Science.gov

Sample records for induce antibody responses

  1. Impact of host genetic polymorphisms on vaccine induced antibody response

    PubMed Central

    Linnik, Janina E.; Egli, Adrian

    2016-01-01

    ABSTRACT Many host- and vaccine-specific factors modulate an antibody response. Host genetic polymorphisms, in particular, modulate the immune response in multiple ways on different scales. This review article describes how information on host genetic polymorphisms and corresponding immune cascades may be used to generate personalized vaccine strategies to optimize the antibody response. PMID:26809773

  2. Salmonella porins induce a sustained, lifelong specific bactericidal antibody memory response

    PubMed Central

    Secundino, Ismael; López-Macías, Constantino; Cervantes-Barragán, Luisa; Gil-Cruz, Cristina; Ríos-Sarabia, Nora; Pastelin-Palacios, Rodolfo; Angel Villasis-Keever, Miguel; Becker, Ingeborg; Luis Puente, José; Calva, Edmundo; Isibasi, Armando

    2006-01-01

    We examined the ability of porins from Salmonella enterica serovar typhi to induce a long-term antibody response in BALB/c mice. These porins triggered a strong lifelong production of immunoglobulin G (IgG) antibody in the absence of exogenous adjuvant. Analysis of the IgG subclasses produced during this antibody response revealed the presence of the subclasses IgG2b, IgG1, IgG2a and weak IgG3. Despite the high homology of porins, the long-lasting anti-S. typhi porin sera did not cross-react with S. typhimurium. Notably, the antiporin sera showed a sustained lifelong bactericidal-binding activity to the wild-type S. typhi strain, whereas porin-specific antibody titres measured by enzyme-linked immunosorbent assay (ELISA) decreased with time. Because our porin preparations contained the outer membrane proteins C and F (OmpC and OmpF), we evaluated the individual contribution of each porin to the long-lasting antibody response. OmpC and OmpF induced long-lasting antibody titres, measured by ELISA, which were sustained for 300 days. In contrast, although OmpC induced sustained high bactericidal antibody titres for 300 days, postimmunization, the bactericidal antibody titre induced by OmpF was not detected at day 180. These results indicate that OmpC is the main protein responsible for the antibody-mediated memory bactericidal response induced by porins. Taken together, our results show that porins are strong immunogens that confer lifelong specific bactericidal antibody responses in the absence of added adjuvant. PMID:16423041

  3. Vaccination of horses with Lyme vaccines for dogs induces short-lasting antibody responses.

    PubMed

    Guarino, Cassandra; Asbie, Sanda; Rohde, Jennifer; Glaser, Amy; Wagner, Bettina

    2017-07-24

    Borrelia burgdorferi can induce Lyme disease. Approved Lyme vaccines for horses are currently not available. In an effort to protect horses, veterinarians are using Lyme vaccines licensed for dogs. However, data to assess the response of horses to, or determine the efficacy of this off-label vaccine use are missing. Here, antibodies against outer surface protein A (OspA), OspC, and OspF were quantified in diagnostic serum submissions from horses with a history of vaccination with canine Lyme vaccines. The results suggested that many horses respond with low and often short-lasting antibody responses. Subsequently, four experimental vaccination trials were performed. First, we investigated antibody responses to three canine vaccines in B. burgdorferi-naïve horses. One killed bacterin vaccine induced antibodies against OspC. OspA antibodies were low for all three vaccines and lasted less than 16weeks. The second trial tested the impact of the vaccine dose using the OspA/OspC inducing bacterin vaccine in horses. A 2mL dose produced higher OspA and OspC antibody values than a 1mL dose. However, the antibody response again quickly declined, independent of dose. Third, the horses were vaccinated with 2 doses of a recombinant OspA vaccine. Previous vaccination and/or environmental exposure enhanced the magnitude and longevity of the OspA antibody response to about 20weeks. Last, the influence of intramuscular versus subcutaneous vaccine administration was investigated for the recombinant OspA vaccine. OspA antibody responses were not influenced by injection route. The current work highlights that commercial Lyme vaccines for dogs induce only transient antibody responses in horses which can also be of low magnitude. Protection from infection with B. burgdorferi should not be automatically assumed after vaccinating horses with Lyme vaccines for dogs. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. Antibody response to Mycoplasma hyopneumoniae infection in vaccinated pigs with or without maternal antibodies induced by sow vaccination.

    PubMed

    Martelli, P; Terreni, M; Guazzetti, S; Cavirani, S

    2006-06-01

    Vaccination with bacterins is an important tool for the control of Mycoplasma hyopneumoniae infection of pigs. Because such vaccination often involves piglets that have suckled M. hyopneumoniae antibody-positive dams it is important to understand the effect of pre-existing (passively acquired) antibody on vaccine-induced immunity. To investigate this issue experimentally, 20 sows that were seronegative for M. hyopneumoniae were selected from a M. hyopneumoniae-infected herd and then randomly allocated to one of four treatment groups (five sows/group): Group A, vaccinated sows/vaccinated piglets; Group B, vaccinated sows/non-vaccinated piglets; Group C, non-vaccinated sows/vaccinated piglets; Group D, non-vaccinated sows/non-vaccinated piglets. Sows (Groups A and B) were vaccinated 14 days before farrowing and seroconverted within the next 14 days. Conversely, none of the non-vaccinated sows was seropositive at farrowing. Piglets (Groups A and C) were vaccinated when they were 7 days of age. Regardless of treatments none of the piglets had any evidence of an active immune response until many of those of Groups A and C and a few of those of Groups B and D seroconverted after it had been shown that at least some pigs of all groups had been naturally infected with a field strain of M. hyopneumoniae. This pattern of immune responsiveness (i.e. the collective results of Groups A, B, C and D) suggested that vaccination of pigs had primed their immune system for subsequent exposure to M. hyopneumoniae, and that passively acquired antibody had little or no effect on either a vaccine-induced priming or a subsequent anamnestic response. According to the statistical analysis sow serological status did not interfere with the antibody response in early vaccinated piglets. In conclusion, the results pointed out that early vaccination of piglets may assist M. hyopneumoniae control independently from the serological status of sows.

  5. Correlation between genetic regulation of antibody responsiveness and protective immunity induced by Plasmodium berghei vaccination.

    PubMed Central

    Heumann, A M; Stiffel, C; Monjour, L; Bucci, A; Biozzi, G

    1979-01-01

    High (H) and low (L) antibody responder lines of mice were produced by two independent bidirectional selective breedings for quantitative antibody responsiveness to heterologous erythrocytes (selection I and selection II). In both selections the antibody response to P. berghei antigens was 8- to 10-fold higher in H than in L lines. The character "high response" presents an incomplete dominance o- 18% in selection I and 67% in selection II. In selection II the variance analysis indicates that at least three independent loci intervene in the regulation of responsiveness to P. berghei antigens. The innate resistance and the protective efficacy of vaccination against P. berghei infection induced by parasitized erythrocytes was measured in H and L lines and in the interline hybrids F1, BcH, and BcL of selections I and II. No very significant difference was observed in the innate resistance to P. berghei infection between H and L mice of both selections. Vaccination induced a very efficient protection in the two H lines (94 and 95% survival), whereas only a weak protection was induced in the two L lines (16 and 31% survival); the degree of protection is intermediate in interline hybrids F1, BcH, and BcL. In both selections a good linear correlation was demonstrated between the level of vaccination-induced antibody and the degree of resistance measured as percentage of survival. The present results indicate that the vaccination-induced P. berghei immunity is essentially due to the antibody response, whereas the bactericidal activity of macrophages and the cell-mediated immunity do not play a determinant role. PMID:112057

  6. A Bivalent, Chimeric Rabies Virus Expressing Simian Immunodeficiency Virus Envelope Induces Multifunctional Antibody Responses

    PubMed Central

    Dunkel, Amber; Shen, Shixue; LaBranche, Celia C.; Montefiori, David

    2015-01-01

    Abstract We previously showed that a matrix (M) gene-deleted rabies virus (RABV)-based vaccine (RABV-ΔM) is highly immunogenic and induces potent B cell responses in the context of RABV infection. We speculated that RABV-ΔM expressing HIV proteins would also induce potent B cell responses against HIV antigens. As a prerequisite to future studies in nonhuman primates, we completed immunogenicity studies in mice to confirm the ability of RABV-ΔM to induce polyfunctional B cell responses in the context of HIV. To that end, the envelope protein from the mac239 strain of SIV (SIVmac239Env) was cloned into RABV-ΔM, resulting in RABV-ΔM-Env. Infectious virus was recovered following standard methods and propagated on baby hamster kidney cells stably expressing RABV M [>107 focus forming units (ffu)/ml]. Western blot analysis of cell lysates or of purified virions confirmed Env expression on the surface of infected cells and within virus particles, respectively. Positive neutralization activity against a neutralization-sensitive SIV strain and to a lesser extent against a neutralization-resistant SIV strain was detected in mice after a single intramuscular inoculation with RABV-ΔM-Env. The quality, but not quantity, of the antibody response was enhanced via boosting with recombinant gp130 or RABV-ΔM-Env as measured by an increase in antibody avidity and a skewing toward a Th1-type antibody response. We also show that an intradermal inoculation induces higher antibodies than an intramuscular or intranasal inoculation. An intradermal inoculation of RABV-ΔM-Env followed by a boost inoculation with recombinant gp130 produced anti-SIV antibodies with neutralizing and nonneutralizing antibody (nNAb) effector functions. Together, RABV-ΔM-Env induces B cells to secrete antibodies against SIV with the potential to clear both “free” and cell-associated virus. Strategies capable of eliciting both NAbs as well as nNAbs might help to improve the efficacy of HIV-1 vaccines

  7. Silicone Oil Microdroplets Can Induce Antibody Responses Against Recombinant Murine Growth Hormone In Mice

    PubMed Central

    Chisholm, Carly Fleagle; Baker, Abby E.; Soucie, Kaitlin R.; Torres, Raul M.; Carpenter, John F.; Randolph, Theodore W.

    2016-01-01

    Therapeutic protein products can cause adverse immune responses in patients. The presence of sub-visible particles is a potential contributing factor to the immunogenicity of parenterally-administered therapeutic protein formulations. Silicone oil microdroplets, which derive from silicone oil used as a lubricating coating on barrels of prefilled glass syringes, are often found in formulations. In this study, we investigated the potential of silicone oil microdroplets to act as adjuvants to induce an immune response in mice against a recombinant murine protein. Antibody responses in mice to subcutaneous injections of formulations of recombinant murine growth hormone (rmGH) that contained silicone oil microdroplets were measured and compared to responses to oil-free rmGH formulations. When rmGH formulations containing silicone oil microdroplets were administered once every other week, anti-rmGH antibodies were not detected. In contrast, mice exhibited a small IgG1 response against rmGH when silicone oil-containing rmGH formulations were administered daily, and an anti-rmGH IgM response was observed at later time points. Our findings showed that silicone oil microdroplets can act as an adjuvant to promote a break in immunological tolerance and induce antibody responses against a recombinant self-protein. PMID:27020987

  8. Silicone Oil Microdroplets Can Induce Antibody Responses Against Recombinant Murine Growth Hormone in Mice.

    PubMed

    Chisholm, Carly Fleagle; Baker, Abby E; Soucie, Kaitlin R; Torres, Raul M; Carpenter, John F; Randolph, Theodore W

    2016-05-01

    Therapeutic protein products can cause adverse immune responses in patients. The presence of subvisible particles is a potential contributing factor to the immunogenicity of parenterally administered therapeutic protein formulations. Silicone oil microdroplets, which derive from silicone oil used as a lubricating coating on barrels of prefilled glass syringes, are often found in formulations. In this study, we investigated the potential of silicone oil microdroplets to act as adjuvants to induce an immune response in mice against a recombinant murine protein. Antibody responses in mice to subcutaneous injections of formulations of recombinant murine growth hormone (rmGH) that contained silicone oil microdroplets were measured and compared to responses to oil-free rmGH formulations. When rmGH formulations containing silicone oil microdroplets were administered once every other week, anti-rmGH antibodies were not detected. In contrast, mice exhibited a small IgG1 response against rmGH when silicone oil-containing rmGH formulations were administered daily, and an anti-rmGH IgM response was observed at later time points. Our findings showed that silicone oil microdroplets can act as an adjuvant to promote a break in immunological tolerance and induce antibody responses against a recombinant self-protein. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Comparisons of the effect of naturally acquired maternal pertussis antibodies and antenatal vaccination induced maternal tetanus antibodies on infant's antibody secreting lymphocyte responses and circulating plasma antibody

    USDA-ARS?s Scientific Manuscript database

    The goal of this study was to explore the effects of trans-placental tetanus toxoid (TT) and pertussis (PT) antibodies on an infant's response to vaccination in the context of antenatal immunization with tetanus but not with pertussis. 38 mothers received a single dose of TT vaccine during pregnancy...

  10. Characterisation of antibody responses in pigs induced by recombinant oncosphere antigens from Taenia solium.

    PubMed

    Jayashi, César M; Gonzalez, Armando E; Castillo Neyra, Ricardo; Kyngdon, Craig T; Gauci, Charles G; Lightowlers, Marshall W

    2012-12-14

    Recombinant antigens cloned from the oncosphere life cycle stage of the cestode parasite Taenia solium (T. solium) have been proven to be effective as vaccines for protecting pigs against infections with T. solium. Previous studies have defined three different host protective oncosphere antigens, TSOL18, TSOL16 and TSOL45. In this study, we evaluated the potential for combining the antigens TSOL16 and TSOL18 as a practical vaccine. Firstly, in a laboratory trial, we compared the immunogenicity of the combined antigens (TSOL16/18) versus the immunogenicity of the antigens separately. Secondly, in a field trial, we tested the ability of the TSOL16/18 vaccine to induce detectable antibody responses in animals living under environmental stress and traditionally reared in areas where T. solium cysticercosis is endemic; and finally, we characterised the immune response of the study population. Pigs of 8-16 weeks of age were vaccinated with 200 μg each of TSOL16 and TSOL18, plus 5mg of Quil-A. Specific total IgG, IgG(1) and IgG(2) antibody responses induced by TSOL16 and TSOL18 were determined with ELISA. The immunogenicity of both antigens was retained in the combined TSOL16/18 vaccine. The combined vaccine TSOL16/18 induced detectable specific anti-TSOL18 antibody responses in 100% (113/113) and specific anti-TSOL16 in 99% (112/113) of the vaccinated animals measured at 2 weeks following the booster vaccination. From the two IgG antibody subtypes analysed we found there was stronger response to IgG(2).

  11. Epitope-specific antibody response to Mel-CAM induced by mimotope immunization.

    PubMed

    Hafner, Christine; Wagner, Stefan; Jasinska, Joanna; Allwardt, Dorothee; Scheiner, Otto; Wolff, Klaus; Pehamberger, Hubert; Wiedermann, Ursula; Breiteneder, Heimo

    2005-01-01

    Peptide mimotopes of tumor antigen epitopes have been proposed as components of tumor vaccines. In this study, we determined the immunogenicity of melcam mim1 and melcam mim2, peptide mimics of an epitope of the melanoma cell-adhesion molecule (Mel-CAM). BALB/c mice were vaccinated either with mimotopes or mimotopes coupled to tetanus toxoid (TT). The antibody responses of mice to melcam mim1, melcam mim2, and recombinant Mel-CAM were analyzed by an ELISA and immunoblot analyses. TT-coupled mimotopes led to high titers of IgG mainly of the IgG2a subclass to melcam mim1 and melcam mim2. Immunization with each of the mimotope formulations induced antibodies that cross-reacted with recombinant Mel-CAM. Uncoupled mimotopes induced lymphocyte proliferation and cytokine production in spleen cell cultures indicating that both peptide mimotopes also contained T cell epitopes. TT-coupled mimotopes induced T helper (Th)1 (interleukin (IL)-2, interferon-gamma) and Th2 (IL-4, IL-5) cytokines, whereas uncoupled mimotopes induced a Th1-biased T cell response. Our results suggest that mimotopes potentially represent a novel vaccine approach to induce a tumor antigen-specific humoral and cellular response.

  12. Comparison of Antibody Responses Induced by RV144, VAX003, and VAX004 Vaccination Regimens.

    PubMed

    Karnasuta, Chitraporn; Akapirat, Siriwat; Madnote, Sirinan; Savadsuk, Hathairat; Puangkaew, Jiraporn; Rittiroongrad, Surawach; Rerks-Ngarm, Supachai; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Tartaglia, James; Sinangil, Faruk; Francis, Donald P; Robb, Merlin L; de Souza, Mark S; Michael, Nelson L; Excler, Jean-Louis; Kim, Jerome H; O'Connell, Robert J; Karasavvas, Nicos

    2017-01-30

    The RV144 prime-boost regimen demonstrated efficacy against HIV acquisition while VAX003 and VAX004 did not. Although these trials differed by risk groups, immunization regimens, and immunogens, antibody responses may have contributed to the differences observed in vaccine efficacy. We assessed HIV-specific IgG, both total and subclass, and IgA binding to HIV envelope (Env): gp120 proteins and Cyclic V2 (CycV2) and CycV3 peptides and gp70 V1 V2 scaffolds in these 3 HIV vaccine trials. After two protein immunizations, IgG responses to 92TH023 gp120 (contained in ALVAC-HIV vaccine) were significantly higher in RV144 but responses to other Env were higher in the VAX trials lacking ALVAC-HIV. IgG responses declined significantly between vaccinations. All trials induced antibodies to gp70 V1 V2 but VAX004 responses to 92TH023 gp70 V1 V2 were weak. All CycV2 responses were undetectable in VAX004 while 92TH023 gp70 V1 V2 was detected in both RV144 and VAX003 but MN CycV2 was detected only in VAX003. Multiple protein vaccinations in VAX trials did not improve magnitude or durability of V1 V2 and CycV2 antibodies. Herpes simplex virus glycoprotein D (gD) peptide at the N terminus of AIDSVAX(®) B/E and B/B gp120 proteins induced antibodies in all trials, although significantly higher in VAX trials. gD peptide induced IgA, IgG1, IgG2, and IgG3 but not IgG4. Multiple protein vaccinations decreased IgG3 and increased IgG4 changing subclass contribution to total IgG. Although confounded by different modes of HIV transmission, higher Env-specific IgA and IgG4 binding antibodies induced in the VAX trials compared to RV144 raises the hypothesis that these differences may have contributed to different vaccine efficacy results.

  13. Comparisons of the effect of naturally acquired maternal pertussis antibodies and antenatal vaccination induced maternal tetanus antibodies on infant's antibody secreting lymphocyte responses and circulating plasma antibody levels

    PubMed Central

    Ahmad, Shaikh Meshbahuddin; Alam, Md. Jahangir; Afsar, Md. Nure Alam; Huda, M. Nazmul; Kabir, Yearul; Qadri, Firdausi; Raqib, Rubhana; Stephensen, Charles B.

    2016-01-01

    ABSTRACT The goal of this study was to explore the effects of trans-placental tetanus toxoid (TT) and pertussis (PT) antibodies on an infant's response to vaccination in the context of antenatal immunization with tetanus but not with pertussis. 38 mothers received a single dose of TT vaccine during pregnancy. Infants received tetanus and pertussis vaccines at 6, 10 and 14 wk of age. TT and PT anti-IgG secretion by infant lymphocytes was measured at 15 wk. Plasma antibodies were measured at 6 wk (pre-vaccination), 15 wk and 1 y of age. Prior to vaccination, TT and PT antibody were detected in 94.6% and 15.2% of infants. At 15 wk anti-TT-IgG and anti-PT-IgG in plasma was increased by 7–9 fold over pre-vaccination levels, while at 1 y plasma anti-TT-IgG was decreased by approximately 5-fold from the peak and had returned to near the pre-vaccination level. At 1 y plasma anti-PT-IgG was decreased by 2-fold 1 yfrom the 15 wk level. However, 89.5% and 82.3% of infants at 1 y had protective levels of anti-TT and anti-PT IgG, respectively. Pre-vaccination plasma IgG levels were associated with lower vaccine-specific IgG secretion by infant lymphocytes at 15 wk (p < 0.10). This apparent inhibition was seen for anti-TT-IgG at both 15 wk (p < 0.05) and t 1 y (p < 0.10) of age. In summary, we report an apparent inhibitory effect of passively derived maternal antibody on an infants' own antibody response to the same vaccine. However, since the cut-off values for protective titers are low, infants had protective antibody levels throughout infancy. PMID:27176823

  14. Comparisons of the effect of naturally acquired maternal pertussis antibodies and antenatal vaccination induced maternal tetanus antibodies on infant's antibody secreting lymphocyte responses and circulating plasma antibody levels.

    PubMed

    Ahmad, Shaikh Meshbahuddin; Alam, Jahangir; Afsar, Nure Alam; Huda, Nazmul; Kabir, Yearul; Qadri, Firdausi; Raqib, Rubhana; Stephensen, Charles B

    2016-04-02

    The goal of this study was to explore the effects of trans-placental tetanus toxoid (TT) and pertussis (PT) antibodies on an infant's response to vaccination in the context of antenatal immunization with tetanus but not with pertussis. 38 mothers received a single dose of TT vaccine during pregnancy. Infants received tetanus and pertussis vaccines at 6, 10 and 14 wk of age. TT and PT anti-IgG secretion by infant lymphocytes was measured at 15 wk. Plasma antibodies were measured at 6 wk (pre-vaccination), 15 wk and 1 y of age. Prior to vaccination, TT and PT antibody were detected in 94.6% and 15.2% of infants. At 15 wk anti-TT-IgG and anti-PT-IgG in plasma was increased by 7-9 fold over pre-vaccination levels, while at 1 y plasma anti-TT-IgG was decreased by approximately 5-fold from the peak and had returned to near the pre-vaccination level. At 1 y plasma anti-PT-IgG was decreased by 2-fold 1 yfrom the 15 wk level. However, 89.5% and 82.3% of infants at 1 y had protective levels of anti-TT and anti-PT IgG, respectively. Pre-vaccination plasma IgG levels were associated with lower vaccine-specific IgG secretion by infant lymphocytes at 15 wk (p < 0.10). This apparent inhibition was seen for anti-TT-IgG at both 15 wk (p < 0.05) and t 1 y (p < 0.10) of age. In summary, we report an apparent inhibitory effect of passively derived maternal antibody on an infants' own antibody response to the same vaccine. However, since the cut-off values for protective titers are low, infants had protective antibody levels throughout infancy.

  15. Strong Antibody Responses Induced by Protein Antigens Conjugated onto the Surface of Lecithin-Based Nanoparticles

    PubMed Central

    Sloat, Brian R.; Sandoval, Michael A.; Hau, Andrew M.; He, Yongqun; Cui, Zhengrong

    2009-01-01

    An accumulation of research over the years has demonstrated the utility of nanoparticles as antigen carriers with adjuvant activity. Herein we defined the adjuvanticity of a novel lecithin-based nanoparticle engineered from emulsions. The nanoparticles were spheres of around 200 nm. Model protein antigens, bovine serum albumin (BSA) or Bacillus anthracis protective antigen (PA) protein, were covalently conjugated onto the nanoparticles. Mice immunized with the BSA-conjugated nanoparticles developed strong anti-BSA antibody responses comparable to that induced by BSA adjuvanted with incomplete Freund's adjuvant and 6.5-fold stronger than that induced by BSA adsorbed onto aluminum hydroxide. Immunization of mice with the PA-conjugated nanoparticles elicited a quick, strong, and durable anti-PA antibody response that afforded protection of the mice against a lethal dose of anthrax lethal toxin challenge. The potent adjuvanticity of the nanoparticles was likely due to their ability to move the antigens into local draining lymph nodes, to enhance the uptake of the antigens by antigen-presenting cells (APCs), and to activate APCs. This novel nanoparticle system has the potential to serve as a universal protein-based vaccine carrier capable of inducing strong immune responses. PMID:19729045

  16. Four different synthetic peptides of proteolipid protein induce a distinct antibody response in MP4-induced experimental autoimmune encephalomyelitis.

    PubMed

    Recks, Mascha S; Grether, Nicolai B; van der Broeck, Franziska; Ganscher, Alla; Wagner, Nicole; Henke, Erik; Ergün, Süleyman; Schroeter, Michael; Kuerten, Stefanie

    2015-07-01

    Here we studied the autoantibody specificity elicited by proteolipid protein (PLP) in MP4-induced experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis (MS). In C57BL/6 (B6) mice, antibodies were induced by immunization with one of the two extracellular and by the intracellular PLP domain. Antibodies against extracellular PLP were myelin-reactive in oligodendrocyte cultures and induced mild spinal cord demyelination upon transfer into B cell-deficient J(H)T mice. Remarkably, also antibodies against intracellular PLP showed binding to intact oligodendrocytes and were capable of inducing myelin pathology upon transfer into J(H)T mice. In MP4-immunized mice peptide-specific T(H)1/T(H)17 responses were mainly directed against the extracellular PLP domains, but also involved the intracellular epitopes. These data suggest that both extracellular and intracellular epitopes of PLP contribute to the pathogenesis of MP4-induced EAE already in the setting of intact myelin. It remains to be elucidated if this concept also applies to MS itself.

  17. Enhanced neutralising antibody response to bovine viral diarrhoea virus (BVDV) induced by DNA vaccination in calves.

    PubMed

    R El-Attar, Laila M; Thomas, Carole; Luke, Jeremy; A Williams, James; Brownlie, Joe

    2015-07-31

    DNA vaccination is effective in inducing potent immunity in mice; however it appears to be less so in large animals. Increasing the dose of DNA plasmid to activate innate immunity has been shown to improve DNA vaccine adaptive immunity. Retinoic acid-inducible gene I (RIG-I) is a critical cytoplasmic double-stranded RNA pattern receptor required for innate immune activation in response to viral infection. RIG-I recognise viral RNA and trigger antiviral response, resulting in type I interferon (IFN) and inflammatory cytokine production. In an attempt to enhance the antibody response induced by BVDV DNA in cattle, we expressed BVDV truncated E2 (E2t) and NS3 codon optimised antigens from antibiotic free-plasmid vectors expressing a RIG-I agonist and designated either NTC E2t(co) and NTC NS3(co). To evaluate vaccine efficacy, groups of five BVDV-free calves were intramuscularly injected three times with NTC E2t(co) and NTC NS3(co) vaccine plasmids individually or in combination. Animals vaccinated with our (previously published) conventional DNA vaccines pSecTag/E2 and pTriExNS3 and plasmids expressing RIG-I agonist only presented both the positive and mock-vaccine groups. Our results showed that vaccines coexpressing E2t with a RIG-I agonist induced significantly higher E2 antigen specific antibody response (p<0.05). Additionally, E2t augmented the immune response to NS3 when the two vaccines were delivered in combination. Despite the lack of complete protection, on challenge day 4/5 calves vaccinated with NTC E2t(co) alone or NTC E2t(co) plus NTC NS3(co) had neutralising antibody titres exceeding 1/240 compared to 1/5 in the mock vaccine control group. Based on our results we conclude that co-expression of a RIG-I agonist with viral antigen could enhance DNA vaccine potency in cattle.

  18. Evaluation of Vaccine-induced Antibody Responses: Impact of New Technologies

    PubMed Central

    Zaccaro, Daniel J.; Wagener, Diane K.; Whisnant, Carol C.; Staats, Herman F.

    2013-01-01

    Host response to vaccination has historically been evaluated based on a change in antibody titer that compares the post-vaccination titer to the pre-vaccination titer. A four-fold or greater increase in antigen-specific antibody has been interpreted to indicate an increase in antibody production in response to vaccination. New technologies, such as the bead-based assays, provide investigators and clinicians with precise antibody levels (reported as concentration per mL) in ranges below and above those previously available through standard assays such as ELISA. Evaluations of bead assay data to determine host response to vaccination using fold change and absolute change, witha general linear models used to calculate adjusted statistics, present very different pictures of the antibody response when pre-vaccination antibody levels are low. Absolute changes in bead assay values, although not a standard computation, appears to more accurately reflect the host response to vaccination for those individuals with extremely low pre-vaccination antibody levels. Conversely, for these same individuals, fold change may be very high while post-vaccination antibodies do not achieve seroprotective levels. Absolute change provides an alternate method to characterize host response to vaccination, especially when pre-vaccination levels are very low, and may be useful in studies designed to determine associations between host genotypes and response to vaccination. PMID:23583812

  19. Vaccine-Induced Antibody Responses Prevent the Induction of Interferon Type I Responses Upon a Homotypic Live Virus Challenge.

    PubMed

    Chan, J; Babb, R; David, S C; McColl, S R; Alsharifi, M

    2016-03-01

    During acute viral infections, innate immunity provides essential protective measures to minimize virus dissemination and regulate adaptive immunity. This helps to successfully eliminate the pathogen and establish long-term memory. Here, we investigated the effect of vaccine-induced antibody responses on the induction of IFN-I responses and the associated lymphocyte activation using influenza A virus vaccination and challenge models. Mice were vaccinated with gamma-irradiated influenza A virus (γ-FLU) and challenged three weeks later with live virus. Our data show a significant reduction in IFN-I responses and lymphocyte activation following a homotypic virus challenge. We confirmed the role of vaccine-induced antibody responses in the observed impairment of IFN-I and the associated lymphocyte activation using adoptive transfer of immune sera and the administration of sera-treated viruses prior to challenge. Overall, we addressed a fundamental concept in immunology and provided experimental data illustrating the inhibition of IFN-I responses in vaccinated animals upon a homotypic virus challenge. © 2015 The Foundation for the Scandinavian Journal of Immunology.

  20. A mimotope from a solid-phase peptide library induces a measles virus-neutralizing and protective antibody response.

    PubMed

    Steward, M W; Stanley, C M; Obeid, O E

    1995-12-01

    A solid-phase 8-mer random combinatorial peptide library was used to generate a panel of mimotopes of an epitope recognized by a monoclonal antibody to the F protein of measles virus (MV). An inhibition immunoassay was used to show that these peptides were bound by the monoclonal antibody with different affinities. BALB/c mice were coimmunized with the individual mimotopes and a T-helper epitope peptide (from MV fusion protein), and the reactivity of the induced anti-mimotope antibodies with the corresponding peptides and with MV was determined. The affinities of the antibodies with the homologous peptides ranged from 8.9 x 10(5) to 4.4 x 10(7) liters/mol. However, only one of the anti-mimotope antibodies cross-reacted with MV in an enzyme-linked immunosorbent assay and inhibited MV plaque formation. Coimmunization of mice with this mimotope and the T-helper epitope peptide induced an antibody response which conferred protection against fatal encephalitis induced following challenge with MV and with the structurally related canine distemper virus. These results indicate that peptide libraries can be used to identify mimotopes of conformational epitopes and that appropriate immunization with these mimotopes can induce protective antibody responses.

  1. HLA class II genes modulate vaccine-induced antibody responses to affect HIV-1 acquisition.

    PubMed

    Prentice, Heather A; Tomaras, Georgia D; Geraghty, Daniel E; Apps, Richard; Fong, Youyi; Ehrenberg, Philip K; Rolland, Morgane; Kijak, Gustavo H; Krebs, Shelly J; Nelson, Wyatt; DeCamp, Allan; Shen, Xiaoying; Yates, Nicole L; Zolla-Pazner, Susan; Nitayaphan, Sorachai; Rerks-Ngarm, Supachai; Kaewkungwal, Jaranit; Pitisuttithum, Punnee; Ferrari, Guido; McElrath, M Juliana; Montefiori, David C; Bailer, Robert T; Koup, Richard A; O'Connell, Robert J; Robb, Merlin L; Michael, Nelson L; Gilbert, Peter B; Kim, Jerome H; Thomas, Rasmi

    2015-07-15

    In the RV144 vaccine trial, two antibody responses were found to correlate with HIV-1 acquisition. Because human leukocyte antigen (HLA) class II-restricted CD4(+) T cells are involved in antibody production, we tested whether HLA class II genotypes affected HIV-1-specific antibody levels and HIV-1 acquisition in 760 individuals. Indeed, antibody responses correlated with acquisition only in the presence of single host HLA alleles. Envelope (Env)-specific immunoglobulin A (IgA) antibodies were associated with increased risk of acquisition specifically in individuals with DQB1*06. IgG antibody responses to Env amino acid positions 120 to 204 were higher and were associated with decreased risk of acquisition and increased vaccine efficacy only in the presence of DPB1*13. Screening IgG responses to overlapping peptides spanning Env 120-204 and viral sequence analysis of infected individuals defined differences in vaccine response that were associated with the presence of DPB1*13 and could be responsible for the protection observed. Overall, the underlying genetic findings indicate that HLA class II modulated the quantity, quality, and efficacy of antibody responses in the RV144 trial.

  2. HLA class II genes modulate vaccine-induced antibody responses to affect HIV-1 acquisition

    PubMed Central

    Prentice, Heather A.; Tomaras, Georgia D.; Geraghty, Daniel E.; Apps, Richard; Fong, Youyi; Ehrenberg, Philip K.; Rolland, Morgane; Kijak, Gustavo H.; Krebs, Shelly J.; Nelson, Wyatt; DeCamp, Allan; Shen, Xiaoying; Yates, Nicole L.; Zolla-Pazner, Susan; Nitayaphan, Sorachai; Rerks-Ngarm, Supachai; Kaewkungwal, Jaranit; Pitisuttithum, Punnee; Ferrari, Guido; Juliana McElrath, M.; Montefiori, David C.; Bailer, Robert T.; Koup, Richard A.; O’Connell, Robert J.; Robb, Merlin L.; Michael, Nelson L.; Gilbert, Peter B.; Kim, Jerome H.; Thomas, Rasmi

    2016-01-01

    In the RV144 vaccine trial, two antibody responses were found to correlate with HIV-1 acquisition. Because human leukocyte antigen (HLA) class II–restricted CD4+ T cells are involved in antibody production, we tested whether HLA class II genotypes affected HIV-1–specific antibody levels and HIV-1 acquisition in 760 individuals. Indeed, antibody responses correlated with acquisition only in the presence of single host HLA alleles. Envelope (Env)–specific immunoglobulin A (IgA) antibodies were associated with increased risk of acquisition specifically in individuals with DQB1*06. IgG antibody responses to Env amino acid positions 120 to 204 were higher and were associated with decreased risk of acquisition and increased vaccine efficacy only in the presence of DPB1*13. Screening IgG responses to overlapping peptides spanning Env 120–204 and viral sequence analysis of infected individuals defined differences in vaccine response that were associated with the presence of DPB1*13 and could be responsible for the protection observed. Overall, the underlying genetic findings indicate that HLA class II modulated the quantity, quality, and efficacy of antibody responses in the RV144 trial. PMID:26180102

  3. AAV natural infection induces broad cross-neutralizing antibody responses to multiple AAV serotypes in chimpanzees.

    PubMed

    Calcedo, Roberto; Wilson, James M

    2016-06-01

    Cross-sectional studies of primates have revealed that natural neutralizing antibody (NAb) responses to adeno-associated viruses (AAV) span multiple serotypes. This differs from the phenotype of the NAb response to an AAV vector delivered to sero-negative nonhuman primates which is typically restricted to the administered AAV serotype. To better understand the mechanism by which natural AAV infections result in broad NAb responses, we conducted a longitudinal study spanning 10 years in which we evaluated serum-circulating AAV NAb levels in captive-housed chimpanzees. In a cohort of 25 chimpanzees we identified three distinct groups of animals: those which never sero-converted to AAV (naïve); those which were persistently seropositive (chronic); and those that seroconverted during the 10 year period (acute). For the chronic group we found a broad sero-response characterized by NAbs reacting to multiple AAV serotypes. A similar cross-neutralization pattern of NAbs was observed in the acute group. These data support our hypothesis that a single natural infection with AAV induces a broadly cross-reactive NAb response to multiple AAV serotypes.

  4. AAV Natural Infection Induces Broad Cross-Neutralizing Antibody Responses to Multiple AAV Serotypes in Chimpanzees.

    PubMed

    Calcedo, Roberto; Wilson, James M

    2016-06-01

    Cross-sectional studies of primates have revealed that natural neutralizing antibody (NAb) responses to adeno-associated viruses (AAV) span multiple serotypes. This differs from the phenotype of the NAb response to an AAV vector delivered to seronegative nonhuman primates that is typically restricted to the administered AAV serotype. To better understand the mechanism by which natural AAV infections result in broad NAb responses, we conducted a longitudinal study spanning 10 years in which we evaluated serum-circulating AAV NAb levels in captive-housed chimpanzees. In a cohort of 25 chimpanzees we identified 3 distinct groups of animals: those that never seroconverted to AAV (naïve), those that were persistently seropositive (chronic), and those that seroconverted during the 10-year period (acute). For the chronic group we found a broad seroresponse characterized by NAbs reacting to multiple AAV serotypes. A similar cross-neutralization pattern of NAbs was observed in the acute group. These data support our hypothesis that a single natural infection with AAV induces a broadly cross-reactive NAb response to multiple AAV serotypes.

  5. DNA vaccine expressing the mimotope of GD2 ganglioside induces protective GD2 cross-reactive antibody responses.

    PubMed

    Bolesta, Elizabeth; Kowalczyk, Aleksandra; Wierzbicki, Andrzej; Rotkiewicz, Piotr; Bambach, Barbara; Tsao, Chun-Yen; Horwacik, Irena; Kolinski, Andrzej; Rokita, Hanna; Brecher, Martin; Wang, Xinhui; Ferrone, Soldano; Kozbor, Danuta

    2005-04-15

    The GD2 ganglioside expressed on neuroectodermally derived tumors, including neuroblastoma and melanoma, is weakly immunogenic in tumor-bearing patients and induces predominantly immunoglobulin (Ig)-M antibody responses in the immunized host. Here, we investigated whether interconversion of GD2 into a peptide mimetic form would induce GD2 cross-reactive IgG antibody responses in mice. Screening of the X(15) phage display peptide library with the anti-GD2 monoclonal antibody (mAb) 14G2a led to isolation of mimetic peptide 47, which inhibited the binding of 14G2a antibody to GD2-positive tumor cells. The peptide was also recognized by GD2-specific serum antibodies from a patient with neuroblastoma, suggesting that it bears an internal image of GD2 ganglioside expressed on the tumor cells. The molecular basis for antigenicity of the GD2 mimetic peptide, established by molecular modeling and mutagenesis studies, led to the generation of a 47-LDA mutant with an increased mimicry to GD2. Immunization of mice with peptide 47-LDA-encoded plasmid DNA elicited GD2 cross-reactive IgG antibody responses, which were increased on subsequent boost with GD2 ganglioside. The vaccine-induced antibodies recognized GD2-positive tumor cells, mediated complement-dependent cytotoxicity, and exhibited protection against s.c. human GD2-positive melanoma growth in the severe combined immunodeficient mouse xenograft model. The results from our studies provide insights into approaches for boosting GD2 cross-reactive IgG antibody responses by minigene vaccination with a protective epitope of GD2 ganglioside.

  6. Neutralizing antibodies obtained in a persistent immune response are effective against deleterious effects induced by the Thalassophryne nattereri fish venom.

    PubMed

    Piran-Soares, Ana Amélia; Komegae, Evilin Naname; Souza, Valdênia Maria Oliveira; Fonseca, Luiz Alberto; Lima, Carla; Lopes-Ferreira, Mônica

    2007-06-01

    Thalassophryne nattereri envenoming represents a great cost to North and Northeast Brazilian communities in terms of public healths, leisure and tourism. Victims rapidally develop symptoms as pain, local swelling, erythema followed by intense necrosis that persist for long days. The aim of this work was tested the immune competence of neutralizing antibodies in pre-immunized mice against principal toxic activities induced by venom. During the primary antibody response in mice, an elevation of IgG antibody levels was only observed on day 28. After boosting, high antibody levels were detected between days 49 and 70, with a 12-fold increase in IgG level over control values at day 49. We confirmed the in vitro neutralizing capacity of T. nattereri anti-venom against toxic effects and thereafter we show that neutralizing antibodies obtained in a persistent immune response are more effective, inclusive against edematous reaction. After boosting during the secondary response mice with high antibody levels do not present any alterations in venule or arteriole after topical application of venom on cremaster muscle. In addition, CK activity diminished in these mice with high neutralizing antibody levels corroborating the attenuation of the myonecrotic effect by venom. In addition, we determined the presence of high IgG antibodies levels in patients 6 months after injury by T. nattereri. In conclusion, the presence of neutralizing antibodies against to T. nattereri venom in the serum of pre-immunized mice could change the outcome of lesion at site of posterior envenoming. Antigen-specific antibodies of high affinity in consequence to specific immune response, dependent of T lymphocyte activation, could minimize the symptoms of intense and immediate inflammatory reaction caused by T. nattereri venom. These finding prompt us to the possibility of development of immune therapeutic strategies using specific anti-venom as an efficient intervention for protecting human victims.

  7. Bile salt export pump-reactive antibodies form a polyclonal, multi-inhibitory response in antibody-induced bile salt export pump deficiency.

    PubMed

    Stindt, Jan; Kluge, Stefanie; Dröge, Carola; Keitel, Verena; Stross, Claudia; Baumann, Ulrich; Brinkert, Florian; Dhawan, Anil; Engelmann, Guido; Ganschow, Rainer; Gerner, Patrick; Grabhorn, Enke; Knisely, A S; Noli, Khalid A; Pukite, Ieva; Shepherd, Ross W; Ueno, Takehisa; Schmitt, Lutz; Wiek, Constanze; Hanenberg, Helmut; Häussinger, Dieter; Kubitz, Ralf

    2016-02-01

    Progressive familial intrahepatic cholestasis type 2 (PFIC-2) is caused by mutations in ABCB11, encoding the bile salt export pump (BSEP). In 2009, we described a child with PFIC-2 who developed PFIC-like symptoms after orthotopic liver transplantation (OLT). BSEP-reactive antibodies were demonstrated to account for disease recurrence. Here, we characterize the nature of this antibody response in 7 more patients with antibody-induced BSEP deficiency (AIBD). Gene sequencing and immunostaining of native liver biopsies indicated absent or strongly reduced BSEP expression in all 7 PFIC-2 patients who suffered from phenotypic disease recurrence post-OLT. Immunofluorescence, western blotting analysis, and transepithelial transport assays demonstrated immunoglobulin (Ig) G-class BSEP-reactive antibodies in these patients. In all cases, the N-terminal half of BSEP was recognized, with reaction against its first extracellular loop (ECL1) in six sera. In five, antibodies reactive against the C-terminal half also were found. Only the sera recognizing ECL1 showed inhibition of transepithelial taurocholate transport. In a vesicle-based functional assay, transport inhibition by anti-BSEP antibodies binding from the cytosolic side was functionally proven as well. Within 2 hours of perfusion with antibodies purified from 1 patient, rat liver showed canalicular IgG staining that was absent after perfusion with control IgG. PFIC-2 patients carrying severe BSEP mutations are at risk of developing BSEP antibodies post-OLT. The antibody response is polyclonal, targeting both extra- and intracellular BSEP domains. ECL1, a unique domain of BSEP, likely is a critical target involved in transport inhibition as demonstrated in several patients with AIBD manifest as cholestasis. © 2015 by the American Association for the Study of Liver Diseases.

  8. An H7N1 Influenza Virus Vaccine Induces Broadly Reactive Antibody Responses against H7N9 in Humans

    PubMed Central

    Jul-Larsen, Åsne; Margine, Irina; Hirsh, Ariana; Sjursen, Haakon; Zambon, Maria

    2014-01-01

    Emerging H7N9 influenza virus infections in Asia have once more spurred the development of effective prepandemic H7 vaccines. However, many vaccines based on avian influenza viruses—including H7—are poorly immunogenic, as measured by traditional correlates of protection. Here we reevaluated sera from an H7N1 human vaccine trial performed in 2006. We examined cross-reactive antibody responses to divergent H7 strains, including H7N9, dissected the antibody response into head- and stalk-reactive antibodies, and tested the in vivo potency of these human sera in a passive-transfer H7N9 challenge experiment with mice. Although only a low percentage of vaccinees induced neutralizing antibody responses against the homologous vaccine strain and also H7N9, we detected strong cross-reactivity to divergent H7 hemagglutinins (HAs) in a large proportion of the cohort with a quantitative enzyme-linked immunosorbent assay. Furthermore, H7N1 vaccination induced antibodies to both the head and stalk domains of the HA, which is in sharp contrast to seasonal inactivated vaccines. Finally, we were able to show that both neutralizing and nonneutralizing antibodies improved in vivo virus clearance in a passive-transfer H7N9 challenge mouse model. PMID:24943383

  9. Vaccine-induced plasmablast responses in rhesus macaques: phenotypic characterization and a source for generating antigen-specific monoclonal antibodies.

    PubMed

    Silveira, Eduardo L V; Kasturi, Sudhir P; Kovalenkov, Yevgeniy; Rasheed, Ata Ur; Yeiser, Patryce; Jinnah, Zarpheen S; Legere, Traci H; Pulendran, Bali; Villinger, Francois; Wrammert, Jens

    2015-01-01

    Over 100 broadly neutralizing antibodies have been isolated from a minority of HIV infected patients, but the steps leading to the selection of plasma cells producing such antibodies remain incompletely understood, hampering the development of vaccines able to elicit them. Rhesus macaques have become a preferred animal model system used to study SIV/HIV, for the characterization and development of novel therapeutics and vaccines as well as to understand pathogenesis. However, most of our knowledge about the dynamics of antibody responses is limited to the analysis of serum antibodies or monoclonal antibodies generated from memory B cells. In a vaccine setting, relatively little is known about the early cellular responses that elicit long-lived plasma cells and memory B cells and the tools to dissect plasmablast responses are not available in macaques. In the current study, we show that the majority (>80%) of the vaccine-induced plasmablast response are antigen-specific by functional ELISPOT assays. While plasmablasts are easily defined and isolated in humans, those same phenotypic markers have not been useful for identifying macaque plasmablasts. Here we describe an approach that allows for the isolation and single cell sorting of vaccine-induced plasmablasts. Finally, we show that isolated plasmablasts can be used to efficiently recover antigen-specific monoclonal antibodies through single cell expression cloning. This will allow detailed studies of the early plasmablast responses in rhesus macaques, enabling the characterization of both their repertoire breadth as well as the epitope specificity and functional qualities of the antibodies they produce, not only in the context of SIV/HIV vaccines but for many other pathogens/vaccines as well.

  10. Vaccine-induced plasmablast responses in rhesus macaques: phenotypic characterization and a source for generating antigen-specific monoclonal antibodies

    PubMed Central

    Silveira, Eduardo L. V.; Kasturi, Sudhir P.; Kovalenkov, Yevgeniy; Ur Rasheed, Ata; Yeiser, Patryce; Jinnah, Zarpheen S.; Legere, Traci H.; Pulendran, Bali; Villinger, Francois; Wrammert, Jens

    2015-01-01

    Over 100 broadly neutralizing antibodies have been isolated from a minority of HIV infected patients, but the steps leading to the selection of plasmacells producing such antibodies remain incompletely understood, hampering the development of vaccines able to elicit them. Rhesus macaques have become a preferred animal model system used to study SIV/HIV, for the characterization and development of novel therapeutics and vaccines as well as to understand pathogenesis. However, most of our knowledge about the dynamics of antibody responses is limited to the analysis of serum antibodies or monoclonal antibodies generated from memory B cells. In a vaccine setting, relatively little is known about the early cellular responses that elicit long-lived plasma cells and memory B cells and the tools to dissect plasmablast responses are not available in macaques. In the current study, we show that the majority (>80%) of the vaccine-induced plasmablast response are antigen-specific by functional ELISPOT assays. While plasmablasts are easily defined and isolated in humans, those same phenotypic markers have not been useful for identifying macaque plasmablasts. Here we describe an approach that allows for the isolation and single cell sorting of vaccine-induced plasmablasts. Finally, we show that isolated plasmablasts can be used to efficiently recover antigen-specific monoclonal antibodies through single cell expression cloning. This will allow detailed studies of the early plasmablast responses in rhesus macaques, enabling the characterization of both their repertoire breadth as well as the epitope specificity and functional qualities of the antibodies they produce, not only in the context of SIV/HIV vaccines but for many other pathogens/vaccines as well. PMID:25445326

  11. Precisely Molded Nanoparticle Displaying DENV-E Proteins Induces Robust Serotype-Specific Neutralizing Antibody Responses

    PubMed Central

    Hoekstra, Gabriel; Yi, Xianwen; Stone, Michelle; Horvath, Katie; Miley, Michael J.; DeSimone, Joseph; Luft, Chris J.; de Silva, Aravinda M.

    2016-01-01

    Dengue virus (DENV) is the causative agent of dengue fever and dengue hemorrhagic fever. The virus is endemic in over 120 countries, causing over 350 million infections per year. Dengue vaccine development is challenging because of the need to induce simultaneous protection against four antigenically distinct DENV serotypes and evidence that, under some conditions, vaccination can enhance disease due to specific immunity to the virus. While several live-attenuated tetravalent dengue virus vaccines display partial efficacy, it has been challenging to induce balanced protective immunity to all 4 serotypes. Instead of using whole-virus formulations, we are exploring the potentials for a particulate subunit vaccine, based on DENV E-protein displayed on nanoparticles that have been precisely molded using Particle Replication in Non-wetting Template (PRINT) technology. Here we describe immunization studies with a DENV2-nanoparticle vaccine candidate. The ectodomain of DENV2-E protein was expressed as a secreted recombinant protein (sRecE), purified and adsorbed to poly (lactic-co-glycolic acid) (PLGA) nanoparticles of different sizes and shape. We show that PRINT nanoparticle adsorbed sRecE without any adjuvant induces higher IgG titers and a more potent DENV2-specific neutralizing antibody response compared to the soluble sRecE protein alone. Antigen trafficking indicate that PRINT nanoparticle display of sRecE prolongs the bio-availability of the antigen in the draining lymph nodes by creating an antigen depot. Our results demonstrate that PRINT nanoparticles are a promising platform for delivering subunit vaccines against flaviviruses such as dengue and Zika. PMID:27764114

  12. Intratypic heterologous vaccination of calves can induce an antibody response in presence of maternal antibodies against foot-and-mouth disease virus

    PubMed Central

    2014-01-01

    Background Maternal antibodies can interfere with foot-and-mouth disease vaccination. In this study we determined whether intratypic heterologous vaccination could help to improve herd immunity. Results In unvaccinated calves, a half-life of maternal antibodies of 21 days was determined. At two weeks of age, calves without maternal antibodies showed a good antibody response against both vaccines used in the trial, while in calves with maternal antibodies no antibody response to homologous vaccination (A Turkey 14/98) but a limited antibody response to intratypic heterologous vaccination (A22 Iraq) was observed. Conclusion Two weeks old calves without maternal antibodies respond well to vaccination, but when emergency vaccination is carried out in a region that uses prophylactic vaccination, using an intratypic heterologous vaccine strain may improve the immunity in calves with maternal antibodies. PMID:24906852

  13. In vitro antigen-induced antibody responses to hepatitis B surface antigen in man. Kinetic and cellular requirements.

    PubMed Central

    Cupps, T R; Gerin, J L; Purcell, R H; Goldsmith, P K; Fauci, A S

    1984-01-01

    In this report we define the parameters of the human immune response after immunization with hepatitis B vaccine. 2 wk after booster immunization, there is significant spontaneous secretion of antibody to hepatitis B surface antigen (anti-HBs IgG), which is not further augmented by stimulation with antigen or pokeweed mitogen (PWM). By 4 wk there is little spontaneous secretion of specific antibody, and low doses of antigen or PWM produce significant increases in the amount of anti-HBs IgG produced. By 8 wk the peripheral blood mononuclear cells are refractory to stimulation by antigen, but anti-HBs IgG is produced in response to PWM. 0.5 yr or more after the last immunization, some individuals will manifest an antigen-induced specific antibody response. This induction of anti-HBs IgG by hepatitis B surface antigen (HBsAg) is monocyte- and T cell-dependent. Note that there is a dichotomy in the T cell response to HBsAg. The specific antibody response is clearly T cell dependent, but no in vitro T cell proliferative response to HBsAG could be demonstrated in the immunized individuals. Although the precise reason for the absent proliferative response to HBsAg despite well-established humoral immunity has not been determined, there was no evidence to suggest nonspecific suppression by HBsAg or the presence of an adherent suppressor cell population. The ability to evaluate antigen-induced, antigen-specific responses to HBsAg will be useful in defining the unique interaction between the human immune response and this clinically important viral agent. PMID:6332826

  14. Arthritis of mice induced by Mycoplasma pulmonis: humoral antibody and lymphocyte responses of CBA mice.

    PubMed Central

    Cole, B C; Golightly-Rowland, L; Ward, J R

    1975-01-01

    Peak arthritis occurred 14 days after intravenous injection of Mycoplasma pulmonis and persisted in some mice at low levels for 84 days. A marked lymphocytosis occurred during the first week of infection with only a slight increase in polymorphonuclear leukocytes. Complement-fixing antibodies appeared in low titer 3 days after infection and moderate levels persisted for 84 days. The metabolic-inhibiting and mycoplasmacidal antibody responses were absent or minimal. M. pulmonis appeared to be mitogenic for mouse lymphocytes as evidenced by (i) increased uptake of [3H]thymidine for normal lymphocytes exposed to various concentrations of nonviable M. pulmonis antigen, and (ii) a 13-fold increase in [3H]thymidine uptake in lymphocytes taken from mice 3 days after infection with M. pulmonis in the absence of added antigen. Lymphocytes taken from infected mice transformed significantly more at all time periods than control lymphocytes when exposed to M. pulmonis antigen. This response was maximal at 3 days and minimal at 21 to 35 days after infection. Lymphocytes sensitized to M. pulmonis did not transform when exposed to M. arthritidis antigen or vice versa. M. pulmonis infection had no effect upon the mitogenic responses of lymphocytes to phytohemagglutinin or lipopolysaccharide. There was no statistically significant correlation between persistence of arthritis and degree of humor antibody or lymphocyte responses. However, persisting arthritis was associated with a higher incidence of mycoplasma isolations. PMID:1193724

  15. Kinetic and HPV infection effects on cross-type neutralizing antibody and avidity responses induced by Cervarix®

    PubMed Central

    Kemp, Troy J.; Safaeian, Mahboobeh; Hildesheim, Allan; Pan, Yuanji; Penrose, Kerri J.; Porras, Carolina; Schiller, John T.; Lowy, Douglas R.; Herrero, Rolando; Pinto, Ligia A.

    2012-01-01

    Background We previously demonstrated that Cervarix® elicits antibody responses against vaccine-related types for which clinical efficacy was demonstrated (HPV-31 and -45). Here, we evaluated the kinetics of neutralization titers and avidity of Cervarix®-induced antibodies up to 36 months of follow-up in unexposed and HPV infected women. Methods A subset of women who participated in the Cost Rica HPV-16/18 Vaccine Trial had pre- and post-vaccination sera tested for antibody responses to HPV-16, -18, -31, -45, and -58 using a pseudovirion-based neutralization assay, and HPV-16 antibody avidity using an HPV-16 L1 VLP (virus-like particle)-based ELISA developed in our laboratory. Results In uninfected women, neutralizing antibody titers did not reach significance until after the 3rd dose for HPV-31 (month 12, p=0.009) and HPV-45 (month 12, p=0.003), but then persisted up to month 36 (HPV-31, p=0.01; HPV-45, p=0.002). Individuals infected with HPV-16 or HPV-31 at enrollment developed a significantly higher median antibody response to the corresponding HPV type after one dose, but there was not a difference between median titers after three doses compared to the HPV negative group. Median HPV-16 antibody avidity and titer increased over time up to month 12; however, the HPV-16 avidity did not correlate well with HPV-16 neutralizing antibody titers at each time point examined, except for month 6. The median avidity levels were higher in HPV-16 infected women at month 1 (p=0.04) and lower in HPV-16 infected women at month 12 (p=0.006) compared to the HPV negative women. Conclusions The persistence of cross-neutralization titers at month 36 suggests cross-reactive antibody responses are likely to persist long-term and are not influenced by infection status at enrollment. However, the weak correlation between avidity and neutralization titers emphasizes the need for examining avidity in efficacy studies to determine if high avidity antibodies play a critical role in

  16. Vaccination with human tyrosinase DNA induces antibody responses in dogs with advanced melanoma

    PubMed Central

    Liao, Jack C. F.; Gregor, Polly; Wolchok, Jedd D.; Orlandi, Francesca; Craft, Diane; Leung, Carrie; Houghton, Alan N.; Bergman, Philip J.

    2007-01-01

    Antitumor immune responses can be elicited in preclinical mouse melanoma models using plasmid DNA vaccines encoding xenogeneic melanosomal differentiation antigens. We previously reported on a phase I clinical trial of human tyrosinase (huTyr) DNA vaccination of 9 dogs with advanced malignant melanoma (World Health Organization stages II-IV), in which we demonstrated the safety of the treatment and the prolongation of the expected survival time (ST) of subjects as compared to historical, stage-matched controls. As a secondary goal of the same study, we report here on the induction of tyrosinase-specific antibody responses in three of the nine dogs vaccinated with huTyr DNA. The antibodies in two of the three responders cross-react with syngeneic canine tyrosinase, demonstrating the ability of this vaccine to overcome host immune tolerance and/or ignorance to or of “self” antigens. Most interestingly, the onset of antibody induction in these three dogs coincides with observed clinical responses and may suggest a means to account for their long-term tumor control and survival. PMID:16626110

  17. TLR9-adjuvanted pneumococcal conjugate vaccine induces antibody-independent memory responses in HIV-infected adults.

    PubMed

    Offersen, Rasmus; Melchjorsen, Jesper; Paludan, Søren R; Østergaard, Lars; Tolstrup, Martin; Søgaard, Ole S

    2012-08-01

    HIV-patients have excess of pneumococcal infection. We immunized 40 HIV-patients twice with pneumococcal conjugate vaccine (Prevnar, Pfizer) +/- a TLR9 agonist (CPG 7909). Peripheral blood mononuclear cells were stimulated with pneumococcal polysaccharides and cytokine concentrations measured. The CPG 7909 adjuvant group had significantly higher relative cytokine responses than the placebo group for IL-1β, IL-2R, IL-6, IFN-γ and MIP-β, which, did not correlate with IgG antibody responses. These findings suggests that CPG 7909 as adjuvant to pneumococcal conjugate vaccine induces cellular memory to pneumococcal polysaccharides in HIV-patients, independently of the humoral response.

  18. All eyes on the next generation of HIV vaccines: strategies for inducing a broadly neutralizing antibody response.

    PubMed

    Ahlers, Jeffrey D

    2014-04-01

    HIV-1 broadly neutralizing antibodies (BNAbs) develop after several years of infection through a recursive process of memory B cell adaptation and maturation against co-evolving virus quasispecies. Advances in single-cell sorting and memory B cell antibody cloning methods have identified many new HIV BNAbs targeting conserved epitopes on the HIV envelope (env) protein. 3D crystal structures and biophysical analyses of BNAbs bound to invariant virus structures expressed on monomeric gp120, epitope scaffolds, core structures, and native trimers have helped us to visualize unique binding interactions and paratope orientations that have been instrumental in guiding vaccine design. A paradigm shift in the approach to structure-based design of HIV-1 envelope immunogens came recently after several laboratories discovered that native viral envelopes or "env-structures" reverse-engineered to bind with high affinity to a handful of broadly neutralizing antibodies did not in fact bind the predicted germline precursors of these broadly neutralizing antibodies. A major challenge for HIV-1 B cell vaccine development moving forward is the design of new envelope immunogens that can trigger the selection and expansion of germline precursor and intermediate memory B cells to recapitulate B cell ontogenies associated with the maturation of a broadly neutralizing antibody response. Equally important for vaccine development is the identification of delivery systems, prime-boost strategies, and synergistic adjuvant combinations that can induce the magnitude and quality of antigen-specific T follicular helper (TFH) cell responses needed to drive somatic hypermutation (SHM) and B cell maturation against heterologous primary virus envelopes. Finding the combination of multi-protein envelope immunogens and immunization strategies that can evolve a potent broadly neutralizing antibody response portends to require a complex vaccine regimen that might be difficult to implement on any scale

  19. GPRC6A mediates Alum-induced Nlrp3 inflammasome activation but limits Th2 type antibody responses

    PubMed Central

    Quandt, Dagmar; Rothe, Kathrin; Baerwald, Christoph; Rossol, Manuela

    2015-01-01

    Alum adjuvanticity is still an unknown mechanism despite the frequent use as vaccine adjuvant in humans. Here we show that Alum-induced inflammasome activation in vitro and in vivo is mediated by the G protein-coupled receptor GPRC6A. The Alum-induced humoral response in vivo was independent of the inflammasome because Nlrp3−/− and ASC−/− mice responded normally to Alum and blockade of IL-1 had no effect on antibody production. In contrast, Alum adjuvanticity was increased in GPRC6A−/− mice resulting in increased antibody responses and increased Th2 cytokine concentrations compared to wildtype mice. In vitro activation of GPRC6A−/− splenic B cells also induced increased IgG1 concentrations compared to wildtype B cells. For the first time, we show GPRC6A expression in B cells, contributing to the direct effects of Alum on those cells. B cell produced immunostimulatory IL-10 is elevated in GPRC6A−/− B cells in vitro and in vivo. Our results demonstrate a dual role of GPRC6A in Alum adjuvanticity. GPCR6A activation by Alum leads to the initiation of innate inflammatory responses whereas it is an important signal for the limitation of adaptive immune responses induced by Alum, partially explained by B cell IL-10. PMID:26602597

  20. Antibody response to dengue virus.

    PubMed

    Cedillo-Barrón, Leticia; García-Cordero, Julio; Bustos-Arriaga, José; León-Juárez, Moisés; Gutiérrez-Castañeda, Benito

    2014-09-01

    In this review, we discuss the current knowledge of the role of the antibody response against dengue virus and highlight novel insights into targets recognized by the human antibody response. We also discuss how the balance of pathological and protective antibody responses in the host critically influences clinical aspects of the disease. Copyright © 2014 Institut Pasteur. All rights reserved.

  1. Dengue E Protein Domain III-Based DNA Immunisation Induces Strong Antibody Responses to All Four Viral Serotypes

    PubMed Central

    Chan, Kuan Rong; Tan, Hwee Cheng; Bestagno, Marco; Ooi, Eng Eong; Burrone, Oscar R.

    2015-01-01

    Dengue virus (DENV) infection is a major emerging disease widely distributed throughout the tropical and subtropical regions of the world affecting several millions of people. Despite constants efforts, no specific treatment or effective vaccine is yet available. Here we show a novel design of a DNA immunisation strategy that resulted in the induction of strong antibody responses with high neutralisation titres in mice against all four viral serotypes. The immunogenic molecule is an engineered version of the domain III (DIII) of the virus E protein fused to the dimerising CH3 domain of the IgG immunoglobulin H chain. The DIII sequences were also codon-optimised for expression in mammalian cells. While DIII alone is very poorly secreted, the codon-optimised fusion protein is rightly expressed, folded and secreted at high levels, thus inducing strong antibody responses. Mice were immunised using gene-gun technology, an efficient way of intradermal delivery of the plasmid DNA, and the vaccine was able to induce neutralising titres against all serotypes. Additionally, all sera showed reactivity to a recombinant DIII version and the recombinant E protein produced and secreted from mammalian cells in a mono-biotinylated form when tested in a conformational ELISA. Sera were also highly reactive to infective viral particles in a virus-capture ELISA and specific for each serotype as revealed by the low cross-reactive and cross-neutralising activities. The serotype specific sera did not induce antibody dependent enhancement of infection (ADE) in non-homologous virus serotypes. A tetravalent immunisation protocol in mice showed induction of neutralising antibodies against all four dengue serotypes as well. PMID:26218926

  2. Vaccine-induced antibody responses as parameters of the influence of endogenous and environmental factors.

    PubMed Central

    Van Loveren, H; Van Amsterdam, J G; Vandebriel, R J; Kimman, T G; Rümke, H C; Steerenberg, P S; Vos, J G

    2001-01-01

    In laboratory animals, an adequate way to assess effects of environmental exposures on the immune system is to study effects on antigen-specific immune responses, such as after sensitization to T-cell-dependent antigens. This probably also applies to testing effects in the human population. It has thus been suggested that antibody responses to vaccination might be useful in this context. Vaccination responses may be influenced by a variety of factors other than environmental ones. One factor is the vaccine itself; a second is the vaccination procedure used. In addition, the intrinsic capacity of the recipient to respond to a vaccine, which is determined by sex, genetic factors, and age, is important. Psychological stress, nutrition, and (infectious) diseases are also likely to have an impact. We reviewed the literature on vaccine response. With regard to exogenous factors, there is good evidence that smoking, diet, psychological stress, and certain infectious diseases affect vaccination titers, although it is difficult to determine to what extent. Genetic factors render certain individuals nonresponsive to vaccination. In general, in epidemiologic studies of adverse effects of exposure to agents in the environment in which vaccination titers are used, these additional factors need to be taken into consideration. Provided that these factors are corrected for, a study that shows an association of exposure to a given agent with diminished vaccination responses may indicate suboptimal function of the immune system and clinically relevant diminished immune response. It is quite unlikely that environmental exposures that affect responses to vaccination may in fact abrogate protection to the specific pathogen for which vaccination was performed. Only in those cases where individuals have a poor response to the vaccine may exogenous factors perhaps have a clinically significant influence on resistance to the specific pathogen. An exposure-associated inhibition of a

  3. Characteristics of HPV-Specific Antibody Responses Induced by Infection and Vaccination: Cross-Reactivity, Neutralizing Activity, Avidity and IgG Subclasses

    PubMed Central

    Scherpenisse, Mirte; Schepp, Rutger M.; Mollers, Madelief; Meijer, Chris J. L. M.; Berbers, Guy A. M.; van der Klis, Fiona R. M.

    2013-01-01

    Objectives In order to assess HPV-specific IgG characteristics, we evaluated multiple aspects of the humoral antibody response that will provide insight in the HPV humoral immune response induced by HPV infection and vaccination. Methods Cross-reactivity of HPV-specific antibodies induced by infection or vaccination was assessed with VLP16 or 18 inhibition using a VLP-based multiplex immunoassay (MIA) for HPV16, 18, 31, 33, 45, 52 and 58. HPV16/18 specific IgG1-4 subclasses and avidity were determined with the VLP-MIA in sera after HPV infection and after vaccination. Neutralizing antibodies were determined in a small subset of single-seropositive and multi-seropositive naturally derived antibodies. Results Naturally derived antibodies from single-positive sera were highly genotype-specific as homologue VLP-inhibition percentages varied between 78-94%. In multi-positive sera, cross-reactive antibodies were observed both within and between α7 and α9 species. After vaccination, cross-reactive antibodies were mainly species-specific. Avidity of vaccine-derived HPV-specific antibodies was 3 times higher than that of antibodies induced by HPV infection (p<0.0001). IgG1 and IgG3 were found to be the predominant subclasses observed after HPV infection and vaccination. In the small subset tested, the number of single-positive sera with neutralizing capacity was higher than of multi-positive sera. Conclusion Naturally derived HPV-specific antibodies from single-positive samples showed different characteristics in terms of cross-reactivity and neutralizing capacity compared with antibodies from multi-positive sera. Post-vaccination, HPV antibody avidity was approximately 3 times higher than antibody avidity induced by HPV infection. Therefore, antibody avidity might be a potential surrogate of protection. PMID:24058629

  4. A plant-derived human monoclonal antibody induces an anti-carbohydrate immune response in rabbits.

    PubMed

    Jin, Chunsheng; Altmann, Friedrich; Strasser, Richard; Mach, Lukas; Schähs, Matthias; Kunert, Renate; Rademacher, Thomas; Glössl, Josef; Steinkellner, Herta

    2008-03-01

    A common argument against using plants as a production system for therapeutic proteins is their inability to perform authentic N-glycosylation. A major concern is the presence of beta 1,2-xylose and core alpha 1,3-fucose residues on complex N-glycans as these nonmammalian N-glycan residues may provoke unwanted side effects in humans. In this study we have investigated the potential antigenicity of plant-type N-glycans attached to a human monoclonal antibody (2G12). Using glyco-engineered plant lines as expression hosts, four 2G12 glycoforms differing in the presence/absence of beta 1,2-xylose and core alpha 1,3-fucose were generated. Systemic immunization of rabbits with a xylose and fucose carrying 2G12 glycoform resulted in a humoral immune response to both N-glycan epitopes. Furthermore, IgE immunoblotting with sera derived from allergic patients revealed binding to plant-produced 2G12 carrying core alpha 1,3 fucosylated N-glycan structures. Our results provide evidence for the adverse potential of nonmammalian N-glycan modifications present on monoclonal antibodies produced in plants. This emphasizes the need for the use of glyco-engineered plants lacking any potentially antigenic N-glycan structures for the production of plant-derived recombinant proteins intended for parenteral human application.

  5. Inhibition of interleukin-5 induced false positive anti-drug antibody responses against mepolizumab through the use of a competitive blocking antibody.

    PubMed

    Liao, Karen; Meyer, Erik; Lee, Thomas N; Loercher, Amy; Sikkema, Daniel

    2017-02-01

    Mepolizumab, a humanized IgG1 monoclonal antibody that blocks native homodimeric interleukin-5 (IL-5) from binding to the IL-5 receptor, has recently been approved for treatment of severe eosinophilic asthma. Our initial immunogenicity assay method for phase I and II studies utilized a bridging electrochemiluminescence format with biotin and ruthenium-labelled mepolizumab linked by anti-drug antibodies (ADA). We discovered that IL-5 significantly increased in dosed subjects from a phase II study and that the increased IL-5 was in the form of a drug-bound complex. We demonstrated that the elevated drug-bound IL-5 produced false-positive response in the in vitro ADA assay, in which drug-bound IL-5 dissociated and then bridged mepolizumab conjugates to yield positive signal. To eliminate the IL-5 interference, we compared two strategies: a solid-phase immunodepletion of IL-5 and an in-solution IL-5 immunocompetition. We identified the best competitive antibody for each purpose. We found both methods demonstrated similar effectiveness in reducing the false positive signal in IL-5 spiked samples; however, the in-solution immunocompetition for IL-5 had fewer false positives in study samples. Additionally, the in-solution immunocompetition method was experimentally simpler to execute. We modified the ADA assay by adding a pre-treatment step with a mepolizumab competitive anti- IL-5 antibody. Using this new method, we retested clinical samples from two phase II studies (MEA112997 and MEA114092). The confirmed ADA positive incidence was reduced from 29% and 61% to 1% and 8% with the modified in-solution immune inhibition method. Target interference is a fairly common problem facing immunogenicity testing, and target-induced false positive cannot be distinguished from true ADA response by the commonly used drug competitive confirmation assay. The approach and method used here for resolving target interference in ADA detection will be useful for differentiating between a true

  6. Intestinal commensal bacteria promote T cell hyporesponsiveness and down-regulate the serum antibody responses induced by dietary antigen.

    PubMed

    Tsuda, Masato; Hosono, Akira; Yanagibashi, Tsutomu; Kihara-Fujioka, Miran; Hachimura, Satoshi; Itoh, Kikuji; Hirayama, Kazuhiro; Takahashi, Kyoko; Kaminogawa, Shuichi

    2010-08-16

    Colonization of the gut by commensal bacteria modulates the induction of oral tolerance and allergy. However, how these intestinal bacteria modulate antigen-specific T cell responses induced by oral antigens remains unclear. In order to investigate this, we used germ-free (GF) ovalbumin (OVA)-specific T cell receptor transgenic (OVA23-3) mice. Conventional (CV) or GF mice were administered an OVA-containing diet. Cytokine production by CD4(+) cells from spleen (SP), mesenteric lymph nodes (MLN) and Peyer's patches (PP) was evaluated by ELISA, as was the peripheral antibody titer. T cell phenotype was assessed by flow cytometry. CD4(+) cells from the SP and MLN of CV and GF mice fed an OVA diet for 3 weeks produced significantly less IL-2 than the corresponding cells from mice receiving a control diet, suggesting that oral tolerance could be induced at the T cell level in the systemic and intestinal immune systems of both bacterial condition of mice. However, we also observed that the T cell hyporesponsiveness induced by dietary antigen was delayed in the systemic immune tissues and was weaker in the intestinal immune tissues of the GF mice. Intestinal MLN and PP CD4(+) T cells from these animals also produced lower levels of IL-10, had less activated/memory type CD45RB(low) cells, and expressed lower levels of CTLA-4 but not Foxp3 compared to their CV counterparts. Furthermore, GF mice produced higher serum levels of OVA-specific antibodies than CV animals. CD40L expression by SP CD4(+) cells from GF mice fed OVA was higher than that of CV mice. These results suggest that intestinal commensal bacteria promote T cell hyporesponsiveness and down-regulate serum antibody responses induced by dietary antigens through modulation of the intestinal and systemic T cell phenotype. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Control of Toll-like receptor-mediated T cell-independent type 1 antibody responses by the inducible nuclear protein IκB-ζ.

    PubMed

    Hanihara-Tatsuzawa, Fumito; Miura, Hanae; Kobayashi, Shuhei; Isagawa, Takayuki; Okuma, Atsushi; Manabe, Ichiro; MaruYama, Takashi

    2014-11-07

    Antibody responses have been classified as being either T cell-dependent or T cell-independent (TI). TI antibody responses are further classified as being either type 1 (TI-1) or type 2 (TI-2), depending on their requirement for B cell-mediated antigen receptor signaling. Although the mechanistic basis of antibody responses has been studied extensively, it remains unclear whether different antibody responses share similarities in their transcriptional regulation. Here, we show that mice deficient in IκB-ζ, specifically in their B cells, have impaired TI-1 antibody responses but normal T cell-dependent and TI-2 antibody responses. The absence of IκB-ζ in B cells also impaired proliferation triggered by Toll-like receptor (TLR) activation, plasma cell differentiation, and class switch recombination (CSR). Mechanistically, IκB-ζ-deficient B cells could not induce TLR-mediated induction of activation-induced cytidine deaminase (AID), a class-switch DNA recombinase. Retroviral transduction of AID in IκB-ζ-deficient B cells restored CSR activity. Furthermore, acetylation of histone H3 in the vicinity of the transcription start site of the gene that encodes AID was reduced in IκB-ζ-deficient B cells relative to IκB-ζ-expressing B cells. These results indicate that IκB-ζ regulates TLR-mediated CSR by inducing AID. Moreover, IκB-ζ defines differences in the transcriptional regulation of different antibody responses.

  8. Protective Antibody and CD8+ T-Cell Responses to the Plasmodium falciparum Circumsporozoite Protein Induced by a Nanoparticle Vaccine

    PubMed Central

    Kaba, Stephen A.; McCoy, Margaret E.; Doll, Tais A. P. F.; Brando, Clara; Guo, Qin; Dasgupta, Debleena; Yang, Yongkun; Mittelholzer, Christian; Spaccapelo, Roberta; Crisanti, Andrea; Burkhard, Peter; Lanar, David E.

    2012-01-01

    Background The worldwide burden of malaria remains a major public health problem due, in part, to the lack of an effective vaccine against the Plasmodium falciparum parasite. An effective vaccine will most likely require the induction of antigen specific CD8+ and CD4+ T-cells as well as long-lasting antibody responses all working in concert to eliminate the infection. We report here the effective modification of a self-assembling protein nanoparticle (SAPN) vaccine previously proven effective in control of a P. berghei infection in a rodent model to now present B- and T-cell epitopes of the human malaria parasite P. falciparum in a platform capable of being used in human subjects. Methodology/Principal Findings To establish the basis for a SAPN-based vaccine, B- and CD8+ T-cell epitopes from the P. falciparum circumsporozoite protein (PfCSP) and the universal CD4 T-helper epitope PADRE were engineered into a versatile small protein (∼125 amino acids) that self-assembles into a spherical nanoparticle repetitively displaying the selected epitopes. P. falciparum epitope specific immune responses were evaluated in mice using a transgenic P. berghei malaria parasite of mice expressing the human malaria full-length P. falciparum circumsporozoite protein (Tg-Pb/PfCSP). We show that SAPN constructs, delivered in saline, can induce high-titer, long-lasting (1 year) protective antibody and poly-functional (IFNγ+, IL-2+) long-lived central memory CD8+ T-cells. Furthermore, we demonstrated that these Ab or CD8+ T–cells can independently provide sterile protection against a lethal challenge of the transgenic parasites. Conclusion The SAPN construct induces long-lasting antibody and cellular immune responses to epitope specific sequences of the P. falciparum circumsporozoite protein (PfCSP) and prevents infection in mice by a transgenic P. berghei parasite displaying the full length PfCSP. PMID:23144750

  9. Viral Vector Malaria Vaccines Induce High-Level T Cell and Antibody Responses in West African Children and Infants.

    PubMed

    Bliss, Carly M; Drammeh, Abdoulie; Bowyer, Georgina; Sanou, Guillaume S; Jagne, Ya Jankey; Ouedraogo, Oumarou; Edwards, Nick J; Tarama, Casimir; Ouedraogo, Nicolas; Ouedraogo, Mireille; Njie-Jobe, Jainaba; Diarra, Amidou; Afolabi, Muhammed O; Tiono, Alfred B; Yaro, Jean Baptiste; Adetifa, Uche J; Hodgson, Susanne H; Anagnostou, Nicholas A; Roberts, Rachel; Duncan, Christopher J A; Cortese, Riccardo; Viebig, Nicola K; Leroy, Odile; Lawrie, Alison M; Flanagan, Katie L; Kampmann, Beate; Imoukhuede, Egeruan B; Sirima, Sodiomon B; Bojang, Kalifa; Hill, Adrian V S; Nébié, Issa; Ewer, Katie J

    2017-02-01

    Heterologous prime-boosting with viral vectors encoding the pre-erythrocytic antigen thrombospondin-related adhesion protein fused to a multiple epitope string (ME-TRAP) induces CD8(+) T cell-mediated immunity to malaria sporozoite challenge in European malaria-naive and Kenyan semi-immune adults. This approach has yet to be evaluated in children and infants. We assessed this vaccine strategy among 138 Gambian and Burkinabe children in four cohorts: 2- to 6-year olds in The Gambia, 5- to 17-month-olds in Burkina Faso, and 5- to 12-month-olds and 10-week-olds in The Gambia. We assessed induction of cellular immunity, taking into account the distinctive hematological status of young infants, and characterized the antibody response to vaccination. T cell responses peaked 7 days after boosting with modified vaccinia virus Ankara (MVA), with highest responses in infants aged 10 weeks at priming. Incorporating lymphocyte count into the calculation of T cell responses facilitated a more physiologically relevant comparison of cellular immunity across different age groups. Both CD8(+) and CD4(+) T cells secreted cytokines. Induced antibodies were up to 20-fold higher in all groups compared with Gambian and United Kingdom (UK) adults, with comparable or higher avidity. This immunization regimen elicited strong immune responses, particularly in young infants, supporting future evaluation of efficacy in this key target age group for a malaria vaccine. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Repeated Long-Term DT Application in the DEREG Mouse Induces a Neutralizing Anti-DT Antibody Response.

    PubMed

    Wang, Junhua; Siffert, Myriam; Spiliotis, Markus; Gottstein, Bruno

    2016-01-01

    Regulatory T (Tregs) cells play an important role in mediating tolerance to self-antigens but can also mediate detrimental tolerance to tumours and pathogens in a Foxp3-dependent manner. Genetic tools exploiting the foxp3 locus including bacterial artificial chromosome- (BAC-) transgenic DEpletion of REGulatory T cells (DEREG) mice have provided essential information on Treg biology and the potential therapeutic modulation of tolerance. In DEREG mice, Foxp3(+) Tregs selectively express enhanced green fluorescent protein (eGFP) and diphtheria toxin (DT) receptor, allowing for the specific depletion of Tregs through DT administration. We here provide a detailed overview about an important consideration that long-term administration of DT induces a humoral immune response with an appropriate production of anti-DT antibodies that can inactivate DT and thus abrogate its effect in the DEREG mouse. Additionally, we showed that anti-DT mouse serum partially neutralized DT-induced Foxp3 inhibition.

  11. Repeated Long-Term DT Application in the DEREG Mouse Induces a Neutralizing Anti-DT Antibody Response

    PubMed Central

    Wang, Junhua; Siffert, Myriam; Spiliotis, Markus

    2016-01-01

    Regulatory T (Tregs) cells play an important role in mediating tolerance to self-antigens but can also mediate detrimental tolerance to tumours and pathogens in a Foxp3-dependent manner. Genetic tools exploiting the foxp3 locus including bacterial artificial chromosome- (BAC-) transgenic DEpletion of REGulatory T cells (DEREG) mice have provided essential information on Treg biology and the potential therapeutic modulation of tolerance. In DEREG mice, Foxp3+ Tregs selectively express enhanced green fluorescent protein (eGFP) and diphtheria toxin (DT) receptor, allowing for the specific depletion of Tregs through DT administration. We here provide a detailed overview about an important consideration that long-term administration of DT induces a humoral immune response with an appropriate production of anti-DT antibodies that can inactivate DT and thus abrogate its effect in the DEREG mouse. Additionally, we showed that anti-DT mouse serum partially neutralized DT-induced Foxp3 inhibition. PMID:28074191

  12. Low dose revaccination induces robust protective anti-HBs antibody response in the majority of healthy non-responder neonates.

    PubMed

    Jafarzadeh, A; Zarei, S; Shokri, F

    2008-01-10

    A sizeable proportion (1-10%) of healthy adults and to lesser extent neonates vaccinated with triple 10 microg hepatitis B (HB) vaccine fail to mount a protective antibody response. Revaccination with the same vaccine dose has proved to be effective in a significant number of primary non-responders. The influence of revaccination with lower vaccine doses however has not been studied adequately in non-responder neonates. This study was conducted to evaluate the influence of supplementary vaccination with a single low and standard dose of a recombinant hepatitis B (HB) vaccine in healthy Iranian non-responder neonates to primary vaccination. Iranian neonates unable to respond to primary vaccination with 10, 5 or 2.5 microg doses of recombinant HB vaccine were revaccinated with a single additional dose of the same concentration. Serum anti-HBs antibody titer was measured by sandwich ELISA. Administration of a single additional dose induced seroprotection (anti-HBs> or =10IU/L) in 10/12 (83%), 10/12 (83%) and 21/24 (87.5%) of non-responder neonates in 10, 5 and 2.5 microg vaccine recipients with geometric mean titers (and 95% confidence limits) of 1358 (258-7142), 401 (79-2038) and 164 (62-433) IU/L, respectively. The log-transformed antibody titer obtained for the 10 microg dose recipients was significantly higher than that of the 2.5 microg dose vaccinees (p=0.028). No significant differences in anti-HBs titer were observed between other groups of vaccinees. However, the total seroprotection rates obtained after administration of four low doses of 2.5 and 5 microg were significantly higher than that obtained after administration of the classical three 10 microg doses (p=0.029 and p=0.006, respectively). The total seroprotection rates were similar between all groups of vaccines receiving four doses of 2.5, 5 and 10 microg vaccine doses. These results indicate that a significant proportion of non-responder neonates can be induced to develop a protective anti

  13. Arthritis of mice induced by Mycoplasma arthritidis. Humoral antibody and lymphocyte responses of CBA mice.

    PubMed Central

    Cole, B C; Golightly-Rowland, L; Ward, J R

    1976-01-01

    Peak arthritis occurred 7 days after intravenous injection of CBA mice with Mycoplasma arthritidis and persisted in some animals for 84 days. A marked leucocytosis was apparent for the first 21 days. Complement-fixing antibodies reached a peak 14 days after injection of the organisms and persisted at high levels for 84 days. Metabolic-inhibiting and mycoplasmacidal antibodies were present but at much lower titres. PMID:1275576

  14. Comparison of the cross-antibody response induced in sheep by inactivated bovine viral diarrhoea virus 1 and Hobi-like pestivirus.

    PubMed

    Decaro, Nicola; Mari, Viviana; Sciarretta, Rossana; Lucente, Maria Stella; Camero, Michele; Losurdo, Michele; Larocca, Vittorio; Colao, Valeriana; Cavaliere, Nicola; Lovero, Angela; Lorusso, Eleonora; Buonavoglia, Canio

    2013-06-01

    Hobi-like pestivirus, a new tentative species within genus Pestivirus, was firstly detected in foetal bovine serum batches and later associated to respiratory distress and reproductive failures in cattle. In the present study, the cross-antibody response between bovine viral diarrhoea virus 1 (BVDV-1) and the emerging pestivirus was evaluated in the sheep model. Ten sheep were immunised against BVDV-1 or Hobi-like pestivirus using inactivated preparations and the induced antibody responses were evaluated against the homologous and heterologous viruses. The results showed that heterologous antibody titres were significantly lower than the homologous ones, thus suggesting the need to develop specific vaccines against the emerging pestiviral species.

  15. Novel ISCOMs from Quillaja brasiliensis saponins induce mucosal and systemic antibody production, T-cell responses and improved antigen uptake.

    PubMed

    Cibulski, Samuel Paulo; Mourglia-Ettlin, Gustavo; Teixeira, Thais Fumaco; Quirici, Lenora; Roehe, Paulo Michel; Ferreira, Fernando; Silveira, Fernando

    2016-02-24

    In the last decades, significant efforts have been dedicated to the search for novel vaccine adjuvants. In this regard, saponins and its formulations as "immunostimulating complexes" (ISCOMs) have shown to be capable of stimulating potent humoral and cellular immune responses, enhanced cytokine production and activation of cytotoxic T cells. The immunological activity of ISCOMs formulated with a saponin fraction extracted from Quillaja brasiliensis (QB-90 fraction) as an alternative to classical ISCOMs based on Quil A(®) (IQA) is presented here. The ISCOMs prepared with QB-90, named IQB-90, typically consist of 40-50 nm, spherical, cage-like particles, built up by QB-90, cholesterol, phospholipids and antigen (ovalbumin, OVA). These nanoparticles were efficiently uptaken in vitro by murine bone marrow-derived dendritic cells. Subcutaneously inoculated IQB-90 induced strong serum antibody responses encompassing specific IgG1 and IgG2a, robust DTH reactions, significant T cell proliferation and increases in Th1 (IFN-γ and IL-2) cytokine responses. Intranasally delivered IQB-90 elicited serum IgG and IgG1, and mucosal IgA responses at distal systemic sites (nasal passages, large intestine and vaginal lumen). These results indicate that IQB-90 is a promising alternative to classic ISCOMs as vaccine adjuvants, capable of enhancing humoral and cellular immunity to levels comparable to those induced by ISCOMs manufactured with Quillaja saponaria saponins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. An alphavirus vector overcomes the presence of neutralizing antibodies and elevated numbers of Tregs to induce immune responses in humans with advanced cancer

    PubMed Central

    Morse, Michael A.; Hobeika, Amy C.; Osada, Takuya; Berglund, Peter; Hubby, Bolyn; Negri, Sarah; Niedzwiecki, Donna; Devi, Gayathri R.; Burnett, Bruce K.; Clay, Timothy M.; Smith, Jonathan; Lyerly, H. Kim

    2010-01-01

    Therapeutic anticancer vaccines are designed to boost patients’ immune responses to tumors. One approach is to use a viral vector to deliver antigen to in situ DCs, which then activate tumor-specific T cell and antibody responses. However, vector-specific neutralizing antibodies and suppressive cell populations such as Tregs remain great challenges to the efficacy of this approach. We report here that an alphavirus vector, packaged in virus-like replicon particles (VRP) and capable of efficiently infecting DCs, could be repeatedly administered to patients with metastatic cancer expressing the tumor antigen carcinoembryonic antigen (CEA) and that it overcame high titers of neutralizing antibodies and elevated Treg levels to induce clinically relevant CEA-specific T cell and antibody responses. The CEA-specific antibodies mediated antibody-dependent cellular cytotoxicity against tumor cells from human colorectal cancer metastases. In addition, patients with CEA-specific T cell responses exhibited longer overall survival. These data suggest that VRP-based vectors can overcome the presence of neutralizing antibodies to break tolerance to self antigen and may be clinically useful for immunotherapy in the setting of tumor-induced immunosuppression. PMID:20679728

  17. The Respiratory Syncytial Virus G Protein Conserved Domain Induces a Persistent and Protective Antibody Response in Rodents

    PubMed Central

    Nguyen, Thien N.; Power, Ultan F.; Robert, Alain; Haeuw, Jean-François; Helffer, Katia; Perez, Amadeo; Asin, Miguel-Angel; Corvaia, Nathalie; Libon, Christine

    2012-01-01

    Respiratory syncytial virus (RSV) is an important cause of severe upper and lower respiratory disease in infants and in the elderly. There are 2 main RSV subtypes A and B. A recombinant vaccine was designed based on the central domain of the RSV-A attachment G protein which we had previously named G2Na (aa130–230). Here we evaluated immunogenicity, persistence of antibody (Ab) response and protective efficacy induced in rodents by: (i) G2Na fused to DT (Diphtheria toxin) fragments in cotton rats. DT fusion did not potentiate neutralizing Ab responses against RSV-A or cross-reactivity to RSV-B. (ii) G2Nb (aa130–230 of the RSV-B G protein) either fused to, or admixed with G2Na. G2Nb did not induce RSV-B-reactive Ab responses. (iii) G2Na at low doses. Two injections of 3 µg G2Na in Alum were sufficient to induce protective immune responses in mouse lungs, preventing RSV-A and greatly reducing RSV-B infections. In cotton rats, G2Na-induced RSV-reactive Ab and protective immunity against RSV-A challenge that persisted for at least 24 weeks. (iv) injecting RSV primed mice with a single dose of G2Na/Alum or G2Na/PLGA [poly(D,L-lactide-co-glycolide]. Despite the presence of pre-existing RSV-specific Abs, these formulations effectively boosted anti-RSV Ab titres and increased Ab titres persisted for at least 21 weeks. Affinity maturation of these Abs increased from day 28 to day 148. These data indicate that G2Na has potential as a component of an RSV vaccine formulation. PMID:22479601

  18. Cross-clade neutralizing antibodies against HIV-1 induced in rabbits by focusing the immune response on a neutralizing epitope

    SciTech Connect

    Zolla-Pazner, Susan; Cohen, Sandra; Pinter, Abraham; Krachmarov, Chavdar; Wrin, Terri; Wang Shixia; Lu Shan

    2009-09-15

    Studies were performed to induce cross-clade neutralizing antibodies (Abs) by testing various combinations of prime and boost constructs that focus the immune response on structurally-conserved epitopes in the V3 loop of HIV-1 gp120. Rabbits were immunized with gp120 DNA containing a V3 loop characterized by the GPGR motif at its tip, and/or with gp120 DNA with a V3 loop carrying the GPGQ motif. Priming was followed by boosts with V3-fusion proteins (V3-FPs) carrying the V3 sequence from a subtype B virus (GPGR motif), and/or with V3 sequences from subtypes A and C (GPGQ motif). The broadest and most consistent neutralizing responses were generated when using a clade C gp120 DNA prime and with the V3{sub B}-FP boost. Immune sera displayed neutralizing activity in three assays against pseudoviruses and primary isolates from subtypes A, AG, B, C, and D. Polyclonal Abs in the immune rabbit sera neutralized viruses that were not neutralized by pools of human anti-V3 monoclonal Abs. Greater than 80% of the neutralizing Abs were specific for V3, showing that the immune response could be focused on a neutralizing epitope and that vaccine-induced anti-V3 Abs have cross-clade neutralizing activity.

  19. Gr1+ IL-4 producing innate cells are induced in response to Th2 stimuli and suppress Th1-dependent antibody responses

    PubMed Central

    McKee, Amy; MacLeod, Megan; White, Janice; Crawford, Frances; Kappler, John; Marrack, Philippa

    2010-01-01

    Alum is used as a vaccine adjuvant and induces Th2 responses and Th2-driven antibody isotype production against co-injected antigens. Alum also promotes the appearance in the spleen of Gr1+, IL-4+ innate cells that, via IL-4 production, induce MHC II mediated signaling in B cells. To investigate whether these Gr1+ cells accumulate in the spleen in response to other Th2 inducing stimuli and to understand some of their functions, the effects of injection of alum and eggs from the helminth, Schistosoma mansoni, were compared. Like alum, schistosome eggs induced the appearance of Gr1+IL-4+ cells in spleen and promoted MHC II-mediated signaling in B cells. Unlike alum, however, schistosome eggs did not promote CD4 T cell responses against co-injected antigens, suggesting that the effects of alum or schistosome eggs on splenic B cells cannot by themselves explain the T cell adjuvant properties of alum. Accordingly, depletion of IL-4 or Gr1+ cells in alum injected mice had no effect on the ability of alum to improve expansion of primary CD4 T cells. However, Gr1+ cells and IL-4 played some role in the effects of alum, since depletion of either resulted in antibody responses to antigen that included not only the normal Th2-driven isotypes, like IgG1, but also a Th1-driven isotype, IgG2c. These data suggest that alum affects the immune response in at least two ways, one, independent of Gr1+ cells and IL-4, that promotes CD4 T cell proliferation and another, via Gr1+IL-4+ cells that participate in the polarization of the response. PMID:18343889

  20. Toll-like Receptors and B-cell Receptors Synergize to Induce Immunoglobulin Class Switch DNA Recombination: Relevance to Microbial Antibody Responses

    PubMed Central

    Pone, Egest J.; Zan, Hong; Zhang, Jinsong; Al-Qahtani, Ahmed; Xu, Zhenming; Casali, Paolo

    2011-01-01

    Differentiation of naïve B cells, including immunoglobulin (Ig) class switch DNA recombination (CSR), is critical for the immune response and depends on the extensive integration of signals from the B cell receptor (BCR), tumor necrosis factor (TNF) receptor family members, Toll-like receptors (TLRs) and cytokine receptors. TLRs and BCR synergize to induce CSR in T cell-dependent and T cell-independent antibody responses to microbial pathogens. BCR triggering together with simultaneous endosomal TLR engagement leads to enhanced B cell differentiation and antibody responses. The requirement of both BCR and TLR engagement would ensure appropriate antigen-specific activation in an infection. Co-stimulation of TLRs and BCR likely plays a significant role in anti-microbial antibody responses to contain pathogen loads until the T cell-dependent antibody responses peak. Furthermore, the temporal sequence of different signals is also critical for optimal B cell responses, as exemplified by the activation of B cells by initial TLR engagement, leading to the upregulation of co-stimulatory CD80 and MHC-II receptors, which, in turn, result in more efficient interactions with T cells, thereby enhancing the germinal center (GC) reaction and antibody affinity maturation. Overall, BCR and TLR stimulation and the integration with signals from the pathogen or immune cells and their products, determine the ensuing B cell antibody response. PMID:20370617

  1. Transcutaneous delivery of tetanus toxin Hc fragment induces superior tetanus toxin neutralizing antibody response compared to tetanus toxoid.

    PubMed

    Johnston, Louise; Mawas, Fatme; Tierney, Rob; Qazi, Omar; Fairweather, Neil; Sesardic, Dorothea

    2009-04-01

    Transcutaneous immunization is a promising vaccination delivery strategy which targets potent immune cells residing in the outer layer of the skin. In this study, the immunogenicity and neutralizing potency of the non-toxic Hc fragment of tetanus toxin (HcWT) and a mutant of Hc lacking ganglioside binding activity were compared with that of tetanus toxoid (TTxd) following transcutaneous immunization (TCI) of mice. Mice immunized with HcWT in the absence of an adjuvant induced highest anti-toxoid and anti-Hc antibody titres, with a significant increase in the toxin neutralizing antibody response compared with TTxd. These results are in contrast to previous studies employing subcutaneous delivery, where TTxd was found to be a more potent immunogen than the Hc fragment of the toxin. We conclude that the HcWT protein is more immunogenic than TTxd when given via the transcutaneous route. Our results suggest that TCI may provide an opportunity for effective delivery of toxin-like antigens which harbor protective epitopes and that traditional toxoid proteins may not be optimal antigens for skin immunization.

  2. Anti-tumor immunological response induced by cryoablation and anti-CTLA-4 antibody in an in vivo RM-1 cell prostate cancer murine model.

    PubMed

    Li, F; Guo, Z; Yu, H; Zhang, X; Si, T; Liu, C; Yang, X; Qi, L

    2014-01-01

    Cryoablation combination therapy with blockade of the T-cell inhibitory receptor CTL-associated antigen-4 (CTLA-4) may augment the anti-tumor immune response (ATIR). It is crucial to determine the duration of ATIR after cryoablation and anti-CTLA-4 antibody therapy to determine the most appropriate treatment interval of therapy. To investigate the characteristics of ATIR induced by cryoablation and anti-CTLA-4 antibody therapy, we developed a prostate cancer model system to test the capacity of cryoablation and anti -CTLA-4 antibody to generate ATIR. Mice were randomly assigned to receive no treatment (group A), cryoablation only (group B), cryoablation plus anti-CTLA-4 antibody (group C), or anti-CTLA-4 antibody only (group D). We collected specimens on days 0, 7, 14 and 21 to study the ATIR through different techniques. Our results indicated that cryoablation induced ATIR and further enhanced this effect and reduced the number of distant metastases through combination with anti-CTLA-4 antibody. ATIR induced by cryoablation was achieved through decreasing regulatory T cell (Treg) number. The number of Tregs induced by cryoablation was lowest on day 14 but then returned to preoperative levels on day 21, indicating that ATIR induced by cryoablation was time-dependent. However, ATIR induced by anti-CTLA-4 antibody might be mainly achieved through influencing Treg function, which was exactly not by decreasing Treg number and still maintain its ATIR effect on day 21 after therapy. In conclusion, ATIR induced by cryoablation was achieved through decreasing Treg number and is time-dependent, whereas ATIR caused by anti-CTLA-4 antibody was achieved exactly not by decreasing Treg number and not time-dependent in the first 21 days after therapy.

  3. Heterogeneous Antibody Responses in Tuberculosis

    PubMed Central

    Lyashchenko, Konstantin; Colangeli, Roberto; Houde, Michel; Al Jahdali, Hamdan; Menzies, Dick; Gennaro, Maria Laura

    1998-01-01

    Antibody responses during tuberculosis were analyzed by an enzyme-linked immunosorbent assay with a panel of 10 protein antigens of Mycobacterium tuberculosis. It was shown that serum immunoglobulin G antibodies were produced against a variety of M. tuberculosis antigens and that the vast majority of sera from tuberculosis patients contained antibodies against one or more M. tuberculosis antigens. The number and the species of serologically reactive antigens varied greatly from individual to individual. In a given serum, the level of specific antibodies also varied with the antigen irrespective of the total number of antigens recognized by that particular serum. These findings indicate that person-to-person heterogeneity of antigen recognition, rather than recognition of particular antigens, is a key attribute of the antibody response in tuberculosis. PMID:9673283

  4. Antibody response to DBY minor histocompatibility antigen is induced after allogeneic stem cell transplantation and in healthy female donors

    PubMed Central

    Miklos, David B.; Kim, Haesook T.; Zorn, Emmanuel; Hochberg, Ephraim P.; Guo, Luxuan; Mattes-Ritz, Alex; Viatte, Sebastien; Soiffer, Robert J.; Antin, Joseph H.

    2005-01-01

    Minor histocompatibility antigens (mHAs) recognized by donor T cells play a central role as immunologic targets of graft-versus-host disease (GVHD) and graft versus leukemia after allogeneic hematopoietic stem cell transplantation (HSCT). Men who have undergone sex-mismatched allogeneic HSCT are at high risk for GVHD because of immune responses directed against mHAs encoded by genes on the Y chromosome (termed H-Y antigens). We hypothesized that the immunogenicity of mHAs results in a coordinated response involving B cells as well as T cells. To test this, we measured antibody responses to a well-characterized H-Y antigen, dead box RNA helicase Y (DBY), and its homolog, DBX, in 150 HSCT patients. Using Western blot and enzyme-linked immunosorbent assay (ELISA), we found that 50% of male patients who received stem cell grafts from female donors developed antibody responses to recombinant DBY protein. Antibodies to DBY were also detected in 17% of healthy women, but not in healthy men. Antibody responses were directed primarily against areas of amino acid disparity between DBY and DBX. These studies demonstrate that the immune response to mHA includes the generation of specific antibodies and suggests that the serologic response to these antigens may also be useful in the identification of new mHAs. PMID:14512314

  5. Polysaccharide mimicry of the epitope of the broadly neutralizing anti-HIV antibody, 2G12, induces enhanced antibody responses to self oligomannose glycans

    PubMed Central

    Dunlop, D Cameron; Bonomelli, Camille; Mansab, Fatma; Vasiljevic, Snezana; Doores, Katie J; Wormald, Mark R; Palma, Angelina S; Feizi, Ten; Harvey, David J; Dwek, Raymond A; Crispin, Max; Scanlan, Christopher N

    2010-01-01

    Immunologically, “self” carbohydrates protect the HIV-1 surface glycoprotein, gp120, from antibody recognition. However, one broadly neutralizing antibody, 2G12, neutralizes primary viral isolates by direct recognition of Manα1→2Man motifs formed by the host-derived oligomannose glycans of the viral envelope. Immunogens, capable of eliciting antibodies of similar specificity to 2G12, are therefore candidates for HIV/AIDS vaccine development. In this context, it is known that the yeast mannan polysaccharides exhibit significant antigenic mimicry with the glycans of HIV-1. Here, we report that modulation of yeast polysaccharide biosynthesis directly controls the molecular specificity of cross-reactive antibodies to self oligomannose glycans. Saccharomyces cerevisiae mannans are typically terminated by α1→3-linked mannoses that cap a Manα1→2Man motif that otherwise closely resembles the part of the oligomannose epitope recognized by 2G12. Immunization with S. cerevisiae deficient for the α1→3 mannosyltransferase gene (ΔMnn1), but not with wild-type S. cerevisiae, reproducibly elicited antibodies to the self oligomannose glycans. Carbohydrate microarray analysis of ΔMnn1 immune sera revealed fine carbohydrate specificity to Manα1→2Man units, closely matching that of 2G12. These specificities were further corroborated by enzyme-linked immunosorbent assay with chemically defined glycoforms of gp120. These antibodies exhibited remarkable similarity in the carbohydrate specificity to 2G12 and displayed statistically significant, albeit extremely weak, neutralization of HIV-1 compared to control immune sera. These data confirm the Manα1→2Man motif as the primary carbohydrate neutralization determinant of HIV-1 and show that the genetic modulation of microbial polysaccharides is a route towards immunogens capable of eliciting antibody responses to the glycans of HIV-1. PMID:20181792

  6. HAHA--nothing to laugh about. Measuring the immunogenicity (human anti-human antibody response) induced by humanized monoclonal antibodies applying ELISA and SPR technology.

    PubMed

    Nechansky, Andreas

    2010-01-05

    Immunogenicity induced by passively applied proteins is a serious issue because it is directly related to the patient's safety. The out-come of an immune reaction to a therapeutic protein can range from transient appearance of antibodies without any clinical significance to severe life threatening conditions. Within this article, enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) methodology to measure immunogenicity are compared and the pros and cons are discussed.

  7. Antibody response in Heterodontus.

    PubMed

    Litman, G W; Erickson, B W; Lederman, L; Mäkelä, O

    1982-05-28

    Appropriately selected phylogenetic models are capable of providing insight into genetic mechanisms which may have become obscured during the passage of evolutionary time. In higher vertebrates a complex multigenic family encodes immunoglobulin-variable regions. The mechanisms involved in the expansion of the gene family and the stable maintenance of large numbers of individual genes presently are not understood. By defining the nature of antibody diversity in lower vertebrate species, it may be possible to approach such issues at a more fundamental level. Analyses of the immunoglobulins in Heterodontus francisci (horned shark), a representative phylogenetically primitive elasmobranch, indicate that this species may represent a useful developmental model.

  8. Structure-activity relations of water-in-oil vaccine formulations and induced antigen-specific antibody responses.

    PubMed

    Jansen, Theo; Hofmans, Marij P M; Theelen, Marc J G; Schijns, Virgil E J C

    2005-01-11

    Water-in-oil (W/O) emulsions are known as most effective adjuvants to generate high and durable antibody responses to vaccine antigens following a single immunization. However, their structural requirements remain poorly understood. Here we addressed the significance of certain pharmaceutical characteristics including water/oil ratios--ranging from 60/40 to 30/70 (w/w(%))--droplet size and type of oil, i.e. non-metabolizable (mineral oil) versus metabolizable (Miglyol 840). Stability of emulsions was accomplished by the use of a polymeric emulsifier. Distinct W/O emulsions were formulated with inactivated (i) infectious bronchitis virus (iIBV) and Newcastle disease virus (iNDV), and evaluated in immunized chickens for magnitude and duration of in vivo antiviral antibody formation and local reactions. A high mineral oil content proved most effective for antibody response formation. In general, a larger droplet size evoked higher antibody responses for both oil types. Inoculum residues proved lower using biodegradable Miglyol, when compared to mineral oil, for all emulsion variants. Especially water-to-oil ratio and droplet size may provide useful parameters for improving (antiviral) antibody production by W/O emulsions.

  9. Cooperative effects of immune enhancer TPPPS and different adjuvants on antibody responses induced by recombinant ALV-J gp85 subunit vaccines in SPF chickens.

    PubMed

    Li, Yang; Meng, Fanfeng; Cui, Shuai; Fu, Jiayuan; Wang, Yixin; Cui, Zhizhong; Chang, Shuang; Zhao, Peng

    2017-03-14

    To explore the antibody responses and protective effects induced by subgroup J avian leukosis virus (ALV-J) gp85 protein vaccine plus different adjuvants (CpG and white oil adjuvant YF01) combined with the immune enhancer Taishan Pinus massoniana pollen polysaccharide (TPPPS), we immunized SPF chickens with the recombinant ALV-J gp85 protein, along with different adjuvants and immune enhancer, which protected the chickens by inducing different levels of protective antibodies. Results showed that a single injection of gp85 recombinant protein could only produce low-titre antibodies that were maintained over a short time in few chickens. When combined with YF01 or CpG adjuvants, the recombinant protein could induce high-titre antibodies in most of the immunized chickens. Moreover, when the immune enhancer TPPPS was used with the two adjuvants, it further elevated the antibody levels for a longer duration. The eggs from four groups with the highest levels of ALV-J antibodies were collected, hatched, and examined for maternal antibodies. The protection by the maternal antibodies against ALV-J infection in the TPPPS-immunized group was higher than that in the group without TPPPS, which was consistent with the observations in the parents. This study shows that the immune enhancer TPPPS, combined with YF01 or CpG adjuvants, can enhance the immunogenicity of gp85 recombinant proteins, and provide a better immuno-protection. It provides a powerful experimental basis for the development of ALV-J subunit vaccine. Efficient subunit vaccine development will also accelerate the process of purification of ALV-J.

  10. A Chimeric HIV-1 Envelope Glycoprotein Trimer with an Embedded Granulocyte-Macrophage Colony-stimulating Factor (GM-CSF) Domain Induces Enhanced Antibody and T Cell Responses*

    PubMed Central

    van Montfort, Thijs; Melchers, Mark; Isik, Gözde; Menis, Sergey; Huang, Po-Ssu; Matthews, Katie; Michael, Elizabeth; Berkhout, Ben; Schief, William R.; Moore, John P.; Sanders, Rogier W.

    2011-01-01

    An effective HIV-1 vaccine should ideally induce strong humoral and cellular immune responses that provide sterilizing immunity over a prolonged period. Current HIV-1 vaccines have failed in inducing such immunity. The viral envelope glycoprotein complex (Env) can be targeted by neutralizing antibodies to block infection, but several Env properties limit the ability to induce an antibody response of sufficient quantity and quality. We hypothesized that Env immunogenicity could be improved by embedding an immunostimulatory protein domain within its sequence. A stabilized Env trimer was therefore engineered with the granulocyte-macrophage colony-stimulating factor (GM-CSF) inserted into the V1V2 domain of gp120. Probing with neutralizing antibodies showed that both the Env and GM-CSF components of the chimeric protein were folded correctly. Furthermore, the embedded GM-CSF domain was functional as a cytokine in vitro. Mouse immunization studies demonstrated that chimeric EnvGM-CSF enhanced Env-specific antibody and T cell responses compared with wild-type Env. Collectively, these results show that targeting and activation of immune cells using engineered cytokine domains within the protein can improve the immunogenicity of Env subunit vaccines. PMID:21515681

  11. A chimeric HIV-1 envelope glycoprotein trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF) domain induces enhanced antibody and T cell responses.

    PubMed

    van Montfort, Thijs; Melchers, Mark; Isik, Gözde; Menis, Sergey; Huang, Po-Ssu; Matthews, Katie; Michael, Elizabeth; Berkhout, Ben; Schief, William R; Moore, John P; Sanders, Rogier W

    2011-06-24

    An effective HIV-1 vaccine should ideally induce strong humoral and cellular immune responses that provide sterilizing immunity over a prolonged period. Current HIV-1 vaccines have failed in inducing such immunity. The viral envelope glycoprotein complex (Env) can be targeted by neutralizing antibodies to block infection, but several Env properties limit the ability to induce an antibody response of sufficient quantity and quality. We hypothesized that Env immunogenicity could be improved by embedding an immunostimulatory protein domain within its sequence. A stabilized Env trimer was therefore engineered with the granulocyte-macrophage colony-stimulating factor (GM-CSF) inserted into the V1V2 domain of gp120. Probing with neutralizing antibodies showed that both the Env and GM-CSF components of the chimeric protein were folded correctly. Furthermore, the embedded GM-CSF domain was functional as a cytokine in vitro. Mouse immunization studies demonstrated that chimeric Env(GM-CSF) enhanced Env-specific antibody and T cell responses compared with wild-type Env. Collectively, these results show that targeting and activation of immune cells using engineered cytokine domains within the protein can improve the immunogenicity of Env subunit vaccines.

  12. Antibody-Mediated and Cellular Immune Responses Induced in Naive Volunteers by Vaccination with Long Synthetic Peptides Derived from the Plasmodium vivax Circumsporozoite Protein

    PubMed Central

    Arévalo-Herrera, Myriam; Soto, Liliana; Perlaza, Blanca Liliana; Céspedes, Nora; Vera, Omaira; Lenis, Ana Milena; Bonelo, Anilza; Corradin, Giampietro; Herrera, Sócrates

    2011-01-01

    Plasmodium vivax circumsporozoite (CS) protein is a leading malaria vaccine candidate. We describe the characterization of specific immune responses induced in 21 malaria-naive volunteers vaccinated with long synthetic peptides derived from the CS protein formulated in Montanide ISA 720. Both antibody- and cell-mediated immune responses were analyzed. Antibodies were predominantly of IgG1 and IgG3 isotypes, recognized parasite proteins on the immunofluorescent antibody test, and partially blocked sporozoite invasion of hepatoma cell lines in vitro. Peripheral blood mononuclear cells from most volunteers (94%) showed IFN-γ production in vitro upon stimulation with both long signal peptide and short peptides containing CD8+ T-cell epitopes. The relatively limited sample size did not allow conclusions about HLA associations with the immune responses observed. In summary, the inherent safety and tolerability together with strong antibody responses, invasion blocking activity, and the IFN-γ production induced by these vaccine candidates warrants further testing in a phase II clinical trial. PMID:21292876

  13. Immunization with Protein D from Non-Typeable Haemophilus influenzae (NTHi) Induced Cytokine Responses and Bioactive Antibody Production

    PubMed Central

    Davoudi Vijeh Motlagh, Atefeh; Siadat, Seyed Davar; Abedian Kenari, Saeid; Mahdavi, Mehdi; Behrouzi, Ava; Asgarian-Omran, Hossein

    2016-01-01

    Background Outer membrane protein D (PD) is a highly conserved and stable protein in the outer membrane of both encapsulated (typeable) and non-capsulated (non-typeable) strains of Haemophilus influenzae. As an immunogen, PD is a potential candidate vaccine against non-typeable H. influenzae (NTHi) strains. Objectives The aim of this study was to determine the cytokine pattern and the opsonic antibody response in a BALB/c mouse model versus PD from NTHi as a vaccine candidate. Methods Protein D was formulated with Freund’s and outer membrane vesicle (OMV) adjuvants and injected into experimental mice. Sera from all groups were collected. The bioactivity of the anti-PD antibody was determined by opsonophagocytic killing test. To evaluate the cytokine responses, the spleens were assembled, suspension of splenocytes was recalled with antigen, and culture supernatants were analyzed by ELISA for IL-4, IL-10, and IFN-γ cytokines. Results Anti-PD antibodies promoted phagocytosis of NTHi in both immunized mice groups (those administered PD + Freund’s and those administered PD + OMV adjuvants, 92.8% and 83.5%, respectively, compared to the control group). In addition, the concentrations of three cytokines were increased markedly in immunized mice. Conclusions We conclude that immunization with PD protects mice against NTHi. It is associated with improvements in both cellular and humoral immune responses and opsonic antibody activity. PMID:27942362

  14. Neutralizing antibodies to HIV-1 induced by immunization

    PubMed Central

    McCoy, Laura E.

    2013-01-01

    Most neutralizing antibodies act at the earliest steps of viral infection and block interaction of the virus with cellular receptors to prevent entry into host cells. The inability to induce neutralizing antibodies to HIV has been a major obstacle to HIV vaccine research since the early days of the epidemic. However, in the past three years, the definition of a neutralizing antibody against HIV has been revolutionized by the isolation of extremely broad and potent neutralizing antibodies from HIV-infected individuals. Considerable hurdles remain for inducing neutralizing antibodies to a protective level after immunization. Meanwhile, novel technologies to bypass the induction of antibodies are being explored to provide prophylactic antibody-based interventions. This review addresses the challenge of inducing HIV neutralizing antibodies upon immunization and considers notable recent advances in the field. A greater understanding of the successes and failures for inducing a neutralizing response upon immunization is required to accelerate the development of an effective HIV vaccine. PMID:23401570

  15. Rationally Designed Vaccines Targeting the V2 Region of HIV-1 gp120 Induce a Focused, Cross-Clade-Reactive, Biologically Functional Antibody Response.

    PubMed

    Zolla-Pazner, Susan; Powell, Rebecca; Yahyaei, Sara; Williams, Constance; Jiang, Xunqing; Li, Wei; Lu, Shan; Wang, Shixia; Upadhyay, Chitra; Hioe, Catarina E; Totrov, Max; Kong, Xiangpeng

    2016-12-15

    Strong antibody (Ab) responses against V1V2 epitopes of the human immunodeficiency virus type 1 (HIV-1) gp120 envelope (Env) correlated with reduced infection rates in studies of HIV, simian-human immunodeficiency virus (SHIV), and simian immunodeficiency virus (SIV). In order to focus the Ab response on V1V2, we used six V1V2 sequences and nine scaffold proteins to construct immunogens which were tested using various immunization regimens for their ability to induce cross-reactive and biologically active V2 Abs in rabbits. A prime/boost immunization strategy was employed using gp120 DNA and various V1V2-scaffold proteins. The rabbit polyclonal Ab responses (i) were successfully focused on the V1V2 region, with weak or only transient responses to other Env epitopes, (ii) displayed broad cross-reactive binding activity with gp120s and the V1V2 regions of diverse strains from clades B, C, and E, (iii) included V2 Abs with specificities similar to those found in HIV-infected individuals, and (iv) remained detectable ≥1 year after the last boosting dose. Importantly, sera from rabbits receiving V1V2-scaffold immunogens displayed Ab-dependent cellular phagocytosis whereas sera from rabbits receiving only gp120 did not. The results represent the first fully successful example of reverse vaccinology in the HIV vaccine field with rationally designed epitope scaffold immunogens inducing Abs that recapitulate the epitope specificity and biologic activity of the human monoclonal Abs from which the immunogens were designed. Moreover, this is the first immunogenicity study using epitope-targeting, rationally designed vaccine constructs that induced an Fc-mediated activity associated with protection from infection with HIV, SIV, and SHIV. Novel immunogens were designed to focus the antibody response of rabbits on the V1V2 epitopes of HIV-1 gp120 since such antibodies were associated with reduced infection rates of HIV, SIV, and SHIV. The vaccine-induced antibodies were broadly

  16. Analysis of V2 Antibody Responses Induced in Vaccinees in the ALVAC/AIDSVAX HIV-1 Vaccine Efficacy Trial

    PubMed Central

    Zolla-Pazner, Susan; deCamp, Allan C.; Cardozo, Timothy; Karasavvas, Nicos; Gottardo, Raphael; Williams, Constance; Morris, Daryl E.; Tomaras, Georgia; Rao, Mangala; Billings, Erik; Berman, Phillip; Shen, Xiaoying; Andrews, Charla; O'Connell, Robert J.; Ngauy, Viseth; Nitayaphan, Sorachai; de Souza, Mark; Korber, Bette; Koup, Richard; Bailer, Robert T.; Mascola, John R.; Pinter, Abraham; Montefiori, David; Haynes, Barton F.; Robb, Merlin L.; Rerks-Ngarm, Supachai; Michael, Nelson L.; Gilbert, Peter B.; Kim, Jerome H.

    2013-01-01

    The RV144 clinical trial of a prime/boost immunizing regimen using recombinant canary pox (ALVAC-HIV) and two gp120 proteins (AIDSVAX B and E) was previously shown to have a 31.2% efficacy rate. Plasma specimens from vaccine and placebo recipients were used in an extensive set of assays to identify correlates of HIV-1 infection risk. Of six primary variables that were studied, only one displayed a significant inverse correlation with risk of infection: the antibody (Ab) response to a fusion protein containing the V1 and V2 regions of gp120 (gp70-V1V2). This finding prompted a thorough examination of the results generated with the complete panel of 13 assays measuring various V2 Abs in the stored plasma used in the initial pilot studies and those used in the subsequent case-control study. The studies revealed that the ALVAC-HIV/AIDSVAX vaccine induced V2-specific Abs that cross-react with multiple HIV-1 subgroups and recognize both conformational and linear epitopes. The conformational epitope was present on gp70-V1V2, while the predominant linear V2 epitope mapped to residues 165–178, immediately N-terminal to the putative α4β7 binding motif in the mid-loop region of V2. Odds ratios (ORs) were calculated to compare the risk of infection with data from 12 V2 assays, and in 11 of these, the ORs were ≤1, reaching statistical significance for two of the variables: Ab responses to gp70-V1V2 and to overlapping V2 linear peptides. It remains to be determined whether anti-V2 Ab responses were directly responsible for the reduced infection rate in RV144 and whether anti-V2 Abs will prove to be important with other candidate HIV vaccines that show efficacy, however, the results support continued dissection of Ab responses to the V2 region which may illuminate mechanisms of protection from HIV-1 infection and may facilitate the development of an effective HIV-1 vaccine. PMID:23349725

  17. Vaccination-induced protection of lambs against the parasitic nematode Haemonchus contortus correlates with high IgG antibody responses to the LDNF glycan antigen.

    PubMed

    Vervelde, Lonneke; Bakker, Nicole; Kooyman, Frans N J; Cornelissen, Albert W C A; Bank, Christine M C; Nyame, A Kwame; Cummings, Richard D; van Die, Irma

    2003-11-01

    Lambs respond to vaccination against bacteria and viruses but have a poor immunological response to nematodes. Here we report that they are protected against the parasitic nematode Haemonchus contortus after vaccination with excretory/secretory (ES) glycoproteins using Alhydrogel as an adjuvant. Lambs immunized with ES in Alhydrogel and challenged with 300 L3 larvae/kg body weight had a reduction in cumulative egg output of 89% and an increased percentage protection of 54% compared with the adjuvant control group. Compared to the adjuvant dimethyl dioctadecyl ammonium bromide, Alhydrogel induced earlier onset and significantly higher ES- specific IgG, IgA, and IgE antibody responses. In all vaccinated groups a substantial proportion of the antibody response was directed against glycan epitopes, irrespective of the adjuvant used. In lambs vaccinated with ES in Alhydrogel but not in any other group a significant increase was found in antibody levels against the GalNAcbeta1,4 (Fucalpha1,3)GlcNAc (fucosylated LacdiNAc, LDNF) antigen, a carbohydrate antigen that is also involved in the host defense against the human parasite Schistosoma mansoni. In lambs the LDNF-specific response increased from the first immunization onward and was significantly higher in protected lambs. In addition, an isotype switch from LDNF-specific IgM to IgG was induced that correlated with protection. These data demonstrate that hyporesponsiveness of lambs to H. contortus can be overcome by vaccination with ES glycoproteins in a strong T-helper 2 type response-inducing aluminum adjuvant. This combination generated high and specific antiglycan antibody responses that may contribute to the vaccination-induced protection.

  18. Synonymous Deoptimization of Foot-and-Mouth Disease Virus Causes Attenuation In Vivo while Inducing a Strong Neutralizing Antibody Response

    PubMed Central

    Diaz-San Segundo, Fayna; Medina, Gisselle N.; Ramirez-Medina, Elizabeth; Velazquez-Salinas, Lauro; Koster, Marla; Grubman, Marvin J.

    2015-01-01

    ABSTRACT Codon bias deoptimization has been previously used to successfully attenuate human pathogens, including poliovirus, respiratory syncytial virus, and influenza virus. We have applied a similar technology to deoptimize the capsid-coding region (P1) of foot-and-mouth disease virus (FMDV). Despite the introduction of 489 nucleotide changes (19%), synonymous deoptimization of the P1 region rendered a viable FMDV progeny. The resulting strain was stable and reached cell culture titers similar to those obtained for wild-type (WT) virus, but at reduced specific infectivity. Studies in mice showed that 100% of animals inoculated with the FMDV A12 P1 deoptimized mutant (A12-P1 deopt) survived, even when the animals were infected at doses 100 times higher than the dose required to cause death by WT virus. All mice inoculated with the A12-P1 deopt mutant developed a strong antibody response and were protected against subsequent lethal challenge with WT virus at 21 days postinoculation. Remarkably, the vaccine safety margin was at least 1,000-fold higher for A12-P1 deopt than for WT virus. Similar patterns of attenuation were observed in swine, in which animals inoculated with A12-P1 deopt virus did not develop clinical disease until doses reached 1,000 to 10,000 times the dose required to cause severe disease in 2 days with WT A12. Consistently, high levels of antibody titers were induced, even at the lowest dose tested. These results highlight the potential use of synonymous codon pair deoptimization as a strategy to safely attenuate FMDV and further develop live attenuated vaccine candidates to control such a feared livestock disease. IMPORTANCE Foot-and-mouth disease (FMD) is one of the most feared viral diseases that can affect livestock. Although this disease appeared to be contained in developed nations by the end of the last century, recent outbreaks in Europe, Japan, Taiwan, South Korea, etc., have demonstrated that infection can spread rapidly, causing

  19. A Rationally Designed TNF-α Epitope-Scaffold Immunogen Induces Sustained Antibody Response and Alleviates Collagen-Induced Arthritis in Mice

    PubMed Central

    Zhang, Li; Wang, Jin; Xu, Aizhang; Zhong, Conghao; Lu, Wuguang; Deng, Li; Li, Rongxiu

    2016-01-01

    The TNF-α biological inhibitors have significantly improved the clinical outcomes of many autoimmune diseases, in particular rheumatoid arthritis. However, the practical uses are limited due to high costs and the risk of anti-drug antibody responses. Attempts to develop anti-TNF-α vaccines have generated encouraging data in animal models, however, data from clinical trials have not met expectations. In present study, we designed a TNF-α epitope-scaffold immunogen DTNF7 using the transmembrane domain of diphtheria toxin, named DTT as a scaffold. Molecular dynamics simulation shows that the grafted TNF-α epitope is entirely surface-exposed and presented in a native-like conformation while the rigid helical structure of DTT is minimally perturbed, thereby rendering the immunogen highly stable. Immunization of mice with alum formulated DTNF7 induced humoral responses against native TNF-α, and the antibody titer was sustained for more than 6 months, which supports a role of the universal CD4 T cell epitopes of DTT in breaking self-immune tolerance. In a mouse model of rheumatoid arthritis, DTNF7-alum vaccination markedly delayed the onset of collagen-induced arthritis, and reduced incidence as well as clinical score. DTT is presumed safe as an epitope carrier because a catalytic inactive mutant of diphtheria toxin, CRM197 has good clinical safety records as an active vaccine component. Taken all together, we show that DTT-based epitope vaccine is a promising strategy for prevention and treatment of autoimmune diseases. PMID:27658047

  20. Mucosal Immunization of Lactating Female Rhesus Monkeys with a Transmitted/Founder HIV-1 Envelope Induces Strong Env-Specific IgA Antibody Responses in Breast Milk

    PubMed Central

    Fouda, Genevieve G. A.; Amos, Joshua D.; Wilks, Andrew B.; Pollara, Justin; Ray, Caroline A.; Chand, Anjali; Kunz, Erika L.; Liebl, Brooke E.; Whitaker, Kaylan; Carville, Angela; Smith, Shannon; Colvin, Lisa; Pickup, David J.; Staats, Herman F.; Overman, Glenn; Eutsey-Lloyd, Krissey; Parks, Robert; Chen, Haiyan; LaBranche, Celia; Barnett, Susan; Tomaras, Georgia D.; Ferrari, Guido; Montefiori, David C.; Liao, Hua-Xin; Letvin, Norman L.; Haynes, Barton F.

    2013-01-01

    We previously demonstrated that vaccination of lactating rhesus monkeys with a DNA prime/vector boost strategy induces strong T-cell responses but limited envelope (Env)-specific humoral responses in breast milk. To improve vaccine-elicited antibody responses in milk, hormone-induced lactating rhesus monkeys were vaccinated with a transmitted/founder (T/F) HIV Env immunogen in a prime-boost strategy modeled after the moderately protective RV144 HIV vaccine. Lactating rhesus monkeys were intramuscularly primed with either recombinant DNA (n = 4) or modified vaccinia virus Ankara (MVA) poxvirus vector (n = 4) expressing the T/F HIV Env C.1086 and then boosted twice intramuscularly with C.1086 gp120 and the adjuvant MF59. The vaccines induced Env-binding IgG and IgA as well as neutralizing and antibody-dependent cellular cytotoxicity (ADCC) responses in plasma and milk of most vaccinated animals. Importantly, plasma neutralization titers against clade C HIV variants MW965 (P = 0.03) and CAP45 (P = 0.04) were significantly higher in MVA-primed than in DNA-primed animals. The superior systemic prime-boost regimen was then compared to a mucosal-boost regimen, in which animals were boosted twice intranasally with C.1086 gp120 and the TLR 7/8 agonist R848 following the same systemic prime. While the systemic and mucosal vaccine regimens elicited comparable levels of Env-binding IgG antibodies, mucosal immunization induced significantly stronger Env-binding IgA responses in milk (P = 0.03). However, the mucosal regimen was not as potent at inducing functional IgG responses. This study shows that systemic MVA prime followed by either intranasal or systemic protein boosts can elicit strong humoral responses in breast milk and may be a useful strategy to interrupt postnatal HIV-1 transmission. PMID:23596289

  1. Early regenerative responses induced by monoclonal antibodies directed against a surface glycoprotein of goldfish retinal ganglion cells.

    PubMed Central

    Schwartz, M; Eshhar, N

    1984-01-01

    Monoclonal antibodies directed primarily against antigenic determinants associated with the goldfish optic nerve were prepared and characterized. One selected clone 23-4-C(IgG2a), detected antigenic determinants of glycoprotein nature with an apparent mol. wt. of 140 000. Following injury the level of these molecules increased with a peak at 5-7 days after the lesion (2- to 3-fold higher than the basal level). The results strongly suggest that the increase derives, at least partially, from a real increment in the level of these molecules in the retinal ganglion cells rather than from changes in accessibility. Immunofluorescence studies indicate that the retinal ganglion cells carry the antigenicity. Intraocular injection of the monoclonal antibodies, concomitantly with crush injury, resulted in an earlier and higher regenerative response, reflected by sprouting capacity, protein synthesis and accumulation of radiolabeled material in the tectum contralateral to the side of injury. This may indicate that the antibodies directly activate retinal cells via interaction with surface molecules. Alternatively, the antibodies may be directed against surface molecules which are associated with axonal growth inhibitors, and may therefore mask these surface antigens from further interaction with their native substrate. Images Fig. 4. Fig. 5. Fig. 7. PMID:6204857

  2. Subversion of early innate antiviral responses during antibody-dependent enhancement of Dengue virus infection induces severe disease in immunocompetent mice.

    PubMed

    Costa, Vivian V; Fagundes, Caio T; Valadão, Deborah F; Ávila, Thiago V; Cisalpino, Daniel; Rocha, Rebeca F; Ribeiro, Lucas S; Ascenção, Fernando R; Kangussu, Lucas M; Celso, M Q; Astigarraga, Ruiz G; Gouveia, Frederico L; Silva, Tarcília A; Bonaventura, Daniela; Sampaio, Divaldo de Almeida; Leite, Ana Cristina L; Teixeira, Mauro M; Souza, Danielle G

    2014-08-01

    Dengue is a mosquito-borne disease caused by one of four serotypes of Dengue virus (DENV-1-4). Epidemiologic and observational studies demonstrate that the majority of severe dengue cases, dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS), occurs predominantly in either individuals with cross-reactive immunity following a secondary heterologous infection or in infants with primary DENV infections born from dengue-immune mothers, suggesting that B-cell-mediated and antibody responses impact on disease evolution. We demonstrate here that B cells play a pivotal role in host responses against primary DENV infection in mice. After infection, μMT(-/-) mice showed increased viral loads followed by severe disease manifestation characterized by intense thrombocytopenia, hemoconcentration, cytokine production and massive liver damage that culminated in death. In addition, we show that poly and monoclonal anti-DENV-specific antibodies can sufficiently increase viral replication through a suppression of early innate antiviral responses and enhance disease manifestation, so that a mostly non-lethal illness becomes a fatal disease resembling human DHF/DSS. Finally, treatment with intravenous immunoglobulin containing anti-DENV antibodies confirmed the potential enhancing capacity of subneutralizing antibodies to mediate virus infection and replication and induce severe disease manifestation of DENV-infected mice. Thus, our results show that humoral responses unleashed during DENV infections can exert protective or pathological outcomes and provide insight into the pathogenesis of this important human pathogen.

  3. Antibody response is required for protection from Theiler's virus-induced encephalitis in C57BL/6 mice in the absence of CD8+ T cells.

    PubMed

    Kang, Bong-Su; Palma, Joann P; Lyman, Michael A; Dal Canto, Mauro; Kim, Byung S

    2005-09-15

    Intracerebral infection of susceptible mice with Theiler's murine encephalomyelitis virus (TMEV) induces immune-mediated demyelinating disease and this system serves as a relevant infectious model for human multiple sclerosis. It was previously shown that beta2M-deficient C57BL/6 mice lacking functional CD8+ T cells display increased viral persistence and enhanced susceptibility to TMEV-induced demyelination, and yet the majority of mice are free of clinical signs. To understand the mechanisms involved in this general resistance of C57BL/6 mice in the absence of CTL responses, mice (muMT) deficient in the B-cell compartment lacking membrane IgM molecules were treated with anti-CD8 antibody and then infected with TMEV. Although little difference in the proliferative responses of peripheral T cells to UV-inactivated TMEV and the resistance to demyelinating disease was observed between virus-infected muMT and control B6 mice, the levels of CD4(+) T cells were higher in the CNS of muMT mice. However, after treatment with anti-CD8 antibody, 100% of the mice displayed clinical gray matter disease and prolonged viral persistence in muMT mice, while only 10% of B6 mice showed clinical symptoms and very low viral persistence. Transfusion of sera from TMEV-infected B6 mice into anti-CD8 antibody-treated muMT mice partially restored resistance to virus-induced encephalitis. These results indicate that the early anti-viral antibody response is also important in the protection from TMEV-induced encephalitis particularly in the absence of CD8+ T cells.

  4. Antibody response is required for protection from Theiler's virus-induced encephalitis in C57BL/6 mice in the absence of CD8{sup +} T cells

    SciTech Connect

    Kang, B.-S.; Palma, Joann P.; Lyman, Michael A.; Dal Canto, Mauro; Kim, Byung S. . E-mail: bskim@northwestern.edu

    2005-09-15

    Intracerebral infection of susceptible mice with Theiler's murine encephalomyelitis virus (TMEV) induces immune-mediated demyelinating disease and this system serves as a relevant infectious model for human multiple sclerosis. It was previously shown that {beta}{sub 2}M-deficient C57BL/6 mice lacking functional CD8{sup +} T cells display increased viral persistence and enhanced susceptibility to TMEV-induced demyelination, and yet the majority of mice are free of clinical signs. To understand the mechanisms involved in this general resistance of C57BL/6 mice in the absence of CTL responses, mice ({mu}MT) deficient in the B-cell compartment lacking membrane IgM molecules were treated with anti-CD8 antibody and then infected with TMEV. Although little difference in the proliferative responses of peripheral T cells to UV-inactivated TMEV and the resistance to demyelinating disease was observed between virus-infected {mu}MT and control B6 mice, the levels of CD4{sup +} T cells were higher in the CNS of {mu}MT mice. However, after treatment with anti-CD8 antibody, 100% of the mice displayed clinical gray matter disease and prolonged viral persistence in {mu}MT mice, while only 10% of B6 mice showed clinical symptoms and very low viral persistence. Transfusion of sera from TMEV-infected B6 mice into anti-CD8 antibody-treated {mu}MT mice partially restored resistance to virus-induced encephalitis. These results indicate that the early anti-viral antibody response is also important in the protection from TMEV-induced encephalitis particularly in the absence of CD8{sup +} T cells.

  5. Inducible costimulator is required for type 2 antibody isotype switching but not T helper cell type 2 responses in chronic nematode infection

    PubMed Central

    Loke, P'ng; Zang, Xingxing; Hsuan, Lisa; Waitz, Rebecca; Locksley, Richard M.; Allen, Judith E.; Allison, James P.

    2005-01-01

    Inducible costimulator (ICOS) has been suggested to perform an important role in T helper cell type 2 (Th2) responses, germinal center formation, and isotype switching. The role of ICOS in chronic Th2 responses was studied in a nematode model with the filarial parasite, Brugia malayi. Contrary to expectations, we did not observe a significant defect in IL-4-producing Th2 cells in ICOS–/– mice or in eosinophil recruitment. We also found that ICOS was not required for the differentiation of alternatively activated macrophages (AAMΦ) that express Ym1 and Fizz1. Although the production of IgE was slightly reduced in ICOS–/– mice, this was not as significant as in CD28–/– mice. In contrast to live infection, the primary response of ICOS–/– mice immunized with soluble B. malayi antigen and complete Freund's adjuvant resulted in significantly fewer IL-4-producing cells in the lymph nodes. As previously reported, we observed a defect in antibody isotype switching toward the IgG1 isotype in ICOS–/– mice during live infection. Interestingly, there was a significant enhancement of parasite-specific IgG3 isotype antibodies. CD28–/– and MHC class II–/– mice also had enhanced parasite-specific IgG3 isotype antibodies. Our results suggest that ICOS is not required to maintain a chronic cellular Th2 response. The primary role of ICOS in a chronic helminth infection could be to drive antibodies toward type 2 isotypes. T-independent antibody response to the parasite could be enhanced in the absence of costimulation and T cell help. PMID:15994233

  6. How antibodies use complement to regulate antibody responses.

    PubMed

    Sörman, Anna; Zhang, Lu; Ding, Zhoujie; Heyman, Birgitta

    2014-10-01

    Antibodies, forming immune complexes with their specific antigen, can cause complete suppression or several 100-fold enhancement of the antibody response. Immune complexes containing IgG and IgM may activate complement and in such situations also complement components will be part of the immune complex. Here, we review experimental data on how antibodies via the complement system upregulate specific antibody responses. Current data suggest that murine IgG1, IgG2a, and IgG2b upregulate antibody responses primarily via Fc-receptors and not via complement. In contrast, IgM and IgG3 act via complement and require the presence of complement receptors 1 and 2 (CR1/2) expressed on both B cells and follicular dendritic cells. Complement plays a crucial role for antibody responses not only to antigen complexed to antibodies, but also to antigen administered alone. Lack of C1q, but not of Factor B or MBL, severely impairs antibody responses suggesting involvement of the classical pathway. In spite of this, normal antibody responses are found in mice lacking several activators of the classical pathway (complement activating natural IgM, serum amyloid P component (SAP), specific intracellular adhesion molecule-grabbing non-integrin R1 (SIGN-R1) or C-reactive protein. Possible explanations to these observations will be discussed.

  7. Neonatal Immunization with a Single IL-4/Antigen Dose Induces Increased Antibody Responses after Challenge Infection with Equine Herpesvirus Type 1 (EHV-1) at Weanling Age

    PubMed Central

    Wagner, Bettina; Perkins, Gillian; Babasyan, Susanna; Freer, Heather; Keggan, Alison; Goodman, Laura B.; Glaser, Amy; Torsteinsdóttir, Sigurbjorg; Svansson, Vilhjálmur; Björnsdóttir, Sigríður

    2017-01-01

    Neonatal foals respond poorly to conventional vaccines. These vaccines typically target T-helper (Th) cell dependent B-cell activation. However, Th2-cell immunity is impaired in foals during the first three months of life. In contrast, neonatal basophils are potent interleukin-4 (IL-4) producers. The purpose of this study was to develop a novel vaccine triggering the natural capacity of neonatal basophils to secrete IL-4 and to evaluate if vaccination resulted in B-cell activation and antibody production against EHV-1 glycoprotein C (gC). Neonatal vaccination was performed by oral biotinylated IgE (IgE-bio) treatment at birth followed by intramuscular injection of a single dose of streptavidin-conjugated gC/IL-4 fusion protein (Sav-gC/IL-4) for crosslinking of receptor-bound IgE-bio (group 1). Neonates in group 2 received the intramuscular Sav-gC/IL-4 vaccine only. Group 3 remained non-vaccinated at birth. After vaccination, gC antibody production was not detectable. The ability of the vaccine to induce protection was evaluated by an EHV-1 challenge infection after weaning at 7 months of age. Groups 1 and 2 responded to EHV-1 infection with an earlier onset and overall significantly increased anti-gC serum antibody responses compared to control group 3. In addition, group 1 weanlings had a decreased initial fever peak after infection indicating partial protection from EHV-1 infection. This suggested that the neonatal vaccination induced a memory B-cell response at birth that was recalled at weanling age after EHV-1 challenge. In conclusion, early stimulation of neonatal immunity via the innate arm of the immune system can induce partial protection and increased antibody responses against EHV-1. PMID:28045974

  8. IKK-induced NF-κB1 p105 proteolysis is critical for B cell antibody responses to T cell–dependent antigen

    PubMed Central

    Jacque, Emilie; Schweighoffer, Edina; Visekruna, Alexander; Papoutsopoulou, Stamatia; Janzen, Julia; Zillwood, Rachel; Tarlinton, David M.; Tybulewicz, Victor L.J.

    2014-01-01

    The importance of IκB kinase (IKK)–induced proteolysis of NF-κB1 p105 in B cells was investigated using Nfkb1SSAA/SSAA mice, in which this NF-κB signaling pathway is blocked. Nfkb1SSAA mutation had no effect on the development and homeostasis of follicular mature (FM) B cells. However, analysis of mixed bone marrow chimeras revealed that Nfkb1SSAA/SSAA FM B cells were completely unable to mediate T cell–dependent antibody responses. Nfkb1SSAA mutation decreased B cell antigen receptor (BCR) activation of NF-κB in FM B cells, which selectively blocked BCR stimulation of cell survival and antigen-induced differentiation into plasmablasts and germinal center B cells due to reduced expression of Bcl-2 family proteins and IRF4, respectively. In contrast, the antigen-presenting function of FM B cells and their BCR-induced migration to the follicle T cell zone border, as well as their growth and proliferation after BCR stimulation, were not affected. All of the inhibitory effects of Nfkb1SSAA mutation on B cell functions were rescued by normalizing NF-κB activation genetically. Our study identifies critical B cell-intrinsic functions for IKK-induced NF-κB1 p105 proteolysis in the antigen-induced survival and differentiation of FM B cells, which are essential for T-dependent antibody responses. PMID:25225457

  9. Serum and colostrum antibody responses induced by jet-injection of sheep with DNA encoding a Cryptosporidium parvum antigen.

    PubMed

    Jenkins, M; Kerr, D; Fayer, R; Wall, R

    1995-12-01

    In an effort to generate high titer colostrum for immunotherapy of cryptosporidiosis, a study was conducted to test the efficacy of immunizing sheep with recombinant plasmid DNA (pCMV-CP15/60) encoding epitopes of 15 and 60 kDa surface antigens of Cryptosporidium parvum sporozoites. The plasmid DNA was used to immunize preparturient ewes at three dose levels by jet-injection into either hind limb muscle (IM) or mammary tissue (IMAM). Regardless of route of injection, a dose-dependent anti-CP15/60 immunoglobulin response was observed in sera and colostrum from sheep immunized with pCMV-CP15/60 plasmid DNA. High titer antibody responses were observed in one of three animals per group receiving an IM injection of 100 or 1000 micrograms pCMV-CP15/60. IMAM immunization with 100 or 1000 micrograms pCMV-CP15/60 plasmid DNA elicited higher titer colostrum responses and more consistent serum responses compared to IM injections. A negligible serum and colostrum anti-CP15/60 response was observed in ewes injected IM with 10 micrograms pCMV-CP15/60 or 1000 micrograms control plasmid DNA. Immunoblotting of native C. parvum sporozoite/oocyst protein with hyperimmune serum and colostrum corroborated the increased titers against CP15/60 antigen. Serum and colostrum antibodies from pCMV-CP15/60-immunized sheep were eluted from native CP15 protein and bound a surface antigen of C. parvum sporozoites as indicated by indirect immunofluorescence staining.

  10. Controlled Human Malaria Infection (CHMI) differentially affects cell-mediated and antibody responses to CSP and AMA1 induced by adenovirus vaccines with and without DNA-priming.

    PubMed

    Sedegah, Martha; Hollingdale, Michael R; Farooq, Fouzia; Ganeshan, Harini; Belmonte, Maria; Huang, Jun; Abot, Esteban; Limbach, Keith; Chuang, Ilin; Tamminga, Cindy; Epstein, Judith E; Villasante, Eileen

    2015-01-01

    We have previously shown that a DNA-prime followed by an adenovirus-5 boost vaccine containing CSP and AMA1 (DNA/Ad) successfully protected 4 of 15 subjects to controlled human malaria infection (CHMI). However, the adenovirus-5 vaccine alone (AdCA) failed to induce protection despite eliciting cellular responses that were often higher than those induced by DNA/Ad. Here we determined the effect of CHMI on pre-CHMI cellular and antibody responses against CSP and AMA1 expressed as fold-changes in activities. Generally, in the DNA/Ad trial, CHMI caused pre-CHMI ELISpot IFN-γ and CD8+ T cell IFN-γ responses of the protected subjects to fall but among non-protected subjects, CHMI caused rises of pre-CHMI ELISpot IFN-γ but falls of CD8+ T cell IFN-γ responses. In contrast in the AdCA trial, CHMI caused both pre-CHMI ELISpot IFN-γ and CD8+ T cell IFN-γ responses of the AdCA subjects to fall. We suggest that the falls in activities are due to migration of peripheral CD8+ T cells to the liver in response to developing liver stage parasites, and this fall, in the DNA/Ad trial, is masked in ELISpot responses of the non-protected subjects by rises in other immune cell types. In addition, CHMI caused falls in antibody activities of protected subjects, but rises in non-protected subjects in both trials to CSP, and dramatically in the AdCA trial to AMA1, reaching 380 μg/ml that is probably due to boosting by transient blood stage infection before chloroquine treatment. Taken together, these results further define differences in cellular responses between DNA/Ad and AdCA trials, and suggest that natural transmission may boost responses induced by these malaria vaccines especially when protection is not achieved.

  11. Controlled Human Malaria Infection (CHMI) differentially affects cell-mediated and antibody responses to CSP and AMA1 induced by adenovirus vaccines with and without DNA-priming

    PubMed Central

    Sedegah, Martha; Hollingdale, Michael R; Farooq, Fouzia; Ganeshan, Harini; Belmonte, Maria; Huang, Jun; Abot, Esteban; Limbach, Keith; Chuang, Ilin; Tamminga, Cindy; Epstein, Judith E; Villasante, Eileen

    2015-01-01

    We have previously shown that a DNA-prime followed by an adenovirus-5 boost vaccine containing CSP and AMA1 (DNA/Ad) successfully protected 4 of 15 subjects to controlled human malaria infection (CHMI). However, the adenovirus-5 vaccine alone (AdCA) failed to induce protection despite eliciting cellular responses that were often higher than those induced by DNA/Ad. Here we determined the effect of CHMI on pre-CHMI cellular and antibody responses against CSP and AMA1 expressed as fold-changes in activities. Generally, in the DNA/Ad trial, CHMI caused pre-CHMI ELISpot IFN-γ and CD8+ T cell IFN-γ responses of the protected subjects to fall but among non-protected subjects, CHMI caused rises of pre-CHMI ELISpot IFN-γ but falls of CD8+ T cell IFN-γ responses. In contrast in the AdCA trial, CHMI caused both pre-CHMI ELISpot IFN-γ and CD8+ T cell IFN-γ responses of the AdCA subjects to fall. We suggest that the falls in activities are due to migration of peripheral CD8+ T cells to the liver in response to developing liver stage parasites, and this fall, in the DNA/Ad trial, is masked in ELISpot responses of the non-protected subjects by rises in other immune cell types. In addition, CHMI caused falls in antibody activities of protected subjects, but rises in non-protected subjects in both trials to CSP, and dramatically in the AdCA trial to AMA1, reaching 380 μg/ml that is probably due to boosting by transient blood stage infection before chloroquine treatment. Taken together, these results further define differences in cellular responses between DNA/Ad and AdCA trials, and suggest that natural transmission may boost responses induced by these malaria vaccines especially when protection is not achieved. PMID:26292027

  12. Relation of activation-induced deaminase (AID) expression with antibody response to A(H1N1)pdm09 vaccination in HIV-1 infected patients.

    PubMed

    Cagigi, Alberto; Pensieroso, Simone; Ruffin, Nicolas; Sammicheli, Stefano; Thorstensson, Rigmor; Pan-Hammarström, Qiang; Hejdeman, Bo; Nilsson, Anna; Chiodi, Francesca

    2013-04-26

    The relevance of CD4+T-cells, viral load and age in the immunological response to influenza infection and vaccination in HIV-1 infected individuals has previously been pointed out. Our study aimed at assessing, in the setting of 2009 A(H1N1)pdm09 influenza vaccination, whether quantification of activation-induced deaminase (AID) expression in blood B-cells may provide additional indications for predicting antibody response to vaccination in HIV-1 infected patients with similar CD4+T-cell counts and age. Forty-seven healthy controls, 37 ART-treated and 17 treatment-naïve HIV-1 infected patients were enrolled in the study. Blood was collected prior to A(H1N1)pdm09 vaccination and at 1, 3 and 6 months after vaccination. Antibody titers to A(H1N1)pdm09 vaccine were measured by hemagglutination inhibition (HI) assay while the mRNA expression levels of AID were measured by quantitative real time PCR. Upon B-cell activation in vitro, AID increase correlated to antibody response to the A(H1N1)pdm09 vaccine at 1 month after vaccination in all individuals. In addition, the maximum expression levels of AID were significantly higher in those individuals who still carried protective levels of A(H1N1)pdm09 antibodies after 6 months from vaccination. No correlation was found between CD4+T-cell counts or age at vaccination or HIV-1 viral load and levels of A(H1N1)pdm09 antibodies. Assessing AID expression before vaccination may be an additional useful tool for defining a vaccination strategy in immune-compromised individuals at risk of immunization failure.

  13. Vaccination of dogs with canine parvovirus type 2b (CPV-2b) induces neutralising antibody responses to CPV-2a and CPV-2c.

    PubMed

    Wilson, Stephen; Illambas, Joanna; Siedek, Elisabeth; Stirling, Catrina; Thomas, Anne; Plevová, Edita; Sture, Gordon; Salt, Jeremy

    2014-09-22

    Since the identification of canine parvovirus type 2, three variants have subsequently been observed differing from the historical CPV-2 and each other by 1-2 amino acids only. As a result there has been considerable research into differential diagnostics, with some researchers indicating there is a need for new vaccines containing different strains of CPV-2. In this study we investigated whether vaccination with a CPV-2b containing vaccine would induce cross-reactive antibody responses to the other CPV-2 variants. Two studies where dogs were vaccinated with a multivalent vaccine, subsequently challenged with CPV-2b and sera samples analysed are presented. Six week old pups with defined serological status were vaccinated twice, three weeks apart and challenged either 5 weeks (MDA override study) or one year after vaccination (duration of immunity study). Sera samples were collected before each vaccination and at periods throughout each study. In each study the antibody profiles were very similar; serological responses against CPV-2a, CPV-2b and CPV-2c were higher than those for CPV-2. Nevertheless, responses against CPV-2 were well above levels considered clinically protective. In each study dogs also showed a rapid increase in antibody titres following vaccination, reached a plateau following second vaccination with a slight decline to challenge after which rapid anamnestic responses were seen. Evaluation of the serological responses suggests vaccination with CPV-2b would cross-protect against CPV-2a and CPV-2c, as well as against CPV-2 which is now extinct in the field. In conclusion we have demonstrated that vaccination of minimum aged dogs with a multivalent vaccine containing the CPV-2b variant strain will induce serological responses which are cross-reactive against all currently circulating field strains, CPV-2a and CPV-2c, and the now extinct field strain CPV-2. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. A multi-subunit Chlamydia vaccine inducing neutralizing antibodies and strong IFN-γ⁺ CMI responses protects against a genital infection in minipigs.

    PubMed

    Bøje, Sarah; Olsen, Anja Weinreich; Erneholm, Karin; Agerholm, Jørgen Steen; Jungersen, Gregers; Andersen, Peter; Follmann, Frank

    2016-02-01

    Chlamydia is the most widespread sexually transmitted bacterial disease and a prophylactic vaccine is highly needed. Ideally, this vaccine is required to induce a combined response of Th1 cell-mediated immune (CMI) response in concert with neutralizing antibodies. Using a novel Göttingen minipig animal model, we evaluated the immunogenicity and efficacy of a multi-subunit vaccine formulated in the strong Th1-inducing adjuvant CAF01. We evaluated a mixture of two fusion proteins (Hirep1 and CTH93) designed to promote either neutralizing antibodies or cell-mediated immunity, respectively. Hirep1 is a novel immunogen based on the variant domain (VD) 4 region from major outer membrane protein (MOMP) serovar (Sv) D, SvE and SvF, and CTH93 is a fusion molecule of three antigens (CT043, CT414 and MOMP). Pigs were immunized twice intramuscularly with either Hirep1+CTH93/CAF01, UV-inactivated Chlamydia trachomatis SvD bacteria (UV-SvD/CAF01) or CAF01. The Hirep1+CTH93/CAF01 vaccine induced a strong CMI response against the vaccine antigens and high titers of antibodies, particularly against the VD4 region of MOMP. Sera from Hirep1+CTH93/CAF01 immunized pigs neutralized C. trachomatis SvD and SvF infectivity in vitro. Both Hirep1+CTH93/CAF01 and UV-SvD/CAF01 vaccination protected pigs against a vaginal C. trachomatis SvD infection. In conclusion, the Hirep1+CTH93/CAF01 vaccine proved highly immunogenic and equally protective as UV-SvD/CAF01 showing promise for the development of a subunit vaccine against Chlamydia.

  15. A multi-subunit Chlamydia vaccine inducing neutralizing antibodies and strong IFN-γ+ CMI responses protects against a genital infection in minipigs

    PubMed Central

    Bøje, Sarah; Olsen, Anja Weinreich; Erneholm, Karin; Agerholm, Jørgen Steen; Jungersen, Gregers; Andersen, Peter; Follmann, Frank

    2016-01-01

    Chlamydia is the most widespread sexually transmitted bacterial disease and a prophylactic vaccine is highly needed. Ideally, this vaccine is required to induce a combined response of Th1 cell-mediated immune (CMI) response in concert with neutralizing antibodies. Using a novel Göttingen minipig animal model, we evaluated the immunogenicity and efficacy of a multi-subunit vaccine formulated in the strong Th1-inducing adjuvant CAF01. We evaluated a mixture of two fusion proteins (Hirep1 and CTH93) designed to promote either neutralizing antibodies or cell-mediated immunity, respectively. Hirep1 is a novel immunogen based on the variant domain (VD) 4 region from major outer membrane protein (MOMP) serovar (Sv) D, SvE and SvF, and CTH93 is a fusion molecule of three antigens (CT043, CT414 and MOMP). Pigs were immunized twice intramuscularly with either Hirep1+CTH93/CAF01, UV-inactivated Chlamydia trachomatis SvD bacteria (UV-SvD/CAF01) or CAF01. The Hirep1+CTH93/CAF01 vaccine induced a strong CMI response against the vaccine antigens and high titers of antibodies, particularly against the VD4 region of MOMP. Sera from Hirep1+CTH93/CAF01 immunized pigs neutralized C. trachomatis SvD and SvF infectivity in vitro. Both Hirep1+CTH93/CAF01 and UV-SvD/CAF01 vaccination protected pigs against a vaginal C. trachomatis SvD infection. In conclusion, the Hirep1+CTH93/CAF01 vaccine proved highly immunogenic and equally protective as UV-SvD/CAF01 showing promise for the development of a subunit vaccine against Chlamydia. PMID:26268662

  16. Somatic diversification of antibody responses

    SciTech Connect

    Zheng, B.; Kelsoe, G.; Han, S.

    1996-01-01

    The humoral immune response is the culmination of a complex series of cellular interactions and migrations that define specific pathways of antigen-driven B cell differentiation. There are about 5 x 10{sup 8} and 10{sup 12} B lymphocyte lineage cells in the mouse and human, respectively, after the immune system has been established. B lymphocytes perceive antigen in their environment by virtue of their surface receptors (B cell receptor; BCR), in which membrane-associated immunoglobulin (mIg) is the antigen recognition substructure and the associated Ig{alpha} and Ig{beta} molecules transduce the activation signal. mIgs have extensive structural homology to immunoglobulins which are secreted by differentiated daughter cells following antigen stimulation. The specificity of a given BCR or antibody is created by a programmed successive process of gene rearrangements, first of D to J segments, then of V to DJ segments of the Ig heavy (H)-chain gene loci, and finally, of V to J segments of the Ig light (L)-chain gene loci. V,D, and J elements are assembled in a enormous number of combinations; variability is further achieved at the break-points of joining segments, including the insertion of non-germline-encoded nucleotide (N)sequences at the borders of V(D)J points, hence the almost unlimited specificities of the B cells or antibody repertoire. 129 refs.

  17. Persistent Low-Level Replication of SIVΔnef Drives Maturation of Antibody and CD8 T Cell Responses to Induce Protective Immunity against Vaginal SIV Infection

    PubMed Central

    Gillis, Jacqueline; Wong, Fay E.; Yu, Yi; Camp, Jeremy V.; Li, Qingsheng; Connole, Michelle; Li, Yuan; Lifson, Jeffrey D.; Li, Wenjun; Keele, Brandon F.; Kozlowski, Pamela A.; Desrosiers, Ronald C.; Haase, Ashley T.

    2016-01-01

    Defining the correlates of immune protection conferred by SIVΔnef, the most effective vaccine against SIV challenge, could enable the design of a protective vaccine against HIV infection. Here we provide a comprehensive assessment of immune responses that protect against SIV infection through detailed analyses of cellular and humoral immune responses in the blood and tissues of rhesus macaques vaccinated with SIVΔnef and then vaginally challenged with wild-type SIV. Despite the presence of robust cellular immune responses, animals at 5 weeks after vaccination displayed only transient viral suppression of challenge virus, whereas all macaques challenged at weeks 20 and 40 post-SIVΔnef vaccination were protected, as defined by either apparent sterile protection or significant suppression of viremia in infected animals. Multiple parameters of CD8 T cell function temporally correlated with maturation of protection, including polyfunctionality, phenotypic differentiation, and redistribution to gut and lymphoid tissues. Importantly, we also demonstrate the induction of a tissue-resident memory population of SIV-specific CD8 T cells in the vaginal mucosa, which was dependent on ongoing low-level antigenic stimulation. Moreover, we show that vaginal and serum antibody titers inversely correlated with post-challenge peak viral load, and we correlate the accumulation and affinity maturation of the antibody response to the duration of the vaccination period as well as to the SIVΔnef antigenic load. In conclusion, maturation of SIVΔnef-induced CD8 T cell and antibody responses, both propelled by viral persistence in the gut mucosa and secondary lymphoid tissues, results in protective immune responses that are able to interrupt viral transmission at mucosal portals of entry as well as potential sites of viral dissemination. PMID:27959961

  18. Intranasal Administration of Novel Chitosan Nanoparticle/DNA Complexes Induces Antibody Response to Hepatitis B Surface Antigen in Mice.

    PubMed

    Lebre, F; Borchard, G; Faneca, H; Pedroso de Lima, M C; Borges, O

    2016-02-01

    The generation of strong pathogen-specific immune responses at mucosal surfaces where hepatitis B virus (HBV) transmission can occur is still a major challenge. Therefore, new vaccines are urgently needed in order to overcome the limitations of existing parenteral ones. Recent studies show that this may be achieved by intranasal immunization. Chitosan has gained attention as a nonviral gene delivery system; however, its use in vivo is limited due to low transfection efficiency mostly related to strong interaction between the negatively charged DNA and the positively charged chitosan. We hypothesize that the adsorption of negatively charged human serum albumin (HSA) onto the surface of the chitosan particles would facilitate the intracellular release of DNA, enhancing transfection activity. Here, we demonstrate that a robust systemic immune response was induced after vaccination using HSA-loaded chitosan nanoparticle/DNA (HSA-CH NP/DNA) complexes. Furthermore, intranasal immunization with HSA-CH NP/DNA complexes induced HBV specific IgA in nasal and vaginal secretions; no systemic or mucosal responses were detected after immunization with DNA alone. Overall, our results show that chitosan-based DNA complexes elicited both humoral and mucosal immune response, making them an interesting and valuable gene delivery system for nasal vaccination against HBV.

  19. Antibody and T cell responses induced in chickens immunized with avian influenza virus N1 and NP DNA vaccine with chicken IL-15 and IL-18.

    PubMed

    Lim, Kian-Lam; Jazayeri, Seyed Davoud; Yeap, Swee Keong; Mohamed Alitheen, Noorjahan Banu; Bejo, Mohd Hair; Ideris, Aini; Omar, Abdul Rahman

    2013-12-01

    We had examined the immunogenicity of a series of plasmid DNAs which include neuraminidase (NA) and nucleoprotein (NP) genes from avian influenza virus (AIV). The interleukin-15 (IL-15) and interleukin-18 (IL-18) as genetic adjuvants were used for immunization in combination with the N1 and NP AIV genes. In the first trial, 8 groups of chickens were established with 10 specific-pathogen-free (SPF) chickens per group while, in the second trial 7 SPF chickens per group were used. The overall N1 enzyme-linked immunosorbent assay (ELISA) titer in chickens immunized with the pDis/N1+pDis/IL-15 was higher compared to the chickens immunized with the pDis/N1 and this suggesting that chicken IL-15 could play a role in enhancing the humoral immune response. Besides that, the chickens that were immunized at 14-day-old (Trial 2) showed a higher N1 antibody titer compared to the chickens that were immunized at 1-day-old (Trial 1). Despite the delayed in NP antibody responses, the chickens co-administrated with IL-15 were able to induce earlier and higher antibody response compared to the pDis/NP and pDis/NP+pDis/IL-18 inoculated groups. The pDis/N1+pDis/IL-15 inoculated chickens also induced higher CD8+ T cells increase than the pDis/N1 group in both trials (P<0.05). The flow cytometry results from both trials demonstrated that the pDis/N1+pDis/IL-18 groups were able to induce CD4+ T cells higher than the pDis/N1 group (P<0.05). Meanwhile, pDis/N1+pDis/IL-18 group was able to induce CD8+ T cells higher than the pDis/N1 group (P<0.05) in Trial 2 only. In the present study, pDis/NP was not significant (P>0.05) in inducing CD4+ and CD8+ T cells when co-administered with the pDis/IL-18 in both trials in comparison to the pDis/NP. Our data suggest that the pDis/N1+pDis/IL-15 combination has the potential to be used as a DNA vaccine against AIV in chickens.

  20. Potent CD4+ T cell-associated antitumor memory responses induced by trifunctional bispecific antibodies in combination with immune checkpoint inhibition

    PubMed Central

    Deppisch, Nina; Ruf, Peter; Eißler, Nina; Lindhofer, Horst; Mocikat, Ralph

    2017-01-01

    Combinatorial approaches of immunotherapy hold great promise for the treatment of malignant disease. Here, we examined the potential of combining an immune checkpoint inhibitor and trifunctional bispecific antibodies (trAbs) in a preclinical melanoma mouse model using surrogate antibodies of Ipilimumab and Catumaxomab, both of which have already been approved for clinical use. The specific binding arms of trAbs redirect T cells to tumor cells and trigger direct cytotoxicity, while the Fc region activates accessory cells eventually giving rise to a long-lasting immunologic memory. We show here that T cells redirected to tumor cells by trAbs strongly upregulate CTLA-4 expression in vitro and in vivo. This suggested that blocking of CTLA-4 in combination with trAb treatment enhances T-cell activation in a tumor-selective manner. However, when mice were challenged with melanoma cells and subsequently treated with antibodies, there was only a moderate beneficial effect of the combinatorial approach in vivo with regard to direct tumor destruction in comparison to trAb therapy alone. By contrast, a significantly improved vaccination effect was obtained by CTLA-4 blocking during trAb-dependent immunization. This resulted in enhanced rejection of melanoma cells given after pre-immunization. The improved immunologic memory induced by the combinatorial approach correlated with an increased humoral antitumor response as measured in the sera and an expansion of CD4+ memory T cells found in the spleens. PMID:27966460

  1. Antibody responses induced by Leish-Tec®, an A2-based vaccine for visceral leishmaniasis, in a heterogeneous canine population.

    PubMed

    Testasicca, Miriam C de Souza; dos Santos, Mariana Silva; Machado, Leopoldo Marques; Serufo, Angela Vieira; Doro, Daniel; Avelar, Daniel; Tibúrcio, Ana Maria Leonardi; Abrantes, Christiane de Freitas; Machado-Coelho, George Luiz Lins; Grimaldi, Gabriel; Gazzinelli, Ricardo Tostes; Fernandes, Ana Paula

    2014-08-29

    Zoonotic visceral leishmaniasis (VL) is a widespread disease, and dogs are the main reservoirs for human parasite transmission. Hence, development of an effective vaccine that prevents disease and reduces the transmission of VL is required. As euthanasia of seropositive dogs is recommended in Brazil for VL epidemiological control, to include anti-VL canine vaccines as a mass control measure it is necessary to characterize the humoral responses induced by vaccination and if they interfere with the reactivity of vaccinated dogs in serological diagnostic tests. Leish-Tec(®) is an amastigote-specific A2 recombinant protein vaccine against canine visceral leishmaniasis (CVL) that is commercially available in Brazil. Here, we tested the immunogenicity of Leish-Tec(®) in a heterogeneous dog population by measuring A2-specific antibody responses. Healthy dogs (n=140) of various breeds were allocated to two groups: one group received Leish-Tec(®) (n=70), and the other group received a placebo (n=70). Anti-A2 or anti-Leishmania promastigote antigen (LPA) antibody levels were measured by ELISA in serum samples collected before and after vaccination. An immunochromatographic test (DPP) based on the recombinant K28 antigen was also used for serodiagnosis of CVL. Vaccinated animals, except one, remained seronegative for anti-LPA total IgG and anti-K28 antibodies. Conversely, seropositivity for anti-A2 total IgG antibodies was found in 98% of animals after vaccination. This value decreased to 81.13% at 6 months before rising again (98%), after the vaccination boost. Anti-A2 IgG2 and IgG1 titers were also increased in vaccinated animals relative to control animals. These data indicate that Leish-Tec(®) is immunogenic for dogs of different genetic backgrounds and that humoral responses induced by vaccination can be detected by A2-ELISA, but do not interfere with the LPA-ELISA and DPP diagnostic tests for CVL. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The effect of adenovirus-specific antibodies on adenoviral vector–induced, transgene product–specific T cell responses

    PubMed Central

    Small, Juliana C.; Haut, Larissa H.; Bian, Ang; Ertl, Hildegund C. J.

    2014-01-01

    In this study, we tested the effect of neutralizing Abs to different serotypes of E1-deleted Ad vectors on the immunogenicity of the homologous Ad vector or a vector derived from a heterologous serotype. Our results showed that, as expected, even low titers of passively transferred neutralizing Abs significantly reduced the homologous vectors' ability to elicit transgene-specific CD8+ T cell responses. In addition, Abs changed the fate of transgene product–specific CD8+ T cells by promoting their transition into the central memory cell pool, which resulted in markedly enhanced expansion of transgene product–specific CD8+ T cells after a boost with a heterologous Ad vector. Non-neutralizing Abs specific to a distinct Ad serotype had no effect on the magnitude of transgene product-specific CD8+ T cells induced by a heterologous Ad vector, nor did such Abs promote induction of more resting memory CD8+ T cells. These results show that Abs to an Ad vaccine carrier affect not only the magnitude but also the profile of a vector-induced CD8+ T cell response. PMID:25082150

  3. An optimized, synthetic DNA vaccine encoding the toxin A and toxin B receptor binding domains of Clostridium difficile induces protective antibody responses in vivo.

    PubMed

    Baliban, Scott M; Michael, Amanda; Shammassian, Berje; Mudakha, Shikata; Khan, Amir S; Cocklin, Simon; Zentner, Isaac; Latimer, Brian P; Bouillaut, Laurent; Hunter, Meredith; Marx, Preston; Sardesai, Niranjan Y; Welles, Seth L; Jacobson, Jeffrey M; Weiner, David B; Kutzler, Michele A

    2014-10-01

    Clostridium difficile-associated disease (CDAD) constitutes a large majority of nosocomial diarrhea cases in industrialized nations and is mediated by the effects of two secreted toxins, toxin A (TcdA) and toxin B (TcdB). Patients who develop strong antitoxin antibody responses can clear C. difficile infection and remain disease free. Key toxin-neutralizing epitopes have been found within the carboxy-terminal receptor binding domains (RBDs) of TcdA and TcdB, which has generated interest in developing the RBD as a viable vaccine target. While numerous platforms have been studied, very little data describes the potential of DNA vaccination against CDAD. Therefore, we created highly optimized plasmids encoding the RBDs from TcdA and TcdB in which any putative N-linked glycosylation sites were altered. Mice and nonhuman primates were immunized intramuscularly, followed by in vivo electroporation, and in these animal models, vaccination induced significant levels of both anti-RBD antibodies (blood and stool) and RBD-specific antibody-secreting cells. Further characterization revealed that sera from immunized mice and nonhuman primates could detect RBD protein from transfected cells, as well as neutralize purified toxins in an in vitro cytotoxicity assay. Mice that were immunized with plasmids or given nonhuman-primate sera were protected from a lethal challenge with purified TcdA and/or TcdB. Moreover, immunized mice were significantly protected when challenged with C. difficile spores from homologous (VPI 10463) and heterologous, epidemic (UK1) strains. These data demonstrate the robust immunogenicity and efficacy of a TcdA/B RBD-based DNA vaccine in preclinical models of acute toxin-associated and intragastric, spore-induced colonic disease.

  4. A Novel Staphylococcus aureus Vaccine: Iron Surface Determinant B Induces Rapid Antibody Responses in Rhesus Macaques and Specific Increased Survival in a Murine S. aureus Sepsis Model

    PubMed Central

    Kuklin, Nelly A.; Clark, Desmond J.; Secore, Susan; Cook, James; Cope, Leslie D.; McNeely, Tessie; Noble, Liliane; Brown, Martha J.; Zorman, Julie K.; Wang, Xin Min; Pancari, Gregory; Fan, Hongxia; Isett, Kevin; Burgess, Bruce; Bryan, Janine; Brownlow, Michelle; George, Hugh; Meinz, Maria; Liddell, Mary E.; Kelly, Rosemarie; Schultz, Loren; Montgomery, Donna; Onishi, Janet; Losada, Maria; Martin, Melissa; Ebert, Timothy; Tan, Charles Y.; Schofield, Timothy L.; Nagy, Eszter; Meineke, Andreas; Joyce, Joseph G.; Kurtz, Myra B.; Caulfield, Michael J.; Jansen, Kathrin U.; McClements, William; Anderson, Annaliesa S.

    2006-01-01

    Staphylococcus aureus is a major cause of nosocomial infections worldwide, and the rate of resistance to clinically relevant antibiotics, such as methicillin, is increasing; furthermore, there has been an increase in the number of methicillin-resistant S. aureus community-acquired infections. Effective treatment and prevention strategies are urgently needed. We investigated the potential of the S. aureus surface protein iron surface determinant B (IsdB) as a prophylactic vaccine against S. aureus infection. IsdB is an iron-sequestering protein that is conserved in diverse S. aureus clinical isolates, both methicillin resistant and methicillin sensitive, and it is expressed on the surface of all isolates tested. The vaccine was highly immunogenic in mice when it was formulated with amorphous aluminum hydroxyphosphate sulfate adjuvant, and the resulting antibody responses were associated with reproducible and significant protection in animal models of infection. The specificity of the protective immune responses in mice was demonstrated by using an S. aureus strain deficient for IsdB and HarA, a protein with a high level of identity to IsdB. We also demonstrated that IsdB is highly immunogenic in rhesus macaques, inducing a more-than-fivefold increase in antibody titers after a single immunization. Based on the data presented here, IsdB has excellent prospects for use as a vaccine against S. aureus disease in humans. PMID:16552052

  5. Intranasal vaccination of humans with recombinant cholera toxin B subunit induces systemic and local antibody responses in the upper respiratory tract and the vagina.

    PubMed Central

    Bergquist, C; Johansson, E L; Lagergård, T; Holmgren, J; Rudin, A

    1997-01-01

    Forty-five volunteers were vaccinated twice intranasally with 10, 100, or 1,000 microg of cholera toxin B subunit (CTB). Blood and nasal and vaginal secretions were collected before and 1 week after the second vaccination from all volunteers, and the specific and total immunoglobulin A (IgA) and IgG titers were determined by enzyme-linked immunosorbent assay. Samples were also taken 6 months (n = 16) and 1 year (n = 14) after the vaccination. The 10- and 100-microg doses were well tolerated by the volunteers, but the 1,000-microg dose induced increased secretions from the nose and repetitive sneezings for several hours. The CTB-specific serum IgA and IgG increased 21- and 7-fold, respectively, 1 week after vaccination with the medium dose and increased 61- and 37-fold, respectively, after the high dose. In nasal secretions the specific IgA and IgG increased 2- and 6-fold after the medium dose and 2- and 20-fold after the high dose, respectively. In vaginal secretions the specific IgA and IgG increased 3- and 5-fold after the medium dose and 56- and 74-fold after the high dose, respectively. The lowest dose did not induce any significant antibody titer increases in serum or in secretions. The specific IgA and IgG levels in secretions were still elevated after 6 months but were decreasing 1 year after the vaccination. These results show that intranasal vaccination of humans with CTB induces strong systemic and mucosal antibody responses and suggest that CTB may be used as a carrier for antigens that induce protective immunity against systemic as well as respiratory and genital infections. PMID:9199436

  6. Synthetic nanoparticle vaccines produced by layer-by-layer assembly of artificial biofilms induce potent protective T-cell and antibody responses in vivo.

    PubMed

    Powell, Thomas J; Palath, Naveen; DeRome, Mary E; Tang, Jie; Jacobs, Andrea; Boyd, James G

    2011-01-10

    Nanoparticle vaccines induce potent immune responses in the absence of conventional adjuvant due to the recognition by immune cells of the particle structures, which mimic natural pathogens such as viruses and bacteria. Nanoparticle vaccines were fabricated by constructing artificial biofilms using layer-by-layer (LbL) deposition of oppositely charged polypeptides and target designed peptides on CaCO(3) cores. LbL nanoparticles were efficiently internalized by dendritic cells in vitro by a mechanism that was at least partially phagocytic, and induced DC maturation without triggering secretion of inflammatory cytokines. LbL nanoparticle delivery of designed peptides to DC resulted in potent cross-presentation to CD8+ T-cells and more efficient presentation to CD4+ T-cells compared to presentation of soluble peptide. A single immunization of mice with LbL nanoparticles containing designed peptide induced vigorous T-cell responses characterized by a balanced effector (IFNγ) and Th2 (IL-4) ELISPOT profile and in vivo CTL activity. Mice immunized with LbL nanoparticles bearing ovalbumin-derived designed peptides were protected from challenge with Listeria monocytogenes ectopically expressing ovalbumin, confirming the relevance of the CTL/effector T-cell responses. LbL nanoparticles also elicited antibody responses to the target epitope but not to the matrix components of the nanoparticle, avoiding the vector or carrier affect that hampers utility of other vaccine platforms. The potency and efficacy of LbL nanoparticles administered in aqueous suspension without adjuvant or other formulation additive, and the absence of immune responses to the matrix components, suggest that this strategy may be useful in producing novel vaccines against multiple diseases.

  7. An immunosuppressive murine leukaemia virus induces a Th1-->Th2 switch and abrogates the IgM antibody response to sheep erythrocytes by suppressing the production of IL-2.

    PubMed Central

    Faxvaag, A; Espevik, T; Dalen, A

    1995-01-01

    Many retroviruses have tropism for cells in the immune system and have a propensity to induce immunosuppression in the host. Some of the effects of retroviruses on immune cell function are thought to be mediated through cytokines. Friend ImmunoSuppressive virus-2 (FIS-2) is a low oncogenic murine leukaemia virus (MuLV) that induces lymphadenopathy and immunosuppression in NMRI mice. The role of T cell cytokines during the generation of a primary antibody response in healthy and FIS-2-infected mice was studied following the antibody response to sheep erythrocytes by an in vitro immunization (IVI) technique. In cultures from FIS-2-infected mice, the antibody response was reduced compared with cultures from uninfected mice and the production of the Th2 cytokines IL-4 and IL-6 was elevated, whereas the Th1 cytokines IL-2, interferon-gamma (IFN-gamma) and tumour necrosis factor-alpha (TNF-alpha) were reduced. The suppressed anti-sheep erythrocyte antibody response in cultures from mice infected with FIS-2 seemed to be caused by an insufficient production of IL-2, since addition of recombinant IL-2 stimulated the antibody response. This effect was also observed in cultures depleted of T cells, indicating a direct effect of IL-2 on B cells. A switch to a Th2 cell response and suppression of IL-2 production might play a central role in the immune cell dysfunction induced by FIS-2. PMID:8536362

  8. Qualification and application of a surface plasmon resonance-based assay for monitoring potential HAHA responses induced after passive administration of a humanized anti Lewis-Y antibody.

    PubMed

    Szolar, O H J; Stranner, S; Zinoecker, I; Mudde, G C; Himmler, G; Waxenecker, G; Nechansky, A

    2006-06-16

    A sensitive, surface plasmon resonance (SPR)-based assay monitoring potential human-anti-human antibody (HAHA) reactions against the monoclonal antibody (mAb) IGN311 is presented. The latter is a fully humanized Lewis-Y carbohydrate specific mAb that is currently tested in a passive immune therapy approach in a clinical phase I trial. For the SPR experiments a BIACORE 3000 analyzer was used. The ligand IGN311 was covalently coupled to the carboxy-methylated dextran matrix of a CM5 research grade chip (BIACORE). In the course of a fully nested experimental design, a four parameter logistic equation was identified as appropriate calibration model ranging from 0.3 microg/mL (lower limit of quantitation, LLOQ) to 200 microg/mL (upper limit of quantitation, ULOQ) using an anti-idiotypic mAb ('HAHA mimic') as calibrator. The bias ranged from -2.4% to 5.5% and the intermediate precision expressed as 95% CI revealed values from 5.6% to 8.3%. Specificity was evaluated using six human serum matrices from healthy donors spiked with calibrator at the limit of quantitation (LOQ) with >80% of values being recovered with less than 25% relative error. The qualified assay was applied to monitor potentially induced HAHA reactivity in 11 patients from a clinical phase I trial with passively administered IGN311. Of the 11 patients, one high HAHA responder and several low responders were identified. Protein-G depletion experiments with human serum samples revealed that the observed response is predominantly caused by IgG binding to the ligand. The characteristics of these HAHA responses were all of the so-called 'Type I' which is defined by a peak response around day 15 that decreases from this point steadily suggesting that some kind of tolerance is established. Therefore, this type of HAHA response is regarded as non critical for the patient's safety.

  9. Egg yolk IgY: protection against rotavirus induced diarrhea and modulatory effect on the systemic and mucosal antibody responses in newborn calves.

    PubMed

    Vega, C; Bok, M; Chacana, P; Saif, L; Fernandez, F; Parreño, V

    2011-08-15

    Bovine rotavirus (BRV) is an important cause of diarrhea in newborn calves. Local passive immunity is the most efficient protective strategy to control the disease. IgY technology (the use of chicken egg yolk immunoglobulins) is an economic and practical alternative to prevent BRV diarrhea in dairy calves. The aim of this study was to evaluate the protection and immunomodulation induced by the oral administration of egg yolk enriched in BRV specific IgY to experimentally BRV infected calves. All calves in groups Gp 1, 2 and 3 received control colostrum (CC; BRV virus neutralization Ab titer - VN=65,536; ELISA BRV IgG(1)=16,384) prior to gut closure. After gut closure, calves received milk supplemented with 6% BRV-immune egg yolk [(Gp 1) VN=2048; ELISA IgY Ab titer=4096] or non-immune control egg yolk [(Gp 2) VN<4; ELISA IgY Ab titer<4] twice a day, for 14 days. Calves receiving CC only or colostrum deprived calves (CD) fed antibody (Ab) free milk served as controls (Gp 3 and 4, respectively). Calves were inoculated with 10(5.85)focus forming units (FFU) of virulent BRV IND at 2 days of age. Control calves (Gp 3 and 4) and calves fed control IgY (Gp 2) were infected and developed severe diarrhea. Around 80% calves in Gp 1 (IgY 4096) were infected, but they showed 80% (4/5) protection against BRV diarrhea. Bovine RV-specific IgY Ab were detected in the feces of calves in Gp 1, indicating that avian antibodies (Abs) remained intact after passage through the gastrointestinal tract. At post infection day 21, the duodenum was the major site of BRV specific antibody secreting cells (ASC) in all experimental groups. Mucosal ASC responses of all isotypes were significantly higher in the IgY treated groups, independently of the specificity of the treatment, indicating that egg yolk components modulated the immune response against BRV infection at the mucosal level. These results indicate that supplementing newborn calves' diets for the first 14 days of life with egg yolk

  10. Egg Yolk IgY: Protection against Rotavirus induced Diarrhea and Modulatory effect on the systemic and mucosal antibody responses in newborn calves

    PubMed Central

    Vega, C.; Bok, M.; Chacana, P.; Saif, L.; Fernandez, F.; Parreño, V.

    2011-01-01

    Bovine rotavirus (BRV) is an important cause of diarrhea in newborn calves. Local passive immunity is the most efficient protective strategy to control the disease. IgY technology (the use of chicken egg yolk immunoglobulins) is an economic and practical alternative to prevent BRV diarrhea in dairy calves. The aim of this study was to evaluate the protection and immunomodulation induced by the oral administration of egg yolk enriched in BRV specific IgY to experimentally BRV infected calves. All calves in groups Gp 1, 2 and 3 received control colostrum (CC; BRV virus neutralization Ab titer – VN- =65,536; ELISA BRV IgG1 =16,384) prior to gut closure. After gut closure, calves received milk supplemented with 6% BRV-immune egg yolk [(Gp1) VN=2048; ELISA IgY Ab titer =4096] or non-immune control egg yolk [(Gp2) VN <4; ELISA IgY Ab titer <4) twice a day, for 14 days. Calves receiving CC only or colostrum deprived calves (CD) fed antibody (Ab) free milk served as controls (Gp 3 and 4, respectively). Calves were inoculated with 105.85 focus forming units (FFU) of virulent BRV IND at 2 days of age. Control calves (Gp 3 and 4) and calves fed control IgY (Gp 2) were infected and developed severe diarrhea. Around 80% calves in Gp 1 (IgY 4096) were infected, but they showed 80% (4/5) protection against BRV diarrhea. Bovine RV-specific IgY Ab were detected in the feces of calves in Gp 1, indicating that avian antibodies (Abs) remained intact after passage through the gastrointestinal tract. At post infection day 21, the duodenum was the major site of BRV specific antibody secreting cells (ASC) in all experimental groups. Mucosal ASC responses of all isotypes were significantly higher in the IgY treated groups, independently of the specificity of the treatment, indicating that egg yolk components modulated the immune response against BRV infection at the mucosal level. These results indicate that supplementing newborn calves’ diets for the first 14 days of life with egg

  11. In vivo effects of monoclonal anti-L3T4 antibody on immune responsiveness of mice infected with Schistosoma mansoni. Reduction of irradiated cercariae-induced resistance

    SciTech Connect

    Kelly, E.A.; Colley, D.G.

    1988-04-15

    Mice can be partially protected against challenge infections of Schistosoma mansoni cercariae by either single or multiple exposure to irradiated cercariae (x-cerc). The participation of L3T4+ lymphocytes on this resistance phenomenon was evaluated by selectively depleting this cell population through in vivo administration of mAb anti-L3T4 at three different times in relationship to the challenge infections. Treatment with anti-L3T4 before challenge such that depletion was effective during the time of cercarial skin penetration and dermal/s.c. residence significantly reduced the level of resistance induced by x-cerc sensitization. When treatment was delayed until after challenge, depletion of L3T4+ cells coincided with either the lung or post-lung/liver phases of schistosomular migration, and normal levels of x-cerc-induced resistance were induced. In contrast to once-immunized mice, mice hyperimmunized by five exposures to x-cerc and then depleted of L3T4+ cells at the time of challenge still expressed resistance to the challenge. These data suggest that when mice are sensitized only once with x-cerc the challenge infection provides a necessary immunologic boost which requires L3T4+ cells for effective expression of resistance. The requirement for this anamnestic effect by the challenge infection can be circumvented by hyperimmunization. Evaluation of the immune response of one-time sensitized or hyperimmunized mice demonstrated that cellular Ag-specific proliferative responses and mitogen-induced lymphokine production were abrogated after any of the various in vivo regimens of anti-L3T4 antibody. In contrast, immunoblot analysis of humoral responsiveness revealed a correlation between the expression of resistance and the ability of sera from immunized and anti-L3T4 treated mice to recognize a 75-kDa parasite antigenic component.

  12. Ovalbumin-coated pH-sensitive microneedle arrays effectively induce ovalbumin-specific antibody and T-cell responses in mice.

    PubMed

    van der Maaden, Koen; Varypataki, Eleni Maria; Romeijn, Stefan; Ossendorp, Ferry; Jiskoot, Wim; Bouwstra, Joke

    2014-10-01

    The aim of this work was to study the applicability of antigen-coated pH-sensitive microneedle arrays for effective vaccination strategies. Therefore, a model antigen (ovalbumin) was coated onto pH-sensitive (pyridine-modified) microneedle arrays to test pH-triggered antigen release by applying the coated arrays onto ex vivo human skin, and by conducting a dermal immunization study in mice. The release of antigen into ex vivo human skin from the coated microneedles was determined by using radioactively labeled ovalbumin. To investigate the induction of antigen-specific IgG, and CD4(+) and CD8(+) T-cell responses, BALB/c mice were immunized with antigen-coated pH-sensitive microneedles by the 'coat and poke' approach. These responses were compared to responses induced by the 'poke and patch' approach, and subcutaneous and intradermal vaccination with classic hypodermic needles. The pH-sensitive microneedle arrays were efficiently coated with ovalbumin (95% coating efficiency) and upon application of six microneedle arrays 4.27 of 7 μg ovalbumin was delivered into the skin, showing a release efficiency of 70%. In contrast, the 'poke and patch' approach led to a delivery of only 6.91 of 100 μg ovalbumin (7% delivery efficiency). Immunization by means of ovalbumin-coated microneedles resulted in robust CD4(+) and CD8(+) T-cell responses comparable to those obtained after subcutaneous or intradermal immunization with conventional needles. Moreover, it effectively induced IgG responses; however, it required prime-boost immunizations before antibodies were produced. In conclusion, antigen delivery into ex vivo human skin by antigen-coated pH-sensitive microneedle arrays is more efficient than the 'poke-and-patch' approach and in vivo vaccination studies show the applicability of pH-sensitive microneedles for the induction of both T cell and B cell responses.

  13. Antibody Production and Th1-biased Response Induced by an Epitope Vaccine Composed of Cholera Toxin B Unit and Helicobacter pylori Lpp20 Epitopes.

    PubMed

    Li, Yan; Chen, Zhongbiao; Ye, Jianbin; Ning, Lijun; Luo, Jun; Zhang, Lili; Jiang, Yin; Xi, Yue; Ning, Yunshan

    2016-06-01

    The epitope vaccine is an attractive potential for prophylactic and therapeutic vaccination against Helicobacter pylori (H. pylori) infection. Lpp20 is one of major protective antigens which trigger immune response after H. pylori invades host and has been considered as an excellent vaccine candidate for the control of H. pylori infection. In our previous study, one B-cell epitope and two CD4(+) T-cell epitopes of Lpp20 were identified. In this study, an epitope vaccine composed of mucosal adjuvant cholera toxin B subunit (CTB) and these three identified Lpp20 epitopes were constructed to investigate the efficacy of this epitope vaccine in mice. The epitope vaccine including CTB, one B-cell, and two CD4(+) T-cell epitopes of Lpp20 was constructed and named CTB-Lpp20, which was then expressed in Escherichia coli and used for intraperitoneal immunization in BALB/c mice. The immunogenicity, specificity, and ability to induce antibodies against Lpp20 and cytokine secretion were evaluated. After that, CTB-Lpp20 was intragastrically immunized to investigate the prophylactic and therapeutic efficacy in infected mice. The results indicated that the epitope vaccine CTB-Lpp20 possessed good immunogenicity and immunoreactivity and could elicit specific high level of antibodies against Lpp20 and the cytokine of IFN-γ and IL-17. Additionally, CTB-Lpp20 significantly decreased H. pylori colonization in H. pylori challenging mice, and the protection was correlated with IgG, IgA, and sIgA antibody and Th1-type cytokines. This study will be better for understanding the protective immunity of epitope vaccine, and CTB-Lpp20 may be an alternative strategy for combating H. pylori invasion. © 2015 John Wiley & Sons Ltd.

  14. Differential modulation of hippocampal chemical-induced injury response by ebselen, pentoxifylline, and TNFalpha-, IL-1alpha-, and IL-6-neutralizing antibodies.

    PubMed

    Jean Harry, G; Bruccoleri, Alessandra; Lefebvre d'Hellencourt, Christian

    2003-08-15

    The proinflammatory cytokines tumor necrosis factor (TNFalpha), interleukin-1 (IL-1alpha), and interleukin-6 (IL-6) have been associated with various models of hippocampal damage. To examine their role in initiation of an acute hippocampal injury response, 21-day-old male CD-1 mice received an acute intraperitoneal (i.p.) injection of trimethyltin hydroxide (TMT; 2.0 mg/kg) to produce necrosis of dentate granule neurons, astrocyte, and microglia reactivity. Tremors and intermittent seizures were evident at 24 hr. Intercellular adhesion molecule-1 (ICAM-1), glial fibrillary acidic protein (GFAP), anti-apoptotic TNFalpha-inducible early response gene (A-20), macrophage inflammatory protein (MIP)-1alpha, TNFalpha, IL-1alpha, IL-6, and caspase 3 mRNA levels were significantly elevated. Pretreatment with the antioxidant, ebselen, decreased ICAM-1, A-20, and TNFbeta elevations. Pentoxifylline blocked elevations in A-20 and decreased elevations in GFAP mRNA levels. Neither prevented histopathology or behavioral effects. Intracisternal injection of TNFalpha-neutralizing antibody significantly inhibited both behavioral effects and histopathology. RNase protection assays showed that TMT-induced elevations in mRNA levels for ICAM-1, A-20, GFAP, MIP-1alpha, IL-1alpha, TNFalpha, TNFbeta, and caspase 3 were blocked by anti-TNFalpha. These data demonstrate a significant role for TNFalpha in an acute neuro-injury in the absence of contribution from infiltrating cells. The cerebellum shows limited if any damage after TMT; however, in combination with the i.c.v. injection, elevations were seen in GFAP and in EB-22, a murine acute-phase response gene homologous to the alpha (1)-antichymotrypsin gene. Elevations were similar for artificial cerebral spinal fluid and anti-IL-1alpha, and significantly increased with anti-TNFalpha, anti-IL-6, or the combination of antibodies. Responses seen in the cerebellum suggest synergistic interactions between the baseline state of the cell and

  15. Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T cells through cross-priming.

    PubMed

    Valmori, Danila; Souleimanian, Naira E; Tosello, Valeria; Bhardwaj, Nina; Adams, Sylvia; O'Neill, David; Pavlick, Anna; Escalon, Juliet B; Cruz, Crystal M; Angiulli, Angelica; Angiulli, Francesca; Mears, Gregory; Vogel, Susan M; Pan, Linda; Jungbluth, Achim A; Hoffmann, Eric W; Venhaus, Ralph; Ritter, Gerd; Old, Lloyd J; Ayyoub, Maha

    2007-05-22

    The use of recombinant tumor antigen proteins is a realistic approach for the development of generic cancer vaccines, but the potential of this type of vaccines to induce specific CD8(+) T cell responses, through in vivo cross-priming, has remained unclear. In this article, we report that repeated vaccination of cancer patients with recombinant NY-ESO-1 protein, Montanide ISA-51, and CpG ODN 7909, a potent stimulator of B cells and T helper type 1 (Th1)-type immunity, resulted in the early induction of specific integrated CD4(+) Th cells and antibody responses in most vaccinated patients, followed by the development of later CD8(+) T cell responses in a fraction of them. The correlation between antibody and T cell responses, together with the ability of vaccine-induced antibodies to promote in vitro cross-presentation of NY-ESO-1 by dendritic cells to vaccine-induced CD8(+) T cells, indicated that elicitation of NY-ESO-1-specific CD8(+) T cell responses by cross-priming in vivo was associated with the induction of adequate levels of specific antibodies. Together, our data provide clear evidence of in vivo cross-priming of specific cytotoxic T lymphocytes by a recombinant tumor antigen vaccine, underline the importance of specific antibody induction for the cross-priming to occur, and support the use of this type of formulation for the further development of efficient cancer vaccines.

  16. Type II collagen antibody response is enriched in the synovial fluid of rheumatoid joints and directed to the same major epitopes as in collagen induced arthritis in primates and mice.

    PubMed

    Lindh, Ingrid; Snir, Omri; Lönnblom, Erik; Uysal, Hüseyin; Andersson, Ida; Nandakumar, Kutty Selva; Vierboom, Michel; 't Hart, Bert; Malmström, Vivianne; Holmdahl, Rikard

    2014-07-08

    Antibodies towards type II collagen (CII) are detected in patients with rheumatoid arthritis (RA) and in non-human primates and rodents with collagen induced arthritis (CIA). We have previously shown that antibodies specific for several CII-epitopes are pathogenic using monoclonal antibodies from arthritic mice, although the role of different anti-CII epitopes has not been investigated in detail in other species. We therefore performed an inter-species comparative study of the autoantibody response to CII in patients with RA versus monkeys and mice with CIA. Analysis of the full epitope repertoire along the disease course of CIA was performed using a library of CII triple-helical peptides. The antibody responses to the major CII epitopes were analyzed in sera and synovial fluid from RA patients, and in sera from rhesus monkeys (Macaca mulatta), common marmosets (Callithrix jacchus) and mice. Many CII epitopes including the major C1, U1, and J1 were associated with established CIA and arginine residues played an important role in the anti-CII antibody interactions. The major epitopes were also recognized in RA patients, both in sera and even more pronounced in synovial fluid: 77% of the patients had antibodies to the U1 epitope. The anti-CII immune response was not restricted to the anti-citrulline protein antibodies (ACPA) positive RA group. CII conformational dependent antibody responses are common in RA and are likely to originate from rheumatoid joints but did not show a correlation with ACPA response. Importantly, the fine specificity of the anti-CII response is similar with CIA in monkeys and rodents where the recognized epitopes are conserved and have a major pathogenic role. Thus, anti-CII antibodies may both contribute to, as well as be the consequence of, local joint inflammation.

  17. Type II collagen antibody response is enriched in the synovial fluid of rheumatoid joints and directed to the same major epitopes as in collagen induced arthritis in primates and mice

    PubMed Central

    2014-01-01

    Introduction Antibodies towards type II collagen (CII) are detected in patients with rheumatoid arthritis (RA) and in non-human primates and rodents with collagen induced arthritis (CIA). We have previously shown that antibodies specific for several CII-epitopes are pathogenic using monoclonal antibodies from arthritic mice, although the role of different anti-CII epitopes has not been investigated in detail in other species. We therefore performed an inter-species comparative study of the autoantibody response to CII in patients with RA versus monkeys and mice with CIA. Methods Analysis of the full epitope repertoire along the disease course of CIA was performed using a library of CII triple-helical peptides. The antibody responses to the major CII epitopes were analyzed in sera and synovial fluid from RA patients, and in sera from rhesus monkeys (Macaca mulatta), common marmosets (Callithrix jacchus) and mice. Results Many CII epitopes including the major C1, U1, and J1 were associated with established CIA and arginine residues played an important role in the anti-CII antibody interactions. The major epitopes were also recognized in RA patients, both in sera and even more pronounced in synovial fluid: 77% of the patients had antibodies to the U1 epitope. The anti-CII immune response was not restricted to the anti-citrulline protein antibodies (ACPA) positive RA group. Conclusion CII conformational dependent antibody responses are common in RA and are likely to originate from rheumatoid joints but did not show a correlation with ACPA response. Importantly, the fine specificity of the anti-CII response is similar with CIA in monkeys and rodents where the recognized epitopes are conserved and have a major pathogenic role. Thus, anti-CII antibodies may both contribute to, as well as be the consequence of, local joint inflammation. PMID:25005029

  18. Antibody Production, Anaphylactic Signs, and T-Cell Responses Induced by Oral Sensitization With Ovalbumin in BALB/c and C3H/HeOuJ Mice.

    PubMed

    Pablos-Tanarro, Alba; López-Expósito, Ivan; Lozano-Ojalvo, Daniel; López-Fandiño, Rosina; Molina, Elena

    2016-05-01

    Two mouse strains, BALB/c and C3H/HeOuJ, broadly used in the field of food allergy, were compared for the evaluation of the allergenic potential of ovalbumin (OVA). Sensitization was made by administering 2 different OVA doses (1 and 5 mg), with cholera toxin as Th2-polarizing adjuvant. Antibody levels, severity of anaphylaxis, and Th1 and Th2 responses induced by the allergen were assessed. In addition, because the mice selected had functional toll-like receptor 4, the influence of contamination with lipopolysaccharide (LPS) on the immunostimulating capacity of OVA on spleen cells was also evaluated. Both strains exhibited similar susceptibility to OVA sensitization. The 2 protein doses generated similar OVA-specific IgE and IgG1 levels in both strains, whereas C3H/HeOuJ mice produced significantly more IgG2a. Oral challenge provoked more severe manifestations in C3H/HeOuJ mice as indicated by the drop in body temperature and the severity of the anaphylactic scores. Stimulation of splenocytes with OVA led to significantly higher levels of Th2 and Th1 cytokines in BALB/c, and these were less affected by protein contamination with LPS. The antibody and cytokine levels induced by OVA in BALB/c mice and the observation that BALB/c spleen cell cultures were more resistant than those of C3H/HeOuJ mice to the stimulus of LPS make this strain prone to exhibit Th2-mediated food allergic reactions and very adequate for the study of the features of OVA that make it allergenic.

  19. Antibody Production, Anaphylactic Signs, and T-Cell Responses Induced by Oral Sensitization With Ovalbumin in BALB/c and C3H/HeOuJ Mice

    PubMed Central

    Pablos-Tanarro, Alba; López-Expósito, Ivan; Lozano-Ojalvo, Daniel; López-Fandiño, Rosina

    2016-01-01

    Purpose Two mouse strains, BALB/c and C3H/HeOuJ, broadly used in the field of food allergy, were compared for the evaluation of the allergenic potential of ovalbumin (OVA). Methods Sensitization was made by administering 2 different OVA doses (1 and 5 mg), with cholera toxin as Th2-polarizing adjuvant. Antibody levels, severity of anaphylaxis, and Th1 and Th2 responses induced by the allergen were assessed. In addition, because the mice selected had functional toll-like receptor 4, the influence of contamination with lipopolysaccharide (LPS) on the immunostimulating capacity of OVA on spleen cells was also evaluated. Results Both strains exhibited similar susceptibility to OVA sensitization. The 2 protein doses generated similar OVA-specific IgE and IgG1 levels in both strains, whereas C3H/HeOuJ mice produced significantly more IgG2a. Oral challenge provoked more severe manifestations in C3H/HeOuJ mice as indicated by the drop in body temperature and the severity of the anaphylactic scores. Stimulation of splenocytes with OVA led to significantly higher levels of Th2 and Th1 cytokines in BALB/c, and these were less affected by protein contamination with LPS. Conclusions The antibody and cytokine levels induced by OVA in BALB/c mice and the observation that BALB/c spleen cell cultures were more resistant than those of C3H/HeOuJ mice to the stimulus of LPS make this strain prone to exhibit Th2-mediated food allergic reactions and very adequate for the study of the features of OVA that make it allergenic. PMID:26922934

  20. HIV Neutralizing Antibodies Induced by Native-like Envelope Trimers

    PubMed Central

    Sanders, Rogier W.; van Gils, Marit J.; Derking, Ronald; Sok, Devin; Ketas, Thomas J.; Burger, Judith A.; Ozorowski, Gabriel; Cupo, Albert; Simonich, Cassandra; Goo, Leslie; Arendt, Heather; Kim, Helen J.; Lee, Jeong Hyun; Pugach, Pavel; Williams, Melissa; Debnath, Gargi; Moldt, Brian; van Breemen, Mariëlle J.; Isik, Gözde; Medina-Ramírez, Max; Back, Jaap Willem; Koff, Wayne; Julien, Jean-Philippe; Rakasz, Eva G.; Seaman, Michael S.; Guttman, Miklos; Lee, Kelly K.; Klasse, Per Johan; LaBranche, Celia; Schief, William R.; Wilson, Ian A.; Overbaugh, Julie; Burton, Dennis R.; Ward, Andrew B.; Montefiori, David C.; Dean, Hansi; Moore, John P.

    2015-01-01

    A challenge for HIV-1 immunogen design is inducing neutralizing antibodies (NAbs) against neutralization-resistant (Tier-2) viruses that dominate human transmissions. We show that a soluble recombinant HIV-1 envelope glycoprotein trimer that adopts a native conformation (BG505 SOSIP.664) induced NAbs potently against the sequence-matched Tier-2 virus in rabbits and similar but weaker responses in macaques. The trimer also consistently induced cross-reactive NAbs against more sensitive (Tier-1) viruses. Tier-2 NAbs recognized conformational epitopes that differed between animals and in some cases overlapped with those recognized by broadly neutralizing antibodies (bNAbs), whereas Tier-1 responses targeted linear V3 epitopes. A second trimer, B41 SOSIP.664, also induced a strong autologous Tier-2 NAb response in rabbits. Thus, native-like trimers represent a promising starting point for developing HIV-1 vaccines aimed at inducing bNAbs. PMID:26089353

  1. Gut Microbial Metabolites Fuel Host Antibody Responses.

    PubMed

    Kim, Myunghoo; Qie, Yaqing; Park, Jeongho; Kim, Chang H

    2016-08-10

    Antibody production is a metabolically demanding process that is regulated by gut microbiota, but the microbial products supporting B cell responses remain incompletely identified. We report that short-chain fatty acids (SCFAs), produced by gut microbiota as fermentation products of dietary fiber, support host antibody responses. In B cells, SCFAs increase acetyl-CoA and regulate metabolic sensors to increase oxidative phosphorylation, glycolysis, and fatty acid synthesis, which produce energy and building blocks supporting antibody production. In parallel, SCFAs control gene expression to express molecules necessary for plasma B cell differentiation. Mice with low SCFA production due to reduced dietary fiber consumption or microbial insufficiency are defective in homeostatic and pathogen-specific antibody responses, resulting in greater pathogen susceptibility. However, SCFA or dietary fiber intake restores this immune deficiency. This B cell-helping function of SCFAs is detected from the intestines to systemic tissues and conserved among mouse and human B cells, highlighting its importance.

  2. No significant differences in the breadth of the foot-and-mouth disease serotype A vaccine induced antibody responses in cattle, using different adjuvants, mixed antigens and different routes of administration.

    PubMed

    Tekleghiorghis, Tesfaalem; Weerdmeester, Klaas; van Hemert-Kluitenberg, Froukje; Moormann, Rob J M; Dekker, Aldo

    2014-09-15

    Inactivated whole virus foot-and-mouth disease (FMD) vaccines are used worldwide for protection against FMD, but not all vaccines induce protection against all genetic variants of the same FMD virus serotype. The aim of this study is to investigate whether the "breadth" of the antibody response against different strains of the same FMD virus serotype in cattle could be improved by using a different adjuvant, a mix of antigens and/or different routes of administration. To this end, six groups of five cattle were vaccinated with different FMD virus serotype A strain vaccines formulated with Montanide ISA 206 VG adjuvant. Antibody responses for homologous and heterologous cross-reactivity against a panel of 10 different FMD virus serotype A strains were tested by a liquid-phase blocking ELISA. Results of cattle vaccinated with ISA 206 VG adjuvanted vaccine were compared with results obtained in a previous study using aluminium hydroxide-saponin adjuvant. No significant effect of adjuvant on the breadth of the antibody response was observed, neither for mixing of antigens nor for the route of administration (subcutaneous vs. intradermal). Comparison of antigen payload, however, increased both homologous and heterologous titres; a 10-fold higher antigen dose resulted in approximately four times higher titres against all tested strains. Our study shows that breadth of the antibody response depends mainly on the vaccine strain; we therefore propose that, for vaccine preparation, only FMD virus strains are selected that, among other important characteristics, will induce a wide antibody response to different field strains.

  3. Vaccination against Taenia taeniaeformis infection in rats using a recombinant protein and preliminary analysis of the induced antibody response.

    PubMed

    Ito, A; Bøgh, H O; Lightowlers, M W; Mitchell, G F; Takami, T; Kamiya, M; Onitake, K; Rickard, M D

    1991-01-01

    Primary screening of a cDNA expression library of Taenia taeniaeformis oncospheres in lambda gt11 bacteriophage was carried out using rabbit anti-T, taeniaeformis oncosphere serum affinity-purified from oncosphere pellets. From approximately 1.6 x 10(5) plaques, 21 single clones that were positive with the affinity-purified antibodies were isolated. Sibling analysis revealed that 17 clones out of the 21 could be assigned to five different antigen families. Only family 1 was strongly recognized by a serum prepared in a rabbit against a partially purified host-protective oncosphere antigen fraction. The fragments of lambda DNA were inserted into a pGEX plasmid vector that encodes glutathione S-transferase (GST) of Schistosoma japonicum. Clones designated TtO-18, -49.53 (family 1), 46 (family 2), 15 (family 3), 40 (family 4) and 66 (family 5) were established as subclones in pGEX-1 plasmid vectors which produced GST fusion proteins. All GST fusion proteins were soluble and recognized by anti-GST and anti-TtO sera. Three vaccination experiments with these fusion proteins using specific-pathogen-free Wistar rats revealed that all three fusion proteins of family 1 were exclusively effective against T. taeniaeformis oncosphere challenge with approximately 95% and 91% reductions in cystic metacestode and total metacestode recoveries, respectively. Rats vaccinated with fusion proteins of family 1 produced antibodies which reacted with a 21-kDa oncosphere antigen component which appeared to be a major oncosphere stage-specific antigen.

  4. Dissection of Antibody Specificities Induced by Yellow Fever Vaccination

    PubMed Central

    Vratskikh, Oksana; Stiasny, Karin; Zlatkovic, Jürgen; Tsouchnikas, Georgios; Jarmer, Johanna; Karrer, Urs; Roggendorf, Michael; Roggendorf, Hedwig; Allwinn, Regina; Heinz, Franz X.

    2013-01-01

    The live attenuated yellow fever (YF) vaccine has an excellent record of efficacy and one dose provides long-lasting immunity, which in many cases may last a lifetime. Vaccination stimulates strong innate and adaptive immune responses, and neutralizing antibodies are considered to be the major effectors that correlate with protection from disease. Similar to other flaviviruses, such antibodies are primarily induced by the viral envelope protein E, which consists of three distinct domains (DI, II, and III) and is presented at the surface of mature flavivirions in an icosahedral arrangement. In general, the dominance and individual variation of antibodies to different domains of viral surface proteins and their impact on neutralizing activity are aspects of humoral immunity that are not well understood. To gain insight into these phenomena, we established a platform of immunoassays using recombinant proteins and protein domains that allowed us to dissect and quantify fine specificities of the polyclonal antibody response after YF vaccination in a panel of 51 vaccinees as well as determine their contribution to virus neutralization by serum depletion analyses. Our data revealed a high degree of individual variation in antibody specificities present in post-vaccination sera and differences in the contribution of different antibody subsets to virus neutralization. Irrespective of individual variation, a substantial proportion of neutralizing activity appeared to be due to antibodies directed to complex quaternary epitopes displayed on the virion surface only but not on monomeric E. On the other hand, DIII-specific antibodies (presumed to have the highest neutralizing activity) as well as broadly flavivirus cross-reactive antibodies were absent or present at very low titers. These data provide new information on the fine specificity as well as variability of antibody responses after YF vaccination that are consistent with a strong influence of individual-specific factors

  5. Use of SRBC antibody responses for immunotoxicity testing.

    PubMed

    Ladics, Gregory S

    2007-01-01

    The production of antigen-specific antibodies represents a major defense mechanism of humoral immune responses and involves the cooperation and interaction of several immune cell types: antigen presenting cells, T helper cells, and B cells. Thus, there are several cells or cell products (e.g., interleukins) that may be altered following xenobiotic exposure, making assays that evaluate the production of antigen specific antibody a relatively comprehensive and sensitive assessment of immune function. Data suggest that the primary antibody response to SRBC may be one of the most sensitive endpoints available to assess chemical-induced alterations to the immune system. As a result, this endpoint has become the cornerstone of several recently established guidelines for assessing the potential immunotoxicity of xenobiotics. Five types of antibody may be produced in a humoral immune response (i.e., IgGs of various subtypes, IgM, IgD, IgA, or IgE). For immunotoxicity assessment, the focus has primarily been on assays that assess production of IgM antibodies. Although a number of assays have been developed to evaluate antibody production, the antibody forming cell (AFC) assay and enzyme-linked immunosorbent assay (ELISA) are the two most frequently employed to evaluate the potential immunotoxicity of a xenobiotic. In this manuscript, background information, as well as the pros and cons of each of these assays are discussed and detailed methods on conducting each assay are provided.

  6. Multi-response model for rheumatoid arthritis based on delay differential equations in collagen-induced arthritic mice treated with an anti-GM-CSF antibody.

    PubMed

    Koch, Gilbert; Wagner, Thomas; Plater-Zyberk, Christine; Lahu, Gezim; Schropp, Johannes

    2012-02-01

    Collagen-induced arthritis (CIA) in mice is an experimental model for rheumatoid arthritis, a human chronic inflammatory destructive disease. The therapeutic effect of neutralizing the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) by an antibody was examined in the mouse disease in a view of deriving a pharmacokinetic/pharmacodynamic (PKPD) model. In CIA mice the development of disease is measured by a total arthritic score (TAS) and an ankylosis score (AKS). We present a multi-response PKPD model which describes the time course of the unperturbed and perturbed TAS and AKS. The antibody acts directly on GM-CSF by binding to it. Therefore, a compartment for the cytokine GM-CSF is an essential component of the mathematical model. This compartment drives the disease development in the PKPD model. Different known properties of arthritis development in the CIA model are included in the PKPD model. Firstly, the inflammation, driven by GM-CSF, dominates at the beginning of the disease and decreases after some time. Secondly, a destructive (ankylosis) part evolves in the TAS that is delayed in time. In order to model these two properties a delay differential equation was used. The PKPD model was applied to different experiments with doses ranging from 0.1 to 100 mg/kg. The influence of the drug was modeled by a non-linear approach. The final mathematical model consists of three differential equations representing the compartments for GM-CSF, inflammation and destruction. Our mathematical model described well all available dosing schedules by a simultaneous fit. We also present an equivalent and easy reformulation as ordinary differential equation which grants the use of standard PKPD software.

  7. The germinal center antibody response in health and disease.

    PubMed

    DeFranco, Anthony L

    2016-01-01

    The germinal center response is the delayed but sustained phase of the antibody response that is responsible for producing high-affinity antibodies of the IgG, IgA and/or IgE isotypes. B cells in the germinal center undergo re-iterative cycles of somatic hypermutation of immunoglobulin gene variable regions, clonal expansion, and Darwinian selection for cells expressing higher-affinity antibody variants. Alternatively, selected B cells can terminally differentiate into long-lived plasma cells or into a broad diversity of mutated memory B cells; the former secrete the improved antibodies to fight an infection and to provide continuing protection from re-infection, whereas the latter may jumpstart immune responses to subsequent infections with related but distinct infecting agents. Our understanding of the molecules involved in the germinal center reaction has been informed by studies of human immunodeficiency patients with selective defects in the production of antibodies. Recent studies have begun to reveal how innate immune recognition via Toll-like receptors can enhance the magnitude and selective properties of the germinal center, leading to more effective control of infection by a subset of viruses. Just as early insights into the nature of the germinal center found application in the development of the highly successful conjugate vaccines, more recent insights may find application in the current efforts to develop new generations of vaccines, including vaccines that can induce broadly protective neutralizing antibodies against influenza virus or HIV-1.

  8. The Fab Fragment of a Human Anti-Siglec-9 Monoclonal Antibody Suppresses LPS-Induced Inflammatory Responses in Human Macrophages

    PubMed Central

    Chu, Sasa; Zhu, Xuhui; You, Na; Zhang, Wei; Zheng, Feng; Cai, Binggang; Zhou, Tingting; Wang, Yiwen; Sun, Qiannan; Yang, Zhiguo; Zhang, Xin; Wang, Changjun; Nie, Shinan; Zhu, Jin; Wang, Maorong

    2016-01-01

    Sepsis is a major cause of death for hospitalized patients and is characterized by massive overreaction of immune responses to invading pathogens which is mediated by cytokines. For decades, there has been no effective treatment for sepsis. Sialic acid-binding, Ig-like lectin-9 (Siglec-9), is an immunomodulatory receptor expressed primarily on hematopoietic cells which is involved in various aspects of inflammatory responses and is a potential target for treatment of sepsis. The aim of the present study was to develop a human anti-Siglec-9 Fab fragment, which was named hS9-Fab03 and investigate its immune activity in human macrophages. We began by constructing the hS9-Fab03 prokaryotic expression vector from human antibody library and phage display. Then, we utilized a multitude of assays, including SDS-PAGE, Western blotting, ELISA, affinity, and kinetics assay to evaluate the binding affinity and specificity of hS9-Fab03. Results demonstrated that hS9-Fab03 specifically bind to Siglec-9 antigen with high affinity, and pretreatment with hS9-Fab03 could attenuate lipopolysaccharide (LPS)-induced TNF-α, IL-6, IL-1β, IL-8, and IFN-β production in human PBMC-derived macrophages, but slightly increased IL-10 production in an early time point. We also observed similar results in human THP-1-differentiated macrophages. Collectively, we prepared the hS9-Fab03 with efficient activity for blocking LPS-induced pro-inflammatory cytokines production in human macrophages. These results indicated that ligation of Siglec-9 with hS9-Fab03 might be a novel anti-inflammatory therapeutic strategy for sepsis. PMID:28082984

  9. Synthetic long peptide booster immunization in rhesus macaques primed with replication-competent NYVAC-C-KC induces a balanced CD4/CD8 T-cell and antibody response against the conserved regions of HIV-1.

    PubMed

    Mooij, Petra; Koopman, Gerrit; Drijfhout, Jan Wouter; Nieuwenhuis, Ivonne G; Beenhakker, Niels; Koestler, Josef; Bogers, Willy M J M; Wagner, Ralf; Esteban, Mariano; Pantaleo, Giuseppe; Heeney, Jonathan L; Jacobs, Bertram L; Melief, Cornelis J M

    2015-06-01

    The Thai trial (RV144) indicates that a prime-boost vaccine combination that induces both T-cell and antibody responses may be desirable for an effective HIV vaccine. We have previously shown that immunization with synthetic long peptides (SLP), covering the conserved parts of SIV, induced strong CD4 T-cell and antibody responses, but only modest CD8 T-cell responses. To generate a more balanced CD4/CD8 T-cell and antibody response, this study evaluated a pox-vector prime/SLP boost strategy in rhesus macaques. Priming with a replication-competent NYVAC, encoding HIV-1 clade C gag, pol and nef, induced modest IFNγ T-cell immune responses, predominantly directed against HIV-1 Gag. Booster immunization with SLP, covering the conserved parts of HIV-1 Gag, Pol and Env, resulted in a more than 10-fold increase in IFNγ ELISpot responses in four of six animals, which were predominantly HIV-1 Pol-specific. The animals showed a balanced polyfunctional CD4 and CD8 T-cell response and high Ab titres. © 2015 The Authors.

  10. MF59-adjuvanted H5N1 vaccine induces immunologic memory and heterotypic antibody responses in non-elderly and elderly adults.

    PubMed

    Banzhoff, Angelika; Gasparini, Roberto; Laghi-Pasini, Franco; Staniscia, Tommaso; Durando, Paolo; Montomoli, Emanuele; Capecchi, Pier Leopoldo; Capecchi, Pamela; di Giovanni, Pamela; Sticchi, Laura; Gentile, Chiara; Hilbert, Anke; Brauer, Volker; Tilman, Sandrine; Podda, Audino

    2009-01-01

    Pathogenic avian influenza virus (H5N1) has the potential to cause a major global pandemic in humans. Safe and effective vaccines that induce immunologic memory and broad heterotypic response are needed. Healthy adults aged 18-60 and > 60 years (n = 313 and n = 173, respectively) were randomized (1:1) to receive two primary and one booster injection of 7.5 microg or 15 microg doses of a subunit MF59-adjuvanted H5N1 (A/Vietnam/1194/2004) (clade 1) vaccine. Safety was monitored until 6 months after booster. Immunogenicity was assessed by hemagglutination inhibition (HI), single radial hemolysis (SRH) and microneutralization assays (MN). Mild injection-site pain was the most common adverse reaction. No serious adverse events relating to the vaccine were reported. The humoral immune responses to 7.5 microg and 15 microg doses were comparable. The rates for seroprotection (HI>40; SRH>25 mm(2); MN > or = 40) after the primary vaccination ranged 72-87%. Six months after primary vaccination with the 7.5 microg dose, 18% and 21% of non-elderly and elderly adults were seroprotected; rates increased to 90% and 84%, respectively, after the booster vaccination. In the 15 microg group, seroprotection rates among non-elderly and elderly adults increased from 25% and 62% after primary vaccination to 92% and 88% after booster vaccination, respectively. A heterologous immune response to the H5N1/turkey/Turkey/05 strain was elicited after second and booster vaccinations. Both formulations of MF59-adjuvanted influenza H5N1 vaccine were well tolerated. The European Union requirement for licensure for pre-pandemic vaccines was met by the lower dose tested. The presence of cross-reactive antibodies to a clade 2 heterologous strain demonstrates that this vaccine may be appropriate for pre-pandemic programs. (ClinicalTrials.gov) NCT00311480.

  11. IgM rheumatoid factor amplifies the inflammatory response of macrophages induced by the rheumatoid arthritis-specific immune complexes containing anticitrullinated protein antibodies.

    PubMed

    Laurent, Lætitia; Anquetil, Florence; Clavel, Cyril; Ndongo-Thiam, Ndiémé; Offer, Géraldine; Miossec, Pierre; Pasquali, Jean-Louis; Sebbag, Mireille; Serre, Guy

    2015-07-01

    Anticitrullinated protein antibodies (ACPA) are specifically associated with rheumatoid arthritis (RA) and produced in inflamed synovial membranes where citrullinated fibrin, their antigenic target, is abundant. We showed that immune complexes containing IgG ACPA (ACPA-IC) induce FcγR-mediated tumour necrosis factor (TNF)-α secretion in macrophages. Since IgM rheumatoid factor (RF), an autoantibody directed to the Fc fragment of IgG, is also produced and concentrated in the rheumatoid synovial tissue, we evaluated its influence on macrophage stimulation by ACPA-IC. With monocyte-derived macrophages from more than 40 healthy individuals and different human IgM cryoglobulins with RF activity, using a previously developed human in vitro model, we evaluated the effect of the incorporation of IgM RF into ACPA-IC. IgM RF induced an important amplification of the TNF-α secretion. This effect was not observed in monocytes and depended on an increase in the number of IgG-engaged FcγR. It extended to the secretion of interleukin (IL)-1β and IL-6, was paralleled by IL-8 secretion and was not associated with overwhelming secretion of IL-10 or IL-1Ra. Moreover, the RF-induced increased proinflammatory bioactivity of the cytokine response to ACPA-IC was confirmed by an enhanced, not entirely TNF-dependent, capacity of the secreted cytokine cocktail to prompt IL-6 secretion by RA synoviocytes. By showing that it can greatly enhance the proinflammatory cytokine response induced in macrophages by the RA-specific ACPA-IC, these results highlight a previously undescribed, FcγR-dependent strong proinflammatory potential of IgM RF. They clarify the pathophysiological link between the presence of ACPA and IgM RF, and RA severity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Systemic antibody responses induced by a two-component Clostridium difficile toxoid vaccine protect against C. difficile-associated disease in hamsters.

    PubMed

    Anosova, Natalie G; Brown, Anna M; Li, Lu; Liu, Nana; Cole, Leah E; Zhang, Jinrong; Mehta, Hersh; Kleanthous, Harry

    2013-09-01

    measurements of pre-challenge sera showed that the median anti-toxin A and anti-toxin B IgG titres in the group of surviving animals were significantly higher than the median values in the group of animals that did not survive challenge. Assessment of the neutralizing activity of these sera revealed a statistically significant difference between the levels of both toxin A and toxin B neutralizing titres in protected versus unprotected animals as the median anti-toxin A and anti-toxin B neutralizing titres from surviving animals were higher than the median values from animals that succumbed to challenge. Statistically significant correlations between the toxin-specific binding titres and toxin neutralizing titres were seen for both toxin A and toxin B responses. The role of circulating anti-toxin antibodies in immunity against disease was evaluated by passive transfer of immune sera against C. difficile toxoids to naïve hamsters. Passively immunized animals were protected against morbidity and mortality associated with C. difficile challenge. Taken together, these results indicate the ability of i.m. immunization with inactivated toxins A and B to induce robust dose-dependent anti-toxin A and anti-toxin B IgG responses, the principal role of circulating anti-toxin antibody in immunity against disease and that antibody toxin binding and neutralization titres can serve as correlates of protection in the hamster challenge model of C. difficile.

  13. rgpA DNA vaccine induces antibody response and prevents alveolar bone loss in experimental peri-implantitis.

    PubMed

    Fan, Xin; Wang, Zhifeng; Ji, Ping; Bian, Yuanyuan; Lan, Jing

    2013-06-01

    Peri-implantitis is one of many reasons for dental implant failure. This study is designed to prevent experimental peri-implantitis by arginine-specific gingipain A (rgpA) DNA vaccine. The bilateral mandibular second and third premolars from 15 male beagle dogs were extracted, and 60 implants were immediately implanted. Three months after implantation, the animals were randomly divided into groups A, B, and C and immunized with plasmid vector-rgpA, heat-killed Porphyromonas gingivalis, and plasmid vector, respectively. Cotton ligatures infiltrated with P. gingivalis were placed in the submarginal position around the neck of the implants to induce peri-implantitis. Clinical measurements, including probing depth (PD) and bleeding on probing, were recorded every 2 weeks postoperatively, and P. gingivalis-specific immunoglobulin G (IgG) in serum and secretory IgA (sIgA) in saliva were quantitatively analyzed by enzyme-linked immunosorbent assay at the same time. Animals were sacrificed after 6 weeks, 50-μm undecalcified histologic sections were prepared using methylene blue dye, and bone loss around implants was measured. Higher levels of IgG in serum and sIgA in saliva could be measured in groups A and B but not in group C after immunization. There were statistical differences (P <0.05) between, before, and after immunization, but no difference was found between groups A and B (P >0.05). Both peri-implant PD and bone loss in group A were significantly less than in groups B and C. IgG and sIgA could be generated by immunization with rgpA DNA vaccine, which could significantly slow down bone loss in the experimental peri-implantitis canine model.

  14. Adaptive responses to antibody based therapy.

    PubMed

    Rodems, Tamara S; Iida, Mari; Brand, Toni M; Pearson, Hannah E; Orbuch, Rachel A; Flanigan, Bailey G; Wheeler, Deric L

    2016-02-01

    Receptor tyrosine kinases (RTKs) represent a large class of protein kinases that span the cellular membrane. There are 58 human RTKs identified which are grouped into 20 distinct families based upon their ligand binding, sequence homology and structure. They are controlled by ligand binding which activates intrinsic tyrosine-kinase activity. This activity leads to the phosphorylation of distinct tyrosines on the cytoplasmic tail, leading to the activation of cell signaling cascades. These signaling cascades ultimately regulate cellular proliferation, apoptosis, migration, survival and homeostasis of the cell. The vast majority of RTKs have been directly tied to the etiology and progression of cancer. Thus, using antibodies to target RTKs as a cancer therapeutic strategy has been intensely pursued. Although antibodies against the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) have shown promise in the clinical arena, the development of both intrinsic and acquired resistance to antibody-based therapies is now well appreciated. In this review we provide an overview of the RTK family, the biology of EGFR and HER2, as well as an in-depth review of the adaptive responses undertaken by cells in response to antibody based therapies directed against these receptors. A greater understanding of these mechanisms and their relevance in human models will lead to molecular insights in overcoming and circumventing resistance to antibody based therapy.

  15. Contrasting antibody responses to intrasubtype superinfection with CRF02_AG.

    PubMed

    Courtney, Colleen R; Mayr, Luzia; Nanfack, Aubin J; Banin, Andrew N; Tuen, Michael; Pan, Ruimin; Jiang, Xunqing; Kong, Xiang-Peng; Kirkpatrick, Allison R; Bruno, Daniel; Martens, Craig A; Sykora, Lydia; Porcella, Stephen F; Redd, Andrew D; Quinn, Thomas C; Nyambi, Phillipe N; Dürr, Ralf

    2017-01-01

    HIV superinfection describes the sequential infection of an individual with two or more unrelated HIV strains. Intersubtype superinfection has been shown to cause a broader and more potent heterologous neutralizing antibody response when compared to singly infected controls, yet the effects of intrasubtype superinfection remain controversial. Longitudinal samples were analyzed phylogenetically for pol and env regions using Next-Generation Sequencing and envelope cloning. The impact of CRF02_AG intrasubtype superinfection was assessed for heterologous neutralization and antibody binding responses. We compared two cases of CRF02_AG intrasubtype superinfection that revealed complete replacement of the initial virus by superinfecting CRF02_AG variants with signs of recombination. NYU6564, who became superinfected at an early time point, exhibited greater changes in antibody binding profiles and generated a more potent neutralizing antibody response post-superinfection compared to NYU6501. In contrast, superinfection occurred at a later time point in NYU6501 with strains harboring significantly longer V1V2 regions with no observable changes in neutralization patterns. Here we show that CRF02_AG intrasubtype superinfection can induce a cross-subtype neutralizing antibody response, and our data suggest timing and/or superinfecting viral envelope characteristics as contributing factors. These results highlight differential outcomes in intrasubtype superinfection and provide the first insight into cases with CRF02_AG, the fourth most prevalent HIV-1 strain worldwide.

  16. Contrasting antibody responses to intrasubtype superinfection with CRF02_AG

    PubMed Central

    Courtney, Colleen R.; Mayr, Luzia; Nanfack, Aubin J.; Banin, Andrew N.; Tuen, Michael; Pan, Ruimin; Jiang, Xunqing; Kong, Xiang-Peng; Kirkpatrick, Allison R.; Bruno, Daniel; Martens, Craig A.; Sykora, Lydia; Porcella, Stephen F.; Redd, Andrew D.; Quinn, Thomas C.; Dürr, Ralf

    2017-01-01

    HIV superinfection describes the sequential infection of an individual with two or more unrelated HIV strains. Intersubtype superinfection has been shown to cause a broader and more potent heterologous neutralizing antibody response when compared to singly infected controls, yet the effects of intrasubtype superinfection remain controversial. Longitudinal samples were analyzed phylogenetically for pol and env regions using Next-Generation Sequencing and envelope cloning. The impact of CRF02_AG intrasubtype superinfection was assessed for heterologous neutralization and antibody binding responses. We compared two cases of CRF02_AG intrasubtype superinfection that revealed complete replacement of the initial virus by superinfecting CRF02_AG variants with signs of recombination. NYU6564, who became superinfected at an early time point, exhibited greater changes in antibody binding profiles and generated a more potent neutralizing antibody response post-superinfection compared to NYU6501. In contrast, superinfection occurred at a later time point in NYU6501 with strains harboring significantly longer V1V2 regions with no observable changes in neutralization patterns. Here we show that CRF02_AG intrasubtype superinfection can induce a cross-subtype neutralizing antibody response, and our data suggest timing and/or superinfecting viral envelope characteristics as contributing factors. These results highlight differential outcomes in intrasubtype superinfection and provide the first insight into cases with CRF02_AG, the fourth most prevalent HIV-1 strain worldwide. PMID:28288209

  17. Quantity, not quality, of antibody response decreased in the elderly

    PubMed Central

    Blomberg, Bonnie B.; Frasca, Daniela

    2011-01-01

    The burden of disease during seasonal influenza epidemics is felt most keenly among the very young and the elderly. Although vaccination effectively protects children and young adults against infection, it has limited efficacy in elderly individuals. This has been linked to a reduced ability to induce a robust serum antibody response. In this issue of the JCI, Sasaki et al. identify some of the cellular and molecular deficits that underlie the reduced serum antibody response induced by influenza vaccination in elderly individuals. Importantly, they show that it is the quantity of the response, and not its quality, that needs to be improved if we are to enhance the success of influenza vaccination in this vulnerable population. PMID:21785210

  18. Monoclonal immunoglobulin A antibodies directed against cholera toxin prevent the toxin-induced chloride secretory response and block toxin binding to intestinal epithelial cells in vitro.

    PubMed Central

    Apter, F M; Lencer, W I; Finkelstein, R A; Mekalanos, J J; Neutra, M R

    1993-01-01

    Secretory immunoglobulin A (IgA) antibodies directed against cholera toxin (CT) are thought to be important in resistance to oral challenge with virulent Vibrio cholerae, although alternative mechanisms for protection of intestinal epithelia against CT-induced fluid secretion have been proposed. The ability of anti-CT IgA to block the effects of CT on human enterocytes has not been directly tested because of the lack of a well-defined in vitro intestinal epithelial cell system to directly measure toxin action and the limited availability of purified anti-CT IgA antibodies. We have generated hybridomas that produce monoclonal IgA and IgG antibodies directed against CT by fusion of Peyer's patch cells with mouse myeloma cells after oral-systemic immunization of mice with CT and CT B-subunit protein. All of the anti-CT antibodies recognized the B subunit. Three clones (designated anti-CTB IgA-1, IgA-2, and IgA-3) which produced IgA antibodies in dimeric and polymeric forms were selected. Checkerboard immunoblotting demonstrated that IgA-1 recognized an epitope distinct from that recognized by IgA-2 and IgA-3 and that none of the antibodies were directed against the binding site of GM1, the intestinal cell membrane toxin receptor. The protective capacity of these IgAs was tested in vitro with human T84 colon carcinoma cells grown on permeable supports as confluent monolayers of polarized enterocytes. When each anti-CTB IgA was mixed with 10 nM CT and applied to the apical surfaces of T84 cell monolayers, all three IgAs blocked CT-induced Cl- secretion in a dose-dependent manner and completely inhibited binding of rhodamine-labelled CT to apical cell membranes. Thus, monoclonal anti-CTB IgA antibodies are sufficient to protect human enterocytes in vitro against CT binding and action. Images PMID:7693598

  19. Modulation of Antibody-Mediated Immune Response by Probiotics in Chickens

    PubMed Central

    Haghighi, Hamid R.; Gong, Jianhua; Gyles, Carlton L.; Hayes, M. Anthony; Sanei, Babak; Parvizi, Payvand; Gisavi, Haris; Chambers, James R.; Sharif, Shayan

    2005-01-01

    Probiotic bacteria, including Lactobacillus acidophilus and Bifidobacterium bifidum, have been shown to enhance antibody responses in mammals. The objective of this study was to examine the effects of a probiotic product containing the above bacteria in addition to Streptococcus faecalis on the induction of the chicken antibody response to various antigens, both systemically and in the gut. The birds received probiotics via oral gavage and subsequently were immunized with sheep red blood cells (SRBC) and bovine serum albumin (BSA) to evaluate antibody responses in serum or with tetanus toxoid (TT) to measure the mucosal antibody response in gut contents. Control groups received phosphate-buffered saline. Overall, BSA and SRBC induced a detectable antibody response as early as week 1 postimmunization (p.i.), which lasted until week 3 p.i. Probiotic-treated birds had significantly (P ≤ 0.001) more serum antibody (predominantly immunoglobulin M [IgM]) to SRBC than the birds that were not treated with probiotics. However, treatment with probiotics did not enhance the serum IgM and IgG antibody responses to BSA. Immunization with TT resulted in the presence of specific IgA and IgG antibody responses in the gut. Again, treatment with probiotics did not change the level or duration of the antibody response in the gut. In conclusion, probiotics enhance the systemic antibody response to some antigens in chickens, but it remains to be seen whether probiotics have an effect on the generation of the mucosal antibody response. PMID:16339061

  20. MF59®-Adjuvanted H5N1 Vaccine Induces Immunologic Memory and Heterotypic Antibody Responses in Non-Elderly and Elderly Adults

    PubMed Central

    Banzhoff, Angelika; Gasparini, Roberto; Laghi-Pasini, Franco; Staniscia, Tommaso; Durando, Paolo; Montomoli, Emanuele; Capecchi, Pamela; di Giovanni, Pamela; Sticchi, Laura; Gentile, Chiara; Hilbert, Anke; Brauer, Volker; Tilman, Sandrine; Podda, Audino

    2009-01-01

    Background Pathogenic avian influenza virus (H5N1) has the potential to cause a major global pandemic in humans. Safe and effective vaccines that induce immunologic memory and broad heterotypic response are needed. Methods and Findings Healthy adults aged 18–60 and >60 years (n = 313 and n = 173, respectively) were randomized (1∶1) to receive two primary and one booster injection of 7.5 μg or 15 μg doses of a subunit MF59-adjuvanted H5N1 (A/Vietnam/1194/2004) (clade 1) vaccine. Safety was monitored until 6 months after booster. Immunogenicity was assessed by hemagglutination inhibition (HI), single radial hemolysis (SRH) and microneutralization assays (MN). Mild injection-site pain was the most common adverse reaction. No serious adverse events relating to the vaccine were reported. The humoral immune responses to 7.5 μg and 15 μg doses were comparable. The rates for seroprotection (HI>40; SRH>25mm2; MN ≥40) after the primary vaccination ranged 72–87%. Six months after primary vaccination with the 7.5 μg dose, 18% and 21% of non-elderly and elderly adults were seroprotected; rates increased to 90% and 84%, respectively, after the booster vaccination. In the 15 μg group, seroprotection rates among non-elderly and elderly adults increased from 25% and 62% after primary vaccination to 92% and 88% after booster vaccination, respectively. A heterologous immune response to the H5N1/turkey/Turkey/05 strain was elicited after second and booster vaccinations. Conclusions Both formulations of MF59-adjuvanted influenza H5N1 vaccine were well tolerated. The European Union requirement for licensure for pre-pandemic vaccines was met by the lower dose tested. The presence of cross-reactive antibodies to a clade 2 heterologous strain demonstrates that this vaccine may be appropriate for pre-pandemic programs. Trial Registration ClinicalTrials.gov NCT00311480 PMID:19197383

  1. Virus-Like Particles Displaying Trimeric Simian Immunodeficiency Virus (SIV) Envelope gp160 Enhance the Breadth of DNA/Modified Vaccinia Virus Ankara SIV Vaccine-Induced Antibody Responses in Rhesus Macaques

    PubMed Central

    Iyer, Smita S.; Gangadhara, Sailaja; Victor, Blandine; Shen, Xiaoying; Chen, Xuemin; Nabi, Rafiq; Kasturi, Sudhir P.; Sabula, Michael J.; Labranche, Celia C.; Reddy, Pradeep B. J.; Tomaras, Georgia D.; Montefiori, David C.; Spearman, Paul; Pulendran, Bali; Kozlowski, Pamela A.

    2016-01-01

    infection and reducing the burden of AIDS. While this goal represents a formidable challenge, the modest efficacy of the RV144 trial indicates that multicomponent vaccination regimens that elicit both cellular and humoral immune responses can prevent HIV infection in humans. However, whether protein immunizations synergize with DNA prime-viral vector boosts to enhance cellular and humoral immune responses remains poorly understood. We addressed this question in a nonhuman primate model, and our findings show benefit for sequential protein immunization combined with a potent adjuvant in boosting antibody titers induced by a preceding DNA/MVA immunization. This promising strategy can be further developed to enhance neutralizing antibody responses and boost CD8 T cells to provide robust protection and viral control. PMID:27466414

  2. Influenza nucleoprotein DNA vaccination by a skin targeted, dry coated, densely packed microprojection array (Nanopatch) induces potent antibody and CD8(+) T cell responses.

    PubMed

    Fernando, Germain J P; Zhang, Jin; Ng, Hwee-Ing; Haigh, Oscar L; Yukiko, Sally R; Kendall, Mark A F

    2016-09-10

    DNA vaccines have many advantages such as thermostability and the ease and rapidity of manufacture; for example, in an influenza pandemic situation where rapid production of vaccine is essential. However, immunogenicity of DNA vaccines was shown to be poor in humans unless large doses of DNA are used. If a highly efficacious DNA vaccine delivery system could be identified, then DNA vaccines have the potential to displace protein vaccines. In this study, we show in a C57BL/6 mouse model, that the Nanopatch, a microprojection array of high density (>21,000 projections/cm(2)), could be used to deliver influenza nucleoprotein DNA vaccine to skin, to generate enhanced antigen specific antibody and CD8(+) T cell responses compared to the conventional intramuscular (IM) delivery by the needle and syringe. Antigen specific antibody was measured using ELISA assays of mice vaccinated with a DNA plasmid containing the nucleoprotein gene of influenza type A/WSN/33 (H1N1). Antigen specific CD8(+) T cell responses were measured ex-vivo in splenocytes of mice using IFN-γ ELISPOT assays. These results and our previous antibody and CD4(+) T cell results using the Nanopatch delivered HSV DNA vaccine indicate that the Nanopatch is an effective delivery system of general utility that could potentially be used in humans to increase the potency of the DNA vaccines.

  3. Enzyme-linked immunosorbent assay antibody responses to a temperature-sensitive mutant of Pseudomonas aeruginosa.

    PubMed Central

    Sordelli, D O; Rojas, R A; Cerquetti, M C; Hooke, A M; Degnan, P J; Bellanti, J A

    1985-01-01

    The serum immunoglobulin G and M responses induced by immunization of mice with temperature-sensitive mutant A/10/25 of Pseudomonas aeruginosa were evaluated by enzyme-linked immunosorbent assay. These antibody responses were immunotype specific, and the immunoglobulin G antibody level, although low, was still significant by day 52 after vaccination. PMID:3930404

  4. Aerosolized measles and measles-rubella vaccines induce better measles antibody booster responses than injected vaccines: randomized trials in Mexican schoolchildren.

    PubMed Central

    Bennett, John V.; Fernandez de Castro, Jorge; Valdespino-Gomez, Jose Luis; Garcia-Garcia, Ma de Lourdes; Islas-Romero, Rocio; Echaniz-Aviles, Gabriela; Jimenez-Corona, Aida; Sepulveda-Amor, Jaime

    2002-01-01

    OBJECTIVE: To compare antibody responses and side-effects of aerosolized and injected measles vaccines after revaccination of children enrolling in elementary schools. METHODS: Vaccines for measles (Edmonston-Zagreb) or measles-rubella (Edmonston-Zagreb with RA27/3) were given by aerosol or injection to four groups of children. An additional group received Schwarz measles vaccine by injection. These five groups received vaccines in usual standard titre doses. A sixth group received only 1000 plaque-forming units of Edmonston-Zagreb vaccine by aerosol. The groups were randomized by school. Concentrations of neutralizing antibodies were determined in blood specimens taken at baseline and four months after vaccination from randomized subgroups (n = 28-31) of children in each group. FINDINGS: After baseline antibody titres were controlled for, the frequencies of fourfold or greater increases in neutralizing antibodies did not differ significantly between the three groups that received vaccine by aerosol (range 52%-64%), but they were significantly higher than those for the three groups that received injected vaccine (range 4%-23%). Mean increases in titres and post-vaccination geometric mean titres paralleled these findings. Fewer side-effects were noted after aerosol than injection administration of vaccine. CONCLUSION: Immunogenicity of measles vaccine when administered by aerosol is superior to that when the vaccine is given by injection. This advantage persists with aerosolized doses less than or equal to one-fifth of usual injected doses. The efficacy and cost-effectiveness of measles vaccination by aerosol should be further evaluated in mass campaigns. PMID:12471401

  5. Mucosal immunization induces a higher level of lasting neutralizing antibody response in mice by a replication-competent smallpox vaccine: vaccinia Tiantan strain.

    PubMed

    Lu, Bin; Yu, Wenbo; Huang, Xiaoxing; Wang, Haibo; Liu, Li; Chen, Zhiwei

    2011-01-01

    The possible bioterrorism threat using the variola virus, the causative agent of smallpox, has promoted us to further investigate the immunogenicity profiles of existing vaccines. Here, we study for the first time the immunogenicity profile of a replication-competent smallpox vaccine (vaccinia Tiantan, VTT strain) for inducing neutralizing antibodies (Nabs) through mucosal vaccination, which is noninvasive and has a critical implication for massive vaccination programs. Four different routes of vaccination were tested in parallel including intramuscular (i.m.), intranasal (i.n.), oral (i.o.), and subcutaneous (s.c.) inoculations in mice. We found that one time vaccination with an optimal dose of VTT was able to induce anti-VTT Nabs via each of the four routes. Higher levels of antiviral Nabs, however, were induced via the i.n. and i.o. inoculations when compared with the i.m. and s.c. routes. Moreover, the i.n. and i.o. vaccinations also induced higher sustained levels of Nabs overtime, which conferred better protections against homologous or alternating mucosal routes of viral challenges six months post vaccination. The VTT-induced immunity via all four routes, however, was partially effective against the intramuscular viral challenge. Our data have implications for understanding the potential application of mucosal smallpox vaccination and for developing VTT-based vaccines to overcome preexisting antivaccinia immunity.

  6. Mucosal Immunization Induces a Higher Level of Lasting Neutralizing Antibody Response in Mice by a Replication-Competent Smallpox Vaccine: Vaccinia Tiantan Strain

    PubMed Central

    Lu, Bin; Yu, Wenbo; Huang, Xiaoxing; Wang, Haibo; Liu, Li; Chen, Zhiwei

    2011-01-01

    The possible bioterrorism threat using the variola virus, the causative agent of smallpox, has promoted us to further investigate the immunogenicity profiles of existing vaccines. Here, we study for the first time the immunogenicity profile of a replication-competent smallpox vaccine (vaccinia Tiantan, VTT strain) for inducing neutralizing antibodies (Nabs) through mucosal vaccination, which is noninvasive and has a critical implication for massive vaccination programs. Four different routes of vaccination were tested in parallel including intramuscular (i.m.), intranasal (i.n.), oral (i.o.), and subcutaneous (s.c.) inoculations in mice. We found that one time vaccination with an optimal dose of VTT was able to induce anti-VTT Nabs via each of the four routes. Higher levels of antiviral Nabs, however, were induced via the i.n. and i.o. inoculations when compared with the i.m. and s.c. routes. Moreover, the i.n. and i.o. vaccinations also induced higher sustained levels of Nabs overtime, which conferred better protections against homologous or alternating mucosal routes of viral challenges six months post vaccination. The VTT-induced immunity via all four routes, however, was partially effective against the intramuscular viral challenge. Our data have implications for understanding the potential application of mucosal smallpox vaccination and for developing VTT-based vaccines to overcome preexisting antivaccinia immunity. PMID:21765641

  7. Identification of anti-CD98 antibody mimotopes for inducing antibodies with antitumor activity by mimotope immunization.

    PubMed

    Saito, Misa; Kondo, Masahiro; Ohshima, Motohiro; Deguchi, Kazuki; Hayashi, Hideki; Inoue, Kazuyuki; Tsuji, Daiki; Masuko, Takashi; Itoh, Kunihiko

    2014-04-01

    A mimotope is an antibody-epitope-mimicking peptide retrieved from a phage display random peptide library. Immunization with antitumor antibody-derived mimotopes is promising for inducing antitumor immunity in hosts. In this study, we isolated linear and constrained mimotopes from HBJ127, a tumor-suppressing anti-CD98 heavy chain mAb, and determined their abilities for induction of antitumor activity equal to that of the parent antibody. We detected elevated levels of antipeptide responses, but failed to detect reactivity against native CD98-expressing HeLa cells in sera of immunized mice. Phage display panning and selection of mimotope-immunized mouse spleen-derived antibody Fab library showed that HeLa cell-reactive Fabs were successfully retrieved from the library. This finding indicates that native antigen-reactive Fab clones represented an undetectable minor population in mimotope-induced antibody repertoire. Functional and structural analysis of retrieved Fab clones revealed that they were almost identical to the parent antibody. From these results, we confirmed that mimotope immunization was promising for retrieving antitumor antibodies equivalent to the parent antibody, although the co-administration of adjuvant compounds such as T-cell epitope peptides and Toll-like receptor 4 agonist peptides is likely to be necessary for inducing stronger antitumor immunity than mimotope injection alone.

  8. Identification of anti-CD98 antibody mimotopes for inducing antibodies with antitumor activity by mimotope immunization

    PubMed Central

    Saito, Misa; Kondo, Masahiro; Ohshima, Motohiro; Deguchi, Kazuki; Hayashi, Hideki; Inoue, Kazuyuki; Tsuji, Daiki; Masuko, Takashi; Itoh, Kunihiko

    2014-01-01

    A mimotope is an antibody-epitope-mimicking peptide retrieved from a phage display random peptide library. Immunization with antitumor antibody-derived mimotopes is promising for inducing antitumor immunity in hosts. In this study, we isolated linear and constrained mimotopes from HBJ127, a tumor-suppressing anti-CD98 heavy chain mAb, and determined their abilities for induction of antitumor activity equal to that of the parent antibody. We detected elevated levels of antipeptide responses, but failed to detect reactivity against native CD98-expressing HeLa cells in sera of immunized mice. Phage display panning and selection of mimotope-immunized mouse spleen-derived antibody Fab library showed that HeLa cell-reactive Fabs were successfully retrieved from the library. This finding indicates that native antigen-reactive Fab clones represented an undetectable minor population in mimotope-induced antibody repertoire. Functional and structural analysis of retrieved Fab clones revealed that they were almost identical to the parent antibody. From these results, we confirmed that mimotope immunization was promising for retrieving antitumor antibodies equivalent to the parent antibody, although the co-administration of adjuvant compounds such as T-cell epitope peptides and Toll-like receptor 4 agonist peptides is likely to be necessary for inducing stronger antitumor immunity than mimotope injection alone. PMID:24484217

  9. Cross-Reactive Myelin Antibody Induces Renal Disease

    PubMed Central

    Peterson, Lisa K.; Masaki, Takahisa; Wheelwright, Steven R.; Tsunoda, Ikuo; Fujinami, Robert S.

    2011-01-01

    Experimental autoimmune encephalomyelitis (EAE) is an autoimmune model for multiple sclerosis (MS). Previously, we reported renal immunoglobulin (Ig) deposition in mice with myelin oligodendrocyte glycoprotein (MOG92-106) induced progressive-EAE and naïve mice injected with MOG92-106 hybridoma cells producing antibody that cross-reacts with various autoantigens including double-stranded DNA. To assess whether MOG92-106 antibodies actually induce kidney changes, the extent of renal Ig deposition and changes in glomerular histology and filtration were investigated. Mice with progressive-EAE exhibited Ig deposition, glomerular hypercellularity and proteinuria indicating kidney dysfunction. MOG92-106 hybridoma cell injected mice also had Ig in the kidneys and proteinuria. Therefore, sensitization with MOG92-106 and transfer of MOG92-106 antibodies can induce both central nervous system and renal pathology. The renal involvement reported in MS is believed to occur as a side effect of nephrotoxic drugs or neurogenic bladder. Our results demonstrate that an autoimmune response against myelin could induce pathologic changes in the kidney and may help explain renal changes reported in patients with progressive MS. PMID:18608179

  10. Regulation of the in vitro antibody response by neuroendocrine hormones

    PubMed Central

    Johnson, Howard M.; Smith, Eric M.; Torres, Barbara A.; Blalock, J. Edwin

    1982-01-01

    Treatment of lymphocytes with inducers of interferon α (IFN-α) results in the production of corticotropin (ACTH) and endorphin-like activities. The pro-opiomelanocortin-derived hormones ACTH and α-, β-, and γ-endorphin and the structurally related hormones [Leu]- and [Met]enkephalin were therefore tested for their effects on the in vitro antibody response of mouse spleen cells. ACTH and α-endorphin were potent inhibitors (≥80% suppression) of the antibody response to the T-cell-dependent antigen sheep erythrocytes at a concentration of 0.5 μM. [Met]- and [Leu]enkephalin were moderate inhibitors (approximately 60% suppression) at 0.2-2 μM, and β- and γ-endorphin were minimal inhibitors (approximately 20% suppression) at 5-6 μM. At higher concentrations ACTH also inhibited the antibody response to the T-cell-independent antigen dinitrophenyl-Ficoll, suggesting that T-cell function was more sensitive to blockage by these hormones than was B-cell function. ACTH and IFN had similar suppression properties; thus, the hormone-like activities associated with IFN-α may play a role in IFN-induced immunosuppression. α-Endorphin immunosuppression was blocked by naloxone, which suggested that α-endorphin exerted its effects through binding to opiate-like receptors on the spleen cells. The failure of β-endorphin to suppress the immune response significantly was not due to its failure to bind to the opiate-like receptors because it blocked α-endorphin-induced suppression. Direct evidence for both opiate and ACTH receptors on the spleen cells was obtained in binding studies with labeled enkephalin and ACTH. Such studies revealed the presence of both high- and low-affinity receptors. The data show that neuroendocrine polypeptide hormones can regulate the immune response. PMID:6287470

  11. Immunization of chickens with an agonistic monoclonal anti-chicken CD40 antibody-hapten complex: rapid and robust IgG response induced by a single subcutaneous injection.

    PubMed

    Chen, Chang-Hsin; Abi-Ghanem, Daad; Waghela, Suryakant D; Chou, Wen-Ko; Farnell, Morgan B; Mwangi, Waithaka; Berghman, Luc R

    2012-04-30

    Producing diagnostic antibodies in chicken egg yolk represents an alternate animal system that offers many advantages including high productivity at low cost. Despite being an excellent counterpart to mammalian antibodies, chicken IgG from yolk still represents an underused resource. The potential of agonistic monoclonal anti-CD40 antibodies (mAb) as a powerful immunological adjuvant has been demonstrated in mammals, but not in chickens. We recently reported an agonistic anti-chicken CD40 mAb (designated mAb 2C5) and showed that it may have potential as an immunological adjuvant. In this study, we examined the efficacy of targeting a short peptide to chicken CD40 [expressed by the antigen-presenting cells (APCs)] in enhancing an effective IgG response in chickens. For this purpose, an immune complex consisting of one streptavidin molecule, two directionally biotinylated mAb 2C5 molecules, and two biotinylated peptide molecules was produced. Chickens were immunized subcutaneously with doses of this complex ranging from 10 to 90 μg per injection once, and relative quantification of the peptide-specific IgG response showed that the mAb 2C5-based complex was able to elicit a strong IgG response as early as four days post-immunization. This demonstrates that CD40-targeting antigen to chicken APCs can significantly enhance antibody responses and induce immunoglobulin isotype-switching. This immunization strategy holds promise for rapid production of hapten-specific IgG in chickens.

  12. Protection and antibody response induced by intramuscular DNA vaccine encoding for viral haemorrhagic septicaemia virus (VHSV) G glycoprotein in turbot (Scophthalmus maximus).

    PubMed

    Pereiro, P; Martinez-Lopez, A; Falco, A; Dios, S; Figueras, A; Coll, J M; Novoa, B; Estepa, A

    2012-06-01

    Turbot (Scophthalmus maximus) is a high-value farmed marine flatfish with growing demand and production levels in Europe susceptible to turbot-specific viral haemorrhagic septicaemia virus (VHSV) strains. To evaluate the possibility of controlling the outbreaks of this infectious disease by means of DNA vaccination, the gpG of a VHSV isolated from farmed turbot (VHSV(860)) was cloned into an expression plasmid containing the human cytomegalovirus (CMV) promoter (pMCV1.4-G(860)). In our experimental conditions, DNA immunised turbots were more than 85% protected against VHSV(860) lethal challenge and showed both VHSV-gpG specific and neutralizing antibodies. To our knowledge this is the first report showing the efficacy of turbot genetic immunisation against a VHSV. Work is in progress to determine the contribution of innate and adaptive immunity to the protective response elicited by the immunization.

  13. Serum antibody responses of cattle following experimental infection with Escherichia coli O157:H7.

    PubMed Central

    Johnson, R P; Cray, W C; Johnson, S T

    1996-01-01

    Oral inoculation of calves and steers with 10(10) CFU of Escherichia coli O157:H7 induced prompt and sustained increases in serum antibodies to O157 lipopolysaccharide. Neutralizing antibodies to verotoxin 1 also increased rapidly in most steers but more gradually in calves. None of the animals developed neutralizing antibodies to verotoxin 2. These serological responses were not correlated with elimination of infection in calves or steers or protection of calves against reinfection with the same strain. PMID:8613410

  14. Salivary antibody levels in adolescents in response to a meningococcal serogroup C conjugate booster vaccination nine years after priming: systemically induced local immunity and saliva as potential surveillance tool.

    PubMed

    Stoof, Susanne P; van der Klis, Fiona R M; van Rooijen, Debbie M; Bogaert, Debby; Trzciński, Krzysztof; Sanders, Elisabeth A M; Berbers, Guy A M

    2015-07-31

    In several countries large-scale immunization of children and young adults with Meningococcal serogroup C (MenC) conjugate vaccines has induced long-standing herd protection. Salivary antibodies may play an important role in mucosal protection against meningococcal acquisition and carriage. To investigate antibody levels in (pre)adolescents primed 9 years earlier with a single dose of MenC-polysaccharide tetanus toxoid conjugated (MenC-TT) vaccine and the response to a booster vaccination, with special focus on age-related differences and the relation between salivary and serum antibody levels. Nine years after priming, healthy 10- (n=91), 12- (n=91) and 15-year-olds (n=86) received a MenC-TT booster vaccination. Saliva and serum samples were collected prior to and 1 month and 1 year after vaccination. MenC-polysaccharide(MenC-PS)-specific antibody levels were measured using a fluorescent-bead-based multiplex immunoassay. Before the booster, MenC-PS-specific IgG and IgA levels in saliva and serum were low and correlated with age at priming. The booster induced a marked increase in salivary MenC-PS-specific IgG (>200-fold), but also in IgA (∼10-fold). One year after the booster, salivary IgG and IgA had remained above pre-booster levels in all age groups (∼20-fold and ∼3-fold, respectively), with persistence of highest levels in the 15-year-olds. MenC-PS-specific IgG and IgA levels in saliva strongly correlated with the levels in serum. Parenteral MenC-TT booster vaccination induces a clear increase in salivary MenC-PS-specific IgG and IgA levels and persistence of highest levels correlates with age. The strong correlation between serum and salivary antibody levels indicate that saliva may offer an easy and reliable tool for future antibody surveillance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Antibody Response and Disease Severity in Healthcare Worker MERS Survivors

    PubMed Central

    Khalid, Imran; Ahmed, Waleed A.; Dada, Ashraf M.; Bayumi, Daniyah T.; Malic, Laut S.; Althawadi, Sahar; Ignacio, Kim; Alsalmi, Hanadi S.; Al-Abdely, Hail M.; Wali, Ghassan Y.; Qushmaq, Ismael A.; Alraddadi, Basem M.; Perlman, Stanley

    2016-01-01

    We studied antibody response in 9 healthcare workers in Jeddah, Saudi Arabia, who survived Middle East respiratory syndrome, by using serial ELISA and indirect immunofluorescence assay testing. Among patients who had experienced severe pneumonia, antibody was detected for >18 months after infection. Antibody longevity was more variable in patients who had experienced milder disease. PMID:27192543

  16. Impaired primary antibody response in experimental nephrotic syndrome.

    PubMed Central

    Garin, E H; Sausville, P J; Richard, G A

    1983-01-01

    The primary antibody response to sheep red blood cells (SRBC) is reduced in rats with aminonucleoside of puromycin (AP) nephrosis, as measured by haemagglutination and IgM antibody forming spleen cells (AFC). Since rats immunized 1 day after AP administration had a normal antibody response, these studies suggest that the impaired immune response in nephrotic rats is not due to a direct effect of AP but that it is secondary to the nephrotic state. PMID:6347472

  17. Tonsillar application of killed Streptococcus mutans induces specific antibodies in rabbit saliva and blood plasma without inducing a cross-reacting antibody to human cardiac muscle.

    PubMed Central

    Fukuizumi, T; Inoue, H; Tsujisawa, T; Uchiyama, C

    1997-01-01

    When Streptococcus mutans cells are injected into the skeletal muscle of rabbits, an antibody against human cardiac muscle, as well as an anti-S. mutans antibody, is induced in blood plasma. Our previous study showed that when sheep erythrocytes are applied to palatine tonsils, an antibody against the applied cells is induced both in blood plasma and saliva. This antibody has no activity against cardiac muscle. It is not clear, however, if S. mutans application to the tonsils evokes an antibody response against cardiac muscle. In this study, we immunized rabbits against S. mutans or Streptococcus sobrinus by tonsillar application or by intramuscular injection every 3 days for 6 weeks. Tonsillar applications of formalin-killed cells of S. mutans induced saliva immunoglobulin A (IgA) and blood plasma IgG to the applied cells. In contrast, intramuscular injection of such cells induced only blood plasma IgG. When the route of immunization was intramuscular injection, antibodies in blood plasma cross-reacted with cardiac muscle. By enzyme-immunohistochemistry and Ouchterlony immunodiffusion tests, no cross-reaction to cardiac muscle was observed with the antibody in saliva or in blood plasma after the tonsillar applications. Western blotting of the S. mutans antigen showed that blood plasma from rabbits injected with S. mutans reacted with antigens of 46, 52, 62, and 85 kDa, while that from rabbits subjected to tonsillar application of S. mutans did not react with these bands. Similar results were obtained for S. sobrinus applications. Thus, tonsillar applications of mutants group streptococci induce antibodies differing in antigen specificity and do not induce any cross-reacting antibody to cardiac muscle. PMID:9353033

  18. Enhancement of the in vitro antibody response by thyrotropin.

    PubMed

    Blalock, J E; Johnson, H M; Smith, E M; Torres, B A

    1984-11-30

    The pituitary hormone thyrotropin (TSH) has been shown to enhance in a dose dependent manner the in vitro antibody response. Highly purified preparations of bovine and human TSH enhanced up to 375% the number of cells producing antibody to sheep erythrocytes. TSH had to be present prior to 24-48h of the initiation of culture for enhancement of the antibody response. An analogy is discussed between TSH and B lymphocyte growth and differentiation factors.

  19. Flavivirus-induced antibody cross-reactivity

    PubMed Central

    Mansfield, Karen L.; Horton, Daniel L.; Johnson, Nicholas; Li, Li; Barrett, Alan D. T.; Smith, Derek J.; Galbraith, Sareen E.; Solomon, Tom

    2011-01-01

    Dengue viruses (DENV) cause countless human deaths each year, whilst West Nile virus (WNV) has re-emerged as an important human pathogen. There are currently no WNV or DENV vaccines licensed for human use, yet vaccines exist against other flaviviruses. To investigate flavivirus cross-reactivity, sera from a human cohort with a history of vaccination against tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV) and yellow fever virus (YFV) were tested for antibodies by plaque reduction neutralization test. Neutralization of louping ill virus (LIV) occurred, but no significant neutralization of Murray Valley encephalitis virus was observed. Sera from some individuals vaccinated against TBEV and JEV neutralized WNV, which was enhanced by YFV vaccination in some recipients. Similarly, some individuals neutralized DENV-2, but this was not significantly influenced by YFV vaccination. Antigenic cartography techniques were used to generate a geometric illustration of the neutralization titres of selected sera against WNV, TBEV, JEV, LIV, YFV and DENV-2. This demonstrated the individual variation in antibody responses. Most sera had detectable titres against LIV and some had titres against WNV and DENV-2. Generally, LIV titres were similar to titres against TBEV, confirming the close antigenic relationship between TBEV and LIV. JEV was also antigenically closer to TBEV than WNV, using these sera. The use of sera from individuals vaccinated against multiple pathogens is unique relative to previous applications of antigenic cartography techniques. It is evident from these data that notable differences exist between amino acid sequence identity and mapped antigenic relationships within the family Flaviviridae. PMID:21900425

  20. Nanogel-based pneumococcal surface protein A nasal vaccine induces microRNA-associated Th17 cell responses with neutralizing antibodies against Streptococcus pneumoniae in macaques

    PubMed Central

    Fukuyama, Y; Yuki, Y; Katakai, Y; Harada, N; Takahashi, H; Takeda, S; Mejima, M; Joo, S; Kurokawa, S; Sawada, S; Shibata, H; Park, E J; Fujihashi, K; Briles, D E; Yasutomi, Y; Tsukada, H; Akiyoshi, K; Kiyono, H

    2015-01-01

    We previously established a nanosized nasal vaccine delivery system by using a cationic cholesteryl group-bearing pullulan nanogel (cCHP nanogel), which is a universal protein-based antigen-delivery vehicle for adjuvant-free nasal vaccination. In the present study, we examined the central nervous system safety and efficacy of nasal vaccination with our developed cCHP nanogel containing pneumococcal surface protein A (PspA-nanogel) against pneumococcal infection in nonhuman primates. When [18F]-labeled PspA-nanogel was nasally administered to a rhesus macaque (Macaca mulatta), longer-term retention of PspA was noted in the nasal cavity when compared with administration of PspA alone. Of importance, no deposition of [18F]-PspA was seen in the olfactory bulbs or brain. Nasal PspA-nanogel vaccination effectively induced PspA-specific serum IgG with protective activity and mucosal secretory IgA (SIgA) Ab responses in cynomolgus macaques (Macaca fascicularis). Nasal PspA-nanogel-induced immune responses were mediated through T-helper (Th) 2 and Th17 cytokine responses concomitantly with marked increases in the levels of miR-181a and miR-326 in the serum and respiratory tract tissues, respectively, of the macaques. These results demonstrate that nasal PspA-nanogel vaccination is a safe and effective strategy for the development of a nasal vaccine for the prevention of pneumonia in humans. PMID:25669148

  1. Oral immunization with the dodecapeptide repeat of the serine-rich Entamoeba histolytica protein (SREHP) fused to the cholera toxin B subunit induces a mucosal and systemic anti-SREHP antibody response.

    PubMed Central

    Zhang, T; Li, E; Stanley, S L

    1995-01-01

    The intestinal protozoan parasite Entamoeba histolytica causes amebic dysentery, a major cause of morbidity worldwide. The induction of a mucosal antibody response capable of blocking amebic adhesion to intestinal cells could represent an approach to preventing E. histolytica infection and disease. Here we describe the expression of a chimeric protein containing an immunogenic dodecapeptide derived from the serine-rich E. histolytica protein (SREHP), fused to the cholera toxin B subunit (CtxB). The CtxB-SREHP-12 chimeric protein was purified from Escherichia coli lysates and retained the critical GM1 ganglioside-binding activity of the CtxB moiety. Mice fed the CtxB-SREHP-12 fusion protein along with a subclinical dose of cholera toxin developed mucosal immunoglobulin A and immunoglobulin G and systemic antibody responses that recognized recombinant and native SREHP. Our study confirms the feasibility of inducing mucosal immune responses to immunogenic peptides by their genetic fusion to the CtxB subunit and identifies the CtxB-SREHP-12 chimeric protein as a candidate oral vaccine to prevent E. histolytica infection. PMID:7890393

  2. BLyS-mediated modulation of naïve B cell subsets impacts HIV Env-induced antibody responses1

    PubMed Central

    Dosenovic, Pia; Soldemo, Martina; Scholz, Jean L.; O’Dell, Sijy; Grasset, Emilie K.; Pelletier, Nadège; Karlsson, Mikael C. I.; Mascola, John R.; Wyatt, Richard T.; Cancro, Michael P.; Karlsson Hedestam, Gunilla B.

    2012-01-01

    Neutralizing Abs provide the protective effect of the majority of existing human vaccines. For a prophylactic vaccine against HIV-1, broadly neutralizing Abs (bNAbs) targeting conserved epitopes of the viral envelope glycoproteins (Env) are likely required, as the pool of circulating HIV-1 variants is extremely diverse. The failure to efficiently induce bNAbs by vaccination may be due to the use of sub-optimal immunogens or immunization regimens, or it may indicate that B cells specific for broadly neutralizing Env determinants are selected against during peripheral checkpoints, either before or after antigen encounter. To investigate if perturbation of B cell subsets prior to immunization with recombinant Env protein affects the vaccine-induced Ab response in mice, we used B Lymphocyte Stimulator (BLyS), a cytokine that regulates survival and selection of peripheral B cells. We show that the transient BLyS treatment used here substantially affected naïve B cell populations; in particular, it resulted in an increased number of B cells surviving counter-selection at the transitional stages. We also observed an increased number of mature naïve B cells, especially marginal zone B cells, in BLyS-treated mice. Intriguingly, provision of excess BLyS prior to immunization led to a consistent improvement in the frequency and potency of HIV-1 Env vaccine-induced neutralizing Ab responses, without increasing the number of Env-specific Ab-secreting cells or the Ab binding titers measured after boosting. The results presented here suggest that an increased understanding of BLyS-regulated processes may help the design of vaccine regimens aimed at eliciting improved neutralizing Ab responses against HIV-1. PMID:22561155

  3. Protease Inhibitors Do Not Affect Antibody Responses to Pneumococcal Vaccination.

    PubMed

    De La Rosa, Indhira; Munjal, Iona M; Rodriguez-Barradas, Maria; Yu, Xiaoying; Pirofski, Liise-Anne; Mendoza, Daniel

    2016-06-01

    HIV(+) subjects on optimal antiretroviral therapy have persistently impaired antibody responses to pneumococcal vaccination. We explored the possibility that this effect may be due to HIV protease inhibitors (PIs). We found that in humans and mice, PIs do not affect antibody production in response to pneumococcal vaccination. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Perfluorooctanoic Acid Exposure Suppresses T-independent Antibody Responses

    EPA Science Inventory

    Exposure to  3.75mg/kg of perfluoroocatnoic acid (PFOA) for 15d suppresses T-dependent antibody responses (TDAR), suggesting that T helper cells and/or B cells/plasma cells may be impacted. This study evaluated effects of PFOA exposure on the T cell-independent antibody response...

  5. Perfluorooctanoic Acid Exposure Suppresses T-independent Antibody Responses

    EPA Science Inventory

    Exposure to  3.75mg/kg of perfluoroocatnoic acid (PFOA) for 15d suppresses T-dependent antibody responses (TDAR), suggesting that T helper cells and/or B cells/plasma cells may be impacted. This study evaluated effects of PFOA exposure on the T cell-independent antibody response...

  6. B cell Rab7 mediates induction of activation-induced cytidine deaminase expression and class-switching in T-dependent and T-independent antibody responses.

    PubMed

    Pone, Egest J; Lam, Tonika; Lou, Zheng; Wang, Rui; Chen, Yuhui; Liu, Dongfang; Edinger, Aimee L; Xu, Zhenming; Casali, Paolo

    2015-04-01

    Class switch DNA recombination (CSR) is central to the maturation of the Ab response because it diversifies Ab effector functions. Like somatic hypermutation, CSR requires activation-induced cytidine deaminase (AID), whose expression is restricted to B cells, as induced by CD40 engagement or dual TLR-BCR engagement (primary CSR-inducing stimuli). By constructing conditional knockout Igh(+/C)γ(1-cre)Rab7(fl/fl) mice, we identified a B cell-intrinsic role for Rab7, a small GTPase involved in intracellular membrane functions, in mediating AID induction and CSR. Igh(+/C)γ(1-cre)Rab7(fl/fl) mice displayed normal B and T cell development and were deficient in Rab7 only in B cells undergoing Igh(C)γ(1-cre) Iγ1-Sγ1-Cγ1-cre transcription, as induced--like Igh germline Iγ1-Sγ1-Cγ1 and Iε-Sε-Cε transcription--by IL-4 in conjunction with a primary CSR-inducing stimulus. These mice could not mount T-independent or T-dependent class-switched IgG1 or IgE responses while maintaining normal IgM levels. Igh(+/C)γ(1-cre)Rab7(fl/fl) B cells showed, in vivo and in vitro, normal proliferation and survival, normal Blimp-1 expression and plasma cell differentiation, as well as intact activation of the noncanonical NF-κB, p38 kinase, and ERK1/2 kinase pathways. They, however, were defective in AID expression and CSR in vivo and in vitro, as induced by CD40 engagement or dual TLR1/2-, TLR4-, TLR7-, or TLR9-BCR engagement. In Igh(+/C)γ(1-cre)Rab7(fl/fl) B cells, CSR was rescued by enforced AID expression. These findings, together with our demonstration that Rab7-mediated canonical NF-κB activation, as critical to AID induction, outline a novel role of Rab7 in signaling pathways that lead to AID expression and CSR, likely by promoting assembly of signaling complexes along intracellular membranes.

  7. A novel trivalent HPV 16/18/58 vaccine with anti-HPV 16 and 18 neutralizing antibody responses comparable to those induced by the Gardasil quadrivalent vaccine in rhesus macaque model.

    PubMed

    Yin, Fei; Wang, Yajun; Chen, Na; Jiang, Dunquan; Qiu, Yefeng; Wang, Yan; Yan, Mei; Chen, Jianping; Zhang, Haijiang; Liu, Yongjiang

    2017-06-01

    Persistent infection with human papillomavirus (HPV) is a key factor in the development of precancerous lesions and invasive cervical cancer. Prophylactic vaccines to immunize against HPV are an effective approach to reducing HPV related disease burden. In this study, we investigated the immunogenicity and dosage effect of a trivalent HPV 16/18/58 vaccine (3vHPV) produced in Escherichia coli (E.coli), with Gardasil quadrivalent vaccine (4vHPV, Merck & Co.) as a positive control. Sera collected from rhesus macaques vaccinated with three dosage formulations of 3vHPV (termed low-, mid-, and high-dosage formulations, respectively), and the 4vHPV vaccine were analyzed by both Pseudovirus-Based Neutralization Assay (PBNA) and Enzyme-Linked Immunosorbent Assay (ELISA). Strong immune responses against HPV 16/18/58 were successfully elicited, and dosage-dependence was observed, with likely occurrence of immune interference between different L1-VLP antigens. HPV 16/18 specific neutralizing antibody (nAb) and total immunoglobulin G (IgG) antibody responses in rhesus macaques receiving 3vHPV at the three dosages tested were generally non-inferior to those observed in rhesus macaques receiving 4vHPV throughout the study period. Particularly, HPV 18 nAb titers induced by the mid-dosage formulation that contained the same amounts of HPV 16/18 L1-VLPs as Gardasil 4vHPV were between 7.3 to 12.7-fold higher compared to the positive control arm from weeks 24-64. The durability of antibody responses specific to HPV 16/18 elicited by 3vHPV vaccines was also shown to be non-inferior to that associated with Gardasil 4vHPV. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. MF59- and Al(OH)3-Adjuvanted Staphylococcus aureus (4C-Staph) Vaccines Induce Sustained Protective Humoral and Cellular Immune Responses, with a Critical Role for Effector CD4 T Cells at Low Antibody Titers

    PubMed Central

    Monaci, Elisabetta; Mancini, Francesca; Lofano, Giuseppe; Bacconi, Marta; Tavarini, Simona; Sammicheli, Chiara; Arcidiacono, Letizia; Giraldi, Monica; Galletti, Bruno; Rossi Paccani, Silvia; Torre, Antonina; Fontana, Maria Rita; Grandi, Guido; de Gregorio, Ennio; Bensi, Giuliano; Chiarot, Emiliano; Nuti, Sandra; Bagnoli, Fabio; Soldaini, Elisabetta; Bertholet, Sylvie

    2015-01-01

    Staphylococcus aureus (S. aureus) is an important opportunistic pathogen that may cause invasive life-threatening infections, like sepsis and pneumonia. Due to the increasing antibiotic resistance, the development of an effective vaccine against S. aureus is needed. Although a correlate of protection against staphylococcal diseases is not yet established, several findings suggest that both antibodies and CD4 T cells might contribute to optimal immunity. In this study, we show that adjuvanting a multivalent vaccine (4C-Staph) with MF59, an oil-in-water emulsion licensed in human vaccines, further potentiated antigen-specific IgG titers and CD4 T-cell responses compared to alum and conferred protection in the peritonitis model of S. aureus infection. Moreover, we showed that MF59- and alum-adjuvanted 4C-Staph vaccines induced persistent antigen-specific humoral and T-cell responses, and protected mice from infection up to 4 months after immunization. Furthermore, 4C-Staph formulated with MF59 was used to investigate which immune compartment is involved in vaccine-induced protection. Using CD4 T cell-depleted mice or B cell-deficient mice, we demonstrated that both T and B-cell responses contributed to 4C-Staph vaccine-mediated protective immunity. However, the role of CD4 T cells seemed more evident in the presence of low-antibody responses. This study provides preclinical data further supporting the use of the adjuvanted 4C-Staph vaccines against S. aureus diseases, and provides critical insights on the correlates of protective immunity necessary to combat this pathogen. PMID:26441955

  9. MF59- and Al(OH)3-Adjuvanted Staphylococcus aureus (4C-Staph) Vaccines Induce Sustained Protective Humoral and Cellular Immune Responses, with a Critical Role for Effector CD4 T Cells at Low Antibody Titers.

    PubMed

    Monaci, Elisabetta; Mancini, Francesca; Lofano, Giuseppe; Bacconi, Marta; Tavarini, Simona; Sammicheli, Chiara; Arcidiacono, Letizia; Giraldi, Monica; Galletti, Bruno; Rossi Paccani, Silvia; Torre, Antonina; Fontana, Maria Rita; Grandi, Guido; de Gregorio, Ennio; Bensi, Giuliano; Chiarot, Emiliano; Nuti, Sandra; Bagnoli, Fabio; Soldaini, Elisabetta; Bertholet, Sylvie

    2015-01-01

    Staphylococcus aureus (S. aureus) is an important opportunistic pathogen that may cause invasive life-threatening infections, like sepsis and pneumonia. Due to the increasing antibiotic resistance, the development of an effective vaccine against S. aureus is needed. Although a correlate of protection against staphylococcal diseases is not yet established, several findings suggest that both antibodies and CD4 T cells might contribute to optimal immunity. In this study, we show that adjuvanting a multivalent vaccine (4C-Staph) with MF59, an oil-in-water emulsion licensed in human vaccines, further potentiated antigen-specific IgG titers and CD4 T-cell responses compared to alum and conferred protection in the peritonitis model of S. aureus infection. Moreover, we showed that MF59- and alum-adjuvanted 4C-Staph vaccines induced persistent antigen-specific humoral and T-cell responses, and protected mice from infection up to 4 months after immunization. Furthermore, 4C-Staph formulated with MF59 was used to investigate which immune compartment is involved in vaccine-induced protection. Using CD4 T cell-depleted mice or B cell-deficient mice, we demonstrated that both T and B-cell responses contributed to 4C-Staph vaccine-mediated protective immunity. However, the role of CD4 T cells seemed more evident in the presence of low-antibody responses. This study provides preclinical data further supporting the use of the adjuvanted 4C-Staph vaccines against S. aureus diseases, and provides critical insights on the correlates of protective immunity necessary to combat this pathogen.

  10. Breadth of humoral response and antigenic targets of sporozoite-inhibitory antibodies associated with sterile protection induced by controlled human malaria infection

    PubMed Central

    Peng, Kaitian; Goh, Yun Shan; Siau, Anthony; Franetich, Jean-François; Chia, Wan Ni; Ong, Alice Soh Meoy; Malleret, Benoit; Wu, Ying Ying; Snounou, Georges; Hermsen, Cornelus C.; Adams, John H.; Mazier, Dominique; Preiser, Peter R.; Sauerwein, Robert W.; Grüner, Anne-Charlotte; Rénia, Laurent

    2017-01-01

    The development of an effective malaria vaccine has remained elusive even until today. This is due to our incomplete understanding of the immune mechanisms that confer and/or correlate with protection. Human volunteers have been protected experimentally from a subsequent challenge by immunization with Plasmodium falciparum sporozoites under drug cover. Here, we demonstrate that sera from the protected individuals contain neutralizing antibodies against the pre erythrocytic stage. To identify the antigen(s) recognized by these antibodies, a newly developed library of P. falciparum antigens was screened with the neutralizing sera. Antibodies from protected individuals recognized a broad antigenic repertoire of which three antigens, PfMAEBL, PfTRAP and PfSEA1 were recognized by most protected individuals. As a proof of principle, we demonstrated that anti-PfMAEBL antibodies block liver stage development in human hepatocytes. Thus, these antigens identified are promising targets for vaccine development against malaria. PMID:27130708

  11. Biocompatible chitosan nanoparticles as an efficient delivery vehicle for Mycobacterium tuberculosis lipids to induce potent cytokines and antibody response through activation of γδ T-cells in mice.

    PubMed

    Das, Ishani; Padhi, Avinash; Mukherjee, Sitabja; Dash, Debi; Kar, Santosh; Sonawane, Avinash

    2017-02-16

    Activation of cell mediated and humoral immune responses to Mycobacterium tuberculosis (Mtb) are critical for protection and that nanoparticles mediated delivery of antigens are more potent in inducing different immune responses. Herein, we show that mice immunized with Mtb lipid bound chitosan nanoparticles(NPs) induce secretion of prominent type 1 T helper (Th1) and type 2 T helper (Th2) cytokines in lymph node and spleen cells, and also induced significantly higher levels of IgG, IgG1, IgG2 and IgM in comparison to control mice. Furthermore, significantly enhanced γδ-T cell activation was observed in lymph node cells isolated from mice immunized with Mtb lipid coated chitosan-NPs as compared to mice immunized with chitosan-NPs alone or Mtb lipid liposomes. In comparison to CD8+ cells, significantly higher CD4+ cells were present in both the lymph node and spleen cells isolated from mice immunized with Mtb lipid coated chitosan NP. In conclusion, this study represents a promising new strategy for efficient delivery of Mtb lipids using chitosan NPs to trigger enhanced cell mediated and antibody response against Mtb lipids.

  12. Biocompatible chitosan nanoparticles as an efficient delivery vehicle for Mycobacterium tuberculosis lipids to induce potent cytokines and antibody response through activation of γδ T cells in mice

    NASA Astrophysics Data System (ADS)

    Das, Ishani; Padhi, Avinash; Mukherjee, Sitabja; Dash, Debi P.; Kar, Santosh; Sonawane, Avinash

    2017-04-01

    The activation of cell-mediated and humoral immune responses to Mycobacterium tuberculosis (Mtb) is critical for protection against the pathogen and nanoparticle-mediated delivery of antigens is a more potent way to induce different immune responses. Herein, we show that mice immunized with Mtb lipid-bound chitosan nanoparticles (NPs) induce secretion of prominent type-1 T-helper (Th-1) and type-2 T-helper (Th-2) cytokines in lymph node and spleen cells, and also induces significantly higher levels of IgG, IgG1, IgG2 and IgM in comparison to control mice. Furthermore, significantly enhanced γδ-T-cell activation was observed in lymph node cells isolated from mice immunized with Mtb lipid-coated chitosan NPs as compared to mice immunized with chitosan NPs alone or Mtb lipid liposomes. In comparison to CD8+ cells, significantly higher numbers of CD4+ cells were present in both the lymph node and spleen cells isolated from mice immunized with Mtb lipid-coated chitosan NPs. In conclusion, this study represents a promising new strategy for the efficient delivery of Mtb lipids using chitosan NPs to trigger an enhanced cell-mediated and antibody response against Mtb lipids.

  13. Antibody response of sandhill and whooping cranes to an eastern equine encephalitis virus vaccine.

    PubMed

    Clark, G G; Dein, F J; Crabbs, C L; Carpenter, J W; Watts, D M

    1987-10-01

    As a possible strategy to protect whooping cranes (Grus americana) from fatal eastern equine encephalitis (EEE) viral infection, studies were conducted to determine the immune response of this species and sandhill cranes (Grus canadensis) to a formalin-inactivated EEE viral vaccine. Viral-specific neutralizing antibody was elicited in both species after intramuscular (IM) vaccination. Subcutaneous and intravenous routes of vaccination failed to elicit detectable antibody in sandhill cranes. Among the IM vaccinated cranes, the immune response was characterized by nondetectable or low antibody titers that waned rapidly following primary exposure to the vaccine. However, one or more booster doses consistently elicited detectable antibody and/or increased antibody titers in the whooping cranes. In contrast, cranes with pre-existing EEE viral antibody, apparently induced by natural infection, exhibited a rapid increase and sustained high-antibody titers. Even though EEE virus vaccine induced neutralizing antibody and produced no adverse side effects, further studies will be required to determine the protective efficacy of the antibody.

  14. Antibody response of sandhill and whooping cranes to an eastern equine encephalitis virus vaccine

    USGS Publications Warehouse

    Clark, G.G.; Dein, F.J.; Crabbs, C.L.; Carpenter, J.W.; Watts, D.M.

    1987-01-01

    As a possible strategy to protect whooping cranes (Grus americana) from fatal eastern equine encephalitis (EEE) viral infection, studies were conducted to determine the immune response of this species and sandhill cranes (Grus canadensis) to a formalin-inactivated EEE viral vaccine. Viral-specific neutralizing antibody was elicited in both species after intramuscular (IM) vaccination. Subcutaneous and intravenous routes of vaccination failed to elicit detectable antibody in sandhill cranes. Among the IM vaccinated cranes, the immune response was characterized by nondetectable or low antibody titers that waned rapidly following primary exposure to the vaccine. However, one or more booster doses consistently elicited detectable antibody and/or increased antibody titers in the whooping cranes. In contrast, cranes with pre-existing EEE viral antibody, apparently induced by natural infection, exhibited a rapid increase and sustained high-antibody titers. Even though EEE virus vaccine induced neutralizing antibody and produced no adverse side effects, further studies will be required to determine the protective efficacy of the antibody.

  15. Prevalence and Gene Characteristics of Antibodies with Cofactor-induced HIV-1 Specificity*

    PubMed Central

    Lecerf, Maxime; Scheel, Tobias; Pashov, Anastas D.; Jarossay, Annaelle; Ohayon, Delphine; Planchais, Cyril; Mesnage, Stephane; Berek, Claudia; Kaveri, Srinivas V.; Lacroix-Desmazes, Sébastien; Dimitrov, Jordan D.

    2015-01-01

    The healthy immune repertoire contains a fraction of antibodies that bind to various biologically relevant cofactors, including heme. Interaction of heme with some antibodies results in induction of new antigen binding specificities and acquisition of binding polyreactivity. In vivo, extracellular heme is released as a result of hemolysis or tissue damage; hence the post-translational acquisition of novel antigen specificities might play an important role in the diversification of the immunoglobulin repertoire and host defense. Here, we demonstrate that seronegative immune repertoires contain antibodies that gain reactivity to HIV-1 gp120 upon exposure to heme. Furthermore, a panel of human recombinant antibodies was cloned from different B cell subpopulations, and the prevalence of antibodies with cofactor-induced specificity for gp120 was determined. Our data reveal that upon exposure to heme, ∼24% of antibodies acquired binding specificity for divergent strains of HIV-1 gp120. Sequence analyses reveal that heme-sensitive antibodies do not differ in their repertoire of variable region genes and in most of the molecular features of their antigen-binding sites from antibodies that do not change their antigen binding specificity. However, antibodies with cofactor-induced gp120 specificity possess significantly lower numbers of somatic mutations in their variable region genes. This study contributes to the understanding of the significance of cofactor-binding antibodies in immunoglobulin repertoires and of the influence that the tissue microenvironment might have in shaping adaptive immune responses. PMID:25564611

  16. Cocoa Diet and Antibody Immune Response in Preclinical Studies

    PubMed Central

    Camps-Bossacoma, Mariona; Massot-Cladera, Malen; Abril-Gil, Mar; Franch, Angels; Pérez-Cano, Francisco J.; Castell, Margarida

    2017-01-01

    The ability of cocoa to interact with the immune system in vitro and in vivo has been described. In the latter context, a cocoa-enriched diet in healthy rats was able to modify the immune system’s functionality. This fact could be observed in the composition and functionality of lymphoid tissues, such as the thymus, spleen, and lymph nodes. Consequently, immune effector mechanisms, such as antibody synthesis, were modified. A cocoa-enriched diet in young rats was able to attenuate the serum levels of immunoglobulin (Ig) G, IgM, and IgA and also the intestinal IgM and IgA secretion. Moreover, in immunized rats, the intake of cocoa decreased specific IgG1, IgG2a, IgG2c, and IgM concentrations in serum. This immune-regulator potential was then tested in disease models in which antibodies play a pathogenic role. A cocoa-enriched diet was able to partially prevent the synthesis of autoantibodies in a model of autoimmune arthritis in rats and was also able to protect against IgE and T helper 2-related antibody synthesis in two rat models of allergy. Likewise, a cocoa-enriched diet prevented an oral sensitization process in young rats. In this review, we will focus on the influence of cocoa on the acquired branch of the immune function. Therefore, we will focus on how a cocoa diet influences lymphocyte function both in the systemic and intestinal immune system. Likewise, its potential role in preventing some antibody-induced immune diseases is also included. Although further studies must characterize the particular cocoa components responsible for such effects and nutritional studies in humans need to be carried out, cocoa has potential as a nutraceutical agent in some hypersensitivity status. PMID:28702458

  17. Intramuscular Immunisation with Chlamydial Proteins Induces Chlamydia trachomatis Specific Ocular Antibodies

    PubMed Central

    Badamchi-Zadeh, Alexander; McKay, Paul F.; Holland, Martin J.; Paes, Wayne; Brzozowski, Andrzej; Lacey, Charles; Follmann, Frank; Tregoning, John S.; Shattock, Robin J.

    2015-01-01

    Background Ocular infection with Chlamydia trachomatis can cause trachoma, which is the leading cause of blindness due to infection worldwide. Despite the large-scale implementation of trachoma control programmes in the majority of countries where trachoma is endemic, there remains a need for a vaccine. Since C. trachomatis infects the conjunctival epithelium and stimulates an immune response in the associated lymphoid tissue, vaccine regimens that enhance local antibody responses could be advantageous. In experimental infections of non-human primates (NHPs), antibody specificity to C. trachomatis antigens was found to change over the course of ocular infection. The appearance of major outer membrane protein (MOMP) specific antibodies correlated with a reduction in ocular chlamydial burden, while subsequent generation of antibodies specific for PmpD and Pgp3 correlated with C. trachomatis eradication. Methods We used a range of heterologous prime-boost vaccinations with DNA, Adenovirus, modified vaccinia Ankara (MVA) and protein vaccines based on the major outer membrane protein (MOMP) as an antigen, and investigated the effect of vaccine route, antigen and regimen on the induction of anti-chlamydial antibodies detectable in the ocular lavage fluid of mice. Results Three intramuscular vaccinations with recombinant protein adjuvanted with MF59 induced significantly greater levels of anti-MOMP ocular antibodies than the other regimens tested. Intranasal delivery of vaccines induced less IgG antibody in the eye than intramuscular delivery. The inclusion of the antigens PmpD and Pgp3, singly or in combination, induced ocular antigen-specific IgG antibodies, although the anti-PmpD antibody response was consistently lower and attenuated by combination with other antigens. Conclusions If translatable to NHPs and/or humans, this investigation of the murine C. trachomatis specific ocular antibody response following vaccination provides a potential mouse model for the rapid

  18. The human antibody response to dengue virus infection.

    PubMed

    Wahala, Wahala M P B; Silva, Aravinda M de

    2011-12-01

    Dengue viruses (DENV) are the causative agents of dengue fever (DF) and dengue hemorrhagic fever (DHF). Here we review the current state of knowledge about the human antibody response to dengue and identify important knowledge gaps. A large body of work has demonstrated that antibodies can neutralize or enhance DENV infection. Investigators have mainly used mouse monoclonal antibodies (MAbs) to study interactions between DENV and antibodies. These studies indicate that antibody neutralization of DENVs is a "multi-hit" phenomenon that requires the binding of multiple antibodies to neutralize a virion. The most potently neutralizing mouse MAbs bind to surface exposed epitopes on domain III of the dengue envelope (E) protein. One challenge facing the dengue field now is to extend these studies with mouse MAbs to better understand the human antibody response. The human antibody response is complex as it involves a polyclonal response to primary and secondary infections with 4 different DENV serotypes. Here we review studies conducted with immune sera and MAbs isolated from people exposed to dengue infections. Most dengue-specific antibodies in human immune sera are weakly neutralizing and bind to multiple DENV serotypes. The human antibodies that potently and type specifically neutralize DENV represent a small fraction of the total DENV-specific antibody response. Moreover, these neutralizing antibodies appear to bind to novel epitopes including complex, quaternary epitopes that are only preserved on the intact virion. These studies establish that human and mouse antibodies recognize distinct epitopes on the dengue virion. The leading theory proposed to explain the increased risk of severe disease in secondary cases is antibody dependent enhancement (ADE), which postulates that weakly neutralizing antibodies from the first infection bind to the second serotype and enhance infection of FcγR bearing myeloid cells such as monocytes and macrophages. Here we review results

  19. Maternal antibody decay and antibody-mediated immune responses in chicken pullets fed prebiotics and synbiotics.

    PubMed

    Alizadeh, M; Munyaka, P; Yitbarek, A; Echeverry, H; Rodriguez-Lecompte, J C

    2017-01-01

    Three experiments were conducted to evaluate the effect of yeast-derived carbohydrates (YDC), and a blend of probiotics and YDC (synbiotic, SNB) on serum IgG concentration, maternal-derived antibody (MDA) decay, and specific antibody-mediated immune response in chick pullets following immunization with T-cell dependent antigens. A total of 300 day-old pullet chicks were randomly assigned to 3 dietary treatments including: a basal diet (Control), and diets containing YDC, and SNB (Lactobacillus acidophilus, L. casei, Streptococcus faecium, and Bacillus subtilis, and YDC). In experiment one, on d 1 and wk 3, 4, 5, and 6, blood samples were collected and serum were analyzed by ELISA for total IgG (Y), and MDA against Newcastle disease virus (NDV) and infectious bursal disease virus (IBDV). The second experiment examined the specific antibody against infectious bronchitis virus (IBV) in pullet chicks following vaccination against IBV at d 1. Finally, in experiment 3, on d 21 and 28 posthatch, 10 birds per treatment were immunized intramuscularly with both sheep red blood cells (SRBC) and bovine serum albumin (BSA), and 11 after immunization serum samples were analyzed by hemagglutination assay for antibody response to SRBC, and by ELISA for serum IgM and IgG response to BSA. The results demonstrated that diet containing SNB increased serum IgG at wk 3 posthatch. However, the decay rate of MDA against NDV and IBDV were not affected by dietary treatments. Birds fed YDC showed higher specific antibody response against IBV in wk 4, while both diets containing YDC and SNB decreased antibody response to IBV in wk 6. In addition, specific antibody response against SRBC and BSA was not affected by diets. In conclusion, supplementation of diet with SNB improved humoral immunity by increasing IgG concentration in serum, and modulated the adaptive antibody-mediated immune response against IBV. © 2016 Poultry Science Association Inc.

  20. Antibody networks and imaging: elicitation of anti-fluorescein antibodies in response to the metatypic state of fluorescein-specific monoclonal antibodies.

    PubMed

    Cedergren, A M; Miklasz, S D; Voss, E W

    1996-01-01

    Studies are described regarding generation of anti-hapten antibodies starting with a monoclonal Ig immunogen in the ligand-induced conformation or metatypic state. Liganded monoclonal Ab1 antibodies represent the unique feature of the study since previous reports investigating internal imaging in the original Idiotype Network Hypothesis [Jerne, 1974 (Ann. Immun. 125C, 373-389)] were based on the non-liganded or idiotypic state [as reviewed in: Rodkey, 1980 (Microbiol. Rev. 44, 631-659); Kohler et al., 1979 (In: Methods in Enzymology: Antibodies, Antigens and Molecular Mimicry, pp. 3-35); Greenspan and Bona, 1993 (FASEB J. 7,437-444)]. Affinity-labeled liganded murine monoclonal anti-fluorescein antibodies served as immunogens administered both in the syngenic and xenogenic modes to determine if the metatypic state elicited anti-hapten antibodies through imaging-like mechanisms. Polyclonal and monoclonal anti-Ab1 reagents in various hosts were assayed for anti-fluorescein and/or anti-metatype specificity. Significant anti-fluorescein responses were measured indicating that the metatypic state directly or indirectly stimulates an anti-hapten antibody population.

  1. Maternal antibodies reduce costs of an immune response during development.

    PubMed

    Grindstaff, Jennifer L

    2008-03-01

    Young vertebrates are dependent primarily on innate immunity and maternally derived antibodies for immune defense. This reliance on innate immunity and the associated inflammatory response often leads to reduced growth rates after antigenic challenge. However, if offspring have maternal antibodies that recognize an antigen, these antibodies should block stimulation of the inflammatory response and reduce growth suppression. To determine whether maternal and/or offspring antigen exposure affect antibody transmission and offspring growth, female Japanese quail (Coturnix japonica) and their newly hatched chicks were immunized. Mothers were immunized with lipopolysaccharide (LPS), killed avian reovirus vaccine (AR), or were given a control, phosphate-buffered saline, injection. Within each family, one-third of offspring were immunized with LPS, one-third were immunized with AR, and one-third were given the control treatment. Maternal immunization significantly affected the specific types of antibodies that were transmitted. In general, immunization depressed offspring growth. However, offspring immunized with the same antigen as their mother exhibited elevated growth in comparison to siblings immunized with a different antigen. This suggests that the growth suppressive effects of antigen exposure during development can be partially ameliorated by the presence of maternal antibodies, but in the absence of specific maternal antibodies, offspring are dependent on more costly innate immune defenses. Together, the results suggest that the local disease environment of mothers prior to reproduction significantly affects maternal antibody transmission and these maternal antibodies may allow offspring to partially maintain growth during infection in addition to providing passive humoral immune defense.

  2. Vaccination of adults with 23-valent pneumococcal polysaccharide vaccine induces robust antibody responses against pneumococcal serotypes associated with serious clinical outcomes

    PubMed Central

    Ciprero, Karen L.; Marchese, Rocio D.; Richard, Patrick; Baudin, Martine; Sterling, Tina M.; Manoff, Susan B.; Radley, David; Stek, Jon E.; Soubeyrand, Benoît; Grabenstein, John D.; Samson, Sandrine I.; Musey, Luwy K.

    2016-01-01

    ABSTRACT PNEUMOVAX™ 23, a 23-valent polysaccharide pneumococcal vaccine (PPV23), covers 65% to 91% of the isolates recovered from adult cases of invasive pneumococcal disease. Several studies have demonstrated that pneumococcal serotypes 31, 11A, 35F, 17F, 3, 16F, 19F, 15B, and 10A are associated with higher case-fatality or meningitis rates than other pneumococcal serotypes. This study (U05-PnPS-403; EudraCT: 2008-003648-12) evaluated the immune response followings administration of PPV23 for 4 of these serotypes (10A, 11A, 15B, and 17F), that are included in PPV23 but not in licensed pneumococcal conjugate vaccines. Serotype-specific IgG geometric mean concentrations (GMCs) and geometric mean fold-rises (GMFRs) for these 4 serotypes were measured by a validated enzyme-linked immunosorbent assay (ELISA) in 104 subjects >50 y of age who were enrolled in a study evaluating the safety and immunogenicity of a single-dose of PPV23. At 1 month post-vaccination, GMCs for serotypes10A, 11A, 15B and 17F were 6.5, 4.3, 14.7, and 5.1 µg/mL, respectively. GMFRs from baseline were 9.0, 4.5, 8.4, and 11.5, respectively. The percentages of subjects achieving >2-fold increases in IgG GMCs between pre-vaccination and 1 month post-vaccination were 90%, 85%, 88% and 89%, respectively. In conclusion, PPV23 induces a robust immune response in adults to pneumococcal serotypes 10A, 11A, 15B, and 17F, which have been associated with elevated case-fatality or meningitis rates. PMID:27002793

  3. Specific antibody-mediated effect on the immune response

    PubMed Central

    Murgita, R. A.; Vas, S. I.

    1972-01-01

    The effect of prior administration of two classes of 7S mouse anti-sheep red blood cell (SRBC) antibodies on the primary immune response to SRBC was studied. Mouse γG1 and γG2 immunoglobulins were isolated from serum by zone electrophoresis and density gradient isolectric focusing. The immunoglobulins were defined by qualitative and quantitative studies, and their effects on the primary response were determined by administering doses ranging from 0.5 to 0.001 mg of immunoglobulin 2 hours before injection of antigen. Gamma G1 antibody suppressed the response to SRBC at all concentrations. High doses of γG2 antibody partially suppressed 19S plaque-forming cells (PFC), but had no significant effect on serum haemagglutinin (HA) levels. Low doses of γG2 antibody specifically augmented both the 19S PFC and serum HA levels. It is concluded that the specific suppressing and augmenting influences of antibodies on the primary response are a function of class. In addition, it is proposed that γG1 and γG2 antibodies can act as specific regulatory elements during the primary response by exerting these two competing biological effects on antibody synthesis. ImagesFIG. 2 PMID:4554743

  4. Antibody Response to Serpin B13 Induces Adaptive Changes in Mouse Pancreatic Islets and Slows Down the Decline in the Residual Beta Cell Function in Children with Recent Onset of Type 1 Diabetes Mellitus.

    PubMed

    Kryvalap, Yury; Lo, Chi-Wen; Manuylova, Ekaterina; Baldzizhar, Raman; Jospe, Nicholas; Czyzyk, Jan

    2016-01-01

    Type 1 diabetes mellitus (T1D) is characterized by a heightened antibody (Ab) response to pancreatic islet self-antigens, which is a biomarker of progressive islet pathology. We recently identified a novel antibody to clade B serpin that reduces islet-associated T cell accumulation and is linked to the delayed onset of T1D. As natural immunity to clade B arises early in life, we hypothesized that it may influence islet development during that time. To test this possibility healthy young Balb/c male mice were injected with serpin B13 mAb or IgG control and examined for the number and cellularity of pancreatic islets by immunofluorescence and FACS. Beta cell proliferation was assessed by measuring nucleotide analog 5-ethynyl-2'-deoxyuridine (5-EdU) incorporation into the DNA and islet Reg gene expression was measured by real time PCR. Human studies involved measuring anti-serpin B13 autoantibodies by Luminex. We found that injecting anti-serpin B13 monoclonal Ab enhanced beta cell proliferation and Reg gene expression, induced the generation of ∼80 pancreatic islets per animal, and ultimately led to increase in the beta cell mass. These findings are relevant to human T1D because our analysis of subjects just diagnosed with T1D revealed an association between baseline anti-serpin activity and slower residual beta cell function decline in the first year after the onset of diabetes. Our findings reveal a new role for the anti-serpin immunological response in promoting adaptive changes in the endocrine pancreas and suggests that enhancement of this response could potentially help impede the progression of T1D in humans.

  5. Antibody Response to Serpin B13 Induces Adaptive Changes in Mouse Pancreatic Islets and Slows Down the Decline in the Residual Beta Cell Function in Children with Recent Onset of Type 1 Diabetes Mellitus*

    PubMed Central

    Kryvalap, Yury; Lo, Chi-Wen; Manuylova, Ekaterina; Baldzizhar, Raman; Jospe, Nicholas; Czyzyk, Jan

    2016-01-01

    Type 1 diabetes mellitus (T1D) is characterized by a heightened antibody (Ab) response to pancreatic islet self-antigens, which is a biomarker of progressive islet pathology. We recently identified a novel antibody to clade B serpin that reduces islet-associated T cell accumulation and is linked to the delayed onset of T1D. As natural immunity to clade B arises early in life, we hypothesized that it may influence islet development during that time. To test this possibility healthy young Balb/c male mice were injected with serpin B13 mAb or IgG control and examined for the number and cellularity of pancreatic islets by immunofluorescence and FACS. Beta cell proliferation was assessed by measuring nucleotide analog 5-ethynyl-2′-deoxyuridine (5-EdU) incorporation into the DNA and islet Reg gene expression was measured by real time PCR. Human studies involved measuring anti-serpin B13 autoantibodies by Luminex. We found that injecting anti-serpin B13 monoclonal Ab enhanced beta cell proliferation and Reg gene expression, induced the generation of ∼80 pancreatic islets per animal, and ultimately led to increase in the beta cell mass. These findings are relevant to human T1D because our analysis of subjects just diagnosed with T1D revealed an association between baseline anti-serpin activity and slower residual beta cell function decline in the first year after the onset of diabetes. Our findings reveal a new role for the anti-serpin immunological response in promoting adaptive changes in the endocrine pancreas and suggests that enhancement of this response could potentially help impede the progression of T1D in humans. PMID:26578518

  6. Human papillomavirus vaccination induces neutralising antibodies in oral mucosal fluids.

    PubMed

    Handisurya, A; Schellenbacher, C; Haitel, A; Senger, T; Kirnbauer, R

    2016-02-16

    Mucosal human papillomaviruses (HPV) are a major cause of cancers and papillomas of the anogenital and oropharyngeal tract. HPV-vaccination elicits neutralising antibodies in sera and cervicovaginal secretions and protects uninfected individuals from persistent anogenital infection and associated diseases caused by the vaccine-targeted HPV types. Whether immunisation can prevent oropharyngeal infection and diseases and whether neutralising antibodies represent the correlate of protection, is still unclear. We determined IgG and neutralising antibodies against low-risk HPV6 and high-risk HPV16/18 in sera and oral fluids from healthy females (n=20) before and after quadrivalent HPV-vaccination and compared the results with non-vaccinated controls. HPV-vaccination induced type-specific antibodies in sera and oral fluids of the vaccinees. Importantly, the antibodies in oral fluids were capable of neutralising HPV pseudovirions in vitro, indicating protection from infection. The increased neutralising antibody levels against HPV16/18 in sera and oral fluids post-vaccination correlated significantly within an individual. We provide experimental proof that HPV-vaccination elicits neutralising antibodies to the vaccine-targeted types in oral fluids. Hence, immunisation may confer direct protection against type-specific HPV infection and associated diseases of the oropharyngeal tract. Measurement of antibodies in oral fluids represents a suitable tool to assess vaccine-induced protection within the mucosal milieu of the orophayrynx.

  7. Human papillomavirus vaccination induces neutralising antibodies in oral mucosal fluids

    PubMed Central

    Handisurya, A; Schellenbacher, C; Haitel, A; Senger, T; Kirnbauer, R

    2016-01-01

    Background: Mucosal human papillomaviruses (HPV) are a major cause of cancers and papillomas of the anogenital and oropharyngeal tract. HPV-vaccination elicits neutralising antibodies in sera and cervicovaginal secretions and protects uninfected individuals from persistent anogenital infection and associated diseases caused by the vaccine-targeted HPV types. Whether immunisation can prevent oropharyngeal infection and diseases and whether neutralising antibodies represent the correlate of protection, is still unclear. Methods: We determined IgG and neutralising antibodies against low-risk HPV6 and high-risk HPV16/18 in sera and oral fluids from healthy females (n=20) before and after quadrivalent HPV-vaccination and compared the results with non-vaccinated controls. Results: HPV-vaccination induced type-specific antibodies in sera and oral fluids of the vaccinees. Importantly, the antibodies in oral fluids were capable of neutralising HPV pseudovirions in vitro, indicating protection from infection. The increased neutralising antibody levels against HPV16/18 in sera and oral fluids post-vaccination correlated significantly within an individual. Conclusions: We provide experimental proof that HPV-vaccination elicits neutralising antibodies to the vaccine-targeted types in oral fluids. Hence, immunisation may confer direct protection against type-specific HPV infection and associated diseases of the oropharyngeal tract. Measurement of antibodies in oral fluids represents a suitable tool to assess vaccine-induced protection within the mucosal milieu of the orophayrynx. PMID:26867163

  8. Avidity of antibody responses to Actinobacillus actinomycetemcomitans in periodontitis.

    PubMed Central

    O'Dell, D S; Ebersole, J L

    1995-01-01

    We designed a study to examine the serum IgG antibody avidity characteristics in: (i) normal subjects (N); (ii) Actinobacillus actinomycetemcomitans-infected adult periodontitis (AP Aa+); (iii) A. actinomycetemcomitans-infected localized juvenile periodontitis (LJP Aa+); and (iv) AP subjects (AP) with various antibody patterns and disease presentation. Although there were significant elevations in antibody levels for AP Aa+ and LJP Aa+ patients compared with AP and normal patients (P < 0.0001), there were no significant differences in the avidity indices (AI). Correlations of antibody levels to avidity revealed that functional activity of the antibody as measured by avidity was independent of antibody levels. Increasing antibody levels correlated with an increase in the number of infected sites, yet there was a trend for A1 to decrease with increased infection. Avidity indices for all patient groups did not appear to show a strong biologic relationship to plaque; however, in AP Aa+ and LJP Aa+ patients there was a generally positive relationship between avidity and bleeding on probing or pocket depth. In AP Aa+ and LJP Aa+ patients, and in AP patients there was a positive relationship of avidity through a threshold of approximately 8 active disease sites. This study hypothesized that antibody avidity to A. actinomycetemcomitans could help to explain the relationship between the active host response and chronic infection with this pathogen. The results provide evidence that both antibody levels and avidity may contribute to the variation in host resistance to infection and disease associated with A. actinomycetemcomitans. PMID:7648712

  9. HIV-1 VACCINES. HIV-1 neutralizing antibodies induced by native-like envelope trimers.

    PubMed

    Sanders, Rogier W; van Gils, Marit J; Derking, Ronald; Sok, Devin; Ketas, Thomas J; Burger, Judith A; Ozorowski, Gabriel; Cupo, Albert; Simonich, Cassandra; Goo, Leslie; Arendt, Heather; Kim, Helen J; Lee, Jeong Hyun; Pugach, Pavel; Williams, Melissa; Debnath, Gargi; Moldt, Brian; van Breemen, Mariëlle J; Isik, Gözde; Medina-Ramírez, Max; Back, Jaap Willem; Koff, Wayne C; Julien, Jean-Philippe; Rakasz, Eva G; Seaman, Michael S; Guttman, Miklos; Lee, Kelly K; Klasse, Per Johan; LaBranche, Celia; Schief, William R; Wilson, Ian A; Overbaugh, Julie; Burton, Dennis R; Ward, Andrew B; Montefiori, David C; Dean, Hansi; Moore, John P

    2015-07-10

    A challenge for HIV-1 immunogen design is the difficulty of inducing neutralizing antibodies (NAbs) against neutralization-resistant (tier 2) viruses that dominate human transmissions. We show that a soluble recombinant HIV-1 envelope glycoprotein trimer that adopts a native conformation, BG505 SOSIP.664, induced NAbs potently against the sequence-matched tier 2 virus in rabbits and similar but weaker responses in macaques. The trimer also consistently induced cross-reactive NAbs against more sensitive (tier 1) viruses. Tier 2 NAbs recognized conformational epitopes that differed between animals and in some cases overlapped with those recognized by broadly neutralizing antibodies (bNAbs), whereas tier 1 responses targeted linear V3 epitopes. A second trimer, B41 SOSIP.664, also induced a strong autologous tier 2 NAb response in rabbits. Thus, native-like trimers represent a promising starting point for the development of HIV-1 vaccines aimed at inducing bNAbs.

  10. The Cellular Bases of Antibody Responses during Dengue Virus Infection.

    PubMed

    Yam-Puc, Juan Carlos; Cedillo-Barrón, Leticia; Aguilar-Medina, Elsa Maribel; Ramos-Payán, Rosalío; Escobar-Gutiérrez, Alejandro; Flores-Romo, Leopoldo

    2016-01-01

    Dengue virus (DENV) is one of the most significant human viral pathogens transmitted by mosquitoes and can cause from an asymptomatic disease to mild undifferentiated fever, classical dengue, and severe dengue. Neutralizing memory antibody (Ab) responses are one of the most important mechanisms that counteract reinfections and are therefore the main aim of vaccination. However, it has also been proposed that in dengue, some of these class-switched (IgG) memory Abs might worsen the disease. Although these memory Abs derive from B cells by T-cell-dependent processes, we know rather little about the (acute, chronic, or memory) B cell responses and the complex cellular mechanisms generating these Abs during DENV infections. This review aims to provide an updated and comprehensive perspective of the B cell responses during DENV infection, starting since the very early events such as the cutaneous DENV entrance and the arrival into draining lymph nodes, to the putative B cell activation, proliferation, and germinal centers (GCs) formation (the source of affinity-matured class-switched memory Abs), till the outcome of GC reactions such as the generation of plasmablasts, Ab-secreting plasma cells, and memory B cells. We discuss topics very poorly explored such as the possibility of B cell infection by DENV or even activation-induced B cell death. The current information about the nature of the Ab responses to DENV is also illustrated.

  11. The Cellular Bases of Antibody Responses during Dengue Virus Infection

    PubMed Central

    Yam-Puc, Juan Carlos; Cedillo-Barrón, Leticia; Aguilar-Medina, Elsa Maribel; Ramos-Payán, Rosalío; Escobar-Gutiérrez, Alejandro; Flores-Romo, Leopoldo

    2016-01-01

    Dengue virus (DENV) is one of the most significant human viral pathogens transmitted by mosquitoes and can cause from an asymptomatic disease to mild undifferentiated fever, classical dengue, and severe dengue. Neutralizing memory antibody (Ab) responses are one of the most important mechanisms that counteract reinfections and are therefore the main aim of vaccination. However, it has also been proposed that in dengue, some of these class-switched (IgG) memory Abs might worsen the disease. Although these memory Abs derive from B cells by T-cell-dependent processes, we know rather little about the (acute, chronic, or memory) B cell responses and the complex cellular mechanisms generating these Abs during DENV infections. This review aims to provide an updated and comprehensive perspective of the B cell responses during DENV infection, starting since the very early events such as the cutaneous DENV entrance and the arrival into draining lymph nodes, to the putative B cell activation, proliferation, and germinal centers (GCs) formation (the source of affinity-matured class-switched memory Abs), till the outcome of GC reactions such as the generation of plasmablasts, Ab-secreting plasma cells, and memory B cells. We discuss topics very poorly explored such as the possibility of B cell infection by DENV or even activation-induced B cell death. The current information about the nature of the Ab responses to DENV is also illustrated. PMID:27375618

  12. Association of periodontitis with persistent, pro-atherogenic antibody responses.

    PubMed

    Buhlin, Kåre; Holmer, Jacob; Gustafsson, Anders; Hörkkö, Sohvi; Pockley, Alan Graham; Johansson, Anders; Paju, Susanna; Klinge, Björn; Pussinen, Pirkko J

    2015-11-01

    To study antibody responses associated with molecular mimicry in periodontitis. Fifty-four periodontitis cases (mean age 54.0 years) and 44 controls (53.6 years) were examined, after which cases received periodontal treatment. Established immunoassays were used to analyse levels of antibodies against two pathogens, Aggregatibacter actinomycetemcomitans (Aa) and Porphyromonas gingivalis (Pg), heat shock proteins (Hsp), Hsp60, Hsp65, and Hsp70, and epitopes of oxidized low-density lipoprotein (oxLDL) (CuOx-LDL and MDA-LDL) in plasma samples that were collected at baseline and after 3 (n = 48) and 6 (n = 30) months. When age, sex, smoking habit, and the number of teeth were considered in multivariate logistic regressions, Aa and Pg IgG, Hsp65-IgA, CuOx-LDL-IgG and -IgM, and MDA-LDL-IgG antibody levels were associated with periodontitis, whereas Hsp60-IgG2 antibody levels were inversely associated. The Aa antibody levels significantly correlated with the levels of IgA antibodies to Hsp65 and Hsp70, and both OxLDL IgA antibody levels. The levels of antibodies to Pg correlated with IgG antibodies to Hsp60, Hsp70, and both oxLDL antibody epitopes. None of the antibody levels changed significantly after treatment. Periodontitis is associated with persistently high levels of circulating antibodies that are reactive with pathogen- and host-derived antigens. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Addition of αGal HyperAcute™ technology to recombinant avian influenza vaccines induces strong low-dose antibody responses.

    PubMed

    Chen, Wenlan Alex; Zhang, Jinjin; Hall, Katie M; Martin, Carol B; Kisselev, Serguei; Dasen, Emily J; Vahanian, Nicholas N; Link, Charles J; Martin, Brian K

    2017-01-01

    Highly pathogenic avian influenza represents a severe public health threat. Over the last decade, the demand for highly efficacious vaccines against avian influenza viruses has grown, especially after the 2013 H7N9 outbreak in China that resulted in over 600 human cases with over 200 deaths. Currently, there are several H5N1 and H7N9 influenza vaccines in clinical trials, all of which employ traditional oil-in-water adjuvants due to the poor immunogenicity of avian influenza virus antigens. In this study, we developed potent recombinant avian influenza vaccine candidates using HyperAcute™ Technology, which takes advantage of naturally-acquired anti-αGal immunity in humans. We successfully generated αGal-positive recombinant protein and virus-like particle vaccine candidates of H5N1 and H7N9 influenza strains using either biological or our novel CarboLink chemical αGal modification techniques. Strikingly, two doses of 100 ng αGal-modified vaccine, with no traditional adjuvant, was able to induce a much stronger humoral response in αGT BALB/c knockout mice (the only experimental system readily available for testing αGal in vivo) than unmodified vaccines even at 10-fold higher dose (1000 ng/dose). Our data strongly suggest that αGal modification significantly enhances the humoral immunogenicity of the recombinant influenza vaccine candidates. Use of αGal HyperAcute™ technology allows significant dose-sparing while retaining desired immunogenicity. Our success in the development of highly potent H5N1 and H7N9 vaccine candidates demonstrated the potential of αGal HyperAcute™ technology for the development of vaccines against other infectious diseases.

  14. Addition of αGal HyperAcute™ technology to recombinant avian influenza vaccines induces strong low-dose antibody responses

    PubMed Central

    Hall, Katie M.; Martin, Carol B.; Kisselev, Serguei; Dasen, Emily J.; Vahanian, Nicholas N.; Link, Charles J.; Martin, Brian K.

    2017-01-01

    Highly pathogenic avian influenza represents a severe public health threat. Over the last decade, the demand for highly efficacious vaccines against avian influenza viruses has grown, especially after the 2013 H7N9 outbreak in China that resulted in over 600 human cases with over 200 deaths. Currently, there are several H5N1 and H7N9 influenza vaccines in clinical trials, all of which employ traditional oil-in-water adjuvants due to the poor immunogenicity of avian influenza virus antigens. In this study, we developed potent recombinant avian influenza vaccine candidates using HyperAcute™ Technology, which takes advantage of naturally-acquired anti-αGal immunity in humans. We successfully generated αGal-positive recombinant protein and virus-like particle vaccine candidates of H5N1 and H7N9 influenza strains using either biological or our novel CarboLink chemical αGal modification techniques. Strikingly, two doses of 100 ng αGal-modified vaccine, with no traditional adjuvant, was able to induce a much stronger humoral response in αGT BALB/c knockout mice (the only experimental system readily available for testing αGal in vivo) than unmodified vaccines even at 10-fold higher dose (1000 ng/dose). Our data strongly suggest that αGal modification significantly enhances the humoral immunogenicity of the recombinant influenza vaccine candidates. Use of αGal HyperAcute™ technology allows significant dose-sparing while retaining desired immunogenicity. Our success in the development of highly potent H5N1 and H7N9 vaccine candidates demonstrated the potential of αGal HyperAcute™ technology for the development of vaccines against other infectious diseases. PMID:28787006

  15. The natural antibody response to E. coli includes antibodies of the IgD class.

    PubMed Central

    Sewell, H F; Chambers, L; Maxwell, V; Matthews, J B; Jefferis, R

    1978-01-01

    Antibodies to E. coli of the IgM, IgG and IgA class are readily demonstrable in normal human serum. Using the sensitive red cell-linked antigen-antiglobulin system, it has been demonstrated that antibodies of the IgD class are also part of this normal response. The IgD antibody titre is low and often could only be demonstrated in partially purified IgD preparations. The availability of purified IgD paraproteins and their Fabdelta and Fcdelta fragments, as well as antisera specific for these fragments, allowed the necessary critical specificity controls to be performed. Images FIG. 2 PMID:346269

  16. Antibody response against NY-ESO-1 in CHP-NY-ESO-1 vaccinated patients.

    PubMed

    Kawabata, Ryohei; Wada, Hisashi; Isobe, Midori; Saika, Takashi; Sato, Shuichiro; Uenaka, Akiko; Miyata, Hiroshi; Yasuda, Takushi; Doki, Yuichiro; Noguchi, Yuji; Kumon, Hiromi; Tsuji, Kazuhide; Iwatsuki, Keiji; Shiku, Hiroshi; Ritter, Gerd; Murphy, Roger; Hoffman, Eric; Old, Lloyd J; Monden, Morito; Nakayama, Eiichi

    2007-05-15

    NY-ESO-1 specific humoral responses are frequently observed in patients with various types of NY-ESO-1 antigen expressing tumors. In a large proportion of NY-ESO-1 antibody-positive patients of NY-ESO-1-specific CD8 T-cells can also be detected suggesting that monitoring of the NY-ESO-1 specific humoral immune response may be a relevant and more practical surrogate for estimating the overall immune response against NY-ESO-1 in clinical vaccine studies. We have immunized 9 cancer patients with full length NY-ESO-1 protein formulated with cholesterol-bearing hydrophobized pullulan (CHP-NY-ESO-1) and investigated the humoral immune responses against NY-ESO-1. Seven patients were NY-ESO-1 antibody-negative and 2 patients were positive prior to vaccination. Vaccination with CHP-NY-ESO-1 resulted in the induction or increase of NY-ESO-1 antibody responses in all 9 patients immunized. Epitope analysis revealed 5 regions in the NY-ESO-1 protein molecule that were recognized by antibodies induced after vaccination. The 5 regions were also recognized by antibodies present in nonvaccinated, NY-ESO-1 antibody-positive cancer patients. A peptide spanning amino acids 91-108 was recognized in 6 out of 9 vaccinated patients and in 8 out of 9 nonvaccinated, sero-positive patients, being the most dominant antigenic epitope in NY-ESO-1 for antibody recognition in cancer patients. In conclusion, we showed that CHP-NY-ESO-1 protein vaccination had a potent activity for inducing humoral immune responses against NY-ESO-1 antigen in cancer patients. The antigenic epitopes recognized by antibodies in the vaccinated patients were similar to those recognized in cancer patients with spontaneous humoral immunity against NY-ESO-1. (c) 2007 Wiley-Liss, Inc.

  17. Duration of serum antibody response to rabies vaccination in horses.

    PubMed

    Harvey, Alison M; Watson, Johanna L; Brault, Stephanie A; Edman, Judy M; Moore, Susan M; Kass, Philip H; Wilson, W David

    2016-08-15

    OBJECTIVE To investigate the impact of age and inferred prior vaccination history on the persistence of vaccine-induced antibody against rabies in horses. DESIGN Serologic response evaluation. ANIMALS 48 horses with an undocumented vaccination history. PROCEDURES Horses were vaccinated against rabies once. Blood samples were collected prior to vaccination, 3 to 7 weeks after vaccination, and at 6-month intervals for 2 to 3 years. Serum rabies virus-neutralizing antibody (RVNA) values were measured. An RVNA value of ≥ 0.5 U/mL was used to define a predicted protective immune response on the basis of World Health Organization recommendations for humans. Values were compared between horses < 20 and ≥ 20 years of age and between horses inferred to have been previously vaccinated and those inferred to be immunologically naïve. RESULTS A protective RVNA value (≥ 0.5 U/mL) was maintained for 2 to 3 years in horses inferred to have been previously vaccinated on the basis of prevaccination RVNA values. No significant difference was evident in response to rabies vaccination or duration of protective RVNA values between horses < 20 and ≥ 20 years of age. Seven horses were poor responders to vaccination. Significant differences were identified between horses inferred to have been previously vaccinated and horses inferred to be naïve prior to the study. CONCLUSIONS AND CLINICAL RELEVANCE A rabies vaccination interval > 1 year may be appropriate for previously vaccinated horses but not for horses vaccinated only once. Additional research is required to confirm this finding and characterize the optimal primary dose series for rabies vaccination.

  18. Gammaherpesvirus latency induces antibody-associated thrombocytopenia in mice

    PubMed Central

    Freeman, Michael L.; Burkum, Claire E.; Lanzer, Kathleen G.; Roberts, Alan D.; Pinkevych, Mykola; Itakura, Asako; Kummer, Lawrence W.; Szaba, Frank M.; Davenport, Miles P.; McCarty, Owen J.T.; Woodland, David L.; Smiley, Stephen T.; Blackman, Marcia A.

    2012-01-01

    Human herpesviruses establish lifelong latency. Viral recrudescence can lead to the development of cancers, immunoproliferative disorders, transplantation complications, and thrombocytopenia. Although platelet-specific autoantibodies have been reported in patients infected with the Epstein-Barr virus (EBV), the mechanisms by which thrombocytopenia is induced remain unclear, as do the relative contributions of lytic viral replication and latent viral gene expression. The human gammaherpesviruses are tightly restricted in their ability to infect other mammals, so they are difficult to study in live animal models. Here we show that infection of mice with murine gammaherpesvirus-68 (γHV68), a rodent-specific pathogen closely related to EBV, induces the production of platelet-binding antibodies and causes thrombocytopenia. Infection of antibody-deficient mice does not lead to thrombocytopenia, indicating the platelet decrease is mediated by antibody. Additionally, infection with a latency-null recombinant γHV68 does not induce thrombocytopenia, suggesting factors associated with viral latency drive the infection-induced antibody-mediated thrombocytopenia. These studies describe an important animal model of gammaherpesvirus-induced autoimmune thrombocytopenia and demonstrate that this pathology is mediated by antibody and dependent on viral latency. This model will allow studies of the underlying mechanisms of disease progression and the testing of therapeutic strategies for the alleviation of virus-induced thrombocytopenia. PMID:23245703

  19. Different effect of prostaglandin E2 on B-cell activation by two distinct B-cell differentiation factors, B151-TRF1/IL-5 and B151-TRF2: selective inhibition of B151-TRF2-induced antibody response through increases in intracellular cyclic AMP levels

    PubMed Central

    Ishihara, K.; Ono, S.; Takahama, Y.; Hirayama, F.; Hirano, H.; Itoh, K.; Dobashi, K.; Murakami, S.; Katoh, Y.; Yamaguchi, M.; Hamaoka, T.

    1989-01-01

    Effects of prostaglandin E2 (PGE2) on murine B-cell activation induced by two distinct B-cell differentiation factors, B151-TRF1/IL-5 and B151-TRF2, were examined. A final differentiation of unprimed B cells into IgM-producing cells induced by B151-TRF2 was markedly inhibited by PGE2 at physiological concentrations (around 10-8 M), whereas B151-TRF1/IL-5-induced antibody responses of unprimed as well as activated B cells were not affected by PGE2, even at 10-6 M. B-cell responses induced by B151-TRF2-like factors from autoimmune-prone MRL/1pr mice were also inhibited by PGE2. Biphasic increases in intracellular cyclic AMP (cAMP) levels were induced by culturing B cells with 10-6 or 10-8 M PGE2: rapid increases within 8 min and delayed increases around 16 hr. The direct addition of dibutyryl cAMP to cultures of B cells resulted in marked inhibition of antibody responses when stimulated with B151-TRF2 but not with B151-TRF1/IL-5. The B151-TRF2-induced antibody responses were also inhibited by cAMP-elevating reagents such as forskolin, cholera toxin and theophyline. Furthermore, 2′, 5′-dideoxyadenosine, which is an inhibitor of adenylate cyclase, prevented the PGE2-mediated cAMP accumulation in unprimed B cells as well as the PGE2-mediated inhibition of B151-TRF2-induced B-cell responses when added at the initiation of culture. These results suggest that PGE2 inhibits B151-TRF2-induced antibody responses through the activation of adenylate cyclase and subsequent accumulation of intracellular cAMP, whereas B151-TRF1/IL-5-responsive B cells are resistant to the inhibitory effect of PGE2 and cAMP. PMID:2553585

  20. Antibody responses to Bordetella bronchiseptica in vaccinated and infected dogs

    PubMed Central

    Ellis, John; Rhodes, Carrie; Lacoste, Stacey; Krakowka, Steven

    2014-01-01

    Bordetella bronchiseptica (Bb) whole cell bacterins have been replaced with acelluar vaccines. We evaluated the response to the acellular Bb vaccines in Bb-seropositive commingled laboratory beagles and client-owned dogs with various lifestyles and vaccination histories. A single parenteral dose of the acellular Bb vaccine resulted in consistent anamnestic IgG, and to a lesser, but notable extent, IgA, Bb-reactive antibody responses in the seropositive beagles. Associated with the increase in antibodies measured by enzyme-linked immunosorbent assay (ELISA) was an increase in the complement (C)-dependent IgG antibody mediated bactericidal effect on Bb in vitro. Antibody responses in client-owned dogs were more variable and were dependent upon the vaccination history and serological evidence of previous Bb exposure. Antibodies from vaccinated dogs recognized several Bb proteins, notably P68 (pertactin) and P220 (fimbrial hemagglutinin), the response to which has been shown to be disease-sparing in Bp infections. These antibody responses were similar to those in experimentally infected dogs and in dogs that had received a widely used whole cell bacterin. PMID:25183893

  1. Effects of maternally-derived antibodies on serologic responses to vaccination in kittens.

    PubMed

    Digangi, Brian A; Levy, Julie K; Griffin, Brenda; Reese, Michael J; Dingman, Patricia A; Tucker, Sylvia J; Dubovi, Edward J

    2012-02-01

    The optimal vaccination protocol to induce immunity in kittens with maternal antibodies is unknown. The objective of this study was to determine the effects of maternally-derived antibody (MDA) on serologic responses to vaccination in kittens. Vaccination with a modified live virus (MLV) product was more effective than an inactivated (IA) product at inducing protective antibody titers (PAT) against feline panleukopenia virus (FPV). IA vaccination against feline herpesvirus-1 (FHV) and feline calicivirus (FCV) was more effective in the presence of low MDA than high MDA. Among kittens with low MDA, MLV vaccination against FCV was more effective than IA vaccination. A total of 15%, 44% and 4% of kittens had insufficient titers against FPV, FHV and FCV, respectively, at 17 weeks of age. Serologic response to vaccination of kittens varies based on vaccination type and MDA level. In most situations, MLV vaccination should be utilized and protocols continued beyond 14 weeks of age to optimize response by all kittens.

  2. Recombinant multi-epitope vaccine induce predefined epitope-specific antibodies against HIV-1.

    PubMed

    Li, Hua; Liu, Zu-Qiang; Ding, Jian; Chen, Ying-Hua

    2002-11-01

    Monoclonal antibody 2F5 recognizing ELDKWA-epitope on HIV-1 gp41 has significant neutralization potency against 90% of the investigated viruses of African, Asia, American and European strains, but antibodies responses to ELDKWA-epitope in HIV-1 infected individuals were very low. Based on the epitope-vaccine strategy suggested by us, a recombinant glutathione S-transferase (GST) fusion protein (GST-MELDKWAGELDKWAGELDKWAVDIGPGRAFYGPGRAFYGPGRAFY) as vaccine antigen containing three repeats of neutralizing epitope ELDKWA on gp41 and GPGRAFY on gp120 was designed and expressed in Escherichia coli. After vaccination course, the recombinant multi-epitope vaccine could induce high levels of predefined multi-epitope-specific antibodies in mice. These antibodies in sera could bind to both neutralizing epitopes on gp41 peptide, V3 loop peptide and recombinant soluble gp41 (aa539-684) in ELISA assay (antisera dilution: 1:1,600-25,600), while normal sera did not. Moreover, these antibodies in sera could recognize the CHO-WT cells which expressed HIV-1 envelope glycoprotein on the cell surfaces, indicating that the predefined epitope-specific antibodies could recognize natural envelope protein of HIV-1 though these antibodies were induced by recombinant multi-epitope-vaccine. These experimental results suggested a possible way to develop recombinant multi-epitope vaccine inducing multi-antiviral activities against HIV-1.

  3. Mimotope vaccines: epitope mimics induce anti-cancer antibodies.

    PubMed

    Riemer, Angelika B; Jensen-Jarolim, Erika

    2007-10-31

    Mimotopes are epitope-mimicking structures. When applied for immunizations they induce desired antibody specificities exclusively based on the principle of molecular mimicry. This is important as antibodies directed against tumor-associated antigens may harbor diverse biological effects depending on their epitope specificity. Thus they may inhibit or promote tumor growth. This review gives an update on different vaccination strategies based on the mimotope concept.

  4. Neutralizing antibody immune response in children with primary and secondary rotavirus infections.

    PubMed Central

    Arias, C F; López, S; Mascarenhas, J D; Romero, P; Cano, P; Gabbay, Y B; de Freitas, R B; Linhares, A C

    1994-01-01

    We have characterized the neutralizing antibody immune response to six human rotavirus serotypes (G1 to G4, G8, and G9) in Brazilian children with primary and secondary rotavirus infections and correlated the response with the G serotype of the infecting rotavirus strain. Twenty-five children were studied: 17 had a single rotavirus infection, 4 were reinfected once, and 4 experienced three infections. Two of the reinfections were by non-group A rotaviruses. Among the 25 primary infections, we observed homotypic as well as heterotypic responses; the serotype G1 viruses, which accounted for 13 of these infections, induced mostly a homotypic response, while infections by serotype G2 and G4 viruses induced, in addition to the homotypic, a heterotypic response directed primarily to serotype G1. Two of the primary infections induced heterotypic antibodies to 69M, a serotype G8 virus that by RNA electrophoresis analysis was found not to circulate in the population during the time of the study. The specificity of the neutralizing antibody immune response induced by a virus of a given serotype was the same in primary as well as secondary infections. These results indicate that the heterotypic immune response induced in a primary rotavirus infection is an intrinsic property of the virus strain, and although there seem to be general patterns of serotype-specific seroconversion, these may vary from serotype to serotype and from strain to strain within a serotype. PMID:7496929

  5. An adjuvanted, tetravalent dengue virus purified inactivated vaccine candidate induces long-lasting and protective antibody responses against dengue challenge in rhesus macaques.

    PubMed

    Fernandez, Stefan; Thomas, Stephen J; De La Barrera, Rafael; Im-Erbsin, Rawiwan; Jarman, Richard G; Baras, Benoît; Toussaint, Jean-François; Mossman, Sally; Innis, Bruce L; Schmidt, Alexander; Malice, Marie-Pierre; Festraets, Pascale; Warter, Lucile; Putnak, J Robert; Eckels, Kenneth H

    2015-04-01

    The immunogenicity and protective efficacy of a candidate tetravalent dengue virus purified inactivated vaccine (TDENV PIV) formulated with alum or an Adjuvant System (AS01, AS03 tested at three different dose levels, or AS04) was evaluated in a 0, 1-month vaccination schedule in rhesus macaques. One month after dose 2, all adjuvanted formulations elicited robust and persisting neutralizing antibody titers against all four dengue virus serotypes. Most of the formulations tested prevented viremia after challenge, with the dengue serotype 1 and 2 virus strains administered at 40 and 32 weeks post-dose 2, respectively. This study shows that inactivated dengue vaccines, when formulated with alum or an Adjuvant System, are candidates for further development.

  6. Natural and cross-inducible anti-SIV antibodies in Mauritian cynomolgus macaques.

    PubMed

    Li, Hongzhao; Nykoluk, Mikaela; Li, Lin; Liu, Lewis R; Omange, Robert W; Soule, Geoff; Schroeder, Lukas T; Toledo, Nikki; Kashem, Mohammad Abul; Correia-Pinto, Jorge F; Liang, Binhua; Schultz-Darken, Nancy; Alonso, Maria J; Whitney, James B; Plummer, Francis A; Luo, Ma

    2017-01-01

    Cynomolgus macaques are an increasingly important nonhuman primate model for HIV vaccine research. SIV-free animals without pre-existing anti-SIV immune responses are generally needed to evaluate the effect of vaccine-induced immune responses against the vaccine epitopes. Here, in order to select such animals for vaccine studies, we screened 108 naïve female Mauritian cynomolgus macaques for natural (baseline) antibodies to SIV antigens using a Bio-Plex multiplex system. The antigens included twelve 20mer peptides overlapping the twelve SIV protease cleavage sites (-10/+10), respectively (PCS peptides), and three non-PCS Gag or Env peptides. Natural antibodies to SIV antigens were detected in subsets of monkeys. The antibody reactivity to SIV was further confirmed by Western blot using purified recombinant SIV Gag and Env proteins. As expected, the immunization of monkeys with PCS antigens elicited anti-PCS antibodies. However, unexpectedly, antibodies to non-PCS peptides were also induced, as shown by both Bio-Plex and Western blot analyses, while the non-PCS peptides do not share sequence homology with PCS peptides. The presence of natural and vaccine cross-inducible SIV antibodies in Mauritian cynomolgus macaques should be considered in animal selection, experimental design and result interpretation, for their best use in HIV vaccine research.

  7. Neutralizing antibody responses in acute human immunodeficiency virus type 1 subtype C infection.

    PubMed

    Gray, E S; Moore, P L; Choge, I A; Decker, J M; Bibollet-Ruche, F; Li, H; Leseka, N; Treurnicht, F; Mlisana, K; Shaw, G M; Karim, S S Abdool; Williamson, C; Morris, L

    2007-06-01

    The study of the evolution and specificities of neutralizing antibodies during the course of human immunodeficiency virus type 1 (HIV-1) infection may be important in the discovery of possible targets for vaccine design. In this study, we assessed the autologous and heterologous neutralization responses of 14 HIV-1 subtype C-infected individuals, using envelope clones obtained within the first 2 months postinfection. Our data show that potent but relatively strain-specific neutralizing antibodies develop within 3 to 12 months of HIV-1 infection. The magnitude of this response was associated with shorter V1-to-V5 envelope lengths and fewer glycosylation sites, particularly in the V1-V2 region. Anti-MPER antibodies were detected in 4 of 14 individuals within a year of infection, while antibodies to CD4-induced (CD4i) epitopes developed to high titers in 12 participants, in most cases before the development of autologous neutralizing antibodies. However, neither anti-MPER nor anti-CD4i antibody specificity conferred neutralization breadth. These data provide insights into the kinetics, potency, breadth, and epitope specificity of neutralizing antibody responses in acute HIV-1 subtype C infection.

  8. Antibody response against three Plasmodium falciparum merozoite antigens in Mamuju District, West Sulawesi Province, Indonesia.

    PubMed

    Sennang, Nurhayana; Rogerson, Stephen; Wahyuni, Sitti; Yusuf, Irawan; Syafruddin, Din

    2014-09-25

    Malaria endemicity in the archipelago of Indonesia varies substantially across regions. Following the government's plan for a malaria elimination programme in Indonesia, baseline malaria surveys were conducted in Mamuju District, West Sulawesi Province, Indonesia to re-assess the malaria situation prior to the establishment of an evidence-based malaria elimination programme in the area. The present study aims to determine the antibody response to three merozoite antigens among the inhabitants of the district. Antibodies were measured following elution from filter-paper blood spots collected during cross-sectional surveys in the dry and wet season in 2010. Enzyme-linked immunosorbent assays using three merozoite antigens, MSP2, EBA175 and PfRh2a were conducted. A positivity threshold was determined by samples from unexposed individuals and the difference in antibody level against each antigen and correlation of antibody level in different age groups and seasons were statistically analysed. A total of 497 subjects, 248 in dry and 249 in wet season, aged between 0.6 and 78 years were included. The prevalence of positive antibody responses to MSP2, EBA175 and PfRh2a antigens in dry season were 27.82, 27.42 and 25.81%, respectively. In wet season, the antibody prevalences were 64.26, 64.66 and 61.45%. The antibody levels to the three antigens were all higher in older age groups and also significantly higher in the wet season. The antibody levels also correlated positively with the Plasmodium falciparum infection status of the subjects. MSP2, EBA175 and PfRh2a induce antibody responses among the subjects in Mamuju District, and the prevalence is significantly higher in wet season. The level of antibody also correlates significantly with age and malaria positivity. The overall results indicate the antigens might be used as a target for vaccines against P. falciparum infection and as markers for malaria exposure.

  9. Fusion proteins of HIV-1 envelope glycoprotein gp120 with CD4-induced antibodies showed enhanced binding to CD4 and CD4 binding site antibodies

    SciTech Connect

    Chen, Weizao; Feng, Yang; Wang, Yanping; Zhu, Zhongyu; Dimitrov, Dimiter S.

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Some recombinant HIV-1 gp120s do not preserve their conformations on gp140s. Black-Right-Pointing-Pointer We hypothesize that CD4i antibodies could induce conformational changes in gp120. Black-Right-Pointing-Pointer CD4i antibodies enhance binding of CD4 and CD4bs antibodies to gp120. Black-Right-Pointing-Pointer CD4i antibody-gp120 fusion proteins could have potential as vaccine immunogens. -- Abstract: Development of successful AIDS vaccine immunogens continues to be a major challenge. One of the mechanisms by which HIV-1 evades antibody-mediated neutralizing responses is the remarkable conformational flexibility of its envelope glycoprotein (Env) gp120. Some recombinant gp120s do not preserve their conformations on gp140s and functional viral spikes, and exhibit decreased recognition by CD4 and neutralizing antibodies. CD4 binding induces conformational changes in gp120 leading to exposure of the coreceptor-binding site (CoRbs). In this study, we test our hypothesis that CD4-induced (CD4i) antibodies, which target the CoRbs, could also induce conformational changes in gp120 leading to better exposed conserved neutralizing antibody epitopes including the CD4-binding site (CD4bs). We found that a mixture of CD4i antibodies with gp120 only weakly enhanced CD4 binding. However, such interactions in single-chain fusion proteins resulted in gp120 conformations which bound to CD4 and CD4bs antibodies better than the original or mutagenically stabilized gp120s. Moreover, the two molecules in the fusion proteins synergized with each other in neutralizing HIV-1. Therefore, fusion proteins of gp120 with CD4i antibodies could have potential as components of HIV-1 vaccines and inhibitors of HIV-1 entry, and could be used as reagents to explore the conformational flexibility of gp120 and mechanisms of entry and immune evasion.

  10. Systemic antibody responses to gut commensal bacteria during chronic HIV-1 infection.

    PubMed

    Haas, Anna; Zimmermann, Kathrin; Graw, Frederik; Slack, Emma; Rusert, Peter; Ledergerber, Bruno; Bossart, Walter; Weber, Rainer; Thurnheer, Maria C; Battegay, Manuel; Hirschel, Bernard; Vernazza, Pietro; Patuto, Nicola; Macpherson, Andrew J; Günthard, Huldrych F; Oxenius, Annette

    2011-11-01

    Human systemic antibody responses to commensal microbiota are not well characterised during health and disease. Of particular interest is the analysis of their potential modulation caused by chronic HIV-1 infection which is associated with sustained enteropathy and systemic B cell disturbances reflected by impaired B cell responses and chronic B cell hyperactivity. The mechanisms underlying B cell hyperactivation and the specificities of the resulting hypergammaglobulinaemia are only poorly understood. By a technique referred to as live bacterial FACS (fluorescence-activated cell sorting), the present study investigated systemic antibody responses to several gut and skin commensal bacteria as well as Candida albicans in longitudinal plasma and serum samples from healthy donors, chronic HIV-1-infected individuals with or without diarrhoea and patients with inflammatory bowel disease (IBD). The data show that systemic antibody responses to the commensal microbiota were abundantly present in humans and remained remarkably stable over years. Overall systemic antibody responses to gut commensal bacteria were not affected during chronic HIV-1 infection, with titres decreasing when normalised to elevated plasma immunoglobulin G (IgG) levels found in patients with HIV. In contrast, increases in the titres of high affinity antimicrobiota antibodies were detected in patients with IBD, demonstrating that conditions with known increased intestinal permeability and aberrant mutualism can induce changes in antibody titres observed in these assays. Neither HIV-associated enteropathy nor B cell dysfunction impact on the high-affinity systemic antibody responses to gut commensal bacteria. HIV-associated hypergammaglobulinaemia is therefore unlikely to be driven by induction of antimicrobiota antibodies.

  11. Local Antiglycan Antibody Responses to Skin Stage and Migratory Schistosomula of Schistosoma japonicum

    PubMed Central

    Smit, Cornelis H.; Kies, Christiaan L.; McWilliam, Hamish E. G.; Meeusen, Els N. T.; Hokke, Cornelis H.

    2015-01-01

    Schistosomiasis is a tropical disease affecting over 230 million people worldwide. Although effective drug treatment is available, reinfections are common, and development of immunity is slow. Most antibodies raised during schistosome infection are directed against glycans, some of which are thought to be protective. Developing schistosomula are considered most vulnerable to immune attack, and better understanding of local antibody responses raised against glycans expressed by this life stage might reveal possible glycan vaccine candidates for future vaccine research. We used antibody-secreting cell (ASC) probes to characterize local antiglycan antibody responses against migrating Schistosoma japonicum schistosomula in different tissues of rats. Analysis by shotgun Schistosoma glycan microarray resulted in the identification of antiglycan antibody response patterns that reflected the migratory pathway of schistosomula. Antibodies raised by skin lymph node (LN) ASC probes mainly targeted N-glycans with terminal mannose residues, Galβ1-4GlcNAc (LacNAc) and Galβ1-4(Fucα1-3)GlcNAc (LeX). Also, responses to antigenic and schistosome-specific glycosphingolipid (GSL) glycans containing highly fucosylated GalNAcβ1-4(GlcNAcβ1)n stretches that are believed to be present at the parasite's surface constitutively upon transformation were found. Antibody targets recognized by lung LN ASC probes were mainly N-glycans presenting GalNAcβ1-4GlcNAc (LDN) and GlcNAc motifs. Surprisingly, antibodies against highly antigenic multifucosylated motifs of GSL glycans were not observed in lung LN ASC probes, indicating that these antigens are not expressed in lung stage schistosomula or are not appropriately exposed to induce immune responses locally. The local antiglycan responses observed in this study highlight the stage- and tissue-specific expression of antigenic parasite glycans and provide insights into glycan targets possibly involved in resistance to S. japonicum infection

  12. Antibody response that protects against disseminated candidiasis.

    PubMed Central

    Han, Y; Cutler, J E

    1995-01-01

    We previously showed that surface mannans of Candida albicans function as adhesins during yeast cell attachment to mouse splenic marginal zone macrophages. The mannan adhesin fraction was encapsulated into liposomes and used to vaccinate mice over a 5- to 6-week period. Circulating agglutinins specific for the fraction correlated with increased resistance to disseminated candidiasis. Antiserum from vaccinated animals protected naive BALB/cByJ mice against C. albicans serotype A and B strains and Candida tropicalis. Antiserum also protected SCID mice against disseminated disease. The serum protective ability was stable at 56 degrees C, but this ability was adsorbed by C. albicans cells. The antiserum was divided into three fractions after separation by high-performance liquid chromatography. One fraction contained all of the agglutinin activity and transferred resistance to naive mice. A second fraction also transferred resistance. Two monoclonal antibodies (MAbs) specific for candidal surface determinants were obtained. MAb B6.1 is specific for a mannan epitope in the adhesin fraction, and MAb B6 is specific for a different epitope in the fraction. Both MAbs are immunoglobulin M, and both strongly agglutinate candidal cells, but only MAb B6.1 protected both normal and SCID mice against disseminated candidiasis. In one experiment, 10 normal mice were given MAb B6.1 and challenged with yeast cells. Six mice survived the 67-day observation period; 4 of the survivors were cured as evidenced by the lack of CFU in the kidney and spleen. Our studies show that antibodies against certain cell surface antigens of C. albicans help the host resist disseminated candidiasis. PMID:7790089

  13. Translating innate response into long-lasting antibody response by the intrinsic antigen-adjuvant properties of papaya mosaic virus.

    PubMed

    Acosta-Ramírez, Elizabeth; Pérez-Flores, Rebeca; Majeau, Nathalie; Pastelin-Palacios, Rodolfo; Gil-Cruz, Cristina; Ramírez-Saldaña, Maricela; Manjarrez-Orduño, Nataly; Cervantes-Barragán, Luisa; Santos-Argumedo, Leopoldo; Flores-Romo, Leopoldo; Becker, Ingeborg; Isibasi, Armando; Leclerc, Denis; López-Macías, Constantino

    2008-06-01

    Identifying the properties of a molecule involved in the efficient activation of the innate and adaptive immune responses that lead to long-lasting immunity is crucial for vaccine and adjuvant development. Here we show that the papaya mosaic virus (PapMV) is recognized by the immune system as a pathogen-associated molecular pattern (PAMP) and as an antigen in mice (Pamptigen). A single immunization of PapMV without added adjuvant efficiently induced both cellular and specific long-lasting antibody responses. PapMV also efficiently activated innate immune responses, as shown by the induction of lipid raft aggregation, secretion of pro-inflammatory cytokines, up-regulation of co-stimulatory molecules on dendritic cells and macrophages, and long-lasting adjuvant effects upon the specific antibody responses to model antigens. PapMV mixed with Salmonella enterica serovar Typhi (S. typhi) outer membrane protein C increased its protective capacity against challenge with S. typhi, revealing the intrinsic adjuvant properties of PapMV in the induction of immunity. Antigen-presenting cells loaded with PapMV efficiently induced antibody responses in vivo, which may link the innate and adaptive responses observed. PapMV recognition as a Pamptigen might be translated into long-lasting antibody responses and protection observed. These properties could be used in the development of new vaccine platforms.

  14. Translating innate response into long-lasting antibody response by the intrinsic antigen-adjuvant properties of papaya mosaic virus

    PubMed Central

    Acosta-Ramírez, Elizabeth; Pérez-Flores, Rebeca; Majeau, Nathalie; Pastelin-Palacios, Rodolfo; Gil-Cruz, Cristina; Ramírez-Saldaña, Maricela; Manjarrez-Orduño, Nataly; Cervantes-Barragán, Luisa; Santos-Argumedo, Leopoldo; Flores-Romo, Leopoldo; Becker, Ingeborg; Isibasi, Armando; Leclerc, Denis; López-Macías, Constantino

    2008-01-01

    Identifying the properties of a molecule involved in the efficient activation of the innate and adaptive immune responses that lead to long-lasting immunity is crucial for vaccine and adjuvant development. Here we show that the papaya mosaic virus (PapMV) is recognized by the immune system as a pathogen-associated molecular pattern (PAMP) and as an antigen in mice (Pamptigen). A single immunization of PapMV without added adjuvant efficiently induced both cellular and specific long-lasting antibody responses. PapMV also efficiently activated innate immune responses, as shown by the induction of lipid raft aggregation, secretion of pro-inflammatory cytokines, up-regulation of co-stimulatory molecules on dendritic cells and macrophages, and long-lasting adjuvant effects upon the specific antibody responses to model antigens. PapMV mixed with Salmonella enterica serovar Typhi (S. typhi) outer membrane protein C increased its protective capacity against challenge with S. typhi, revealing the intrinsic adjuvant properties of PapMV in the induction of immunity. Antigen-presenting cells loaded with PapMV efficiently induced antibody responses in vivo, which may link the innate and adaptive responses observed. PapMV recognition as a Pamptigen might be translated into long-lasting antibody responses and protection observed. These properties could be used in the development of new vaccine platforms. PMID:18070030

  15. Antibodies against a Surface Protein of Streptococcus pyogenes Promote a Pathological Inflammatory Response

    PubMed Central

    Kahn, Fredrik; Mörgelin, Matthias; Shannon, Oonagh; Norrby-Teglund, Anna; Herwald, Heiko; Olin, Anders I.; Björck, Lars

    2008-01-01

    Streptococcal toxic shock syndrome (STSS) caused by Streptococcus pyogenes is a clinical condition with a high mortality rate despite modern intensive care. A key feature of STSS is excessive plasma leakage leading to hypovolemic hypotension, disturbed microcirculation and multiorgan failure. Previous work has identified a virulence mechanism in STSS where M1 protein of S. pyogenes forms complexes with fibrinogen that activate neutrophils to release heparin-binding protein (HBP), an inducer of vascular leakage. Here, we report a marked inter-individual difference in the response to M1 protein–induced HBP release, a difference found to be related to IgG antibodies directed against the central region of the M1 protein. To elicit massive HBP release, such antibodies need to be part of the M1 protein–fibrinogen complexes. The data add a novel aspect to bacterial pathogenesis where antibodies contribute to the severity of disease by promoting a pathologic inflammatory response. PMID:18787689

  16. Antibody-Induced Internalization of the Human Respiratory Syncytial Virus Fusion Protein.

    PubMed

    Leemans, A; De Schryver, M; Van der Gucht, W; Heykers, A; Pintelon, I; Hotard, A L; Moore, M L; Melero, J A; McLellan, J S; Graham, B S; Broadbent, L; Power, U F; Caljon, G; Cos, P; Maes, L; Delputte, P

    2017-07-15

    able to protect infants from severe disease, if administered prophylactically. However, antibody responses established after natural RSV infections are poorly protective against reinfection, and high levels of antibodies do not always correlate with protection. Therefore, RSV might be capable of interfering, at least partially, with antibody-induced neutralization. In this study, a process through which surface-expressed RSV F proteins are internalized after interaction with RSV-specific antibodies is described. One the one hand, this antigen-antibody complex internalization could result in an antiviral effect, since it may interfere with virus particle formation and virus production. On the other hand, this mechanism may also reduce the efficacy of antibody-mediated effector mechanisms toward infected cells. Copyright © 2017 American Society for Microbiology.

  17. Carbohydrate side chains of Rauscher leukemia virus envelope glycoproteins are not required to elicit a neutralizing antibody response.

    PubMed Central

    Elder, J H; McGee, J S; Alexander, S

    1986-01-01

    Antisera raised against Rauscher leukemia virus (R-MuLV) contain a preponderance of antibodies against glycoprotein gp70 that are dependent on the presence of carbohydrate side chains for reactivity, as judged by immunoprecipitation or Western blotting. However, the majority of neutralizing antibodies were not dependent on the presence of carbohydrate, as indicated by (i) the ability of deglycosylated R-MuLV to adsorb neutralizing antibody from sera as efficiently as glycosylated R-MuLV and (ii) the ability of deglycosylated R-MuLV to induce neutralizing antibody responses when injected into rabbits. Moreover, a faster response was obtained with deglycosylated R-MuLV than with untreated control virus in the latter experiments. The results indicate that the neutralizing antibodies are a discrete subpopulation of the total antibody response. Furthermore, the carbohydrate moieties appear to afford protection to the virion during infection, rather than serve as a target for neutralization. PMID:2416953

  18. Focusing antibody responses against distraction and loss in diversity

    NASA Astrophysics Data System (ADS)

    Wang, Shenshen; Kardar, Mehran; Chakraborty, Arup

    Pathogens are complex and evolving fast. They have developed full ranges of disguises to divert immune responses and often manage to escape recognition and thereby outpace natural immunity. A prominent example is the scarce and staggered development of broadly neutralizing antibodies against highly mutable viruses. It remains unclear under what evolutionary conditions these exceptional antibodies could emerge and dominate the response. To address this challenge, we construct an individual-based stochastic model of the Darwinian evolution of antibody-producing immune cells. We consider complexity of viral epitopes, vary seeding diversity of the immune cell population, and allow a time varying population size and extinction - new aspects essential for designing a realistic vaccine. We show that various temporal statistics of antigenic environments would select distinct evolutionary paths that lead to predominantly non-neutralizing, strain-specific or broadly neutralizing antibody responses. We suggest strategies to focus antibody responses on the targeted vulnerability of the virus and confer selective advantage to cross-reactive lineages. This implies a new step toward an effective vaccine against rapidly mutating complex pathogens. This work is supported by NIH.

  19. Synthetic trimer and tetramer of 3-beta-D-ribose-(1-1)-D-ribitol-5-phosphate conjugated to protein induce antibody responses to Haemophilus influenzae type b capsular polysaccharide in mice and monkeys.

    PubMed Central

    Peeters, C C; Evenberg, D; Hoogerhout, P; Käyhty, H; Saarinen, L; van Boeckel, C A; van der Marel, G A; van Boom, J H; Poolman, J T

    1992-01-01

    Synthetic oligosaccharides derived from the capsular polysaccharide (PRP) of Haemophilus influenzae type b were conjugated to carrier proteins via a thioether linkage. Conjugates were made of trimeric and tetrameric ribose-ribitol-phosphate and tetanus toxoid or diphtheria toxin. All conjugates elicited anti-PRP antibody responses with an increasing immunoglobulin G/immunoglobulin M ratio in adult mice and monkeys. Trimer conjugates elicited lower anti-PRP antibody responses compared with tetramer conjugates. Adult monkeys responded equally well to the tetrameric oligosaccharide-tetanus toxoid conjugate as to the oligosaccharide-CRM197 conjugate (HbOC), which elicits protective levels of serum antibodies in human infants after two or three injections. PMID:1563770

  20. Characteristics of antibody responses in Pigeon Fanciers' Lung.

    PubMed

    Nademi, Zohreh; Todryk, Stephen; Baldwin, Christopher

    2013-06-01

    The aetiology of Pigeon Fanciers' Lung (PFL) is believed to include immune complex formation between inhaled pigeon antigens and antibodies generated against them. However it is unclear why some fanciers are asymptomatic despite the presence of high levels of anti-avian antigen antibodies in their serum. In this study we investigated whether qualitative differences in specific antibodies might contribute to disease. IgG responses among pigeon fanciers were determined by ELISA and the functional affinity of IgG1 and IgG2 against a range of pigeon antigens was determined by inhibition ELISA and Isothermal Titration Calorimetry (ITC). The median titres of IgG1 and IgG2 against all the pigeon antigens tested was higher in asymptomatic than symptomatic fanciers and these differences were significant for anti-pigeon serum IgG1 (P=0.04), anti-fresh pigeon droppings (PDF) IgG2 (P=0.028), anti-old pigeon droppings (PDO) IgG2 (P=0.04) and anti-pigeon intestinal scrapings IgG2 (P=0.03). The functional affinity of IgG1 and IgG2 against PDO was higher in symptomatic individuals (P=0.006 and P=0.002, respectively) whilst the functional affinity of anti-PDF IgG2 was also significantly higher in these patients (P≤0.001). Symptomatic fanciers were also significantly more likely to have a high reaction enthalphy (ΔH) as measured by ITC and thus had higher affinity antibodies against PDO (P=0.044). This data confirms previous studies showing that the magnitude alone of the antibody response to pigeon antigens cannot determine the presence of PFL, but that antibody affinity may be important. ITC is a rapid method of measuring antibody affinity and has diagnostic potential in PFL, and may be of use in other situations where antibody affinity is important.

  1. Antibody Response to Lyme Disease Spirochetes in the Context of VlsE-Mediated Immune Evasion

    PubMed Central

    Gillis, David C.; Ionov, Yurij; Gerasimov, Ekaterina; Zelikovsky, Alex

    2016-01-01

    ABSTRACT Lyme disease (LD), the most prevalent tick-borne illness in North America, is caused by Borrelia burgdorferi. The long-term survival of B. burgdorferi spirochetes in the mammalian host is achieved though VlsE-mediated antigenic variation. It is mathematically predicted that a highly variable surface antigen prolongs bacterial infection sufficiently to exhaust the immune response directed toward invariant surface antigens. If the prediction is correct, it is expected that the antibody response to B. burgdorferi invariant antigens will become nonprotective as B. burgdorferi infection progresses. To test this assumption, changes in the protective efficacy of the immune response to B. burgdorferi surface antigens were monitored via a superinfection model over the course of 70 days. B. burgdorferi-infected mice were subjected to secondary challenge by heterologous B. burgdorferi at different time points postinfection (p.i.). When the infected mice were superinfected with a VlsE-deficient clone (ΔVlsE) at day 28 p.i., the active anti-B. burgdorferi immune response did not prevent ΔVlsE-induced spirochetemia. In contrast, most mice blocked culture-detectable spirochetemia induced by wild-type B. burgdorferi (WT), indicating that VlsE was likely the primary target of the antibody response. As the B. burgdorferi infection further progressed, however, reversed outcomes were observed. At day 70 p.i. the host immune response to non-VlsE antigens became sufficiently potent to clear spirochetemia induced by ΔVlsE and yet failed to prevent WT-induced spirochetemia. To test if any significant changes in the anti-B. burgdorferi antibody repertoire accounted for the observed outcomes, global profiles of antibody specificities were determined. However, comparison of mimotopes revealed no major difference between day 28 and day 70 antibody repertoires. PMID:27799330

  2. Maternal antibodies and infant immune responses to vaccines.

    PubMed

    Edwards, Kathryn M

    2015-11-25

    Infants are born with immature immune systems, making it difficult for them to effectively respond to the infectious pathogens encountered shortly after birth. Maternal antibody is actively transported across the placenta and serves to provide protection to the newborn during the first weeks to months of life. However, maternal antibody has been shown repeatedly to inhibit the immune responses of young children to vaccines. The mechanisms for this inhibition are presented and the impact on ultimate immune responses is discussed. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  3. [Autoimmune encephalitis induced by antibodies against GABA-A receptor].

    PubMed

    González R, Pablo; Hudson A, Lorena; Basáez M, Esteban; Miranda C, Marcelo

    2016-11-01

    Among autoimmune encephalitides, a prevalent group are those associated with antibodies against the N-Methyl-D-aspartate receptor, which present with behavior abnormalities, psychosis, seizures and abnormal movements. A new variant, mediated by antibodies against the GABA-A receptor, was recen-tly described. We report a 66-years-old female with this form of encephalitis whose main manifestation was the presence of severe seizures leading to status epilepticus. The patient had a good response to immunomodulatory therapy with intravenous methylprednisolone, azathioprine and anticonvulsants. The laboratory tests initially detected anti-thyroid peroxidase antibodies which lead to the misdiagnosis of Hashimoto Encephalitis, which was ruled out after the detection of antibodies against GABA-A receptor. No malignancy was detected.

  4. Theranostic nanoparticles carrying doxorubicin attenuate targeting ligand specific antibody responses following systemic delivery.

    PubMed

    Yang, Emmy; Qian, Weiping; Cao, Zehong; Wang, Liya; Bozeman, Erica N; Ward, Christina; Yang, Bin; Selvaraj, Periasamy; Lipowska, Malgorzata; Wang, Y Andrew; Mao, Hui; Yang, Lily

    2015-01-01

    Understanding the effects of immune responses on targeted delivery of nanoparticles is important for clinical translations of new cancer imaging and therapeutic nanoparticles. In this study, we found that repeated administrations of magnetic iron oxide nanoparticles (IONPs) conjugated with mouse or human derived targeting ligands induced high levels of ligand specific antibody responses in normal and tumor bearing mice while injections of unconjugated mouse ligands were weakly immunogenic and induced a very low level of antibody response in mice. Mice that received intravenous injections of targeted and polyethylene glycol (PEG)-coated IONPs further increased the ligand specific antibody production due to differential uptake of PEG-coated nanoparticles by macrophages and dendritic cells. However, the production of ligand specific antibodies was markedly inhibited following systemic delivery of theranostic nanoparticles carrying a chemotherapy drug, doxorubicin. Targeted imaging and histological analysis revealed that lack of the ligand specific antibodies led to an increase in intratumoral delivery of targeted nanoparticles. Results of this study support the potential of further development of targeted theranostic nanoparticles for the treatment of human cancers.

  5. Theranostic Nanoparticles Carrying Doxorubicin Attenuate Targeting Ligand Specific Antibody Responses Following Systemic Delivery

    PubMed Central

    Yang, Emmy; Qian, Weiping; Cao, Zehong; Wang, Liya; Bozeman, Erica N.; Ward, Christina; Yang, Bin; Selvaraj, Periasamy; Lipowska, Malgorzata; Wang, Y. Andrew; Mao, Hui; Yang, Lily

    2015-01-01

    Understanding the effects of immune responses on targeted delivery of nanoparticles is important for clinical translations of new cancer imaging and therapeutic nanoparticles. In this study, we found that repeated administrations of magnetic iron oxide nanoparticles (IONPs) conjugated with mouse or human derived targeting ligands induced high levels of ligand specific antibody responses in normal and tumor bearing mice while injections of unconjugated mouse ligands were weakly immunogenic and induced a very low level of antibody response in mice. Mice that received intravenous injections of targeted and polyethylene glycol (PEG)-coated IONPs further increased the ligand specific antibody production due to differential uptake of PEG-coated nanoparticles by macrophages and dendritic cells. However, the production of ligand specific antibodies was markedly inhibited following systemic delivery of theranostic nanoparticles carrying a chemotherapy drug, doxorubicin. Targeted imaging and histological analysis revealed that lack of the ligand specific antibodies led to an increase in intratumoral delivery of targeted nanoparticles. Results of this study support the potential of further development of targeted theranostic nanoparticles for the treatment of human cancers. PMID:25553097

  6. Influence of Prior Influenza Vaccination on Antibody and B-Cell Responses

    PubMed Central

    Sasaki, Sanae; He, Xiao-Song; Holmes, Tyson H.; Dekker, Cornelia L.; Kemble, George W.; Arvin, Ann. M.; Greenberg, Harry B.

    2008-01-01

    Currently two vaccines, trivalent inactivated influenza vaccine (TIV) and live attenuated influenza vaccine (LAIV), are licensed in the USA. Despite previous studies on immune responses induced by these two vaccines, a comparative study of the influence of prior influenza vaccination on serum antibody and B-cell responses to new LAIV or TIV vaccination has not been reported. During the 2005/6 influenza season, we quantified the serum antibody and B-cell responses to LAIV or TIV in adults with differing influenza vaccination histories in the prior year: LAIV, TIV, or neither. Blood samples were collected on days 0, 7–9 and 21–35 after immunization and used for serum HAI assay and B-cell assays. Total and influenza-specific circulating IgG and IgA antibody secreting cells (ASC) in PBMC were detected by direct ELISPOT assay. Memory B cells were also tested by ELISPOT after polyclonal stimulation of PBMC in vitro. Serum antibody, effector, and memory B-cell responses were greater in TIV recipients than LAIV recipients. Prior year TIV recipients had significantly higher baseline HAI titers, but lower HAI response after vaccination with either TIV or LAIV, and lower IgA ASC response after vaccination with TIV than prior year LAIV or no vaccination recipients. Lower levels of baseline HAI titer were associated with a greater fold-increase of HAI titer and ASC number after vaccination, which also differed by type of vaccine. Our findings suggest that the type of vaccine received in the prior year affects the serum antibody and the B-cell responses to subsequent vaccination. In particular, prior year TIV vaccination is associated with sustained higher HAI titer one year later but lower antibody response to new LAIV or TIV vaccination, and a lower effector B-cell response to new TIV but not LAIV vaccination. PMID:18714352

  7. Stimuli-responsive magnetic nanoparticles for monoclonal antibody purification.

    PubMed

    Borlido, Luís; Moura, Leila; Azevedo, Ana M; Roque, Ana C A; Aires-Barros, Maria R; Farinha, José Paulo S

    2013-06-01

    Monoclonal antibodies (mAbs) are important therapeutic proteins. One of the challenges facing large-scale production of monoclonal antibodies is the capacity bottleneck in downstream processing, which can be circumvented by using magnetic stimuli-responsive polymer nanoparticles. In this work, stimuli-responsive magnetic particles composed of a magnetic poly(methyl methacrylate) core with a poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAM-co-AA)) shell cross-linked with N, N'-methylenebisacrylamide were prepared by miniemulsion polymerization. The particles were shown to have an average hydrodynamic diameter of 317 nm at 18°C, which decreased to 277 nm at 41°C due to the collapse of the thermo-responsive shell. The particles were superparamagnetic in behavior and exhibited a saturation magnetization of 12.6 emu/g. Subsequently, we evaluated the potential of these negatively charged stimuli-responsive magnetic particles in the purification of a monoclonal antibody from a diafiltered CHO cell culture supernatant by cation exchange. The adsorption of antibodies onto P(NIPAM-co-AA)-coated nanoparticles was highly selective and allowed for the recovery of approximately 94% of the mAb. Different elution strategies were employed providing highly pure mAb fractions with host cell protein (HCP) removal greater than 98%. By exploring the stimuli-responsive properties of the particles, shorter magnetic separation times were possible without significant differences in product yield and purity.

  8. Ontogeny of Adaptive Antibody Response to a Model Antigen in Captive Altricial Zebra Finches

    PubMed Central

    Killpack, Tess L.; Karasov, William H.

    2012-01-01

    Based on studies from the poultry literature, all birds are hypothesized to require at least 4 weeks to develop circulating mature B-cell lineages that express functionally different immunoglobulin specificities. However, many altricial passerines fledge at adult size less than four weeks after the start of embryonic development, and therefore may experience a period of susceptibility during the nestling and post-fledging periods. We present the first study, to our knowledge, to detail the age-related changes in adaptive antibody response in an altricial passerine. Using repeated vaccinations with non-infectious keyhole limpet hemocyanin (KLH) antigen, we studied the ontogeny of specific adaptive immune response in altricial zebra finches Taeniopygia guttata. Nestling zebra finches were first injected at 7 days (7d), 14 days (14d), or 21 days post-hatch (21d) with KLH-adjuvant emulsions, and boosted 7 days later. Adults were vaccinated in the same manner. Induced KLH-specific IgY antibodies were measured using ELISA. Comparisons within age groups revealed no significant increase in KLH-specific antibody levels between vaccination and boost in 7d birds, yet significant increases between vaccination and boost were observed in 14d, 21d, and adult groups. There was no significant difference among age groups in KLH antibody response to priming vaccination, yet KLH antibody response post-boost significantly increased with age among groups. Post-boost antibody response in all nestling age groups was significantly lower than in adults, indicating that mature adult secondary antibody response level was not achieved in zebra finches prior to fledging (21 days post-hatch in zebra finches). Findings from this study contribute fundamental knowledge to the fields of developmental immunology and ecological immunology and strengthen the utility of zebra finches as a model organism for future studies of immune ontogeny. PMID:23056621

  9. Humoral antibody response to glutaraldehyde-treated antigens of Dermatophilus congolensis.

    PubMed

    Makinde, A A; Molokwu, J U; Ezeh, A O

    1986-04-01

    Glutaraldehyde-treated whole cell antigens (GA.WcA) of Dermatophilus congolensis induced in guinea pigs immunological memory in contrast to cell wall antigens treated similarly (GA.CwA). However, GA.WcA could not induce a secondary response in animals primed with untreated WcA while GA.CwA on the other hand did stimulate a secondary response in animals primed with untreated CwA. Primary antibody production was induced by both GA.CwA and untreated CwA to a similar level in their respective hosts but it was the secondary response that was found similar in response to GA.WcA and untreated WcA. However, both untreated WcA and CwA induced primary and secondary antibody production in their respective hosts though these responses were considerably higher in guinea pigs given untreated CwA. This study showed that both untreated and GA-treated antigens of D. congolensis are capable of stimulating antibody production in guinea pigs but they differ in their levels of stimulation.

  10. Human antibody and antigen response to IncA antibody of Chlamydia trachomatis.

    PubMed

    Tsai, P Y; Hsu, M C; Huang, C T; Li, S Y

    2007-01-01

    The high prevalence of C. trachomatis worldwide has underscored the importance of identifying specific immunogenic antigens in facilitating diagnosis as well as vaccine development. The aim of this study is to evaluate IncA antibody and antigen production in natural human infections. Our temporal expression study showed that IncA transcription and protein expression could be detected as early as 4 hours after the start of infection. Antibody responses could be detected in urine and genital swab samples from C. trachomatis-positive patients. It is especially interesting to note that the IncA antigen could be detected in urine. In conclusion, we have identified IncA as an important antigen in human. The potential applicability of the IncA antibody or antigen in the diagnosis as well as to vaccine development for C. trachomatis is also discussed.

  11. Evaluation of the impact of neutralizing antibodies on IFNβ response.

    PubMed

    Bertolotto, Antonio

    2015-09-20

    IFNβ therapeutic action depends on a sequence of biological steps: i) the interaction between interferon beta (IFNβ) and its receptor (IFNAR) located at the cell surface of peripheral blood mononuclear cells; ii) activation of second messengers; iii) transcription of several genes containing specific ISRE regions (Interferon Stimulated Response Elements); and iv) synthesis of specific proteins. Although IFNβ therapy has improved treatment options of patients with multiple sclerosis (MS), the long-term efficacy of IFNβs can be compromised due to the development of neutralizing antibodies (NAbs). High titer NAbs develop in about 15% of patients; they abolish IFNβ biological activity and consequently the therapeutic action of IFNβ. Different IFNβ preparations carry different risks of developing NAbs, ranging from 3 to 28%. The risk of inducing NAbs must be considered in the selection of treatment. Guidelines for NAbs testing and the therapeutic decision in case of NAbs positivity have been established. NAbs positivity predicts MRI and clinical activity. Precocious identification of Nabs-positive patients and switch to alternative treatments can improve the percentage of responders and allow a better allocation of relevant economical resources.

  12. Induction of neutralising antibodies and cellular immune responses against SARS coronavirus by recombinant measles viruses.

    PubMed

    Liniger, Matthias; Zuniga, Armando; Tamin, Azaibi; Azzouz-Morin, Teldja N; Knuchel, Marlyse; Marty, Rene R; Wiegand, Marian; Weibel, Sara; Kelvin, David; Rota, Paul A; Naim, Hussein Y

    2008-04-16

    Live attenuated recombinant measles viruses (rMV) expressing a codon-optimised spike glycoprotein (S) or nucleocapsid protein (N) of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) were generated (rMV-S and rMV-N). Both recombinant viruses stably expressed the corresponding SARS-CoV proteins, grew to similar end titres as the parental strain and induced high antibody titres against MV and the vectored SARS-CoV antigens (S and N) in transgenic mice susceptible to measles infection. The antibodies induced by rMV-S had a high neutralising effect on SARS-CoV as well as on MV. Moreover, significant N-specific cellular immune responses were measured by IFN-gamma ELISPOT assays. The pre-existence of anti-MV antibodies induced by the initial immunisation dose did not inhibit boost of anti-S and anti-N antibodies. Immunisations comprising a mixture of rMV-S and rMV-N induced immune responses similar in magnitude to that of vaccine components administered separately. These data support the suitability of MV as a bivalent candidate vaccine vector against MV and emerging viruses such as SARS-CoV.

  13. Hybrid Antibody-Induced Topographical Redistribution of Surface Immunoglobulins, Alloantigens, and Concanavalin A Receptors on Mouse Lymphoid Cells

    PubMed Central

    Stackpole, Christopher W.; De Milio, Lawrence T.; Hämmerling, Ulrich; Jacobson, Janet B.; Lardis, Michael P.

    1974-01-01

    Redistribution of surface immunoglobulins, H-2b, Thy-1.2, and TL.1,2,3 alloantigens, and concanavalin A receptors on mouse lymphoid cells induced by hybrid rabbit F(ab′)2 antibody (anti-mouse immunoglobulin/anti-visual marker or anti-concanavalin A/anti-visual marker) was studied by immunofluorescence. When used directly to label surface immunoglobulin, and indirectly to label alloantigens and concanavalin A receptors, hybrid antibodies induced similar displacement of all surface components from a uniform distribution into “patches” and “caps” at 37°. One hybrid antibody preparation, antimouse immunoglobulin/anti-ferritin, contained negligible amounts of bivalent anti-mouse immunoglobulin antibody, and was therefore “monovalent” for the antimouse immunoglobulin specificity. This observation suggests that factors other than multivalent crosslinking are responsible for hybrid antibody-induced redistribution of cell-surface components. Cap formation induced by hybrid antibody was enhanced markedly by attachment of the visual marker, either ferritin or southern bean mosaic virus, at 37°. At -5°, hybrid antibody does not displace uniformly distributed H-2b alloantigen-alloantibody complexes, but patches of label develop when ferritin attaches to the hybrid antibody. These results explain the patchy distribution of cell-surface components, which is a temperature-independent characteristic of labeling with hybrid antibodies and visual markers for electron microscopy. Images PMID:4595577

  14. Formulation with CpG ODN enhances antibody responses to an equine influenza virus vaccine.

    PubMed

    Lopez, A M; Hecker, R; Mutwiri, G; van Drunen Littel-van den Hurk, S; Babiuk, L A; Townsend, H G G

    2006-11-15

    Previous studies have shown that protection against equine influenza virus (EIV) is partially mediated by virus-specific IgGa and IgGb. In this study we tested whether addition of a CpG ODN formulation to a commercial killed virus vaccine would enhance EIV-specific IgGa and IgGb antibody responses, and improve protection against an experimental EIV challenge. Thirty naïve horses were assigned to one of three groups and vaccinated as follows: 10 were given vaccine (Encevac TC4, Intervet Inc.) alone, 10 were given vaccine plus 0.25 mg CpG ODN 2007 formulated with 30% Emulsigen (CpG/Em), and 10 controls were given saline. All horses were challenged with live virus 12 weeks after the final vaccination. Antibody responses were tested by single radial hemolysis (SRH) and ELISA, and protection was evaluated by determination of temperature, coughing, and clinical scores. Killed virus vaccine combined with CpG/Em induced significantly greater serologic responses than did the vaccine alone. All antibody isotypes tested increased after the addition of CpG/Em, although no shift in relative antibody isotypes concentrations was detected. Vaccination significantly improved protection against challenge but the differences between the two vaccine groups were not statistically significant. This study is the first demonstration that CpG/Em enhances antigen-specific antibody responses in horses and supports its potential to be used as an adjuvant for vaccines against equine infections.

  15. Antibody response to sheep red blood cells in major histocompatibility (B) complex aneuploid line of chickens.

    PubMed

    LePage, K T; Bloom, S E; Taylor, R L

    1996-03-01

    An integral part of the immune response is the production of antibodies specific for different antigenic challenges. Genes of the MHC encode products that regulate immunity. This study utilized the FCT-15 line of chickens, which is aneuploid for the chromosome containing the ribosomal RNA genes (rDNA) and the MHC or B complex to determine whether an antibody response to SRBC would vary as a function of B complex gene dose. Mating of trisomic parents (B15B15B15) animals produced progeny having either a disomic (B15B15), trisomic (B15B15B15), or tetrasomic (B15B15B15B15) B complex dosage. The number of B/rDNA chromosomes, and thus the B complex dosage was determined by feather pulp nucleolar typing of chicks at hatch. A 5% SRBC antigenic challenge, which induces a T cell-dependent antibody response, was injected at 6 wk of age. Samples taken prior to SRBC injection as well as 5, 8, and 12 d postinjection were assayed for total and mercaptoethanol-resistant antibody. Peak antibody titers (log2), day of peak titer and rate of titer decline were calculated using a quadratic equation for each bird. Differences among the three B complex dosages were evaluated by analysis of variance. Antibody titers rose from 5 to 8 d postinjection and declined thereafter without significant differences among the three B complex doses. Calculations from the quadratic equations showed that B complex dose affected neither peak antibody titer nor day of peak titer. However, trisomic and tetrasomic animals had significantly more rapid rates of decline from the maximum titer. In aneuploid chickens, changes in antigen processing, antigen presentation, or persistence of processed antigen may maintain levels of antibody production found in disomic chickens and explain the more rapid decline of titer.

  16. CD4-Induced Antibodies Promote Association of the HIV-1 Envelope Glycoprotein with CD4-Binding Site Antibodies

    PubMed Central

    Fellinger, Christoph H.; Prasad, Neha R.; Zhou, Amber S.; Kondur, Hema R.; Joshi, Vinita R.; Quinlan, Brian D.; Farzan, Michael

    2016-01-01

    ABSTRACT The HIV-1 envelope glycoprotein (Env) is a trimer of gp120/gp41 heterodimers that mediates viral entry. Env binds cellular CD4, an association which stabilizes a conformation favorable to its subsequent association with a coreceptor, typically CCR5 or CXCR4. The CD4- and coreceptor-binding sites serve as epitopes for two classes of HIV-1-neutralizing antibodies: CD4-binding site (CD4bs) and CD4-induced (CD4i) antibodies, respectively. Here we observed that, at a fixed total concentration, mixtures of the CD4i antibodies (E51 or 412d) and the CD4bs antibody VRC01 neutralized the HIV-1 isolates 89.6, ADA, SG3, and SA32 more efficiently than either antibody alone. We found that E51, and to a lesser extent 412d and 17b, promoted association of four CD4bs antibodies to the Env trimer but not to monomeric gp120. We further demonstrated that the binding of the sulfotyrosine-binding pocket by CCR5mim2-Ig was sufficient for promoting CD4bs antibody binding to Env. Interestingly, the relationship is not reciprocal: CD4bs antibodies were not as efficient as CD4-Ig at promoting E51 or 412d binding to Env trimer. Consistent with these observations, CD4-Ig, but none of the CD4bs antibodies tested, substantially increased HIV-1 infection of a CD4-negative, CCR5-positive cell line. We conclude that the ability of CD4i antibodies to promote VRC01 association with Env trimers accounts for the increase potency of VRC01 and CD4i antibody mixtures. Our data further suggest that potent CD4bs antibodies avoid inducing Env conformations that bind CD4i antibodies or CCR5. IMPORTANCE Potent HIV-1-neutralizing antibodies can prevent viral transmission and suppress an ongoing infection. Here we show that CD4-induced (CD4i) antibodies, which recognize the conserved coreceptor-binding site of the HIV-1 envelope glycoprotein (Env), can increase the association of Env with potent broadly neutralizing antibodies that recognize the CD4-binding site (CD4bs antibodies). We further show that

  17. Recombinant influenza H7 hemagglutinins induce lower neutralizing antibody titers in mice than do seasonal hemagglutinins

    PubMed Central

    Blanchfield, Kristy; Kamal, Ram P; Tzeng, Wen-Pin; Music, Nedzad; Wilson, Jason R; Stevens, James; Lipatov, Aleksander S; Katz, Jacqueline M; York, Ian A

    2014-01-01

    Background Vaccines against avian influenza viruses often require high hemagglutinin (HA) doses or adjuvants to achieve serological titers associated with protection against disease. In particular, viruses of the H7 subtype frequently do not induce strong antibody responses following immunization. Objectives To evaluate whether poor immunogenicity of H7 viruses is an intrinsic property of the H7 hemagglutinin. Methods We compared the immunogenicity, in naïve mice, of purified recombinant HA from two H7 viruses [A/Netherlands/219/2003(H7N7) and A/New York/107/2003(H7N2)] to that of HA from human pandemic [A/California/07/2009(H1N1pdm09)] and seasonal [A/Perth16/2009(H3N2)] viruses. Results After two intramuscular injections with purified hemagglutinin, mice produced antibodies to all HAs, but the response to the human virus HAs was greater than to H7 HAs. The difference was relatively minor when measured by ELISA, greater when measured by hemagglutination inhibition assays, and more marked still by microneutralization assays. H7 HAs induced little or no neutralizing antibody response in mice at either dose tested. Antibodies induced by H7 were of significantly lower avidity than for H3 or H1N1pdm09. Conclusions We conclude that H7 HAs may be intrinsically less immunogenic than HA from seasonal human influenza viruses. PMID:25213778

  18. Neonatal antibody responses are attenuated by interferon-γ produced by NK and T cells during RSV infection.

    PubMed

    Tregoning, John S; Wang, Belinda Lei; McDonald, Jacqueline U; Yamaguchi, Yuko; Harker, James A; Goritzka, Michelle; Johansson, Cecilia; Bukreyev, Alexander; Collins, Peter L; Openshaw, Peter J

    2013-04-02

    Respiratory syncytial virus (RSV) infects most children in the first year of life and is a major single cause of hospitalization in infants and young children. There is no effective vaccine, and antibody generated by primary neonatal infection is poorly protective against reinfection even with antigenically homologous viral strains. Studying the immunological basis of these observations in neonatal mice, we found that antibody responses to infection were low and unaffected by CD4 depletion, in contrast with adult mice, which had stronger CD4-dependent antibody responses. Natural killer cell depletion or codepletion of CD4(+) and CD8(+) cells during neonatal RSV infection caused a striking increase in anti-RSV antibody titer. These cells are major sources of the cytokine IFN-γ, and blocking IFN-γ also enhanced RSV-specific antibody responses in neonates. In addition, infection with a recombinant RSV engineered to produce IFN-γ reduced antibody titer, confirming that IFN-γ plays a pivotal role in inhibition of antibody responses after neonatal infection. These unexpected findings show that the induction of a strong cellular immune response may limit antibody responses in early life and that vaccines that induce IFN-γ-secreting cells might, in some situations, be less protective than those that do not.

  19. Neonatal antibody responses are attenuated by interferon-γ produced by NK and T cells during RSV infection

    PubMed Central

    Tregoning, John S.; Wang, Belinda Lei; McDonald, Jacqueline U.; Yamaguchi, Yuko; Harker, James A.; Goritzka, Michelle; Johansson, Cecilia; Bukreyev, Alexander; Collins, Peter L.; Openshaw, Peter J.

    2013-01-01

    Respiratory syncytial virus (RSV) infects most children in the first year of life and is a major single cause of hospitalization in infants and young children. There is no effective vaccine, and antibody generated by primary neonatal infection is poorly protective against reinfection even with antigenically homologous viral strains. Studying the immunological basis of these observations in neonatal mice, we found that antibody responses to infection were low and unaffected by CD4 depletion, in contrast with adult mice, which had stronger CD4-dependent antibody responses. Natural killer cell depletion or codepletion of CD4+ and CD8+ cells during neonatal RSV infection caused a striking increase in anti-RSV antibody titer. These cells are major sources of the cytokine IFN-γ, and blocking IFN-γ also enhanced RSV-specific antibody responses in neonates. In addition, infection with a recombinant RSV engineered to produce IFN-γ reduced antibody titer, confirming that IFN-γ plays a pivotal role in inhibition of antibody responses after neonatal infection. These unexpected findings show that the induction of a strong cellular immune response may limit antibody responses in early life and that vaccines that induce IFN-γ–secreting cells might, in some situations, be less protective than those that do not. PMID:23509276

  20. Murine intestinal antibody response to heterologous rotavirus infection.

    PubMed Central

    Merchant, A A; Groene, W S; Cheng, E H; Shaw, R D

    1991-01-01

    Rotavirus is the most important worldwide cause of severe gastroenteritis. Extensive efforts have been devoted to the design of a vaccine that will prevent disease, but development of a more effective vaccine strategy may require progress in the understanding of the mucosal immune response to replicating viral antigens. In this article, we report the characterization of the intestinal antibody response of a murine model to heterologous infection with the rhesus rotavirus vaccine strain. We have adapted the enzyme-linked immunospot assay to measure this response without the difficulties associated with measurement of antibodies in intestinal contents or the artifacts associated with culturing of lymphocytes. The predominant response in terms of antibody-secreting cells (ASC) is seen in the small intestine lamina propria, which can be measured within 4 days of infection, peaks 3 weeks after infection, and remains near that level for longer than 8 weeks. The magnitude of the immunoglobulin A (IgA) cell response is approximately 10 times greater than the intestinal IgG cell response, and IgM cells are rare. Virus-specific ASC constitute approximately 50% of all ASC in the gut at the peak of the virus-specific response. This response is considerably greater than responses to nonreplicating mucosal antigens measured by similar techniques. Enteral infection engenders minimal virus-specific ASC response in the spleen. Rhesus rotavirus-specific enzyme-linked immunosorbent assay and neutralization assays of serum and intestinal contents did not correlate with virus-specific ASC response. Images PMID:1761691

  1. Antibody responses of raccoons naturally exposed to influenza A virus.

    PubMed

    Root, J Jeffrey; Bentler, Kevin T; Sullivan, Heather J; Blitvich, Bradley J; McLean, Robert G; Franklin, Alan B

    2010-10-01

    An investigation was performed to describe the responses of naturally acquired antibodies to influenza A virus in raccoons (Procyon lotor) over time. Seven wild raccoons, some of which had been exposed to multiple subtypes of influenza A virus, were held in captivity for 279 days, and serum samples were collected on 10 occasions during this interval. Serum samples from 9 of 10 bleeding occasions were tested using an epitope-blocking enzyme-linked immunosorbent assay for the presence of antibodies to influenza A virus. Although titer declines were noted in most animals over time, all animals maintained detectable antibodies for the duration of the study. These data indicate that naturally acquired antibodies to influenza A virus can remain detectable in raccoons for many months, with the actual duration presumably being much longer because all animals had been exposed to influenza A virus before this study commenced. This information is important to surveillance programs because the duration of naturally acquired antibodies to influenza A virus in wildlife populations is largely unknown.

  2. High Affinity Antibodies against Influenza Characterize the Plasmablast Response in SLE Patients After Vaccination

    PubMed Central

    Kaur, Kaval; Zheng, Nai-Ying; Smith, Kenneth; Huang, Min; Li, Lie; Pauli, Noel T.; Henry Dunand, Carole J.; Lee, Jane-Hwei; Morrissey, Michael; Wu, Yixuan; Joachims, Michelle L.; Munroe, Melissa E.; Lau, Denise; Qu, Xinyan; Krammer, Florian; Wrammert, Jens; Palese, Peter; Ahmed, Rafi; James, Judith A.; Wilson, Patrick C.

    2015-01-01

    Breakdown of B cell tolerance is a cardinal feature of systemic lupus erythematosus (SLE). Increased numbers of autoreactive mature naïve B cells have been described in SLE patients and autoantibodies have been shown to arise from autoreactive and non-autoreactive precursors. How these defects, in the regulation of B cell tolerance and selection, influence germinal center (GC) reactions that are directed towards foreign antigens has yet to be investigated. Here, we examined the characteristics of post-GC foreign antigen-specific B cells from SLE patients and healthy controls by analyzing monoclonal antibodies generated from plasmablasts induced specifically by influenza vaccination. We report that many of the SLE patients had anti-influenza antibodies with higher binding affinity and neutralization capacity than those from controls. Although overall frequencies of autoreactivity in the influenza-specific plasmablasts were similar for SLE patients and controls, the variable gene repertoire of influenza-specific plasmablasts from SLE patients was altered, with increased usage of JH6 and long heavy chain CDR3 segments. We found that high affinity anti-influenza antibodies generally characterize the plasmablast responses of SLE patients with low levels of autoreactivity; however, certain exceptions were noted. The high-avidity antibody responses in SLE patients may also be correlated with cytokines that are abnormally expressed in lupus. These findings provide insights into the effects of dysregulated immunity on the quality of antibody responses following influenza vaccination and further our understanding of the underlying abnormalities of lupus. PMID:25951191

  3. Antibody response in sheep following immunization with Streptococcus bovis in different adjuvants.

    PubMed

    Shu, Q; Bir, S H; Gill, H S; Duan, E; Xu, Y; Hiliard; Rowe, J B

    2001-01-01

    Recent studies have shown that immunization with Streptococcus bovis using Freund's complete adjuvant (FCA) may confer protection against lactic acidosis in sheep. The major objective of this study was to compare the antibody responses to S. bovis in a practically acceptable adjuvant (Freund's incomplete adjuvant (FIA); QuilA; dextran sulphate (Dex); Imject Alum; or Gerbu) and in FCA. Thirty-five sheep were randomly allocated to 7 treatment groups. Six groups were immunized with S. bovis in an adjuvant; the other group served as the non-immunization control. The primary immunization was administered intramuscularly on day 0. followed by a booster injection on day 28. Immunization with FCA induced the highest saliva and serum antibody responses. The saliva antibody concentrations in the FIA and QuilA groups were significantly higher than those in the Alum, Dex and Gerbu groups (p < 0.01). The serum antibody concentration in the FIA group was significantly higher than those in the QuilA, Alum. Dex and Gerbu groups (p < 0.01). Immunization enhanced the antibody level in faeces (p < 0.05), but there was no significant difference between the different adjuvant groups (p > 0.05). Seven and 14 days following booster immunization, the saliva antibody levels induced by QuilA and/or FIA were comparable with the level stimulated by FCA (p > 0.05). There was a strongly positive correlation (R2 = 0.770, p < 0.01) between the antibody concentrations in salival and serum. Compared with the controls, a higher faecal dry matter content was observed in the animals immunized with either FCA or QuilA. The change in faecal dry matter content was positively associated with the faecal antibody concentration (R2 = 0.441, p < 0.05). These results indicate that FIA and QuilA were effective at inducing high levels of antibody responses to S. bovis, and suggest that either Freund's incomplete adjuvant or QuilA may be useful for preparing a practically acceptable vaccine against lactic

  4. Ipr gene control of the anti-DNA antibody response.

    PubMed

    Pisetsky, D S; Caster, S A; Roths, J B; Murphy, E D

    1982-05-01

    The influence of the Ipr gene on the anti-DNA antibody response was investigated in MRL and B6 Ipr/Ipr inbred mice, MRL +/+ mice less than a yr of age produced low levels of anti-DNA antibody, whereas older animals of this strain demonstrated levels in some instances comparable to those of the more severely affected MRL Ipr/Ipr mice. This result indicates a tendency to autoreactivity in MRL mice independent of the Ipr gene. To determine whether other mice bearing the Ipr gene would also express autoantibodies, the anti-DNA antibody responses of B6 Ipr/Ipr mice were studied. This strain was development by matings to transfer the Ipr gene into another inbred background and allow evaluation of the action independent of other disturbances of the MRL mice. Mice of this strain produced antibodies to DNA, with female animals displaying significantly higher levels than males. This result demonstrates that the Ipr gene can stimulate autoantibody production in mice other than the MRL strain and does not require abnormalities unique to this background to potentiate autoreactivity.

  5. Antimyeloperoxidase antibodies rapidly induce alpha-4-integrin-dependent glomerular neutrophil adhesion.

    PubMed

    Kuligowski, Michael P; Kwan, Rain Y Q; Lo, Cecilia; Wong, Cyndi; James, Will G; Bourges, Dorothee; Ooi, Joshua D; Abeynaike, Latasha D; Hall, Pam; Kitching, A Richard; Hickey, Michael J

    2009-06-18

    Patients with antineutrophil cytoplasmic antibodies (ANCAs) frequently develop severe vasculitis and glomerulonephritis. Although ANCAs, particularly antimyeloperoxidase (anti-MPO), have been shown to promote leukocyte adhesion in postcapillary venules, their ability to promote adhesion in the glomerular vasculature is less clear. We used intravital microscopy to examine glomerular leukocyte adhesion induced by anti-MPO. In mice pretreated with LPS, 50 microg anti-MPO induced LFA-1-dependent adhesion in glomeruli. In concert with this finding, in mice pretreated with LPS, more than 80% of circulating neutrophils bound anti-MPO within 5 minutes of intravenous administration. However, even in the absence of LPS, more than 40% of circulating neutrophils bound anti-MPO in vivo, a response not seen in MPO(-/-) mice. In addition, a higher dose of anti-MPO (200 microg) induced robust glomerular leukocyte adhesion in the absence of LPS. The latter response was beta2-integrin independent, instead requiring the alpha4-integrin, which was up-regulated on neutrophils in response to anti-MPO. These data indicate that anti-MPO antibodies bind to circulating neutrophils, and can induce glomerular leukocyte adhesion via multiple pathways. Lower doses induce adhesion only after an infection-related stimulus, whereas higher doses are capable of inducing responses in the absence of an additional inflammatory stimulus, via alternative adhesion mechanisms.

  6. Factors influencing the antibody response of dogs vaccinated against rabies.

    PubMed

    Kennedy, Lorna J; Lunt, Mark; Barnes, Annette; McElhinney, Lorraine; Fooks, Anthony R; Baxter, David N; Ollier, William E R

    2007-12-12

    Since 2000, there has been a legal requirement in the UK that dogs and cats should have an effective rabies vaccination with demonstrable sero-conversion if their owners wish to avoid quarantine on re-entry to the UK. In 2002, 10,483 rabies titres were determined on dogs at the VLA. Statistical analyses assessed the efficacy of each vaccine within different dog breeds. Animal size, age, breed, sampling time and vaccine had significant effects on pass rates and median titres. Our data suggests that a general relationship between animal size and level of antibody response exists and smaller sized dogs elicited higher antibody levels than larger breeds of dog. It was not however, only the magnitude of response immediately following vaccination but also the duration of immunity that varied between breeds of dog. Another observation was that young animals, less than 1-year of age, generated a lower antibody response to rabies vaccination than adults. Considerably higher failure rates were also observed for different vaccines tested. Regression analysis revealed that two vaccines performed equally well, and significantly better than the others tested. The variation in antibody response relating to length of interval of sampling following vaccination is not unexpected and presumably relates to the response kinetics for primary vaccination. These data need to be placed in perspective in order to minimise the risk of rabies being re-introduced into a rabies-free country, especially in the consideration of removing the requirement for serological testing for rabies vaccinated dogs that participate in pet travel schemes.

  7. Serum antibody responses of divers to waterborne pathogens.

    PubMed Central

    Losonsky, G A; Hasan, J A; Huq, A; Kaintuck, S; Colwell, R R

    1994-01-01

    To assess the significance of exposure of divers to waterborne pathogens, specific immunoglobulin G serum antibody responses to Pseudomonas and Aeromonas isolates recovered from dive sites from the respiratory tracts of nine experienced divers and seven diving trainees working in the Chesapeake Bay area over a 6- to 18-month period were measured. A significant increase in the frequency of isolation of these organisms from respiratory surfaces both groups of divers after each dive was noted, with the divers' ears being the predominant recovery site (48%; P < 10(-8), chi-square). The acute serum responses of the majority of experienced divers (83%) showed evidence of preexisting antibody to these potential pathogens, whereas the acute serum response of only 32% of naive divers showed such evidence (P < 10(-8), chi-square). Six months into their training, the rate of seroresponse of the trainees to organisms recovered after their first dives increased to 61% (P = 0.003, chi-square), suggesting that repeated exposure in necessary for generation of a specific systemic immunologic response. The rate of acquisition of a new seroresponse to recovered organisms was approximately 12% per dive for both groups of divers, suggesting that there is continuous exposure to, and infection with, new strains present in the water during dives. These data suggest that, in cases in which systemic antibody is important for protection, there are various levels of susceptibility to waterborne potential pathogens in both experienced and inexperienced divers. PMID:7496942

  8. A cytomegalovirus DNA vaccine induces antibodies that block viral entry into fibroblasts and epithelial cells.

    PubMed

    McVoy, Michael A; Lee, Ronzo; Saccoccio, Frances M; Hartikka, Jukka; Smith, Larry R; Mahajan, Rohit; Wang, Jian Ben; Cui, Xiaohong; Adler, Stuart P

    2015-12-16

    A vaccine to prevent congenital cytomegalovirus (CMV) infections is a national priority. Investigational vaccines have targeted the viral glycoprotein B (gB) as an inducer of neutralizing antibodies and phosphoprotein 65 (pp65) as an inducer of cytotoxic T cells. Antibodies to gB neutralize CMV entry into all cell types but their potency is low compared to antibodies that block epithelial cell entry through targeting the pentameric complex (gH/gL/UL128/UL130/UL131). Hence, more potent overall neutralizing responses may result from a vaccine that combines gB with pentameric complex-derived antigens. To assess the ability of pentameric complex subunits to generate epithelial entry neutralizing antibodies, DNA vaccines encoding UL128, UL130, and/or UL131 were formulated with Vaxfectin(®), an adjuvant that enhances antibody responses to DNA vaccines. Mice were immunized with individual DNA vaccines or with pair-wise or trivalent combinations. Only the UL130 vaccine induced epithelial entry neutralizing antibodies and no synergy was observed from bi- or trivalent combinations. In rabbits the UL130 vaccine again induced epithelial entry neutralizing antibodies while UL128 or UL131 vaccines did not. To evaluate compatibility of the UL130 vaccine with DNA vaccines encoding gB or pp65, mono-, bi-, or trivalent combinations were evaluated. Fibroblast and epithelial entry neutralizing titers did not differ between rabbits immunized with gB alone vs. gB/UL130, gB/pp65, or gB/UL130/pp65 combinations, indicating a lack of antagonism from coadministration of DNA vaccines. Importantly, gB-induced epithelial entry neutralizing titers were substantially higher than activities induced by UL130, and both fibroblast and epithelial entry neutralizing titers induced by gB alone as well as gB/pp65 or gB/UL130/pp65 combinations were comparable to those observed in sera from humans with naturally-acquired CMV infections. These findings support further development of Vaxfectin

  9. Anti-ganglioside antibodies induced in chickens by an alum-adsorbed anti-idiotype antibody targeting NeuGcGM3

    PubMed Central

    Guthmann, Marcelo D.; Venier, Cecilia; Toledo, Darien; Segatori, Valeria I.; Alonso, Daniel F.; Fainboim, Leonardo; Vázquez, Ana M.; Ostrowski, Hector

    2013-01-01

    Racotumomab is a murine anti-idiotype cancer vaccine targeting NeuGcGM3 on melanoma, breast, and lung cancer. In order to characterize the immunogenicity of alum-adsorbed racotumomab in a non-clinical setting, Leghorn chickens were immunized in dose levels ranging from 25 μg to 1600 μg. Racotumomab was administered subcutaneously in the birds' neck with three identical boosters and serum samples were collected before, during and after the immunization schedule. A strong antibody response was obtained across the evaluated dose range, confirming the immunogenicity of racotumomab even at dose levels as low as 25 μg. As previously observed when using Freund's adjuvant, alum-adsorbed racotumomab induced an idiotype-specific response in all the immunized birds and ganglioside-specific antibodies in 60–100% of the animals. In contrast to the rapid induction anti-idiotype response, detection of ganglioside-specific antibodies in responsive animals may require repeated boosting. Kinetics of anti-NeuGcGM3 antibody titers showed a slight decline 2 weeks after each booster, arguing in favor of repeated immunizations in order to maintain antibody titer. Interestingly, the intensity of the anti-NeuGcGM3 response paralleled that of anti-mucin antibodies and anti-tumor antibodies, suggesting that the in vitro detection of anti-ganglioside antibodies might be a surrogate for an in vivo activity of racotumomab. Taken together, these results suggest that Leghorn chicken immunization might become the means to test the biological activity of racotumomab intended for clinical use. PMID:23335925

  10. Effect of maternal antibodies and pig age on the antibody response after vaccination against Glässers disease.

    PubMed

    Pomorska-Mól, Małgorzata; Markowska-Daniel, Iwona; Rachubik, Jarosław; Pejsak, Zygmunt

    2011-08-01

    The influence of age and maternal antibodies on the development and duration of postvaccinal antibody response against Glässer's disease were investigated. Pigs born to immune (MDA-positive) and non-immune (MDA-negative) sows were vaccinated with inactivated vaccine. Vaccination was done according to three different protocols: at 1 and 4, at 2 and 5 or at 4 and 7 weeks of age. There were also two control groups for MDA-negative and MDA-positive pigs. The level of Haemophilus parasuis (Hps) specific antibodies were determined using commercial ELISA test. No serological responses were seen in any of the groups after the first vaccination. Maternally derived antibodies (MDA) against Hps were above the positive level until approximately 3 weeks of life in MDA-positive pigs. In those pigs the strongest postvaccinal humoral response was observed in piglets vaccinated at 4 and 7 weeks of age. In the remaining MDA-positive piglets only slight seroconversion was noted but levels of antibodies never exceeded values considered as positive. All MDA-negative pigs produced Hps-specific antibodies after the second vaccination. The results of the present study indicated that MDA may alter the development and duration of active postvaccinal antibody response. Age of pigs at the moment of vaccination was not associated with the significant differences in the magnitude of antibody response, however influenced the kinetics of decline of Hps-specific antibodies.

  11. Celiac Anti-Type 2 Transglutaminase Antibodies Induce Phosphoproteome Modification in Intestinal Epithelial Caco-2 Cells

    PubMed Central

    Marabotti, Anna; Lepretti, Marilena; Salzano, Anna Maria; Scaloni, Andrea; Vitale, Monica; Zambrano, Nicola; Sblattero, Daniele; Esposito, Carla

    2013-01-01

    Background Celiac disease is an inflammatory condition of the small intestine that affects genetically predisposed individuals after dietary wheat gliadin ingestion. Type 2-transglutaminase (TG2) activity seems to be responsible for a strong autoimmune response in celiac disease, TG2 being the main autoantigen. Several studies support the concept that celiac anti-TG2 antibodies may contribute to disease pathogenesis. Our recent findings on the ability of anti-TG2 antibodies to induce a rapid intracellular mobilization of calcium ions, as well as extracellular signal-regulated kinase phosphorylation, suggest that they potentially act as signaling molecules. In line with this concept, we have investigated whether anti-TG2 antibodies can induce phosphoproteome modification in an intestinal epithelial cell line. Methods and Principal Findings We studied phosphoproteome modification in Caco-2 cells treated with recombinant celiac anti-TG2 antibodies. We performed a two-dimensional electrophoresis followed by specific staining of phosphoproteins and mass spectrometry analysis of differentially phosphorylated proteins. Of 14 identified proteins (excluding two uncharacterized proteins), three were hypophosphorylated and nine were hyperphosphorylated. Bioinformatics analyses confirmed the presence of phosphorylation sites in all the identified proteins and highlighted their involvement in several fundamental biological processes, such as cell cycle progression, cell stress response, cytoskeletal organization and apoptosis. Conclusions Identification of differentially phosphorylated proteins downstream of TG2-antibody stimulation suggests that in Caco-2 cells these antibodies perturb cell homeostasis by behaving as signaling molecules. We hypothesize that anti-TG2 autoantibodies may destabilize the integrity of the intestinal mucosa in celiac individuals, thus contributing to celiac disease establishment and progression. Since several proteins here identified in this study

  12. Secondary antibody response of overtly autoimmune NZB mice

    PubMed Central

    Morton, Jane I.; Siegel, B. V.

    1969-01-01

    Coombs' positive NZB mice, 13–18 months old, showed an active secondary response to immunization with sheep erythrocytes as determined by direct and indirect spleen haemolytic antibody plaque formation. The magnitude and pattern of response were essentially similar to those of old, non-autoimmune BALB/c mice for time intervals of 7, 15 or 25 days between primary and secondary stimuli, although peak NZB plaque formation was delayed by 1–2 days in the case of the 25-day time interval. These results were in marked contrast to the previously observed depression of primary immune capacity in overtly autoimmune NZB mice. It is speculated that upon priming formation of memory cells occurs at a relatively normal rate at the expense of cells usually involved in early primary antibody production. PMID:5770390

  13. The genetics of antibody response to paratuberculosis in dairy cattle.

    PubMed

    Pritchard, T; Mrode, R; Coffey, M; Bond, K; Wall, E

    2017-07-01

    Genetic parameters were estimated for antibody response to paratuberculosis (Mycobacterium avium ssp. paratuberculosis) using milk ELISA test results, collected and analyzed by National Milk Records, from Holstein Friesian cows on UK dairy farms in their first 3 lactations. Milk ELISA test results were obtained from 2007 to 2012 and combined with milk recording data and pedigree information. The reduced data set edited for the purposes of genetic parameter estimation consisted of 148,054 milk ELISA records from 64,645 lactations in 40,142 cows of 908 sires, recorded in 641 herds. Milk ELISA test results were loge-transformed and univariate analysis of 3 alternative animal models and equivalent sire models were considered. The most appropriate model included additive genetic and permanent environmental random effects, whereas maternal effects were significant according to likelihood ratio test and Akaike's information criterion but not for Bayesian information criterion. Heritability and repeatability estimates were 0.06 and 0.37, respectively, for the chosen animal model and its equivalent sire model. A subset of the data including herds with greater than 10% positive tests gave a slightly higher heritability of 0.08. Favorable but generally low significant genetic correlations were obtained between antibody response with 305-d milk yield (-0.16), 305-d protein yield (-0.16), loge-transformed lactation-average somatic cell count (0.15), and the number of mastitis episodes (0.22). Thus, selection on the antibody response to paratuberculosis, should not be detrimental to production or udder health traits. Testing cattle for paratuberculosis is important for its use in control programs and although the heritability of antibody response was low, breeding against the disease might be a good prospect as a preventative measure to assist together with other approaches in an overall control strategy. Copyright © 2017 American Dairy Science Association. Published by

  14. Antibody Response to Various Single-Factor O Antigens of Salmonella

    PubMed Central

    Kenny, Kathryn; Schlecht, Siegfried; Westphal, Otto

    1970-01-01

    The relative agglutinin responses to various single O-antigenic (Kauffmann-White) factors were measured after immunization of rabbits with several strains of heat-killed salmonella organisms. As expected, the relative strength of the responses to the various O factors was quite varied and in some cases depended on the presence or absence of other single factors. For example, antibodies to factor 122 were formed rapidly and to extremely high levels in rabbits immunized with either Salmonella typhi (O 9,121,122,123) or S. paratyphi B (O 1,4,5,121,122), whereas factor 123 in S. typhi and factor 1 in S. paratyphi B induced only minimal responses. However, rabbits immunized with S. paratyphi A var. durazzo (O 2,121,123), which lacks factor 122, produced high levels of agglutinins to the 123 antigenic determinant. In general, most of the agglutinin responses to the various single factors measured were formed in parallel, but there were several exceptions. For instance, the responses to factors 4 and 5 were relatively strong in rabbits receiving three graded doses of S. paratyphi B. However, agglutinins to factor 4 did not appear until after the second injection, and not at all in rabbits given the full amount of antigen in one injection. In contrast, antibodies to factor 4 were formed rapidly in rabbits receiving three graded doses of a strain of S. typhimurium (O 1,4,12) lacking factor 5. Good overall agreement was obtained between agglutination and hemagglutination assays of antibodies, as demonstrated by the responses to the various O factors of S. friedenau. It was concluded that measurement of the antibody responses to the various single-factor O antigens throughout the immunization program was necessary for effective evaluation of the relative significance of these factors in antibody formation against intact bacteria. PMID:16557691

  15. Antibody responses to defined regions of the Bordetella pertussis virulence factor pertactin.

    PubMed

    Hijnen, Marcel; He, Qiushui; Schepp, Rutger; Van Gageldonk, Pieter; Mertsola, Jussi; Mooi, Frits R; Berbers, Guy A M

    2008-01-01

    Although vaccines against Bordetella pertussis, the causative agent of whooping cough, have been in use for over 50 y, the disease has remained endemic and is still a public health problem in many countries. It has been shown that antibody titres against pertactin, which is 1 of the exposed virulence factors of pertussis, correlate with protection and pertactin is now 1 of the components of most acellular pertussis vaccines. However, little is known about the structure and location of protective epitopes on pertactin. Here we set out to investigate the antibody response using naturally occurring pertactin variants and deletion derivates. We found the N-terminus of pertactin to be immunodominant in both rabbits and humans. In contrast to vaccinated rabbits, we could not detect pertactin type-specific antibodies in human sera. In conclusion, these results show for the first time to which defined regions of the pertactin molecule antibody responses are induced. It also suggests that the amount of pertactin type-specific antibodies will not be very large and that the variation in pertactin probably will not constitute a problem in highly immune individuals.

  16. Microarray Analysis of Antibodies Induced with Synthetic Antitumor Vaccines: Specificity against Diverse Mucin Core Structures.

    PubMed

    Pett, Christian; Cai, Hui; Liu, Jia; Palitzsch, Björn; Schorlemer, Manuel; Hartmann, Sebastian; Stergiou, Natascha; Lu, Mengji; Kunz, Horst; Schmitt, Edgar; Westerlind, Ulrika

    2017-03-17

    antibody response is characteristically different for antibodies directed to glycosylation sites in either the immune-dominant PDTR or the GSTA domain. All antibody sera show high reactivity to the tumor-associated saccharide structures on MUC1. Extensive glycosylation with branched core 2 structures, typically found on healthy cells, abolishes antibody recognition of the antisera and suggests that all vaccine conjugates preferentially induce a tumor-specific humoral immune response.

  17. Dual antibody therapy to harness the innate anti-tumor immune response to enhance antibody targeting of tumors.

    PubMed

    Chester, Cariad; Marabelle, Aurelien; Houot, Roch; Kohrt, Holbrook E

    2015-04-01

    Cancer immunotherapy is a rapidly evolving field that offers a novel paradigm for cancer treatment: therapies focus on enhancing the immune system's innate and adaptive anti-tumor response. Early immunotherapeutics have achieved impressive clinical outcomes and monoclonal antibodies are now integral to therapeutic strategies in a variety of cancers. However, only recently have antibodies targeting innate immune cells entered clinical development. Innate immune effector cells play important roles in generating and maintaining antitumor immunity. Antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) are important innate immune mechanisms for tumor eradication. These cytolytic processes are initiated by the detection of a tumor-targeting antibody and can be augmented by activating co-stimulatory pathways or blocking inhibitory signals on innate immune cells. The combination of FDA-approved monoclonal antibodies with innate effector-targeting antibodies has demonstrated potent preclinical therapeutic synergy and early-phase combinatorial clinical trials are ongoing.

  18. Global antibody response to Staphylococcus aureus live-cell vaccination.

    PubMed

    Selle, Martina; Hertlein, Tobias; Oesterreich, Babett; Klemm, Theresa; Kloppot, Peggy; Müller, Elke; Ehricht, Ralf; Stentzel, Sebastian; Bröker, Barbara M; Engelmann, Susanne; Ohlsen, Knut

    2016-04-22

    The pathogen Staphylococcus aureus causes a broad range of severe diseases and is feared for its ability to rapidly develop resistance to antibiotic substances. The increasing number of highly resistant S. aureus infections has accelerated the search for alternative treatment options to close the widening gap in anti-S. aureus therapy. This study analyses the humoral immune response to vaccination of Balb/c mice with sublethal doses of live S. aureus. The elicited antibody pattern in the sera of intravenously and intramuscularly vaccinated mice was determined using of a recently developed protein array. We observed a specific antibody response against a broad set of S. aureus antigens which was stronger following i.v. than i.m. vaccination. Intravenous but not intramuscular vaccination protected mice against an intramuscular challenge infection with a high bacterial dose. Vaccine protection was correlated with the strength of the anti-S. aureus antibody response. This study identified novel vaccine candidates by using protein microarrays as an effective tool and showed that successful vaccination against S. aureus relies on the optimal route of administration.

  19. Global antibody response to Staphylococcus aureus live-cell vaccination

    PubMed Central

    Selle, Martina; Hertlein, Tobias; Oesterreich, Babett; Klemm, Theresa; Kloppot, Peggy; Müller, Elke; Ehricht, Ralf; Stentzel, Sebastian; Bröker, Barbara M.; Engelmann, Susanne; Ohlsen, Knut

    2016-01-01

    The pathogen Staphylococcus aureus causes a broad range of severe diseases and is feared for its ability to rapidly develop resistance to antibiotic substances. The increasing number of highly resistant S. aureus infections has accelerated the search for alternative treatment options to close the widening gap in anti-S. aureus therapy. This study analyses the humoral immune response to vaccination of Balb/c mice with sublethal doses of live S. aureus. The elicited antibody pattern in the sera of intravenously and intramuscularly vaccinated mice was determined using of a recently developed protein array. We observed a specific antibody response against a broad set of S. aureus antigens which was stronger following i.v. than i.m. vaccination. Intravenous but not intramuscular vaccination protected mice against an intramuscular challenge infection with a high bacterial dose. Vaccine protection was correlated with the strength of the anti-S. aureus antibody response. This study identified novel vaccine candidates by using protein microarrays as an effective tool and showed that successful vaccination against S. aureus relies on the optimal route of administration. PMID:27103319

  20. Antibody Responses to Zika Virus Infections in Environments of Flavivirus Endemicity.

    PubMed

    Keasey, Sarah L; Pugh, Christine L; Jensen, Stig M R; Smith, Jessica L; Hontz, Robert D; Durbin, Anna P; Dudley, Dawn M; O'Connor, David H; Ulrich, Robert G

    2017-04-01

    Zika virus (ZIKV) infections occur in areas where dengue virus (DENV), West Nile virus (WNV), yellow fever virus (YFV), and other viruses of the genus Flavivirus cocirculate. The envelope (E) proteins of these closely related flaviviruses induce specific long-term immunity, yet subsequent infections are associated with cross-reactive antibody responses that may enhance disease susceptibility and severity. To gain a better understanding of ZIKV infections against a background of similar viral diseases, we examined serological immune responses to ZIKV, WNV, DENV, and YFV infections of humans and nonhuman primates (NHPs). Using printed microarrays, we detected very specific antibody responses to primary infections with probes of recombinant E proteins from 15 species and lineages of flaviviruses pathogenic to humans, while high cross-reactivity between ZIKV and DENV was observed with 11 printed native viruses. Notably, antibodies from human primary ZIKV or secondary DENV infections that occurred in areas where flavivirus is endemic broadly recognized E proteins from many flaviviruses, especially DENV, indicating a strong influence of infection history on immune responses. A predictive algorithm was used to tentatively identify previous encounters with specific flaviviruses based on serum antibody interactions with the multispecies panel of E proteins. These results illustrate the potential impact of exposure to related viruses on the outcome of ZIKV infection and offer considerations for development of vaccines and diagnostics.

  1. Development of enhanced antibody response toward dual delivery of nano-adjuvant adsorbed human Enterovirus-71 vaccine encapsulated carrier

    PubMed Central

    Saeed, Mohamed I; Omar, Abdul Rahman; Hussein, Mohd Z; Elkhidir, Isam M; Sekawi, Zamberi

    2015-01-01

    This study introduces a new approach for enhancing immunity toward mucosal vaccines. HEV71 killed vaccine that is formulated with nanosize calcium phosphate adjuvant and encapsulated onto chitosan and alginate delivery carriers was examined for eliciting antibody responses in serum and saliva collected at weeks 0, 1, 3, 5, 7 and 9 for viral-specific IgA & IgG levels and viral neutralizing antibody titers. The antibody responses induced in rabbits by the different formulations delivered by a single (buccal) route were compared to those of dual immunization (intradermal / mucosal) and un-immunized control. Chitosan-loaded vaccine adjuvant induced elevated IgA antibody, while Alginate-adjuvant irreversible bonding sequestered the vaccine and markedly reduced immunogenicity. The induced mucosal and parenteral antibody profiles appeared in an inverse manner of enhanced mucosal IgA antibody accompanied by lower systemic IgG following a single oral immunization route. The combined intradermal and oral dual-immunized group developed an elevated salivary IgA, systemic IgG, and virus neutralizing response. A reduced salivary neutralizing antibody titer was observed and attributed to the continual secretion exchanges in saliva. Designing a successful mucosal delivery formulation needs to take into account the vaccine delivery site, dosage, adjuvant and carrier particle size, charge, and the reversibility of component interactions. The dual immunization seems superior and is a important approach for modulating the antibody response and boosting mucosal protection against HEV71 and similar pathogens based on their transmission mode, tissue tropism and shedding sites. Finally, the study has highlighted the significant role of dual immunization for simultaneous inducing and modulating the systemic and mucosal immune responses to EV71. PMID:26186664

  2. Study of the humoral immunological response after vaccination with a Staphylococcus aureus biofilm-embedded bacterin in dairy cows: possible role of the exopolysaccharide specific antibody production in the protection from Staphylococcus aureus induced mastitis.

    PubMed

    Prenafeta, Antoni; March, Ricard; Foix, Antoni; Casals, Isidre; Costa, Llorenç

    2010-04-15

    The objective of the present study was to analyze an extracellular component from Staphylococcus aureus (S. aureus), which we refer to as slime associated antigenic complex (SAAC), and to investigate the role of SAAC-specific antibody production in protection from S. aureus bovine mastitis. Twelve primiparous gestating cows were randomly assigned to one of the three groups: Group 1 was vaccinated with a S. aureus bacterin with very limited SAAC content; Group 2 received a S. aureus bacterin with high SAAC content and Group 3 served as unvaccinated controls. Animals were vaccinated at 45 days before the expected parturition date and revaccinated 35 days later. All groups were challenged by intramammary infusion with a virulent heterologous strain of S. aureus 23 days after calving. Antibody response against SAAC in serum and in milk, general clinical signs, mastitis score, somatic cell count (SCC) and count of S. aureus in milk were evaluated before and after challenge. Immunization with a high SAAC content in the S. aureus bacterin (Group 2) significantly enhanced antibody titers against SAAC (in serum and milk) and reduced the S. aureus concentration in milk during the post-challenge period compared to Group 1 and Group 3. Moreover, a significant negative correlation was observed between SAAC antibody production on the day of the challenge and the S. aureus count in milk by 1 day after challenge. However, there was no evidence of a difference between vaccinated and control groups with regard to clinical signs of mastitis following the challenge. Nevertheless, the SAAC antibody concentration on the day of the challenge negatively correlated with the mastitis score in quarters infected with S. aureus at 2 days post-challenge. These results indicate that the vaccines did not prevent S. aureus intramammary infection (IMI) after the experimental challenge, but immunization with a S. aureus bacterin with high SAAC content was able to reduce S. aureus multiplication in

  3. The Human Antibody Response to the Surface of Mycobacterium tuberculosis

    PubMed Central

    Perley, Casey C.; Frahm, Marc; Click, Eva M.; Dobos, Karen M.; Ferrari, Guido; Stout, Jason E.; Frothingham, Richard

    2014-01-01

    Background Vaccine-induced human antibodies to surface components of Haemophilus influenzae and Streptococcus pneumonia are correlated with protection. Monoclonal antibodies to surface components of Mycobacterium tuberculosis are also protective in animal models. We have characterized human antibodies that bind to the surface of live M. tuberculosis. Methods Plasma from humans with latent tuberculosis (TB) infection (n = 23), active TB disease (n = 40), and uninfected controls (n = 9) were assayed by ELISA for reactivity to the live M. tuberculosis surface and to inactivated M. tuberculosis fractions (whole cell lysate, lipoarabinomannan, cell wall, and secreted proteins). Results When compared to uninfected controls, patients with active TB disease had higher antibody titers to the surface of live M. tuberculosis (Δ = 0.72 log10), whole cell lysate (Δ = 0.82 log10), and secreted proteins (Δ = 0.62 log10), though there was substantial overlap between the two groups. Individuals with active disease had higher relative IgG avidity (Δ = 1.4 to 2.6) to all inactivated fractions. Surprisingly, the relative IgG avidity to the live M. tuberculosis surface was lower in the active disease group than in uninfected controls (Δ = –1.53, p = 0.004). Patients with active disease had higher IgG than IgM titers for all inactivated fractions (ratios, 2.8 to 10.1), but equal IgG and IgM titers to the live M. tuberculosis surface (ratio, 1.1). Higher antibody titers to the M. tuberculosis surface were observed in active disease patients who were BCG-vaccinated (Δ = 0.55 log10, p = 0.008), foreign-born (Δ = 0.61 log10, p = 0.004), or HIV-seronegative (Δ = 0.60 log10, p = 0.04). Higher relative IgG avidity scores to the M. tuberculosis surface were also observed in active disease patients who were BCG-vaccinated (Δ = 1.12, p<0.001) and foreign-born (Δ = 0.87, p = 0.01). Conclusions/Significance Humans

  4. Antibody responses to natural rattlesnake envenomation and a rattlesnake toxoid vaccine in horses.

    PubMed

    Gilliam, Lyndi L; Carmichael, Robert C; Holbrook, Todd C; Taylor, Jennifer M; Ownby, Charlotte L; McFarlane, Dianne; Payton, Mark E

    2013-05-01

    Antivenom antibody titers following administration of rattlesnake venom for antivenom production in horses are well documented; however, antivenom antibody titers following natural rattlesnake envenomation in horses are not. Antibody titers produced in response to the commercially available rattlesnake venom vaccine are also not published. Our study objectives were to measure antivenom antibody titers in rattlesnake-bitten horses and compare them to titers in horses vaccinated with the rattlesnake venom vaccine. Additionally, titers were compared in pregnant versus nonpregnant horses to assess the affect of pregnancy on vaccine response and were measured pre- and postsuckle in foals of vaccinated mares to detect passive transfer of vaccine immunoglobulins. Blood samples were collected from 16 rattlesnake-bitten horses. Thirty-six horses (11 pregnant mares, 12 nonpregnant mares, 13 geldings) were vaccinated using a Crotalus atrox venom toxoid vaccine. Blood was collected before administering each vaccination and 30 days following the third vaccination. Blood was collected from foals of vaccinated mares pre- and postsuckle. All serum was assayed for anti-Crotalus atrox venom antibodies using an enzyme-linked immunosorbent assay (ELISA). Rattlesnake-bitten horses had higher (P = 0.001) titers than vaccinated horses. There was no significant difference between titers in vaccinated pregnant versus nonpregnant horses. One mare had a positive titer at foaling, and the foals had positive postsuckle titers. Antivenom antibody titer development was variable following natural envenomation and vaccination, and vaccine-induced titers were lower than natural envenomation titers. Further studies are required to determine if natural or vaccine antivenom antibody titers reduce the effects of envenomation.

  5. Antibody Responses to Natural Rattlesnake Envenomation and a Rattlesnake Toxoid Vaccine in Horses

    PubMed Central

    Carmichael, Robert C.; Holbrook, Todd C.; Taylor, Jennifer M.; Ownby, Charlotte L.; McFarlane, Dianne; Payton, Mark E.

    2013-01-01

    Antivenom antibody titers following administration of rattlesnake venom for antivenom production in horses are well documented; however, antivenom antibody titers following natural rattlesnake envenomation in horses are not. Antibody titers produced in response to the commercially available rattlesnake venom vaccine are also not published. Our study objectives were to measure antivenom antibody titers in rattlesnake-bitten horses and compare them to titers in horses vaccinated with the rattlesnake venom vaccine. Additionally, titers were compared in pregnant versus nonpregnant horses to assess the affect of pregnancy on vaccine response and were measured pre- and postsuckle in foals of vaccinated mares to detect passive transfer of vaccine immunoglobulins. Blood samples were collected from16 rattlesnake-bitten horses. Thirty-six horses (11 pregnant mares, 12 nonpregnant mares, 13 geldings) were vaccinated using a Crotalus atrox venom toxoid vaccine. Blood was collected before administering each vaccination and 30 days following the third vaccination. Blood was collected from foals of vaccinated mares pre- and postsuckle. All serum was assayed for anti-Crotalus atrox venom antibodies using an enzyme-linked immunosorbent assay (ELISA). Rattlesnake-bitten horses had higher (P = 0.001) titers than vaccinated horses. There was no significant difference between titers in vaccinated pregnant versus nonpregnant horses. One mare had a positive titer at foaling, and the foals had positive postsuckle titers. Antivenom antibody titer development was variable following natural envenomation and vaccination, and vaccine-induced titers were lower than natural envenomation titers. Further studies are required to determine if natural or vaccine antivenom antibody titers reduce the effects of envenomation. PMID:23515015

  6. Mapping the Human Memory B Cell and Serum Neutralizing Antibody Responses to Dengue Virus Serotype 4 Infection and Vaccination

    PubMed Central

    Nivarthi, Usha K.; Kose, Nurgun; Sapparapu, Gopal; Widman, Douglas; Gallichotte, Emily; Pfaff, Jennifer M.; Doranz, Benjamin J.; Weiskopf, Daniela; Sette, Alessandro; Durbin, Anna P.; Whitehead, Steve S.; Baric, Ralph

    2016-01-01

    ABSTRACT The four dengue virus (DENV) serotypes are mosquito-borne flaviviruses responsible for dengue fever and dengue hemorrhagic fever. People exposed to DENV develop antibodies (Abs) that strongly neutralize the serotype responsible for infection. Historically, infection with DENV serotype 4 (DENV4) has been less common and less studied than infections with the other three serotypes. However, DENV4 has been responsible for recent large and sustained epidemics in Asia and Latin America. The neutralizing antibody responses and the epitopes targeted against DENV4 have not been characterized in human infection. In this study, we mapped and characterized epitopes on DENV4 recognized by neutralizing antibodies in people previously exposed to DENV4 infections or to a live attenuated DENV4 vaccine. To study the fine specificity of DENV4 neutralizing human antibodies, B cells from two people exposed to DENV4 were immortalized and screened to identify DENV-specific clones. Two human monoclonal antibodies (MAbs) that neutralized DENV4 were isolated, and their epitopes were finely mapped using recombinant viruses and alanine scan mutation array techniques. Both antibodies bound to quaternary structure epitopes near the hinge region between envelope protein domain I (EDI) and EDII. In parallel, to characterize the serum neutralizing antibody responses, convalescence-phase serum samples from people previously exposed to primary DENV4 natural infections or a monovalent DENV4 vaccine were analyzed. Natural infection and vaccination also induced serum-neutralizing antibodies that targeted similar epitope domains at the EDI/II hinge region. These studies defined a target of neutralizing antigenic site on DENV4 targeted by human antibodies following natural infection or vaccination. IMPORTANCE The four serotypes of dengue virus are the causative agents of dengue fever and dengue hemorrhagic fever. People exposed to primary DENV infections develop long-term neutralizing antibody

  7. Mapping the Human Memory B Cell and Serum Neutralizing Antibody Responses to Dengue Virus Serotype 4 Infection and Vaccination.

    PubMed

    Nivarthi, Usha K; Kose, Nurgun; Sapparapu, Gopal; Widman, Douglas; Gallichotte, Emily; Pfaff, Jennifer M; Doranz, Benjamin J; Weiskopf, Daniela; Sette, Alessandro; Durbin, Anna P; Whitehead, Steve S; Baric, Ralph; Crowe, James E; de Silva, Aravinda M

    2017-03-01

    The four dengue virus (DENV) serotypes are mosquito-borne flaviviruses responsible for dengue fever and dengue hemorrhagic fever. People exposed to DENV develop antibodies (Abs) that strongly neutralize the serotype responsible for infection. Historically, infection with DENV serotype 4 (DENV4) has been less common and less studied than infections with the other three serotypes. However, DENV4 has been responsible for recent large and sustained epidemics in Asia and Latin America. The neutralizing antibody responses and the epitopes targeted against DENV4 have not been characterized in human infection. In this study, we mapped and characterized epitopes on DENV4 recognized by neutralizing antibodies in people previously exposed to DENV4 infections or to a live attenuated DENV4 vaccine. To study the fine specificity of DENV4 neutralizing human antibodies, B cells from two people exposed to DENV4 were immortalized and screened to identify DENV-specific clones. Two human monoclonal antibodies (MAbs) that neutralized DENV4 were isolated, and their epitopes were finely mapped using recombinant viruses and alanine scan mutation array techniques. Both antibodies bound to quaternary structure epitopes near the hinge region between envelope protein domain I (EDI) and EDII. In parallel, to characterize the serum neutralizing antibody responses, convalescence-phase serum samples from people previously exposed to primary DENV4 natural infections or a monovalent DENV4 vaccine were analyzed. Natural infection and vaccination also induced serum-neutralizing antibodies that targeted similar epitope domains at the EDI/II hinge region. These studies defined a target of neutralizing antigenic site on DENV4 targeted by human antibodies following natural infection or vaccination.IMPORTANCE The four serotypes of dengue virus are the causative agents of dengue fever and dengue hemorrhagic fever. People exposed to primary DENV infections develop long-term neutralizing antibody responses

  8. Serum Antibody Responses to Oral Microorganisms in Nonhuman Primates

    DTIC Science & Technology

    1991-05-01

    related to disease status than to age. The findings of this study were extended by Ebersole et al. (1986) who characterized serum antibody responses to...IgG3 and IgG4 . The differences between the subclasses are related to amino acid variations in the hinge region of the heavy chains. These structural...intermedia after immunization was comprised primarily of IgGI (86-98%), IgG2= IgG4 (-4-10%) and minimal IgG3. Anti-B. fragilis responses were IgG1 (49%), IgG2

  9. HIV DNA-Adenovirus Multiclade Envelope Vaccine Induces Gp41 Antibody Immunodominance in Rhesus Macaques.

    PubMed

    Han, Qifeng; Williams, Wilton B; Saunders, Kevin O; Seaton, Kelly E; Wiehe, Kevin J; Vandergrift, Nathan; Von Holle, Tarra; Trama, Ashley M; Parks, Robert J; Luo, Kan; Gurley, Thaddeus C; Kepler, Thomas B; Marshall, Dawn J; Montefiori, David C; Sutherland, Laura L; Alam, Munir S; Whitesides, John F; Bowman, Cindy; Permar, Sallie R; Graham, Barney S; Mascola, John R; Seed, Patrick C; Van Rompay, Koen K A; Tomaras, Georgia D; Moody, Michael A; Haynes, Barton F

    2017-08-09

    Dominant antibody responses in vaccinees who received the multiclade (A, B and C) envelope (Env) DNA/rAd5 vaccine studied in the HIV-1 vaccine trials network (HVTN) efficacy trial 505 (HVTN 505), targeted Env gp41 and cross-reacted with microbial antigens. In this study, we asked if the DNA/rAd5 vaccine induced a similar antibody response in rhesus macaques (RMs) that are commonly used as an animal model for human HIV-1 infections and for testing candidate HIV-1 vaccines. We also asked if gp41 immunodominance could be avoided by immunization of neonatal RMs during the early stages of microbial colonization. We found that the DNA/rAd5 vaccine elicited a higher frequency of gp41-reactive memory B cells compared to gp120-memory B cells in adult and neonatal RMs. Analysis of the vaccine-induced Env-reactive B cell repertoire revealed that the majority of HIV-1 Env-reactive antibodies in both adult and neonatal RMs were targeted to gp41. Interestingly, a subset of gp41-reactive antibodies isolated from RMs cross-reacted with host antigens, including autologous intestinal microbiota. Thus, gp41-containing DNA/rAd5 vaccine induced dominant gp41-microbiota cross-reactive antibodies derived from blood memory B cells in RMs as observed in the HVTN 505 efficacy trial. These data demonstrated that RMs can be used to investigate the gp41 immunodominance in candidate HIV-1 vaccines. Moreover, colonization of neonatal RMs occurred within the first week of life, and immunization of neonatal RMs during this time also induced a dominant gp41-reactive antibody response.IMPORTANCE Our results are critical to current work in the HIV-1 vaccine field evaluating the phenomenon of gp41 immunodominance induced by HIV-1 Env gp140 in RMs and humans. Our data demonstrate that RMs are an appropriate animal model to study this phenomenon and to determine the immunogenicity in new HIV-1 Env trimer vaccine designs. The demonstration of gp41 immunodominance in memory B cells of both adult and

  10. Antibody

    MedlinePlus

    An antibody is a protein produced by the body's immune system when it detects harmful substances, called antigens. Examples ... microorganisms (bacteria, fungi, parasites, and viruses) and chemicals. Antibodies may be produced when the immune system mistakenly ...

  11. Immunization of cows with novel core glycolipid vaccine induces anti-endotoxin antibodies in bovine colostrum.

    PubMed

    Cross, Alan S; Karreman, Hubert J; Zhang, Lei; Rosenberg, Zeil; Opal, Steven M; Lees, Andrew

    2014-10-21

    Translocation of gut-derived Gram-negative bacterial (GNB) lipopolysaccharide (LPS, or endotoxin) is a source of systemic inflammation that exacerbates HIV, cardiovascular and gastrointestinal diseases and malnutrition. The oral administration of bovine colostrum (BC) reduces endotoxemia in patients with impaired gut barrier function. Consequently, BC enriched in antibodies to LPS may ameliorate endotoxemia-related morbidities. We developed a detoxified J5 LPS/group B meningococcal outer membrane protein (J5dLPS/OMP) vaccine that induces antibodies against a highly conserved core region of LPS and protects against heterologous GNB infection. We now examine the ability of this vaccine to elicit anti-core endotoxin antibodies in BC. Two cohorts of pregnant cows were immunized with this vaccine in combination with FICA (Cohort 1) or Emulsigen-D (Cohort 2) adjuvants. Antibody responses to the J5 core LPS antigen were measured in both serum and colostrum and compared to antibody levels elicited by a commercially available veterinary vaccine (J5 Bacterin) comprised of heat-killed Escherichia coli O111, J5 mutant bacteria, from which the J5 LPS was purified. The J5dLPS/OMP vaccine induced high titers of serum IgG antibody to J5 LPS in all seven cows. Both IgG and to a lesser extent IgA anti-J5 LPS antibodies were generated in the colostrum. The J5dLPS/OMP vaccine was significantly more immunogenic in mice than was the J5 Bacterin. BC enriched in anti-J5 LPS antibody reduced circulating endotoxin levels in neutropenic rats, a model of "leaky gut". The J5dLPS/OMP vaccine elicits high titers of serum anti-endotoxin antibodies in cows that is passed to the colostrum. This BC enriched in anti-core LPS antibodies has the potential to reduce endotoxemia and ameliorate endotoxin-related systemic inflammation in patients with impaired gut barrier function. Since this vaccine is significantly more immunogenic than the J5 Bacterin vaccine, this J5dLPS/OMP vaccine might prove to be

  12. Triggering of monoclonal human lymphoma B cells with antibodies to IgM heavy chains: differences of response obtained with monoclonal as compared to polyclonal antibodies.

    PubMed Central

    Godal, T; Ruud, E; Heikkilä, R; Funderud, S; Michaelsen, T; Jefferis, R; Ling, N R; Hildrum, K

    1983-01-01

    A comparative study of human B lymphoma cells activation by monoclonal (murine hybridoma) antibodies to mu heavy chains (Ma-mu) as compared to polyclonal (rabbit) antibodies to mu heavy chains (Ra-mu) has been carried out. Early events related to calmodulin activation such as 86Rb influx and changes in cell volume at 4 h could be induced by Ma-mu. One antibody (AF6) approached Ra-mu with regard to the strength of response obtained. However, Ma-mus including AF6 were deficient in inducing DNA synthesis under conditions where this was achieved with Ra-mu. Studies in one lymphoma, where stimulation of re-expressed surface IgM could be studied, revealed that Ma-mu was deficient in stimulating re-expressed sIgM. These findings raise questions with regard to polyclonal antibody to surface Ig as a model for B cell triggering by antigen and suggest that antigen-induced B cell triggering may be more complex than indicated by previous studies with polyclonal antibody. PMID:6418424

  13. Prolonged suppression of chick humoral immune response by antigen specific maternal antibody.

    PubMed

    Elazab, Mohamed Fahmy Abou; Fukushima, Yuji; Horiuchi, Hiroyuki; Matsuda, Haruo; Furusawa, Shuichi

    2009-04-01

    Although the inhibitory effect of maternal antibodies on active immunization of neonates has been extensively documented, much less attention has been devoted on the exact level of these antibodies which can induce this effect and the extent of such effect. Firstly, laying hens were immunized with dinitrophenyl-keyhole limpet hemocyanin (DNP-KLH).Then, maternal anti-DNP antibodies in chicks derived from these hens were measured by using enzyme-linked immunosorbent assay (ELISA). Chicks with high levels of maternal anti-DNP showed immune suppression, while chicks with low levels of maternal anti-DNP showed normal immune response when they immunized with the same antigen at 1 and 4 weeks of age. Then, different doses of purified maternal anti-DNP were transferred to fertile eggs at 16 days of embryogenesis by in ovo injection and all chicks were immunized with DNP-KLH at 1 and 4 weeks of age. Chicks received 1 mg of anti-DNP showed normal immune response, chicks received 3 mg of anti-DNP showed weak immune response, and chicks received 5 and 8 mg of anti-DNP showed immune suppression. Chicks received 8 mg of anti-DNP were immunized with DNP-KLH at 4 and 7 weeks of age. Their immune response was significantly lower than that of chicks of no-maternal anti-DNP. These results suggested that high levels of maternal antibodies interfere or suppress the immune response of active immunization not only at early period but also at the period in which the maternal antibodies at very low levels.

  14. A large population-based association study between HLA and KIR genotypes and measles vaccine antibody responses.

    PubMed

    Ovsyannikova, Inna G; Schaid, Daniel J; Larrabee, Beth R; Haralambieva, Iana H; Kennedy, Richard B; Poland, Gregory A

    2017-01-01

    Human antibody response to measles vaccine is highly variable in the population. Host genes contribute to inter-individual antibody response variation. The killer cell immunoglobulin-like receptors (KIR) are recognized to interact with HLA molecules and possibly influence humoral immune response to viral antigens. To expand on and improve our previous work with HLA genes, and to explore the genetic contribution of KIR genes to the inter-individual variability in measles vaccine-induced antibody responses, we performed a large population-based study in 2,506 healthy immunized subjects (ages 11 to 41 years) to identify HLA and KIR associations with measles vaccine-induced neutralizing antibodies. After correcting for the large number of statistical tests of allele effects on measles-specific neutralizing antibody titers, no statistically significant associations were found for either HLA or KIR loci. However, suggestive associations worthy of follow-up in other cohorts include B*57:01, DQB1*06:02, and DRB1*15:05 alleles. Specifically, the B*57:01 allele (1,040 mIU/mL; p = 0.0002) was suggestive of an association with lower measles antibody titer. In contrast, the DQB1*06:02 (1,349 mIU/mL; p = 0.0004) and DRB1*15:05 (2,547 mIU/mL; p = 0.0004) alleles were suggestive of an association with higher measles antibodies. Notably, the associations with KIR genotypes were strongly nonsignificant, suggesting that KIR loci in terms of copy number and haplotypes are not likely to play a major role in antibody response to measles vaccination. These findings refine our knowledge of the role of HLA and KIR alleles in measles vaccine-induced immunity.

  15. A large population-based association study between HLA and KIR genotypes and measles vaccine antibody responses

    PubMed Central

    Ovsyannikova, Inna G.; Schaid, Daniel J.; Larrabee, Beth R.; Haralambieva, Iana H.; Kennedy, Richard B.; Poland, Gregory A.

    2017-01-01

    Human antibody response to measles vaccine is highly variable in the population. Host genes contribute to inter-individual antibody response variation. The killer cell immunoglobulin-like receptors (KIR) are recognized to interact with HLA molecules and possibly influence humoral immune response to viral antigens. To expand on and improve our previous work with HLA genes, and to explore the genetic contribution of KIR genes to the inter-individual variability in measles vaccine-induced antibody responses, we performed a large population-based study in 2,506 healthy immunized subjects (ages 11 to 41 years) to identify HLA and KIR associations with measles vaccine-induced neutralizing antibodies. After correcting for the large number of statistical tests of allele effects on measles-specific neutralizing antibody titers, no statistically significant associations were found for either HLA or KIR loci. However, suggestive associations worthy of follow-up in other cohorts include B*57:01, DQB1*06:02, and DRB1*15:05 alleles. Specifically, the B*57:01 allele (1,040 mIU/mL; p = 0.0002) was suggestive of an association with lower measles antibody titer. In contrast, the DQB1*06:02 (1,349 mIU/mL; p = 0.0004) and DRB1*15:05 (2,547 mIU/mL; p = 0.0004) alleles were suggestive of an association with higher measles antibodies. Notably, the associations with KIR genotypes were strongly nonsignificant, suggesting that KIR loci in terms of copy number and haplotypes are not likely to play a major role in antibody response to measles vaccination. These findings refine our knowledge of the role of HLA and KIR alleles in measles vaccine-induced immunity. PMID:28158231

  16. Recombinant GST-I-A beta 28-induced efficient serum antibody against A beta 42.

    PubMed

    Huang, Xuemei; Wang, Jiapeng; Cui, Lili; Zou, Xiaohuan; Zhang, Yingjiu

    2010-01-30

    Six recombinant proteins GST-A beta 28/A beta 35/A beta 42 and GST-I-A beta 28/A beta 35/A beta 42 [I was the abbreviation for an immunostimulatory sequence that consisted of pan HLA DR binding epitope (PADRE) and Tetanus toxin epitope (TT)] were used as antigens after expressed and purified to immunize mice. The strongest antibody response against A beta 42 (titer 1:3200) was achieved by GST-I-A beta 28 or GST-A beta 42 immunization. However, IgG1 and IgG2b were the predominant serum antibody isotype responses by GST-I-A beta 28 immunization, whereas did IgG2a by GST-A beta 42 immunization. Thus, it indicated that GST-I-A beta 28 immunization in a mouse mainly evoked a stronger Th-2-type response; whereas, GST-A beta 42 immunization mainly elicited a Th-1-type response. Moreover, GST-I-A beta 28-induced serum antibodies had higher specificity to A beta 42 monomers and oligomers than to protofibrils and mature fibrils and exhibited the highest efficacy to block A beta 42 aggregation or fibrillogenesis and to disassemble A beta 42 aggregates in vitro. GST-I-A beta 28-induced serum antibodies also showed the most protective and restorative effects on target cells in vitro by inhibiting or neutralizing A beta 42-induced cytotoxicity. All of the above results indicated that A beta 28 could be speculated to substitute for A beta 42 and would become a better antigenic peptide for Alzheimer's disease immunotherapy in the presence of additional Th-cell epitopes such as the immunostimulatory sequence (I) applied in this study. (c) 2009 Elsevier B.V. All rights reserved.

  17. Heterogeneity of antibody responses among clinical responders during grass pollen sublingual immunotherapy.

    PubMed

    Baron-Bodo, V; Horiot, S; Lautrette, A; Chabre, H; Drucbert, A S; Danzé, P M; Sénéchal, H; Peltre, G; Galvain, S; Zeldin, R K; Horak, F; Moingeon, P

    2013-12-01

    During allergen-specific sublingual immunotherapy (SLIT), the relevance of changes in specific IgE and IgG antibody titres to treatment efficacy remains to be evaluated at an individual patient level. To investigate whether antibody responses can be used as biomarkers for SLIT efficacy. Comprehensive quantitative, qualitative and functional analyses of allergen-specific IgA, IgE, IgG1-4 and IgM responses were performed using purified Phl p 1 to 12 allergens in sera, saliva and nasal secretions from 82 grass pollen allergic patients. These patients were enrolled in a randomized, double-blind placebo-controlled study and assessed in an allergen challenge chamber (ClinicalTrials.gov NCT00619827). Antibody responses were monitored in parallel to clinical responses before and after daily sublingual treatment for 4 months with either a grass pollen or a placebo tablet. A significant mean improvement (i.e. 33-40.6%) in rhinoconjunctivitis total symptom scores was observed in SLIT recipients, irrespective of their baseline patterns of IgE sensitization (i.e. narrow, intermediate, broad) to grass pollen allergens. SLIT did not induce any de novo IgE sensitization. Clinical responders encompassed both immunoreactive patients who exhibited strong increases in titres, affinity and/or blocking activity of grass-pollen-specific IgGs (representing 17% of treated patients), as well as patients with no detectable antibody responses distinguishing them from the placebo group. No significant changes were detected in antibody titres in saliva and nasal washes, even in clinical responders. Sublingual immunotherapy with a grass pollen tablet is efficacious irrespective of the patients' baseline sensitization to either single or multiple grass pollen allergens. Seric IgG responses may contribute to SLIT-induced clinical tolerance in a fraction (i.e. 17%) of patients, but additional immune mechanisms are involved in most patients. Consequently, antibody responses cannot be used as a

  18. Memory CD4 T Cells Induce Antibody-Mediated Rejection of Renal Allografts.

    PubMed

    Gorbacheva, Victoria; Fan, Ran; Fairchild, Robert L; Baldwin, William M; Valujskikh, Anna

    2016-11-01

    Despite advances in immunosuppression, antibody-mediated rejection is a serious threat to allograft survival. Alloreactive memory helper T cells can induce potent alloantibody responses and often associate with poor graft outcome. Nevertheless, the ability of memory T cells to elicit well characterized manifestations of antibody-mediated rejection has not been tested. We investigated helper functions of memory CD4 T cells in a mouse model of renal transplantation. Whereas the majority of unsensitized C57Bl/6 recipients spontaneously accepted fully MHC-mismatched A/J renal allografts, recipients containing donor-reactive memory CD4 T cells rapidly lost allograft function. Increased serum creatinine levels, high serum titers of donor-specific alloantibody, minimal T cell infiltration, and intense C4d deposition in the grafts of sensitized recipients fulfilled all diagnostic criteria for acute renal antibody-mediated rejection in humans. IFNγ neutralization did not prevent the renal allograft rejection induced by memory helper T cells, and CD8 T cell depletion at the time of transplantation or depletion of both CD4 and CD8 T cells also did not prevent the renal allograft rejection induced by memory helper T cells starting at day 4 after transplantation. However, B cell depletion inhibited alloantibody generation and significantly extended allograft survival, indicating that donor-specific alloantibodies (not T cells) were the critical effector mechanism of renal allograft rejection induced by memory CD4 T cells. Our studies provide direct evidence that recipient T cell sensitization may result in antibody-mediated rejection of renal allografts and introduce a physiologically relevant animal model with which to investigate mechanisms of antibody-mediated rejection and novel therapeutic approaches for its prevention and treatment. Copyright © 2016 by the American Society of Nephrology.

  19. Megakaryocyte impairment by eptifibatide-induced antibodies causes prolonged thrombocytopenia.

    PubMed

    Greinacher, Andreas; Fuerll, Birgitt; Zinke, Heike; Müllejans, Bernd; Krüger, William; Michetti, Noemi; Motz, Wolfgang; Schwertz, Hansjörg

    2009-08-06

    Glycoprotein (GP) IIbIIIa inhibitors are used in the treatment of acute coronary syndromes. Transient immune-mediated acute thrombocytopenia is a recognized side effect of GPIIbIIIa inhibitors. We provide evidence that GPIIbIIIa inhibitor-induced antibodies can affect megakaryocytes in the presence of eptifibatide. In a patient with acute coronary syndrome, acute thrombocytopenia occurred after a second exposure to eptifibatide 20 days after the initial treatment. Despite the short half-life of eptifibatide (t(1/2) = 2 hours), thrombocytopenia less than 5 x 10(9)/L and gastrointestinal and skin hemorrhage persisted for 4 days. Glycoprotein-specific enzyme-linked immunosorbent assay showed eptifibatide-dependent, GPIIbIIIa-specific antibodies. Bone marrow examination showed predominance of early megakaryocyte stages, and platelet transfusion resulted in an abrupt platelet count increase. Viability of cultured cord blood-derived megakaryocytes was reduced in the presence of eptifibatide and patient IgG fraction. These findings can be explained by impaired megakaryocytopoiesis complicating anti-GPIIbIIIa antibody-mediated immune thrombocytopenia. This mechanism may also apply to some patients with autoimmune thrombocytopenia.

  20. Germinal centre hypoxia and regulation of antibody qualities by a hypoxia response system.

    PubMed

    Cho, Sung Hoon; Raybuck, Ariel L; Stengel, Kristy; Wei, Mei; Beck, Thomas C; Volanakis, Emmanuel; Thomas, James W; Hiebert, Scott; Haase, Volker H; Boothby, Mark R

    2016-09-08

    Germinal centres (GCs) promote humoral immunity and vaccine efficacy. In GCs, antigen-activated B cells proliferate, express high-affinity antibodies, promote antibody class switching, and yield B cell memory. Whereas the cytokine milieu has long been known to regulate effector functions that include the choice of immunoglobulin class, both cell-autonomous and extrinsic metabolic programming have emerged as modulators of T-cell-mediated immunity. Here we show in mice that GC light zones are hypoxic, and that low oxygen tension () alters B cell physiology and function. In addition to reduced proliferation and increased B cell death, low impairs antibody class switching to the pro-inflammatory IgG2c antibody isotype by limiting the expression of activation-induced cytosine deaminase (AID). Hypoxia induces HIF transcription factors by restricting the activity of prolyl hydroxyl dioxygenase enzymes, which hydroxylate HIF-1α and HIF-2α to destabilize HIF by binding the von Hippel-Landau tumour suppressor protein (pVHL). B-cell-specific depletion of pVHL leads to constitutive HIF stabilization, decreases antigen-specific GC B cells and undermines the generation of high-affinity IgG, switching to IgG2c, early memory B cells, and recall antibody responses. HIF induction can reprogram metabolic and growth factor gene expression. Sustained hypoxia or HIF induction by pVHL deficiency inhibits mTOR complex 1 (mTORC1) activity in B lymphoblasts, and mTORC1-haploinsufficient B cells have reduced clonal expansion, AID expression, and capacities to yield IgG2c and high-affinity antibodies. Thus, the normal physiology of GCs involves regional variegation of hypoxia, and HIF-dependent oxygen sensing regulates vital functions of B cells. We propose that the restriction of oxygen in lymphoid organs, which can be altered in pathophysiological states, modulates humoral immunity.

  1. Human Leukocyte Antigens Influence the Antibody Response to Hepatitis B Vaccine.

    PubMed

    Jafarzadeh, Abdollah; Bagheri-Jamebozorgi, Masoome; Nemati, Maryam; Golsaz-Shirazi, Forough; Shokri, Fazel

    2015-06-01

    Hepatitis B virus (HBV) infection and its sequelae such as cirrhosis and hepatocellular carcinoma has remained a serious public health problem throughout the world. The WHO strategy for effective control of HBV infection and its complications is mass vaccination of neonates and children within the framework of Expanded Programme on Immunization (EPI). Vaccination with hepatitis B surface antigen (HBsAg) induces protective antibody response (anti-HBs ≥ 10 IU/L) in 90-99% of vaccinees. The lack of response to HBsAg has been attributed to a variety of immunological mechanisms, including defect in antigen presentation, defect in HBsAg-specific T and/or B cell repertoires, T-cell suppression, increase in the regulatory T cell count, lack of necessary help of T-cells for production of anti-HBs by B cells, defect in Th1 and/or Th2 cytokine production and selective killing of HBsAg-specific B-cells by human leukocyte antigen (HLA)-restricted cytotoxic T lymphocytes. The HLA complex plays an important role in many of these immunological processes. A variety of HLA class I, II, and III alleles and antigens have been reported to be associated with antibody response to HBsAg vaccination in different ethnic populations. Moreover, some HLA haplotypes were also associated with responsiveness to HBsAg. In this review the association of the HLA specificities with antibody response to hepatitis B (HB) vaccine is discussed.

  2. Induction of ICOS+CXCR3+CXCR5+ TH cells correlates with antibody responses to influenza vaccination.

    PubMed

    Bentebibel, Salah-Eddine; Lopez, Santiago; Obermoser, Gerlinde; Schmitt, Nathalie; Mueller, Cynthia; Harrod, Carson; Flano, Emilio; Mejias, Asuncion; Albrecht, Randy A; Blankenship, Derek; Xu, Hui; Pascual, Virginia; Banchereau, Jacques; Garcia-Sastre, Adolfo; Palucka, Anna Karolina; Ramilo, Octavio; Ueno, Hideki

    2013-03-13

    Seasonal influenza vaccine protects 60 to 90% of healthy young adults from influenza infection. The immunological events that lead to the induction of protective antibody responses remain poorly understood in humans. We identified the type of CD4+ T cells associated with protective antibody responses after seasonal influenza vaccinations. The administration of trivalent split-virus influenza vaccines induced a temporary increase of CD4+ T cells expressing ICOS, which peaked at day 7, as did plasmablasts. The induction of ICOS was largely restricted to CD4+ T cells coexpressing the chemokine receptors CXCR3 and CXCR5, a subpopulation of circulating memory T follicular helper cells. Up to 60% of these ICOS+CXCR3+CXCR5+CD4+ T cells were specific for influenza antigens and expressed interleukin-2 (IL-2), IL-10, IL-21, and interferon-γ upon antigen stimulation. The increase of ICOS+CXCR3+CXCR5+CD4+ T cells in blood correlated with the increase of preexisting antibody titers, but not with the induction of primary antibody responses. Consistently, purified ICOS+CXCR3+CXCR5+CD4+ T cells efficiently induced memory B cells, but not naïve B cells, to differentiate into plasma cells that produce influenza-specific antibodies ex vivo. Thus, the emergence of blood ICOS+CXCR3+CXCR5+CD4+ T cells correlates with the development of protective antibody responses generated by memory B cells upon seasonal influenza vaccination.

  3. A DNA vaccine encoding the 42 kDa C-terminus of merozoite surface protein 1 of Plasmodium falciparum induces antibody, interferon-gamma and cytotoxic T cell responses in rhesus monkeys: immuno-stimulatory effects of granulocyte macrophage-colony stimulating factor.

    PubMed

    Kumar, Sanjai; Villinger, Francois; Oakley, Miranda; Aguiar, Joao C; Jones, Trevor R; Hedstrom, Richard C; Gowda, Kalpana; Chute, John; Stowers, Anthony; Kaslow, David C; Thomas, Elaine K; Tine, John; Klinman, Dennis; Hoffman, Stephen L; Weiss, Walter W

    2002-04-01

    We have constructed a DNA plasmid vaccine encoding the C-terminal 42-kDa region of the merozoite surface protein 1 (pMSP1(42)) from the 3D7 strain of Plasmodium falciparum (Pf3D7). This plasmid expressed recombinant MSP1(42) after in vitro transfection in mouse VM92 cells. Rhesus monkeys immunized with pMSP1(42) produced antibodies reactive with Pf3D7 infected erythrocytes by IFAT, and by ELISA against yeast produced MSP1(19) (yMSP1(19)). Immunization also induced antigen specific T cell responses as measured by interferon-gamma production, and by classical CTL chromium release assays. In addition, immunization with pMSP1(42) primed animals for an enhanced antibody response to a subsequent boost with the recombinant yMSP1(19). We also evaluated Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) as an adjuvant for pMSP1(42.) We tested both rhesus GM-CSF expressed from a DNA plasmid, and E. coli produced recombinant human GM-CSF. Plasmids encoding rhesus GM-CSF (prhGM-CSF) and human GM-CSF (phuGM-CSF) were constructed; these plasmids expressed bio-active recombinant GMCSF. Co-immunization with a mixture of prhGM-CSF and pMSP1(42) induced higher specific antibody responses after the first dose of plasmid, but after three doses of DNA monkeys immunized with or without prhGM-CSF had the same final antibody titers and T cell responses. In comparison, rhuGM-CSF protein did not lead to accelerated antibody production after the first DNA dose. However, antibody titers were maintained at a slightly higher level in monkeys receiving GM-CSF protein, and they had a higher response to boosting with recombinant MSP1(19). The GM-CSF plasmid or protein appears to be less potent as an adjuvant in rhesus monkeys than each is in mice, and more work is needed to determine if GM-CSF can be a useful adjuvant in DNA vaccination of primates.

  4. BAFF aids generation of IgG anti-ganglioside antibodies in response to Campylobacter jejuni lipo-oligosaccharide.

    PubMed

    Matsumoto, Yukie; Kobata, Tetsuji; Odaka, Masaaki; Furukawa, Koichi; Hirata, Koichi; Yuki, Nobuhiro

    2010-01-25

    Ganglioside mimicry of Campylobacter jejuni lipo-oligosaccharide (LOS) can induce the production of IgG anti-ganglioside antibodies, but the generation mechanism has yet to be clarified. B-cell activating factor belonging to the TNF family (BAFF) helped murine B cells produce anti-ganglioside antibodies against C. jejuni LOS. In splenocyte culture, however, anti-ganglioside antibodies were produced in the presence of a soluble transmembrane activator and calcium-modulating and cyclophilin ligand interactor immunoadhesin (TACI-Ig), a receptor for BAFF. TACI-Ig adenoviral vectors failed to decrease production of anti-ganglioside antibodies in mice sensitized with C. jejuni LOS and did not alter IgG subclasses, evidence that BAFF aids but is not essential for the generation of IgG anti-ganglioside antibodies in response to C. jejuni LOS. Copyright 2009 Elsevier B.V. All rights reserved.

  5. Antibody Response to Live Attenuated Vaccines in Adults in Japan

    PubMed Central

    Uchiyama-Nakamura, Fukumi; Sugata-Tsubaki, Aiko; Yamada, Yutaka; Uno, Kenji; Kasahara, Kei; Maeda, Koichi; Konishi, Mitsuru; Mikasa, Keiichi

    2016-01-01

    Abstract The purpose of this study was to examine the efficacy rendered with a single dose of live attenuated measles, rubella, mumps, and varicella containing vaccine. We inoculated healthcare workers (HCWs) with a single dose of vaccine to a disease lacking in antibody titer for those not meeting the criteria of our hospital (measles: <16.0 (IgG enzyme immunoassay (EIA)), rubella: ≤1:32 (hemagglutination-inhibition), mumps: <4.0 (IgG EIA), and varicella: <4.0 (IgG EIA)). At 28–60 days after vaccination, the antibody titer was tested again. We included 48 HCWs. A total of 32, 15, 31, and 10 individuals were inoculated with a single dose of measles-containing, rubella-containing, mumps, or varicella vaccine, respectively, and showed significant antibody elevation (9.2 ± 12.3 to 27.6 ± 215.6, p<0.001; 8 ± 1.2 to 32 ± 65.5, p<0.001; 3.0 ± 1.0 to 13.1 ± 8.6, p<0.05; and 2.6 ± 1.3 to 11.8 ± 8.1, p<0.001, respectively). Major side effects were not observed. In a limited population, a single dose of live attenuated vaccine showed elevation of antibody titer without any severe adverse reactions. However, whether the post-vaccination response rate criteria of our university was fulfilled could not be determined owing to limited sample size. PMID:28352840

  6. Immunoblot analysis of antibody responses to Sporothrix schenckii.

    PubMed Central

    Scott, E N; Muchmore, H G

    1989-01-01

    The serologic response to Sporothrix schenckii was investigated in patients with sporotrichosis by solid-phase enzyme-linked immunosorbent assays (ELISAs) and Western immunoblot techniques. A soluble antigen preparation derived from an S. schenckii isolate contained 15 protein staining components ranging in molecular size from 22 to 70 kilodaltons (kDa) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Sera from 40 patients with sporotrichosis demonstrated Sporothrix immunoglobulin G antibody by ELISA with titers between 128 and 65,200. No sera from 300 healthy individuals or 100 patients with various systemic mycoses other than sporotrichosis had ELISA titers greater than 64. By Western immunoblotting of the antigens separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, sera from 10 patients with cutaneous sporotrichosis reacted with 8 to 10 antigen components (range, 40 to 70 kDa), while sera from 15 patients with extracutaneous sporotrichosis reacted with a greater number of antigen components (15 to 20 bands) over a wider range of molecular sizes (22 to 70 kDa). Antibody to 40- and 70-kDa antigen components was detected by immunoblots in all sera tested from patients with sporotrichosis. Antibody to 22- to 36-kDa antigen components was present in sera from 13 of 15 patients with extracutaneous sporotrichosis, but these lower-molecular-weight components were not detected by sera from patients with cutaneous sporotrichosis. Antibody to these components was not detected by Western blotting in sera from 19 of 20 patients with other fungal diseases or from 30 healthy individuals. Purification of these specific antigen fractions could provide the basis of a sensitive and specific serodiagnostic test to indicate the presence and activity of extracutaneous sporotrichosis. Images PMID:2915023

  7. Cellular and humoral influenza-specific immune response upon vaccination in patients with common variable immunodeficiency and unclassified antibody deficiency.

    PubMed

    Hanitsch, Leif G; Löbel, Madlen; Mieves, Jan Florian; Bauer, Sandra; Babel, Nina; Schweiger, Brunhilde; Wittke, Kirsten; Grabowski, Patricia; Volk, Hans-Dieter; Scheibenbogen, Carmen

    2016-05-05

    Immunization against seasonal influenza with inactivated vaccine is recommended for patients with common variable immunodeficiency (CVID). However, humoral vaccine response in CVID patients is frequently impaired and current knowledge on T cell vaccine response in CVID and other patients with antibody deficiency is poor. In the present study, we comparatively analyzed the antibody and T cellular immune response of patients with CVID and unclassified antibody deficiency to influenza vaccination in the season 2013-2014. Eight patients with CVID, 8 patients with unclassified antibody deficiency and 9 healthy controls were vaccinated with a single dose of non-adjuvanted seasonal influenza vaccine. Before and 3 weeks after the vaccination antibody titers against the strains A/California/7/2009, A/Texas/50/2012, and B/Massachusetts/02/2012 included in the vaccine were measured by hemagglutination inhibition testing. Additionally, vaccine-specific T cell cytokine response was determined by stimulation with the complete vaccine in vitro. Whereas all healthy controls responded to vaccination with serum antibody titers, only 1/8 CVID patients and 4/8 patients with unclassified antibody deficiency showed a response against at least 1 of the 3 vaccine strains. However, 7/8 of the CVID and 6/8 of the patients with unclassified antibody deficiency had similar frequencies of vaccine-induced IFN-γ, TNF-α and IL-2 producing CD40L(+) T cells as the control group. Our data suggest that most CVID and unclassified antibody deficiency patients benefit from seasonal influenza vaccination by mounting a cellular response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. HBsAg sT123N mutation induces stronger antibody responses to HBsAg and HBcAg and accelerates in vivo HBsAg clearance.

    PubMed

    Li, Songxia; Zhao, Kaitao; Liu, Shuhui; Wu, Chunchen; Yao, Yongxuan; Cao, Liang; Hu, Xue; Zhou, Yuan; Wang, Yun; Pei, Rongjuan; Lu, Mengji; Chen, Xinwen

    2015-12-02

    Immune escape mutants with mutations in the hepatitis B surface antigen (HBsAg) major hydrophilic region (MHR) often emerge in association with diagnostic failure or breakthrough of HBV infection in patients with anti-HBs antibodies. Some mutants harboring substitutions to Asn in HBsAg MHR may have an additional potential N-glycosylation site. We have previously showed that sT123N substitution could generate additional N-glycosylated forms of HBsAg. In the present study, 1.3-fold-overlength HBV genomes containing the sT123N substitution were digested from the pHBV1.3-sT123N construct and subcloned into the pAAV vector to generate pAAV1.3-sT123N for hydrodynamic injection (HI) in mice. Viral expression and replication were phenotypically characterized by transient transfection. The results demonstrated that sT123N substitution impaired virion secretion, resulting in intracellular retention of HBcAg. Using the HBV HI mouse model, we found that mice mounted significantly stronger antibody responses to HBsAg and HBcAg, which accelerated HBsAg clearance. Thus, additional N-glycosylation generated by amino acid substitutions in HBsAg MHR may significantly modulate specific host immune responses and influence HBV infection in vivo. Our results help further the understanding of the role of immune escape mutants with N-linked glycosylation in the biology of HBV infection.

  9. Novel Epstein-Barr virus-like particles incorporating gH/gL-EBNA1 or gB-LMP2 induce high neutralizing antibody titers and EBV-specific T-cell responses in immunized mice.

    PubMed

    Perez, Elizabeth M; Foley, Joslyn; Tison, Timelia; Silva, Rute; Ogembo, Javier Gordon

    2017-03-21

    Previous Epstein-Barr virus (EBV) prophylactic vaccines based on the major surface glycoprotein gp350/220 as an immunogen have failed to block viral infection in humans, suggesting a need to target other viral envelope glycoproteins. In this study, we reasoned that incorporating gH/gL or gB, critical glycoproteins for viral fusion and entry, on the surface of a virus-like particle (VLP) would be more immunogenic than gp350/220 for generating effective neutralizing antibodies to prevent viral infection of both epithelial and B cell lines. To boost the humoral response and trigger cell-mediated immunity, EBV nuclear antigen 1 (EBNA1) and latent membrane protein 2 (LMP2), intracellular latency proteins expressed in all EBV-infected cells, were also included as critical components of the polyvalent EBV VLP. gH/gL-EBNA1 and gB-LMP2 VLPs were efficiently produced in Chinese hamster ovary cells, an FDA-approved vehicle for mass-production of biologics. Immunization with gH/gL-EBNA1 and gB-LMP2 VLPs without adjuvant generated both high neutralizing antibody titers in vitro and EBV-specific T-cell responses in BALB/c mice. These data demonstrate that will be invaluable not only in preventing EBV infection, but importantly, in preventing and treating the 200,000 cases of EBV-associated cancers that occur globally every year.

  10. Anti-Leu3a induces combining site-related anti-idiotypic antibody without inducing anti-HIV activity.

    PubMed

    Reeves, J P; Buck, D; Berkower, I; Murphy, D; Epstein, S L

    1991-01-01

    Development of a vaccine for acquired immunodeficiency syndrome (AIDS) has proven difficult, and so alternative approaches such as idiotypic manipulation have been suggested. As applied to AIDS, this approach could involve immunizing with an anti-CD4 antibody resembling gp120, to induce anti-idiotypic antibodies which would bind to gp120. The CD4 binding site on gp120 is conserved, and so, such an immune response should protect against all variants. Induction of anti-human immunodeficiency virus (HIV) immunity has been reported using anti-Leu3a, and this result has led to testing in humans. Negative results obtained by others have been attributed to differences in immunization protocols. Because of the importance of this question, we reinvestigated the potential of anti-Leu3a to induce anti-HIV antibodies, compared with control immunizations with OKT4A (another anti-CD4 antibody) and the irrelevant Ig MOPC-21. Responses to anti-Leu3a showed induction of high-titer anti-idiotypic activity, and included combining-site-related activity. Yet sera showed no binding to gp160 above controls and no detectable neutralizing activity in a sensitive HIV plaque assay, so the anti-idiotypes induced were not internal images of CD4. We conclude that the pronounced anti-HIV responses reported with anti-Leu3a cannot be generalized, and thus that anti-Leu3a does not offer promise as an HIV vaccine. However, these results do not negate the promise of the idiotypic approach, and a vaccine for AIDS based on idiotype manipulation remains a possibility.

  11. Activation of NLRC4 downregulates TLR5-mediated antibody immune responses against flagellin

    PubMed Central

    Li, Wei; Yang, Jingyi; Zhang, Ejuan; Zhong, Maohua; Xiao, Yang; Yu, Jie; Zhou, Dihan; Cao, Yuan; Yang, Yi; Li, Yaoming; Yan, Huimin

    2016-01-01

    Bacterial flagellin is a unique pathogen-associated molecular pattern (PAMP), which can be recognized by surface localized Toll-like receptor 5 (TLR5) and the cytosolic NOD-like receptor (NLR) protein 4 (NLRC4) receptors. Activation of the TLR5 and/or NLRC4 signaling pathways by flagellin and the resulting immune responses play important roles in anti-bacterial immunity. However, it remains unclear how the dual activities of flagellin that activate the TLR5 and/or NLRC4 signaling pathways orchestrate the immune responses. In this study, we assessed the effects of flagellin and its mutants lacking the ability to activate TLR5 and NLRC4 alone or in combination on the adaptive immune responses against flagellin. Flagellin that was unable to activate NLRC4 induced a significantly higher antibody response than did wild-type flagellin. The increased antibody response could be eliminated when macrophages were depleted in vivo. The activation of NLRC4 by flagellin downregulated the flagellin-induced and TLR5-mediated immune responses against flagellin. PMID:25914934

  12. Mixed Adjuvant Formulations Reveal a New Combination That Elicit Antibody Response Comparable to Freund's Adjuvants

    PubMed Central

    Lai, Rachel P. J.; Seaman, Michael S.; Tonks, Paul; Wegmann, Frank; Seilly, David J.; Frost, Simon D. W.; LaBranche, Celia C.; Montefiori, David C.; Dey, Antu K.; Srivastava, Indresh K.; Sattentau, Quentin; Barnett, Susan W.; Heeney, Jonathan L.

    2012-01-01

    Adjuvant formulations capable of inducing high titer and high affinity antibody responses would provide a major advance in the development of vaccines to viral infections such as HIV-1. Although oil-in-water emulsions, such as Freund's adjuvant (FCA/FIA), are known to be potent, their toxicity and reactogenicity make them unacceptable for human use. Here, we explored different adjuvants and compared their ability to elicit antibody responses to FCA/FIA. Recombinant soluble trimeric HIV-1 gp140 antigen was formulated in different adjuvants, including FCA/FIA, Carbopol-971P, Carbopol-974P and the licensed adjuvant MF59, or combinations of MF59 and Carbopol. The antigen-adjuvant formulation was administered in a prime-boost regimen into rabbits, and elicitation of antigen binding and neutralizing antibodies (nAbs) was evaluated. When used individually, only FCA/FIA elicited significantly higher titer of nAbs than the control group (gp140 in PBS (p<0.05)). Sequential prime-boost immunizations with different adjuvants did not offer improvements over the use of FCA/FIA or MF59. Remarkably however, the concurrent use of the combination of Carbopol-971P and MF59 induced potent adjuvant activity with significantly higher titer nAbs than FCA/FIA (p<0.05). This combination was not associated with any obvious local or systemic adverse effects. Antibody competition indicated that the majority of the neutralizing activities were directed to the CD4 binding site (CD4bs). Increased antibody titers to the gp41 membrane proximal external region (MPER) and gp120 V3 were detected when the more potent adjuvants were used. These data reveal that the combination of Carbopol-971P and MF59 is unusually potent for eliciting nAbs to a variety of HIV-1 nAb epitopes. PMID:22509385

  13. Formulation of a killed whole cell pneumococcus vaccine - effect of aluminum adjuvants on the antibody and IL-17 response

    PubMed Central

    2011-01-01

    Background Streptococcus pneumoniae causes widespread morbidity and mortality. Current vaccines contain free polysaccharides or protein-polysaccharide conjugates, and do not induce protection against serotypes that are not included in the vaccines. An affordable and broadly protective vaccine is very desirable. The goal of this study was to determine the optimal formulation of a killed whole cell pneumococcal vaccine with aluminum-containing adjuvants for intramuscular injection. Methods Four aluminium-containing adjuvants were prepared with different levels of surface phosphate groups resulting in different adsorptive capacities and affinities for the vaccine antigens. Mice were immunized three times and the antigen-specific antibody titers and IL-17 responses in blood were analyzed. Results Although all adjuvants induced significantly higher antibody titers than antigen without adjuvant, the vaccine containing aluminum phosphate adjuvant (AP) produced the highest antibody response when low doses of antigen were used. Aluminum hydroxide adjuvant (AH) induced an equal or better antibody response at high doses compared with AP. Vaccines formulated with AH, but not with AP, induced an IL-17 response. The vaccine formulated with AH was stable and retained full immunogenicity when stored at 4°C for 4 months. Conclusions Antibodies are important for protection against systemic streptococcal disease and IL-17 is critical in the prevention of nasopharyngeal colonization by S. pneumoniae in the mouse model. The formulation of the whole killed bacterial cells with AH resulted in a stable vaccine that induced both antibodies and an IL-17 response. These experiments underscore the importance of formulation studies with aluminium containing adjuvants for the development of stable and effective vaccines. PMID:21801401

  14. Formulation of a killed whole cell pneumococcus vaccine - effect of aluminum adjuvants on the antibody and IL-17 response.

    PubMed

    Hogenesch, Harm; Dunham, Anisa; Hansen, Bethany; Anderson, Kathleen; Maisonneuve, Jean-Francois; Hem, Stanley L

    2011-07-29

    Streptococcus pneumoniae causes widespread morbidity and mortality. Current vaccines contain free polysaccharides or protein-polysaccharide conjugates, and do not induce protection against serotypes that are not included in the vaccines. An affordable and broadly protective vaccine is very desirable. The goal of this study was to determine the optimal formulation of a killed whole cell pneumococcal vaccine with aluminum-containing adjuvants for intramuscular injection. Four aluminium-containing adjuvants were prepared with different levels of surface phosphate groups resulting in different adsorptive capacities and affinities for the vaccine antigens. Mice were immunized three times and the antigen-specific antibody titers and IL-17 responses in blood were analyzed. Although all adjuvants induced significantly higher antibody titers than antigen without adjuvant, the vaccine containing aluminum phosphate adjuvant (AP) produced the highest antibody response when low doses of antigen were used. Aluminum hydroxide adjuvant (AH) induced an equal or better antibody response at high doses compared with AP. Vaccines formulated with AH, but not with AP, induced an IL-17 response. The vaccine formulated with AH was stable and retained full immunogenicity when stored at 4°C for 4 months. Antibodies are important for protection against systemic streptococcal disease and IL-17 is critical in the prevention of nasopharyngeal colonization by S. pneumoniae in the mouse model. The formulation of the whole killed bacterial cells with AH resulted in a stable vaccine that induced both antibodies and an IL-17 response. These experiments underscore the importance of formulation studies with aluminium containing adjuvants for the development of stable and effective vaccines.

  15. High Preexisting Serological Antibody Levels Correlate with Diversification of the Influenza Vaccine Response

    PubMed Central

    Andrews, Sarah F.; Kaur, Kaval; Pauli, Noel T.; Huang, Min; Huang, Yunping

    2015-01-01

    ABSTRACT Reactivation of memory B cells allows for a rapid and robust immune response upon challenge with the same antigen. Variant influenza virus strains generated through antigenic shift or drift are encountered multiple times over the lifetime of an individual. One might predict, then, that upon vaccination with the trivalent influenza vaccine across multiple years, the antibody response would become more and more dominant toward strains consistently present in the vaccine at the expense of more divergent strains. However, when we analyzed the vaccine-induced plasmablast, memory, and serological responses to the trivalent influenza vaccine between 2006 and 2013, we found that the B cell response was most robust against more divergent strains. Overall, the antibody response was highest when one or more strains contained in the vaccine varied from year to year. This suggests that in the broader immunological context of viral antigen exposure, the B cell response to variant influenza virus strains is not dictated by the composition of the memory B cell precursor pool. The outcome is instead a diversified B cell response. IMPORTANCE Vaccine strategies are being designed to boost broadly reactive B cells present in the memory repertoire to provide universal protection to the influenza virus. It is important to understand how past exposure to influenza virus strains affects the response to subsequent immunizations. The viral epitopes targeted by B cells responding to the vaccine may be a direct reflection of the B cell memory specificities abundant in the preexisting immune repertoire, or other factors may influence the vaccine response. Here, we demonstrate that high preexisting serological antibody levels to a given influenza virus strain correlate with low production of antibody-secreting cells and memory B cells recognizing that strain upon revaccination. In contrast, introduction of antigenically novel strains generates a robust B cell response. Thus, both the

  16. Genomic copy number variants: evidence for association with antibody response to anthrax vaccine adsorbed.

    PubMed

    Falola, Michael I; Wiener, Howard W; Wineinger, Nathan E; Cutter, Gary R; Kimberly, Robert P; Edberg, Jeffrey C; Arnett, Donna K; Kaslow, Richard A; Tang, Jianming; Shrestha, Sadeep

    2013-01-01

    Anthrax and its etiologic agent remain a biological threat. Anthrax vaccine is highly effective, but vaccine-induced IgG antibody responses vary widely following required doses of vaccinations. Such variation can be related to genetic factors, especially genomic copy number variants (CNVs) that are known to be enriched among genes with immunologic function. We have tested this hypothesis in two study populations from a clinical trial of anthrax vaccination. We performed CNV-based genome-wide association analyses separately on 794 European Americans and 200 African-Americans. Antibodies to protective antigen were measured at week 8 (early response) and week 30 (peak response) using an enzyme-linked immunosorbent assay. We used DNA microarray data (Affymetrix 6.0) and two CNV detection algorithms, hidden markov model (PennCNV) and circular binary segmentation (GeneSpring) to determine CNVs in all individuals. Multivariable regression analyses were used to identify CNV-specific associations after adjusting for relevant non-genetic covariates. Within the 22 autosomal chromosomes, 2,943 non-overlapping CNV regions were detected by both algorithms. Genomic insertions containing HLA-DRB5, DRB1 and DQA1/DRA genes in the major histocompatibility complex (MHC) region (chromosome 6p21.3) were moderately associated with elevated early antibody response (β = 0.14, p = 1.78×10(-3)) among European Americans, and the strongest association was observed between peak antibody response and a segmental insertion on chromosome 1, containing NBPF4, NBPF5, STXMP3, CLCC1, and GPSM2 genes (β = 1.66, p = 6.06×10(-5)). For African-Americans, segmental deletions spanning PRR20, PCDH17 and PCH68 genes on chromosome 13 were associated with elevated early antibody production (β = 0.18, p = 4.47×10(-5)). Population-specific findings aside, one genomic insertion on chromosome 17 (containing NSF, ARL17 and LRRC37A genes) was associated with elevated peak antibody

  17. Murine Antibody Responses to Cleaved Soluble HIV-1 Envelope Trimers Are Highly Restricted in Specificity

    PubMed Central

    Hu, Joyce K.; Crampton, Jordan C.; Cupo, Albert; Ketas, Thomas; van Gils, Marit J.; Sliepen, Kwinten; de Taeye, Steven W.; Sok, Devin; Ozorowski, Gabriel; Deresa, Isaiah; Stanfield, Robyn; Ward, Andrew B.; Burton, Dennis R.; Klasse, Per Johan; Sanders, Rogier W.; Moore, John P.

    2015-01-01

    ABSTRACT Generating neutralizing antibodies (nAbs) is a major goal of many current HIV-1 vaccine efforts. To be of practical value, these nAbs must be both potent and cross-reactive in order to be capable of preventing the transmission of the highly diverse and generally neutralization resistant (Tier-2) HIV-1 strains that are in circulation. The HIV-1 envelope glycoprotein (Env) spike is the only target for nAbs. To explore whether Tier-2 nAbs can be induced by Env proteins, we immunized conventional mice with soluble BG505 SOSIP.664 trimers that mimic the native Env spike. Here, we report that it is extremely difficult for murine B cells to recognize the Env epitopes necessary for inducing Tier-2 nAbs. Thus, while trimer-immunized mice raised Env-binding IgG Abs and had high-quality T follicular helper (Tfh) cell and germinal center (GC) responses, they did not make BG505.T332N nAbs. Epitope mapping studies showed that Ab responses in mice were specific to areas near the base of the soluble trimer. These areas are not well shielded by glycans and likely are occluded on virions, which is consistent with the lack of BG505.T332N nAbs. These data inform immunogen design and suggest that it is useful to obscure nonneutralizing epitopes presented on the base of soluble Env trimers and that the glycan shield of well-formed HIV Env trimers is virtually impenetrable for murine B cell receptors (BCRs). IMPORTANCE Human HIV vaccine efficacy trials have not generated meaningful neutralizing antibodies to circulating HIV strains. One possible hindrance has been the lack of immunogens that properly mimic the native conformation of the HIV envelope trimer protein. Here, we tested the first generation of soluble, native-like envelope trimer immunogens in a conventional mouse model. We attempted to generate neutralizing antibodies to neutralization-resistant circulating HIV strains. Various vaccine strategies failed to induce neutralizing antibodies to a neutralization

  18. Extracellular proteins of Cryptococcus neoformans and host antibody response.

    PubMed Central

    Chen, L C; Pirofski, L A; Casadevall, A

    1997-01-01

    Proteins secreted by the fungal pathogen Cryptococcus neoformans may be involved in invasion and could be useful in vaccine design. Despite the medical importance of this fungus, little is known about its extracellular proteins or the immune response to these antigens. To study C. neoformans extracellular proteins, 12 strains were metabolically radiolabeled and protein supernatants were analyzed. Both strain- and growth condition-dependent differences were observed. Enzymatic assays of filtered culture supernatants revealed butyrate esterase and caprylate esterase lipase activity for 11 of 12 strains, as well as acid phosphatase, naphthol-AS-BI-phosphohydrolase, and beta-glucosidase activities in some strains. Serum from infected rodents immunoprecipitated several secreted proteins, consistent with in vivo expression and development of an antibody response. For strain 24067, two immunodominant species, of approximately 75 and 30 kDa, were recognized. The relative intensity of the autoradiographic bands depended on the route of infection for both rats and mice. In summary, our results indicate that (i) there are multiple proteins in C. neoformans culture supernatants, (ii) there are strain differences in supernatant protein profiles, (iii) there are differences in supernatant protein profile depending on the growth conditions, (iv) there are several new extracellular and/or cell-associated enzymatic activities, and (v) antibodies to several supernatant proteins are made in the course of infection. PMID:9199426

  19. Neutralizing and enhancing antibody responses to five genotypes of dengue virus type 1 (DENV-1) in DENV-1 patients.

    PubMed

    Yamanaka, Atsushi; Moi, Meng Ling; Takasaki, Tomohiko; Kurane, Ichiro; Konishi, Eiji

    2017-02-01

    Dengue virus (DENV) has four distinct serotypes, DENV-1-4, with four to six genotypes in each serotype. The World Health Organization recommends tetravalent formulations including one genotype of each serotype as safe and effective dengue vaccines. Here, we investigated the impact of genotype on the neutralizing antibody responses to DENV-1 in humans. Convalescent sera collected from patients with primary infection of DENV-1 were examined for neutralizing antibody against single-round infectious particles of the five DENV-1 genotypes (GI-GV). In both GI- and GIV-infected patients, their neutralizing antibody titres against the five genotypes were similar, differing ≤4-fold from the homogenotypic responses. The enhancing activities against the five genotypes were also similar in these sera. Thus, the genotype strains of DENV-1 showed no significant antigenic differences in these patients, suggesting that GI- or GIV-derived vaccine antigens should induce equivalent levels of neutralizing antibodies against all DENV-1 genotypes.

  20. Phosphocholine-Specific Antibodies Improve T-Dependent Antibody Responses against OVA Encapsulated into Phosphatidylcholine-Containing Liposomes

    PubMed Central

    Cruz-Leal, Yoelys; López-Requena, Alejandro; Lopetegui-González, Isbel; Machado, Yoan; Alvarez, Carlos; Pérez, Rolando; Lanio, María E.

    2016-01-01

    Liposomes containing phosphatidylcholine have been widely used as adjuvants. Recently, we demonstrated that B-1 cells produce dipalmitoyl-phosphatidylcholine (DPPC)-specific IgM upon immunization of BALB/c mice with DPPC-liposomes encapsulating ovalbumin (OVA). Although this preparation enhanced the OVA-specific humoral response, the contribution of anti-DPPC antibodies to this effect was unclear. Here, we demonstrate that these antibodies are secreted by B-1 cells independently of the presence of OVA in the formulation. We also confirm that these antibodies are specific for phosphocholine. The anti-OVA humoral response was partially restored in B-1 cells-deficient BALB/xid mice by immunization with the liposomes opsonized with the serum total immunoglobulin (Ig) fraction containing anti-phosphocholine antibodies, generated in wild-type animals. This result could be related to the increased phagocytosis by peritoneal macrophages of the particles opsonized with the serum total Ig or IgM fractions, both containing anti-phosphocholine antibodies. In conclusion, in the present work, it has been demonstrated that phosphocholine-specific antibodies improve T-dependent antibody responses against OVA carried by DPPC-liposomes. PMID:27713745

  1. Diversity of the murine antibody response targeting influenza A(H1N1pdm09) hemagglutinin

    PubMed Central

    Wilson, Jason R.; Tzeng, Wen-Pin; Spesock, April; Music, Nedzad; Guo, Zhu; Barrington, Robert; Stevens, James; Donis, Ruben O.; Katz, Jacqueline M.; York, Ian A.

    2016-01-01

    We infected mice with the 2009 influenza A pandemic virus (H1N1pdm09), boosted with an inactivated vaccine, and cloned immunoglobulins (Igs) from HA-specific B cells. Based on the redundancy in germline gene utilization, we inferred that between 72–130 unique IgH VDJ and 35 different IgL VJ combinations comprised the anti-HA recall response. The IgH VH1 and IgL VK14 variable gene families were employed most frequently. A representative panel of antibodies were cloned and expressed to confirm reactivity with H1N1pdm09 HA. The majority of the recombinant antibodies were of high avidity and capable of inhibiting H1N1pdm09 hemagglutination. Three of these antibodies were subtype-specific cross-reactive, binding to the HA of A/South Carolina/1/1918(H1N1), and one further reacted with A/swine/Iowa/15/1930(H1N1). These results help define the genetic diversity of the influenza anti-HA antibody repertoire profile induced following infection and vaccination, which may facilitate the development of influenza vaccines that are more protective and broadly neutralizing. Importance Protection against influenza viruses is mediated mainly by antibodies, and in most cases this antibody response is narrow, only providing protection against closely-related viruses. In spite of this limited range of protection, recent findings indicate individuals immune to one influenza virus may contain antibodies (generally a minority of the overall response) that are more broadly reactive. These findings have raised the possibility that influenza vaccines could induce a more broadly protective response, reducing the need for frequent vaccine strain changes. However, interpretation of these observations is hampered by the lack of quantitative characterization of the antibody repertoire. In this study, we used single-cell cloning of influenza HA-specific B cells to assess the diversity and nature of the antibody response to influenza hemagglutinin in mice. Our findings help put bounds on the

  2. Inhibition of chronic rejection by antibody induced vascular accommodation in fully allogeneic heart allografts.

    PubMed

    Semiletova, Natalya V; Shen, Xiu-Da; Baibakov, Boris; Feldman, Daniel M; Mukherjee, Kaushik; Frank, Jonathan M; Stepkowski, Stainslaw M; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Ghobrial, Rafik M

    2005-12-15

    The potential role of altered antibody responses as an effector protective mechanism to induce graft accommodation has been widely investigated in xenogeneic responses. Here we investigate the protective effects of antibody binding to vascular endothelium in a fully mismatched allogeneic model of heart transplantation. ACI recipients of WF cardiac grafts were treated either with allochimeric [alpha1h ]-RT1.A class I major histocompatibility complex (MHC) extracts (1 mg/rat, p.v. day 0) or high dose of CsA (10 mg/kg/day, p.o., day 0-6). Cardiac allografts were evaluated at 100 days posttransplant by immunohistology for evidence of chronic rejection and/or vascular accommodation. Activation of apoptotic or antiapoptotic mechanisms was verified by DNA fragmentation (TUNEL) analysis. Allochimeric therapy resulted in inhibition of chronic rejection, absence of neointimal formation and induction of vascular accommodation of fully allogeneic WF hearts in ACI hosts. Such accommodation was evident by IgG and IgM vascular endothelial binding and marked reduction of DNA fragmentation. In contrast, CsA therapy resulted in marked neointimal proliferation, without evidence of vascular accommodation. Immunohistochemical analysis failed to demonstrate vascular endothelial antibody binding. Further, severe chronic rejection following CsA treatment was accompanied by marked DNA fragmentation. Alteration of humoral immunity induces vascular accommodation in allogeneic transplantation. Vascular accommodation is the underlying mechanism for inhibition allograft vasculopathy following allochimeric MHC class I therapy.

  3. Human vaccination against Plasmodium vivax Duffy-binding protein induces strain-transcending antibodies

    PubMed Central

    Payne, Ruth O.; Silk, Sarah E.; Elias, Sean C.; Milne, Kathryn H.; Rawlinson, Thomas A.; Llewellyn, David; Shakri, A. Rushdi; Jin, Jing; Labbé, Geneviève M.; Edwards, Nick J.; Poulton, Ian D.; Roberts, Rachel; Farid, Ryan; Jørgensen, Thomas; Alanine, Daniel G.W.; de Cassan, Simone C.; Higgins, Matthew K.; Otto, Thomas D.; McCarthy, James S.; de Jongh, Willem A.; Nicosia, Alfredo; Moyle, Sarah; Hill, Adrian V.S.; Berrie, Eleanor; Chitnis, Chetan E.; Lawrie, Alison M.; Draper, Simon J.

    2017-01-01

    BACKGROUND. Plasmodium vivax is the most widespread human malaria geographically; however, no effective vaccine exists. Red blood cell invasion by the P. vivax merozoite depends on an interaction between the Duffy antigen receptor for chemokines (DARC) and region II of the parasite’s Duffy-binding protein (PvDBP_RII). Naturally acquired binding-inhibitory antibodies against this interaction associate with clinical immunity, but it is unknown whether these responses can be induced by human vaccination. METHODS. Safety and immunogenicity of replication-deficient chimpanzee adenovirus serotype 63 (ChAd63) and modified vaccinia virus Ankara (MVA) viral vectored vaccines targeting PvDBP_RII (Salvador I strain) were assessed in an open-label dose-escalation phase Ia study in 24 healthy UK adults. Vaccines were delivered by the intramuscular route in a ChAd63-MVA heterologous prime-boost regimen using an 8-week interval. RESULTS. Both vaccines were well tolerated and demonstrated a favorable safety profile in malaria-naive adults. PvDBP_RII–specific ex-vivo IFN-γ T cell, antibody-secreting cell, memory B cell, and serum IgG responses were observed after the MVA boost immunization. Vaccine-induced antibodies inhibited the binding of vaccine homologous and heterologous variants of recombinant PvDBP_RII to the DARC receptor, with median 50% binding-inhibition titers greater than 1:100. CONCLUSION. We have demonstrated for the first time to our knowledge that strain-transcending antibodies can be induced against the PvDBP_RII antigen by vaccination in humans. These vaccine candidates warrant further clinical evaluation of efficacy against the blood-stage P. vivax parasite. TRIAL REGISTRATION. Clinicaltrials.gov NCT01816113. FUNDING. Support was provided by the UK Medical Research Council, UK National Institute of Health Research Oxford Biomedical Research Centre, and the Wellcome Trust. PMID:28614791

  4. Neonatal Immunization with Respiratory Syncytial Virus Glycoprotein Fragment Induces Protective Immunity in the Presence of Maternal Antibodies in Mice

    PubMed Central

    Noh, Youran; Shim, Byoung-Shik; Cheon, In Su; Rho, Semi; Kim, Hee Joo; Choi, Youngjoo; Kang, Chang-Yuil; Chang, Jun

    2013-01-01

    Abstract Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections in infants and the elderly worldwide. The significant morbidity and mortality associated with this infection underscores the urgent need for development of RSV vaccine. In this study, we first show that intranasal administration of RSV glycoprotein core fragment (Gcf) to neonatal mice can induce systemic humoral immune responses and protective immunity against RSV without causing lung eosinophilia, although antibody response was shifted to a Th2 response. Next, we examined whether the presence of maternal anti-RSV antibodies would affect the responsiveness and protection efficacy of Gcf in newborn mice, since infants can possess RSV-specific maternal antibodies due to frequent RSV re-infections to adults. Intranasal administration of Gcf induced antibody response and increased IFNγ secretion and protected mice against RSV challenge without severe lung eosinophilia, even in the presence of high levels of RSV-specific maternal antibodies. Thus, our findings suggest that Gcf may be an effective and safe RSV vaccine during the neonatal period. PMID:23869549

  5. The humoral immune response induced by snake venom toxins.

    PubMed

    da Silva, Wilmar Dias; Tambourgi, Denise V

    2011-10-01

    This review summarizes the key contributions to our knowledge regarding the immune response induced by snake venom toxins, focusing particularly on the production of antibodies and their venom-neutralizing effects. We cover the past and present state of the art of anti-snake venom production, followed by an overview of the venomous snakes and their venoms. The toxic properties of relevant snake venom toxins are approached in some details, with particular emphasis on the molecular domains responsible for binding to cells or plasma components in victims. The interactions of these domains are also reviewed, particularly the putatively relevant epitopes, along with the immune system and the resulting antibodies. We also review trials aimed at reducing the quantities of non-relevant antibodies in the antivenoms by substituting whole venoms with purified toxins to immunize animals, or the immunogenicity of the heterologous antivenom antibodies by humanizing their molecules.

  6. Diversion of HIV-1 Vaccine-induced Immunity by gp41-Microbiota Cross-reactive Antibodies

    PubMed Central

    Williams, Wilton B; Liao, Hua-Xin; Moody, M. Anthony; Kepler, Thomas B.; Alam, S Munir; Gao, Feng; Wiehe, Kevin; Trama, Ashley M.; Jones, Kathryn; Zhang, Ruijun; Song, Hongshuo; Marshall, Dawn J; Whitesides, John F; Sawatzki, Kaitlin; Hua, Axin; Liu, Pinghuang; Tay, Matthew Z; Seaton, Kelly; Shen, Xiaoying; Foulger, Andrew; Lloyd, Krissey E.; Parks, Robert; Pollara, Justin; Ferrari, Guido; Yu, Jae-Sung; Vandergrift, Nathan; Montefiori, David C.; Sobieszczyk, Magdalena E; Hammer, Scott; Karuna, Shelly; Gilbert, Peter; Grove, Doug; Grunenberg, Nicole; McElrath, Julie; Mascola, John R.; Koup, Richard A; Corey, Lawrence; Nabel, Gary J.; Morgan, Cecilia; Churchyard, Gavin; Maenza, Janine; Keefer, Michael; Graham, Barney S.; Baden, Lindsey R.; Tomaras, Georgia D.; Haynes, Barton F.

    2015-01-01

    A HIV-1 DNA prime-recombinant Adenovirus Type 5 (rAd5) boost vaccine failed to protect from HIV-1 acquisition. We studied the nature of the vaccine-induced antibody (Ab) response to HIV-1 envelope (Env). HIV-1-reactive plasma Ab titers were higher to Env gp41 than gp120, and repertoire analysis demonstrated that 93% of HIV-1-reactive Abs from memory B cells was to Env gp41. Vaccine-induced gp41-reactive monoclonal antibodies (mAbs) were non-neutralizing, and frequently polyreactive with host and environmental antigens including intestinal microbiota (IM). Next generation sequencing of an IGHV repertoire prior to vaccination revealed an Env-IM cross-reactive Ab that was clonally-related to a subsequent vaccine-induced gp41-reactive Ab. Thus, HIV-1 Env DNA-rAd5 vaccine induced a dominant IM-polyreactive, non-neutralizing gp41-reactive Ab repertoire response that was associated with no vaccine efficacy. PMID:26229114

  7. Epigenetics of Peripheral B-Cell Differentiation and the Antibody Response

    PubMed Central

    Zan, Hong; Casali, Paolo

    2015-01-01

    Epigenetic modifications, such as histone post-translational modifications, DNA methylation, and alteration of gene expression by non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are heritable changes that are independent from the genomic DNA sequence. These regulate gene activities and, therefore, cellular functions. Epigenetic modifications act in concert with transcription factors and play critical roles in B cell development and differentiation, thereby modulating antibody responses to foreign- and self-antigens. Upon antigen encounter by mature B cells in the periphery, alterations of these lymphocytes epigenetic landscape are induced by the same stimuli that drive the antibody response. Such alterations instruct B cells to undergo immunoglobulin (Ig) class switch DNA recombination (CSR) and somatic hypermutation (SHM), as well as differentiation to memory B cells or long-lived plasma cells for the immune memory. Inducible histone modifications, together with DNA methylation and miRNAs modulate the transcriptome, particularly the expression of activation-induced cytidine deaminase, which is essential for CSR and SHM, and factors central to plasma cell differentiation, such as B lymphocyte-induced maturation protein-1. These inducible B cell-intrinsic epigenetic marks guide the maturation of antibody responses. Combinatorial histone modifications also function as histone codes to target CSR and, possibly, SHM machinery to the Ig loci by recruiting specific adaptors that can stabilize CSR/SHM factors. In addition, lncRNAs, such as recently reported lncRNA-CSR and an lncRNA generated through transcription of the S region that form G-quadruplex structures, are also important for CSR targeting. Epigenetic dysregulation in B cells, including the aberrant expression of non-coding RNAs and alterations of histone modifications and DNA methylation, can result in aberrant antibody responses to foreign antigens, such as those on microbial

  8. Maternal-foetal interaction, antibody formation, and metabolic response in mice immunized with pneumococcal polysacharides.

    PubMed Central

    Lee, C J

    1980-01-01

    The maternal transfer of pneumococcal polysaccharides to foetus, as well as the antibody formation and metabolic response were studied in mice exposed to pneumococcal polysaccharides during pregnancy. Type 19 and type 57 pneumococcal polysaccharides display cross-placental transfer to foetus. These polysaccharides also transfer through mother's milk to neonates. Maternal immunization of type 19 polysaccharide during pregnancy induced higher antibody formation in the offspring than the group from non-immunized mothers. Young mice, which received a second dose of polysaccharide at 2 weeks of age, showed a higher antibody response than those which did not receive polysacharide. Treatment of mothers with anti-lymphocyte serum, following by administration of polysaccharide, significantly increased the neonatal immune response to the polysaccharide. Treatment of the mother with a high dose of type 19 or type 57 polysaccharide did not cause significant changes in neonatal growth and organ weights. The offspring from mothers treated with high doses of these polysaccharides did not exhibit abnormalities in chemical contents of their tissues. PMID:7429553

  9. HIV-1 envelope glycoprotein immunogens to induce broadly neutralizing antibodies.

    PubMed

    Sliepen, Kwinten; Sanders, Rogier W

    2016-01-01

    The long pursuit for a vaccine against human immunodeficiency virus 1 (HIV-1) has recently been boosted by a number of exciting developments. An HIV-1 subunit vaccine ideally should elicit potent broadly neutralizing antibodies (bNAbs), but raising bNAbs by vaccination has proved extremely difficult because of the characteristics of the HIV-1 envelope glycoprotein complex (Env). However, the isolation of bNAbs from HIV-1-infected patients demonstrates that the human humoral immune system is capable of making such antibodies. Therefore, a focus of HIV-1 vaccinology is the elicitation of bNAbs by engineered immunogens and by using vaccination strategies aimed at mimicking the bNAb maturation pathways in HIV-infected patients. Important clues can also be taken from the successful subunit vaccines against hepatitis B virus and human papillomavirus. Here, we review the different types of HIV-1 immunogens and vaccination strategies that are being explored in the search for an HIV-1 vaccine that induces bNAbs.

  10. Novel Epstein-Barr virus-like particles incorporating gH/gL-EBNA1 or gB-LMP2 induce high neutralizing antibody titers and EBV-specific T-cell responses in immunized mice

    PubMed Central

    Perez, Elizabeth M.; Foley, Joslyn; Tison, Timelia; Silva, Rute; Ogembo, Javier Gordon

    2017-01-01

    Previous Epstein-Barr virus (EBV) prophylactic vaccines based on the major surface glycoprotein gp350/220 as an immunogen have failed to block viral infection in humans, suggesting a need to target other viral envelope glycoproteins. In this study, we reasoned that incorporating gH/gL or gB, critical glycoproteins for viral fusion and entry, on the surface of a virus-like particle (VLP) would be more immunogenic than gp350/220 for generating effective neutralizing antibodies to prevent viral infection of both epithelial and B cell lines. To boost the humoral response and trigger cell-mediated immunity, EBV nuclear antigen 1 (EBNA1) and latent membrane protein 2 (LMP2), intracellular latency proteins expressed in all EBV-infected cells, were also included as critical components of the polyvalent EBV VLP. gH/gL-EBNA1 and gB-LMP2 VLPs were efficiently produced in Chinese hamster ovary cells, an FDA-approved vehicle for mass-production of biologics. Immunization with gH/gL-EBNA1 and gB-LMP2 VLPs without adjuvant generated both high neutralizing antibody titers in vitro and EBV-specific T-cell responses in BALB/c mice. These data demonstrate that EBV glycoprotein(s)-based VLPs have excellent immunogenicity, and represent a potentially safe vaccine that will be invaluable not only in preventing EBV infection, but importantly, in preventing and treating the 200,000 cases of EBV-associated cancers that occur globally every year. PMID:27926486

  11. Delayed adaptive immunity is related to higher MMR vaccine-induced antibody titers in children.

    PubMed

    Strömbeck, Anna; Lundell, Anna-Carin; Nordström, Inger; Andersson, Kerstin; Adlerberth, Ingegerd; Wold, Agnes E; Rudin, Anna

    2016-04-01

    There are notable inter-individual variations in vaccine-specific antibody responses in vaccinated children. The aim of our study was to investigate whether early-life environmental factors and adaptive immune maturation prior and close to measles-mumps-rubella (MMR) immunization relate to magnitudes of vaccine-specific antibody titers. In the FARMFLORA birth cohort, including both farming and non-farming families, children were immunized with the MMR vaccine at 18 months of age. MMR vaccine-induced antibody titers were measured in plasma samples obtained at 36 months of age. Infants' blood samples obtained at birth, 3-5 days and at 4 and 18 months of age were analyzed for T- and B-cell numbers, proportions of naive and memory T and B cells, and fractions of putative regulatory T cells. Multivariate factor analyses show that higher anti-MMR antibody titers were associated with a lower degree of adaptive immune maturation, that is, lower proportions of memory T cells and a lower capacity of mononuclear cells to produce cytokines, but with higher proportions of putative regulatory T cells. Further, children born by cesarean section (CS) had significantly higher anti-measles titers than vaginally-born children; and CS was found to be associated with delayed adaptive immunity. Also, girls presented with significantly higher anti-mumps and anti-rubella antibody levels than boys at 36 months of age. These results indicate that delayed adaptive immune maturation before and in close proximity to immunization seems to be advantageous for the ability of children to respond with higher anti-MMR antibody levels after vaccination.

  12. Delayed adaptive immunity is related to higher MMR vaccine-induced antibody titers in children

    PubMed Central

    Strömbeck, Anna; Lundell, Anna-Carin; Nordström, Inger; Andersson, Kerstin; Adlerberth, Ingegerd; Wold, Agnes E; Rudin, Anna

    2016-01-01

    There are notable inter-individual variations in vaccine-specific antibody responses in vaccinated children. The aim of our study was to investigate whether early-life environmental factors and adaptive immune maturation prior and close to measles–mumps–rubella (MMR) immunization relate to magnitudes of vaccine-specific antibody titers. In the FARMFLORA birth cohort, including both farming and non-farming families, children were immunized with the MMR vaccine at 18 months of age. MMR vaccine-induced antibody titers were measured in plasma samples obtained at 36 months of age. Infants' blood samples obtained at birth, 3–5 days and at 4 and 18 months of age were analyzed for T- and B-cell numbers, proportions of naive and memory T and B cells, and fractions of putative regulatory T cells. Multivariate factor analyses show that higher anti-MMR antibody titers were associated with a lower degree of adaptive immune maturation, that is, lower proportions of memory T cells and a lower capacity of mononuclear cells to produce cytokines, but with higher proportions of putative regulatory T cells. Further, children born by cesarean section (CS) had significantly higher anti-measles titers than vaginally-born children; and CS was found to be associated with delayed adaptive immunity. Also, girls presented with significantly higher anti-mumps and anti-rubella antibody levels than boys at 36 months of age. These results indicate that delayed adaptive immune maturation before and in close proximity to immunization seems to be advantageous for the ability of children to respond with higher anti-MMR antibody levels after vaccination. PMID:27195118

  13. Antibody response in silver catfish (Rhamdia quelen) immunized with a model antigen associated with different adjuvants

    PubMed Central

    Pavan, T.R.; Di Domenico, J.; Kirsten, K.S.; Nied, C.O.; Frandoloso, R.; Kreutz, L.C.

    2016-01-01

    Adjuvants are essential to boost the immune response to inoculated antigen and play a central role in vaccine development. In this study, we investigated the efficacy of several adjuvants in the production of anti-bovine serum albumin (BSA) antibodies in silver catfish. Two hundred and seventy juvenile silver catfish (60–80 g) of both sexes were intraperitoneally vaccinated with BSA (200 µg/fish) alone or mixed to the following adjuvants: Freund’s complete adjuvant (FCA), Freund’s incomplete adjuvant (FIA), aluminum hydroxide (AlOH), Montanide, four types of cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs) and three concentrations of β-glucan, and the immune enhancing property was evaluated by measuring anti-BSA antibodies in blood samples at biweekly intervals. Our results demonstrated that CpGs ODNs and β-glucan were as effective as classical adjuvants (FCA, FIA, AlOH and Montanide) in promoting anti-BSA antibodies and that the kinetics of antibody production induced by all adjuvants used in our study had a similar trend to that observed in other fish species, with a peak at 28 days post-vaccination. These results may be useful for the selection of adjuvants for vaccine formulation intended for silver catfish and for the development of vaccine and vaccination strategies to other fish species. PMID:27464022

  14. Anti-VSG antibodies induce an increase in Trypanosoma evansi intracellular Ca2+ concentration.

    PubMed

    Mendoza, M; Uzcanga, G L; Pacheco, R; Rojas, H; Carrasquel, L M; García-Marchan, Y; Serrano-Martín, X; Benaím, G; Bubis, J; Mijares, A

    2008-09-01

    Trypanosoma evansi and Trypanosoma vivax have shown a very high immunological cross-reactivity. Anti-T. vivax antibodies were used to monitor changes in the T. evansi intracellular Ca2+ concentration ([Ca2+]i) by fluorometric ratio imaging from single parasites. A short-time exposure of T. evansi parasites to sera from T. vivax-infected bovines induced an increase in [Ca2+]i, which generated their complete lysis. The parasite [Ca2+]i boost was reduced but not eliminated in the absence of extracellular Ca2+ or following serum decomplementation. Decomplemented anti-T. evansi VSG antibodies also produced an increase in the parasite [Ca2+]i, in the presence of extracellular Ca2+. Furthermore, this Ca2+ signal was reduced following blockage with Ni2+ or in the absence of extracellular Ca2+, suggesting that this response was a combination of an influx of Ca2+ throughout membrane channels and a release of this ion from intracellular stores. The observed Ca2+ signal was specific since (i) it was completely eliminated following pre-incubation of the anti-VSG antibodies with the purified soluble VSG, and (ii) affinity-purified anti-VSG antibodies also generated an increase in [Ca2+]i by measurements on single cells or parasite populations. We also showed that an increase of the T. evansi [Ca2+]i by the calcium A-23187 ionophore led to VSG release from the parasite surface. In addition, in vivo immunofluorescence labelling revealed that anti-VSG antibodies induced the formation of raft patches of VSG on the parasite surface. This is the first study to identify a ligand that is coupled to calcium flux in salivarian trypanosomes.

  15. Regulation of secondary antibody responses in rodents. I. Potentiation of IgG production by cyclophosphamide.

    PubMed Central

    Gagnon, R F; MacLennan, I C

    1979-01-01

    This paper describes the effects of a single dose of cyclophosphamide on specific IgG production in rats during an established secondary immune response. (PVG X Agus)F1 rats were immunized twice (days 0 and 28) with chicken erythrocytes (CRBC), received cyclophosphamide (100 mg/m2 of body surface area) on day 33 and were killed 8 days later. The production of anti-CRBC IgG antibodies was assessed by testing the supernatants of spleen cell cultures in a cytotoxicity assay with 51Cr-labelled CRBC as target cells and normal rat spleen cells as effector cells. In observations of fifty-nine pairs of treated and untreated rats from eight separate experiments, the administration of cyclophosphamide resulted in: (1) a decrease in the number of spleen cell to a median of 10(8.63) from a median of 10(8.7) (P less than 0.0025); (2) an increase in the anti-CRBC IgG antibody titre of the supernatants of cultured spleen cells to a median of 10(0.67) from a median of 10(0.27 (P less than 0.0025); and (3) the calculated anti-CRBC. IgG antibody production per spleen to be increased in the drug-treated rats to a median of 10(2.26) from a median of 10(2.0) (P less than 0.005). In a cyclophosphamide dose-response study, it was shown that some enhancement of antibody production was induced by doses between 12.5 and 50 mg/m2 and consistently elevated levels of antibody production were associated with doses between 100 and 400 mg/m2. PMID:487659

  16. Comparative human and mouse antibody responses against tetanus toxin at clonal level.

    PubMed

    Yousefi, Mehdi; Younesi, Vahid; Bayat, Ali Ahmad; Jadidi-Niaragh, Farhad; Abbasi, Ebrahim; Razavi, Alireza; Khosravi-Eghbal, Roya; Asgarin-Omran, Hossein; Shokri, Fazel

    2016-01-01

    Tetanus is a highly fatal disease caused by tetanus neurotoxin (TeNT) and remains a major threat to human and animal health, despite preventive strategies. TeNT is composed of heavy and light chain linked by a disulfide bond. The antibody response to TeNT is polyclonal and directed to multiple epitopes within both the light and heavy chains, leading to toxin neutralization. This study was undertaken to localize and compare neutralizing epitopes recognized by human and mouse TeNT-specific antibodies at a clonal level. In the present study, 22 murine hybridoma clones and 50 human lymphoblastoid cell lines secreting monoclonal antibodies (mAb) were generated against TeNT. The specificity of these mAb was determined using different recombinant fragments of tetanus toxin. Moreover, this study investigated the in vitro toxin neutralizing activity of these mAb by a ganglioside GT1b assay. The results showed that tetanus toxoid immunization in humans and BALB/c mice induced a vigorous humoral immune response against different fragments of TeNT, particularly the carboxyl-terminal fragment of the heavy chain (known as fragment C). The fragment C-specific human and mouse mAb could largely neutralize TeNT. However, while all fragment C-specific human mAb reacted with the carboxyl-terminal part of this fragment (H(CC)), the majority of the mouse mAb failed to recognize this region. These results suggested that fragment C is the major target for the TeNT neutralizing antibodies, although different epitopes seem to be targeted by human and mouse antibodies.

  17. Improved diffusion chamber cultures for cytokinetic analysis of antibody response

    PubMed Central

    Nettesheim, P.; Makinodan, T.; Chadwick, Carol J.

    1966-01-01

    Diffusion chambers (3×10 mm) constructed with 0.1 μ porosity filters, but not with 0.45 μ or greater porosity filters, were found to be consistently cell impermeable, with use of acryloid as the glueing agent. The filters permit free diffusion of 19S and 7S antibodies into `empty' chambers in vivo and in vitro. Pronase treatment of the chamber dissolves the clot and frees cells attached to the inner surfaces. This permits almost complete recovery of the chamber culture cells. Chamber cultures can be readily transferred from one host to another and kept in vitro at room temperature for at least 6 hours without any loss of activity. In vivo diffusion problems arise after 1 month of culture, most probably due to excessive growth of peritoneal cells on the outer surface of the filters; this limitation can be overcome by serial in vivo transfer of the chamber and wiping the outer surface at the time of transfer. The diffusion chamber culture method as described here fulfills all the prerequisites of an assay system with which one can perform precise cytokinetic analysis of antibody response. ImagesFIG. 3 PMID:5926065

  18. Antibody Response In Vitro to an Animal Virus: Production of Rabies Virus Neutralizing Antibodies by Mouse Cells in Culture

    PubMed Central

    Koprowski, H.; Mocarelli, P.; Wiktor, T. J.

    1972-01-01

    Rabies virus neutralizing antibodies were produced in vitro by the exposure of mouse spleen cells to live and inactivated rabies virus suspensions and to sheep erythrocytes coated with rabies virus. These antibodies did not neutralize two other rhabdoviruses: Kern Canyon and vesicular stomatitis viruses, and were precipitable by treatment with an antiserum to mouse IgG. Removal of “glass-adhering” cells from mouse spleen cell suspensions abolished the antibody response, which could be restored by the addition of mouse peritoneal exudate cells, rich in macrophages. PMID:4341695

  19. Attenuation of Nitrogen Mustard-Induced Pulmonary Injury and Fibrosis by Anti-Tumor Necrosis Factor-α Antibody.

    PubMed

    Malaviya, Rama; Sunil, Vasanthi R; Venosa, Alessandro; Verissimo, Vivianne L; Cervelli, Jessica A; Vayas, Kinal N; Hall, LeRoy; Laskin, Jeffrey D; Laskin, Debra L

    2015-11-01

    Nitrogen mustard (NM) is a bifunctional alkylating agent that causes acute injury to the lung that progresses to fibrosis. This is accompanied by a prominent infiltration of macrophages into the lung and upregulation of proinflammatory/profibrotic cytokines including tumor necrosis factor (TNF)α. In these studies, we analyzed the ability of anti-TNFα antibody to mitigate NM-induced lung injury, inflammation, and fibrosis. Treatment of rats with anti-TNFα antibody (15 mg/kg, iv, every 9 days) beginning 30 min after intratracheal administration of NM (0.125 mg/kg) reduced progressive histopathologic alterations in the lung including perivascular and peribronchial edema, macrophage/monocyte infiltration, interstitial thickening, bronchiolization of alveolar walls, fibrin deposition, emphysema, and fibrosis. NM-induced damage to the alveolar-epithelial barrier, measured by bronchoalveolar lavage (BAL) protein and cell content, was also reduced by anti-TNFα antibody, along with expression of the oxidative stress marker, heme oxygenase-1. Whereas the accumulation of proinflammatory/cytotoxic M1 macrophages in the lung in response to NM was suppressed by anti-TNFα antibody, anti-inflammatory/profibrotic M2 macrophages were increased or unchanged. Treatment of rats with anti-TNFα antibody also reduced NM-induced increases in expression of the profibrotic mediator, transforming growth factor-β. This was associated with a reduction in NM-induced collagen deposition in the lung. These data suggest that inhibiting TNFα may represent an efficacious approach to mitigating lung injury induced by mustards.

  20. Antibody and T-cell responses associated with experimental human malaria infection or vaccination show limited relationships.

    PubMed

    Walker, Karen M; Okitsu, Shinji; Porter, David W; Duncan, Christopher; Amacker, Mario; Pluschke, Gerd; Cavanagh, David R; Hill, Adrian V S; Todryk, Stephen M

    2015-05-01

    This study examined specific antibody and T-cell responses associated with experimental malaria infection or malaria vaccination, in malaria-naive human volunteers within phase I/IIa vaccine trials, with a view to investigating inter-relationships between these types of response. Malaria infection was via five bites of Plasmodium falciparum-infected mosquitoes, with individuals reaching patent infection by 11-12 days, having harboured four or five blood-stage cycles before drug clearance. Infection elicited a robust antibody response against merozoite surface protein-119 , correlating with parasite load. Classical class switching was seen from an early IgM to an IgG1-dominant response of increasing affinity. Malaria-specific T-cell responses were detected in the form of interferon-γ and interleukin-4 (IL-4) ELIspot, but their magnitude did not correlate with the magnitude of antibody or its avidity, or with parasite load. Different individuals who were immunized with a virosome vaccine comprising influenza antigens combined with P. falciparum antigens, demonstrated pre-existing interferon-γ, IL-2 and IL-5 ELIspot responses against the influenza antigens, and showed boosting of anti-influenza T-cell responses only for IL-5. The large IgG1-dominated anti-parasite responses showed limited correlation with T-cell responses for magnitude or avidity, both parameters being only negatively correlated for IL-5 secretion versus anti-apical membrane antigen-1 antibody titres. Overall, these findings suggest that cognate T-cell responses across a range of magnitudes contribute towards driving potentially effective antibody responses in infection-induced and vaccine-induced immunity against malaria, and their existence during immunization is beneficial, but magnitudes are mostly not inter-related.

  1. Invasive African Salmonella Typhimurium induces bactericidal antibodies against O-antigens.

    PubMed

    Rondini, Simona; Lanzilao, Luisa; Necchi, Francesca; O'Shaughnessy, Colette M; Micoli, Francesca; Saul, Allan; MacLennan, Calman A

    2013-10-01

    Nontyphoidal Salmonella are a major and emerging cause of fatal invasive disease in Africa, and are genetically distinct from those found elsewhere in the world. Understanding the targets of protective immunity to these African Salmonellae is key to vaccine development. We immunized mice and rabbits with heat-inactivated wild-type African invasive Salmonella Typhimurium D23580 and rough mutants lacking O-antigen. Wild-type Salmonella, unlike rough bacteria, induced a large bactericidal antibody response mainly against O-antigen. Bactericidal ability of anti-O-antigen antibodies was confirmed following purification by affinity chromatography. The current findings support the development of an O-antigen conjugate vaccine against invasive nontyphoidal Salmonellae for Africa.

  2. Behavioral and Psychological Responses to HIV Antibody Testing.

    ERIC Educational Resources Information Center

    Jacobsen, Paul B.; And Others

    1990-01-01

    Considers effects of informing individuals of their antibody status as determined by human immunodeficiency virus (HIV) antibody testing. Reviews research examining changes in psychological distress and in behaviors associated with HIV infections among individuals who have undergone antibody testing. Identifies methodological issues in studying…

  3. Behavioral and Psychological Responses to HIV Antibody Testing.

    ERIC Educational Resources Information Center

    Jacobsen, Paul B.; And Others

    1990-01-01

    Considers effects of informing individuals of their antibody status as determined by human immunodeficiency virus (HIV) antibody testing. Reviews research examining changes in psychological distress and in behaviors associated with HIV infections among individuals who have undergone antibody testing. Identifies methodological issues in studying…

  4. Kinetics of antibody response to Coxiella burnetii infection (Q fever): Estimation of the seroresponse onset from antibody levels.

    PubMed

    Wielders, C C H; Teunis, P F M; Hermans, M H A; van der Hoek, W; Schneeberger, P M

    2015-12-01

    From 2007 to 2009, the Netherlands experienced a major Q fever epidemic. Long-term serological follow-up of acute Q fever patients enabled the investigation of longitudinal antibody responses and estimating the onset of the seroresponse in individual patients. All available IgG and IgM phase I and II antibody measurements determined by immunofluorescence assay at month 3, 6, 12, and 48 from 2321 acute Q fever patients were retrospectively analyzed. Characteristic features of the antibody response were calculated. To model the seroresponse onset, serological data from patients diagnosed with a positive C. burnetii PCR test (n=364), and therefore with a known time of infection, were used as reference. In 9083 IgG samples and 3260 IgM samples large heterogeneity in shape and magnitude of antibody responses was observed. Phase II reached higher levels than phase I, and IgG antibodies were more persistent than IgM. The estimated seroresponse latency allowed for determining the time since start of the seroresponse from the concentrations of the different antibodies against C. burnetii. The extraordinary large serological dataset provides new insight into the kinetics of the immunoglobulins against C. burnetii antigens. This knowledge is useful for seroprevalence studies and helps to better understand infection dynamics. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Antibodies Are Required for Complete Vaccine-Induced Protection against Herpes Simplex Virus 2

    PubMed Central

    Halford, William P.; Geltz, Joshua; Messer, Ronald J.; Hasenkrug, Kim J.

    2015-01-01

    Herpes simplex virus 2 (HSV-2) 0ΔNLS is a live HSV-2 ICP0- mutant vaccine strain that is profoundly attenuated in vivo due to its interferon-hypersensitivity. Recipients of the HSV-2 0ΔNLS vaccine are resistant to high-dose HSV-2 challenge as evidenced by profound reductions in challenge virus spread, shedding, disease and mortality. In the current study, we investigated the requirements for HSV-2 0ΔNLS vaccine-induced protection. Studies using (UV)-inactivated HSV-2 0ΔNLS revealed that self-limited replication of the attenuated virus was required for effective protection from vaginal or ocular HSV-2 challenge. Diminished antibody responses in recipients of the UV-killed HSV-2 vaccine suggested that antibodies might be playing a critical role in early protection. This hypothesis was investigated in B-cell-deficient μMT mice. Vaccination with live HSV-2 0ΔNLS induced equivalent CD8+ T cell responses in wild-type and μMT mice. Vaccinated μMT mice shed ~40-fold more infectious HSV-2 at 24 hours post-challenge relative to vaccinated wild-type (B-cell+) mice, and most vaccinated μMT mice eventually succumbed to a slowly progressing HSV-2 challenge. Importantly, passive transfer of HSV-2 antiserum restored full protection to HSV-2 0ΔNLS-vaccinated μMT mice. The results demonstrate that B cells are required for complete vaccine-induced protection against HSV-2, and indicate that virus-specific antibodies are the dominant mediators of early vaccine-induced protection against HSV-2. PMID:26670699

  6. Antibodies Are Required for Complete Vaccine-Induced Protection against Herpes Simplex Virus 2.

    PubMed

    Halford, William P; Geltz, Joshua; Messer, Ronald J; Hasenkrug, Kim J

    2015-01-01

    Herpes simplex virus 2 (HSV-2) 0ΔNLS is a live HSV-2 ICP0- mutant vaccine strain that is profoundly attenuated in vivo due to its interferon-hypersensitivity. Recipients of the HSV-2 0ΔNLS vaccine are resistant to high-dose HSV-2 challenge as evidenced by profound reductions in challenge virus spread, shedding, disease and mortality. In the current study, we investigated the requirements for HSV-2 0ΔNLS vaccine-induced protection. Studies using (UV)-inactivated HSV-2 0ΔNLS revealed that self-limited replication of the attenuated virus was required for effective protection from vaginal or ocular HSV-2 challenge. Diminished antibody responses in recipients of the UV-killed HSV-2 vaccine suggested that antibodies might be playing a critical role in early protection. This hypothesis was investigated in B-cell-deficient μMT mice. Vaccination with live HSV-2 0ΔNLS induced equivalent CD8+ T cell responses in wild-type and μMT mice. Vaccinated μMT mice shed ~40-fold more infectious HSV-2 at 24 hours post-challenge relative to vaccinated wild-type (B-cell+) mice, and most vaccinated μMT mice eventually succumbed to a slowly progressing HSV-2 challenge. Importantly, passive transfer of HSV-2 antiserum restored full protection to HSV-2 0ΔNLS-vaccinated μMT mice. The results demonstrate that B cells are required for complete vaccine-induced protection against HSV-2, and indicate that virus-specific antibodies are the dominant mediators of early vaccine-induced protection against HSV-2.

  7. Protective contributions against invasive Streptococcus pneumoniae pneumonia of antibody and Th17-cell responses to nasopharyngeal colonisation.

    PubMed

    Cohen, Jonathan M; Khandavilli, Suneeta; Camberlein, Emilie; Hyams, Catherine; Baxendale, Helen E; Brown, Jeremy S

    2011-01-01

    The nasopharyngeal commensal bacteria Streptococcus pneumoniae is also a frequent cause of serious infections. Nasopharyngeal colonisation with S. pneumoniae inhibits subsequent re-colonisation by inducing Th17-cell adaptive responses, whereas vaccination prevents invasive infections by inducing antibodies to S. pneumoniae capsular polysaccharides. In contrast, protection against invasive infection after nasopharyngeal colonisation with mutant S. pneumoniae strains was associated with antibody responses to protein antigens. The role of colonisation-induced Th17-cell responses during subsequent invasive infections is unknown. Using mouse models, we show that previous colonisation with S. pneumoniae protects against subsequent lethal pneumonia mainly by preventing bacteraemia with a more modest effect on local control of infection within the lung. Previous colonisation resulted in CD4-dependent increased levels of Th17-cell cytokines during subsequent infectious challenge. However, mice depleted of CD4 cells prior to challenge remained protected against bacteraemia, whereas no protection was seen in antibody deficient mice and similar protection could be achieved through passive transfer of serum. Serum from colonised mice but not antibody deficient mice promoted phagocytosis of S. pneumoniae, and previously colonised mice were able to rapidly clear S. pneumoniae from the blood after intravenous inoculation. Thus, despite priming for a Th17-cell response during subsequent infection, the protective effects of prior colonisation in this model was not dependent on CD4 cells but on rapid clearance of bacteria from the blood by antibody-mediated phagocytosis. These data suggest that whilst nasopharyngeal colonisation induces a range of immune responses, the effective protective responses depend upon the site of subsequent infection.

  8. Protective Contributions against Invasive Streptococcus pneumoniae Pneumonia of Antibody and Th17-Cell Responses to Nasopharyngeal Colonisation

    PubMed Central

    Cohen, Jonathan M.; Khandavilli, Suneeta; Camberlein, Emilie; Hyams, Catherine; Baxendale, Helen E.; Brown, Jeremy S.

    2011-01-01

    The nasopharyngeal commensal bacteria Streptococcus pneumoniae is also a frequent cause of serious infections. Nasopharyngeal colonisation with S. pneumoniae inhibits subsequent re-colonisation by inducing Th17-cell adaptive responses, whereas vaccination prevents invasive infections by inducing antibodies to S. pneumoniae capsular polysaccharides. In contrast, protection against invasive infection after nasopharyngeal colonisation with mutant S. pneumoniae strains was associated with antibody responses to protein antigens. The role of colonisation-induced Th17-cell responses during subsequent invasive infections is unknown. Using mouse models, we show that previous colonisation with S. pneumoniae protects against subsequent lethal pneumonia mainly by preventing bacteraemia with a more modest effect on local control of infection within the lung. Previous colonisation resulted in CD4-dependent increased levels of Th17-cell cytokines during subsequent infectious challenge. However, mice depleted of CD4 cells prior to challenge remained protected against bacteraemia, whereas no protection was seen in antibody deficient mice and similar protection could be achieved through passive transfer of serum. Serum from colonised mice but not antibody deficient mice promoted phagocytosis of S. pneumoniae, and previously colonised mice were able to rapidly clear S. pneumoniae from the blood after intravenous inoculation. Thus, despite priming for a Th17-cell response during subsequent infection, the protective effects of prior colonisation in this model was not dependent on CD4 cells but on rapid clearance of bacteria from the blood by antibody-mediated phagocytosis. These data suggest that whilst nasopharyngeal colonisation induces a range of immune responses, the effective protective responses depend upon the site of subsequent infection. PMID:22003400

  9. Tailoring subunit vaccine immunogenicity: maximizing antibody and T cell responses by using combinations of adenovirus, poxvirus and protein-adjuvant vaccines against Plasmodium falciparum MSP1.

    PubMed

    Douglas, Alexander D; de Cassan, Simone C; Dicks, Matthew D J; Gilbert, Sarah C; Hill, Adrian V S; Draper, Simon J

    2010-10-18

    Subunit vaccination modalities tend to induce particular immune effector responses. Viral vectors are well known for their ability to induce strong T cell responses, while protein-adjuvant vaccines have been used primarily for induction of antibody responses. Here, we demonstrate in mice using a Plasmodium falciparum merozoite surface protein 1 (PfMSP1) antigen that novel regimes combining adenovirus and poxvirus vectored vaccines with protein antigen in Montanide ISA720 adjuvant can achieve simultaneous antibody and T cell responses which equal, or in some cases surpass, the best immune responses achieved by either the viral vectors or the protein vaccine alone. Such broad responses can be achieved either using three-stage vaccination protocols, or with an equally effective two-stage protocol in which viral vectors are admixed with protein and adjuvant, and were apparent despite the use of a protein antigen that represented only a portion of the viral vector antigen. We describe further possible advantages of viral vectors in achieving consistent antibody priming, enhanced antibody avidity, and cytophilic isotype skew. These data strengthen the evidence that tailored combinations of vaccine platforms can achieve desired combinations of immune responses, and further encourage the co-administration of antibody-inducing recombinant protein vaccines with T cell- and antibody-inducing recombinant viral vectors as one strategy that may achieve protective blood-stage malaria immunity in humans. Copyright © 2010. Published by Elsevier Ltd.

  10. Role of Antibody Response in Recovery from K-Papovavirus Infection in Mice

    PubMed Central

    Mokhtarian, Foroozan; Shah, Keerti V.

    1980-01-01

    Intraperitoneal inoculation of mouse K papovavirus into infant (2 to 4 days old) Swiss albino mice produced a high-titered viremia which persisted until death due to pneumonitis on day 9 postinfection. Lungs and livers of these mice had virus-specific immunofluorescence and histological lesions. K-virus antibody was undetectable. Three- to four-week-old mice, although as susceptible to infection as infant mice, remained healthy and developed a much lower-titered viremia, a transient lung infection, and K-virus antibody on 4 to 5 days postinfection. Three- to four-week-old mice treated with cyclophosphamide developed a high-titered viremia with death 10 to 17 days postinfection and no detectable antibodies. A single intraperitoneal inoculation of K-virus antibody at 5 h or 1 day postinfection completely protected the infant Swiss albino mice. Partial protection was achieved when antibody was transferred on days 2, 3, and 4 postinoculation. Transfer of antibody to cytoxan-treated Swiss albino mice on days 3 and 6 postinfection completely portected them against K-virus-induced lesions and mortality. Transfer of normal adult BALB/c splenocytes to syngeneic infant mice before K-virus infection did not protect from death but increased survival time. Transfer of 4- to 12-day K-virus-primed adult splenocytes before infection gave a nearly 100% protection. When given before infection, the protection afforded by T-cell-enriched and B-cell-enriched adult primed splenocytes was 0 and 100%, respectively. Transfer of primed B cells on day 1 post-inoculation completely protected the infant mice. This protection decreased to 86, 57, and 56% when the primed B cells were transferred on days 2, 3, and 4 post-inoculation, respectively. These data suggest that the antibody response is of critical importance in the recovery of mice from K-virus infection. Antibody probably acts by aborting viremia, thereby preventing extensive seeding of lungs with virus. ImagesFig. 1Fig. 2Fig. 2 PMID

  11. Extrafollicular B cell activation by marginal zone dendritic cells drives T cell–dependent antibody responses

    PubMed Central

    Draves, Kevin E.; Giltiay, Natalia V.; Clark, Edward A.

    2012-01-01

    Dendritic cells (DCs) are best known for their ability to activate naive T cells, and emerging evidence suggests that distinct DC subsets induce specialized T cell responses. However, little is known concerning the role of DC subsets in the initiation of B cell responses. We report that antigen (Ag) delivery to DC-inhibitory receptor 2 (DCIR2) found on marginal zone (MZ)–associated CD8α− DCs in mice leads to robust class-switched antibody (Ab) responses to a T cell–dependent (TD) Ag. DCIR2+ DCs induced rapid up-regulation of multiple B cell activation markers and changes in chemokine receptor expression, resulting in accumulation of Ag-specific B cells within extrafollicular splenic bridging channels as early as 24 h after immunization. Ag-specific B cells primed by DCIR2+ DCs were remarkably efficient at driving naive CD4 T cell proliferation, yet DCIR2-induced responses failed to form germinal centers or undergo affinity maturation of serum Ab unless toll-like receptor (TLR) 7 or TLR9 agonists were included at the time of immunization. These results demonstrate DCIR2+ DCs have a unique capacity to initiate extrafollicular B cell responses to TD Ag, and thus define a novel division of labor among splenic DC subsets for B cell activation during humoral immune responses. PMID:22966002

  12. Oral antibiotics enhance antibody responses to keyhole limpet hemocyanin in orally but not muscularly immunized chickens.

    PubMed

    Murai, Atsushi; Kitahara, Kazuki; Okumura, Shouta; Kobayashi, Misato; Horio, Fumihiko

    2016-02-01

    Recent studies have emphasized the crucial role of gut microbiota in triggering and modulating immune response. We aimed to determine whether the modification of gut microbiota by oral co-administration of two antibiotics, ampicillin and neomycin, would lead to changes in the antibody response to antigens in chickens. Neonatal chickens were given or not given ampicillin and neomycin (0.25 and 0.5 g/L, respectively) in drinking water. At 2 weeks of age, the chicks were muscularly or orally immunized with antigenic keyhole limpet hemocyanin (KLH), and then serum anti-KLH antibody levels were examined by ELISA. In orally immunized chicks, oral antibiotics treatment enhanced antibody responses (IgM, IgA, IgY) by 2-3-fold compared with the antibiotics-free control, while the antibiotics did not enhance antibody responses in the muscularly immunized chicks. Concomitant with their enhancement of antibody responses, the oral antibiotics also lowered the Lactobacillus species in feces. Low doses of antibiotics (10-fold and 100-fold lower than the initial trial), which failed to change the fecal Lactobacillus population, did not modify any antibody responses when chicks were orally immunized with KLH. In conclusion, oral antibiotics treatment enhanced the antibody response to orally exposed antigens in chickens. This enhancement of antibody response was associated with a modification of the fecal Lactobacillus content, suggesting a possible link between gut microbiota and antibody response in chickens. © 2015 Japanese Society of Animal Science.

  13. Antibody responses to an immunodominant nonstructural 1 synthetic peptide in patients with dengue fever and dengue hemorrhagic fever.

    PubMed

    Huang, J H; Wey, J J; Sun, Y C; Chin, C; Chien, L J; Wu, Y C

    1999-01-01

    Two flaviviruses, dengue (DEN) virus and Japanese encephalitis (JE) virus, are important because of their global distribution and the frequency of epidemics in tropical and subtropical areas. To study the B-cell epitopes of nonstructural 1 (NS1) glycoprotein and anti-NS1 antibody response in DEN infection, a series of 15-mer synthetic peptides from the predicted B-cell linear epitopes of DEN-2 NS1 protein were prepared. Enzyme-linked immunosorbent assay (ELISA) was performed to analyze antibody responses to these peptides from sera of both DEN and JE patients. One peptide derived from DEN-2 NS1, D2 NS1-P1 (amino acids 1-15), was identified as the immunodominant epitope that reacted with sera from dengue fever (DF) patients but not JE patients. The isotype of D2 NS1-P1-specific antibodies was mainly immunoglobulin M (IgM) in all sera that tested positive. A specificity study demonstrated that sera from all four DEN types reacted with D2 NS1-P1. A dynamics study showed that specific antibodies to this peptide could be detected as early as 2 days after the onset of symptoms. We observed significant anti-D2 NS1-P1 antibody responses in 45% of patients with primary and secondary infections with DF or with dengue hemorrhagic fever. This is the first report demonstrating that significant anti-DEN NS1 antibodies can be induced in the sera of patients with primary DEN infection.

  14. Drug-induced hepatitis superimposed on the presence of anti-SLA antibody: a case report

    PubMed Central

    Etxagibel, Aitziber; Julià, M Rosa; Brotons, Alvaro; Company, M Margarita; Dolz, Carlos

    2008-01-01

    Introduction Autoimmune hepatitis is a necroinflammatory disorder of unknown etiology characterized by the presence of circulating antibodies, hypergammaglobulinemia, and response to immunosuppression. It has the histological features of chronic hepatitis. The onset is usually insidious, but in some patients the presentation may be acute and occasionally severe. Certain drugs can induce chronic hepatitis mimicking autoimmune hepatitis. Different autoantibodies have been associated with this process but they are not detectable after drug withdrawal and clinical resolution. Case presentation We describe a case of drug-induced acute hepatitis associated with antinuclear, antisoluble liver-pancreas and anti-smooth muscle autoantibodies in a 66-year-old woman. Abnormal clinical and biochemical parameters resolved after drug withdrawal, but six months later anti-soluble liver-pancreas antibodies remained positive and liver biopsy showed chronic hepatitis and septal fibrosis. Furthermore, our patient has a HLA genotype associated with autoimmune hepatitis. Conclusion Patient follow-up will disclose whether our patient suffers from an autoimmune disease and if the presence of anti-soluble liver antigens could precede the development of an autoimmune hepatitis, as the presence of antimitochondrial antibodies can precede primary biliary cirrhosis. PMID:18226219

  15. Tailoring the antibody response to aggregated Aß using novel Alzheimer-vaccines.

    PubMed

    Mandler, Markus; Santic, Radmila; Gruber, Petra; Cinar, Yeliz; Pichler, Dagmar; Funke, Susanne Aileen; Willbold, Dieter; Schneeberger, Achim; Schmidt, Walter; Mattner, Frank

    2015-01-01

    Recent evidence suggests Alzheimer-Disease (AD) to be driven by aggregated Aß. Capitalizing on the mechanism of molecular mimicry and applying several selection layers, we screened peptide libraries for moieties inducing antibodies selectively reacting with Aß-aggregates. The technology identified a pool of peptide candidates; two, AFFITOPES AD01 and AD02, were assessed as vaccination antigens and compared to Aβ1-6, the targeted epitope. When conjugated to Keyhole Limpet Hemocyanin (KLH) and adjuvanted with aluminum, all three peptides induced Aß-targeting antibodies (Abs). In contrast to Aß1-6, AD01- or AD02-induced Abs were characterized by selectivity for aggregated forms of Aß and absence of reactivity with related molecules such as Amyloid Precursor Protein (APP)/ secreted APP-alpha (sAPPa). Administration of AFFITOPE-vaccines to APP-transgenic mice was found to reduce their cerebral amyloid burden, the associated neuropathological alterations and to improve their cognitive functions. Thus, the AFFITOME-technology delivers vaccines capable of inducing a distinct Ab response. Their features may be beneficial to AD-patients, a hypothesis currently tested within a phase-II-study.

  16. IgA antibody response of swine to foot-and-mouth disease virus infection and vaccination.

    PubMed

    Pacheco, Juan M; Butler, John E; Jew, Jessica; Ferman, Geoffrey S; Zhu, James; Golde, William T

    2010-04-01

    Foot-and-mouth disease virus (FMDV) continues to be a significant economic problem worldwide. Control of the disease involves the use of killed-virus vaccines, a control measure developed decades ago. After natural infection, the primary site of replication of FMDV is the pharyngeal area, suggesting that a mucosal immune response is the most effective. Humoral immunity to killed-virus vaccination induces antibodies that can prevent the clinical disease but not local infection. Determining whether infection or vaccination stimulates IgA-mediated local immunity depends on the method of analysis. Different assays have been described to analyze the quality of antibody responses of cattle and swine to FMDV, including indirect double-antibody sandwich enzyme-linked immunosorbent assay (IDAS-ELISA) and antibody capture assay-ELISA (ACA-ELISA). We tested these assays on swine and show that vaccinated animals had FMDV-specific IgM and IgG but no IgA in either serum or saliva. After the infection, both assays detected FMDV-specific IgM, IgG, and IgA in serum. Notably, serum IgA was more readily detected using the ACA-ELISA, whereas IgA was not detected in saliva with this assay. FMDV-specific IgA antibodies were detected in saliva samples using the IDAS-ELISA. These data show that parenterally administered, killed-virus vaccine does not induce a mucosal antibody response to FMDV and illuminates limitations and appropriate applications of the two ELISAs used to measure FMDV-specific responses. Further, the presence of the IgA antivirus in serum correlates with the presence of such antibodies in saliva.

  17. Antibody responses to allergen Lol pIV are suppressed following adoptive transfer of B lymphocytes from the internal image anti-idiotypic antibody-treated mice.

    PubMed

    Zhou, E M; Kisil, F T

    1995-10-01

    An internal image anti-idiotypic antibody, designated B1/1, was generated against an idiotope (Id91) of the monoclonal antibody (mAb91) specific for Lol pIV. The administration of B1/1 in PBS, at doses ranging from 100 ng to 100 micrograms/mouse, to syngeneic Balb/c mice resulted in the suppression of the formation of anti-Lol pIV antibodies that possessed the Id91. Spleen cells obtained from the mice 2 weeks after the treatment with B1/1 (25 micrograms/mouse) were adoptively transferred intravenously into the syngeneic recipients which were challenged intraperitoneally with Lol pIV in alum 2 hr after the transfer. The recipients were boosted with Lol pIV 14 days later. It was demonstrated that the transfer of splenic B cells (but not of T cells) from B1/1-treated donors induced a significant suppression of not only the level of IgE and IgG antibodies to Lol pIV, but also the level of antibodies possessing the Id91. Treatment of the B cells with mAb91 plus complement abrogated their ability to transfer the suppression. This study indicates that the treatment with the anti-Id B1/1 generated B cells that were characterized, serologically, as possessing the anti-Id-like antibodies on their surface and were responsible for transferring the suppression of the formation of antibodies to allergen Lol pIV and the expression of Id91.

  18. Experimental infection of Newcastle disease virus in pigeons (Columba livia): humoral antibody response, contact transmission and viral genome shedding.

    PubMed

    de Oliveira Torres Carrasco, Adriano; Seki, Meire Christina; de Freitas Raso, Tânia; Paulillo, Antônio Carlos; Pinto, Aramis Augusto

    2008-05-25

    The aim of this study was to evaluate the humoral antibody response, the genome viral excretion and the contact transmission of pathogenic chicken origin Newcastle disease virus (NDV) from experimentally infected pigeons (Columba livia) to in-contact pigeon. The antibody response to infection was assessed by the hemagglutination inhibition (HI) test and the genome viral excretion was detected by RT-PCR. Viral strain induced high antibody levels, both in inoculated and in sentinel birds. The pathogenic viral strain for chickens was unable to produce clinical signs of the disease in experimentally infected pigeons, although it induced the humoral antibody response and produced NDV genome shedding. NDV genome was detected intermittently throughout the experimental period, from 5 days post-infection (dpi) to 24 dpi. Therefore, viral genome shedding occurred for 20 days. The viral genome was detected in all birds, between 11 and 13 dpi. Furthermore, the high infectivity of the virus was confirmed, as all non-inoculated sentinel pigeons showed antibody levels as high as those of inoculated birds.

  19. Nasal and vaginal vaccinations have differential effects on antibody responses in vaginal and cervical secretions in humans.

    PubMed

    Johansson, E L; Wassén, L; Holmgren, J; Jertborn, M; Rudin, A

    2001-12-01

    Sexually transmitted diseases are a major health problem worldwide, but there is still a lack of knowledge about how to induce an optimal immune response in the genital tract of humans. In this study we vaccinated 21 volunteers nasally or vaginally with the model mucosal antigen cholera toxin B subunit and determined the level of specific immunoglobulin A (IgA) and IgG antibodies in vaginal and cervical secretions as well as in serum. To assess the hormonal influence on the induction of antibody responses after vaginal vaccination, we administered the vaccine either independently of the stage in the menstrual cycle or on days 10 and 24 in the cycle in different groups of subjects. Vaginal and nasal vaccinations both resulted in significant IgA and IgG anti-cholera toxin B subunit responses in serum in the majority of the volunteers in the various vaccination groups. Only vaginal vaccination given on days 10 and 24 in the cycle induced strong specific antibody responses in the cervix with 58-fold IgA and 16-fold IgG increases. In contrast, modest responses were seen after nasal vaccination and in the other vaginally vaccinated group. Nasal vaccination was superior in inducing a specific IgA response in vaginal secretions, giving a 35-fold increase, while vaginal vaccination induced only a 5-fold IgA increase. We conclude that a combination of nasal and vaginal vaccination might be the best vaccination strategy for inducing protective antibody responses in both cervical and vaginal secretions, provided that the vaginal vaccination is given on optimal time points in the cycle.

  20. Requirement for continuous antigenic stimulation in the development and differentiation of antibody-forming cells. The effect of passive antibody on the primary and secondary response.

    PubMed

    Hanna, M G; Nettesheim, P; Francis, M W

    1969-05-01

    The essential role of continuous antigenic stimulation in the development and differentiation of antibody-forming cells as defined in the X-Y-Z immune cell maturation scheme was examined in these studies. Mice were primed with sheep erythrocytes (SRBC) in an attempt to induce maximum immune progenitor cell conversion (X --> Y). Subsequently antigen was depleted at 1 or 4 days after priming with isologous specific antibody in order to interrupt further immune cell differentiation (Y --> Z). It was reasoned that this condition would result in depression of the functional antibody-producing cell compartment as measured in the intact mice and subsequently in enhancement of the sensitized (Y cell) compartment as measured in the spleen cell transfer system. These data were also correlated with systematic studies of the hyperplasia of the spleen germinal centers. The effect of passive antibody on the primary response to SRBC was a marked decrease indirect and indirect hemolysin-producing cells (DPFC and IPFC). However, there was a lack of correlation in the degree of antibody-mediated 19S and 7S immune cell suppression during the primary response, the DPFC being much less depressed than the IPFC. As measured in the transfer system there was an enhanced 19S sensitized cell compartment and a depressed 7S sensitized cell compartment in 1 day passively immunized mice. This was true whether or not transfers were performed 1, 2, or 4 wk after priming. Similarly, there was an enhanced 19S-sensitized cell compartment with little or no effect on the 7S-sensitized. cell compartment in 4 day passively immunized mice. These data suggest that progeny of the antigen-stimulated progenitor cells (X cell), as a consequence of lack of further antigenic stimulation, were forced into maturation arrest. These studies further demonstrate that isologous passive antibody suppresses germinal center growth regardless of whether the antibody is infused 1, 2, or 4 days after priming. In terms of

  1. Kallikrein genes are associated with lupus and glomerular basement membrane-specific antibody-induced nephritis in mice and humans.

    PubMed

    Liu, Kui; Li, Quan-Zhen; Delgado-Vega, Angelica M; Abelson, Anna-Karin; Sánchez, Elena; Kelly, Jennifer A; Li, Li; Liu, Yang; Zhou, Jinchun; Yan, Mei; Ye, Qiu; Liu, Shenxi; Xie, Chun; Zhou, Xin J; Chung, Sharon A; Pons-Estel, Bernardo; Witte, Torsten; de Ramón, Enrique; Bae, Sang-Cheol; Barizzone, Nadia; Sebastiani, Gian Domenico; Merrill, Joan T; Gregersen, Peter K; Gilkeson, Gary G; Kimberly, Robert P; Vyse, Timothy J; Kim, Il; D'Alfonso, Sandra; Martin, Javier; Harley, John B; Criswell, Lindsey A; Wakeland, Edward K; Alarcón-Riquelme, Marta E; Mohan, Chandra

    2009-04-01

    Immune-mediated nephritis contributes to disease in systemic lupus erythematosus, Goodpasture syndrome (caused by antibodies specific for glomerular basement membrane [anti-GBM antibodies]), and spontaneous lupus nephritis. Inbred mouse strains differ in susceptibility to anti-GBM antibody-induced and spontaneous lupus nephritis. This study sought to clarify the genetic and molecular factors that maybe responsible for enhanced immune-mediated renal disease in these models. When the kidneys of 3 mouse strains sensitive to anti-GBM antibody-induced nephritis were compared with those of 2 control strains using microarray analysis, one-fifth of the underexpressed genes belonged to the kallikrein gene family,which encodes serine esterases. Mouse strains that upregulated renal and urinary kallikreins exhibited less evidence of disease. Antagonizing the kallikrein pathway augmented disease, while agonists dampened the severity of anti-GBM antibody-induced nephritis. In addition, nephritis-sensitive mouse strains had kallikrein haplotypes that were distinct from those of control strains, including several regulatory polymorphisms,some of which were associated with functional consequences. Indeed, increased susceptibility to anti-GBM antibody-induced nephritis and spontaneous lupus nephritis was achieved by breeding mice with a genetic interval harboring the kallikrein genes onto a disease-resistant background. Finally, both human SLE and spontaneous lupus nephritis were found to be associated with kallikrein genes, particularly KLK1 and the KLK3 promoter, when DNA SNPs from independent cohorts of SLE patients and controls were compared. Collectively, these studies suggest that kallikreins are protective disease-associated genes in anti-GBM antibody-induced nephritis and lupus.

  2. Specific antibodies induce apoptosis in Trypanosoma cruzi epimastigotes.

    PubMed

    Fernández-Presas, Ana María; Tato, Patricia; Becker, Ingeborg; Solano, Sandra; Copitin, Natalia; Kopitin, Natalia; Berzunza, Miriam; Willms, Kaethe; Hernández, Joselin; Molinari, José Luis

    2010-05-01

    The susceptibility of Trypanosoma cruzi epimastigotes to lysis by normal or immune sera in a complement-dependent reaction has been reported. Mouse immune sera depleted complement-induced damage in epimastigotes characterized by morphological changes and death. The purpose of this work was to study the mechanism of death in epimastigotes exposed to decomplemented mouse immune serum. Epimastigotes were maintained in RPMI medium. Immune sera were prepared in mice by immunization with whole crude epimastigote extracts. Viable epimastigotes were incubated with decomplemented normal or immune sera at 37 degrees C. By electron microscopy, agglutinated parasites showed characteristic patterns of membrane fusion between two or more parasites; this fusion also produced interdigitation of the subpellicular microtubules. Apoptosis was determined by flow cytometry using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and annexin V assays. Nuclear features were examined by 4'-,6-diamidino-2'-phenylindole diHCI cytochemistry that demonstrated apoptotic nuclear condensation. Caspase activity was also measured. TUNEL results showed that parasites incubated with decomplemented immune sera took up 26% of specific fluorescence as compared to 1.3% in parasites incubated with decomplemented normal sera. The Annexin-V-Fluos staining kit revealed that epimastigotes incubated with decomplemented immune sera exposed phosphatidylserine on the external leaflet of the plasma membrane. The incubation of parasites with immune sera showed caspase 3 activity. We conclude that specific antibodies are able to induce agglutination and apoptosis in epimastigotes, although the pathway is not elucidated.

  3. A Dual-Modality Herpes Simplex Virus 2 Vaccine for Preventing Genital Herpes by Using Glycoprotein C and D Subunit Antigens To Induce Potent Antibody Responses and Adenovirus Vectors Containing Capsid and Tegument Proteins as T Cell Immunogens

    PubMed Central

    Mahairas, Gregory G.; Shaw, Carolyn E.; Huang, Meei-Li; Koelle, David M.; Posavad, Christine; Corey, Lawrence; Friedman, Harvey M.

    2015-01-01

    ABSTRACT We evaluated a genital herpes prophylactic vaccine containing herpes simplex virus 2 (HSV-2) glycoproteins C (gC2) and D (gD2) to stimulate humoral immunity and UL19 (capsid protein VP5) and UL47 (tegument protein VP13/14) as T cell immunogens. The HSV-2 gC2 and gD2 proteins were expressed in baculovirus, while the UL19 and UL47 genes were expressed from replication-defective adenovirus vectors. Adenovirus vectors containing UL19 and UL47 stimulated human and murine CD4+ and CD8+ T cell responses. Guinea pigs were either (i) mock immunized; (ii) immunized with gC2/gD2, with CpG and alum as adjuvants; (iii) immunized with the UL19/UL47 adenovirus vectors; or (iv) immunized with the combination of gC2/gD2-CpG/alum and the UL19/UL47 adenovirus vectors. Immunization with gC2/gD2 produced potent neutralizing antibodies, while UL19 and UL47 also stimulated antibody responses. After intravaginal HSV-2 challenge, the mock and UL19/UL47 adenovirus groups developed severe acute disease, while 2/8 animals in the gC2/gD2-only group and none in the combined group developed acute disease. No animals in the gC2/gD2 or combined group developed recurrent disease; however, 5/8 animals in each group had subclinical shedding of HSV-2 DNA, on 15/168 days for the gC2/gD2 group and 13/168 days for the combined group. Lumbosacral dorsal root ganglia were positive for HSV-2 DNA and latency-associated transcripts for 5/8 animals in the gC2/gD2 group and 2/8 animals in the combined group. None of the differences comparing the gC2/gD2-only group and the combined group were statistically significant. Therefore, adding the T cell immunogens UL19 and UL47 to the gC2/gD2 vaccine did not significantly reduce genital disease and vaginal HSV-2 DNA shedding compared with the excellent protection provided by gC2/gD2 in the guinea pig model. IMPORTANCE HSV-2 infection is a common cause of genital ulcer disease and a significant public health concern. Genital herpes increases the risk of

  4. A Dual-Modality Herpes Simplex Virus 2 Vaccine for Preventing Genital Herpes by Using Glycoprotein C and D Subunit Antigens To Induce Potent Antibody Responses and Adenovirus Vectors Containing Capsid and Tegument Proteins as T Cell Immunogens.

    PubMed

    Awasthi, Sita; Mahairas, Gregory G; Shaw, Carolyn E; Huang, Meei-Li; Koelle, David M; Posavad, Christine; Corey, Lawrence; Friedman, Harvey M

    2015-08-01

    We evaluated a genital herpes prophylactic vaccine containing herpes simplex virus 2 (HSV-2) glycoproteins C (gC2) and D (gD2) to stimulate humoral immunity and UL19 (capsid protein VP5) and UL47 (tegument protein VP13/14) as T cell immunogens. The HSV-2 gC2 and gD2 proteins were expressed in baculovirus, while the UL19 and UL47 genes were expressed from replication-defective adenovirus vectors. Adenovirus vectors containing UL19 and UL47 stimulated human and murine CD4(+) and CD8(+) T cell responses. Guinea pigs were either (i) mock immunized; (ii) immunized with gC2/gD2, with CpG and alum as adjuvants; (iii) immunized with the UL19/UL47 adenovirus vectors; or (iv) immunized with the combination of gC2/gD2-CpG/alum and the UL19/UL47 adenovirus vectors. Immunization with gC2/gD2 produced potent neutralizing antibodies, while UL19 and UL47 also stimulated antibody responses. After intravaginal HSV-2 challenge, the mock and UL19/UL47 adenovirus groups developed severe acute disease, while 2/8 animals in the gC2/gD2-only group and none in the combined group developed acute disease. No animals in the gC2/gD2 or combined group developed recurrent disease; however, 5/8 animals in each group had subclinical shedding of HSV-2 DNA, on 15/168 days for the gC2/gD2 group and 13/168 days for the combined group. Lumbosacral dorsal root ganglia were positive for HSV-2 DNA and latency-associated transcripts for 5/8 animals in the gC2/gD2 group and 2/8 animals in the combined group. None of the differences comparing the gC2/gD2-only group and the combined group were statistically significant. Therefore, adding the T cell immunogens UL19 and UL47 to the gC2/gD2 vaccine did not significantly reduce genital disease and vaginal HSV-2 DNA shedding compared with the excellent protection provided by gC2/gD2 in the guinea pig model. HSV-2 infection is a common cause of genital ulcer disease and a significant public health concern. Genital herpes increases the risk of transmission and

  5. A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: implication for developing therapeutics and vaccines.

    PubMed

    Du, Lanying; Kou, Zhihua; Ma, Cuiqing; Tao, Xinrong; Wang, Lili; Zhao, Guangyu; Chen, Yaoqing; Yu, Fei; Tseng, Chien-Te K; Zhou, Yusen; Jiang, Shibo

    2013-01-01

    An emerging respiratory infectious disease with high mortality, Middle East respiratory syndrome (MERS), is caused by a novel coronavirus (MERS-CoV). It was first reported in 2012 in Saudi Arabia and has now spread to eight countries. Development of effective therapeutics and vaccines is crucial to save lives and halt the spread of MERS-CoV. Here, we show that a recombinant protein containing a 212-amino acid fragment (residues 377-588) in the truncated receptor-binding domain (RBD: residues 367-606) of MERS-CoV spike (S) protein fused with human IgG Fc fragment (S377-588-Fc) is highly expressed in the culture supernatant of transfected 293T cells. The purified S377-588-Fc protein efficiently binds to dipeptidyl peptidase 4 (DPP4), the receptor of MERS-CoV, and potently inhibited MERS-CoV infection, suggesting its potential to be further developed as a therapeutic modality for treating MERS-CoV infection and saving the patients' lives. The recombinant S377-588-Fc is able to induce in the vaccinated mice strong MERS-CoV S-specific antibodies, which blocks the binding of RBD to DPP4 receptor and effectively neutralizes MERS-CoV infection. These findings indicate that this truncated RBD protein shows promise for further development as an effective and safe vaccine for the prevention of MERS-CoV infection.

  6. Mortality and antibody responses of mice to three successive episodes of experimental scorpion (Centruroides limpidus limpidus) envenomation and immunological rescue.

    PubMed

    Padilla, Alejandro; Govezensky, Tzipe; Possani, Lourival D; Larralde, Carlos

    2005-08-01

    Mortality rates of mice and their levels of anti-venom and anti-F(ab')2 antibodies were assessed after three episodes of subcutaneous envenomations with or without treatment with horse F(ab')2. Soluble venom from the Mexican scorpion Centruroides limpidus limpidus was used for these experiments. Repetition of episodes did not induce different mortality rates in untreated mice. F(ab')2 rescued about 85% of the mice in the first two episodes and 66% in the third, without distinction of gender or ostensible side-effects: a suggestion of selection of the most resistant mice. Surviving mice produced in vitro neutralizing antibodies to the scorpion venom and also antibodies to F(ab')2, when injected alone but more so if combined: a possible immunological adjuvant or alarm effect of the venom or of the cascading physiopathology of envenomation. In the few surviving mice, both anti-venom and anti-F(ab')2 antibodies increased significantly after the first envenomation but not thereafter, showing no correlation with mortality rates: a suggestion of their clinical irrelevance, the few hard-to kill mice appeared to resist envenomation by mechanisms other than antibody response. Injection of F(ab')2 alone induced production of detectable anti-venom antibodies in a few mice and injection of venom alone induced that of anti-F(ab')2 antibodies, perhaps due to trace amounts of venom in the high affinity fraction of F(ab')2 and to anti-idiotypic antibodies or polyclonal activity in the envenomation episode, respectively.

  7. Streptococcal-vimentin cross-reactive antibodies induce microvascular cardiac endothelial proinflammatory phenotype in rheumatic heart disease

    PubMed Central

    Delunardo, F; Scalzi, V; Capozzi, A; Camerini, S; Misasi, R; Pierdominici, M; Pendolino, M; Crescenzi, M; Sorice, M; Valesini, G; Ortona, E; Alessandri, C

    2013-01-01

    Summary Rheumatic heart disease (RHD) is characterized by the presence of anti-streptococcal group A antibodies and anti-endothelial cell antibodies (AECA). Molecular mimicry between streptococcal antigens and self proteins is a hallmark of the pathogenesis of rheumatic fever. We aimed to identify, in RHD patients, autoantibodies specific to endothelial autoantigens cross-reactive with streptococcal proteins and to evaluate their role in inducing endothelial damage. We used an immunoproteomic approach with endothelial cell-surface membrane proteins in order to identify autoantigens recognized by AECA of 140 RHD patients. Cross-reactivity of purified antibodies with streptococcal proteins was analysed. Homologous peptides recognized by serum cross-reactive antibodies were found through comparing the amino acid sequence of streptococcal antigens with human antigens. To investigate interleukin (IL)-1R-associated kinase (IRAK1) and nuclear factor-κB (NF-κB) activation, we performed a Western blot analysis of whole extracts proteins from unstimulated or stimulated human microvascular cardiac endothelial cells (HMVEC-C). Adhesion molecule expression and release of proinflammatory cytokines and growth factors were studied by multiplex bead based immunoassay kits. We observed anti-vimentin antibodies in sera from 49% RHD AECA-positive patients. Cross-reactivity of purified anti-vimentin antibodies with heat shock protein (HSP)70 and streptopain streptococcal proteins was shown. Comparing the amino acid sequence of streptococcal HSP70 and streptopain with human vimentin, we found two homologous peptides recognized by serum cross-reactive antibodies. These antibodies were able to stimulate HMVEC-C inducing IRAK and NF-κB activation, adhesion molecule expression and release of proinflammatory cytokines and growth factors. In conclusion, streptococcal–vimentin cross-reactive antibodies were able to activate microvascular cardiac endothelium by amplifying the inflammatory

  8. Dissection of the human antibody response to the malaria antigen Pf155/RESA into epitope specific components.

    PubMed

    Perlmann, H; Perlmann, P; Berzins, K; Wåhlin, B; Troye-Blomberg, M; Hagstedt, M; Andersson, I; Högh, B; Petersen, E; Björkman, A

    1989-12-01

    The development of vaccines is presently receiving major attention in malaria research. As it is not possible to base malaria vaccines on the use of killed or attenuated organisms, the vaccines which are being developed are subunit vaccines in which the immunogens consist of defined parasite antigens or antigenic fragments. Since protective immunity to malaria involves both antibody-dependent and antibody-independent mechanisms, the immunogens in a subunit vaccine must have the capacity to induce relevant B- and T-cell responses in the majority of vaccinees. In turn, this requires good knowledge of these responses in humans who have acquired immunity through natural infection. In this paper we have summarized our recent work on the dissection into epitope-specific components of the human antibody response to the Plasmodium falciparum antigen Pf155/RESA, a recognized candidate for a vaccine against the asexual blood stages of this parasite. Epitope mapping of the antigen by means of short synthetic peptides led to the identification in several molecular regions of short amino acid sequences constituting linear and probably immunodominant B-cell epitopes. The antigenically most active region was located in the C-terminus of the molecule. This region, which consists of approximately 40 related, 4- or 8-amino acid long repeats, induced higher antibody concentrations in a larger number of malaria-immune donors than any of the other regions. A large fraction of these antibodies bound to short synthetic peptides representing the major repeat motifs of Pf155/RESA. Although these repeats are made up of closely related amino acid sequences, the antibody response to them was highly polyclonal, indicating the presence of several linear and probably also conformational epitopes which gave rise to a variety of cross-reacting as well as monospecific antibodies. Further analysis revealed that the levels of antibodies differing in specificity and/or avidity for different peptides

  9. Protection against measles virus-induced encephalitis by anti-mimotope antibodies: the role of antibody affinity.

    PubMed

    Olszewska, W; Obeid, O E; Steward, M W

    2000-06-20

    Synthetic peptides mimicking a conformational B-cell epitope (M2) of the measles virus fusion protein (MVF) were used for the immunization of BALB/c mice and the anti-peptide and anti-virus antibody titers induced were compared. Of the panel of tested peptides, a chimeric peptide consisting of two copies of a T-helper epitope (residues 288-302 of MVF) and one copy of the mimotope M2 (TTM2) and a multiple antigen peptide with eight copies of M2 (MAP-M2) induced the highest titers of anti-M2 and anti-MV antibodies. Furthermore, peptides TTM2 and MAP-M2 induced antibodies with highest affinity for the mimotope and highest avidity for measles virus. Immunization with the MAP-M2 construct induced high titers of high-affinity anti-M2 antibody despite the absence of a T-helper epitope, and lymphocyte proliferation data suggest that the addition of M2 to the MAP resulted in the generation of a structure capable of stimulating T-cell help. Sera with anti-M2 reactivity were pooled according to affinity values for binding to M2, and high- and low-affinity pools were tested for their ability to prevent MV-induced encephalitis in a mouse model. The high-affinity serum pool conferred protection in 100% of mice, whereas the lower affinity pool conferred protection to only 50% of animals. These results indicate the potential of mimotopes for use as synthetic peptide immunogens and highlight the importance of designing vaccines to induce antibodies of high affinity.

  10. Heterosubtypic antiviral activity of hemagglutinin-specific antibodies induced by intranasal immunization with inactivated influenza viruses in mice.

    PubMed

    Muramatsu, Mieko; Yoshida, Reiko; Miyamoto, Hiroko; Tomabechi, Daisuke; Kajihara, Masahiro; Maruyama, Junki; Kimura, Takashi; Manzoor, Rashid; Ito, Kimihito; Takada, Ayato

    2013-01-01

    Influenza A virus subtypes are classified on the basis of the antigenicity of their envelope glycoproteins, hemagglutinin (HA; H1-H17) and neuraminidase. Since HA-specific neutralizing antibodies are predominantly specific for a single HA subtype, the contribution of antibodies to the heterosubtypic immunity is not fully understood. In this study, mice were immunized intranasally or subcutaneously with viruses having the H1, H3, H5, H7, H9, or H13 HA subtype, and cross-reactivities of induced IgG and IgA antibodies to recombinant HAs of the H1-H16 subtypes were analyzed. We found that both subcutaneous and intranasal immunizations induced antibody responses to multiple HAs of different subtypes, whereas IgA was not detected remarkably in mice immunized subcutaneously. Using serum, nasal wash, and trachea-lung wash samples of H9 virus-immunized mice, neutralizing activities of cross-reactive antibodies were then evaluated by plaque-reduction assays. As expected, no heterosubtypic neutralizing activity was detected by a standard neutralization test in which viruses were mixed with antibodies prior to inoculation into cultured cells. Interestingly, however, a remarkable reduction of plaque formation and extracellular release of the H12 virus, which was bound by the H9-induced cross-reactive antibodies, was observed when infected cells were subsequently cultured with the samples containing HA-specific cross-reactive IgA. This heterosubtypic plaque reduction was interfered when the samples were pretreated with anti-mouse IgA polyclonal serum. These results suggest that the majority of HA-specific cross-reactive IgG and IgA antibodies produced by immunization do not block cellular entry of viruses, but cross-reactive IgA may have the potential to inhibit viral egress from infected cells and thus to play a role in heterosubtypic immunity against influenza A viruses.

  11. Heterosubtypic Antiviral Activity of Hemagglutinin-Specific Antibodies Induced by Intranasal Immunization with Inactivated Influenza Viruses in Mice

    PubMed Central

    Muramatsu, Mieko; Yoshida, Reiko; Miyamoto, Hiroko; Tomabechi, Daisuke; Kajihara, Masahiro; Maruyama, Junki; Kimura, Takashi; Manzoor, Rashid; Ito, Kimihito; Takada, Ayato

    2013-01-01

    Influenza A virus subtypes are classified on the basis of the antigenicity of their envelope glycoproteins, hemagglutinin (HA; H1–H17) and neuraminidase. Since HA-specific neutralizing antibodies are predominantly specific for a single HA subtype, the contribution of antibodies to the heterosubtypic immunity is not fully understood. In this study, mice were immunized intranasally or subcutaneously with viruses having the H1, H3, H5, H7, H9, or H13 HA subtype, and cross-reactivities of induced IgG and IgA antibodies to recombinant HAs of the H1–H16 subtypes were analyzed. We found that both subcutaneous and intranasal immunizations induced antibody responses to multiple HAs of different subtypes, whereas IgA was not detected remarkably in mice immunized subcutaneously. Using serum, nasal wash, and trachea-lung wash samples of H9 virus-immunized mice, neutralizing activities of cross-reactive antibodies were then evaluated by plaque-reduction assays. As expected, no heterosubtypic neutralizing activity was detected by a standard neutralization test in which viruses were mixed with antibodies prior to inoculation into cultured cells. Interestingly, however, a remarkable reduction of plaque formation and extracellular release of the H12 virus, which was bound by the H9-induced cross-reactive antibodies, was observed when infected cells were subsequently cultured with the samples containing HA-specific cross-reactive IgA. This heterosubtypic plaque reduction was interfered when the samples were pretreated with anti-mouse IgA polyclonal serum. These results suggest that the majority of HA-specific cross-reactive IgG and IgA antibodies produced by immunization do not block cellular entry of viruses, but cross-reactive IgA may have the potential to inhibit viral egress from infected cells and thus to play a role in heterosubtypic immunity against influenza A viruses. PMID:23977065

  12. Antibody response to sheep red blood cells in platypus and echidna.

    PubMed

    Wronski, Eileen V; Woods, Gregory M; Munday, Barry L

    2003-12-01

    There is limited information regarding the kinetics of antibody responses exhibited by the platypus and the echidna in response to a T cell dependent antigen. In this preliminary study a platypus, an echidna and a rabbit were inoculated with sheep red blood cells to compare their antibody responses and kinetics. The antibody titres, produced by the platypus and echidna, were less than those elicited in the rabbit. Furthermore, the echidna and platypus exhibited a weak secondary response. This was most likely due to a failure of the platypus and echidna to undergo the characteristic IgM to IgG isotype switch following second antigen exposure. The conformational structure of these antibodies may differ from eutherian antibodies. This was further supported by a heat sensitivity experiment that indicated that these antibodies are more labile than rabbit immunoglobulins and therefore structurally less stable.

  13. The early antibody-forming response to Salmonella antigens

    PubMed Central

    Russell, Pamela J.; Diener, E.

    1970-01-01

    This paper describes a new method for the morphological study of individual antibody-forming cells (AFC) on cell smears of the quality of normal haematological preparations. The early AFC response to polymerized flagellin of S. adelaide was studied in vivo using C57BL mice, which have very low background levels of AFC and in vitro using dispersed spleen cell cultures from CBA mice. AFC, arising as a result of in vivo or in vitro stimulation were found to comprise a heterogeneous population, including basophilic mononuclear cells, lymphocytes of most sizes, immature blast cells and occasional plasma cells. The earliest AFC detected comprised a high percentage (28 per cent in vivo, 31 per cent in vitro) of small lymphocyte-like cells. Studies of the incorporation of [3H]thymidine showed that most AFC arose by proliferation but that a proportion of AFC, the small lymphocyte-like cells, arose by differentiation of precursor cells not involving cell division. The effects of antigen concentration on the kinetics of AFC were investigated in vitro. Subtolerogenic antigen doses caused a delayed and decreased AFC response. ImagesFIG. 1FIG. 4 PMID:5529118

  14. RATES OF ANTIBODY SYNTHESIS DURING FIRST, SECOND, AND HYPERIMMUNE RESPONSES OF RABBITS TO BOVINE GAMMA GLOBULIN

    PubMed Central

    Dixon, Frank J.; Maurer, Paul H.; Weigle, William O.; Deichmiller, Maria P.

    1956-01-01

    Determinations of the rates of antibody synthesis during first, second, and hyperimmune responses to bovine gamma globulin using S35-labelle aminod acids indicate the following: 1. In all three responses the rate of antibody synthesis increases while antigen is circulating and then begins to decline rapidly after elimination of detectable circulating antigen. 2. The initial rates of decline of antibody synthesis are approximately the same for all three responses. 3. There is a relatively persistent source of antibody production which appears after repeated stimulation and increases in proportion to the number of repeated stimuli. PMID:13306852

  15. Antibody and T Cell Responses to Fusobacterium nucleatum and Treponema denticola in Health and Chronic Periodontitis

    PubMed Central

    Shin, Jieun; Kho, Sang-A; Choi, Yun S.; Kim, Yong C.; Rhyu, In-Chul; Choi, Youngnim

    2013-01-01

    The characteristics of the T cell response to the members of oral flora are poorly understood. We characterized the antibody and T cell responses to FadA and Td92, adhesins from Fusobacterium nucleatum, an oral commensal, and Treponema denticola, a periodontal pathogen, respectively. Peripheral blood and saliva were obtained from healthy individuals and patients with untreated chronic periodontitis (CP, n = 11 paris) and after successful treatment of the disease (n = 9). The levels of antigen-specific antibody were measured by ELISA. In plasma, IgG1 was the most abundant isotype of Ab for both Ags, followed by IgA and then IgG4. The levels of FadA-specific salivary IgA (sIgA) were higher than Td92-specific sIgA and the FadA-specific IgA levels observed in plasma. However, the periodontal health status of the individuals did not affect the levels of FadA- or Td92-specific antibody. Even healthy individuals contained FadA- and Td92-specific CD4+ T cells, as determined by the detection of intracytoplasmic CD154 after short-term in vitro stimulation of peripheral blood mononuclear cells (PBMCs) with the antigens. Patients with CP tended to possess increased numbers of FadA- and Td92-specific CD4+ T cells but reduced numbers of Td92-specific Foxp3+CD4+ Tregs than the healthy subjects. Both FadA and Td92 induced the production of IFNγ and IL-10 but inhibited the secretion of IL-4 by PBMCs. In conclusion, F. nucleatum induced Th3 (sIgA)- and Th1 (IFNγ and IgG1)-dominant immune responses, whereas T. denticola induced a Th1 (IFNγ and IgG1)-dominant response. This IFNγ-dominant cytokine response was impaired in CP patients, and the Td92-induced IFNγ levels were negatively associated with periodontal destruction in patients. These findings may provide new insights into the homeostatic interaction between the immune system and oral bacteria and the pathogenesis of periodontitis. PMID:23335969

  16. Ability of vaccine strain induced antibodies to neutralize field isolates of caliciviruses from Swedish cats.

    PubMed

    Wensman, Jonas Johansson; Samman, Ayman; Lindhe, Anna; Thibault, Jean-Christophe; Berndtsson, Louise Treiberg; Hosie, Margaret J

    2015-12-12

    Feline calicivirus (FCV) is a common cause of upper respiratory tract disease in cats worldwide. Its characteristically high mutation rate leads to escape from the humoral immune response induced by natural infection and/or vaccination and consequently vaccines are not always effective against field isolates. Thus, there is a need to continuously investigate the ability of FCV vaccine strain-induced antibodies to neutralize field isolates. Seventy-eight field isolates of FCV isolated during the years 2008-2012 from Swedish cats displaying clinical signs of upper respiratory tract disease were examined in this study. The field isolates were tested for cross-neutralization using a panel of eight anti-sera raised in four pairs of cats following infection with four vaccine strains (F9, 255, G1 and 431). The anti-sera raised against F9 and 255 neutralised 20.5 and 11.5 %, and 47.4 and 64.1 % of field isolates tested, respectively. The anti-sera against the more recently introduced vaccine strains G1 and 431 neutralized 33.3 and 55.1 % (strain G1) or 69.2 and 89.7 % (strain 431) of the field isolates with titres ≥5. [corrected]. Dual vaccine strains displayed a higher cross-neutralization. This study confirms previous observations that more recently introduced vaccine strains induce antibodies with a higher neutralizing capacity compared to vaccine strains that have been used extensively over a long period of time. This study also suggests that dual FCV vaccine strains might neutralize more field isolates compared to single vaccine strains. Vaccine strains should ideally be selected based on updated knowledge on the antigenic properties of field isolates in the local setting, and there is thus a need for continuously studying the evolution of FCV together with the neutralizing capacity of vaccine strain induced antibodies against field isolates at a national and/or regional level.

  17. H3N2 Influenza Virus Infection Induces Broadly Reactive Hemagglutinin Stalk Antibodies in Humans and Mice

    PubMed Central

    Margine, Irina; Hai, Rong; Albrecht, Randy A.; Obermoser, Gerlinde; Harrod, A. Carson; Banchereau, Jacques; Palucka, Karolina; García-Sastre, Adolfo; Palese, Peter; Treanor, John J.

    2013-01-01

    Broadly neutralizing antibodies directed against the conserved stalk domain of the viral hemagglutinin have attracted increasing attention in recent years. However, only a limited number of stalk antibodies directed against group 2 influenza hemagglutinins have been isolated so far. Also, little is known about the general level of induction of these antibodies by influenza virus vaccination or infection. To characterize the anti-stalk humoral response in the mouse model as well as in humans, chimeric hemagglutinin constructs previously developed in our group were employed in serological assays. Whereas influenza virus infection induced high titers of stalk-reactive antibodies, immunization with inactivated influenza virus vaccines failed to do so in the mouse model. Analysis of serum samples collected from human individuals who were infected by influenza viruses also revealed the induction of stalk-reactive antibodies. Finally, we show that the hemagglutinin stalk-directed antibodies induced in mice and humans have broad reactivity and neutralizing activity in vitro and in vivo. The results of the study point toward the existence of highly conserved epitopes in the stalk domains of group 2 hemagglutinins, which can be targeted for the development of a universal influenza virus vaccine in humans. PMID:23408625

  18. Regulation of the anti-Sm autoantibody response in systemic lupus erythematosus mice by monoclonal anti-Sm antibodies.

    PubMed

    Eisenberg, R A; Pisetsky, D S; Craven, S Y; Grudier, J P; O'Donnell, M A; Cohen, P L

    1990-01-01

    The administration of certain monoclonal anti-Sm antibodies (2G7, 7.13) induced most MRL/lpr mice to become anti-Sm positive by 5 mo of age, although other anti-Sm monoclonals (Y2, Y12) suppressed the spontaneous response. Positive anti-Sm antibody enhancement occurred efficiently only in MRL/lpr mice and not in other systemic lupus erythematosus mice that have little spontaneous anti-Sm production. The enhancement by anti-Sm antibodies was specific for the anti-Sm response. The mechanism of the passive antibody enhancement was apparently not isotype- or idiotype-related. The fine specificity of the anti-Sm monoclonal antibody may be essential to its enhancing or suppressing effects, since both enhancing monoclonals recognized only the D Sm polypeptide, whereas both suppressing monoclonals saw the D and the B polypeptides. Furthermore, analysis of serial bleeds from unmanipulated MRL mice that developed anti-Sm positivity showed that the D specificity almost always appeared first. We hypothesize, therefore, that those animals in which an anti-Sm response is initiated by D-specific B-cell clones can become serologically positive with the aid of a positive feedback loop. In contrast, animals in which the initial specificity is for both B and D peptides would be prevented from developing a full anti-Sm response.

  19. New Sensitive Serum Melatonin Radioimmunoassay Employing the Kennaway G280 Antibody: Syrian Hamster Morning Adrenergic Response,

    DTIC Science & Technology

    1993-01-01

    radioimmunoassay employing the Kennaway DI C G280 antibody: Syrian hamster morning LECTEI adrenergic response S APR F)139940 Vaughan GM. New sensitive...serum melatonin radioimmunoassay George M. Vaughan employing the Kennaway G280 antibody: Syrian hamster morning u.S. Army Institute of Surgical...Research, Fort adrenergic response. J. Pineal Res. 1993:15:88-103. Sam Houston, San Antoniol TX, U.S.A. Abstract: A new procedure with the G280 antibody

  20. Defensins attenuate cytokine responses yet enhance antibody responses to Porphyromonas gingivalis adhesins in mice

    PubMed Central

    Kohlgraf, Karl G; Ackermann, Abbey; Lu, Xiaoying; Burnell, Kindra; Bélanger, Myriam; Cavanaugh, Joseph E; Xie, Hua; Progulske-Fox, Ann; Brogden, Kim A

    2010-01-01

    Aim Our aim is to assess the ability of human neutrophil peptide α-defensins (HNPs) and human β-defensins (HBDs) to attenuate proinflammatory cytokine responses and enhance antibody responses to recombinant hemagglutinin B (rHagB) or recombinant fimbrillin A (rFimA) from Porphyromonas gingivalis 381 in mice. Materials & methods In the first study, C57BL/6 mice were given 10 μg rHagB or rFimA without and with 1 μg HNP1, HNP2, HBD1, HBD2 or HBD3. At 24 h, mice were euthanized and cytokine concentrations were determined in nasal wash fluid (NWF), bronchoalveolar lavage fluids, saliva and serum. In the second study, C57BL/6 mice were given 10 μg rHagB or rFimA without and with 1 μg HNPs or HBDs similarly on days 0, 7 and 14. At 21 days, mice were euthanized and rHagB- and rFimA-specific antibody responses were determined in NWF, bronchoalveolar lavage fluids, saliva and serum. Results Mice given rHagB + HNP2, rHagB + HBD1 and rHagB + HBD3 produced significantly lower (p < 0.05) IL-6 responses than mice given rHagB alone. Mice given rHagB + HNP1, rHagB + HNP2, rHagB + HBD1 and rHagB + HBD3 produced significantly lower (p < 0.05) keratinocyte-derived chemokine responses than mice given rHagB alone. Mice given rFimA produced very low levels of IL-6 and only moderate levels of keratinocyte-derived chemokine in NWF that were not attenuated by prior incubation of rFimA with any defensin. Mice given rHagB + HNP1 produced a significantly higher (p < 0.05) serum IgG antibody response than mice given rHagB alone and mice given rFimA + HNP2 produced a higher, but not significant, antibody response. Conclusion The ability of HNPs and HBDs to attenuate proinflammatory cytokine responses in murine NWF and enhance IgG antibody responses in serum was dependent upon both the defensin and antigen of P. gingivalis. PMID:20020833

  1. Anti-citrullinated-protein-antibody-specific intravenous immunoglobulin attenuates collagen-induced arthritis in mice

    PubMed Central

    Svetlicky, N; Kivity, S; Odeh, Q; Shovman, O; Gertel, S; Amital, H; Gendelman, O; Volkov, A; Barshack, I; Bar-Meir, E; Blank, M; Shoenfeld, Y

    2015-01-01

    Administration of intravenous immunoglobulin (IVIg) is a recognized safe and efficient immunomodulation therapy for many autoimmune diseases. Anti-idiotypic antibody binding to pathogenic autoantibodies was proposed as one of the mechanisms attributed to the protective activity of IVIg in autoimmunity. The aim of this study was to fractionate the anti-anti-citrullinated protein anti-idiotypic-antibodies (anti-ACPA) from an IVIg preparation and to test it as a treatment for collagen-induced arthritis in mice. IVIg was loaded onto an ACPA column. The eluted fraction was defined as ACPA-specific-IVIg (ACPA-sIVIg). Collagen-induced-arthritis (CIA) was induced in mice. Mice were treated weekly with ACPA-sIVIg, low-dose-IVIg, high-dose-IVIg and phosphate-buffered saline (PBS). Sera-ACPA titres, anti-collagen anitbodies and cytokine levels were analysed by enzyme-linked immunosorbent assay (ELISA); antibody-forming-cell activity by enzyme-linked imunospot (ELISPOT) assay; and expansion of regulatory T cell (Treg) population by fluorescence activated cell sorter (FACS). ACPA-sIVIg inhibited ACPA binding to citrullinated-peptides (CCP) in vitro 100 times more efficiently than the IVIg compound. ACPA-sIVIg was significantly more effective than the IVIg-preparation in attenuating the development of collagen-induced arthritis. Splenocytes from CIA mice treated with ACPA-sIVIg reduced the ACPA and anti-collagen-antibody titres, including the number of anti-collagen and ACPA antibody-forming cells. In parallel, splenocytes from ACPA-sIVIg treated mice secreted higher levels of anti-inflammatory cytokines and lower proinflammatory cytokines. The ACPA-sIVIg inhibitory potential was accompanied with expansion of the Treg population. Low-dose IVIg did not affect the humoral and cellular response in the CIA mice in comparison to the PBS-treated mice. Based on our results, IVIg may be considered as a safe compound for treating patients with rheumatoid arthritis by neutralizing

  2. Enteral virus infections in early childhood and an enhanced type 1 diabetes-associated antibody response to dietary insulin.

    PubMed

    Mäkelä, Miia; Vaarala, Outi; Hermann, Robert; Salminen, Kimmo; Vahlberg, Tero; Veijola, Riitta; Hyöty, Heikki; Knip, Mikael; Simell, Olli; Ilonen, Jorma

    2006-08-01

    Enteral virus infections may trigger the development of beta-cell-specific autoimmunity by interacting with the gut-associated lymphoid system. We analyzed the effect of three different virus infections on immunization to dietary insulin in children carrying increased genetic risk for type 1 diabetes. Forty-six of 238 children developed multiple diabetes-associated autoantibodies and 31 clinical diabetes (median follow-up time 75 months). Insulin-binding antibodies were measured with EIA method (median follow-up time 24 months). Antibodies to enteroviruses, rotavirus and adenovirus were measured with EIA in samples drawn at birth and the ages of 3 and 6 months. Nineteen enterovirus, 14 rotavirus and 8 adenovirus infections were diagnosed. At the ages of 6, 12, and 18 months, the concentrations of insulin-binding antibodies were higher in children with postnatal entero-, rota- and/or adenovirus infections than in children without these infections. Children who subsequently developed ICA or IA-2 antibodies or clinical type 1 diabetes had higher concentrations of insulin-binding antibodies than children who remained autoantibody negative. Our data suggest that enteral virus infections can enhance immune response to insulin, induced primarily by bovine insulin in cow's milk. An enhanced antibody response to dietary insulin preceded the development of beta-cell specific autoimmunity and type 1 diabetes.

  3. Systemic antibody response to nano-size calcium phospate biocompatible adjuvant adsorbed HEV-71 killed vaccine

    PubMed Central

    2015-01-01

    Purpose Since 1980s, human enterovirus-71 virus (HEV-71) is one of the common infectious disease in Asian Pacific region since late 1970s without effective commercial antiviral or protective vaccine is unavailable yet. The work examines the role of vaccine adjuvant particle size and the route of administration on postvaccination antibody response towards HEV-71 vaccine adsorbed to calcium phosphate (CaP) adjuvant. Materials and Methods First, CaP nano-particles were compared to a commercial micro-size and vaccine alone. Secondly, intradermal reduced dosage was compared to the conventional intramuscular immunization. Killed HEV-71 vaccines adsorbed to CaP nano-size (73 nm) and commercial one of micro-size (1.7 µm) were administered through intradermal, intramuscular, rabbits received vaccine alone and unvaccinated animals. Results CaP nano-particles adsorbed HEV-71 vaccine displayed higher antibody than the micro-size or unadsorbed vaccine alone, through both parenteral immunization routes. Moreover, the intradermal route (0.5 µg/mL) of 0.1-mL volume per vaccine dose induced equal IgG antibody level to 1.0-mL intramuscular route (0.5 µg/mL). Conclusion The intradermal vaccine adsorbed CaP nano-adjuvant showed safer and significant antibody response after one-tenth reduced dose quantity (0.5 µg/mL) of only 0.1-mL volume as the most suitable protective, cost effective and affordable formulation not only for HEV-71; but also for developing further effective vaccines toward other human pathogens. PMID:25649429

  4. Polymorphisms in the Vitamin A Receptor and Innate Immunity Genes Influence the Antibody Response to Rubella Vaccination

    PubMed Central

    Ovsyannikova, Inna G.; Haralambieva, Iana H.; Dhiman, Neelam; O’Byrne, Megan M.; Pankratz, V. Shane; Jacobson, Robert M.; Poland, Gregory A.

    2009-01-01

    Background Genetic polymorphisms play an important role in rubella vaccine-induced immunity. Methods We genotyped 714 healthy children after two age-appropriate doses of rubella-containing vaccine for 142 potential SNPs. Results Specific polymorphisms in the vitamin A receptor, RIG-I, TRIM5 and TRIM22 genes were significantly associated with rubella vaccine humoral immunity. The minor allele of the rs4416353 in the vitamin A receptor gene was associated with an allele dose-related decrease (P=.019) in rubella antibody response. The minor allele of rs6793694, in the vitamin A receptor gene, was associated with an allele dose-related antibody decrease (P=.039). The minor variant of nonsynonymous SNP rs10813831 (Arg7Cys) in the RIG-I gene was associated with an allele dose-related decrease in rubella antibody level from 37.4 IU/mL to 28.0 IU/mL (P=.035), while increased representation of the minor allele of the 5’UTR SNP (rs3824949, P=.015), in the antiretroviral TRIM5 gene, was associated with an allele dose-related increase in rubella antibody. It is of particular interest that the nonsynonymous SNP rs3740996 (His43Tyr) in the TRIM5 gene was associated with variations in rubella antibody response (P=.016) after having been previously found to have a significant functional role. Conclusions These findings further expand our immunogenetic understanding of mechanisms of rubella vaccine-induced immunity. PMID:20001730

  5. Polymeric antigen BLSOmp31 in aluminium hydroxide induces serum bactericidal and opsonic antibodies against Brucella canis in dogs.

    PubMed

    Clausse, Maria; Díaz, Alejandra G; Pardo, Romina P; Zylberman, Vanesa; Goldbaum, Fernando A; Estein, Silvia M

    2017-02-01

    Polymeric antigen BLSOmp31 is an immunogenic vaccine candidate that confers protection against Brucella canis in mice. In this preliminary study, the immunogenicity and safety of BLSOmp31 adsorbed to aluminum hydroxide gel (BLSOmp31-AH) were evaluated in Beagle dogs. In addition, the potential to elicit serum antibodies with complement-dependent bactericidal activity and/or to enhance phagocytosis by neutrophils were analyzed. Dogs were immunized three times with BLSOmp31-AH by subcutaneous route, followed by an annual booster. The vaccine elicited specific antibodies 3 weeks after the first immunization. Annual booster induced comparable antibody response as the primary series. Humoral immune response stimulated by BLSOmp31-AH did not interfere with routine agglutination test for canine brucellosis. Antibodies demonstrated a high complement-dependent bactericidal activity against B. canis. Moreover, opsonization by immune serum not only stimulated binding and uptake of the bacteria by neutrophils but effectively enhanced the destruction of B. canis. Specific IgG was detected in 3/4 immunized dogs in preputial secretions. The antibody profile corresponded to a marked Th2 response, since IgG1 prevailed over IgG2 and cellular immune response was not detected in vitro or in vivo. These results require further evaluation in larger field studies to establish the full prophylactic activity of BLSOmp31 against canine brucellosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Complement deposition induced by binding of anti-contactin-1 auto-antibodies is modified by immunoglobulins.

    PubMed

    Appeltshauser, Luise; Weishaupt, Andreas; Sommer, Claudia; Doppler, Kathrin

    2017-01-01

    Inflammatory neuropathies associated with auto-antibodies against paranodal proteins like contactin-1 are reported to respond poorly to treatment with intravenous immunoglobulins (IVIG). A reason might be that IVIG interacts with the complement pathway and these auto-antibodies often belong to the IgG4 subclass that does not activate complement. However, some patients do show a response to IVIG, especially at the beginning of the disease. This corresponds with the finding of coexisting IgG subclasses IgG1, IgG2 and IgG3. We therefore aimed to investigate complement deposition and activation by samples of three patients with anti-contactin-1 IgG auto-antibodies of different subclasses as a potential predictor for response to IVIG. Complement deposition and activation was measured by cell binding and ELISA based assays, and the effect of IVIG on complement deposition was assessed by addition of different concentrations of IVIG. Binding of anti-contactin-1 auto-antibodies of all three patients induced complement deposition and activation with the strongest effect shown by the serum of a patient with predominance of IgG3 auto-antibodies. IVIG led to a reduction of complement deposition in a dose-dependent manner, but did not reduce binding of auto-antibodies to contactin-1. We conclude that complement deposition may contribute to the pathophysiology of anti-contactin-1 associated neuropathy, particularly in patients with predominance of the IgG3 subclass. The proportion of different auto-antibody subclasses may be a predictor for the response to IVIG in patients with auto-antibodies against paranodal proteins.

  7. Induction of mucosal and systemic antibody responses against the HIV coreceptor CCR5 upon intramuscular immunization and aerosol delivery of a Virus-like Particle based vaccine

    PubMed Central

    Hunter, Z; Smyth, HD; Durfee, P; Chackerian, B

    2009-01-01

    Virus-like particles (VLPs) can be exploited as platforms to increase the immunogenicity of poorly immunogenic antigens, including self-proteins. We have developed VLP-based vaccines that target two domains of the HIV coreceptor CCR5 that are involved in HIV binding. These vaccines induce anti-CCR5 antibodies that bind to native CCR5 and inhibit SIV infection in vitro. Given the role of mucosal surfaces in HIV transmission and replication, we also asked whether an aerosolized, VLP-based pulmonary vaccine targeting CCR5 could induce a robust mucosal response in addition to a systemic response. In rats, both intramuscular and pulmonary immunization induced high titer IgG and IgA against the vaccine in the serum, but only aerosol vaccination induced IgA antibodies at local mucosal sites. An intramuscular prime followed by an aerosol boost resulted in strong serum and mucosal antibody responses. These results show that VLP-based vaccines targeting CCR5 induce high-titer systemic antibodies, and can elicit both local and systemic mucosal response when administered via an aerosol. Vaccination against a self-molecule that is critically involved during HIV transmission and pathogenesis is an alternative to targeting the virus itself. More generally, our results provide a general method for inducing broad systemic and mucosal antibody responses using VLP-based immunogens. PMID:19849995

  8. Wildtype p53-specific antibody and T-cell responses in cancer patients.

    PubMed

    Pedersen, Anders Elm; Stryhn, Anette; Justesen, Sune; Harndahl, Mikkel; Rasmussen, Susanne; Donskov, Frede; Claesson, Mogens H; Pedersen, Johannes W; Wandall, Hans H; Svane, Inge Marie; Buus, Søren

    2011-01-01

    Mutation in the p53 gene based on single amino acid substitutions is a frequent event in human cancer. Accumulated mutant p53 protein is released to antigen presenting cells of the immune system and anti-p53 immune responses even against wt p53 is induced and observed in a number of human cancer patients. Detection of antibodies against wt p53 protein has been used as a diagnostic and prognostic marker and discovery of new T-cell epitopes has enabled design of cancer vaccination protocols with promising results. Here, we identified wt p53-specific antibodies in various cancer patients and identified a broad range of responses against wt p53 protein and 15-mer peptides using a novel print array technology. Likewise, using bioinformatic tools in silico, we identified CD8 T-cell specificity or reactivity against HLA-A*02:01 binding peptides wt p53(65-73), wt p53(187-197), and wt p53(264-272) in breast cancer patients and against HLA-A*01:01 binding peptide wt p53(226-234) and HLA-B*07:02 binding peptide wt p53(74-82) in renal cell cancer and breast cancer patients, respectively. Finally, we analyzed antibody and T-cell responses against wt p53 15-mer peptides in patients with metastatic renal cell carcinoma who were alive with no evidence of disease after a follow-up period of minimum 5 years after treatment with IL-2 ± IFN-α ± histamine containing immunotherapy to identify novel epitopes for use in immunotherapy and for potential response biomarkers. However, none of the wt p53 reactivity observed justified use of 15-mer or was related to survival in this rare patient population.

  9. Hepatitis C virus vaccine candidates inducing protective neutralizing antibodies.

    PubMed

    Fauvelle, Catherine; Colpitts, Che C; Keck, Zhen-Yong; Pierce, Brian G; Foung, Steven K H; Baumert, Thomas F

    2016-12-01

    With more than 150 million chronically infected people, hepatitis C virus (HCV) remains a substantial global health burden. Direct-acting antivirals have dramatically improved viral cure. However, limited access to therapy, late stage detection of infection and re-infection following cure illustrate the need for a vaccine for global control of infection. Vaccines with induction of neutralizing antibodies (nAbs) have been shown to protect successfully against infections by multiple viruses and are currently developed for HCV. Areas covered: Here we review the progress towards the development of vaccines aiming to confer protection against chronic HCV infection by inducing broadly nAbs. The understanding or viral immune evasion in infected patients, the development of novel model systems and the recent structural characterization of viral envelope glycoprotein E2 has markedly advanced our understanding of the molecular mechanisms of virus neutralization with the concomitant development of several vaccine candidates. Expert commentary: While HCV vaccine development remains challenged by the high viral diversity and immune evasion, marked progress in HCV research has advanced vaccine design. Several vaccine candidates have shown robust induction of nAbs in animal models and humans. Randomized clinical trials are the next step to assess their clinical efficacy for protection against chronic infection.

  10. Lethal iron deprivation induced by non-neutralizing antibodies targeting transferrin receptor 1 in malignant B cells.

    PubMed

    Rodríguez, José A; Luria-Pérez, Rosendo; López-Valdés, Héctor E; Casero, David; Daniels, Tracy R; Patel, Shabnum; Avila, David; Leuchter, Richard; So, Sokuntheavy; Ortiz-Sánchez, Elizabeth; Bonavida, Benjamin; Martínez-Maza, Otoniel; Charles, Andrew C; Pellegrini, Matteo; Helguera, Gustavo; Penichet, Manuel L

    2011-11-01

    A number of antibodies have been developed that induce lethal iron deprivation (LID) by targeting the transferrin receptor 1 (TfR1/CD71) and either neutralizing transferrin (Tf) binding, blocking internalization of the receptor and/or inducing its degradation. We have developed recombinant antibodies targeting human TfR1 (ch128.1 and ch128.1Av), which induce receptor degradation and are cytotoxic to certain malignant B-cells. We now show that internalization of TfR1 bound to these antibodies can lead to its sequestration and degradation, as well as reduced Tf uptake, and the induction of a transcriptional response consistent with iron deprivation, which is mediated in part by downstream targets of p53. Cells resistant to these antibodies do not sequester and degrade TfR1 after internalization of the antibody/receptor complex, and accordingly maintain their ability to internalize Tf. These findings are expected to facilitate the rational design and clinical use of therapeutic agents targeting iron import via TfR1 in hematopoietic malignancies.

  11. Lethal iron deprivation induced by non-neutralizing antibodies targeting transferrin receptor 1 in malignant B cells

    PubMed Central

    Rodríguez, JoséA.; Luria-Pérez, Rosendo; López-Valdés, Héctor E.; Casero, David; Daniels, Tracy R.; Patel, Shabnum; Avila, David; Leuchter, Richard; So, Sokuntheavy; ánchez, Elizabeth Ortiz-S; Bonavida, Benjamin; Martínez-Maza, Otoniel; Charles, Andrew .C; Pellegrini, Matteo; Helguera, Gustavo; Penichet, Manuel L.

    2013-01-01

    A number of antibodies have been developed that induce lethal iron deprivation (LID) by targeting the transferrin receptor 1 (TfR1/CD71) and either neutralizing transferrin (Tf) binding, blocking internalization of the receptor and/or inducing its degradation. We have developed recombinant antibodies targeting human TfR1 (ch128.1 and ch128.1Av), which induce receptor degradation and are cytotoxic to certain malignant B-cells. We now show that internalization of TfR1 bound to these antibodies can lead to its sequestration and degradation, as well as reduced Tf uptake, and the induction of a transcriptional response consistent with iron deprivation, which is mediated in part by downstream targets of p53. Cells resistant to these antibodies do not sequester and degrade TfR1 after internalization of the antibody/receptor complex, and accordingly maintain their ability to internalize Tf. These findings are expected to facilitate the rational design and clinical use of therapeutic agents targeting iron import via TfR1 in hematopoietic malignancies. PMID:21870996

  12. Antibody- and cell-mediated immune responses to a synthetic oligosaccharide conjugate vaccine after booster immunization.

    PubMed

    Safari, Dodi; Dekker, Huberta A Th; de Jong, Ben; Rijkers, Ger T; Kamerling, Johannis P; Snippe, Harm

    2011-09-02

    Memory formation to CRM-neoglycoconjugate, a synthetic branched tetrasaccharide of Streptococcus pneumoniae type 14 polysaccharide (Pn14PS) that is conjugated to a CRM197 protein, was investigated using mice models. Mice were first immunized with the CRM-neoglycoconjugate and then boosted with either the same neoglycoconjugate or a native Pn14PS in order to investigate the effect of booster immunization. Boosting with the CRM-neoglycoconjugate resulted in increased levels of interleukin 5 (IL-5) in the serum on Day 1, followed by the appearance of high levels of specific anti-Pn14PS IgG antibodies on Day 7. Boosting with native Pn14PS resulted in neither IL-5 induction nor the generation of anti-Pn14PS IgG antibodies. In vitro (re)stimulation of spleen cells after booster injection with the neoglycoconjugate revealed the presence of IL-4 and IL-5. This was not seen in spleen cells obtained from mice boosted with the polysaccharide. When stimulated with heat-inactivated bacteria, however, the polysaccharide-boosted mice did have higher levels of IFN-γ and lower levels of IL-17 than both the CRM-neoglycoconjugate-boosted mice and the mock-immunized mice. In conclusion, neoglycoconjugate boosting is responsible for the activation of memory cells and the establishment of sustained immunity. Not only is a booster with native polysaccharide ineffective in inducing opsonic antibodies, but it also interferes with several immunoregulatory mechanisms.

  13. Lack of antiviral antibody response in koalas infected with koala retroviruses (KoRV).

    PubMed

    Fiebig, Uwe; Keller, Martina; Möller, Annekatrin; Timms, Peter; Denner, Joachim

    2015-02-16

    Many wild koalas are infected with the koala retrovirus, KoRV, some of which suffer from lymphoma and chlamydial disease. Three subgroups, KoRV-A, KoRV-B and KoRV-J, have so far been described. It is well known that other closely related gammaretroviruses can induce tumours and severe immunodeficiencies in their respective hosts and a possible role for KoRV infection in lymphoma and chlamydial disease in koalas has been suggested. In many wild koalas, KoRV-A has become endogenised, i.e., it is integrated in the germ-line and is passed on with normal cellular genes. In this study, sera from koalas in European zoos and from wild animals in Australia were screened for antibodies against KoRV-A. These naturally infected animals all carry endogenous KoRV-A and two zoo animals are also infected with KoRV-B. The antibody response is generally an important diagnostic tool for detecting retrovirus infections. However, when Western blot analyses were performed using purified virus or recombinant proteins corresponding to KoRV-A, none of the koalas tested positive for specific antibodies, suggesting a state of tolerance. These results have implications for koala vaccination, as they suggest that therapeutic immunisation of animals carrying and expressing endogenous KoRV-A will not be successful. However, it remains unclear whether these animals can be immunised against KoRV-B and immunisation of uninfected koalas could still be worthwhile.

  14. Anti-RAGE antibody selectively blocks acute systemic inflammatory responses to LPS in serum, liver, CSF and striatum.

    PubMed

    Gasparotto, Juciano; Ribeiro, Camila Tiefensee; Bortolin, Rafael Calixto; Somensi, Nauana; Fernandes, Henrique Schaan; Teixeira, Alexsander Alves; Guasselli, Marcelo Otavio Rodrigues; Agani, Crepin Aziz Jose O; Souza, Natália Cabral; Grings, Mateus; Leipnitz, Guilhian; Gomes, Henrique Mautone; de Bittencourt Pasquali, Matheus Augusto; Dunkley, Peter R; Dickson, Phillip W; Moreira, José Claudio Fonseca; Gelain, Daniel Pens

    2017-05-01

    Systemic inflammation induces transient or permanent dysfunction in the brain by exposing it to soluble inflammatory mediators. The receptor for advanced glycation endproducts (RAGE) binds to distinct ligands mediating and increasing inflammatory processes. In this study we used an LPS-induced systemic inflammation model in rats to investigate the effect of blocking RAGE in serum, liver, cerebrospinal fluid (CSF) and brain (striatum, prefrontal cortex, ventral tegmental area and substantia nigra). Intraperitoneal injection of RAGE antibody (50μg/kg) was followed after 1h by a single LPS (5mg/kg) intraperitoneal injection. Twenty-four hours later, tissues were isolated for analysis. RAGE antibody reduced LPS-induced inflammatory effects in both serum and liver; the levels of proinflammatory cytokines (TNF-α, IL-1β) were decreased and the phosphorylation/activation of RAGE downstream targets (ERK1/2, IκB and p65) in liver were significantly attenuated. RAGE antibody prevented LPS-induced effects on TNF-α and IL-1β in CSF. In striatum, RAGE antibody inhibited increases in IL-1β, Iba-1, GFAP, phospho-ERK1/2 and phospho-tau (ser202), as well as the decrease in synaptophysin levels. These effects were caused by systemic RAGE inhibition, as RAGE antibody did not cross the blood-brain barrier. RAGE antibody also prevented striatal lipoperoxidation and activation of mitochondrial complex II. In conclusion, blockade of RAGE is able to inhibit inflammatory responses induced by LPS in serum, liver, CSF and brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Neutralizing antibody responses to foot-and-mouth disease quadrivalent (type O, A, C and Asia 1) vaccines in growing calves with pre-existing maternal antibodies.

    PubMed

    Patil, Prasanna K; Sajjanar, Channabasavaraj M; Natarajan, Chitattor; Bayry, Jagadeesh

    2014-03-14

    The presence of maternal antibodies is a major obstacle for eliciting protective immune responses to foot-and-mouth disease (FMD) vaccines in young, growing animals. In this report, we analyzed the ability of inactivated quadrivalent oil emulsified and aluminium hydroxide adjuvanted FMD vaccines to elicit neutralizing antibody responses in growing calves that had maternal antibodies. Our results demonstrate that oil emulsified vaccines but not aluminium hydroxide adjuvanted FMD vaccines could surmount maternal antibodies to elicit strong and significant levels of neutralizing antibody responses in growing claves.

  16. Induced polarization response of microbial induced sulfideprecipitation

    SciTech Connect

    Ntarlagiannis, Dimitrios; Williams, Kenneth Hurst; Slater, Lee; Hubbard, Susan

    2004-06-04

    A laboratory scale experiment was conducted to examine the use of induced polarization and electrical conductivity to monitor microbial induced sulfide precipitation under anaerobic conditions in sand filled columns. Three columns were fabricated; one for electrical measurements, one for geochemical sampling and a third non-inoculated column was used as a control. A continual upward flow of nutrients and metals in solution was established in each column. Desulfovibrio vulgaris microbes were injected into the middle of the geochemical and electrical columns. Iron and zinc sulfides precipitated along a microbial action front as a result of sulfate reduction due by Desulfovibrio vulgaris. The precipitation front initially developed near the microbial injection location, and subsequently migrated towards the nutrient inlet, as a result of chemotaxis by Desulfovibrio vulgaris. Sampling during and subsequent to the experiment revealed spatiotemporal changes in the biogeochemical measurements associated with microbial sulfate reduction. Conductivity measurements were insensitive to all biogeochemical changes occurred within the column. Changes in the IP response (of up to 14 mrad)were observed to coincide in place and in time with the active microbe respiration/sulfide precipitation front as determined from geochemical sampling. The IP response is correlated with the lactate concentration gradient, an indirect measurement of microbial metabolism, suggesting the potential of IP as a method for monitoring microbial respiration/activity. Post experimental destructive sample analysis and SEM imaging verified the geochemical results and supported our hypothesis that microbe induced sulfide precipitation is directly detectable using electrical methods. Although the processes not fully understood, the IP response appears to be sensitive to this anaerobic microbial precipitation, suggesting a possible novel application for the IP method.

  17. Virus-neutralizing antibody response of mice to consecutive infection with human and avian influenza A viruses.

    PubMed

    Janulíková, J; Stropkovská, A; Bobišová, Z; Košík, I; Mucha, V; Kostolanský, F; Varečková, E

    2015-06-01

    In this work we simulated in a mouse model a naturally occurring situation of humans, who overcame an infection with epidemic strains of influenza A, and were subsequently exposed to avian influenza A viruses (IAV). The antibody response to avian IAV in mice previously infected with human IAV was analyzed. We used two avian IAV (A/Duck/Czechoslovakia/1956 (H4N6) and the attenuated virus rA/Viet Nam/1203-2004 (H5N1)) as well as two human IAV isolates (virus A/Mississippi/1/1985 (H3N2) of medium virulence and A/Puerto Rico/8/1934 (H1N1) of high virulence). Two repeated doses of IAV of H4 or of H5 virus elicited virus-specific neutralizing antibodies in mice. Exposure of animals previously infected with human IAV (of H3 or H1 subtype) to IAV of H4 subtype led to the production of antibodies neutralizing H4 virus in a level comparable with the level of antibodies against the human IAV used for primary infection. In contrast, no measurable levels of virus-neutralizing (VN) antibodies specific to H5 virus were detected in mice infected with H5 virus following a previous infection with human IAV. In both cases the secondary infection with avian IAV led to a significant increase of the titer of VN antibodies specific to the corresponding human virus used for primary infection. Moreover, cross-reactive HA2-specific antibodies were also induced by sequential infection. By virtue of these results we suggest that the differences in the ability of avian IAV to induce specific antibodies inhibiting virus replication after previous infection of mice with human viruses can have an impact on the interspecies transmission and spread of avian IAV in the human population.

  18. A Highly Conserved Residue of the HIV-1 gp120 Inner Domain Is Important for Antibody-Dependent Cellular Cytotoxicity Responses Mediated by Anti-cluster A Antibodies

    PubMed Central

    Ding, Shilei; Veillette, Maxime; Coutu, Mathieu; Prévost, Jérémie; Scharf, Louise; Bjorkman, Pamela J.; Ferrari, Guido; Robinson, James E.; Stürzel, Christina; Hahn, Beatrice H.; Sauter, Daniel; Kirchhoff, Frank; Lewis, George K.; Pazgier, Marzena

    2015-01-01

    Previous studies have shown that sera from HIV-1-infected individuals contain antibodies able to mediate antibody-dependent cellular cytotoxicity (ADCC). These antibodies preferentially recognize envelope glycoprotein (Env) epitopes induced upon CD4 binding. Here, we show that a highly conserved tryptophan at position 69 of the gp120 inner domain is important for ADCC mediated by anti-cluster A antibodies and sera from HIV-1-infected individuals. PMID:26637462

  19. Polyfunctional HIV-Specific Antibody Responses Are Associated with Spontaneous HIV Control

    PubMed Central

    Ackerman, Margaret E.; Mikhailova, Anastassia; Brown, Eric P.; Dowell, Karen G.; Walker, Bruce D.; Bailey-Kellogg, Chris; Suscovich, Todd J.; Alter, Galit

    2016-01-01

    Elite controllers (ECs) represent a unique model of a functional cure for HIV-1 infection as these individuals develop HIV-specific immunity able to persistently suppress viremia. Because accumulating evidence suggests that HIV controllers generate antibodies with enhanced capacity to drive antibody-dependent cellular cytotoxicity (ADCC) that may contribute to viral containment, we profiled an array of extra-neutralizing antibody effector functions across HIV-infected populations with varying degrees of viral control to define the characteristics of antibodies associated with spontaneous control. While neither the overall magnitude of antibody titer nor individual effector functions were increased in ECs, a more functionally coordinated innate immune–recruiting response was observed. Specifically, ECs demonstrated polyfunctional humoral immune responses able to coordinately recruit ADCC, other NK functions, monocyte and neutrophil phagocytosis, and complement. This functionally coordinated response was associated with qualitatively superior IgG3/IgG1 responses, whereas HIV-specific IgG2/IgG4 responses, prevalent among viremic subjects, were associated with poorer overall antibody activity. Rather than linking viral control to any single activity, this study highlights the critical nature of functionally coordinated antibodies in HIV control and associates this polyfunctionality with preferential induction of potent antibody subclasses, supporting coordinated antibody activity as a goal in strategies directed at an HIV-1 functional cure. PMID:26745376

  20. [Analysis of serum neutralizing antibody response in patients with primary dengue virus type 1 infection].

    PubMed

    Hu, Dongmei; Li, Jie; Wang, Dahu; DI, Biao; Qiu, Liwen; Wang, Yadi; Ding, Xixia; Che, Xiaoyan

    2012-12-01

    To investigate the characteristics and dynamic changes of serum neutralizing antibody response in patients with primary infection of dengue virus type 1 (DENV-1). Serum samples were obtained from the same patients with primary infection of DENV-1 within 2 weeks after symptom onset in 2006 and in 2010. A group-specific DENV NS1 capture ELISA-based micro-neutralizing test (ELISA-MNT) capable of detecting neutralizing antibodies against all the 4 serotypes of DENV was used to test the neutralizing antibody titers against DENV in the serum samples. The neutralizing antibody titers against a standard strain and 2 clinically isolated strains of DENV-1 were detected in serum samples collected in 2010. Cross-reactive neutralizing antibody response against all the 4 serotypes of DENV was found in both of the serum samples collected in 2006 and 2010, but the samples collected in 2006 showed stronger cross-reactive neutralizing antibody responses. The neutralizing antibody against DENV-2, rather than the anticipated DENV-1 antibody, had the highest titer in the samples collected in 2006, whereas the antibody against homologous DENV-1 had the highest titer in the samples obtained in 2010. The neutralizing antibody titers against the homologous DENV-1 was significantly higher in samples collected in 2010 (U=86.500, P=0.000), which also demonstrated significantly different neutralizing antibody titers against the 3 different strains of DENV-1 (Χ(2)=12.123, P=0.002). The production of cross-reactive neutralizing antibodies between the 4 serotypes of DENV is a characteristic of DENV infection, particularly during early infection, but only the homologous neutralizing antibody increases obviously over time. The titers of the neutralizing antibodies against different strains, even of the same serotype, may differ distinctly.

  1. Tissue factor in antiphospholipid antibody-induced pregnancy loss: a pro-inflammatory molecule

    PubMed Central

    Girardi, G; Mackman, N

    2010-01-01

    Fetal loss in patients with antiphospholipid antibodies (aPL) has been ascribed to thrombosis of placental vessels. However, we have shown that inflammation, specifically complement activation with generation of the anaphylotoxin C5a, is an essential mediator of fetal injury. We have analysed the role of tissue factor (TF) in a mouse model of aPL-induced pregnancy loss. TF is the major cellular activator of the coagulation cascade but also has cell signaling activity. Mice that received aPL-IgG showed strong TF staining throughout the decidua and on embryonic debris. This TF staining was not associated with either fibrin staining or thrombi in deciduas. The absence of fibrin deposition and thrombi suggests that TF-dependent activation of coagulation does not mediate aPL-induced pregnancy loss. We found that either blockade of TF with a monoclonal antibody in wild type mice or a genetic reduction of TF prevented aPL-induced inflammation and pregnancy loss indicated a pathogenic role for TF in aPL-induced pregnancy complications. In response to aPL-generated C5a, neutrophils express TF potentiating inflammation in the deciduas and leading to miscarriages. Importantly, we showed that TF in myeloid cells, but not fetal-derived cells (trophoblasts), was associated with fetal injury, suggesting that the site for pathologic TF expression is neutrophils. We found that TF expression in neutrophils contributes to respiratory burst and subsequent trophoblast injury and pregnancy loss induced by aPL. The identification of TF, acting as an important pro-inflammatory mediator in aPL-induced fetal injury, provides a new target for therapy to prevent pregnancy loss in the aPL syndrome. PMID:18827058

  2. Influence of protein expression system on elicitation of IgE antibody responses: experience with lactoferrin.

    PubMed

    Almond, Rachael J; Flanagan, Brian F; Kimber, Ian; Dearman, Rebecca J

    2012-11-15

    With increased interest in genetically modified (GM) crop plants there is an important need to understand the properties that contribute to the ability of such novel proteins to provoke immune and/or allergic responses. One characteristic that may be relevant is glycosylation, particularly as novel expression systems (e.g. bacterial to plant) will impact on the protein glycoprofile. The allergenicity (IgE inducing) and immunogenicity (IgG inducing) properties of wild type native human lactoferrin (NLF) from human milk (hm) and neutrophil granules (n) and a recombinant molecule produced in rice (RLF) have been assessed. These forms of lactoferrin have identical amino acid sequences, but different glycosylation patterns: hmNLF and nNLF have complex glycoprofiles including Lewis (Le)(x) structures, with particularly high levels of Le(x) expressed by nNLF, whereas RLF is simpler and rich in mannose residues. Antibody responses induced in BALB/c strain mice by intraperitoneal exposure to the different forms of lactoferrin were characterised. Immunisation with both forms of NLF stimulated substantial IgG and IgE antibody responses. In contrast, the recombinant molecule was considerably less immunogenic and failed to stimulate detectable IgE, irrespective of endotoxin and iron content. The glycans did not contribute to epitope formation, with equivalent IgE and IgG binding recorded for high titre anti-NLF antisera regardless of whether the immunising NLF or the recombinant molecule were used substrates in the analyses. These data demonstrate that differential glycosylation profiles can have a profound impact on protein allergenicity and immunogenicity, with mannose and Le(x) exhibiting opposing effects. These results have clear relevance for characterising the allergenic hazards of novel proteins in GM crops.

  3. Antibody response to inactivated influenza vaccines of various antigenic concentrations.

    PubMed

    Sullivan, K M; Monto, A S; Foster, D A

    1990-02-01

    Four inactivated influenza vaccines (containing the recommended antigens for the 1985-1986 influenza season) of various antigenic concentration levels were randomly administered to 140 study participants. The effect of the increasing antigen concentration resulted in significantly higher influenza hemagglutination inhibition (HI) antibody levels 3 weeks after vaccination for the A/H1N1 antigen but not for the A/H3N2 or B antigens. Also, at 3 weeks after vaccination, there were significantly lower antibody titer levels associated with increasing age for the A/H1N1 and B antigens (adjusting for the prevaccination antibody titer and antigen content).

  4. Host Anti-antibody Responses Following Adeno-associated Virus-mediated Delivery of Antibodies Against HIV and SIV in Rhesus Monkeys.

    PubMed

    Martinez-Navio, José M; Fuchs, Sebastian P; Pedreño-López, Sònia; Rakasz, Eva G; Gao, Guangping; Desrosiers, Ronald C

    2016-02-01

    Long-term delivery of antibodies against the human immunodeficiency virus (HIV) using adeno-associated virus (AAV) vectors is a promising approach for the prevention or treatment of HIV infection. However, host antibody responses to the delivered antibody are a serious concern that could significantly limit the applicability of this approach. Here, we describe the dynamics and characteristics of the anti-antibody responses in monkeys that received either rhesus anti-simian immunodeficiency virus (SIV) antibodies (4L6 or 5L7) in prevention trials or a combination of rhesusized human anti-HIV antibodies (1NC9/8ANC195/3BNC117 or 10-1074/10E8/3BNC117) in therapy trials, all employing AAV1 delivery of IgG1. Eight out of eight monkeys that received the anti-HIV antibodies made persisting antibody responses to all three antibodies in the mix. Six out of six uninfected monkeys that received the anti-SIV antibody 4L6 and three out of six of those receiving anti-SIV antibody 5L7 also generated anti-antibodies. Both heavy and light chains were targeted, predominantly or exclusively to variable regions, and reactivity to complementarity-determining region (CDR)-H3 peptide could be demonstrated. There was a highly significant correlation of the magnitude of anti-antibody responses with the degree of sequence divergence of the delivered antibody from germline. Our results suggest the need for effective strategies to counteract the problem of antibody responses to AAV-delivered antibodies.

  5. Host Anti-antibody Responses Following Adeno-associated Virus–mediated Delivery of Antibodies Against HIV and SIV in Rhesus Monkeys

    PubMed Central

    Martinez-Navio, José M; Fuchs, Sebastian P; Pedreño-López, Sònia; Rakasz, Eva G; Gao, Guangping; Desrosiers, Ronald C

    2016-01-01

    Long-term delivery of antibodies against the human immunodeficiency virus (HIV) using adeno-associated virus (AAV) vectors is a promising approach for the prevention or treatment of HIV infection. However, host antibody responses to the delivered antibody are a serious concern that could significantly limit the applicability of this approach. Here, we describe the dynamics and characteristics of the anti-antibody responses in monkeys that received either rhesus anti-simian immunodeficiency virus (SIV) antibodies (4L6 or 5L7) in prevention trials or a combination of rhesusized human anti-HIV antibodies (1NC9/8ANC195/3BNC117 or 10–1074/10E8/3BNC117) in therapy trials, all employing AAV1 delivery of IgG1. Eight out of eight monkeys that received the anti-HIV antibodies made persisting antibody responses to all three antibodies in the mix. Six out of six uninfected monkeys that received the anti-SIV antibody 4L6 and three out of six of those receiving anti-SIV antibody 5L7 also generated anti-antibodies. Both heavy and light chains were targeted, predominantly or exclusively to variable regions, and reactivity to complementarity-determining region (CDR)-H3 peptide could be demonstrated. There was a highly significant correlation of the magnitude of anti-antibody responses with the degree of sequence divergence of the delivered antibody from germline. Our results suggest the need for effective strategies to counteract the problem of antibody responses to AAV-delivered antibodies. PMID:26444083

  6. Increased IFNα activity and differential antibody response in patients with a history of Lyme disease and persistent cognitive deficits.

    PubMed

    Jacek, Elzbieta; Fallon, Brian A; Chandra, Abhishek; Crow, Mary K; Wormser, Gary P; Alaedini, Armin

    2013-02-15

    Following antibiotic treatment for Lyme disease, some patients report persistent or relapsing symptoms of pain, fatigue, and/or cognitive deficits. Factors other than active infection, including immune abnormalities, have been suggested, but few clues regarding mechanism have emerged. Furthermore, the effect of antibiotic treatment on immune response in affected individuals remains unknown. In this study, a longitudinal analysis of specific immune markers of interest was carried out in patients with a history of Lyme disease and persistent objective memory impairment, prior to and following treatment with either ceftriaxone or placebo. IFNα activity was measured by detection of serum-induced changes in specific target genes, using a functional cell-based assay and quantitative real-time PCR. Level and pattern of antibody reactivity to brain antigens and to Borrelia burgdorferi proteins were analyzed by ELISA and immunoblotting. Sera from the patient cohort induced significantly higher expression of IFIT1 and IFI44 target genes than those from healthy controls, indicating increased IFNα activity. Antibody reactivity to specific brain and borrelial proteins was significantly elevated in affected patients. IFNα activity and antibody profile did not change significantly in response to ceftriaxone. The heightened antibody response implies enhanced immune stimulation, possibly due to prolonged exposure to the organism prior to the initial diagnosis and antibiotic treatment of Lyme disease. The increase in IFNα activity is suggestive of a mechanism contributing to the ongoing neuropsychiatric symptoms. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Response of a Concentrated Monoclonal Antibody Formulation to High Shear

    PubMed Central

    Bee, Jared S.; Stevenson, Jennifer L.; Mehta, Bhavya; Svitel, Juraj; Pollastrini, Joey; Platz, Robert; Freund, Erwin; Carpenter, John F.

    2009-01-01

    There is concern that shear could cause protein unfolding or aggregation during commercial biopharmaceutical production. In this work we exposed two concentrated immunoglobulin-G1 (IgG1) monoclonal antibody (mAb, at >100 mg/mL) formulations to shear rates of between 20,000 and 250,000 s-1 for between 5 minutes and 30 ms using a parallel-plate and capillary rheometer respectively. The maximum shear and force exposures were far in excess of those expected during normal processing operations (20,000 s-1 and 0.06 pN respectively). We used multiple characterization techniques to determine if there was any detectable aggregation. We found that shear alone did not cause aggregation, but that prolonged exposure to shear in the stainless steel parallel-plate rheometer caused a very minor reversible aggregation (<0.3%). Additionally, shear did not alter aggregate populations in formulations containing 17% preformed heat-induced aggregates of a mAb. We calculate that that the forces applied to a protein by production shear exposures (<0.06 pN) are small when compared with the 140 pN force expected at the air-water interface or the 20 to 150 pN forces required to mechanically unfold proteins described in the atomic force microscope (AFM) literature. Therefore, we suggest that in many cases air-bubble entrainment, adsorption to solid surfaces (with possible shear synergy), contamination by particulates, or pump cavitation stresses could be much more important causes of aggregation than shear exposure during production. PMID:19370772

  8. Co-Activation of Th17 and Antibody Responses Provides Efficient Protection against Mucosal Infection by Group A Streptococcus

    PubMed Central

    Chen, Xianyang; Li, Ning; Bi, Shuai; Wang, Xiaoguang; Wang, Beinan

    2016-01-01

    Conserved protein antigens among serotypes of group A Streptococcus pyogenes (GAS) have been focused for vaccine development because of the diversity of GAS serotypes and risks of autoimmunity post-GAS infection. Precise delineation of protective immune response to each of GAS antigens is critical for vaccine efficacy and safety. We recently reported that immunization with SrtA of GAS provides Th17-dependent clearance of heterologous serotypes of GAS in NALT. SCPA is a surface virulence molecule of GAS and known to induce antibody-mediated protection against GAS. We hypothesized that co-immunization with SrtA and SCPA would provide more efficient protection by eliciting combined Th17 and antibody responses. The present study showed that mice that were intranasally co-immunized with SrtA/SCPA cleared GAS more efficiently than the mice that were immunized with either SrtA or SCPA individually, and as efficient as the mice that experienced repeated GAS infections. The co-immunization induced Th17 and robust SCPA antibody responses, accompanied by a rapid influx of neutrophils and high myeloperoxidase activity in NALT, suggesting that simultaneous induction of mucosal Th17 and neutralizing antibody responses offers more effective GAS elimination through rapid infiltration and activation of neutrophils. Moreover, Th17 response was strongly induced in mice that experienced repeated GAS-infection and maintained at a high level even after the bacteria were cleared; whereas, it was moderately induced and promptly returned to baseline following bacterial elimination in SrtA/SCPA co-immunized mice. Additional results showed that the survival rate of systemic challenge was significantly higher in infection experienced than in co-immunized mice, indicating that more immune elements are required for protection against systemic than mucosal GAS infection. PMID:28030629

  9. Antibody Responses to Trivalent Inactivated Influenza Vaccine in Health Care Personnel Previously Vaccinated and Vaccinated for The First Time

    PubMed Central

    Huang, Kuan-Ying A.; Chang, Shih-Cheng; Huang, Yhu-Chering; Chiu, Cheng-Hsun; Lin, Tzou-Yien

    2017-01-01

    Inactivated influenza vaccination induces a hemagglutinin-specific antibody response to the strain used for immunization. Annual vaccination is strongly recommended for health care personnel. However, it is debatable if repeated vaccination would affect the antibody response to inactivated influenza vaccine through the time. We enrolled health care personnel who had repeated and first trivalent inactivated influenza vaccination in 2005–2008. Serological antibody responses were measured by hemagglutination-inhibition (HI) test. Subjects with repeated vaccination had higher pre-vaccination and lower post-vaccination HI titer than those with first vaccination, although serological responses between groups might vary with different antigen types and while the drifted strain was introduced in the vaccine. Higher fold rise in the HI titer was observed in the group with first than repeated vaccination and the fold increase in the HI titer was inversely correlated with pre-vaccination titer in 2007 and 2008. Nevertheless, no significant difference in the day 28 seroprotection rate was observed between groups with repeated and first vaccination in most circumstances. Further studies are needed to understand the long-term effect of repeated vaccination on the antibody response both at the serological and repertoire levels among health care personnel. PMID:28098157

  10. Antibody and cellular immune responses of naïve mares to repeated vaccination with an inactivated equine herpesvirus vaccine.

    PubMed

    Wagner, B; Goodman, L B; Babasyan, S; Freer, H; Torsteinsdóttir, S; Svansson, V; Björnsdóttir, S; Perkins, G A

    2015-10-13

    Equine herpesvirus type 1 (EHV-1) continues to cause severe outbreaks of abortions or myeloencephalopathy in horses despite widely used vaccination. The aim of this work was to determine the effects of frequent vaccination with an inactivated EHV vaccine on immune development in horses. Fifteen EHV-1 naïve mares were vaccinated a total of 5 times over a period of 8 months with intervals of 20, 60, 90 and 60 days between vaccine administrations. Total antibody and antibody isotype responses were evaluated with a new sensitive EHV-1 Multiplex assay to glycoprotein C (gC) and gD for up to 14 months after initial vaccination. Antibodies peaked after the first two vaccine doses and then declined despite a third administration of the vaccine. The fourth vaccine dose was given at 6 months and the gC and gD antibody titers increased again. Mixed responses with increasing gC but decreasing gD antibody values were observed after the fifth vaccination at 8 months. IgG4/7 isotype responses mimicked the total Ig antibody production to vaccination most closely. Vaccination also induced short-lasting IgG1 antibodies to gC, but not to gD. EHV-1-specific cellular immunity induced by vaccination developed slower than antibodies, was dominated by IFN-γ producing T-helper 1 (Th1) cells, and was significantly increased compared to pre-vaccination values after administration of 3 vaccine doses. Decreased IFN-γ production and reduced Th1-cell induction were also observed after the second and fourth vaccination. Overall, repeated EHV vaccine administration did not always result in increasing immunity. The adverse effects on antibody and cellular immunity that were observed here when the EHV vaccine was given in short intervals might in part explain why EHV-1 outbreaks are observed worldwide despite widely used vaccination. The findings warrant further evaluation of immune responses to EHV vaccines to optimize vaccination protocols for different vaccines and horse groups at risk.

  11. A Glycoprotein Subunit Vaccine Elicits a Strong Rift Valley Fever Virus Neutralizing Antibody Response in Sheep

    PubMed Central

    Lebedev, Maxim; McVey, D. Scott; Wilson, William; Morozov, Igor; Young, Alan

    2014-01-01

    Abstract Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, is a mosquito-borne zoonotic pathogen that causes serious morbidity and mortality in livestock and humans. The recent spread of the virus beyond its traditional endemic boundaries in Africa to the Arabian Peninsula coupled with the presence of susceptible vectors in nonendemic countries has created increased interest in RVF vaccines. Subunit vaccines composed of specific virus proteins expressed in eukaryotic or prokaryotic expression systems are shown to elicit neutralizing antibodies in susceptible hosts. RVFV structural proteins, amino-terminus glycoprotein (Gn), and carboxyl-terminus glycoprotein (Gc), were expressed using a recombinant baculovirus expression system. The recombinant proteins were reconstituted as a GnGc subunit vaccine formulation and evaluated for immunogenicity in a target species, sheep. Six sheep were each immunized with a primary dose of 50 μg of each vaccine immunogen with the adjuvant montanide ISA25; at day 21, postvaccination, each animal received a second dose of the same vaccine. The vaccine induced a strong antibody response in all animals as determined by indirect enzyme-linked immunosorbent assay (ELISA). A plaque reduction neutralization test (PRNT80) showed the primary dose of the vaccine was sufficient to elicit potentially protective virus neutralizing antibody titers ranging from 40 to 160, and the second vaccine dose boosted the titer to more than 1280. Furthermore, all animals tested positive for neutralizing antibodies at day 328 postvaccination. ELISA analysis using the recombinant nucleocapsid protein as a negative marker antigen indicated that the vaccine candidate is DIVA (differentiating infected from vaccinated animals) compatible and represents a promising vaccine platform for RVFV infection in susceptible species. PMID:25325319

  12. Optimal Sequential Immunization Can Focus Antibody Responses against Diversity Loss and Distraction

    PubMed Central

    2017-01-01

    Affinity maturation is a Darwinian process in which B lymphocytes evolve potent antibodies to encountered antigens and generate immune memory. Highly mutable complex pathogens present an immense antigenic diversity that continues to challenge natural immunity and vaccine design. Induction of broadly neutralizing antibodies (bnAbs) against this diversity by vaccination likely requires multiple exposures to distinct but related antigen variants, and yet how affinity maturation advances under such complex stimulation remains poorly understood. To fill the gap, we present an in silico model of affinity maturation to examine two realistic new aspects pertinent to vaccine development: loss in B cell diversity across successive immunization periods against different variants, and the presence of distracting epitopes that entropically disfavor the evolution of bnAbs. We find these new factors, which introduce additional selection pressures and constraints, significantly influence antibody breadth development, in a way that depends crucially on the temporal pattern of immunization (or selection forces). Curiously, a less diverse B cell seed may even favor the expansion and dominance of cross-reactive clones, but only when conflicting selection forces are presented in series rather than in a mixture. Moreover, the level of frustration due to evolutionary conflict dictates the degree of distraction. We further describe how antigenic histories select evolutionary paths of B cell lineages and determine the predominant mode of antibody responses. Sequential immunization with mutationally distant variants is shown to robustly induce bnAbs that focus on conserved elements of the target epitope, by thwarting strain-specific and distracted lineages. An optimal range of antigen dose underlies a fine balance between efficient adaptation and persistent reaction. These findings provide mechanistic guides to aid in design of vaccine strategies against fast mutating pathogens. PMID

  13. A glycoprotein subunit vaccine elicits a strong Rift Valley fever virus neutralizing antibody response in sheep.

    PubMed

    Faburay, Bonto; Lebedev, Maxim; McVey, D Scott; Wilson, William; Morozov, Igor; Young, Alan; Richt, Juergen A

    2014-10-01

    Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, is a mosquito-borne zoonotic pathogen that causes serious morbidity and mortality in livestock and humans. The recent spread of the virus beyond its traditional endemic boundaries in Africa to the Arabian Peninsula coupled with the presence of susceptible vectors in nonendemic countries has created increased interest in RVF vaccines. Subunit vaccines composed of specific virus proteins expressed in eukaryotic or prokaryotic expression systems are shown to elicit neutralizing antibodies in susceptible hosts. RVFV structural proteins, amino-terminus glycoprotein (Gn), and carboxyl-terminus glycoprotein (Gc), were expressed using a recombinant baculovirus expression system. The recombinant proteins were reconstituted as a GnGc subunit vaccine formulation and evaluated for immunogenicity in a target species, sheep. Six sheep were each immunized with a primary dose of 50 μg of each vaccine immunogen with the adjuvant montanide ISA25; at day 21, postvaccination, each animal received a second dose of the same vaccine. The vaccine induced a strong antibody response in all animals as determined by indirect enzyme-linked immunosorbent assay (ELISA). A plaque reduction neutralization test (PRNT80) showed the primary dose of the vaccine was sufficient to elicit potentially protective virus neutralizing antibody titers ranging from 40 to 160, and the second vaccine dose boosted the titer to more than 1280. Furthermore, all animals tested positive for neutralizing antibodies at day 328 postvaccination. ELISA analysis using the recombinant nucleocapsid protein as a negative marker antigen indicated that the vaccine candidate is DIVA (differentiating infected from vaccinated animals) compatible and represents a promising vaccine platform for RVFV infection in susceptible species.

  14. Transfusion of antibody-opsonized red blood cells results in a shift in the immune response from the red blood cell to the antibody in a murine model.

    PubMed

    Brinc, Davor; Le-Tien, Hoang; Crow, Andrew R; Semple, John W; Freedman, John; Lazarus, Alan H

    2010-09-01

    It is well known that infusion of immunoglobulin (Ig)G-coated cells results in an inhibited antigen-specific humoral immune response compared to the cells themselves, a phenomenon termed antibody-mediated immune suppression (AMIS). Although this AMIS effect has been well described with many different types of cells as well as vaccines and insoluble antigens, the mechanisms behind this effect remain unresolved. To study AMIS in a broad context, three different models of AMIS were studied. In the first, mice were transfused with sheep red blood cells (SRBCs) versus IgG-coated SRBCs. In the second, SRBCs expressing the antigen hen egg white lysozyme (HEL) were studied, and the third model consisted of the diphtheria/tetanus vaccine in the absence versus presence of anti-tetanus IgG. The antibody responses to the SRBCs and HEL-SRBCs, as well as the vaccine, were analyzed for up to 4 weeks after challenge. In these mouse models of immunization, the IgG-coated RBCs or HEL-RBCs induced an antibody response against the IgG, rather than against the RBCs. The decreased response to the RBCs was directly related to the increase of the response against the IgG. The inhibitory AMIS effect using the vaccine strategy again showed an immune response against the IgG, concurrent with a decrease in the immune response against the specific vaccine component targeted. This work demonstrates that, under AMIS conditions, the IgG itself becomes the focus of B cells in the immune system, suggesting a potential mechanism of B-cell regulation. © 2010 American Association of Blood Banks.

  15. The application of anti-Toso antibody enhances CD8(+) T cell responses in experimental malaria vaccination and disease.

    PubMed

    Lapke, Nina; Tartz, Susanne; Lee, Kyeong-Hee; Jacobs, Thomas

    2015-11-27

    Toso is a molecule highly expressed on B cells. It influences their survival and was identified as an IgM binding molecule. B cells and natural antibodies play a role in vaccination-induced CD8(+) T cell responses. We investigated the impact of an anti-Toso antibody on vaccination efficiency in a malaria vaccination model. In this model, CD8(+) T cells exert antiparasitic functions on infected hepatocytes in the liver stage of the disease. In vaccinated anti-Toso treated mice, more antigen-specific CD8(+) T cells were induced than in control mice and after infection with Plasmodium berghei ANKA (PbA) sporozoites, the liver parasite burden was lower. In B cell deficient mice, the anti-Toso antibody did not stimulate the CD8(+) T cell response, indicating that B cells were mediating this effect. Furthermore, we analyzed the influence of anti-Toso treatment on non-vaccinated mice in the PbA infection model, in which CD8(+) T cells cause brain pathology. Anti-Toso treatment increased cerebral pathology and the accumulation of CD8(+) T cells in the brain. Thus, anti-Toso treatment enhanced the CD8(+) T cell response against PbA in a vaccination and in an infection model. Our findings indicate that Toso may be a novel target to boost vaccine-induced CD8(+) T cell responses.

  16. Drug-induced antibodies: interaction of the drug with a polymorphic platelet-antigen.

    PubMed

    Claas, F H; Langerak, J; de Beer, L L; van Rood, J J

    1981-01-01

    Preincubation of donor platelets with ticarcillin will prevent the reactivity of a platelet antibody against these platelets, whereas no influence was observed on antisera against HLA, 5A, 5b and ZWa. The implications for the mechanism of drug-induced antibodies with restricted specificity will be discussed.

  17. The Thai Phase III HIV Type 1 Vaccine Trial (RV144) Regimen Induces Antibodies That Target Conserved Regions Within the V2 Loop of gp120

    PubMed Central

    Billings, Erik; Rao, Mangala; Williams, Constance; Zolla-Pazner, Susan; Bailer, Robert T.; Koup, Richard A.; Madnote, Sirinan; Arworn, Duangnapa; Shen, Xiaoying; Tomaras, Georgia D.; Currier, Jeffrey R.; Jiang, Mike; Magaret, Craig; Andrews, Charla; Gottardo, Raphael; Gilbert, Peter; Cardozo, Timothy J.; Rerks-Ngarm, Supachai; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Paris, Robert; Greene, Kelli; Gao, Hongmei; Gurunathan, Sanjay; Tartaglia, Jim; Sinangil, Faruk; Korber, Bette T.; Montefiori, David C.; Mascola, John R.; Robb, Merlin L.; Haynes, Barton F.; Ngauy, Viseth; Michael, Nelson L.; Kim, Jerome H.; de Souza, Mark S.

    2012-01-01

    Abstract The Thai Phase III clinical trial (RV144) showed modest efficacy in preventing HIV-1 acquisition. Plasma collected from HIV-1-uninfected trial participants completing all injections with ALVAC-HIV (vCP1521) prime and AIDSVAX B/E boost were tested for antibody responses against HIV-1 gp120 envelope (Env). Peptide microarray analysis from six HIV-1 subtypes and group M consensus showed that vaccination induced antibody responses to the se