopic colonic biopsy specimens were taken from every patient and subjected to (a) routine haematoxylin and eosin staining examination by light microscopy, (b) immunohistochemistry for examination of RANTES protein expression by light microscopy and (c) in situ hybridisation for examination of RANTES mRNA expression by light microscopy. RANTES expression was assessed and quantified. 58 patients were enrolled to the study. Of them, 40 had IBD (21 had Crohn's disease and 19 had ulcerative colitis), 15 were controls with normal colonic biopsy results or non-inflammatory lesions and 3 had colonic inflammatory lesions other than IBD. RANTES expression in lymphocytes or histiocytes was significantly higher (p = 0.04) in new patients with ulcerative colitis than in those with Crohn's disease analysed by immunohistochemistry (IHC). RANTES expression in lymphocytes or histiocytes is significantly higher in patients with ulcerative colitis than in those with Crohn's disease. Hence, RANTES IHC can be an effective method for distinguishing between biopsy specimens of patients with ulcerative colitis from those of patients with Crohn's disease, where routine histological features are indeterminate. RANTES IHC may prove to be a useful technique for identifying early or equivocal granulomas.

  9. Comparison of RANTES expression in Crohn's disease and ulcerative colitis: an aid in the differential diagnosis?

    PubMed Central

    Ansari, N; Abdulla, J; Zayyani, N; Brahmi, U; Taha, S; Satir, A A

    2006-01-01

    Background RANTES (regulated on activation, normal T cell expressed and secreted) expression is increased in inflammatory bowel disease (IBD). RANTES is produced at higher levels in granulomatous conditions, so increased RANTES expression can be expected in Crohn's disease compared with ulcerative colitis. Aim To compare RANTES expression between intestinal biopsy specimens of patients with Crohn's disease and those with ulcerative colitis. Materials and methods A prospective study of patients presenting with lower gastrointestinal symptoms at the Bahrain Specialist Hospital from July 2004 to April 2005 was carried out. Endoscopic colonic biopsy specimens were taken from every patient and subjected to (a) routine haematoxylin and eosin staining examination by light microscopy, (b) immunohistochemistry for examination of RANTES protein expression by light microscopy and (c) in situ hybridisation for examination of RANTES mRNA expression by light microscopy. RANTES expression was assessed and quantified. Results 58 patients were enrolled to the study. Of them, 40 had IBD (21 had Crohn's disease and 19 had ulcerative colitis), 15 were controls with normal colonic biopsy results or non‐inflammatory lesions and 3 had colonic inflammatory lesions other than IBD. RANTES expression in lymphocytes or histiocytes was significantly higher (p = 0.04) in new patients with ulcerative colitis than in those with Crohn's disease analysed by immunohistochemistry (IHC). Conclusion RANTES expression in lymphocytes or histiocytes is significantly higher in patients with ulcerative colitis than in those with Crohn's disease. Hence, RANTES IHC can be an effective method for distinguishing between biopsy specimens of patients with ulcerative colitis from those of patients with Crohn's disease, where routine histological features are indeterminate. RANTES IHC may prove to be a useful technique for identifying early or equivocal granulomas. PMID:16565224

  10. Rapid de novo generation of antigen specific human B cells with expression of Blimp-1 and AID by in vitro immunization.

    PubMed

    Fang, Xu; Tong, Yue; Tian, Hong; Ning, Hongyu; Gao, Xiangdong; Yao, Wenbing

    2017-03-01

    In vitro immunization with antigens and cytokines triggers specific human B-cell response in short periods and is therefore superior to conventional in vivo immunization for antibody development. However, this new technology is limited by low efficiency, poor reproducibility, and requirement of pre-immunized lymphocytes. In this study, we demonstrate a novel method for de novo inducing antigen-specific human B cells in vitro. Unlike previous in vitro immunization of unfractionated PBMCs, we firstly optimized the conditions for inducing monocyte-derived dendritic cells (DCs) to efficiently capture, process, and present antigens. Instead of using the conventional method to activate Th2 cells for in vitro immunization, we succeeded to differentiate naïve CD4(+) T cells into T follicular helper (Tfh) cells using antigen-sensitized DCs and cytokine cocktail. We discovered the differentiated T cells expressed ICOS, PD-1, BCL-6, and IL-21 at high levels. After 12 days of T-B co-culture, we observed induced T cells efficiently promoted naïve B cells to differentiate into plasmablasts secreting antigen-specific antibodies, with expression of Blimp-1 and AID related to affinity maturation and class switching. Thus, we established a new co-culture system with naïve lymphocyte populations for de novo acquisition of specifically in vitro immunized B cells potentially for development of therapeutic antibodies, which also provides novel insights into understanding the complex interactions among immune cells in lymph nodes. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Nickel-induced heritable alterations in retroviral transforming gene expression.

    PubMed Central

    Biggart, N W; Gallick, G E; Murphy, E C

    1987-01-01

    Determination of the mutagenic effects of carcinogenic nickel compounds has been difficult because, like many metals, nickel is poorly or nonmutagenic in procaryotic mutagenicity assays. We attempted to characterize nickel-induced genetic lesions by assessing the effect of nickel chloride on the conditionally defective expression of the v-mos transforming gene in normal rat kidney cells infected with the Murine sarcoma virus mutant ts110 (MuSVts110) retrovirus. MuSVts110 contains an out-of-frame gag gene-mos gene junction that prevents the expression of the v-mos gene at the nonpermissive temperature (39 degrees C). In MuSVts110-infected cells (6m2 cells) grown at 33 degrees C, however, this defect can be suppressed by a splicing event that restores the mos reading frame, allowing the expression of a gag-mos fusion protein which induces the transformed phenotype. The capacity to splice the viral transcript at 33 degrees C, but not at 39 degrees C, is an intrinsic property of the viral RNA. This property allowed us to target the MuSVts110 genome using a positive selection scheme whereby nickel was used to induce genetic changes which resulted in expression of the transformed phenotype at 39 degrees C. We treated 6m2 cells with NiCl2 and isolated foci consisting of cells which had reverted to the transformed phenotype at 39 degrees C. We found that brief nickel treatment increased the reversion frequency of 6m2 cells grown at 39 degrees C sevenfold over the spontaneous reversion frequency. The nickel-induced revertants displayed the following heritable characteristics: They stably maintained the transformed phenotype at 39 degrees C; unlike the MuSVts110 RNA in 6m2 cells, the nickel-induced revertant viral RNA could be spliced efficiently at 39 degrees C; as a consequence of the enhanced accumulation of spliced viral RNA, the nickel-induced revertants produced substantial amounts of the transforming v-mos protein P85gag-mos at 39 degrees C; the nickel-induced

  12. Oviposition-Induced Changes in Arabidopsis Genome Expression

    PubMed Central

    Bruessow, Friederike

    2007-01-01

    Plants have evolved exquisite ways to detect their enemies and are able to induce defenses responses tailored to their specific aggressors. Insect eggs deposited on a leaf represent a future threat as larvae hatching from the egg will ultimately feed on the plant. Although direct and indirect defenses towards oviposition have been documented, our knowledge of the molecular changes triggered by egg deposition is limited. Using a whole-genome microarray, we recently analyzed the expression profile of Arabidopsis thaliana leaves after oviposition by two pierid butterflies. Eggs laid by the large white Pieris brassicae modified the expression of hundreds of genes. The transcript signature included defense and stress-related genes that were also induced in plants experiencing localized cell death. Further analyses revealed that cellular changes associated with a hypersensitive response occur at the site of egg deposition and that they are triggered by egg-derived elicitors. Our study brings molecular evidence for previous observations of oviposition-induced necrosis in other plant species and might illustrate a direct defense of the plant against the egg. In this addendum, we discuss the relevance of the oviposition-induced gene expression changes and the possibility that plants use eggs as cues to anticipate their enemies. PMID:19704745

  13. Highly potent, synthetically accessible prostratin analogs induce latent HIV expression in vitro and ex vivo

    PubMed Central

    Beans, Elizabeth J.; Fournogerakis, Dennis; Gauntlett, Carolyn; Heumann, Lars V.; Kramer, Rainer; Marsden, Matthew D.; Murray, Danielle; Zack, Jerome A.; Wender, Paul A.

    2013-01-01

    Highly active antiretroviral therapy (HAART) decreases plasma viremia below the limits of detection in the majority of HIV-infected individuals, thus serving to slow disease progression. However, HAART targets only actively replicating virus and is unable to eliminate latently infected, resting CD4+ T cells. Such infected cells are potentially capable of reinitiating virus replication upon cessation of HAART, thus leading to viral rebound. Agents that would eliminate these reservoirs, when used in combination with HAART, could thus provide a strategy for the eradication of HIV. Prostratin is a preclinical candidate that induces HIV expression from latently infected CD4+ T cells, potentially leading to their elimination through a virus-induced cytopathic effect or host anti-HIV immunity. Here, we report the synthesis of a series of designed prostratin analogs and report in vitro and ex vivo studies of their activity relevant to induction of HIV expression. Members of this series are up to 100-fold more potent than the preclinical lead (prostratin) in binding to cell-free PKC, and in inducing HIV expression in a latently infected cell line and prostratin-like modulation of cell surface receptor expression in primary cells from HIV-negative donors. Significantly, selected members were also tested for HIV induction in resting CD4+ T cells isolated from infected individuals receiving HAART and were found to exhibit potent induction activity. These more potent agents and by extension related tunable analogs now accessible through the studies described herein should facilitate research and preclinical advancement of this strategy for HIV/AIDS eradication. PMID:23812750

  14. Highly potent, synthetically accessible prostratin analogs induce latent HIV expression in vitro and ex vivo.

    PubMed

    Beans, Elizabeth J; Fournogerakis, Dennis; Gauntlett, Carolyn; Heumann, Lars V; Kramer, Rainer; Marsden, Matthew D; Murray, Danielle; Chun, Tae-Wook; Zack, Jerome A; Wender, Paul A

    2013-07-16

    Highly active antiretroviral therapy (HAART) decreases plasma viremia below the limits of detection in the majority of HIV-infected individuals, thus serving to slow disease progression. However, HAART targets only actively replicating virus and is unable to eliminate latently infected, resting CD4(+) T cells. Such infected cells are potentially capable of reinitiating virus replication upon cessation of HAART, thus leading to viral rebound. Agents that would eliminate these reservoirs, when used in combination with HAART, could thus provide a strategy for the eradication of HIV. Prostratin is a preclinical candidate that induces HIV expression from latently infected CD4(+) T cells, potentially leading to their elimination through a virus-induced cytopathic effect or host anti-HIV immunity. Here, we report the synthesis of a series of designed prostratin analogs and report in vitro and ex vivo studies of their activity relevant to induction of HIV expression. Members of this series are up to 100-fold more potent than the preclinical lead (prostratin) in binding to cell-free PKC, and in inducing HIV expression in a latently infected cell line and prostratin-like modulation of cell surface receptor expression in primary cells from HIV-negative donors. Significantly, selected members were also tested for HIV induction in resting CD4(+) T cells isolated from infected individuals receiving HAART and were found to exhibit potent induction activity. These more potent agents and by extension related tunable analogs now accessible through the studies described herein should facilitate research and preclinical advancement of this strategy for HIV/AIDS eradication.

  15. Low nitrogen-induced expression of cyclophilin in Nicotiana tabacum.

    PubMed

    Yang, Huijuan; Xu, Li; Cui, Hong; Zhong, Boxiong; Liu, Guoshun; Shi, Hongzhi

    2013-01-01

    Leaf morphology and the leaf protein expression profiles of flue-cured tobacco grown in central Henan province of China under low nitrogen (low-N) and normal nitrogen (normal-N) nutrition were examined. The leaf length and width were measured at 50, 60, and 70 days after transplanting. Leaves grown under low-N conditions were shorter and more narrow than those grown under normal-N conditions. The protein expression profiles of tobacco leaves harvested at 70 days after transplanting were analyzed by 2-dimensional electrophoresis, and five differentially expressed proteins including a putative protein were identified. Except for the MCM protein-like protein, the other three differentially expressed proteins of cyclophilin-like protein, vacuolar invertase INV2, MAR-binding protein and the one putative protein showed increased expression in the low-N nutrition group. Among these proteins, the cyclophilin-like protein, which is a stress-responsive signal protein, may play pivotal roles in regulating leaf development under stress conditions. Real-time quantitative PCR analysis showed that the mRNA expression level of the cyclophilin-like protein at day 50, 60 and 70 under low-N conditions was 0.90, 1.43 and 6.9-fold higher than that under normal-N conditions, indicating that the gene expression of cyclophilin-like protein was strongly induced by low-N conditions.

  16. Gas-inducible product gene expression in bioreactors.

    PubMed

    Weber, Wilfried; Rimann, Markus; de Glutz, François-Nicolas; Weber, Eric; Memmert, Klaus; Fussenegger, Martin

    2005-05-01

    Inducible transgene expression technologies are of unmatched potential for biopharmaceutical manufacturing of unstable, growth-impairing and cytotoxic proteins as well as conditional metabolic engineering to improve desired cell phenotypes. Currently available transgene dosing modalities which rely on physical parameters or small-molecule drugs for transgene fine-tuning compromise downstream processing and/or are difficult to implement technologically. The recently designed gas-inducible acetaldehyde-inducible regulation (AIR) technology takes advantage of gaseous acetaldehyde to modulate product gene expression levels. At regulation effective concentrations gaseous acetaldehyde is physiologically inert and approved as food additive by the Federal Drug Administration (FDA). During standard bioreactor operation, gaseous acetaldehyde could simply be administered using standard/existing gas supply tubing and eventually eliminated by stripping with inducer-free air. We have determined key parameters controlling acetaldehyde transfer in three types of bioreactors and designed a mass balance-based model for optimal product gene expression fine-tuning using gaseous acetaldehyde. Operating a standard stirred-tank bioreactor set-up at 10 L scale we have validated AIR technology using CHO-K1-derived serum-free suspension cultures transgenic for gas-inducible production of human interferon-beta (IFN-beta). Gaseous acetaldehyde-inducible IFN-beta production management was fully reversible while maintaining cell viability at over 95% during the entire process. Compatible with standard bioreactor design and downstream processing procedures AIR-based technology will foster novel opportunities for pilot and large-scale manufacturing of difficult-to-produce protein pharmaceuticals.

  17. Microarray studies of psychostimulant-induced changes in gene expression.

    PubMed

    Yuferov, Vadim; Nielsen, David; Butelman, Eduardo; Kreek, Mary Jeanne

    2005-03-01

    Alterations in the expression of multiple genes in many brain regions are likely to contribute to psychostimulant-induced behaviours. Microarray technology provides a powerful tool for the simultaneous interrogation of gene expression levels of a large number of genes. Several recent experimental studies, reviewed here, demonstrate the power, limitations and progress of microarray technology in the field of psychostimulant addiction. These studies vary in the paradigms of cocaine or amphetamine administration, drug doses, route and also mode of administration, duration of treatment, animal species, brain regions studied and time of tissue collection after final drug administration. The studies also utilize different microarray platforms and statistical techniques for analysis of differentially expressed genes. These variables influence substantially the results of these studies. It is clear that current microarray techniques cannot detect small changes reliably in gene expression of genes with low expression levels, including functionally significant changes in components of major neurotransmission systems such as glutamate, dopamine, opioid and GABA receptors, especially those that may occur after chronic drug administration or drug withdrawal. However, the microarray studies reviewed here showed cocaine- or amphetamine-induced alterations in the expression of numerous genes involved in the modulation of neuronal growth, cytoskeletal structures, synaptogenesis, signal transduction, apoptosis and cell metabolism. Application of laser capture microdissection and single-cell cDNA amplification may greatly enhance microarray studies of gene expression profiling. The combination of rapidly evolving microarray technology with established methods of neuroscience, molecular biology and genetics, as well as appropriate behavioural models of drug reinforcement, may provide a productive approach for delineating the neurobiological underpinnings of drug responses that lead to

  18. XPB Induces C1D Expression to Counteract UV-Induced Apoptosis

    PubMed Central

    Li, Guang; Liu, Juhong; Abu-Asab, Mones; Masabumi, Shibuya; Maru, Yoshiro

    2010-01-01

    Although C1D has been shown to be involved in DNA double-strand breaks repair, how C1D expression was induced and the mechanism(s) by which C1D facilitates DNA repair in mammalian cells remain poorly understood. We and others have previously shown that expression of XPB protein efficiently compensated the UV-irradiation sensitive phenotype of 27-1 cells which lacks functional XPB. To further explore XPB-regulated genes that could be involved in UV-induced DNA repair, Differential Display analysis of mRNA level from CHO-9, 27-1 and 27-1 complemented with wild-type XPB were performed and C1D gene was identified as one of the major genes whose expression was significantly up-regulated by restoring XPB function. We found that XPB is essential to induce C1D transcription after UV-irradiation. The increase of C1D expression effectively compensates the UV-induced proteolysis of C1D and thus maintains cellular C1D level to cope with DNA damage inflicted by UV-irradiation. We further showed that although insufficient to rescue 27-1 cells from UV-induced apoptosis by itself, C1D facilitates XPB DNA repair through direct interaction with XPB. Our findings provided direct evidence that C1D is associated with DNA repair complex and may promote repair of UV-induced DNA damage. PMID:20530579

  19. [Expression of tobacco SKP1 gene induced by oligochitosan].

    PubMed

    Zhang, Fu-Yun; Feng, Bin; Du, Yu-Guang; Bai, Xue-Fang; Zhang, Yu-Kui

    2005-04-01

    Oligochitosan is an effective inductor for plant resistance. To understand the induced resistance mechanism, mRNA differential display was used to isolate genes from Nicotiana tabacum var. Samsun NN and four enhanced-expression gene fragments were obtained and were reamplified. The reamplified products of appropriate size were isolated and purified before they were subcloned into PMD18-T vector. The results of plasmids digestion by EcoRI and HindIII and analysis of reverse Northern blot indicated that the expression of the four genes was enhanced by oligochitosan induction. Sequence and homology analysis show that they share 82% identity in nucleotide sequence with Nicotiana benthamiana SKP1 gene. Because the SKP1 protein as the core component of SCF (ubiquitin ligase enzyme E3) is relevant to plant resistance to virus, so these results suggested that oligochitosan can induce plant resistance and its mechanism may be relevant to ubiquitination.

  20. Inducible expression of endomorphins in murine dendritic cells.

    PubMed

    Yang, Xiaohuai; Xia, Hui; Chen, Yong; Liu, Xiaofen; Zhou, Cheng; Gao, Qin; Li, Zhenghong

    2012-12-15

    Bone marrow precursor cells were extracted from C57BL/6J mice aged 7-8 weeks, and dendritic cells were purified using anti-CD11c (a specific marker for dendritic cells) antibody-coated magnetic beads. Immunofluorescence staining revealed that the expression levels of endomorphin-1 and endomorphin-2 were upregulated in dendritic cells activated by lipopolysaccharide. An enzyme immunoassay showed that lipopolysaccharide and other Toll-like receptor ligands promoted the secretion of endomorphin-1 and endomorphin-2 from activated dendritic cells. [(3)H]-thymidine incorporation demonstrated that endomorphin-1 and endomorphin-2 both inhibited the proliferation of T lymphocyte induced by activated dendritic cells. Furthermore, this immunosuppressive effect was blocked by CTOP, a specific antagonist of µ-opioid receptors. Our experimental findings indicate that activated dendritic cells can induce the expression and secretion of endomorphins, and that endomorphins suppress T lymphocyte proliferation through activation of µ-opioid receptors.

  1. Facial Expression Recognition: Can Preschoolers with Cochlear Implants and Hearing Aids Catch It?

    ERIC Educational Resources Information Center

    Wang, Yifang; Su, Yanjie; Fang, Ping; Zhou, Qingxia

    2011-01-01

    Tager-Flusberg and Sullivan (2000) presented a cognitive model of theory of mind (ToM), in which they thought ToM included two components--a social-perceptual component and a social-cognitive component. Facial expression recognition (FER) is an ability tapping the social-perceptual component. Previous findings suggested that normal hearing…

  2. Facial Expression Recognition: Can Preschoolers with Cochlear Implants and Hearing Aids Catch It?

    ERIC Educational Resources Information Center

    Wang, Yifang; Su, Yanjie; Fang, Ping; Zhou, Qingxia

    2011-01-01

    Tager-Flusberg and Sullivan (2000) presented a cognitive model of theory of mind (ToM), in which they thought ToM included two components--a social-perceptual component and a social-cognitive component. Facial expression recognition (FER) is an ability tapping the social-perceptual component. Previous findings suggested that normal hearing…

  3. HIV-Tat regulates macrophage gene expression in the context of neuroAIDS

    PubMed Central

    Carvallo, Loreto; Lopez, Lillie; Jaureguiberry-Bravo, Matias; Fiser, Andras; Berman, Joan W.

    2017-01-01

    Despite the success of cART, greater than 50% of HIV infected people develop cognitive and motor deficits termed HIV-associated neurocognitive disorders (HAND). Macrophages are the major cell type infected in the CNS. Unlike for T cells, the virus does not kill macrophages and these long-lived cells may become HIV reservoirs in the brain. They produce cytokines/chemokines and viral proteins that promote inflammation and neuronal damage, playing a key role in HIV neuropathogenesis. HIV Tat is the transactivator of transcription that is essential for replication and transcriptional regulation of the virus and is the first protein to be produced after HIV infection. Even with successful cART, Tat is produced by infected cells. In this study we examined the role of the HIV Tat protein in the regulation of gene expression in human macrophages. Using THP-1 cells, a human monocyte/macrophage cell line, and their infection with lentivirus, we generated stable cell lines that express Tat-Flag. We performed ChIP-seq analysis of these cells and found 66 association sites of Tat in promoter or coding regions. Among these are C5, CRLF2/TSLPR, BDNF, and APBA1/Mint1, genes associated with inflammation/damage. We confirmed the association of Tat with these sequences by ChIP assay and expression of these genes in our THP-1 cell lines by qRT-PCR. We found that HIV Tat increased expression of C5, APBA1, and BDNF, and decreased CRLF2. The K50A Tat-mutation dysregulated expression of these genes without affecting the binding of the Tat complex to their gene sequences. Our data suggest that HIV Tat, produced by macrophage HIV reservoirs in the brain despite successful cART, contributes to neuropathogenesis in HIV-infected people. PMID:28640909

  4. Endothelin-1 induces connective tissue growth factor expression in cardiomyocytes.

    PubMed

    Recchia, Anna Grazia; Filice, Elisabetta; Pellegrino, Daniela; Dobrina, Aldo; Cerra, Maria Carmela; Maggiolini, Marcello

    2009-03-01

    Endothelin (ET)-1 is a vasoconstrictor involved in cardiovascular diseases. Connective tissue growth factor/CCN2 (CTGF) is a fibrotic mediator overexpressed in human atherosclerotic lesions, myocardial infarction, and hypertension. In different cell types CTGF regulates cell proliferation/apoptosis, migration, and extracellular matrix (ECM) accumulation and plays important roles in angiogenesis, chondrogenesis, osteogenesis, tissue repair, cancer and fibrosis. In the present study, we investigated the ET-1 signaling which triggers CTGF expression in cultured adult mouse atrial-muscle HL-1 cells used as a model system. ET-1 activated the CTGF promoter and induced CTGF expression at both mRNA and protein levels. Real-time PCR analysis revealed CTGF induction also in isolated rat heart preparations perfused with ET-1. Several intracellular signals elicited by ET-1 via ET receptors and even Epidermal Growth Factor Receptor (EGFR) contributed to the up-regulation of CTGF, including ERK activation and induction of the AP-1 components c-fos and c-jun, as also evaluated by ChIP analysis. Moreover, in cells treated with ET-1 the expression of ECM component decorin was abolished by CTGF silencing, indicating that CTGF is involved in ET-1 induced ECM accumulation not only in a direct manner but also through downstream effectors. Collectively, our data indicate that CTGF could be a mediator of the profibrotic effects of ET-1 in cardiomyocytes. CTGF inhibitors should be considered in setting a comprehensive pharmacological approach towards ET-1 induced cardiovascular diseases.

  5. Monocytes can be induced to express lymphatic phenotypes.

    PubMed

    Changming, W; Xin, L; Hua, T; Shikun, W; Qiong, X; Zhigeng, Z; Xueying, W

    2011-06-01

    Although it has been recently shown that monocytes can transdifferentiate into blood vascular endothelial cells which are involved in angiogenesis, little attention has been paid to their potential to transdifferentiate into lymphatic endothelial cells. Therefore, we examined this question in our study. We first stimulated monocytes with either fibronectin (FN), VEGF-C, TNF-alpha, LPS, or IL-3 for 24h. Then we examined the expression of several markers of lymphatic endothelium and found that the monocytes expressed specific lymphatic endothelial markers, LYVE-1, Podoplanin, and Prox-1, but not common endothelial markers vWF or eNOS. Next, monocytes were incubated in endothelial growth medium with FN and VEGF-C for 6d. These monocytes were also found to express LYVE-1, Podoplanin and Prox-1, but not vWF or eNOS. Our results indicate that monocytes in vitro can be easily induced to present lymphatic phenotypes in an inflammatory environment.

  6. Inducible expression of trehalose synthase in Bacillus licheniformis.

    PubMed

    Li, Youran; Gu, Zhenghua; Zhang, Liang; Ding, Zhongyang; Shi, Guiyang

    2017-02-01

    Trehalose synthase (TreS) could transform maltose into trehalose via isomerization. It is a crucial enzyme in the process of trehalose enzymatical transformation. In this study, plasmid-based inducible expression systems were constructed to produce Thermomonospora curvata TreS in B. licheniformis. Xylose operons from B. subtilis, B. licheniformis and B. megaterium were introduced to regulate the expression of the gene encoding TreS. It was functionally expressed, and the BlsTs construct yielded the highest enzyme activity (12.1 U/mL). Furthermore, the effect of different cultural conditions on the inducible expression of BlsTs was investigated, and the optimal condition was as follows: 4% maltodextrin, 0.4% soybean powder, 1% xylose added after 10 h of growth and an induction time of 12 h at 37 °C. As a result, the maximal yield reached 24.7 U/mL. This study contributes to the industrial application of B. licheniformis, a GRAS workhorse for enzyme production. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Expression of Hyaluronidase by Tumor Cells Induces Angiogenesis in vivo

    NASA Astrophysics Data System (ADS)

    Liu, Dacai; Pearlman, Eric; Diaconu, Eugenia; Guo, Kun; Mori, Hiroshi; Haqqi, Tariq; Markowitz, Sanford; Willson, James; Sy, Man-Sun

    1996-07-01

    Hyaluronic acid is a proteoglycan present in the extracellular matrix and is important for the maintenance of tissue architecture. Depolymerization of hyaluronic acid may facilitate tumor invasion. In addition, oligosaccharides of hyaluronic acid have been reported to induce angiogenesis. We report here that a hyaluronidase similar to the one on human sperm is expressed by metastatic human melanoma, colon carcinoma, and glioblastoma cell lines and by tumor biopsies from patients with colorectal carcinomas, but not by tissues from normal colon. Moreover, angiogenesis is induced by hyaluronidase+ tumor cells but not hyaluronidase- tumor cells and can be blocked by an inhibitor of hyaluronidase. Tumor cells thus use hyaluronidase as one of the ``molecular saboteurs'' to depolymerize hyaluronic acid to facilitate invasion. As a consequence, breakdown products of hyaluronic acid can further promote tumor establishment by inducing angiogenesis. Hyaluronidase on tumor cells may provide a target for anti-neoplastic drugs.

  8. Expression of hyaluronidase by tumor cells induces angiogenesis in vivo.

    PubMed Central

    Liu, D; Pearlman, E; Diaconu, E; Guo, K; Mori, H; Haqqi, T; Markowitz, S; Willson, J; Sy, M S

    1996-01-01

    Hyaluronic acid is a proteoglycan present in the extracellular matrix and is important for the maintenance of tissue architecture. Depolymerization of hyaluronic acid may facilitate tumor invasion. In addition, oligosaccharides of hyaluronic acid have been reported to induce angiogenesis. We report here that a hyaluronidase similar to the one on human sperm is expressed by metastatic human melanoma, colon carcinoma, and glioblastoma cell lines and by tumor biopsies from patients with colorectal carcinomas, but not by tissues from normal colon. Moreover, angiogenesis is induced by hyaluronidase+ tumor cells but not hyaluronidase- tumor cells and can be blocked by an inhibitor of hyaluronidase. Tumor cells thus use hyaluronidase as one of the "molecular saboteurs" to depolymerize hyaluronic acid to facilitate invasion. As a consequence, breakdown products of hyaluronic acid can further promote tumor establishment by inducing angiogenesis. Hyaluronidase on tumor cells may provide a target for anti-neoplastic drugs. Images Fig. 1 Fig. 2 Fig. 3 PMID:8755562

  9. Integrated genome-wide analysis of expression quantitative trait loci aids interpretation of genomic association studies.

    PubMed

    Joehanes, Roby; Zhang, Xiaoling; Huan, Tianxiao; Yao, Chen; Ying, Sai-Xia; Nguyen, Quang Tri; Demirkale, Cumhur Yusuf; Feolo, Michael L; Sharopova, Nataliya R; Sturcke, Anne; Schäffer, Alejandro A; Heard-Costa, Nancy; Chen, Han; Liu, Po-Ching; Wang, Richard; Woodhouse, Kimberly A; Tanriverdi, Kahraman; Freedman, Jane E; Raghavachari, Nalini; Dupuis, Josée; Johnson, Andrew D; O'Donnell, Christopher J; Levy, Daniel; Munson, Peter J

    2017-01-25

    Identification of single nucleotide polymorphisms (SNPs) associated with gene expression levels, known as expression quantitative trait loci (eQTLs), may improve understanding of the functional role of phenotype-associated SNPs in genome-wide association studies (GWAS). The small sample sizes of some previous eQTL studies have limited their statistical power. We conducted an eQTL investigation of microarray-based gene and exon expression levels in whole blood in a cohort of 5257 individuals, exceeding the single cohort size of previous studies by more than a factor of 2. We detected over 19,000 independent lead cis-eQTLs and over 6000 independent lead trans-eQTLs, targeting over 10,000 gene targets (eGenes), with a false discovery rate (FDR) < 5%. Of previously published significant GWAS SNPs, 48% are identified to be significant eQTLs in our study. Some trans-eQTLs point toward novel mechanistic explanations for the association of the SNP with the GWAS-related phenotype. We also identify 59 distinct blocks or clusters of trans-eQTLs, each targeting the expression of sets of six to 229 distinct trans-eGenes. Ten of these sets of target genes are significantly enriched for microRNA targets (FDR < 5%). Many of these clusters are associated in GWAS with multiple phenotypes. These findings provide insights into the molecular regulatory patterns involved in human physiology and pathophysiology. We illustrate the value of our eQTL database in the context of a recent GWAS meta-analysis of coronary artery disease and provide a list of targeted eGenes for 21 of 58 GWAS loci.

  10. Hypergravity-induced changes in gene expression in Arabidopsis hypocotyls

    NASA Astrophysics Data System (ADS)

    Yoshioka, R.; Soga, K.; Wakabayashi, K.; Takeba, G.; Hoson, T.

    2003-05-01

    Under hypergravity conditions, the cell wall of stem organs becomes mechanically rigid and elongation growth is suppressed, which can be recognized as the mechanism for plants to resist gravitational force. The changes in gene expression by hypergravity treatment were analyzed in Arabidopsis hypocotyls by the differential display method, for identifying genes involved in hypergravity-induced growth suppression. Sixty-two cDNA clones were expressed differentially between the control and 300 g conditions: the expression levels of 39 clones increased, whereas those of 23 clones decreased under hypergravity conditions. Sequence analysis and database searching revealed that 12 clones, 9 up-regulated and 3 down-regulated, have homology to known proteins. The expression of these genes was further analyzed using RT-PCR. Finally, six genes were confirmed to be up-regulated by hypergravity. One of such genes encoded 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor ofterpenoids such as membrane sterols and several types of hormones. The expression of HMGR gene increased within several hours after hypergravity treatment. Also, compactin, an inhibitor of HMGR, prevented hypergravity-induced growth suppression, suggesting that HMGR is involved in suppression of Arabidopsis hypocotyl growth by hypergravity. In addition, hypergravity increased the expression levels of genes encoding CCR1 and ERD15, which were shown to take part in the signaling pathway of environmental stimuli such as temperature and water, and those of the α-tubulin gene. These genes may be involved in a series of cellular events leading to growth suppression of stem organs under hypergravity conditions.

  11. Calcium oxalate calculi-induced clusterin expression in kidney.

    PubMed

    Li, Jin-Yi; Liu, Junjiang; Jiang, Junyi; Pumill, Chris; Elaiho, Cordelia; Zhang, Yunxia; Li, Shoubin; Zhou, Tie

    2015-10-01

    The aim of the study was to investigate clusterin expression in the kidney and evaluate the urine clusterin level in the kidney stone formers. (1) In vitro, we treated the Madin-Darby canine kidney (MDCK) cell line with different concentrations of calcium oxalate (CaOx), and then the clusterin protein expression in the cells was evaluated by Western blotting. (2) Kidney stone patients who received percutaneous nephrolithotomy were enrolled in our study. Urine samples were collected before surgery, the kidney punctured to obtain kidney tissue guided by ultrasound intraoperatively. Clusterin expression in the human kidney tissue was evaluated by immunochemistry. The urine clusterin level was determined by enzyme-linked immunosorbent assay. Non-kidney disease subjects were chosen as controls. In vitro, the clusterin expression was up-regulated in the MDCK cells induced by CaOx. The study included 49 patients and 41 non-kidney disease subjects. All calculi were composed of calcium oxalate monohydrate or calcium oxalate dihydrate and a few also contained protein or uric acid. Mean ± SD urine clusterin level was 17.47 ± 18.61 μg/ml in patients, and 3.31 ± 5.42 μg/ml in non-kidney disease subjects, respectively (p < 0.001). Immunohistochemistry revealed the clusterin was located in the cytoplasm of the renal distal and collecting tubular epithelial cells. Also the tissue clusterin expression increased significantly in the kidney stone formers compared to the control groups (p = 0.001). CaOx could induce clusterin expression in renal tubular cells, and increase clusterin levels in the kidney and urine from the kidney stone formers.

  12. Hearing Aid-Induced Plasticity in the Auditory System of Older Adults: Evidence from Speech Perception

    ERIC Educational Resources Information Center

    Lavie, Limor; Banai, Karen; Karni, Avi; Attias, Joseph

    2015-01-01

    Purpose: We tested whether using hearing aids can improve unaided performance in speech perception tasks in older adults with hearing impairment. Method: Unaided performance was evaluated in dichotic listening and speech-­in-­noise tests in 47 older adults with hearing impairment; 36 participants in 3 study groups were tested before hearing aid…

  13. Hearing Aid-Induced Plasticity in the Auditory System of Older Adults: Evidence from Speech Perception

    ERIC Educational Resources Information Center

    Lavie, Limor; Banai, Karen; Karni, Avi; Attias, Joseph

    2015-01-01

    Purpose: We tested whether using hearing aids can improve unaided performance in speech perception tasks in older adults with hearing impairment. Method: Unaided performance was evaluated in dichotic listening and speech-­in-­noise tests in 47 older adults with hearing impairment; 36 participants in 3 study groups were tested before hearing aid…

  14. Gemcitabine-induced CXCL8 expression counteracts its actions by inducing tumor neovascularization

    SciTech Connect

    Song, Yao; Baba, Tomohisa; Li, Ying-Yi; Furukawa, Kaoru; Tanabe, Yamato; Matsugo, Seiichi; Sasaki, Soichiro; Mukaida, Naofumi

    2015-03-06

    Patients with pancreatic ductal adenocarcinoma (PDAC) are frequently complicated with metastatic disease or locally advanced tumors, and consequently need chemotherapy. Gemcitabine is commonly used for PDAC treatment, but with limited efficacy. The capacity of gemcitabine to generate reactive oxygen species (ROS) in human pancreatic cancer cells, prompted us to examine its effects on the expression of pro-inflammatory cytokines and chemokines. We observed that gemcitabine enhanced selectively the expression of CXCL8 in human pancreatic cancer cells through ROS generation and NF-κB activation. In vitro blocking of CXCL8 failed to modulate gemcitabine-mediated inhibition of cell proliferation in human pancreatic cancer cells. Gemcitabine also enhanced CXCL8 expression in pancreatic cancer cells in xenografted tumor tissues. Moreover, anti-CXCL8 antibody treatment in vivo attenuated tumor formation as well as intra-tumoral vascularity in nude mice, which were transplanted with Miapaca-2 cells and treated with gemcitabine. Thus, gemcitabine-induced CXCL8 may counteract the drug through inducing neovascularization. - Highlights: • Gemcitabine induced CXCL8 expression in human pancreatic cancer cells. • CXCL8 expression required ROS generation and NF-κB activation. • CXCL8 did not affect in vitro proliferation of human pancreatic cancer cells. • CXCL8 in vivo counteracted gemcitabine by inducing neovascularization.

  15. Induction of fibroblast apolipoprotein E expression during apoptosis, starvation-induced growth arrest and mitosis.

    PubMed Central

    Quinn, Carmel M; Kågedal, Katarina; Terman, Alexei; Stroikin, Uri; Brunk, Ulf T; Jessup, Wendy; Garner, Brett

    2004-01-01

    Apolipoprotein E (apoE) mediates the hepatic clearance of plasma lipoproteins, facilitates cholesterol efflux from macrophages and aids neuronal lipid transport. ApoE is expressed at high levels in hepatocytes, macrophages and astrocytes. In the present study, we identify nuclear and cytosolic pools of apoE in human fibroblasts. Fibroblast apoE mRNA and protein levels were up-regulated during staurosporine-induced apoptosis and this was correlated with increased caspase-3 activity and apoptotic morphological alterations. Because the transcription of apoE and specific pro-apoptotic genes is regulated by the nuclear receptor LXR (liver X receptor) alpha, we analysed LXRalpha mRNA expression by quantitative real-time PCR and found it to be increased before apoE mRNA induction. The expression of ABCA1 (ATP-binding cassette transporter A1) mRNA, which is also regulated by LXRalpha, was increased in parallel with apoE mRNA, indicating that LXRalpha probably promotes apoE and ABCA1 transcription during apoptosis. Fibroblast apoE levels were increased under conditions of serum-starvation-induced growth arrest and hyperoxia-induced senescence. In both cases, an increased nuclear apoE level was observed, particularly in cells that accumulated lipofuscin. Nuclear apoE was translocated to the cytosol when mitotic nuclear disassembly occurred and this was associated with an increase in total cellular apoE levels. ApoE amino acid sequence analysis indicated several potential sites for phosphorylation. In vivo studies, using 32P-labelling and immunoprecipitation, revealed that fibroblast apoE can be phosphorylated. These studies reveal novel associations and potential roles for apoE in fundamental cellular processes. PMID:14656220

  16. Characterization of Chemically Induced Liver Injuries Using Gene Co-Expression Modules

    PubMed Central

    Tawa, Gregory J.; AbdulHameed, Mohamed Diwan M.; Yu, Xueping; Kumar, Kamal; Ippolito, Danielle L.; Lewis, John A.; Stallings, Jonathan D.; Wallqvist, Anders

    2014-01-01

    Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard to assess due to a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific damage and clinical outcomes via biomarkers or biomarker panels will provide the foundation for highly specific and robust diagnostic tests. Here, we have used DrugMatrix, a toxicogenomics database containing organ-specific gene expression data matched to dose-dependent chemical exposures and adverse clinical pathology assessments in Sprague Dawley rats, to identify groups of co-expressed genes (modules) specific to injury endpoints in the liver. We identified 78 such gene co-expression modules associated with 25 diverse injury endpoints categorized from clinical pathology, organ weight changes, and histopathology. Using gene expression data associated with an injury condition, we showed that these modules exhibited different patterns of activation characteristic of each injury. We further showed that specific module genes mapped to 1) known biochemical pathways associated with liver injuries and 2) clinically used diagnostic tests for liver fibrosis. As such, the gene modules have characteristics of both generalized and specific toxic response pathways. Using these results, we proposed three gene signature sets characteristic of liver fibrosis, steatosis, and general liver injury based on genes from the co-expression modules. Out of all 92 identified genes, 18 (20%) genes have well-documented relationships with liver disease, whereas the rest are novel and have not previously been associated with liver disease. In conclusion, identifying gene co-expression modules associated with chemically induced liver injuries aids in generating testable hypotheses and has the potential to identify putative biomarkers of adverse health effects. PMID:25226513

  17. Therapeutic DNA Vaccine Induces Broad T Cell Responses in the Gut and Sustained Protection from Viral Rebound and AIDS in SIV-Infected Rhesus Macaques

    PubMed Central

    Fuller, Deborah Heydenburg; Rajakumar, Premeela; Che, Jenny W.; Narendran, Amithi; Nyaundi, Julia; Michael, Heather; Yager, Eric J.; Stagnar, Cristy; Wahlberg, Brendon; Taber, Rachel; Haynes, Joel R.; Cook, Fiona C.; Ertl, Peter; Tite, John; Amedee, Angela M.; Murphey-Corb, Michael

    2012-01-01

    Immunotherapies that induce durable immune control of chronic HIV infection may eliminate the need for life-long dependence on drugs. We investigated a DNA vaccine formulated with a novel genetic adjuvant that stimulates immune responses in the blood and gut for the ability to improve therapy in rhesus macaques chronically infected with SIV. Using the SIV-macaque model for AIDS, we show that epidermal co-delivery of plasmids expressing SIV Gag, RT, Nef and Env, and the mucosal adjuvant, heat-labile E. coli enterotoxin (LT), during antiretroviral therapy (ART) induced a substantial 2–4-log fold reduction in mean virus burden in both the gut and blood when compared to unvaccinated controls and provided durable protection from viral rebound and disease progression after the drug was discontinued. This effect was associated with significant increases in IFN-γ T cell responses in both the blood and gut and SIV-specific CD8+ T cells with dual TNF-α and cytolytic effector functions in the blood. Importantly, a broader specificity in the T cell response seen in the gut, but not the blood, significantly correlated with a reduction in virus production in mucosal tissues and a lower virus burden in plasma. We conclude that immunizing with vaccines that induce immune responses in mucosal gut tissue could reduce residual viral reservoirs during drug therapy and improve long-term treatment of HIV infection in humans. PMID:22442716

  18. SIVQ-aided laser capture microdissection: A tool for high-throughput expression profiling

    PubMed Central

    Hipp, Jason; Cheng, Jerome; Hanson, Jeffrey C.; Yan, Wusheng; Taylor, Phil; Hu, Nan; Rodriguez-Canales, Jaime; Hipp, Jennifer; Tangrea, Michael A.; Emmert-Buck, Michael R.; Balis, Ulysses

    2011-01-01

    Introduction: Laser capture microdissection (LCM) facilitates procurement of defined cell populations for study in the context of histopathology. The morphologic assessment step in the LCM procedure is time consuming and tedious, thus restricting the utility of the technology for large applications. Results: Here, we describe the use of Spatially Invariant Vector Quantization (SIVQ) for histological analysis and LCM. Using SIVQ, we selected vectors as morphologic predicates that were representative of normal epithelial or cancer cells and then searched for phenotypically similar cells across entire tissue sections. The selected cells were subsequently auto-microdissected and the recovered RNA was analyzed by expression microarray. Gene expression profiles from SIVQ–LCM and standard LCM–derived samples demonstrated highly congruous signatures, confirming the equivalence of the differing microdissection methods. Conclusion: SIVQ–LCM improves the work-flow of microdissection in two significant ways. First, the process is transformative in that it shifts the pathologist's role from technical execution of the entire microdissection to a limited-contact supervisory role, enabling large-scale extraction of tissue by expediting subsequent semi-autonomous identification of target cell populations. Second, this work-flow model provides an opportunity to systematically identify highly constrained cell populations and morphologically consistent regions within tissue sections. Integrating SIVQ with LCM in a single environment provides advanced capabilities for efficient and high-throughput histological-based molecular studies. PMID:21572509

  19. Resistance of cell lines to prion toxicity aided by phospho-ERK expression.

    PubMed

    Uppington, Kay M; Brown, David R

    2008-05-01

    Prion diseases are fatal neurodegenerative disorders. They are characterised by neuronal loss and the accumulation of an abnormal protein in the CNS. Cell lines exist that express the toxic form of the prion protein (PrP) with little evidence of cell death. Other cell based models studying the mechanism by which cell death occurs employ exogenous application of peptides or fragments of PrP. In this study, we demonstrated that full-length recombinant PrP binding manganese was toxic to PrP-expressing cell lines and primary neuronal cultures but not to PrP-knockout neurones. This toxic form of PrP was also toxic to cell lines equivalently regardless of whether they were infected with scrapie or not. Both scrapie-infected cells and cells resistant to the toxicity of PrP showed increased levels of phosphorylated ERK protein. Scrapie-infected cells also showed elevated levels of caspase 12. Inhibition of phospho-ERK resulted in increased cell death suggesting the increased levels of phospho-ERK served a protective effect. These results suggest that scrapie-infected cell lines resist the toxicity of the prions they generate because they produce only low levels of abnormal protein and have increased resistance to apoptotic signs because of heightened activity of the MAP kinase pathway.

  20. Low doses of neutrons induce changes in gene expression

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, C.M.; Panozzo, J.; Libertin, C.R.

    1993-06-01

    Studies were designed to identify genes induced following low-dose neutron but not following {gamma}-ray exposure in fibroblasts. Our past work had shown differences in the expression of {beta}-protein kinase C and c-fos genes, both being induced following {gamma}-ray but not neutron exposure. We have identified two genes that are induced following neutron, but not {gamma}-ray, exposure: Rp-8 (a gene induced by apoptosis) and the long terminal repeat (LTR) of the human immunodeficiency (HIV). Rp-8 mRNA induction was demonstrated in Syrian hamster embryo fibroblasts and was found to be induced in cells exposed to neutrons administered at low (0.5 cGy/min) and at high dose rate (12 cGy/min). The induction of transcription from the LTR of HIV was demonstrated in HeLa cells bearing a transfected construct of the chloramphenicol acetyl transferase (CAT) gene driven by the HIV-LTR promoter. Measures of CAT activity and CAT transcripts following irradiation demonstrated an unresponsiveness to {gamma} rays over a broad range of doses. Twofold induction of the HIV-LTR was detected following neutron exposure (48 cGy) administered at low (0.5 cGy/min) but not high (12 cGy/min) dose rates. Ultraviolet-mediated HIV-LTR induction was inhibited by low-dose-rate neutron exposure.

  1. Low doses of neutrons induce changes in gene expression

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, C.M. ); Panozzo, J.; Libertin, C.R. )

    1993-01-01

    Studies were designed to identify genes induced following low-dose neutron but not following [gamma]-ray exposure in fibroblasts. Our past work had shown differences in the expression of [beta]-protein kinase C and c-fos genes, both being induced following [gamma]-ray but not neutron exposure. We have identified two genes that are induced following neutron, but not [gamma]-ray, exposure: Rp-8 (a gene induced by apoptosis) and the long terminal repeat (LTR) of the human immunodeficiency (HIV). Rp-8 mRNA induction was demonstrated in Syrian hamster embryo fibroblasts and was found to be induced in cells exposed to neutrons administered at low (0.5 cGy/min) and at high dose rate (12 cGy/min). The induction of transcription from the LTR of HIV was demonstrated in HeLa cells bearing a transfected construct of the chloramphenicol acetyl transferase (CAT) gene driven by the HIV-LTR promoter. Measures of CAT activity and CAT transcripts following irradiation demonstrated an unresponsiveness to [gamma] rays over a broad range of doses. Twofold induction of the HIV-LTR was detected following neutron exposure (48 cGy) administered at low (0.5 cGy/min) but not high (12 cGy/min) dose rates. Ultraviolet-mediated HIV-LTR induction was inhibited by low-dose-rate neutron exposure.

  2. EGR-1 regulates Ho-1 expression induced by cigarette smoke

    SciTech Connect

    Chen, Huaqun; Wang, Lijuan; Gong, Tao; Yu, Yang; Zhu, Chunhua; Li, Fen; Wang, Li; Li, Chaojun

    2010-05-28

    As an anti-oxidant molecule, heme oxygenase-1 (HO-1) has been implicated in the protection of lung injury by cigarette smoke (CS). The mechanisms regulating its expression have not been defined. In this report, the role of early growth response 1 (EGR-1) in the regulation of Ho-1 expression was investigated. In C57BL/6 mice with CS exposure, HO-1 was greatly increased in bronchial epithelial cells and alveolar inflammatory cells. In primary cultured mouse lung fibroblasts and RAW264.7 cells exposed to cigarette smoke water extract (CSE), an increase in HO-1 protein level was detected. In addition, CSE induced HO-1 expression was decreased in Egr-1 deficient mouse embryo fibroblasts (Egr-1{sup -/-} MEFs). Nuclear localization of EGR-1 was examined in mouse lung fibroblasts after exposure to CSE. Luciferase reporter activity assays showed that the enhancer region of the Ho-1 gene containing a proposed EGR-1 binding site was responsible for the induction of HO-1. A higher increase of alveolar mean linear intercept (Lm) was observed in lung tissues, and a larger increase in the number of total cells and monocytes/macrophages from bronchial alveolar lavage fluid was found in CS-exposed mice by loss of function of EGR-1 treatment. In summary, the present data demonstrate that EGR-1 plays a critical role in HO-1 production induced by CS.

  3. Lipopolysaccharide induces autotaxin expression in human monocytic THP-1 cells

    SciTech Connect

    Li Song; Zhang Junjie

    2009-01-09

    Autotaxin (ATX) is a secreted enzyme with lysophospholipase D (lysoPLD) activity, which converts lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA), a bioactive phospholipid involved in numerous biological activities, including cell proliferation, differentiation, and migration. In the present study, we found that bacterial lipopolysaccharide (LPS), a well-known initiator of the inflammatory response, induced ATX expression in monocytic THP-1 cells. The activation of PKR, JNK, and p38 MAPK was required for the ATX induction. The LPS-induced ATX in THP-1 cells was characterized as the {beta} isoform. In the presence of LPC, ATX could promote the migrations of THP-1 and Jurkat cells, which was inhibited by pertussis toxin (PTX), an inhibitor of Gi-mediated LPA receptor signaling. In summary, LPS induces ATX expression in THP-1 cells via a PKR, JNK and p38 MAPK-mediated mechanism, and the ATX induction is likely to enhance immune cell migration in proinflammatory response by regulating LPA levels in the microenvironment.

  4. Stem Cell-Induced Biobridges as Possible Tools to Aid Neuroreconstruction after CNS Injury

    PubMed Central

    Lee, Jea Y.; Xu, Kaya; Nguyen, Hung; Guedes, Vivian A.; Borlongan, Cesar V.; Acosta, Sandra A.

    2017-01-01

    Notch-induced mesenchymal stromal cells (MSCs) mediate a distinct mechanism of repair after brain injury by forming a biobridge that facilitates biodistribution of host cells from a neurogenic niche to the area of injury. We have observed the biobridge in an area between the subventricular zone and the injured cortex using immunohistochemistry and laser capture. Cells in the biobridge express high levels of extracellular matrix metalloproteinases (MMPs), specifically MMP-9, which co-localized with a trail of MSCs graft. The transplanted stem cells then become almost undetectable, being replaced by newly recruited host cells. This stem cell-paved biobridge provides support for distal migration of host cells from the subventricular zone to the site of injury. Biobridge formation by transplanted stem cells seems to have a fundamental role in initiating endogenous repair processes. Two major stem cell-mediated repair mechanisms have been proposed thus far: direct cell replacement by transplanted grafts and bystander effects through the secretion of trophic factors including fibroblast growth factor 2 (FGF-2), epidermal growth factor (EGF), stem cell factor (SCF), erythropoietin, and brain-derived neurotrophic factor (BDNF) among others. This groundbreaking observation of biobridge formation by transplanted stem cells represents a novel mechanism for stem cell mediated brain repair. Future studies on graft-host interaction will likely establish biobridge formation as a fundamental mechanism underlying therapeutic effects of stem cells and contribute to the scientific pursuit of developing safe and efficient therapies not only for traumatic brain injury but also for other neurological disorders. The aim of this review is to hypothetically extend concepts related to the formation of biobridges in other central nervous system disorders. PMID:28540289

  5. Insight into HIV of IFN-Induced Myxovirus Resistance 2 (MX2) Expressed by Traditional Chinese Medicine

    PubMed Central

    Hung, Tzu-Chieh; Lee, Wen-Yuan; Chen, Kuen-Bao; Chan, Yueh-Chiu

    2014-01-01

    Recently, an important topic of the acquired immunodeficiency syndrome (AIDS) had been published in 2013. In this report, the expression of the IFN-induced myxovirus resistance 2 (MX2) had been defined the function to kill the human immunodeficiency virus (HIV). The screening from the Traditional Chinese Medicine (TCM) database by simulating molecular docking and molecular dynamics could select candidate compounds, which may express MX2 against HIV. Saussureamine C, Crotalaburnine, and Precatorine are selected based on the highest docking score and other TCM compounds. The data from molecular dynamics are helpful in the analysis and detection of protein-ligand interactions. According to the docking poses, hydrophobic interactions, and hydrogen bond with structure variations, this research could assess the interaction between protein and ligand interaction. In addition to the detection of TCM compound efficacy, we suggest that Saussureamine C is better than the others in protein-ligand interaction and the structural variation to express MX2. PMID:25045710

  6. Insight into HIV of IFN-induced myxovirus resistance 2 (MX2) expressed by traditional Chinese medicine.

    PubMed

    Hung, Tzu-Chieh; Lee, Wen-Yuan; Chen, Kuen-Bao; Chan, Yueh-Chiu; Chen, Calvin Yu-Chian

    2014-01-01

    Recently, an important topic of the acquired immunodeficiency syndrome (AIDS) had been published in 2013. In this report, the expression of the IFN-induced myxovirus resistance 2 (MX2) had been defined the function to kill the human immunodeficiency virus (HIV). The screening from the Traditional Chinese Medicine (TCM) database by simulating molecular docking and molecular dynamics could select candidate compounds, which may express MX2 against HIV. Saussureamine C, Crotalaburnine, and Precatorine are selected based on the highest docking score and other TCM compounds. The data from molecular dynamics are helpful in the analysis and detection of protein-ligand interactions. According to the docking poses, hydrophobic interactions, and hydrogen bond with structure variations, this research could assess the interaction between protein and ligand interaction. In addition to the detection of TCM compound efficacy, we suggest that Saussureamine C is better than the others in protein-ligand interaction and the structural variation to express MX2.

  7. Granular parakeratosis induced by benzalkonium chloride exposure from laundry rinse aids.

    PubMed

    Robinson, Aaron J; Foster, Rachael S; Halbert, Anne R; King, Emma; Orchard, David

    2016-09-19

    Benzalkonium chloride is a quaternary ammonium cationic detergent present in a number of household products, which can act as a major skin irritant. We present the case of six children who developed granular parakeratosis after exposure to benzalkonium chloride in laundry rinse aids, presenting as a brightly erythematous, tender but minimally pruritic, intertriginous eruption followed by superficial desquamation. The eruptions resolved over 3-4 weeks after cessation of exposure.

  8. B cell Rab7 mediates induction of activation-induced cytidine deaminase expression and class-switching in T-dependent and T-independent antibody responses.

    PubMed

    Pone, Egest J; Lam, Tonika; Lou, Zheng; Wang, Rui; Chen, Yuhui; Liu, Dongfang; Edinger, Aimee L; Xu, Zhenming; Casali, Paolo

    2015-04-01

    Class switch DNA recombination (CSR) is central to the maturation of the Ab response because it diversifies Ab effector functions. Like somatic hypermutation, CSR requires activation-induced cytidine deaminase (AID), whose expression is restricted to B cells, as induced by CD40 engagement or dual TLR-BCR engagement (primary CSR-inducing stimuli). By constructing conditional knockout Igh(+/C)γ(1-cre)Rab7(fl/fl) mice, we identified a B cell-intrinsic role for Rab7, a small GTPase involved in intracellular membrane functions, in mediating AID induction and CSR. Igh(+/C)γ(1-cre)Rab7(fl/fl) mice displayed normal B and T cell development and were deficient in Rab7 only in B cells undergoing Igh(C)γ(1-cre) Iγ1-Sγ1-Cγ1-cre transcription, as induced--like Igh germline Iγ1-Sγ1-Cγ1 and Iε-Sε-Cε transcription--by IL-4 in conjunction with a primary CSR-inducing stimulus. These mice could not mount T-independent or T-dependent class-switched IgG1 or IgE responses while maintaining normal IgM levels. Igh(+/C)γ(1-cre)Rab7(fl/fl) B cells showed, in vivo and in vitro, normal proliferation and survival, normal Blimp-1 expression and plasma cell differentiation, as well as intact activation of the noncanonical NF-κB, p38 kinase, and ERK1/2 kinase pathways. They, however, were defective in AID expression and CSR in vivo and in vitro, as induced by CD40 engagement or dual TLR1/2-, TLR4-, TLR7-, or TLR9-BCR engagement. In Igh(+/C)γ(1-cre)Rab7(fl/fl) B cells, CSR was rescued by enforced AID expression. These findings, together with our demonstration that Rab7-mediated canonical NF-κB activation, as critical to AID induction, outline a novel role of Rab7 in signaling pathways that lead to AID expression and CSR, likely by promoting assembly of signaling complexes along intracellular membranes.

  9. An Expression Signature as an Aid to the Histologic Classification of Non-Small Cell Lung Cancer.

    PubMed

    Girard, Luc; Rodriguez-Canales, Jaime; Behrens, Carmen; Thompson, Debrah M; Botros, Ihab W; Tang, Hao; Xie, Yang; Rekhtman, Natasha; Travis, William D; Wistuba, Ignacio I; Minna, John D; Gazdar, Adi F

    2016-10-01

    Most non-small cell lung cancers (NSCLC) are now diagnosed from small specimens, and classification using standard pathology methods can be difficult. This is of clinical relevance as many therapy regimens and clinical trials are histology dependent. The purpose of this study was to develop an mRNA expression signature as an adjunct test for routine histopathologic classification of NSCLCs. A microarray dataset of resected adenocarcinomas (ADC) and squamous cell carcinomas (SCC) was used as the learning set for an ADC-SCC signature. The Cancer Genome Atlas (TCGA) lung RNAseq dataset was used for validation. Another microarray dataset of ADCs and matched nonmalignant lung was used as the learning set for a tumor versus nonmalignant signature. The classifiers were selected as the most differentially expressed genes and sample classification was determined by a nearest distance approach. We developed a 62-gene expression signature that contained many genes used in immunostains for NSCLC typing. It includes 42 genes that distinguish ADC from SCC and 20 genes differentiating nonmalignant lung from lung cancer. Testing of the TCGA and other public datasets resulted in high prediction accuracies (93%-95%). In addition, a prediction score was derived that correlates both with histologic grading and prognosis. We developed a practical version of the Classifier using the HTG EdgeSeq nuclease protection-based technology in combination with next-generation sequencing that can be applied to formalin-fixed paraffin-embedded (FFPE) tissues and small biopsies. Our RNA classifier provides an objective, quantitative method to aid in the pathologic diagnosis of lung cancer. Clin Cancer Res; 22(19); 4880-9. ©2016 AACR. ©2016 American Association for Cancer Research.

  10. Cross-contamination with tamoxifen induces transgene expression in non-exposed inducible transgenic mice.

    PubMed

    Brake, Rachael L; Simmons, Paul J; Begley, C Glenn

    2004-12-30

    Inducible transgenic mouse models that impose a constraint on both temporal and spatial expression of a given transgene are invaluable. These animals facilitate experiments that can address the role of a specific cell or group of cells within an animal or in a particular window of time. A common approach to achieve inducibility involves the site-specific recombinase 'Cre', which is linked to a modified version of one of various steroid hormone-binding domains. Thus, the expression of Cre is regulated such that a functional nuclear transgene product can only be generated with the addition of an exogenous ligand. However, critical requirements of this system are that the nuclear localization of the transgene product be tightly regulated, that the dosage of the inducing agent remains consistent among experimental animals and that the transgene cassette cannot express in the absence of the inducing agent. We used the Cre ER(T2) cassette, which is regulated by the addition of the estrogen antagonist tamoxifen to determine whether cross-contamination of tamoxifen between animals housed together can be a significant source of spurious results. We found that cross-contamination of exogenous tamoxifen does occur. It occurred in all animals tested. We suggest that the mechanism of contamination is through exposure to tamoxifen in the general environment and/or to coprophagous behavior. These results have important implications for the interpretation and design of experiments that use 'inducible' transgenic animals.

  11. Development of an anhydrotetracycline-inducible expression system for expression of a neopullulanase in B. subtilis.

    PubMed

    Heravi, Kambiz Morabbi; Watzlawick, Hildegard; Altenbuchner, Josef

    2015-11-01

    Bacillus subtilis is a widely used bacterium for production of heterologous and homologous proteins. The primary challenge in the production of proteins in B. subtilis is choosing a relevant expression system. In this study, we developed a robust expression system based on optimized PtetR of transposon Tn1721, which is repressible by its specific repressor, TetR. The first step of this work was focused on the optimization of structure and core elements of Tn1721 anhydrotetracycline-inducible promoters, PtetA and PtetR. Both promoters were inserted upstream of eGFP on a pUB110-derivative with high copy number. Reduction of the 18 bp spacer region of both PtetA and PtetR to 17 bp significantly increased their strength in B. subtilis. Nevertheless, only the optimized PtetR with 17 bp spacer region (PtetR2) directed high level of eGFP expression. In the second step, regulation of the system was optimized by testing the expression of tetR using well-known promoters, such as PmtlA, PmtlR, PptsG and PpenP. Expression of tetR by PptsG resulted in a tight regulation of PtetR2-eGFP showing 44-fold induction. By using the final expression plasmid in B. subtilis, neopullulanase was produced up to 15% of the total soluble protein. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Brain CB₁ receptor expression following lipopolysaccharide-induced inflammation.

    PubMed

    Hu, H; Ho, W; Mackie, K; Pittman, Q J; Sharkey, K A

    2012-12-27

    Cannabinoid 1 receptors (CB(1)) are highly expressed on presynaptic terminals in the brain where they are importantly involved in the control of neurotransmitter release. Alteration of CB(1) expression is associated with a variety of neurological and psychiatric disorders. There is now compelling evidence that peripheral inflammatory disorders are associated with depression and cognitive impairments. These can be modeled in rodents with peripheral administration of lipopolysaccharide (LPS), but central effects of this treatment remain to be fully elucidated. As a reduction in endocannabinoid tone is thought to contribute to depression, we asked whether the expression of CB(1) in the CNS is altered following LPS treatment. CD1 mice received LPS (0.1-1mg/kg, ip) and 6h later activated microglial cells were observed only in circumventricular organs and only at the higher dose. At 24h, activated microglial cells were identified in other brain regions, including the hippocampus, a structure implicated in some mood disorders. Immunohistochemistry and real-time polymerase chain reaction (PCR) were utilized to evaluate the change of CB(1) expression 24h after inflammation. LPS induced an increase of CB(1) mRNA in the hippocampus and brainstem. Subsequent immunohistochemical analysis revealed reduced CB(1) in the hippocampus, especially in CA3 pyramidal layer. Analysis of co-localization with markers of excitatory and inhibitory terminals indicated that the decrease in CB(1) expression was restricted to glutamatergic terminals. Despite widespread microglial activation, these results suggest that peripheral LPS treatment leads to limited changes in CB(1) expression in the brain.

  13. EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression

    PubMed Central

    Renneville, Aline; Van Galen, Peter; Canver, Matthew C.; McConkey, Marie; Krill-Burger, John M.; Dorfman, David M.; Holson, Edward B.; Bernstein, Bradley E.; Orkin, Stuart H.; Bauer, Daniel E.

    2015-01-01

    Fetal hemoglobin (HbF, α2γ2) induction is a well-validated strategy for sickle cell disease (SCD) treatment. Using a small-molecule screen, we found that UNC0638, a selective inhibitor of EHMT1 and EHMT2 histone methyltransferases, induces γ-globin expression. EHMT1/2 catalyze mono- and dimethylation of lysine 9 on histone 3 (H3K9), raising the possibility that H3K9Me2, a repressive chromatin mark, plays a role in silencing γ-globin expression. In primary human adult erythroid cells, UNC0638 and EHMT1 or EHMT2 short hairpin RNA–mediated knockdown significantly increased γ-globin expression, HbF synthesis, and the percentage of cells expressing HbF. At effective concentrations, UNC0638 did not alter cell morphology, proliferation, or erythroid differentiation of primary human CD34+ hematopoietic stem and progenitor cells in culture ex vivo. In murine erythroleukemia cells, UNC0638 and Ehmt2 CRISPR/Cas9-mediated knockout both led to a marked increase in expression of embryonic β-globin genes Hbb-εy and Hbb-βh1. In primary human adult erythroblasts, chromatin immunoprecipitation followed by sequencing analysis revealed that UNC0638 treatment leads to genome-wide depletion in H3K9Me2 and a concomitant increase in the activating mark H3K9Ac, which was especially pronounced at the γ-globin gene region. In RNA-sequencing analysis of erythroblasts, γ-globin genes were among the most significantly upregulated genes by UNC0638. Further increase in γ-globin expression in primary human adult erythroid cells was achieved by combining EHMT1/2 inhibition with the histone deacetylase inhibitor entinostat or hypomethylating agent decitabine. Our data provide genetic and pharmacologic evidence that EHMT1 and EHMT2 are epigenetic regulators involved in γ-globin repression and represent a novel therapeutic target for SCD. PMID:26320100

  14. EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression.

    PubMed

    Renneville, Aline; Van Galen, Peter; Canver, Matthew C; McConkey, Marie; Krill-Burger, John M; Dorfman, David M; Holson, Edward B; Bernstein, Bradley E; Orkin, Stuart H; Bauer, Daniel E; Ebert, Benjamin L

    2015-10-15

    Fetal hemoglobin (HbF, α2γ2) induction is a well-validated strategy for sickle cell disease (SCD) treatment. Using a small-molecule screen, we found that UNC0638, a selective inhibitor of EHMT1 and EHMT2 histone methyltransferases, induces γ-globin expression. EHMT1/2 catalyze mono- and dimethylation of lysine 9 on histone 3 (H3K9), raising the possibility that H3K9Me2, a repressive chromatin mark, plays a role in silencing γ-globin expression. In primary human adult erythroid cells, UNC0638 and EHMT1 or EHMT2 short hairpin RNA-mediated knockdown significantly increased γ-globin expression, HbF synthesis, and the percentage of cells expressing HbF. At effective concentrations, UNC0638 did not alter cell morphology, proliferation, or erythroid differentiation of primary human CD34(+) hematopoietic stem and progenitor cells in culture ex vivo. In murine erythroleukemia cells, UNC0638 and Ehmt2 CRISPR/Cas9-mediated knockout both led to a marked increase in expression of embryonic β-globin genes Hbb-εy and Hbb-βh1. In primary human adult erythroblasts, chromatin immunoprecipitation followed by sequencing analysis revealed that UNC0638 treatment leads to genome-wide depletion in H3K9Me2 and a concomitant increase in the activating mark H3K9Ac, which was especially pronounced at the γ-globin gene region. In RNA-sequencing analysis of erythroblasts, γ-globin genes were among the most significantly upregulated genes by UNC0638. Further increase in γ-globin expression in primary human adult erythroid cells was achieved by combining EHMT1/2 inhibition with the histone deacetylase inhibitor entinostat or hypomethylating agent decitabine. Our data provide genetic and pharmacologic evidence that EHMT1 and EHMT2 are epigenetic regulators involved in γ-globin repression and represent a novel therapeutic target for SCD.

  15. Differential Gene Expression in Chemically Induced Mouse Lung Adenomas1

    PubMed Central

    Yao, Ruisheng; Wang, Yian; Lubet, Ronald A; You, Ming

    2003-01-01

    Abstract Because of similarities in histopathology and tumor progression stages between mouse and human lung adenocarcinomas, the mouse lung tumor model with lung adenomas as the endpoint has been used extensively to evaluate the efficacy of putative lung cancer chemopreventive agents. In this study, a competitive cDNA library screening (CCLS) was employed to determine changes in the expression of mRNA in chemically induced lung adenomas compared with paired normal lung tissues. A total of 2555 clones having altered expression in tumors were observed following competitive hybridization between normal lung and lung adenomas after primary screening of over 160,000 clones from a mouse lung cDNA library. Among the 755 clones confirmed by dot blot hybridization, 240 clones were underexpressed, whereas 515 clones were overexpressed in tumors. Sixty-five clones with the most frequently altered expression in six individual tumors were confirmed by semiquantitative RT-PCR. When examining the 58 known genes, 39 clones had increased expression and 19 had decreased expression, whereas the 7 novel genes showed overexpression. A high percentage (>60%) of overexpressed or underexpressed genes was observed in at least two or three of the lesions. Reproducibly overexpressed genes included ERK-1, JAK-1, surfactant proteins A, B, and C, NFAT1, α-1 protease inhibitor, helix-loop-helix ubiquitous kinase (CHUK), α-adaptin, α-1 PI2, thioether S-methyltransferase, and CYP2C40. Reproducibly underexpressed genes included paroxanase, ALDH II, CC10, von Ebner salivary gland protein, and α- and β-globin. In addition, CCLS identified several novel genes or genes not previously associated with lung carcinogenesis, including a hypothetical protein (FLJ11240) and a guanine nucleotide exchange factor homologue. This study shows the efficacy of this methodology for identifying genes with altered expression. These genes may prove to be helpful in our understanding of the genetic basis of lung

  16. Nuclear RNA Decay Pathways Aid Rapid Remodeling of Gene Expression in Yeast.

    PubMed

    Bresson, Stefan; Tuck, Alex; Staneva, Desislava; Tollervey, David

    2017-03-02

    In budding yeast, the nuclear RNA surveillance system is active on all pre-mRNA transcripts and modulated by nutrient availability. To test the role of nuclear surveillance in reprogramming gene expression, we identified transcriptome-wide binding sites for RNA polymerase II and the exosome cofactors Mtr4 (TRAMP complex) and Nab3 (NNS complex) by UV crosslinking immediately following glucose withdrawal (0, 4, and 8 min). In glucose, mRNA binding by Nab3 and Mtr4 was mainly restricted to promoter-proximal sites, reflecting early transcription termination. Following glucose withdrawal, many growth-related mRNAs showed reduced transcription but increased Nab3 binding, accompanied by downstream recruitment of Mtr4, and oligo(A) tailing. We conclude that transcription termination is followed by TRAMP-mediated RNA decay. Upregulated transcripts evaded increased surveillance factor binding following glucose withdrawal. Some upregulated genes showed use of alternative transcription starts to bypass strong NNS binding sites. We conclude that nuclear surveillance pathways regulate both positive and negative responses to glucose availability.

  17. Thyroidectomy induces neurofilament expression in adenohypophyses of rats.

    PubMed

    Salinas, E; Quintanar, J L

    2001-08-01

    We studied the effect of thyroidectomy on neurofilament expression in adenohypophyses of rats. The question of whether thyroxine (T4) administration can reduce this effect was also investigated. Rats were divided into: 1. Euthyroid controls, 2. Thyroidectomized 20 d (Tx 20 d), 3. Thyroidectomized 20 d with replacement of T4 (Tx 20 d + T4 20 d), 4. Thyroidectomized 40 d (Tx 40 d), 5. Thyroidectomized 40 d with replacement of T4 20 d after surgery (Tx 40 d + T4 20 d). Adenohypophyses were studied by immunohistochemistry and Western blot analysis using antibodies against neurofilament 200 kDa (NF-H) and thyroid-stimulating hormone (TSH). The number of thyrotrophs with immunoreactivity for NF-H was increased in Tx 20 d and Tx 40 d rats, whereas T4 administration protected the effect of thyroidectomy. In the thyroidectomized animals, thyrotrophs showed eccentric nuclei and the cytoplasm was full of NF-H immunoreactivity, whereas in T4 treated rats, the thyrotrophs were similar to control. Western blot analysis showed that NF-H expression increased in rats thyroidectomized for 20 and 40 d. T4 given immediately or 20 d after thyroidectomy caused no changes in NF-H expression. We conclude that thyroidectomy induces NF-H expression in adenohypophyses of rats and administration of T4 decreases this effect.

  18. Inducible nitric oxide synthase is expressed in synovial fluid granulocytes.

    PubMed

    Cedergren, J; Forslund, T; Sundqvist, T; Skogh, T

    2002-10-01

    The objective of the study was to evaluate the NO-producing potential of synovial fluid (SF) cells. SF from 15 patients with arthritis was compared with blood from the same individuals and with blood from 10 healthy controls. Cellular expression of inducible nitric oxide synthase (iNOS) was analysed by flow cytometry. High-performance liquid chromatography was used to measure l-arginine and l-citrulline. Nitrite and nitrate were measured colourimetrically utilizing the Griess' reaction. Compared to whole blood granulocytes in patients with chronic arthritis, a prominent iNOS expression was observed in SF granulocytes (P < 0.001). A slight, but statistically significant, increase in iNOS expression was also recorded in lymphocytes and monocytes from SF. l-arginine was elevated in SF compared to serum (257 +/- 78 versus 176 +/- 65 micro mol/l, P = 0.008), whereas a slight increase in l-citrulline (33 +/- 11 versus 26 +/- 9 micro mol/l), did not reach statistical significance. Great variations but no significant differences were observed comparing serum and SF levels of nitrite and nitrate, respectively, although the sum of nitrite and nitrate tended to be elevated in SF (19.2 +/- 20.7 versus 8.6 +/- 6.5 micro mol/l, P = 0.054). Synovial fluid leucocytes, in particular granulocytes, express iNOS and may thus contribute to intra-articular NO production in arthritis.

  19. Glutamine deprivation induces interleukin-8 expression in ataxia telangiectasia fibroblasts.

    PubMed

    Kim, Min-Hyun; Kim, Aryung; Yu, Ji Hoon; Lim, Joo Weon; Kim, Hyeyoung

    2014-05-01

    To investigate whether glutamine deprivation induces expression of inflammatory cytokine interleukin-8 (IL-8) by determining NF-κB activity and levels of oxidative indices (ROS, reactive oxygen species; hydrogen peroxide; GSH, glutathione) in fibroblasts isolated from patients with ataxia telangiectasia (A-T). We used A-T fibroblasts stably transfected with empty vector (Mock) or with human full-length ataxia telangiectasia mutated (ATM) cDNA (YZ5) and mouse embryonic fibroblasts (MEFs) transiently transfected with ATM small interfering RNA (siRNA) or with non-specific control siRNA. The cells were cultured with or without glutamine or GSH. ROS levels were determined using a fluorescence reader and confocal microscopy. IL-8 or murine IL-8 homolog, keratinocyte chemoattractant (KC), and hydrogen peroxide levels in the medium were determined by enzyme-linked immunosorbent assay and colorimetric assay. GSH level was assessed by enzymatic assay, while IL-8 (KC) mRNA level was measured by reverse transcription-polymerase chain reaction (RT-PCR) and/or quantitative real-time PCR. NF-κB DNA-binding activity was determined by electrophoretic mobility shift assay. Catalase activity and ATM protein levels were determined by O2 generation and Western blotting. While glutamine deprivation induced IL-8 expression and increased NF-κB DNA-binding activity in Mock cells, both processes were decreased by treatment of cells with glutamine or GSH or both glutamine and GSH. Glutamine deprivation had no effect on IL-8 expression or NF-κB DNA-binding activity in YZ5 cells. Glutamine-deprived Mock cells had higher oxidative stress indices (increases in ROS and hydrogen peroxide, reduction in GSH) than glutamine-deprived YZ5 cells. In Mock cells, glutamine deprivation-induced oxidative stress indices were suppressed by treatment with glutamine or GSH or both glutamine and GSH. GSH levels and catalase activity were lower in Mock cells than YZ5 cells. MEFs transfected with ATM siRNA and

  20. Strong Magnetic Field Induced Changes of Gene Expression in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.; Klingenberg, B.; Brooks, J. S.; Morgan, A. N.; Yowtak, J.; Meisel, M. W.

    2005-07-01

    We review our studies of the biological impact of magnetic field strengths of up to 30 T on transgenic arabidopsis plants engineered with a stress response gene consisting of the alcohol dehydrogenase (Adh) gene promoter driving the β-glucuronidase (GUS) gene reporter. Field strengths in excess of 15 T induce expression of the Adh/GUS transgene in the roots and leaves. Microarray analyses indicate that such field strengths have a far reaching effect on the genome. Wide spread induction of stress-related genes and transcription factors, and a depression of genes associated with cell wall metabolism are prominent examples.

  1. A chloride-inducible gene expression cassette and its use in induced lysis of Lactococcus lactis.

    PubMed Central

    Sanders, J W; Venema, G; Kok, J

    1997-01-01

    A chloride-inducible promoter previously isolated from the chromosome of Lactococcus lactis (J. W. Sanders, G. Venema, J. Kok, and K. Leenhouts, Mol. Gen. Genet., in press) was exploited for the inducible expression of homologous and heterologous genes. An expression cassette consisting of the positive-regulator gene gadR, the chloride-inducible promoter Pgad, and the translation initiation signals of gadC was amplified by PCR. The cassette was cloned upstream of Escherichia coli lacZ, the holin-lysin cassette (lytPR) of the lactococcal bacteriophage r1t, and the autolysin gene of L. lactis, acmA. Basal activity of Pgad resulted in a low level of expression of all three proteins. Growth in the presence of 0.5 M NaCl of a strain containing the gadC::lacZ fusion resulted in a 1,500-fold increase of beta-galactosidase activity. The background activity levels of LytPR and AcmA had no deleterious effects on cell growth, but induction of lysin expression by addition of 0.5 M NaCl resulted in inhibition of growth. Lysis was monitored by following the release of the cytoplasmic marker enzyme PepX. Released PepX activity was maximal at 1 day after induction of lytPR expression with 0.1 M NaCl. Induction of acmA expression resulted in slower release of PepX from the cells. The presence of the inducing agent NaCl resulted in the stabilization of osmotically fragile cells. PMID:9406408

  2. Expression of inducible nitric oxide in human lung epithelial cells.

    PubMed

    Robbins, R A; Barnes, P J; Springall, D R; Warren, J B; Kwon, O J; Buttery, L D; Wilson, A J; Geller, D A; Polak, J M

    1994-08-30

    Nitric oxide (NO) is increased in the exhaled air of subjects with several airway disorders. To determine if cytokines could stimulate epithelial cells accounting for the increased NO, the capacity of the proinflammatory cytokines (cytomix: tumor necrosis factor-alpha, interleukin-1 beta, and interferon-gamma) to increase inducible nitric oxide synthase (iNOS) was investigated in A549 and primary cultures of human bronchial epithelial cells. Cytomix induced a time-dependent increase in nitrite levels in culture supernatant fluids (p < 0.05). Increased numbers of cells stained for iNOS and increased iNOS mRNA was detected in the cytokine-stimulated cells compared to control (p < 0.05). Dexamethasone diminished the cytokine-induced increase in nitrite, iNOS by immunocytochemistry, and iNOS mRNA. These data demonstrate that cytokines, such as those released by mononuclear cells, can induce lung epithelial iNOS expression and NO release, and that this is attenuated by dexamethasone.

  3. Immunogenic Profiling in Mice of a HIV/AIDS Vaccine Candidate (MVA-B) Expressing Four HIV-1 Antigens and Potentiation by Specific Gene Deletions

    PubMed Central

    García-Arriaza, Juan; Nájera, José Luis; Gómez, Carmen E.; Sorzano, Carlos Oscar S.; Esteban, Mariano

    2010-01-01

    Background The immune parameters of HIV/AIDS vaccine candidates that might be relevant in protection against HIV-1 infection are still undefined. The highly attenuated poxvirus strain MVA is one of the most promising vectors to be use as HIV-1 vaccine. We have previously described a recombinant MVA expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (referred as MVA-B), that induced HIV-1-specific immune responses in different animal models and gene signatures in human dendritic cells (DCs) with immunoregulatory function. Methodology/Principal Findings In an effort to characterize in more detail the immunogenic profile of MVA-B and to improve its immunogenicity we have generated a new vector lacking two genes (A41L and B16R), known to counteract host immune responses by blocking the action of CC-chemokines and of interleukin 1β, respectively (referred as MVA-B ΔA41L/ΔB16R). A DNA prime/MVA boost immunization protocol was used to compare the adaptive and memory HIV-1 specific immune responses induced in mice by the parental MVA-B and by the double deletion mutant MVA-B ΔA41L/ΔB16R. Flow cytometry analysis revealed that both vectors triggered HIV-1-specific CD4+ and CD8+ T cells, with the CD8+ T-cell compartment responsible for >91.9% of the total HIV-1 responses in both immunization groups. However, MVA-B ΔA41L/ΔB16R enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell immune responses. HIV-1-specific CD4+ T-cell responses were polyfunctional and preferentially Env-specific in both immunization groups. Significantly, while MVA-B induced preferentially Env-specific CD8+ T-cell responses, MVA-B ΔA41L/ΔB16R induced more GPN-specific CD8+ T-cell responses, with an enhanced polyfunctional pattern. Both vectors were capable of producing similar levels of antibodies against Env. Conclusions/Significance These findings revealed that MVA-B and MVA-B ΔA41L/ΔB16R induced in mice robust, polyfunctional and durable T

  4. Roles of factorial noise in inducing bimodal gene expression

    NASA Astrophysics Data System (ADS)

    Liu, Peijiang; Yuan, Zhanjiang; Huang, Lifang; Zhou, Tianshou

    2015-06-01

    Some gene regulatory systems can exhibit bimodal distributions of mRNA or protein although the deterministic counterparts are monostable. This noise-induced bimodality is an interesting phenomenon and has important biological implications, but it is unclear how different sources of expression noise (each source creates so-called factorial noise that is defined as a component of the total noise) contribute separately to this stochastic bimodality. Here we consider a minimal model of gene regulation, which is monostable in the deterministic case. Although simple, this system contains factorial noise of two main kinds: promoter noise due to switching between gene states and transcriptional (or translational) noise due to synthesis and degradation of mRNA (or protein). To better trace the roles of factorial noise in inducing bimodality, we also analyze two limit models, continuous and adiabatic approximations, apart from the exact model. We show that in the case of slow gene switching, the continuous model where only promoter noise is considered can exhibit bimodality; in the case of fast switching, the adiabatic model where only transcriptional or translational noise is considered can also exhibit bimodality but the exact model cannot; and in other cases, both promoter noise and transcriptional or translational noise can cooperatively induce bimodality. Since slow gene switching and large protein copy numbers are characteristics of eukaryotic cells, whereas fast gene switching and small protein copy numbers are characteristics of prokaryotic cells, we infer that eukaryotic stochastic bimodality is induced mainly by promoter noise, whereas prokaryotic stochastic bimodality is induced primarily by transcriptional or translational noise.

  5. AIDS and the death receptors.

    PubMed

    Peter, M E; Ehret, A; Berndt, C; Krammer, P H

    1997-01-01

    Activation-induced cell death (AICD) of T cells involves the CD95 receptor/ligand system. T cell activation through the T cell receptor results in expression of the CD95 ligand (CD95L) that acts on CD95+ cells by direct binding and in a paracrine or autocrine fashion. In AIDS, upregulation of CD95L in T cells is accelerated by two viral gene products, HIV-1 Tat and gp120. The CD95 signaling pathway is, therefore, likely to represent an important road to cell death of the CD4+ T cells in AIDS. Recently, the early events in the CD95 signaling pathway have been identified. A key role hereby plays a receptor-interacting member of the interleukin 1 beta-converting enzymes (ICE), FLICE, that could be a target for therapeutic intervention. In addition to CD95, the role of other members of the TNF receptor superfamily in AIDS is discussed.

  6. Extracellular Matrix Induced Gene Expression in Human Breast Cancer Cells

    PubMed Central

    Garamszegi, Nandor; Garamszegi, Susanna P.; Shehadeh, Lina A.; Scully, Sean P.

    2009-01-01

    Extracellular matrix (ECM) molecules modify gene expression through attachment-dependent (i.e., focal adhesion related) integrin receptor signalling. It was previously unknown whether the same molecules acting as soluble peptides could generate signal cascades without the associated mechanical anchoring, a condition that may be encountered during matrix remodelling, degradation and relevant to invasion and metastatic processes. In the current study the role of ECM ligand regulated gene expression through this attachment independent process was examined. It was observed that fibronectin, laminin, collagens type I and II induce Smad2 activation in MCF-10A and MCF-7 cells. This activation is not caused by TGFβ ligand contamination or autocrine TGF involvement and is 3–5 fold less robust than the TGFβ1 ligand. The resulting nuclear translocation of Smad4 in response to ECM ligand indicates downstream transcriptional responses occurring. Co-immunoprecipitation experiments determined that type II collagen and laminin act through interaction with integrin α2β1 receptor complex. The ECM ligand induced Smad activation (termed signalling crosstalk) resulted cell type and ligand specific transcriptional changes which are distinct from the TGFβ ligand induced responses. These findings demonstrate that cell-matrix communication is more complex than previously thought. Soluble ECM peptides drive transcriptional regulation through corresponding adhesion and non-attachment related processes. The resultant gene expressional patterns correlate with pathway activity and not by the extent of Smad activation. These results extend the complexity and the existing paradigms of ECM-cell communication to ECM ligand regulation without the necessity of mechanical coupling. PMID:19276183

  7. Bitumen fume-induced gene expression profile in rat lung

    SciTech Connect

    Gate, Laurent . E-mail: laurent.gate@inrs.fr; Langlais, Cristina; Micillino, Jean-Claude; Nunge, Herve; Bottin, Marie-Claire; Wrobel, Richard; Binet, Stephane

    2006-08-15

    Exposure to bitumen fumes during paving and roofing activities may represent an occupational health risk. To date, most of the studies performed on the biological effect of asphalt fumes have been done with regard to their content in carcinogenic polycyclic aromatic hydrocarbons (PAH). In order to gain an additional insight into the mechanisms of action of bitumen fumes, we studied their pulmonary effects in rodents following inhalation using the microarray technology. Fisher 344 rats were exposed for 5 days, 6 h/day to bitumen fumes generated at road paving temperature (170 {sup o}C) using a nose-only exposition device. With the intention of studying the early transcriptional events induced by asphalt fumes, lung tissues were collected immediately following exposure and gene expression profiles in control and exposed rats were determined by using oligonucleotide microarrays. Data analysis revealed that genes involved in lung inflammatory response as well as genes associated with PAH metabolization and detoxification were highly expressed in bitumen-exposed animals. In addition, the expression of genes related to elastase activity and its inhibition which are associated with emphysema was also modulated. More interestingly genes coding for monoamine oxidases A and B involved in the metabolism of neurotransmitters and xenobiotics were downregulated in exposed rats. Altogether, these data give additional information concerning the bitumen fumes biological effects and would allow to better review the health effects of occupational asphalt fumes exposure.

  8. Follicular thyroglobulin induces cathepsin H expression and activity in thyrocytes.

    PubMed

    Oda, Kenzaburo; Luo, Yuqian; Yoshihara, Aya; Ishido, Yuko; Sekihata, Kengo; Usukura, Kensei; Sue, Mariko; Hiroi, Naoki; Hirose, Takahisa; Suzuki, Koichi

    2017-01-29

    Thyroglobulin (Tg) stored in thyroid follicles exerts a potent negative-feedback effect on each step of pre-hormone biosynthesis, including Tg gene transcription and iodine uptake and organification, by suppressing the expression of specific transcription factors that regulate these steps. Pre-hormones are stored in the follicular colloid before being reabsorbed. Following lysosomal proteolysis of its precursor, thyroid hormone (TH) is released from thyroid follicles. Although the suppressive effects of follicular Tg on each step of pre-hormone biosynthesis have been extensively characterized, whether follicular Tg accumulation also affects hormone reabsorption, proteolysis, and secretion is unclear. In this study we explored whether follicular Tg can regulate the expression and function of the lysosomal endopeptidases cathepsins. We found that in the rat thyroid cell line FRTL-5 follicular Tg induced cathepsin H mRNA and protein expression, as well as cathepsin H enzyme activity. Double immunofluorescence staining showed that Tg endocytosis promoted cathepsin H translocalization into lysosomes where it co-localized with internalized Tg. These results suggest that cathepsin H is an active participant in lysosome-mediated pre-hormone degradation, and that follicular Tg stimulates mobilization of pre-hormones by activating cathepsin H-associated proteolysis pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Bitumen fume-induced gene expression profile in rat lung.

    PubMed

    Gate, Laurent; Langlais, Cristina; Micillino, Jean-Claude; Nunge, Hervé; Bottin, Marie-Claire; Wrobel, Richard; Binet, Stéphane

    2006-08-15

    Exposure to bitumen fumes during paving and roofing activities may represent an occupational health risk. To date, most of the studies performed on the biological effect of asphalt fumes have been done with regard to their content in carcinogenic polycyclic aromatic hydrocarbons (PAH). In order to gain an additional insight into the mechanisms of action of bitumen fumes, we studied their pulmonary effects in rodents following inhalation using the microarray technology. Fisher 344 rats were exposed for 5 days, 6 h/day to bitumen fumes generated at road paving temperature (170 degrees C) using a nose-only exposition device. With the intention of studying the early transcriptional events induced by asphalt fumes, lung tissues were collected immediately following exposure and gene expression profiles in control and exposed rats were determined by using oligonucleotide microarrays. Data analysis revealed that genes involved in lung inflammatory response as well as genes associated with PAH metabolization and detoxification were highly expressed in bitumen-exposed animals. In addition, the expression of genes related to elastase activity and its inhibition which are associated with emphysema was also modulated. More interestingly genes coding for monoamine oxidases A and B involved in the metabolism of neurotransmitters and xenobiotics were downregulated in exposed rats. Altogether, these data give additional information concerning the bitumen fumes biological effects and would allow to better review the health effects of occupational asphalt fumes exposure.

  10. Chemically inducible expression of the PHB biosynthetic pathway in Arabidopsis.

    PubMed

    Kourtz, Lauralynn; Dillon, Kevin; Daughtry, Sean; Peoples, Oliver P; Snell, Kristi D

    2007-12-01

    Arabidopsis plants were transformed with a multi-gene construct for expression of the polyhydroxybutyrate (PHB) biosynthetic pathway containing a gene switch that can be activated by commercially available non-steroidal ecdysone analogs approved for use on some crops as pesticides. T(1) progeny of transgenic Arabidopsis plants were isolated and screened for PHB production in the presence of ecdysone analogs. T(2) progeny derived from selected T(1) lines were subjected to further analysis by comparing PHB production levels prior to treatment with inducing agent and 21 days after initiation of induction. Significant PHB production was delayed in many of the engineered plants until after induction. PHB levels of up to 14.3% PHB per unit dry weight were observed in young leaves harvested from engineered T(2) plants after applications of the commercial ecdysone analog Mimic. PHB in older leaves reached levels of up to 7% PHB per unit dry weight. This study represents a first step towards engineering a chemically inducible gene switch for PHB production in plants using inducing agents that are approved for field use.

  11. UV radiation induces CXCL5 expression in human skin.

    PubMed

    Reichert, Olga; Kolbe, Ludger; Terstegen, Lara; Staeb, Franz; Wenck, Horst; Schmelz, Martin; Genth, Harald; Kaever, Volkhard; Roggenkamp, Dennis; Neufang, Gitta

    2015-04-01

    CXCL5 has recently been identified as a mediator of UVB-induced pain in rodents. To compare and to extend previous knowledge of cutaneous CXCL5 regulation, we performed a comprehensive study on the effects of UV radiation on CXCL5 regulation in human skin. Our results show a dose-dependent increase in CXCL5 protein in human skin after UV radiation. CXCL5 can be released by different cell types in the skin. We presumed that, in addition to immune cells, non-immune skin cells also contribute to UV-induced increase in CXCL5 protein. Analysis of monocultured dermal fibroblasts and keratinocytes revealed that only fibroblasts but not keratinocytes displayed up regulated CXCL5 levels after UV stimulation. Whereas UV treatment of human skin equivalents, induced epidermal CXCL5 mRNA and protein expression. Up regulation of epidermal CXCL5 was independent of keratinocyte differentiation and keratinocyte-keratinocyte interactions in epidermal layers. Our findings provide first evidence on the release of CXCL5 in UV-radiated human skin and the essential role of fibroblast-keratinocyte interaction in the regulation of epidermal CXCL5.

  12. MicroRNA (miRNA) expression is regulated by butyrate induced epigenetic modulation of gene expression in bovine cells

    USDA-ARS?s Scientific Manuscript database

    We present evidence that butyrate induced histone acetylation regulates miRNA expression. MicroRNA expression microarray profiling revealed that 35 miRNA transcripts are significantly (p <0.05) differentially expressed after cells were treated with 10 mM butyrate. Among them, 11 transcripts are dif...

  13. Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential

    PubMed Central

    Nagpal, Gandharva; Usmani, Salman Sadullah; Dhanda, Sandeep Kumar; Kaur, Harpreet; Singh, Sandeep; Sharma, Meenu; Raghava, Gajendra P. S.

    2017-01-01

    In the past, numerous methods have been developed to predict MHC class II binders or T-helper epitopes for designing the epitope-based vaccines against pathogens. In contrast, limited attempts have been made to develop methods for predicting T-helper epitopes/peptides that can induce a specific type of cytokine. This paper describes a method, developed for predicting interleukin-10 (IL-10) inducing peptides, a cytokine responsible for suppressing the immune system. All models were trained and tested on experimentally validated 394 IL-10 inducing and 848 non-inducing peptides. It was observed that certain types of residues and motifs are more frequent in IL-10 inducing peptides than in non-inducing peptides. Based on this analysis, we developed composition-based models using various machine-learning techniques. Random Forest-based model achieved the maximum Matthews’s Correlation Coefficient (MCC) value of 0.59 with an accuracy of 81.24% developed using dipeptide composition. In order to facilitate the community, we developed a web server “IL-10pred”, standalone packages and a mobile app for designing IL-10 inducing peptides (http://crdd.osdd.net/raghava/IL-10pred/). PMID:28211521

  14. Human activation-induced cytidine deaminase is induced by IL-4 and negatively regulated by CD45: implication of CD45 as a Janus kinase phosphatase in antibody diversification.

    PubMed

    Zhou, Cheng; Saxon, Andrew; Zhang, Ke

    2003-02-15

    Activation-induced cytidine deaminase (AID) plays critical roles in Ig class switch recombination and V(H) gene somatic hypermutation. We investigated the role of IL-4 in AID mRNA induction, the signaling transduction involved in IL-4-mediated AID induction, and the effect of CD45 on IL-4-dependent AID expression in human B cells. IL-4 was able to induce AID expression in human primary B cells and B cell lines, and IL-4-induced AID expression was further enhanced by CD40 signaling. IL-4-dependent AID induction was inhibited by a dominant-negative STAT6, indicating that IL-4 induced AID expression via the Janus kinase (JAK)/STAT6 signaling pathway. Moreover, triggering of CD45 with anti-CD45 Abs can inhibit IL-4-induced AID expression, and this CD45-mediated AID inhibition correlated with the ability of anti-CD45 to suppress IL-4-activated JAK1, JAK3, and STAT6 phosphorylations. Thus, in humans, IL-4 alone is sufficient to drive AID expression, and CD40 signaling is required for optimal AID production; IL-4-induced AID expression is mediated via the JAK/STAT signaling pathway, and can be negatively regulated by the JAK phosphatase activity of CD45. This study indicates that the JAK phosphatase activity of CD45 can be induced by anti-CD45 Ab treatment, and this principle may find clinical application in modulation of JAK activation in immune-mediated diseases.

  15. Factor-induced Reprogramming and Zinc Finger Nuclease-aided Gene Targeting Cause Different Genome Instability in β-Thalassemia Induced Pluripotent Stem Cells (iPSCs)*

    PubMed Central

    Ma, Ning; Shan, Yongli; Liao, Baojian; Kong, Guanyi; Wang, Cheng; Huang, Ke; Zhang, Hui; Cai, Xiujuan; Chen, Shubin; Pei, Duanqing; Chen, Nansheng; Pan, Guangjin

    2015-01-01

    The generation of personalized induced pluripotent stem cells (iPSCs) followed by targeted genome editing provides an opportunity for developing customized effective cellular therapies for genetic disorders. However, it is critical to ascertain whether edited iPSCs harbor unfavorable genomic variations before their clinical application. To examine the mutation status of the edited iPSC genome and trace the origin of possible mutations at different steps, we have generated virus-free iPSCs from amniotic cells carrying homozygous point mutations in β-hemoglobin gene (HBB) that cause severe β-thalassemia (β-Thal), corrected the mutations in both HBB alleles by zinc finger nuclease-aided gene targeting, and obtained the final HBB gene-corrected iPSCs by excising the exogenous drug resistance gene with Cre recombinase. Through comparative genomic hybridization and whole-exome sequencing, we uncovered seven copy number variations, five small insertions/deletions, and 64 single nucleotide variations (SNVs) in β-Thal iPSCs before the gene targeting step and found a single small copy number variation, 19 insertions/deletions, and 340 single nucleotide variations in the final gene-corrected β-Thal iPSCs. Our data revealed that substantial but different genomic variations occurred at factor-induced somatic cell reprogramming and zinc finger nuclease-aided gene targeting steps, suggesting that stringent genomic monitoring and selection are needed both at the time of iPSC derivation and after gene targeting. PMID:25795783

  16. Separate domains of AID are required for somatic hypermutation and class-switch recombination.

    PubMed

    Shinkura, Reiko; Ito, Satomi; Begum, Nasim A; Nagaoka, Hitoshi; Muramatsu, Masamichi; Kinoshita, Kazuo; Sakakibara, Yoshimasa; Hijikata, Hiroko; Honjo, Tasuku

    2004-07-01

    Activation-induced cytidine deaminase (AID) is essential for class-switch recombination (CSR) and somatic hypermutation (SHM). Mutants with changes in the C-terminal region of AID retain SHM but lose CSR activity. Here we describe five mutants with alterations in the N-terminal region of AID that caused selective deficiency in SHM but retained CSR, suggesting that the CSR and SHM activities of AID may dissociate via interaction of CSR- or SHM-specific cofactors with different domains of AID. Unlike cells expressing C-terminal AID mutants, B cells expressing N-terminal AID mutants had mutations in the switch micro region, indicating that such mutations are generated by reactions involved in CSR but not SHM. Thus, we propose that separate domains of AID interact with specific cofactors to regulate these two distinct genetic events in a target-specific way.

  17. Variation in Protein Intake Induces Variation in Spider Silk Expression

    PubMed Central

    Blamires, Sean J.; Wu, Chun-Lin; Tso, I-Min

    2012-01-01

    Background It is energetically expensive to synthesize certain amino acids. The proteins (spidroins) of spider major ampullate (MA) silk, MaSp1 and MaSp2, differ in amino acid composition. Glutamine and proline are prevalent in MaSp2 and are expensive to synthesize. Since most orb web spiders express high proline silk they might preferentially attain the amino acids needed for silk from food and shift toward expressing more MaSp1 in their MA silk when starved. Methodology/Principal Findings We fed three spiders; Argiope aetherea, Cyrtophora moluccensis and Leucauge blanda, high protein, low protein or no protein solutions. A. aetherea and L. blanda MA silks are high in proline, while C. moluccesnsis MA silks are low in proline. After 10 days of feeding we determined the amino acid compositions and mechanical properties of each species' MA silk and compared them between species and treatments with pre-treatment samples, accounting for ancestry. We found that the proline and glutamine of A. aetherea and L. blanda silks were affected by protein intake; significantly decreasing under the low and no protein intake treatments. Glutmaine composition in C. moluccensis silk was likewise affected by protein intake. However, the composition of proline in their MA silk was not significantly affected by protein intake. Conclusions Our results suggest that protein limitation induces a shift toward different silk proteins with lower glutamine and/or proline content. Contradictions to the MaSp model lie in the findings that C. moluccensis MA silks did not experience a significant reduction in proline and A. aetherea did not experience a significant reduction in serine on low/no protein. The mechanical properties of the silks could not be explained by a MaSp1 expressional shift. Factors other than MaSp expression, such as the expression of spidroin-like orthologues, may impact on silk amino acid composition and spinning and glandular processes may impact mechanics. PMID:22363691

  18. Femtosecond laser induced tunable surface transformations on (111) Si aided by square grids diffraction

    SciTech Connect

    Han, Weina; Jiang, Lan; Li, Xiaowei Liu, Yang

    2015-12-21

    We report an extra freedom to modulate the femtosecond laser energy distribution to control the surface ablated structures through a copper-grid mask. Due to the reduced deposited pulse energy by changing the scanning speed or the pulse fluence, a sequential evolution of three distinctly different surface patterns with periodic distributions is formed, namely, striped ripple lines, ripple microdots, and surface modification. By changing the scanning speed, the number of the multiple dots in a lattice can be modulated. Moreover, by exploring the ablation process through the copper grid mask, it shows an abnormal enhanced ablation effect with strong dependence of the diffraction-aided fs laser ablated surface structures on polarization direction. The sensitivity shows a quasi-cosinusoid-function with a periodicity of π/2. Particularly, the connection process of striped ripple lines manifests a preferential formation direction with the laser polarization.

  19. A novel activation-induced cytidine deaminase (AID) mutation in Brazilian patients with hyper-IgM type 2 syndrome.

    PubMed

    Caratão, Nadine; Cortesão, Catarina S; Reis, Pedro H; Freitas, Raquel F; Jacob, Cristina M A; Pastorino, Antonio C; Carneiro-Sampaio, Magda; Barreto, Vasco M

    2013-08-01

    Activation-induced cytidine deaminase (AID) is a DNA editing protein that plays an essential role in three major events of immunoglobulin (Ig) diversification: somatic hypermutation, class switch recombination and Ig gene conversion. Mutations in the AID gene (AICDA) have been found in patients with autosomal recessive Hyper-IgM (HIGM) syndrome type 2. Here, two 9- and 14-year-old Brazilian sisters, from a consanguineous family, were diagnosed with HIGM2 syndrome. Sequencing analysis of the exons from AICDA revealed that both patients are homozygous for a single C to G transversion in the third position of codon 15, which replaces a conserved Phenylalanine with a Leucine. To our knowledge, this is a new AICDA mutation found in HIGM2 patients. Functional studies confirm that the homologous murine mutation leads to a dysfunctional protein with diminished intrinsic cytidine deaminase activity and is unable to rescue CSR when introduced in Aicda(-/-)stimulated murine B cells. We briefly discuss the relevance of AICDA mutations found in patients for the biology of this molecule.

  20. Glutathione Depletion Is Linked with Th2 Polarization in Mice with a Retrovirus-Induced Immunodeficiency Syndrome, Murine AIDS: Role of Proglutathione Molecules as Immunotherapeutics

    PubMed Central

    Brundu, Serena; Palma, Linda; Picceri, Giusi Giada; Ligi, Daniela; Orlandi, Chiara; Galluzzi, Luca; Chiarantini, Laura; Casabianca, Anna; Schiavano, Giuditta Fiorella; Santi, Martina; Mannello, Ferdinando; Smietana, Michaël; Magnani, Mauro

    2016-01-01

    ABSTRACT Injection of the LP-BM5 murine leukemia virus into mice causes murine AIDS, a disease characterized by many dysfunctions of immunocompetent cells. To establish whether the disease is characterized by glutathione imbalance, reduced glutathione (GSH) and cysteine were quantified in different organs. A marked redox imbalance, consisting of GSH and/or cysteine depletion, was found in the lymphoid organs, such as the spleen and lymph nodes. Moreover, a significant decrease in cysteine and GSH levels in the pancreas and brain, respectively, was measured at 5 weeks postinfection. The Th2 immune response was predominant at all times investigated, as revealed by the expression of Th1/Th2 cytokines. Furthermore, investigation of the activation status of peritoneal macrophages showed that the expression of genetic markers of alternative activation, namely, Fizz1, Ym1, and Arginase1, was induced. Conversely, expression of inducible nitric oxide synthase, a marker of classical activation of macrophages, was detected only when Th1 cytokines were expressed at high levels. In vitro studies revealed that during the very early phases of infection, GSH depletion and the downregulation of interleukin-12 (IL-12) p40 mRNA were correlated with the dose of LP-BM5 used to infect the macrophages. Treatment of LP-BM5-infected mice with N-(N-acetyl-l-cysteinyl)-S-acetylcysteamine (I-152), an N-acetyl-cysteine supplier, restored GSH/cysteine levels in the organs, reduced the expression of alternatively activated macrophage markers, and increased the level of gamma interferon production, while it decreased the levels of Th2 cytokines, such as IL-4 and IL-5. Our findings thus establish a link between GSH deficiency and Th1/Th2 disequilibrium in LP-BM5 infection and indicate that I-152 can be used to restore the GSH level and a balanced Th1/Th2 response in infected mice. IMPORTANCE The first report of an association between Th2 polarization and alteration of the redox state in LP-BM5

  1. Inducible Expression of CXCL1 within the Central Nervous System Amplifies Viral-Induced Demyelination

    PubMed Central

    Marro, Brett S.; Grist, Jonathan J.

    2016-01-01

    The functional role of the ELR+ chemokine CXCL1 in host defense and disease following infection of the CNS with the neurotropic JHM strain of mouse hepatitis virus (JHMV) was examined. Mice in which expression of CXCL1 is under the control of a tetracycline-inducible promoter active within glial fibrillary acidic protein–positive cells were generated and this allowed for selectively increasing CNS expression of CXCL1 in response to JHMV infection and evaluating the effects on neuroinflammation, control of viral replication, and demyelination. Inducible expression of CNS-derived CXCL1 resulted in increased levels of CXCL1 protein within the serum, brain, and spinal cord that correlated with increased frequency of Ly6G+CD11b+ neutrophils present within the CNS. Elevated levels of CXCL1 did not influence the generation of virus-specific T cells, and there was no difference in control of JHMV replication compared with control mice, indicating that T cell infiltration into the CNS is CXCL1-independent. Sustained CXCL1 expression within the CNS resulted in increased mortality that correlated with elevated neutrophil infiltration, diminished numbers of mature oligodendrocytes, and an increase in the severity of demyelination. Neutrophil ablation in CXCL1-transgenic mice reduced the severity of demyelination in mice, arguing for a role for these cells in white matter damage. Collectively, these findings illustrate that sustained CXCL1 expression amplifies the severity of white matter damage and that neutrophils can contribute to this process in a model of viral-induced neurologic disease. PMID:26773148

  2. Soluble IL-2 receptor in AIDS. Correlation of its serum level with the classification of HIV-induced diseases and its characterization.

    PubMed

    Honda, M; Kitamura, K; Matsuda, K; Yokota, Y; Yamamoto, N; Mitsuyasu, R; Chermann, J C; Tokunaga, T

    1989-06-15

    By using a fluorescence sandwich ELISA, elevated IL-2R levels were detected in the sera from both HIV-infected hemophiliacs and other HIV-infected patients. The serum IL-2R levels were reflective of the classification of HIV-induced diseases by the Centers for Disease Control. Moreover, the IL-2R levels were negatively correlated most prominently with CD4 cell counts, with lymphocyte counts, and with a decrease in the CD4-CD8 ratio but not with either WBC counts or B cell counts. As striking elevations of serum IL-2R were noted in AIDS patients with group IVD infection, the serum IL-2R was purified sequentially by using size-exclusion HPLC, high-pressure chromatofocusing, and H48 affinity HPLC. The isoelectric point values of IL-2R were separated into 4.2 and 3.8, whereas the Mr was determined to be only 45 kDa by immunoprecipitation with H48 antibody followed by SDS-PAGE. However, production of cellular and supernatant IL-2R was not elevated in PBMC of patients with AIDS or in any of the 19 HIV-I- or HIV-II-infected cell line cells. In contrast, PBMC from patients with adult T cell leukemia and cell line cells that expressed human T cell lymphotropic virus -I or -II produced soluble IL-2R, constitutively. The mechanisms by which serum levels of IL-2R might be elevated in HIV-infected patients are discussed in comparison with that in adult T cell leukemia patients.

  3. Gene expression changes consistent with neuroAIDS and impaired working memory in HIV-1 transgenic rats

    PubMed Central

    2014-01-01

    Background A thorough investigation of the neurobiology of HIV-induced neuronal dysfunction and its evolving phenotype in the setting of viral suppression has been limited by the lack of validated small animal models to probe the effects of concomitant low level expression of multiple HIV-1 products in disease-relevant cells in the CNS. Results We report the results of gene expression profiling of the hippocampus of HIV-1 Tg rats, a rodent model of HIV infection in which multiple HIV-1 proteins are expressed under the control of the viral LTR promoter in disease-relevant cells including microglia and astrocytes. The Gene Set Enrichment Analysis (GSEA) algorithm was used for pathway analysis. Gene expression changes observed are consistent with astrogliosis and microgliosis and include evidence of inflammation and cell proliferation. Among the genes with increased expression in HIV-1 Tg rats was the interferon stimulated gene 15 (ISG-15), which was previously shown to be increased in the cerebrospinal fluid (CSF) of HIV patients and to correlate with neuropsychological impairment and neuropathology, and prostaglandin D2 (PGD2) synthase (Ptgds), which has been associated with immune activation and the induction of astrogliosis and microgliosis. GSEA-based pathway analysis highlighted a broad dysregulation of genes involved in neuronal trophism and neurodegenerative disorders. Among the latter are genesets associated with Huntington’s disease, Parkinson’s disease, mitochondrial, peroxisome function, and synaptic trophism and plasticity, such as IGF, ErbB and netrin signaling and the PI3K signal transduction pathway, a mediator of neural plasticity and of a vast array of trophic signals. Additionally, gene expression analyses also show altered lipid metabolism and peroxisomes dysfunction. Supporting the functional significance of these gene expression alterations, HIV-1 Tg rats showed working memory impairments in spontaneous alternation behavior in the T-Maze, a

  4. Oxalomalate affects the inducible nitric oxide synthase expression and activity.

    PubMed

    Irace, Carlo; Esposito, Giuseppe; Maffettone, Carmen; Rossi, Antonietta; Festa, Michela; Iuvone, Teresa; Santamaria, Rita; Sautebin, Lidia; Carnuccio, Rosa; Colonna, Alfredo

    2007-03-13

    Inducible nitric oxide synthase (iNOS) is an homodimeric enzyme which produces large amounts of nitric oxide (NO) in response to inflammatory stimuli. Several factors affect the synthesis and catalytic activity of iNOS. Particularly, dimerization of NOS monomers is promoted by heme, whereas an intracellular depletion of heme and/or L-arginine considerably decreases NOS resistance to proteolysis. In this study, we found that oxalomalate (OMA, oxalomalic acid, alpha-hydroxy-beta-oxalosuccinic acid), an inhibitor of both aconitase and NADP-dependent isocitrate dehydrogenase, inhibited nitrite production and iNOS protein expression in lipopolysaccharide (LPS)-activated J774 macrophages, without affecting iNOS mRNA content. Furthermore, injection of OMA precursors to LPS-stimulated rats also decreased nitrite production and iNOS expression in isolated peritoneal macrophages. Interestingly, alpha-ketoglutarate or succinyl-CoA administration reversed OMA effect on NO production, thus correlating NO biosynthesis with the anabolic capacity of Krebs cycle. When protein synthesis was blocked by cycloheximide in LPS-activated J774 cells treated with OMA, iNOS protein levels, evaluated by Western blot analysis and (35)S-metabolic labelling, were decreased, suggesting that OMA reduces iNOS biosynthesis and induces an increase in the degradation rate of iNOS protein. Moreover, we showed that OMA inhibits the activity of the iNOS from lung of LPS-treated rats by enzymatic assay. Our results, demonstrating that OMA acts regulating synthesis, catalytic activity and degradation of iNOS, suggest that this compound might have a potential role in reducing the NO overproduction occurring in some pathological conditions.

  5. Differential type 1 interferon-regulated gene expression in the brain during AIDS: interactions with viral diversity and neurovirulence.

    PubMed

    Polyak, Maria J; Vivithanaporn, Pornpun; Maingat, Ferdinand G; Walsh, John G; Branton, William; Cohen, Eric A; Meeker, Rick; Power, Christopher

    2013-07-01

    The lentiviruses, human and feline immunodeficiency viruses (HIV-1 and FIV, respectively), infect the brain and cause neurovirulence, evident as neuronal injury, inflammation, and neurobehavioral abnormalities with diminished survival. Herein, different lentivirus infections in conjunction with neural cell viability were investigated, concentrating on type 1 interferon-regulated pathways. Transcriptomic network analyses showed a preponderance of genes involved in type 1 interferon signaling, which was verified by increased expression of the type 1 interferon-associated genes, Mx1 and CD317, in brains from HIV-infected persons (P<0.05). Leukocytes infected with different strains of FIV or HIV-1 showed differential Mx1 and CD317 expression (P<0.05). In vivo studies of animals infected with the FIV strains, FIV(ch) or FIV(ncsu), revealed that FIV(ch)-infected animals displayed deficits in memory and motor speed compared with the FIV(ncsu)- and mock-infected groups (P<0.05). TNF-α, IL-1β, and CD40 expression was increased in the brains of FIV(ch)-infected animals; conversely, Mx1 and CD317 transcript levels were increased in the brains of FIV(ncsu)-infected animals, principally in microglia (P<0.05). Gliosis and neuronal loss were evident among FIV(ch)-infected animals compared with mock- and FIV(ncsu)-infected animals (P<0.05). Lentiviral infections induce type 1 interferon-regulated gene expression in microglia in a viral diversity-dependent manner, representing a mechanism by which immune responses might be exploited to limit neurovirulence.

  6. Nuclear Factor of Activated T Cells and Cytokines Gene Expression of the T Cells in AIDS Patients with Immune Reconstitution Inflammatory Syndrome during Highly Active Antiretroviral Therapy

    PubMed Central

    Chen, Heling; Xie, Yirui; Su, Junwei; Huang, Ying; Xu, Lijun; Yin, Michael; Zhou, Qihui

    2017-01-01

    Background. The etiology of immune reconstitution inflammatory syndrome (IRIS) in AIDS patients after the initiation of HAART remains unknown. Several researches indicated that the development of IRIS is associated with the production and variation of cytokines, whose gene expression are closely related to the Ca2+/CN-nuclear factor of activated T cells (NFAT) pathway. Methods. We studied the expression of NFAT isoforms and their major target cytokines genes in peripheral blood CD3+ T cells of subjects through fluorescence quantitative PCR and explored the expression changes of these genes before and after HAART. Results. After the initiation of HARRT, NFAT1, IL-6, and IL-8 gene expression showed a reversal trend in the CD3+ T cells of the IRIS group and changed from low expression before HARRT to high expression after HARRT. In particular, the relative gene expression of NFAT1 was markedly higher compared with the other three isoforms. The IRIS group also showed higher NFAT4, NFAT2, NFAT1, IL-1β, IL-10, IL-2, IL-18, and TNF-α gene expression than the non-IRIS group. Conclusion. This study suggested that high expression levels of IL-2, IL-6, IL-8, TNF-α, IL-1β, IL-10, IL-12, and IL-18 can predict the risk of IRIS. The increased expression of NFAT1 and NFAT4 may promote the expression of cytokines, such as IL-6, IL-8, and TNF-α, which may promote the occurrence of IRIS. PMID:28316373

  7. Light-induced currents in Xenopus oocytes expressing bovine rhodopsin.

    PubMed Central

    Knox, B E; Khorana, H G; Nasi, E

    1993-01-01

    1. We have investigated the functioning of bovine rod opsin, which is efficiently synthesized from RNA made by in vitro transcription, following injection into Xenopus oocytes. We found that oocytes expressing the gene for opsin exhibit light-dependent ionic currents only after pigment generation by incubation with 11-cis-retinal. These currents are similar to the endogenous muscarinic acetylcholine (ACh) response of oocytes, but their amplitude is substantially smaller. 2. In order to optimize the conditions for obtaining light-induced currents in RNA-injected oocytes, the native ACh response was examined under several conditions. It was found that elevated external calcium markedly enhances the muscarinic response and that these currents have a non-linear dependence on membrane voltage, increasing substantially with depolarization. 3. Using the optimal conditions for evoking the largest ACh responses, (28 mM [Ca2+]o, 0 mV, omission of serum and Hepes from the media), the light-evoked currents obtained in RNA-injected oocytes were remarkably enhanced, and responses to multiple light stimuli could be obtained. 4. The light response appeared to desensitize, even after long periods of recovery and pigment regeneration. By contrast, the ACh responses continued to appear normal. These results suggest that desensitization of photoresponses expressed in Xenopus oocytes involve changes at early stages of the pathway, resulting in a reduced ability of rhodopsin to couple to the endogenous signalling system. Images Fig. 3 PMID:7692039

  8. Chemical memory reactions induced bursting dynamics in gene expression.

    PubMed

    Tian, Tianhai

    2013-01-01

    Memory is a ubiquitous phenomenon in biological systems in which the present system state is not entirely determined by the current conditions but also depends on the time evolutionary path of the system. Specifically, many memorial phenomena are characterized by chemical memory reactions that may fire under particular system conditions. These conditional chemical reactions contradict to the extant stochastic approaches for modeling chemical kinetics and have increasingly posed significant challenges to mathematical modeling and computer simulation. To tackle the challenge, I proposed a novel theory consisting of the memory chemical master equations and memory stochastic simulation algorithm. A stochastic model for single-gene expression was proposed to illustrate the key function of memory reactions in inducing bursting dynamics of gene expression that has been observed in experiments recently. The importance of memory reactions has been further validated by the stochastic model of the p53-MDM2 core module. Simulations showed that memory reactions is a major mechanism for realizing both sustained oscillations of p53 protein numbers in single cells and damped oscillations over a population of cells. These successful applications of the memory modeling framework suggested that this innovative theory is an effective and powerful tool to study memory process and conditional chemical reactions in a wide range of complex biological systems.

  9. A tetracycline-inducible gene expression system in Entamoeba histolytica.

    PubMed

    Ramakrishnan, G; Vines, R R; Mann, B J; Petri, W A

    1997-01-01

    We have developed an episomal inducible gene expression system in Entamoeba histolytica based on the TetR repressor. The tetR gene was placed under control of 5' and 3' ferredoxin (fdx) regulatory sequences on a plasmid encoding the hygromycin resistance gene directed by 5' and 3' hgl sequences. The reporter luciferase constructs were introduced on a second episome bearing the neomycin resistance gene controlled by 5' and 3' actin sequences. The reporter constructs were driven by the hgl5 promoter in which the tetO sequence was introduced. We found that the optimal tetO location for induction by tetracycline was +4 from the start of transcription. The efficiency of repression and the induction ratio could be improved by increasing hygromycin levels, presumably by increasing tetR plasmid levels. Under these conditions, maximal induction of reporter luciferase could be effected with 5 micrograms/ml tetracycline in 18 h. This system permits regulated expression of the reporter gene over two orders of magnitude and should be useful in the analysis of gene function.

  10. Tomato leaf spatial expression of stress-induced Asr genes.

    PubMed

    Maskin, Laura; Maldonado, Sara; Iusem, Norberto D

    2008-12-01

    Asr1 and Asr2 are water stress-inducible genes belonging to the Asr gene family, which transcriptionally regulate a sugar transporter gene, at least in grape. Using an in situ RNA hybridization methodology, we determined that, in basal conditions, expression of Asr2 in tomato leaves is detected in the phloem tissue, particularly in companion phloem cells. When plants are exposed to water stress, Asr2 expression is contained in companion cells but expands occasionally to mesophyll cells. In contrast, Asr1 transcript localization seems to be sparse in leaf vascular tissue under both non-stress and stress conditions. The occurrence of Asr transcripts precisely in companion cells is in accordance with the cell type specificity reported for hexose-transporter protein molecules in grape encoded by the only Asr-target gene known to date. The results are discussed in light of the reported scarcity of plasmodesmata between companion cells and the rest of leaf tissue in the family Solanaceae.

  11. Persistent expression of methamphetamine-induced CTA in periadolescent rats.

    PubMed

    Harrod, Steven B; Lacy, Ryan T; Ballina, Lauren E

    2010-10-01

    It is well documented that the transition from periadolescence to adulthood produces profound changes in motivated behavior, and furthermore, attenuates the aversive experience of abused drugs. Little is known, however, about adolescent memory for the conditioned aversive effects of abused drugs following retention intervals that span this developmental transition. The present experiment investigated methamphetamine-induced conditioned taste aversion (CTA) in periadolescent rats to determine if the magnitude of conditioning was altered following retention intervals that extend to adulthood. Rats consumed saccharin (0.1%, w/v) and were immediately injected with saline or methamphetamine (3.0mg/kg) either once (PND 40) or three times (PND 38-40), and memory was assessed one or 50 days later on post natal days 41 or 90, respectively. Rats exhibited robust methamphetamine-induced CTA one and 50 days after conditioning, and the strength of responding did not change as a function of retention interval, regardless if animals were trained with one or three saccharin-methamphetamine pairings. These findings indicate that the expression of memory for the aversive effects of methamphetamine was resistant to degradation throughout the developmental period of periadolescence to adulthood. (c) 2010 Elsevier Inc. All rights reserved.

  12. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    PubMed

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  13. Anxious behavior induces elevated hippocampal Cb2 receptor gene expression.

    PubMed

    Robertson, James M; Achua, Justin K; Smith, Justin P; Prince, Melissa A; Staton, Clarissa D; Ronan, Patrick J; Summers, Tangi R; Summers, Cliff H

    2017-04-07

    Anxiety is differentially expressed across a continuum of stressful/fearful intensity, influenced endocannabinoid systems and receptors. The hippocampus plays important roles in the regulation of affective behavior, emotion, and anxiety, as well as memory. Location of Cb1/Cb2 receptor action could be important in determining emotional valence, because while the dorsal hippocampus is involved in spatial memory and cognition, the ventral hippocampus has projections to the PFC, BNST, amygdala, and HPA axis, and is important for emotional responses to stress. During repeated social defeat in a Stress-Alternatives Model arena (SAM; an oval open field with escape portals only large enough for smaller mice), smaller C57BL6/N mice are subject to fear conditioning (tone=CS), and attacked by novel larger aggressive CD1 mice (US) over four daily (5min) trials. Each SAM trial presents an opportunity for escape or submission, with stable behavioral responses established by the second day of interaction. Additional groups had access to a running wheel. Social aggression plus fear conditioning stimulates enhanced Cb2 receptor gene expression in the dorsal CA1, dorsal and ventral dentate gyrus subregions in animals displaying a submissive behavioral phenotype. Escape behavior is associated with reduced Cb2 expression in the dorsal CA1 region, with freezing and escape latency correlated with mRNA levels. Escaping and submitting animals with access to running wheels had increased Cb2 mRNA in dorsal DG/CA1. These results suggest that the Cb2 receptor system is rapidly induced during anxiogenic social interactions plus fear conditioning or exercise; with responses potentially adaptive for coping mechanisms.

  14. AID induces double-strand breaks at immunoglobulin switch regions and c-MYC causing chromosomal translocations in yeast THO mutants.

    PubMed

    Ruiz, José F; Gómez-González, Belén; Aguilera, Andrés

    2011-02-01

    Transcription of the switch (S) regions of immunoglobulin genes in B cells generates stable R-loops that are targeted by Activation Induced Cytidine Deaminase (AID), triggering class switch recombination (CSR), as well as translocations with c-MYC responsible for Burkitt's lymphomas. In Saccharomyces cerevisiae, stable R-loops are formed co-transcriptionally in mutants of THO, a conserved nuclear complex involved in mRNP biogenesis. Such R-loops trigger genome instability and facilitate deamination by human AID. To understand the mechanisms that generate genome instability mediated by mRNP biogenesis impairment and by AID, we devised a yeast chromosomal system based on different segments of mammalian S regions and c-MYC for the analysis of chromosomal rearrangements in both wild-type and THO mutants. We demonstrate that AID acts in yeast at heterologous S and c-MYC transcribed sequences leading to double-strand breaks (DSBs) which in turn cause chromosomal translocations via Non-Homologous End Joining (NHEJ). AID-induced translocations were strongly enhanced in yeast THO null mutants, consistent with the idea that AID-mediated DSBs depend on R-loop formation. Our study not only provides new clues to understand the role of mRNP biogenesis in preventing genome rearrangements and the mechanism of AID-mediated genome instability, but also shows that, once uracil residues are produced by AID-mediated deamination, these are processed into DSBs and chromosomal rearrangements by the general and conserved DNA repair functions present from yeast to human cells.

  15. Epigenetic regulation of inducible gene expression in the immune system.

    PubMed

    Lim, Pek Siew; Li, Jasmine; Holloway, Adele F; Rao, Sudha

    2013-07-01

    T cells are exquisitely poised to respond rapidly to pathogens and have proved an instructive model for exploring the regulation of inducible genes. Individual genes respond to antigenic stimulation in different ways, and it has become clear that the interplay between transcription factors and the chromatin platform of individual genes governs these responses. Our understanding of the complexity of the chromatin platform and the epigenetic mechanisms that contribute to transcriptional control has expanded dramatically in recent years. These mechanisms include the presence/absence of histone modification marks, which form an epigenetic signature to mark active or inactive genes. These signatures are dynamically added or removed by epigenetic enzymes, comprising an array of histone-modifying enzymes, including the more recently recognized chromatin-associated signalling kinases. In addition, chromatin-remodelling complexes physically alter the chromatin structure to regulate chromatin accessibility to transcriptional regulatory factors. The advent of genome-wide technologies has enabled characterization of the chromatin landscape of T cells in terms of histone occupancy, histone modification patterns and transcription factor association with specific genomic regulatory regions, generating a picture of the T-cell epigenome. Here, we discuss the multi-layered regulation of inducible gene expression in the immune system, focusing on the interplay between transcription factors, and the T-cell epigenome, including the role played by chromatin remodellers and epigenetic enzymes. We will also use IL2, a key inducible cytokine gene in T cells, as an example of how the different layers of epigenetic mechanisms regulate immune responsive genes during T-cell activation.

  16. Expression of activation-induced cytidine deaminase decreases throughout the life.

    PubMed

    Radu, D L; Kodera, T; Bona, C

    2003-01-01

    Activation-induced cytidine deaminase (AID) is an RNA editing enzyme, which contributes to generation of new functional genes from a restricted number of genes of plant and animal genome. This enzyme was involved in the process of somatic mutation and class switching in vertebrate. Since the rate of somatic mutations is variable throughout ontogeny, we have studied the transcription of AID in 3 to 24 month-old Balb/c mice. Our results demonstrate a significant decrease of the transcription of the AID gene with aging. The decreased AID activity is not related to variation of phenotypic and functional properties of B cells throughout the life. This observation can explain the low rate of somatic mutation in aged animals.

  17. Computer-aided detection of radiation-induced cerebral microbleeds on susceptibility-weighted MR images☆

    PubMed Central

    Bian, Wei; Hess, Christopher P.; Chang, Susan M.; Nelson, Sarah J.; Lupo, Janine M.

    2013-01-01

    Recent interest in exploring the clinical relevance of cerebral microbleeds (CMBs) has motivated the search for a fast and accurate method to detect them. Visual inspection of CMBs on MR images is a lengthy, arduous task that is highly prone to human error because of their small size and wide distribution throughout the brain. Several computer-aided CMB detection algorithms have recently been proposed in the literature, but their diagnostic accuracy, computation time, and robustness are still in need of improvement. In this study, we developed and tested a semi-automated method for identifying CMBs on minimum intensity projected susceptibility-weighted MR images that are routinely used in clinical practice to visually identify CMBs. The algorithm utilized the 2D fast radial symmetry transform to initially detect putative CMBs. Falsely identified CMBs were then eliminated by examining geometric features measured after performing 3D region growing on the potential CMB candidates. This algorithm was evaluated in 15 patients with brain tumors who exhibited CMBs on susceptibility-weighted images due to prior external beam radiation therapy. Our method achieved heightened sensitivity and acceptable amount of false positives compared to prior methods without compromising computation speed. Its superior performance and simple, accelerated processing make it easily adaptable for detecting CMBs in the clinic and expandable to a wide array of neurological disorders. PMID:24179783

  18. United States aid policy and induced abortion in sub-Saharan Africa.

    PubMed

    Bendavid, Eran; Avila, Patrick; Miller, Grant

    2011-12-01

    To determine whether the Mexico City Policy, a United States government policy that prohibits funding to nongovernmental organizations performing or promoting abortion, was associated with the induced abortion rate in sub-Saharan Africa. Women in 20 African countries who had induced abortions between 1994 and 2008 were identified in Demographic and Health Surveys. A country's exposure to the Mexico City Policy was considered high (or low) if its per capita assistance from the United States for family planning and reproductive health was above (or below) the median among study countries before the policy's reinstatement in 2001. Using logistic regression and a difference-in-difference design, the authors estimated the differential change in the odds of having an induced abortion among women in high exposure countries relative to low exposure countries when the policy was reinstated. The study included 261,116 women aged 15 to 44 years. A comparison of 1994-2000 with 2001-2008 revealed an adjusted odds ratio for induced abortion of 2.55 for high-exposure countries versus low-exposure countries under the policy (95% confidence interval, CI: 1.76-3.71). There was a relative decline in the use of modern contraceptives in the high-exposure countries over the same time period. The induced abortion rate in sub-Saharan Africa rose in high-exposure countries relative to low-exposure countries when the Mexico City Policy was reintroduced. Reduced financial support for family planning may have led women to substitute abortion for contraception. Regardless of one's views about abortion, the findings may have important implications for public policies governing abortion.

  19. United States aid policy and induced abortion in sub-Saharan Africa

    PubMed Central

    Avila, Patrick; Miller, Grant

    2011-01-01

    Abstract Objective To determine whether the Mexico City Policy, a United States government policy that prohibits funding to nongovernmental organizations performing or promoting abortion, was associated with the induced abortion rate in sub-Saharan Africa. Methods Women in 20 African countries who had induced abortions between 1994 and 2008 were identified in Demographic and Health Surveys. A country’s exposure to the Mexico City Policy was considered high (or low) if its per capita assistance from the United States for family planning and reproductive health was above (or below) the median among study countries before the policy’s reinstatement in 2001. Using logistic regression and a difference-in-difference design, the authors estimated the differential change in the odds of having an induced abortion among women in high exposure countries relative to low exposure countries when the policy was reinstated. Findings The study included 261 116 women aged 15 to 44 years. A comparison of 1994–2000 with 2001–2008 revealed an adjusted odds ratio for induced abortion of 2.55 for high-exposure countries versus low-exposure countries under the policy (95% confidence interval, CI: 1.76–3.71). There was a relative decline in the use of modern contraceptives in the high-exposure countries over the same time period. Conclusion The induced abortion rate in sub-Saharan Africa rose in high-exposure countries relative to low-exposure countries when the Mexico City Policy was reintroduced. Reduced financial support for family planning may have led women to substitute abortion for contraception. Regardless of one’s views about abortion, the findings may have important implications for public policies governing abortion. PMID:22271944

  20. Garrett County Aids AID

    ERIC Educational Resources Information Center

    Appalachia, 1975

    1975-01-01

    Garrett County, Maryland volunteered to act as a pre-overseas learning laboratory for AID (Agency for International Development) interns who practiced data collection and planning techniques with the help of local citizenry. (JC)

  1. Virological and Immunological Characterization of Novel NYVAC-Based HIV/AIDS Vaccine Candidates Expressing Clade C Trimeric Soluble gp140(ZM96) and Gag(ZM96)-Pol-Nef(CN54) as Virus-Like Particles

    PubMed Central

    Perdiguero, Beatriz; Gómez, Carmen Elena; Cepeda, Victoria; Sánchez-Sampedro, Lucas; García-Arriaza, Juan; Mejías-Pérez, Ernesto; Jiménez, Victoria; Sánchez, Cristina; Sorzano, Carlos Óscar S.; Oliveros, Juan Carlos; Delaloye, Julie; Roger, Thierry; Calandra, Thierry; Asbach, Benedikt; Wagner, Ralf; Kibler, Karen V.; Jacobs, Bertram L.; Pantaleo, Giuseppe

    2014-01-01

    ABSTRACT The generation of vaccines against HIV/AIDS able to induce long-lasting protective immunity remains a major goal in the HIV field. The modest efficacy (31.2%) against HIV infection observed in the RV144 phase III clinical trial highlighted the need for further improvement of HIV vaccine candidates, formulation, and vaccine regimen. In this study, we have generated two novel NYVAC vectors, expressing HIV-1 clade C gp140(ZM96) (NYVAC-gp140) or Gag(ZM96)-Pol-Nef(CN54) (NYVAC-Gag-Pol-Nef), and defined their virological and immunological characteristics in cultured cells and in mice. The insertion of HIV genes does not affect the replication capacity of NYVAC recombinants in primary chicken embryo fibroblast cells, HIV sequences remain stable after multiple passages, and HIV antigens are correctly expressed and released from cells, with Env as a trimer (NYVAC-gp140), while in NYVAC-Gag-Pol-Nef-infected cells Gag-induced virus-like particles (VLPs) are abundant. Electron microscopy revealed that VLPs accumulated with time at the cell surface, with no interference with NYVAC morphogenesis. Both vectors trigger specific innate responses in human cells and show an attenuation profile in immunocompromised adult BALB/c and newborn CD1 mice after intracranial inoculation. Analysis of the immune responses elicited in mice after homologous NYVAC prime/NYVAC boost immunization shows that recombinant viruses induced polyfunctional Env-specific CD4 or Gag-specific CD8 T cell responses. Antibody responses against gp140 and p17/p24 were elicited. Our findings showed important insights into virus-host cell interactions of NYVAC vectors expressing HIV antigens, with the activation of specific immune parameters which will help to unravel potential correlates of protection against HIV in human clinical trials with these vectors. IMPORTANCE We have generated two novel NYVAC-based HIV vaccine candidates expressing HIV-1 clade C trimeric soluble gp140 (ZM96) and Gag(ZM96)-Pol

  2. β-Casein aids in the formation of a sodium caprate-induced β-lactoglobulin B gel.

    PubMed

    Yuno-Ohta, Naoko; Corredig, Milena

    2011-06-01

    The effects of sodium caprate on the gelation of β-lactoglobulin B and a β-lactoglobulin B/β-casein mixture at ambient temperature were investigated using ultrasonic spectroscopy and rheology. A 12% β-lactoglobulin B solution gelled in the presence of 3.6% sodium caprate. Conversely, sodium caprate did not induce the formation of a gel when β-casein was in isolation, regardless of the protein concentration. Although a 6% β-lactoglobulin B/1.8% sodium caprate solution did not form a gel, a gel was formed when 6% β-casein was added to a mixture containing 6% β-lactoglobulin B and 3.6% sodium caprate. This gel showed comparable rheological properties to that of a gel containing 12% β-lactoglobulin B. The results clearly indicated that β-casein aids in the gelation of a β-lactoglobulin B/sodium caprate mixture, when the concentration of β-lactoglobulin B is insufficient to allow for gelation. It appears that β-casein self-aggregation is also inhibited. Therefore, it could be concluded that β-casein can be used as a texture modifier for β-lactoglobulin gelation induced by sodium caprate.

  3. Knockdown of Unconventional Myosin ID Expression Induced Morphological Change in Oligodendrocytes

    PubMed Central

    Yamazaki, Reiji; Ishibashi, Tomoko; Baba, Hiroko

    2016-01-01

    Myelin is a special multilamellar structure involved in various functions in the nervous system. In the central nervous system, the oligodendrocyte (OL) produces myelin and has a unique morphology. OLs have a dynamic membrane sorting system associated with cytoskeletal organization, which aids in the production of myelin. Recently, it was reported that the assembly and disassembly of actin filaments is crucial for myelination. However, the partner myosin molecule which associates with actin filaments during the myelination process has not yet been identified. One candidate myosin is unconventional myosin ID (Myo1d) which is distributed throughout central nervous system myelin; however, its function is still unclear. We report here that Myo1d is expressed during later stages of OL differentiation, together with myelin proteolipid protein (PLP). In addition, Myo1d is distributed at the leading edge of the myelin-like membrane in cultured OL, colocalizing mainly with actin filaments, 2′,3′-cyclic nucleotide phosphodiesterase and partially with PLP. Myo1d-knockdown with specific siRNA induces significant morphological changes such as the retraction of processes and degeneration of myelin-like membrane, and finally apoptosis. Furthermore, loss of Myo1d by siRNA results in the impairment of intracellular PLP transport. Together, these results suggest that Myo1d may contribute to membrane dynamics either in wrapping or transporting of myelin membrane proteins during formation and maintenance of myelin. PMID:27655972

  4. AID Targeting: Old Mysteries and New Challenges

    PubMed Central

    Chandra, Vivek; Bortnick, Alexandra; Murre, Cornelis

    2015-01-01

    Activation-induced cytidine deaminase (AID) mediates cytosine deamination and underlies two central processes in antibody diversification: somatic hypermutation and class-switch recombination. AID deamination is not exclusive to immunoglobulin loci; it can instigate DNA lesions in non-immunoglobulin genes and thus, stringent checks are in place to constrain and restrict its activity. Recent findings have provided new insights into the mechanisms that target AID activity to specific genomic regions, revealing an involvement for non-coding RNAs associated with polymerase pausing and with enhancer transcription as well as genomic architecture. We review these findings and integrate them into a model for multi-level regulation of AID expression and targeting in immunoglobulin and non-immunoglobulin loci. Within this framework we discuss gaps in understanding, and outline important areas of further research. PMID:26254147

  5. Differential Programming of B Cells in AID Deficient Mice

    PubMed Central

    Hogenbirk, Marc A.; Heideman, Marinus R.; Velds, Arno; van den Berk, Paul CM.; Kerkhoven, Ron M.; van Steensel, Bas; Jacobs, Heinz

    2013-01-01

    The Aicda locus encodes the activation induced cytidine deaminase (AID) and is highly expressed in germinal center (GC) B cells to initiate somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes. Besides these Ig specific activities in B cells, AID has been implicated in active DNA demethylation in non-B cell systems. We here determined a potential role of AID as an epigenetic eraser and transcriptional regulator in B cells. RNA-Seq on different B cell subsets revealed that Aicda−/− B cells are developmentally affected. However as shown by RNA-Seq, MethylCap-Seq, and SNP analysis these transcriptome alterations may not relate to AID, but alternatively to a CBA mouse strain derived region around the targeted Aicda locus. These unexpected confounding parameters provide alternative, AID-independent interpretations on genotype-phenotype correlations previously reported in numerous studies on AID using the Aicda−/− mouse strain. PMID:23922811

  6. L-glutamine Induces Expression of Listeria monocytogenes Virulence Genes.

    PubMed

    Haber, Adi; Friedman, Sivan; Lobel, Lior; Burg-Golani, Tamar; Sigal, Nadejda; Rose, Jessica; Livnat-Levanon, Nurit; Lewinson, Oded; Herskovits, Anat A

    2017-01-01

    The high environmental adaptability of bacteria is contingent upon their ability to sense changes in their surroundings. Bacterial pathogen entry into host poses an abrupt and dramatic environmental change, during which successful pathogens gauge multiple parameters that signal host localization. The facultative human pathogen Listeria monocytogenes flourishes in soil, water and food, and in ~50 different animals, and serves as a model for intracellular infection. L. monocytogenes identifies host entry by sensing both physical (e.g., temperature) and chemical (e.g., metabolite concentrations) factors. We report here that L-glutamine, an abundant nitrogen source in host serum and cells, serves as an environmental indicator and inducer of virulence gene expression. In contrast, ammonia, which is the most abundant nitrogen source in soil and water, fully supports growth, but fails to activate virulence gene transcription. We demonstrate that induction of virulence genes only occurs when the Listerial intracellular concentration of L-glutamine crosses a certain threshold, acting as an on/off switch: off when L-glutamine concentrations are below the threshold, and fully on when the threshold is crossed. To turn on the switch, L-glutamine must be present, and the L-glutamine high affinity ABC transporter, GlnPQ, must be active. Inactivation of GlnPQ led to complete arrest of L-glutamine uptake, reduced type I interferon response in infected macrophages, dramatic reduction in expression of virulence genes, and attenuated virulence in a mouse infection model. These results may explain observations made with other pathogens correlating nitrogen metabolism and virulence, and suggest that gauging of L-glutamine as a means of ascertaining host localization may be a general mechanism.

  7. L-glutamine Induces Expression of Listeria monocytogenes Virulence Genes

    PubMed Central

    Lobel, Lior; Burg-Golani, Tamar; Sigal, Nadejda; Rose, Jessica; Livnat-Levanon, Nurit; Lewinson, Oded; Herskovits, Anat A.

    2017-01-01

    The high environmental adaptability of bacteria is contingent upon their ability to sense changes in their surroundings. Bacterial pathogen entry into host poses an abrupt and dramatic environmental change, during which successful pathogens gauge multiple parameters that signal host localization. The facultative human pathogen Listeria monocytogenes flourishes in soil, water and food, and in ~50 different animals, and serves as a model for intracellular infection. L. monocytogenes identifies host entry by sensing both physical (e.g., temperature) and chemical (e.g., metabolite concentrations) factors. We report here that L-glutamine, an abundant nitrogen source in host serum and cells, serves as an environmental indicator and inducer of virulence gene expression. In contrast, ammonia, which is the most abundant nitrogen source in soil and water, fully supports growth, but fails to activate virulence gene transcription. We demonstrate that induction of virulence genes only occurs when the Listerial intracellular concentration of L-glutamine crosses a certain threshold, acting as an on/off switch: off when L-glutamine concentrations are below the threshold, and fully on when the threshold is crossed. To turn on the switch, L-glutamine must be present, and the L-glutamine high affinity ABC transporter, GlnPQ, must be active. Inactivation of GlnPQ led to complete arrest of L-glutamine uptake, reduced type I interferon response in infected macrophages, dramatic reduction in expression of virulence genes, and attenuated virulence in a mouse infection model. These results may explain observations made with other pathogens correlating nitrogen metabolism and virulence, and suggest that gauging of L-glutamine as a means of ascertaining host localization may be a general mechanism. PMID:28114430

  8. Elemental analysis of laser induced breakdown spectroscopy aided by an empirical spectral database

    SciTech Connect

    Rock, Steven; Marcano, Aristides; Markushin, Yuri; Sabanayagam, Chandran; Melikechi, Noureddine

    2008-11-01

    Laser induced breakdown spectroscopy (LIBS) is commonly used to identify elemental compositions of various samples. To facilitate this task, we propose the use of an elemental spectral library for single-pulsed, nanosecond LIBS in the spectral range 198-968 nm. This spectroscopic library is generated by measuring optical emissions from plasmas of 40 pure elements. To demonstrate the usefulness of the proposed database, we measure and analyze the LIBS spectra of pure iron and of ethanol and show that we identify these samples with a high degree of certainty.

  9. Pituitary gene expression differs in D-galactose-induced cell senescence and steroid-induced prolactinomas.

    PubMed

    Zhang, Tiehui; Zhao, Binhai; Li, Jia; Zhang, Chunlei; Li, Hongzhi; Wu, Jiang; Zhang, Shiming; Hui, Guozhen

    2015-04-01

    In general, pituitary tumors are benign with low mitotic activity. Premature senescence has been considered to be a significant mechanism underlying this uniquely benign pituitary tumor. The present study aims to compare the expression of the associated proteins involved in premature senescence pathways among normal, aging and pituitary adenoma cells. We successfully induced the aging pituitary using continuous D‑galactose (D‑gal) injection as well as a prolactin‑secreting pituitary tumor via diethylstilbestrol implants. Compared with normal pituitary cells, the aging pituitary tissues revealed increased expression of IL‑6, C/EBPβ, p53, p21 and p16 and decreased expression of pituitary tumor transforming gene. In contrast, the expression of IL‑6, p21 and p16 was decreased in pituitary tumor cells compared with normal pituitary tissues. Taken together, multiple pathways including IL‑6/C/EBPβ, p53/p21 and p16 were activated in aging pituitary cells in response to D‑gal treatment. However, all these pathways were immune to pituitary tumors treated by chronic estrogen. The findings and the involvement of cytokines in a highly prevalent natural disease model (pituitary adenomas) indicate a potential use of this pathway as a target for effective therapy for tumor silencing and prevention of adenoma progression towards malignancy.

  10. SOCS3 deficiency in leptin receptor-expressing cells mitigates the development of pregnancy-induced metabolic changesa

    PubMed Central

    Zampieri, Thais T.; Ramos-Lobo, Angela M.; Furigo, Isadora C.; Pedroso, João A.B.; Buonfiglio, Daniella C.; Donato, Jose

    2014-01-01

    Objective During pregnancy, women normally increase their food intake and body fat mass, and exhibit insulin resistance. However, an increasing number of women are developing metabolic imbalances during pregnancy, including excessive gestational weight gain and gestational diabetes mellitus. Despite the negative health impacts of pregnancy-induced metabolic imbalances, their molecular causes remain unclear. Therefore, the present study investigated the molecular mechanisms responsible for orchestrating the metabolic changes observed during pregnancy. Methods Initially, we investigated the hypothalamic expression of key genes that could influence the energy balance and glucose homeostasis during pregnancy. Based on these results, we generated a conditional knockout mouse that lacks the suppressor of cytokine signaling-3 (SOCS3) only in leptin receptor-expressing cells and studied these animals during pregnancy. Results Among several genes involved in leptin resistance, only SOCS3 was increased in the hypothalamus of pregnant mice. Remarkably, SOCS3 deletion from leptin receptor-expressing cells prevented pregnancy-induced hyperphagia, body fat accumulation as well as leptin and insulin resistance without affecting the ability of the females to carry their gestation to term. Additionally, we found that SOCS3 conditional deletion protected females against long-term postpartum fat retention and streptozotocin-induced gestational diabetes. Conclusions Our study identified the increased hypothalamic expression of SOCS3 as a key mechanism responsible for triggering pregnancy-induced leptin resistance and metabolic adaptations. These findings not only help to explain a common phenomenon of the mammalian physiology, but it may also aid in the development of approaches to prevent and treat gestational metabolic imbalances. PMID:25737950

  11. Activation-induced CD154 expression abrogates tolerance induced by apoptotic cells*

    PubMed Central

    Gurung, Prajwal; Kucaba, Tamara A.; Ferguson, Thomas A.; Griffith, Thomas S.

    2009-01-01

    The decision to generate a productive immune response or tolerance often depends on the context in which T cells first see Ag. Using a classical system of tolerance induction, we examined the immunological consequence of Ag encountered in the presence of naïve or activated apoptotic cells. Naïve apoptotic cells induced tolerance when injected i.v.; however, previously activated apoptotic cells induced immunity. Further analysis revealed a key role for CD154, as tolerance resulted after i.v. injection of either naïve or activated apoptotic CD154−/− T cells, while co-injection of an agonistic anti-CD40 mAb with naïve apoptotic T cells induced robust immunity. DC fed activated apoptotic T cells in vitro produced IL-12p40 in a CD154-dependent manner, and the use of IL-12p40−/− mice or mAb-mediated neutralization of IL-12 revealed a link between CD154, IL-12, and the ability of activated apoptotic T cells to induce immunity rather than tolerance. Collectively these results show that CD154 expression on apoptotic T cells can determine the outcome of an immune response to Ag recognized within the context of the apoptotic cells, and suggest the balance between naïve and activated apoptotic T cells may dictate whether a productive immune response is encouraged. PMID:19841180

  12. Yersinia-induced Apoptosis In Vivo Aids in the Establishment of a Systemic Infection of Mice

    PubMed Central

    Monack, Denise M.; Mecsas, Joan; Bouley, Donna; Falkow, Stanley

    1998-01-01

    Pathogenic Yersinia cause a systemic infection in mice that is dependent on the presence of a large plasmid encoding a number of secreted virulence proteins called Yops. We previously demonstrated that a plasmid-encoded Yop, YopJ, was essential for inducing apoptosis in cultured macrophages. Here we report that YopJ is a virulence factor in mice and is important for the establishment of a systemic infection. The oral LD50 for a yopJ mutant Yersinia pseudotuberculosis increases 64-fold compared with wild-type. Although the yopJ mutant strain is able to reach the spleen of infected mice, the mutant strain seldom reaches the same high bacterial load that is seen with wild-type Yersinia strain and begins to be cleared from infected spleens on day 4 after infection. Furthermore, when in competition with wild-type Yersinia in a mixed infection, the yopJ mutant strain is deficient for spread from the Peyer's patches to other lymphoid tissue. We also show that wild-type Yersinia induces apoptosis in vivo of Mac-1+ cells from infected mesenteric lymph nodes or spleens, as measured by quantitative flow cytometry of TUNEL (Tdt-mediated dUTP–biotin nick-end labeling)-positive cells. The levels of Mac-1+, TUNEL+ cells from tissue infected with the yopJ mutant strain were equivalent to the levels detected in cells from uninfected tissue. YopJ is necessary for the suppression of TNF-α production seen in macrophages infected with wild-type Yersinia, based on previous in vitro studies (Palmer, L.E., S. Hobbie, J.E. Galan, and J.B. Bliska. 1998. Mol. Microbiol. 27:953–965). We conclude here that YopJ plays a role in the establishment of a systemic infection by inducing apoptosis and that this is consistent with the ability to suppress the production of the proinflammatory cytokine tumor necrosis factor α. PMID:9841926

  13. Activation of the oxidative stress pathway by HIV-1 Vpr leads to induction of hypoxia-inducible factor 1alpha expression.

    PubMed

    Deshmane, Satish L; Mukerjee, Ruma; Fan, Shongshan; Del Valle, Luis; Michiels, Carine; Sweet, Thersa; Rom, Inna; Khalili, Kamel; Rappaport, Jay; Amini, Shohreh; Sawaya, Bassel E

    2009-04-24

    The detection of biomarkers of oxidative stress in brain tissue and cerebrospinal fluid of patients with human immunodeficiency virus, type 1 (HIV)-associated dementia indicates the involvement of stress pathways in the neuropathogenesis of AIDS. Although the biological importance of oxidative stress on events involved in AIDS neuropathogenesis and the HIV-1 proteins responsible for oxidative stress remain to be elucidated, our results point to the activation of hypoxia-inducible factor 1 (HIF-1) upon HIV-1 infection and its elevation in brain cells of AIDS patients with dementia. HIF-1 is a transcription factor that is responsive to oxygen. Under hypoxic conditions, HIF-1alpha becomes stable and translocates to the nucleus where it dimerizes with aryl hydrocarbon receptor nuclear translocator and modulates gene transcription. Activation of HIF-1 can also be mediated by the HIV-1 accessory protein Vpr. In addition, cellular components, including reactive oxygen species, contribute to the induction of HIF-1alpha. Our results show that Vpr induces reactive oxygen species by increasing H(2)O(2) production, which can contribute to HIF-1alpha accumulation. Interestingly, increased levels of HIF-1alpha stimulated HIV-1 gene transcription through HIF-1 association with HIV-1 long terminal repeat. These observations point to the existence of a positive feedback interplay between HIF-1alpha and Vpr and that, by inducing oxidative stress via activation of HIF-1, Vpr can induce HIV-1 gene expression and dysregulate multiple host cellular pathways.

  14. Constitutive expression of clathrin hub hinders elicitor-induced clathrin-mediated endocytosis and defense gene expression in plant cells.

    PubMed

    Adam, T; Bouhidel, K; Der, C; Robert, F; Najid, A; Simon-Plas, F; Leborgne-Castel, N

    2012-09-21

    Endocytosis has been recently implicated in the signaling network associated with the recognition of microbes by plants. In a previous study, we showed that the elicitor cryptogein was able to induce clathrin-mediated endocytosis (CME) in tobacco suspension cells. Herein, we investigate further the induced CME by means of a GFP-tagged clathrin light chain and a CME inhibitor, the hub domain of clathrin heavy chain. Hub constitutive expression does affect neither cell growth nor constitutive endocytosis but abolishes cryptogein-induced CME. Such an inhibition has no impact on early events in the cryptogein signaling pathway but reduces the expression of defense-associated genes.

  15. Use of Nascent RNA Microarrays to Study Inducible Gene Expression in Breast Cancer Cells

    DTIC Science & Technology

    2005-09-01

    detect inducible gene expression following activation of a transcription factor we used the p53 mutant lung cancer cell line H1299 /tsp53 expressing a...temperature-sensitive p53 gene and a control cell line H1299 /neo expressing a neo control vector. To activate the transcription factor p53 we lowered...expression in H1299 +tsp53 cells nascent RNA gene expression in H1299 +neo cells. Nascent RNA was collected 3 hours after switching to the permissive

  16. Murine Hepatic miRNAs Expression and Regulation of Gene Expression in Diet-Induced Obese Mice

    PubMed Central

    Park, Jae-Ho; Ahn, Jiyun; Kim, Suna; Kwon, Dae Young; Ha, Tae Youl

    2011-01-01

    MicroRNAs are short, non-coding RNA molecules that regulate gene expression primarily by translational repression or by messenger RNA degradation. MicroRNAs play crucial roles in various biological processes. However, little is known regarding their role in obesity. We investigated differences of microRNA (miRNA) expression in liver tissue from diet-induced obese mice and potential effects of them on gene and protein expression. We used a miRNA microarray and quantitative RT-PCR to determine miRNA expression in murine liver tissue. Gene and protein expression were determined by qRT-PCR and Western blot analysis. Effects of miRNA by knock-down using RNAi or overexpression on putative target genes and/or proteins in a murine hepatic cell line were also investigated. MicroRNA array and qRT-PCR analsysis revealed that > 50 miRNAs were down- or upregulated more than 2-fold in the liver of diet-induced obese mice. While changes in expression of many genes were observed at the mRNA level, some were only altered at the protein level. Overexpression or knock-down of miR-107 in murine hepatic cells revealed that the expression of its putative target, fatty acid synthase, was dramatically decreased or increased, respectively. In conclusion, more than 50 hepatic miRNAs were dysregulated in diet-induced obese mice. Some of them regulate protein expression at translation level and others regulate mRNA expression at transcriptional level. MiR-107 is downregulated while FASN, a putative target of miR-107, was increased in diet-induced obese mice. These findings provide the evidence of the correlation of miRNAs and their targets in diet-induced obese mice. PMID:21120623

  17. Reactive oxygen species induce procalcitonin expression in trigeminal ganglia glia

    PubMed Central

    Raddant, Ann C.; Russo, Andrew F.

    2014-01-01

    Objective To examine calcitonin gene-related peptide (CGRP) gene expression under inflammatory conditions using trigeminal ganglia organ cultures as an experimental system. These cultures have increased proinflammatory signaling that may mimic neurogenic inflammation in the migraine state. Background The trigeminal nerve sends peripheral pain signals to the central nervous system during migraine. Understanding the dynamic processes that occur within the trigeminal nerve and ganglion may provide insights into events that contribute to migraine pain. A neuropeptide of particular interest is CGRP, which can be elevated and play a causal role in migraine. However, most studies have overlooked a second splice product of the CALCA gene, which encodes calcitonin (CT), a peptide hormone involved in calcium homeostasis. Importantly, a precursor form of calcitonin called procalcitonin (proCT) can act as a partial agonist at the CGRP receptor and elevated proCT has recently been reported during migraine. Methods We used a trigeminal ganglion whole organ explant model, which has previously been demonstrated to induce pro-inflammatory agents in vitro. Quantitative PCR and immunohistochemistry were used to evaluate changes in mRNA and protein levels of CGRP and proCT. Results Whole mouse trigeminal ganglia cultured for 24 h showed a 10-fold increase in CT mRNA, with no change in CGRP mRNA. A similar effect was observed in ganglia from adult rats. ProCT immunoreactivity was localized in glial cells. Cutting the tissue blunted the increase in CT, suggesting that induction required the close environment of the intact ganglia. Consistent with this prediction, there were increased reactive oxygen species in the ganglia and the elevated CT mRNA was reduced by antioxidant treatment. Surprisingly, reactive oxygen species were increased in neurons, not glia. Conclusions These results demonstrate that reactive oxygen species can activate proCT expression from the CGRP gene in trigeminal

  18. Earth's Core Formation Aided by Flow Channelling Induced by Rayleigh-Taylor Instabilities

    NASA Astrophysics Data System (ADS)

    Golabek, G.; Tackley, P. J.; Schmeling, H.

    2007-12-01

    The core formation process remains poorly known. Isotopic constraints by Hf/W systematics indicate a fast process which was largely completed within 33 Ma for the Earth. An unstable gravitational configuration of a dense molten metallic layer overlying a cold chondritic protocore is predicted by most studies for the time a planetary embryo reaches Mars-size. This leads to the formation of a Rayleigh-Taylor instability. We propose the application of Stevenson's (1989) stress-induced melt channelling mechanism in the region surrounding an incipient iron diapir. We therefore perform numerical experiments solving the two-phase, two compositions flow equations within a 2D rectangular box or 3D cuboid with symmetrical boundary conditions. We apply the Compaction Boussinesq Approximation (CBA) and include a depth-dependent gravity. For simplicity we use a constant viscosity for the solid phase and melt-fraction dependent rheology for the partially molten region around the diapir. A systematic investigation of the physical conditions under which the melt channels can form is being performed in 2D and 3D, and results are being compared to the isotopic time scale of core formation and applied to the early Earth. As a result, for sufficiently small retention numbers iron-rich melt channels develop within a region of approximately twice the diapir's size. This could lead to effective draining of the surrounding region and might initiate cascading daughter diapirs. The region of the protocore drained by this cascading mechanism is expected to significantly increase with depth, and thus proposes an effective mechanism to extract iron melt also from deeper parts of the initially chondritic protocore. This mechanism could effectively enhance melt accumulation in the Earth's protocore, accelerate the process of core formation and affect the metal-silicate equilibration in the deep planetary interior prior the Moon-forming giant impact. Therefore the channelling mechanism could also

  19. Earth's core formation aided by flow channelling instabilities induced by iron diapirs

    NASA Astrophysics Data System (ADS)

    Golabek, Gregor J.; Schmeling, Harro; Tackley, Paul J.

    2008-07-01

    The core formation mechanism remains poorly known. An unstable gravitational configuration of a dense molten metallic layer overlying a cold chondritic protocore is predicted by most studies, which leads to the formation of a Rayleigh-Taylor (RT) instability. Recent results [Dahl, T.W., 2005. Turbulent mixing during planet accretion and core formation: Interpretation of the Hf/W chronometer and implications for the age of the Moon. M. Sc. Thesis, University of Copenhagen.] indicate that additionally, iron cores of predifferentiated planetesimals are also able to plunge mostly intact into the cold protocore and create large iron diapirs. For both scenarios we propose the application of the stress-induced melt channelling mechanism [Stevenson, D.J., 1989. Spontaneous small-scale melt segregation in partial melts undergoing deformation. Geophys. Res. Lett. 16, 1,067-1,070] in the region surrounding an incipient iron diapir. We therefore perform numerical experiments solving the two-phase, two composition flow equations within a 2D rectangular box with symmetrical boundary conditions. We apply the Compaction Boussinesq Approximation (CBA) and include a depth-dependent gravity. For simplicity we use a constant viscosity for the solid phase and a melt fraction dependent rheology for the partially molten region around the diapir. We investigate the physical conditions under which the melt channels can form and whether they are applicable to the early Earth. As a result, for sufficiently small melt retention numbers iron-rich melt channels develop within a region of approximately twice the diapir's size. This could lead to effective draining of the surrounding region and might initiate cascading daughter diapirs. The region of the protocore drained by this cascading mechanism is expected to significantly increase with depth, and thus indicates an effective mechanism to also extract iron melt from deeper parts of the initially chondritic protocore. This mechanism could

  20. Therapeutical Neurotargeting via Magnetic Nanocarrier: Implications to Opiate-Induced Neuropathogenesis and NeuroAIDS.

    PubMed

    Sagar, Vidya; Pilakka-Kanthikeel, Sudheesh; Atluri, Venkata S R; Ding, Hong; Arias, Adriana Y; Jayant, Rahul D; Kaushik, Ajeet; Nair, Madhavan

    2015-10-01

    Magnetite (Fe3O4) is the most commonly and extensively explored magnetic nanoparticles (MNPs) for drug-targeting and imaging in the field of biomedicine. Nevertheless, its potential application as safe and effective drug-carrier for CNS (Central Nervous System) anomalies is very limited. Previous studies have shown an entangled epidemic of opioid use and HIV infection and increased neuropathogenesis. Opiate such as morphine, heroine, etc. are used frequently as recreational drugs. Existing treatments to alleviate the action of opioid are less effective at CNS level due to impermeability of therapeutic molecules across brain barriers. Thus, development of an advanced nanomedicine based approach may pave the way for better treatment strategies. We herein report magnetic nanoformulation of a highly selective and potent morphine antagonist, CTOP (D-Pen-Cys-Tyr-DTrp-Orn-Thr-Pen-Thr-NH2), which is impenetrable to the brain. MNPs, synthesized in size range from 25 to 40 nm, were characterized by Transmission electron microscopy and assembly of MNPs-CTOP nanoformulations were confirmed by FTIR spectroscopy and fluorescent detection. Flow-cytometry analysis showed that biological efficacy of this nanoformulation in prevention of morphine induced apoptosis in peripheral blood mononuclear cells remains equivalent to that of free CTOP. Similarly, confocal microscopy reveals comparable efficacy of free and MNPs bound CTOP in protecting modulation of neuronal dendrite and spine morphology during morphine exposure and morphine-treated HIV infection. Further, typical transmigration assay showed increased translocation of MNPs across in vitro blood-brain barrier upon exposure of external magnetic force where barrier integrity remains unaltered. Thus, the developed nanoformulation could be effective in targeting brain by application of external magnetic force to treat morphine addiction in HIV patients.

  1. In type 1 diabetics, high-dose biotin may compensate for low hepatic insulin exposure, promoting a more normal expression of glycolytic and gluconeogenic enyzymes and thereby aiding glycemic control.

    PubMed

    McCarty, Mark F

    2016-10-01

    In type 1 diabetics, hepatic exposure to insulin is chronically subnormal even in the context of insulin therapy; as a result, expression of glycolytic enzymes is decreased, and that of gluconeogenic enzymes is enhanced, resulting in a physiologically inappropriate elevation of hepatic glucose output. Subnormal expression of glucokinase (GK) is of particular importance in this regard. Possible strategies for correcting this perturbation of hepatic enzyme expression include administration of small molecule allosteric activators of GK, as well as a procedure known as chronic intermittent intravenous insulin therapy (CIIIT); however, side effects accompany the use of GK activators, and CIIIT is time and labor intensive. Alternatively, administration of high-dose biotin has potential for modulating hepatic enzyme expression in a favorable way. Studies in rodents and in cultured hepatocytes demonstrate that, in the context of low insulin exposure, supra-physiological levels of biotin induce increased expression of GK while suppressing that of the key gluconeogenic enzyme phosphoenolpyruvate carboxykinase. These effects may be a downstream consequence of the fact that biotin down-regulates mRNA expression of FOXO1; insulin's antagonism of the activity of this transcription factor is largely responsible for its modulatory impact on hepatic glycolysis and gluconeogenesis. Hence, high-dose biotin may compensate for subnormal insulin exposure by suppressing FOXO1 levels. High-dose biotin also has the potential to oppose hepatic steatosis by down-regulating SREBP-1 expression. Two pilot trials of high-dose biotin (16 or 2mg per day) in type 1 diabetics have yielded promising results. There is also some reason to suspect that high-dose biotin could aid control of diabetic neuropathy and nephropathy via its stimulatory effect on cGMP production. Owing to the safety, good tolerance, moderate expense, and current availability of high-dose biotin, this strategy merits more

  2. Characterization of melanin-concentrating hormone (MCH) and its receptor in chickens: Tissue expression, functional analysis, and fasting-induced up-regulation of hypothalamic MCH expression.

    PubMed

    Cui, Lin; Lv, Can; Zhang, Jiannan; Mo, Chunheng; Lin, Dongliang; Li, Juan; Wang, Yajun

    2017-06-05

    Melanin-concentrating hormone (MCH) is a neuropeptide expressed in the brain and exerts its actions through interaction with the two known G protein-coupled receptors, namely melanin-concentrating hormone receptor 1 and 2 (MCHR1 and MCHR2) in mammals. However, the information regarding the expression and functionality of MCH and MCHR(s) remains largely unknown in birds. In this study, using RT-PCR and RACE PCR, we amplified and cloned a MCHR1-like receptor, which is named cMCHR4 according to its evolutionary origin, and a MCHR2 from chicken brain. The cloned cMCHR4 was predicted to encode a receptor of 367 amino acids, which shares high amino acid identities with MCHR4 of ducks (90%), western painted turtles (85%), and coelacanths (77%), and a comparatively low identity to human MCHR1 (58%) and MCHR2 (38%), whereas chicken MCHR2 encodes a putative C-terminally truncated receptor and is likely a pseudogene. Using cell-based luciferase reporter assays or Western blot, we further demonstrated that chicken (and duck) MCHR4 could be potently activated by chicken MCH1-19, and its activation can elevate calcium concentration and activate MAPK/ERK and cAMP/PKA signaling pathways, indicating an important role of MCHR4 in mediating MCH actions in birds. Quantitative real-time PCR revealed that both cMCH and cMCHR4 mRNA are expressed in various brain regions including the hypothalamus, and cMCH expression in the hypothalamus of 3-week-old chicks could be induced by 36-h fasting, indicating that cMCH expression is correlated with energy balance. Taken together, characterization of chicken MCH and MCHR4 will aid to uncover the conserved roles of MCH across vertebrates.

  3. Earth's core formation aided by flow channelling instabilities induced by iron diapirs

    NASA Astrophysics Data System (ADS)

    Golabek, G. J.; Tackley, P. J.; Schmeling, H.

    2008-09-01

    Abstract The core formation process remains poorly known. Isotopic constraints by Hf/W systematics indicate a fast process which was largely completed within 33 Ma for the Earth. An unstable gravitational configuration of dense molten metallic ponds overlying a chondritic protocore is predicted by most studies for the time a planetary embryo reaches Marssize. This leads to the formation of Rayleigh-Taylor instabilities. We propose the application of Stevenson's (1989) [1] stress-induced melt channelling mechanism in the regions surrounding incipient iron diapirs. We therefore perform numerical experiments solving the two-phase, two compositions flow equations within a 2D rectangular box or 3D cuboid with symmetrical boundary conditions. We apply the Compaction Boussinesq Approximation (CBA) and include a depth-dependent gravity. For simplicity we use a constant viscosity for the solid phase and meltfraction dependent rheology for the partially molten region around the diapir. We investigate the development of the channelling instability in cases with and without interaction with surrounding diapirs. In interactive cases we vary the distance between the diapir centres between 1 and 5 diapir radii and apply pseudoplasticity with power law factors between 1 and 6. As a result for single diapirs we observe for sufficiently small retention numbers the development of iron-rich melt channels within a region of approximately twice the diapir's size. This could lead to effective draining of the surrounding region and might initiate cascading daughter diapirs or iron dykes. For small distances between interactive diapirs the channelling mechanism is delayed for several Million years and preferentially develops in directions pointing away from the diapirs or in the area between them, whereas plastic effects seem to have negligible influence on the channel formation. The iron channels propose an effective mechanism to extract iron melt also from deeper parts of the initially

  4. Earth's core formation aided by flow channelling instabilities induced by iron diapirs

    NASA Astrophysics Data System (ADS)

    Golabek, G. J.; Tackley, P. J.; Schmeling, H.

    2008-09-01

    The core formation process remains poorly known. Isotopic constraints by Hf/W systematics indicate a fast process which was largely completed within 33 Ma for the Earth. An unstable gravitational configuration of dense molten metallic ponds overlying a chondritic protocore is predicted by most studies for the time a planetary embryo reaches Mars-size. This leads to the formation of Rayleigh-Taylor instabilities. We propose the application of Stevenson's (1989) stress-induced melt channelling mechanism in the regions surrounding incipient iron diapirs. We therefore perform numerical experiments solving the two-phase, two compositions flow equations within a 2D rectangular box or 3D cuboid with symmetrical boundary conditions. We apply the Compaction Boussinesq Approximation (CBA) and include a depth-dependent gravity. For simplicity we use a constant viscosity for the solid phase and melt-fraction dependent rheology for the partially molten region around the diapir. We investigate the development of the channelling instability in cases with and without interaction with surrounding diapirs. In interactive cases we vary the distance between the diapir centres between 1 and 5 diapir radii and apply pseudoplasticity with power law factors between 1 and 6. As a result for single diapirs we observe for sufficiently small retention numbers the development of iron-rich melt channels within a region of approximately twice the diapir's size. This could lead to effective draining of the surrounding region and might initiate cascading daughter diapirs or iron dykes. For small distances between interactive diapirs the channelling mechanism is delayed for several Million years and preferentially develops in directions pointing away from the diapirs or in the area between them, whereas plastic effects seem to have negligible influence on the channel formation. The iron channels propose an effective mechanism to extract iron melt also from deeper parts of the initially chondritic

  5. Hypoxia augments lipopolysaccharide-induced cytokine expression in periodontal ligament cells.

    PubMed

    Jian, Congxiang; Li, Chenjun; Ren, Yu; He, Yong; Li, Yunming; Feng, Xiaodan; Zhang, Gang; Tan, Yinghui

    2014-10-01

    Periodontitis is a chronic inflammatory disease characterized by the destruction of tooth supporting tissues. Hypoxia, the mainly changes of the plateau environment, can induce severe periodontitis by animal experiments. There is, however, very little information on hypoxia and lipopolysaccharide (LPS) induced cytokine expression in periodontal ligament (PDL) cells. In this article, we characterized hypoxia or P. gingivalis lipopolysaccharide (Pg LPS) induced tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6 expression by human periodontal ligament (hPDL) cells. We found that hypoxia augmented Pg LPS induced TNF-α, IL-1β, and IL-6 expression in hPDL cells. We also demonstrated that nuclear factor kappa B pathway was involved in hypoxia augmenting Pg LPS induced cytokine expression in hPDL cells. Thus, our results suggest that the hypoxic environment may enhance the immune function of hPDL cells that is induced by Pg LPS.

  6. SDF-1alpha is expressed in astrocytes and neurons in the AIDS dementia complex: an in vivo and in vitro study.

    PubMed

    Rostasy, Kevin; Egles, Christophe; Chauhan, Ashok; Kneissl, Michelle; Bahrani, Padmanabhan; Yiannoutsos, Constantin; Hunter, Dale D; Nath, Avindra; Hedreen, John C; Navia, Bradford A

    2003-06-01

    Recent in vitro studies suggest that the alpha chemokine stromal-derived factor-1alpha (SDF-1alpha) and its receptor CXCR-4 may contribute to neuronal apoptosis in HIV infection of the brain. The cellular and regional expression of this chemokine and its relationship to the AIDS dementia complex (ADC), however, have remained undetermined. Using immunohistochemistry and semiquantitative RT-PCR, we examined the expression of SDF-1alpha in the frontal cortex (FC), the adjacent deep white matter (DWM). and the basal ganglia (BG) of 17 patients with ADC and 5 normal controls, and the FC and temporal cortex of 6 patients with Alzheimer disease (AD). Additionally, SDF-1alpha expression was studied in 3 different neuronal cultures: differentiated SK-N-MC cells, primary human fetal neuronal, and mouse hippocampal cultures. SDF-1alpha staining was predominantly localized to astrocytes in all 3 groups in the gray matter of the FC and the BG, often in the vicinity of cortical and basal ganglia neurons, but was generally absent in the DWM. Further, the number of positive neurons was significantly greater in the BG of AIDS subjects with advanced brain disease compared to subjects with lesser disease (p = 0.029). All cultures showed prominent SDF-1alpha staining of neurons within the cytoplasm and in neurites, whereas preferential expression in GABA-ergic neurons was found in hippocampal cultures. This is the first study to show that SDF-1alpha is constitutively expressed in astrocytes of the deep and cortical gray matter as well as in neurons of the human brain. Its increased expression in basal ganglia neurons of patients with advanced HIV CNS disease suggests it may also contribute to pathogenesis.

  7. Mechanisms of Organophosphorus (OP) Injury: Sarin-Induced Hippocampal Gene Expression Changes and Pathway Perturbation

    DTIC Science & Technology

    2012-01-01

    inflammation and/or a role for prostanoid signaling in activity- dependent plasticity. Expression Ptgs2 can be induced by cytokines and mitogens, which...probably by ATM (ataxia telangiectasia mutated) or ATR (ataxia telangiectasia and Rad3 related). Per1 negatively regulates transactivation induced by...i AFRL-RH-FS-TR-2012-0008 Mechanisms of Organophosphorus (OP) Injury: Sarin- Induced Hippocampal Gene Expression Changes and Pathway

  8. Highly inducible expression from vectors containing multiple GRE's in CHO cells overexpressing the glucocorticoid receptor.

    PubMed Central

    Israel, D I; Kaufman, R J

    1989-01-01

    A conditional glucocorticoid-responsive expression vector system is described for highly inducible expression of heterologous genes in mammalian cells. This host-vector system requires high level expression of the glucocorticoid receptor (GR) protein in the host cell and multiple copies of the receptor binding site within the expression vector. Transfection and selection of Chinese hamster ovary cells with expression vectors encoding the rat GR yielded cell lines which express functional receptor at high levels. Insertion of multiple copies of the MMTV enhancer (glucocorticoid responsive element, GRE) into an Adenovirus major late promoter (AdMLP) based expression vector yielded greater than 1000-fold inducible expression by dexamethasone (dex) in transient DNA transfection assays. The induced expression level was 7-fold greater than that obtained with an AdMLP based vector containing an SV40 enhancer, but lacking GRE's. Vectors containing the SV40 enhancer in combination with multiple GRE's exhibited elevated basal expression in the absence of dex, but retained inducibility in both transient assays and after integration and amplification in the CHO genome. This expression system should be of general utility for studying gene regulation and for expressing heterologous genes in a regulatable fashion. Images PMID:2546123

  9. Lipopolysaccharide stimulation of trophoblasts induces corticotropin-releasing hormone expression through MyD88.

    PubMed

    Uh, Andy; Nicholson, Richard C; Gonzalez, Gustavo V; Simmons, Charles F; Gombart, Adrian; Smith, Roger; Equils, Ozlem

    2008-09-01

    We hypothesized that intrauterine infection may lead to placental corticotrophin-releasing hormone (CRH) expression via Toll-like receptor signaling. To test this hypothesis JEG3 cells were stimulated with lipopolysaccharide (LPS), chlamydial heat shock protein 60, and interleukin (IL)-1. CRH expression was assessed by reverse transcription polymerase chain reaction (RT-PCR). The signaling mechanisms that were involved were examined in transient transfection experiments with beta-galactosidase, CRH-luciferase, cyclic adenosine monophosphate (AMP) response element-luciferase, dominant-negative (DN)-myeloid differentiation primary response gene (MyD88) and DN-toll-IL-1-receptor domain containing adapter inducing interferon (TRIF) vectors. Luciferase activity was determined by luciferase assay. Beta-galactosidase assay was performed to determine transfection efficiency. LPS, chlamydial heat shock protein 60, and IL-1 stimulation led to CRH expression in the JEG3 cells. LPS-induced CRH expression was not due to the autocrine effect of LPS-induced IL-1 because the supernatant from LPS-conditioned JEG3 cells did not induce CRH expression in the naïve cells. DN-MyD88, but not DN-TRIF, blocked the LPS-induced CRH expression. The cAMP response element did not play a role in LPS-induced CRH expression. Toll-like receptor signaling 4 may induce placental CRH expression through MyD88.

  10. Large-scale gene expression profiling data for the model moss Physcomitrella patens aid understanding of developmental progression, culture and stress conditions.

    PubMed

    Hiss, Manuel; Laule, Oliver; Meskauskiene, Rasa M; Arif, Muhammad A; Decker, Eva L; Erxleben, Anika; Frank, Wolfgang; Hanke, Sebastian T; Lang, Daniel; Martin, Anja; Neu, Christina; Reski, Ralf; Richardt, Sandra; Schallenberg-Rüdinger, Mareike; Szövényi, Peter; Tiko, Theodhor; Wiedemann, Gertrud; Wolf, Luise; Zimmermann, Philip; Rensing, Stefan A

    2014-08-01

    The moss Physcomitrella patens is an important model organism for studying plant evolution, development, physiology and biotechnology. Here we have generated microarray gene expression data covering the principal developmental stages, culture forms and some environmental/stress conditions. Example analyses of developmental stages and growth conditions as well as abiotic stress treatments demonstrate that (i) growth stage is dominant over culture conditions, (ii) liquid culture is not stressful for the plant, (iii) low pH might aid protoplastation by reduced expression of cell wall structure genes, (iv) largely the same gene pool mediates response to dehydration and rehydration, and (v) AP2/EREBP transcription factors play important roles in stress response reactions. With regard to the AP2 gene family, phylogenetic analysis and comparison with Arabidopsis thaliana shows commonalities as well as uniquely expressed family members under drought, light perturbations and protoplastation. Gene expression profiles for P. patens are available for the scientific community via the easy-to-use tool at https://www.genevestigator.com. By providing large-scale expression profiles, the usability of this model organism is further enhanced, for example by enabling selection of control genes for quantitative real-time PCR. Now, gene expression levels across a broad range of conditions can be accessed online for P. patens.

  11. Jasmonates induce nonapoptotic death in high-resistance mutant p53-expressing B-lymphoma cells

    PubMed Central

    Fingrut, Orit; Reischer, Dorit; Rotem, Ronit; Goldin, Natalia; Altboum, Irit; Zan-Bar, Israel; Flescher, Eliezer

    2005-01-01

    Mutations in p53, a tumor suppressor gene, occur in more than half of human cancers. Therefore, we tested the hypothesis that jasmonates (novel anticancer agents) can induce death in mutated p53-expressing cells. Two clones of B-lymphoma cells were studied, one expressing wild-type (wt) p53 and the other expressing mutated p53. Jasmonic acid and methyl jasmonate (0.25–3 mM) were each equally cytotoxic to both clones, whereas mutant p53-expressing cells were resistant to treatment with the radiomimetic agent neocarzinostatin and the chemotherapeutic agent bleomycin. Neocarzinostatin and bleomycin induced an elevation in the p53 levels in wt p53-expressing cells, whereas methyl jasmonate did not. Methyl jasmonate induced mostly apoptotic death in the wt p53-expressing cells, while no signs of early apoptosis were detected in mutant p53-expressing cells. In contrast, neocarzinostatin and bleomycin induced death only in wt p53-expressing cells, in an apoptotic mode. Methyl jasmonate induced a rapid depletion of ATP in both clones. In both clones, oligomycin (a mitochondrial ATP synthase inhibitor) did not increase ATP depletion induced by methyl jasmonate, whereas inhibition of glycolysis with 2-deoxyglucose did. High glucose levels protected both clones from methyl jasmonate-induced ATP depletion (and reduced methyl jasmonate-induced cytotoxicity), whereas high levels of pyruvate did not. These results suggest that methyl jasmonate induces ATP depletion mostly by compromising oxidative phosphorylation in the mitochondria. In conclusion, jasmonates can circumvent the resistance of mutant p53-expressing cells towards chemotherapy by inducing a nonapoptotic cell death. PMID:16170329

  12. C/EBPβ Mediates TNF-α-Induced Cancer Cell Migration by Inducing MMP Expression Dependent on p38 MAPK.

    PubMed

    Xia, Peiyi; Zhang, Rui; Ge, Gaoxiang

    2015-12-01

    Tumor necrosis factor (TNF)-α is a pleiotropic cytokine that triggers cell proliferation, cell death, or inflammation. Besides its cytotoxic effect on cancer cells, TNF-α exerts tumor promoting activity. Aberrant TNF-α signaling promotes cancer cell motility, invasiveness, and enhances cancer metastasis. Exaggerated tumor cell migration, invasion, and metastasis by TNF-α has been attributed to the activation of NF-κB signaling. It is yet to be elucidated if other signaling pathways and effector molecules are involved in TNF-α-induced cancer cell migration and metastasis. Expression of C/EBPβ, a transcription factor involved in metabolism, inflammation, and cancer, is increased upon TNF-α treatment. TNF-α induces C/EBPβ expression by enhancing its transcription and protein stability. Activation of p38 MAPK, but not NF-κB or JNK, is responsible for TNF-α-induced stabilization of C/EBPβ protein. C/EBPβ is involved in TNF-α-induced cancer cell migration. Knockdown of C/EBPβ inhibits TNF-α-induced cell migration, while overexpression of C/EBPβ increases migration of cancer cells. C/EBPβ is translated into transcriptional activator LAP1 and LAP2 and transcriptional repressor LIP utilizing alternative in-frame translation start sites. Despite TNF-α induces expression of all three isoforms, LAP1/2, but not LIP, promote cancer cell migration. TNF-α induced MMP1/3 expression, which was abrogated by C/EBPβ knockdown or p38 MAPK inhibition. MMP inhibitor or knockdown of MMP1/3 diminished TNF-α- and C/EBPβ-induced cell migration. Thus, C/EBPβ mediates TNF-α-induced cancer cell migration by inducing MMP1/3 expression, and may participate in the regulation of inflammation-associated cancer metastasis. © 2015 Wiley Periodicals, Inc.

  13. Carcinogen-induced trans activation of gene expression

    SciTech Connect

    Kleinberger, T.; Flint, Y.B.; Blank, M.; Etkin, S.; Lavi, S.

    1988-03-01

    The authors report a new mechanism of carcinogen action by which the expression of several genes was concomitantly enhanced. This mechanism involved the altered activity of cellular factors which modulate the expression of genes under their control. The increased expression was regulated at least in part on the transcriptional level and did not require amplification of the overexpressed genes. This phenomenon was transient; it was apparent as early as 24 h after carcinogen treatment and declined a few days later.

  14. Carcinogen-induced trans activation of gene expression.

    PubMed Central

    Kleinberger, T; Flint, Y B; Blank, M; Etkin, S; Lavi, S

    1988-01-01

    We report a new mechanism of carcinogen action by which the expression of several genes was concomitantly enhanced. This mechanism involved the altered activity of cellular factors which modulate the expression of genes under their control. The increased expression was regulated at least in part on the transcriptional level and did not require amplification of the overexpressed genes. This phenomenon was transient; it was apparent as early as 24 h after carcinogen treatment and declined a few days later. Images PMID:2835673

  15. AID-dependent activation of a MYC transgene induces multiple myeloma in a conditional mouse model of post-germinal center malignancies.

    PubMed

    Chesi, Marta; Robbiani, Davide F; Sebag, Michael; Chng, Wee Joo; Affer, Maurizio; Tiedemann, Rodger; Valdez, Riccardo; Palmer, Stephen E; Haas, Stephanie S; Stewart, A Keith; Fonseca, Rafael; Kremer, Richard; Cattoretti, Giorgio; Bergsagel, P Leif

    2008-02-01

    By misdirecting the activity of Activation-Induced Deaminase (AID) to a conditional MYC transgene, we have achieved sporadic, AID-dependent MYC activation in germinal center B cells of Vk*MYC mice. Whereas control C57BL/6 mice develop benign monoclonal gammopathy with age, all Vk*MYC mice progress to an indolent multiple myeloma associated with the biological and clinical features highly characteristic of the human disease. Furthermore, antigen-dependent myeloma could be induced by immunization with a T-dependent antigen. Consistent with these findings in mice, more frequent MYC rearrangements, elevated levels of MYC mRNA, and MYC target genes distinguish human patients with multiple myeloma from individuals with monoclonal gammopathy, implicating a causal role for MYC in the progression of monoclonal gammopathy to multiple myeloma.

  16. Effect of dexamethasone and ACC on bacteria-induced mucin expression in human airway mucosa.

    PubMed

    Hauber, Hans-Peter; Goldmann, Torsten; Vollmer, Ekkehard; Wollenberg, Barbara; Zabel, Peter

    2007-11-01

    Gram-negative bacteria can stimulate mucin production, but excessive mucus supports bacterial infection and consequently leads to airway obstruction. Therefore, the effect of dexamethasone (DEX) and the antioxidant acetyl-cysteine (ACC) on bacteria-induced mucus expression was investigated. Explanted human airway mucosa and mucoepidermoid cells (Calu-3) were stimulated with lipopolysaccharide (LPS) or PAM3 (a synthetic lipoprotein). DEX or ACC were added to either LPS- or PAM3-stimulated airway mucosa or Calu-3 cells. Mucin mRNA expression (MUC5AC) and total mucus glycoconjugates (mucin protein) were quantified using real-time PCR and periodic acid Schiff staining. LPS and PAM3 significantly increased mucin expression in airway mucosa and Calu-3 cells (P < 0.05). DEX alone had no significant effect on mucin expression in airway mucosa or Calu-3 cells (P > 0.05). In contrast, DEX significantly reduced LPS- and PAM3-induced mucin expression in explanted mucosal tissue and mucin expression in Calu-3 cells (P < 0.05). In explanted human airway mucosa ACC alone significantly increased mucin expression (P < 0.05). In contrast, ACC significantly decreased LPS- and PAM3-induced mucin expression (P < 0.05). In Calu-3 cells ACC alone had no significant effect on mucin expression (P > 0.05). ACC decreased LPS- and PAM3-induced mucin expression, but this effect was not significant (P > 0.05). These data suggest that DEX can effectively reduce bacteria-induced mucin expression in the airways. ACC alone may increase mucin expression in noninfected mucosa, but it decreased bacteria-induced mucin expression. Further studies are warranted to evaluate whether the effect of DEX or ACC is clinically relevant.

  17. Global gene expression analyses of hematopoietic stem cell-like cell lines with inducible Lhx2 expression

    PubMed Central

    Richter, Karin; Wirta, Valtteri; Dahl, Lina; Bruce, Sara; Lundeberg, Joakim; Carlsson, Leif; Williams, Cecilia

    2006-01-01

    Background Expression of the LIM-homeobox gene Lhx2 in murine hematopoietic cells allows for the generation of hematopoietic stem cell (HSC)-like cell lines. To address the molecular basis of Lhx2 function, we generated HSC-like cell lines where Lhx2 expression is regulated by a tet-on system and hence dependent on the presence of doxycyclin (dox). These cell lines efficiently down-regulate Lhx2 expression upon dox withdrawal leading to a rapid differentiation into various myeloid cell types. Results Global gene expression of these cell lines cultured in dox was compared to different time points after dox withdrawal using microarray technology. We identified 267 differentially expressed genes. The majority of the genes overlapping with HSC-specific databases were those down-regulated after turning off Lhx2 expression and a majority of the genes overlapping with those defined as late progenitor-specific genes were the up-regulated genes, suggesting that these cell lines represent a relevant model system for normal HSCs also at the level of global gene expression. Moreover, in situ hybridisations of several genes down-regulated after dox withdrawal showed overlapping expression patterns with Lhx2 in various tissues during embryonic development. Conclusion Global gene expression analysis of HSC-like cell lines with inducible Lhx2 expression has identified genes putatively linked to self-renewal / differentiation of HSCs, and function of Lhx2 in organ development and stem / progenitor cells of non-hematopoietic origin. PMID:16600034

  18. Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo

    SciTech Connect

    Kundu, Joydeb Kumar; Liu, Lijia; Shin, Jun-Wan; Surh, Young-Joon

    2013-09-06

    Highlights: •Thymoquinone inhibits phorbol ester-induced COX-2 expression in mouse skin. •Thymoquinone attenuates phosphorylation of IκBα and DNA binding of NF-κB in mouse skin. •Thymoquinone inhibits phosphorylation of p38 MAP kinase, JNK and Akt in mouse skin. •Thymoquinone induces the expression of cytoprotective proteins in mouse skin. -- Abstract: Thymoquinone (TQ), the active ingredient of Nigella sativa, has been reported to possess anti-inflammatory and chemopreventive properties. The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory and antioxidative activities of thymoquinone in mouse skin. Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2 (COX-2). TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin. Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase, but not that of extracellular signal-regulated kinase-1/2. Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin. Taken together, the inhibitory effects of TQ on TPA-induced COX-2 expression and NF-κB activation, and its ability to induce the expression of cytoprotective proteins provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin.

  19. PSME3 induces epithelial-mesenchymal transition with inducing the expression of CSC markers and immunosuppression in breast cancer.

    PubMed

    Yi, Ziying; Yang, Dejuan; Liao, Xuelian; Guo, Fuchun; Wang, Yongsheng; Wang, Xiaoyi

    2017-09-15

    Proteasome activator subunit 3 (PSME3) plays a key role in breast cancer by regulating the cell cycle. However, its role in other pathogenesis-related features of breast cancer is unclear. In this study, we found that overexpression of PSME3 induced the epithelial-mesenchymal transition and contributed to induce the expression of cancer stem cell markers of the MDA-MB-231 cell line, thus increasing the migration, and invasion of the cells. Moreover, overexpression of PSME3 reduced the chemotaxis of CD8(+) T cells and induced the apoptosis of T cells in vitro. Furthermore, PSME3 knockdown increased the number of CD8(+) T cells in vivo and reduced the subcutaneous tumor growth rate. These findings revealed that PSME3 induces epithelial-mesenchymal transition with inducing the expression of CSC markers and influencing the tumor immune microenvironment in breast cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Correlation of EGFR, pEGFR and p16INK4 expressions and high risk HPV infection in HIV/AIDS-related squamous cell carcinoma of conjunctiva

    PubMed Central

    2014-01-01

    Background Squamous cell carcinoma of conjunctiva has increased tenfold in the era of HIV/AIDS. The disease pattern has also changed in Africa, affecting young persons, with peak age-specific incidence of 30-39 years, similar to that of Kaposi sarcoma, a well known HIV/AIDS defining neoplasm. In addition, the disease has assumed more aggressive clinical course. The contributing role of exposure to high risk HPV in the development of SCCC is still emerging. Objective The present study aimed to investigate if immunohistochemical expressions of EGFR, pEGFR and p16, could predict infection with high risk HPV in HIV-related SCCC. Methods FFPE tissue blocks of fifty-eight cases diagnosed on hematoxylin and eosin with SCCC between 2005-2011, and subsequently confirmed from medical records to be HIV positive at the department of human pathology, UoN/KNH, were used for the study. Immunohistochemistry was performed to assess the expressions of p16INK4A, EGFR and pEGFR. This was followed with semi-nested PCR based detection and sequencing of HPV genotypes. The sequences were compared with the GenBank database, and data analyzed for significant statistical correlations using SPSS 16.0. Ethical approval to conduct the study was obtained from KNH-ERC. Results Out of the fifty-eight cases of SCCC analyzed, twenty-nine (50%) had well differentiated (grade 1), twenty one (36.2%) moderately differentiated (grade 2) while eight (13.8%) had poorly differentiated (grade 3) tumours. Immunohistochemistry assay was done in all the fifty eight studied cases, of which thirty nine cases (67.2%) were positive for p16INK4A staining, forty eight cases (82.8%) for EGFR and fifty one cases (87.9%) showed positivity for p-EGFR. HPV DNA was detected in 4 out of 40 SCCC cases (10%) in which PCR was performed, with HPV16 being the only HPV sub-type detected. Significant statistical association was found between HPV detection and p16INK4 (p=0.000, at 99% C.I) and EGFR (p=0.028, at 95% C.I) expressions

  1. Induction of activation-induced cytidine deaminase by a not-directly mutagenic carcinogen: a novel potential molecular mechanism.

    PubMed

    Tatemichi, Masayuki; Hata, Harumi; Nakadate, Toshio

    2014-05-01

    The molecular mechanisms underlying the carcinogenic activity of not-directly mutagenic (Ames mutagenicity test-negative) carcinogens are not fully understood. Given recent findings that ectopic expression of activation-induced cytidine deaminase (AID) in somatic cells plays a critical role in carcinogenesis, we investigated whether several of the established not-directly mutagenic carcinogens induce AID expression. We prepared cells with stable expression of luciferase reporter gene containing the promoter of AID. We then used this system to examine the AID promoter activity of the non-genotoxic carcinogen: butyl benzyl phthalate, bisphenol A, di (2-ethylhexyl) phthalate, cadmium chloride (Cd), and butylated hydroxyanisole. Results showed that Cd increased the promoter activity of AID and actually induced AID gene expression. A not-directly mutagenic carcinogen, cadmium, has the potential to induce the AID gene, suggesting that this might represent a novel molecular mechanism of carcinogenesis of cadmium.

  2. Mifepristone-inducible transgene expression in neural progenitor cells in vitro and in vivo

    PubMed Central

    Hjelm, BE; Grunseich, C; Gowing, G; Avalos, P; Tian, J; Shelley, BC; Mooney, M; Narwani, K; Shi, Y; Svendsen, CN; Wolfe, JH; Fischbeck, KH; Pierson, TM

    2016-01-01

    Numerous gene and cell therapy strategies are being developed for the treatment of neurodegenerative disorders. Many of these strategies use constitutive expression of therapeutic transgenic proteins, and although functional in animal models of disease, this method is less likely to provide adequate flexibility for delivering therapy to humans. Ligand-inducible gene expression systems may be more appropriate for these conditions, especially within the central nervous system (CNS). Mifepristone’s ability to cross the blood–brain barrier makes it an especially attractive ligand for this purpose. We describe the production of a mifepristone-inducible vector system for regulated expression of transgenes within the CNS. Our inducible system used a lentivirus-based vector platform for the ex vivo production of mifepristone-inducible murine neural progenitor cells that express our transgenes of interest. These cells were processed through a series of selection steps to ensure that the cells exhibited appropriate transgene expression in a dose-dependent and temporally controlled manner with minimal background activity. Inducible cells were then transplanted into the brains of rodents, where they exhibited appropriate mifepristone-inducible expression. These studies detail a strategy for regulated expression in the CNS for use in the development of safe and efficient gene therapy for neurological disorders. PMID:26863047

  3. Mifepristone-inducible transgene expression in neural progenitor cells in vitro and in vivo.

    PubMed

    Hjelm, B E; Grunseich, C; Gowing, G; Avalos, P; Tian, J; Shelley, B C; Mooney, M; Narwani, K; Shi, Y; Svendsen, C N; Wolfe, J H; Fischbeck, K H; Pierson, T M

    2016-05-01

    Numerous gene and cell therapy strategies are being developed for the treatment of neurodegenerative disorders. Many of these strategies use constitutive expression of therapeutic transgenic proteins, and although functional in animal models of disease, this method is less likely to provide adequate flexibility for delivering therapy to humans. Ligand-inducible gene expression systems may be more appropriate for these conditions, especially within the central nervous system (CNS). Mifepristone's ability to cross the blood-brain barrier makes it an especially attractive ligand for this purpose. We describe the production of a mifepristone-inducible vector system for regulated expression of transgenes within the CNS. Our inducible system used a lentivirus-based vector platform for the ex vivo production of mifepristone-inducible murine neural progenitor cells that express our transgenes of interest. These cells were processed through a series of selection steps to ensure that the cells exhibited appropriate transgene expression in a dose-dependent and temporally controlled manner with minimal background activity. Inducible cells were then transplanted into the brains of rodents, where they exhibited appropriate mifepristone-inducible expression. These studies detail a strategy for regulated expression in the CNS for use in the development of safe and efficient gene therapy for neurological disorders.

  4. Ethyl pyruvate protects rats from phosgene-induced pulmonary edema by inhibiting cyclooxygenase2 and inducible nitric oxide synthase expression.

    PubMed

    Chen, Hong-li; Bai, Hua; Xi, Miao-miao; Liu, Riu; Qin, Xu-jun; Liang, Xin; Zhang, Wei; Zhang, Xiao-di; Li, Wen-li; Hai, Chun-xu

    2013-01-01

    Phosgene is a poorly water-soluble gas penetrating the lower respiratory tract which can induce acute lung injury characterized by a latent phase of fatal pulmonary edema. Pulmonary edema caused by phosgene is believed to be a consequence of oxidative stress and inflammatory responses. Ethyl pyruvate (EP) has been demonstrated to have anti-inflammatory and anti-oxidative properties in vivo and in vitro. The potential therapeutic role of EP in phosgene-induced pulmonary edema has not been addressed so far. In the present study, we aim to investigate the protective effects of EP on phosgene-induced pulmonary edema and the underlying mechanisms. Rats were administered with EP (40 mg kg(-1)) and RAW264.7 cells were also incubated with it (0, 2, 5 or 10 µm) immediately after phosgene (400 ppm, 1 min) or air exposure. Wet-to-dry lung weight ratio (W:D ratio), nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production, cyclooxygenase2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, and mitogen-activated protein kinases activities (MAPKs) were measured. Our results showed that EP treatment attenuated phosgene-induced pulmonary edema and decreased the level of NO and PGE(2) dose-dependently. Furthermore, EP significantly reduced COX-2 expression, iNOS expression and MAPK activation induced by phosgene. Moreover, specific inhibitors of MAPKs reduced COX-2 and iNOS expression induced by phosgene. These findings suggested that EP has a protective role against phosgene-induced pulmonary edema, which is mediated in part by inhibiting MAPK activation and subsequently down-regulating COX-2 and iNOS expression as well as decreasing the production of NO and PGE(2). Copyright © 2011 John Wiley & Sons, Ltd.

  5. RCP induces Slug expression and cancer cell invasion by stabilizing β1 integrin.

    PubMed

    Hwang, M H; Cho, K H; Jeong, K J; Park, Y-Y; Kim, J M; Yu, S-L; Park, C G; Mills, G B; Lee, H Y

    2017-02-23

    Rab coupling protein (RCP)-induced tumor cell migration has been implicated in tumor pathophysiology and patient outcomes. In the present study, we demonstrate that RCP stabilizes β1 integrin leading to increased β1 integrin levels and activation of a signaling cascade culminating in Slug induction, epithelial-to-mesenchymal transition and increased invasion. Ectopic expression of RCP induced Slug expression. Silencing β1 integrin efficiently inhibited RCP-induced Slug expression and subsequent cancer cell invasion. Conversely, ectopic expression of β1 integrin was sufficient to induce Slug expression. Pharmacological inhibition of integrin linked kinase (ILK), EGFR and NF-κB, as well as transfection of a dominant-negative mutant of Ras (RasN17), significantly inhibited RCP-induced Slug expression and cancer cell invasion. Strikingly, ectopic expression of RCP was sufficient to enhance metastasis of ovarian cancer cells to the lung. Collectively, we demonstrate a mechanism by which RCP promotes cancer cell aggressiveness through sequential β1 integrin stabilization, activation of an ILK/EGFR/Ras/NF-κB signaling cascade and subsequent Slug expression.

  6. RAE-1 expression is induced during experimental autoimmune encephalomyelitis and is correlated with microglia cell proliferation.

    PubMed

    Djelloul, Mehdi; Popa, Natalia; Pelletier, Florence; Raguénez, Gilda; Boucraut, José

    2016-11-01

    Retinoic acid early induced transcript-1 (RAE-1) glycoproteins are ligands of the activating immune receptor NKG2D. They are known as stress molecules induced in pathological conditions. We previously reported that progenitor cells express RAE-1 in physiological conditions and we described a correlation between RAE-1 expression and cell proliferation. In addition, we showed that Raet1 transcripts are induced in the spinal cord of experimental autoimmune encephalomyelitis (EAE) mice. EAE is a model for multiple sclerosis which is accompanied by microglia proliferation and activation, recruitment of immune cells and neurogenesis. We herein studied the time course expression of the two members of the Raet1 gene family present in C57BL/6 mice, namely Raet1d and Raet1e, in the spinal cord during EAE. We report that Raet1d and Raet1e genes are induced early upon EAE onset and reach a maximal expression at the peak of the pathology. We show that myeloid cells, i.e. macrophages as well as microglia, are cellular sources of Raet1 transcripts. We also demonstrate that only Raet1d expression is induced in microglia, whereas macrophages expressed both Raet1d and Raet1e. Furthermore, we investigated the dynamics of RAE-1 expression in microglia cultures. RAE-1 induction correlated with cell proliferation but not with M1/M2 phenotypic orientation. We finally demonstrate that macrophage colony-stimulating factor (M-CSF) is a major factor controlling RAE-1 expression in microglia.

  7. Homocysteine induces cardiac hypertrophy by up-regulating ATP7a expression

    PubMed Central

    Cao, Zhanwei; Zhang, Yanzhou; Sun, Tongwen; Zhang, Shuguang; Yu, Weiya; Zhu, Jie

    2015-01-01

    Aims: The aim of the study is to investigate the molecular mechanism by which homocysteine (Hcy) induces cardiac hypertrophy. Methods: Primary cardiomyocytes were obtained from baby Sprague-Dawley rats within 3 days after birth. Flow cytometry was used to measure cell sizes. Quantitative real-time polymerase chain reaction was performed to measure the expression of β-myosin heavy chain and atrial natriuretic peptide genes. Western blotting assay was employed to determine ATP7a protein expression. Cytochrome C oxidase (COX) activity test was used to evaluate the activity of COX. Atomic absorption spectroscopy was performed to determine copper content. siRNAs were used to target-silence the expression of ATP7a. Results: Hcy induced cardiac hypertrophy and increased the expression of cardiac hypertrophy-related genes. ATP7a was a key factor in cardiac hypertrophy induced by Hcy. Reduced ATP7a expression inhibited cardiac hypertrophy induced by Hcy. Elevated ATP7a expression induced by Hcy inhibited COX activity. Enhanced ATP7a expression inhibited COX activity by lowering intracellular copper content. Conclusions: Hcy elevates ATP7a protein expression, reduces copper content, and lowers COX activity, finally leading to cardiac hypertrophy. PMID:26722473

  8. Structural requirements of flavonoids to induce heme oxygenase-1 expression.

    PubMed

    Croft, K D; Zhang, D; Jiang, R; Ayer, A; Shengule, S; Payne, R J; Ward, N C; Stocker, R

    2017-09-29

    Population studies suggest cardiovascular health benefits of consuming fruits and vegetables rich in polyphenolic compounds such as flavonoids. We reported previously that the flavonoid quercetin protects arteries from oxidant-induced endothelial dysfunction and attenuates atherosclerosis in apolipoprotein E gene knockout mice, with induction of heme oxygenase-1 (Hmox1) playing a critical role. The present study investigated the structural requirements of flavonoids to induce Hmox1 in human aortic endothelial cells (HAEC). We identified ortho-dihydroxyl groups and an α,β-unsaturated system attached to a catechol as the key structural requirements for Hmox1 induction. Active but not inactive flavonoids had a low oxidation potential and prevented ascorbate autoxidation, suggesting that Hmox1 inducers readily undergo oxidation and that oxidized, rather than reduced, flavonoids may be the biological inducer of Hmox1. To test this hypothesis, we synthesized stable derivatives of caffeic acid (3-(3,4-dihyroxyphenyl)-2-propenoic acid) containing either ortho-dihydroxy or ortho-dioxo groups. Compared with the dihydroxy compound, the quinone analog induced Hmox1 more potently in HAEC and also provided enhanced protection to arteries of wild type animals against oxidant-induced endothelial dysfunction. In contrast, the quinone analog failed to provide protection against oxidant-induced endothelial dysfunction in arteries of Hmox1(-/-) mice, establishing a key role for Hmox1 in vascular protection. These results suggest that oxidized forms of dietary polyphenols are the likely inducers of Hmox1 and may explain in part the protective cardiovascular effects of diets rich in these compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. AID Biology: A pathological and clinical perspective.

    PubMed

    Choudhary, Meenal; Tamrakar, Anubhav; Singh, Amit Kumar; Jain, Monika; Jaiswal, Ankit; Kodgire, Prashant

    2017-09-21

    Activation-induced cytidine deaminase (AID), primarily expressed in activated mature B lymphocytes in germinal centers, is the key factor in adaptive immune response against foreign antigens. AID is responsible for producing high-affinity and high-specificity antibodies against an infectious agent, through the physiological DNA alteration processes of antibody genes by somatic hypermutation (SHM) and class-switch recombination (CSR) and functions by deaminating deoxycytidines (dC) to deoxyuridines (dU), thereby introducing point mutations and double-stranded chromosomal breaks (DSBs). The beneficial physiological role of AID in antibody diversification is outweighed by its detrimental role in the genesis of several chronic immune diseases, under non-physiological conditions. This review offers a comprehensive and better understanding of AID biology and its pathological aspects, as well as addresses the challenges involved in AID-related cancer therapeutics, based on various recent advances and evidence available in the literature till date. In this article, we discuss ways through which our interpretation of AID biology may reflect upon novel clinical insights, which could be successfully translated into designing clinical trials and improving patient prognosis and disease management.

  10. Molecular mechanism for sphingosine-induced Pseudomonas ceramidase expression through the transcriptional regulator SphR

    PubMed Central

    Okino, Nozomu; Ito, Makoto

    2016-01-01

    Pseudomonas aeruginosa, an opportunistic, but serious multidrug-resistant pathogen, secretes a ceramidase capable of cleaving the N-acyl linkage of ceramide to generate fatty acids and sphingosine. We previously reported that the secretion of P. aeruginosa ceramidase was induced by host-derived sphingolipids, through which phospholipase C-induced hemolysis was significantly enhanced. We herein investigated the gene(s) regulating sphingolipid-induced ceramidase expression and identified SphR, which encodes a putative AraC family transcriptional regulator. Disruption of the sphR gene in P. aeruginosa markedly decreased the sphingomyelin-induced secretion of ceramidase, reduced hemolytic activity, and resulted in the loss of sphingomyelin-induced ceramidase expression. A microarray analysis confirmed that sphingomyelin significantly induced ceramidase expression in P. aeruginosa. Furthermore, an electrophoretic mobility shift assay revealed that SphR specifically bound free sphingoid bases such as sphingosine, dihydrosphingosine, and phytosphingosine, but not sphingomyelin or ceramide. A β-galactosidase-assisted promoter assay showed that sphingosine activated ceramidase expression through SphR at a concentration of 100 nM. Collectively, these results demonstrated that sphingosine induces the secretion of ceramidase by promoting the mRNA expression of ceramidase through SphR, thereby enhancing hemolytic phospholipase C-induced cytotoxicity. These results facilitate understanding of the physiological role of bacterial ceramidase in host cells. PMID:27941831

  11. Development and application of an arabinose-inducible expression system by facilitating inducer uptake in Corynebacterium glutamicum.

    PubMed

    Zhang, Yun; Shang, Xiuling; Lai, Shujuan; Zhang, Guoqiang; Liang, Yong; Wen, Tingyi

    2012-08-01

    Corynebacterium glutamicum is currently used for the industrial production of a variety of biological materials. Many available inducible expression systems in this species use lac-derived promoters from Escherichia coli that exhibit much lower levels of inducible expression and leaky basal expression. We developed an arabinose-inducible expression system that contains the L-arabinose regulator AraC, the P(BAD) promoter from the araBAD operon, and the L-arabinose transporter AraE, all of which are derived from E. coli. The level of inducible P(BAD)-based expression could be modulated over a wide concentration range from 0.001 to 0.4% L-arabinose. This system tightly controlled the expression of the uracil phosphoribosyltransferase without leaky expression. When the gene encoding green fluorescent protein (GFP) was under the control of P(BAD) promoter, flow cytometry analysis showed that GFP was expressed in a highly homogeneous profile throughout the cell population. In contrast to the case in E. coli, P(BAD) induction was not significantly affected in the presence of different carbon sources in C. glutamicum, which makes it useful in fermentation applications. We used this system to regulate the expression of the odhI gene from C. glutamicum, which encodes an inhibitor of α-oxoglutarate dehydrogenase, resulting in high levels of glutamate production (up to 13.7 mM) under biotin nonlimiting conditions. This system provides an efficient tool available for molecular biology and metabolic engineering of C. glutamicum.

  12. Constitutive and inducible co-expression systems for non-viral osteoinductive gene therapy.

    PubMed

    Feichtinger, G A; Hacobian, A; Hofmann, A T; Wassermann, K; Zimmermann, A; van Griensven, M; Redl, H

    2014-02-19

    Tissue regenerative gene therapy requires expression strategies that deliver therapeutic effective amounts of transgenes. As physiological expression patterns are more complex than high-level expression of a singular therapeutic gene, we aimed at constitutive or inducible co-expression of 2 transgenes simultaneously. Co-expression of human bone morphogenetic protein 2 and 7 (BMP2/7) from constitutively expressing and doxycycline inducible plasmids was evaluated in vitro in C2C12 cells with osteocalcin reporter gene assays and standard assays for osteogenic differentiation. The constitutive systems were additionally tested in an in vivo pilot for ectopic bone formation after repeated naked DNA injection to murine muscle tissue. Inductor controlled differentiation was demonstrated in vitro for inducible co-expression. Both co-expression systems, inducible and constitutive, achieved significantly better osteogenic differentiation than single factor expression. The potency of the constitutive co-expression systems was dependent on relative expression cassette topology. In vivo, ectopic bone formation was demonstrated in 6/13 animals (46% bone formation efficacy) at days 14 and 28 in hind limb muscles as proven by in vivo µCT and histological evaluation. In vitro findings demonstrated that the devised single vector BMP2/7 co-expression strategy mediates superior osteoinduction, can be applied in an inductor controlled fashion and that its efficiency is dependent on expression cassette topology. In vivo results indicatethatco-expression of BMP2/7 applied by non-viral naked DNA gene transfer effectively mediates bone formation without the application of biomaterials, cells or recombinant growth factors, offering a promising alternative to current treatment strategies with potential for clinical translation in the future.

  13. NLRP3 Inflammasome Expression and Signaling in Human Diabetic Wounds and in High Glucose Induced Macrophages

    PubMed Central

    Zhang, Xiaotian; Dai, Jiezhi; Li, Li

    2017-01-01

    Introduction. To investigate the contribution and mechanism of NLRP3 inflammasome expression in human wounds in diabetes mellitus and in high glucose induced macrophages. Methods. In the present study, we compared the expression of NLRP3 inflammasome in debridement wound tissue from diabetic and nondiabetic patients. We also examined whether high glucose induces NLRP3 inflammasome expression in cultures THP-1-derived macrophages and the influence on IL-1β expression. Results. The expressions of NLRP3, caspase1, and IL-1β, at both the mRNA and protein level, were significantly higher in wounds of diabetic patients compared with nondiabetic wounds (P < 0.05). High glucose induced a significant increase in NLRP3 inflammasome and IL-1β expression in THP-1-derived macrophages. M1 macrophage surface marker with CCR7 was significantly upregulated after high glucose stimulation. SiRNA-mediated silencing of NLRP3 expression downregulates the expression of IL-1β. Conclusion. The higher expression of NLRP3, caspase1, and secretion of IL-1β, signaling, and activation might contribute to the hyperinflammation in the human diabetic wound and in high glucose induced macrophages. It may be a novel target to treat the DM patients with chronic wound. PMID:28164132

  14. METHYL METHANESULFONATE-INDUCED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS

    EPA Science Inventory

    METHYL METHANESULFONATE-INDUCED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS. Geremy W. Knapp, Alan Tennant, and Russell D. Owen. Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U. S. Environmental Protection Agency, Re...

  15. AGE-RELATED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS INDUCED BY MMS

    EPA Science Inventory

    Age-Related Gene Expression Changes In Human Skin Fibroblasts Induced By methyl methanesulfonate. Geremy W. Knapp, Alan H. Tennant, and Russell D. Owen. Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U. S. Environmental Prote...

  16. AGE-RELATED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS INDUCED BY MMS

    EPA Science Inventory

    Age-Related Gene Expression Changes In Human Skin Fibroblasts Induced By methyl methanesulfonate. Geremy W. Knapp, Alan H. Tennant, and Russell D. Owen. Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U. S. Environmental Prote...

  17. METHYL METHANESULFONATE-INDUCED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS

    EPA Science Inventory

    METHYL METHANESULFONATE-INDUCED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS. Geremy W. Knapp, Alan Tennant, and Russell D. Owen. Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U. S. Environmental Protection Agency, Re...

  18. Ecstasy (3,4-methylenedioxymethamphetamine) limits murine gammaherpesvirus-68 induced monokine expression.

    PubMed

    Nelson, Daniel A; Nirmaier, Jamie L; Singh, Sam J; Tolbert, Melanie D; Bost, Kenneth L

    2008-08-01

    While Ecstasy (3,4-methylenedioxymethamphetamine, MDMA) has been shown to modulate immune responses, no studies have addressed drug-induced alterations to viral infection. In this study, bone marrow-derived macrophages were exposed to MDMA, then infected with murine gammaherpesvirus-68, and the expression of monokines assessed. MDMA-induced reductions in virus-stimulated monokine mRNA expression were observed in a dose-dependent manner. In particular, IL-6 mRNA expression and secretion was significantly decreased in gammaherpesvirus-infected macrophages exposed to MDMA. Concentrations of MDMA capable of reducing monokine production did not induce significant cell death and allowed normal viral gene expression. These studies represent the first to demonstrate the ability of this drug of abuse to alter a viral-induced macrophage response.

  19. Cutin monomer induces expression of the rice OsLTP5 lipid transfer protein gene.

    PubMed

    Kim, Tae Hyun; Park, Jong Ho; Kim, Moon Chul; Cho, Sung Ho

    2008-01-01

    Treatment with the cutin monomer 16-hydroxypalmitic acid (HPA), a major component of cutin, elicited the synthesis of hydrogen peroxide (H2O2) in rice leaves and induced the expression of the lipid transfer protein gene OsLTP5. Treatment with HPA also induced expression of OsLTP1, OsLTP2, and the pathogen-related PR-10 genes to a lesser extent. The OsLTP5 transcript was expressed prominently in stems and flowers, but was barely detectable in leaves. Expression of OsLTP5 was induced in shoots in response to ABA and salicylic acid. It is proposed that HPA is perceived by rice as a signal, inducing defense reactions.

  20. Hearing Aids

    MedlinePlus

    ... hearing aid has three basic parts: a microphone, amplifier, and speaker. The hearing aid receives sound through ... to electrical signals and sends them to an amplifier. The amplifier increases the power of the signals ...

  1. AIDS (image)

    MedlinePlus

    AIDS (acquired immune deficiency syndrome) is caused by HIV (human immunodeficiency virus), and is a syndrome that ... life-threatening illnesses. There is no cure for AIDS, but treatment with antiviral medicine can suppress symptoms. ...

  2. Hearing Aids

    MedlinePlus

    ... more in both quiet and noisy situations. Hearing aids help people who have hearing loss from damage ... your doctor. There are different kinds of hearing aids. They differ by size, their placement on or ...

  3. Ebola virus infection induces irregular dendritic cell gene expression.

    PubMed

    Melanson, Vanessa R; Kalina, Warren V; Williams, Priscilla

    2015-02-01

    Filoviruses subvert the human immune system in part by infecting and replicating in dendritic cells (DCs). Using gene arrays, a phenotypic profile of filovirus infection in human monocyte-derived DCs was assessed. Monocytes from human donors were cultured in GM-CSF and IL-4 and were infected with Ebola virus Kikwit variant for up to 48 h. Extracted DC RNA was analyzed on SuperArray's Dendritic and Antigen Presenting Cell Oligo GEArray and compared to uninfected controls. Infected DCs exhibited increased expression of cytokine, chemokine, antiviral, and anti-apoptotic genes not seen in uninfected controls. Significant increases of intracellular antiviral and MHC I and II genes were also noted in EBOV-infected DCs. However, infected DCs failed to show any significant difference in co-stimulatory T-cell gene expression from uninfected DCs. Moreover, several chemokine genes were activated, but there was sparse expression of chemokine receptors that enabled activated DCs to home to lymph nodes. Overall, statistically significant expression of several intracellular antiviral genes was noted, which may limit viral load but fails to stop replication. EBOV gene expression profiling is of vital importance in understanding pathogenesis and devising novel therapeutic treatments such as small-molecule inhibitors.

  4. Progesterone induces expression of Lrp2 in the murine uterus

    PubMed Central

    Oh, Seo Jin; Kim, Tae Hoon; Lim, Jeong Mook; Jeong, Jae-Wook

    2013-01-01

    Progesterone (P4) and progesterone receptor (PR) have important functions in uterine environment. In previous studies, using high density DNA microarray analysis, we identified low density lipoprotein receptor-related protein 2 (Lrp2) is one of the genes upregulated by P4 and PR. In present studies, we examined the expression of Lrp2 through real-time PCR, in situ hybridization and immunohistochemistry by P4-PR response. Lrp2 mRNA transcript was significantly increased after P4 treatment in the luminal and glandular epithelium of the wild-type mice. However, Lrp2 expression was not observed in the progesterone receptor knock out (PRKO) mice treated with P4. The expression of Lrp2 expression is not regulated by estrogen. During early pregnancy, the expression of Lrp2 was detected at 2.5 dpc and then significantly increased at 3.5 dpc in luminal and glandular epithelium. These results suggest that Lrp2 is a novel target gene by P4 and PR. PMID:24140060

  5. Dexamethasone and N-acetyl-cysteine attenuate Pseudomonas aeruginosa-induced mucus expression in human airways.

    PubMed

    Sprenger, Lisa; Goldmann, Torsten; Vollmer, Ekkehard; Steffen, Armin; Wollenberg, Barbara; Zabel, Peter; Hauber, Hans-Peter

    2011-04-01

    Infection with Pseudomonas aeruginosa (PA) induces mucus hypersecretion in airways. Therapeutic options to attenuate excessive mucus expression are sparse. To investigate the effect of steroids and N-acetyl-cysteine (NAC) on PA-induced mucus expression. Calu-3 cells and explanted human mucosa from the upper airways were stimulated with either PA, lipopolysaccharide from alginate producing PA (smooth, sPA-LPS) or non-alginate producing PA (rough, rPA-LPS). Dexamethasone (DEX) and NAC were added in different concentrations. Expression of mucin (MUC5AC) gene and mucin protein expression was quantified using PAS (periodic acids Schiff) staining and real time PCR. PA, sPA-LPS or rPA-LPS significantly induced mucin protein and MUC5AC gene expression in Calu-3 cells and explanted mucosal tissue (P < 0.05). Both DEX and NAC significantly decreased PA-, sPA-LPS- and rPA-LPS-induced mucin protein expression both in vitro and ex vivo (P < 0.05). A significant reduction was also observed for MUC5AC gene expression with the two agents (P < 0.05) except for sPA-LPS-induced mucin gene expression in vitro (P > 0.05). Our data show that both an anti-inflammatory drug (DEX) and an anti-oxidative agent (NAC) can attenuate PA-induced mucus expression in human airways. These results support the use of steroids and NAC in clinical practice to treat PA-induced mucus hypersecretion. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo.

    PubMed

    Kundu, Joydeb Kumar; Liu, Lijia; Shin, Jun-Wan; Surh, Young-Joon

    2013-09-06

    Thymoquinone (TQ), the active ingredient of Nigella sativa, has been reported to possess anti-inflammatory and chemopreventive properties. The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory and antioxidative activities of thymoquinone in mouse skin. Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2 (COX-2). TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin. Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase, but not that of extracellular signal-regulated kinase-1/2. Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin. Taken together, the inhibitory effects of TQ on TPA-induced COX-2 expression and NF-κB activation, and its ability to induce the expression of cytoprotective proteins provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin.

  7. Estradiol-induced gene expression in largemouth bass (Micropterus salmoides)

    USGS Publications Warehouse

    Bowman, C.J.; Kroll, K.J.; Gross, T.G.; Denslow, N.D.

    2002-01-01

    Vitellogenin (Vtg) and estrogen receptor (ER) gene expression levels were measured in largemouth bass to evaluate the activation of the ER-mediated pathway by estradiol (E2). Single injections of E2 ranging from 0.0005 to 5 mg/kg up-regulated plasma Vtg in a dose-dependent manner. Vtg and ER mRNAs were measured using partial cDNA sequences corresponding to the C-terminal domain for Vtg and the ligand-binding domain of ER?? sequences. After acute E2-exposures (2 mg/kg), Vtg and ER mRNAs and plasma Vtg levels peaked after 2 days. The rate of ER mRNA accumulation peaked 36-42 h earlier than Vtg mRNA. The expression window for ER defines the primary response to E2 in largemouth bass and that for Vtg a delayed primary response. The specific effect of E2 on other estrogen-regulated genes was tested during these same time windows using differential display RT-PCR. Specific up-regulated genes that are expressed in the same time window as Vtg were ERp72 (a membrane-bound disulfide isomerase) and a gene with homology to an expressed gene identified in zebrafish. Genes that were expressed in a pattern that mimics the ER include the gene for zona radiata protein ZP2, and a gene with homology to an expressed gene found in winter flounder. One gene for fibrinogen ?? was down-regulated and an unidentified gene was transiently up-regulated after 12 h of exposure and returned to basal levels by 48 h. Taken together these studies indicate that the acute molecular response to E2 involves a complex network of responses over time. ?? 2002 Elsevier Science Ireland Ltd. All rights reserved.

  8. Neonatal hyperoxia induces alterations in neurotrophin gene expression.

    PubMed

    Sengoku, T; Murray, K M; Wilson, M E

    2016-02-01

    Each year in the United States, nearly 500,000 infants a year are born prematurely. Babies born before 35 weeks gestation are often placed on ventilators and/or given supplemental oxygen. This increase in oxygen, while critical for survival, can cause long-term damage to lungs, retinas and brains. In particular, hyperoxia causes apoptosis in neurons and alters glial activity. Brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) are members of the neurotrophin family of proteins that function to promote the growth, differentiation and development of the nervous system. We hypothesized that hyperoxia can alter the regulation of these genes and by doing so adversely affect the development of the brain. We predicted that mice exposed to hyperoxic conditions would have differences in BDNF and GDNF mRNA expression and relative level of methylated promoter regions coinciding with differences in the relative levels of DNMT1 and DNMT3a mRNA expression. To test this hypothesis, newborn C57Bl/6 mice and their littermates were placed in hyperoxic or normoxic conditions from postnatal day 7 to 12. There were significant decreases in BDNF mRNA expression in the prefrontal cortex following hyperoxia, but a significant increase in the isocortex. GDNF mRNA expression was significantly increased in both the isocortex and prefrontal cortex following hyperoxia. DNMT1 mRNA expression was significantly decreased in the isocortex but significantly increased in the prefrontal following hyperoxia. Together these data suggest that short-term exposure to hyperoxic conditions can affect the regulation and expression of BDNF and GDNF potentially leading to alterations in neural development. Published by Elsevier Ltd.

  9. Fasting-induced changes in ECL cell gene expression.

    PubMed

    Lambrecht, Nils W G; Yakubov, Iskandar; Sachs, George

    2007-10-22

    Gastric enterochromaffin-like (ECL) cells release histamine in response to food because of elevation of gastrin and neural release of pituitary adenylate cyclase-activating peptide (PACAP). Acid secretion is at a basal level in the absence of food but is rapidly stimulated with feeding. Rats fasted for 24 h showed a significant decrease of mucosal histamine despite steady-state expression of the histamine-synthesizing enzyme histidine decarboxylase (HDC). Comparative transcriptomal analysis using gene expression oligonucleotide microarrays of 95% pure ECL cells from fed and 24-h fasted rats, thereby eliminating mRNA contamination from other gastric mucosal cell types, identified significantly increased gene expression of the enzymes histidase and urocanase catabolizing the HDC substrate L-histidine but significantly decreased expression of the cellular L-histidine uptake transporter SN2 and of the vesicular monoamine transporter 2 (VMAT-2) responsible for histamine uptake into secretory vesicles. This was confirmed by reverse transcriptase-quantitative polymerase chain reaction of gastric fundic mucosal samples from fed and 24-h fasted rats. The decrease of VMAT-2 gene expression was also shown by a decrease in VMAT-2 protein content in protein extracts from fed and 24-h fasted rats compared with equal amounts of HDC protein and Na-K-ATPase alpha(1)-subunit protein content. These results indicate that rat gastric ECL cells regulate their histamine content during 24-h fasting not by a change in HDC gene or protein expression but by regulation of substrate concentration for HDC and a decreased histamine secretory pool.

  10. X-Radiation Induces Non-Small-Cell Lung Cancer Apoptosis by Upregulation of Axin Expression

    SciTech Connect

    Han Yang; Wang Yan; Xu Hongtao; Yang Lianhe; Wei Qiang; Liu Yang; Zhang Yong; Zhao Yue; Dai Shundong; Miao Yuan; Yu Juanhan; Zhang Junyi; Li, Guang; Yuan Ximing; Wang Enhua

    2009-10-01

    Purpose: Axis inhibition (Axin) is an important negative regulator of the Wnt pathway. This study investigated the relationship between Axin expression and sensitivity to X-rays in non-small-cell lung cancer (NSCLC) to find a useful indicator of radiosensitivity. Methods and Materials: Tissue from NSCLC patients, A549 cells, and BE1 cells expressing Axin were exposed to 1-Gy of X-radiation. Axin and p53 expression levels were detected by immunohistochemistry and reverse transcription-PCR. Apoptosis was determined by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) assay and FACS (fluorescence-activate cell sorter) analysis. Caspase-3 activity was determined by Western blotting. Phospho-JNK expression was determined by immunofluorescence. Results: The expression of Axin was significantly lower in NSCLC tissues than in normal lung tissues (p < 0.05). Axin expression correlates with differentiation, TNM staging, and lymph node metastasis of NSCLC (p < 0.05). Its expression negatively correlates with the expression of p53(mt) (p=0.000) and positively correlates with apoptosis (p=0.002). The prognosis of patients with high expression of Axin was better than those with low expression. X-radiation increases Axin expression in NSCLC tissue, and caspase-3 is significantly higher in samples in which Axin is increased (p < 0.05). Both X-radiation and Axin induce apoptosis of A549 and BE1 cells; however, the combination of the two enhances the apoptotic effect (p < 0.05). In A549 cells, inhibition of p53 blocks Axin-induced apoptosis, whereas in BE1 cells, the JNK pathway is required. Conclusions: Axin induces the p53 apoptotic pathway in cells where this pathway is intact; however, in cells expressing p53(mt), Axin induces apoptosis via the JNK pathway. Elevated Axin expression following X-ray exposure is a reliable indicator for determining the radiosensitivity of NSCLC.

  11. Variability of Inducible Expression across the Hematopoietic System of Tetracycline Transactivator Transgenic Mice

    PubMed Central

    Takiguchi, Megumi; Dow, Lukas E.; Prier, Julia E.; Carmichael, Catherine L.; Kile, Benjamin T.; Turner, Stephen J.; Lowe, Scott W.; Huang, David C. S.; Dickins, Ross A.

    2013-01-01

    The tetracycline (tet)-regulated expression system allows for the inducible overexpression of protein-coding genes, or inducible gene knockdown based on expression of short hairpin RNAs (shRNAs). The system is widely used in mice, however it requires robust expression of a tet transactivator protein (tTA or rtTA) in the cell type of interest. Here we used an in vivo tet-regulated fluorescent reporter approach to characterise inducible gene/shRNA expression across a range of hematopoietic cell types of several commonly used transgenic tet transactivator mouse strains. We find that even in strains where the tet transactivator is expressed from a nominally ubiquitous promoter, the efficiency of tet-regulated expression can be highly variable between hematopoietic lineages and between differentiation stages within a lineage. In some cases tet-regulated reporter expression differs markedly between cells within a discrete, immunophenotypically defined population, suggesting mosaic transactivator expression. A recently developed CAG-rtTA3 transgenic mouse displays intense and efficient reporter expression in most blood cell types, establishing this strain as a highly effective tool for probing hematopoietic development and disease. These findings have important implications for interpreting tet-regulated hematopoietic phenotypes in mice, and identify mouse strains that provide optimal tet-regulated expression in particular hematopoietic progenitor cell types and mature blood lineages. PMID:23326559

  12. HIV-1 Tat induces DNMT over-expression through microRNA dysregulation in HIV-related non Hodgkin lymphomas.

    PubMed

    Luzzi, Anna; Morettini, Federica; Gazaneo, Sara; Mundo, Lucia; Onnis, Anna; Mannucci, Susanna; Rogena, Emily A; Bellan, Cristiana; Leoncini, Lorenzo; De Falco, Giulia

    2014-01-01

    A close association between HIV infection and the development of cancer exists. Although the advent of highly active antiretroviral therapy has changed the epidemiology of AIDS-associated malignancies, a better understanding on how HIV can induce malignant transformation will help the development of novel therapeutic agents. HIV has been reported to induce the expression of DNMT1 in vitro, but still no information is available about the mechanisms regulating DNMT expression in HIV-related B-cell lymphomas. In this paper, we investigated the expression of DNMT family members (DNMT1, DNMT3a/b) in primary cases of aggressive B-cell lymphomas of HIV-positive subjects. Our results confirmed the activation of DNMT1 by HIV in vivo, and reported for the first time a marked up-regulation of DNMT3a and DNMT3b in HIV-positive aggressive B-cell lymphomas. DNMT up-regulation in HIV-positive tumors correlated with down-regulation of specific microRNAs, as the miR29 family, the miR148-152 cluster, known to regulate their expression. Literature reports the activation of DNMTs by the human polyomavirus BKV large T-antigen and adenovirus E1a, through the pRb/E2F pathway. We have previously demonstrated that the HIV Tat protein is able to bind to the pocket proteins and to inactivate their oncosuppressive properties, resulting in uncontrolled cell proliferation. Therefore, we focused on the role of Tat, due to its capability to be released from infected cells and to dysregulate uninfected ones, using an in vitro model in which Tat was ectopically expressed in B-cells. Our findings demonstrated that the ectopic expression of Tat was per se sufficient to determine DNMT up-regulation, based on microRNA down-regulation, and that this results in aberrant hypermethylation of target genes and microRNAs. These results point at a direct role for Tat in participating in uninfected B-cell lymphomagenesis, through dysregulation of the epigenetical control of gene expression.

  13. PAX2 expression by HHV-8-infected endothelial cells induced a proangiogenic and proinvasive phenotype.

    PubMed

    Fonsato, Valentina; Buttiglieri, Stefano; Deregibus, Maria Chiara; Bussolati, Benedetta; Caselli, Elisabetta; Di Luca, Dario; Camussi, Giovanni

    2008-03-01

    In the present study, we evaluated whether infection of microvascular endothelial cells (HMECs) with HHV-8 can trigger the expression of PAX2 oncogene and whether PAX2 protein is involved in HHV-8-induced transformation of HMECs. We found that HHV-8 infection induced the expression of both the PAX2 gene and PAX2 protein in HMECs but failed to induce PAX2 protein in HMECs stably transfected with PAX2 antisense (HMEC-AS). HHV-8-infected HMECs but not HMEC-AS acquired proinvasive proadhesive properties, enhanced survival and in vitro angiogenesis, suggesting a correlation between PAX2 expression and the effects triggered by HHV-8 infection. When HMEC-expressing PAX2 by stable transfection with PAX2 sense gene or by HHV-8 infection were implanted in vivo in severe combined immunodeficient (SCID) mice, enhanced angiogenesis and proliferative lesions resembling KS were observed. HHV-8-infected HMEC-AS failed to induce angiogenesis and KS-like lesions. These results suggest that the expression of PAX2 is required for the proangiogenic and proinvasive changes induced by HHV-8 infection in HMECs. In conclusion, HHV-8 infection may activate an embryonic angiogenic program in HMECs by inducing the expression of PAX2 oncogene.

  14. Modulation of gene expression from the arabinose-inducible araBAD promoter.

    PubMed

    Khlebnikov, A; Skaug, T; Keasling, Jay D

    2002-07-01

    The arabinose-inducible P(BAD) promoter suffers from all-or-none gene expression in which cells harboring the natively controlled arabinose transport gene (araE) are either induced or uninduced, the relative fraction of which is controlled by the concentration of arabinose. The population-averaged variation in expression from P(BAD) as a function of inducer concentration is proportional to the percentage of cells that are fully induced (vs. uninduced) rather than the level of expression in individual cells. Because of its undesirable effects on the expression of heterologous genes, the all-or-none phenomenon was eliminated in Escherichia coli by expression of araE from arabinose-independent (either the Lactococcus lactis constitutive or IPTG-inducible lac) promoters. In these arabinose-transport engineered cells, variation in P(BAD) expression with arabinose concentration was a result of variation of the expression level in individual cells with all cells in the population having approximately the same induction level.

  15. Rgulatable Transgene Expression for Prevention of Chemotherapy-Induced Peripheral Neuropathy.

    PubMed

    Kawata, Daisuke; Wu, Zetang

    2017-09-15

    Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating complication associated with drug treatment of cancer. For which there are no effective strategies of prevention or treatment. In this study we examined the effect of intermittent expression of neurotophin-3 (NT-3) or interleukin 10 (IL-10) from replication-defective herpes simplex virus (HSV)-based regulatable vectors delivered by subcutaneous inoculation to dorsal root ganglion (DRG) on the development of paclitaxel-induced peripheral neuropathy. We constructed two different tetracycline (tet)-on based regulatable HSV vectors, one expressing NT-3 and the other expressing IL-10, in which the transactivator expression in the tet-on system was under the control of HSV latency associated promoter 2 (LAP-2) and expression of the transgene was controlled by doxycycline (DOX). We examined the therapeutic effect of intermittent expression of the transgene in animals with paclitaxel-induced peripheral neuropathy modeled by intraperitoneal injection of paclitaxel (16 mg/kg) once a week for 5 weeks. Intermittent expression of either NT-3 or IL-10 3 days before and 1 day after paclitaxel administration protected animals against paclitaxel-induced peripheral neuropathy over the course of 5 weeks. These results suggest the potential of regulatable vectors for prevention of chemotherapy-induced peripheral neuropathy.

  16. Regulatable Transgene Expression for Prevention of Chemotherapy-Induced Peripheral Neuropathy.

    PubMed

    Kawata, Daisuke; Wu, Zetang

    2017-09-15

    Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating complication associated with drug treatment of cancer for which there are no effective strategies of prevention or treatment. In this study, we examined the effect of intermittent expression of neurotophin-3 (NT-3) or interleukin-10 (IL-10) from replication-defective herpes simplex virus (HSV)-based regulatable vectors delivered by subcutaneous inoculation to the dorsal root ganglion (DRG) on the development of paclitaxel-induced peripheral neuropathy. We constructed two different tetracycline (tet)-on-based regulatable HSV vectors, one expressing NT-3 and the other expressing IL-10, in which the transactivator expression in the tet-on system was under the control of HSV latency-associated promoter 2 (LAP-2), and expression of the transgene was controlled by doxycycline (DOX). We examined the therapeutic effect of intermittent expression of the transgene in animals with paclitaxel-induced peripheral neuropathy modeled by intraperitoneal injection of paclitaxel (16 mg/kg) once a week for 5 weeks. Intermittent expression of either NT-3 or IL-10 3 days before and 1 day after paclitaxel administration protected animals against paclitaxel-induced peripheral neuropathy over the course of 5 weeks. These results suggest the potential of regulatable vectors for prevention of chemotherapy-induced peripheral neuropathy.

  17. Glutathione peroxidase-1 inhibits UVA-induced AP-2{alpha} expression in human keratinocytes

    SciTech Connect

    Yu Lei; Venkataraman, Sujatha; Coleman, Mitchell C.; Spitz, Douglas R.; Wertz, Philip W.; Domann, Frederick E. . E-mail: frederick-domann@uiowa.edu

    2006-12-29

    In this study, we found a role for H{sub 2}O{sub 2} in UVA-induced AP-2{alpha} expression in the HaCaT human keratinocyte cell line. UVA irradiation not only increased AP-2{alpha}, but also caused accumulation of H{sub 2}O{sub 2} in the cell culture media, and H{sub 2}O{sub 2} by itself could induce the expression of AP-2{alpha}. By catalyzing the removal of H{sub 2}O{sub 2} from cells through over-expression of GPx-1, induction of AP-2{alpha} expression by UVA was abolished. Induction of transcription factor AP-2{alpha} by UVA had been previously shown to be mediated through the second messenger ceramide. We found that not only UVA irradiation, but also H{sub 2}O{sub 2} by itself caused increases of ceramide in HaCaT cells, and C2-ceramide added to cells induced the AP-2{alpha} signaling pathway. Finally, forced expression of GPx-1 eliminated UVA-induced ceramide accumulation as well as AP-2{alpha} expression. Taken together, these findings suggest that GPx-1 inhibits UVA-induced AP-2{alpha} expression by suppressing the accumulation of H{sub 2}O{sub 2}.

  18. Cytosine arabinoside induces costimulatory molecule expression in acute myeloid leukemia cells.

    PubMed

    Vereecque, R; Saudemont, A; Quesnel, B

    2004-07-01

    Chemotherapeutic drugs kill cancer cells mainly by direct cytotoxicity, but they might also induce a stronger host immune response by causing the tumor to produce costimulatory cell surface molecules like CD80. We previously reported that in myeloid leukemic cells, gamma-irradiation induced CD80 expression. In this study, we show that cytosine arabinoside (Ara-C), even at low doses, induced CD80 expression in vitro in mouse DA1-3b leukemic cells, by a mechanism that involved reactive oxygen species. In vivo experiments in the mouse DA1-3b/C3H whole-animal acute myeloid leukemia (AML) model showed that injection of Ara-C induced expression of CD80 and CD86, and decreased expression of B7-H1, indicating that chemotherapy can modify costimulatory molecule expression in vivo, in a way not necessarily observed in vitro. Mouse leukemic cells exposed in vivo to Ara-C were more susceptible to specific cytotoxic lymphocyte (CTL)-mediated killing. Ara-C also induced CD80 or CD86 expression in 14 of 21 primary cultured human AML samples. In humans being treated for AML, induction chemotherapy increased CD86 expression in the leukemic cells. These findings indicate possible synergistic strategies between CTL-based immunotherapy and chemotherapy for treatment. They also suggest an additional mechanism by which chemotherapy can eradicate AML blasts.

  19. Analysis of recombinant human tumour necrosis factor-alpha-induced CD4 expression on human eosinophils.

    PubMed Central

    Hossain, M; Okubo, Y; Horie, S; Sekiguchi, M

    1996-01-01

    We examined the hypothesis that one of the pro-inflammatory cytokines, tumour necrosis factor-alpha (TNF-alpha), could induce expression of the adhesion molecule CD4 on human eosinophils. We further examined the effector function of CD4 and the mechanisms regulating CD4 expression. Human eosinophils were cultured with various concentrations of recombinant human TNF-alpha (rhTNF-alpha) with or without various drugs for 24 hr. After culture, eosinophils were stained for CD4 using a monoclonal antibody and then analysed by flow cytometry. Eosinophil-derived neurotoxin (EDN) release as eosinophil degranulation was examined by cross-linking of CD4 on eosinophils. The rhTNF-alpha induced CD4 expression on human eosinophils in a dose- and time-dependent fashion; rhTNF-alpha-induced CD4 expression was significantly inhibited by 10(-6) M cycloheximide, 10(-8) M dexamethasone, or 10(-6) M herbimycin A. Recombinant human interferon-gamma inhibited rhTNF-alpha-induced CD4 expression in a dose-dependent manner. However, cross-linking of CD4 on eosinophils did not evoke EDN release, suggesting that newly expressed CD4 molecules on human eosinophils do not play any role in triggering degranulation. Our data indicate that TNF-alpha-induced CD4 expression on human eosinophils is dependent on protein synthesis and may be dependent on tyrosine kinase activity. PMID:8690465

  20. Regulation of c-myb expression in human neuroblastoma cells during retinoic acid-induced differentiation.

    PubMed Central

    Thiele, C J; Cohen, P S; Israel, M A

    1988-01-01

    We detected expression of the c-myb proto-oncogene, which was initially thought to be expressed in a tissue-specific manner in cells of hematopoietic lineage, in human tissues of neuronal origin. Since the level of c-myb expression declined during fetal development, we studied the regulation of its expression in human neuroblastoma cell lines induced to differentiate by retinoic acid. The expression of c-myb declined during the maturation of neuroblastoma cells, and this change was mediated by a decrease in c-myb transcription. Images PMID:3380093

  1. Salmonella induces PD-L1 expression in B cells.

    PubMed

    Lopez-Medina, Marcela; Perez-Lopez, Araceli; Alpuche-Aranda, Celia; Ortiz-Navarrete, Vianney

    2015-10-01

    Salmonella persists for a long time in B cells; however, the mechanism(s) through which infected B cells avoid effector CD8 T cell responses has not been characterized. In this study, we show that Salmonella infects and survives within all B1 and B2 cell subpopulations. B cells are infected with a Salmonella typhimurium strain expressing an ovalbumin (OVA) peptide (SIINFEKL) to evaluate whether B cells process and present Salmonella antigens in the context of MHC-I molecules. Our data showed that OVA peptides are presented by MHC class I K(b)-restricted molecules and the presented antigen is generated through proteasomal degradation and vacuolar processing. In addition, Salmonella-infected B cells express co-stimulatory molecules such as CD40, CD80, and CD86 as well as inhibitory molecules such as PD-L1. Thus, the cross-presentation of Salmonella antigens and the expression of activation molecules suggest that infected B cells are able to prime and activate specific CD8(+) T cells. However, the Salmonella infection-stimulated expression of PD-L1 suggests that the PD-1/PD-L1 pathway may be involved in turning off the cytotoxic effector response during Salmonella persistent infection, thereby allowing B cells to become a reservoir for the bacteria.

  2. Nanog expression in heart tissues induced by acute myocardial infarction.

    PubMed

    Luo, Huanhuan; Li, Qiong; Pramanik, Jogen; Luo, Jiankai; Guo, Zhikun

    2014-10-01

    Nanog is a potential stem cell marker and is considered a regeneration factor during tissue repair. In the present study, we investigated expression patterns of nanog in the rat heart after acute myocardial infarction by semi-quantitative RT-PCR, immunohistochemistry and Western blot analyses. Our results show that nanog at both mRNA and protein levels is positively expressed in myocardial cells, fibroblasts and small round cells in different myocardial zones at different stages after myocardial infarction, showing a spatio-temporal and dynamic change. After myocardial infarction, the nanog expression in fibroblasts and small round cells in the infarcted zone (IZ) is much stronger than that in the margin zone (MZ) and remote infarcted zone (RIZ). From day 7 after myocardial infarction, the fibroblasts and small cells strongly expressed nanog protein in the IZ, and a few myocardial cells in the MZ and the RIZ and the numbers of nanog-positive fibroblasts and small cells reached the highest peak at 21 days after myocardial infarction, but in this period the number of nanog-positive myocardial cells decreased gradually. At 28 days after myocardial infarction, the numbers of all nanog-positive cells decreased into a low level. Therefore, our data suggest that all myocardial cells, fibroblasts and small round cells are involved in myocardial reconstruction after cardiac infarction. The nanog-positive myocardial cells may respond to early myocardial repair, and the nanog-positive fibroblasts and small round cells are the main source for myocardial reconstruction after cardiac infarction.

  3. Albumin induced cytokine expression in porcine adipose tissue explants

    USDA-ARS?s Scientific Manuscript database

    Albumin has historically been included in medium designed for use with adipose tissue when evaluating metabolism, gene expression or protein secretion. However, recent studies with mouse adipocytes (Ruan et al., J. Biol. Chem. 278:47585-47593, 2003) and human adipose tissue (Schlesinger et al., Ame...

  4. Transposon-induced nuclear mutations that alter chloroplast gene expression

    SciTech Connect

    Barkan, A.

    1992-01-01

    The goal of this project is to use mutant phenotypes as a guide to nuclear genes that determine the timing and localization of chloroplast development The immediate goals are to identify nuclear mutants with defects in chloroplast gene expression from maize lines harboring active Mu transposons; characterize their phenotypes to determine the precise defect in gene expression; clone several of the most interesting mutations by exploiting the transposon tag; and use the clones to further define the roles of these genes in modulating chloroplast gene expression. Three mutants were described earlier that had global defects in chloroplast gene expression. We have found that two of these mutations are allelic. Both alleles have global defects in chloroplast translation initiation, as revealed by the failure to assemble chloroplast mRNAs into polysomes. We have isolated and characterized three new mutants from Mu lines that have novel defects in chloroplast RNA metabolism. We are now ready to begin the task of cloning several of these genes, by using the Mu transposon tag.

  5. Inducible protein expression in Drosophila Schneider 2 cells using the lac operator-repressor system.

    PubMed

    Wakiyama, Motoaki; Muramatsu, Reiko; Kaitsu, Yoko; Ikeda, Mariko; Yokoyama, Shigeyuki

    2011-12-01

    Schneider line 2 cells, derived from Drosophila melanogaster, can be used as a highly versatile gene expression system. Two powerful promoters derived from the actin5C (Ac5) and metallothionein (Mtn) genes are available. The Mtn promoter can be used for the inducible expression of heterologous proteins unsuitable for constitutive expression. However, to circumvent using CuSO(4) or CdCl(2) as inducers of the Mtn promoter, we created a modified Ac5 promoter, Ac5LacO, in which two short lac operator sequences are embedded. Expression from the Ac5LacO promoter was regulated with co-expression of the lac repressor and IPTG. More than 25-fold induction of firefly luciferase expression was achieved in transient transfection experiments. Furthermore, we demonstrated that the lac operator-repressor regulatory system functioned in chromosomally integrated cell lines.

  6. MiRNA expression signatures induced by Marek disease virus infection in chickens

    USDA-ARS?s Scientific Manuscript database

    MMicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression at the post-transcriptional level. Emerging evidence suggests that differential miRNA expression is associated with viral infection and cancer. Marek's disease virus infection induces lymphoma in chickens. However, the host...

  7. Regulation of sesquiterpene cyclase gene expression. Characterization of an elicitor- and pathogen-inducible promoter.

    PubMed Central

    Yin, S; Mei, L; Newman, J; Back, K; Chappell, J

    1997-01-01

    The promoter for a tobacco (Nicotiana tabacum) sesquiterpene cyclase gene, a key regulatory step in sesquiterpene phytoalexin biosynthesis, has been analyzed. The EAS4 promoter was fused to the beta-glucuronidase (GUS) reporter gene, and the temporal and spatial expression patterns of GUS activity were examined in stably transformed plants and in transient expression assays using electroporated protoplasts of tobacco. No GUS activity was observed in any tissues under normal growth conditions. A low level of GUS activity was detected in wounded leaf, root, and stem tissues, whereas a much higher level was observed when these tissues were challenged with elicitors or microbial pathogens. The GUS expression pattern directed by the EAS4 promoter was identical to the induction patterns observed for the endogenous sesquiterpene cyclase genes. Neither exogenous salicylic acid nor methyl jasmonate induced GUS expression; and H2O2 induced GUS expression to only a limited extent. Although the EAS4 promoter contains cis-sequences resembling previously identified transcriptional control motifs, other cis-sequences important for quantitative and qualitative gene expression were identified by deletion and gain-of-function analyses. The EAS4 promoter differs from previously described pathogen-/elicitor-inducible promoters because it only supports inducible gene expression and directs unique spatial expression patterns. PMID:9342864

  8. Bioinforrnatics of Gene Expression Profiling Data Provide Mechanistic Understanding of Acute Ozone-Induced Lung injury

    EPA Science Inventory

    Acute ozone-induced pulmonary injury and inflammation are well characterized. A few studies have used gene expression profiling to determine the types of changes induced by ozone; however the mechanisms or the pathways involved are less well understood. We presumed that robust bi...

  9. Synaptophysin expression in "ependymal tumors" induced by ethyl-nitrosourea in rats.

    PubMed Central

    Vaquero, J.; Coca, S.; Zurita, M.; Oya, S.; Arias, A.; Moreno, M.; Morales, C.

    1992-01-01

    Synaptophysin expression was studied in seven "ependymomas" induced by transplacental administration of ethyl-nitrosourea in rats. In all the cases, strong positivity for synaptophysin was found on tumor cells. This finding supports previous studies suggesting that ENU-induced brain tumors considered to be ependymal neoplasms, are, in fact, primitive neuroectodermal tumors. Images Figure 1 Figure 2 Figure 3 PMID:1443043

  10. FORMALDEHYDE-INDUCED GENE EXPRESSION IN F344 RAT NASAL RESPIRATORY EPITHELIUM.

    EPA Science Inventory

    Formaldehyde-induced gene expression in F344 rat nasal respiratory epithelium

    ABSTRACT

    Formaldehyde, an occupational and environmental toxicant used extensively in the manufacturing of many household and personal use products, is known to induce squamous cell carci...

  11. FORMALDEHYDE-INDUCED GENE EXPRESSION IN F344 RAT NASAL RESPIRATORY EPITHELIUM.

    EPA Science Inventory

    Formaldehyde-induced gene expression in F344 rat nasal respiratory epithelium

    ABSTRACT

    Formaldehyde, an occupational and environmental toxicant used extensively in the manufacturing of many household and personal use products, is known to induce squamous cell carci...

  12. Bioinforrnatics of Gene Expression Profiling Data Provide Mechanistic Understanding of Acute Ozone-Induced Lung injury

    EPA Science Inventory

    Acute ozone-induced pulmonary injury and inflammation are well characterized. A few studies have used gene expression profiling to determine the types of changes induced by ozone; however the mechanisms or the pathways involved are less well understood. We presumed that robust bi...

  13. Constitutively expressed Siglec-9 inhibits LPS-induced CCR7, but enhances IL-4-induced CD200R expression in human macrophages.

    PubMed

    Higuchi, Hiroshi; Shoji, Toru; Iijima, Shinji; Nishijima, Ken-Ichi

    2016-06-01

    Siglecs recognize the sialic acid moiety and regulate various immune responses. In the present study, we compared the expression levels of Siglecs in human monocytes and macrophages using a quantitative real-time reverse transcription-polymerase chain reaction analysis. The differentiation of monocytes into macrophages by macrophage colony-stimulating factor or granulocyte macrophage colony-stimulating factor enhanced the expression of Siglec-7 and Siglec-9. The differentiated macrophages were stimulated by lipopolysaccharide (LPS) plus interferon (IFN)-γ or interleukin (IL)-4. The expression of Siglec-10 was enhanced by IL-4, whereas that of Siglec-7 was reduced by LPS plus IFN-γ. The expression of Siglec-9 was not affected by these stimuli. The knockdown of Siglec-9 enhanced the expression of CCR7 induced by the LPS or the LPS plus IFN-γ stimulation, and decreased the IL-4-induced expression of CD200R. These results suggest that Siglec-9 is one of the main Siglecs in human blood monocytes/macrophages and modulates innate immunity.

  14. Monocyte adhesion to endothelium in simian immunodeficiency virus-induced AIDS encephalitis is mediated by vascular cell adhesion molecule-1/alpha 4 beta 1 integrin interactions.

    PubMed Central

    Sasseville, V. G.; Newman, W.; Brodie, S. J.; Hesterberg, P.; Pauley, D.; Ringler, D. J.

    1994-01-01

    Because the mechanisms associated with recruitment of monocytes to brain in AIDS encephalitis are unknown, we used tissues from rhesus monkeys infected with simian immunodeficiency virus (SIV) to examine the relative contributions of various adhesion pathways in mediating monocyte adhesion to endothelium from encephalitic brain. Using a modified Stamper and Woodruff tissue adhesion assay, we found that the human monocytic cell lines, THP-1 and U937, and the B cell line, Ramos, preferentially bound to brain vessels from monkeys with AIDS encephalitis. Using a combined tissue adhesion/immunohistochemistry approach, these cells only bound to vessels expressing vascular cell adhesion molecule-1 (VCAM-1). Furthermore, pretreatment of tissues with antibodies to VCAM-1 or cell lines with antibodies to VLA-4 (CD49d) inhibited adhesion by more than 70%. Intercellular adhesion molecule-1 (ICAM-1)/beta 2 integrin interactions were not significant in mediating cell adhesion to the vasculature in encephalitic simian brain using a cell line (JY) capable of binding rhesus monkey ICAM-1. In addition, selectin-mediated interactions did not significantly contribute to cell binding to encephalitic brain as there was no immunohistochemical expression of E-selectin and P-selectin in either normal or encephalitic brain, nor was there a demonstrable adhesive effect from L-selectin using L-selectin-transfected 300.19 cells on simian encephalitic brain. These results demonstrate that using the tissue adhesion assay, THP-1, U937, and Ramos cells bind to vessels in brain from animals with AIDS encephalitis using VCAM-1/alpha 4 beta 1 integrin interactions and suggest that VCAM-1 and VLA-4 may be integral for monocyte recruitment to the central nervous system during the development of AIDS encephalitis. Images Figure 1 PMID:7507300

  15. Corticosteroid-induced gene expression in allergen-challenged asthmatic subjects taking inhaled budesonide

    PubMed Central

    Kelly, MM; King, EM; Rider, CF; Gwozd, C; Holden, NS; Eddleston, J; Zuraw, B; Leigh, R; O'Byrne, PM; Newton, R

    2012-01-01

    BACKGROUND AND PURPOSE Inhaled corticosteroids (ICS) are the cornerstone of asthma pharmacotherapy and, acting via the glucocorticoid receptor (GR), reduce inflammatory gene expression. While this is often attributed to a direct inhibitory effect of the GR on inflammatory gene transcription, corticosteroids also induce the expression of anti-inflammatory genes in vitro. As there are no data to support this effect in asthmatic subjects taking ICS, we have assessed whether ICS induce anti-inflammatory gene expression in subjects with atopic asthma. EXPERIMENTAL APPROACH Bronchial biopsies from allergen-challenged atopic asthmatic subjects taking inhaled budesonide or placebo were subjected to gene expression analysis using real-time reverse transcriptase-PCR for the corticosteroid-inducible genes (official gene symbols with aliases in parentheses): TSC22D3 [glucocorticoid-induced leucine zipper (GILZ)], dual-specificity phosphatase-1 (MAPK phosphatase-1), both anti-inflammatory effectors, and FKBP5 [FK506-binding protein 51 (FKBP51)], a regulator of GR function. Cultured pulmonary epithelial and smooth muscle cells were also treated with corticosteroids before gene expression analysis. KEY RESULTS Compared with placebo, GILZ and FKBP51 mRNA expression was significantly elevated in budesonide-treated subjects. Budesonide also increased GILZ expression in human epithelial and smooth muscle cells in culture. Immunostaining of bronchial biopsies revealed GILZ expression in the airways epithelium and smooth muscle of asthmatic subjects. CONCLUSIONS AND IMPLICATIONS Expression of the corticosteroid-induced genes, GILZ and FKBP51, is up-regulated in the airways of allergen-challenged asthmatic subjects taking inhaled budesonide. Consequently, the biological effects of corticosteroid-induced genes should be considered when assessing the actions of ICS. Treatment modalities that increase or decrease GR-dependent transcription may correspondingly affect corticosteroid efficacy

  16. Lipopolysaccharide-induced epididymitis disrupts epididymal beta-defensin expression and inhibits sperm motility in rats.

    PubMed

    Cao, Dongmei; Li, Yidong; Yang, Rui; Wang, Yan; Zhou, Yuchuan; Diao, Hua; Zhao, Yue; Zhang, Yonglian; Lu, Jian

    2010-12-01

    Although more than 40 beta-defensins have been identified in rat epididymis, little is known about their regulation or their relation to male infertility caused by inflammation. Using a rat model of epididymitis induced by lipopolysaccharide (LPS), we examined expression of SPAG11E (also known as Bin1b), a caput epididymis-specific beta-defensin in rat. Unlike the expression of other beta-defensins in various epithelial cells with upregulated expression after LPS stimulation, expression of SPAG11E was significantly decreased by LPS at the mRNA and protein levels. LPS treatment also significantly decreased both sperm binding to SPAG11E and sperm motility, and supplementation of the spermatozoa with recombinant SPAG11E in vitro remarkably increased both SPAG11E binding and motility of sperm. To clarify whether decreased expression is a common pattern of epididymal beta-defensins after LPS stimulation, we examined the expression of another 12 epididymal beta-defensins expressed in the caput epididymis. For nine of these beta-defensins, expression was decreased, but for the other three, expression remained unaffected. These findings demonstrate that LPS-induced epididymitis can decrease the expression of epididymal beta-defensins and that disruption of SPAG11E expression is involved in the impairment of sperm motility.

  17. Tocotrienols induce IKBKAP expression: a possible therapy for familial dysautonomia.

    PubMed

    Anderson, Sylvia L; Qiu, Jinsong; Rubin, Berish Y

    2003-06-20

    Familial dysautonomia (FD), a neurodegenerative genetic disorder primarily affecting individuals of Ashkenazi Jewish descent, is caused by mutations in the IKBKAP gene which encodes the IkappaB kinase complex-associated protein (IKAP). The more common or major mutation causes aberrant splicing, resulting in a truncated form of IKAP. Tissues from individuals homozygous for the major mutation contain both mutant and wild-type IKAP transcripts. The apparent leaky nature of this mutation prompted a search for agents capable of elevating the level of expression of the wild-type IKAP transcript. We report the ability of tocotrienols, members of the vitamin E family, to increase transcription of IKAP mRNA in FD-derived cells, with corresponding increases in the correctly spliced transcript and normal protein. These findings suggest that in vivo supplementation with tocotrienols may elevate IKBKAP gene expression and in turn increase the amount of functional IKAP protein produced in FD patients.

  18. Ketogenic diet and fasting induce the expression of cold-inducible RNA-binding protein with time-dependent hypothermia in the mouse liver.

    PubMed

    Oishi, Katsutaka; Yamamoto, Saori; Uchida, Daisuke; Doi, Ryosuke

    2013-01-01

    Cold-inducible RNA-binding protein (CIRBP) induced by cold stress modulates the molecular circadian clock in vitro. The present study examines the effect of a ketogenic diet (KD) and fasting on Cirbp expression in the mouse liver. Chronic KD administration induced time-dependent Cirbp expression with hypothermia in mice. The circadian expression of clock genes such as Bmal1 and Clock was phase-advanced and augmented in the liver of mice fed with a KD. Transient food deprivation also induced time-dependent Cirbp expression with hypothermia in mice. These findings suggest that hypothermia is involved in the increased expression of Cirbp under ketogenic or fasting conditions.

  19. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    SciTech Connect

    Sidjanin, D.; Grdina, D.; Woloschak, G.E.

    1994-11-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

  20. Transgenic expression of matrix metalloproteinase-2 induces coronary artery ectasia

    PubMed Central

    Dahi, Sia; Karliner, Joel S; Sarkar, Rajabrata; Lovett, David H

    2011-01-01

    Coronary artery ectasia (CAE) is generally diagnosed in patients undergoing arteriography for presumptive atherosclerotic coronary artery disease. CAE is commonly considered as a variant of atherosclerotic disease; however, recent studies suggest that CAE is the result of a systemic vascular disorder. There is increasing evidence that aneurysmal vascular disease is a systemic disorder characterized by enhanced expression of pro-inflammatory cytokines and increased synthesis of enzymes capable of degrading elastin and other components of the vascular wall. Matrix metalloproteinase-2 degrades a number of extracellular substrates, including elastin and has been shown to play a critical role in the development of abdominal aortic aneurysms. This study characterizes the development of CAE in a unique murine transgenic model with cardiac-specific expression of active MMP-2. Transgenic mice were engineered to express an active form of MMP-2 under control of the α-myosin heavy chain promoter. Coronary artery diameters were quantified, along with studies of arterial structure, elastin integrity and vascular expression of the MMP-2 transgene. Latex casts quantified total coronary artery volumes and arterial branching. Mid-ventricular coronary luminal areas were increased in the MMP-2 transgenics, coupled with foci of aneurysmal dilation, ectasia and perivascular fibrosis. There was no evidence for atherogenesis. Coronary vascular elastin integrity was compromised and coupled with inflammatory cell infiltration. Latex casts of the coronary arteries displayed ectasia with fusiform dilatation. The MMP-2 transgenic closely replicates human CAE and supports a critical and initiating role for this enzyme in the pathogenesis of this disorder. PMID:21039989

  1. Biological therapy induces expression changes in Notch pathway in psoriasis.

    PubMed

    Skarmoutsou, Evangelia; Trovato, Chiara; Granata, Mariagrazia; Rossi, Giulio A; Mosca, Ambra; Longo, Valentina; Gangemi, Pietro; Pettinato, Maurizio; D'Amico, Fabio; Mazzarino, Maria Clorinda

    2015-12-01

    Psoriasis is a chronic inflammatory skin disease, characterized by hyperproliferation of keratinocytes and by skin infiltration of activated T cells. To date, the pathophysiology of psoriasis has not yet been fully elucidated. The Notch pathway plays a determinant role in cell fate determination, proliferation, differentiation, immune cell development and function. Many biological agents, used in the treatment of psoriasis, include TFN-α inhibitors, such as etanercept, adalimumab, and anti IL-12/IL-23 p40 antibody, such as ustekinumab. This study aimed to determine mRNA expression levels by real-time RT-PCR, and protein expression levels, analysed by Western blot and immunohistochemistry, of some components of the Notch pathway, such as NOTCH1, NOTCH2, JAGGED1, and HES1 after biological treatments in psoriatic patients. mRNA and protein levels of NOTCH1, NOTCH2, JAGGED1 and HES1 were upregulated in skin samples from untreated psoriatic patients compared with normal controls. Biological therapy showed to downregulate differently the protein expression levels of the molecules under study. Our study suggests that Notch pathway components might be a potential therapeutic target against psoriasis.

  2. EBNA2 and activated Notch induce expression of BATF.

    PubMed

    Johansen, Lisa M; Deppmann, Christopher D; Erickson, Kimberly D; Coffin, William F; Thornton, Tina M; Humphrey, Sean E; Martin, Jennifer M; Taparowsky, Elizabeth J

    2003-05-01

    The immortalization of human B lymphocytes by Epstein-Barr virus (EBV) requires the virus-encoded transactivator EBNA2 and the products of both viral and cellular genes which serve as EBNA2 targets. In this study, we identified BATF as a cellular gene that is up-regulated dramatically within 24 h following the infection of established and primary human B cells with EBV. The transactivation of BATF is mediated by EBNA2 in a B-cell-specific manner and is duplicated in non-EBV-infected B cells by the expression of mammalian Notch proteins. In contrast to other target genes activated by EBNA2, the BATF gene encodes a member of the AP-1 family of transcription factors that functions as a negative regulator of AP-1 activity and as an antagonist of cell growth. A potential role for BATF in promoting EBV latency is supported by studies in which BATF was shown to negatively impact the expression of a BZLF1 reporter gene and to reduce the frequency of lytic replication in latently infected cells. The identification of BATF as a cellular target of EBV provides important new information on how programs of viral and cellular gene expression may be coordinated to promote viral latency and control lytic-cycle entry.

  3. Oxygen-induced changes in hemoglobin expression in Drosophila.

    PubMed

    Gleixner, Eva; Abriss, Daniela; Adryan, Boris; Kraemer, Melanie; Gerlach, Frank; Schuh, Reinhard; Burmester, Thorsten; Hankeln, Thomas

    2008-10-01

    The hemoglobin gene 1 (dmeglob1) of the fruit fly Drosophila melanogaster is expressed in the tracheal system and fat body, and has been implicated in hypoxia resistance. Here we investigate the expression levels of dmeglob1 and lactate dehydrogenase (a positive control) in embryos, third instar larvae and adult flies under various regimes of hypoxia and hyperoxia. As expected, mRNA levels of lactate dehydrogenase increased under hypoxia. We show that expression levels of dmeglob1 are decreased under both short- and long-term hypoxia, compared with the normoxic (21% O2) control. By contrast, a hypoxia/reoxygenation regime applied to third instar larvae elevated the level of dmeglob1 mRNA. An excess of O2 (hyperoxia) also triggered an increase in dmeglob1 mRNA. The data suggest that Drosophila hemoglobin may be unlikely to function merely as a myoglobin-like O2 storage protein. Rather, dmeglob1 may protect the fly from an excess of O2, either by buffering the flux of O2 from the tracheoles to the cells or by degrading noxious reactive oxygen species.

  4. Tet-On Systems For Doxycycline-inducible Gene Expression

    PubMed Central

    Das, Atze T.; Tenenbaum, Liliane; Berkhout, Ben

    2016-01-01

    The tetracycline-controlled Tet-Off and Tet-On gene expression systems are used to regulate the activity of genes in eukaryotic cells in diverse settings, varying from basic biological research to biotechnology and gene therapy applications. These systems are based on regulatory elements that control the activity of the tetracycline-resistance operon in bacteria. The Tet-Off system allows silencing of gene expression by administration of tetracycline (Tc) or tetracycline-derivatives like doxycycline (dox), whereas the Tet-On system allows activation of gene expression by dox. Since the initial design and construction of the original Tet-system, these bacterium-derived systems have been significantly improved for their function in eukaryotic cells. We here review how a dox-controlled HIV-1 variant was designed and used to greatly improve the activity and dox-sensitivity of the rtTA transcriptional activator component of the Tet-On system. These optimized rtTA variants require less dox for activation, which will reduce side effects and allow gene control in tissues where a relatively low dox level can be reached, such as the brain. PMID:27216914

  5. Insulin signal transduction pathways and insulin-induced gene expression.

    PubMed

    Keeton, Adam B; Amsler, Maggie O; Venable, Derwei Y; Messina, Joseph L

    2002-12-13

    Insulin regulates metabolic activity, gene transcription, and cell growth by modulating the activity of several intracellular signaling pathways. Insulin activation of one mitogen-activated protein kinase cascade, the MEK/ERK kinase cascade, is well described. However, the effect of insulin on the parallel p38 pathway is less well understood. The present work examines the effect of inhibiting the p38 signaling pathway by use of specific inhibitors, either alone or in combination with insulin, on the activation of ERK1/2 and on the regulation of gene transcription in rat hepatoma cells. Activation of ERK1/2 was induced by insulin and was dependent on the activation of MEK1, the kinase upstream of ERK in this pathway. Treatment of cells with p38 inhibitors also induced ERK1/2 activation/phosphorylation. The addition of p38 inhibitors followed by insulin addition resulted in a greater than additive activation of ERK1/2. The two genes studied, c-Fos and Pip92, are immediate-early genes that are dependent on the ERK1/2 pathway for insulin-regulated induction because the insulin effect was inhibited by pretreatment with a MEK1 inhibitor. The addition of p38 inhibitors induced transcription of both genes in a dose-dependent manner, and insulin stimulation of both genes was enhanced by prior treatment with p38 inhibitors. The ability of the p38 inhibitors to induce ERK1/2 and gene transcription, both alone and in combination with insulin, was abolished by prior inhibition of MEK1. These data suggest possible cross-talk between the p38 and ERK1/2 signaling pathways and a potential role of p38 in insulin signaling.

  6. Light-dependent expression of flg22-induced defense genes in Arabidopsis.

    PubMed

    Sano, Satoshi; Aoyama, Mayu; Nakai, Kana; Shimotani, Koji; Yamasaki, Kanako; Sato, Masa H; Tojo, Daisuke; Suwastika, I Nengah; Nomura, Hironari; Shiina, Takashi

    2014-01-01

    Chloroplasts have been reported to generate retrograde immune signals that activate defense gene expression in the nucleus. However, the roles of light and photosynthesis in plant immunity remain largely elusive. In this study, we evaluated the effects of light on the expression of defense genes induced by flg22, a peptide derived from bacterial flagellins which acts as a potent elicitor in plants. Whole-transcriptome analysis of flg22-treated Arabidopsis thaliana seedlings under light and dark conditions for 30 min revealed that a number of (30%) genes strongly induced by flg22 (>4.0) require light for their rapid expression, whereas flg22-repressed genes include a significant number of genes that are down-regulated by light. Furthermore, light is responsible for the flg22-induced accumulation of salicylic acid (SA), indicating that light is indispensable for basal defense responses in plants. To elucidate the role of photosynthesis in defense, we further examined flg22-induced defense gene expression in the presence of specific inhibitors of photosynthetic electron transport: 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB). Light-dependent expression of defense genes was largely suppressed by DBMIB, but only partially suppressed by DCMU. These findings suggest that photosynthetic electron flow plays a role in controlling the light-dependent expression of flg22-inducible defense genes.

  7. Mycobacterium fortuitum induces A20 expression that impairs macrophage inflammatory responses.

    PubMed

    Lee, Gippeum Joy; Lee, Hye-Mi; Kim, Tae Sung; Kim, Jin Kyung; Sohn, Kyung Mok; Jo, Eun-Kyeong

    2016-04-01

    Mycobacterium fortuitum is a rapidly growing mycobacterium that has been regarded as an etiological agent of a variety of human infections. However, little is known about the host inflammatory responses and the molecular mechanisms by which MF-induced inflammation is regulated in macrophages. In this study, we report that MF infection leads to the induction of an anti-inflammatory molecule, A20 (also known as TNFAIP3), which is essential for the regulation of MF-induced inflammatory responses in murine bone marrow-derived macrophages (BMDMs). MF triggered the expression of tumor necrosis factor-α and interleukin-6 in BMDMs through signaling of the Toll-like receptor 2 (TLR2)-myeloid differentiation primary response gene 88. Additionally, MF rapidly induced the expression of A20, which inhibited proinflammatory cytokine expression and nuclear factor (NF)-κB reporter gene activities in BMDMs. Notably, MF-induced activation of NF-κB signaling was required for A20 expression and proinflammatory responses in BMDMs. Furthermore, the rough morphotype of the MF clinical strain induced a higher level of proinflammatory signaling activation, but less A20 induction in BMDMs, compared to the smooth morphotype. Taken together, these results suggest that MF-induced activation of host proinflammatory responses is negatively regulated through TLR2-dependent A20 expression.

  8. Propofol inhibits ketamine-induced c-fos expression in the rat posterior cingulate cortex.

    PubMed

    Nagata, A; Nakao, S; Miyamoto, E; Inada, T; Tooyama, I; Kimura, H; Shingu, K

    1998-12-01

    Ketamine, a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, has psychotomimetic activity. NMDA receptor antagonists cause morphological damage in the posterior cingulate cortex, which may be the brain region responsible for their psychotomimetic effects. Benzodiazepines are effective in preventing these effects through gamma-aminobutyric acid A (GABA(A)) receptor activation. We investigated the effect of propofol, which has both GABAA receptor-activating and NMDA receptor-suppressing activity, on ketamine-induced c-fos expression in the rat posterior cingulate cortex. Propofol or vehicle was continuously infused IV. Fifteen minutes later, 100 mg/kg ketamine or isotonic sodium chloride solution was injected intraperitoneally. Two hours later, brain sections were prepared, and c-fos expression was detected using immunohistochemical methods. Propofol significantly inhibited ketamine-induced c-fos expression in the posterior cingulate cortex. Propofol itself did not induce c-fos expression in this brain region. We conclude that propofol may be able to inhibit ketamine-induced psychotomimetic activity and neuronal damage. In the present study, we demonstrated that the clinically relevant dose of propofol significantly inhibited ketamine-induced c-fos expression in the rat posterior cingulate cortex. This finding implies that propofol may inhibit ketamine-induced psychotomimetic activity and neuronal damage.

  9. Inducible expression of G protein-coupled receptors in transfected cells.

    PubMed

    Koener, Beryl; Hermans, Emmanuel

    2011-01-01

    Biochemical or pharmacological studies of G protein-coupled receptors (GPCRs) are widely conducted in transfected mammalian cells. A variety of commercially available systems allow the generation of stable cell-lines in which expression of the recombinant receptor can be induced on addition of a defined chemical to the culture medium, which operates as a control switch for the transcription of the cloned sequence. Such systems offer the possibility to induce graded levels of receptor expression in the experimental model, or to induce an abrupt downregulation of receptor expression during the maintenance of the cell-line. This chapter provides an overview of the different systems available and provides methods for the generation and validation of stably transfected cell-lines expressing the GPCR of choice.

  10. Nitric oxide mediates Fos expression in the spinal cord induced by mechanical noxious stimulation.

    PubMed

    Lee, J H; Wilcox, G L; Beitz, A J

    1992-10-01

    Immunocytochemical localization of Fos protein was used to analyze the involvement of nitric oxide (NO) in the expression of Fos in the spinal cord, induced by mechanical noxious stimulation (NS). Mechanical NS was applied to the left hindpaw 30 minutes after intrathecal administration of the NO synthase inhibitor, N omega-nitro-L-arginine methyl ester (L-NAME) and the resulting Fos expression in the spinal cord dorsal horn was compared with that obtained in rats exposed only to the mechanical NS. Pretreatment with L-NAME but not its stereoisomer N omega-nitro-D-arginine methyl ester (D-NAME), produced a dose-dependent suppression of Fos expression induced by mechanical noxious stimulation. These results indicate that NO modulates the expression of Fos in the dorsal horn induced by mechanical noxious stimulation and further support the hypothesis that NO is involved in nociceptive events occurring in the spinal cord in response to a peripheral noxious stimulus.

  11. A self-inducible heterologous protein expression system in Escherichia coli

    PubMed Central

    Briand, L.; Marcion, G.; Kriznik, A.; Heydel, J. M.; Artur, Y.; Garrido, C.; Seigneuric, R.; Neiers, F.

    2016-01-01

    Escherichia coli is an important experimental, medical and industrial cell factory for recombinant protein production. The inducible lac promoter is one of the most commonly used promoters for heterologous protein expression in E. coli. Isopropyl-β-D-thiogalactoside (IPTG) is currently the most efficient molecular inducer for regulating this promoter’s transcriptional activity. However, limitations have been observed in large-scale and microplate production, including toxicity, cost and culture monitoring. Here, we report the novel SILEX (Self-InducibLe Expression) system, which is a convenient, cost-effective alternative that does not require cell density monitoring or IPTG induction. We demonstrate the broad utility of the presented self-inducible method for a panel of diverse proteins produced in large amounts. The SILEX system is compatible with all classical culture media and growth temperatures and allows protein expression modulation. Importantly, the SILEX system is proven to be efficient for protein expression screening on a microplate scale. PMID:27611846

  12. STAT5 induces miR-21 expression in cutaneous T cell lymphoma

    PubMed Central

    Lindahl, Lise M.; Fredholm, Simon; Joseph, Claudine; Nielsen, Boye Schnack; Jønson, Lars; Willerslev-Olsen, Andreas; Gluud, Maria; Blümel, Edda; Petersen, David L.; Sibbesen, Nina; Hu, Tengpeng; Nastasi, Claudia; Krejsgaard, Thorbjørn; Jæhger, Ditte; Persson, Jenny L.; Mongan, Nigel; Wasik, Mariusz A.; Litvinov, Ivan V.; Sasseville, Denis; Koralov, Sergei B.; Bonefeld, Charlotte M.; Geisler, Carsten; Woetmann, Anders; Ralfkiaer, Elisabeth; Iversen, Lars; Odum, Niels

    2016-01-01

    In cutaneous T cell lymphomas (CTCL), miR-21 is aberrantly expressed in skin and peripheral blood and displays anti-apoptotic properties in malignant T cells. It is, however, unclear exactly which cells express miR-21 and what mechanisms regulate miR-21. Here, we demonstrate miR-21 expression in situ in both malignant and reactive lymphocytes as well as stromal cells. qRT-PCR analysis of 47 patients with mycosis fungoides (MF) and Sezary Syndrome (SS) confirmed an increased miR-21 expression that correlated with progressive disease. In cultured malignant T cells miR-21 expression was inhibited by Tofacitinib (CP-690550), a clinical-grade JAK3 inhibitor. Chromatin immunoprecipitation (ChIP) analysis showed direct binding of STAT5 to the miR-21 promoter. Cytokine starvation ex vivo triggered a decrease in miR-21 expression, whereas IL-2 induced an increased miR-21 expression in primary SS T cells and cultured cytokine-dependent SS cells (SeAx). siRNA-mediated depletion of STAT5 inhibited constitutive- and IL-2-induced miR-21 expression in cytokine-independent and dependent T cell lines, respectively. IL-15 and IL-2 were more potent than IL-21 in inducing miR-21 expression in the cytokine-dependent T cells. In conclusion, we provide first evidence that miR-21 is expressed in situ in CTCL skin lesions, induced by IL-2 and IL-15 cytokines, and is regulated by STAT5 in malignant T cells. Thus, our data provide novel evidence for a pathological role of IL-2Rg cytokines in promoting expression of the oncogenic miR-21 in CTCL. PMID:27329723

  13. Kinetics of the cellular intake of a gene expression inducer at high concentrations.

    PubMed

    Tran, Huy; Oliveira, Samuel M D; Goncalves, Nadia; Ribeiro, Andre S

    2015-09-01

    From in vivo single-event measurements of the transient and steady-state transcription activity of a single-copy lac-ara-1 promoter in Escherichia coli, we characterize the intake kinetics of its inducer (IPTG) from the media. We show that the empirical data are well-fit by a model of intake assuming a bilayer membrane, with the passage through the second layer being rate-limiting, coupled to a stochastic, sub-Poissonian, multi-step transcription process. Using this model, we show that for a wide range of extracellular inducer levels (up to 1.25 mM) the intake process is diffusive-like, suggesting unsaturated membrane permeability. Inducer molecules travel from the periplasm to the cytoplasm in, on average, 31.7 minutes, strongly affecting cells' response time. The novel methodology followed here should aid the study of cellular intake mechanisms at the single-event level.

  14. Induced Expression of Cancer Stem Cell Markers ALDH1A3 and Sox-2 in Hierarchical Reconstitution of Apoptosis-resistant Human Breast Cancer Cells

    PubMed Central

    Kashii-Magaribuchi, Karin; Takeuchi, Rie; Haisa, Yuko; Sakamoto, Akemi; Itoh, Aimi; Izawa, Yuki; Isa, Miyuki; Fukuzawa, Mayu; Murakami, Motonobu; Takahashi, Rei

    2016-01-01

    We established an experimental system that can induce p53-dependent apoptosis by doxycycline treatment to analyze characteristics of the apoptosis-resistant cancer cell subpopulation in the human breast cancer cell line HCC1937. Expression patterns of the stem cell markers, ALDH1A3 and Sox-2, the luminal differentiation marker, GATA3 and the proliferation index marker, Ki-67 were analyzed using immunostaining and fluorescence-activated cell sorting (FACS). After doxycycline treatment, the number of viable cells was gradually decreased over seven days in a time-dependent manner due to p53-induced apoptosis; however, the number of smaller-sized ALDH1A3+ cells assessed by immunostaining increased sharply after 1 day of doxycycline treatment, suggesting their apoptosis-resistant nature. The expression of ALDH1A3 was also detected in 78% of small-sized Ki-67+ proliferating progenitor cells, followed by the transient expression of GATA3, which presumably indicated the ability to differentiate into luminal progenitor cells. Although 42.2–58.5% of residual cells were positive for both ALDH1A3 and GATA3, their expression patterns exhibited an inverse correlation. The expression pattern of another stem cell marker, Sox-2, was similar, but more drastically altered after p53 induction compared with ALDH1A3. These findings may aid in understanding the hierarchical responses of cancer stem cells to therapeutic stresses. PMID:27917009

  15. Anti-oxidant inhibition of hyaluronan fragment-induced inflammatory gene expression

    PubMed Central

    Eberlein, Michael; Scheibner, Kara A; Black, Katharine E; Collins, Samuel L; Chan-Li, Yee; Powell, Jonathan D; Horton, Maureen R

    2008-01-01

    Background The balance between reactive oxygen species (ROS) and endogenous anti-oxidants is important in maintaining healthy tissues. Excessive ROS states occur in diseases such as ARDS and Idiopathic Pulmonary Fibrosis. Redox imbalance breaks down the extracellular matrix component hyaluronan (HA) into fragments that activate innate immune responses and perpetuate tissue injury. HA fragments, via a TLR and NF-κB pathway, induce inflammatory gene expression in macrophages and epithelial cells. NAC and DMSO are potent anti-oxidants which may help balance excess ROS states. Methods We evaluated the effect of H2O2, NAC and DMSO on HA fragment induced inflammatory gene expression in alveolar macrophages and epithelial cells. Results NAC and DMSO inhibit HA fragment-induced expression of TNF-α and KC protein in alveolar and peritoneal macrophages. NAC and DMSO also show a dose dependent inhibition of IP-10 protein expression, but not IL-8 protein, in alveolar epithelial cells. In addition, H2O2 synergizes with HA fragments to induce inflammatory genes, which are inhibited by NAC. Mechanistically, NAC and DMSO inhibit HA induced gene expression by inhibiting NF-κB activation, but NAC had no influence on HA-fragment-AP-1 mediated gene expression. Conclusion ROS play a central role in a pathophysiologic "vicious cycle" of inflammation: tissue injury generates ROS, which fragment the extracellular matrix HA, which in turn synergize with ROS to activate the innate immune system and further promote ROS, HA fragment generation, inflammation, tissue injury and ultimately fibrosis. The anti-oxidants NAC and DMSO, by inhibiting the HA induced inflammatory gene expression, may help re-balance excessive ROS induced inflammation. PMID:18986521

  16. Construction of an inducible cell-communication system that amplifies Salmonella gene expression in tumor tissue.

    PubMed

    Dai, Yumei; Toley, Bhushan J; Swofford, Charles A; Forbes, Neil S

    2013-06-01

    Bacterial therapies have the potential to overcome resistances that cause chemotherapies to fail. When using bacteria to produce anticancer agents in tumors, triggering gene expression is necessary to prevent systemic toxicity. The use of chemical triggers, however, is hampered by poor delivery of inducing molecules, which reduces the number of activated bacteria. To solve this problem, we created a cell-communication system that enables activated bacteria to induce inactive neighbors. We hypothesized that introducing cell communication into Salmonella would improve direct triggering strategies by increasing protein production, increasing sensitivity to inducer molecules, and enabling expression in tumor tissue. To test these hypotheses we integrated the PBAD promoter into the quorum-sensing machinery from Vibrio fischeri. The expression of a fluorescent reporter gene was compared to expression from non-communicating controls. Function in three-dimensional tissue was tested in a tumor-on-a-chip device. Bacterial communication increased fluorescence 40-fold and increased sensitivity to inducer molecules more than 10,000-fold. The system enabled bacteria to activate neighbors and increased the time-scale of protein production. Gene expression was controllable and tightly regulated. At the optimal inducing signal, communicating bacteria produced 350 times more protein than non-communicating bacteria. The cell-communication system created in this study has uses beyond cancer therapy, including protein manufacturing, bioremediation and biosensing. It would enable amplified induction of gene expression in any environment that limits availability of inducer molecules. Ultimately, because inducible cellular communication enables gene expression in tissue, it will be a critical component of bacterial anticancer therapies.

  17. Periostin expression induced by oxidative stress contributes to myocardial fibrosis in a rat model of high salt-induced hypertension

    PubMed Central

    WU, HAN; CHEN, LIANG; XIE, JUN; LI, RAN; LI, GUAN-NAN; CHEN, QIN-HUA; ZHANG, XIN-LIN; KANG, LI-NA; XU, BIAO

    2016-01-01

    Periostin is an extracellular matrix protein involved in fibrosis. The present study investigated the importance of periostin in hypertension-induced myocardial fibrosis. Rats were randomly divided into either the normal group (0.4% NaCl diet; n=8) or hypertension group (8% NaCl diet; n=8). For 36 weeks, the blood pressure and heart rate of the rats were monitored. At week 36, the hearts were extracted for further analysis. Masson's staining and western blotting were performed to determine the levels of periostin protein expression, oxidative stress and fibrosis. In addition, fibroblasts were isolated from adult rats and cultured in vitro, and following treatment with angiotensin II (Ang II) and N-acetyl-L-cysteine (NAC), western blotting, immunofluorescence and 2′,7′ dichlorodihydrofluorescin staining were performed to examine reactive oxygen species production, and periostin and α-smooth muscle actin (α-SMA) expression levels. The results demonstrated that periostin expression and oxidative stress were increased in hypertensive hearts compared with normal hearts. The in vitro experiments demonstrated that Ang II upregulated the expression levels of periostin and α-SMA compared with the control, whereas, pretreatment with NAC inhibited oxidative stress, periostin and α-SMA expression in fibroblasts. In conclusion, the results of the current study suggested that oxidative stress-induced periostin is involved in myocardial fibrosis and hypertension. The present study demonstrated that periostin inhibition may be a promising approach for the inhibition of hypertension-induced cardiac remodeling. PMID:27220372

  18. Substance P induces CCN1 expression via histone deacetylase activity in human colonic epithelial cells.

    PubMed

    Koon, Hon Wai; Shih, David Q; Hing, Tressia C; Chen, Jeremy; Ho, Samantha; Zhao, Dezheng; Targan, Stephan R; Pothoulakis, Charalabos

    2011-11-01

    We have shown that substance P (SP) and its neurokinin-1 receptor (NK-1R) regulate intestinal angiogenesis by increasing expression of protein CYR61 (the cysteine-rich angiogenic inducer 61, or CCN1) in colonic epithelial cells. However, the mechanism involved in SP-induced CCN1 expression has not been studied, and the outcome of increased CCN1 expression in the development of colitis is not fully understood. Because histone deacetylase (HDAC) modulates transcription of several genes involved in inflammation, we investigated participation of HDAC in SP-induced CCN1 expression in human colonic epithelial NCM460 cells overexpressing NK-1R (NCM460-NK-1R) and in primary colonocytes. SP increased HDAC activity with deacetylation and dephosphorylation of nucleosome protein histone H3 in NCM460-NK-1R and/or primary colonocytes. Histone deacetylation and dephosphorylation was observed in colonic mucosa from irritable bowel disease patients. Similarly, colonic mucosal tissues from mice exposed to dextran sulfate sodium showed histone H3 deacetylation and dephosphorylation and increased HDAC activity that was reversed by the NK-1R antagonist CJ-12255. SP-induced increased CCN1 expression in NCM460-NK-1R cells was abolished by pharmacological HDAC inhibition. HDAC overexpression activated basal and SP-induced CCN1 promoter activity. Intracolonic CCN1 overexpression significantly ameliorated dextran sulfate sodium-induced colitis, with reduction of proinflammatory cytokine expression in mice. Thus, SP-mediated CCN1 expression in the inflamed human and mouse colon involves increased HDAC activity. Our results strongly suggest that increased CCN1 expression may be involved in mucosal healing during colitis.

  19. Na+/H+ exchanger isoform 1-induced osteopontin expression facilitates cardiomyocyte hypertrophy.

    PubMed

    Mohamed, Iman A; Gadeau, Alain-Pierre; Fliegel, Larry; Lopaschuk, Gary; Mlih, Mohamed; Abdulrahman, Nabeel; Fillmore, Natasha; Mraiche, Fatima

    2015-01-01

    Enhanced expression and activity of the Na+/H+ exchanger isoform 1 (NHE1) has been implicated in cardiomyocyte hypertrophy in various experimental models. The upregulation of NHE1 was correlated with an increase in osteopontin (OPN) expression in models of cardiac hypertrophy (CH), and the mechanism for this remains to be delineated. To determine whether the expression of active NHE1-induces OPN and contributes to the hypertrophic response in vitro, cardiomyocytes were infected with the active form of the NHE1 adenovirus or transfected with OPN silencing RNA (siRNA-OPN) and characterized for cardiomyocyte hypertrophy. Expression of NHE1 in cardiomyocytes resulted in a significant increase in cardiomyocyte hypertrophy markers: cell surface area, protein content, ANP mRNA and expression of phosphorylated-GATA4. NHE1 activity was also significantly increased in cardiomyocytes expressing active NHE1. Interestingly, transfection of cardiomyocytes with siRNA-OPN significantly abolished the NHE1-induced cardiomyocyte hypertrophy. siRNA-OPN also significantly reduced the activity of NHE1 in cardiomyocytes expressing NHE1 (68.5±0.24%; P<0.05), confirming the role of OPN in the NHE1-induced hypertrophic response. The hypertrophic response facilitated by NHE1-induced OPN occurred independent of the extracellular-signal-regulated kinases and Akt, but required p90-ribosomal S6 kinase (RSK). The ability of OPN to facilitate the NHE1-induced hypertrophic response identifies OPN as a potential therapeutic target to reverse the hypertrophic effect induced by the expression of active NHE1.

  20. Na+/H+ Exchanger Isoform 1-Induced Osteopontin Expression Facilitates Cardiomyocyte Hypertrophy

    PubMed Central

    Mohamed, Iman A.; Gadeau, Alain-Pierre; Fliegel, Larry; Lopaschuk, Gary; Mlih, Mohamed; Abdulrahman, Nabeel; Fillmore, Natasha; Mraiche, Fatima

    2015-01-01

    Enhanced expression and activity of the Na+/H+ exchanger isoform 1 (NHE1) has been implicated in cardiomyocyte hypertrophy in various experimental models. The upregulation of NHE1 was correlated with an increase in osteopontin (OPN) expression in models of cardiac hypertrophy (CH), and the mechanism for this remains to be delineated. To determine whether the expression of active NHE1-induces OPN and contributes to the hypertrophic response in vitro, cardiomyocytes were infected with the active form of the NHE1 adenovirus or transfected with OPN silencing RNA (siRNA-OPN) and characterized for cardiomyocyte hypertrophy. Expression of NHE1 in cardiomyocytes resulted in a significant increase in cardiomyocyte hypertrophy markers: cell surface area, protein content, ANP mRNA and expression of phosphorylated-GATA4. NHE1 activity was also significantly increased in cardiomyocytes expressing active NHE1. Interestingly, transfection of cardiomyocytes with siRNA-OPN significantly abolished the NHE1-induced cardiomyocyte hypertrophy. siRNA-OPN also significantly reduced the activity of NHE1 in cardiomyocytes expressing NHE1 (68.5±0.24%; P<0.05), confirming the role of OPN in the NHE1-induced hypertrophic response. The hypertrophic response facilitated by NHE1-induced OPN occurred independent of the extracellular-signal-regulated kinases and Akt, but required p90-ribosomal S6 kinase (RSK). The ability of OPN to facilitate the NHE1-induced hypertrophic response identifies OPN as a potential therapeutic target to reverse the hypertrophic effect induced by the expression of active NHE1. PMID:25884410

  1. TNFα Increases RANKL Expression via PGE2-Induced Activation of NFATc1

    PubMed Central

    Park, Hyun-Jung; Baek, Kyunghwa; Baek, Jeong-Hwa; Kim, Hyung-Ryong

    2017-01-01

    Tumor necrosis factor α (TNFα) is known to upregulate the expression of receptor activator of NF-κB ligand (RANKL). We investigated the role of the calcineurin/nuclear factor of activated T-cells (NFAT) signaling pathway in TNFα-induced RANKL expression in C2C12 and primary cultured mouse calvarial cells. TNFα-induced RANKL expression was blocked by the calcineurin/NFAT pathway inhibitors. TNFα increased NFAT transcriptional activity and subsequent RANKL promoter binding. Mutations in the NFAT-binding element (MT(N)) suppressed TNFα-induced RANKL promoter activity. TNFα increased prostaglandin E2 (PGE2) production, which in turn enhanced NFAT transcriptional activity and binding to the RANKL promoter. MT(N) suppressed PGE2-induced RANKL promoter activity. TNFα and PGE2 increased the expression of RANKL, NFAT cytoplasmic-1 (NFATc1), cAMP response element-binding protein (CREB), and cyclooxygenase 2 (COX2); which increment was suppressed by indomethacin, a COX inhibitor. Mutations in the CRE-like element blocked PGE2-induced RANKL promoter activity. PGE2 induced the binding of CREB to the RANKL promoter, whereas TNFα increased the binding of both CREB and NFATc1 to this promoter through a process blocked by indomethacin. The PGE2 receptor antagonists AH6809 and AH23848 blocked TNFα-induced expression of RANKL, NFATc1, and CREB; transcriptional activity of NFAT; and binding of NFATc1 or CREB to the RANKL promoter. These results suggest that TNFα-induced RANKL expression depends on PGE2 production and subsequent transcriptional activation/enhanced binding of NFATc1 and CREB to the RANKL promoter. PMID:28245593

  2. Mechanisms of Legionella pneumophila-induced interleukin-8 expression in human lung epithelial cells

    PubMed Central

    Teruya, Hiromitsu; Higa, Futoshi; Akamine, Morikazu; Ishikawa, Chie; Okudaira, Taeko; Tomimori, Koh; Mukaida, Naofumi; Tateyama, Masao; Heuner, Klaus; Fujita, Jiro; Mori, Naoki

    2007-01-01

    Background Legionella pneumophila is a facultative intracellular bacterium, capable of replicating within the phagosomes of macrophages and monocytes, but little is known about its interaction with human lung epithelial cells. We investigated the effect of L. pneumophila on the expression of interleukin-8 (IL-8) in human A549 alveolar and NCI-H292 tracheal epithelial cell lines. Results Infection of L. pneumophila strain, but not heat-killed strain, resulted in upregulation of IL-8. IL-8 mRNA expression was induced immediately after the infection and its signal became gradually stronger until 24 h after infection. On the other hand, IL-8 expression in A549 cells infected with L. pneumophila lacking a functional type IV secretion system was transient. The IL-8 expression was slightly induced at 16 h and increased at 24 h after infection with flagellin-deficient Legionella. Activation of the IL-8 promoter by L. pneumophila infection occurred through the action of nuclear factor-κB (NF-κB). Transfection of dominant negative mutants of NF-κB-inducing kinase, IκB kinase and IκB inhibited L. pneumophila-mediated activation of IL-8 promoter. Treatment with hsp90 inhibitor suppressed L. pneumophila-induced IL-8 mRNA due to deactivation of NF-κB. Conclusion Collectively, these results suggest that L. pneumophila induces activation of NF-κB through an intracellular signaling pathway that involves NF-κB-inducing kinase and IκB kinase, leading to IL-8 gene transcription, and that hsp90 acts as a crucial regulator in L. pneumophila-induced IL-8 expression, presumably contributing to immune response in L. pneumophila. The presence of flagellin and a type IV secretion system are critical for Legionella to induce IL-8 expression in lung epithelial cells. PMID:18034886

  3. autoregulatory role of endothelium-derived nitric oxide (NO) on Lipopolysaccharide-induced vascular inducible NO synthase expression and function.

    PubMed

    Vo, Phuong A; Lad, Bhavini; Tomlinson, James A P; Francis, Stephanie; Ahluwalia, Amrita

    2005-02-25

    Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) is responsible for sepsis-induced hypotension and plays a major contributory role in the ensuing multiorgan failure. The present study aimed to elucidate the role of endothelial NO in lipopolysaccharide (LPS)-induced iNOS expression, in isolated rat aortic rings. Exposure to LPS (1 mug/ml, 5 h) resulted in a reversal of phenylephrine precontracted tone in aortic rings (70.7 +/- 3.2%). This relaxation was associated with iNOS expression and NF-kappaB activation. Positive immunoreactivity for iNOS protein was localized in medial and adventitial layers of LPS-treated aortic rings. Removal of the endothelium rendered aortic rings resistant to LPS-induced relaxation (8.9 +/- 4.5%). Western blotting of these rings demonstrated an absence of iNOS expression. However, treatment of endothelium-denuded rings with the NO donor, diethylamine-NONOate (0.1 mum), restored LPS-induced relaxation (61.6 +/- 6.6%) and iNOS expression to levels comparable with arteries with intact endothelium. Blockade of endothelial NOS (eNOS) activation using geldanamycin and radicicol, inhibitors of heat shock protein 90, in endothelium-intact arteries suppressed both LPS-induced relaxation and LPS-induced iNOS expression (9.0 +/- 8.0% and 2.0 +/- 6.2%, respectively). Moreover, LPS treatment (12.5 mg/kg, intravenous, 15 h) of wild-type mice resulted in profound elevation of plasma [NO(x)] measurements that were reduced by approximately 50% in eNOS knock-out animals. Furthermore, LPS-induced changes in vascular reactivity and iNOS expression evident in wild-type tissues were profoundly suppressed in tissues taken from eNOS knockout animals. Together, these data suggest that eNOS-derived NO, in part via activation of NF-kappaB, regulates iNOS-induction by LPS. This study provides the first demonstration of a proinflammatory role of vascular eNOS in sepsis.

  4. Molecular Mechanisms Regulating TGF-β-Induced Foxp3 Expression

    PubMed Central

    Xu, Lili; Kitani, Atsushi; Strober, Warren

    2013-01-01

    Molecular mechanisms regulating TGF-β induction of Foxp3 expression and thus induction of iTregs has been the focus of a great deal of study in recent years. It has become clear that this process is influenced by a number of factors as perhaps might be predicted by the fact that there is an overarching need of the immune system to fine-tune response to environmental antigens. In this review we discuss these mechanisms, with the aim of presenting a broad picture of how the various observations fit together to form an integrated regulatory regime. PMID:20404810

  5. PBK/TOPK expression during TPA-induced HL-60 leukemic cell differentiation.

    PubMed

    Liu, Yu-Hong; Gao, Xue-Mei; Ge, Fan-Mei; Wang, Zhe; Wang, Wen-Qing; Li, Xiao-Yong

    2012-01-01

    This study concerns expression of PBK/TOPK during differentiation of HL-60 leukemic cells induced by tetradecanoyl phorbol acetate (TPA). Wright-Giemsa staining was performed to observe morphological changes in the HL-60 cells, and flow cytometry was used to assess the cell cycle and CD11b, CD14, CD13, and CD33 expression. PBK/TOPK levels were determined by Western blot analysis. After treating HL60 cells with 5.1×10⁻⁹ mmol/L of TPA for three days, the number of nitroblue-tetrazolium-positive cells and CD11b, CD13, and CD14 expression increased, whereas the PBK/TOPK levels decreased. TPA can inhibit proliferation and induce differentiation of HL60 cells of the granulocytic or monocytic lineage. PBK/TOPK expression was downregulated during this process, whereas the Pho-PBK/TOPK expression was increased.

  6. Quantitative analysis of tetracycline-inducible expression of the green fluorescent protein gene in transgenic chickens.

    PubMed

    Koo, Bon Chul; Kwon, Mo Sun; Roh, Ji Yeol; Kim, Minjee; Kim, Jin-Hoi; Kim, Teoan

    2012-01-01

    The use of transgenic farm animals as "bioreactors" to address the growing demand for biopharmaceuticals, both in terms of increased quantity and greater number, represents a key development in the advancement of medical science. However, the potential for detrimental side-effects as a result of uncontrolled constitutive expression of foreign genes in transgenic animals is a well-recognized limitation of such systems. Previously, using a tetracycline-inducible expression system, we demonstrated the induction of expression of a transgene encoding green fluorescent protein (GFP) in transgenic chickens by feeding with doxycycline, a tetracycline derivative; expression of GFP reverted to pre-induction levels when the inducer was removed from the diet. As a proof of principle study, however, quantitative assessment of expression was not possible, as only one G0 and one G1 transgenic chicken was obtained. In the current study, a sufficient number of G2 and G3 transgenic chickens were obtained, and quantification analysis demonstrated up to a 20-fold induction of expression by doxycycline. In addition, stable transmission of the transgene without any apparent genetic modifications was observed through several generations. The use of an inducible expression system that can be regulated by dietary supplementation could help mitigate the physiological disruption that can occur in transgenic animals as a result of uncontrolled constitutive expression of a transgene. Importantly, these results also support the use of the retroviral system for generating transgenic animals with minimal risk in terms of biosafety.

  7. Bone-induced c-kit expression in prostate cancer: a driver of intraosseous tumor growth.

    PubMed

    Mainetti, Leandro E; Zhe, Xiaoning; Diedrich, Jonathan; Saliganan, Allen D; Cho, Won Jin; Cher, Michael L; Heath, Elisabeth; Fridman, Rafael; Kim, Hyeong-Reh Choi; Bonfil, R Daniel

    2015-01-01

    Loss of BRCA2 function stimulates prostate cancer (PCa) cell invasion and is associated with more aggressive and metastatic tumors in PCa patients. Concurrently, the receptor tyrosine kinase c-kit is highly expressed in skeletal metastases of PCa patients and induced in PCa cells placed into the bone microenvironment in experimental models. However, the precise requirement of c-kit for intraosseous growth of PCa and its relation to BRCA2 expression remain unexplored. Here, we show that c-kit expression promotes migration and invasion of PCa cells. Alongside, we found that c-kit expression in PCa cells parallels BRCA2 downregulation. Gene rescue experiments with human BRCA2 transgene in c-kit-transfected PCa cells resulted in reduction of c-kit protein expression and migration and invasion, suggesting a functional significance of BRCA2 downregulation by c-kit. The inverse association between c-kit and BRCA2 gene expressions in PCa cells was confirmed using laser capture microdissection in experimental intraosseous tumors and bone metastases of PCa patients. Inhibition of bone-induced c-kit expression in PCa cells transduced with lentiviral short hairpin RNA reduced intraosseous tumor incidence and growth. Overall, our results provide evidence of a novel pathway that links bone-induced c-kit expression in PCa cells to BRCA2 downregulation and supports bone metastasis.

  8. Bone-induced c-kit expression in prostate cancer: a driver of intraosseous tumor growth

    PubMed Central

    Mainetti, Leandro E.; Zhe, Xiaoning; Diedrich, Jonathan; Saliganan, Allen D.; Cho, Won Jin; Cher, Michael L.; Heath, Elisabeth; Fridman, Rafael; Kim, Hyeong-Reh Choi; Bonfil, R. Daniel

    2014-01-01

    Loss of BRCA2 function stimulates prostate cancer (PCa) cell invasion and is associated with more aggressive and metastatic tumors in PCa patients. Concurrently, the receptor tyrosine kinase c-kit is highly expressed in skeletal metastases of PCa patients and induced in PCa cells placed into the bone microenvironment in experimental models. However, the precise requirement of c-kit for intraosseous growth of PCa and its relation to BRCA2 expression remain unexplored. Here, we show that c-kit expression promotes migration and invasion of PCa cells. Alongside, we found that c-kit expression in PCa cells parallels BRCA2 downregulation. Gene rescue experiments with human BRCA2 transgene in c-kit-transfected PCa cells resulted in reduction of c-kit protein expression and migration and invasion, suggesting a functional significance of BRCA2 downregulation by c-kit. The inverse association between c-kit and BRCA2 gene expressions in PCa cells was confirmed using laser capture microdissection in experimental intraosseous tumors and bone metastases of PCa patients. Inhibition of bone-induced c-kit expression in PCa cells transduced with lentiviral short hairpin RNA reduced intraosseous tumor incidence and growth. Overall, our results provide evidence of a novel pathway that links bone-induced c-kit expression in PCa cells to BRCA2 downregulation and supports bone metastasis. PMID:24798488

  9. Elevated expression of liver X receptor alpha (LXRα) in myocardium of streptozotocin-induced diabetic rats.

    PubMed

    Cheng, Yongxia; Liu, Guibo; Pan, Qian; Guo, Sufen; Yang, Xianghong

    2011-12-01

    The present study was designed to investigate the myocardial expression of liver X receptor alpha (LXRα) in a streptozotocin (STZ)-induced diabetic rat model. Immunohistochemical staining, quantitative real-time RT-PCR, and Western blot analysis were used to determine the expression of LXRα in the myocardium of STZ-induced diabetic rats. The myocardial expression of LXRα target genes, long-chain acyl-CoA synthetase 3 (ACSL3), fatty acid transporter protein (FAT/CD36), ATP-binding cassette transporter A1 (ABCA1), and ABCG1 were also detected. Bisulfite sequencing analysis was employed to examine the methylation status of the CpG island at the LXRα promoter region in the myocardium of STZ-induced diabetic rats. We found that LXRα mRNA and protein expression in the left ventricles, right ventricles, and atria of diabetic rats were gradually increased during the progression of diabetic cardiomyopathy (DCM). The mRNA expression levels of ACSL3 and FAT/CD36 and the protein expression levels of ABCA1 and ABCG1 were also markedly increased in different heart chambers of diabetic rats. Moreover, there was a significant difference in the methylation status of LXRα gene between the ventricles of control and diabetic rats (P < 0.05). Our findings suggest that elevated expression of LXRα may be involved in the progression of DCM, and demethylation of LXRα is likely to be responsible for its increased expression in myocardial tissues.

  10. Interleukin-13 Inhibits Lipopolysaccharide-Induced BPIFA1 Expression in Nasal Epithelial Cells

    PubMed Central

    Chen, Hui-Chen; Hsu, Hui-Ying; Wu, Lii-Tzu; Chiang-Ni, Chuan; Chen, Chih-Jung; Wu, Tsu-Fang; Kao, Min-Chuan; Chen, Yu-An; Peng, Ming-Te; Tsai, Ming-Hsui; Chen, Chuan-Mu; Lai, Chih-Ho

    2015-01-01

    Short palate, lung, and nasal epithelium clone 1 (SPLUNC1) protein is expressed in human nasopharyngeal and respiratory epithelium and has demonstrated antimicrobial activity. SPLUNC1 is now referred to as bactericidal/permeability-increasing fold containing family A, member 1 (BPIFA1). Reduced BPIFA1 expression is associated with bacterial colonization in patients with chronic rhinosinusitis with nasal polyps (CRSwNP). Interleukin 13 (IL-13), predominately secreted by T helper 2 (TH2) cells, has been found to contribute to airway allergies and suppress BPIFA1 expression in nasal epithelial cells. However, the molecular mechanism of IL-13 perturbation of bacterial infection and BPIFA1 expression in host airways remains unclear. In this study, we found that lipopolysaccharide (LPS)-induced BPIFA1 expression in nasal epithelial cells was mediated through the JNK/c-Jun signaling pathway and AP-1 activation. We further demonstrated that IL-13 downregulated the LPS-induced activation of phosphorylated JNK and c-Jun, followed by attenuation of BPIFA1 expression. Moreover, the immunohistochemical analysis showed that IL-13 prominently suppressed BPIFA1 expression in eosinophilic CRSwNP patients with bacterial infection. Taken together, these results suggest that IL-13 plays a critical role in attenuation of bacteria-induced BPIFA1 expression that may result in eosinophilic CRSwNP. PMID:26646664

  11. Bacterial feeding, Leishmania infection and distinct infection routes induce differential defensin expression in Lutzomyia longipalpis

    PubMed Central

    2013-01-01

    Background Phlebotomine insects harbor bacterial, viral and parasitic pathogens that can cause diseases of public health importance. Lutzomyia longipalpis is the main vector of visceral leishmaniasis in the New World. Insects can mount a powerful innate immune response to pathogens. Defensin peptides take part in this response and are known to be active against Gram-positive and Gram-negative bacteria, and some parasites. We studied the expression of a defensin gene from Lutzomyia longipalpis to understand its role in sand fly immune response. Methods We identified, sequenced and evaluated the expression of a L. longipalpis defensin gene by semi-quantitative RT-PCR. The gene sequence was compared to other vectors defensins and expression was determined along developmental stages and after exposure of adult female L. longipalpis to bacteria and Leishmania. Results Phylogenetic analysis showed that the L. longipalpis defensin is closely related to a defensin from the Old World sand fly Phlebotomus duboscqi. Expression was high in late L4 larvae and pupae in comparison to early larval stages and newly emerged flies. Defensin expression was modulated by oral infection with bacteria. The Gram-positive Micrococcus luteus induced early high defensin expression, whilst the Gram-negative entomopathogenic Serratia marcescens induced a later response. Bacterial injection also induced defensin expression in adult insects. Female sand flies infected orally with Leishmania mexicana showed no significant difference in defensin expression compared to blood fed insects apart from a lower defensin expression 5 days post Leishmania infection. When Leishmania was introduced into the hemolymph by injection there was no induction of defensin expression until 72 h later. Conclusions Our results suggest that L. longipalpis modulates defensin expression upon bacterial and Leishmania infection, with patterns of expression that are distinct among bacterial species and routes of infection

  12. Toll-Like Receptor Stimulation Induces Nondefensin Protein Expression and Reverses Antibiotic-Induced Gut Defense Impairment

    PubMed Central

    Wu, Ying-Ying; Hsu, Ching-Mei; Chen, Pei-Hsuan; Fung, Chang-Phone

    2014-01-01

    Prior antibiotic exposure is associated with increased mortality in Gram-negative bacteria-induced sepsis. However, how antibiotic-mediated changes of commensal bacteria promote the spread of enteric pathogenic bacteria in patients remains unclear. In this study, the effects of systemic antibiotic treatment with or without Toll-like receptor (TLR) stimulation on bacterium-killing activity, antibacterial protein expression in the intestinal mucosa, and bacterial translocation were examined in mice receiving antibiotics with or without oral supplementation of dead Escherichia coli or Staphylococcus aureus. We developed a systemic ampicillin, vancomycin, and metronidazole treatment protocol to simulate the clinical use of antibiotics. Antibiotic treatment decreased the total number of bacteria, including aerobic bacteria belonging to the family Enterobacteriaceae and the genus Enterococcus as well as organisms of the anaerobic genera Lactococcus and Bifidobacterium in the intestinal mucosa and lumen. Antibiotic treatment significantly decreased the bacterium-killing activity of the intestinal mucosa and the expression of non-defensin-family proteins, such as RegIIIβ, RegIIIγ, C-reactive protein-ductin, and RELMβ, but not the defensin-family proteins, and increased Klebsiella pneumoniae translocation. TLR stimulation after antibiotic treatment increased NF-κB DNA binding activity, nondefensin protein expression, and bacterium-killing activity in the intestinal mucosa and decreased K. pneumoniae translocation. Moreover, germfree mice showed a significant decrease in nondefensin proteins as well as intestinal defense against pathogen translocation. Since TLR stimulation induced NF-κB DNA binding activity, TLR4 expression, and mucosal bacterium-killing activity in germfree mice, we conclude that the commensal microflora is critical in maintaining intestinal nondefensin protein expression and the intestinal barrier. In turn, we suggest that TLR stimulation induces

  13. Ectopic ERK Expression Induces Phenotypic Conversion of C10 Cells and Alters DNA Methyltransferase Expression

    SciTech Connect

    Sontag, Ryan L.; Weber, Thomas J.

    2012-05-04

    In some model systems constitutive extracellular signal regulated kinase (ERK) activation is sufficient to promote an oncogenic phenotype. Here we investigate whether constitutive ERK expression influences phenotypic conversion in murine C10 type II alveolar epithelial cells. C10 cells were stably transduced with an ERK1-green fluorescent protein (ERK1-GFP) chimera or empty vector and ectopic ERK expression was associated with the acquisition of soft agar focus-forming potential in late passage, but not early passage cells. Late passage ERK1-GFP cells exhibited a significant increase in the expression of DNA methyl transferases (DNMT1 and 3b) and a marked increase in sensitivity to 5-azacytidine (5-azaC)-mediated toxicity, relative to early passage ERK1-GFP cells and vector controls. The expression of xeroderma pigmentosum complementation group A (XPA) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were significantly increased in late passage cells, suggesting enhanced DNA damage recognition and repair activity which we interpret as a reflection of genomic instability. Phospho-ERK levels were dramatically decreased in late passage ERK1-GFP cells, relative to early passage and vector controls, and phospho-ERK levels were restored by treatment with sodium orthovanadate, indicating a role for phosphatase activity in this response. Collectively these observations suggest that ectopic ERK expression promotes phenotypic conversion of C10 cells that is associated with latent effects on epigenetic programming and phosphatase activities.

  14. A comparative study examining the cytotoxicity of inducible gene expression system ligands in different cell types.

    PubMed

    Xie, Jinger; Nair, Ayyappan; Hermiston, Terry W

    2008-02-01

    Inducible gene expression systems are being used in many in vitro and in vivo applications for target discovery, target validation and as components in exploratory therapeutic agents. Ideally, the ligands, which activate the systems, are benign so that the effects can be strictly attributed to the induced protein. As a first step to defining the potential effects of these inducers, we tested three of them, doxycycline, muristerone A and mifepristone (for tet-, ecdysone- and progesterone antagonist-inducible systems respectively), for toxicity across a panel of normal cells and cancer cell lines. In contrast to both muristerone A and mifepristone that showed no significant toxicity on any of the tested cells, we observed that doxycycline induced cell death in selected cancer and primary cell lines. The different susceptibility of cell lines to the ligands commonly used in these inducible systems suggests that it is important to consider the effects of the inducers prior to their use in experimental in vitro cell culture systems.

  15. Expression and activity of inducible nitric oxide synthase and endothelial nitric oxide synthase correlate with ethanol-induced liver injury

    PubMed Central

    Yuan, Guang-Jin; Zhou, Xiao-Rong; Gong, Zuo-Jiong; Zhang, Pin; Sun, Xiao-Mei; Zheng, Shi-Hua

    2006-01-01

    AIM: To study the expression and activity of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) in rats with ethanol-induced liver injury and their relation with liver damage, activation of nuclear factor-κB (NF-κB) and tumor necrosis factor-α (TNF-α) expression in the liver. METHODS: Female Sprague-Dawley rats were given fish oil (0.5 mL) along with ethanol or isocaloric dextrose daily via gastrogavage for 4 or 6 wk. Liver injury was assessed using serum alanine aminotransferase (ALT) activity and pathological analysis. Liver malondialdehyde (MDA), nitric oxide contents, iNOS and eNOS activity were determined. NF-κB p65,iNOS, eNOS and TNF-α protein or mRNA expression in the liver were detected by immunohistochemistry or reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS: Chronic ethanol gavage for 4 wk caused steatosis, inflammation and necrosis in the liver, and elevated serum ALT activity. Prolonged ethanol administration (6 wk) enhanced the liver damage. These responses were accompanied with increased lipid peroxidation, NO contents, iNOS activity and reduced eNOS activity. NF-κB p65, iNOS and TNF-α protein or mRNA expression were markedly induced after chronic ethanol gavage, whereas eNOS mRNA expression remained unchanged. The enhanced iNOS activity and expression were positively correlated with the liver damage, especially the necro-inflammation, activation of NF-κB, and TNF-α mRNA expression. CONCLUSION: iNOS expression and activity are induced in the liver after chronic ethanol exposure in rats, which are correlated with the liver damage, especially the necro-inflammation, activation of NF-κB and TNF-α expression. eNOS activity is reduced, but its mRNA expression is not affected. PMID:16688828

  16. Activation of the farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21.

    PubMed

    Cyphert, Holly A; Ge, Xuemei; Kohan, Alison B; Salati, Lisa M; Zhang, Yanqiao; Hillgartner, F Bradley

    2012-07-20

    Previous studies have shown that starvation or consumption of a high fat, low carbohydrate (HF-LC) ketogenic diet induces hepatic fibroblast growth factor 21 (FGF21) gene expression in part by activating the peroxisome proliferator-activated receptor-α (PPARα). Using primary hepatocyte cultures to screen for endogenous signals that mediate the nutritional regulation of FGF21 expression, we identified two sources of PPARα activators (i.e. nonesterified unsaturated fatty acids and chylomicron remnants) that induced FGF21 gene expression. In addition, we discovered that natural (i.e. bile acids) and synthetic (i.e. GW4064) activators of the farnesoid X receptor (FXR) increased FGF21 gene expression and secretion. The effects of bile acids were additive with the effects of nonesterified unsaturated fatty acids in regulating FGF21 expression. FXR activation of FGF21 gene transcription was mediated by an FXR/retinoid X receptor binding site in the 5'-flanking region of the FGF21 gene. FGF19, a gut hormone whose expression and secretion is induced by intestinal bile acids, also increased hepatic FGF21 secretion. Deletion of FXR in mice suppressed the ability of an HF-LC ketogenic diet to induce hepatic FGF21 gene expression. The results of this study identify FXR as a new signaling pathway activating FGF21 expression and provide evidence that FXR activators work in combination with PPARα activators to mediate the stimulatory effect of an HF-LC ketogenic diet on FGF21 expression. We propose that the enhanced enterohepatic flux of bile acids during HF-LC consumption leads to activation of hepatic FXR and FGF19 signaling activity and an increase in FGF21 gene expression and secretion.

  17. Morphine increases hippocampal viral load and suppresses frontal lobe CCL5 expression in the LP-BM5 AIDS model.

    PubMed

    McLane, Virginia D; Cao, Ling; Willis, Colin L

    2014-04-15

    Chronic opiate abuse accelerates the development of cognitive deficits in human immunodeficiency virus (HIV)-1 patients. To investigate morphine's effects on viral infection of the central nervous system, we applied chronic morphine treatment to the LP-BM5 murine acquired immunodeficiency syndrome (MAIDS) model. LP-BM5 infection induces proinflammatory cytokine/chemokine production, correlating to increased blood-brain barrier permeability. Morphine treatment significantly increased LP-BM5 viral load in the hippocampus, but not in the frontal lobe. Morphine reduced the chemokine CCL5 to non-infected levels in the frontal lobe, but not in the hippocampus. These data indicate a region-specific mechanism for morphine's effects on virally-induced neurocognitive deficits.

  18. Gene expression profile induced by BCNU in human glioma cell lines with differential MGMT expression.

    PubMed

    Bandres, Eva; Andion, Esther; Escalada, Alvaro; Honorato, Beatriz; Catalan, Victoria; Cubedo, Elena; Cordeu, Lucia; Garcia, Fermin; Zarate, Ruth; Zabalegui, Natalia; Garcia-Foncillas, Jesus

    2005-07-01

    Chemotherapy with the alkylating agent BCNU (1,3-bis (2-chloroethyl)-1-nitrosourea) is the most commonly used chemotherapeutic agent for gliomas. However, the usefulness of this agent is limited because tumor cell resistance to BCNU is frequently found in clinical brain tumor therapy. The O6-methylguanine-DNA methyltransferase protein (MGMT) reverses alkylation at the O6 position of guanine and we have reported the role of MGMT in the response of brain tumors to alkylating agents. However, the different mechanisms underlying the patterns related to MGMT remain unclear. To better understand the molecular mechanism by which BCNU exerts its effect in glioma cell lines according MGMT expression, we used microarray technology to interrogate 3800 known genes and determine the gene expression profiles altered by BCNU treatment. Our results showed that treatment with BCNU alters the expression of a diverse group of genes in a time-dependent manner. A subset of gene changes was found common in both glioma cell lines and other subset is specific of each cell line. After 24 h of BCNU treatment, up-regulation of transcription factors involved in the nucleation of both RNA polymerase II and III transcription initiation complexes was reported. Interestingly, BCNU promoted the expression of actin-dependent regulators of chromatin. Similar effects were found with higher BCNU doses in MGMT+ cell line showing a similar mechanism that in MGMT-deficient cell with standard doses. Our data suggest that human glioma cell lines treated with BCNU, independently of MGMT expression, show changes in the expression of cell cycle and survival-related genes interfering the transcription mechanisms and the chromatin regulation.

  19. AID and Apobec3G haphazard deamination and mutational diversity

    PubMed Central

    Jaszczur, Malgorzata; Bertram, Jeffrey G.; Pham, Phuong; Scharff, Matthew D.

    2012-01-01

    Activation-induced deoxycytidine deaminase (AID) and Apobec 3G (Apo3G) cause mutational diversity by initiating mutations on regions of single-stranded (ss) DNA. Expressed in B cells, AID deaminates C → U in actively transcribed immunoglobulin (Ig) variable and switch regions to initiate the somatic hypermutation (SHM) and class switch recombination (CSR) that are essential for antibody diversity. Apo3G expressed in T cells catalyzes C deaminations on reverse transcribed cDNA causing HIV-1 retroviral inactivation. When operating properly, AID- and Apo3G-initiated mutations boost human fitness. Yet, both enzymes are potentially powerful somatic cell “mutators”. Loss of regulated expression and proper genome targeting can cause human cancer. Here, we review well-established biological roles of AID and Apo3G. We provide a synopsis of AID partnering proteins during SHM and CSR, and describe how an Apo2 crystal structure provides “surrogate” insight for AID and Apo3G biochemical behavior. However, large gaps remain in our understanding of how dC deaminases search ssDNA to identify trinucleotide motifs to deaminate. We discuss two recent methods to analyze ssDNA scanning and deamination. Apo3G scanning and deamination is visualized in real-time using single-molecule FRET, and AID deamination efficiencies are determined with a random walk analysis. AID and Apo3G encounter many candidate deamination sites while scanning ssDNA. Generating mutational diversity is a principal aim of AID and an important ancillary property of Apo3G. Success seems likely to involve hit and miss deamination motif targeting, biased strongly toward miss. PMID:23178850

  20. Protective effects of L-selenomethionine on space radiation induced changes in gene expression.

    PubMed

    Stewart, J; Ko, Y-H; Kennedy, A R

    2007-06-01

    Ionizing radiation can produce adverse biological effects in astronauts during space travel. Of particular concern are the types of radiation from highly energetic, heavy, charged particles known as HZE particles. The aims of our studies are to characterize HZE particle radiation induced biological effects and evaluate the effects of L-selenomethionine (SeM) on these adverse biological effects. In this study, microarray technology was used to measure HZE radiation induced changes in gene expression, as well as to evaluate modulation of these changes by SeM. Human thyroid epithelial cells (HTori-3) were irradiated (1 GeV/n iron ions) in the presence or in the absence of 5 microM SeM. At 6 h post-irradiation, all cells were harvested for RNA isolation. Gene Chip U133Av2 from Affymetrix was used for the analysis of gene expression, and ANOVA and EASE were used for a determination of the genes and biological processes whose differential expression is statistically significant. Results of this microarray study indicate that exposure to small doses of radiation from HZE particles, 10 and 20 cGy from iron ions, induces statistically significant differential expression of 196 and 610 genes, respectively. In the presence of SeM, differential expression of 77 out of 196 genes (exposure to 10 cGy) and 336 out of 610 genes (exposure to 20 cGy) is abolished. In the presence or in the absence of SeM, radiation from HZE particles induces differential expression of genes whose products have roles in the induction of G1/S arrest during the mitotic cell cycle, as well as heat shock proteins. Some of the genes, whose expressions were affected by radiation from HZE particles and were unchanged in irradiated cells treated with SeM, have been shown to have altered expression levels in cancer cells. The conclusions of this report are that radiation from HZE particles can induce differential expression of many genes, some of which are known to play roles in the same processes that have

  1. Methylmercury induces the expression of TNF-α selectively in the brain of mice

    PubMed Central

    Iwai-Shimada, Miyuki; Takahashi, Tsutomu; Kim, Min-Seok; Fujimura, Masatake; Ito, Hitoyasu; Toyama, Takashi; Naganuma, Akira; Hwang, Gi-Wook

    2016-01-01

    Methylmercury selectively damages the central nervous system (CNS). The tumor necrosis factor (TNF) superfamily includes representative cytokines that participate in the inflammatory response as well as cell survival, and apoptosis. In this study, we found that administration of methylmercury selectively induced TNF-α expression in the brain of mice. Although the accumulated mercury concentration in the liver and kidneys was greater than in the brain, TNF-α expression was induced to a greater extent in brain. Thus, it is possible that there may exist a selective mechanism by which methylmercury induces TNF-α expression in the brain. We also found that TNF-α expression was induced by methylmercury in C17.2 cells (mouse neural stem cells) and NF-κB may participate as a transcription factor in that induction. Further, we showed that the addition of TNF-α antagonist (WP9QY) reduced the toxicity of methylmercury to C17.2 cells. In contrast, the addition of recombinant TNF-α to the culture medium decreased the cell viability. We suggest that TNF-α may play a part in the selective damage of the CNS by methylmercury. Furthermore, our results indicate that the higher TNF-α expression induced by methylmercury maybe the cause of cell death, as TNF-α binds to its receptor after being released extracellularly. PMID:27910896

  2. Leptin induces CREB-dependent aromatase activation through COX-2 expression in breast cancer cells.

    PubMed

    Kim, Hyung Gyun; Jin, Sun Woo; Kim, Yong An; Khanal, Tilak; Lee, Gi Ho; Kim, Se Jong; Rhee, Sang Dal; Chung, Young Chul; Hwang, Young Jung; Jeong, Tae Cheon; Jeong, Hye Gwang

    2017-08-01

    Leptin plays a key role in the control of adipocyte formation, as well as in the associated regulation of energy intake and expenditure. The goal of this study was to determine if leptin-induced aromatase enhances estrogen production and induces tumor cell growth stimulation. To this end, breast cancer cells were incubated with leptin in the absence or presence of inhibitor pretreatment, and changes in aromatase and cyclooxygenase-2 (COX-2) expression were evaluated at the mRNA and protein levels. Transient transfection assays were performed to examine the aromatase and COX-2 gene promoter activities and immunoblot analysis was used to examine protein expression. Leptin induced aromatase expression, estradiol production, and promoter activity in breast cancer cells. Protein levels of phospho-STAT3, PKA, Akt, ERK, and JNK were increased by leptin. Leptin also significantly increased cAMP levels, cAMP response element (CRE) activation, and CREB phosphorylation. In addition, leptin induced COX-2 expression, promoter activity, and increased the production of prostaglandin E2. Finally, a COX-2 inhibitor and aromatase inhibitor suppressed leptin-induced cell proliferation in MCF-7 breast cancer cells. Together, our data show that leptin increased aromatase expression in breast cancer cells, which was correlated with COX-2 upregulation, mediated through CRE activation and cooperation among multiple signaling pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. In Vivo Imaging of Local Gene Expression Induced by Magnetic Hyperthermia

    PubMed Central

    Sandre, Olivier; Genevois, Coralie; Garaio, Eneko; Adumeau, Laurent; Mornet, Stéphane; Couillaud, Franck

    2017-01-01

    The present work aims to demonstrate that colloidal dispersions of magnetic iron oxide nanoparticles stabilized with dextran macromolecules placed in an alternating magnetic field can not only produce heat, but also that these particles could be used in vivo for local and noninvasive deposition of a thermal dose sufficient to trigger thermo-induced gene expression. Iron oxide nanoparticles were first characterized in vitro on a bio-inspired setup, and then they were assayed in vivo using a transgenic mouse strain expressing the luciferase reporter gene under transcriptional control of a thermosensitive promoter. Iron oxide nanoparticles dispersions were applied topically on the mouse skin or injected subcutaneously with Matrigel™ to generate so-called pseudotumors. Temperature was monitored continuously with a feedback loop to control the power of the magnetic field generator and to avoid overheating. Thermo-induced luciferase expression was followed by bioluminescence imaging 6 h after heating. We showed that dextran-coated magnetic iron oxide nanoparticle dispersions were able to induce in vivo mild hyperthermia compatible with thermo-induced gene expression in surrounding tissues and without impairing cell viability. These data open new therapeutic perspectives for using mild magnetic hyperthermia as noninvasive modulation of tumor microenvironment by local thermo-induced gene expression or drug release. PMID:28208731

  4. Radiation-induced gene expression in the nematode Caenorhabditis elegans

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Jones, Tamako A.; Chesnut, Aaron; Smith, Anna L.

    2002-01-01

    We used the nematode C. elegans to characterize the genotoxic and cytotoxic effects of ionizing radiation in a simple animal model emphasizing the unique effects of charged particle radiation. Here we demonstrate by RT-PCR differential display and whole genome microarray hybridization experiments that gamma rays, accelerated protons and iron ions at the same physical dose lead to unique transcription profiles. 599 of 17871 genes analyzed (3.4%) showed differential expression 3 hrs after exposure to 3 Gy of radiation. 193 were up-regulated, 406 were down-regulated and 90% were affected only by a single species of radiation. A novel statistical clustering technique identified the regulatory relationships between the radiation-modulated genes and showed that genes affected by each radiation species were associated with unique regulatory clusters. This suggests that independent homeostatic mechanisms are activated in response to radiation exposure as a function of track structure or ionization density.

  5. Radiation-induced gene expression in the nematode Caenorhabditis elegans

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Jones, Tamako A.; Chesnut, Aaron; Smith, Anna L.

    2002-01-01

    We used the nematode C. elegans to characterize the genotoxic and cytotoxic effects of ionizing radiation in a simple animal model emphasizing the unique effects of charged particle radiation. Here we demonstrate by RT-PCR differential display and whole genome microarray hybridization experiments that gamma rays, accelerated protons and iron ions at the same physical dose lead to unique transcription profiles. 599 of 17871 genes analyzed (3.4%) showed differential expression 3 hrs after exposure to 3 Gy of radiation. 193 were up-regulated, 406 were down-regulated and 90% were affected only by a single species of radiation. A novel statistical clustering technique identified the regulatory relationships between the radiation-modulated genes and showed that genes affected by each radiation species were associated with unique regulatory clusters. This suggests that independent homeostatic mechanisms are activated in response to radiation exposure as a function of track structure or ionization density.

  6. IL-22 Negatively Regulates Helicobacter pylori-Induced CCL20 Expression in Gastric Epithelial Cells

    PubMed Central

    Chen, Jia-Perng; Wu, Ming-Shiang; Kuo, Sung-Hsin; Liao, Fang

    2014-01-01

    Helicobacter pylori is a Gram-negative bacterium that infects the human gastric mucosa and causes various gastric diseases. H. pylori infection induces the production of inflammatory chemokine CCL20 in gastric mucosa and leads to gastric inflammation. Given that the IL-22/IL-22R axis plays a critical role in the regulation of homeostasis and inflammation of epithelial cells at barrier surfaces, we investigated the effect of IL-22 on CCL20 expression induced by H. pylori. We demonstrated that H. pylori infection of the gastric epithelia-derived AGS cells significantly induced CCL20 expression and the induction was inhibited by IL-22. Functional analysis of the CCL20 promoter revealed that the H. pylori-induced CCL20 expression required the activation of NF-κB, and that IL-22 inhibited the induction by attenuating NF-κB activation. Knockdown of endogenous STAT3 by either short interfering RNAs or a short hairpin RNA significantly reduced the inhibitory effect of IL-22. Furthermore, STAT3 phosphorylation elicited by IL-22 was crucial for the inhibition of H. pylori-induced CCL20 expression. Consistent with the in vitro data showing that IL-22 negatively regulated H. pylori-induced CCL20 expression in gastric epithelial cells, studies on the tissue sections from patients with H. pylori infection also revealed an inverse association of IL-22 expression and CCL20 expression in vivo. Together, our findings suggest that IL-22 plays a role in the control of overproduction of the inflammatory chemokine and thus may protect the gastric mucosa from inflammation-mediated damage. PMID:24824519

  7. [Effect of quercetin on doxorubicin-induced expression of MDR1 gene in HL-60 cells].

    PubMed

    He, Hai-Lan; Ji, Li-Juan; Li, Qi-Zhi; Zhang, Rong; Huang, Jian-Ming; Li, Ge

    2015-02-01

    Leukemia cells can acquire a multidrug resistant (MDR) phenotype in response to a wide variety of chemotherapeutic agents including doxorubicin (Dox). In addition to the constitutive expression in the leukemia prior to chemotherapy, a complex phenotype of pleiotropic resistance is presented in the residual or recurrent leukemia. Recent studies showed Dox-induced coexpression of COX2 and MDR1 genes in human leukaemia cells, and whether Dox-induced MDR1 up-regulation in acute leukaemia cells is dependent on COX2-transcriptional activity and thus might be overcome or prevented with COX2-promotor inhibitor quercetin interfering with COX2 expression and activity. This study was purposed to investigate the impacts of quercetin on Dox-induced mRNA expression of MDR1 and COX2 genes in HL-60 leukemia cells. The MDR1 and COX2 mRNA expression in HL-60 cells was detected by RT-PCR; the prostaglandin E2 (PGE2) release was measured by ELISA; the cytotoxicity of Dox was determined by MTT test. The incubation of HL-60 cells with Dox not only up-regulated MDR1 mRNA, but also COX2 mRNA expression, and after co-incubation with quercetin or celecoxib, Dox-induced overexpression of MDR1 and COX2 mRNA were reduced by quercetin, not by celecoxib, whereas PGE2 release was significantly decreased with subsequent enhancement of Dox cytotoxic efficacy by both of them. Dox-induced MDR1 up-regulation may be dependent on COX2-transcriptional activity, not PGE2, suggesting that the existence of causal link between COX2 and MDR1 expression induced by Dox, and modulation of COX2 transcriptional expression by quercetin would not only sensitize leukemia cells to Dox, but also prevent the acquisition of MDR during chemotherapy.

  8. Cellular and Molecular Mechanisms of Heat Stress-Induced Up-Regulation of Occludin Protein Expression

    PubMed Central

    Dokladny, Karol; Ye, Dongmei; Kennedy, John C.; Moseley, Pope L.; Ma, Thomas Y.

    2008-01-01

    The heat stress (HS)-induced increase in occludin protein expression has been postulated to be a protective response against HS-induced disruption of the intestinal epithelial tight junction barrier. The aim of this study was to elucidate the cellular and molecular processes that mediate the HS-induced up-regulation of occludin expression in Caco-2 cells. Exposure to HS (39°C or 41°C) resulted in increased expression of occludin protein; this was preceded by an increase in occludin mRNA transcription and promoter activity. HS-induced activation of heat shock factor-1 (HSF-1) resulted in cytoplasmic-to-nuclear translocation of HSF-1 and binding to its binding motif in the occludin promoter region. HSF-1 activation was associated with an increase in occludin promoter activity, mRNA transcription, and protein expression; which were abolished by the HSF-1 inhibitor quercetin. Targeted HSF-1 knock-down by siRNA transfection inhibited the HSF-1-induced increase in occulin expression and junctional localization of occulin protein. Site-directed mutagenesis of the HSF-1 binding motif in the occludin promoter region inhibited HS-induced binding of HSF-1 to the occludin promoter region and subsequent promoter activity. In conclusion, our data show for the first time that the HS-induced increase in occludin protein expression is mediated by HSF-1 activation and subsequent binding of HSF-1 to the occludin promoter, which initiates a series of molecular and cellular events culminating in increased junctional localization of occludin protein. PMID:18276783

  9. Bifidobacterium bifidum Actively Changes the Gene Expression Profile Induced by Lactobacillus acidophilus in Murine Dendritic Cells

    PubMed Central

    Weiss, Gudrun; Rasmussen, Simon; Nielsen Fink, Lisbeth; Jarmer, Hanne; Nøhr Nielsen, Birgit; Frøkiær, Hanne

    2010-01-01

    Dendritic cells (DC) play a pivotal regulatory role in activation of both the innate as well as the adaptive immune system by responding to environmental microorganisms. We have previously shown that Lactobacillus acidophilus induces a strong production of the pro-inflammatory and Th1 polarizing cytokine IL-12 in DC, whereas bifidobacteria do not induce IL-12 but inhibit the IL-12 production induced by lactobacilli. In the present study, genome-wide microarrays were used to investigate the gene expression pattern of murine DC stimulated with Lactobacillus acidophilus NCFM and Bifidobacterium bifidum Z9. L. acidophilus NCFM strongly induced expression of interferon (IFN)-β, other virus defence genes, and cytokine and chemokine genes related to the innate and the adaptive immune response. By contrast, B. bifidum Z9 up-regulated genes encoding cytokines and chemokines related to the innate immune response. Moreover, B. bifidum Z9 inhibited the expression of the Th1-promoting genes induced by L. acidophilus NCFM and had an additive effect on genes of the innate immune response and Th2 skewing genes. The gene encoding Jun dimerization protein 2 (JDP2), a transcription factor regulating the activation of JNK, was one of the few genes only induced by B. bifidum Z9. Neutralization of IFN-β abrogated L. acidophilus NCFM-induced expression of Th1-skewing genes, and blocking of the JNK pathway completely inhibited the expression of IFN-β. Our results indicate that B. bifidum Z9 actively inhibits the expression of genes related to the adaptive immune system in murine dendritic cells and that JPD2 via blocking of IFN-β plays a central role in this regulatory mechanism. PMID:20548777

  10. Propofol inhibits high glucose-induced PP2A expression in human umbilical vein endothelial cells.

    PubMed

    Wu, Qichao; Zhao, Yanjun; Duan, Wenming; Liu, Yi; Chen, Xiangyuan; Zhu, Minmin

    2017-04-01

    Perioperative hyperglycemia is a common clinical metabolic disorder. Hyperglycemia could induce endothelial apoptosis, dysfunction and inflammation, resulting in endothelial injury. Propofol is a widely used anesthetic drug in clinical settings. Our previous studies indicated that propofol, via inhibiting high glucose-induced phosphatase A2 (PP2A) expression, attenuated high glucose-induced reactive oxygen species (ROS) accumulation, thus improving endothelial apoptosis, dysfunction and inflammation. However, the mechanisms by which propofol attenuated high glucose-induced PP2A expression is still obscure. In the present study, we examined how propofol attenuates high glucose-induced endothelial PP2A expression. Compared with 5mM glucose treatment, 15mM glucose up-regulated expression and activity of PP2A, increased cAMP response element binding protein (CREB), Ca(2+)-calmodulin dependent kinase II (CaMK II) phosphorylation and Ca(2+) accumulation. More importantly, propofol decreased PP2A expression and activity, attenuated CREB, CaMK II phosphorylation and Ca(2+) accumulation in a concentration-dependent manner. Moreover, we demonstrated that the effect of propofol was similar to that of MK801, an inhibitor of NMDA receptor. In contrast, rapastinel, an activator of NMDA receptor, antagonized the effect of propofol. Also, the effect of KN93, an inhibitor of CaMK II, was similar to that of propofol, except KN93 had no effect on 15mM glucose-mediated Ca(2+) accumulation. Our data indicated that propofol, via inhibiting NMDA receptor, attenuated 15mM glucose-induced Ca(2+) accumulation, CaMK II and CREB phosphorylation, thus inhibiting PP2A expression and improving 15mM glucose-induced endothelial dysfunction and inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane.

    PubMed

    Reis, Rafaela Ribeiro; da Cunha, Bárbara Andrade Dias Brito; Martins, Polyana Kelly; Martins, Maria Thereza Bazzo; Alekcevetch, Jean Carlos; Chalfun, Antônio; Andrade, Alan Carvalho; Ribeiro, Ana Paula; Qin, Feng; Mizoi, Junya; Yamaguchi-Shinozaki, Kazuko; Nakashima, Kazuo; Carvalho, Josirley de Fátima Corrêa; de Sousa, Carlos Antônio Ferreira; Nepomuceno, Alexandre Lima; Kobayashi, Adilson Kenji; Molinari, Hugo Bruno Correa

    2014-05-01

    Drought is one of the most challenging agricultural issues limiting sustainable sugarcane production and, in some cases, yield losses caused by drought are nearly 50%. DREB proteins play vital regulatory roles in abiotic stress responses in plants. The transcription factor DREB2A interacts with a cis-acting DRE sequence to activate the expression of downstream genes that are involved in drought-, salt- and heat-stress response in Arabidopsis thaliana. In the present study, we evaluated the effects of stress-inducible over-expression of AtDREB2A CA on gene expression, leaf water potential (ΨL), relative water content (RWC), sucrose content and gas exchanges of sugarcane plants submitted to a four-days water deficit treatment in a rhizotron-grown root system. The plants were also phenotyped by scanning the roots and measuring morphological parameters of the shoot. The stress-inducible expression of AtDREB2A CA in transgenic sugarcane led to the up-regulation of genes involved in plant response to drought stress. The transgenic plants maintained higher RWC and ΨL over 4 days after withholding water and had higher photosynthetic rates until the 3rd day of water-deficit. Induced expression of AtDREB2A CA in sugarcane increased sucrose levels and improved bud sprouting of the transgenic plants. Our results indicate that induced expression of AtDREB2A CA in sugarcane enhanced its drought tolerance without biomass penalty.

  12. Coffee induces breast cancer resistance protein expression in Caco-2 cells.

    PubMed

    Isshiki, Marina; Umezawa, Kazuo; Tamura, Hiroomi

    2011-01-01

    Coffee is a beverage that is consumed world-wide on a daily basis and is known to induce a series of metabolic and pharmacological effects, especially in the digestive tract. However, little is known concerning the effects of coffee on transporters in the gastrointestinal tract. To elucidate the effect of coffee on intestinal transporters, we investigated its effect on expression of the breast cancer resistance protein (BCRP/ABCG2) in a human colorectal cancer cell line, Caco-2. Coffee induced BCRP gene expression in Caco-2 cells in a coffee-dose dependent manner. Coffee treatment of Caco-2 cells also increased the level of BCRP protein, which corresponded to induction of gene expression, and also increased cellular efflux activity, as judged by Hoechst33342 accumulation. None of the major constituents of coffee tested could induce BCRP gene expression. The constituent of coffee that mediated this induction was extractable with ethyl acetate and was produced during the roasting process. Dehydromethylepoxyquinomicin (DHMEQ), an inhibitor of nuclear factor (NF)-κB, inhibited coffee-mediated induction of BCRP gene expression, suggesting involvement of NF-κB in this induction. Our data suggest that daily consumption of coffee might induce BCRP expression in the gastrointestinal tract and may affect the bioavailability of BCRP substrates.

  13. System for stable β-estradiol-inducible gene expression in the moss Physcomitrella patens.

    PubMed

    Kubo, Minoru; Imai, Akihiro; Nishiyama, Tomoaki; Ishikawa, Masaki; Sato, Yoshikatsu; Kurata, Tetsuya; Hiwatashi, Yuji; Reski, Ralf; Hasebe, Mitsuyasu

    2013-01-01

    Inducible transgene expression provides a useful tool to analyze gene function. The moss Physcomitrellapatens is a model basal land plant with well-developed research tools, including a high efficiency of gene targeting and substantial genomics resources. However, current systems for controlled transgene expression remain limited. Here we report the development of an estrogen receptor mediated inducible gene expression system, based on the system used in flowering plants. After identifying the appropriate promoters to drive the chimeric transducer, we succeeded in inducing transcription over 1,000-fold after 24 h incubation with β-estradiol. The P. patens system was also effective for high-level long-term induction of gene expression; transcript levels of the activated gene were maintained for at least seven days on medium containing β-estradiol. We also established two potentially neutral targeting sites and a set of vectors for reproducible expression of two transgenes. This β-estradiol-dependent system will be useful to test genes individually or in combination, allowing stable, inducible transgenic expression in P. patens.

  14. Serum amyloid A induces interleukin-33 expression through an IRF7-dependent pathway

    PubMed Central

    Sun, Lei; Zhu, Ziyan; Cheng, Ni; Yan, Qian; Ye, Richard D.

    2014-01-01

    Interleukin-33 (IL-33), an IL-1 family cytokine and nuclear alarmin, is constitutively expressed in epithelial barrier tissues and human blood vessels. However, little is known about the induced expression of IL-33 in monocytes and macrophages, which are major cytokine-producing cells of the innate immune system. Here we report the induction of IL-33 expression in both human monocytes and mouse macrophages from C57BL/6 mice by the acute-phase protein serum amyloid A (SAA). SAA induced transcriptional activation of the IL-33 gene, resulting in nuclear accumulation of the IL-33 protein. TLR2, one of the SAA receptors, was primarily responsible for the induction of IL-33. Progressive deletion of the human IL-33 promoter led to the identification of two potential binding sites for interferon regulatory factor 7 (IRF7), one of which (−277/−257) was found to be important for SAA-stimulated IL-33 promoter activity. IRF7 was recruited to the IL-33 promoter upon SAA stimulation, and silencing IRF7 expression in THP-1 cells abrogated SAA-induced IL-33 expression. SAA also promoted an interaction between TRAF6 and IRF7. Taken together, these results identify IRF7 as a critical transcription factor for SAA-induced IL-33 expression in monocytes and macrophages. PMID:24777946

  15. Podophyllotoxin induces CREB phosphorylation and CRE-driven gene expression via PKA but not MAPKs.

    PubMed

    Chen, Ya Qiong; Xie, Xin

    2010-01-01

    CRE-driven luciferase reporter is commonly used in drug screening systems involving G protein-coupled receptors (GPCRs). In a screen campaign designed to search for melanocortin-4 receptor (MC4R) agonists, podophyllotoxin, a microtubules disruptor, was found to induce cAMP-responsive element (CRE)-driven reporter expression. MC4R was not involved because podophyllotoxin induced CREB activation and CRE-driven transcription in cells not expressing MC4R. Previous studies indicated that intracellular calcium, PKA, and MAPKs are involved in CREB phosphorylation and activation. Our studies revealed that podophyllotoxin did not affect intracellular calcium level and the phosphorylation state of p38. Podophyllotoxin induced JNK and ERK activation, but blockade of JNK and ERK activation with specific inhibitors had no effect on podophyllotoxin-induced CREB activation and CRE-regulated gene expression. Further experiments revealed that H89, a specific inhibitor of PKA, significantly inhibited podophyllotoxin-induced CREB activation. Podophyllotoxin itself did not alter intracellular cAMP level. Taken together, podophyllotoxin induces CREB activation and CRE-driven gene expression via PKA activation by a cAMP-independent mechanism.

  16. Pregnancy-induced gene expression changes in vivo among women with rheumatoid arthritis: a pilot study.

    PubMed

    Goin, Dana E; Smed, Mette Kiel; Pachter, Lior; Purdom, Elizabeth; Nelson, J Lee; Kjærgaard, Hanne; Olsen, Jørn; Hetland, Merete Lund; Zoffmann, Vibeke; Ottesen, Bent; Jawaheer, Damini

    2017-05-25

    Little is known about gene expression changes induced by pregnancy in women with rheumatoid arthritis (RA) and healthy women because the few studies previously conducted did not have pre-pregnancy samples available as baseline. We have established a cohort of women with RA and healthy women followed prospectively from a pre-pregnancy baseline. In this study, we tested the hypothesis that pregnancy-induced changes in gene expression among women with RA who improve during pregnancy (pregDASimproved) overlap substantially with changes observed among healthy women and differ from changes observed among women with RA who worsen during pregnancy (pregDASworse). Global gene expression profiles were generated by RNA sequencing (RNA-seq) from 11 women with RA and 5 healthy women before pregnancy (T0) and at the third trimester (T3). Among the women with RA, eight showed an improvement in disease activity by T3, whereas three worsened. Differential expression analysis was used to identify genes demonstrating significant changes in expression within each of the RA and healthy groups (T3 vs T0), as well as between the groups at each time point. Gene set enrichment was assessed in terms of Gene Ontology processes and protein networks. A total of 1296 genes were differentially expressed between T3 and T0 among the 8 pregDASimproved women, with 161 genes showing at least two-fold change (FC) in expression by T3. The majority (108 of 161 genes) were also differentially expressed among healthy women (q<0.05, FC≥2). Additionally, a small cluster of genes demonstrated contrasting changes in expression between the pregDASimproved and pregDASworse groups, all of which were inducible by type I interferon (IFN). These IFN-inducible genes were over-expressed at T3 compared to the T0 baseline among the pregDASimproved women. In our pilot RNA-seq dataset, increased pregnancy-induced expression of type I IFN-inducible genes was observed among women with RA who improved during pregnancy

  17. Regulatable arabinose-inducible gene expression system with consistent control in all cells of a culture.

    PubMed

    Khlebnikov, A; Risa, O; Skaug, T; Carrier, T A; Keasling, J D

    2000-12-01

    The arabinose-inducible promoter P(BAD) is subject to all-or-none induction, in which intermediate concentrations of arabinose give rise to subpopulations of cells that are fully induced and uninduced. To construct a host-vector expression system with regulatable control in a homogeneous population of cells, the araE gene of Escherichia coli was cloned into an RSF1010-derived plasmid under control of the isopropyl-beta-D-thiogalactopyranoside-inducible P(tac) and P(taclac) promoters. This gene encodes the low-affinity, high-capacity arabinose transport protein and is controlled natively by an arabinose-inducible promoter. To detect the effect of arabinose-independent araE expression on population homogeneity and cell-specific expression, the gfpuv gene was placed under control of the arabinose-inducible araBAD promoter (P(BAD)) on the pMB1-derived plasmid pBAD24. The transporter and reporter plasmids were transformed into E. coli strains with native arabinose transport systems and strains deficient in one or both of the arabinose transport systems (araE and/or araFGH). The effects of the arabinose concentration and arabinose-independent transport control on population homogeneity were investigated in these strains using flow cytometry. The araE, and araE araFGH mutant strains harboring the transporter and reporter plasmids were uniformly induced across the population at all inducer concentrations, and the level of gene expression in individual cells varied with arabinose concentration. In contrast, the parent strain, which expressed the native araE and araFGH genes and harbored the transporter and reporter plasmids, exhibited all-or-none behavior. This work demonstrates the importance of including a transport gene that is controlled independently of the inducer to achieve regulatable and consistent induction in all cells of the culture.

  18. Regulatable Arabinose-Inducible Gene Expression System with Consistent Control in All Cells of a Culture

    PubMed Central

    Khlebnikov, Artem; Risa, Øystein; Skaug, Tove; Carrier, Trent A.; Keasling, J. D.

    2000-01-01

    The arabinose-inducible promoter PBAD is subject to all-or-none induction, in which intermediate concentrations of arabinose give rise to subpopulations of cells that are fully induced and uninduced. To construct a host-vector expression system with regulatable control in a homogeneous population of cells, the araE gene of Escherichia coli was cloned into an RSF1010-derived plasmid under control of the isopropyl-β-d-thiogalactopyranoside-inducible Ptac and Ptaclac promoters. This gene encodes the low-affinity, high-capacity arabinose transport protein and is controlled natively by an arabinose-inducible promoter. To detect the effect of arabinose-independent araE expression on population homogeneity and cell-specific expression, the gfpuv gene was placed under control of the arabinose-inducible araBAD promoter (PBAD) on the pMB1-derived plasmid pBAD24. The transporter and reporter plasmids were transformed into E. coli strains with native arabinose transport systems and strains deficient in one or both of the arabinose transport systems (araE and/or araFGH). The effects of the arabinose concentration and arabinose-independent transport control on population homogeneity were investigated in these strains using flow cytometry. The araE, and araE araFGH mutant strains harboring the transporter and reporter plasmids were uniformly induced across the population at all inducer concentrations, and the level of gene expression in individual cells varied with arabinose concentration. In contrast, the parent strain, which expressed the native araE and araFGH genes and harbored the transporter and reporter plasmids, exhibited all-or-none behavior. This work demonstrates the importance of including a transport gene that is controlled independently of the inducer to achieve regulatable and consistent induction in all cells of the culture. PMID:11092865

  19. Inducible expression of transmembrane proteins on bacterial magnetic particles in Magnetospirillum magneticum AMB-1.

    PubMed

    Yoshino, Tomoko; Shimojo, Akiko; Maeda, Yoshiaki; Matsunaga, Tadashi

    2010-02-01

    Bacterial magnetic particles (BacMPs) produced by the magnetotactic bacterium Magnetospirillum magneticum AMB-1 are used for a variety of biomedical applications. In particular, the lipid bilayer surrounding BacMPs has been reported to be amenable to the insertion of recombinant transmembrane proteins; however, the display of transmembrane proteins in BacMP membranes remains a technical challenge due to the cytotoxic effects of the proteins when they are overexpressed in bacterial cells. In this study, a tetracycline-inducible expression system was developed to display transmembrane proteins on BacMPs. The expression and localization of the target proteins were confirmed using luciferase and green fluorescent protein as reporter proteins. Gene expression was suppressed in the absence of anhydrotetracycline, and the level of protein expression could be controlled by modulating the concentration of the inducer molecule. This system was implemented to obtain the expression of the tetraspanin CD81. The truncated form of CD81 including the ligand binding site was successfully displayed at the surface of BacMPs by using Mms13 as an anchor protein and was shown to bind the hepatitis C virus envelope protein E2. These results suggest that the tetracycline-inducible expression system described here will be a useful tool for the expression and display of transmembrane proteins in the membranes of BacMPs.

  20. Polyphenols prevent clinorotation-induced expression of atrogenes in mouse C2C12 skeletal myotubes.

    PubMed

    Hemdan, Dalia Ismaeil Ibrahim; Hirasaka, Katsuya; Nakao, Reiko; Kohno, Shohei; Kagawa, Sachiko; Abe, Tomoki; Harada-Sukeno, Akiko; Okumura, Yuushi; Nakaya, Yutaka; Terao, Junji; Nikawa, Takeshi

    2009-02-01

    Oxidative stress is a key factor in stimulating the expression of atrogenes, which are muscle atrophy-related ubiquitin ligases, in skeletal muscle, and it induces muscle atrophy during unloading. However, the effects of antioxidative nutrients on atrogene expression have not been demonstrated. We report on the inhibitory effects of polyphenols, such as epicatechin (EC), epicatechin gallate (ECg) and epigallocatechin gallate (EGCg) and quercetin, on atrogene expression up-regulated by three dimensional (3D)-clinorotation or glucocorticoid. These treatments markedly elevated the expression of atrogenes, including atrogin-1 and MuRF-1, in mouse C2C12 myoblasts and myotubes. Interestingly, EC, ECg, EGCg and quercetin significantly decreased the expression of atrogin-1 and MuRF-1 up-regulated by 3D-clinorotation, whereas they hardly affected atrogene expression induced by dexamethasone. ERK signaling is a well known MAPK pathway to mediate oxidative stress. Therefore, we also investigated the effect of these polyphenols on phosphorylation of ERK in C2C12 myotubes. As expected, EC, ECg, EGCg, and quercetin significantly suppressed phosphorylation of ERK, corresponding to the up-regulation of atrogenes induced by 3D-clinorotation. These results suggest that antioxidative nutrients, such as catechins and quercetin, suppress atrogene expression in skeletal muscle cells, possibly through the inhibition of ERK signaling. Thus, catechins and quercetin may prevent unloading-mediated muscle atrophy.

  1. Hypoxia-induced Bcl-2 expression in endothelial cells via p38 MAPK pathway

    SciTech Connect

    Zhang, Cui-Li; Song, Fei; Zhang, Jing; Song, Q.H.

    2010-04-16

    Angiogenesis and apoptosis are reciprocal processes in endothelial cells. Bcl-2, an anti-apoptotic protein, has been found to have angiogenic activities. The purpose of this study was to determine the role of Bcl-2 in hypoxia-induced angiogenesis in endothelial cells and to investigate the underlying mechanisms. Human aortic endothelial cells (HAECs) were exposed to hypoxia followed by reoxygenation. Myocardial ischemia and reperfusion mouse model was used and Bcl-2 expression was assessed. Bcl-2 expression increased in a time-dependent manner in response to hypoxia from 2 to 72 h. Peak expression occurred at 12 h (3- to 4-fold, p < 0.05). p38 inhibitor (SB203580) blocked hypoxia-induced Bcl-2 expression, whereas PKC, ERK1/2 and PI3K inhibitors did not. Knockdown of Bcl-2 resulted in decreased HAECs' proliferation and migration. Over-expression of Bcl-2 increased HAECs' tubule formation, whereas knockdown of Bcl-2 inhibited this process. In this model of myocardial ischemia and reperfusion, Bcl-2 expression was increased and was associated with increased p38 MAPK activation. Our results showed that hypoxia induces Bcl-2 expression in HAECs via p38 MAPK pathway.

  2. Titanium With Nanotopography Induces Osteoblast Differentiation by Regulating Endogenous Bone Morphogenetic Protein Expression and Signaling Pathway.

    PubMed

    M S Castro-Raucci, Larissa; S Francischini, Marcelo; N Teixeira, Lucas; P Ferraz, Emanuela; B Lopes, Helena; T de Oliveira, Paulo; Hassan, Mohammad Q; Losa, Adalberto L; Beloti, Marcio M

    2016-07-01

    We aimed at evaluating the effect of titanium (Ti) with nanotopography (Nano) on the endogenous expression of BMP-2 and BMP-4 and the relevance of this process to the nanotopography-induced osteoblast differentiation. MC3T3-E1 cells were grown on Nano and machined (Machined) Ti surfaces and the endogenous BMP-2/4 expression and the effect of BMP receptor BMPR1A silencing in both osteoblast differentiation and expression of genes related to TGF-β/BMP signaling were evaluated. Nano supported higher BMP-2 gene and protein expression and upregulated the osteoblast differentiation compared with Machined Ti surface. The BMPR1A silencing inhibited the osteogenic potential induced by Nano Ti surface as indicated by reduced alkaline phosphatase (ALP), osteocalcin and RUNX2 gene expression, RUNX2 protein expression and ALP activity. In addition, the expression of genes related to TGF-β/BMP signaling was deeply affected by BMPR1A-silenced cells grown on Nano Ti surface. In conclusion, we have demonstrated for the first time that nanotopography induces osteoblast differentiation, at least in part, by upregulating the endogenous production of BMP-2 and modulating BMP signaling pathway. J. Cell. Biochem. 117: 1718-1726, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  3. ERα Mediates Estrogen-Induced Expression of the Breast Cancer Metastasis Suppressor Gene BRMS1

    PubMed Central

    Ma, Hongtao; Gollahon, Lauren S.

    2016-01-01

    Recently, estrogen has been reported as putatively inhibiting cancer cell invasion and motility. This information is in direct contrast to the paradigm of estrogen as a tumor promoter. However, data suggests that the effects of estrogen are modulated by the receptor isoform with which it interacts. In order to gain a clearer understanding of the role of estrogen in potentially suppressing breast cancer metastasis, we investigated the regulation of estrogen and its receptor on the downstream target gene, breast cancer metastasis suppressor 1 (BRMS1) in MCF-7, SKBR3, TTU-1 and MDA-MB-231 breast cancer cells. Our results showed that estrogen increased the transcription and expression of BRMS1 in the ERα positive breast cancer cell line, MCF-7. Additionally, the ERα specific agonist PPT also induced the transcription and expression of BRMS1. However, the two remaining estrogen receptor (ER) subtype agonists had no effect on BRMS1 expression. In order to further examine the influence of ERα on BRMS1 expression, ERα expression was knocked down using siRNA (siERα). Western blot analysis showed that siERα reduced estrogen-induced and PPT-induced BRMS1 expression. In summary, this study demonstrates estrogen, via its α receptor, positively regulates the expression of BRMS1, providing new insight into a potential inhibitory effect of estrogen on metastasis suppression. PMID:26821020

  4. Inducible Expression of Transmembrane Proteins on Bacterial Magnetic Particles in Magnetospirillum magneticum AMB-1▿

    PubMed Central

    Yoshino, Tomoko; Shimojo, Akiko; Maeda, Yoshiaki; Matsunaga, Tadashi

    2010-01-01

    Bacterial magnetic particles (BacMPs) produced by the magnetotactic bacterium Magnetospirillum magneticum AMB-1 are used for a variety of biomedical applications. In particular, the lipid bilayer surrounding BacMPs has been reported to be amenable to the insertion of recombinant transmembrane proteins; however, the display of transmembrane proteins in BacMP membranes remains a technical challenge due to the cytotoxic effects of the proteins when they are overexpressed in bacterial cells. In this study, a tetracycline-inducible expression system was developed to display transmembrane proteins on BacMPs. The expression and localization of the target proteins were confirmed using luciferase and green fluorescent protein as reporter proteins. Gene expression was suppressed in the absence of anhydrotetracycline, and the level of protein expression could be controlled by modulating the concentration of the inducer molecule. This system was implemented to obtain the expression of the tetraspanin CD81. The truncated form of CD81 including the ligand binding site was successfully displayed at the surface of BacMPs by using Mms13 as an anchor protein and was shown to bind the hepatitis C virus envelope protein E2. These results suggest that the tetracycline-inducible expression system described here will be a useful tool for the expression and display of transmembrane proteins in the membranes of BacMPs. PMID:20038711

  5. Expression of inducible stress protein 70 in rat heart myogenic cells confers protection against simulated ischemia-induced injury.

    PubMed Central

    Mestril, R; Chi, S H; Sayen, M R; O'Reilly, K; Dillmann, W H

    1994-01-01

    Myocardial ischemia markedly increases the expression of several members of the stress/heat shock protein (HSP) family, especially the inducible HSP70 isoforms. Increased expression of HSP70 has been shown to exert a protective effect against a lethal heat shock. We have examined the possibility of using this resistance to a lethal heat shock as a protective effect against an ischemic-like stress in vitro using a rat embryonic heart-derived cell line H9c2 (2-1). Myogenic cells in which the heat shock proteins have been induced by a previous heat shock are found to become resistant to a subsequent simulated ischemic stress. In addition, to address the question of how much does the presence of the HSP70 contribute to this protective effect, we have generated stably transfected cell lines overexpressing the human-inducible HSP70. Embryonal rat heart-derived H9c2(2-1) cells were used for this purpose. This stably transfected cell line was found to be significantly more resistant to an ischemic-like stress than control myogenic cells only expressing the selectable marker (neomycin) or the parental cell line H9c2(2-1). This finding implicates the inducible HSP70 protein as playing a major role in protecting cardiac cells against ischemic injury. Images PMID:8113409

  6. Intravenous Immunoglobulin (IVIG) Attenuates TNF-induced Pathologic Bone Resorption and Suppresses Osteoclastogenesis by Inducing A20 Expression

    PubMed Central

    Mun, Sehwan; Bae, Seyeon; Murata, Koichi; Ivashkiv, Lionel B.; Park-Min, Kyung-Hyun

    2016-01-01

    Investigations on the therapeutic effects of intravenous immunoglobulin (IVIG) have focused on the suppression of autoantibody- and immune complex-mediated inflammatory pathogenesis. Inflammatory diseases such as rheumatoid arthritis are often accompanied by excessive bone erosion but the effect of IVIG on osteoclasts, bone-resorbing cells, has not been studied. Here, we investigate whether IVIG directly regulates osteoclast differentiation and has therapeutic potential for suppressing osteoclast-mediated pathologic bone resorption. IVIG or cross-linking of Fcγ receptors with plate-bound IgG suppressed receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and expression of osteoclast-related genes such as integrin β3 and cathepsin K in a dose-dependent manner. Mechanistically, IVIG or plate-bound IgG suppressed osteoclastogenesis by downregulating RANKL-induced expression of NFATC1, the master regulator of osteoclastogenesis. IVIG suppressed NFATC1 expression by attenuating RANKL-induced NF-κB signaling, explained in part by induction of the inflammatory signaling inhibitor A20. IVIG administration attenuated in vivo osteoclastogenesis and suppressed bone resorption in the tumor necrosis factor (TNF)-induced calvarial osteolysis model. Our findings show that, in addition to suppressing inflammation, IVIG directly inhibits osteoclastogenesis through a mechanism involving suppression of RANK signaling. Direct suppression of osteoclast differentiation may provide beneficial effects on preserving bone mass when IVIG is used to treat rheumatic disorders. PMID:26189496

  7. SPARC expression induces cell cycle arrest via STAT3 signaling pathway in medulloblastoma cells

    SciTech Connect

    Chetty, Chandramu; Dontula, Ranadheer; Gujrati, Meena; Lakka, Sajani S.

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Ectopic expression of SPARC impaired cell proliferation in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression induces STAT3 mediated cell cycle arrest in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression significantly inhibited pre-established tumor growth in nude-mice. -- Abstract: Dynamic cell interaction with ECM components has profound influence in cancer progression. SPARC is a component of the ECM, impairs the proliferation of different cell types and modulates tumor cell aggressive features. We previously reported that SPARC expression significantly impairs medulloblastoma tumor growth in vivo. In this study, we demonstrate that expression of SPARC inhibits medulloblastoma cell proliferation. MTT assay indicated a dose-dependent reduction in tumor cell proliferation in adenoviral mediated expression of SPARC full length cDNA (Ad-DsRed-SP) in D425 and UW228 cells. Flow cytometric analysis showed that Ad-DsRed-SP-infected cells accumulate in the G2/M phase of cell cycle. Further, immunoblot and immunoprecipitation analyses revealed that SPARC induced G2/M cell cycle arrest was mediated through inhibition of the Cyclin-B-regulated signaling pathway involving p21 and Cdc2 expression. Additionally, expression of SPARC decreased STAT3 phosphorylation at Tyr-705; constitutively active STAT3 expression reversed SPARC induced G2/M arrest. Ad-DsRed-SP significantly inhibited the pre-established orthotopic tumor growth and tumor volume in nude-mice. Immunohistochemical analysis of tumor sections from mice treated with Ad-DsRed-SP showed decreased immunoreactivity for pSTAT3 and increased immunoreactivity for p21 compared to tumor section from mice treated with mock and Ad-DsRed. Taken together our studies further reveal that STAT3 plays a key role in SPARC induced G2/M arrest in medulloblastoma cells. These new findings provide a molecular basis for the mechanistic understanding of the

  8. Up-regulation of inducible heat shock protein-70 expression in multiple sclerosis patients.

    PubMed

    Mansilla, María José; Comabella, Manuel; Río, Jordi; Castilló, Joaquín; Castillo, Mireia; Martin, Roland; Montalban, Xavier; Espejo, Carmen

    2014-03-01

    Inducible heat shock protein (HSP)70 (HSP70-1A and HSP70-1B proteins) is a chaperone responsible for assisting proper protein folding. Following stress conditions, HSP70 is highly up-regulated to mediate cytoprotective functions. In addition, HSP70 is able to trigger innate and adaptive immune responses that promote the immune recognition of antigens and to act as a cytokine when it is released. The data in the literature are controversial with regard to expression studies in peripheral blood mononuclear cells (PBMCs). In the present study, we aimed to examine if alterations of HSP70-1A/B expression are involved in the autoimmune pathogenesis of multiple sclerosis (MS). We determined both mRNA and protein expression in PBMCs of MS patients and healthy donors (HDs). We found a baseline increased expression of the HSPA1A gene in PBMCs from MS patients compared with HDs. Gene expression findings were associated with an increased protein expression of HSP70-1A/B in T lymphocytes (CD4+ and CD8+) and monocytes from MS patients under basal conditions that may reflect the immunological activation occurring in MS patients. We also provided evidence that heat shock (HS) stimulus induced HSP70-1A/B protein expression in HDs and MS patients, and that HS-induced HSP70-1A/B protein expression in monocytes correlated with the number of T2 lesions at baseline in MS patients. However, after lipopolysaccharide inflammatory stimulus, monocytes from MS patients failed to induce HSP70-1A/B protein expression. Our data hint at altered immune responses in MS and may indicate either a state of chronic stress or increased vulnerability to physiological immune responses in MS patients.

  9. High-Density Lipoprotein Prevents Endoplasmic Reticulum Stress-Induced Downregulation of Liver LOX-1 Expression.

    PubMed

    Hong, Dan; Li, Ling-Fang; Gao, Hai-Chao; Wang, Xiang; Li, Chuan-Chang; Luo, Ying; Bai, Yong-Ping; Zhang, Guo-Gang

    2015-01-01

    Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a specific cell-surface receptor for oxidized-low-density lipoprotein (ox-LDL). The impact of high-density lipoprotein (HDL) on endoplasmic reticulum (ER) stress-mediated alteration of the LOX-1 level in hepatocytes remains unclear. We aimed to investigate the impact on LOX-1 expression by tunicamycin (TM)-induced ER stress and to determine the effect of HDL on TM-affected LOX-1 expression in hepatic L02 cells. Overexpression or silencing of related cellular genes was conducted in TM-treated cells. mRNA expression was evaluated using real-time polymerase chain reaction (PCR). Protein expression was analyzed by western blot and immunocytochemistry. Lipid uptake was examined by DiI-ox-LDL, followed by flow cytometric analysis. The results showed that TM induced the upregulation of ER chaperone GRP78, downregulation of LOX-1 expression, and lipid uptake. Knock down of IRE1 or XBP-1 effectively restored LOX-1 expression and improved lipid uptake in TM-treated cells. HDL treatment prevented the negative impact on LOX-1 expression and lipid uptake induced by TM. Additionally, 1-10 μg/mL HDL significantly reduced the GRP78, IRE1, and XBP-1 expression levels in TM-treated cells. Our findings reveal that HDL could prevent the TM-induced reduction of LOX-1 expression via inhibiting the IRE1/XBP-1 pathway, suggesting a new mechanism for beneficial roles of HDL in improving lipid metabolism.

  10. HMGA1-pseudogene expression is induced in human pituitary tumors

    PubMed Central

    Esposito, Francesco; De Martino, Marco; D'Angelo, Daniela; Mussnich, Paula; Raverot, Gerald; Jaffrain-Rea, Marie-Lise; Fraggetta, Filippo; Trouillas, Jacqueline; Fusco, Alfredo

    2015-01-01

    Numerous studies have established that High Mobility Group A (HMGA) proteins play a pivotal role on the onset of human pituitary tumors. They are overexpressed in pituitary tumors, and, consistently, transgenic mice overexpressing either the Hmga1 or the Hmga2 gene develop pituitary tumors. In contrast with HMGA2, HMGA1 overexpression is not related to any rearrangement or amplification of the HMGA1 locus in these tumors. We have recently identified 2 HMGA1 pseudogenes, HMGA1P6 and HMGA1P7, acting as competitive endogenous RNA decoys for HMGA1 and other cancer related genes. Here, we show that HMGA1 pseudogene expression significantly correlates with HMGA1 mRNA levels in growth hormone and nonfunctioning pituitary adenomas likely inhibiting the repression of HMGA1 through microRNAs action. According to our functional studies, these HMGA1 pseudogenes enhance the proliferation and migration of the mouse pituitary tumor cell line, at least in part, through their upregulation. Our results point out that the overexpression of HMGA1P6 and HMGA1P7 could contribute to increase HMGA1 levels in human pituitary tumors, and then to pituitary tumorigenesis. PMID:25894544

  11. E1a induces the expression of epithelial characteristics

    PubMed Central

    1994-01-01

    Cells closely resembling epithelia constitute the first specific cell type in a mammalian embryo. Many other cell types emerge via epithelial- mesenchymal differentiation. The transcription factors and signal transduction pathways involved in this differentiation are being elucidated. I have previously reported (Frisch, 1991) that adenovirus E1a is a tumor suppressor gene in certain human cell lines. In the present report, I demonstrate that E1a expression caused diverse human tumor cells (rhabdomyosarcoma, fibrosarcoma, melanoma, osteosarcoma) and fibroblasts to assume at least two of the following epithelial characteristics: (a) epithelioid morphology; (b) epithelial-type intercellular adhesion proteins localized to newly formed junctional complexes; (c) keratin-containing intermediate filaments; and (d) down- regulation of non-epithelial genes. E1a thus appeared to partially convert diverse human tumor cells into an epithelial phenotype. This provides a new system for molecular analysis of epithelial-mesenchymal interconversions. This effect may also contribute to E1a's tumor suppression activity, possibly through sensitization to anoikis (Frisch, S.M., and H. Francis, 1994. J. Cell Biol. 124:619-626). PMID:7525602

  12. Amphiregulin induces human ovarian cancer cell invasion by down-regulating E-cadherin expression.

    PubMed

    So, Wai-Kin; Fan, Qianlan; Lau, Man-Tat; Qiu, Xin; Cheng, Jung-Chien; Leung, Peter C K

    2014-11-03

    Aberrant epidermal growth factor receptor (EGFR) activation is associated with ovarian cancer progression. In this study, we report that the EGFR ligand amphiregulin (AREG) stimulates cell invasion and down-regulates E-cadherin expression in two human ovarian cancer cell lines, SKOV3 and OVCAR5. In addition, AREG increases the expression of transcriptional repressors of E-cadherin including SNAIL, SLUG and ZEB1. siRNA targeting SNAIL or SLUG abolishes AREG-induced cell invasion. Moreover, ERK1/2 and AKT pathways are involved in AREG-induced E-cadherin down-regulation and cell invasion. Finally, we show that three EGFR ligands, AREG, epidermal growth factor (EGF) and transforming growth factor-α (TGF-α), exhibit comparable effects in down-regulating E-cadherin and promoting cell invasion. This study demonstrates that AREG induces ovarian cancer cell invasion by down-regulating E-cadherin expression.

  13. Transforming growth factor-beta induces endothelin-1 expression through activation of the Smad signaling pathway.

    PubMed

    Rodríguez-Pascual, Fernando; Reimunde, Francisco Manuel; Redondo-Horcajo, Mariano; Lamas, Santiago

    2004-11-01

    Expression of the endothelin-1 gene is subject to complex regulation by different factors, among which transforming growth factor-beta is one of the most important. We have analyzed the mechanism by which transforming growth factor-beta increases endothelin-1 expression in vascular endothelial cells. Transcriptional activation of the endothelin-1 promoter accounted for the transforming growth factor-beta-induced increase in endothelin-1 mRNA levels. Two DNA elements within the promoter are responsible for this effect: a Smad binding element and a proximal activator protein-1 site. Mutation of both elements abolished transforming growth factor-beta responsiveness. Overexpression of the Smad3 isoform strongly potentiates transforming growth factor-beta- induced endothelin-1 promoter activity in a phosphorylation-dependent manner. These results demonstrate that transforming growth factor-beta induces endothelin-1 expression by a functional cooperation between Smads and activator protein-1 through activation of the Smad signaling pathway.

  14. Activation-induced cytidine deaminase expression in follicular dendritic cell networks and interfollicular large B cells supports functionality of ectopic lymphoid neogenesis in autoimmune sialoadenitis and MALT lymphoma in Sjögren's syndrome.

    PubMed

    Bombardieri, Michele; Barone, Francesca; Humby, Frances; Kelly, Stephen; McGurk, Mark; Morgan, Peter; Challacombe, Stephen; De Vita, Salvatore; Valesini, Guido; Spencer, Jo; Pitzalis, Costantino

    2007-10-01

    Demonstration of ectopic germinal center-like structures (GC-LSs) in chronically inflamed tissues in patients with autoimmune disorders is a relatively common finding. However, to what extent ectopic lymphoid structures behave as true GC and are able to support class switch recombination (CSR) and somatic hypermutation (SHM) of the Ig genes is still debated. In addition, no information is available on whether CSR and SHM can take place in the absence of GCs at extrafollicular sites in an ectopic lymphoid tissue. In this study, we show that in salivary glands (SGs) of Sjögren's syndrome (SS) activation-induced cytidine deaminase (AID), the enzyme responsible for CSR and SHM is invariably expressed within follicular dendritic cell (FDC) networks but is not detectable in SGs in the absence of ectopic GC-LSs, suggesting that FDC networks play an essential role in sustaining the Ag-driven B cell proliferation within SS-SGs. We also show that the recently described population of interfollicular large B cells selectively expresses AID outside ectopic GC in the T cell-rich areas of periductal aggregates. Finally, we report that AID retains its exclusive association with numerous, residual GCs in parotid SS-MALT lymphomas, whereas neoplastic marginal zone-like B cells are consistently AID negative. These results strongly support the notion that ectopic lymphoid structures in SS-SGs express the molecular machinery to support local autoantibody production and B cell expansion and may play a crucial role toward lymphomagenesis.

  15. Farnesoid-X-receptor expression in monocrotaline-induced pulmonary arterial hypertension and right heart failure

    SciTech Connect

    Ye, Lusi; Jiang, Ying; Zuo, Xiaoxia

    2015-11-06

    Objective: The farnesoid-X-receptor (FXR) is a metabolic nuclear receptor superfamily member that is highly expressed in enterohepatic tissue and is also expressed in the cardiovascular system. Multiple nuclear receptors, including FXR, play a pivotal role in cardiovascular disease (CVD). Pulmonary arterial hypertension (PAH) is an untreatable cardiovascular system disease that leads to right heart failure (RHF). However, the potential physiological/pathological roles of FXR in PAH and RHF are unknown. We therefore compared FXR expression in the cardiovascular system in PAH, RHF and a control. Methods and results: Hemodynamic parameters and morphology were assessed in blank solution-exposed control, monocrotaline (MCT)-exposed PAH (4 weeks) and RHF (7 weeks) Sprague–Dawley rats. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR), Western blot (WB), immunohistochemistry (IHC) analysis and immunofluorescence (IF) analysis were performed to assess FXR levels in the lung and heart tissues of MCT-induced PAH and RHF rats. In normal rats, low FXR levels were detected in the heart, and nearly no FXR was expressed in rat lungs. However, FXR expression was significantly elevated in PAH and RHF rat lungs but reduced in PAH and RHF rat right ventricular (RV) tissues. FXR expression was reduced only in RHF rat left ventricular (LV) tissues. Conclusions: The differential expression of FXR in MCT-induced PAH lungs and heart tissues in parallel with PAH pathophysiological processes suggests that FXR contributes to PAH. - Highlights: • FXR was expressed in rat lung and heart tissues. • FXR expression increased sharply in the lung tissues of PAH and RHF rats. • FXR expression was reduced in PAH and RHF rat RV tissue. • FXR expression was unaltered in PAH LV but reduced in RHF rat LV tissue. • FXR expression was prominent in the neovascularization region.

  16. SIRT-1 regulates TGF-β-induced dermal fibroblast migration via modulation of Cyr61 expression.

    PubMed

    Kwon, Eun-Jeong; Park, Eun-Jung; Yu, Hyeran; Huh, Jung-Sik; Kim, Jinseok; Cho, Moonjae

    2017-07-27

    SIRT1 is a NAD-dependent protein deacetylase that participates in cellular regulation. The increased migration of fibroblasts is an important phenotype in fibroblast activation. The role of SIRT1 in cell migration remains controversial as to whether SIRT1 acts as an activator or suppressor of cell migration. Therefore, we have established the role of SIRT1 in the migration of human dermal fibroblasts and explored targets of SIRT1 during dermal fibroblast migration. SIRT1 and Cyr61 were expressed in human dermal fibroblasts and the stimulation with TGF-β further induced their expression. Treatment with resveratrol (RSV), a SIRT1 agonist, or overexpression of SIRT1 also promoted the expression Cyr61 in human dermal fibroblasts, whereas the inhibition of SIRT1 activity by nicotinamide or knockdown of SIRT1 decreased the level of Cyr61, as well as TGF-β or RSV-induced Cyr61 expression. Blocking of ERK signaling by PD98509 reduced the expression of Cyr61 induced by TGF-β or RSV. TGF-β, RSV, or SIRT1 overexpression enhanced β-catenin as well as Cyr61 expression. This stimulation was reduced by the Wnt inhibitor XAV939. RSV increased migration and nicotinamide attenuated RSV-induced migration of human dermal fibroblasts. Furthermore, SIRT1 overexpression promoted cell migration, whereas blocking Cyr61 attenuated SIRT1-stimulated migration of human dermal fibroblasts. SIRT1 increased cell migration by stimulating Cyr61 expression and the ERK and Wnt/β-catenin signaling. SIRT1-induced Cyr61 activity is very important for human dermal fibroblasts migration.

  17. Diallyl disulfide induces MUC5B expression via ERK2 in human airway epithelial cells.

    PubMed

    Bae, Chang Hoon; Kwak, Dong Suk; Ye, Sang Baik; Song, Si-Youn; Kim, Yong-Dae

    2012-02-01

    Garlic has been shown to have antimicrobial, hypolipidemic, antithrombotic, antitumor and immunostimulatory properties. The medicinal effects of garlic are derived from the flavonoid and organosulfur components. Diallyl disulfide (DADS), an organosulfur, is the main component responsible for the diverse biological effects of garlic. However, the effects of DADS on mucin gene expression in airway epithelial cells have not been reported to date. Therefore, this study was performed to investigate the effects and brief signaling pathway of DADS associated with MUC5B expression in NCI-H292 epithelial cells using RT-PCR, ELISA, western blot, immunocytochemistry and cell transfection with siRNA. DADS induced MUC5B expression and activated the phosphorylation of ERK1/2 MAPK. In addition, U0126 inhibited DADS-induced MUC5B expression and DADS-activated phosphorylation of ERK1/2 MAPK. Moreover, the immunopositive cells for MUC5B protein did not appear after treatment of DADS with U0126, and the knockdown of ERK2 MAPK by ERK2 MAPK siRNA significantly blocked DADS-induced MUC5B mRNA expression. However, DADS did not activate the phosphorylation of p38 MAPK, and SB203580 did not inhibit DADS-induced MUC5B expression. This is the first study to show that DADS-induced MUC5B expression appears to be regulated by activation of the ERK2 MAPK signaling pathway in human NCI-H292 airway epithelial cells. Copyright © 2011 John Wiley & Sons, Ltd.

  18. Temporal, spatial and induced expression of chitinase in the spruce budworm, Choristoneura fumiferana.

    PubMed

    Zheng, Y-P; Retnakaran, A; Krell, P J; Arif, B M; Primavera, M; Feng, Q-L

    2003-03-01

    Temporal, spatial and induced expression of Choristoneura fumiferana chitinase (CfChitinase) was studied using immunohistochemistry and Western blots. CfChitinase was detected in the integument, the midgut peritrophic membrane, the cuticular lining of the trachea, the spiracle, and salivary glands. The enzyme was expressed as larvae were preparing to molt from one instar to the next. The spatial and temporal expression patterns are consistent with its function in degrading chitin during the molting process. The 20-hydroxyecdysone agonist, tebufenozide (RH5992), induced the expression of the CfChitinase gene in the early stage of the sixth-instar larvae and the enzyme was detected in the epidermis and molting fluid 24 h post treatment.

  19. In vitro manipulation of early mouse embryos induces HIV1-LTRlacZ transgene expression.

    PubMed

    Vernet, M; Cavard, C; Zider, A; Fergelot, P; Grimber, G; Briand, P

    1993-12-01

    We report here that the transcriptional activity of early mouse embryos is affected by their manipulation and culture in vitro, using transgenic embryos that express the reporter gene lacZ. We examined the pattern of expression of the lacZ gene fused to the human immunodeficiency virus type 1 long terminal repeat during the preimplantation stages. Transgene expression is induced as early as the two-cell stage in embryos developed in vitro, while there is no constitutive expression at the same stage in embryos developed in vivo. We have established a relation between this inducible expression occurring in vitro and an oxidative stress phenomenon. Indeed, when the culture medium is supplemented with antioxidants such N-acetyl-cysteine or CuZn-superoxide dismutase the transgene expression is markedly reduced. We also present evidence that the transgene expression in vitro coincides with the onset of the embryonic genome activation as attested by the synthesis of the 70 x 10(3) M(r) protein complex. Therefore, this transgene expression could prove to be a useful tool in our understanding of the molecular mechanisms involved in this crucial developmental event.

  20. CT-2576, an inhibitor of phospholipid signaling, suppresses constitutive and induced expression of human immunodeficiency virus.

    PubMed Central

    Leung, D W; Peterson, P K; Weeks, R; Gekker, G; Chao, C C; Kaplan, A H; Balantac, N; Tompkins, C; Underiner, G E; Bursten, S

    1995-01-01

    Viruses such as human immunodeficiency virus (HIV) require cellular activation for expression. Cellular activation in lymphoid cells is associated with augmented accumulation of certain phosphatidic acid (PA) species derived from the hydrolysis of glycan phosphatidylinositol (GPI). This suggests that activation of a phospholipid pathway may play a role in initiation of viral replication. To test this hypothesis, we examined the effect of tat gene expression on the production of cellular PA species, as the Tat protein is essential for HIV expression and has been implicated in activating the expression of multiple host cellular genes. Expression of tat increased the expression of PA. We then tested whether synthetic inhibitors of PA metabolism would inhibit activation of the HIV long terminal repeat by Tat and tumor necrosis factor alpha (TNF-alpha). CT-2576 suppressed both PA generation induced by Tat and HIV long terminal repeat-directed gene expression in response to Tat or TNF-alpha at a posttranscriptional step. CT-2576 also inhibited constitutive as well as TNF-alpha- and interleukin 6-induced expression of HIV p24 antigen in chronically infected U1 cells and in peripheral blood lymphocytes acutely infected with a clinical isolate of HIV. Pharmacological inhibition of synthesis of selected PA species may therefore provide a therapeutic approach to suppression of HIV replication. Images Fig. 1 Fig. 3 Fig. 5 PMID:7761405

  1. Inhibition of Histone Deacetylases Induces Bovine Leukemia Virus Expression In Vitro and In Vivo

    PubMed Central

    Merezak, C.; Reichert, M.; Van Lint, C.; Kerkhofs, P.; Portetelle, D.; Willems, L.; Kettmann, R.

    2002-01-01

    Packaging into nucleosomes results in a global transcriptional repression as a consequence of exclusion of sequence-specific factors. This inhibition can be relieved by using inhibitors of histone deacetylases, acetylation being a major characteristic of transcriptionally active chromatin. Paradoxically, the expression of only ∼2% of the total cellular genes is modulated by histone hyperacetylation. To unravel the potential role of this transcriptional control on BLV expression, we tested the effect of two highly specific inhibitors of deacetylases, trichostatin A (TSA) and trapoxin (TPX). Our results demonstrate that treatment with TSA efficiently enhanced long terminal repeat-directed gene expression of integrated reporter constructs in heterologous D17 stable cell lines. To further examine the biological relevance of these observations made in vitro, we analyzed ex vivo-isolated peripheral blood mononuclear cells (PBMCs) from bovine leukemia virus (BLV)-infected sheep. TSA deacetylase inhibitor induced a drastic increase in viral expression at levels comparable to those induced by treatment with phorbol-12-myristate 13-acetate and ionomycin, the most efficient activators of BLV expression known to date. TSA acted directly on BLV-infected B lymphocytes to increase viral expression and does not seem to require T-cell cooperation. Inhibition of deacetylation after treatment with TSA or TPX also significantly increased viral expression in PBMCs from cattle, the natural host for BLV. Together, our results show that BLV gene expression is, like that of a very small fraction of cellular genes, also regulated by deacetylation. PMID:11967319

  2. Hypoxia induces TFE3 expression in head and neck squamous cell carcinoma.

    PubMed

    Sun, Zhi-Jun; Yu, Guang-Tao; Huang, Cong-Fa; Bu, Lin-Lin; Liu, Jian-Feng; Ma, Si-Rui; Zhang, Wen-Feng; Liu, Bing; Zhang, Lu

    2016-03-08

    To assess the role of transcription factor μE3 (TFE3) in the tumorigenesis of head and neck squamous cell carcinoma (HNSCC), human HNSCC tissue arrays were investigated for TFE3 expression. Human HNSCC tissues with neoadjuvant inductive chemotherapey (docetaxel, cisplatin and fluorouracil, TPF) and mice HNSCC tissues from transgenic mice model were evaluated for TFE3 expression and the hypoxia pathway. The roles of EGF/EGFR mediated hypoxia in TFE3 nuclear expression were analyzed in vitro and in vivo. TFE3 expression was higher in human HNSCC tissues compared with that in normal oral mucosa. Moreover, high TFE3 expression was related to HIF-1α, PAI-1, and EGFR, which demonstrated the activation of the hypoxia pathway in HNSCC tissues. Furthermore, elevated TFE3 expression was observed in HNSCC after cisplatin-based chemotherapy, and high TFE3 expression may indicate poor response to TPF inductive chemotherapy. Furthermore, similar changes with increased TFE3 were observed in HNSCC of the transgenic mouse HNSCC model. Hypoxic culture in the human HNSCC cell line increased TFE3 expression, which promoted cell survival under hypoxia. EGFR inhibiton by cetuximab could attenuate hypoxia-induced TFE3 in the HNSCC cell line and transgenic mouse HNSCC model. These findings indicated that TFE3 was an important hypoxia-induced transcriptional factor in HNSCC. TFE3 could be regarded as a durgable therapeutic oncotarget by EGFR inhibition.

  3. Expression and mechanism of BRP-39 in bleomycin-induced pulmonary fibrosis in rat.

    PubMed

    Du, Chunxian; Yang, Yibing; Lin, Yuhui; Yang, Jiong

    2014-09-01

    The purpose of the study was to explore the effects of breast regression protein 39 (BRP-39) in bleomycin-induced pulmonary fibrosis and its mechanism in pulmonary fibrosis by studying change in BRP-39 to provide a novel direction for the treatment of idiopathic pulmonary fibrosis. SPF grade male C57BL/6 rats were randomly divided into three groups, including bleomycin group, bleomycin+ BRP-39 recombinant protein group and control group. HE and Masson staining were applied to test the change in lung tissue after being treated by BRP-39, ELISA was applied to test the expression of TGF-β1 in different groups, and Western blot was used to test the expression of BRP-39 in rat lung tissue. Expression of BRP-39 increased, the fibrosis was obvious, and lung tissue collagen increased in bleomycin-induced pulmonary fibrosis in rat lung tissue. Increasing BRP-39 protein level and intratracheal bleomycin medication to establish pulmonary fibrosis model can aggravate pulmonary fibrosis. Along with the increase in BRP-39 protein level, TGF-β1 expression level also increased in lung tissue. Western blot results showed the expression of BRP-39, and TGF-β1 had the same trend in different groups. BRP-39 has effects in bleomycin-induced rat pulmonary fibrosis. Change in BRP-39 can affect the process of bleomycin-induced pulmonary fibrosis. The mechanism of BRP-3 in pulmonary fibrosis may work by regulating TGF-β1.

  4. Double-stranded RNA induces S100 gene expression by a cycloheximide-sensitive factor.

    PubMed

    Voss, Andreas; Gescher, Kirsten; Hensel, Andreas; Nacken, Wolfgang; Zänker, Kurt S; Kerkhoff, Claus

    2012-01-20

    Viral double-stranded RNA (dsRNA) and its synthetic analog polyI:C are recognized via multiple pathways and induce the expression of genes related to inflammation. In the present study, we demonstrated the polyI:C-induced gene expression of the damage associated molecular pattern (DAMP) molecules S100A8 and S100A9, while other S100 genes were not affected. Cycloheximide and Brefeldin A treatment revealed both the expression of S100A8 and S100A9 as secondary response genes and the involvement of polyI:C-induced cytokines herein. Several type I and type III interferons such as IFNβ, IL-20, IL-24, and IFNλ/IL-29 were expressed in response to polyI:C, however, they failed to induce S100A8 and S100A9 gene expression. These data indicate the involvement of the danger molecule S100A8/A9 in the resistance against viruses. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Inducible expression of cancer-testis antigens in human prostate cancer

    PubMed Central

    Heninger, Erika; Krueger, Timothy E.G.; Thiede, Stephanie M.; Sperger, Jamie M.; Byers, Brianna L.; Kircher, Madison R.; Kosoff, David; Yang, Bing; Jarrard, David F.; McNeel, Douglas G.; Lang, Joshua M.

    2016-01-01

    Immune tolerance to self-antigens can limit robust anti-tumor immune responses in the use of tumor vaccines. Expression of novel tumor associated antigens can improve immune recognition and lysis of tumor cells. The cancer-testis antigen (CTA) family of proteins has been hypothesized to be an ideal class of antigens due to tumor-restricted expression, a subset of which have been found to induce antibody responses in patients with prostate disease. We demonstrate that CTA expression is highly inducible in five different Prostate Cancer (PC) cell lines using a hypomethylating agent 5-Aza-2′-deoxycytidine (5AZA) and/or a histone deacetylase inhibitor LBH589. These CTAs include NY-ESO1, multiple members of the MAGE and SSX families and NY-SAR35. A subset of CTAs is synergistically induced by the combination of 5AZA and LBH589. We developed an ex vivo organ culture using human PC biopsies for ex vivo drug treatments to evaluate these agents in clinical samples. These assays found significant induction of SSX2 in 9/9 distinct patient samples and NY-SAR35 in 7/9 samples. Further, we identify expression of SSX2 in circulating tumor cells (CTC) from patients with advanced PC. These results indicate that epigenetic modifying agents can induce expression of a broad range of neoantigens in human PC and may serve as a useful adjunctive therapy with novel tumor vaccines and checkpoint inhibitors. PMID:27769045

  6. Rat coronaviruses infect rat alveolar type I epithelial cells and induce expression of CXC chemokines

    PubMed Central

    Miura, Tanya A.; Wang, Jieru; Holmes, Kathryn V.; Mason, Robert J.

    2007-01-01

    We analyzed the ability of two rat coronavirus (RCoV) strains, sialodacryoadenitis virus (SDAV) and Parker’s RCoV (RCoV-P), to infect rat alveolar type I cells and induce chemokine expression. Primary rat alveolar type II cells were transdifferentiated into the type I cell phenotype. Type I cells were productively infected with SDAV and RCoV-P, and both live virus and UV-inactivated virus induced mRNA and protein expression of three CXC chemokines: CINC-2, CINC-3, and LIX, which are neutrophil chemoattractants. Dual immunolabeling of type I cells for viral antigen and CXC chemokines showed that chemokines were expressed primarily by uninfected cells. Virus-induced chemokine expression was reduced by the IL-1 receptor antagonist, suggesting that IL-1 produced by infected cells induces uninfected cells to express chemokines. Primary cultures of alveolar epithelial cells are an important model for the early events in viral infection that lead to pulmonary inflammation. PMID:17804032

  7. ox-LDL induces endothelial dysfunction by promoting Arp2/3 complex expression.

    PubMed

    Tang, Yao; Zhao, Jianting; Shen, Liming; Jin, Yiqi; Zhang, Zhixuan; Xu, Guoxiong; Huang, Xianchen

    2016-06-24

    Oxidized low-density lipoproteins (ox-LDL) play a critical role in endothelial injury including cytoskeleton reorganization, which is closely related to actin-related protein 2/3 (Arp2/3) complex. The aim of this study was to investigate the role of Arp2/3 complex in ox-LDL-induced endothelial dysfunction. In this study, we found that Arp2 and Arp3 expression was increased under atherosclerotic conditions both in ApoE-/- mice and in ox-LDL-stimulated human coronary artery endothelial cells (HCAECs). Arp2/3 complex inhibitor CK666 significantly reduced ox-LDL-induced ROS generation and cytoskeleton reorganization, and increased NO release in HCAECs. Pretreatment with LOX-1- but not CD36-blocking antibody markedly decreased ox-LDL-induced Arp2 and Arp3 expression. Moreover, Rac-1 siRNA remarkably suppressed ox-LDL-stimulated Arp2 and Arp3 expression. Additionally, CK666 reduced endothelial nitric oxide synthase (eNOS) expression and atherosclerotic lesions in ApoE-/- mice. Collectively, ox-LDL induces endothelial dysfunction by activating LOX-1/Rac-1 signaling and upregulating Arp2/3 complex expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Inducible expression of photoacoustic reporter gene tyrosinase in cells using a single plasmid

    NASA Astrophysics Data System (ADS)

    Paproski, Robert J.; Zemp, Roger J.

    2012-02-01

    We have previously demonstrated that tyrosinase is a reporter gene for photoacoustic imaging since tyrosinase is the rate-limiting step in the synthesis of melanin, a pigment capable of producing strong photoacoustic signals. We previously created a cell line capable of inducible tyrosinase expression (important due to toxicity of melanin) by stably transfecting tyrosinase in MCF-7 Tet-OnR cell line (Clontech) which expresses a doxycycline-controlled transactivator. Unfortunately, Clontech provides few Tet-On Advanced cell lines making it difficult to have inducible tyrosinase expression in cell lines not provided by Clontech. In order to simplify the creation of cell lines with inducible expression of tyrosinase, we created a single plasmid that encodes both the transactivator as well as tyrosinase. PCR was used to amplify both the transactivator and tyrosinase from the Tet-OnR Advanced and pTRE-Tight-TYR plasmids, respectively. Both PCR products were cloned into the pEGFP-N1 plasmid and the newly created plasmid was transfected into ZR-75-1, MCF-7, and MIA PaCa-1 cells using lipofectamine. After several days, brown melanin was only observed in cells incubated with doxycycline, suggesting that the newly created single plasmid allowed inducible tyrosinase expression in many different cells lines.

  9. Radiation-induced human endogenous retrovirus (HERV)-R env gene expression by epigenetic control.

    PubMed

    Lee, Ja-Rang; Ahn, Kung; Kim, Yun-Ji; Jung, Yi-Deun; Kim, Heui-Soo

    2012-11-01

    It is commonly accepted that ionizing radiation induces genomic instability by changes in genomic structure, epigenetic regulation and gene expression. Human endogenous retroviruses (HERV)-R also are often differentially expressed between normal and disease tissues under unstable genomic conditions and are implicated in the pathogenesis of several human diseases. To understand the influence of ionizing radiation on HERV-R expression, we performed quantitative reverse transcription-polymerase chain reaction (RT-PCR) analyses using γ-irradiated normal human cells. Compared to nonirradiated cells, HERV-R expression was up-regulated in γ-irradiated cells. The regulatory mechanism of HERV-R expression in irradiated cells was investigated by methylation analyses of HERV-R 5'LTRs and treatment with garcinol. These data indicated that the up-regulated transcription of HERV-R may be regulated by radiation-induced epigenetic changes induced by histone modification, and thus could be of great importance for understanding the relationship between radiation-induced biological effects and transposable elements.

  10. Particle irradiation induces FGF2 expression in normal human lens cells

    NASA Technical Reports Server (NTRS)

    Chang, P. Y.; Bjornstad K, A.; Chang, E.; McNamara, M.; Barcellos-Hoff, M. H.; Lin, S. P.; Aragon, G.; Polansky, J. R.; Lui, G. M.; Blakely, E. A.

    2000-01-01

    Particle Irradiation Induces FGF2 Expression in Normal Human Lens Cells. Particle radiations, including both proton and helium-ion beams, have been used to successfully treat choroidal melanoma, but with the complication of radiation-induced cataract. We have investigated a role for radiation-induced changes in the expression of basic fibroblast growth factor (FGF2) gene expression as part of the mechanism(s) underlying lens cell injury associated with cataract. Normal human lens epithelial (HLE) cells were cultured in vitro on extracellular matrix (ECM) originated from bovine corneal endothelial cells. This study reports evidence for rapid but transient induction of FGF2 transcripts, an increase of between 5- and 8-fold, within 0.5 h after exposure to particle radiation, followed by another wave of increased transcription at 2-3 h postirradiation. Immunofluorescence results confirm the enhanced levels of FGF2 protein rapidly after exposure to protons or helium ions, followed by another wave of increased activity unique to helium at 6 h postirradiation. This second wave of increased immunoreactivity was not observed in the proton-irradiated samples. Total FGF2 protein analysis after helium-ion exposures shows induced expression of three FGF2 isoforms, with an increase of up to 2-fold in the 18-kDa low-molecular-weight species. Studies of the effects of protons on individual FGF2 protein isoforms are in progress. Several mechanisms involving a role for FGF2 in radiation-induced cataract are discussed.

  11. Ethanol induces epigenetic modulation of prodynorphin and pronociceptin gene expression in the rat amygdala complex.

    PubMed

    D'Addario, Claudio; Caputi, Francesca F; Ekström, Tomas J; Di Benedetto, Manuela; Maccarrone, Mauro; Romualdi, Patrizia; Candeletti, Sanzio

    2013-02-01

    Several studies demonstrated the role of the endogenous opioid system in the development of susceptibility to alcohol dependence. Recently, we reported that binge intragastric administration of ethanol induces selective alterations of pronociceptin and prodynorphin gene expression in the rat amygdala complex depending on the days of exposures and on the development of tolerance and dependence. The aim of the present study was to investigate the potential epigenetic mechanisms leading to these alcohol-induced changes in gene expression. Specific histone modifications and DNA methylation at opioid peptide precursor promoters were analyzed by chromatin immunoprecipitation and real-time methylation-specific PCR, respectively. We found a linkage between gene expression alterations and epigenetic modulation at pronociceptin and prodynorphin promoters following alcohol treatment. In animals treated for 1 day, we observed a reversed correlation, with a decrease of histone 3 lysine 27 trimethylation (repressive mark) and an increase of histone 3 lysine 9 acetylation (activating mark), associated with both gene expression up-regulation. In rats treated with alcohol for up to 5 days, we found an increase in histone 3 lysine 9 acetylation in the pronociceptin promoter providing further evidence of the already proposed possible role for histone deacetylases for addiction treatment. No significant alterations in DNA methylation and histone 3 lysine 4 trimethylation following different alcohol exposures were present, suggesting the selectivity of epigenetic effects induced by alcohol. These data demonstrate that ethanol induces selective epigenetic changes, thus better defining the role of opioid peptides in the ethanol-induced effects in the amygdala complex.

  12. Dux4 induces cell cycle arrest at G1 phase through upregulation of p21 expression

    SciTech Connect

    Xu, Hongliang; Wang, Zhaoxia; Jin, Suqin; Hao, Hongjun; Zheng, Lemin; Zhou, Boda; Zhang, Wei; Lv, He; Yuan, Yun

    2014-03-28

    Highlights: • Dux4 induced TE671 cell proliferation defect and G1 phase arrest. • Dux4 upregulated p21 expression without activating p53. • Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. • Sp1 binding site was required for Dux4-induced p21 promoter activation. - Abstract: It has been implicated that Dux4 plays crucial roles in development of facioscapulohumeral dystrophy. But the underlying myopathic mechanisms and related down-stream events of this retrogene were far from clear. Here, we reported that overexpression of Dux4 in a cell model TE671 reduced cell proliferation rate, and increased G1 phase accumulation. We also determined the impact of Dux4 on p53/p21 signal pathway, which controls the checkpoint in cell cycle progression. Overexpression of Dux4 increased p21 mRNA and protein level, while expression of p53, phospho-p53 remained unchanged. Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. Furthermore, we demonstrated that enhanced Dux4 expression increased p21 promoter activity and elevated expression of Sp1 transcription factor. Mutation of Sp1 binding site decreased dux4 induced p21 promoter activation. Chromatin immunoprecipitation (ChIP) assays confirmed the Dux4-induced binding of Sp1 to p21 promoter in vivo. These results suggest that Dux4 might induce proliferation inhibition and G1 phase arrest through upregulation of p21.

  13. NFAT5 Contributes to Osmolality-Induced MCP-1 Expression in Mesothelial Cells

    PubMed Central

    Küper, Christoph; Beck, Franz-X.; Neuhofer, Wolfgang

    2012-01-01

    Increased expression of the C-C chemokine monocyte chemoattractant protein-1 (MCP-1) in mesothelial cells in response to high glucose concentrations and/or high osmolality plays a crucial role in the development of peritoneal fibrosis during continuous ambulatory peritoneal dialysis (CAPD). Recent studies suggest that in kidney cells osmolality-induced MCP-1 upregulation is mediated by the osmosensitive transcription factor, nuclear factor of activated T cells 5 (NFAT5). The present study addressed the question of whether activation of NFAT5 by hyperosmolality, as present in PD fluids, contributes to MCP-1 expression in the mesothelial cell line Met5A. Hyperosmolality, induced by addition of glucose, NaCl, or mannitol to the growth medium, increased NFAT5 activity and stimulated MCP-1 expression in Met5A cells. siRNA-mediated knockdown of NFAT5 attenuated osmolality-induced MCP-1 upregulation substantially. Hyperosmolality also induced activation of nuclear factor-κB (NF-κB). Accordingly, pharmacological inhibition of NF-κB significantly decreased osmolality-induced MCP-1 expression. Taken together, these results indicate that high osmolalities activate the transcription factor NFAT5 in mesothelial cells. NFAT5 in turn upregulates MCP-1, likely in combination with NF-κB, and thus may participate in the development of peritoneal fibrosis during CAPD. PMID:22619484

  14. Particle irradiation induces FGF2 expression in normal human lens cells

    NASA Technical Reports Server (NTRS)

    Chang, P. Y.; Bjornstad K, A.; Chang, E.; McNamara, M.; Barcellos-Hoff, M. H.; Lin, S. P.; Aragon, G.; Polansky, J. R.; Lui, G. M.; Blakely, E. A.

    2000-01-01

    Particle Irradiation Induces FGF2 Expression in Normal Human Lens Cells. Particle radiations, including both proton and helium-ion beams, have been used to successfully treat choroidal melanoma, but with the complication of radiation-induced cataract. We have investigated a role for radiation-induced changes in the expression of basic fibroblast growth factor (FGF2) gene expression as part of the mechanism(s) underlying lens cell injury associated with cataract. Normal human lens epithelial (HLE) cells were cultured in vitro on extracellular matrix (ECM) originated from bovine corneal endothelial cells. This study reports evidence for rapid but transient induction of FGF2 transcripts, an increase of between 5- and 8-fold, within 0.5 h after exposure to particle radiation, followed by another wave of increased transcription at 2-3 h postirradiation. Immunofluorescence results confirm the enhanced levels of FGF2 protein rapidly after exposure to protons or helium ions, followed by another wave of increased activity unique to helium at 6 h postirradiation. This second wave of increased immunoreactivity was not observed in the proton-irradiated samples. Total FGF2 protein analysis after helium-ion exposures shows induced expression of three FGF2 isoforms, with an increase of up to 2-fold in the 18-kDa low-molecular-weight species. Studies of the effects of protons on individual FGF2 protein isoforms are in progress. Several mechanisms involving a role for FGF2 in radiation-induced cataract are discussed.

  15. Glucose deprivation induces chemoresistance in colorectal cancer cells by increasing ATF4 expression

    PubMed Central

    Hu, Ya-Ling; Yin, Yuan; Liu, He-Yong; Feng, Yu-Yang; Bian, Ze-Hua; Zhou, Le-Yuan; Zhang, Ji-Wei; Fei, Bo-Jian; Wang, Yu-Gang; Huang, Zhao-Hui

    2016-01-01

    AIM: To investigate the role of activating transcription factor 4 (ATF4) in glucose deprivation (GD) induced colorectal cancer (CRC) drug resistance and the mechanism involved. METHODS: Chemosensitivity and apoptosis were measured under the GD condition. Inhibition of ATF4 using short hairpin RNA in CRC cells under the GD condition and in ATF4-overexpressing CRC cells was performed to identify the role of ATF4 in the GD induced chemoresistance. Quantitative real-time RT-PCR and Western blot were used to detect the mRNA and protein expression of drug resistance gene 1 (MDR1), respectively. RESULTS: GD protected CRC cells from drug-induced apoptosis (oxaliplatin and 5-fluorouracil) and induced the expression of ATF4, a key gene of the unfolded protein response. Depletion of ATF4 in CRC cells under the GD condition can induce apoptosis and drug re-sensitization. Similarly, inhibition of ATF4 in the ATF4-overexpressing CRC cells reintroduced therapeutic sensitivity and apoptosis. In addition, increased MDR1 expression was observed in GD-treated CRC cells. CONCLUSION: These data indicate that GD promotes chemoresistance in CRC cells through up-regulating ATF4 expression. PMID:27468213

  16. Stress-induced Skeletal Muscle Gadd45a Expression Reprograms Myonuclei and Causes Muscle Atrophy*

    PubMed Central

    Ebert, Scott M.; Dyle, Michael C.; Kunkel, Steven D.; Bullard, Steven A.; Bongers, Kale S.; Fox, Daniel K.; Dierdorff, Jason M.; Foster, Eric D.; Adams, Christopher M.

    2012-01-01

    Diverse stresses including starvation and muscle disuse cause skeletal muscle atrophy. However, the molecular mechanisms of muscle atrophy are complex and not well understood. Here, we demonstrate that growth arrest and DNA damage-inducible 45a protein (Gadd45a) is a critical mediator of muscle atrophy. We identified Gadd45a through an unbiased search for potential downstream mediators of the stress-inducible, pro-atrophy transcription factor ATF4. We show that Gadd45a is required for skeletal muscle atrophy induced by three distinct skeletal muscle stresses: fasting, muscle immobilization, and muscle denervation. Conversely, forced expression of Gadd45a in muscle or cultured myotubes induces atrophy in the absence of upstream stress. We show that muscle-specific ATF4 knock-out mice have a reduced capacity to induce Gadd45a mRNA in response to stress, and as a result, they undergo less atrophy in response to fasting or muscle immobilization. Interestingly, Gadd45a is a myonuclear protein that induces myonuclear remodeling and a comprehensive program for muscle atrophy. Gadd45a represses genes involved in anabolic signaling and energy production, and it induces pro-atrophy genes. As a result, Gadd45a reduces multiple barriers to muscle atrophy (including PGC-1α, Akt activity, and protein synthesis) and stimulates pro-atrophy mechanisms (including autophagy and caspase-mediated proteolysis). These results elucidate a critical stress-induced pathway that reprograms muscle gene expression to cause atrophy. PMID:22692209

  17. Chronic elevated calcium blocks AMPK-induced GLUT-4 expression in skeletal muscle.

    PubMed

    Park, S; Scheffler, T L; Gunawan, A M; Shi, H; Zeng, C; Hannon, K M; Grant, A L; Gerrard, D E

    2009-01-01

    Muscle contraction stimulates glucose transport independent of insulin. Glucose uptake into muscle cells is positively related to skeletal muscle-specific glucose transporter (GLUT-4) expression. Therefore, our objective was to determine the effects of the contraction-mediated signals, calcium and AMP-activated protein kinase (AMPK), on glucose uptake and GLUT-4 expression under acute and chronic conditions. To accomplish this, we used pharmacological agents, cell culture, and pigs possessing genetic mutations for increased cytosolic calcium and constitutively active AMPK. In C2C12 myotubes, caffeine, a sarcoplasmic reticulum calcium-releasing agent, had a biphasic effect on GLUT-4 expression and glucose uptake. Low-concentration (1.25 to 2 mM) or short-term (4 h) caffeine treatment together with the AMPK activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR), had an additive effect on GLUT-4 expression. However, high-concentration (2.5 to 5 mM) or long-term (4 to 30 h) caffeine treatment decreased AMPK-induced GLUT-4 expression without affecting cell viability. The negative effect of caffeine on AICAR-induced GLUT-4 expression was reduced by dantrolene, which desensitizes the ryanodine receptor. Consistent with cell culture data, increases in GLUT-4 mRNA and protein expression induced by AMPK were blunted in pigs possessing genetic mutations for both increased cytosolic calcium and constitutively active AMPK. Altogether, these data suggest that chronic exposure to elevated cytosolic calcium concentration blocks AMPK-induced GLUT-4 expression in skeletal muscle.

  18. Phosphodiesterase 4b expression plays a major role in alcohol-induced neuro-inflammation.

    PubMed

    Avila, Diana V; Myers, Scott A; Zhang, JingWen; Kharebava, Giorgi; McClain, Craig J; Kim, Hee-Yong; Whittemore, Scott R; Gobejishvili, Leila; Barve, Shirish

    2017-10-01

    It is increasingly evident that alcohol-induced, gut-mediated peripheral endotoxemia plays a significant role in glial cell activation and neuro-inflammation. Using a mouse model of chronic alcohol feeding, we examined the causal role of endotoxin- and cytokine-responsive Pde4 subfamily b (Pde4b) expression in alcohol-induced neuro-inflammation. Both pharmacologic and genetic approaches were used to determine the regulatory role of Pde4b. In C57Bl/6 wild type (WT) alcohol fed (WT-AF) animals, alcohol significantly induced peripheral endotoxemia and Pde4b expression in brain tissue, accompanied by a decrease in cAMP levels. Further, along with Pde4b, there was a robust activation of astrocytes and microglia accompanied by significant increases in the inflammatory cytokines (Tnfα, Il-1β, Mcp-1 and Il-17) and the generalized inflammatory marker Cox-2. At the cellular level, alcohol and inflammatory mediators, particularly LPS, Tnfα and Hmgb1 significantly activated microglial cells (Iba-1 expression) and selectively induced Pde4b expression with a minimal to no change in Pde4a and d isoforms. In comparison, the alcohol-induced decrease in brain cAMP levels was completely inhibited in WT mice treated with the Pde4 specific pharmacologic inhibitor rolipram and in Pde4b-/- mice. Moreover, all the observed markers of alcohol-induced brain inflammation were markedly attenuated. Importantly, glial cell activation induced by systemic endotoxemia (LPS administration) was also markedly decreased in Pde4b-/- mice. Taken together, these findings strongly support the notion that Pde4b plays a critical role in coordinating alcohol-induced, peripheral endotoxemia mediated neuro-inflammation and could serve as a significant therapeutic target. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Hypertonic saline reduces lipopolysaccharide-induced mouse brain edema through inhibiting aquaporin 4 expression

    PubMed Central

    2012-01-01

    Introduction Three percent sodium chloride (NaCl) treatment has been shown to reduce brain edema and inhibited brain aquaporin 4 (AQP4) expression in bacterial meningitis induced by Escherichia coli. Lipopolysaccharide (LPS) is the main pathogenic component of E. coli. We aimed to explore the effect of 3% NaCl in mouse brain edema induced by LPS, as well as to elucidate the potential mechanisms of action. Methods Three percent NaCl was used to treat cerebral edema induced by LPS in mice in vivo. Brain water content, IL-1β, TNFα, immunoglobulin G (IgG), AQP4 mRNA and protein were measured in brain tissues. IL-1β, 3% NaCl and calphostin C (a specific inhibitor of protein kinase C) were used to treat the primary astrocytes in vitro. AQP4 mRNA and protein were measured in astrocytes. Differences in various groups were determined by one-way analysis of variance. Results Three percent NaCl attenuated the increase of brain water content, IL-1β, TNFα, IgG, AQP4 mRNA and protein in brain tissues induced by LPS. Three percent NaCl inhibited the increase of AQP4 mRNA and protein in astrocytes induced by IL-1β in vitro. Calphostin C blocked the decrease of AQP4 mRNA and protein in astrocytes induced by 3% NaCl in vitro. Conclusions Osmotherapy with 3% NaCl ameliorated LPS-induced cerebral edema in vivo. In addition to its osmotic force, 3% NaCl exerted anti-edema effects possibly through down-regulating the expression of proinflammatory cytokines (IL-1β and TNFα) and inhibiting the expression of AQP4 induced by proinflammatory cytokines. Three percent NaCl attenuated the expression of AQP4 through activation of protein kinase C in astrocytes. PMID:23036239

  20. Constitutive and Inducible Expression of Green Fluorescent Protein in Brucella suis

    PubMed Central

    Köhler, Stephan; Ouahrani-Bettache, Safia; Layssac, Marion; Teyssier, Jacques; Liautard, Jean-Pierre

    1999-01-01

    A gene fusion system based on plasmid pBBR1MCS and the expression of green fluorescent protein was developed for Brucella suis, allowing isolation of constitutive and inducible genes. Bacteria containing promoter fusions of chromosomal DNA to gfp were visualized by fluorescence microscopy and examined by flow cytometry. Twelve clones containing gene fragments induced inside J774 murine macrophages were isolated and further characterized. PMID:10569794

  1. Parthenolide prevents the expression of cocaine-induced withdrawal behavior in planarians.

    PubMed

    Rowlands, Amanda L; Pagán, Oné R

    2008-03-31

    We recently reported that parthenolide and related sesquiterpene lactones are able to prevent and reverse behavioral responses in planarian worms induced by acute cocaine exposure. Previous reports indicate that when planarians are chronically exposed to microM concentrations of cocaine, they display stereotypical withdrawal-like behaviors when the cocaine is removed. Here we report that parthenolide prevents this cocaine-induced expression of planarian withdrawal-like behaviors.

  2. Construction and characterization of a gradually inducible expression vector for Halobacterium salinarum, based on the kdp promoter.

    PubMed

    Kixmüller, Dorthe; Greie, Jörg-Christian

    2012-04-01

    Gradually inducible expression vectors which are governed by variations of growth conditions are powerful tools for gene expression of conditionally lethal mutants. Furthermore, controlled expression allows monitoring of overproduction of proteins at various stages in their expressing hosts. For Halobacterium salinarum, which is often used as a paradigm for halophilic archaea, such an inducible expression system is not available to date. Here we show that the kdp promoter (Pkdp), which facilitates gene expression upon K(+) limitation, can be used to establish such a system for molecular applications. Pkdp features a rather high expression rate, with an approximately 50-fold increase that can be easily varied by K(+) concentrations in the growth medium. Besides the construction of an expression vector, our work describes the characterization of expression patterns and, thus, offers a gradually inducible expression system to the scientific community.

  3. Construction and Characterization of a Gradually Inducible Expression Vector for Halobacterium salinarum, Based on the kdp Promoter

    PubMed Central

    Kixmüller, Dorthe

    2012-01-01

    Gradually inducible expression vectors which are governed by variations of growth conditions are powerful tools for gene expression of conditionally lethal mutants. Furthermore, controlled expression allows monitoring of overproduction of proteins at various stages in their expressing hosts. For Halobacterium salinarum, which is often used as a paradigm for halophilic archaea, such an inducible expression system is not available to date. Here we show that the kdp promoter (Pkdp), which facilitates gene expression upon K+ limitation, can be used to establish such a system for molecular applications. Pkdp features a rather high expression rate, with an approximately 50-fold increase that can be easily varied by K+ concentrations in the growth medium. Besides the construction of an expression vector, our work describes the characterization of expression patterns and, thus, offers a gradually inducible expression system to the scientific community. PMID:22287001

  4. Myogenin, MyoD, and myosin expression after pharmacologically and surgically induced hypertrophy

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Greaser, M. L.; Schultz, E.

    1998-01-01

    The relationship between myogenin or MyoD expression and hypertrophy of the rat soleus produced either by clenbuterol and 3,3', 5-triiodo-L-thyronine (CT) treatment or by surgical overload was examined. Mature female rats were subjected to surgical overload of the right soleus with the left soleus serving as a control. Another group received the same surgical treatment but were administered CT. Soleus muscles were harvested 4 wk after surgical overload and weighed. Myosin heavy chain isoforms were separated by using polyacrylamide gel electrophoresis while myogenin and MyoD expression were evaluated by Northern analysis. CT and functional overload increased soleus muscle weight. CT treatment induced the appearance of the fast type IIX myosin heavy chain isoform, depressed myogenin expression, and induced MyoD expression. However, functional overload did not alter myogenin or MyoD expression in CT-treated or non-CT-treated rats. Thus pharmacologically and surgically induced hypertrophy have differing effects on myogenin and MyoD expression, because their levels were associated with changes in myosin heavy chain composition (especially type IIX) rather than changes in muscle mass.

  5. Myogenin, MyoD, and myosin expression after pharmacologically and surgically induced hypertrophy

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Greaser, M. L.; Schultz, E.

    1998-01-01

    The relationship between myogenin or MyoD expression and hypertrophy of the rat soleus produced either by clenbuterol and 3,3', 5-triiodo-L-thyronine (CT) treatment or by surgical overload was examined. Mature female rats were subjected to surgical overload of the right soleus with the left soleus serving as a control. Another group received the same surgical treatment but were administered CT. Soleus muscles were harvested 4 wk after surgical overload and weighed. Myosin heavy chain isoforms were separated by using polyacrylamide gel electrophoresis while myogenin and MyoD expression were evaluated by Northern analysis. CT and functional overload increased soleus muscle weight. CT treatment induced the appearance of the fast type IIX myosin heavy chain isoform, depressed myogenin expression, and induced MyoD expression. However, functional overload did not alter myogenin or MyoD expression in CT-treated or non-CT-treated rats. Thus pharmacologically and surgically induced hypertrophy have differing effects on myogenin and MyoD expression, because their levels were associated with changes in myosin heavy chain composition (especially type IIX) rather than changes in muscle mass.

  6. Ethanol-induced changes in poly (ADP ribose) polymerase and neuronal developmental gene expression.

    PubMed

    Gavin, David P; Kusumo, Handojo; Sharma, Rajiv P; Guizzetti, Marina

    2016-11-01

    Prenatal alcohol exposure has profound effects on neuronal growth and development. Poly-ADP Ribose Polymerase (PARP) enzymes are perhaps unique in the field of epigenetics in that they directly participate in histone modifications, transcription factor modifications, DNA methylation/demethylation and are highly inducible by ethanol. It was our hypothesis that ethanol would induce PARP enzymatic activity leading to alterations in neurodevelopmental gene expression. Mouse E18 cortical neurons were treated with ethanol, PARP inhibitors, and nuclear hormone receptor transcription factor PPARγ agonists and antagonists. Subsequently, we measured PARP activity and changes in Bdnf, OKSM (Oct4, Klf4, Sox2, c-Myc), DNA methylating/demethylating factors, and Pparγ mRNA expression, promoter 5-methylcytosine (5MC) and 5-hydroxymethylcytosine (5HMC), and PPARγ promoter binding. We found that ethanol reduced Bdnf4, 9a, and Klf4 mRNA expression, and increased c-Myc expression. These changes were reversed with a PARP inhibitor. In agreement with its role in DNA demethylation PARP inhibition increased 5MC levels at the c-Myc promoter. In addition, we found that inhibition of PARP enzymatic activity increased PPARγ promoter binding, and this corresponded to increased Bdnf and Klf4 mRNA expression. Our results suggest that PARP participates in DNA demethylation and reduces PPARγ promoter binding. The current study underscores the importance of PARP in ethanol-induced changes to neurodevelopmental gene expression. Published by Elsevier Ltd.

  7. Comprehensive set of integrative plasmid vectors for copper-inducible gene expression in Myxococcus xanthus.

    PubMed

    Gómez-Santos, Nuria; Treuner-Lange, Anke; Moraleda-Muñoz, Aurelio; García-Bravo, Elena; García-Hernández, Raquel; Martínez-Cayuela, Marina; Pérez, Juana; Søgaard-Andersen, Lotte; Muñoz-Dorado, José

    2012-04-01

    Myxococcus xanthus is widely used as a model system for studying gliding motility, multicellular development, and cellular differentiation. Moreover, M. xanthus is a rich source of novel secondary metabolites. The analysis of these processes has been hampered by the limited set of tools for inducible gene expression. Here we report the construction of a set of plasmid vectors to allow copper-inducible gene expression in M. xanthus. Analysis of the effect of copper on strain DK1622 revealed that copper concentrations of up to 500 μM during growth and 60 μM during development do not affect physiological processes such as cell viability, motility, or aggregation into fruiting bodies. Of the copper-responsive promoters in M. xanthus reported so far, the multicopper oxidase cuoA promoter was used to construct expression vectors, because no basal expression is observed in the absence of copper and induction linearly depends on the copper concentration in the culture medium. Four different plasmid vectors have been constructed, with different marker selection genes and sites of integration in the M. xanthus chromosome. The vectors have been tested and gene expression quantified using the lacZ gene. Moreover, we demonstrate the functional complementation of the motility defect caused by lack of PilB by the copper-induced expression of the pilB gene. These versatile vectors are likely to deepen our understanding of the biology of M. xanthus and may also have biotechnological applications.

  8. Proton pump inhibitor induced collagen expression in colonocytes is associated with collagenous colitis

    PubMed Central

    Mori, Shiori; Kadochi, Yui; Luo, Yi; Fujiwara-Tani, Rina; Nishiguchi, Yukiko; Kishi, Shingo; Fujii, Kiyomu; Ohmori, Hitoshi; Kuniyasu, Hiroki

    2017-01-01

    AIM To elucidate the role of proton pump inhibitors (PPIs) in collagenous disease, direct effect of PPI on colonocytes was examined. METHODS Collagenous colitis is a common cause of non-bloody, watery diarrhea. Recently, there has been increasing focus on the use of proton PPIs as a risk factor for developing collagenous colitis. Mouse CT26 colonic cells were treated with PPI and/or PPI-induced alkaline media. Expression of fibrosis-associated genes was examined by RT-PCR. In human materials, collagen expression was examined by immunohistochemistry. RESULTS CT26 cells expressed a Na+-H+ exchanger gene (solute carrier family 9, member A2). Treatment with PPI and/or PPI-induced alkaline media caused growth inhibition and oxidative stress in CT26 cells. The treatment increased expression of fibrosis inducing factors, transforming growth factor β and fibroblast growth factor 2. The treatment also decreased expression of a negative regulator of collagen production, replication factor C1, resulting in increased expression of collagen types III and IV in association with lipid peroxide. In biopsy specimens from patients with collagenous colitis, type III and IV collagen were increased. Increase of type III collagen was more pronounced in PPI-associated collagenous colitis than in non-PPI-associated disease. CONCLUSION From these findings, the reaction of colonocytes to PPI might participate in pathogenesis of collagenous colitis. PMID:28321159

  9. Importance of inducible multidrug resistance 1 expression in HL-60 cells resistant to gemtuzumab ozogamicin.

    PubMed

    Matsumoto, Taichi; Jimi, Shiro; Hara, Shuuji; Takamatsu, Yasushi; Suzumiya, Junji; Tamura, Kazuo

    2012-07-01

    Resistance to gemtuzumab ozogamicin (GO) hampers the effective treatment of refractory acute myeloid leukemia (AML). To clarify the mechanism of resistance to GO, HL-60 cells were persistently exposed to GO in order to establish GO-resistant HL-60 (HL-60/GOR) cells. Multidrug resistance 1 (MDR-1) was strongly expressed in HL-60/GOR cells, but not in HL-60 cells. Although withdrawal of GO after the chronic exposure of HL-60/GOR cells to this compound gradually decreased MDR-1 expression to trace levels, reintroducing GO restored high MDR-1 expression in HL-60/GOR cells, but not in HL-60 cells. These results indicate that HL-60/GOR cells acquired the ability to induce MDR-1 expression in response to GO. U0126, a MEK1/2 inhibitor, prevented GO-inducible MDR-1 expression and abrogated GO resistance in HL-60/GOR cells. These results suggest that in the clinical use of GO, inducible MDR-1 expression in tumor cells should be investigated before treatment with GO. If the cells are positive then MEK1/2 inhibitors may be effective in overcoming resistance to GO.

  10. Vincristine-induced peripheral neuropathic pain and expression of transient receptor potential vanilloid 1 in rat.

    PubMed

    Chiba, Terumasa; Oka, Yusuke; Sashida, Hiroya; Kanbe, Toshie; Abe, Kenji; Utsunomiya, Iku; Taguchi, Kyoji

    2017-03-30

    The clinical anti-cancer efficacy of vincristine is limited by the development of dose-dependent peripheral neuropathy. Up-regulation of transient receptor potential vanilloid 1 (TRPV1) is correlated with peripheral neuropathy following anti-cancer drug treatment. To analyze the contribution of TRPV1 to the development of vincristine-induced mechanical allodynia/hyperalgesia, TRPV1 expression in the rat dorsal root ganglion (DRG) was analyzed after vincristine treatment. Mechanical allodynia/hyperalgesia was tested with von Frey filaments 14 days after intraperitoneal administration of 0.1 mg/kg vincristine in rats. TRPV1 expression in DRGs following vincristine treatment was assessed with western blot analysis and in situ hybridization histochemistry. Vincristine-induced mechanical allodynia/hyperalgesia after day 14 was significantly inhibited by the TRP antagonist ruthenium red (3 mg/kg, s.c.) and the TRPV1 antagonist capsazepine (30 mg/kg, s.c.). Vincristine treatment increased the expression of TRPV1 protein in DRG neurons. In situ hybridization histochemistry revealed that most of the TRPV1 mRNA-labeled neurons in the DRG were small in size. Immunohistochemistry showed that isolectin B4-positive small DRG neurons co-expressed TRPV1 protein 14 days after treatment. These results suggest that vincristine treatment increases TRPV1 expression in small DRG neurons. TRPV1 expression may contribute to the development of vincristine-induced painful peripheral neuropathy.

  11. Ethanol inducible expression of a mesophilic cellulase avoids adverse effects on plant development

    PubMed Central

    2013-01-01

    Background Plant-produced biomass-degrading enzymes are promising tools for the processing of lignocellulose to fermentable sugars. A major limitation of in planta production is that high-level expression of such enzymes could potentially affect the structure and integrity of the plant cell wall and negatively influence plant growth and development. Results Here, we evaluate the impact on tobacco plant development of constitutive versus alcohol-inducible expression of the endoglucanase TrCel5A from the mesophilic fungus Trichoderma reesei. Using this system, we are able to demonstrate that constitutive expression of the enzyme, controlled by the doubled Cauliflower Mosaic Virus promoter, leads to lower cellulose content of the plant combined with severe effects on plant growth. However, using an alcohol-inducible expression of the endoglucanase in the plant leaves, we achieved similar enzymatic expression levels with no changes in the crystalline cellulose content. Conclusion We were able to produce significant amounts of cellulase in the plant leaves without detrimental effects to plant development. These results demonstrate the potential feasibility of an inducible expression system for producing biomass degrading enzymes in plants. PMID:23587418

  12. Opisthorchis viverrini-antigen induces expression of MARCKS during inflammation-associated cholangiocarcinogenesis.

    PubMed

    Techasen, Anchalee; Loilome, Watcharin; Namwat, Nisana; Duenngai, Kunyarat; Cha'on, Ubon; Thanan, Raynoo; Sithithaworn, Paiboon; Miwa, Masanao; Yongvanit, Puangrat

    2012-03-01

    Myristoylated alanine rich C kinase substrate (MARCKS) has been implicated in PKC-mediated membrane-cytoskeleton alterations that underlie lipopolysaccharide (LPS)-induced macrophage responses. MARCKS is postulated to be involved in inflammation-associated CCA based on its overexpression in cholangiocarcinoma (CCA) and inflammatory cells. The aims of this study were to investigate localization patterns of MARCKS in hamster and human tissue during cholangiocarcinogenesis and to examine the involvement of MARCKS in inflammation. MARCKS protein expression was found prominently in inflammatory cells of Opisthorchis viverrini-treated as well as O. viverrini plus N-nitrosodimethylamine (NDMA)-treated hamsters from week 2 to week 3 of treatment. The positive signal decreased during week 4 to week 12, then increased again at week 26 when CCA developed. At the last time point the expression of MARCKS was observed in both cancer and inflammatory cells. MARCKS protein expression was also found in inflammatory cells, including macrophages in human CCA tissues. O. viverrini excretory/secretory products or worm antigen induced MARCKS mRNA and protein expression in a dose- and time-dependent manner in the human U937 macrophage cell line. The relative mRNA expression of MARCKS in white blood cells of O. viverrini-infected patients was significantly higher than in healthy subjects (P = 0.02). Thus, MARCKS is significantly expressed in macrophages and plays a role in inflammation-related CCA induced by O. viverrini.

  13. Fos expression induced by cocaine-conditioned cues in male and female rats

    PubMed Central

    Zhou, Luyi; Pruitt, Carla; Shin, Christina B.; Garcia, Arturo D.; Zavala, Arturo R.; See, Ronald E.

    2013-01-01

    Previous studies have shown that female rats exhibit different patterns of drug seeking during multiple phases of cocaine addiction when compared with males. However, the underlying mechanisms for these sex differences remain largely unknown. Here, we used a cocaine self-administration/reinstatement model to examine neuronal activation, as determined by Fos expression, following cue-induced reinstatement of cocaine seeking in male and female rats. Fos expression revealed both similarities between sexes in some brain regions, as well as selective sexually dimorphic patterns. As compared to no cue control subjects, conditioned cues induced higher Fos expression in the Cg1 region of the anterior cingulate cortex, but lower expression in the nucleus accumbens in both males and females. Females exhibited higher Fos expression than males in multiple brain regions, including the agranular insular cortex, dorsal medial caudate-putamen, nucleus accumbens shell, ventral tegmental area, dorsal subiculum, and ventral CA1 and CA3 regions of the hippocampus. Notably, only Fos expression in the prelimbic cortex, nucleus accumbens shell, basolateral amygdala, and ventral subiculum correlated positively with lever responding in response to conditioned cues across males and females. These findings indicate that while sexually dimorphic Fos activation does occur, the relationship between cue-induced cocaine seeking and neuronal activation may be similar for males and females in key brain regions of the relapse circuit. PMID:23832598

  14. Fos expression induced by cocaine-conditioned cues in male and female rats.

    PubMed

    Zhou, Luyi; Pruitt, Carla; Shin, Christina B; Garcia, Arturo D; Zavala, Arturo R; See, Ronald E

    2014-09-01

    Previous studies have shown that female rats exhibit different patterns of drug seeking during multiple phases of cocaine addiction when compared with males. However, the underlying mechanisms for these sex differences remain largely unknown. Here, we used a cocaine self-administration/reinstatement model to examine neuronal activation, as determined by Fos expression, following cue-induced reinstatement of cocaine seeking in male and female rats. Fos expression revealed both similarities between sexes in some brain regions, as well as selective sexually dimorphic patterns. As compared to no cue control subjects, conditioned cues induced higher Fos expression in the Cg1 region of the anterior cingulate cortex, but lower expression in the nucleus accumbens in both males and females. Females exhibited higher Fos expression than males in multiple brain regions, including the agranular insular cortex, dorsal medial caudate-putamen, nucleus accumbens shell, ventral tegmental area, dorsal subiculum, and ventral CA1 and CA3 regions of the hippocampus. Notably, only Fos expression in the prelimbic cortex, nucleus accumbens shell, basolateral amygdala, and ventral subiculum correlated positively with lever responding in response to conditioned cues across males and females. These findings indicate that while sexually dimorphic Fos activation does occur, the relationship between cue-induced cocaine seeking and neuronal activation may be similar for males and females in key brain regions of the relapse circuit.

  15. Abiotic stresses affecting water balance induce phosphoenolpyruvate carboxylase expression in roots of wheat seedlings.

    PubMed

    González, María-Cruz; Sánchez, Rosario; Cejudo, Francisco J

    2003-04-01

    Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) plays an important role in CO(2) fixation in C4 and CAM plants. In C3 plants, PEPC is widely expressed in most organs; however, its function is not yet clearly established. With the aim of providing clues on the function of PEPC in C3 plants, we have analyzed its pattern of expression in wheat ( Triticum aestivum L.) seedlings. Roots showed almost double the level of PEPC activity of shoots. Further analysis of PEPC expression in roots by in situ localization techniques showed a high accumulation of PEPC transcripts and polypeptides in meristematic cells, whereas in the rest of the root PEPC localized preferentially to the vascular tissue. Treatment with NaCl and LiCl induced PEPC expression in roots. Similarly, other abiotic stresses affecting water status, such as drought or cold, induced PEPC expression. Induction was root-specific except for the cold treatment, which also induced PEPC in shoots, although to a lesser extent. In contrast, hypoxia, which does not affect water balance, did not promote any induction of PEPC expression. These results suggest an important role for this enzyme in the adaptation of plants to environmental changes.

  16. ATF4 is Necessary and Sufficient for ER Stress-induced Upregulation of REDD1 Expression

    PubMed Central

    Whitney, Michael L.; Jefferson, Leonard S.; Kimball, Scot R.

    2009-01-01

    In response to a variety of cell stresses, e.g. endoplasmic reticulum (ER) stress, expression of REDD1 (regulated in development and DNA damage responses) is transcriptionally upregulated. However, the mechanism through which ER stress acts to upregulate REDD1 expression is unknown. In the present study, REDD1 expression was found to be upregulated by ER stress in several cell lines. However, in MEF cells lacking the eIF2α kinase PERK, ER stress failed to upregulate REDD1 expression, demonstrating that phosphorylation of eIF2α was necessary for the effect. Moreover, ER stress led to upregulated expression of the transcription factor ATF4, but in MEF cells lacking ATF4, REDD1 mRNA expression was not increased by ER stress. In contrast, exogenous expression of ATF4 was sufficient to induce REDD1 expression. Overall, the results suggest that REDD1 expression is upregulated during ER stress through a mechanism involving activation of PERK, phosphorylation of eIF2α, and increased ATF4 expression. PMID:19114033

  17. Dietary restriction protects against diethylnitrosamine-induced hepatocellular tumorigenesis by restoring the disturbed gene expression profile

    PubMed Central

    Duan, Ting; Sun, Wenjie; Zhang, Mohan; Ge, Juan; He, Yansu; Zhang, Jun; Zheng, Yifan; Yang, Wei; Shen, Han-ming; Yang, Jun; Zhu, Xinqiang; Yu, Peilin

    2017-01-01

    Hepatocellular carcinoma (HCC) is one of the most lethal and prevalent malignancies, worse still, there are very limited therapeutic measures with poor clinical outcomes. Dietary restriction (DR) has been known to inhibit spontaneous and induced tumors in several species, but the mechanisms are little known. In the current study, by using a diethylnitrosamine (DEN)-induced HCC mice model, we found that DR significantly reduced the hepatic tumor number and size, delayed tumor development, suppressed proliferation and promoted apoptosis. Further transcriptome sequencing of liver tissues from the DEN and the DEN accompanied with DR (DEN+DR) mice showed that DEN induced profound changes in the gene expression profile, especially in cancer-related pathways while DR treatment reversed most of the disturbed gene expression induced by DEN. Finally, transcription factor enrichment analysis uncovered the transcription factor specificity protein 1 (SP1) probably functioned as the main regulator of gene changes, orchestrating the protective effects of DR on DEN induced HCC. Taken together, by the first comprehensive transcriptome analysis, we elucidate that DR protects aginst DEN-induced HCC by restoring the disturbed gene expression profile, which holds the promise to provide effective molecular targets for cancer therapies. PMID:28262799

  18. Spinal nociceptin inhibits AMPA-induced nociceptive behavior and Fos expression in rat spinal cord.

    PubMed

    Menéndez, Luis; Lastra, Ana; Villanueva, Noemí; Hidalgo, Agustín; Baamonde, Ana

    2003-02-01

    The effects of intrathecal nociceptin (NOCI) on the nociceptive behavior (biting, scratching and licking; BSL) and the spinal Fos expression induced by intrathecal administration of N-methyl-D-aspartate (NMDA, 4 microg/rat) or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA, 2 microg/rat) were studied. Coadministration of NOCI (3 and 10 nmol/rat) with NMDA did not modify the NMDA-induced BSL or Fos expression. In contrast, NOCI (0.1-3 nmol/rat) dose-dependently inhibited the BSL behavior induced by AMPA. Furthermore, coadministration of NOCI (3 and 10 nmol/rat) significantly reduced the AMPA-induced expression of Fos protein in the superficial layers of the spinal dorsal horn. In order to test whether classical or opioid receptor-like type 1 (ORL1) receptors are involved in the inhibitions by NOCI of AMPA-evoked BSL, the corresponding antagonists were assayed. The administration of the nonselective opioid receptor antagonist, naloxone (10 mg/kg i.p.), did not modify the NOCI-induced inhibition of AMPA-evoked BSL. However, the selective ORL1 receptor antagonist, [N-Phe(1)]nociceptin-(1-13)-NH(2) (90 nmol/rat i.t.), completely prevented the NOCI-mediated inhibition of the nociceptive responses evoked by AMPA. In conclusion, NOCI, acting at ORL1 receptors can, at least in part, induce spinal analgesia by blocking the nociceptive responses produced through the stimulation of AMPA receptors.

  19. Involvement of SULF2 in y-irradiation-induced invasion and resistance of cancer cells by inducing IL-6 expression.

    PubMed

    Jung, Chan-Hun; Ho, Jin-Nyoung; Park, Jong Kuk; Kim, Eun Mi; Hwang, Sang-Gu; Um, Hong-Duck

    2016-03-29

    Cancer cells that survive radiotherapy often display enhanced invasiveness and resistance to death stimuli. Previous findings have suggested that ionizing radiation (IR) induces such undesirable effects by stimulating the STAT3/Bcl-XL pathway. To identify novel cellular components that mediate these actions of IR, we irradiated lung cancer cells with sublethal doses of y-rays and screened for the induction of IR-responsive genes by microarray analysis. The genes encoding 2 extracellular proteins, SULF2 and IL-6, were found to be upregulated, and these results were confirmed by polymerase chain reactions and western blot analyses. Because the IR-mediated induction of SULF2 was a novel finding, we also confirmed the phenomenon in vivo using xenograft tumors in mice. Analyses of signaling processes revealed that IR induced SULF2 expression via p53, which then promoted IL-6 expression by stabilizing β-catenin, followed by stimulation of the STAT3/Bcl-XL pathway. Consistently, both SULF2 and IL-6 mediated IR-induced invasion and resistance to death stimuli. To investigate whether SULF2 contributes to IR-induced tumor metastasis, we irradiated tumors in mice with sublethal doses of IR. This treatment promoted the entry of tumor cells into the blood stream (intravasation), which was abolished by downregulating SULF2 expression in tumor cells. These results demonstrated that SULF2 can mediate the detrimental effects of IR in vivo. Therefore, SULF2 may be potentially used as a therapeutic and diagnostic target to predict and overcome the malignant effects of IR, particularly in tumors expressing p53 wild-type.

  20. Involvement of SULF2 in γ-irradiation-induced invasion and resistance of cancer cells by inducing IL-6 expression

    PubMed Central

    Jung, Chan-Hun; Ho, Jin-Nyoung; Park, Jong Kuk; Kim, Eun Mi; Hwang, Sang-Gu; Um, Hong-Duck

    2016-01-01

    Cancer cells that survive radiotherapy often display enhanced invasiveness and resistance to death stimuli. Previous findings have suggested that ionizing radiation (IR) induces such undesirable effects by stimulating the STAT3/Bcl-XL pathway. To identify novel cellular components that mediate these actions of IR, we irradiated lung cancer cells with sublethal doses of γ-rays and screened for the induction of IR-responsive genes by microarray analysis. The genes encoding 2 extracellular proteins, SULF2 and IL-6, were found to be upregulated, and these results were confirmed by polymerase chain reactions and western blot analyses. Because the IR-mediated induction of SULF2 was a novel finding, we also confirmed the phenomenon in vivo using xenograft tumors in mice. Analyses of signaling processes revealed that IR induced SULF2 expression via p53, which then promoted IL-6 expression by stabilizing β-catenin, followed by stimulation of the STAT3/Bcl-XL pathway. Consistently, both SULF2 and IL-6 mediated IR-induced invasion and resistance to death stimuli. To investigate whether SULF2 contributes to IR-induced tumor metastasis, we irradiated tumors in mice with sublethal doses of IR. This treatment promoted the entry of tumor cells into the blood stream (intravasation), which was abolished by downregulating SULF2 expression in tumor cells. These results demonstrated that SULF2 can mediate the detrimental effects of IR in vivo. Therefore, SULF2 may be potentially used as a therapeutic and diagnostic target to predict and overcome the malignant effects of IR, particularly in tumors expressing p53 wild-type. PMID:26895473

  1. Sialoadhesin Expressed on IFN-Induced Monocytes Binds HIV-1 and Enhances Infectivity

    PubMed Central

    Rempel, Hans; Calosing, Cyrus; Sun, Bing; Pulliam, Lynn

    2008-01-01

    Background HIV-1 infection dysregulates the immune system and alters gene expression in circulating monocytes. Differential gene expression analysis of CD14+ monocytes from subjects infected with HIV-1 revealed increased expression of sialoadhesin (Sn, CD169, Siglec 1), a cell adhesion molecule first described in a subset of macrophages activated in chronic inflammatory diseases. Methodology/Principal Findings We analyzed sialoadhesin expression on CD14+ monocytes by flow cytometry and found significantly higher expression in subjects with elevated viral loads compared to subjects with undetectable viral loads. In cultured CD14+ monocytes isolated from healthy individuals, sialoadhesin expression was induced by interferon-α and interferon-γ but not tumor necrosis factor-α. Using a stringent binding assay, sialoadhesin-expressing monocytes adsorbed HIV-1 through interaction with the sialic acid residues on the viral envelope glycoprotein gp120. Furthermore, monocytes expressing sialoadhesin facilitated HIV-1 trans infection of permissive cells, which occurred in the absence of monocyte self-infection. Conclusions/Significance Increased sialoadhesin expression on CD14+ monocytes occurred in response to HIV-1 infection with maximum expression associated with high viral load. We show that interferons induce sialoadhesin in primary CD14+ monocytes, which is consistent with an antiviral response during viremia. Our findings suggest that circulating sialoadhesin-expressing monocytes are capable of binding HIV-1 and effectively delivering virus to target cells thereby enhancing the distribution of HIV-1. Sialoadhesin could disseminate HIV-1 to viral reservoirs during monocyte immunosurveillance or migration to sites of inflammation and then facilitate HIV-1 infection of permissive cells. PMID:18414664

  2. Exercise-induced differential changes in gene expression among arterioles of skeletal muscles of obese rats

    PubMed Central

    Padilla, Jaume; Jenkins, Nathan T.; Thorne, Pamela K.; Martin, Jeffrey S.; Rector, R. Scott; Akter, Sadia; Davis, J. Wade

    2015-01-01

    Using next-generation, transcriptome-wide RNA sequencing (RNA-Seq) technology we assessed the effects of exercise training on transcriptional profiles in skeletal muscle arterioles isolated from the soleus and gastrocnemius muscles of Otsuka Long Evans Tokushima Fatty (OLETF) rats that underwent an endurance exercise training program (EX; n = 13), interval sprint training program (SPRINT; n = 14), or remained sedentary (Sed; n = 12). We hypothesized that the greatest effects of exercise would be in the gastrocnemius arterioles. Results show that EX caused the largest number of changes in gene expression in the soleus and white gastrocnemius 2a arterioles with little to no changes in the feed arteries. In contrast, SPRINT caused substantial changes in gene expression in the feed arteries. IPA canonical pathway analysis revealed 18 pathways with significant changes in gene expression when analyzed across vessels and revealed that EX induces increased expression of the following genes in all arterioles examined: Shc1, desert hedgehog protein (Dhh), adenylate cyclase 4 (Adcy4), G protein binding protein, alpha (Gnat1), and Bcl2l1 and decreased expression of ubiquitin D (Ubd) and cAMP response element modulator (Crem). EX increased expression of endothelin converting enzyme (Ece1), Hsp90b, Fkbp5, and Cdcl4b in four of five arterioles. SPRINT had effects on expression of Crem, Dhh, Bcl2l1, and Ubd that were similar to EX. SPRINT also increased expression of Nfkbia, Hspa5, Tubb 2a and Tubb 2b, and Fkbp5 in all five arterioles and increased expression of Gnat1 in all but the soleus second-order arterioles. Many contractile and/or structural protein genes were increased by SPRINT in the gastrocnemius feed artery, but the same genes exhibited decreased expression in red gastrocnemius arterioles. We conclude that training-induced changes in arteriolar gene expression patterns differ by muscle fiber type composition and along the arteriolar tree. PMID:26183477

  3. Novel genes differentially expressed between posterior and median silk gland identified by SAGE-aided transcriptome analysis.

    PubMed

    Royer, Corinne; Briolay, Jérôme; Garel, Annie; Brouilly, Patrick; Sasanuma, Shun-ichi; Sasanuma, Motoe; Shimomura, Michihiko; Keime, Céline; Gandrillon, Olivier; Huang, Yongping; Chavancy, Gérard; Mita, Kazuei; Couble, Pierre

    2011-02-01

    Serial analysis of gene expression (SAGE) profiles, from posterior and median cells of the silk gland of Bombyx mori, were analyzed and compared, so as to identify their respective distinguishing functions. The annotation of the SAGE libraries was performed with a B. mori reference tag collection, which was extracted from a novel set of Bombyx ESTs, sequenced from the 3' side. Most of the tags appeared at similar relative concentration within the two libraries, and corresponded with region-specific and highly abundant silk proteins. Strikingly, in addition to tags from silk protein mRNAs, 19 abundant tags were found (≥ 0.1%), in the median cell library, which were absent in the posterior cell tag collection. With the exception of tags from SP1 mRNA, no PSG specific tags were found in this subset class. The analysis of some of the MSG-specific transcripts, suggested that middle silk gland cells have diversified functions, in addition to their well characterized role in silk sericins synthesis and secretion. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Constitutive and Inducible Expression of the rRNA Methylase Gene erm(B) in Campylobacter

    PubMed Central

    Deng, Fengru; Shen, Jianzhong; Zhang, Maojun; Wu, Congming

    2015-01-01

    Macrolides are the antimicrobials of choice for treating human campylobacteriosis. The recent emergence of erm(B) in Campylobacter bacteria threatens the utility of this class of antibiotics. Here we report the constitutive and inducible expression of erm(B) in Campylobacter isolates derived from diarrheal patients and food-producing animals. Constitutive expression of erm(B) was associated with insertion and deletion in the regulatory region of the gene, providing the first documentation of the differential expression of erm(B) in Campylobacter bacteria. PMID:26259800

  5. Exposure to PM2.5 induces aberrant activation of NF-κB in human airway epithelial cells by downregulating miR-331 expression.

    PubMed

    Song, Lei; Li, Dan; Li, Xiaoping; Ma, Lianjun; Bai, Xiaoxue; Wen, Zhongmei; Zhang, Xiufang; Chen, Dong; Peng, Liping

    2017-03-01

    Exposure to particulate matter (PM) with an aerodynamic diameter≤2.5μm (PM2.5) induces reactive oxygen species (ROS) and pro-inflammatory cytokine production, leading to airway epithelial injury. However, the mechanisms underlying the toxicity of PM2.5 have not been clarified. Here, we show that exposure to PM2.5 induces sustained activation of the nuclear factor kappa B (NF-κB) signaling in human airway epithelial Beas-2B (B2B) cells. In addition, PM2.5 exposure significantly decreased miR-331 expression in B2B cells, which was abrogated by inhibition of ROS or phosphoinositide 3-kinase (PI3K)/Akt pathway. Induction of miR-331 overexpression attenuated the PM2.5 exposure-induced NF-kBp65 nuclear translocation, IL-6 and IL-8 expression in B2B cells. Furthermore, miR-331 targeted the inhibitor of NF-κB kinase beta (IKK-β) by down-regulating the IKK-β-regulated luciferase activity in HEK293 cells. Moreover, induction of miR-331 over-expression inhibited IKK-β expression while induction of IKK-β over-expression prevented the inhibition of miR-331 on the PM2.5 exposure-induced NF-kBp65 nuclear translocation, IL-6 and IL-8 expression in B2B cells. Therefore, PM2.5 exposure decreased miR-331 expression via the ROS/PI3K/Akt pathway, resulting in an increase in the IKK-β expression and sustained NF-κB activation in human airway epithelial cells. Our findings may provide new insights into the molecular mechanisms underlying the toxicity of PM2.5 exposure and aid in design of new therapeutic strategies to prevent PM2.5-induced toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Carcinoembryonic Antigen Expression and Resistance to Radiation and 5-Fluorouracil-Induced Apoptosis and Autophagy

    PubMed Central

    Eftekhar, Ebrahim; Jaberie, Hajar; Naghibalhossaini, Fakhraddin

    2016-01-01

    Understanding the mechanism of tumor resistance is critical for cancer therapy. In this study, we investigated the effect of carcinoembryonic antigen (CEA) overexpression on UV-and 5-fluorouracil (5-FU)-induced apoptosis and autophagy in colorectal cancer cells. We used histone deacetylase (HDAC) inhibitor, NaB and DNA demethylating agent, 5-azacytidine (5-AZA) to induce CEA expression in HT29/219 and SW742 colorectal cancer cell lines. MTT assay was used to measure IC50 value of the cells exposed to graded concentrations of 5- FU with either 0.1 mM NaB or 1 μM 5-AZA for 72 h . Using CHO- and SW742-CEA transfectants, we also investigated the effect of CEA expression on UV- and 5-FU-induced apoptosis and autophagy. Treatment of HT29/219 cell line with NaB and 5-AZA increased CEA expression by 29% and 31%, respectively. Compared with control cells, the IC50 value for 5-FU of NaB and 5-AZA-treated cells increased by 40% and 57%, respectively. Treatment of SW742 cells with NaB or 5-AZA increased neither CEA expression nor the IC50 value for 5-FU. In comparison to parental cells, CEA expression also significantly protected transfected cells against UV-induced apoptosis. Decreased proportions of autophagy and apoptosis were also observed in 5-FU treated SW742- and CHO-CEA transfectants. We conclude that CEA expression can effectively protect colorectal cancer cells against radiation and drug-induced apoptosis and autophagy. PMID:27478804

  7. Carcinoembryonic Antigen Expression and Resistance to Radiation and 5-Fluorouracil-Induced Apoptosis and Autophagy.

    PubMed

    Eftekhar, Ebrahim; Jaberie, Hajar; Naghibalhossaini, Fakhraddin

    2016-01-01

    Understanding the mechanism of tumor resistance is critical for cancer therapy. In this study, we investigated the effect of carcinoembryonic antigen (CEA) overexpression on UV-and 5-fluorouracil (5-FU)-induced apoptosis and autophagy in colorectal cancer cells. We used histone deacetylase (HDAC) inhibitor, NaB and DNA demethylating agent, 5-azacytidine (5-AZA) to induce CEA expression in HT29/219 and SW742 colorectal cancer cell lines. MTT assay was used to measure IC50 value of the cells exposed to graded concentrations of 5- FU with either 0.1 mM NaB or 1 μM 5-AZA for 72 h . Using CHO- and SW742-CEA transfectants, we also investigated the effect of CEA expression on UV- and 5-FU-induced apoptosis and autophagy. Treatment of HT29/219 cell line with NaB and 5-AZA increased CEA expression by 29% and 31%, respectively. Compared with control cells, the IC50 value for 5-FU of NaB and 5-AZA-treated cells increased by 40% and 57%, respectively. Treatment of SW742 cells with NaB or 5-AZA increased neither CEA expression nor the IC50 value for 5-FU. In comparison to parental cells, CEA expression also significantly protected transfected cells against UV-induced apoptosis. Decreased proportions of autophagy and apoptosis were also observed in 5-FU treated SW742- and CHO-CEA transfectants. We conclude that CEA expression can effectively protect colorectal cancer cells against radiation and drug-induced apoptosis and autophagy.

  8. Wolbachia-Induced Cytoplasmic Incompatibility Is Associated with Decreased Hira Expression in Male Drosophila

    PubMed Central

    Wang, Jia-Lin; Wang, Yu-Feng

    2011-01-01

    Background Wolbachia are obligate endosymbiotic bacteria that infect numerous species of arthropods and nematodes. Wolbachia can induce several reproductive phenotypes in their insect hosts including feminization, male-killing, parthenogenesis and cytoplasmic incompatibility (CI). CI is the most common phenotype and occurs when Wolbachia-infected males mate with uninfected females resulting in no or very low numbers of viable offspring. However, matings between males and females infected with the same strain of Wolbachia result in viable progeny. Despite substantial scientific effort, the molecular mechanisms underlying CI are currently unknown. Methodology/Principal Findings Gene expression studies were undertaken in Drosophila melanogaster and D. simulans which display differential levels of CI using quantitative RT-PCR. We show that Hira expression is correlated with the induction of CI and occurs in a sex-specific manner. Hira expression is significantly lower in males which induce strong CI when compared to males inducing no CI or Wolbachia-uninfected males. A reduction in Hira expression is also observed in 1-day-old males that induce stronger CI compared to 5-day-old males that induce weak or no CI. In addition, Hira mutated D. melanogaster males mated to uninfected females result in significantly decreased hatch rates comparing with uninfected crosses. Interestingly, wMel-infected females may rescue the hatch rates. An obvious CI phenotype with chromatin bridges are observed in the early embryo resulting from Hira mutant fertilization, which strongly mimics the defects associated with CI. Conclusions/Significance Our results suggest Wolbachia-induced CI in Drosophila occurs due to a reduction in Hira expression in Wolbachia-infected males leading to detrimental effects on sperm fertility resulting in embryo lethality. These results may help determine the underlying mechanism of CI and provide further insight in to the important role Hira plays in the

  9. Methylphenidate (Ritalin) induces Homer 1a and zif 268 expression in specific corticostriatal circuits.

    PubMed

    Yano, M; Steiner, H

    2005-01-01

    Corticostriatal circuits participate in limbic, attentional, motor and other networks, and are implicated in psychostimulant addiction. The psychostimulant methylphenidate is used in the treatment of attention-deficit hyperactivity disorder and for recreational purposes. Recent studies indicate that methylphenidate alters gene expression in striatal neurons. We investigated whether methylphenidate affects gene regulation in specific corticostriatal circuits, by comparing drug-induced molecular changes in different functional domains of the striatum with changes in their cortical input regions. In order to assess the potential functional significance of methylphenidate-induced molecular changes, we examined members of two different classes of plasticity-related molecules, the transcription factor zif 268 and the synaptic plasticity factor Homer 1a. Acute methylphenidate administration in adult rats increased the expression of Homer 1a and zif 268 in both cortex and striatum in a dose-dependent and regionally selective manner. These changes in gene expression occurred after doses of 2 mg/kg (i.p.) and higher, and were highly correlated between cortical regions and their striatal targets. In the cortex, increases were maximal in the medial agranular (premotor) and cingulate cortex, followed by motor and somatosensory cortex, and were minimal in the insular cortex. Correspondingly, in the striatum, increases were most robust in sensorimotor sectors that receive medial agranular input, and were weaker or absent in ventral sectors. The methylphenidate-induced increases in cortical Homer 1a and zif 268 expression were also correlated with increases in striatal substance P and dynorphin expression (direct pathway). Overall, the regional distribution of methylphenidate-induced molecular changes in the striatum was similar to that of changes induced by psychostimulants such as cocaine. These findings demonstrate that methylphenidate affects transcription and synaptic

  10. Expression of Streptococcus pneumoniae Bacteriocins Is Induced by Antibiotics via Regulatory Interplay with the Competence System

    PubMed Central

    Slager, Jelle; Lake, Frank B.; Gericke, Oliver; Roberts, Ian S.; Rozen, Daniel E.; Veening, Jan-Willem

    2016-01-01

    Pneumococcal bacteriocins (pneumocins) are antibacterial toxins that mediate intra-species competition within the human host. However, the triggers of pneumocin expression are poorly understood. Using RNA-sequencing, we mapped the regulon of the pneumocin cluster (blp) of Streptococcus pneumoniae D39. Furthermore, by analogy with pneumococcal competence, we show that several antibiotics activate the blp-genes. Using real-time gene expression measurements we show that while the promoter driving expression of the two-component regulatory system blpR/H is constitutive, the remaining blp-promoters that control pneumocin expression, immunity and the inducer peptide BlpC, are pH-dependent and induced in the late exponential phase. Intriguingly, competence for genetic transformation, mediated by the paralogous ComD/E two-component quorum system, is induced by the same environmental cues. To test for interplay between these regulatory systems, we quantified the regulatory response to the addition of synthetic BlpC and competence-stimulating peptide (CSP). Supporting the idea of such interplay, we found that immediately upon addition of CSP, the blp-promoters were activated in a comD/E-dependent manner. After a delay, blp-expression was highly induced and was strictly dependent on blpRH and blpC. This raised the question of the mechanism of BlpC export, since bioinformatic analysis showed that the genes encoding the putative exporter for BlpC, blpAB, are not intact in strain D39 and most other strains. By contrast, all sequenced pneumococcal strains contain intact comAB genes, encoding the transport system for CSP. Consistent with the idea that comAB mediate BlpC export, we finally show that high-level expression of the blp-genes requires comAB. Together, our results demonstrate that regulation of pneumocin expression is intertwined with competence, explaining why certain antibiotics induce blp-expression. Antibiotic-induced pneumocin expression might therefore have

  11. Expression of Streptococcus pneumoniae Bacteriocins Is Induced by Antibiotics via Regulatory Interplay with the Competence System.

    PubMed

    Kjos, Morten; Miller, Eric; Slager, Jelle; Lake, Frank B; Gericke, Oliver; Roberts, Ian S; Rozen, Daniel E; Veening, Jan-Willem

    2016-02-01

    Pneumococcal bacteriocins (pneumocins) are antibacterial toxins that mediate intra-species competition within the human host. However, the triggers of pneumocin expression are poorly understood. Using RNA-sequencing, we mapped the regulon of the pneumocin cluster (blp) of Streptococcus pneumoniae D39. Furthermore, by analogy with pneumococcal competence, we show that several antibiotics activate the blp-genes. Using real-time gene expression measurements we show that while the promoter driving expression of the two-component regulatory system blpR/H is constitutive, the remaining blp-promoters that control pneumocin expression, immunity and the inducer peptide BlpC, are pH-dependent and induced in the late exponential phase. Intriguingly, competence for genetic transformation, mediated by the paralogous ComD/E two-component quorum system, is induced by the same environmental cues. To test for interplay between these regulatory systems, we quantified the regulatory response to the addition of synthetic BlpC and competence-stimulating peptide (CSP). Supporting the idea of such interplay, we found that immediately upon addition of CSP, the blp-promoters were activated in a comD/E-dependent manner. After a delay, blp-expression was highly induced and was strictly dependent on blpRH and blpC. This raised the question of the mechanism of BlpC export, since bioinformatic analysis showed that the genes encoding the putative exporter for BlpC, blpAB, are not intact in strain D39 and most other strains. By contrast, all sequenced pneumococcal strains contain intact comAB genes, encoding the transport system for CSP. Consistent with the idea that comAB mediate BlpC export, we finally show that high-level expression of the blp-genes requires comAB. Together, our results demonstrate that regulation of pneumocin expression is intertwined with competence, explaining why certain antibiotics induce blp-expression. Antibiotic-induced pneumocin expression might therefore have

  12. Nitrogen starvation induces expression of Lg-FLO1 and flocculation in bottom-fermenting yeast.

    PubMed

    Ogata, Tomoo

    2012-11-01

    When exponentially growing cells of bottom-fermenting yeast were starved for nitrogen or were grown on proline (a non-preferred nitrogen source), flocculation was induced. This flocculation was not induced by starvation for either carbon or amino acids. Expression of Lg-FLO1, which is required for flocculation of bottom-fermenting yeast, was also found to be induced by starvation for nitrogen. This suggests that the flocculation of bottom-fermenting yeast is under the control of a nitrogen catabolite repression (NCR)-like mechanism.

  13. MicroRNA-203 induces apoptosis by upregulating Puma expression in colon and lung cancer cells.

    PubMed

    Funamizu, Naotake; Lacy, Curtis R; Kamada, Minori; Yanaga, Katsuhiko; Manome, Yoshinobu

    2015-11-01

    The present study investigated the relationship between microRNA-203 (miR-203) and the p53 upregulated modulator of apoptosis (Puma) in colon (HCT116) and lung cancer (A549) cells. Colon and lung cancer cell lines were selected for this study since a relationship between p53/miR-203 and p53/Puma has been established in both cancers. In the present study, adriamycin and nutlin-3 were used to activate p53, which induced both miR-203 and Puma expression in HCT116 cells. In contrast, HCT 116 cells with downregulated p53 showed decreased miR-203 and Puma expression. Importantly, we found that overexpressed miR-203 in HCT116 cells resulted in significantly increased Puma expression (P<0.05). Based on these findings, we hypothesized that another limb of the p53/Puma axis depends on miR-203 expression. To further validate this relationship, we used lung cancer cells (A549) and found that activated p53 increased both miR-203 and Puma expression. In addition, we found that Puma expression remained elevated in cells with overexpressed miR-203 in the presence of p53 downregulation. Cumulatively, our data purport that p53 not only increased Puma expression directly, but that it may also do so through miR-203. Additionally, functional studies revealed that miR-203 overexpression induced apoptosis and inhibited cell invasiveness.

  14. Effects of Fenofibrate on Adiponectin Expression in Retinas of Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Hsu, Ying-Jung; Wang, Lu-Chun; Yang, Wei-Shiung; Yang, Chung-May; Yang, Chang-Hao

    2014-01-01

    Adiponectin has been associated with increased risks of microvascular complications in diabetes; however, its role in the development of diabetic retinopathy (DR) is unknown. Fenofibrate is a lipid-lowering agent that has been shown to be capable of preventing DR progression. We investigated the expression of adiponectin and its receptors in DR and evaluated the effects of fenofibrate on their expression. The mRNA and protein levels of adiponectin and its receptors were elevated in retinas of streptozotocin-induced diabetic rats and were suppressed following fenofibrate treatment. Immunofluorescence staining demonstrated that adiponectin and adipoR1 were expressed in cells located within blood vessels, the retinal ganglion, and the inner nuclear layer. AdipoR1 was strongly expressed whereas adipoR2 was only weekly expressed in vascular endothelial cells. The in vitro experiments showed that adiponectin expression was induced by high glucose concentrations in RGC-5 and RAW264.7 cells and was suppressed following fenofibrate treatment. AdipoR1 and adipoR2 levels in RGC-5 cells were elevated in high glucose concentrations and suppressed by fenofibrate. Our results demonstrated that adiponectin may be a proinflammatory mediator in diabetic retinas and fenofibrate appears to modulate the expression of adiponectin and its receptors in diabetic retinas, effectively reducing DR progression. PMID:25525608

  15. Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence

    PubMed Central

    Patel, Priyanka L.; Suram, Anitha; Mirani, Neena; Bischof, Oliver; Herbig, Utz

    2016-01-01

    Oncogene-induced senescence (OIS) is a critical tumor-suppressing mechanism that restrains cancer progression at premalignant stages, in part by causing telomere dysfunction. Currently it is unknown whether this proliferative arrest presents a stable and therefore irreversible barrier to cancer progression. Here we demonstrate that cells frequently escape OIS induced by oncogenic H-Ras and B-Raf, after a prolonged period in the senescence arrested state. Cells that had escaped senescence displayed high oncogene expression levels, retained functional DNA damage responses, and acquired chromatin changes that promoted c-Myc–dependent expression of the human telomerase reverse transcriptase gene (hTERT). Telomerase was able to resolve existing telomeric DNA damage response foci and suppressed formation of new ones that were generated as a consequence of DNA replication stress and oncogenic signals. Inhibition of MAP kinase signaling, suppressing c-Myc expression, or inhibiting telomerase activity, caused telomere dysfunction and proliferative defects in cells that had escaped senescence, whereas ectopic expression of hTERT facilitated OIS escape. In human early neoplastic skin and breast tissue, hTERT expression was detected in cells that displayed features of senescence, suggesting that reactivation of telomerase expression in senescent cells is an early event during cancer progression in humans. Together, our data demonstrate that cells arrested in OIS retain the potential to escape senescence by mechanisms that involve derepression of hTERT expression. PMID:27503890

  16. Assessment of a systematic expression profiling approach in ENU-induced mouse mutant lines.

    PubMed

    Seltmann, Matthias; Horsch, Marion; Drobyshev, Alexei; Chen, Yali; de Angelis, Martin Hrabé; Beckers, Johannes

    2005-01-01

    Comparative genomewide expression profiling is a powerful tool in the effort to annotate the mouse genome with biological function. The systematic analysis of RNA expression data of mouse lines from the Munich ENU mutagenesis screen might support the understanding of the molecular biology of such mutants and provide new insights into mammalian gene function. In a direct comparison of DNA microarray experiments of individual versus pooled RNA samples of organs from ENU-induced mouse mutants, we provide evidence that individual RNA samples may outperform pools in some aspects. Genes with high biological variability in their expression levels (noisy genes) are identified as false positives in pooled samples. Evidence suggests that highly stringent housing conditions and standardized procedures for the isolation of organs significantly reduce biological variability in gene expression profiling experiments. Data on wild-type individuals demonstrate the positive effect of controlling variables such as social status, food intake before organ sampling, and stress with regard to reproducibility of gene expression patterns. Analyses of several organs from various ENU-induced mutant lines in general show low numbers of differentially expressed genes. We demonstrate the feasibility to detect transcriptionally affected organs employing RNA expression profiling as a tool for molecular phenotyping.

  17. Inducible functional expression of Bcl-2 in human astrocytes derived from NTera-2 cells.

    PubMed

    Ozdener, Hakan

    2007-01-15

    Astrocytes provide structural support for neurons and may also play important roles in both neuroprotection and neurodegeneration. We, here report that human astrocytes derived from on NTera-2 (NT2) cell line expressing a functional anti-apoptotic protein bcl-2 under the control of a tetracycline responsive promoter using the Tet-On and Tet-Off expression systems. NT2 cells were transfected with the Tet On or Tet Off vectors followed by pTRE carrying human bcl-2. Drug resistant cells were differentiated into astrocytes under retinoic acid exposure. These astrocyte lines were found to express astrocyte specific markers such glial fibrillary acidic protein and chemokine receptors (CCR5, CXCR4) but not CCR3 and CD4. Furthermore, NT2 astrocytes expressing bcl-2 showed rapid response to doxycycline presence in the Tet On and Tet off system. The inducible expression of bcl-2 was found to be tightly regulated by doxycycline concentration in the NT2 astrocytes. We also showed that the induction of bcl-2 expression prevented NT2 astrocytes from camptothecin-induced cellular damage. These results indicate that this system may be useful for the study of specific effects of bcl-2 gene expression on astrocyte function(s) and cellular damage.

  18. The expression of Troponin T1 gene is induced by ketamine in adult mouse brain.

    PubMed

    Lowe, Xiu R; Lu, Xiaochen; Marchetti, Francesco; Wyrobek, Andrew J

    2007-10-12

    The glutamatergic system has been implicated in neuropsychiatric disorders, such as schizophrenia, bipolar disorder and Alzheimer's disease, which also have a high prevalence of metabolic syndrome. Treatment with ketamine, a non-competitive glutamate N-methyl-d-aspartic acid (NMDA) receptor antagonist, is known to have paradoxical effects of neuroprotection and neurotoxicity. We investigated gene expression in brain tissue of adult mice treated with ketamine to characterize the expression profiles and to identify the affected metabolic pathways. Adult male mice were treated by a single intraperitoneal (i.p.) injection of either s(+)ketamine (80 mg/kg) or distilled water (as the control). Fifty genes were differentially expressed in ketamine-treated mouse brains compared with control mice using oligonucleotide microarray analysis, and the expression of Troponin T1 (Tnnt1) gene was consistently elevated (2- to 4-fold) (p<0.001). Ketamine-induced Tnnt1 expression was confirmed and characterized using RNA in situ hybridization techniques in paraffin embedded brain tissue sections. Tnnt1 expression was induced in the granule layer of the hippocampus, amygdala, hypothalamus, Purkinje cells of cerebellum (p<0.0001), and cerebral cortex. Tnnt1 gene is known to interact directly with FoxO1, which is involved in multiple peripheral metabolic pathways and central energy homeostasis. Our findings suggest that the induction of Tnnt1 gene expression in adult mouse brains by ketamine may illustrate the genes involved in the metabolic syndromes observed in neuropsychiatric disorders.

  19. Farnesoid-X-receptor expression in monocrotaline-induced pulmonary arterial hypertension and right heart failure.

    PubMed

    Ye, Lusi; Jiang, Ying; Zuo, Xiaoxia

    2015-11-06

    The farnesoid-X-receptor (FXR) is a metabolic nuclear receptor superfamily member that is highly expressed in enterohepatic tissue and is also expressed in the cardiovascular system. Multiple nuclear receptors, including FXR, play a pivotal role in cardiovascular disease (CVD). Pulmonary arterial hypertension (PAH) is an untreatable cardiovascular system disease that leads to right heart failure (RHF). However, the potential physiological/pathological roles of FXR in PAH and RHF are unknown. We therefore compared FXR expression in the cardiovascular system in PAH, RHF and a control. Hemodynamic parameters and morphology were assessed in blank solution-exposed control, monocrotaline (MCT)-exposed PAH (4 weeks) and RHF (7 weeks) Sprague-Dawley rats. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR), Western blot (WB), immunohistochemistry (IHC) analysis and immunofluorescence (IF) analysis were performed to assess FXR levels in the lung and heart tissues of MCT-induced PAH and RHF rats. In normal rats, low FXR levels were detected in the heart, and nearly no FXR was expressed in rat lungs. However, FXR expression was significantly elevated in PAH and RHF rat lungs but reduced in PAH and RHF rat right ventricular (RV) tissues. FXR expression was reduced only in RHF rat left ventricular (LV) tissues. The differential expression of FXR in MCT-induced PAH lungs and heart tissues in parallel with PAH pathophysiological processes suggests that FXR contributes to PAH. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression

    NASA Astrophysics Data System (ADS)

    Makino, Yuichi; Cao, Renhai; Svensson, Kristian; Bertilsson, Göran; Asman, Mikael; Tanaka, Hirotoshi; Cao, Yihai; Berkenstam, Anders; Poellinger, Lorenz

    2001-11-01

    Alteration of gene expression is a crucial component of adaptive responses to hypoxia. These responses are mediated by hypoxia-inducible transcription factors (HIFs). Here we describe an inhibitory PAS (Per/Arnt/Sim) domain protein, IPAS, which is a basic helix-loop-helix (bHLH)/PAS protein structurally related to HIFs. IPAS contains no endogenous transactivation function but demonstrates dominant negative regulation of HIF-mediated control of gene expression. Ectopic expression of IPAS in hepatoma cells selectively impairs induction of genes involved in adaptation to a hypoxic environment, notably the vascular endothelial growth factor (VEGF) gene, and results in retarded tumour growth and tumour vascular density in vivo. In mice, IPAS was predominantly expressed in Purkinje cells of the cerebellum and in corneal epithelium of the eye. Expression of IPAS in the cornea correlates with low levels of expression of the VEGF gene under hypoxic conditions. Application of an IPAS antisense oligonucleotide to the mouse cornea induced angiogenesis under normal oxygen conditions, and demonstrated hypoxia-dependent induction of VEGF gene expression in hypoxic corneal cells. These results indicate a previously unknown mechanism for negative regulation of angiogenesis and maintenance of an avascular phenotype.

  1. Neurochemical characterization of pERK-expressing spinal neurons in histamine-induced itch.

    PubMed

    Jiang, Guan-Yu; Dai, Meng-Han; Huang, Kun; Chai, Guo-Dong; Chen, Jia-Yin; Chen, Ling; Lang, Bing; Wang, Qing-Xiu; St Clair, David; McCaig, Colin; Ding, Yu-Qiang; Zhang, Ling

    2015-08-07

    Acute itch is divided into histamine- and non-histamine-dependent subtypes, and our previous study has shown that activation of ERK signaling in the spinal dorsal horn (SDH) is required selectively for histamine-induced itch sensation. Morphological characteristics of pERK-expressing neurons are required for exploring the mechanism underlying spinal itch sensation. To investigate whether pERK-expressing neurons are supraspinally-projecting neurons, we injected Fluorogold (FG) into the ventrobasal thalamic complex (VB) and parabrachial region, the two major spinal ascending sites in rodents. A small number (1%) of pERK-positive neurons were labeled by FG, suggesting that histamine-induced activation of ERK is primarily located in local SDH neurons. We then examined the co-localization of pERK with Calbindin and Lmx1b, which are expressed by excitatory neurons, and found that more than half (58%) of pERK-positive neurons expressed Lmx1b, but no co-expression with Calbindin was observed. On the other hand, approximately 7% of pERK-positive neurons expressed GAD67, and 27% of them contained Pax2. These results support the idea that pERK-expressing neurons serve as a component of local neuronal circuits for processing itch sensation in the spinal cord.

  2. Development of a Heat-Shock Inducible Gene Expression System in the Red Alga Cyanidioschyzon merolae

    PubMed Central

    Sumiya, Nobuko; Fujiwara, Takayuki; Kobayashi, Yusuke; Misumi, Osami; Miyagishima, Shin-ya

    2014-01-01

    The cell of the unicellular red alga Cyanidioschyzon merolae contains a single chloroplast and mitochondrion, the division of which is tightly synchronized by a light/dark cycle. The genome content is extremely simple, with a low level of genetic redundancy, in photosynthetic eukaryotes. In addition, transient transformation and stable transformation by homologous recombination have been reported. However, for molecular genetic analyses of phenomena that are essential for cellular growth and survival, inducible gene expression/suppression systems are needed. Here, we report the development of a heat-shock inducible gene expression system in C. merolae. CMJ101C, encoding a small heat shock protein, is transcribed only when cells are exposed to an elevated temperature. Using a superfolder GFP as a reporter protein, the 200-bp upstream region of CMJ101C orf was determined to be the optimal promoter for heat-shock induction. The optimal temperature to induce expression is 50°C, at which C. merolae cells are able to proliferate. At least a 30-min heat shock is required for the expression of a protein of interest and a 60-min heat shock yields the maximum level of protein expression. After the heat shock, the mRNA level decreases rapidly. As an example of the system, the expression of a dominant negative form of chloroplast division DRP5B protein, which has a mutation in the GTPase domain, was induced. Expression of the dominant negative DRP5B resulted in the appearance of aberrant-shaped cells in which two daughter chloroplasts and the cells are still connected by a small DRP5B positive tube-like structure. This result suggests that the dominant negative DRP5B inhibited the final scission of the chloroplast division site, but not the earlier stages of division site constriction. It is also suggested that cell cycle progression is not arrested by the impairment of chloroplast division at the final stage. PMID:25337786

  3. Cohort of estrogen-induced microRNAs regulate adrenomedullin expression

    PubMed Central

    Wetzel-Strong, Sarah E.; Li, Manyu; Espenschied, Scott T.

    2015-01-01

    Estrogen regulates the expression of many genes and has been correlated with differences in cardiac contraction; however, the underlying mechanisms remain poorly defined. Adrenomedullin (Adm = gene; AM = protein) is a multifunctional peptide with inotropic actions. Previous studies have demonstrated that estrogen enhances the expression of Adm, suggesting a relationship between AM and estrogen in cardiac contraction during physiological and pathological states. In this study, female mice in a mouse model of genetic Adm overexpression, abbreviated as Admhi/hi, were found to express 60 times more Adm in the heart than wild-type littermates, compared with the three-fold elevation of Adm previously reported in Admhi/hi male hearts. Thus, this study sought to further investigate any functional consequences of increased cardiac Adm expression and begin exploring the mechanisms that regulate Adm expression in an estrogen-dependent fashion. This study revealed that heart function is enhanced in Admhi/hi females, which along with Adm expression levels, was reversed following ovariectomization. Since the Admhi/hi line was generated by the displacement of the 3′ untranslated region (UTR), the native 3′UTR was examined for estrogen-induced microRNAs target sites to potentially explain the aberrant overexpression observed in Admhi/hi female hearts. Using a bioinformatic approach, it was determined that the mouse Adm 3′UTR contains many target sites for previously characterized estrogen-induced microRNAs. This study also determined that the novel microRNA, miR-879, is another estrogen-induced microRNA that interacts with the 3′UTR of Adm to destabilize the mRNA. Together, these studies revealed that estrogen-induced microRNAs are important for balancing cardiac Adm expression in females. PMID:26582637

  4. Biodentine Reduces Tumor Necrosis Factor Alpha-induced TRPA1 Expression in Odontoblastlike Cells.

    PubMed

    El Karim, Ikhlas A; McCrudden, Maelíosa T C; McGahon, Mary K; Curtis, Tim M; Jeanneau, Charlotte; Giraud, Thomas; Irwin, Chris R; Linden, Gerard J; Lundy, Fionnuala T; About, Imad

    2016-04-01

    The transient receptor potential (TRP) ion channels have emerged as important cellular sensors in both neuronal and non-neuronal cells, with TRPA1 playing a central role in nociception and neurogenic inflammation. The functionality of TRP channels has been shown to be modulated by inflammatory cytokines. The aim of this study was to investigate the effect of inflammation on odontoblast TRPA1 expression and to determine the effect of Biodentine (Septodent, Paris, France) on inflammatory-induced TRPA1 expression. Immunohistochemistry was used to study TRPA1 expression in pulp tissue from healthy and carious human teeth. Pulp cells were differentiated to odontoblastlike cells in the presence of 2 mmol/L beta-glycerophosphate, and these cells were used in quantitative polymerase chain reaction, Western blotting, calcium imaging, and patch clamp studies. Immunofluorescent staining revealed TRPA1 expression in odontoblast cell bodies and odontoblast processes, which was more intense in carious versus healthy teeth. TRPA1 gene expression was induced in cultured odontoblastlike cells by tumor necrosis factor alpha, and this expression was significantly reduced in the presence of Biodentine. The functionality of the TRPA1 channel was shown by calcium microfluorimetry and patch clamp recording, and our results showed a significant reduction in tumor necrosis factor alpha-induced TRPA1 responses after Biodentine treatment. In conclusion, this study showed TRPA1 to be modulated by caries-induced inflammation and that Biodentine reduced TRPA1 expression and functional responses. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Wnt/{beta}-catenin signaling changes C2C12 myoblast proliferation and differentiation by inducing Id3 expression

    SciTech Connect

    Zhang, Long; Shi, Songting; Zhang, Juan; Zhou, Fangfang; Dijke, Peter ten

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer Expression of Id3 but not Id1 is induced by Wnt3a stimulation in C2C12 cells. Black-Right-Pointing-Pointer Wnt3a induces Id3 expression via canonical Wnt/{beta}-catenin pathway. Black-Right-Pointing-Pointer Wnt3a-induced Id3 expression does not depend on BMP signaling activation. Black-Right-Pointing-Pointer Induction of Id3 expression is critical determinant in Wnt3a-induced cell proliferation and differentiation. -- Abstract: Canonical Wnt signaling plays important roles in regulating cell proliferation and differentiation. In this study, we report that inhibitor of differentiation (Id)3 is a Wnt-inducible gene in mouse C2C12 myoblasts. Wnt3a induced Id3 expression in a {beta}-catenin-dependent manner. Bone morphogenetic protein (BMP) also potently induced Id3 expression. However, Wnt-induced Id3 expression occurred independent of the BMP/Smad pathway. Functional studies showed that Id3 depletion in C2C12 cells impaired Wnt3a-induced cell proliferation and alkaline phosphatase activity, an early marker of osteoblast cells. Id3 depletion elevated myogenin induction during myogenic differentiation and partially impaired Wnt3a suppressed myogenin expression in C2C12 cells. These results suggest that Id3 is an important Wnt/{beta}-catenin induced gene in myoblast cell fate determination.

  6. Angiotensin II Induces Skeletal Muscle Atrophy by Activating TFEB-Mediated MuRF1 Expression.

    PubMed

    Du Bois, Philipp; Pablo Tortola, Cristina; Lodka, Doerte; Kny, Melanie; Schmidt, Franziska; Song, Kunhua; Schmidt, Sibylle; Bassel-Duby, Rhonda; Olson, Eric N; Fielitz, Jens

    2015-08-14

    Skeletal muscle wasting with accompanying cachexia is a life threatening complication in congestive heart failure. The molecular mechanisms are imperfectly understood, although an activated renin-angiotensin aldosterone system has been implicated. Angiotensin (Ang) II induces skeletal muscle atrophy in part by increased muscle-enriched E3 ubiquitin ligase muscle RING-finger-1 (MuRF1) expression, which may involve protein kinase D1 (PKD1). To elucidate the molecular mechanism of Ang II-induced skeletal muscle wasting. A cDNA expression screen identified the lysosomal hydrolase-coordinating transcription factor EB (TFEB) as novel regulator of the human MuRF1 promoter. TFEB played a key role in regulating Ang II-induced skeletal muscle atrophy by transcriptional control of MuRF1 via conserved E-box elements. Inhibiting TFEB with small interfering RNA prevented Ang II-induced MuRF1 expression and atrophy. The histone deacetylase-5 (HDAC5), which was directly bound to and colocalized with TFEB, inhibited TFEB-induced MuRF1 expression. The inhibition of TFEB by HDAC5 was reversed by PKD1, which was associated with HDAC5 and mediated its nuclear export. Mice lacking PKD1 in skeletal myocytes were resistant to Ang II-induced muscle wasting. We propose that elevated Ang II serum concentrations, as occur in patients with congestive heart failure, could activate the PKD1/HDAC5/TFEB/MuRF1 pathway to induce skeletal muscle wasting. © 2015 American Heart Association, Inc.

  7. Mirtazapine attenuates the expression of nicotine-induced locomotor sensitization in rats.

    PubMed

    Barbosa-Méndez, Susana; Jurado, Noé; Matus-Ortega, Maura; Martiñon, Susana; Heinze, Gerardo; Salazar-Juárez, Alberto

    2017-10-05

    Nicotine is the primary psychoactive component of tobacco. Many addictive nicotinic actions are mediated by an increase in the activity of the serotonin (5-HT) system. Some studies show that the 5-HT2A, 5-HT2C, and 5-HT3 receptors have a central role in the induction and expression of nicotine-induced locomotor sensitization. Mirtazapine, an antagonist of the α2-adrenergic receptors, the 5-HT2A/C, and the 5-HT3 receptors, has proven effective in reducing behavioral effects induced by drugs like cocaine and methamphetamines in human and animal. In this study, we evaluated the effect of mirtazapine on the locomotor activity and on the expression of nicotine-induced locomotor sensitization. We used the nicotine locomotor sensitization paradigm to assess the effects of mirtazapine on nicotine-induced locomotor activity and locomotor sensitization. Mirtazapine (30mg/kg, i.p.) was administered during extinction. Our study found that mirtazapine attenuated the expression of locomotor sensitization induced by different nicotine doses, decreased the duration of locomotor effects and locomotor activity induced by binge administration of nicotine. In addition, our study revealed that treatment with mirtazapine for 60 days produced an enhanced attenuation of nicotine-induced locomotor activity during the expression phase of behavioral sensitization, compared to that obtained when mirtazapine was administered for 30 days. This suggests that use of mirtazapine in controlled clinical trials may be a useful therapy to maintain abstinence for long periods. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. AG490 inhibits NFATc1 expression and STAT3 activation during RANKL induced osteoclastogenesis

    SciTech Connect

    Li, Chang-hong; Zhao, Jin-xia; Sun, Lin; Yao, Zhong-qiang; Deng, Xiao-li; Liu, Rui; Liu, Xiang-yuan

    2013-06-14

    Highlights: •AG490 inhibits RANKL-induced osteoclastogenesis in RAW264.7 cells. •AG490 affects cell proliferation and cell cycle distribution. •AG490 reduces NFATc1 expression during RANKL-induced osteoclastogenesis. •AG490 disrupts the activation of RANKL-mediated JAK2/STAT3 signaling pathway. •STAT3 depletion partly mimics the effect of AG490 on RANKL-induced osteoclastogenesis. -- Abstract: Commonly, JAK/STAT relays cytokine signals for cell activation and proliferation, and recent studies have shown that the elevated expression of JAK/STAT is associated with the immune rejection of allografts and the inflammatory processes of autoimmune disease. However, the role which JAK2/STAT3 signaling plays in the receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclastogenesis is unknown. In this study, we investigated the effects of AG490, specific JAK2 inhibitor, on osteoclast differentiation in vitro. AG490 significantly inhibited osteoclastogenesis in murine osteoclast precursor cell line RAW264.7 induced by RANKL. AG490 suppressed cell proliferation and delayed the G1 to S cell cycle transition. Furthermore, AG490 also suppressed the expression of nuclear factor of activated T cells (NFAT) c1 but not c-Fos in RAW264.7. Subsequently, we investigated various intracellular signaling components associated with osteoclastogenesis. AG490 had no effects on RANKL-induced activation of Akt, ERK1/2. Interestingly, AG490 partly inhibited RANKL-induced phosphorylation of Ser{sup 727} in STAT3. Additionally, down-regulation of STAT3 using siRNA resulted in suppression of TRAP, RANK and NFATc1 expression. In conclusion, we demonstrated that AG490 inhibited RANKL-induced osteoclastogenesis by suppressing NFATc1 production and cell proliferation via the STAT3 pathway. These results suggest that inhibition of JAK2 may be useful for the treatment of bone diseases characterized by excessive osteoclastogenesis.

  9. DNA demethylation induced by 5-azacytidine does not affect fragile X expression.

    PubMed Central

    Glover, T W; Coyle-Morris, J; Pearce-Birge, L; Berger, C; Gemmill, R M

    1986-01-01

    Experiments were performed to determine the role of DNA demethylation in fragile X expression. Fragile X positive lymphoblastoid cells were treated with 5-azacytidine and harvested for analysis of fragile X expression both directly following treatment and after a recovery period in the absence of the drug. The effectiveness of 5-azacytidine treatment in inducing DNA demethylation was concurrently monitored by analysis of methylation changes at random autosomal loci in isolated DNA from treated cells. Under conditions where 5-azacytidine was found to inhibit fragile X expression, no DNA demethylation was observed. At the time when demethylation did occur, fragile X expression was not affected. These results strongly indicate that DNA demethylation is not involved in fragile X expression. Images Fig. 1 PMID:2420174

  10. Local expression of expansin induces the entire process of leaf development and modifies leaf shape

    PubMed Central

    Pien, Stéphane; Wyrzykowska, Joanna; McQueen-Mason, Simon; Smart, Cheryl; Fleming, Andrew

    2001-01-01

    Expansins are a family of extracellular proteins proposed to play a key role in wall stress relaxation and, thus, in cell and tissue growth. To test the possible function of expansins in morphogenesis, we have developed a technique that allows transient local microinduction of gene expression in transgenic plants. We have used this system to manipulate expansin gene expression in various tissues. Our results indicate that local expansin expression within the meristem induces a developmental program that recapitulates the entire process of leaf formation. Moreover, local transient induction of expansin expression on the flank of developing primordia leads to the induction of ectopic lamina tissue and thus modulation of leaf shape. These data describe an approach for the local manipulation of gene expression and indicate a role for expansin in the control of both leaf initiation and shape. These results are consistent with the action of cell division-independent mechanisms in plant morphogenesis. PMID:11562463

  11. Patterns of gene expressions induced by arsenic trioxide in cultured human fibroblasts.

    PubMed

    Burnichon, Vanina; Jean, Séverine; Bellon, Laurence; Maraninchi, Marie; Bideau, Chantal; Orsière, Thierry; Margotat, Alain; Gérolami, Victoria; Botta, Alain; Bergé-Lefranc, Jean Louis

    2003-07-20

    Arsenic exposure is associated with several human diseases and particularly, with neoplasia. Although the mechanism of arsenic toxicity is not fully understood, several recent works pointed out the involvement of oxidative stress in arsenic-induced DNA damage that, in living cells, correlates with changes in gene expressions. In cultured human fibroblasts exposed for 24 h to micromolar arsenic concentrations, we studied, using real-time RT-PCR, the expression profile of a limited number of genes: genes coding for a stress protein (HSP70), transcription factors (cJUN, cFOS, ETR103, ETR101 and TTP) and cell cycle or DNA repair proteins (P21, GADD153). We observed that the expression profile of genes followed individual different patterns that can be summed up in early-transient gene expression by contrast to delayed gene expression.

  12. GABAB receptor stimulation decreases amphetamine-induced behavior and neuropeptide gene expression in the striatum.

    PubMed

    Zhou, Wenxia; Mailloux, Adam W; Jung, Bruce J; Edmunds, Hayward S; McGinty, Jacqueline F

    2004-04-09

    The purpose of this