Sample records for induce smooth muscle

  1. Chloride channel blockers promote relaxation of TEA-induced contraction in airway smooth muscle

    PubMed Central

    Yim, Peter D.; Gallos, George; Perez-zoghbi, Jose F.; Trice, Jacquelyn; Zhang, Yi; Siviski, Matthew; Sonett, Joshua; Emala, Charles W.

    2014-01-01

    Enhanced airway smooth muscle (ASM) contraction is an important component in the pathophysiology of asthma. We have shown that ligand gated chloride channels modulate ASM contractile tone during the maintenance phase of an induced contraction, however the role of chloride flux in depolarization-induced contraction remains incompletely understood. To better understand the role of chloride flux under these conditions, muscle force (human ASM, guinea pig ASM), peripheral small airway luminal area (rat ASM) and airway smooth muscle plasma membrane electrical potentials (human cultured ASM) were measured. We found ex vivo guinea pig airway rings, human ASM strips and small peripheral airways in rat lungs slices relaxed in response to niflumic acid following depolarization-induced contraction induced by K+ channel blockade with tetraethylammonium chloride (TEA). In isolated human airway smooth muscle cells TEA induce depolarization as measured by a fluorescent indicator or whole cell patch clamp and this depolarization was reversed by niflumic acid. These findings demonstrate that ASM depolarization induced contraction is dependent on chloride channel activity. Targeting of chloride channels may be a novel approach to relax hypercontractile airway smooth muscle in bronchoconstrictive disorders. PMID:24662476

  2. Chloride channel blockers promote relaxation of TEA-induced contraction in airway smooth muscle.

    PubMed

    Yim, Peter D; Gallos, George; Perez-Zoghbi, Jose F; Trice, Jacquelyn; Zhang, Yi; Siviski, Matthew; Sonett, Joshua; Emala, Charles W

    2013-01-01

    Enhanced airway smooth muscle (ASM) contraction is an important component in the pathophysiology of asthma. We have shown that ligand gated chloride channels modulate ASM contractile tone during the maintenance phase of an induced contraction, however the role of chloride flux in depolarization-induced contraction remains incompletely understood. To better understand the role of chloride flux under these conditions, muscle force (human ASM, guinea pig ASM), peripheral small airway luminal area (rat ASM) and airway smooth muscle plasma membrane electrical potentials (human cultured ASM) were measured. We found ex vivo guinea pig airway rings, human ASM strips and small peripheral airways in rat lungs slices relaxed in response to niflumic acid following depolarization-induced contraction induced by K(+) channel blockade with tetraethylammonium chloride (TEA). In isolated human airway smooth muscle cells TEA induce depolarization as measured by a fluorescent indicator or whole cell patch clamp and this depolarization was reversed by niflumic acid. These findings demonstrate that ASM depolarization induced contraction is dependent on chloride channel activity. Targeting of chloride channels may be a novel approach to relax hypercontractile airway smooth muscle in bronchoconstrictive disorders.

  3. Aerobic metabolism on muscle contraction in porcine gastric smooth muscle.

    PubMed

    Kanda, Hidenori; Kaneda, Takeharu; Nagai, Yuta; Urakawa, Norimoto; Shimizu, Kazumasa

    2018-05-18

    Exposure to chronic hypoxic conditions causes various gastric diseases, including gastric ulcers. It has been suggested that gastric smooth muscle contraction is associated with aerobic metabolism. However, there are no reports on the association between gastric smooth muscle contraction and aerobic metabolism, and we have investigated this association in the present study. High K + - and carbachol (CCh)-induced muscle contractions involved increasing O 2 consumption. Aeration with N 2 (hypoxia) and NaCN significantly decreased high K + - and CCh-induced muscle contraction and O 2 consumption. In addition, hypoxia and NaCN significantly decreased creatine phosphate (PCr) contents in the presence of high K + . Moreover, decrease in CCh-induced contraction and O 2 consumption was greater than that of high K + . Our results suggest that hypoxia and NaCN inhibit high K + - and CCh-induced contractions in gastric fundus smooth muscles by decreasing O 2 consumption and intracellular PCr content. However, the inhibition of CCh-induced muscle contraction was greater than that of high K + -induced muscle contraction.

  4. Nuclear fusion-independent smooth muscle differentiation of human adipose-derived stem cells induced by a smooth muscle environment.

    PubMed

    Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V

    2012-03-01

    Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion. Copyright © 2011 AlphaMed Press.

  5. Effect of endothelin-1 on the serotonin-induced contraction of smooth muscle in the guinea pig trachea.

    PubMed

    Yoshida, M; Aizawa, H; Hara, N

    1999-01-01

    Endothelin (ET), a potent constrictor of smooth muscle including that of the airways, may contribute to the development of airway hyperresponsiveness. To investigate the role of ET-1 on the airway smooth muscle, we examined the effects of ET-1 on the serotonin-induced contraction of guinea pig tracheal smooth muscle. The changes in isometric tension evoked by serotonin were measured before and after the application of a subthreshold dose (a dose which did not induce smooth muscle contraction by itself) of ET-1. Serotonin caused smooth muscle contraction in a dose-dependent manner. The subthreshold doses of ET-1 (1 pM) and sarafotoxin 6c (1 pM), a selective ETB receptor agonist, were found to potentiate significantly the contraction induced by serotonin. A potentiating effect of ET-1 was not altered by indomethacin or calphostin C, a protein kinase C inhibitor. These results suggest that a subthreshold concentration of ET-1 can potentiate serotonin-induced contraction of smooth muscle through the activation of ETB receptor, while in contrast cyclooxygenase and protein kinase C were found not to be involved in this mechanism.

  6. The role of TRPP2 in agonist-induced gallbladder smooth muscle contraction.

    PubMed

    Zhong, Xingguo; Fu, Jie; Song, Kai; Xue, Nairui; Gong, Renhua; Sun, Dengqun; Luo, Huilai; He, Wenzhu; Pan, Xiang; Shen, Bing; Du, Juan

    2016-04-01

    TRPP2 channel protein belongs to the superfamily of transient receptor potential (TRP) channels and is widely expressed in various tissues, including smooth muscle in digestive gut. Accumulating evidence has demonstrated that TRPP2 can mediate Ca(2+) release from Ca(2+) stores. However, the functional role of TRPP2 in gallbladder smooth muscle contraction still remains unclear. In this study, we used Ca(2+) imaging and tension measurements to test agonist-induced intracellular Ca(2+) concentration increase and smooth muscle contraction of guinea pig gallbladder, respectively. When TRPP2 protein was knocked down in gallbladder muscle strips from guinea pig, carbachol (CCh)-evoked Ca(2+) release and extracellular Ca(2+) influx were reduced significantly, and gallbladder contractions induced by endothelin 1 and cholecystokinin were suppressed markedly as well. CCh-induced gallbladder contraction was markedly suppressed by pretreatment with U73122, which inhibits phospholipase C to terminate inositol 1,4,5-trisphosphate receptor (IP3) production, and 2-aminoethoxydiphenyl borate (2APB), which inhibits IP3 recepor (IP3R) to abolish IP3R-mediated Ca(2+) release. To confirm the role of Ca(2+) release in CCh-induced gallbladder contraction, we used thapsigargin (TG)-to deplete Ca(2+) stores via inhibiting sarco/endoplasmic reticulum Ca(2+)-ATPase and eliminate the role of store-operated Ca(2+) entry on the CCh-induced gallbladder contraction. Preincubation with 2 μmol L(-1) TG significantly decreased the CCh-induced gallbladder contraction. In addition, pretreatments with U73122, 2APB or TG abolished the difference of the CCh-induced gallbladder contraction between TRPP2 knockdown and control groups. We conclude that TRPP2 mediates Ca(2+) release from intracellular Ca(2+) stores, and has an essential role in agonist-induced gallbladder muscle contraction.

  7. Mechanisms of mechanical strain memory in airway smooth muscle.

    PubMed

    Kim, Hak Rim; Hai, Chi-Ming

    2005-10-01

    We evaluated the hypothesis that mechanical deformation of airway smooth muscle induces structural remodeling of airway smooth muscle cells, thereby modulating mechanical performance in subsequent contractions. This hypothesis implied that past experience of mechanical deformation was retained (or "memorized") as structural changes in airway smooth muscle cells, which modulated the cell's subsequent contractile responses. We termed this phenomenon mechanical strain memory. Preshortening has been found to induce attenuation of both force and isotonic shortening velocity in cholinergic receptor-activated airway smooth muscle. Rapid stretching of cholinergic receptor-activated airway smooth muscle from an initial length to a final length resulted in post-stretch force and myosin light chain phosphorylation that correlated significantly with initial length. Thus post-stretch muscle strips appeared to retain memory of the initial length prior to rapid stretch (mechanical strain memory). Cytoskeletal recruitment of actin- and integrin-binding proteins and Erk 1/2 MAPK appeared to be important mechanisms of mechanical strain memory. Sinusoidal length oscillation led to force attenuation during oscillation and in subsequent contractions in intact airway smooth muscle, and p38 MAPK appeared to be an important mechanism. In contrast, application of local mechanical strain to cultured airway smooth muscle cells induced local actin polymerization and cytoskeletal stiffening. It is conceivable that deep inspiration-induced bronchoprotection may be a manifestation of mechanical strain memory such that mechanical deformation from past breathing cycles modulated the mechanical performance of airway smooth muscle in subsequent cycles in a continuous and dynamic manner.

  8. Vardenafil inhibiting parasympathetic function of tracheal smooth muscle.

    PubMed

    Lee, Fei-Peng; Chao, Pin-Zhir; Wang, Hsing-Won

    2018-07-01

    Levitra, a phosphodiesterase-5 (PDE5) inhibitor, is the trade name of vardenafil. Nowadays, it is applied to treatment of erectile dysfunction. PDE5 inhibitors are employed to induce dilatation of the vascular smooth muscle. The effect of Levitra on impotency is well known; however, its effect on the tracheal smooth muscle has rarely been explored. When administered for sexual symptoms via oral intake or inhalation, Levitra might affect the trachea. This study assessed the effects of Levitra on isolated rat tracheal smooth muscle by examining its effect on resting tension of tracheal smooth muscle, contraction caused by 10 -6  M methacholine as a parasympathetic mimetic, and electrically induced tracheal smooth muscle contractions. The results showed that adding methacholine to the incubation medium caused the trachea to contract in a dose-dependent manner. Addition of Levitra at doses of 10 -5  M or above elicited a significant relaxation response to 10 -6  M methacholine-induced contraction. Levitra could inhibit electrical field stimulation-induced spike contraction. It alone had minimal effect on the basal tension of the trachea as the concentration increased. High concentrations of Levitra could inhibit parasympathetic function of the trachea. Levitra when administered via oral intake might reduce asthma attacks in impotent patients because it might inhibit parasympathetic function and reduce methacholine-induced contraction of the tracheal smooth muscle. Copyright © 2018. Published by Elsevier Taiwan LLC.

  9. Effect of 3-substituted 1,4-benzodiazepin-2-ones on bradykinin-induced smooth muscle contraction.

    PubMed

    Virych, P A; Shelyuk, O V; Kabanova, T A; Khalimova, E I; Martynyuk, V S; Pavlovsky, V I; Andronati, S A

    2017-01-01

    Biochemical properties of 3-substituted 1,4-benzodiazepine determined by the characteristics of their chemical structure. Influence of 3-substituted 1,4-benzodiazepin-2-ones on maximal normalized rate and amplitudes of isometric smooth muscle contraction in rats was investigated. Compounds MX-1775 and MX-1828 demonstrated the similar inhibition effect on bradykinin-induced contraction of smooth muscle like competitive inhibitor des-arg9-bradykinin-acetate to bradykinin B2-receptors. MX-1626 demonstrated unidirectional changes of maximal normalized rate and force of smooth muscle that proportionally depended on bradykinin concentration in the range 10-10-10-6 M. MX-1828 has statistically significant decrease of normalized rate of smooth muscle contraction for bradykinin concentrations 10-10 and 10-9 M by 20.7 and 8.6%, respectively, but for agonist concentration 10-6 M, this parameter increased by 10.7% and amplitude was reduced by 29.5%. Compounds MX-2011, MX-1785 and MX-2004 showed no natural effect on bradykinin-induced smooth muscle contraction. Compounds MX-1775, MX-1828, MX-1626 were selected for further research of their influence on kinin-kallikrein system and pain perception.

  10. Effects of Gingko biloba extract (EGb 761) on vascular smooth muscle cell calcification induced by β-glycerophosphate.

    PubMed

    Li, En-Gang; Tian, Jun; Xu, Zhong-Hua

    2016-01-01

    To investigate the effects of Gingko biloba extract (EGb 761) on calcification induced by β-glycerophosphate in rat aortic vascular smooth muscle cells. Rat aortic vascular smooth muscle cells were cultured with various concentrations of EGb 761 and β-glycerophosphate for 7 days. Calcium content in the cells, alkaline phosphatase activity, cell protein content, NF-κB activation, and reactive oxygen species production were assayed, respectively. The calcium depositions of vascular smooth muscle cells of the β-glycerophosphate group were significantly higher than those of the control group (p < 0.01), and were inhibited by EGb 761 in a concentration-dependent manner (p < 0.05). Data showed β-glycerophosphate induced the enhanced expression of alkaline phosphatase, up-regulated the NF-κB activity and increased reactive oxygen species production of vascular smooth muscle cells while these decreased when administrated with EGb 761(p < 0.05). EGb 761 significantly reduced deposition of calcium induced by β-glycerophosphate in rat aortic vascular smooth muscle cells. It not only reduced the deposition of calcium, but also inhibited osteogenic transdifferentiation, which may be associated with decreasing expression of alkaline phosphatase, down-regulating the NF-κB activity, and reducing reactive oxygen species production of vascular smooth muscle cells, and may have the potential to serve as a role for vascular calcification in clinical situations.

  11. Cisapride stimulates contraction of idiopathic megacolonic smooth muscle in cats.

    PubMed

    Hasler, A H; Washabau, R J

    1997-01-01

    We have previously shown that cisapride, a substituted piperidinyl benzamide, stimulates contraction of healthy feline colonic smooth muscle. The purpose of the present investigation was to determine the effect of cisapride on feline idiopathic megacolonic smooth muscle function. Longitudinal smooth muscle strips from ascending and descending colon were obtained from cats with idiopathic megacolon, suspended in a 1.5 mM Ca(2+)-HEPES buffer solution (37 degrees C, 100% O2, pH 7.4), attached to isometric force transducers, and stretched to optimal muscle length (Lo). Control responses were obtained at each muscle site with acetylcholine (10(-8) to 10(-4) M), substance P (10(-11) to 10(-7) M), or potassium chloride (10 to 80 mM). Muscles were then stimulated with cumulative (10(-9) to 10(-6) M) doses of cisapride in the absence or presence of tetrodotoxin (10(-6) M) and atropine (10(-6) M), or in a 0 calcium HEPES buffer solution. In cats with idiopathic megacolon, cisapride stimulated contractions of longitudinal smooth muscle from both the ascending and the descending colon. Cisapride-induced contractions were similar in magnitude to those induced by substance P and acetylcholine in the ascending colon, but were less than those observed in the descending colon. Cisapride-induced contractions in megacolonic smooth muscle were only partially inhibited by tetrodotoxin and atropine, but were virtually abolished by removal of extracellular calcium. We concluded that cisapride-induced contractions of feline megacolonic smooth muscle are largely smooth muscle mediated and dependent on influx of extracellular calcium. Cisapride-induced contractions in megacolonic smooth muscle are only partially dependent on enteric cholinergic nerves. Thus, cisapride may be useful in the treatment of cats with idiopathic megacolon.

  12. Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells.

    PubMed

    Eoh, Joon H; Shen, Nian; Burke, Jacqueline A; Hinderer, Svenja; Xia, Zhiyong; Schenke-Layland, Katja; Gerecht, Sharon

    2017-04-01

    Obtaining vascular smooth muscle tissue with mature, functional elastic fibers is a key obstacle in tissue-engineered blood vessels. Poor elastin secretion and organization leads to a loss of specialization in contractile smooth muscle cells, resulting in over proliferation and graft failure. In this study, human induced-pluripotent stem cells (hiPSCs) were differentiated into early smooth muscle cells, seeded onto a hybrid poly(ethylene glycol) dimethacrylate/poly (l-lactide) (PEGdma-PLA) scaffold and cultured in a bioreactor while exposed to pulsatile flow, towards maturation into contractile smooth muscle tissue. We evaluated the effects of pulsatile flow on cellular organization as well as elastin expression and assembly in the engineered tissue compared to a static control through immunohistochemistry, gene expression and functionality assays. We show that culturing under pulsatile flow resulted in organized and functional hiPSC derived smooth muscle tissue. Immunohistochemistry analysis revealed hiPSC-smooth muscle tissue with robust, well-organized cells and elastic fibers and the supporting microfibril proteins necessary for elastic fiber assembly. Through qRT-PCR analysis, we found significantly increased expression of elastin, fibronectin, and collagen I, indicating the synthesis of necessary extracellular matrix components. Functionality assays revealed that hiPSC-smooth muscle tissue cultured in the bioreactor had an increased calcium signaling and contraction in response to a cholinergic agonist, significantly higher mature elastin content and improved mechanical properties in comparison to the static control. The findings presented here detail an effective approach to engineering elastic human vascular smooth muscle tissue with the functionality necessary for tissue engineering and regenerative medicine applications. Obtaining robust, mature elastic fibers is a key obstacle in tissue-engineered blood vessels. Human induced-pluripotent stem cells have

  13. Involvement of the Tyr kinase/JNK pathway in carbachol-induced bronchial smooth muscle contraction in the rat.

    PubMed

    Sakai, Hiroyasu; Watanabe, Yu; Honda, Mai; Tsuiki, Rika; Ueda, Yusuke; Nagai, Yuki; Narita, Minoru; Misawa, Miwa; Chiba, Yoshihiko

    2013-05-01

    Tyrosine (Tyr) kinases and mitogen-activated protein kinases have been thought to participate in the contractile response in various smooth muscles. The aim of the current study was to investigate the involvement of the Tyr kinase pathway in the contraction of bronchial smooth muscle. Ring preparations of bronchi isolated from rats were suspended in an organ bath. Isometric contraction of circular smooth muscle was measured. Immunoblotting was used to examine the phosphorylation of c-Jun N-terminal kinasess (JNKs) in bronchial smooth muscle. To examine the role of mitogen-activated protein kinase(s) in bronchial smooth muscle contraction, the effects of MPAK inhibitors were investigated in this study. The contraction induced by carbachol (CCh) was significantly inhibited by pretreatment with selective Tyr kinase inhibitors (genistein and ST638, n = 6, respectively), and a JNK inhibitor (SP600125, n = 6). The contractions induced by high K depolarization (n = 4), orthovanadate (a potent Tyr phosphatase inhibitor) and sodium fluoride (a G protein activator; NaF) were also significantly inhibited by selective Tyr kinase inhibitors and a JNK inhibitor (n = 4, respectively). However, the contraction induced by calyculin-A was not affected by SP600125. On the other hand, JNKs were phosphorylated by CCh (2.2 ± 0,4 [mean±SEM] fold increase). The JNK phosphorylation induced by CCh was significantly inhibited by SP600125 (n = 4). These findings suggest that the Tyr kinase/JNK pathway may play a role in bronchial smooth muscle contraction. Strategies to inhibit JNK activation may represent a novel therapeutic approach for diseases involving airway obstruction, such as asthma and chronic obstructive pulmonary disease.

  14. Voltage dependent potassium channel remodeling in murine intestinal smooth muscle hypertrophy induced by partial obstruction.

    PubMed

    Liu, Dong-Hai; Huang, Xu; Guo, Xin; Meng, Xiang-Min; Wu, Yi-Song; Lu, Hong-Li; Zhang, Chun-Mei; Kim, Young-chul; Xu, Wen-Xie

    2014-01-01

    Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV) was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV) to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.

  15. {beta}-Catenin regulates airway smooth muscle contraction.

    PubMed

    Jansen, Sepp R; Van Ziel, Anna M; Baarsma, Hoeke A; Gosens, Reinoud

    2010-08-01

    beta-Catenin is an 88-kDa member of the armadillo family of proteins that is associated with the cadherin-catenin complex in the plasma membrane. This complex interacts dynamically with the actin cytoskeleton to stabilize adherens junctions, which play a central role in force transmission by smooth muscle cells. Therefore, in the present study, we hypothesized a role for beta-catenin in the regulation of smooth muscle force production. beta-Catenin colocalized with smooth muscle alpha-actin (sm-alpha-actin) and N-cadherin in plasma membrane fractions and coimmunoprecipitated with sm-alpha-actin and N-cadherin in lysates of bovine tracheal smooth muscle (BTSM) strips. Moreover, immunocytochemistry of cultured BTSM cells revealed clear and specific colocalization of sm-alpha-actin and beta-catenin at the sites of cell-cell contact. Treatment of BTSM strips with the pharmacological beta-catenin/T cell factor-4 (TCF4) inhibitor PKF115-584 (100 nM) reduced beta-catenin expression in BTSM whole tissue lysates and in plasma membrane fractions and reduced maximal KCl- and methacholine-induced force production. These changes in force production were not accompanied by changes in the expression of sm-alpha-actin or sm-myosin heavy chain (MHC). Likewise, small interfering RNA (siRNA) knockdown of beta-catenin in BTSM strips reduced beta-catenin expression and attenuated maximal KCl- and methacholine-induced contractions without affecting sm-alpha-actin or sm-MHC expression. Conversely, pharmacological (SB-216763, LiCl) or insulin-induced inhibition of glycogen synthase kinase-3 (GSK-3) enhanced the expression of beta-catenin and augmented maximal KCl- and methacholine-induced contractions. We conclude that beta-catenin is a plasma membrane-associated protein in airway smooth muscle that regulates active tension development, presumably by stabilizing cell-cell contacts and thereby supporting force transmission between neighboring cells.

  16. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells

    PubMed Central

    Chen, Xiu-Juan; Wang, Na; Yi, Peng-Fei; Song, Min; Zhang, Bo; Wang, Yu-Zhong; Liang, Qiu-Hua

    2016-01-01

    Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification. PMID:27589055

  17. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells.

    PubMed

    Ma, Yun-Yun; Sun, Lin; Chen, Xiu-Juan; Wang, Na; Yi, Peng-Fei; Song, Min; Zhang, Bo; Wang, Yu-Zhong; Liang, Qiu-Hua

    2016-01-01

    Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification.

  18. Induction of apoptosis by pyrrolidinedithiocarbamate and N-acetylcysteine in vascular smooth muscle cells.

    PubMed

    Tsai, J C; Jain, M; Hsieh, C M; Lee, W S; Yoshizumi, M; Patterson, C; Perrella, M A; Cooke, C; Wang, H; Haber, E; Schlegel, R; Lee, M E

    1996-02-16

    Pyrrolidinedithiocarbamate (PDTC) and N-acetylcysteine (NAC) have been used as antioxidants to prevent apoptosis in lymphocytes, neurons, and vascular endothelial cells. We report here that PDTC and NAC induce apoptosis in rat and human smooth muscle cells. In rat aortic smooth muscle cells, PDTC induced cell shrinkage, chromatin condensation, and DNA strand breaks consistent with apoptosis. In addition, overexpression of Bcl-2 suppressed vascular smooth muscle cell death caused by PDTC and NAC. The viability of rat aortic smooth muscle cells decreased within 3 h of treatment with PDTC and was reduced to 30% at 12 h. The effect of PDTC and NAC on smooth muscle cells was not species specific because PDTC and NAC both caused dose-dependent reductions in viability in rat and human aortic smooth muscle cells. In contrast, neither PDTC nor NAC reduced viability in human aortic endothelial cells. The use of antioxidants to induce apoptosis in vascular smooth muscle cells may help prevent their proliferation in arteriosclerotic lesions.

  19. Age-dependent contribution of Rho kinase in carbachol-induced contraction of human detrusor smooth muscle in vitro

    PubMed Central

    Kirschstein, Timo; Protzel, Chris; Porath, Katrin; Sellmann, Tina; Köhling, Rüdiger; Hakenberg, Oliver W

    2014-01-01

    Aim: Activation of muscarinic receptors on the detrusor smooth muscle is followed by contraction, which involves both myosin light chain kinase (MLCK) and Rho kinase (ROCK). The aim of this study was to determine the relative contributions of MLCK and ROCK to carbachol-induced contraction of human detrusor smooth muscle in vitro. Methods: Detrusor smooth muscle strips were prepared from the macroscopically unaffected bladder wall of patients underwent cystectomy. The strips were fixed in an organ bath, and carbachol or KCl-induced isometric contractions were measured by force transducers. Results: Addition of carbachol (0.4-4 μmol/L) into the bath induced concentration-dependent contractions of detrusor specimens, which was completely abolished by atropine (1 μmol/L). Pre-incubation of detrusor specimens with either the MLCK inhibitor ML-9 or the ROCK inhibitors HA1100 and Y-27632 (each at 10 μmol/L) significantly blocked carbachol-induced contractions as compared to the time-control experiments. Moreover, MLCK and ROCK inhibition were equally effective in reducing carbachol-induced contractions. The residual carbachol-induced contractions in the presence of both MLCK and ROCK inhibitors were significantly smaller than the contractions obtained when only one enzyme (either MLCK or ROCK) was inhibited, suggesting an additive effect of the two kinases. Interestingly, ROCK-mediated carbachol-induced contractions were positively correlated to the age of patients (r=o.52, P<0.05). Conclusion: Both MLCK and ROCK contribute to carbachol-induced contractions of human detrusor smooth muscle. ROCK inhibitors may be a new pharmacological approach to modulate human bladder hyperactivity. PMID:24122009

  20. Age-dependent contribution of Rho kinase in carbachol-induced contraction of human detrusor smooth muscle in vitro.

    PubMed

    Kirschstein, Timo; Protzel, Chris; Porath, Katrin; Sellmann, Tina; Köhling, Rüdiger; Hakenberg, Oliver W

    2014-01-01

    Activation of muscarinic receptors on the detrusor smooth muscle is followed by contraction, which involves both myosin light chain kinase (MLCK) and Rho kinase (ROCK). The aim of this study was to determine the relative contributions of MLCK and ROCK to carbachol-induced contraction of human detrusor smooth muscle in vitro. Detrusor smooth muscle strips were prepared from the macroscopically unaffected bladder wall of patients underwent cystectomy. The strips were fixed in an organ bath, and carbachol or KCl-induced isometric contractions were measured by force transducers. Addition of carbachol (0.4-4 μmol/L) into the bath induced concentration-dependent contractions of detrusor specimens, which was completely abolished by atropine (1 μmol/L). Pre-incubation of detrusor specimens with either the MLCK inhibitor ML-9 or the ROCK inhibitors HA1100 and Y-27632 (each at 10 μmol/L) significantly blocked carbachol-induced contractions as compared to the time-control experiments. Moreover, MLCK and ROCK inhibition were equally effective in reducing carbachol-induced contractions. The residual carbachol-induced contractions in the presence of both MLCK and ROCK inhibitors were significantly smaller than the contractions obtained when only one enzyme (either MLCK or ROCK) was inhibited, suggesting an additive effect of the two kinases. Interestingly, ROCK-mediated carbachol-induced contractions were positively correlated to the age of patients (r=o.52, P<0.05). Both MLCK and ROCK contribute to carbachol-induced contractions of human detrusor smooth muscle. ROCK inhibitors may be a new pharmacological approach to modulate human bladder hyperactivity.

  1. Enkephalinase inhibitor potentiates substance P- and capsaicin-induced bronchial smooth muscle contractions in humans.

    PubMed

    Honda, I; Kohrogi, H; Yamaguchi, T; Ando, M; Araki, S

    1991-06-01

    To determine the roles of endogenously released tachykinins (substance P, neurokinins A and B) in human bronchial tissues, and to determine the roles of enkephalinase (neutral endopeptidase, E.C. 3.4.24.11) in regulating the effects of the tachykinins, we studied the effects of substance P and capsaicin, which releases tachykinins, on human bronchial smooth muscle contraction in the presence or absence of enkephalinase inhibitor phosphoramidon in vitro. Substance P alone caused human bronchial smooth muscle contraction at 10(-6) M or more. Phosphoramidon (10(-7) to 10(-5) M) potentiated the substance P-induced contraction in a dose-dependent fashion, and phosphoramidon shifted the dose-response curve to lower concentrations. Capsaicin (10(-5) or 10(-4) M) alone caused bronchial smooth muscle contraction in four tissues from nine patients. After the contraction by capsaicin reached a plateau, phosphoramidon (10(-5) M) increased and prolonged the contraction significantly. Furthermore, pretreatment of bronchial tissues with phosphoramidon (10(-5) M) potentiated capsaicin-induced contraction in all tissues from five patients. Phosphoramidon (10(-5) M) shifted the dose-response curve to capsaicin to lower concentrations more than 1 log unit. Captopril did not alter the contractile response to substance P, suggesting that angiotensin-converting enzyme does not regulate the contractile response to substance P in human bronchial smooth muscle in vitro. These results suggest that enkephalinase regulates the contractile effects of exogenous substance P and endogenous substances, probably tachykinins, released by capsaicin in the human bronchus.

  2. [Relaxant effects of protopine on smooth muscles].

    PubMed

    Huang, Y H; Zhang, Z Z; Jiang, J X

    1991-01-01

    The relaxant effects of protopine (Pro) on smooth muscles were studied by recording isotonic contraction and radioimmunoassay. Pro relaxed the contraction of rabbit thoracic aorta, mesenteric artery, portal vein and guinea pig ileum and taenia colon induced by high K+ (70 mmol.L-1). Pro also inhibited the contraction of rabbit thoracic aorta, mesenteric artery, portal vein induced by NE (0.3 mumol.L-1) and guinea pig taenia colon induced by BaCl2 (1 mmol.L-1). Pro inhibited the intracellular Ca2+ release, but did not inhibit Ca2+ influx induced by NE. These results suggested that the smooth muscle relaxant mechanism of action of Pro may be the inhibition of intracellular Ca2+ release.

  3. Trinitrobenzenesulfonic Acid Colitis Induces Changes in the Contractile Response of Circular Smooth Muscle in the Distal Colon

    DTIC Science & Technology

    1996-03-27

    contractile response of circular smooth muscle in the rat distal colon" Name of Candidate: Jeanette M. Hosseini Doctor of Philosophy Degree 27 March 1996... muscle in the rat distal colon" beyond brief excerpts is with the pennission of the copyright owner, and will save and hold harmless the Unifonned...induces changes in the contractile response of circular smooth muscle 10 the rat colon. Jeanette Marie Hosseini, 1996 Dissertation directed by: Terez

  4. Nonmuscle myosin is regulated during smooth muscle contraction.

    PubMed

    Yuen, Samantha L; Ogut, Ozgur; Brozovich, Frank V

    2009-07-01

    The participation of nonmuscle myosin in force maintenance is controversial. Furthermore, its regulation is difficult to examine in a cellular context, as the light chains of smooth muscle and nonmuscle myosin comigrate under native and denaturing electrophoresis techniques. Therefore, the regulatory light chains of smooth muscle myosin (SM-RLC) and nonmuscle myosin (NM-RLC) were purified, and these proteins were resolved by isoelectric focusing. Using this method, intact mouse aortic smooth muscle homogenates demonstrated four distinct RLC isoelectric variants. These spots were identified as phosphorylated NM-RLC (most acidic), nonphosphorylated NM-RLC, phosphorylated SM-RLC, and nonphosphorylated SM-RLC (most basic). During smooth muscle activation, NM-RLC phosphorylation increased. During depolarization, the increase in NM-RLC phosphorylation was unaffected by inhibition of either Rho kinase or PKC. However, inhibition of Rho kinase blocked the angiotensin II-induced increase in NM-RLC phosphorylation. Additionally, force for angiotensin II stimulation of aortic smooth muscle from heterozygous nonmuscle myosin IIB knockout mice was significantly less than that of wild-type littermates, suggesting that, in smooth muscle, activation of nonmuscle myosin is important for force maintenance. The data also demonstrate that, in smooth muscle, the activation of nonmuscle myosin is regulated by Ca(2+)-calmodulin-activated myosin light chain kinase during depolarization and a Rho kinase-dependent pathway during agonist stimulation.

  5. PDGF-BB induces vascular smooth muscle cell expression of high molecular weight FGF-2, which accumulates in the nucleus.

    PubMed

    Pintucci, Giuseppe; Yu, Pey-Jen; Saponara, Fiorella; Kadian-Dodov, Daniella L; Galloway, Aubrey C; Mignatti, Paolo

    2005-08-15

    Basic fibroblast growth factor (FGF-2) and platelet-derived growth factor (PDGF) are implicated in vascular remodeling secondary to injury. Both growth factors control vascular endothelial and smooth muscle cell proliferation, migration, and survival through overlapping intracellular signaling pathways. In vascular smooth muscle cells PDGF-BB induces FGF-2 expression. However, the effect of PDGF on the different forms of FGF-2 has not been elucidated. Here, we report that treatment of vascular aortic smooth muscle cells with PDGF-BB rapidly induces expression of 20.5 and 21 kDa, high molecular weight (HMW) FGF-2 that accumulates in the nucleus and nucleolus. Conversely, PDGF treatment has little or no effect on 18 kDa, low-molecular weight FGF-2 expression. PDGF-BB-induced upregulation of HMW FGF-2 expression is controlled by sustained activation of extracellular signal-regulated kinase (ERK)-1/2 and is abolished by actinomycin D. These data describe a novel interaction between PDGF-BB and FGF-2, and indicate that the nuclear forms of FGF-2 may mediate the effect of PDGF activity on vascular smooth muscle cells.

  6. Increased IGF-IEc expression and mechano-growth factor production in intestinal muscle of fibrostenotic Crohn's disease and smooth muscle hypertrophy

    PubMed Central

    Li, Chao; Vu, Kent; Hazelgrove, Krystina

    2015-01-01

    The igf1 gene is alternatively spliced as IGF-IEa and IGF-IEc variants in humans. In fibrostenotic Crohn's disease, the fibrogenic cytokine TGF-β1 induces IGF-IEa expression and IGF-I production in intestinal smooth muscle and results in muscle hyperplasia and collagen I production that contribute to stricture formation. Mechano-growth factor (MGF) derived from IGF-IEc induces skeletal and cardiac muscle hypertrophy following stress. We hypothesized that increased IGF-IEc expression and MGF production mediated smooth muscle hypertrophy also characteristic of fibrostenotic Crohn's disease. IGF-IEc transcripts and MGF protein were increased in muscle cells isolated from fibrostenotic intestine under regulation by endogenous TGF-β1. Erk5 and MEF2C were phosphorylated in vivo in fibrostenotic muscle; both were phosphorylated and colocalized to nucleus in response to synthetic MGF in vitro. Smooth muscle-specific protein expression of α-smooth muscle actin, γ-smooth muscle actin, and smoothelin was increased in affected intestine. Erk5 inhibition or MEF2C siRNA blocked smooth muscle-specific gene expression and hypertrophy induced by synthetic MGF. Conditioned media of cultured fibrostenotic muscle induced muscle hypertrophy that was inhibited by immunoneutralization of endogenous MGF or pro-IGF-IEc. The results indicate that TGF-β1-dependent IGF-IEc expression and MGF production in patients with fibrostenotic Crohn's disease regulates smooth muscle cell hypertrophy a critical factor that contributes to intestinal stricture formation. PMID:26428636

  7. Increased IGF-IEc expression and mechano-growth factor production in intestinal muscle of fibrostenotic Crohn's disease and smooth muscle hypertrophy.

    PubMed

    Li, Chao; Vu, Kent; Hazelgrove, Krystina; Kuemmerle, John F

    2015-12-01

    The igf1 gene is alternatively spliced as IGF-IEa and IGF-IEc variants in humans. In fibrostenotic Crohn's disease, the fibrogenic cytokine TGF-β1 induces IGF-IEa expression and IGF-I production in intestinal smooth muscle and results in muscle hyperplasia and collagen I production that contribute to stricture formation. Mechano-growth factor (MGF) derived from IGF-IEc induces skeletal and cardiac muscle hypertrophy following stress. We hypothesized that increased IGF-IEc expression and MGF production mediated smooth muscle hypertrophy also characteristic of fibrostenotic Crohn's disease. IGF-IEc transcripts and MGF protein were increased in muscle cells isolated from fibrostenotic intestine under regulation by endogenous TGF-β1. Erk5 and MEF2C were phosphorylated in vivo in fibrostenotic muscle; both were phosphorylated and colocalized to nucleus in response to synthetic MGF in vitro. Smooth muscle-specific protein expression of α-smooth muscle actin, γ-smooth muscle actin, and smoothelin was increased in affected intestine. Erk5 inhibition or MEF2C siRNA blocked smooth muscle-specific gene expression and hypertrophy induced by synthetic MGF. Conditioned media of cultured fibrostenotic muscle induced muscle hypertrophy that was inhibited by immunoneutralization of endogenous MGF or pro-IGF-IEc. The results indicate that TGF-β1-dependent IGF-IEc expression and MGF production in patients with fibrostenotic Crohn's disease regulates smooth muscle cell hypertrophy a critical factor that contributes to intestinal stricture formation. Copyright © 2015 the American Physiological Society.

  8. Length adaptation of airway smooth muscle.

    PubMed

    Bossé, Ynuk; Sobieszek, Apolinary; Paré, Peter D; Seow, Chun Y

    2008-01-01

    Many types of smooth muscle, including airway smooth muscle (ASM), are capable of generating maximal force over a large length range due to length adaptation, which is a relatively rapid process in which smooth muscle regains contractility after experiencing a force decrease induced by length fluctuation. Although the underlying mechanism is unclear, it is believed that structural malleability of smooth muscle cells is essential for the adaptation to occur. The process is triggered by strain on the cell cytoskeleton that results in a series of yet undefined biochemical and biophysical events leading to restructuring of the cytoskeleton and contractile apparatus and consequently optimization of the overlap between the myosin and actin filaments. Although length adaptability is an intrinsic property of smooth muscle, maladaptation of ASM could result in excessive constriction of the airways and the inability of deep inspirations to dilate them. In this article, we describe the phenomenon of length adaptation in ASM and some possible underlying mechanisms that involve the myosin filament assembly and disassembly. We discuss a possible role of maladaptation of ASM in the pathogenesis of asthma. We believe that length adaptation in ASM is mediated by specific proteins and their posttranslational regulations involving covalent modifications, such as phosphorylation. The discovery of these molecules and the processes that regulate their activity will greatly enhance our understanding of the basic mechanisms of ASM contraction and will suggest molecular targets to alleviate asthma exacerbation related to excessive constriction of the airways.

  9. Inhibition of agonist-induced smooth muscle contraction by picotamide in the male human lower urinary tract outflow region.

    PubMed

    Hennenberg, Martin; Tamalunas, Alexander; Wang, Yiming; Keller, Patrick; Schott, Melanie; Strittmatter, Frank; Herlemann, Annika; Yu, Qingfeng; Rutz, Beata; Ciotkowska, Anna; Stief, Christian G; Gratzke, Christian

    2017-05-15

    Male lower urinary tract symptoms (LUTS) due to bladder outlet obstruction are characterized by abnormal smooth muscle contractions in the lower urinary tract. Alpha 1 -adrenoceptor antagonists may induce smooth muscle relaxation in the outflow region and represent the current gold standard of medical treatment. However, results may be unsatisfactory or inadequate. Apart from α 1 -adrenoceptor agonists, smooth muscle contraction in the outflow region may be induced by thromboxane A 2 (TXA 2 ), endothelins, or muscarinic receptor agonists. Here, we studied effects of the thromboxane A 2 receptor (TP receptor) antagonist picotamide on contraction in the human male bladder trigone and prostate. Carbachol, the α 1 -adrenoceptor agonist phenylephrine, the thromboxane A 2 analog U46619, and electric field stimulation (EFS) induced concentration- or frequency-dependent contractions of trigone tissues in an organ bath. Picotamide (300µM) inhibited carbachol-, phenylephrine-, U46619-, and EFS-induced contractions. Endothelins 1-3 induced concentration-dependent contractions of prostate tissues, which were inhibited by picotamide. Analyses using real time polymerase chain reaction and antibodies suggested expression of thromboxane A 2 receptors and synthase in trigone smooth muscle cells. Thromboxane B 2 (the stable metabolite of thromboxane A 2 ) was detectable by enzyme immune assay in trigone samples, with most values ranging between 50 and 150pg/mg trigone protein. Picotamide inhibits contractions induced by different stimuli in the human lower urinary tract, including cholinergic, adrenergic, thromboxane A 2 - and endothelin-induced, and neurogenic contractions in different locations of the outflow region. This distinguishes picotamide from current medical treatments for LUTS, and suggests that picotamide may induce urodynamic effects in vivo. Copyright © 2017. Published by Elsevier B.V.

  10. Mechanisms of neurokinin A- and substance P-induced contractions in rat detrusor smooth muscle in vitro.

    PubMed

    Quinn, Teresa; Collins, Colm; Baird, Alan W

    2004-09-01

    To investigate the mechanisms of neurokinin A- and substance P-induced contractions of rat urinary bladder smooth muscle, and to compare them with those of the muscarinic agonist carbachol. Rat urinary bladder strips were suspended under 1 g of tension in a physiological buffer at 37 degrees C, gassed with 95% O(2)/5% CO(2). Mechanical activity was recorded isometrically during exposure to neurokinin A and substance P. Both agents produced concentration-dependent contractions of smooth muscle strips which were unaffected by tetrodotoxin (1 micro mol/L), peptidase inhibitors (captopril, thiorphan and bestatin; 1 micro mol/L each) or piroxicam (10 micro mol/L). The rank order of potency of agonists was neurokinin A > substance P > carbachol. Contractile responses to neurokinin A and substance P, like the contractile responses to carbachol, were abolished in a nominally Ca(2+)-free medium and significantly reduced by nifedipine (1 micro mol/L). SKF-96365 (60 micro mol/L), an inhibitor of receptor-mediated Ca(2+) entry, abolished the nifedipine-resistant response to substance P and carbachol, and significantly attenuated the response to neurokinin A. Depleting intracellular Ca(2+) stores with thapsigargin (1 micro mol/L) significantly attenuated neurokinin A-induced contractions but had no effect on substance P- or carbachol- induced contractions. The Rho-kinase inhibitor, Y-27632 (10 micro mol/L), significantly reduced both phasic and tonic components of the contractile responses to neurokinin A, substance P and carbachol. The contractile responses induced by tachykinins in rat urinary bladder smooth muscle strips involve a direct action on smooth muscle and are not modulated by peptidases or prostanoids. Neurokinin A and substance P, like carbachol-induced contractions, depend on extracellular Ca(2+) influx largely through voltage-operated and partly through receptor-operated Ca(2+) channels. Intracellular Ca(2+) release contributes to the contractile response to

  11. The association of cortactin with profilin-1 is critical for smooth muscle contraction.

    PubMed

    Wang, Ruping; Cleary, Rachel A; Wang, Tao; Li, Jia; Tang, Dale D

    2014-05-16

    Profilin-1 (Pfn-1) is an actin-regulatory protein that has a role in modulating smooth muscle contraction. However, the mechanisms that regulate Pfn-1 in smooth muscle are not fully understood. Here, stimulation with acetylcholine induced an increase in the association of the adapter protein cortactin with Pfn-1 in smooth muscle cells/tissues. Furthermore, disruption of the protein/protein interaction by a cell-permeable peptide (CTTN-I peptide) attenuated actin polymerization and smooth muscle contraction without affecting myosin light chain phosphorylation at Ser-19. Knockdown of cortactin by lentivirus-mediated RNAi also diminished actin polymerization and smooth muscle force development. However, cortactin knockdown did not affect myosin activation. In addition, cortactin phosphorylation has been implicated in nonmuscle cell migration. In this study, acetylcholine stimulation induced cortactin phosphorylation at Tyr-421 in smooth muscle cells. Phenylalanine substitution at this position impaired cortactin/Pfn-1 interaction in response to contractile activation. c-Abl is a tyrosine kinase that is necessary for actin dynamics and contraction in smooth muscle. Here, c-Abl silencing inhibited the agonist-induced cortactin phosphorylation and the association of cortactin with Pfn-1. Finally, treatment with CTTN-I peptide reduced airway resistance and smooth muscle hyperreactivity in a murine model of asthma. These results suggest that the interaction of cortactin with Pfn-1 plays a pivotal role in regulating actin dynamics, smooth muscle contraction, and airway hyperresponsiveness in asthma. The association of cortactin with Pfn-1 is regulated by c-Abl-mediated cortactin phosphorylation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. The Association of Cortactin with Profilin-1 Is Critical for Smooth Muscle Contraction*

    PubMed Central

    Wang, Ruping; Cleary, Rachel A.; Wang, Tao; Li, Jia; Tang, Dale D.

    2014-01-01

    Profilin-1 (Pfn-1) is an actin-regulatory protein that has a role in modulating smooth muscle contraction. However, the mechanisms that regulate Pfn-1 in smooth muscle are not fully understood. Here, stimulation with acetylcholine induced an increase in the association of the adapter protein cortactin with Pfn-1 in smooth muscle cells/tissues. Furthermore, disruption of the protein/protein interaction by a cell-permeable peptide (CTTN-I peptide) attenuated actin polymerization and smooth muscle contraction without affecting myosin light chain phosphorylation at Ser-19. Knockdown of cortactin by lentivirus-mediated RNAi also diminished actin polymerization and smooth muscle force development. However, cortactin knockdown did not affect myosin activation. In addition, cortactin phosphorylation has been implicated in nonmuscle cell migration. In this study, acetylcholine stimulation induced cortactin phosphorylation at Tyr-421 in smooth muscle cells. Phenylalanine substitution at this position impaired cortactin/Pfn-1 interaction in response to contractile activation. c-Abl is a tyrosine kinase that is necessary for actin dynamics and contraction in smooth muscle. Here, c-Abl silencing inhibited the agonist-induced cortactin phosphorylation and the association of cortactin with Pfn-1. Finally, treatment with CTTN-I peptide reduced airway resistance and smooth muscle hyperreactivity in a murine model of asthma. These results suggest that the interaction of cortactin with Pfn-1 plays a pivotal role in regulating actin dynamics, smooth muscle contraction, and airway hyperresponsiveness in asthma. The association of cortactin with Pfn-1 is regulated by c-Abl-mediated cortactin phosphorylation. PMID:24700464

  13. Effect of membrane hyperpolarization induced by a K+ channel opener on histamine-induced Ca2+ mobilization in rabbit arterial smooth muscle.

    PubMed

    Watanabe, Y; Suzuki, A; Suzuki, H; Itoh, T

    1996-03-01

    1. The role of membrane hyperpolarization on agonist-induced contraction was investigated in intact and alpha-toxin-skinned smooth muscles of rabbit mesenteric artery by use of the ATP-sensitive K+ channel opener, (-)-(3S,4R)-4-(N-acetyl-N-hydroxyamino)-6-cyano-3,4-dihydro-2,2- dimethyl-2H-1-benzopyran-3-ol (Y-26763), and either histamine (Hist) or noradrenaline (NA). 2. Hist (3 microM) and NA (10 microM) both produced a phasic, followed by a tonic increase in intracellular Ca2+ concentration ([Ca2+]i) and force. Y-26763 (10 microM) potently inhibited the NA-induced phasic and tonic increase in [Ca2+]i and force. In contrast, Y-26763 attenuated the Hist-induced phasic increase in [Ca2+]i and force but had almost no effect on the tonic response. However, ryanodine-treatment of muscles in order to inhibit the function of intracellular Ca2+ storage sites altered the action of Y-26763 which now attenuated the Hist-induced tonic increase in [Ca2+]i and force in a concentration-dependent manner (at concentrations > 1 microM). Glibenclamide (10 microM) attenuated the inhibitory action of Y-26763. 3. Hist (3 microM) depolarized the smooth muscle cells to the same extent as NA (10 microM). In the absence of either agonist, Y-26763 (over 30 nM) hyperpolarized the membrane and glibenclamide inhibited this hyperpolarization. Y-26763 (10 microM) almost abolished the NA-induced membrane depolarization, but only slightly attenuated the Hist-induced membrane depolarization in which the delta (delta) value (the difference before and after application of Hist) was not modified by any concentration of Y-26763. In ryanodine-treated smooth muscle cells, Y-26763 hyperpolarized the membrane and potently inhibited the membrane depolarization induced by Hist. 4. In ryanodine-treated muscle, Y-26763 had no measurable effect on the Hist-induced [Ca2+]i-force relationship. Y-26763 also had no apparent effect on the myofilament Ca(2+)-sensitivity in the presence of Hist in alpha

  14. Mechanism for substance P-induced relaxation of precontracted airway smooth muscle during development.

    PubMed

    Mhanna, M J; Dreshaj, I A; Haxhiu, M A; Martin, R J

    1999-01-01

    Release of substance P (SP) from sensory nerve endings of the tracheobronchial system modulates airway smooth muscle contraction and may cause relaxation of precontracted airways. We sought to elucidate the effect of postnatal maturation on SP-induced relaxation of precontracted airways and determine the roles of endogenously generated nitric oxide (NO) and prostaglandins (PGs). Cylindrical airway segments were isolated from the midtrachea of rats at four different ages, 1, 2, and 4 wk and 3 mo, and contracted to 50-75% of the maximum response induced by bethanechol. SP was then administered in the absence and presence of the NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME), the PG inhibitor indomethacin, or both. Relaxation of airways with SP decreased significantly with advancing postnatal age. SP-induced tracheal relaxation was consistently attenuated by pretreatment with L-NAME, indomethacin, or both. In a different group of animals, L-NAME significantly attenuated the relaxant response of airways to PGE2 exposure, but indomethacin had no significant effect on the relaxant response to exogenous NO. We conclude that SP induces a relaxant effect on precontracted airway smooth muscle, which decreases with advancing age and is mediated via SP-induced release of NO and/or PG.

  15. Endogenous gamma-aminobutyric acid modulates tonic guinea pig airway tone and propofol-induced airway smooth muscle relaxation.

    PubMed

    Gallos, George; Gleason, Neil R; Virag, Laszlo; Zhang, Yi; Mizuta, Kentaro; Whittington, Robert A; Emala, Charles W

    2009-04-01

    Emerging evidence indicates that an endogenous autocrine/paracrine system involving gamma-aminobutyric acid (GABA) is present in airways. GABAA channels, GABAB receptors, and the enzyme that synthesizes GABA have been identified in airway epithelium and smooth muscle. However, the endogenous ligand itself, GABA, has not been measured in airway tissues. The authors sought to demonstrate that GABA is released in response to contractile agonists and tonically contributes a prorelaxant component to contracted airway smooth muscle. The amount and cellular localization of GABA in upper guinea pig airways under resting and contracted tone was determined by high pressure liquid chromatography and immunohistochemistry, respectively. The contribution that endogenous GABA imparts on the maintenance of airway smooth muscle acetylcholine-induced contraction was assessed in intact guinea pig airway tracheal rings using selective GABAA antagonism (gabazine) under resting or acetylcholine-contracted conditions. The ability of an allosteric agent (propofol) to relax a substance P-induced relaxation in an endogenous GABA-dependent manner was assessed. GABA levels increased and localized to airway smooth muscle after contractile stimuli in guinea pig upper airways. Acetylcholine-contracted guinea pig tracheal rings exhibited an increase in contracted force upon addition of the GABAA antagonist gabazine that was subsequently reversed by the addition of the GABAA agonist muscimol. Propofol dose-dependently relaxed a substance P contraction that was blocked by gabazine. These studies demonstrate that GABA is endogenously present and increases after contractile stimuli in guinea pig upper airways and that endogenous GABA contributes a tonic prorelaxant component in the maintenance of airway smooth muscle tone.

  16. Endogenous γ-aminobutyric Acid Modulates Tonic Guinea Pig Airway Tone and Propofol-induced Airway Smooth Muscle Relaxation

    PubMed Central

    Gallos, George; Gleason, Neil R.; Virag, Laszlo; Zhang, Yi; Mizuta, Kentauro; Whittington, Robert A.; Emala, Charles W.

    2009-01-01

    Background Emerging evidence indicates that an endogenous autocrine/paracrine system involving γ-aminobutyric acid (GABA) is present in airways. GABAA channels, GABAB receptors and the enzyme that synthesizes GABA have been identified in airway epithelium and smooth muscle. However, the endogenous ligand itself, GABA, has not been measured in airway tissues. We sought to demonstrate that GABA is released in response to contractile agonists and tonically contributes a pro-relaxant component to contracted airway smooth muscle. Methods The amount and cellular localization of GABA in upper guinea pig airways under resting and contracted tone was determined by high pressure liquid chromatography and immunohistochemistry, respectively. The contribution that endogenous GABA imparts on the maintenance of airway smooth muscle acetylcholine-induced contraction was assessed in intact guinea pig airway tracheal rings using selective GABAA antagonism (gabazine) under resting or acetylcholine-contracted conditions. The ability of an allosteric agent (propofol) to relax a substance P-induced relaxation in an endogenous GABA-dependent manner was assessed. Results GABA levels increased and localized to airway smooth muscle following contractile stimuli in guinea pig upper airways. Acetylcholine-contracted guinea pig tracheal rings exhibited an increase in contracted force upon addition of the GABAA antagonist gabazine which was subsequently reversed by the addition of the GABAA agonist muscimol. Propofol dose-dependently relaxed a substance P contraction that was blocked by gabazine. Conclusion These studies demonstrate that GABA is endogenously present and increases following contractile stimuli in guinea pig upper airways and that endogenous GABA contributes a tonic pro-relaxant component in the maintenance of airway smooth muscle tone. PMID:19322939

  17. Prostaglandins, oxygen tension and smooth muscle tone

    PubMed Central

    Eckenfels, A.; Vane, J. R.

    1972-01-01

    1. By using indomethacin to inhibit their intramural synthesis, we have investigated the contribution of prostaglandins to the maintenance of (a) the intrinsic tone of isolated smooth muscle preparations and (b) contractions produced by drugs or high oxygen concentration. 2. When treated with indomethacin, the rat stomach strip and chick rectum preparation slowly relaxed, whether they were bathed in Krebs solution or blood. Although their sensitivity to added prostaglandin was somewhat enhanced, they became insensitive to changes in oxygen or glucose concentration. However, another smooth muscle preparation, the rat colon, was neither relaxed by indomethacin nor contracted by high oxygen concentration. 3. These results support the hypothesis that intramural generation of prostaglandin maintains the tone of some smooth muscle preparations. 4. Contractions of the guinea-pig isolated colon were induced by histamine. These contractions were normally well maintained but in Krebs solution lacking either oxygen or glucose, only the initial spike contraction remained. In the presence of indomethacin the histamine contraction was also poorly sustained, but maintenance was restored by a low concentration of prostaglandin E2. 5. Thus, the effects on smooth muscle of oxygen or glucose lack may also be mediated by reduction in the synthesis or effects of an intramural prostaglandin. Extension of this hypothesis to intestinal and vascular smooth muscle in vivo is discussed. PMID:5072227

  18. Role of pp60(c-src) and p(44/42) MAPK in ANG II-induced contraction of rat tonic gastrointestinal smooth muscles.

    PubMed

    Puri, Rajinder N; Fan, Ya-Ping; Rattan, Satish

    2002-08-01

    We examined the role of mitogen-activated protein kinase (p(44/42) MAPK) in ANG II-induced contraction of lower esophageal sphincter (LES) and internal anal sphincter (IAS) smooth muscles. Studies were performed in the isolated smooth muscles and cells (SMC). ANG II-induced changes in the levels of phosphorylation of different signal transduction and effector proteins were determined before and after selective inhibitors. ANG II-induced contraction of the rat LES and IAS SMC was inhibited by genistein, PD-98059 [a specific inhibitor of MAPK kinases (MEK 1/2)], herbimycin A (a pp60(c-src) inhibitor), and antibodies to pp60(c-src) and p(120) ras GTPase-activating protein (p(120) rasGAP). ANG II-induced contraction of the tonic smooth muscles was accompanied by an increase in tyrosine phosphorylation of p(120) rasGAP. These were attenuated by genistein but not by PD-98059. ANG II-induced increase in phosphorylations of p(44/42) MAPKs and caldesmon was attenuated by both genistein and PD-98059. We conclude that pp60(c-src) and p(44/42) MAPKs play an important role in ANG II-induced contraction of LES and IAS smooth muscles.

  19. Leiomodin and tropomodulin in smooth muscle

    NASA Technical Reports Server (NTRS)

    Conley, C. A.

    2001-01-01

    Evidence is accumulating to suggest that actin filament remodeling is critical for smooth muscle contraction, which implicates actin filament ends as important sites for regulation of contraction. Tropomodulin (Tmod) and smooth muscle leiomodin (SM-Lmod) have been found in many tissues containing smooth muscle by protein immunoblot and immunofluorescence microscopy. Both proteins cofractionate with tropomyosin in the Triton-insoluble cytoskeleton of rabbit stomach smooth muscle and are solubilized by high salt. SM-Lmod binds muscle tropomyosin, a biochemical activity characteristic of Tmod proteins. SM-Lmod staining is present along the length of actin filaments in rat intestinal smooth muscle, while Tmod stains in a punctate pattern distinct from that of actin filaments or the dense body marker alpha-actinin. After smooth muscle is hypercontracted by treatment with 10 mM Ca(2+), both SM-Lmod and Tmod are found near alpha-actinin at the periphery of actin-rich contraction bands. These data suggest that SM-Lmod is a novel component of the smooth muscle actin cytoskeleton and, furthermore, that the pointed ends of actin filaments in smooth muscle may be capped by Tmod in localized clusters.

  20. GTP requirement for inositol-1,4,5-trisphosphate-induced Ca2+ release from sarcoplasmic reticulum in smooth muscle.

    PubMed

    Saida, K; van Breemen, C

    1987-05-14

    We have examined inositol-1,4,5-trisphosphate (IP3)-induced Ca2+ release from the sarcoplasmic reticulum (SR) in the skinned vascular smooth muscle. The amount of Ca2+ in the SR was estimated indirectly by caffeine-induced contraction of the skinned preparation. The Ca2+ release from the SR by IP3 required GTP. A non-hydrolyzable analogue of GTP, guanosine 5'-(beta gamma-imido) triphosphate (GppNHp) could substitute for GTP in the IP3-induced Ca2+ release. These results suggest an involvement of GTP-binding protein in the mechanism of Ca2+ release from the SR by IP3 in smooth muscle.

  1. What evidence implicates airway smooth muscle in the cause of BHR?

    PubMed

    Dulin, Nickolai O; Fernandes, Darren J; Dowell, Maria; Bellam, Shashi; McConville, John; Lakser, Oren; Mitchell, Richard; Camoretti-Mercado, Blanca; Kogut, Paul; Solway, Julian

    2003-02-01

    Bronchial hyperresponsiveness (BHR), the occurrence of excessive bronchoconstriction in response to relatively small constrictor stimuli, is a cardinal feature of asthma. Here, we consider the role that airway smooth muscle might play in the generation of BHR. The weight of evidence suggests that smooth muscle isolated from asthmatic tissues exhibits normal sensitivity to constrictor agonists when studied during isometric contraction, but the increased muscle mass within asthmatic airways might generate more total force than the lesser amount of muscle found in normal bronchi. Another salient difference between asthmatic and normal individuals lies in the effect of deep inhalation (DI) on bronchoconstriction. DI often substantially reverses induced bronchoconstriction in normals, while it often has much less effect on spontaneous or induced bronchoconstriction in asthmatics. It has been proposed that abnormal dynamic aspects of airway smooth muscle contraction velocity of contraction or plasticity- elasticity balance might underlie the abnormal DI response in asthma. We suggest a speculative model in which abnormally long actin filaments might account for abnormally increased elasticity of contracted airway smooth muscle.

  2. Inhibitory effects of botulinum toxin on pyloric and antral smooth muscle.

    PubMed

    James, Arlene N; Ryan, James P; Parkman, Henry P

    2003-08-01

    Botulinum toxin injection into the pylorus is reported to improve gastric emptying in gastroparesis. Classically, botulinum toxin inhibits ACh release from cholinergic nerves in skeletal muscle. The aim of this study was to determine the effects of botulinum toxin on pyloric smooth muscle. Guinea pig pyloric muscle strips were studied in vitro. Botulinum toxin type A was added; electric field stimulation (EFS) was performed every 30 min for 6 h. ACh (100 microM)-induced contractile responses were determined before and after 6 h. Botulinum toxin caused a concentration-dependent decrease of pyloric contractions to EFS. At a low concentration (2 U/ml), botulinum toxin decreased pyloric contractions to EFS by 43 +/- 9% without affecting ACh-induced contractions. At higher concentrations (10 U/ml), botulinum toxin decreased pyloric contraction to EFS by 75 +/- 7% and decreased ACh-induced contraction by 79 +/- 9%. In conclusion, botulinum toxin inhibits pyloric smooth muscle contractility. At a low concentration, botulinum toxin decreases EFS-induced contractile responses without affecting ACh-induced contractions suggesting inhibition of ACh release from cholinergic nerves. At higher concentrations, botulinum toxin directly inhibits smooth muscle contractility as evidenced by the decreased contractile response to ACh.

  3. Decreased airway narrowing and smooth muscle contraction in hyperresponsive pigs.

    PubMed

    Turner, Debra J; Noble, Peter B; Lucas, Matthew P; Mitchell, Howard W

    2002-10-01

    Increased smooth muscle contractility or reduced smooth muscle mechanical loads could account for the excessive airway narrowing and hyperresponsiveness seen in asthma. These mechanisms were investigated by using an allergen-induced porcine model of airway hyperresponsiveness. Airway narrowing to electric field stimulation was measured in isolated bronchial segments, over a range of transmural pressures (0-20 cmH(2)O). Contractile responses to ACh were measured in bronchial segments and in isolated tracheal smooth muscle strips isolated from control and test (ovalbumin sensitized and challenged) pigs. Test airways narrowed less than controls (P < 0.0001). Test pigs showed reduced contractility to ACh, both in isolated bronchi (P < 0.01) and smooth muscle strips (P < 0.01). Thus isolated airways from pigs exhibiting airway hyperresponsiveness in vivo are hyporesponsive in vitro. The decreased narrowing in bronchi from hyperresponsive pigs may be related to decreased smooth muscle contractility. These data suggest that mechanisms external to the airway wall may be important to the hyperresponsive nature of sensitized lungs.

  4. Histone deacetylase 8 regulates cortactin deacetylation and contraction in smooth muscle tissues

    PubMed Central

    Li, Jia; Chen, Shu; Cleary, Rachel A.; Wang, Ruping; Gannon, Olivia J.; Seto, Edward

    2014-01-01

    Histone deacetylases (HDACs) are a family of enzymes that mediate nucleosomal histone deacetylation and gene expression. Some members of the HDAC family have also been implicated in nonhistone protein deacetylation, which modulates cell-cycle control, differentiation, and cell migration. However, the role of HDACs in smooth muscle contraction is largely unknown. Here, HDAC8 was localized both in the cytoplasm and the nucleus of mouse and human smooth muscle cells. Knockdown of HDAC8 by lentivirus-encoding HDAC8 shRNA inhibited force development in response to acetylcholine. Treatment of smooth muscle tissues with HDAC8 inhibitor XXIV (OSU-HDAC-44) induced relaxation of precontracted smooth muscle tissues. In addition, cortactin is an actin-regulatory protein that undergoes deacetylation during migration of NIH 3T3 cells. In this study, acetylcholine stimulation induced cortactin deacetylation in mouse and human smooth muscle tissues, as evidenced by immunoblot analysis using antibody against acetylated lysine. Knockdown of HDAC8 by RNAi or treatment with the inhibitor attenuated cortactin deacetylation and actin polymerization without affecting myosin activation. Furthermore, expression of a charge-neutralizing cortactin mutant inhibited contraction and actin dynamics during contractile activation. These results suggest a novel mechanism for the regulation of smooth muscle contraction. In response to contractile stimulation, HDAC8 may mediate cortactin deacetylation, which subsequently promotes actin filament polymerization and smooth muscle contraction. PMID:24920679

  5. Polo-like Kinase 1 Regulates Vimentin Phosphorylation at Ser-56 and Contraction in Smooth Muscle*

    PubMed Central

    Li, Jia; Wang, Ruping; Gannon, Olivia J.; Rezey, Alyssa C.; Jiang, Sixin; Gerlach, Brennan D.; Liao, Guoning

    2016-01-01

    Polo-like kinase 1 (Plk1) is a serine/threonine-protein kinase that has been implicated in mitosis, cytokinesis, and smooth muscle cell proliferation. The role of Plk1 in smooth muscle contraction has not been investigated. Here, stimulation with acetylcholine induced Plk1 phosphorylation at Thr-210 (an indication of Plk1 activation) in smooth muscle. Contractile stimulation also activated Plk1 in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer signal of a Plk1 sensor. Moreover, knockdown of Plk1 in smooth muscle attenuated force development. Smooth muscle conditional knock-out of Plk1 also diminished contraction of mouse tracheal rings. Plk1 knockdown inhibited acetylcholine-induced vimentin phosphorylation at Ser-56 without affecting myosin light chain phosphorylation. Expression of T210A Plk1 inhibited the agonist-induced vimentin phosphorylation at Ser-56 and contraction in smooth muscle. However, myosin light chain phosphorylation was not affected by T210A Plk1. Ste20-like kinase (SLK) is a serine/threonine-protein kinase that has been implicated in spindle orientation and microtubule organization during mitosis. In this study knockdown of SLK inhibited Plk1 phosphorylation at Thr-210 and activation. Finally, asthma is characterized by airway hyperresponsiveness, which largely stems from airway smooth muscle hyperreactivity. Here, smooth muscle conditional knock-out of Plk1 attenuated airway resistance and airway smooth muscle hyperreactivity in a murine model of asthma. Taken together, these findings suggest that Plk1 regulates smooth muscle contraction by modulating vimentin phosphorylation at Ser-56. Plk1 activation is regulated by SLK during contractile activation. Plk1 contributes to the pathogenesis of asthma. PMID:27662907

  6. Triptolide inhibits TGF-β1-induced cell proliferation in rat airway smooth muscle cells by suppressing Smad signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ming; Lv, Zhiqiang; Huang, Linjie

    Background: We have reported that triptolide can inhibit airway remodeling in a murine model of asthma via TGF-β1/Smad signaling. In the present study, we aimed to investigate the effect of triptolide on airway smooth muscle cells (ASMCs) proliferation and the possible mechanism. Methods: Rat airway smooth muscle cells were cultured and made synchronized, then pretreated with different concentration of triptolide before stimulated by TGF-β1. Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Signal proteins (Smad2, Smad3 and Smad7) were detected by western blotting analysis. Results: Triptolidemore » significantly inhibited TGF-β1-induced ASMC proliferation (P<0.05). The cell cycle was blocked at G1/S-interphase by triptolide dose dependently. No pro-apoptotic effects were detected under the concentration of triptolide we used. Western blotting analysis showed TGF-β1 induced Smad2 and Smad3 phosphorylation was inhibited by triptolide pretreatment, and the level of Smad7 was increased by triptolide pretreatment. Conclusions: Triptolide may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via negative regulation of Smad signaling pathway. - Highlights: • In this study, rat airway smooth muscle cells were cultured and made synchronized. • Triptolide inhibited TGF-β1-induced airway smooth muscle cells proliferation. • Triptolide inhibited ASMCs proliferation via negative regulation of Smad signaling pathway.« less

  7. The impact of extracellular and intracellular Ca2+ on ethanol-induced smooth muscle contraction.

    PubMed

    Döndaş, Naciye Yaktubay; Kaplan, Mahir; Kaya, Derya; Singirik, Ergin

    2009-10-01

    To evaluate the impact of extracellular and intracellular Ca2+ on contractions induced by ethanol in smooth muscle. Longitudinal smooth muscle strips were prepared from the gastric fundi of mice. The contractions of smooth muscle strips were recorded with an isometric force displacement transducer. Ethanol (164 mmol/L) produced reproducible contractions in isolated gastric fundal strips of mice. Although lidocaine (50 and 100 micromol/L), a local anesthetic agent, and hexamethonium (100 and 500 micromol/L), a ganglionic blocking agent, failed to affect these contractions, verapamil (1-50 micromol/L) and nifedipine (1-50 micromol/L), selective blockers of L-type Ca2+ channels, significantly inhibited the contractile responses of ethanol. Using a Ca(2+)-free medium nearly eliminated these contractions in the same tissue. Ryanodine (1-50 micromol/L) and ruthenium red (10-100 micromol/L), selective blockers of intracellular Ca2+ channels/ryanodine receptors; cyclopiazonic acid (CPA; 1-10 mumol/L), a selective inhibitor of sarcoplasmic reticulum (SR) Ca(2+)-ATPase; and caffeine (0.5-5 mmol/L), a depleting agent of intracellular Ca2+ stores, significantly inhibited the contractile responses induced by ethanol. In addition, the combination of caffeine (5 mmol/L) plus CPA (10 micromol/L), and ryanodine (10 micromol/L) plus CPA (10 micromol/L), caused further inhibition of contractions in response to ethanol. This inhibition was significantly different from those associated with caffeine, ryanodine or CPA. Furthermore the combination of caffeine (5 mmol/L), ryanodine (10 micromol/L) and CPA(10 micromol/L) eliminated the contractions induced by ethanol in isolated gastric fundal strips of mice. Both extracellular and intracellular Ca2+ may have important roles in regulating contractions induced by ethanol in the mouse gastric fundus.

  8. Epithelium-generated neuropeptide Y induces smooth muscle contraction to promote airway hyperresponsiveness.

    PubMed

    Li, Shanru; Koziol-White, Cynthia; Jude, Joseph; Jiang, Meiqi; Zhao, Hengjiang; Cao, Gaoyuan; Yoo, Edwin; Jester, William; Morley, Michael P; Zhou, Su; Wang, Yi; Lu, Min Min; Panettieri, Reynold A; Morrisey, Edward E

    2016-05-02

    Asthma is one of the most common chronic diseases globally and can be divided into presenting with or without an immune response. Current therapies have little effect on nonimmune disease, and the mechanisms that drive this type of asthma are poorly understood. Here, we have shown that loss of the transcription factors forkhead box P1 (Foxp1) and Foxp4, which are critical for lung epithelial development, in the adult airway epithelium evokes a non-Th2 asthma phenotype that is characterized by airway hyperresponsiveness (AHR) without eosinophilic inflammation. Transcriptome analysis revealed that loss of Foxp1 and Foxp4 expression induces ectopic expression of neuropeptide Y (Npy), which has been reported to be present in the airways of asthma patients, but whose importance in disease pathogenesis remains unclear. Treatment of human lung airway explants with recombinant NPY increased airway contractility. Conversely, loss of Npy in Foxp1- and Foxp4-mutant airway epithelium rescued the AHR phenotype. We determined that NPY promotes AHR through the induction of Rho kinase activity and phosphorylation of myosin light chain, which induces airway smooth muscle contraction. Together, these studies highlight the importance of paracrine signals from the airway epithelium to the underlying smooth muscle to induce AHR and suggest that therapies targeting epithelial induction of this phenotype may prove useful in treatment of noneosinophilic asthma.

  9. Porcine Stomach Smooth Muscle Force Depends on History-Effects.

    PubMed

    Tomalka, André; Borsdorf, Mischa; Böl, Markus; Siebert, Tobias

    2017-01-01

    The stomach serves as food reservoir, mixing organ and absorption area for certain substances, while continually varying its position and size. Large dimensional changes during ingestion and gastric emptying of the stomach are associated with large changes in smooth muscle length. These length changes might induce history-effects, namely force depression (FD) following active muscle shortening and force enhancement (FE) following active muscle stretch. Both effects have impact on the force generating capacity of the stomach, and thus functional relevance. However, less is known about history-effects and active smooth muscle properties of stomach smooth muscle. Thus, the aim of this study was to investigate biomechanical muscle properties as force-length and force-velocity relations (FVR) of porcine stomach smooth muscle strips, extended by the analysis of history-effects on smooth muscle force. Therefore, in total n = 54 tissue strips were dissected in longitudinal direction from the ventral fundus of porcine stomachs. Different isometric, isotonic, and isokinetic contraction protocols were performed during electrical muscle stimulation. Cross-sectional areas (CSA) of smooth muscles were determined from cryo-histological sections stained with Picrosirius Red. Results revealed that maximum smooth muscle tension was 10.4 ± 2.6 N/cm 2 . Maximum shortening velocity ( V max ) and curvature factor ( curv ) of the FVR were 0.04 ± 0.01 [optimum muscle length/s] and 0.36 ± 0.15, respectively. The findings of the present study demonstrated significant ( P < 0.05) FD [up to 32% maximum muscle force ( F im )] and FE (up to 16% F im ) of gastric muscle tissue, respectively. The FE- and FD-values increased with increasing ramp amplitude. This outstanding muscle behavior is not accounted for in existing models so far and strongly supports the idea of a holistic reflection of distinct stomach structure and function. For the first time this study provides a comprehensive set of

  10. Porcine Stomach Smooth Muscle Force Depends on History-Effects

    PubMed Central

    Tomalka, André; Borsdorf, Mischa; Böl, Markus; Siebert, Tobias

    2017-01-01

    The stomach serves as food reservoir, mixing organ and absorption area for certain substances, while continually varying its position and size. Large dimensional changes during ingestion and gastric emptying of the stomach are associated with large changes in smooth muscle length. These length changes might induce history-effects, namely force depression (FD) following active muscle shortening and force enhancement (FE) following active muscle stretch. Both effects have impact on the force generating capacity of the stomach, and thus functional relevance. However, less is known about history-effects and active smooth muscle properties of stomach smooth muscle. Thus, the aim of this study was to investigate biomechanical muscle properties as force-length and force-velocity relations (FVR) of porcine stomach smooth muscle strips, extended by the analysis of history-effects on smooth muscle force. Therefore, in total n = 54 tissue strips were dissected in longitudinal direction from the ventral fundus of porcine stomachs. Different isometric, isotonic, and isokinetic contraction protocols were performed during electrical muscle stimulation. Cross-sectional areas (CSA) of smooth muscles were determined from cryo-histological sections stained with Picrosirius Red. Results revealed that maximum smooth muscle tension was 10.4 ± 2.6 N/cm2. Maximum shortening velocity (Vmax) and curvature factor (curv) of the FVR were 0.04 ± 0.01 [optimum muscle length/s] and 0.36 ± 0.15, respectively. The findings of the present study demonstrated significant (P < 0.05) FD [up to 32% maximum muscle force (Fim)] and FE (up to 16% Fim) of gastric muscle tissue, respectively. The FE- and FD-values increased with increasing ramp amplitude. This outstanding muscle behavior is not accounted for in existing models so far and strongly supports the idea of a holistic reflection of distinct stomach structure and function. For the first time this study provides a comprehensive set of stomach

  11. Bidirectional regulation of human colonic smooth muscle contractility by tachykinin NK(2) receptors.

    PubMed

    Nakamura, Akihiro; Tanaka, Takahiro; Imanishi, Akio; Kawamoto, Makiko; Toyoda, Masao; Mizojiri, Gaku; Tsukimi, Yasuhiro

    2011-01-01

    In this study, we attempted to clarify the mechanism of tachykinin-induced motor response in isolated smooth muscle preparations of the human colon. Fresh specimens of normal colon were obtained from patients suffering from colonic cancer. Using mucosa-free smooth muscle strips, smooth muscle tension with circular direction was monitored isometrically. Substance P (SP), neurokinin A (NKA), and neurokinin B (NKB) produced marked contraction. All of these contractions were inhibited by saredutant, a selective NK(2)-R antagonist, but not by CP122721, a selective NK(1)-R antagonist or talnetant, a selective NK(3)-R antagonist. βAla(8)-NKA(4-10) induced concentration-dependent contraction similar to NKA, but Sar(9)-Met(11)-SP and Met-Phe(7)-NKB did not cause marked contraction. Colonic contraction induced by βAla(8)-NKA(4-10) was completely blocked by saredutant, but not by atropine. Tetrodotoxin or N(G)-nitro-L-arginine methyl ester pretreatment significantly enhanced βAla(8)-NKA(4-10)-induced contraction. Immunohistochemical analysis showed that the NK(2)-R was expressed on the smooth muscle layers and myenteric plexus where it was also co-expressed with neuronal nitric oxide synthase in the myenteric plexus. These results suggest that the NK(2)-R is a major contributor to tachykinin-induced smooth muscle contraction in human colon and that the NK(2)-R-mediated response consists of an excitatory component via direct action on the smooth muscle and an inhibitory component possibly via nitric oxide neurons.

  12. The Dynamic Actin Cytoskeleton in Smooth Muscle.

    PubMed

    Tang, Dale D

    2018-01-01

    Smooth muscle contraction requires both myosin activation and actin cytoskeletal remodeling. Actin cytoskeletal reorganization facilitates smooth muscle contraction by promoting force transmission between the contractile unit and the extracellular matrix (ECM), and by enhancing intercellular mechanical transduction. Myosin may be viewed to serve as an "engine" for smooth muscle contraction whereas the actin cytoskeleton may function as a "transmission system" in smooth muscle. The actin cytoskeleton in smooth muscle also undergoes restructuring upon activation with growth factors or the ECM, which controls smooth muscle cell proliferation and migration. Abnormal smooth muscle contraction, cell proliferation, and motility contribute to the development of vascular and pulmonary diseases. A number of actin-regulatory proteins including protein kinases have been discovered to orchestrate actin dynamics in smooth muscle. In particular, Abelson tyrosine kinase (c-Abl) is an important molecule that controls actin dynamics, contraction, growth, and motility in smooth muscle. Moreover, c-Abl coordinates the regulation of blood pressure and contributes to the pathogenesis of airway hyperresponsiveness and vascular/airway remodeling in vivo. Thus, c-Abl may be a novel pharmacological target for the development of new therapy to treat smooth muscle diseases such as hypertension and asthma. © 2018 Elsevier Inc. All rights reserved.

  13. Hyperphosphatemia induces cellular senescence in human aorta smooth muscle cells through integrin linked kinase (ILK) up-regulation.

    PubMed

    Troyano, Nuria; Nogal, María Del; Mora, Inés; Diaz-Naves, Manuel; Lopez-Carrillo, Natalia; Sosa, Patricia; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruiz-Torres, María P

    2015-12-01

    Aging is conditioned by genetic and environmental factors. Hyperphosphatemia is related to some pathologies, affecting to vascular cells behavior. This work analyze whether high concentration of extracellular phosphate induces vascular smooth muscle cells senescence, exploring the intracellular mechanisms and highlighting the in vivo relevance of this phenomenon. Human aortic smooth muscle cells treated with β-Glycerophosphate (BGP, 10mM) suffered cellular senescence by increasing p53, p21 and p16 expression and the senescence associated β-galactosidase activity. In parallel, BGP induced ILK overexpression, dependent on the IGF-1 receptor activation, and oxidative stress. Down-regulating ILK expression prevented BGP-induced senescence and oxidative stress. Aortic rings from young rats treated with 10mM BGP for 48h, showed increased p53, p16 and ILK expression and SA-β-gal activity. Seven/eight nephrectomized rats feeding a hyperphosphatemic diet and fifteenth- month old mice showed hyperphosphatemia and aortic ILK, p53 and p16 expression. In conclusion, we demonstrated that high extracellular concentration of phosphate induced senescence in cultured smooth muscle through the activation of IGF-1 receptor and ILK overexpression and provided solid evidences for the in vivo relevance of these results since aged animals showed high levels of serum phosphate linked to increased expression of ILK and senescence genes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. The specific GTP requirement for inositol 1,4,5-trisphosphate-induced Ca2+ release from skinned vascular smooth muscle.

    PubMed

    Saida, K; Twort, C; van Breemen, C

    1988-01-01

    Exogenous GTP was required for the induction of Ca2+ release from smooth muscle SR by IP3 if endogenous GTP was depleted. NaN3 could function as a partial substitute for GTP as a cofactor for the IP3-induced Ca2+ release from the SR. In contrast to the IP3-induced Ca2+ release, caffeine-induced Ca2+ release from the SR did not require GTP. Pertussis toxin inhibited the IP3-induced Ca2+ release from the SR, whereas it had no effect on caffeine-induced Ca2+ release. These results indicate that in smooth muscle two different Ca2+ release-channels exist in the SR: (a) activated by IP3, and (b) activated by caffeine or Ca2+.

  15. Smooth muscle of telokin-deficient mice exhibits increased sensitivity to Ca2+ and decreased cGMP-induced relaxation.

    PubMed

    Khromov, A S; Wang, H; Choudhury, N; McDuffie, M; Herring, B P; Nakamoto, R; Owens, G K; Somlyo, A P; Somlyo, A V

    2006-02-14

    Cyclic nucleotides can relax smooth muscle without a change in [Ca2+]i, a phenomenon termed Ca2+ desensitization, contributing to vasodilation, gastrointestinal motility, and airway resistance. The physiological importance of telokin, a 17-kDa smooth muscle-specific protein and target for cyclic nucleotide-induced Ca2+ desensitization, was determined in telokin null mice bred to a congenic background. Telokin null ileal smooth muscle homogenates compared to wild type exhibited an approximately 30% decrease in myosin light-chain phosphatase (MLCP) activity, which was reflected in a significant leftward shift (up to 2-fold at pCa 6.3) of the Ca2+ force relationship accompanied by an increase in myosin light-chain phosphorylation. No difference in the Ca2+ force relationship occurred in telokin WT and knockout (KO) aortas, presumably reflecting the normally approximately 5-fold lower telokin content in aorta vs. ileum smooth muscle. Ca2+ desensitization of contractile force by 8-Br-cGMP was attenuated by 50% in telokin KO intestinal smooth muscle. The rate of force relaxation reflecting MLCP activity, in the presence of 50 microM 8-Br-cGMP, was also significantly slowed in telokin KO vs. WT ileum and was rescued by recombinant telokin. Normal thick filaments in telokin KO smooth muscles indicate that telokin is not required for filament formation or stability. Results indicate that a primary role of telokin is to modulate force through increasing MLCP activity and that this effect is further potentiated through phosphorylation by cGMP in telokin-rich smooth tissues.

  16. Ursolic acid suppresses leptin-induced cell proliferation in rat vascular smooth muscle cells.

    PubMed

    Yu, Ya-Mei; Tsai, Chiang-Chin; Tzeng, Yu-Wen; Chang, Weng-Cheng; Chiang, Su-Yin; Lee, Ming-Fen

    2017-07-01

    Accumulating lines of evidence indicate that high leptin levels are associated with adverse cardiovascular health in obese individuals. Proatherogenic effects of leptin include endothelial cell activation and vascular smooth muscle cell proliferation and migration. Ursolic acid (UA) has been reported to exhibit multiple biological effects including antioxidant and anti-inflammatory properties. In this study, we investigated the effect of UA on leptin-induced biological responses in rat vascular smooth muscle cells (VSMCs). A-10 VSMCs were treated with leptin in the presence or absence of UA. Intracellular reactive oxygen species (ROS) was probed by 2',7'-dichlorofluorescein diacetate. The expression of extracellular signal-regulated kinase (ERK)1/2, phospho-(ERK)1/2, nuclear factor-kappa B (NF-κB) p65 and p50, and matrix metalloproteinase-2 (MMP2) was determined by Western blotting. Immunocytochemistry and confocal laser scanning microscopy were also used for the detection of NF-κB. The secretion of MMP2 was detected by gelatin zymography. UA exhibited antioxidant activities in vitro. In rat VSMCs, UA effectively inhibited cell growth and the activity of MMP2 induced by leptin. These suppressive effects appeared by decreasing the activation of (ERK)1/2, the nuclear expression and translocation of NF-κB, and the production of ROS. UA appeared to inhibit leptin-induced atherosclerosis, which may prevent the development of obesity-induced cardiovascular diseases.

  17. Smooth muscle sphincteroplasty in colostomy.

    PubMed

    Kostov, Daniel V; Temelkov, Temelko D; Dragnev, Nedyalko A; Kobakov, Georgi L; Ivanov, Krasimir D

    2004-04-01

    The present work elaborated on Schmidt's idea of an effective smooth muscle sphincteroplasty. The aim of the study was to analyze the effects on the patients with a lower quadrant colostomy constructed after abdominoperineal extirpation of a modified smooth muscle sphincteroplasty combined with colon irrigations. Seventy-two rectal cancer patients (39 men and 33 women, median age, 54.5 years) with smooth muscle sphincteroplasty and 20 controls with conventional colostomy using colon irrigations (11 men and 9 women, median age, 63.2 years) were examined. A modified smooth muscle wrap of the colostomy with a free graft of a 4-cm-long colon segment without mucosa was applied. In this precolostomy segment a high intraluminal pressure was achieved. The functional capacity and anatomic integrity of the transplanted smooth muscle graft were examined manometrically, electromyographically, and histomorphologically. The functional activity of the colostomy was assessed by periodic recording of the number of "spontaneous" and "directed" defecations.RESULTS. In the patients with smooth muscle sphincteroplasty, the basal intraluminal pressure of the precolostomy segment two years after operation measured 29.7 mmHg. After dilatation of the transplant, these pressures reached up to 43 mmHg ( P < 0.001). The weekly "spontaneous" stools were 3 to 5 times less frequent than in the controls ( P < 0.001). The modified smooth muscle sphincteroplasty offers operative-technical opportunities for increasing intraluminal pressure in the precolostomy colon segment. Its combination with colonic irrigations facilitates control of the evacuatory rhythm and "spontaneous" stools in colostomy patients, thus improving their quality of life.

  18. Potentiation of carbachol-induced detrusor smooth muscle contractions by beta-adrenoceptor activation.

    PubMed

    Klausner, Adam P; Rourke, Keith F; Miner, Amy S; Ratz, Paul H

    2009-03-15

    In strips of rabbit bladder free of urothelium, the beta-adrenoceptor agonist, isoproterenol, significantly reduced basal detrusor smooth muscle tone and inhibited contractions produced by low concentrations of the muscarinic receptor agonist, carbachol. During a carbachol concentration-response curve, instead of inhibiting, isoproterenol strengthened contractions produced by high carbachol concentrations. Thus, the carbachol concentration-response curve was shifted by isoproterenol from a shallow, graded relationship, to a steep, switch-like relationship. The tyrosine kinase inhibitor, genistein, inhibited carbachol-induced contractions only in the presence of isoproterenol. Contraction produced by a single high carbachol concentration (1 microM) displayed 1 fast and 1 slow peak. In the presence of isoproterenol, the slow peak was not strengthened, but was delayed, and U-0126 (mitogen-activated protein kinase kinase inhibitor) selectively inhibited this delay concomitantly with inhibition of extracellular signal-regulated kinase (ERK) phosphorylation. Isoproterenol reduced ERK phosphorylation only in the absence of carbachol. These data support the concept that, by inhibiting weak contractions, potentiating strong contractions, and producing a more switch-like concentration-response curve, beta-adrenoceptor stimulation enhanced the effectiveness of muscarinic receptor-induced detrusor smooth muscle contraction. Moreover, beta-adrenoceptor stimulation changed the cellular mechanism by which carbachol produced contraction. The potential significance of multi-receptor and multi-cell crosstalk is discussed.

  19. R59949, a diacylglycerol kinase inhibitor, inhibits inducible nitric oxide production through decreasing transplasmalemmal L-arginine uptake in vascular smooth muscle cells.

    PubMed

    Shimomura, Tomoko; Nakano, Tomoyuki; Goto, Kaoru; Wakabayashi, Ichiro

    2017-02-01

    Although diacylglycerol kinase (DGK) is known to be expressed in vascular smooth muscle cell, its functional significance remains to be clarified. We hypothesized that DGK is involved in the pathway of cytokine-induced nitric oxide (NO) production in vascular smooth muscle cells. The purpose of this study was to investigate the effects of R59949, a diacylglycerol kinase inhibitor, on inducible nitric oxide production in vascular smooth muscle cell. Cultured rat aortic smooth muscle cells (RASMCs) were used to elucidate the effects of R59949 on basal and interleukin-1β (IL-1β)-induced NO production. The effects of R59949 on protein and mRNA expression of induced nitric oxide synthase (iNOS) and on transplasmalemmal L-arginine uptake were also evaluated using RASMCs. Treatment of RASMCs with R59949 (10 μM) inhibited IL-1β (10 ng/ml)-induced NO production but not basal NO production. Neither protein nor mRNA expression level of iNOS after stimulation with IL-1β was significantly affected by R59949. Estimated enzymatic activities of iNOS in RASMCs were comparable in the absence and presence of R59949. Stimulation of RASMCs with IL-1β caused a marked increase in transplasmalemmal L-arginine uptake into RASMCs. L-Arginine uptake in the presence of IL-1β was markedly inhibited by R59949, while basal L-arginine uptake was not significantly affected by R59949. Both IL-1β-induced NO production and L-arginine uptake were abolished in the presence of cycloheximide (1 μM). The results indicate that R59949 inhibits inducible NO production through decreasing transplasmalemmal L-arginine uptake. DGK is suggested to be involved in cytokine-stimulated L-arginine transport and regulate its intracellular concentration in vascular smooth muscle cell.

  20. Activation of endogenous GABAA channels on airway smooth muscle potentiates isoproterenol-mediated relaxation.

    PubMed

    Gallos, George; Gleason, Neil R; Zhang, Yi; Pak, Sang-Woo; Sonett, J R; Yang, Jay; Emala, Charles W

    2008-12-01

    Reactive airway disease predisposes patients to episodes of acute smooth muscle mediated bronchoconstriction. We have for the first time recently demonstrated the expression and function of endogenous ionotropic GABA(A) channels on airway smooth muscle cells. We questioned whether endogenous GABA(A) channels on airway smooth muscle could augment beta-agonist-mediated relaxation. Guinea pig tracheal rings or human bronchial airway smooth muscles were equilibrated in organ baths with continuous digital tension recordings. After pretreatment with or without the selective GABA(A) antagonist gabazine (100 muM), airway muscle was contracted with acetylcholine or beta-ala neurokinin A, followed by relaxation induced by cumulatively increasing concentrations of isoproterenol (1 nM to 1 muM) in the absence or presence of the selective GABA(A) agonist muscimol (10-100 muM). In separate experiments, guinea pig tracheal rings were pretreated with the large conductance K(Ca) channel blocker iberiotoxin (100 nM) after an EC(50) contraction with acetylcholine but before cumulatively increasing concentrations of isoproterenol (1 nM to 1 uM) in the absence or presence of muscimol (100 uM). GABA(A) activation potentiated the relaxant effects of isoproterenol after an acetylcholine or tachykinin-induced contraction in guinea pig tracheal rings or an acetylcholine-induced contraction in human endobronchial smooth muscle. This muscimol-induced potentiation of relaxation was abolished by gabazine pretreatment but persisted after blockade of the maxi K(Ca) channel. Selective activation of endogenous GABA(A) receptors significantly augments beta-agonist-mediated relaxation of guinea pig and human airway smooth muscle, which may have important therapeutic implications for patients in severe bronchospasm.

  1. Electrodynamic smooth muscle sphincter: development and biomechanical evaluation of a novel porcine artificial smooth muscle sphincter in a new in vitro stoma simulator.

    PubMed

    Schrag, H J; Karwath, D; Grub, C; Fragoza Padilla, F; Noack, T; Hopt, U T

    2005-07-01

    Many authors have suggested that the activity of the enteric inhibitory nerves is important in regulating normal gastrointestinal motility and inducing smooth muscle relaxation. Hitherto, no experimental or clinical models exist that transfer these physiological aspects to creating an autologous artificial sphincter for the treatment of major incontinence. Therefore, this study was performed to determine the contractile and relaxant capacity of gastrointestinal muscle types and to investigate the efficiency of a novel smooth muscle sphincter, based on the non-adrenergic, non-cholinergic (NANC) receptive relaxation under electrical field stimulation (EFS). For the first step, the isometric tension from isolated circular porcine fundus and colon muscle strips was recorded during pharmacological stimulation (TTX, L-NNA and atropine) and EFS. As a result, a continent electrodynamic smooth muscle sphincter (ESMS) was created by wrapping a fundus muscle flap around an isolated segment of porcine distal colon. The EFS of the free nerve fibers of the flap was realized using a circular platinum wire electrode. Parameters such as threshold of continence, intra/preluminal pressure and fluid passage were analyzed in a newly designed in vitro stoma simulator. Electrical field stimulation produced a maximal and voltage-dependent fundus relaxation to --12.4 mN/mm(2) (frequency of 40 Hz, pulse duration, train duration and voltage of 5 ms, 1 s and 60 mA respectively), which were abolished by N-nitro-L -arginine (L-NNA; 10(-4) M) in a dose-dependent manner, confirming that relaxant responses were mediated by NANC nerves. The results of eight ESMS showed that circular electrical stimulation of the muscle flap caused muscle relaxation with a concomitant and effective reduction in the occlusion pressure. The NANC-induced relaxation mechanism of porcine fundus preparations could be transferred to an efficient smooth muscle sphincter with a high threshold of continence and electrically

  2. The apoptosis induced by HMME-based photodynamic therapy in rabbit vascular smooth muscle cells

    NASA Astrophysics Data System (ADS)

    Yin, Huijuan; Li, Xiaoyuan; Lin, Hong; Liu, Jianzhong; Yu, Hongkui

    2007-02-01

    Objective To study the effects of HMME-based photodynamic therapy on proliferation and apoptosis of rabbit vascular smooth muscle cells(VSMCs). Method The cytotoxic effect of HMME-PDT on rabbit vascular smooth muscle cells was studied by means of Trypan Blue assay, HMME at 10μg/ml concentration and the light dose at 2.4~4.8 J/cm2 were selected in the studies. The morphological character 24h post-PDT was investigated by HE Staining. Annexin V and propidium iodide (PI) binding assays were performed to analyze the characteristics of cell death after HMME-PDT. Furthermore, The intracellular distributions of the HMME were measured by the confocal laser scanning microscope. Result It was showed the photocytotoxity to VSMC cells was dose related by Trypan Blue assay. Histology observing suggests HMME-PDT could induce cell death through apoptosis or necrosis, and the apoptosic rate was up to 50.5% by AnnexinV /PI assay. Moreover, the fluorescence images of HMME intracellular localization demonstrated that the HMME diffused into the mitochondria. Conclusion HMME-PDT could significantly inhibite VSMC proliferation and induce apoptosis.

  3. Dynamin-related protein inhibitor downregulates reactive oxygen species levels to indirectly suppress high glucose-induced hyperproliferation of vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maimaitijiang, Alimujiang; Zhuang, Xinyu; Jiang, Xiaofei

    Hyperproliferation of vascular smooth muscle cells is a pathogenic mechanism common in diabetic vascular complications and is a putatively important therapeutic target. This study investigated multiple levels of biology, including cellular and organellar changes, as well as perturbations in protein synthesis and morphology. Quantitative and qualitative analysis was utilized to assess the effect of mitochondrial dynamic changes and reactive oxygen species(ROS) levels on high-glucose-induced hyperproliferation of vascular smooth muscle cells. The data demonstrated that the mitochondrial fission inhibitor Mdivi-1 and downregulation of ROS levels both effectively inhibited the high-glucose-induced hyperproliferation of vascular smooth muscle cells. Downregulation of ROS levels playedmore » a more direct role and ROS levels were also regulated by mitochondrial dynamics. Increased ROS levels induced excessive mitochondrial fission through dynamin-related protein (Drp 1), while Mdivi-1 suppressed the sensitivity of Drp1 to ROS levels, thus inhibiting excessive mitochondrial fission under high-glucose conditions. This study is the first to propose that mitochondrial dynamic changes and ROS levels interact with each other and regulate high-glucose-induced hyperproliferation of vascular smooth muscle cells. This finding provides novel ideas in understanding the pathogenesis of diabetic vascular remodeling and intervention. - Highlights: • Mdivi-1 inhibits VSMC proliferation by lowering ROS level in high-glucose condition. • ROS may be able to induce mitochondrial fission through Drp1 regulation. • Mdivi-1 can suppress the sensitivity of Drp1 to ROS.« less

  4. Local small airway epithelial injury induces global smooth muscle contraction and airway constriction.

    PubMed

    Zhou, Jian; Alvarez-Elizondo, Martha B; Botvinick, Elliot; George, Steven C

    2012-02-01

    Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca(2+) wave in the epithelium, and multiple Ca(2+) waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca(2+) or decreasing intracellular Ca(2+) both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca(2+)-dependent smooth muscle shortening.

  5. Propofol preferentially relaxes neurokinin receptor-2-induced airway smooth muscle contraction in guinea pig trachea.

    PubMed

    Gleason, Neil R; Gallos, George; Zhang, Yi; Emala, Charles W

    2010-06-01

    Propofol is the anesthetic of choice for patients with reactive airway disease and is thought to reduce intubation- or irritant-induced bronchoconstriction by decreasing the cholinergic component of vagal nerve activation. However, additional neurotransmitters, including neurokinins, play a role in irritant-induced bronchoconstriction. We questioned the mechanistic assumption that the clinically recognized protective effect of propofol against irritant-induced bronchoconstriction during intubation was due to attenuation of airway cholinergic reflexes. Muscle force was continuously recorded from isolated guinea pig tracheal rings in organ baths. Rings were subjected to exogenous contractile agonists (acetylcholine, histamine, endothelin-1, substance P, acetyl-substance P, and neurokinin A) or to electrical field stimulation (EFS) to differentiate cholinergic or nonadrenergic, noncholinergic nerve-mediated contraction with or without cumulatively increasing concentrations of propofol, thiopental, etomidate, or ketamine. Propofol did not attenuate the cholinergic component of EFS-induced contraction at clinically relevant concentrations. In contrast, propofol relaxed nonadrenergic, noncholinergic-mediated EFS contraction at concentrations within the clinical range (20-100 mum, n = 9; P < 0.05), and propofol was more potent against an exogenous selective neurokinin-2 receptor versus neurokinin-1 receptor agonist contraction (n = 6, P < 0.001). Propofol, at clinically relevant concentrations, relaxes airway smooth muscle contracted by nonadrenergic, noncholinergic-mediated EFS and exogenous neurokinins but not contractions elicited by the cholinergic component of EFS. These findings suggest that the mechanism of protective effects of propofol against irritant-induced bronchoconstriction involves attenuation of tachykinins released from nonadrenergic, noncholinergic nerves acting at neurokinin-2 receptors on airway smooth muscle.

  6. Regeneration and Maintenance of Intestinal Smooth Muscle Phenotypes

    NASA Astrophysics Data System (ADS)

    Walthers, Christopher M.

    Tissue engineering is an emerging field of biomedical engineering that involves growing artificial organs to replace those lost to disease or injury. Within tissue engineering, there is a demand for artificial smooth muscle to repair tissues of the digestive tract, bladder, and vascular systems. Attempts to develop engineered smooth muscle tissues capable of contracting with sufficient strength to be clinically relevant have so far proven unsatisfactory. The goal of this research was to develop and sustain mature, contractile smooth muscle. Survival of implanted SMCs is critical to sustain the benefits of engineered smooth muscle. Survival of implanted smooth muscle cells was studied with layered, electrospun polycaprolactone implants with lasercut holes ranging from 0--25% porosity. It was found that greater angiogenesis was associated with increased survival of implanted cells, with a large increase at a threshold between 20% and 25% porosity. Heparan sulfate coatings improved the speed of blood vessel infiltration after 14 days of implantation. With these considerations, thicker engineered tissues may be possible. An improved smooth muscle tissue culture technique was utilized. Contracting smooth muscle was produced in culture by maintaining the native smooth muscle tissue organization, specifically by sustaining intact smooth muscle strips rather than dissociating tissue in to isolated smooth muscle cells. Isolated cells showed a decrease in maturity and contained fewer enteric neural and glial cells. Muscle strips also exhibited periodic contraction and regular fluctuation of intracellular calclium. The muscle strip maturity persisted after implantation in omentum for 14 days on polycaprolactone scaffolds. A low-cost, disposable bioreactor was developed to further improve maturity of cultured smooth muscle cells in an environment of controlled cyclical stress.The bioreactor consistently applied repeated mechanical strain with controllable inputs for strain

  7. Effect of fenoterol-induced constitutive beta(2)-adrenoceptor activity on contractile receptor function in airway smooth muscle.

    PubMed

    de Vries, B; Roffel, A F; Zaagsma, J; Meurs, H

    2001-11-23

    In the present study, we investigated the effect of fenoterol-induced constitutive beta(2)-adrenoceptor activity on muscarinic receptor agonist- and histamine-induced bovine tracheal smooth muscle contractions. Bovine tracheal smooth muscle strips were incubated with 10 microM fenoterol or vehicle for various periods of time (5, 30 min, 18 h) at 37 degrees C. After extensive washout (3 h, 37 degrees C), isometric contractions were measured to the full muscarinic receptor agonist methacholine, the partial muscarinic receptor agonist 4-(m-chlorophenyl-carbamoyloxy)-2-butynyltrimethylammonium (McN-A-343) and histamine. Fenoterol treatment significantly reduced the sensitivity (pEC(50)) to methacholine in a time-dependent manner, without affecting maximal contraction (E(max)). Fenoterol treatment similarly reduced the pEC(50) of McN-A-343 and histamine; however, E(max) values were also reduced, to approximately 70% of control after 18-h treatment. The inverse agonist timolol, having no effect on control preparations, consistently restored the reduced pEC(50) and E(max) values of the contractile agonists. Remarkably, in the presence of timolol the pEC(50) values of McN-A-343 and histamine in fenoterol-treated airways were significantly enhanced compared to controls. In conclusion, fenoterol-induced constitutive beta(2)-adrenoceptor activity reduces muscarinic receptor agonist- and histamine-induced contractions of bovine tracheal smooth muscle, which can be reversed by the inverse agonist timolol. Moreover, after beta(2)-adrenoceptor agonist treatment, inverse agonism by beta-adrenoceptor antagonists may cause enhanced airway reactivity to contractile mediators.

  8. Neutrophilic infiltration within the airway smooth muscle in patients with COPD

    PubMed Central

    Baraldo, S; Turato, G; Badin, C; Bazzan, E; Beghe, B; Zuin, R; Calabrese, F; Casoni, G; Maestrelli, P; Papi, A; Fabbri, L; Saetta, M

    2004-01-01

    Background: COPD is an inflammatory disorder characterised by chronic airflow limitation, but the extent to which airway inflammation is related to functional abnormalities is still uncertain. The interaction between inflammatory cells and airway smooth muscle may have a crucial role. Methods: To investigate the microlocalisation of inflammatory cells within the airway smooth muscle in COPD, surgical specimens obtained from 26 subjects undergoing thoracotomy (eight smokers with COPD, 10 smokers with normal lung function, and eight non-smoking controls) were examined. Immunohistochemical analysis was used to quantify the number of neutrophils, macrophages, mast cells, CD4+ and CD8+ cells localised within the smooth muscle of peripheral airways. Results: Smokers with COPD had an increased number of neutrophils and CD8+ cells in the airway smooth muscle compared with non-smokers. Smokers with normal lung function also had a neutrophilic infiltration in the airway smooth muscle, but to a lesser extent. When all the subjects were analysed as one group, neutrophilic infiltration was inversely related to forced expiratory volume in 1 second (% predicted). Conclusions: Microlocalisation of neutrophils and CD8+ cells in the airway smooth muscle in smokers with COPD suggests a possible role for these cells in the pathogenesis of smoking induced airflow limitation. PMID:15047950

  9. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation andmore » migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that

  10. Smooth Muscle-Mediated Connective Tissue Remodeling in Pulmonary Hypertension

    NASA Astrophysics Data System (ADS)

    Mecham, Robert P.; Whitehouse, Loren A.; Wrenn, David S.; Parks, William C.; Griffin, Gail L.; Senior, Robert M.; Crouch, Edmond C.; Stenmark, Kurt R.; Voelkel, Norbert F.

    1987-07-01

    Abnormal accumulation of connective tissue in blood vessels contributes to alterations in vascular physiology associated with disease states such as hypertension and atherosclerosis. Elastin synthesis was studied in blood vessels from newborn calves with severe pulmonary hypertension induced by alveolar hypoxia in order to investigate the cellular stimuli that elicit changes in pulmonary arterial connective tissue production. A two- to fourfold increase in elastin production was observed in pulmonary artery tissue and medial smooth muscle cells from hypertensive calves. This stimulation of elastin production was accompanied by a corresponding increase in elastin messenger RNA consistent with regulation at the transcriptional level. Conditioned serum harvested from cultures of pulmonary artery smooth muscle cells isolated from hypertensive animals contained one or more low molecular weight elastogenic factors that stimulated the production of elastin in both fibroblasts and smooth muscle cells and altered the chemotactic responsiveness of fibroblasts to elastin peptides. These results suggest that connective tissue changes in the pulmonary vasculature in response to pulmonary hypertension are orchestrated by the medial smooth muscle cell through the generation of specific differentiation factors that alter both the secretory phenotype and responsive properties of surrounding cells.

  11. Local small airway epithelial injury induces global smooth muscle contraction and airway constriction

    PubMed Central

    Zhou, Jian; Alvarez-Elizondo, Martha B.; Botvinick, Elliot

    2012-01-01

    Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca2+ wave in the epithelium, and multiple Ca2+ waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca2+ or decreasing intracellular Ca2+ both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca2+-dependent smooth muscle shortening. PMID:22114176

  12. Electrospun silk fibroin/poly (L-lactide-ε-caplacton) graft with platelet-rich growth factor for inducing smooth muscle cell growth and infiltration.

    PubMed

    Yin, Anlin; Bowlin, Gary L; Luo, Rifang; Zhang, Xingdong; Wang, Yunbing; Mo, Xiumei

    2016-12-01

    The construction of a smooth muscle layer for blood vessel through electrospinning method plays a key role in vascular tissue engineering. However, smooth muscle cells (SMCs) penetration into the electrospun graft to form a smooth muscle layer is limited due to the dense packing of fibers and lack of inducing factors. In this paper, silk fibroin/poly (L-lactide-ε-caplacton) (SF/PLLA-CL) vascular graft loaded with platelet-rich growth factor (PRGF) was fabricated by electrospinning. The in vitro results showed that SMCs cultured in the graft grew fast, and the incorporation of PRGF could induce deeper SMCs infiltrating compared to the SF/PLLA-CL graft alone. Mechanical properties measurement showed that PRGF-incorporated graft had proper tensile stress, suture retention strength, burst pressure and compliance which could match the demand of native blood vessel. The success in the fabrication of PRGF-incorporated SF/PLLA-CL graft to induce fast SMCs growth and their strong penetration into graft has important application for tissue-engineered blood vessels.

  13. Inhibition of RhoA/Rho kinase pathway and smooth muscle contraction by hydrogen sulfide.

    PubMed

    Nalli, Ancy D; Wang, Hongxia; Bhattacharya, Sayak; Blakeney, Bryan A; Murthy, Karnam S

    2017-10-01

    Hydrogen sulfide (H 2 S) plays an important role in smooth muscle relaxation. Here, we investigated the expression of enzymes in H 2 S synthesis and the mechanism regulating colonic smooth muscle function by H 2 S. Expression of cystathionine-γ-lyase (CSE), but not cystathionine-β-synthase (CBS), was identified in the colonic smooth muscle of rabbit, mouse, and human. Carbachol (CCh)-induced contraction in rabbit muscle strips and isolated muscle cells was inhibited by l-cysteine (substrate of CSE) and NaHS (an exogenous H 2 S donor) in a concentration-dependent fashion. H 2 S induced S-sulfhydration of RhoA that was associated with inhibition of RhoA activity. CCh-induced Rho kinase activity also was inhibited by l-cysteine and NaHS in a concentration-dependent fashion. Inhibition of CCh-induced contraction by l-cysteine was blocked by the CSE inhibitor, dl-propargylglycine (DL-PPG) in dispersed muscle cells. Inhibition of CCh-induced Rho kinase activity by l-cysteine was blocked by CSE siRNA in cultured cells and DL-PPG in dispersed muscle cells. Stimulation of Rho kinase activity and muscle contraction in response to CCh was also inhibited by l-cysteine or NaHS in colonic muscle cells from mouse and human. Collectively, our studies identified the expression of CSE in colonic smooth muscle and determined that sulfhydration of RhoA by H 2 S leads to inhibition of RhoA and Rho kinase activities and muscle contraction. The mechanism identified may provide novel therapeutic approaches to mitigate gastrointestinal motility disorders. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

  14. Nelumbo nucifera leaves extracts inhibit mouse airway smooth muscle contraction.

    PubMed

    Yang, Xiao; Xue, Lu; Zhao, Qingyang; Cai, Congli; Liu, Qing-Hua; Shen, Jinhua

    2017-03-20

    Alkaloids extracted from lotus leaves (AELL) can relax vascular smooth muscle. However, whether AELL has a similar relaxant role on airway smooth muscle (ASM) remains unknown. This study aimed to explore the relaxant property of AELL on ASM and the underlying mechanism. Alkaloids were extracted from dried lotus leaves using the high temperature rotary evaporation extraction method. The effects of AELL on mouse ASM tension were studied using force measuring and patch-clamp techniques. It was found that AELL inhibited the high K + or acetylcholine chloride (ACh)-induced precontraction of mouse tracheal rings by 64.8 ± 2.9%, or 48.8 ± 4.7%, respectively. The inhibition was statistically significant and performed in a dose-dependent manner. Furthermore, AELL-induced smooth muscle relaxation was partially mediated by blocking voltage-dependent Ca 2+ channels (VDCC) and non-selective cation channels (NSCC). AELL, which plays a relaxant role in ASM, might be a new complementary treatment to treat abnormal contractions of the trachea and asthma.

  15. Carbachol-Induced Signaling through Thr696-Phosphorylation of Myosin Phosphatase Targeting Subunit 1 (MYPT1) in rat Bladder Smooth Muscle Cells

    PubMed Central

    Alwaal, Amjad; Wang, Guifang; Banie, Lia; Lin, Ching-Shwun; Lin, Guiting; Lue, Tom F.

    2016-01-01

    Purpose Lines of evidence suggest that Rho-associated protein kinase (ROCK) mediated myosin phosphatase targeting subunit 1 (MYPT1) phosphorylation play a central role in smooth muscle contraction. However, the physiological significance of MYPT1 phosphorylation at Thr696 catalyzed by ROCK in bladder smooth muscle remains controversial. We attempt to directly observe the quantitative protein expression of RhoA/ROCK and phosphorylation of MYPT1 at Thr696 after carbachol administration in rat bladder smooth muscle cells (RBMSCs). Materials and Methods Primary cultured smooth muscle cells were obtained from rat bladders. The effects of both concentration and time-course induced by the muscarinic agonist carbachol were investigated by assessing the expression of Rho A/ROCK and MYPT1 phosphorylation at Thr696 using Western blot. Results In the dose-course studies, carbachol showed significant increase of phosphorylation of MYPT1 at Thr696 (p-MYPT1) from concentrations of 15 μM to 100 μM based on Western blot results (p < 0.05, ANOVA test). In the time-course studies, treatment of cells with 15 μM of carbachol significantly enhanced the expression of p-MYPT1 from 3 to 15 hr (p < 0.05, ANOVA test) and induced the expression of Rho A from 10 to 120 min (p < 0.05, ANOVA test). Conclusions Carbachol can induce the expression of ROCK pathway, leading to MYPT1 phosphorylation at Thr696 and thereby sustained RBSMCs contraction. PMID:27118568

  16. Carbachol-induced signaling through Thr696-phosphorylation of myosin phosphatase-targeting subunit 1 (MYPT1) in rat bladder smooth muscle cells.

    PubMed

    Liu, Benchun; Lee, Yung-Chin; Alwaal, Amjad; Wang, Guifang; Banie, Lia; Lin, Ching-Shwun; Lin, Guiting; Lue, Tom F

    2016-08-01

    Lines of evidence suggest that Rho-associated protein kinase (ROCK)-mediated myosin phosphatase-targeting subunit 1 (MYPT1) phosphorylation plays a central role in smooth muscle contraction. However, the physiological significance of MYPT1 phosphorylation at Thr696 catalyzed by ROCK in bladder smooth muscle remains controversial. We attempt to directly observe the quantitative protein expression of Rho A/ROCK and phosphorylation of MYPT1 at Thr696 after carbachol administration in rat bladder smooth muscle cells (RBMSCs). Primary cultured smooth muscle cells were obtained from rat bladders. The effects of both concentration and time-course induced by the muscarinic agonist carbachol were investigated by assessing the expression of Rho A/ROCK and MYPT1 phosphorylation at Thr696 using Western blot. In the dose-course studies, carbachol showed significant increase in phosphorylation of MYPT1 at Thr696 (p-MYPT1) from concentrations of 15-100 μM based on Western blot results (p < 0.05, ANOVA test). In the time-course studies, treatment of cells with 15 μM of carbachol significantly enhanced the expression of p-MYPT1 from 3 to 15 h (p < 0.05, ANOVA test) and induced the expression of Rho A from 10 to 120 min (p < 0.05, ANOVA test). Carbachol can induce the expression of ROCK pathway, leading to MYPT1 phosphorylation at Thr696 and thereby sustained RBSMCs contraction.

  17. Effects of fenoterol on beta-adrenoceptor and muscarinic M2 receptor function in bovine tracheal smooth muscle.

    PubMed

    De Vries, B; Roffel, A F; Kooistra, J M; Meurs, H; Zaagsma, J

    2001-05-11

    Prolonged (18 h) incubation of isolated bovine tracheal smooth muscle with the beta2-adrenoceptor agonist fenoterol (10 microM) induced desensitization of isoprenaline-induced adenylyl cyclase activity in bovine tracheal smooth muscle membranes, characterized by a 25% decrease in maximal effect (Emax) (P < 0.05), while the sensitivity to the agonist (pEC50) was unchanged. The Emax value of isoprenaline-induced smooth muscle relaxation of submaximal methacholine-induced contractile tones was similarly reduced by about 25% (P < 0.001), while the pEC50 value was diminished by 1.0 log unit (P < 0.001). As determined by 30 microM gallamine-induced muscarinic M2 receptor antagonism and pertussis toxin-induced inactivation of G(i alpha), muscarinic M2 receptor-mediated functional antagonism did not play a role in isoprenaline-induced relaxation of bovine tracheal smooth muscle contracted by methacholine, both in control and in 18-h fenoterol-treated tissue. In line with these observations, we found no enhanced muscarinic M2 receptor-mediated inhibition of 1 microM forskolin-stimulated adenylyl cyclase activity after 18-h fenoterol treatment. These data indicate that 18-h fenoterol treatment of bovine tracheal smooth muscle induces beta2-adrenoceptor desensitization and reduced functional antagonism of methacholine-induced contraction by beta-adrenoceptor agonists, without a change of muscarinic M2 receptor function.

  18. Length oscillation induces force potentiation in infant guinea pig airway smooth muscle.

    PubMed

    Wang, Lu; Chitano, Pasquale; Murphy, Thomas M

    2005-12-01

    Deep inspiration counteracts bronchospasm in normal subjects but triggers further bronchoconstriction in hyperresponsive airways. Although the exact mechanisms for this contrary response by normal and hyperresponsive airways are unclear, it has been suggested that the phenomenon is related to changes in force-generating ability of airway smooth muscle after mechanical oscillation. It is known that healthy immature airways of both humans and animals exhibit hyperresponsiveness. We hypothesize that the profile of active force generation after mechanical oscillation changes with maturation and that this change contributes to the expression of airway hyperresponsiveness in juveniles. We examined the effect of an acute sinusoidal length oscillation on the force-generating ability of tracheal smooth muscle from 1 wk, 3 wk, and 2- to 3-mo-old guinea pigs. We found that the length oscillation produced 15-20% initial reduction in active force equally in all age groups. This was followed by a force recovery profile that displayed striking maturation-specific features. Unique to tracheal strips from 1-wk-old animals, active force potentiated beyond the maximal force generated before oscillation. We also found that actin polymerization was required in force recovery and that prostanoids contributed to the maturation-specific force potentiation in immature airway smooth muscle. Our results suggest a potentiated mechanosensitive contractile property of hyperresponsive airway smooth muscle. This can account for further bronchoconstriction triggered by deep inspiration in hyperresponsive airways.

  19. Electrospun silk fibroin/poly (L-lactide-ε-caplacton) graft with platelet-rich growth factor for inducing smooth muscle cell growth and infiltration

    PubMed Central

    Yin, Anlin; Bowlin, Gary L.; Luo, Rifang; Zhang, Xingdong; Wang, Yunbing; Mo, Xiumei

    2016-01-01

    The construction of a smooth muscle layer for blood vessel through electrospinning method plays a key role in vascular tissue engineering. However, smooth muscle cells (SMCs) penetration into the electrospun graft to form a smooth muscle layer is limited due to the dense packing of fibers and lack of inducing factors. In this paper, silk fibroin/poly (L-lactide-ε-caplacton) (SF/PLLA-CL) vascular graft loaded with platelet-rich growth factor (PRGF) was fabricated by electrospinning. The in vitro results showed that SMCs cultured in the graft grew fast, and the incorporation of PRGF could induce deeper SMCs infiltrating compared to the SF/PLLA-CL graft alone. Mechanical properties measurement showed that PRGF-incorporated graft had proper tensile stress, suture retention strength, burst pressure and compliance which could match the demand of native blood vessel. The success in the fabrication of PRGF-incorporated SF/PLLA-CL graft to induce fast SMCs growth and their strong penetration into graft has important application for tissue-engineered blood vessels. PMID:27482466

  20. Sphingosine-1-phosphate induces pro-remodelling response in airway smooth muscle cells

    PubMed Central

    Fuerst, E; Foster, H R; Ward, J P T; Corrigan, C J; Cousins, D J; Woszczek, G

    2014-01-01

    Background Increased proliferation of airway smooth muscle (ASM) cells leading to hyperplasia and increased ASM mass is one of the most characteristic features of airway remodelling in asthma. A bioactive lipid, sphingosine-1-phosphate (S1P), has been suggested to affect airway remodelling by stimulation of human ASM cell proliferation. Objective To investigate the effect of S1P on signalling and regulation of gene expression in ASM cells from healthy and asthmatic individuals. Methods Airway smooth muscle cells grown from bronchial biopsies of healthy and asthmatic individuals were exposed to S1P. Gene expression was analysed using microarray, real-time PCR and Western blotting. Receptor signalling and function were determined by mRNA knockdown and intracellular calcium mobilization experiments. Results S1P potently regulated the expression of more than 80 genes in human ASM cells, including several genes known to be involved in the regulation of cell proliferation and airway remodelling (HBEGF, TGFB3, TXNIP, PLAUR, SERPINE1, RGS4). S1P acting through S1P2 and S1P3 receptors activated intracellular calcium mobilization and extracellular signal-regulated and Rho-associated kinases to regulate gene expression. S1P-induced responses were not inhibited by corticosteroids and did not differ significantly between ASM cells from healthy and asthmatic individuals. Conclusion S1P induces a steroid-resistant, pro-remodelling pathway in ASM cells. Targeting S1P or its receptors could be a novel treatment strategy for inhibiting airway remodelling in asthma. PMID:25041788

  1. Smooth muscle neurokinin-2 receptors mediate contraction in human saphenous veins.

    PubMed

    Mechiche, Hakima; Grassin-Delyle, Stanislas; Pinto, Francisco M; Buenestado, Amparo; Candenas, Luz; Devillier, Philippe

    2011-05-01

    Substance P (SP) and neurokinin A (NKA) are members of the tachykinin peptides family. SP causes endothelial-dependant relaxation but the contractile response to tachykinins in human vessels remains unknown. The objective was to assess the expression and the contractile effects of tachykinins and their receptors in human saphenous veins (SV). Tachykinin expression was assessed with RT-PCR, tachykinin receptors expression with RT-PCR and immunohistochemistry, and functional studies were performed in organ bath. Transcripts of all tachykinin and tachykinin receptor genes were found in SV. NK(1)-receptors were localized in both endothelial and smooth muscle layers of undistended SV, whereas they were only found in smooth muscle layers of varicose SV. The expression of NK(2)- and NK(3)-receptors was limited to the smooth muscle in both preparations. NKA induced concentration-dependent contractions in about half the varicose SV. Maximum effect reached 27.6±5.5% of 90 mM KCl and the pD(2) value was 7.3±0.2. NKA also induced the contraction of undistended veins from bypass and did not cause the relaxation of these vessels after precontraction. The NK(2)-receptor antagonist SR48968 abolished the contraction induced by NKA, and a rapid desensitization of the NK(2)-receptor was observed. In varicose SV, the agonists specific to NK(1)- or NK(3)-receptors did not cause either contraction or relaxation. The stimulation of smooth muscle NK(2)-receptors can induce the contraction of human SV. As SV is richly innervated, tachykinins may participate in the regulation of the tone in this portion of the low pressure vascular system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Mechanotransduction, asthma, and airway smooth muscle

    PubMed Central

    Fabry, Ben; Fredberg, Jeffrey J.

    2008-01-01

    Excessive force generation by airway smooth muscle is the main culprit in excessive airway narrowing during an asthma attack. The maximum force the airway smooth muscle can generate is exquisitely sensitive to muscle length fluctuations during breathing, and is governed by complex mechanotransduction events that can best be studied by a hybrid approach in which the airway wall is modeled in silico so as to set a dynamic muscle load comparable to that experienced in vivo. PMID:18836522

  3. Animal model for angiotensin II effects in the internal anal sphincter smooth muscle: mechanism of action.

    PubMed

    Fan, Ya-Ping; Puri, Rajinder N; Rattan, Satish

    2002-03-01

    Effect of ANG II was investigated in in vitro smooth muscle strips and in isolated smooth muscle cells (SMC). Among different species, rat internal and sphincter (IAS) smooth muscle showed significant and reproducible contraction that remained unmodified by different neurohumoral inhibitors. The AT(1) antagonist losartan but not AT(2) antagonist PD-123319 antagonized ANG II-induced contraction of the IAS smooth muscle and SMC. ANG II-induced contraction of rat IAS smooth muscle and SMC was attenuated by tyrosine kinase inhibitors genistein and tyrphostin, protein kinase C (PKC) inhibitor H-7, Ca(2+) channel blocker nicardipine, Rho kinase inhibitor Y-27632 or p(44/42) mitogen-activating protein kinase (MAPK(44/42)) inhibitor PD-98059. Combinations of nicardipine and H-7, Y-27632, and PD-98059 caused further attenuation of the ANG II effects. Western blot analyses revealed the presence of both AT(1) and AT(2) receptors. We conclude that ANG II causes contraction of rat IAS smooth muscle by the activation of AT(1) receptors at the SMC and involves multiple intracellular pathways, influx of Ca(2+), and activation of PKC, Rho kinase, and MAPK(44/42).

  4. Cooling-induced contraction in ovine airways smooth muscle.

    PubMed

    Mustafa, S M; Pilcher, C W; Williams, K I

    1999-02-01

    The mechanism of cold-induced bronchoconstriction is poorly understood. This prompted the present study whose aim was to determine the step-wise direct effect of cooling on smooth muscle of isolated ovine airways and analyse the role of calcium in the mechanisms involved. Isolated tracheal strips and bronchial segments were suspended in organ baths containing Krebs' solution for isometric tension recording. Tissue responses during stepwise cooling from 37 to 5 degrees C were examined. Cooling induced a rapid and reproducible contraction proportional to cooling temperature in ovine tracheal and bronchial preparations which was epithelium-independent. On readjustment to 37 degrees C the tone returned rapidly to basal level. Maximum contraction was achieved at a temperature of 5 degrees C for trachea and 15 degrees C for bronchiole. Cooling-induced contractions (CIC) was resistant to tetrodotoxin (1; 10 micrometer), and not affected by the muscarinic antagonist atropine (1 micrometer) or the alpha-adrenergic antagonist phentolamine (1 micrometer), or the histamine H1-antagonist mepyramine (1 micrometer) or indomethacin (1 micrometer). Ca2+ antagonists (nifedipine and verapamil) and Mn2+ raised tracheal but not bronchiolar tone and augmented CIC. Incubation in Ca2+-free, EGTA-containing Krebs' solution for 5 min had no effect on CIC, although it significantly reduced KCl-induced contraction by up to 75%. Cooling inhibited Ca2+ influx measured using 45Ca2+ uptake. Caffeine (100 micrometer) significantly inhibited CIC. The results show that cooling-induced contractions do not appear to involve activation of nerve endings, all surface reception systems or Ca2+ influx. However, CIC is mainly dependent on release of intracellular Ca2+. Copyright 1999 The Italian Pharmacological Society.

  5. MURC deficiency in smooth muscle attenuates pulmonary hypertension.

    PubMed

    Nakanishi, Naohiko; Ogata, Takehiro; Naito, Daisuke; Miyagawa, Kotaro; Taniguchi, Takuya; Hamaoka, Tetsuro; Maruyama, Naoki; Kasahara, Takeru; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi

    2016-08-22

    Emerging evidence suggests that caveolin-1 (Cav1) is associated with pulmonary arterial hypertension. MURC (also called Cavin-4) is a member of the cavin family, which regulates caveolar formation and functions together with caveolins. Here, we show that hypoxia increased Murc mRNA expression in the mouse lung, and that Murc-null mice exhibited attenuation of hypoxia-induced pulmonary hypertension (PH) accompanied by reduced ROCK activity in the lung. Conditional knockout mice lacking Murc in smooth muscle also resist hypoxia-induced PH. MURC regulates the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through Rho/ROCK signalling. Cav1 suppresses RhoA activity in PASMCs, which is reversed by MURC. MURC binds to Cav1 and inhibits the association of Cav1 with the active form of Gα13, resulting in the facilitated association of the active form of Gα13 with p115RhoGEF. These results reveal that MURC has a function in the development of PH through modulating Rho/ROCK signalling.

  6. Matrix Metalloproteinase-1 Activation Contributes to Airway Smooth Muscle Growth and Asthma Severity

    PubMed Central

    Naveed, Shams-un-nisa; Clements, Debbie; Jackson, David J.; Philp, Christopher; Billington, Charlotte K.; Soomro, Irshad; Reynolds, Catherine; Harrison, Timothy W.; Johnston, Sebastian L.; Shaw, Dominick E.

    2017-01-01

    Rationale: Matrix metalloproteinase-1 (MMP-1) and mast cells are present in the airways of people with asthma. Objectives: To investigate whether MMP-1 could be activated by mast cells and increase asthma severity. Methods: Patients with stable asthma and healthy control subjects underwent spirometry, methacholine challenge, and bronchoscopy, and their airway smooth muscle cells were grown in culture. A second asthma group and control subjects had symptom scores, spirometry, and bronchoalveolar lavage before and after rhinovirus-induced asthma exacerbations. Extracellular matrix was prepared from decellularized airway smooth muscle cultures. MMP-1 protein and activity were assessed. Measurements and Main Results: Airway smooth muscle cells generated pro–MMP-1, which was proteolytically activated by mast cell tryptase. Airway smooth muscle treated with activated mast cell supernatants produced extracellular matrix, which enhanced subsequent airway smooth muscle growth by 1.5-fold (P < 0.05), which was dependent on MMP-1 activation. In asthma, airway pro–MMP-1 was 5.4-fold higher than control subjects (P = 0.002). Mast cell numbers were associated with airway smooth muscle proliferation and MMP-1 protein associated with bronchial hyperresponsiveness. During exacerbations, MMP-1 activity increased and was associated with fall in FEV1 and worsening asthma symptoms. Conclusions: MMP-1 is activated by mast cell tryptase resulting in a proproliferative extracellular matrix. In asthma, mast cells are associated with airway smooth muscle growth, MMP-1 levels are associated with bronchial hyperresponsiveness, and MMP-1 activation are associated with exacerbation severity. Our findings suggest that airway smooth muscle/mast cell interactions contribute to asthma severity by transiently increasing MMP activation, airway smooth muscle growth, and airway responsiveness. PMID:27967204

  7. Role of the adapter protein Abi1 in actin-associated signaling and smooth muscle contraction.

    PubMed

    Wang, Tao; Cleary, Rachel A; Wang, Ruping; Tang, Dale D

    2013-07-12

    Actin filament polymerization plays a critical role in the regulation of smooth muscle contraction. However, our knowledge regarding modulation of the actin cytoskeleton in smooth muscle just begins to accumulate. In this study, stimulation with acetylcholine (ACh) induced an increase in the association of the adapter protein c-Abl interactor 1 (Abi1) with neuronal Wiskott-Aldrich syndrome protein (N-WASP) (an actin-regulatory protein) in smooth muscle cells/tissues. Furthermore, contractile stimulation activated N-WASP in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer efficiency of an N-WASP sensor. Abi1 knockdown by lentivirus-mediated RNAi inhibited N-WASP activation, actin polymerization, and contraction in smooth muscle. However, Abi1 silencing did not affect myosin regulatory light chain phosphorylation at Ser-19 in smooth muscle. In addition, c-Abl tyrosine kinase and Crk-associated substrate (CAS) have been shown to regulate smooth muscle contraction. The interaction of Abi1 with c-Abl and CAS has not been investigated. Here, contractile activation induced formation of a multiprotein complex including c-Abl, CAS, and Abi1. Knockdown of c-Abl and CAS attenuated the activation of Abi1 during contractile activation. More importantly, Abi1 knockdown inhibited c-Abl phosphorylation at Tyr-412 and the interaction of c-Abl with CAS. These results suggest that Abi1 is an important component of the cellular process that regulates N-WASP activation, actin dynamics, and contraction in smooth muscle. Abi1 is activated by the c-Abl-CAS pathway, and Abi1 reciprocally controls the activation of its upstream regulator c-Abl.

  8. Role of the Adapter Protein Abi1 in Actin-associated Signaling and Smooth Muscle Contraction*

    PubMed Central

    Wang, Tao; Cleary, Rachel A.; Wang, Ruping; Tang, Dale D.

    2013-01-01

    Actin filament polymerization plays a critical role in the regulation of smooth muscle contraction. However, our knowledge regarding modulation of the actin cytoskeleton in smooth muscle just begins to accumulate. In this study, stimulation with acetylcholine (ACh) induced an increase in the association of the adapter protein c-Abl interactor 1 (Abi1) with neuronal Wiskott-Aldrich syndrome protein (N-WASP) (an actin-regulatory protein) in smooth muscle cells/tissues. Furthermore, contractile stimulation activated N-WASP in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer efficiency of an N-WASP sensor. Abi1 knockdown by lentivirus-mediated RNAi inhibited N-WASP activation, actin polymerization, and contraction in smooth muscle. However, Abi1 silencing did not affect myosin regulatory light chain phosphorylation at Ser-19 in smooth muscle. In addition, c-Abl tyrosine kinase and Crk-associated substrate (CAS) have been shown to regulate smooth muscle contraction. The interaction of Abi1 with c-Abl and CAS has not been investigated. Here, contractile activation induced formation of a multiprotein complex including c-Abl, CAS, and Abi1. Knockdown of c-Abl and CAS attenuated the activation of Abi1 during contractile activation. More importantly, Abi1 knockdown inhibited c-Abl phosphorylation at Tyr-412 and the interaction of c-Abl with CAS. These results suggest that Abi1 is an important component of the cellular process that regulates N-WASP activation, actin dynamics, and contraction in smooth muscle. Abi1 is activated by the c-Abl-CAS pathway, and Abi1 reciprocally controls the activation of its upstream regulator c-Abl. PMID:23740246

  9. Neurogenic vasoreactive response of human internal thoracic artery smooth muscle.

    PubMed

    Canver, C C; Cooler, S D; Saban, R

    1997-09-01

    The interaction between primary afferent neurons containing neuropeptides and the vascular smooth muscle is incompletely understood. To explore the function of perivascular afferent neurons and to determine whether they produce local effects on vascular smooth muscle cells, we investigated the effects of acute capsaicin and substance P administration in vitro on human internal thoracic arteries (ITA). Vessels were obtained from patients undergoing coronary bypass or from multiorgan transplant donors. Fourteen ITA segments (5 mm wide) were suspended as rings between two stainless-steel stirrups in water-jacketed (37 degrees C) tissue baths under 2.5 to 3 g of basal tension. The tissue baths contained 10 mL physiological salt solution (PSS) of the following composition (mM): NaCl, 119; KCl, 4.7; NaH2PO4, 1.0; MgCl2, 0.5; CaCl2, 2.5; NaHCO3, 25; and glucose, 11; aerated continuously with 95% O2 and 5% CO2. Peptidase inhibitors (phosphoramidon and captopril) were added to PSS to decrease peptide degradation. Mechanical responses were measured isometrically and recorded on a polygraph via isotonic force transducers. Vessels were preconstricted with submaximal concentrations of norepinephrine. After the tension had stabilized, substance P or capsaicin was added cumulatively to the tissue bath. At the end of the experiments, the viability of ITA was verified by its responses to endothelial-dependent (acetylcholine) and endothelial-independent (sodium nitroprusside) vasodilators. In the endothelium-intact ITA segments, substance P produced relaxation of ITA smooth muscle while it induced slight contraction when the ITA was devoid of its endothelium (P = 0.0585). The addition of capsaicin to human ITA primarily produced contractile effects on the developed smooth muscle force. The capsaicin-induced contraction of the ITA smooth muscle was independent of endothelial cell integrity, although contraction was greater in the endothelium-intact ITA segments (P = 0.0165). The

  10. Evidence of direct smooth muscle relaxant effects of the fibrate gemfibrozil.

    PubMed

    Phelps, Laura E; Peuler, Jacob D

    2010-01-01

    Fibrates are commonly employed to treat abnormal lipid metabolism via their unique ability to stimulate peroxisome proliferator-activated receptor alpha (PPARalpha). Interestingly, they also decrease systemic arterial pressure, despite recent evidence that PPAR alpha may contribute to expression of renin and related hypertension. Yet, mechanisms responsible for their potential antihypertensive activity remain unresolved. Rapid decreases in arterial pressure following bolus intravenous injections of bezafibrate strongly suggest they may relax arterial smooth muscle directly. But since bezafibrate is highly susceptible to photodegradation in aqueous media, it has never been critically tested for this possibility in vitro with isolated arterial smooth muscle preparations. Accordingly, we tested gemfibrozil which is resistant to photodegradation. We examined it over a therapeutically-relevant range (50-400 microM) for both acute and delayed relaxant effects on contractions of the isolated rat tail artery; contractions induced by either depolarizing its smooth muscle cell membranes with high potassium or stimulating its membrane-bound receptors with norepinephrine and arginine-vasopressin. We also examined these same gemfibrozil levels for effects on spontaneously-occurring phasic rhythmic contractile activity, typically not seen in arteries under in vitro conditions but commonly exhibited by smooth muscle of uterus, duodenum and bladder. We found that gemfibrozil significantly relaxed all induced forms of contraction in the rat tail artery, acutely at the higher test levels and after a delay of a few hours at the lower test levels. The highest test level of gemfibrozil (400 microM) also completely abolished spontaneously-occurring contractile activity of the isolated uterus and duodenum and markedly suppressed it in the bladder. This is the first evidence that a fibrate drug can directly relax smooth muscle contractions, either induced by various contractile agents or

  11. Effects of One Resistance Exercise Session on Vascular Smooth Muscle of Hypertensive Rats

    PubMed Central

    da Silva, Tharciano Luiz Teixeira Braga; Mota, Marcelo Mendonça; Fontes, Milene Tavares; Araújo, João Eliakim dos Santos; Carvalho, Vitor Oliveira; Bonjardim, Leonardo Rigoldi; Santos, Márcio Roberto Viana

    2015-01-01

    Background Hypertension is a public health problem and increases the incidence of cardiovascular diseases. Objective To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of NG-nitro L-arginine methyl ester (L-NAME)-induced hypertensive rats. Methods Wistar rats were divided into three groups: control (C), hypertensive (H), and exercised hypertensive (EH). Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN), potassium chloride (KCl) and sodium nitroprusside (SNP). Results Rats treated with L-NAME showed an increase (p < 0.001) in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001) the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01) smooth muscle sensitivity to NPS was observed in group EH as compared to group H. Conclusion One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats. PMID:26107814

  12. Effects of one resistance exercise session on vascular smooth muscle of hypertensive rats.

    PubMed

    Silva, Tharciano Luiz Teixeira Braga da; Mota, Marcelo Mendonça; Fontes, Milene Tavares; Araújo, João Eliakim Dos Santos; Oliveira Carvalho, Vitor; Bonjardim, Leonardo Rigoldi; Santos, Márcio Roberto Viana

    2015-08-01

    Hypertension is a public health problem and increases the incidence of cardiovascular diseases. To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of NG-nitro L-arginine methyl ester (L-NAME)-induced hypertensive rats. Wistar rats were divided into three groups: control (C), hypertensive (H), and exercised hypertensive (EH). Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN), potassium chloride (KCl) and sodium nitroprusside (SNP). Rats treated with L-NAME showed an increase (p < 0.001) in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001) the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01) smooth muscle sensitivity to NPS was observed in group EH as compared to group H. One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats.

  13. Inhibition of the AMP-activated protein kinase-α2 accentuates agonist-induced vascular smooth muscle contraction and high blood pressure in mice.

    PubMed

    Wang, Shuangxi; Liang, Bin; Viollet, Benoit; Zou, Ming-Hui

    2011-05-01

    The aim of the present study was to determine the effects and molecular mechanisms by which AMP-activated protein kinase (AMPK) regulates smooth muscle contraction and blood pressure in mice. In cultured human vascular smooth muscle cells, we observed that activation of AMPK by 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside inhibited agonist-induced phosphorylation of myosin light chain (MLC) and myosin phosphatase targeting subunit 1 (MYPT1). Conversely, AMPK inhibition with pharmacological or genetic means potentiated agonist-induced the phosphorylation of MLC and MYPT1, whereas it inhibited both Ras homolog gene family member A and Rho-associated kinase activity. In addition, AMPK activation or Rho-associated kinase inhibition with Y27632 abolished agonist-induced phosphorylation of MLC and MYPT1. Gene silencing of p190-guanosine triphosphatase-activating protein abolished the effects of AMPK activation on MLC, MYPT1, and Ras homolog gene family member A in human smooth muscle cells. Ex vivo analyses revealed that agonist-induced contractions of the mesenteric artery and aortas were stronger in both AMPKα1(-/-) and AMPKα2(-/-) knockout mice than in wild-type mice. Inhibition of Rho-associated kinase with Y27632 normalized agonist-induced contractions of AMPKα1(-/-) and AMPKα2(-/-) vessels. AMPKα2(-/-) mice had higher blood pressure along with decreased serine phosphorylation of p190-guanosine triphosphatase-activating protein. Finally, inhibition of the Ras homolog gene family member A/Rho-associated kinase pathway with Y27632, which suppressed MYPT1 and MLC phosphorylation, lowered blood pressure in AMPKα2(-/-) mice. In conclusion, AMPK decreases vascular smooth muscle cell contractility by inhibiting p190-GTP-activating protein-dependent Ras homolog gene family member A activation, indicating that AMPK may be a new therapeutic target in lowering high blood pressure.

  14. Differential blockade of agonist- and depolarization-induced sup 45 Ca2+ influx in smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallnoefer, A.C.; Cauvin, C.; Lategan, T.W.

    1989-10-01

    ATP stimulated {sup 45}Ca2+ influx in rat aortic smooth muscle cells in a concentration-dependent manner (EC50 = 3.6 +/- 0.5 X 10(-7) M). ADP and GTP were less effective than ATP in stimulating {sup 45}Ca2+ influx; AMP was weakly active and the adenosine agonist 5'-(N-ethyl-carboxamido)-adenosine (NECA) had no effect. ATP gamma S was about equieffective with ATP, whereas alpha,beta-methylene-ATP (APCPP) did not induce {sup 45}Ca2+ influx. Stimulation of {sup 45}Ca2+ influx by ATP was not abolished by the dihydropyridine Ca2+ channel antagonist darodipine (PY 108-068), which completely blocked depolarization-induced {sup 45}Ca2+ influx. Inorganic cations (La3+, Cd2+, Co2+, Ni2+, Mn2+, andmore » Mg2+) were able to inhibit both agonist- and depolarization-induced {sup 45}Ca2+ influx. Cd2+, however, was approximately 20 times more selective in blocking K+-stimulated than agonist-stimulated {sup 45}Ca2+ influx. These data indicate that ATP-stimulated Ca2+ influx in rat aortic smooth muscle cells is resistant to darodipine but is reduced by La3+, Cd2+, and other inorganic blockers of Ca2+ channels.« less

  15. Effects of nifedipine on anorectal smooth muscle in vitro.

    PubMed

    Cook, T A; Brading, A F; Mortensen, N J

    1999-06-01

    Glyceryl trinitrate reduces anal resting pressure and aids the healing of anal fissures. However, some patients develop tachyphylaxis and the fissure fails to heal, suggesting that other agents are needed. This study assesses the effects of nifedipine (a calcium channel antagonist) in modulating resting tone and agonist-induced contractions in human internal anal sphincter (IAS) and rectal circular muscle. Smooth muscle strips from the IAS and rectal circular muscle from ten patients undergoing surgical resection were mounted for isometric tension recording in a superfusion organ bath. The effects of noradrenaline and carbachol were assessed in the presence of various perfusates. LAS strips developed tone and spontaneous activity. Noradrenaline produced dose-dependent contractions. In calcium-free Krebs solution, tone and activity were abolished and no contractions were elicited in response to noradrenaline. Nifedipine also abolished tone and spontaneous activity, but contractions to noradrenaline were only slightly attenuated. In contrast, rectal smooth muscle strips developed spontaneous activity but no resting tone and contracted in response to carbachol. In calcium-free Krebs solution, the spontaneous activity and carbachol contractions were abolished. Addition of nifedipine to the perfusate abolished spontaneous activity and greatly reduced contractions. These data suggest that spontaneous activity and resting tone are dependent on extracellular calcium and flux across the cells. Agonist-induced contraction in the IAS is attributable mainly to the release of calcium from intracellular stores, whereas rectal circular smooth muscle depends principally on extracellular calcium entering the cell for contraction. The attenuation of contractions in both tissues and the abolition of resting tone in the IAS suggest that nifedipine may be useful in the management of patients with anorectal disorders.

  16. Inflammation induced by mast cell deficiency rather than the loss of interstitial cells of Cajal causes smooth muscle dysfunction in W/Wv mice

    PubMed Central

    Winston, John H.; Chen, Jinghong; Shi, Xuan-Zheng; Sarna, Sushil K.

    2014-01-01

    The initial hypothesis suggested that the interstitial cells of Cajal (ICC) played an essential role in mediating enteric neuronal input to smooth muscle cells. Much information for this hypothesis came from studies in W/Wv mice lacking ICC. However, mast cells, which play critical roles in regulating inflammation in their microenvironment, are also absent in W/Wv mice. We tested the hypothesis that the depletion of mast cells in W/Wv mice generates inflammation in fundus muscularis externa (ME) that impairs smooth muscle reactivity to Ach, independent of the depletion of ICC. We performed experiments on the fundus ME from wild type (WT) and W/Wv mice before and after reconstitution of mast cells by bone marrow transplant. We found that mast cell deficiency in W/Wv mice significantly increased COX-2 and iNOS expression and decreased smooth muscle reactivity to Ach. Mast cell reconstitution or concurrent blockade of COX-2 and iNOS restored smooth muscle contractility without affecting the suppression of c-kit in W/Wv mice. The expression of nNOS and ChAT were suppressed in W/Wv mice; mast cell reconstitution did not restore them. We conclude that innate inflammation induced by mast cell deficiency in W/Wv mice impairs smooth muscle contractility independent of ICC deficiency. The impairment of smooth muscle contractility and the suppression of the enzymes regulating the synthesis of Ach and NO in W/Wv mice need to be considered in evaluating the role of ICC in regulating smooth muscle and enteric neuronal function in W/Wv mice. PMID:24550836

  17. Calcium/calmodulin‐dependent kinase 2 mediates Epac‐induced spontaneous transient outward currents in rat vascular smooth muscle

    PubMed Central

    Humphries, Edward S. A.; Kamishima, Tomoko; Quayle, John M.

    2017-01-01

    Key points The Ca2+ and redox‐sensing enzyme Ca2+/calmodulin‐dependent kinase 2 (CaMKII) is a crucial and well‐established signalling molecule in the heart and brain.In vascular smooth muscle, which controls blood flow by contracting and relaxing in response to complex Ca2+ signals and oxidative stress, surprisingly little is known about the role of CaMKII.The vasodilator‐induced second messenger cAMP can relax vascular smooth muscle via its effector, exchange protein directly activated by cAMP (Epac), by activating spontaneous transient outward currents (STOCs) that hyperpolarize the cell membrane and reduce voltage‐dependent Ca2+ influx. How Epac activates STOCs is unknown.In the present study, we map the pathway by which Epac increases STOC activity in contractile vascular smooth muscle and show that a critical step is the activation of CaMKII.To our knowledge, this is the first report of CaMKII activation triggering cellular activity known to induce vasorelaxation. Abstract Activation of the major cAMP effector, exchange protein directly activated by cAMP (Epac), induces vascular smooth muscle relaxation by increasing the activity of ryanodine (RyR)‐sensitive release channels on the peripheral sarcoplasmic reticulum. Resultant Ca2+ sparks activate plasma membrane Ca2+‐activated K+ (BKCa) channels, evoking spontaneous transient outward currents (STOCs) that hyperpolarize the cell and reduce voltage‐dependent Ca2+ entry. In the present study, we investigate the mechanism by which Epac increases STOC activity. We show that the selective Epac activator 8‐(4‐chloro‐phenylthio)‐2′‐O‐methyladenosine‐3′, 5‐cyclic monophosphate‐AM (8‐pCPT‐AM) induces autophosphorylation (activation) of calcium/calmodulin‐dependent kinase 2 (CaMKII) and also that inhibition of CaMKII abolishes 8‐pCPT‐AM‐induced increases in STOC activity. Epac‐induced CaMKII activation is probably initiated by inositol 1,4,5‐trisphosphate (IP3)

  18. Disruption of TGF-β signaling in smooth muscle cell prevents flow-induced vascular remodeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fu; Chambon, Pierre; Tellides, George

    Highlights: • TGF-β signaling in SMC contributes to the flow-induced vascular remodeling. • Disruption of TGF-β signaling in SMC can prevent this process. • Targeting SM-specific Tgfbr2 could be a novel therapeutic strategy for vascular remodeling. - Abstract: Transforming growth factor-β (TGF-β) signaling has been prominently implicated in the pathogenesis of vascular remodeling, especially the initiation and progression of flow-induced vascular remodeling. Smooth muscle cells (SMCs) are the principal resident cells in arterial wall and are critical for arterial remodeling. However, the role of TGF-β signaling in SMC for flow-induced vascular remodeling remains unknown. Therefore, the goal of our studymore » was to determine the effect of TGF-β pathway in SMC for vascular remodeling, by using a genetical smooth muscle-specific (SM-specific) TGF-β type II receptor (Tgfbr2) deletion mice model. Mice deficient in the expression of Tgfbr2 (MyhCre.Tgfbr2{sup f/f}) and their corresponding wild-type background mice (MyhCre.Tgfbr2{sup WT/WT}) underwent partial ligation of left common carotid artery for 1, 2, or 4 weeks. Then the carotid arteries were harvested and indicated that the disruption of Tgfbr2 in SMC provided prominent inhibition of vascular remodeling. And the thickening of carotid media, proliferation of SMC, infiltration of macrophage, and expression of matrix metalloproteinase (MMP) were all significantly attenuated in Tgfbr2 disruption mice. Our study demonstrated, for the first time, that the TGF-β signaling in SMC plays an essential role in flow-induced vascular remodeling and disruption can prevent this process.« less

  19. Hydroxyapatite and Calcified Elastin Induce Osteoblast-like Differentiation in Rat Aortic Smooth Muscle Cells

    PubMed Central

    Lei, Yang; Sinha, Aditi; Nosoudi, Nasim; Grover, Ankit; Vyavahare, Naren

    2014-01-01

    Vascular calcification can be categorized into two different types. Intimal calcification related to atherosclerosis and elastin-specific medial arterial calcification (MAC). Osteoblast-like differentiation of vascular smooth muscle cells (VSMCs) has been shown in both types; however, how this relates to initiation of vascular calcification is unclear. We hypothesize that the initial deposition of hydroxyapatite-like mineral in MAC occurs on degraded elastin first and that causes osteogenic transformation of VSMCs. To test this, rat aortic smooth muscle cells (RASMCs) were cultured on hydroxyapatite crystals and calcified aortic elastin. Using RT-PCR and specific protein assays, we demonstrate that RASMCs lose their smooth muscle lineage markers like alpha smooth muscle actin (SMA) and myosin heavy chain (MHC) and undergo chondrogenic/osteogenic transformation. This is indicated by an increase in the expression of typical chondrogenic proteins such as aggrecan, collagen type II alpha 1(Col2a1) and bone proteins such as runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP) and osteocalcin (OCN). Furthermore, when calcified conditions are removed, cells return to their original phenotype. Our data supports the hypothesis that elastin degradation and calcification precedes VSMCs' osteoblast-like differentiation. PMID:24447384

  20. A novel angiotensin II type 1 receptor-associated protein induces cellular hypertrophy in rat vascular smooth muscle and renal proximal tubular cells.

    PubMed

    Guo, Deng-Fu; Tardif, Valerie; Ghelima, Karin; Chan, John S D; Ingelfinger, Julie R; Chen, XiangMei; Chenier, Isabelle

    2004-05-14

    Angiotensin II stimulates cellular hypertrophy in cultured vascular smooth muscle and renal proximal tubular cells. This effect is believed to be one of earliest morphological changes of heart and renal failure. However, the precise molecular mechanism involved in angiotensin II-induced hypertrophy is poorly understood. In the present study we report the isolation of a novel angiotensin II type 1 receptor-associated protein. It encodes a 531-amino acid protein. Its mRNA is detected in all human tissues examined but highly expressed in the human kidney, pancreas, heart, and human embryonic kidney cells as well as rat vascular smooth muscle and renal proximal tubular cells. Protein synthesis and relative cell size analyzed by flow cytometry studies indicate that overexpression of the novel angiotensin II type 1 receptor-associated protein induces cellular hypertrophy in cultured rat vascular smooth muscle and renal proximal tubular cells. In contrast, the hypertrophic effects was reversed in renal proximal tubular cell lines expressing the novel gene in the antisense orientation and its dominant negative mutant, which lacks the last 101 amino acids in its carboxyl-terminal tail. The hypertrophic effects are at least in part mediated via protein kinase B activation or cyclin-dependent kinase inhibitor, p27(kip1) protein expression level in vascular smooth muscle, and renal proximal tubular cells. Moreover, angiotensin II could not stimulate cellular hypertrophy in renal proximal tubular cells expressing the novel gene in the antisense orientation and its mutant. These findings may provide new molecular mechanisms to understand hypertrophic agents such as angiotensin II-induced cellular hypertrophy.

  1. Interstitial Cells: Regulators of Smooth Muscle Function

    PubMed Central

    Sanders, Kenton M.; Ward, Sean M.; Koh, Sang Don

    2014-01-01

    Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα+ cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα+ cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues. PMID:24987007

  2. Fiber type-specific afferent nerve activity induced by transient contractions of rat bladder smooth muscle in pathological states

    PubMed Central

    Kuga, Nahoko; Tanioka, Asao; Hagihara, Koichiro; Kawai, Tomoyuki

    2017-01-01

    Bladder smooth muscle shows spontaneous phasic contractions, which undergo a variety of abnormal changes depending on pathological conditions. How abnormal contractions affect the activity of bladder afferent nerves remains to be fully tested. In this study, we examined the relationship between transient increases in bladder pressure, representing transient contraction of bladder smooth muscle, and spiking patterns of bladder afferent fibers of the L6 dorsal root, in rat pathological models. All recordings were performed at a bladder pressure of approximately 10 cmH2O by maintaining the degree of bladder filling. In the cyclophosphamide-induced model, both Aδ and C fibers showed increased sensitivity to transient bladder pressure increases. In the prostaglandin E2-induced model, Aδ fibers, but not C fibers, specifically showed overexcitation that was time-locked with transient bladder pressure increases. These fiber type-specific changes in nerve spike patterns may underlie the symptoms of urinary bladder diseases. PMID:29267380

  3. Substance P relaxes rat bronchial smooth muscle via epithelial prostanoid synthesis.

    PubMed

    Bodelsson, M; Blomquist, S; Caverius, K; Törnebrandt, K

    1999-01-01

    Substance P is present in bronchial nerve fibres. The physiological actions of substance P are mediated via tachykinin NK(1) receptors. Immunochemical studies have demonstrated tachykinin NK(1) receptors in the rat airway epithelium. To elucidate how epithelial tachykinin NK(1) receptors affect smooth muscle response to substance P. Contractile response of isolated rat bronchial trunk with or without epithelium was recorded. In intact segments precontracted by 5-hydroxytryptamine, relaxation was induced by substance P and the nitric oxide donor, sodium nitroprusside. Removal of the epithelium abolished relaxation induced by substance P but did not affect relaxation induced by sodium nitroprusside. The cyclo-oxygenase inhibitor, indomethacin, but not the nitric oxide synthase inhibitor, L-N(G)-monomethylarginine, reduced the relaxation in response to substance P. Epithelial tachykinin NK(1) receptors mediate substance-P-induced relaxation of rat bronchial smooth muscle via release of prostanoids but not nitric oxide.

  4. MURC deficiency in smooth muscle attenuates pulmonary hypertension

    PubMed Central

    Nakanishi, Naohiko; Ogata, Takehiro; Naito, Daisuke; Miyagawa, Kotaro; Taniguchi, Takuya; Hamaoka, Tetsuro; Maruyama, Naoki; Kasahara, Takeru; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi

    2016-01-01

    Emerging evidence suggests that caveolin-1 (Cav1) is associated with pulmonary arterial hypertension. MURC (also called Cavin-4) is a member of the cavin family, which regulates caveolar formation and functions together with caveolins. Here, we show that hypoxia increased Murc mRNA expression in the mouse lung, and that Murc-null mice exhibited attenuation of hypoxia-induced pulmonary hypertension (PH) accompanied by reduced ROCK activity in the lung. Conditional knockout mice lacking Murc in smooth muscle also resist hypoxia-induced PH. MURC regulates the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through Rho/ROCK signalling. Cav1 suppresses RhoA activity in PASMCs, which is reversed by MURC. MURC binds to Cav1 and inhibits the association of Cav1 with the active form of Gα13, resulting in the facilitated association of the active form of Gα13 with p115RhoGEF. These results reveal that MURC has a function in the development of PH through modulating Rho/ROCK signalling. PMID:27546070

  5. A Novel Method for Differentiation of Human Mesenchymal Stem Cells into Smooth Muscle-Like Cells on Clinically Deliverable Thermally Induced Phase Separation Microspheres

    PubMed Central

    Parmar, Nina; Ahmadi, Raheleh

    2015-01-01

    Muscle degeneration is a prevalent disease, particularly in aging societies where it has a huge impact on quality of life and incurs colossal health costs. Suitable donor sources of smooth muscle cells are limited and minimally invasive therapeutic approaches are sought that will augment muscle volume by delivering cells to damaged or degenerated areas of muscle. For the first time, we report the use of highly porous microcarriers produced using thermally induced phase separation (TIPS) to expand and differentiate adipose-derived mesenchymal stem cells (AdMSCs) into smooth muscle-like cells in a format that requires minimal manipulation before clinical delivery. AdMSCs readily attached to the surface of TIPS microcarriers and proliferated while maintained in suspension culture for 12 days. Switching the incubation medium to a differentiation medium containing 2 ng/mL transforming growth factor beta-1 resulted in a significant increase in both the mRNA and protein expression of cell contractile apparatus components caldesmon, calponin, and myosin heavy chains, indicative of a smooth muscle cell-like phenotype. Growth of smooth muscle cells on the surface of the microcarriers caused no change to the integrity of the polymer microspheres making them suitable for a cell-delivery vehicle. Our results indicate that TIPS microspheres provide an ideal substrate for the expansion and differentiation of AdMSCs into smooth muscle-like cells as well as a microcarrier delivery vehicle for the attached cells ready for therapeutic applications. PMID:25205072

  6. 8-Bromo-cAMP decreases the Ca2+ sensitivity of airway smooth muscle contraction through a mechanism distinct from inhibition of Rho-kinase.

    PubMed

    Endou, Katsuaki; Iizuka, Kunihiko; Yoshii, Akihiro; Tsukagoshi, Hideo; Ishizuka, Tamotsu; Dobashi, Kunio; Nakazawa, Tsugio; Mori, Masatomo

    2004-10-01

    To clarify whether cyclic AMP (cAMP)/cAMP-dependent protein kinase (PKA) activation and Rho-kinase inhibition share a common mechanism to decrease the Ca2+ sensitivity of airway smooth muscle contraction, we examined the effects of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP), a stable cAMP analog, and (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexane carboxamide dihydrochloride, monohydrate (Y-27632), a Rho-kinase inhibitor, on carbachol (CCh)-, guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS)-, 4beta-phorbol 12,13-dibutyrate (PDBu)-, and leukotriene D4 (LTD4)-induced Ca2+ sensitization in alpha-toxin-permeabilized rabbit tracheal and human bronchial smooth muscle. In rabbit trachea, CCh-induced smooth muscle contraction was inhibited by 8-BrcAMP and Y-27632 to a similar extent. However, GTPgammaS-induced smooth muscle contraction was resistant to 8-BrcAMP. In the presence of a saturating concentration of Y-27632, PDBu-induced smooth muscle contraction was completely reversed by 8-BrcAMP. Conversely, PDBu-induced smooth muscle contraction was resistant to Y-27632. In the presence of a saturating concentration of 8-BrcAMP, GTPgammaS-induced Ca2+ sensitization was also reversed by Y-27632. The 8-BrcAMP had no effect on the ATP-triggered contraction of tracheal smooth muscle that had been treated with calyculin A in rigor solutions. The 8-BrcAMP and Y-27632 additively accelerated the relaxation rate of PDBu- and GTPgammaS-treated smooth muscle under myosin light chain kinase-inhibited conditions. In human bronchus, LTD4-induced smooth muscle contraction was inhibited by both 8-BrcAMP and Y-27632. We conclude that cAMP/PKA-induced Ca2+ desensitization contains at least two mechanisms: 1) inhibition of the muscarinic receptor signaling upstream from Rho activation and 2) cAMP/PKA's preferential reversal of PKC-mediated Ca2+ sensitization in airway smooth muscle.

  7. The effect of hypercholesterolemia on carbachol-induced contractions of the detrusor smooth muscle in rats: increased role of L-type Ca2+ channels.

    PubMed

    Balkanci, Zeynep Dicle; Pehlivanoğlu, Bilge; Bayrak, Sibel; Karabulut, Ismail; Karaismailoğlu, Serkan; Erdem, Ayşen

    2012-11-01

    To investigate a possible relation between hypercholesterolemia and detrusor smooth muscle function, we studied the contractile response to potassium challenge, carbachol (CCh), and the components of CCh-induced contractile mechanism in high-cholesterol diet-fed rats. Adult male Sprague-Dawley rats were fed with standard (control group, N = 17) or 4 % cholesterol diet (hypercholesterolemia group (HC), N = 16) for 4 weeks. Spontaneous contractions of detrusor muscle strips and their responses to potassium chloride (KCl) or cumulative dose-contraction curves to CCh were recorded. The effects of muscarinic receptor antagonists (methoctramin and/or 4-diphenylacetoxy-N-methylpiperidine), L-type Ca(+2) channel blocker (nifedipine), and/or rho-kinase inhibitor Y-27632 were investigated. Blood cholesterol level was increased in the HC group with no sign of atherosclerosis. The KCl-induced detrusor smooth muscle contractions were higher in HC, whereas spontaneous and CCh-induced responses were similar in both groups. Preincubation with receptor antagonist for M(3) but not for M(2) attenuated contraction significantly, shifting the dose-response curve to the right. This response was similar in both groups. Among two effector mechanisms of M(3)-mediated detrusor smooth muscle contraction, rho-kinase pathway was not affected by hypercholesterolemia, whereas blockade of L-type Ca(+2) channels potently reduced contractions. The results of this study point out a relation between hypercholesterolemia and contractile mechanism of detrusor smooth muscle likely to change urinary bladder function, via altering L-type Ca(+2) channels. Taken together with escalating incidence of hypercholesterolemia and lower urinary tract symptoms, it is a field which deserves to be investigated further.

  8. Effects of sodium metabisulphite on guinea pig contractile airway smooth muscle responses in vitro.

    PubMed

    Sun, J; Sakamoto, T; Chung, K F

    1995-08-01

    Sodium metabisulphite (MBS) is known to induce bronchoconstriction in asthmatic patients. The effects of MBS on guinea pig airway smooth muscle and on neurally mediated contraction in vitro have been examined. Tracheal and bronchial airway segments were placed in oxygenated buffer solution and electrical field stimulation was performed in the presence of indomethacin (10(-5) M) and propranolol (10(-6) M) for the measurement of isometric tension. Atropine (10(-6) M) was added to bronchial tissues. Concentrations of MBS up to 10(-3) M had no direct effect on airway smooth muscle contraction and did not alter either tracheal smooth muscle contraction induced by electrical field stimulation at all frequencies or acetylcholine-induced tracheal smooth muscle contraction. There was a similar response in the absence of epithelium, except for potentiation of the response induced by electrical field stimulation at 0.5 Hz (24 (10)% increase). However, MBS (10(-5), 10(-6) and 10(-7) M) augmented neurally-mediated non-adrenergic non-cholinergic contractile responses in the bronchi (13.3 (3.2)%, 23.8 (9.6)%, and 6.4 (1.6)%, respectively). MBS had no effect on the contractile response induced by substance P, but at higher concentrations (10(-3) M and 10(-4) M) it caused a time-dependent attenuation of responses induced by either electrical field stimulation or exogenously applied acetylcholine or substance P. MBS had no direct contractile responses but enhanced bronchoconstriction induced by activation of non-cholinergic neural pathways in the bronchus, probably through increased release of neuropeptides. At high concentrations MBS inhibited contractile responses initiated by receptor or neural stimulation.

  9. Effects of sodium metabisulphite on guinea pig contractile airway smooth muscle responses in vitro.

    PubMed Central

    Sun, J.; Sakamoto, T.; Chung, K. F.

    1995-01-01

    BACKGROUND--Sodium metabisulphite (MBS) is known to induce bronchoconstriction in asthmatic patients. The effects of MBS on guinea pig airway smooth muscle and on neurally mediated contraction in vitro have been examined. METHODS--Tracheal and bronchial airway segments were placed in oxygenated buffer solution and electrical field stimulation was performed in the presence of indomethacin (10(-5) M) and propranolol (10(-6) M) for the measurement of isometric tension. Atropine (10(-6) M) was added to bronchial tissues. RESULTS--Concentrations of MBS up to 10(-3) M had no direct effect on airway smooth muscle contraction and did not alter either tracheal smooth muscle contraction induced by electrical field stimulation at all frequencies or acetylcholine-induced tracheal smooth muscle contraction. There was a similar response in the absence of epithelium, except for potentiation of the response induced by electrical field stimulation at 0.5 Hz (24 (10)% increase). However, MBS (10(-5), 10(-6) and 10(-7) M) augmented neurally-mediated non-adrenergic non-cholinergic contractile responses in the bronchi (13.3 (3.2)%, 23.8 (9.6)%, and 6.4 (1.6)%, respectively). MBS had no effect on the contractile response induced by substance P, but at higher concentrations (10(-3) M and 10(-4) M) it caused a time-dependent attenuation of responses induced by either electrical field stimulation or exogenously applied acetylcholine or substance P. CONCLUSIONS--MBS had no direct contractile responses but enhanced bronchoconstriction induced by activation of non-cholinergic neural pathways in the bronchus, probably through increased release of neuropeptides. At high concentrations MBS inhibited contractile responses initiated by receptor or neural stimulation. Images PMID:7570440

  10. Catecholamines release mediators in the opossum oesophageal circular smooth muscle.

    PubMed Central

    Daniel, E E; Jager, L P; Jury, J

    1987-01-01

    1. Effects of catecholamines applied exogenously to the circular smooth muscle layer of the body of the oesophagus of the opossum (Didelphis marsupialis) were studied, simultaneously measuring changes in the membrane potential, the membrane conductance and the contractility of the muscle, using the double sucrose-gap technique. 2. Superfusion of the smooth muscle with Krebs solution at 27 degrees C containing dopamine (10(-6)-10(-4) M) dose-dependently caused a hyperpolarization of the smooth muscle cells and an increased membrane resistance followed after gradual repolarization by oscillations of the membrane potential, often accompanied by muscle action potentials. During the hyperpolarization, the tendency for the membrane potential to sag during prolonged application of hyperpolarizing currents was reduced and the 'off' depolarization following such currents was increased. This muscle did not develop active tension prior to treatment; it therefore did not relax during the hyperpolarizations, but contracted following the depolarized phase of oscillations. 3. The non-adrenergic, non-cholinergic nerve-mediated inhibitory junction potential (i.j.p.) showed a small reduction in amplitude during superfusion with dopamine, explicable as a result of the drug-induced hyperpolarization. The 'off' response following the i.j.p., decreased transiently when the membrane potential was hyperpolarized to its maximum value. Then it increased to values larger than control as the membrane repolarized. Vasoactive intestinal polypeptide (VIP, 10(-6) M) produced a similar response but hyperpolarizations were smaller. 4. Of the tested catecholamines, isoprenaline, phenylephrine, butylated hydroxytoluene-920 (BHT-920) and clonidine were ineffective whereas the potency order for other catecholamines was dopamine greater than noradrenaline greater than or equal to adrenaline greater than DOPA. The catecholamine-induced responses were not affected by alpha- or beta

  11. Role of cellular bioenergetics in smooth muscle cell proliferation induced by platelet-derived growth factor.

    PubMed

    Perez, Jessica; Hill, Bradford G; Benavides, Gloria A; Dranka, Brian P; Darley-Usmar, Victor M

    2010-05-13

    Abnormal smooth muscle cell proliferation is a hallmark of vascular disease. Although growth factors are known to contribute to cell hyperplasia, the changes in metabolism associated with this response, particularly mitochondrial respiration, remain unclear. Given the increased energy requirements for proliferation, we hypothesized that PDGF (platelet-derived growth factor) would stimulate glycolysis and mitochondrial respiration and that this elevated bioenergetic capacity is required for smooth muscle cell hyperplasia. To test this hypothesis, cell proliferation, glycolytic flux and mitochondrial oxygen consumption were measured after treatment of primary rat aortic VSMCs (vascular smooth muscle cells) with PDGF. PDGF increased basal and maximal rates of glycolytic flux and mitochondrial oxygen consumption; enhancement of these bioenergetic pathways led to a substantial increase in the mitochondrial reserve capacity. Interventions with the PI3K (phosphoinositide 3-kinase) inhibitor LY-294002 or the glycolysis inhibitor 2-deoxy-D-glucose abrogated PDGF-stimulated proliferation and prevented augmentation of glycolysis and mitochondrial reserve capacity. Similarly, when L-glucose was substituted for D-glucose, PDGF-dependent proliferation was abolished, as were changes in glycolysis and mitochondrial respiration. Interestingly, LDH (lactate dehydrogenase) protein levels and activity were significantly increased after PDGF treatment. Moreover, substitution of L-lactate for D-glucose was sufficient to increase mitochondrial reserve capacity and cell proliferation after treatment with PDGF; these effects were inhibited by the LDH inhibitor oxamate. These results suggest that glycolysis, by providing substrates that enhance the mitochondrial reserve capacity, plays an essential role in PDGF-induced cell proliferation, underscoring the integrated metabolic response required for proliferation of VSMCs in the diseased vasculature.

  12. Inhibitory effects of atropine and hexamethonium on the angiotensin II-induced contractions of rat anococcygeus smooth muscles.

    PubMed

    de Godoy, Márcio Augusto Fressatto; Accorsi-Mendonça, Daniela; de Oliveira, Ana Maria

    2003-02-01

    We have evaluated the interaction between angiotensin II (Ang II) and the cholinergic transmission in anococcygeus smooth muscles isolated from rats treated (sympathectomised group) or not (vehicle group) with reserpine and alpha-methyl-p-tyrosine. For this, we contracted the tissues with Ang II in the presence and absence of atropine and hexamethonium. Ang II induced concentration-dependent contractions, which did not undergo temporal changes in tissues isolated from both groups of rats. In the vehicle group, Ang II induced more potent contractions than in the sympathectomised group. In the sympathectomised rat group, atropine inhibited the contractions induced by Ang II in a concentration-dependent fashion with no decrease in E(max). Additionally, hexamethonium inhibited the contraction induced by Ang II in a concentration-dependent fashion with a decrease in E(max). Association of atropine and hexamethonium produced Ang II-induced curves with rightward shifts from the control curve with a decrease in E(max). Incubation with N(G)-nitro-L-arginine methyl ester (L-NAME) reversed the effects of atropine and hexamethonium association. Conversely, in the vehicle group of rats, atropine and hexamethonium did not produce any significant effect. However, in the presence of yohimbine, atropine shifted the Ang II-induced curves to the right of the control curve with no E(max) decrease. Results suggest that there is a positive interaction between Ang II and cholinergic transmission in the rat anococcygeus smooth muscle mediated by angiotensin receptors located on pre-ganglionic cells.

  13. Low molecular weight fucoidan ameliorates streptozotocin-induced hyper-responsiveness of aortic smooth muscles in type 1 diabetes rats.

    PubMed

    Liang, Zhengyang; Zheng, Yuanyuan; Wang, Jing; Zhang, Quanbin; Ren, Shuang; Liu, Tiantian; Wang, Zhiqiang; Luo, Dali

    2016-09-15

    Low molecular weight fucoidan (LMWF) was prepared from Laminaria japonica Areschoug, a popular seafood and medicinal plant consumed in Asia. Chinese have long been using it as a traditional medicine for curing hypertension and edema. This study was intent to investigate the possible beneficial effect of LMWF on hyper-responsiveness of aortic smooth muscles instreptozotocin (STZ)-induced type 1 diabetic rats. Sprague-Dawley rats were made diabetic by injection of STZ, followed by the administration of LMWF (50 or 100mg/kg/day) or probucol (100mg/kg/day) for 12 weeks. Body weight, blood glucose level, basal blood pressure, serum lipid profiles, oxidative stress, prostanoids production, and vasoconstriction response of endothelium-denuded aorta rings to phenylephrine were measured by Real time-PCR, Western blots, ELISA assay, and force myograph, respectively. LMWF (100mg/kg/day)-treated group showed robust improvements on STZ-induced body weight-loss, hypertension, and hyperlipidaemia as indicated by decreased serum level of total cholesterol, triglyceride, and low density lipoprotein cholesterol; while probucol, a lipid-modifying drug with antioxidant properties, displayed mild effects. In addition, LMWF appreciably ameliorated STZ-elicited hyper-responsiveness and oxidative stress in aortic smooth muscles as indicated by decreased superoxide level, increased glutathione content and higher superoxide dismutase activity. Furthermore, administration with LMWF dramatically prevented cyclooxygenase-2 stimulation and restored the up-regulation of thromboxane synthase and down-regulation of 6-keto-PGF1α (a stable metabolic product of prostaglandin I2) in the STZ-administered rats. This study demonstrates for the first time that LMWF can protect against hyperlipidaemia, hypertension, and hyper-responsiveness of aortic smooth muscles in type 1 diabetic rat via, at least in part, amelioration of oxidative stress and restoration of prostanoids levels in aortic smooth muscles

  14. Evidence Supports Tradition: The in Vitro Effects of Roman Chamomile on Smooth Muscles.

    PubMed

    Sándor, Zsolt; Mottaghipisheh, Javad; Veres, Katalin; Hohmann, Judit; Bencsik, Tímea; Horváth, Attila; Kelemen, Dezső; Papp, Róbert; Barthó, Loránd; Csupor, Dezső

    2018-01-01

    The dried flowers of Chamaemelum nobile (L.) All. have been used in traditional medicine for different conditions related to the spasm of the gastrointestinal system. However, there have been no experimental studies to support the smooth muscle relaxant effect of this plant. The aim of our research was to assess the effects of the hydroethanolic extract of Roman chamomile, its fractions, four of its flavonoids (apigenin, luteolin, hispidulin, and eupafolin), and its essential oil on smooth muscles. The phytochemical compositions of the extract and its fractions were characterized and quantified by HPLC-DAD, the essential oil was characterized by GC and GC-MS. Neuronally mediated and smooth muscle effects were tested in isolated organ bath experiments on guinea pig, rat, and human smooth muscle preparations. The crude herbal extract induced an immediate, moderate, and transient contraction of guinea pig ileum via the activation of cholinergic neurons of the gut wall. Purinoceptor and serotonin receptor antagonists did not influence this effect. The more sustained relaxant effect of the extract, measured after pre-contraction of the preparations, was remarkable and was not affected by an adrenergic beta receptor antagonist. The smooth muscle-relaxant activity was found to be associated with the flavonoid content of the fractions. The essential oil showed only the relaxant effect, but no contracting activity. The smooth muscle-relaxant effect was also detected on rat gastrointestinal tissues, as well as on strip preparations of human small intestine. These results suggest that Roman chamomile extract has a direct and prolonged smooth muscle-relaxant effect on guinea pig ileum which is related to its flavonoid content. In some preparations, a transient stimulation of enteric cholinergic motoneurons was also detected. The essential oil also had a remarkable smooth muscle relaxant effect in this setting. Similar relaxant effects were also detected on other visceral

  15. [Salidroside inhibits hypoxia-induced phenotypic modulation of corpus cavernosum smooth muscle cells in vitro].

    PubMed

    Chen, Gang; Huang, Xiao-Jun; Lü, Bo-Dong; Chen, Shi-Tao; Zhang, Shi-Geng; Yang, Ke-Bing

    2013-08-01

    To explore the effects of salidroside on the phenotypic modulation of corpus cavernosum smooth muscle cells (CCSMC) in hypoxic SD rats. CCSMCs were cultured in vitro and identified by immunohistochemistry. The cells were divided into six groups: normal control (21% O2), hypoxia (1% O2), hypoxia + salidroside 1 mg/L, hypoxia + salidroside 3 mg/L, hypoxia + salidroside 5 mg/L and hypoxia + PGE1 0.4 microg/L, and then cultured for 48 hours. The relative expressions of alpha-actin and osteopontin (OPN) in each group were determined by RT-PCR. The in vitro cultured CCSMCs grew well, with anti-alpha-smooth muscle actin monoclonal antibodies immunohistochemically positive. The relative expression of alpha-actin was markedly decreased while that of OPN remarkably increased in the hypoxia group as compared with the normal control group (P < 0.01). The hypoxia + salidroside 5 mg/L group showed a significantly higher expression of alpha-actin and lower expression of OPN than the hypoxia group (P < 0.01), but exhibited no significant differences from the hypoxia + PGE group (P > 0.05). Hypoxia can reduce the relative expression level of alpha-actin and increase that of OPN in the CCSMCs of SD rats, namely, induce their phenotypic modulation from the contraction to the non-contraction type. Salidroside can restrain hypoxia-induced phenotypic modulation of CCSMCs, and its inhibitory effect at 5 mg/L is similar to that of PGE1.

  16. Pharmacological identification of β-adrenoceptor subtypes mediating isoprenaline-induced relaxation of guinea pig colonic longitudinal smooth muscle.

    PubMed

    Chino, Daisuke; Sone, Tomoyo; Yamazaki, Kumi; Tsuruoka, Yuri; Yamagishi, Risa; Shiina, Shunsuke; Obara, Keisuke; Yamaki, Fumiko; Higai, Koji; Tanaka, Yoshio

    2018-01-01

    Object We aimed to identify the β-adrenoceptor (β-AR) subtypes involved in isoprenaline-induced relaxation of guinea pig colonic longitudinal smooth muscle using pharmacological and biochemical approaches. Methods Longitudinal smooth muscle was prepared from the male guinea pig ascending colon and contracted with histamine prior to comparing the relaxant responses to three catecholamines (isoprenaline, adrenaline, and noradrenaline). The inhibitory effects of subtype-selective β-AR antagonists on isoprenaline-induced relaxation were then investigated. Results The relaxant potencies of the catecholamines were ranked as: isoprenaline > noradrenaline ≈ adrenaline, whereas the rank order was isoprenaline > noradrenaline > adrenaline in the presence of propranolol (a non-selective β-AR antagonist; 3 × 10 -7 M). Atenolol (a selective β 1 -AR antagonist; 3 × 10 -7 -10 -6  M) acted as a competitive antagonist of isoprenaline-induced relaxation, and the pA 2 value was calculated to be 6.49 (95% confidence interval: 6.34-6.83). The relaxation to isoprenaline was not affected by ICI-118,551 (a selective β 2 -AR antagonist) at 10 -9 -10 -8  M, but was competitively antagonized by 10 -7 -3 × 10 -7  M, with a pA 2 value of 7.41 (95% confidence interval: 7.18-8.02). In the presence of propranolol (3 × 10 -7 M), the relaxant effect of isoprenaline was competitively antagonized by bupranolol (a non-selective β-AR antagonist), with a pA 2 value of 5.90 (95% confidence interval: 5.73-6.35). Conclusion These findings indicated that the β-AR subtypes involved in isoprenaline-induced relaxation of colonic longitudinal guinea pig muscles are β 1 -AR and β 3 -AR.

  17. The biophysics of asthmatic airway smooth muscle.

    PubMed

    Stephens, Newman L; Li, Weilong; Jiang, He; Unruh, H; Ma, Xuefei

    2003-09-16

    It is clear that significant advances have been made in the understanding of the physiology, biochemistry and molecular biology of airway smooth muscle (ASM) contraction and how the knowledge obtained from these approaches may be used to elucidate the pathogenesis of asthma. Not to belittle other theories of smooth muscle contraction extant in the field, perhaps the most outstanding development has been the formulation of plasticity theory. This may radically alter our understanding of smooth muscle contraction. Its message is that while shortening velocity and capacity are linear functions of length, active force is length independent. These changes are explained by the ability of thick filament protein to depolymerize at short lengths and to increase numbers of contractile units in series at lengths greater than optimal length or L(ref). Other advances are represented by the report that the major part of ASM shortening is complete within the initial first 20% of contraction time, that the nature and history of loading determine the extent of shortening and that these findings can be explained by the finding that the crossbridges are cycling four times faster than in the remaining time. Another unexpected finding is that late in the course of isotonic relaxation the muscle undergoes spontaneous activation which delays relaxation and smoothes it out; speculatively this could minimize turbulence of airflow. On the applied front evidence now shows the shortening ability of bronchial smooth muscle of human subjects of asthma is significantly increased. Measurements also indicate that increased smooth muscle myosin light chain kinase content, via increased actomyosin ATPase activity could be responsible for the changes in contractility.

  18. A-type potassium currents in smooth muscle.

    PubMed

    Amberg, Gregory C; Koh, Sang Don; Imaizumi, Yuji; Ohya, Susumu; Sanders, Kenton M

    2003-03-01

    A-type currents are voltage-gated, calcium-independent potassium (Kv) currents that undergo rapid activation and inactivation. Commonly associated with neuronal and cardiac cell-types, A-type currents have also been identified and characterized in vascular, genitourinary, and gastrointestinal smooth muscle cells. This review examines the molecular identity, biophysical properties, pharmacology, regulation, and physiological function of smooth muscle A-type currents. In general, this review is intended to facilitate the comparison of A-type currents present in different smooth muscles by providing a comprehensive report of the literature to date. This approach should also aid in the identification of areas of research requiring further attention.

  19. Segregation of striated and smooth muscle lineages by a Notch-dependent regulatory network

    PubMed Central

    2014-01-01

    Background Lineage segregation from multipotent epithelia is a central theme in development and in adult stem cell plasticity. Previously, we demonstrated that striated and smooth muscle cells share a common progenitor within their epithelium of origin, the lateral domain of the somite-derived dermomyotome. However, what controls the segregation of these muscle subtypes remains unknown. We use this in vivo bifurcation of fates as an experimental model to uncover the underlying mechanisms of lineage diversification from bipotent progenitors. Results Using the strength of spatio-temporally controlled gene missexpression in avian embryos, we report that Notch harbors distinct pro-smooth muscle activities depending on the duration of the signal; short periods prevent striated muscle development and extended periods, through Snail1, promote cell emigration from the dermomyotome towards a smooth muscle fate. Furthermore, we define a Muscle Regulatory Network, consisting of Id2, Id3, FoxC2 and Snail1, which acts in concert to promote smooth muscle by antagonizing the pro-myogenic activities of Myf5 and Pax7, which induce striated muscle fate. Notch and BMP closely regulate the network and reciprocally reinforce each other’s signal. In turn, components of the network strengthen Notch signaling, while Pax7 silences this signaling. These feedbacks augment the robustness and flexibility of the network regulating muscle subtype segregation. Conclusions Our results demarcate the details of the Muscle Regulatory Network, underlying the segregation of muscle sublineages from the lateral dermomyotome, and exhibit how factors within the network promote the smooth muscle at the expense of the striated muscle fate. This network acts as an exemplar demonstrating how lineage segregation occurs within epithelial primordia by integrating inputs from competing factors. PMID:25015411

  20. Critical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyperresponsiveness and airway remodeling.

    PubMed

    Tang, Dale D

    2015-10-30

    Asthma is characterized by airway hyperresponsiveness and airway remodeling, which are largely attributed to increased airway smooth muscle contractility and cell proliferation. It is known that both chemical and mechanical stimulation regulates smooth muscle contraction. Recent studies suggest that contractile activation and mechanical stretch induce actin cytoskeletal remodeling in smooth muscle. However, the mechanisms that control actin cytoskeletal reorganization are not completely elucidated. This review summarizes our current understanding regarding how actin-associated proteins may regulate remodeling of the actin cytoskeleton in airway smooth muscle. In particular, there is accumulating evidence to suggest that Abelson tyrosine kinase (Abl) plays a critical role in regulating airway smooth muscle contraction and cell proliferation in vitro, and airway hyperresponsiveness and remodeling in vivo. These studies indicate that Abl may be a novel target for the development of new therapy to treat asthma.

  1. Crocin prevents platelet‑derived growth factor BB‑induced vascular smooth muscle cells proliferation and phenotypic switch.

    PubMed

    Tong, Lijian; Qi, Guoxian

    2018-06-01

    The phenotypic switch of vascular smooth muscle cells (VSMCs) is a major initiating factor for atherosclerotic cardiovascular diseases. Platelet‑derived growth factor‑BB (PDGF‑BB) initiates a number of biological processes that contribute to VSMC proliferation and phenotypic switch. Crocin, a component of saffron, has been reported to inhibit atheromatous plaque formation. However, the effects of crocin on PDGF‑BB‑induced VSMC proliferation and phenotypic switch remain unclear. The aim of the present study was to investigate the role of crocin on PDGF‑BB‑induced VSMCs proliferation and phenotypic switch and its underlying mechanisms. Cell proliferation and markers of VSMCs phenotypic switch were measured using a Cell Counting Kit‑8 assay and western blot analysis, respectively. The signaling pathways involved in the effects of crocin on VSMCs were validated by western blot analysis with or without the use of specific pathway inhibitors. Crocin significantly inhibited PDGF‑BB‑induced VSMCs proliferation compared with the PDGF‑BB only group (P<0.05). In addition, crocin significantly abrogated the PDGF‑BB‑induced increase in contractile protein α‑smooth muscle actin, calponin and decrease in synthetic proteins osteopontin (OPN) in a concentration dependent manner (P<0.05). In addition, crocin slowed PDGF‑BB‑induced Janus kinase (JAK)‑signal transducer and activator of transcription 3 (STAT3) and extracellular signal‑regulated kinase (ERK)/Kruppel‑like factor 4 (KLF4) signaling activation in VSMCs. By applying the JAK inhibitor (AG490) and ERK1/2 inhibitor (U0126), the results suggested that the crocin inhibited PDGF‑BB‑induced VSMCs phenotypic switch through the JAK/STAT3 and ERK/KLF4 signaling pathways. These results suggested that crocin may effectively prevent PDGF‑BB‑induced VSMCs proliferation and phenotypic switch and may be a promising candidate for the therapy of atherosclerotic cardiovascular diseases.

  2. Mitochondrial motility and vascular smooth muscle proliferation.

    PubMed

    Chalmers, Susan; Saunter, Christopher; Wilson, Calum; Coats, Paul; Girkin, John M; McCarron, John G

    2012-12-01

    Mitochondria are widely described as being highly dynamic and adaptable organelles, and their movement is thought to be vital for cell function. Yet, in various native cells, including those of heart and smooth muscle, mitochondria are stationary and rigidly structured. The significance of the differences in mitochondrial behavior to the physiological function of cells is unclear and was studied in single myocytes and intact resistance-sized cerebral arteries. We hypothesized that mitochondrial dynamics is controlled by the proliferative status of the cells. High-speed fluorescence imaging of mitochondria in live vascular smooth muscle cells shows that the organelle undergoes significant reorganization as cells become proliferative. In nonproliferative cells, mitochondria are individual (≈ 2 μm by 0.5 μm), stationary, randomly dispersed, fixed structures. However, on entering the proliferative state, mitochondria take on a more diverse architecture and become small spheres, short rod-shaped structures, long filamentous entities, and networks. When cells proliferate, mitochondria also continuously move and change shape. In the intact pressurized resistance artery, mitochondria are largely immobile structures, except in a small number of cells in which motility occurred. When proliferation of smooth muscle was encouraged in the intact resistance artery, in organ culture, the majority of mitochondria became motile and the majority of smooth muscle cells contained moving mitochondria. Significantly, restriction of mitochondrial motility using the fission blocker mitochondrial division inhibitor prevented vascular smooth muscle proliferation in both single cells and the intact resistance artery. These results show that mitochondria are adaptable and exist in intact tissue as both stationary and highly dynamic entities. This mitochondrial plasticity is an essential mechanism for the development of smooth muscle proliferation and therefore presents a novel therapeutic

  3. Swine confinement buildings: effects of airborne particles and settled dust on airway smooth muscles.

    PubMed

    Demanche, Annick; Bonlokke, Jakob; Beaulieu, Marie-Josee; Assayag, Evelyne; Cormier, Yvon

    2009-01-01

    Swine confinement workers are exposed to various contaminants. These agents can cause airway inflammation and bronchoconstriction. This study was undertaken to evaluate if the bronchoconstrictive effects of swine barn air and settled dust are mediated by endotoxin, and if these effects are directly mediated on airway smooth muscles. Mouse tracheas where isolated and mounted isometrically in organ baths. Tracheas, with or without epithelium, were attached to a force transducer and tension was recorded. Concentrated swine building air at 68 EU/ml or settled dust extract at 0.01 g/ml were added for 20 minutes and tracheal smooth muscle contraction was measured. Direct role of LPS was assessed by removing it from air concentrates with an endotoxin affinity resin. Swine barn air and settled dust extract caused contraction of tracheal smooth muscle by 26 and 20%, respectively, of the maximal induced by methacholine. Removal of epithelium did not affect the contractile effects. LPS alone and LPS with peptidoglycans did not induce contraction. However, when endotoxin was removed from swine barn air concentrates, it lost 24% of its contractile effect. Concentrated swine barn air and settled dust have direct effects on airway smooth muscles. This effect is partially due to LPS but a synergy with other components of the environment of swine confinement buildings is required.

  4. Characterization of P2Y receptors mediating ATP induced relaxation in guinea pig airway smooth muscle: involvement of prostaglandins and K+ channels.

    PubMed

    Montaño, Luis M; Cruz-Valderrama, José E; Figueroa, Alejandra; Flores-Soto, Edgar; García-Hernández, Luz M; Carbajal, Verónica; Segura, Patricia; Méndez, Carmen; Díaz, Verónica; Barajas-López, Carlos

    2011-10-01

    In airway smooth muscle (ASM), adenosine 5'-triphosphate (ATP) induces a relaxation associated with prostaglandin production. We explored the role of K(+) currents (I (K)) in this relaxation. ATP relaxed the ASM, and this effect was abolished by indomethacin. Removal of airway epithelium slightly diminished the ATP-induced relaxation at lower concentration without modifying the responses to ATP at higher concentrations. ATPγS and UTP induced a concentration-dependent relaxation similar to ATP; α,β-methylene-ATP was inactive from 1 to 100 μM. Suramin or reactive blue 2 (RB2), P2Y receptor antagonists, did not modify the relaxation, but their combination significantly reduced this effect of ATP. The relaxation was also inhibited by N-ethylmaleimide (NEM; which uncouples G proteins). In myocytes, the ATP-induced I (K) increment was not modified by suramin or RB2 but the combination of both drugs abolished it. This increment in the I (K) was also completely nullified by NEM and SQ 22,536. 4-Amynopyridine or iberiotoxin diminished the ATP-induced I (K) increment, and the combination of both substances diminished ATP-induced relaxation. The presence of P2Y(2) and P2Y(4) receptors in smooth muscle was corroborated by Western blot and confocal images. In conclusion, ATP: (1) produces relaxation by inducing the production of bronchodilator prostaglandins in airway smooth muscle, most likely by acting on P2Y(4) and P2Y(2) receptors; (2) induces I (K) increment through activation of the delayed rectifier K(+) channels and the high-conductance Ca(2+)-dependent K(+) channels, therefore both channels are implicated in the ATP-induced relaxation; and (3) this I (K) increment is mediated by prostaglandin production which in turns increase cAMP signaling pathway.

  5. Properties of acetylcholine-induced relaxation of smooth muscle isolated from the proximal colon of the guinea-pig.

    PubMed

    Kodama, Youhei; Iino, Satoshi; Shigemasa, Yuhsuke; Suzuki, Hikaru

    2010-01-01

    The properties of mechanical responses elicited by stimulation with acetylcholine (ACh) were investigated in circular smooth muscle preparations isolated from the proximal colon of guinea-pig. Application of ACh (10(-8)-10(-6) M) for 3-5 min produced a biphasic response, with an initial contraction followed by a relaxation. Atropine inhibited the initial contraction, while N(ω)-nitro-L-arginine (L-NA) inhibited the relaxation, suggesting that the former was produced by activation of muscarinic receptors while the latter was produced by an elevated production of nitric oxide (NO). In the presence of atropine, the ACh-relaxation was attenuated by removal of the mucosa and abolished by removal of both submucosal and mucosal layers. The ACh-induced relaxation was also attenuated by either tetrodotoxin (TTX, 3 × 10(-7) M) or hexamethonium (10(-6) M). In the presence of atropine, transmural nerve stimulation (TNS) elicited a biphasic response, with an initial phasic contraction followed by a relaxation. The amplitude of TNS-induced relaxation was significantly reduced by hexamethonium or L-NA and was abolished by TTX. Both ACh and TNS produced relaxation in preparations isolated from the proximal colon, but not in those from the middle part of colon. Immunohistochemistry for neuronal nitric oxide synthase revealed no difference in the distribution of nitrergic nerves between the proximal and middle part of the colon, with nitrergic nerves in both the mucosal and submucosal layers as well as in the smooth muscle and myenteric layers. These results suggest that ACh induces NO production by excitation of postganglionic nerves distributed mainly in the mucosal and submucosal layers. In circular smooth muscle preparations isolated from the middle part of colon, ACh or TNS produced contractile responses alone, with no associated relaxation, suggesting that the ACh-activated postganglionic nitrergic nerves are distributed in the mucosal and submucosal layers of the proximal

  6. Smooth Muscle-Like Cells Generated from Human Mesenchymal Stromal Cells Display Marker Gene Expression and Electrophysiological Competence Comparable to Bladder Smooth Muscle Cells.

    PubMed

    Brun, Juliane; Lutz, Katrin A; Neumayer, Katharina M H; Klein, Gerd; Seeger, Tanja; Uynuk-Ool, Tatiana; Wörgötter, Katharina; Schmid, Sandra; Kraushaar, Udo; Guenther, Elke; Rolauffs, Bernd; Aicher, Wilhelm K; Hart, Melanie L

    2015-01-01

    The use of mesenchymal stromal cells (MSCs) differentiated toward a smooth muscle cell (SMC) phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP)-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late) myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1-2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2), transgelin (TAGLN), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC; MYH11) according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion channel

  7. Hypotension Due to Kir6.1 Gain‐of‐Function in Vascular Smooth Muscle

    PubMed Central

    Li, Anlong; Knutsen, Russell H.; Zhang, Haixia; Osei‐Owusu, Patrick; Moreno‐Dominguez, Alex; Harter, Theresa M.; Uchida, Keita; Remedi, Maria S.; Dietrich, Hans H.; Bernal‐Mizrachi, Carlos; Blumer, Kendall J.; Mecham, Robert P.; Koster, Joseph C.; Nichols, Colin G.

    2013-01-01

    Background KATP channels, assembled from pore‐forming (Kir6.1 or Kir6.2) and regulatory (SUR1 or SUR2) subunits, link metabolism to excitability. Loss of Kir6.2 results in hypoglycemia and hyperinsulinemia, whereas loss of Kir6.1 causes Prinzmetal angina–like symptoms in mice. Conversely, overactivity of Kir6.2 induces neonatal diabetes in mice and humans, but consequences of Kir6.1 overactivity are unknown. Methods and Results We generated transgenic mice expressing wild‐type (WT), ATP‐insensitive Kir6.1 [Gly343Asp] (GD), and ATP‐insensitive Kir6.1 [Gly343Asp,Gln53Arg] (GD‐QR) subunits, under Cre‐recombinase control. Expression was induced in smooth muscle cells by crossing with smooth muscle myosin heavy chain promoter–driven tamoxifen‐inducible Cre‐recombinase (SMMHC‐Cre‐ER) mice. Three weeks after tamoxifen induction, we assessed blood pressure in anesthetized and conscious animals, as well as contractility of mesenteric artery smooth muscle and KATP currents in isolated mesenteric artery myocytes. Both systolic and diastolic blood pressures were significantly reduced in GD and GD‐QR mice but normal in mice expressing the WT transgene and elevated in Kir6.1 knockout mice as well as in mice expressing dominant‐negative Kir6.1 [AAA] in smooth muscle. Contractile response of isolated GD‐QR mesenteric arteries was blunted relative to WT controls, but nitroprusside relaxation was unaffected. Basal KATP conductance and pinacidil‐activated conductance were elevated in GD but not in WT myocytes. Conclusions KATP overactivity in vascular muscle can lead directly to reduced vascular contractility and lower blood pressure. We predict that gain of vascular KATP function in humans would lead to a chronic vasodilatory phenotype, as indeed has recently been demonstrated in Cantu syndrome. PMID:23974906

  8. Hydrogen sulfide mediates hypoxia-induced relaxation of trout urinary bladder smooth muscle.

    PubMed

    Dombkowski, Ryan A; Doellman, Meredith M; Head, Sally K; Olson, Kenneth R

    2006-08-01

    Hydrogen sulfide (H2S) is a recently identified gasotransmitter that may mediate hypoxic responses in vascular smooth muscle. H2S also appears to be a signaling molecule in mammalian non-vascular smooth muscle, but its existence and function in non-mammalian non-vascular smooth muscle have not been examined. In the present study we examined H2S production and its physiological effects in urinary bladder from steelhead and rainbow trout (Oncorhynchus mykiss) and evaluated the relationship between H2S and hypoxia. H2S was produced by trout bladders, and its production was sensitive to inhibitors of cystathionine beta-synthase and cystathionine gamma-lyase. H2S produced a dose-dependent relaxation in unstimulated and carbachol pre-contracted bladders and inhibited spontaneous contractions. Bladders pre-contracted with 80 mmol l(-1) KCl were less sensitive to H2S than bladders contracted with either 80 mmol l(-1) KC2H3O2 (KAc) or carbachol, suggesting that some of the H2S effects are mediated through an ion channel. However, H2S relaxation of bladders was not affected by the potassium channel inhibitors, apamin, charybdotoxin, 4-aminopyridine, and glybenclamide, or by chloride channel/exchange inhibitors 4,4'-Diisothiocyanatostilbene-2,2'-disulfonic acid disodium salt, tamoxifen and glybenclamide, or by the presence or absence of extracellular HCO3-. Inhibitors of neuronal mechanisms, tetrodotoxin, strychnine and N-vanillylnonanamide were likewise ineffective. Hypoxia (aeration with N2) also relaxed bladders, was competitive with H2S for relaxation, and it was equally sensitive to KCl, and unaffected by neuronal blockade or the presence of extracellular HCO3-. Inhibitors of H2S synthesis also inhibited hypoxic relaxation. These experiments suggest that H2S is a phylogenetically ancient gasotransmitter in non-mammalian non-vascular smooth muscle and that it serves as an oxygen sensor/transducer, mediating the effects of hypoxia.

  9. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders

    PubMed Central

    Brozovich, F.V.; Nicholson, C.J.; Degen, C.V.; Gao, Yuan Z.; Aggarwal, M.

    2016-01-01

    The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function. PMID:27037223

  10. The regulation of smooth muscle contractility by zipper-interacting protein kinase.

    PubMed

    Ihara, Eikichi; MacDonald, Justin A

    2007-01-01

    Smooth muscle contractility is mainly regulated by phosphorylation of the 20 kDa myosin light chains (LC20), a process that is controlled by the opposing activities of myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP). Recently, intensive research has revealed that various protein kinase networks including Rho-kinase, integrin-linked kinase, zipper-interacting protein kinase (ZIPK), and protein kinase C (PKC) are involved in the regulation of LC20 phosphorylation and have important roles in modulating smooth muscle contractile responses to Ca2+ (i.e., Ca2+ sensitization and Ca2+ desensitization). Here, we review the general background and structure of ZIPK and summarize our current understanding of its involvement in a number of cell processes including cell death (apoptosis), cell motility, and smooth muscle contraction. ZIPK has been found to induce the diphosphorylation of LC20 at Ser-19 and Thr-18 in a Ca2+-independent manner and to regulate MLCP activity directly through its phosphorylation of the myosin-targeting subunit of MLCP or indirectly through its phosphorylation of the PKC-potentiated inhibitory protein of MLCP. Future investigations of ZIPK function in smooth muscle will undoubtably focus on determining the mechanisms that regulate its cellular activity, including the identification of upstream signaling pathways, the characterization of autoinhibitory domains and regulatory phosphorylation sites, and the development of specific inhibitor compounds.

  11. Disturbance of smooth muscle regulatory function by Eisenia foetida toxin lysenin: insight into the mechanism of smooth muscle contraction.

    PubMed

    Czuryło, Edward A; Kulikova, Natalia; Sobota, Andrzej

    2008-05-01

    Lysenin, a toxin present in the coelomic fluid of the earthworm Eisenia foetida, is known to cause a long-lasting contraction of rat aorta smooth muscle strips. We addressed the mechanisms underlying its action on smooth muscle cells and present the first report demonstrating a completely new property of lysenin unrelated to its basic sphingomyelin-binding ability. Here we report lysenin enhancement effect on smooth muscle actomyosin ATPase activity and the ability of networking the actin filaments. The maximum enhancement of the ATPase activity of actomyosin at 120 mM KCl was observed at a molar ratio of lysenin to actin of about 1:10(5), while at 70 mM KCl at the ratio of about 1:10(6). The effect of lysenin became most pronounced only when both smooth muscle regulatory proteins, tropomyosin and caldesmon, were present. Co-sedimentation experiments indicated that lysenin did not displace neither tropomyosin nor caldesmon from the thin filament. Thus, the lysenin-dependent abolishment of the inhibitory effect of caldesmon on the ATPase activity was related rather to the modification of the filament structure. The ability of the toxin to exert its stimulatory effect at extremely low concentrations (as low as one molecule of lysenin per 10(6) actin molecules) may result from the long-range cooperative transitions in the entire thin filament with an involvement of smooth muscle tropomyosin, while the role of caldesmon may be limited exclusively to the inhibition of ATPase activity.

  12. Stimulation of aortic smooth muscle cell mitogenesis by serotonin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemecek, G.M.; Coughlin, S.R.; Handley, D.A.

    1986-02-01

    Bovine aortic smooth muscle cells in vitro responded to 1 nM to 10 ..mu..M serotonin with increased incorporation of (/sup 3/H)thymidine into DNA. The mitogenic effect of serotonin was half-maximal at 80 nM and maximal above 1 ..mu..M. At a concentration of 1 ..mu..M, serotonin stimulated smooth muscle cell mitogenesis to the same extent as human platelet-derived growth factor (PDGF) at 12 ng/ml. Tryptamine was approx. = 1/10th as potent as serotonin as a mitogen for smooth muscle cells. Other indoles that are structurally related to serotonin (D- and L-tryptophan, 5-hydroxy-L-tryptophan, N-acetyl-5-hydroxytryptamine, melatonin, 5-hydroxyindoleacetic acid, and 5-hydroxytryptophol) and quipazine weremore » inactive. The stimulatory effect of serotonin on smooth muscle cell DNA synthesis required prolonged (20-24 hr) exposure to the agonist and was attenuated in the presence of serotonin D receptor antagonists. When smooth muscle cells were incubated with submaximal concentrations of serotonin and PDGF, synergistic rather than additive mitogenic responses were observed. These data indicate that serotonin has a significant mitogenic effect on smooth muscle cells in vitro, which appears to be mediated by specific plasma membrane receptors.« less

  13. Importance of contraction history on muscle force of porcine urinary bladder smooth muscle.

    PubMed

    Menzel, Robin; Böl, Markus; Siebert, Tobias

    2017-02-01

    The purpose of this study was to provide a comprehensive dataset of porcine urinary bladder smooth muscle properties. Particularly, the history dependence of force production, namely force depression (FD) following shortening and force enhancement (FE) following stretch, was analysed. During active micturition, the circumference of the urinary bladder changes enormously. Thus, FD might be an important phenomenon during smooth muscle contraction. Electrically stimulated, intact urinary bladder strips from pigs (n = 10) were suspended in an aerated-filled organ bath, and different isometric, isotonic, and isokinetic contraction protocols were performed to determine the force-length and the force-velocity relation. FD and FE were assessed in concentric and eccentric contractions with different ramp lengths and ramp velocities. Bladder smooth muscles exhibit considerable amounts of FD and FE. The amount of FD increased significantly with ramp length, while FE did not change. However, FE and FD were independent of ramp velocity. The results imply that smooth muscle bladder strips exhibit similar muscle properties and history-dependent behaviour compared to striated muscles. The provided dataset of muscle properties is important for bladder modelling as well as for the analyses and interpretation of dynamic bladder filling and voiding.

  14. FABP4 induces vascular smooth muscle cell proliferation and migration through a MAPK-dependent pathway.

    PubMed

    Girona, Josefa; Rosales, Roser; Plana, Núria; Saavedra, Paula; Masana, Lluís; Vallvé, Joan-Carles

    2013-01-01

    The migration and proliferation of vascular smooth muscle cells play crucial roles in the development of atherosclerotic lesions. This study examined the effects of fatty acid binding protein 4 (FABP4), an adipokine that is associated with cardiovascular risk, endothelial dysfunction and proinflammatory effects, on the migration and proliferation of human coronary artery smooth muscle cells (HCASMCs). A DNA 5-bromo-2'-deoxy-uridine (BrdU) incorporation assay indicated that FABP4 significantly induced the dose-dependent proliferation of HCASMCs with a maximum stimulatory effect at 120 ng/ml (13% vs. unstimulated cells, p<0.05). An anti-FABP4 antibody (40 ng/ml) significantly inhibited the induced cell proliferation, demonstrating the specificity of the FABP4 proliferative effect. FABP4 significantly induced HCASMC migration in a dose-dependent manner with an initial effect at 60 ng/ml (12% vs. unstimulated cells, p<0.05). Time-course studies demonstrated that FABP4 significantly increased cell migration compared with unstimulated cells from 4 h (23%vs. 17%, p<0.05) to 12 h (74%vs. 59%, p<0.05). Pretreatment with LY-294002 (5 µM) and PD98059 (10 µM) blocked the FABP4-induced proliferation and migration of HCASMCs, suggesting the activation of a kinase pathway. On a molecular level, we observed an up-regulation of the MAPK pathway without activation of Akt. We found that FABP4 induced the active forms of the nuclear transcription factors c-jun and c-myc, which are regulated by MAPK cascades, and increased the expression of the downstream genes cyclin D1 and MMP2, CCL2, and fibulin 4 and 5, which are involved in cell cycle regulation and cell migration. These findings indicate a direct effect of FABP4 on the migration and proliferation of HCASMCs, suggesting a role for this adipokine in vascular remodelling. Taken together, these results demonstrate that the FABP4-induced DNA synthesis and cell migration are mediated primarily through a MAPK-dependent pathway that

  15. Inhibition of Smooth Muscle Proliferation by Urea-Based Alkanoic Acids via Peroxisome Proliferator-Activated Receptor α–Dependent Repression of Cyclin D1

    PubMed Central

    Ng, Valerie Y.; Morisseau, Christophe; Falck, John R.; Hammock, Bruce D.; Kroetz, Deanna L.

    2007-01-01

    Objective Proliferation of smooth muscle cells is implicated in cardiovascular complications. Previously, a urea-based soluble epoxide hydrolase inhibitor was shown to attenuate smooth muscle cell proliferation. We examined the possibility that urea-based alkanoic acids activate the nuclear receptor peroxisome proliferator-activated receptor α (PPARα) and the role of PPARα in smooth muscle cell proliferation. Methods and Results Alkanoic acids transactivated PPARα, induced binding of PPARα to its response element, and significantly induced the expression of PPARα-responsive genes, showing their function as PPARα agonists. Furthermore, the alkanoic acids attenuated platelet-derived growth factor–induced smooth muscle cell proliferation via repression of cyclin D1 expression. Using small interfering RNA to decrease endogenous PPARα expression, it was determined that PPARα was partially involved in the cyclin D1 repression. The antiproliferative effects of alkanoic acids may also be attributed to their inhibitory effects on soluble epoxide hydrolase, because epoxyeicosatrienoic acids alone inhibited smooth muscle cell proliferation. Conclusions These results show that attenuation of smooth muscle cell proliferation by urea-based alkanoic acids is mediated, in part, by the activation of PPARα. These acids may be useful for designing therapeutics to treat diseases characterized by excessive smooth muscle cell proliferation. PMID:16917105

  16. The relationship between bronchial hyperresponsiveness to methacholine and airway smooth muscle structure and reactivity.

    PubMed

    Armour, C L; Black, J L; Berend, N; Woolcock, A J

    1984-11-01

    The airway responsiveness of a group of 25 patients scheduled for lung resection was studied. 10 of 25 patients had a greater than or equal to 20% fall in FEV1 in response to inhaled methacholine (responders), with PD20 FEV1 values ranging from 0.6 to 7.3 mumol. Methacholine did not induce a 20% fall in FEV1 in 15 patients (non-responders). The sensitivity to carbachol and histamine of the bronchial smooth muscle resected from these patients was similar in tissue from responders and non-responders. There was no correlation between in vivo responsiveness to methacholine and in vitro sensitivity to carbachol or histamine. The volume of smooth muscle in some of these airway preparations was quantitated. There was a significant correlation between the maximum tension change in response to histamine and the volume of smooth muscle in each airway. There was no similar correlation for carbachol. The in vivo responsiveness to methacholine and in vitro sensitivity to histamine or carbachol was not related to the degree of inflammation in the airways studied. It is concluded that in vivo responsiveness cannot be explained in terms of smooth muscle sensitivity and that there may be differences between histamine and carbachol in the mechanism of contraction of airway smooth muscle.

  17. [Urothelium-dependent modulation of urinary bladder smooth muscle contractions by menthol].

    PubMed

    Paduraru, O M; Filippov, I B; Boldyriev, O I; Vladymyrova, I A; Naĭd'onov, V H; Shuba, Ia M

    2011-01-01

    TRPM8 cold receptor/channel is considered amongst the variety of receptors that support and modulate sensory function of urothelium, although the information regarding this is still quite contradictory. Here we have studied the effects of nonspecific TRPM8 activator menthol on the contractions of the smooth muscle strips of the rat bladder with intact and removed urothelium, and assessed the expression in them of TRPM8 mRNA using semi-quantitative RT-PCR. Menthol (100 microM) decreased the basal tone and the amplitude of spontaneous contractions only in the strips with intact urothelium. Irrespective of the presence of urothelium it similarly inhibited (by approximately 45 %) the contractions evoked by high-potassium depolarization. Contractions induced by muscarinic agonist carbachol (1 microM) were inhibited by menthol much stronger (by approximately 63%) if the urothelium was present than without it (by approximately 12%). Expression of TRPM8 mRNA in urothelium was not detected, whilst in detrusor smooth muscle it was found very low. We conclude that modulation of contractile responses by menthol is most likely explained by its blocking action on voltage-gated calcium channels ofdetrusor smooth muscle cells (SMC) and by menthol-stimulated release from urothelium of some factor(s) with relaxant effects on SMCs. Stimulation of the secretion of these factors from urothelial cells most likely involves menthol-induced, TRPM8-independent mobilization of calcium.

  18. Ureter smooth muscle cell orientation in rat is predominantly longitudinal.

    PubMed

    Spronck, Bart; Merken, Jort J; Reesink, Koen D; Kroon, Wilco; Delhaas, Tammo

    2014-01-01

    In ureter peristalsis, the orientation of the contracting smooth muscle cells is essential, yet current descriptions of orientation and composition of the smooth muscle layer in human as well as in rat ureter are inconsistent. The present study aims to improve quantification of smooth muscle orientation in rat ureters as a basis for mechanistic understanding of peristalsis. A crucial step in our approach is to use two-photon laser scanning microscopy and image analysis providing objective, quantitative data on smooth muscle cell orientation in intact ureters, avoiding the usual sectioning artifacts. In 36 rat ureter segments, originating from a proximal, middle or distal site and from a left or right ureter, we found close to the adventitia a well-defined longitudinal smooth muscle orientation. Towards the lamina propria, the orientation gradually became slightly more disperse, yet the main orientation remained longitudinal. We conclude that smooth muscle cell orientation in rat ureter is predominantly longitudinal, though the orientation gradually becomes more disperse towards the proprial side. These findings do not support identification of separate layers. The observed longitudinal orientation suggests that smooth muscle contraction would rather cause local shortening of the ureter, than cause luminal constriction. However, the net-like connective tissue of the ureter wall may translate local longitudinal shortening into co-local luminal constriction, facilitating peristalsis. Our quantitative, minimally invasive approach is a crucial step towards more mechanistic insight into ureter peristalsis, and may also be used to study smooth muscle cell orientation in other tube-like structures like gut and blood vessels.

  19. A Contractile Network of Interstitial Cells of Cajal in the Supratarsal Mueller's Smooth Muscle Fibers With Sparse Sympathetic Innervation

    PubMed Central

    Yuzuriha, Shunsuke; Matsuo, Kiyoshi; Ban, Ryokuya; Yano, Shiharu; Moriizumi, Tetsuji

    2012-01-01

    Background: We previously reported that the supratarsal Mueller's muscle is innervated by both sympathetic efferent fibers and trigeminal proprioceptive afferent fibers, which function as mechanoreceptors-inducing reflexive contractions of both the levator and frontalis muscles. Controversy still persists regarding the role of the mechanoreceptors in Mueller's muscle; therefore, we clinically and histologically investigated Mueller's muscle. Methods: We evaluated the role of phenylephrine administration into the upper fornix in contraction of Mueller's smooth muscle fibers and how intraoperative stretching of Mueller's muscle alters the degree of eyelid retraction in 20 patients with aponeurotic blepharoptosis. In addition, we stained Mueller's muscle in 7 cadavers with antibodies against α-smooth muscle actin, S100, tyrosine hydroxylase, c-kit, and connexin 43. Results: Maximal eyelid retraction occurred approximately 3.8 minutes after administration of phenylephrine and prolonged eyelid retraction for at least 20 minutes after administration. Intraoperative stretching of Mueller's muscle increased eyelid retraction due to its reflexive contraction. The tyrosine hydroxylase antibody sparsely stained postganglionic sympathetic nerve fibers, whereas the S100 and c-kit antibodies densely stained the interstitial cells of Cajal (ICCs) among Mueller's smooth muscle fibers. A connexin 43 antibody failed to stain Mueller's muscle. Conclusions: A contractile network of ICCs may mediate neurotransmission within Mueller's multiunit smooth muscle fibers that are sparsely innervated by postganglionic sympathetic fibers. Interstitial cells of Cajal may also serve as mechanoreceptors that reflexively contract Mueller's smooth muscle fibers, forming intimate associations with intramuscular trigeminal proprioceptive fibers to induce reflexive contraction of the levator and frontalis muscles. PMID:22359687

  20. Smooth muscle tension induces invasive remodeling of the zebrafish intestine.

    PubMed

    Seiler, Christoph; Davuluri, Gangarao; Abrams, Joshua; Byfield, Fitzroy J; Janmey, Paul A; Pack, Michael

    2012-01-01

    The signals that initiate cell invasion are not well understood, but there is increasing evidence that extracellular physical signals play an important role. Here we show that epithelial cell invasion in the intestine of zebrafish meltdown (mlt) mutants arises in response to unregulated contractile tone in the surrounding smooth muscle cell layer. Physical signaling in mlt drives formation of membrane protrusions within the epithelium that resemble invadopodia, matrix-degrading protrusions present in invasive cancer cells. Knockdown of Tks5, a Src substrate that is required for invadopodia formation in mammalian cells blocked formation of the protrusions and rescued invasion in mlt. Activation of Src-signaling induced invadopodia-like protrusions in wild type epithelial cells, however the cells did not migrate into the tissue stroma, thus indicating that the protrusions were required but not sufficient for invasion in this in vivo model. Transcriptional profiling experiments showed that genes responsive to reactive oxygen species (ROS) were upregulated in mlt larvae. ROS generators induced invadopodia-like protrusions and invasion in heterozygous mlt larvae but had no effect in wild type larvae. Co-activation of oncogenic Ras and Wnt signaling enhanced the responsiveness of mlt heterozygotes to the ROS generators. These findings present the first direct evidence that invadopodia play a role in tissue cell invasion in vivo. In addition, they identify an inducible physical signaling pathway sensitive to redox and oncogenic signaling that can drive this process.

  1. Smooth Muscle Tension Induces Invasive Remodeling of the Zebrafish Intestine

    PubMed Central

    Seiler, Christoph; Davuluri, Gangarao; Abrams, Joshua; Byfield, Fitzroy J.; Janmey, Paul A.; Pack, Michael

    2012-01-01

    The signals that initiate cell invasion are not well understood, but there is increasing evidence that extracellular physical signals play an important role. Here we show that epithelial cell invasion in the intestine of zebrafish meltdown (mlt) mutants arises in response to unregulated contractile tone in the surrounding smooth muscle cell layer. Physical signaling in mlt drives formation of membrane protrusions within the epithelium that resemble invadopodia, matrix-degrading protrusions present in invasive cancer cells. Knockdown of Tks5, a Src substrate that is required for invadopodia formation in mammalian cells blocked formation of the protrusions and rescued invasion in mlt. Activation of Src-signaling induced invadopodia-like protrusions in wild type epithelial cells, however the cells did not migrate into the tissue stroma, thus indicating that the protrusions were required but not sufficient for invasion in this in vivo model. Transcriptional profiling experiments showed that genes responsive to reactive oxygen species (ROS) were upregulated in mlt larvae. ROS generators induced invadopodia-like protrusions and invasion in heterozygous mlt larvae but had no effect in wild type larvae. Co-activation of oncogenic Ras and Wnt signaling enhanced the responsiveness of mlt heterozygotes to the ROS generators. These findings present the first direct evidence that invadopodia play a role in tissue cell invasion in vivo. In addition, they identify an inducible physical signaling pathway sensitive to redox and oncogenic signaling that can drive this process. PMID:22973180

  2. Novel treatment strategies for smooth muscle disorders: Targeting Kv7 potassium channels.

    PubMed

    Haick, Jennifer M; Byron, Kenneth L

    2016-09-01

    Smooth muscle cells provide crucial contractile functions in visceral, vascular, and lung tissues. The contractile state of smooth muscle is largely determined by their electrical excitability, which is in turn influenced by the activity of potassium channels. The activity of potassium channels sustains smooth muscle cell membrane hyperpolarization, reducing cellular excitability and thereby promoting smooth muscle relaxation. Research over the past decade has indicated an important role for Kv7 (KCNQ) voltage-gated potassium channels in the regulation of the excitability of smooth muscle cells. Expression of multiple Kv7 channel subtypes has been demonstrated in smooth muscle cells from viscera (gastrointestinal, bladder, myometrial), from the systemic and pulmonary vasculature, and from the airways of the lung, from multiple species, including humans. A number of clinically used drugs, some of which were developed to target Kv7 channels in other tissues, have been found to exert robust effects on smooth muscle Kv7 channels. Functional studies have indicated that Kv7 channel activators and inhibitors have the ability to relax and contact smooth muscle preparations, respectively, suggesting a wide range of novel applications for the pharmacological tool set. This review summarizes recent findings regarding the physiological functions of Kv7 channels in smooth muscle, and highlights potential therapeutic applications based on pharmacological targeting of smooth muscle Kv7 channels throughout the body. Published by Elsevier Inc.

  3. Modeling the dispersion effects of contractile fibers in smooth muscles

    NASA Astrophysics Data System (ADS)

    Murtada, Sae-Il; Kroon, Martin; Holzapfel, Gerhard A.

    2010-12-01

    Micro-structurally based models for smooth muscle contraction are crucial for a better understanding of pathological conditions such as atherosclerosis, incontinence and asthma. It is meaningful that models consider the underlying mechanical structure and the biochemical activation. Hence, a simple mechanochemical model is proposed that includes the dispersion of the orientation of smooth muscle myofilaments and that is capable to capture available experimental data on smooth muscle contraction. This allows a refined study of the effects of myofilament dispersion on the smooth muscle contraction. A classical biochemical model is used to describe the cross-bridge interactions with the thin filament in smooth muscles in which calcium-dependent myosin phosphorylation is the only regulatory mechanism. A novel mechanical model considers the dispersion of the contractile fiber orientations in smooth muscle cells by means of a strain-energy function in terms of one dispersion parameter. All model parameters have a biophysical meaning and may be estimated through comparisons with experimental data. The contraction of the middle layer of a carotid artery is studied numerically. Using a tube the relationships between the internal pressure and the stretches are investigated as functions of the dispersion parameter, which implies a strong influence of the orientation of smooth muscle myofilaments on the contraction response. It is straightforward to implement this model in a finite element code to better analyze more complex boundary-value problems.

  4. A novel bronchial ring bioassay for the evaluation of small airway smooth muscle function in mice.

    PubMed

    Liu, John Q; Yang, Dennis; Folz, Rodney J

    2006-08-01

    Advances in our understanding of murine airway physiology have been hindered by the lack of suitable, ex vivo, small airway bioassay systems. In this study, we introduce a novel small murine airway bioassay system that permits the physiological and pharmacological study of intrapulmonary bronchial smooth muscle via a bronchial ring (BR) preparation utilizing BR segments as small as 200 microm in diameter. Using this ex vivo BR bioassay, we characterized small airway smooth muscle contraction and relaxation in the presence and absence of bronchial epithelium. In control BRs, the application of mechanical stretch is followed by spontaneous bronchial smooth muscle relaxation. BRs pretreated with methacholine (MCh) partially attenuate this stretch-induced relaxation by as much as 42% compared with control. MCh elicited a dose-dependent bronchial constriction with a maximal tension (E(max)) of 8.7 +/- 0.2 mN at an EC(50) of 0.33 +/- 0.02 microM. In the presence of nifedipine, ryanodine, 2-aminoethoxydiphenyl borate, and SKF-96365, E(max) to MCh was significantly reduced. In epithelium-denuded BRs, MCh-induced contraction was significantly enhanced to 11.4 +/- 1.0 mN with an EC(50) of 0.16 +/- 0.04 microM (P < 0.01). Substance P relaxed MCh-precontracted BR by 62.1%; however, this bronchial relaxation effect was completely lost in epithelium-denuded BRs. Papaverine virtually abolished MCh-induced constriction in both epithelium-intact and epithelium-denuded bronchial smooth muscle. In conclusion, this study introduces a novel murine small airway BR bioassay that allows for the physiological study of smooth muscle airway contractile responses that may aid in our understanding of the pathophysiology of asthma.

  5. Graded effects of unregulated smooth muscle myosin on intestinal architecture, intestinal motility and vascular function in zebrafish.

    PubMed

    Abrams, Joshua; Einhorn, Zev; Seiler, Christoph; Zong, Alan B; Sweeney, H Lee; Pack, Michael

    2016-05-01

    Smooth muscle contraction is controlled by the regulated activity of the myosin heavy chain ATPase (Myh11). Myh11 mutations have diverse effects in the cardiovascular, digestive and genitourinary systems in humans and animal models. We previously reported a recessive missense mutation, meltdown (mlt), which converts a highly conserved tryptophan to arginine (W512R) in the rigid relay loop of zebrafish Myh11. The mlt mutation disrupts myosin regulation and non-autonomously induces invasive expansion of the intestinal epithelium. Here, we report two newly identified missense mutations in the switch-1 (S237Y) and coil-coiled (L1287M) domains of Myh11 that fail to complement mlt Cell invasion was not detected in either homozygous mutant but could be induced by oxidative stress and activation of oncogenic signaling pathways. The smooth muscle defect imparted by the mlt and S237Y mutations also delayed intestinal transit, and altered vascular function, as measured by blood flow in the dorsal aorta. The cell-invasion phenotype induced by the three myh11 mutants correlated with the degree of myosin deregulation. These findings suggest that the vertebrate intestinal epithelium is tuned to the physical state of the surrounding stroma, which, in turn, governs its response to physiologic and pathologic stimuli. Genetic variants that alter the regulation of smooth muscle myosin might be risk factors for diseases affecting the intestine, vasculature, and other tissues that contain smooth muscle or contractile cells that express smooth muscle proteins, particularly in the setting of redox stress. © 2016. Published by The Company of Biologists Ltd.

  6. Mediation of acetylcholine and substance P induced contractions by myosin light chain phosphorylation in feline colonic smooth muscle.

    PubMed

    Washabau, Robert J; Holt, David E; Brockman, Daniel J

    2002-05-01

    To determine the role of myosin light chain phosphorylation in feline colonic smooth muscle contraction. Colonic tissue was obtained from eight 12- to 24-month-old cats. Colonic longitudinal smooth muscle strips were attached to isometric force transducers for measurements of isometric stress. Myosin light chain phosphorylation was determined by isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Stress and phosphorylation were determined following stimulation with ACh or SP, in the absence or presence of a calmodulin antagonist (W-7; 0.1 to 1.0 mM), myosin light chain kinase inhibitor (ML-9; 1 to 10 microM), or extracellular calcium free solutions. Unstimulated longitudinal colonic smooth muscle contained low amounts (6.9+/-3.2%) of phosphorylated myosin light chain. Phosphorylation of the myosin light chains was dose and time dependent with maximal values of 58.5% at 30 seconds of stimulation with 100 microM Ach and 60.2% at 45 seconds of stimulation with 100 nM SP Active isometric stress development closely paralleled phosphorylation of the myosin light chains in ACh- or SP-stimulated muscle. W-7 and ML-9 dose dependently inhibited myosin light chain phosphorylation and isometric stress development associated with ACh or SP stimulation. Removal of extracellular calcium inhibited myosin light chain phosphorylation and isometric stress development in ACh-stimulated smooth muscle. Feline longitudinal colonic smooth muscle contraction is calcium-, calmodulin-, and myosin light chain kinase-dependent. Myosin light chain phosphorylation is necessary for the initiation of contraction in feline longitudinal colonic smooth muscle. These findings may prove useful in determining the biochemical and molecular defects that accompany feline colonic motility disorders.

  7. Extracellular cyclic ADP-ribose potentiates ACh-induced contraction in bovine tracheal smooth muscle.

    PubMed

    Franco, L; Bruzzone, S; Song, P; Guida, L; Zocchi, E; Walseth, T F; Crimi, E; Usai, C; De Flora, A; Brusasco, V

    2001-01-01

    Cyclic ADP-ribose (cADPR), a universal calcium releaser, is generated from NAD(+) by an ADP-ribosyl cyclase and is degraded to ADP-ribose by a cADPR hydrolase. In mammals, both activities are expressed as ectoenzymes by the transmembrane glycoprotein CD38. CD38 was identified in both epithelial cells and smooth myocytes isolated from bovine trachea. Intact tracheal smooth myocytes (TSMs) responded to extracellular cADPR (100 microM) with an increase in intracellular calcium concentration ([Ca(2+)](i)) both at baseline and after acetylcholine (ACh) stimulation. The nonhydrolyzable analog 3-deaza-cADPR (10 nM) elicited the same effects as cADPR, whereas the cADPR antagonist 8-NH(2)-cADPR (10 microM) inhibited both basal and ACh-stimulated [Ca(2+)](i) levels. Extracellular cADPR or 3-deaza-cADPR caused a significant increase of ACh-induced contraction in tracheal smooth muscle strips, whereas 8-NH(2)-cADPR decreased it. Tracheal mucosa strips, by releasing NAD(+), enhanced [Ca(2+)](i) in isolated TSMs, and this increase was abrogated by either NAD(+)-ase or 8-NH(2)-cADPR. These data suggest the existence of a paracrine mechanism whereby mucosa-released extracellular NAD(+) plays a hormonelike function and cADPR behaves as second messenger regulating calcium-related contractility in TSMs.

  8. On the thermodynamics of smooth muscle contraction

    NASA Astrophysics Data System (ADS)

    Stålhand, Jonas; McMeeking, Robert M.; Holzapfel, Gerhard A.

    2016-09-01

    Cell function is based on many dynamically complex networks of interacting biochemical reactions. Enzymes may increase the rate of only those reactions that are thermodynamically consistent. In this paper we specifically treat the contraction of smooth muscle cells from the continuum thermodynamics point of view by considering them as an open system where matter passes through the cell membrane. We systematically set up a well-known four-state kinetic model for the cross-bridge interaction of actin and myosin in smooth muscle, where the transition between each state is driven by forward and reverse reactions. Chemical, mechanical and energy balance laws are provided in local forms, while energy balance is also formulated in the more convenient temperature form. We derive the local (non-negative) production of entropy from which we deduce the reduced entropy inequality and the constitutive equations for the first Piola-Kirchhoff stress tensor, the heat flux, the ion and molecular flux and the entropy. One example for smooth muscle contraction is analyzed in more detail in order to provide orientation within the established general thermodynamic framework. In particular the stress evolution, heat generation, muscle shorting rate and a condition for muscle cooling are derived.

  9. Bone Morphogenetic Protein-Induced Msx1 and Msx2 Inhibit Myocardin-Dependent Smooth Muscle Gene Transcription▿

    PubMed Central

    Hayashi, Ken'ichiro; Nakamura, Seiji; Nishida, Wataru; Sobue, Kenji

    2006-01-01

    During the onset and progression of atherosclerosis, the vascular smooth muscle cell (VSMC) phenotype changes from differentiated to dedifferentiated, and in some cases, this change is accompanied by osteogenic transition, resulting in vascular calcification. One characteristic of dedifferentiated VSMCs is the down-regulation of smooth muscle cell (SMC) marker gene expression. Bone morphogenetic proteins (BMPs), which are involved in the induction of osteogenic gene expression, are detected in calcified vasculature. In this study, we found that the BMP2-, BMP4-, and BMP6-induced expression of Msx transcription factors (Msx1 and Msx2) preceded the down-regulation of SMC marker expression in cultured differentiated VSMCs. Either Msx1 or Msx2 markedly reduced the myocardin-dependent promoter activities of SMC marker genes (SM22α and caldesmon). We further investigated interactions between Msx1 and myocardin/serum response factor (SRF)/CArG-box motif (cis element for SRF) using coimmunoprecipitation, gel-shift, and chromatin immunoprecipitation assays. Our results showed that Msx1 or Msx2 formed a ternary complex with SRF and myocardin and inhibited the binding of SRF or SRF/myocardin to the CArG-box motif, resulting in inhibition of their transcription. PMID:17030628

  10. Bone morphogenetic protein-induced MSX1 and MSX2 inhibit myocardin-dependent smooth muscle gene transcription.

    PubMed

    Hayashi, Ken'ichiro; Nakamura, Seiji; Nishida, Wataru; Sobue, Kenji

    2006-12-01

    During the onset and progression of atherosclerosis, the vascular smooth muscle cell (VSMC) phenotype changes from differentiated to dedifferentiated, and in some cases, this change is accompanied by osteogenic transition, resulting in vascular calcification. One characteristic of dedifferentiated VSMCs is the down-regulation of smooth muscle cell (SMC) marker gene expression. Bone morphogenetic proteins (BMPs), which are involved in the induction of osteogenic gene expression, are detected in calcified vasculature. In this study, we found that the BMP2-, BMP4-, and BMP6-induced expression of Msx transcription factors (Msx1 and Msx2) preceded the down-regulation of SMC marker expression in cultured differentiated VSMCs. Either Msx1 or Msx2 markedly reduced the myocardin-dependent promoter activities of SMC marker genes (SM22alpha and caldesmon). We further investigated interactions between Msx1 and myocardin/serum response factor (SRF)/CArG-box motif (cis element for SRF) using coimmunoprecipitation, gel-shift, and chromatin immunoprecipitation assays. Our results showed that Msx1 or Msx2 formed a ternary complex with SRF and myocardin and inhibited the binding of SRF or SRF/myocardin to the CArG-box motif, resulting in inhibition of their transcription.

  11. [Biomechanics and bio-energetics of smooth muscle contraction. Relation to bronchial hyperreactivity].

    PubMed

    Coirault, C; Blanc, F X; Chemla, D; Salmeron, S; Lecarpentier, Y

    2000-06-01

    Mechanical studies of isolated muscle and analysis of molecular actomyosin interactions have improved our understanding of the pathophysiology of airway smooth muscle. Mechanical properties of airway smooth muscle are similar to those of other smooth muscles. Airway smooth muscle exhibits spontaneous intrinsic tone and its maximum shortening velocity (Vmax) is 10-30 fold lower than in striated muscle. Smooth muscle myosin generates step size and elementary force per crossbridge interaction approximately similar to those of skeletal muscle myosin. Special slow cycling crossbridges, termed latch-bridges, have been attributed to myosin light chain dephosphorylation. From a mechanical point of view, it has been shown that airway hyperresponsiveness is characterized by an increased Vmax and an increased shortening capacity, with no significant change in the force-generating capacity.

  12. Neutral endopeptidase inhibitors potentiate substance P-induced contraction in gut smooth muscle.

    PubMed

    Djokic, T D; Sekizawa, K; Borson, D B; Nadel, J A

    1989-01-01

    To determine the role of endogenous neutral endopeptidase (NEP), also called enkephalinase (EC 3.4.24.11), in regulating tachykinin-induced contraction of gut smooth muscle, we studied the effects of NEP inhibitors on the contractile responses to substance P (SP) in isolated longitudinal strips of ileum or duodenum in rats and ferrets. Leucine-thiorphan and phosphoramidon shifted the concentration-response curves of SP to lower concentrations in all tissues studied, but the sensitivity to SP was greater and the effect of leucine-thiorphan was less in the ferret, a finding that correlated with the observation that the ferret ileum contained substantially less NEP activity than rat ileum. Captopril, bestatin, MGTA, leupeptin, and physostigmine did not alter contractile responses to SP, suggesting that kininase II, aminopeptidases, carboxypeptidase N, serine proteinases, and acetylcholinesterase do not modulate the SP-induced effects. These studies suggest that, in the ileum and duodenum, NEP modulates the actions of SP and, furthermore, that the sensitivity of tissues may be determined, at least in part, by the amount of enzymatically active NEP present.

  13. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Qing-Mei, E-mail: 34713316@qq.com; Jiang, Ping, E-mail: jiangping@163.com; Yang, Min, E-mail: YangMin@163.com

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferationmore » and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. - Highlights: • RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. • VEGF-induced cell proliferation was suppressed by inhibiting the activity of ERK1/2. • RXM inhibits activation of VEGFR2 and ERK and

  14. Serotonin-induced contractile responses of esophageal smooth muscle in the house musk shrew (Suncus murinus).

    PubMed

    Shiina, T; Naitou, K; Nakamori, H; Suzuki, Y; Horii, K; Sano, Y; Shimaoka, H; Shimizu, Y

    2016-11-01

    Serotonin (5-hydroxytryptamine, 5-HT) is a regulatory factor in motility of the gastrointestinal tract including the esophagus. Although we proposed that vagal cholinergic and mast cell-derived non-cholinergic components including serotonin coordinately shorten the esophagus, the precise mechanism of serotonin-induced contractions in the suncus esophagus is still unclear. Therefore, the aims of this study were to determine characteristics of contractile responses induced by serotonin and to identify 5-HT receptor subtypes responsible for regulating motility in the suncus esophagus. An isolated segment of the suncus esophagus was placed in an organ bath, and longitudinal or circular mechanical responses were recorded using a force transducer. Serotonin evoked contractile responses of the suncus esophagus in the longitudinal direction but not in the circular direction. Tetrodotoxin did not affect the serotonin-induced contractions. Pretreatment with a non-selective 5-HT receptor antagonist or double application of 5-HT 1 and 5-HT 2 receptor antagonists blocked the serotonin-induced contractions. 5-HT 1 and 5-HT 2 receptor agonists, but not a 5-HT 3 receptor agonist, evoked contractile responses in the suncus esophagus. The findings suggest that serotonin induces contractile responses of the longitudinal smooth muscle in the muscularis mucosae of the suncus esophagus that are mediated via 5-HT 1 and 5-HT 2 receptors on muscle cells. The serotonin-induced contractions might contribute to esophageal peristalsis and emetic response. © 2016 John Wiley & Sons Ltd.

  15. Ca2+-recruitment in tachykinin-induced contractions of gut smooth muscle from African clawed frog, Xenopus laevis and rainbow trout, Oncorhynchus mykiss.

    PubMed

    Johansson, Agot; Holmgren, Susanne

    2003-04-01

    Changes in intracellular Ca(2+) concentration control many essential cellular functions like the contraction of smooth muscle cells. The aim of this study was to investigate if the tachykinin substance P (SP) engages external Ca(2+)-sources, internal Ca(2+)-sources, or both in the contraction of the gastrointestinal smooth muscle of rainbow trout (Oncorhynchus mykiss) and the African clawed frog (Xenopus laevis). Strip preparations made of either longitudinal smooth muscle of proximal intestine or circular smooth muscle of cardiac stomach were mounted in organ baths and the tension was recorded via force transducers. Ca(2+)-free Ringer's solution containing the Ca(2+) chelating agent EGTA (2mM) abolished all spontaneous contractions. Exposure to SP in Ca(2+)-free solution decreased the response. Preparations were also treated with the Ca(2+)-ATPase inhibitor thapsigargin (10 microM) during 30 min. Thapsigargin reduced the effect of SP on intestinal longitudinal smooth muscle in rainbow trout and on stomach circular smooth muscle in the African clawed frog and to a less extent in the intestinal longitudinal smooth muscle. The results show that external Ca(2+) is of great importance, but is not the only source of Ca(2+) recruitment in SP-activation of gastrointestinal smooth muscle in rainbow trout and the African clawed frog.

  16. Lidocaine effect on flotillin-2 distribution in detergent-resistant membranes of equine jejunal smooth muscle in vitro.

    PubMed

    Tappenbeck, Karen; Schmidt, Sonja; Feige, Karsten; Naim, Hassan Y; Huber, Korinna

    2014-05-01

    Lidocaine is the most commonly chosen prokinetic for treating postoperative ileus in horses, a motility disorder associated with ischaemia-reperfusion injury of intestinal tissues. Despite the frequent use of lidocaine, the mechanism underlying its prokinetic effects is still unclear. Previous studies suggested that lidocaine altered cell membrane characteristics of smooth muscle cells. Therefore, the present study aimed to elucidate effects of lidocaine administration on characteristics of detergent-resistant membranes in equine jejunal smooth muscle. Lidocaine administration caused significant redistribution of flotillin-2, a protein marker of detergent-resistant membranes, in fractions of sucrose-density-gradients obtained from ischaemia-reperfusion injured smooth muscle solubilised with Triton X-100. It was concluded that lidocaine induced disruption of detergent-resistant membranes which might affect ion channel activity and therefore enhance smooth muscle contractility. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Nonparametric Model of Smooth Muscle Force Production During Electrical Stimulation.

    PubMed

    Cole, Marc; Eikenberry, Steffen; Kato, Takahide; Sandler, Roman A; Yamashiro, Stanley M; Marmarelis, Vasilis Z

    2017-03-01

    A nonparametric model of smooth muscle tension response to electrical stimulation was estimated using the Laguerre expansion technique of nonlinear system kernel estimation. The experimental data consisted of force responses of smooth muscle to energy-matched alternating single pulse and burst current stimuli. The burst stimuli led to at least a 10-fold increase in peak force in smooth muscle from Mytilus edulis, despite the constant energy constraint. A linear model did not fit the data. However, a second-order model fit the data accurately, so the higher-order models were not required to fit the data. Results showed that smooth muscle force response is not linearly related to the stimulation power.

  18. Cultured smooth muscle cells of the human vesical sphincter are more sensitive to histamine than are detrusor smooth muscle cells.

    PubMed

    Neuhaus, Jochen; Oberbach, Andreas; Schwalenberg, Thilo; Stolzenburg, Jens-Uwe

    2006-05-01

    To compare histamine receptor expression in cultured smooth muscle cells from the human detrusor and internal sphincter using receptor-specific agonists. Smooth muscle cells from the bladder dome and internal sphincter were cultured from 5 male patients undergoing cystectomy for bladder cancer therapy. Calcium transients in cells stimulated with carbachol, histamine, histamine receptor 1 (H1R)-specific heptanecarboxamide (HTMT), dimaprit (H2R), and R-(alpha)-methylhistamine (H3R) were measured by calcium imaging. Histamine receptor proteins were detected by Western blot analysis and immunocytochemistry. H1R, H2R, and H3R expression was found in tissue and cultured cells. Carbachol stimulated equal numbers of detrusor and sphincter cells (60% and 51%, respectively). Histamine stimulated significantly more cells than carbachol in detrusor (100%) and sphincter (99.34%) cells. Calcium responses to carbachol in detrusor and sphincter cells were comparable and did not differ from those to histamine in detrusor cells. However, histamine and specific agonists stimulated more sphincter cells than did carbachol (P <0.001), and the calcium increase was greater in sphincter cells than in detrusor cells. Single cell analysis revealed comparable H2R responses in detrusor and sphincter cells, but H1R and H3R-mediated calcium reactions were significantly greater in sphincter cells. Histamine very effectively induces calcium release in smooth muscle cells. In sphincter cells, histamine is even more effective than carbachol regarding the number of reacting cells and the intracellular calcium increase. Some of the variability in the outcome of antihistaminic interstitial cystitis therapies might be caused by the ineffectiveness of the chosen antihistaminic or unintentional weakening of sphincteric function.

  19. Tyrosine kinase inhibitors suppress prostaglandin F2alpha-induced phosphoinositide hydrolysis, Ca2+ elevation and contraction in iris sphincter smooth muscle.

    PubMed

    Yousufzai, S Y; Abdel-Latif, A A

    1998-11-06

    We investigated the effects of the protein tyrosine kinase inhibitors, genistein, tyrphostin 47, and herbimycin on prostaglandin F2alpha- and carbachol-induced inositol-1,4,5-trisphosphate (IP3) production, [Ca2+]i mobilization and contraction in cat iris sphincter smooth muscle. Prostaglandin F2alpha and carbachol induced contraction in a concentration-dependent manner with EC50 values of 0.92 x 10(-9) and 1.75 x 10(-8) M, respectively. The protein tyrosine kinase inhibitors blocked the stimulatory effects of prostaglandin F2alpha, but not those evoked by carbachol, on IP3 accumulation, [Ca2+]i mobilization and contraction, suggesting involvement of protein tyrosine kinase activity in the physiological actions of the prostaglandin. Daidzein and tyrphostin A, inactive negative control compounds for genistein and tyrphostin 47, respectively, were without effect. Latanoprost, a prostaglandin F2alpha analog used as an antiglaucoma drug, induced contraction and this effect was blocked by genistein. Genistein (10 microM) markedly reduced (by 67%) prostaglandin F2alpha-stimulated increase in [Ca2+]i but had little effect on that of carbachol in cat iris sphincter smooth muscle cells. Vanadate, a potent inhibitor of protein tyrosine phosphatase, induced a slow gradual muscle contraction in a concentration-dependent manner with an EC50 of 82 microM and increased IP3 generation in a concentration-dependent manner with an EC50 of 90 microM. The effects of vanadate were abolished by genistein (10 microM). Wortmannin, a myosin light chain kinase inhibitor, reduced prostaglandin F2alpha- and carbachol-induced contraction, suggesting that the involvement of protein tyrosine kinase activity may lie upstream of the increases in [Ca2+]i evoked by prostaglandin F2alpha. Further studies aimed at elucidating the role of protein tyrosine kinase activity in the coupling mechanism between prostaglandin F2alpha receptor activation and increases in intracellular Ca2+ mobilization and

  20. Fibronectin promotes differentiation of neural crest progenitors endowed with smooth muscle cell potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa-Silva, Bruno; Programa de Pos-graduacao em Neurociencias, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Campus Universitario - Trindade, 88040-900, Florianopolis, S.C.; Coelho da Costa, Meline

    The neural crest (NC) is a model system used to investigate multipotency during vertebrate development. Environmental factors control NC cell fate decisions. Despite the well-known influence of extracellular matrix molecules in NC cell migration, the issue of whether they also influence NC cell differentiation has not been addressed at the single cell level. By analyzing mass and clonal cultures of mouse cephalic and quail trunk NC cells, we show for the first time that fibronectin (FN) promotes differentiation into the smooth muscle cell phenotype without affecting differentiation into glia, neurons, and melanocytes. Time course analysis indicated that the FN-induced effectmore » was not related to massive cell death or proliferation of smooth muscle cells. Finally, by comparing clonal cultures of quail trunk NC cells grown on FN and collagen type IV (CLIV), we found that FN strongly increased both NC cell survival and the proportion of unipotent and oligopotent NC progenitors endowed with smooth muscle potential. In contrast, melanocytic progenitors were prominent in clonogenic NC cells grown on CLIV. Taken together, these results show that FN promotes NC cell differentiation along the smooth muscle lineage, and therefore plays an important role in fate decisions of NC progenitor cells.« less

  1. Effect of oxidative stress on Rho kinase II and smooth muscle contraction in rat stomach.

    PubMed

    Al-Shboul, Othman; Mustafa, Ayman

    2015-06-01

    Recent studies have shown that both Rho kinase signaling and oxidative stress are involved in the pathogenesis of a number of human diseases, such as diabetes mellitus, hypertension, and atherosclerosis. However, very little is known about the effect of oxidative stress on the gastrointestinal (GI) smooth muscle Rho kinase pathway. The aim of the current study was to investigate the effect of oxidative stress on Rho kinase II and muscle contraction in rat stomach. The peroxynitrite donor 3-morpholinosydnonimine (SIN-1), hydrogen peroxide (H2O2), and peroxynitrite were used to induce oxidative stress. Rho kinase II expression and ACh-induced activity were measured in control and oxidant-treated cells via specifically designed enzyme-linked immunosorbent assay (ELISA) and activity assay kits, respectively. Single smooth muscle cell contraction was measured via scanning micrometry in the presence or absence of the Rho kinase blocker, Y-27632 dihydrochloride. All oxidant agents significantly increased ACh-induced Rho kinase II activity without affecting its expression level. Most important, oxidative stress induced by all three agents augmented ACh-stimulated muscle cell contraction, which was significantly inhibited by Y-27632. In conclusion, oxidative stress activates Rho kinase II and enhances contraction in rat gastric muscle, suggesting an important role in GI motility disorders associated with oxidative stress.

  2. Vascular Smooth Muscle-Specific EP4 Receptor Deletion in Mice Exacerbates Angiotensin II-Induced Renal Injury.

    PubMed

    Thibodeau, Jean-Francois; Holterman, Chet E; He, Ying; Carter, Anthony; Cron, Gregory O; Boisvert, Naomi C; Abd-Elrahman, Khaled S; Hsu, Karolynn J; Ferguson, Stephen S G; Kennedy, Christopher R J

    2016-10-20

    Cyclooxygenase inhibition by non-steroidal anti-inflammatory drugs is contraindicated in hypertension, as it may reduce glomerular filtration rate (GFR) and renal blood flow. However, the identity of the specific eicosanoid and receptor underlying these effects is not known. We hypothesized that vascular smooth muscle prostaglandin E2 (PGE2) E-prostanoid 4 (EP4) receptor deletion predisposes to renal injury via unchecked vasoconstrictive actions of angiotensin II (AngII) in a hypertension model. Mice with inducible vascular smooth muscle cell (VSMC)-specific EP4 receptor deletion were generated and subjected to AngII-induced hypertension. EP4 deletion was verified by PCR of aorta and renal vessels, as well as functionally by loss of PGE2-mediated mesenteric artery relaxation. Both AngII-treated groups became similarly hypertensive, whereas albuminuria, foot process effacement, and renal hypertrophy were exacerbated in AngII-treated EP4 VSMC-/- but not in EP4 VSMC+/+ mice and were associated with glomerular scarring, tubulointerstitial injury, and reduced GFR. AngII-treated EP4 VSMC-/- mice exhibited capillary damage and reduced renal perfusion as measured by fluorescent bead microangiography and magnetic resonance imaging, respectively. NADPH oxidase 2 (Nox2) expression was significantly elevated in AngII-treated EP4 -/- mice. EP4-receptor silencing in primary VSMCs abolished PGE2 inhibition of AngII-induced Nox2 mRNA and superoxide production. These data suggest that vascular EP4 receptors buffer the actions of AngII on renal hemodynamics and oxidative injury. EP4 agonists may, therefore, protect against hypertension-associated kidney damage. Antioxid. Redox Signal. 25, 642-656.

  3. Heterotrimeric G Stimulatory Protein α Subunit Is Required for Intestinal Smooth Muscle Contraction in Mice.

    PubMed

    Qin, Xiaoteng; Liu, Shangming; Lu, Qiulun; Zhang, Meng; Jiang, Xiuxin; Hu, Sanyuan; Li, Jingxin; Zhang, Cheng; Gao, Jiangang; Zhu, Min-Sheng; Feil, Robert; Li, Huashun; Chen, Min; Weinstein, Lee S; Zhang, Yun; Zhang, Wencheng

    2017-04-01

    The α subunit of the heterotrimeric G stimulatory protein (Gsa), encoded by the guanine nucleotide binding protein, α-stimulating gene (Gnas, in mice), is expressed ubiquitously and mediates receptor-stimulated production of cyclic adenosine monophosphate and activation of the protein kinase A signaling pathway. We investigated the roles of Gsa in vivo in smooth muscle cells of mice. We performed studies of mice with Cre recombinase-mediated disruption of Gnas in smooth muscle cells (Gsa SMKO and SM22-CreER T2 , induced in adult mice by tamoxifen). Intestinal tissues were collected for histologic, biochemical, molecular, cell biology, and physiology analyses. Intestinal function was assessed in mice using the whole-gut transit time test. We compared gene expression patterns of intestinal smooth muscle from mice with vs without disruption of Gnas. Biopsy specimens from ileum of patients with chronic intestinal pseudo-obstruction and age-matched control biopsies were analyzed by immunohistochemistry. Disruption of Gnas in smooth muscle of mice reduced intestinal motility and led to death within 4 weeks. Tamoxifen-induced disruption of Gnas in adult mice impaired contraction of intestinal smooth muscle and peristalsis. More than 80% of these died within 3 months of tamoxifen exposure, with features of intestinal pseudo-obstruction characterized by chronic intestinal dilation and dysmotility. Gsa deficiency reduced intestinal levels of cyclic adenosine monophosphate and transcriptional activity of the cyclic adenosine monophosphate response element binding protein 1 (CREB1); this resulted in decreased expression of the forkhead box F1 gene (Foxf1) and protein, and contractile proteins, such as myosin heavy chain 11; actin, α2, smooth muscle, aorta; calponin 1; and myosin light chain kinase. We found decreased levels of Gsa, FOXF1, CREB1, and phosphorylated CREB1 proteins in intestinal muscle layers of patients with chronic intestinal pseudo

  4. Endogenous Cardiac Troponin T Modulates Ca2+-Mediated Smooth Muscle Contraction

    PubMed Central

    Kajioka, Shunichi; Takahashi-Yanaga, Fumi; Shahab, Nouval; Onimaru, Mitsuho; Matsuda, Miho; Takahashi, Ryosuke; Asano, Haruhiko; Morita, Hiromitsu; Morimoto, Sachio; Yonemitsu, Yoshikazu; Hayashi, Maya; Seki, Narihito; Sasaguri, Toshiuyki; Hirata, Masato; Nakayama, Shinsuke; Naito, Seiji

    2012-01-01

    Mechanisms linked to actin filaments have long been thought to cooperate in smooth muscle contraction, although key molecules were unclear. We show evidence that cardiac troponin T (cTnT) substantially contributes to Ca2+-mediated contraction in a physiological range of cytosolic Ca2+ concentration ([Ca2+]i). cTnT was detected in various smooth muscles of the aorta, trachea, gut and urinary bladder, including in humans. Also, cTnT was distributed along with tropomyosin in smooth muscle cells, suggesting that these proteins are ready to cause smooth muscle contraction. In chemically permeabilised smooth muscle of cTnT+/− mice in which cTnT reduced to ~50%, the Ca2+-force relationship was shifted toward greater [Ca2+]i, indicating a sizeable contribution of cTnT to smooth muscle contraction at [Ca2+]i < 1 μM. Furthermore, addition of supplemental TnI and TnC reconstructed a troponin system to enhance contraction. The results indicated that a Tn/Tn-like system on actin-filaments cooperates together with the thick-filament pathway. PMID:23248744

  5. FABP4 Induces Vascular Smooth Muscle Cell Proliferation and Migration through a MAPK-Dependent Pathway

    PubMed Central

    Girona, Josefa; Rosales, Roser; Plana, Núria; Saavedra, Paula; Masana, Lluís; Vallvé, Joan-Carles

    2013-01-01

    Purpose The migration and proliferation of vascular smooth muscle cells play crucial roles in the development of atherosclerotic lesions. This study examined the effects of fatty acid binding protein 4 (FABP4), an adipokine that is associated with cardiovascular risk, endothelial dysfunction and proinflammatory effects, on the migration and proliferation of human coronary artery smooth muscle cells (HCASMCs). Methods and Results A DNA 5-bromo-2′-deoxy-uridine (BrdU) incorporation assay indicated that FABP4 significantly induced the dose-dependent proliferation of HCASMCs with a maximum stimulatory effect at 120 ng/ml (13% vs. unstimulated cells, p<0.05). An anti-FABP4 antibody (40 ng/ml) significantly inhibited the induced cell proliferation, demonstrating the specificity of the FABP4 proliferative effect. FABP4 significantly induced HCASMC migration in a dose-dependent manner with an initial effect at 60 ng/ml (12% vs. unstimulated cells, p<0.05). Time-course studies demonstrated that FABP4 significantly increased cell migration compared with unstimulated cells from 4 h (23%vs. 17%, p<0.05) to 12 h (74%vs. 59%, p<0.05). Pretreatment with LY-294002 (5 µM) and PD98059 (10 µM) blocked the FABP4-induced proliferation and migration of HCASMCs, suggesting the activation of a kinase pathway. On a molecular level, we observed an up-regulation of the MAPK pathway without activation of Akt. We found that FABP4 induced the active forms of the nuclear transcription factors c-jun and c-myc, which are regulated by MAPK cascades, and increased the expression of the downstream genes cyclin D1 and MMP2, CCL2, and fibulin 4 and 5, which are involved in cell cycle regulation and cell migration. Conclusions These findings indicate a direct effect of FABP4 on the migration and proliferation of HCASMCs, suggesting a role for this adipokine in vascular remodelling. Taken together, these results demonstrate that the FABP4-induced DNA synthesis and cell migration are mediated

  6. Protective effects of anisodamine on cigarette smoke extract-induced airway smooth muscle cell proliferation and tracheal contractility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Guang-Ni; Yang, Kai; Xu, Zu-Peng

    2012-07-01

    Anisodamine, an antagonist of muscarinic acetylcholine receptors (mAChRs), has been used therapeutically to improve smooth muscle function, including microvascular, intestinal and airway spasms. Our previous studies have revealed that airway hyper-reactivity could be prevented by anisodamine. However, whether anisodamine prevents smoking-induced airway smooth muscle (ASM) cell proliferation remained unclear. In this study, a primary culture of rat ASM cells was used to evaluate an ASM phenotype through the ability of the cells to proliferate and express contractile proteins in response to cigarette smoke extract (CSE) and intervention of anisodamine. Our results showed that CSE resulted in an increase in cyclinmore » D1 expression concomitant with the G0/G1-to-S phase transition, and high expression of M2 and M3. Functional studies showed that tracheal hyper-contractility accompanied contractile marker α-SMA high-expression. These changes, which occur only after CSE stimulation, were prevented and reversed by anisodamine, and CSE-induced cyclin D1 expression was significantly inhibited by anisodamine and the specific inhibitor U0126, BAY11-7082 and LY294002. Thus, we concluded that the protective and reversal effects and mechanism of anisodamine on CSE-induced events might involve, at least partially, the ERK, Akt and NF-κB signaling pathways associated with cyclin D1 via mAChRs. Our study validated that anisodamine intervention on ASM cells may contribute to anti-remodeling properties other than bronchodilation. -- Highlights: ► CSE induces tracheal cell proliferation, hyper-contractility and α-SMA expression. ► Anisodamine reverses CSE-induced tracheal hyper-contractility and cell proliferation. ► ERK, PI3K, and NF-κB pathways and cyclin D1 contribute to the reversal effect.« less

  7. Thrombin-induced glucose transport via Src–p38 MAPK pathway in vascular smooth muscle cells

    PubMed Central

    Kanda, Yasunari; Watanabe, Yasuhiro

    2005-01-01

    Thrombin is a mitogen for vascular smooth muscle cells (VSMC) and has been implicated in the development in atherosclerosis. However, little is known about the role of thrombin in glucose transport in VSMC. In this study, we examined the effect of thrombin on glucose uptake in rat A10 VSMC. We found that thrombin induced glucose uptake in a dose-dependent manner while hirudin, a potent thrombin inhibitor, prevented glucose uptake in the cells. PP2, a selective inhibitor of Src, prevented the thrombin-induced glucose uptake, but did not affect insulin-induced uptake. We also examined whether mitogen-activated protein kinase (MAPK) inhibitors influenced thrombin-induced glucose uptake. The p38 MAPK inhibitor (SB203580) inhibited thrombin-induced glucose uptake, but the MEK inhibitor (PD98059) did not. In contrast to thrombin, SB203580 did not affect insulin-induced glucose uptake. Furthermore, thrombin failed to translocate the insulin-sensitive glucose transporter GLUT4. These findings suggest that thrombin stimulates glucose transport via Src and subsequent p38 MAPK activation in VSMC. PMID:15951827

  8. [Simulated uterus microenvironment induced human placental mesenchymal stem cells differentiation to uterus smooth muscle cells in vitro].

    PubMed

    Li, Chang-dong; Zhang, Wei-yuan; Yuan, Chun-li; Han, Li-ying

    2008-12-09

    To develop a new method to promote the differentiation of mesenchymal stem cells derived from human placenta (pMSC) to uterus smooth muscle cells (uSMC) in simulated uterus microenvironment. MSCs were isolated from human placenta, cultivated, and analyzed for their phenotype by flow cytometry. The multipotential differentiation of the pMSC was examined by chondrogenic, adipogenic, and osteogenetic induction. uSMC were isolated from uteri resected during operation and co-cultivated with the pMSC in a Transwell chamber simulating Two, 4, and 8 days later RT-PCR and Western blotting were used to detect the mRNA and protein expression of alpha-actin, calmodulin, and myosin heavy chains (MHC), the markers of smooth muscle differentiation at the early, middle, and late stages. On day 8 RT-PCR was used to detect the expression of estrogen receptor in these 2 groups of cells, then estrogen was used to stimulate these cells and the protein kinase C (PKC) activity was examined. The pMSC could be induced into adipocytes, osteocytes, and chondrocytes respectively. After co-culture with uSMC, the morphology of the pMSC changed closely into that of the uSMC, and MHC was expressed in the pMSC. Estrogen receptor was positive in both groups of cells. The PKC activity increased, especially in the cell membrane, after stimulation of estrogen. The postpartum human placenta can be used as an important and novel source of multipotent stem cells for tissue engineering and genetic engineering. Placental MSC have the potential to differentiate into smooth muscle cells under the simulated uterus microenvironment in vitro.

  9. Phloretin Inhibits Platelet-derived Growth Factor-BB-induced Rat Aortic Smooth Muscle Cell Proliferation, Migration, and Neointimal Formation After Carotid Injury.

    PubMed

    Wang, Dong; Wang, Qingjie; Yan, Gaoliang; Qiao, Yong; Tang, Chengchun

    2015-05-01

    Abnormal vascular smooth muscle cell proliferation and migration are key factors in many cardiovascular diseases. Here, we investigated the effects of phloretin on platelet-derived growth factor homodimer (PDGF-BB)-induced rat aortic smooth muscle cell (RASMC) proliferation, migration, and neointimal formation after carotid injury. Phloretin significantly inhibited the PDGF-BB-stimulated RASMC proliferation in a concentration-dependent manner (10-100 μM). Also, PDGF-BB-stimulated RASMC migration was inhibited by phloretin at 50 μM. Pretreating RASMC with phloretin dose-dependently inhibited PDGF-BB-induced Akt and p38 mitogen-activated protein kinases activation. Furthermore, phloretin increased p27 and decreased cyclin-dependent kinase 2, CDK4 expression, and p-Rb activation in PDGF-BB-stimulated RASMC in a concentration-dependent manner (10-50 μM). PDGF-BB-induced cell adhesion molecules and matrix metalloproteinase-9 expression were blocked by phloretin at 50 μM. Preincubation with phloretin dose-dependently reduced the intracellular reactive oxygen species production. In vivo study showed that phloretin (20 mg/kg) significantly reduced neointimal formation 14 days after carotid injury in rats. Thus, phloretin may have potential as a treatment against atherosclerosis and restenosis after vascular injury.

  10. Overexpression of Mitofusin 2 inhibited oxidized low-density lipoprotein induced vascular smooth muscle cell proliferation and reduced atherosclerotic lesion formation in rabbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo Yanhong; Chen Kuanghueih; Gao Wei

    2007-11-16

    Our previous studies have implies that Mitofusin 2 (Mfn2), which was progressively reduced in arteries from ApoE{sup -/-} mice during the development of atherosclerosis, may take part in pathogenesis of atherosclerosis. In this study, we found that overexpression of Mfn2 inhibited oxidized low-density lipoprotein or serum induced vascular smooth muscle cell proliferation by down-regulation of Akt and ERK phosphorylation. Then we investigated the in vivo role of Mfn2 on the development of atherosclerosis in rabbits using adenovirus expressing Mitofusin 2 gene (AdMfn2). By morphometric analysis we found overexpression of Mfn2 inhibited atherosclerotic lesion formation and intima/media ratio by 66.7% andmore » 74.6%, respectively, compared with control group. These results suggest that local Mfn2 treatment suppresses the development of atherosclerosis in vivo in part by attenuating the smooth muscle cell proliferation induced by lipid deposition and vascular injury.« less

  11. Vascular smooth muscle dysfunction induced by monomethylarsonous acid (MMA III): a contributing factor to arsenic-associated cardiovascular diseases.

    PubMed

    Bae, Ok-Nam; Lim, Eun-Kyung; Lim, Kyung-Min; Noh, Ji-Yoon; Chung, Seung-Min; Lee, Moo-Yeol; Yun, Yeo-Pyo; Kwon, Seong-Chun; Lee, Jun-Ho; Nah, Seung-Yeol; Chung, Jin-Ho

    2008-11-01

    While arsenic in drinking water is known to cause various cardiovascular diseases in human, exact mechanism still remains elusive. Recently, trivalent-methylated arsenicals, the metabolites of inorganic arsenic, were shown to have higher cytotoxic potential than inorganic arsenic. To study the role of these metabolites in arsenic-induced cardiovascular diseases, we investigated the effect of monomethylarsonous acid (MMA III), a major trivalent-methylated arsenical, on vasomotor tone of blood vessels. In isolated rat thoracic aorta and small mesenteric arteries, MMA III irreversibly suppressed normal vasoconstriction induced by three distinct agonists of phenylephrine (PE), serotonin and endothelin-1. Inhibition of vasoconstriction was retained in aortic rings without endothelium, suggesting that MMA III directly impaired the contractile function of vascular smooth muscle. The effect of MMA III was mediated by inhibition of PE-induced Ca2+ increase as found in confocal microscopy and fluorimeter in-lined organ chamber technique. The attenuation of Ca2+ increase was from concomitant inhibition of release from intracellular store and extracellular Ca2+ influx via L-type Ca2+ channel, which was blocked by MMA III as shown in voltage-clamp assay in Xenopus oocytes. MMA III did not affect downstream process of Ca2+, as shown in permeabilized arterial strips. In in vivo rat model, MMA III attenuated PE-induced blood pressure increase indeed, supporting the clinical relevance of these in vitro findings. In conclusion, MMA III-induced smooth muscle dysfunction through disturbance of Ca2+ regulation, which results in impaired vasoconstriction and aberrant blood pressure change. This study will provide a new insight into the role of trivalent-methylated arsenicals in arsenic-associated cardiovascular diseases.

  12. Bulgarian propolis induces analgesic and anti-inflammatory effects in mice and inhibits in vitro contraction of airway smooth muscle.

    PubMed

    Paulino, Niraldo; Dantas, Andreia Pires; Bankova, Vassya; Longhi, Daniela Taggliari; Scremin, Amarilis; de Castro, Solange Lisboa; Calixto, João Batista

    2003-11-01

    Propolis is a bee product, which has long been used in folk medicine for the management of different diseases. In this study we evaluated the analgesic and anti-inflammatory effects of a standard ethanolic extract of Bulgarian propolis (Et-Blg) in mice and its in vitro effect on airway smooth muscle. Et-Blg inhibited acetic acid-induced abdominal contortions with an ID(50) = 7.4 +/- 0.7 mg. kg(-1). In the formalin test, the extract caused a significant reduction in pain in mice treated with 100 mg. kg(-1) Et-Blg during the neurogenic phase and for the inflammatory phase with all doses of the extract, with an ID(50) = 2.5 +/- 0.4 mg. kg(-1). Et-Blg inhibited also the capsaicin-induced ear edema in mice; however, this extract was ineffective when assessed in the tail-flick and hot-plate thermal assays. The analgesic effect of Et-Blg was associated with the inhibition of inflammatory responses and not to a simple irritation of nervous terminals. In vitro, this extract inhibited the contraction of trachea smooth muscle induced by histamine (IC(50) = 50 +/- 5 microg. mL(-1)), capsaicin (IC(50) = 26.8 +/- 3 microg. mL(-1)), 80 mM KCl (IC(50) = 27.8 +/- 3 microg. mL(-1)), and carbachol (IC(50) = 54 +/- 2 microg. mL(-1)).

  13. Contribution of Rho-kinase to membrane excitability of murine colonic smooth muscle.

    PubMed

    Bayguinov, O; Dwyer, L; Kim, H; Marklew, A; Sanders, K M; Koh, S D

    2011-06-01

    The Rho-kinase pathway regulates agonist-induced contractions in several smooth muscles, including the intestine, urinary bladder and uterus, via dynamic changes in the Ca(2+) sensitivity of the contractile apparatus. However, there is evidence that Rho-kinase also modulates other cellular effectors such as ion channels. We examined the regulation of colonic smooth muscle excitability by Rho-kinase using conventional microelectrode recording, isometric force measurements and patch-clamp techniques. The Rho-kinase inhibitors, Y-27632 and H-1152, decreased nerve-evoked on- and off-contractions elicited at a range of frequencies and durations. The Rho-kinase inhibitors decreased the spontaneous contractions and the responses to carbachol and substance P independently of neuronal inputs, suggesting Y-27632 acts directly on smooth muscle. The Rho-kinase inhibitors significantly reduced the depolarization in response to carbachol, an effect that cannot be due to regulation of Ca(2+) sensitization. Patch-clamp experiments showed that Rho-kinase inhibitors reduce GTPγS-activated non-selective cation currents. The Rho-kinase inhibitors decreased contractions evoked by nerve stimulation, carbachol and substance P. These effects were not solely due to inhibition of the Ca(2+) sensitization pathway, as the Rho-kinase inhibitors also inhibited the non-selective cation conductances activated by excitatory transmitters. Thus, Rho-kinase may regulate smooth muscle excitability mechanisms by regulating non-selective cation channels as well as changing the Ca(2+) sensitivity of the contractile apparatus. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  14. [Intrarenal smooth muscle: histology of a complex urodymamic machine].

    PubMed

    Arias, L F; Ortiz-Arango, N

    2013-03-01

    To know better the microscopic arrangement of the bundles of smooth muscle in the human renal parenchyma, their distribution and anatomical relationships, trying to make a reconstruction of this muscular system. Five adult human kidneys and one fetal kidney were processed "in toto" with cross sections every 300μm. In the histological sections we identify the smooth muscle fibers trying to determine its insertion, course and anatomical relationship with other structures of the kidney tissue. There are bundles of smooth muscle fibers of variable thickness parallel to the edges of the medullary pyramids, bundles that surrounding the medulla in a spiral course, and bundles that accompany arcuate vessels, the latter being the most abundant and easy to identify. These groups of muscle fibers do not have a precise or constant insertion site, their periodicity is not homogeneous and they are not a direct extension of the muscle of the renal pelvis, although some bundles are in contact with it. There are also unusual and inconstant small muscle fibers no associated to vessels in the interstitium of the cortex and, exceptionally, in the medulla. There is a complex microscopic system of smooth muscle fibers that partially surround the renal medulla and are related to renal pelvic muscles without a direct continuity with them. Although this small muscular system is under-recognized, could be very important in urodynamics. Copyright © 2012 AEU. Published by Elsevier Espana. All rights reserved.

  15. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis.

    PubMed

    Clarke, Murray C H; Figg, Nichola; Maguire, Janet J; Davenport, Anthony P; Goddard, Martin; Littlewood, Trevor D; Bennett, Martin R

    2006-09-01

    Vascular smooth muscle cell (VSMC) apoptosis occurs in many arterial diseases, including aneurysm formation, angioplasty restenosis and atherosclerosis. Although VSMC apoptosis promotes vessel remodeling, coagulation and inflammation, its precise contribution to these diseases is unknown, given that apoptosis frequently accompanies vessel injury or alterations to flow. To study the direct consequences of VSMC apoptosis, we generated transgenic mice expressing the human diphtheria toxin receptor (hDTR, encoded by HBEGF) from a minimal Tagln (also known as SM22alpha) promoter. Despite apoptosis inducing loss of 50-70% of VSMCs, normal arteries showed no inflammation, reactive proliferation, thrombosis, remodeling or aneurysm formation. In contrast, VSMC apoptosis in atherosclerotic plaques of SM22alpha-hDTR Apoe-/- mice induced marked thinning of fibrous cap, loss of collagen and matrix, accumulation of cell debris and intense intimal inflammation. We conclude that VSMC apoptosis is 'silent' in normal arteries, which have a large capacity to withstand cell loss. In contrast, VSMC apoptosis alone is sufficient to induce features of plaque vulnerability in atherosclerosis. SM22alpha-hDTR Apoe-/- mice may represent an important new model to test agents proposed to stabilize atherosclerotic plaques.

  16. Myosin Light Chain Kinase Is Necessary for Tonic Airway Smooth Muscle Contraction*

    PubMed Central

    Zhang, Wen-Cheng; Peng, Ya-Jing; Zhang, Gen-Sheng; He, Wei-Qi; Qiao, Yan-Ning; Dong, Ying-Ying; Gao, Yun-Qian; Chen, Chen; Zhang, Cheng-Hai; Li, Wen; Shen, Hua-Hao; Ning, Wen; Kamm, Kristine E.; Stull, James T.; Gao, Xiang; Zhu, Min-Sheng

    2010-01-01

    Different interacting signaling modules involving Ca2+/calmodulin-dependent myosin light chain kinase, Ca2+-independent regulatory light chain phosphorylation, myosin phosphatase inhibition, and actin filament-based proteins are proposed as specific cellular mechanisms involved in the regulation of smooth muscle contraction. However, the relative importance of specific modules is not well defined. By using tamoxifen-activated and smooth muscle-specific knock-out of myosin light chain kinase in mice, we analyzed its role in tonic airway smooth muscle contraction. Knock-out of the kinase in both tracheal and bronchial smooth muscle significantly reduced contraction and myosin phosphorylation responses to K+-depolarization and acetylcholine. Kinase-deficient mice lacked bronchial constrictions in normal and asthmatic airways, whereas the asthmatic inflammation response was not affected. These results indicate that myosin light chain kinase acts as a central participant in the contractile signaling module of tonic smooth muscle. Importantly, contractile airway smooth muscles are necessary for physiological and asthmatic airway resistance. PMID:20018858

  17. Gi-Coupled γ-Aminobutyric Acid–B Receptors Cross-Regulate Phospholipase C and Calcium in Airway Smooth Muscle

    PubMed Central

    Mizuta, Kentaro; Mizuta, Fumiko; Xu, Dingbang; Masaki, Eiji; Panettieri, Reynold A.

    2011-01-01

    γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system, and exerts its actions via both ionotropic (GABAA) and metabotropic (GABAB) receptors. Although the functional expression of GABAB receptors coupled to the Gi protein was reported for airway smooth muscle, the role of GABAB receptors in airway responsiveness remains unclear. We investigated whether Gi-coupled GABAB receptors cross-regulate phospholipase C (PLC), an enzyme classically regulated by Gq-coupled receptors in human airway smooth muscle cells. Both the GABAB-selective agonist baclofen and the endogenous ligand GABA significantly increased the synthesis of inositol phosphate, whereas GABAA receptor agonists, muscimol, and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol exerted no effect. The baclofen-induced synthesis of inositol phosphate and transient increases in [Ca2+]i were blocked by CGP35348 and CGP55845 (selective GABAB antagonists), pertussis toxin (PTX, which inactivates the Gi protein), gallein (a Gβγ signaling inhibitor), U73122 (an inhibitor of PLC-β), and xestospongin C, an inositol 1,4,5-triphosphate receptor blocker. Baclofen also potentiated the bradykinin-induced synthesis of inositol phosphate and transient increases in [Ca2+]i, which were blocked by CGP35348 or PTX. Moreover, baclofen potentiated the substance P–induced contraction of airway smooth muscle in isolated guinea pig tracheal rings. In conclusion, the stimulation of GABAB receptors in human airway smooth muscle cells rapidly mobilizes intracellular Ca2+ stores by the synthesis of inositol phosphate via the activation of PLC-β, which is stimulated by Gβγ protein liberated from Gi proteins coupled to GABAB receptors. Furthermore, crosstalk between GABAB receptors and Gq-coupled receptors potentiates the synthesis of inositol phosphate, transient increases in [Ca2+]i, and smooth muscle contraction through Gi proteins. PMID:21719794

  18. Mechanisms altering airway smooth muscle cell Ca+ homeostasis in two asthma models.

    PubMed

    Kellner, Julia; Tantzscher, Juliane; Oelmez, Hamza; Edelmann, Martin; Fischer, Rainald; Huber, Rudolf Maria; Bergner, Albrecht

    2008-01-01

    Asthma is characterized by airway remodeling, altered mucus production and airway smooth muscle cell (ASMC) contraction causing extensive airway narrowing. In particular, alterations of ASMC contractility seem to be of crucial importance. The elevation of the cytoplasmic Ca(2+) concentration is a key event leading to ASMC contraction and changes in the agonist-induced Ca(2+) increase in ASMC have been reported in asthma. The aim of this study was to investigate mechanisms underlying these changes. Murine tracheal smooth muscle cells (MTSMC) from T-bet KO mice and human bronchial smooth muscle cells (HBSMC) incubated with IL-13 and IL-4 served as asthma models. Acetylcholine-induced changes in the cytoplasmic Ca(2+) concentration were recorded using fluorescence microscopy and the expression of Ca(2+) homeostasis regulating proteins was investigated with Western blot analysis. Acetylcholine-induced Ca(2+) transients were elevated in both asthma models. This correlated with an increased Ca(2+) content of the sarcoplasmic reticulum (SR). In MTSMC from T-bet KO mice, the expression of the SR Ca(2+) buffers calreticulin and calsequestrin was higher compared to wild-type mice. In HBSMC incubated with IL-13 or IL-4, the expression of ryanodine receptors, inositol-3-phosphate receptors and sarcoplasmic/endoplasmic reticulum Ca(2+) ATPases 2 was increased compared to HBSMC without incubation with interleukins. The enlarged acetylcholine-induced Ca(2+) transients could be reversed by blocking inositol-3-phosphate receptors. We conclude that in the murine asthma model the SR Ca(2+) buffer capacity is increased, while in the human asthma model the expression of SR Ca(2+) channels is altered. The investigation of the Ca(2+) homeostasis of ASMC has the potential to provide new therapeutical options in asthma. Copyright 2008 S. Karger AG, Basel.

  19. Vascular Smooth Muscle Cells From Hypertensive Patient-Derived Induced Pluripotent Stem Cells to Advance Hypertension Pharmacogenomics.

    PubMed

    Biel, Nikolett M; Santostefano, Katherine E; DiVita, Bayli B; El Rouby, Nihal; Carrasquilla, Santiago D; Simmons, Chelsey; Nakanishi, Mahito; Cooper-DeHoff, Rhonda M; Johnson, Julie A; Terada, Naohiro

    2015-12-01

    Studies in hypertension (HTN) pharmacogenomics seek to identify genetic sources of variable antihypertensive drug response. Genetic association studies have detected single-nucleotide polymorphisms (SNPs) that link to drug responses; however, to understand mechanisms underlying how genetic traits alter drug responses, a biological interface is needed. Patient-derived induced pluripotent stem cells (iPSCs) provide a potential source for studying otherwise inaccessible tissues that may be important to antihypertensive drug response. The present study established multiple iPSC lines from an HTN pharmacogenomics cohort. We demonstrated that established HTN iPSCs can robustly and reproducibly differentiate into functional vascular smooth muscle cells (VSMCs), a cell type most relevant to vasculature tone control. Moreover, a sensitive traction force microscopy assay demonstrated that iPSC-derived VSMCs show a quantitative contractile response on physiological stimulus of endothelin-1. Furthermore, the inflammatory chemokine tumor necrosis factor α induced a typical VSMC response in iPSC-derived VSMCs. These studies pave the way for a large research initiative to decode biological significance of identified SNPs in hypertension pharmacogenomics. Treatment of hypertension remains suboptimal, and a pharmacogenomics approach seeks to identify genetic biomarkers that could be used to guide treatment decisions; however, it is important to understand the biological underpinnings of genetic associations. Mouse models do not accurately recapitulate individual patient responses based on their genetics, and hypertension-relevant cells are difficult to obtain from patients. Induced pluripotent stem cell (iPSC) technology provides a great interface to bring patient cells with their genomic data into the laboratory and to study hypertensive responses. As an initial step, the present study established an iPSC bank from patients with primary hypertension and demonstrated an effective

  20. Titanium Dioxide Modulation of the Contractibility of Visceral Smooth Muscles In Vivo

    NASA Astrophysics Data System (ADS)

    Tsymbalyuk, Olga V.; Naumenko, Anna M.; Rohovtsov, Oleksandr O.; Skoryk, Mykola A.; Voiteshenko, Ivan S.; Skryshevsky, Valeriy A.; Davydovska, Tamara L.

    2017-02-01

    Electronic scanning microscopy was used in the work to obtain the image and to identify the sizes of titanium dioxide (TiO2) nanoparticles 21 ± 5 nm. The qualitative and quantitative elemental analysis of the preparations of the caecum, antrum, myometrium, kidneys, and lungs of the rats, burdened with titanium dioxide, was also performed. It was established using the tenzometric method in the isometric mode that the accumulation of titanium dioxide in smooth muscles of the caecum resulted in the considerable, compared to the control, increase in the frequency of their spontaneous contractions, the decrease in the duration of the contraction-relaxation cycle, and the decrease in the indices of muscle functioning efficiency (the index of contractions in Montevideo units (MU) and the index of contractions in Alexandria units (AU)). In the same experimental conditions, there was not the increase, but the decrease in the frequency of spontaneous contractions, the duration of the contraction-relaxation cycle, and the increase in MU and AU indices in the smooth muscles of myometrium (in the group of rats, burdened with TiO2 for 30 days). It was also determined that TiO2 modulates both the mechanisms of the input of extracellular Ca2+ ions and the mechanisms of decreasing the concentration of these cations in smooth muscle cells of the caecum during the generation of the high potassium contraction. In these conditions, there is a considerable increase in the normalized maximal velocity of the contraction phase and the relaxation phase. It was demonstrated in the work that titanium dioxide also changes the cholinergic excitation in these muscles. The impact of titanium dioxide in the group of rats, burdened with TiO2, was accompanied with a considerable impairment of the kinetics of forming the tonic component of the oxytocin-induced contraction of the smooth muscles of myometrium.

  1. Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?

    PubMed Central

    Park, Song-Young; Gifford, Jayson R.; Andtbacka, Robert H. I.; Trinity, Joel D.; Hyngstrom, John R.; Garten, Ryan S.; Diakos, Nikolaos A.; Ives, Stephen J.; Dela, Flemming; Larsen, Steen; Drakos, Stavros

    2014-01-01

    Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s−1·mg−1, P < 0.05, respectively). Citrate synthase (CS) activity, an index of mitochondrial density, also fell progressively from cardiac to skeletal to smooth muscles (222 ± 13, 115 ± 2, and 48 ± 2 μmol·g−1·min−1, P < 0.05, respectively). Thus, when respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s−1·mg−1, P < 0.05, respectively). Thus, although oxidative phosphorylation capacity per mitochondrial content in cardiac, skeletal, and smooth muscles suggest all mitochondria are created equal, the contrasting respiratory control ratio and nonphosphorylating respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production. PMID:24906913

  2. Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?

    PubMed

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I; Trinity, Joel D; Hyngstrom, John R; Garten, Ryan S; Diakos, Nikolaos A; Ives, Stephen J; Dela, Flemming; Larsen, Steen; Drakos, Stavros; Richardson, Russell S

    2014-08-01

    Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s(-1)·mg(-1), P < 0.05, respectively). Citrate synthase (CS) activity, an index of mitochondrial density, also fell progressively from cardiac to skeletal to smooth muscles (222 ± 13, 115 ± 2, and 48 ± 2 μmol·g(-1)·min(-1), P < 0.05, respectively). Thus, when respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s(-1)·mg(-1), P < 0.05, respectively). Thus, although oxidative phosphorylation capacity per mitochondrial content in cardiac, skeletal, and smooth muscles suggest all mitochondria are created equal, the contrasting respiratory control ratio and nonphosphorylating respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production.

  3. Agonist-induced Ca2+ Sensitization in Smooth Muscle

    PubMed Central

    Artamonov, Mykhaylo V.; Momotani, Ko; Stevenson, Andra; Trentham, David R.; Derewenda, Urszula; Derewenda, Zygmunt S.; Read, Paul W.; Gutkind, J. Silvio; Somlyo, Avril V.

    2013-01-01

    Many agonists, acting through G-protein-coupled receptors and Gα subunits of the heterotrimeric G-proteins, induce contraction of smooth muscle through an increase of [Ca2+]i as well as activation of the RhoA/RhoA-activated kinase pathway that amplifies the contractile force, a phenomenon known as Ca2+ sensitization. Gα12/13 subunits are known to activate the regulator of G-protein signaling-like family of guanine nucleotide exchange factors (RhoGEFs), which includes PDZ-RhoGEF (PRG) and leukemia-associated RhoGEF (LARG). However, their contributions to Ca2+-sensitized force are not well understood. Using permeabilized blood vessels from PRG(−/−) mice and a new method to silence LARG in organ-cultured blood vessels, we show that both RhoGEFs are activated by the physiologically and pathophysiologically important thromboxane A2 and endothelin-1 receptors. The co-activation is the result of direct and independent activation of both RhoGEFs as well as their co-recruitment due to heterodimerization. The isolated recombinant C-terminal domain of PRG, which is responsible for heterodimerization with LARG, strongly inhibited Ca2+-sensitized force. We used photolysis of caged phenylephrine, caged guanosine 5′-O-(thiotriphosphate) (GTPγS) in solution, and caged GTPγS or caged GTP loaded on the RhoA·RhoGDI complex to show that the recruitment and activation of RhoGEFs is the cause of a significant time lag between the initial Ca2+ transient and phasic force components and the onset of Ca2+-sensitized force. PMID:24106280

  4. Smooth muscle tumors of soft tissue and non-uterine viscera: biology and prognosis.

    PubMed

    Miettinen, Markku

    2014-01-01

    Smooth muscle tumors are here considered an essentially dichotomous group composed of benign leiomyomas and malignant leiomyosarcomas. Soft tissue smooth muscle tumors with both atypia and mitotic activity are generally diagnosed leiomyosarcomas acknowledging potential for metastasis. However, lesions exist that cannot be comfortably placed in either category, and in such cases the designation 'smooth muscle tumor of uncertain biologic potential' is appropriate. The use of this category is often necessary with limited sampling, such as needle core biopsies. Benign smooth muscle tumors include smooth muscle hamartoma and angioleiomyoma. A specific category of leiomyomas are estrogen-receptor positive ones in women. These are similar to uterine leiomyomas and can occur anywhere in the abdomen and abdominal wall. Leiomyosarcomas can occur at any site, although are more frequent in the retroperitoneum and proximal extremities. They are recognized by likeness to smooth muscle cells but can undergo pleomorphic evolution ('dedifferentiation'). Presence of smooth muscle actin is nearly uniform and desmin-positivity usual. This and the lack of KIT expression separate leiomyosarcoma from GIST, an important problem in abdominal soft tissues. EBV-associated smooth muscle tumors are a specific subcategory occurring in AIDS or post-transplant patients. These tumors can have incomplete smooth muscle differentiation but show nuclear EBER as a diagnostic feature. In contrast to many other soft tissue tumors, genetics of smooth muscle tumors are poorly understood and such diagnostic testing is not yet generally applicable in this histogenetic group. Leiomyosarcomas are known to be genetically complex, often showing 'chaotic' karyotypes including aneuploidy or polyploidy, and no recurrent tumor-specific translocations have been detected.

  5. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering.

    PubMed

    Björninen, Miina; Gilmore, Kerry; Pelto, Jani; Seppänen-Kaijansinkko, Riitta; Kellomäki, Minna; Miettinen, Susanna; Wallace, Gordon; Grijpma, Dirk; Haimi, Suvi

    2017-04-01

    We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a reliable, repeatable, and cost-efficient way in a 3D environment. Long pulse (1 ms) or short pulse (0.25 ms) biphasic electric current at a frequency of 10 Hz was applied to ASCs to study the effects of ES on ASC viability and differentiation towards SMCs on the PPy-coated scaffolds. PPy-coated scaffolds promoted proliferation and induced stronger calponin, myosin heavy chain (MHC) and smooth muscle actin (SMA) expression in ASCs compared to uncoated scaffolds. ES with 1 ms pulse width increased the number of viable cells by day 7 compared to controls and remained at similar levels to controls by day 14, whereas shorter pulses significantly decreased viability compared to the other groups. Both ES protocols supported smooth muscle expression markers. Our results indicate that electrical stimulation on PPy-coated scaffolds applied through the novel 3D ES device is a valid approach for vascular smooth muscle tissue engineering.

  6. Static pressure accelerates ox-LDL-induced cholesterol accumulation via SREBP-1-mediated caveolin-1 downregulation in cultured vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Di-xian, E-mail: luodixian_2@163.com; Institute of Pharmacy and Pharmacology, College of Science and Technology, University of South China, Hengyang 421001, Hunan; First People's Hospital of Chenzhou City, Chenzhou 423000, Hunan

    Research highlights: {yields} Vertical static pressure accelerates ox-LDL-induced cholesterol accumulation in cultured vascular smooth muscle cells. {yields} Static pressure induces SREBP-1 activation. {yields} Static pressure downregulates the expressions of caveolin-1 by activating SREBP-1. {yields} Static pressure also downregulates the transcription of ABCA1 by activating SREBP-1. {yields} Static pressure increases ox-LDL-induced cholesterol accumulation by SREBP-1-mediated caveolin-1 downregulation in vascular smooth muscle cells cultured in vitro. -- Abstract: Objective: To investigate the effect of static pressure on cholesterol accumulation in vascular smooth muscle cells (VSMCs) and its mechanism. Methods: Rat-derived VSMC cell line A10 treated with 50 mg/L ox-LDL and different staticmore » pressures (0, 60, 90, 120, 150, 180 mm Hg) in a custom-made pressure incubator for 48 h. Intracellular lipid droplets and lipid levels were assayed by oil red O staining and HPLC; The mRNA levels of caveolin-1 and ABCA1, the protein levels of caveolin-1 SREBP-1 and mature SREBP-1 were respectively detected by RT-PCR or western blot. ALLN, an inhibitor of SREBP metabolism, was used to elevate SREBP-1 protein level in VSMCs treated with static pressure. Results: Static pressures significantly not only increase intracellular lipid droplets in VSMCs, but also elevate cellular lipid content in a pressure-dependent manner. Intracellular free cholesterol (FC), cholesterol ester (CE), total cholesterol (TC) were respectively increased from 60.5 {+-} 2.8 mg/g, 31.8 {+-} 0.7 mg/g, 92.3 {+-} 2.1 mg/g at atmosphere pressure (ATM, 0 mm Hg) to 150.8 {+-} 9.4 mg/g, 235.9 {+-} 3.0 mg/g, 386.7 {+-} 6.4 mg/g at 180 mm Hg. At the same time, static pressures decrease the mRNA and protein levels of caveolin-1, and induce the activation and nuclear translocation of SREBP-1. ALLN increases the protein level of mature SREBP-1 and decreases caveolin-1 expression, so that cellular lipid levels

  7. Pharmacologic effects of grain weevil extract on isolated guinea pig tracheal smooth muscle.

    PubMed

    Schachter, E Neil; Zuskin, Eugenija; Arumugam, Uma; Goswami, Satindra; Castranova, Vincent; Whitmer, Mike; Chiarelli, Angelo

    2008-01-01

    The grain weevil, an insect (pest) that infects grain, is a frequent contaminant of processed wheat, and its presence may contribute to respiratory abnormalities in grain workers. We studied the in vitro effects of an extract of grain weevil (GWE) on airway smooth muscle. Pharmacologic studies included in vitro challenge of guinea pig trachea with GWE, in parallel organ baths, pretreated with mediator-modifying agents or a control solution. Dose-related contractions of nonsensitized guinea pig trachea (GPT) were demonstrated using this extract. Pharmacologic studies were performed by pretreating guinea pig tracheal tissue with drugs known to modulate smooth muscle contraction: atropine, indomethacin, pyrilamine, acivicin, NDGA, BPB, TMB8, captopril, and capsaicin. Atropine, pyrilamine, BPB, and capsaicin significantly reduced the contractile effects of the extract at most of the challenge doses (p < 0.01 or p < 0.05). Inhibition of GWE-induced contraction by blocking of other mediators was less complete. We suggest that GWE causes dose-related airway smooth muscle constriction of the GPT by nonimmunologic mechanisms involving a variety of airway mediators and possibly cholinergic receptors.

  8. Studies of the mechanism of passive anaphylaxis in human airway smooth muscle.

    PubMed

    Davis, C; Jones, T R; Daniel, E E

    1983-07-01

    This investigation was carried out to study allergic contraction of passively sensitized human airway smooth muscle in response to specific antigen challenge. We attempted to determine the role played by histamine, slow reaction substances (SRSs), and cyclooxygenase products in the mediation of this response in tracheal smooth muscle. Tissues were passively sensitized with serum from ragweed-sensitive patients (15 h, 4 degrees C). Subsequent challenge with ragweed antigen produced a slowly developing contraction. The peak contraction to a dose producing a maximal response was 37 +/- 6% of the carbachol maximum. Mepyramine (5 X 10(-6) M) did not alter the contraction. Methylprednisolone (2 X 10(-5) M) attenuated the response to antigen but had no significant effect on the contractile response to arachidonic acid. Indomethacin (5.6-28 X 10(-6) M) enhanced the peak antigen-induced contractions by 25 +/- 11% whereas 5,8,11,14-eicosatetraynoic acid (6.4 X 10(-5) M) selectively attenuated the antigen-induced contraction by 86 +/- 12%. Nordihydroguarietic acid (6-12 X 10(-6) M) attenuated both the antigen plus arachidonate induced responses. FPL-55712 (1-2 X 10(-6) M) antagonized the contractions to antigen. Compound 48/80 and goat antihuman immunoglobulin E produced similar slowly developing contractions in sensitized and in some nonsensitized tissues. These responses, except for an early component of the response to 48/80, were independent of histamine and were reversed by FPL-55712. These findings suggest that arachidonic acid metabolites mediate (slow reacting substances) and modulate (prostaglandins) allergic contraction of human airway smooth muscle while any histamine released contributes little or nothing to the contraction in the larger airways.

  9. Role of SM22 in the differential regulation of phasic vs. tonic smooth muscle

    PubMed Central

    Ali, Mehboob

    2015-01-01

    Preliminary proteomics studies between tonic vs. phasic smooth muscles identified three distinct protein spots identified to be those of transgelin (SM22). The latter was found to be distinctly downregulated in the internal anal sphincter (IAS) vs. rectal smooth muscle (RSM) SMC. The major focus of the present studies was to examine the differential molecular control mechanisms by SM22 in the functionality of truly tonic smooth muscle of the IAS vs. the adjoining phasic smooth muscle of the RSM. We monitored SMC lengths before and after incubation with pFLAG-SM22 (for SM22 overexpression), and SM22 small-interfering RNA. pFLAG-SM22 caused concentration-dependent and significantly greater relaxation in the IAS vs. the RSM SMCs. Conversely, temporary silencing of SM22 caused contraction in both types of the SMCs. Further studies revealed a significant reverse relationship between the levels of SM22 phosphorylation and the amount of SM22-actin binding in the IAS and RSM SMC. Data showed higher phospho-SM22 levels and decreased SM22-actin binding in the IAS, and reverse to be the case in the RSM SMCs. Experiments determining the mechanism for SM22 phosphorylation in these smooth muscles revealed that Y-27632 (Rho kinase inhibitor) but not Gö-6850 (protein kinase C inhibitor) caused concentration-dependent decreased phosphorylation of SM22. We speculate that SM22 plays an important role in the regulation of basal tone via Rho kinase-induced phosphorylation of SM22. PMID:25617350

  10. Myosin light chain kinase controls voltage-dependent calcium channels in vascular smooth muscle.

    PubMed

    Martinsen, A; Schakman, O; Yerna, X; Dessy, C; Morel, N

    2014-07-01

    The Ca(2+)-dependent kinase myosin light chain kinase (MLCK) is the activator of smooth muscle contraction. In addition, it has been reported to be involved in Ca(2+) channel regulation in cultured cells, and we previously showed that the MLCK inhibitor ML-7 decreases arginine vasopressin (AVP)-induced Ca(2+) influx in rat aorta. This study was designed to investigate whether MLCK is involved in Ca(2+) regulation in resistance artery smooth muscle cell, which plays a major role in the control of blood pressure. As ML compounds were shown to have off-target effects, MLCK was downregulated by transfection with a small interfering RNA targeting MLCK (MLCK-siRNA) in rat small resistance mesenteric artery (RMA) and in the rat embryonic aortic cell line A7r5. Noradrenaline-induced contraction and Ca(2+) signal were significantly depressed in MLCK-siRNA compared to scramble-siRNA-transfected RMA. Contraction and Ca(2+) signal induced by high KCl and voltage-activated Ca(2+) current were also significantly decreased in MLCK-siRNA-transfected RMA, suggesting that MLCK depletion modifies voltage-operated Ca(2+) channels. KCl- and AVP-induced Ca(2+) signals and voltage-activated Ca(2+) current were decreased in MLCK-depleted A7r5 cells. Eventually, real-time quantitative PCR analysis indicated that in A7r5, MLCK controlled mRNA expression of CaV1.2 (L-type) and CaV3.1 (T-type) voltage-dependent Ca(2+) channels. Our results suggest that MLCK controls the transcription of voltage-dependent Ca(2+) channels in vascular smooth muscle cells.

  11. Akt1/PKB upregulation leads to vascular smooth muscle cell hypertrophy and polyploidization

    PubMed Central

    Hixon, Mary L.; Muro-Cacho, Carlos; Wagner, Mark W.; Obejero-Paz, Carlos; Millie, Elise; Fujio, Yasushi; Kureishi, Yasuko; Hassold, Terry; Walsh, Kenneth; Gualberto, Antonio

    2000-01-01

    Vascular smooth muscle cells (VSMCs) at capacitance arteries of hypertensive individuals and animals undergo marked age- and blood pressure–dependent polyploidization and hypertrophy. We show here that VSMCs at capacitance arteries of rat models of hypertension display high levels of Akt1/PKB protein and activity. Gene transfer of Akt1 to VSMCs isolated from a normotensive rat strain was sufficient to abrogate the activity of the mitotic spindle cell–cycle checkpoint, promoting polyploidization and hypertrophy. Furthermore, the hypertrophic agent angiotensin II induced VSMC polyploidization in an Akt1-dependent manner. These results demonstrate that Akt1 regulates ploidy levels in VSMCs and contributes to vascular smooth muscle polyploidization and hypertrophy during hypertension. PMID:11032861

  12. Role of ROCK expression in gallbladder smooth muscle contraction.

    PubMed

    Wang, Bin; Ding, You-Ming; Wang, Chun-Tao; Wang, Wei-Xing

    2015-08-01

    Cholelithiasis is a common medical condition whose incidence rate is increasing yearly, while its pathogenesis has yet to be elucidated. The present study assessed the expression of Rho-kinase (ROCK) in gallbladder smooth muscles and its effect on the contractile function of gallbladder smooth muscles during gallstone formation. Thirty male guinea pigs were randomly divided into three groups: The control group, the gallstone model group and the fasudil interference group. The fasting volume (FV) and bile capacity of the gallbladder (FB) as well as the total cholesterol (TC) and triglyceride (TG) contents of the gallbladder bile were determined. In addition, the gallbladder was dissected to identify whether any gallstones had formed. Part of the gallbladder tissue specimens were used for immunohistochemical analysis of ROCK expression in gallbladder smooth muscles. The results showed that four guinea pigs in the model group and eight in the fasudil group displayed gallstone formation, while there was no gallstone formation in the control group. The FV and FB were significantly increased in the model and fasudil groups. Similarly, the TC and TG contents of gallbladder bile were increased in these groups. The positive expression rate of ROCK in gallbladder smooth muscles in the model and fasudil groups was significantly reduced compared with that in the control group (P<0.05). The results of the present study indicated that the reduction of ROCK expression in guinea pig gallbladder smooth muscles weakened gallbladder contraction and thereby promoted gallstone formation.

  13. Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petri, Marcelo H.; Tellier, Céline; Michiels, Carine

    2013-11-15

    Highlights: •EV-077 reduced TNF-α induced inflammation in endothelial cells. •The thromboxane mimetic U69915 enhanced vascular smooth muscle cell proliferation. •EV-077 inhibited smooth muscle cell proliferation. -- Abstract: The prothrombotic mediator thromboxane A{sub 2} is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels ofmore » different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNFα incubation, whereas concentrations of 6-keto PGF1α in supernatants of endothelial cells incubated with TNFα were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNFα-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy.« less

  14. Histochemical characteristics of a tonic smooth muscle.

    PubMed

    Gilloteaux, J; Stalmans-Falys, M

    1979-09-01

    It is suggested that ABRM, smooth muscle of Mytilus edulis L. and Mytilus galloprovincialis Lmk. (Mollusca Pelecypoda), is composed of one histochemical fibre type. The fibres are characterized by a low myofibrillar ATPase activity. Succinic and nicotinamide adenine dinucleotide oxidoreductase activities are distributed in a reverse pattern than that of the ATPase activity. Glycogen phosphorylase is richly represented in ABRM fibres and this detection is in opposition with the negative detection of alkaline phosphatase activity. These preliminary histochemical observations are similar to those found in some vertebrate smooth muscles. Mitochondrial glycerol-3-phosphate, 6-phosphogluconate, lactate and octopine dehydrogenases are not detected in muscle fibres whereas glio-interstitial tissues show weak but distinct reactivity. These last results especially characterize Mytilus catch fibres and are briefly discussed in relationship with previous physiological, biochemical and morphological observations.

  15. Fibronectin Matrix Polymerization Regulates Smooth Muscle Cell Phenotype through a Rac1 Dependent Mechanism

    PubMed Central

    Shi, Feng; Long, Xiaochun; Hendershot, Allison; Miano, Joseph M.; Sottile, Jane

    2014-01-01

    Smooth muscle cells are maintained in a differentiated state in the vessel wall, but can be modulated to a synthetic phenotype following injury. Smooth muscle phenotypic modulation is thought to play an important role in the pathology of vascular occlusive diseases. Phenotypically modulated smooth muscle cells exhibit increased proliferative and migratory properties that accompany the downregulation of smooth muscle cell marker proteins. Extracellular matrix proteins, including fibronectin, can regulate the smooth muscle phenotype when used as adhesive substrates. However, cells produce and organize a 3-dimensional fibrillar extracellular matrix, which can affect cell behavior in distinct ways from the protomeric 2-dimensional matrix proteins that are used as adhesive substrates. We previously showed that the deposition/polymerization of fibronectin into the extracellular matrix can regulate the deposition and organization of other extracellular matrix molecules in vitro. Further, our published data show that the presence of a fibronectin polymerization inhibitor results in increased expression of smooth muscle cell differentiation proteins and inhibits vascular remodeling in vivo. In this manuscript, we used an in vitro cell culture system to determine the mechanism by which fibronectin polymerization affects smooth muscle phenotypic modulation. Our data show that fibronectin polymerization decreases the mRNA levels of multiple smooth muscle differentiation genes, and downregulates the levels of smooth muscle α-actin and calponin proteins by a Rac1-dependent mechanism. The expression of smooth muscle genes is transcriptionally regulated by fibronectin polymerization, as evidenced by the increased activity of luciferase reporter constructs in the presence of a fibronectin polymerization inhibitor. Fibronectin polymerization also promotes smooth muscle cell growth, and decreases the levels of actin stress fibers. These data define a Rac1-dependent pathway wherein

  16. Mechanical properties of asthmatic airway smooth muscle.

    PubMed

    Chin, Leslie Y M; Bossé, Ynuk; Pascoe, Chris; Hackett, Tillie L; Seow, Chun Y; Paré, Peter D

    2012-07-01

    Airway smooth muscle (ASM) is the major effector of excessive airway narrowing in asthma. Changes in some of the mechanical properties of ASM could contribute to excessive narrowing and have not been systematically studied in human ASM from nonasthmatic and asthmatic subjects. Human ASM strips (eight asthmatic and six nonasthmatic) were studied at in situ length and force was normalised to maximal force induced by electric field stimulation (EFS). Measurements included: passive and active force versus length before and after length adaptation, the force-velocity relationship, maximal shortening and force recovery after length oscillation. Force was converted to stress by dividing by cross-sectional area of muscle. The only functional differences were that the asthmatic tissue was stiffer at longer lengths (p<0.05) and oscillatory strain reduced isometric force in response to EFS by 19% as opposed to 36% in nonasthmatics (p<0.01). The mechanical properties of human ASM from asthmatic and nonasthmatic subjects are comparable except for increased passive stiffness and attenuated decline in force generation after an oscillatory perturbation. These data may relate to reduced bronchodilation induced by a deep inspiration in asthmatic subjects.

  17. Differential gene expression profiling of human adipose stem cells differentiating into smooth muscle-like cells by TGFβ1/BMP4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elçin, Ayşe Eser; Parmaksiz, Mahmut; Dogan, Arin

    Regenerative repair of the vascular system is challenging from the perspectives of translational medicine and tissue engineering. There are fundamental hurdles in front of creating bioartificial arteries, which involve recaputilation of the three-layered structure under laboratory settings. Obtaining and maintaining smooth muscle characteristics is an important limitation, as the transdifferentiated cells fail to display mature phenotype. This study aims to shed light on the smooth muscle differentiation of human adipose stem cells (hASCs). To this end, we first acquired hASCs from lipoaspirate samples. Upon characterization, the cells were induced to differentiate into smooth muscle (SM)-like cells using a variety ofmore » inducer combinations. Among all, TGFβ1/BMP4 combination had the highest differentiation efficiency, based on immunohistochemical analyses. hSM-like cell samples were compared to hASCs and to the positive control, human coronary artery-smooth muscle cells (hCA-SMCs) through gene transcription profiling. Microarray findings revealed the activation of gene groups that function in smooth muscle differentiation, signaling pathways, extracellular modeling and cell proliferation. Our results underline the effectiveness of the growth factors and suggest some potential variables for detecting the SM-like cell characteristics. Evidence in transcriptome level was used to evaluate the TGFβ1/BMP4 combination as a previously unexplored effector for the smooth muscle differentiation of adipose stem cells. - Highlights: • Human adipose stem cells (hASCs) were isolated, characterized and cultured. • Growth factor combinations were evaluated for their effectiveness in differentiation using IHC. • hASCs were differentiated into smooth muscle (SM)-like cells using TGF-β1 and BMP4 combination. • Microarray analysis was performed for hASCs, SM-like cells and coronary artery-SMCs. • Microarray data was used to perform hierarchical clustering and

  18. Hyaluronic acid influence on platelet-induced airway smooth muscle cell proliferation.

    PubMed

    Svensson Holm, Ann-Charlotte B; Bengtsson, Torbjörn; Grenegård, Magnus; Lindström, Eva G

    2012-03-10

    Hyaluronic acid (HA) is one of the main components of the extracellular matrix (ECM) and is expressed throughout the body including the lung and mostly in areas surrounding proliferating and migrating cells. Furthermore, platelets have been implicated as important players in the airway remodelling process, e.g. due to their ability to induce airway smooth muscle cell (ASMC) proliferation. The aim of the present study was to investigate the role of HA, the HA-binding surface receptor CD44 and focal adhesion kinase (FAK) in platelet-induced ASMC proliferation. Proliferation of ASMC was measured using the MTS-assay, and we found that the CD44 blocking antibody and the HA synthase inhibitor 4-Methylumbelliferone (4-MU) significantly inhibited platelet-induced ASMC proliferation. The interaction between ASMC and platelets was studied by fluorescent staining of F-actin. In addition, the ability of ASMC to synthesise HA was investigated by fluorescent staining using biotinylated HA-binding protein and a streptavidin conjugate. We observed that ASMC produced HA and that a CD44 blocking antibody and 4-MU significantly inhibited platelet binding to the area surrounding the ASMC. Furthermore, the FAK-inhibitor PF 573228 inhibited platelet-induced ASMC proliferation. Co-culture of ASMC and platelets also resulted in increased phosphorylation of FAK as detected by Western blot analysis. In addition, 4-MU significantly inhibited the increased FAK-phosphorylation. In conclusion, our findings demonstrate that ECM has the ability to influence platelet-induced ASMC proliferation. Specifically, we propose that HA produced by ASMC is recognised by platelet CD44. The platelet/HA interaction is followed by FAK activation and increased proliferation of co-cultured ASMC. We also suggest that the mitogenic effect of platelets represents a potential important and novel mechanism that may contribute to airway remodelling. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Role of Telokin in Regulating Murine Gastric Fundus Smooth Muscle Tension

    PubMed Central

    An, Changlong; Bhetwal, Bhupal P.; Sanders, Kenton M.; Somlyo, Avril V.; Perrino, Brian A.

    2015-01-01

    Telokin phosphorylation by cyclic GMP-dependent protein kinase facilitates smooth muscle relaxation. In this study we examined the relaxation of gastric fundus smooth muscles from basal tone, or pre-contracted with KCl or carbachol (CCh), and the phosphorylation of telokin S13, myosin light chain (MLC) S19, MYPT1 T853, T696, and CPI-17 T38 in response to 8-Bromo-cGMP, the NO donor sodium nitroprusside (SNP), or nitrergic neurotransmission. We compared MLC phosphorylation and the contraction and relaxation responses of gastric fundus smooth muscles from telokin-/- mice and their wild-type littermates to KCl or CCh, and 8-Bromo-cGMP, SNP, or nitrergic neurotransmission, respectively. We compared the relaxation responses and telokin phosphorylation of gastric fundus smooth muscles from wild-type mice and W/W V mice which lack ICC-IM, to 8-Bromo-cGMP, SNP, or nitrergic neurotransmission. We found that telokin S13 is basally phosphorylated and that 8-Bromo-cGMP and SNP increased basal telokin phosphorylation. In muscles pre-contracted with KCl or CCh, 8-Bromo-cGMP and SNP had no effect on CPI-17 or MYPT1 phosphorylation, but increased telokin phosphorylation and reduced MLC phosphorylation. In telokin-/- gastric fundus smooth muscles, basal tone and constitutive MLC S19 phosphorylation were increased. Pre-contracted telokin-/- gastric fundus smooth muscles have increased contractile responses to KCl, CCh, or cholinergic neurotransmission and reduced relaxation to 8-Bromo-cGMP, SNP, and nitrergic neurotransmission. However, basal telokin phosphorylation was not increased when muscles were stimulated with lower concentrations of SNP or when the muscles were stimulated by nitrergic neurotransmission. SNP, but not nitrergic neurotransmission, increased telokin Ser13 phosphorylation in both wild-type and W/W V gastric fundus smooth muscles. Our findings indicate that telokin may play a role in attenuating constitutive MLC phosphorylation and provide an additional mechanism

  20. Calcium signaling in smooth muscle.

    PubMed

    Hill-Eubanks, David C; Werner, Matthias E; Heppner, Thomas J; Nelson, Mark T

    2011-09-01

    Changes in intracellular Ca(2+) are central to the function of smooth muscle, which lines the walls of all hollow organs. These changes take a variety of forms, from sustained, cell-wide increases to temporally varying, localized changes. The nature of the Ca(2+) signal is a reflection of the source of Ca(2+) (extracellular or intracellular) and the molecular entity responsible for generating it. Depending on the specific channel involved and the detection technology employed, extracellular Ca(2+) entry may be detected optically as graded elevations in intracellular Ca(2+), junctional Ca(2+) transients, Ca(2+) flashes, or Ca(2+) sparklets, whereas release of Ca(2+) from intracellular stores may manifest as Ca(2+) sparks, Ca(2+) puffs, or Ca(2+) waves. These diverse Ca(2+) signals collectively regulate a variety of functions. Some functions, such as contractility, are unique to smooth muscle; others are common to other excitable cells (e.g., modulation of membrane potential) and nonexcitable cells (e.g., regulation of gene expression).

  1. Hypoxia-inducible factor-1α in vascular smooth muscle regulates blood pressure homeostasis through a peroxisome proliferator-activated receptor-γ-angiotensin II receptor type 1 axis.

    PubMed

    Huang, Yan; Di Lorenzo, Annarita; Jiang, Weidong; Cantalupo, Anna; Sessa, William C; Giordano, Frank J

    2013-09-01

    Hypertension is a major worldwide health issue for which only a small proportion of cases have a known mechanistic pathogenesis. Of the defined causes, none have been directly linked to heightened vasoconstrictor responsiveness, despite the fact that vasomotor tone in resistance vessels is a fundamental determinant of blood pressure. Here, we reported a previously undescribed role for smooth muscle hypoxia-inducible factor-1α (HIF-1α) in controlling blood pressure homeostasis. The lack of HIF-1α in smooth muscle caused hypertension in vivo and hyperresponsiveness of resistance vessels to angiotensin II stimulation ex vivo. These data correlated with an increased expression of angiotensin II receptor type I in the vasculature. Specifically, we show that HIF-1α, through peroxisome proliferator-activated receptor-γ, reciprocally defined angiotensin II receptor type I levels in the vessel wall. Indeed, pharmacological blockade of angiotensin II receptor type I by telmisartan abolished the hypertensive phenotype in smooth muscle cell-HIF-1α-KO mice. These data revealed a determinant role of a smooth muscle HIF-1α/peroxisome proliferator-activated receptor-γ/angiotensin II receptor type I axis in controlling vasomotor responsiveness and highlighted an important pathway, the alterations of which may be critical in a variety of hypertensive-based clinical settings.

  2. Autonomic Modification of Intestinal Smooth Muscle Contractility

    ERIC Educational Resources Information Center

    Montgomery, Laura E. A.; Tansey, Etain A.; Johnson, Chris D.; Roe, Sean M.; Quinn, Joe G.

    2016-01-01

    Intestinal smooth muscle contracts rhythmically in the absence of nerve and hormonal stimulation because of the activity of pacemaker cells between and within the muscle layers. This means that the autonomic nervous system modifies rather than initiates intestinal contractions. The practical described here gives students an opportunity to observe…

  3. Inducible nitric oxide synthase evoked nitric oxide counteracts capsaicin-induced airway smooth muscle contraction, but exacerbates plasma extravasation.

    PubMed

    Li, Ping-Chia; Shaw, Chen-Fu; Kuo, Tin-Fan; Chien, Chiang-Ting

    2005-04-18

    The contribution of nitric oxide (NO) to capsaicin-evoked airway responses was investigated in rats. The measurement of plasma NO level, airway dynamics, airway smooth muscle electromyogram, and plasma extravasation by India ink and Evans blue leakage technique was adapted. Capsaicin-evoked hypotension, bronchoconstriction, trachea plasma extravasation as well as increases in plasma NO level in a dose-dependent manner. L-732138 (NK1 receptor antagonist) or SR-48968 (NK2 receptor antagonist) pretreatment reduced capsaicin-enhanced hypotension, bronchoconstriction, plasma extravasation, and plasma NO level. N(G)-nitro-L-Arginine methyl ester (L-NAME, 10 mg/kg, i.v.), a non-selective NO synthase (NOS) inhibitor, or aminoguanidine (10 mg/kg, i.v.), a selective inducible NOS (iNOS) inhibitor, reduced capsaicin-induced increases in plasma NO level and protected against capsaicin-induced plasma extravasation, whereas L-arginine (150 mg/kg, i.v.), a NO precursor, enhanced capsaicin-evoked plasma NO level and plasma extravasation. L-Arginine pretreatment ameliorated capsaicin-induced bronchoconstriction, whereas L-NAME and aminoguanidine exaggerated capsaicin-induced bronchoconstriction. In summary, NK1 and NK2 receptors and iNOS play a role in NO formation and on capsaicin-induced bronchoconstriction and plasma extravasation. NO generated by iNOS counteracts tachykinin-mediated bronchoconstriction, but exacerbates tachykinin-mediated plasma extravasation.

  4. Wogonin suppresses TNF-{alpha}-induced MMP-9 expression by blocking the NF-{kappa}B activation via MAPK signaling pathways in human aortic smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Syng-Ook; Jeong, Yun-Jeong; Yu, Mi Hee

    2006-12-08

    Matrix metalloproteinase-9 (MMP-9) plays a major role in the pathogenesis of atherosclerosis and restenosis by regulating both migration and proliferation of vascular smooth muscle cells (VSMC) after an arterial injury. In this study, we examined the inhibitory effect of three major flavonoids in Scutellariae Radix, baicalin, baicalein, and wogonin, on TNF-{alpha}-induced MMP-9 expression in human aortic smooth muscle cells (HASMC). Wogonin, but not baicalin and baicalein, significantly and selectively suppressed TNF-{alpha}-induced MMP-9 expression in HASMC. Reporter gene, electrophoretic mobility shift, and Western blotting assays showed that wogonin inhibits MMP-9 gene transcriptional activity by blocking the activation of NF-{kappa}B via MAPKmore » signaling pathways. Moreover, the Matrigel migration assay showed that wogonin reduced TNF-{alpha}-induced HASMC migration. These results suggest that wogonin effectively suppresses TNF-{alpha}-induced HASMC migration through the selective inhibition of MMP-9 expression and represents a potential agent for the prevention of vascular disorders related to the migration of VSMC.« less

  5. Cross-bridge elasticity in single smooth muscle cells

    PubMed Central

    1983-01-01

    In smooth muscle, a cross-bridge mechanism is believed to be responsible for active force generation and fiber shortening. In the present studies, the viscoelastic and kinetic properties of the cross- bridge were probed by eliciting tension transients in response to small, rapid, step length changes (delta L = 0.3-1.0% Lcell in 2 ms). Tension transients were obtained in a single smooth muscle cell isolated from the toad (Bufo marinus) stomach muscularis, which was tied between a force transducer and a displacement device. To record the transients, which were of extremely small magnitude (0.1 microN), a high-frequency (400 Hz), ultrasensitive force transducer (18 mV/microN) was designed and built. The transients obtained during maximal force generation (Fmax = 2.26 microN) were characterized by a linear elastic response (Emax = 1.26 X 10(4) mN/mm2) coincident with the length step, which was followed by a biphasic tension recovery made up of two exponentials (tau fast = 5-20 ms, tau slow = 50-300 ms). During the development of force upon activation, transients were elicited. The relationship between stiffness and force was linear, which suggests that the transients originate within the cross-bridge and reflect the cross-bridge's viscoelastic and kinetic properties. The observed fiber elasticity suggests that the smooth muscle cross-bridge is considerably more compliant than in fast striated muscle. A thermodynamic model is presented that allows for an analysis of the factors contributing to the increased compliance of the smooth muscle cross-bridge. PMID:6413640

  6. Role of rho-kinase (ROCK) in tonic but not phasic contraction in the frog stomach smooth muscle.

    PubMed

    Sahin, Leyla; Cevik, Ozge Selin; Koyuncu, Dilan Deniz; Buyukafsar, Kansu

    2018-04-01

    Rho/Rho-kinase (ROCK) signaling has extensively been shown to take part in mammalian smooth muscle contractions in response to diverse agents yet its role in the contraction of amphibian smooth muscle has not been investigated. Therefore, we aimed to explore any role of this pathway in the contractions of frog stomach smooth. The strips were prepared and suspended in organ baths filled with Ringer solution. Changes in the circular strips of the frog stomach muscle length were recorded isotonically with a force transducer in organ baths. Carbachol (CCh) exerted both phasic and tonic contractions. In contrast, atropin abolished all types of contractions by CCh. The phasic contractions were suppressed by a Ca 2+ channel blocker, nifedipine but not by the ROCK inhibitor, Y-27632. However, the tonic contractions were markedly attenuated by Y-27632. Selective M 1 receptor blocker, pirenzepin, selective M 3 receptor blocker and DAMP had no effects on CCh-elicited contractions. On the other hand, selective M 2 receptor blocker, AF-DX suppressed all types of contractile activity by CCh. These data suggest that M 2 receptor activation could mainly mediate CCh-induced phasic and tonic contractions, and ROCK seems to be involved in the CCh-induced tonic but not phasic contractions of the frog stomach smooth muscle. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Unraveling endothelin-1 induced hypercontractility of human pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension

    PubMed Central

    Warburton, Rod; Taylor, Linda; Toksoz, Deniz; Hill, Nicholas; Polgar, Peter

    2018-01-01

    Contraction of human pulmonary artery smooth muscle cells (HPASMC) isolated from pulmonary arterial hypertensive (PAH) and normal (non-PAH) subject lungs was determined and measured with real-time electrical impedance. Treatment of HPASMC with vasoactive peptides, endothelin-1 (ET-1) and bradykinin (BK) but not angiotensin II, induced a temporal decrease in the electrical impedance profile mirroring constrictive morphological change of the cells which typically was more robust in PAH as opposed to non-PAH cells. Inhibition with LIMKi3 and a cofilin targeted motif mimicking cell permeable peptide (MMCPP) had no effect on ET-1 induced HPASMC contraction indicating a negligible role for these actin regulatory proteins. On the other hand, a MMCPP blocking the activity of caldesmon reduced ET-1 promoted contraction pointing to a regulatory role of this protein and its activation pathway in HPASMC contraction. Inhibition of this MEK/ERK/p90RSK pathway, which is an upstream regulator of caldesmon phosphorylation, reduced ET-1 induced cell contraction. While the regulation of ET-1 induced cell contraction was found to be similar in PAH and non-PAH cells, a key difference was the response to pharmacological inhibitors and to siRNA knockdown of Rho kinases (ROCK1/ROCK2). The PAH cells required much higher concentrations of inhibitors to abrogate ET-1 induced contractions and their contraction was not affected by siRNA against either ROCK1 or ROCK2. Lastly, blocking of L-type and T-type Ca2+ channels had no effect on ET-1 or BK induced contraction. However, inhibiting the activity of the sarcoplasmic reticulum Ca2+ ATPase blunted ET-1 and BK induced HPASMC contraction in both PAH and non-PAH derived HPASMC. In summary, our findings here together with previous communications illustrate similarities and differences in the regulation PAH and non-PAH smooth muscle cell contraction relating to calcium translocation, RhoA/ROCK signaling and the activity of caldesmon. These findings

  8. Dense-body aggregates as plastic structures supporting tension in smooth muscle cells.

    PubMed

    Zhang, Jie; Herrera, Ana M; Paré, Peter D; Seow, Chun Y

    2010-11-01

    The wall of hollow organs of vertebrates is a unique structure able to generate active tension and maintain a nearly constant passive stiffness over a large volume range. These properties are predominantly attributable to the smooth muscle cells that line the organ wall. Although smooth muscle is known to possess plasticity (i.e., the ability to adapt to large changes in cell length through structural remodeling of contractile apparatus and cytoskeleton), the detailed structural basis for the plasticity is largely unknown. Dense bodies, one of the most prominent structures in smooth muscle cells, have been regarded as the anchoring sites for actin filaments, similar to the Z-disks in striated muscle. Here, we show that the dense bodies and intermediate filaments formed cable-like structures inside airway smooth muscle cells and were able to adjust the cable length according to cell length and tension. Stretching the muscle cell bundle in the relaxed state caused the cables to straighten, indicating that these intracellular structures were connected to the extracellular matrix and could support passive tension. These plastic structures may be responsible for the ability of smooth muscle to maintain a nearly constant tensile stiffness over a large length range. The finding suggests that the structural plasticity of hollow organs may originate from the dense-body cables within the smooth muscle cells.

  9. Notch Signaling in Vascular Smooth Muscle Cells

    PubMed Central

    Baeten, J.T.; Lilly, B.

    2018-01-01

    The Notch signaling pathway is a highly conserved pathway involved in cell fate determination in embryonic development and also functions in the regulation of physiological processes in several systems. It plays an especially important role in vascular development and physiology by influencing angiogenesis, vessel patterning, arterial/venous specification, and vascular smooth muscle biology. Aberrant or dysregulated Notch signaling is the cause of or a contributing factor to many vascular disorders, including inherited vascular diseases, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, associated with degeneration of the smooth muscle layer in cerebral arteries. Like most signaling pathways, the Notch signaling axis is influenced by complex interactions with mediators of other signaling pathways. This complexity is also compounded by different members of the Notch family having both overlapping and unique functions. Thus, it is vital to fully understand the roles and interactions of each Notch family member in order to effectively and specifically target their exact contributions to vascular disease. In this chapter, we will review the Notch signaling pathway in vascular smooth muscle cells as it relates to vascular development and human disease. PMID:28212801

  10. Preliminary investigations on the effects of a Strongylus vulgaris larval extract, mononuclear factors and platelet factors on equine smooth muscle cells in vitro.

    PubMed

    Morgan, S J; Storts, R W; Stromberg, P C; Sowa, B A; Lay, J C

    1989-01-01

    Factors involved in the proliferation of equine vascular smooth muscle cells were studied in vitro. The most prominent proliferative responses in cultured vascular smooth muscle cells were induced by Strongylus vulgaris larval antigen extract (LAE) and platelet-derived factors. Less significant proliferative responses were obtained with conditioned media from S. vulgaris LAE stimulated and from unstimulated equine mononuclear leukocytes. Additionally, vascular smooth muscle cells exposed to S. vulgaris LAE developed numerous perinuclear vacuoles and were more spindle-shaped than control or smooth muscle cells exposed to other factors. Equine mononuclear leukocytes exposed to LAE developed prominent morphological changes, including enlargement, clumping and increased numbers of mitotic figures.

  11. Role of guanine nucleotide-binding proteins--ras-family or trimeric proteins or both--in Ca2+ sensitization of smooth muscle.

    PubMed Central

    Gong, M C; Iizuka, K; Nixon, G; Browne, J P; Hall, A; Eccleston, J F; Sugai, M; Kobayashi, S; Somlyo, A V; Somlyo, A P

    1996-01-01

    The purpose of this study was to identify guanine nucleotide-binding proteins (G proteins) involved in the agonist- and guanosine 5'-[gamma-thio]triphosphate (GTP[gamma-S])-induced increase in the Ca2+ sensitivity of 20-kDa myosin light chain (MLC20) phosphorylation and contraction in smooth muscle. A constitutively active, recombinant val14p21rhoA.GTP expressed in the baculovirus/Sf9 system, but not the protein expressed without posttranslational modification in Escherichia coli, induced at constant Ca2+ (pCa 6.4) a slow contraction associated with increased MLC20 phosphorylation from 19.8% to 29.5% (P < 0.05) in smooth muscle permeabilized with beta-esein. The effect of val14p21rhoA.GTP was inhibited by ADP-ribosylation of the protein and was absent in smooth muscle extensively permeabilized with Triton X-100. ADP-ribosylation of endogenous p21rho with epidermal cell differentiation inhibitor (EDIN) inhibited Ca2+ sensitization induced by GTP [in rabbit mesenteric artery (RMA) and rabbit ileum smooth muscles], by carbachol (in rabbit ileum), and by endothelin (in RMA), but not by phenylephrine (in RMA), and only slowed the rate without reducing the amplitude of contractions induced in RMA by 1 microM GTP[gamma-S] at constant Ca2+ concentrations. AlF(4-)-induced Ca2+ sensitization was inhibited by both guanosine 5'-[beta-thio]diphosphate (GDP[beta-S]) and by EDIN. EDIN also inhibited, to a lesser extent, contractions induced by Ca2+ alone (pCa 6.4) in both RMA and rabbit ileum. ADP-ribosylation of trimeric G proteins with pertussis toxin did not inhibit Ca2+ sensitization. We conclude that p21rho may play a role in physiological Ca2+ sensitization as a cofactor with other messengers, rather than as a sole direct inhibitor of smooth muscle MLC20 phosphatase. Images Fig. 3 Fig. 4 PMID:8577766

  12. Potential roles for BMP and Pax genes in the development of iris smooth muscle.

    PubMed

    Jensen, Abbie M

    2005-02-01

    The embryonic optic cup generates four types of tissue: neural retina, pigmented epithelium, ciliary epithelium, and iris smooth muscle. Remarkably little attention has focused on the development of the iris smooth muscle since Lewis ([1903] J. Am. Anat. 2:405-416) described its origins from the anterior rim of the optic cup neuroepithelium. As an initial step toward understanding iris smooth muscle development, I first determined the spatial and temporal pattern of the development of the iris smooth muscle in the chick by using the HNK1 antibody, which labels developing iris smooth muscle. HNK1 labeling shows that iris smooth muscle development is correlated in time and space with the development of the ciliary epithelial folds. Second, because neural crest is the only other neural tissue that has been shown to generate smooth muscle (Le Lievre and Le Douarin [1975] J. Embryo. Exp. Morphol. 34:125-154), I sought to determine whether iris smooth muscle development shares similarities with neural crest development. Two members of the BMP superfamily, BMP4 and BMP7, which may regulate neural crest development, are highly expressed by cells at the site of iris smooth muscle generation. Third, because humans and mice that are heterozygous for Pax6 mutations have no irides (Hill et al. [1991] Nature 354:522-525; Hanson et al. [1994] Nat. Genet. 6:168-173), I determined the expression of Pax6. I also examined the expression of Pax3 in the developing anterior optic cup. The developing iris smooth muscle coexpresses Pax6 and Pax3. I suggest that some of the eye defects caused by mutations in Pax6, BMP4, and BMP7 may be due to abnormal iris smooth muscle. Copyright 2004 Wiley-Liss, Inc.

  13. Monocyte activation by smooth muscle cell-derived matrices.

    PubMed

    Kaufmann, J; Jorgensen, R W; Martin, B M; Franzblau, C

    1990-12-01

    Mononuclear phagocytes adhere to and penetrate the vessel wall endothelium and contact the subendothelial space prior to the development of the atherosclerotic plaque. In an attempt to model the early events of plaque development we used an elastin-rich, multicomponent, cell-derived matrix from neonatal rat aortic smooth muscle cells as a substratum for monocytes. Using this model, we show that human monocyte morphology and metabolism are markedly altered by the matrix substratum. When a mixed mononuclear cell population is seeded on matrix or plastic, only monocytes adhere to the matrix surface. In contrast, lymphocytes as well as monocytes adhere to the plastic surface. The matrix-adherent monocytes develop large intracellular granules and form extensive clusters of individual cells. Metabolically, these cells develop sodium fluoride resistant non-specific esterase activity and their media contain more growth factor activity and PGE2. Although total protein synthesis is equivalent in both cultures, the matrix contact induces an increase in specific proteins in the media. We also show that a purified alpha-elastin substratum induces some, but not all, of the monocyte changes seen when using the matrix substratum. Using the alpha-elastin substratum, there is selective adhesion of monocytes and increased growth factor activity, however, the cells are morphologically different from the matrix-adherent cells. Thus, the use of the smooth muscle cell-derived matrix, in conjunction with purified matrix components, serves as a model that can provide insight into the mechanisms of monocyte adhesion and stimulation by the matrix environment that exists in vivo. Such mechanisms may be particularly important in atherogenesis.

  14. Endothelium-independent relaxant effect of Rubus coreanus extracts in corpus cavernosum smooth muscle.

    PubMed

    Lee, Jun Ho; Chae, Mee Ree; Sung, Hyun Hwan; Ko, Mikyeong; Kang, Su Jeong; Lee, Sung Won

    2013-07-01

    Rubus coreanus is a perennial shrub native to the southern part of the Korean peninsula. Although it is known that R. coreanus has a dose-dependent relaxation effect on rabbit corpus cavernosum (CC), the exact mechanism of action by which R. coreanus work is not fully known. To elucidate the direct effects of unripe R. coreanus extract (RCE) on CC smooth muscle cells. Dried unripe R. coreanus fruits were pulverized and extracted with 95% ethanol. Isolated rabbit CC strips were mounted in an organ-bath system, and the effects of RCE were evaluated. To estimate [Ca(2+)]i , we used a Fura-2 fluorescent technique. The effects of unripe RCE on ion channels and the intracellular Ca(2+) concentration ([Ca(2+)]i ) of CC. RCE effectively relaxed phenylephrine (PE)-induced tone in rabbit CC, and removal of the endothelium did not completely abolish the relaxation effect of RCE. Tetraethylammonium (1 mM) did not inhibit RCE-induced relaxation in strips precontracted by PE in the organ bath. However, CaCl2 -induced constriction of CC strips, bathed in Ca(2+)-free buffer and primed with PE, was abolished by RCE. In addition, RCE decreased basal [Ca(2+)]i in corporal smooth muscle cells. The increases of [Ca(2+)]i evoked by 60 mM K(+)-containing solution in A7r5 cells were suppressed by RCE, and RCE relaxed KCl-induced tone in endothelium-free CC, which indicated that RCE blocked the voltage-dependent Ca(2+) channels (VDCCs). RCE decreased basal [Ca(2+)]i and the [Arg8]-vasopressin-induced [Ca(2+)]i increases in A7r5 cells, and RCE inhibited the contraction of endothelium-free CC induced by PE in Ca(2+)-free solution, which suggested that RCE might act as a modulator of corporal smooth muscle cell tone by inhibiting Ca(2+) release from sarcoplasmic reticulum. RCE acts through endothelium-independent and endothelium-dependent pathways to relax CC. RCE may inhibit VDCCs and Ca(2+) release from sarcoplasmic reticulum. © 2013 International Society for Sexual Medicine.

  15. mTOR pathway and Ca2+ stores mobilization in aged smooth muscle cells

    PubMed Central

    Martín-Cano, Francisco E; Camello-Almaraz, Cristina; Hernandez, David; Pozo, Maria J; Camello, Pedro J

    2013-01-01

    Aging is considered to be driven by the so called senescence pathways, especially the mTOR route, although there is almost no information on its activity in aged tissues. Aging also induces Ca2+ signal alterations, but information regarding the mechanisms for these changes is almost inexistent. We investigated the possible involvement of the mTOR pathway in the age-dependent changes on Ca2+ stores mobilization in colonic smooth muscle cells of young (4 month old) and aged (24 month old) guinea pigs. mTORC1 activity was enhanced in aged smooth muscle, as revealed by phosphorylation of mTOR and its direct substrates S6K1 and 4E-BP1. Mobilization of intracellular Ca2+ stores through IP3R or RyR channels was impaired in aged cells, and it was facilitated by mTOR and by FKBP12, as indicated by the inhibitory effects of KU0063794 (a direct mTOR inhibitor), rapamycin (a FKBP12-mediated mTOR inhibitor) and FK506 (an FKBP12 binding immunosuppressant). Aging suppressed the facilitation of the Ca2+ mobilization by FKBP12 but not by mTOR, without changing the total expression of FKBP12 protein. In conclusion, or study shows that in smooth muscle aging enhances the constitutive activity of mTORC1 pathway and impairs Ca2+ stores mobilization by suppression of the FKBP12-induced facilitation of Ca2+ release. PMID:23661091

  16. Gi-coupled γ-aminobutyric acid-B receptors cross-regulate phospholipase C and calcium in airway smooth muscle.

    PubMed

    Mizuta, Kentaro; Mizuta, Fumiko; Xu, Dingbang; Masaki, Eiji; Panettieri, Reynold A; Emala, Charles W

    2011-12-01

    γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system, and exerts its actions via both ionotropic (GABA(A)) and metabotropic (GABA(B)) receptors. Although the functional expression of GABA(B) receptors coupled to the G(i) protein was reported for airway smooth muscle, the role of GABA(B) receptors in airway responsiveness remains unclear. We investigated whether G(i)-coupled GABA(B) receptors cross-regulate phospholipase C (PLC), an enzyme classically regulated by G(q)-coupled receptors in human airway smooth muscle cells. Both the GABA(B)-selective agonist baclofen and the endogenous ligand GABA significantly increased the synthesis of inositol phosphate, whereas GABA(A) receptor agonists, muscimol, and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol exerted no effect. The baclofen-induced synthesis of inositol phosphate and transient increases in [Ca(2+)](i) were blocked by CGP35348 and CGP55845 (selective GABA(B) antagonists), pertussis toxin (PTX, which inactivates the G(i) protein), gallein (a G(βγ) signaling inhibitor), U73122 (an inhibitor of PLC-β), and xestospongin C, an inositol 1,4,5-triphosphate receptor blocker. Baclofen also potentiated the bradykinin-induced synthesis of inositol phosphate and transient increases in [Ca(2+)](i), which were blocked by CGP35348 or PTX. Moreover, baclofen potentiated the substance P-induced contraction of airway smooth muscle in isolated guinea pig tracheal rings. In conclusion, the stimulation of GABA(B) receptors in human airway smooth muscle cells rapidly mobilizes intracellular Ca(2+) stores by the synthesis of inositol phosphate via the activation of PLC-β, which is stimulated by G(βγ) protein liberated from G(i) proteins coupled to GABA(B) receptors. Furthermore, crosstalk between GABA(B) receptors and G(q)-coupled receptors potentiates the synthesis of inositol phosphate, transient increases in [Ca(2+)](i), and smooth muscle contraction through G

  17. Oesophageal tone and sensation in the transition zone between proximal striated and distal smooth muscle oesophagus.

    PubMed

    Karamanolis, G; Stevens, W; Vos, R; Tack, J; Clave, P; Sifrim, D

    2008-04-01

    Previous studies have shown that the proximal striated muscle oesophagus is less compliant and more sensitive than the distal smooth muscle oesophagus. Conventional and high resolution manometry described a transition zone between striated and smooth muscle oesophagus. We aimed to evaluate oesophageal tone and sensitivity at the transition zone of oesophagus in healthy volunteers. In 18 subjects (seven men, mean age: 28 years) an oesophageal barostat study was performed. Tone and sensitivity were assessed using stepwise isobaric distensions with the balloon located at transition zone and at distal oesophagus in random order. To study the effect induced on transition zone by a previous distension at the distal oesophagus and vice versa, identical protocol was repeated after 7 days with inverted order. Initial distension of a region is referred to as 'naïf' distension and distension of a region following the distension of the other segment as 'primed' distension. Assessment of three oesophageal symptoms (chest pain, heartburn and 'other') was obtained at the end of every distension step. Compliance was significantly higher in the transition zone than in the distal oesophagus (1.47 +/- 0.14 vs 1.09 +/- 0.09 mL mmHg(-1), P = 0.03) after 'naif' distensions. This difference was not observed during 'primed' distensions. Higher sensitivity at transition zone level was found in 11/18 (61%) subjects compared to 6/18 (33%, P < 0.05) at smooth muscle oesophagus. Chest pain and 'other' symptom were more often induced by distention of the transition zone, whereas heartburn was equally triggered by distension of either region. The transition zone is more complaint and more sensitive than smooth muscle oesophagus.

  18. Chronic stimulation of farnesoid X receptor impairs nitric oxide sensitivity of vascular smooth muscle.

    PubMed

    Kida, Taiki; Murata, Takahisa; Hori, Masatoshi; Ozaki, Hiroshi

    2009-01-01

    Farnesoid X receptor (FXR), a member of the nuclear receptor superfamily that is highly expressed in enterohepatic tissue, is implicated in bile acid, lipid, and glucose metabolisms. Although recent studies showed that FXR is also expressed in vascular endothelial cells and smooth muscle cells, its physiological and/or pathological roles in vasculature tissue remain unknown. The aim of this study is to examine the chronic effect of synthetic FXR agonist GW4064 on vascular contraction and endothelium-dependent relaxation using tissue culture procedure. In cultured rabbit mesenteric arteries, the treatment with 0.1-10 microM GW4064 for 7 days did not influence vascular contractility induced by high K(+) (15-65 mM), norepinephrine (0.1-100 microM), and endothelin-1 (0.1-100 nM). However, the chronic treatment with GW4064 (1-10 microM for 7 days) dose dependently impaired endothelium-dependent relaxation induced by substance P (0.1-30 nM). In hematoxylin-eosin cross sectioning and en face immunostaining, GW4064 had no effects on the morphology of endothelial and smooth muscle cells. In endothelium-denuded arteries treated with GW4064 (1-10 microM) for 7 days, 3 nM-100 microM sodium nitroprusside-induced vasorelaxation, but not membrane-permeable cGMP analog 8-bromoguanosine-cGMP (8-Br-cGMP; 1-100 microM)-induced vasorelaxation, was significantly impaired. In these GW4064-treated arteries, 1 muM sodium nitroprusside-induced intracellular cGMP elevations were impaired. In RT-PCR, any changes were detected in mRNA expression level of alpha(1)- and beta(1)-subunit of soluble guanylyl cyclase. These results suggest that chronic stimulation of FXR impairs endothelium-dependent relaxation, which is due to decreased sensitivity of smooth muscle cells to nitric oxide.

  19. Mechanism of Rho-kinase-mediated Ca2+-independent contraction in aganglionic smooth muscle in a rat model of Hirschsprung's disease.

    PubMed

    Akiyoshi, Junko; Ieiri, Satoshi; Nakatsuji, Takanori; Taguchi, Tomoaki

    2009-11-01

    Lack of ganglion cells is the main cause of bowel movement disorder in Hirschsprung's disease. Because smooth muscle is the primary organ, the properties of intestinal smooth muscle need to be investigated. We therefore investigated the reactivity of the contractile system and the mechanism of contraction in aganglionic intestinal smooth muscle. Colonic smooth muscle strips from endothelin-B receptor gene-deficient [EDNRB(-/-)] rats were loaded with the Ca(2+) indicator dye fura-PE3/AM and changes in fluorescence intensity were monitored. The intracellular calcium concentration ([Ca(2+)]i) and force development in the strips were measured simultaneously. The force induced by 10 microM substance P (SP) was higher than that induced by 60 mM K(+) depolarization (control), whereas [Ca(2+)]i elevation induced by 10 microM SP was less than that induced by 60 mM K(+) in all segments. Pretreatment with the Rho-kinase inhibitor Y-27632 inhibited force development more strongly in EDNRB(-/-) aganglionic segments than in EDNRB(+/+) ganglionic segments. However, [Ca(2+)]i was higher in EDNRB(-/-) aganglionic segments than in EDNRB(+/+) ganglionic segments. The Ca(2+)-independent pathway involving Rho-kinase was hyperactivated in EDNRB(-/-) aganglionic segments. This phenomenon is assumed to compensate for Ca(2+) channel downregulation and Ca(2+)-dependent contraction. From a clinical point of view, the motility of aganglionic intestine would be controllable with the control of Ca(2+)-independent contraction before definitive operations in Hirschsprung's disease.

  20. Carbachol-induced rabbit bladder smooth muscle contraction: roles of protein kinase C and Rho kinase.

    PubMed

    Wang, Tanchun; Kendig, Derek M; Smolock, Elaine M; Moreland, Robert S

    2009-12-01

    Smooth muscle contraction is regulated by phosphorylation of the myosin light chain (MLC) catalyzed by MLC kinase and dephosphorylation catalyzed by MLC phosphatase. Agonist stimulation of smooth muscle results in the inhibition of MLC phosphatase activity and a net increase in MLC phosphorylation and therefore force. The two pathways believed to be primarily important for inhibition of MLC phosphatase activity are protein kinase C (PKC)-catalyzed CPI-17 phosphorylation and Rho kinase (ROCK)-catalyzed myosin phosphatase-targeting subunit (MYPT1) phosphorylation. The goal of this study was to determine the roles of PKC and ROCK and their downstream effectors in regulating MLC phosphorylation levels and force during the phasic and sustained phases of carbachol-stimulated contraction in intact bladder smooth muscle. These studies were performed in the presence and absence of the PKC inhibitor bisindolylmaleimide-1 (Bis) or the ROCK inhibitor H-1152. Phosphorylation levels of Thr(38)-CPI-17 and Thr(696)/Thr(850)-MYPT1 were measured at different times during carbachol stimulation using site-specific antibodies. Thr(38)-CPI-17 phosphorylation increased concurrently with carbachol-stimulated force generation. This increase was reduced by inhibition of PKC during the entire contraction but was only reduced by ROCK inhibition during the sustained phase of contraction. MYPT1 showed high basal phosphorylation levels at both sites; however, only Thr(850) phosphorylation increased with carbachol stimulation; the increase was abolished by the inhibition of either ROCK or PKC. Our results suggest that during agonist stimulation, PKC regulates MLC phosphatase activity through phosphorylation of CPI-17. In contrast, ROCK phosphorylates both Thr(850)-MYPT1 and CPI-17, possibly through cross talk with a PKC pathway, but is only significant during the sustained phase of contraction. Last, our results demonstrate that there is a constitutively activate pool of ROCK that phosphorylates

  1. Lubiprostone Increases Small Intestinal Smooth Muscle Contractions Through a Prostaglandin E Receptor 1 (EP1)-mediated Pathway.

    PubMed

    Chan, Walter W; Mashimo, Hiroshi

    2013-07-01

    Lubiprostone, a chloride channel type 2 (ClC-2) activator, was thought to treat constipation by enhancing intestinal secretion. It has been associated with increased intestinal transit and delayed gastric emptying. Structurally similar to prostones with up to 54% prostaglandin E2 activity on prostaglandin E receptor 1 (EP1), lubiprostone may also exert EP1-mediated procontractile effect on intestinal smooth muscles. We investigated lubiprostone's effects on intestinal smooth muscle contractions and pyloric sphincter tone. Isolated murine small intestinal (longitudinal and circular) and pyloric tissues were mounted in organ baths with modified Krebs solution for isometric recording. Basal muscle tension and response to electrical field stimulation (EFS; 2 ms pulses/10 V/6 Hz/30 sec train) were measured with lubiprostone (10(-10)-10(-5) M) ± EP1 antagonist. Significance was established using Student t test and P < 0.05. Lubiprostone had no effect on the basal tension or EFS-induced contractions of longitudinal muscles. With circular muscles, lubiprostone caused a dose-dependent increase in EFS-induced contractions (2.11 ± 0.88 to 4.43 ± 1.38 N/g, P = 0.020) that was inhibited by pretreatment with EP1 antagonist (1.69 ± 0.70 vs. 4.43 ± 1.38 N/g, P = 0.030). Lubiprostone had no effect on circular muscle basal tension, but it induced a dose-dependent increase in pyloric basal tone (1.07 ± 0.01 to 1.97 ± 0.86 fold increase, P < 0.05) that was inhibited by EP1 antagonist. In mice, lubiprostone caused a dose-dependent and EP1-mediated increase in contractility of circular but not longitudinal small intestinal smooth muscles, and in basal tone of the pylorus. These findings suggest another mechanism for lubiprostone's observed clinical effects on gastrointestinal motility.

  2. NADPH oxidase activation contributes to native low-density lipoprotein-induced proliferation of human aortic smooth muscle cells.

    PubMed

    Park, Il Hwan; Hwang, Hye Mi; Jeon, Byeong Hwa; Kwon, Hyung-Joo; Hoe, Kwang Lae; Kim, Young Myeong; Ryoo, Sungwoo

    2015-06-12

    Elevated plasma concentration of native low-density lipoprotein (nLDL) is associated with vascular smooth muscle cell (VSMC) activation and cardiovascular disease. We investigated the mechanisms of superoxide generation and its contribution to pathophysiological cell proliferation in response to nLDL stimulation. Lucigenin-induced chemiluminescence was used to measure nLDL-induced superoxide production in human aortic smooth muscle cells (hAoSMCs). Superoxide production was increased by nicotinamide adenine dinucleotide phosphate (NADPH) and decreased by NADPH oxidase inhibitors in nLDL-stimulated hAoSMC and hAoSMC homogenates, as well as in prepared membrane fractions. Extracellular signal-regulated kinase 1/2 (Erk1/2), protein kinase C-θ (PKCθ) and protein kinase C-β (PKCβ) were phosphorylated and maximally activated within 3 min of nLDL stimulation. Phosphorylated Erk1/2 mitogen-activated protein kinase, PKCθ and PKCβ stimulated interactions between p47phox and p22phox; these interactions were prevented by MEK and PKC inhibitors (PD98059 and calphostin C, respectively). These inhibitors decreased nLDL-dependent superoxide production and blocked translocation of p47phox to the membrane, as shown by epifluorescence imaging and cellular fractionation experiments. Proliferation assays showed that a small interfering RNA against p47phox, as well as superoxide scavenger and NADPH oxidase inhibitors, blocked nLDL-induced hAoSMC proliferation. The nLDL stimulation in deendothelialized aortic rings from C57BL/6J mice increased dihydroethidine fluorescence and induced p47phox translocation that was blocked by PD98059 or calphostin C. Isolated aortic SMCs from p47phox(-/-) mice (mAoSMCs) did not respond to nLDL stimulation. Furthermore, NADPH oxidase 1 (Nox1) was responsible for superoxide generation and cell proliferation in nLDL-stimulated hAoSMCs. These data demonstrated that NADPH oxidase activation contributed to cell proliferation in nLDL-stimulated hAoSMCs.

  3. A 310-bp minimal promoter mediates smooth muscle cell-specific expression of telokin.

    PubMed

    Smith, A F; Bigsby, R M; Word, R A; Herring, B P

    1998-05-01

    A cell-specific promoter located in an intron of the smooth muscle myosin light chain kinase gene directs transcription of telokin exclusively in smooth muscle cells. Transgenic mice were generated in which a 310-bp rabbit telokin promoter fragment, extending from -163 to +147, was used to drive expression of simian virus 40 large T antigen. Smooth muscle-specific expression of the T-antigen transgene paralleled that of the endogenous telokin gene in all smooth muscle tissues except uterus. The 310-bp promoter fragment resulted in very low levels of transgene expression in uterus; in contrast, a transgene driven by a 2.4-kb fragment (-2250 to +147) resulted in high levels of transgene expression in uterine smooth muscle. Telokin expression levels correlate with the estrogen status of human myometrial tissues, suggesting that deletion of an estrogen response element (ERE) may account for the low levels of transgene expression driven by the 310-bp rabbit telokin promoter in uterine smooth muscle. Experiments in A10 smooth muscle cells directly showed that reporter gene expression driven by the 2.4-kb, but not 310-bp, promoter fragment could be stimulated two- to threefold by estrogen. This stimulation was mediated through an ERE located between -1447 and -1474. Addition of the ERE to the 310-bp fragment restored estrogen responsiveness in A10 cells. These data demonstrate that in addition to a minimal 310-bp proximal promoter at least one distal cis-acting regulatory element is required for telokin expression in uterine smooth muscle. The distal element may include an ERE between -1447 and -1474.

  4. Dependence of IL-4, IL-13, and nematode-induced alterations in murine small intestinal smooth muscle contractility on Stat6 and enteric nerves.

    PubMed

    Zhao, Aiping; McDermott, Joseph; Urban, Joseph F; Gause, William; Madden, Kathleen B; Yeung, Karla Au; Morris, Suzanne C; Finkelman, Fred D; Shea-Donohue, Terez

    2003-07-15

    IL-4 and IL-13 promote gastrointestinal worm expulsion in part through effects on nonlymphoid cells, such as intestinal smooth muscle cells. The roles of Stat6 in IL-4-, IL-13-, and parasitic nematode-induced effects on small intestinal smooth muscle contractility were investigated in BALB/c wild-type and Stat6-deficient mice treated with a long-lasting formulation of recombinant mouse IL-4 (IL-4C) or IL-13 for 7 days. Separate groups of BALB/c mice were infected with Nippostrongylus brasiliensis or were drug-cured of an initial Heligmosomoides polygyrus infection and later reinfected. Infected mice were studied 9 and 12 days after inoculation, respectively. Segments of jejunum were suspended in an organ bath, and responses to nerve stimulation and to acetylcholine and substance P in the presence and absence of tetradotoxin, a neurotoxin, were determined. Both IL-4 and IL-13 increased smooth muscle responses to nerve stimulation in wild-type mice, but the effects were greater in IL-13-treated mice and were absent in IL-13-treated Stat6-deficient mice. Similarly, hypercontractile responses to nerve stimulation in H. polygyrus- and N. brasiliensis-infected mice were dependent in part on Stat6. IL-13, H. polygyrus, and N. brasiliensis, but not IL-4, also increased contractility to acetylcholine by mechanisms that involved Stat6 and enteric nerves. These studies demonstrate that both IL-4 and IL-13 promote intestinal smooth muscle contractility, but by different mechanisms. Differences in these effects correlate with differences in the relative importance of these cytokines in the expulsion of enteric nematode parasites.

  5. Stimulation of Synthesis and Release of Brain-Derived Neurotropic Factor (BDNF) from Intestinal Smooth Muscle Cells by Substance P and Pituitary Adenylate Cyclase-Activating Peptide (PACAP)

    PubMed Central

    Al-Qudah, M.; Alkahtani, R.; Akbarali, H.I.; Murthy, K.S.; Grider, J.R.

    2015-01-01

    Background Brain-derived neurotrophic factor (BDNF) is a neurotrophin present in the intestine where it participates in survival and growth of enteric neurons, augmentation of enteric circuits, and stimulation of intestinal peristalsis and propulsion. Previous studies largely focused on the role of neural and mucosal BDNF. The expression and release of BDNF from intestinal smooth muscle and the interaction with enteric neuropeptides has not been studied in gut. Methods The expression and secretion of BDNF from smooth muscle cultured from rabbit longitudinal intestinal muscle in response to substance P and pituitary adenylate cyclase activating peptide (PACAP) was measured by western blot and ELISA. BDNF mRNA was measured by rt-PCR. Key Results The expression of BNDF protein and mRNA was greater in smooth muscle cells from the longitudinal muscle than from circular muscle layer. PACAP and substance P increased the expression of BDNF protein and mRNA in cultured longitudinal smooth muscle cells. PACAP and substance P also stimulated the secretion of BDNF from cultured longitudinal smooth muscle cells. Chelation of intracellular calcium with BAPTA prevented substance P-induced increase in BDNF mRNA and protein expression as well as substance P-induced secretion of BDNF. Conclusions & Inferences Neuropeptides known to be present in enteric neurons innervating the longitudinal layer increase the expression of BDNF mRNA and protein in smooth muscle cells and stimulate the release of BDNF. Considering the ability of BDNF to enhance smooth muscle contraction, this autocrine loop may partially explain the characteristic hypercontractility of longitudinal muscle in inflammatory bowel disease. PMID:26088546

  6. Differences in time to peak carbachol-induced contractions between circular and longitudinal smooth muscles of mouse ileum.

    PubMed

    Azuma, Yasu-Taka; Samezawa, Nanako; Nishiyama, Kazuhiro; Nakajima, Hidemitsu; Takeuchi, Tadayoshi

    2016-01-01

    The muscular layer in the GI tract consists of an inner circular muscular layer and an outer longitudinal muscular layer. Acetylcholine (ACh) is the representative neurotransmitter that causes contractions in the gastrointestinal tracts of most animal species. There are many reports of muscarinic receptor-mediated contraction of longitudinal muscles, but few studies discuss circular muscles. The present study detailed the contractile response in the circular smooth muscles of the mouse ileum. We used small muscle strips (0.2 mm × 1 mm) and large muscle strips (4 × 4 mm) isolated from the circular and longitudinal muscle layers of the mouse ileum to compare contraction responses in circular and longitudinal smooth muscles. The time to peak contractile responses to carbamylcholine (CCh) were later in the small muscle strips (0.2 × 1 mm) of circular muscle (5.7 min) than longitudinal muscles (0.4 min). The time to peak contractile responses to CCh in the large muscle strips (4 × 4 mm) were also later in the circular muscle (3.1 min) than the longitudinal muscle (1.4 min). Furthermore, a muscarinic M2 receptor antagonist and gap junction inhibitor significantly delayed the time to peak contraction of the large muscle strips (4 × 4 mm) from the circular muscular layer. Our findings indicate that muscarinic M2 receptors in the circular muscular layer of mouse ileum exert a previously undocumented function in gut motility via the regulation of gap junctions.

  7. YFa and analogs: Investigation of opioid receptors in smooth muscle contraction

    PubMed Central

    Kumar, Krishan; Goyal, Ritika; Mudgal, Annu; Mohan, Anita; Pasha, Santosh

    2011-01-01

    AIM: To study the pharmacological profile and inhibition of smooth muscle contraction by YFa and its analogs in conjunction with their receptor selectivity. METHODS: The effects of YFa and its analogs (D-Ala2) YFa, Y (D-Ala2) GFMKKKFMRF amide and Des-Phe-YGGFMKKKFMR amide in guinea pig ileum (GPI) and mouse vas deferens (MVD) motility were studied using an isolated tissue organ bath system, and morphine and DynA (1-13) served as controls. Acetylcholine was used for muscle stimulation. The observations were validated by specific antagonist pretreatment experiments using naloxonazine, naltrindole and norbinaltorphimine norBNI. RESULTS: YFa did not demonstrate significant inhibition of GPI muscle contraction as compared with morphine (15% vs 62%, P = 0.0002), but moderate inhibition of MVD muscle contraction, indicating the role of κ opioid receptors in the contraction. A moderate inhibition of GPI muscles by (Des-Phe) YFa revealed the role of anti-opiate receptors in the smooth muscle contraction. (D-Ala-2) YFa showed significant inhibition of smooth muscle contraction, indicating the involvement of mainly δ receptors in MVD contraction. These results were supported by specific antagonist pretreatment assays. CONCLUSION: YFa revealed its side-effect-free analgesic properties with regard to arrest of gastrointestinal transit. The study provides evidences for the involvement of κ and anti-opioid receptors in smooth muscle contraction. PMID:22110284

  8. YFa and analogs: investigation of opioid receptors in smooth muscle contraction.

    PubMed

    Kumar, Krishan; Goyal, Ritika; Mudgal, Annu; Mohan, Anita; Pasha, Santosh

    2011-10-28

    To study the pharmacological profile and inhibition of smooth muscle contraction by YFa and its analogs in conjunction with their receptor selectivity. The effects of YFa and its analogs (D-Ala2) YFa, Y (D-Ala2) GFMKKKFMRF amide and Des-Phe-YGGFMKKKFMR amide in guinea pig ileum (GPI) and mouse vas deferens (MVD) motility were studied using an isolated tissue organ bath system, and morphine and DynA (1-13) served as controls. Acetylcholine was used for muscle stimulation. The observations were validated by specific antagonist pretreatment experiments using naloxonazine, naltrindole and norbinaltorphimine norBNI. YFa did not demonstrate significant inhibition of GPI muscle contraction as compared with morphine (15% vs 62%, P = 0.0002), but moderate inhibition of MVD muscle contraction, indicating the role of κ opioid receptors in the contraction. A moderate inhibition of GPI muscles by (Des-Phe) YFa revealed the role of anti-opiate receptors in the smooth muscle contraction. (D-Ala-2) YFa showed significant inhibition of smooth muscle contraction, indicating the involvement of mainly δ receptors in MVD contraction. These results were supported by specific antagonist pretreatment assays. YFa revealed its side-effect-free analgesic properties with regard to arrest of gastrointestinal transit. The study provides evidences for the involvement of κ and anti-opioid receptors in smooth muscle contraction.

  9. A substance P antagonist inhibits vagally induced increase in vascular permeability and bronchial smooth muscle contraction in the guinea pig

    PubMed Central

    Lundberg, J. M.; Saria, A.; Brodin, E.; Rosell, S.; Folkers, K.

    1983-01-01

    Electrical stimulation of the cervical vagus nerve in anesthetized guinea pigs induced a rapid increase in respiratory insufflation pressure, suggesting increased airway resistance. After intravenous administration of a substance P (SP) antagonist, [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP, the insufflation pressure response to vagal stimulation was reduced by 78% while the cardiovascular effects were unchanged. Histamine receptor-blocking agents were used to inhibit the effects of histamine release induced by the SP-antagonist. [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP also reduced the increase in insufflation pressure caused by intravenous SP or capsaicin. The long-lasting noncholinergic contraction of the main and hilus bronchi induced by field stimulation in vitro, as well as the contractile effects of SP and capsaicin, were also blocked by the SP antagonist. The cholinergic contractions and the noncholinergic tracheal relaxation on field stimulation in vitro were, however, not blocked by the antagonist. Vagal stimulation in vivo also increased vascular permeability in the respiratory tract and esophagus, causing a subepithelial edema as indicated by Evans blue extravasation. Previous treatment with [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP inhibited the permeability increase induced by both vagus nerve stimulation and exogenous SP. SP release from vagal sensory nerves was indirectly shown by reduction in the bronchial levels of SP after nerve stimulation in vivo. The data suggest that a major portion of the vagally or capsaicin-induced increase in smooth muscle tone is caused by SP release from sensory neurons. In addition, activation of vagal SP-containing sensory nerves induces local edema. Tracheobronchial afferent SP-containing C fibers may thus exert local control of smooth muscle tone and vascular permeability in normal and pathophysiological conditions. Images PMID:6189120

  10. EMMPRIN (CD147) Expression in Smooth Muscle Tumors of the Uterus.

    PubMed

    Kefeli, Mehmet; Yildiz, Levent; Gun, Seda; Ozen, Fatma Z; Karagoz, Filiz

    2016-01-01

    Smooth muscle tumors of the uterus are the most common mesenchymal tumors of the gynecologic tract. The vast majority of these are benign leiomyomas that present no diagnostic difficulty. Because some benign smooth muscle tumors may degenerate and uncommon variants exist, the diagnosis can be challenging in some cases. The goal of this research was to investigate EMMPRIN expression in leiomyomas, leiomyoma variants, and leiomyosarcomas (LMS) to determine whether it has a potential role in differential diagnosis. EMMPRIN expression was investigated with immunohistochemistry in 103 uterine smooth muscle tumors, which included 19 usual leiomyomas, 52 leiomyoma variants, and 32 LMS. They were evaluated on the basis of staining extent, intensity, and also their combined score, and the groups were compared. EMMPRIN expression was present in 3 of 19 (15.7%) usual leiomyomas, 23 of 52 (44.3%) leiomyoma variants, and 28 of 32 (87.5%) LMS. There were statistically significant differences in staining extent and intensity, and also for their combined scores, between the LMS and benign groups. Although uterine smooth muscle tumors are usually diagnosed easily with conventional diagnostic criteria, the differentiation of LMS from some variants of leiomyoma can be challenging based soley on morphology. EMMPRIN may be a valuable immunohistochemical marker for differentiating LMS from benign smooth muscle tumors in problematic cases.

  11. Congenital smooth muscle hamartoma of the palpebral conjunctiva.

    PubMed

    Mora, L Evelyn; Rodríguez-Reyes, Abelardo A; Vera, Ana M; Rubio, Rosa Isela; Mayorquín-Ruiz, Mariana; Salcedo, Guillermo

    2012-01-01

    Smooth muscle hamartoma is defined as a disorganized focus or an overgrowth of mature smooth muscle, generally with low capacity of autonomous growth and benign behavior. The implicated tissues are mature and proliferate in a disorganized fashion. A healthy 5-day-old Mexican boy was referred to the authors' hospital in México city for evaluation of a "cystic" lesion of the right eye that had been noted since birth. The pregnancy and delivery were unremarkable. On physical examination, there was a reddish-pink soft lesion with a tender "cystic" appearance, which was probably emerging from the upper eyelid conjunctiva, which measured 2.7 cm in its widest diameter and transilluminated. Ultrasound imaging revealed an anterior "cystic" lesion with normally formed phakic eye. An excisional biopsy was performed, and the lesion was dissected from the upper tarsal subconjunctival space. Subsequent histologic and immunohistochemical findings were consistent with the diagnosis of congenital smooth muscle hamartoma (CSMH) of the tarsal conjunctiva. The authors' research revealed that only one case of CSMH localized in the conjunctiva (Roper GJ, Smith MS, Lueder GT. Congenital smooth muscle hamartoma of the conjunctival fornix. Am J Ophthalmol. 1999;128:643-4) has been reported to date in the literature. To the best of the authors' knowledge, this current case would be the second case reported of CSMH in this anatomic location. Therefore, the authors' recommendation is to include CSMH in the differential diagnosis of a cystic mass that presents in the fornix and palpebral conjunctiva.

  12. Angiotensin II modulates interleukin-1{beta}-induced inflammatory gene expression in vascular smooth muscle cells via interfering with ERK-NF-{kappa}B crosstalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Shanqin; Zhi, Hui; Hou, Xiuyun

    2011-07-08

    Highlights: {yields} We examine how angiotensin II modulates ERK-NF-{kappa}B crosstalk and gene expression. {yields} Angiotensin II suppresses IL-1{beta}-induced prolonged ERK and NF-{kappa}B activation. {yields} ERK-RSK1 signaling is required for IL-1{beta}-induced prolonged NF-{kappa}B activation. {yields} Angiotensin II modulates NF-{kappa}B responsive genes via regulating ERK-NF-{kappa}B crosstalk. {yields} ERK-NF-{kappa}B crosstalk is a novel mechanism regulating inflammatory gene expression. -- Abstract: Angiotensin II is implicated in cardiovascular diseases, which is associated with a role in increasing vascular inflammation. The present study investigated how angiotensin II modulates vascular inflammatory signaling and expression of inducible nitric oxide synthase (iNOS) and vascular cell adhesion molecule (VCAM)-1. Inmore » cultured rat aortic vascular smooth muscle cells (VSMCs), angiotensin II suppressed interleukin-1{beta}-induced prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK)-1, and nuclear translocation of nuclear factor (NF)-{kappa}B, leading to decreased iNOS but enhanced VCAM-1 expression, associated with an up-regulation of mitogen-activated protein kinase phosphatase-1 expression. Knock-down of RSK1 selectively down regulated interleukin-1{beta}-induced iNOS expression without influencing VCAM-1 expression. In vivo experiments showed that interleukin-1{beta}, iNOS, and VCAM-1 expression were detectable in the aortic arches of both wild-type and apolipoprotein E-deficient (ApoE{sup -/-}) mice. VCAM-1 and iNOS expression were higher in ApoE{sup -/-} than in wild type mouse aortic arches. Angiotensin II infusion (3.2 mg/kg/day, for 6 days, via subcutaneous osmotic pump) in ApoE{sup -/-} mice enhanced endothelial and adventitial VCAM-1 and iNOS expression, but reduced medial smooth muscle iNOS expression associated with reduced phosphorylation of ERK and RSK-1. These results indicate that

  13. Mechanism of high glucose induced angiotensin II production in rat vascular smooth muscle cells.

    PubMed

    Lavrentyev, Eduard N; Estes, Anne M; Malik, Kafait U

    2007-08-31

    Angiotensin II (Ang II), a circulating hormone that can be synthesized locally in the vasculature, has been implicated in diabetes-associated vascular complications. This study was conducted to determine whether high glucose (HG) (approximately 23.1 mmol/L), a diabetic-like condition, stimulates Ang II generation and the underlying mechanism of its production in rat vascular smooth muscle cells. The contribution of various enzymes involved in Ang II generation was investigated by silencing their expression with small interfering RNA in cells exposed to normal glucose (approximately 4.1 mmol/L) and HG. Angiotensin I (Ang I) was generated from angiotensinogen by cathepsin D in the presence of normal glucose or HG. Although HG did not affect the rate of angiotensinogen conversion, it decreased expression of angiotensin-converting enzyme (ACE), downregulated ACE-dependent Ang II generation, and upregulated rat vascular chymase-dependent Ang II generation. The ACE inhibitor captopril reduced Ang II levels in the media by 90% in the presence of normal glucose and 19% in HG, whereas rat vascular chymase silencing reduced Ang II production in cells exposed to HG but not normal glucose. The glucose transporter inhibitor cytochalasin B, the aldose reductase inhibitor alrestatin, and the advanced glycation end product formation inhibitor aminoguanidine attenuated HG-induced Ang II generation. HG caused a transient increase in extracellular signal-regulated kinase (ERK)1/2 phosphorylation, and ERK1/2 inhibitors reduced Ang II accumulation by HG. These data suggest that polyol pathway metabolites and AGE can stimulate rat vascular chymase activity via ERK1/2 activation and increase Ang II production. In addition, decreased Ang II degradation, which, in part, could be attributable to a decrease in angiotensin-converting enzyme 2 expression observed in HG, contributes to increased accumulation of Ang II in vascular smooth muscle cells by HG.

  14. Actions of cAMP on calcium sensitization in human detrusor smooth muscle contraction.

    PubMed

    Hayashi, Maya; Kajioka, Shunichi; Itsumi, Momoe; Takahashi, Ryosuke; Shahab, Nouval; Ishigami, Takao; Takeda, Masahiro; Masuda, Noriyuki; Yamaguchi, Akito; Naito, Seiji

    2016-01-01

    To clarify the effect of cAMP on the Ca(2+) -sensitized smooth muscle contraction in human detrusor, as well as the role of novel exchange protein directly activated by cAMP (Epac) in cAMP-mediated relaxation. All experimental protocols to record isometric tension force were performed using α-toxin-permeabilized human detrusor smooth muscle strips. The mechanisms of cAMP-mediated suppression of Ca(2+) sensitization activated by 10 μm carbachol (CCh) and 100 μm GTP were studied using a selective rho kinase (ROK) inhibitor, Y-27632, and a selective protein kinase C (PKC) inhibitor, GF-109203X. The relaxation mechanisms were further probed using a selective protein kinase A (PKA) activator, 6-Bnz-cAMP and a selective Epac activator, 8-pCPT-2'-O-Me-cAMP. We observed that CCh-induced Ca(2+) sensitization was inhibited by cAMP in a concentration-dependent manner. GF-109203X (10 μm) but not Y-27632 (10 μm) significantly enhanced the relaxation effect induced by cAMP (100 μm). 6-Bnz-cAMP (100 μm) predominantly decreased the tension force in comparison with 8-pCPT-2'-O-Me-cAMP (100 μm). We showed that cAMP predominantly inhibited the ROK pathway but not the PKC pathway. The PKA-dependent pathway is dominant, while Epac plays a minor role in human detrusor smooth muscle Ca(2+) sensitization. © 2015 The Authors BJU International © 2015 BJU International Published by John Wiley & Sons Ltd.

  15. Tracheal smooth muscle responses to substance P and neurokinin A in the piglet.

    PubMed

    Haxhiu-Poskurica, B; Haxhiu, M A; Kumar, G K; Miller, M J; Martin, R J

    1992-03-01

    The tachykinins substance P (SP) and neurokinin A (NKA) have been shown to induce airway smooth muscle contraction in mature animals, and the enzyme neutral endopeptidase (NEP) modulates this effect. We evaluated maturation of SP- and NKA-induced tracheal smooth muscle contraction and modulation of their effects by NEP in anesthetized, paralyzed, and artificially ventilated piglets less than 4 days, 2-3 wk, and 10 wk of age. Tracheal smooth muscle tension was measured in vivo from an open tracheal segment by use of a force transducer. Intravenous SP caused a dose-dependent increase in tracheal tension in all three age groups; however, the response in less than 4-day-old piglets was significantly weaker than in 2- to 3- and 10-wk-old piglets. NKA caused a dose-dependent increase in tracheal tension only in 2- to 3- and 10-wk-old piglets. The response of tracheal tension to NKA was weaker than the response to SP in all age groups. Atropine (2 mg/kg) significantly diminished the responses of tracheal tension to SP and NKA, indicating a cholinergic contribution to these responses at all ages. Intravenous thiorphan, a known NEP inhibitor, potentiated the effects of SP only in 2- to 3- and 10-wk-old piglets and did not affect the response of tracheal tension to NKA at any age. Biochemical analyses demonstrated a significant increase in tracheal NEP activity in comparably aged piglets over the first 10 wk of life.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. p21-Activated kinase (Pak) regulates airway smooth muscle contraction by regulating paxillin complexes that mediate actin polymerization.

    PubMed

    Zhang, Wenwu; Huang, Youliang; Gunst, Susan J

    2016-09-01

    In airway smooth muscle, tension development caused by a contractile stimulus requires phosphorylation of the 20 kDa myosin light chain (MLC), which activates crossbridge cycling and the polymerization of a pool of submembraneous actin. The p21-activated kinases (Paks) can regulate the contractility of smooth muscle and non-muscle cells, and there is evidence that this occurs through the regulation of MLC phosphorylation. We show that Pak has no effect on MLC phosphorylation during the contraction of airway smooth muscle, and that it regulates contraction by mediating actin polymerization. We find that Pak phosphorylates the adhesion junction protein, paxillin, on Ser273, which promotes the formation of a signalling complex that activates the small GTPase, cdc42, and the actin polymerization catalyst, neuronal Wiskott-Aldrich syndrome protein (N-WASP). These studies demonstrate a novel role for Pak in regulating the contractility of smooth muscle by regulating actin polymerization. The p21-activated kinases (Pak) can regulate contractility in smooth muscle and other cell and tissue types, but the mechanisms by which Paks regulate cell contractility are unclear. In airway smooth muscle, stimulus-induced contraction requires phosphorylation of the 20 kDa light chain of myosin, which activates crossbridge cycling, as well as the polymerization of a small pool of actin. The role of Pak in airway smooth muscle contraction was evaluated by inhibiting acetylcholine (ACh)-induced Pak activation through the expression of a kinase inactive mutant, Pak1 K299R, or by treating tissues with the Pak inhibitor, IPA3. Pak inhibition suppressed actin polymerization and contraction in response to ACh, but it did not affect myosin light chain phosphorylation. Pak activation induced paxillin phosphorylation on Ser273; the paxillin mutant, paxillin S273A, inhibited paxillin Ser273 phosphorylation and inhibited actin polymerization and contraction. Immunoprecipitation analysis of

  17. Synergistic effect of atorvastatin and Cyanidin-3-glucoside on angiotensin II-induced inflammation in vascular smooth muscle cells.

    PubMed

    Pantan, Rungusa; Tocharus, Jiraporn; Suksamrarn, Apichart; Tocharus, Chainarong

    2016-03-15

    Statins have often been used in atherosclerosis treatment because of its pleiotropic effects on inflammation. However, some adverse effects of high doses of statin show reverse effects after withdrawal. Cyanidin-3-glucoside (C3G) is a powerful anti-inflammation and antioxidant that has been of interest for use in combination with low doses of statin, which may be alternative treatment for atherosclerosis. The objective is to investigate the synergistic effect of atorvastatin and C3G in angiotensin II (Ang II)-induced inflammation in vascular smooth muscle cells. Human aortic smooth muscle cells (HASMCs) were exposed to Ang II with or without atorvastatin and C3G alone, or in combination. The results revealed that the combination of atorvastatin and C3G produces synergism against inflammation and oxidative stress. The mechanism of the combination of atorvastatin and C3G suppressed the translocation of the p65 subunit of NF-κB from cytosol to nucleus, and attenuated the expression of proteins including inducible nitric oxide synthase, intracellular adhesion molecule 1(ICAM-1), and vascular cell adhesion molecule 1(VCAM-1), in addition to nitric oxide (NO) production. Moreover, C3G exerts the antioxidative properties of atorvastatin through down-regulating NOX1 and promoting the activity of the Nrf2(-)ARE signaling pathway and downstream proteins including heme oxygenase (HO-1), NAD(P)H:quinoneoxidoreductase 1 (NQO-1), and glutamate-cysteine ligase catalytic subunit (γ-GCLC), besides increasing the activity of superoxide dismutase (SOD) enzymes. Taken together, these results suggest that a combination of low dose statins and C3G might serve as a potential regulator of the atherosclerosis process which is mediated by attenuating oxidative stress, thereby inhibiting NF-κB and activating Nrf2 signaling pathways induced by Ang II. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. LPA1 receptor-mediated thromboxane A2 release is responsible for lysophosphatidic acid-induced vascular smooth muscle contraction.

    PubMed

    Dancs, Péter Tibor; Ruisanchez, Éva; Balogh, Andrea; Panta, Cecília Rita; Miklós, Zsuzsanna; Nüsing, Rolf M; Aoki, Junken; Chun, Jerold; Offermanns, Stefan; Tigyi, Gábor; Benyó, Zoltán

    2017-04-01

    Lysophosphatidic acid (LPA) has been recognized recently as an endothelium-dependent vasodilator, but several lines of evidence indicate that it may also stimulate vascular smooth muscle cells (VSMCs), thereby contributing to vasoregulation and remodeling. In the present study, mRNA expression of all 6 LPA receptor genes was detected in murine aortic VSMCs, with the highest levels of LPA 1 , LPA 2 , LPA 4 , and LPA 6 In endothelium-denuded thoracic aorta (TA) and abdominal aorta (AA) segments, 1-oleoyl-LPA and the LPA 1-3 agonist VPC31143 induced dose-dependent vasoconstriction. VPC31143-induced AA contraction was sensitive to pertussis toxin (PTX), the LPA 1&3 antagonist Ki16425, and genetic deletion of LPA 1 but not that of LPA 2 or inhibition of LPA 3 , by diacylglycerol pyrophosphate. Surprisingly, vasoconstriction was also diminished in vessels lacking cyclooxygenase-1 [COX1 knockout (KO)] or the thromboxane prostanoid (TP) receptor (TP KO). VPC31143 increased thromboxane A 2 (TXA 2 ) release from TA of wild-type, TP-KO, and LPA 2 -KO mice but not from LPA 1 -KO or COX1-KO mice, and PTX blocked this effect. Our findings indicate that LPA causes vasoconstriction in VSMCs, mediated by LPA 1 -, G i -, and COX1-dependent autocrine/paracrine TXA 2 release and consequent TP activation. We propose that this new-found interaction between the LPA/LPA 1 and TXA 2 /TP pathways plays significant roles in vasoregulation, hemostasis, thrombosis, and vascular remodeling.-Dancs, P. T., Ruisanchez, E., Balogh, A., Panta, C. R., Miklós, Z., Nüsing, R. M., Aoki, J., Chun, J., Offermanns, S., Tigyi, G., Benyó, Z. LPA 1 receptor-mediated thromboxane A 2 release is responsible for lysophosphatidic acid-induced vascular smooth muscle contraction. © FASEB.

  19. Intermittent hypoxia induces the proliferation of rat vascular smooth muscle cell with the increases in epidermal growth factor family and erbB2 receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyotani, Yoji, E-mail: cd147@naramed-u.ac.jp; Department of Pharmacy, Nara Medical University Hospital, Kashihara 634-8522; Ota, Hiroyo

    Obstructive sleep apnea is characterized by intermittent hypoxia (IH), and associated with cardiovascular diseases, such as stroke and heart failure. These cardiovascular diseases have a relation to atherosclerosis marked by the proliferation of vascular smooth muscle cells (VSMCs). In this study, we investigated the influence of IH on cultured rat aortic smooth muscle cell (RASMC). The proliferation of RASMC was significantly increased by IH without changing the level of apoptosis. In order to see what induces RASMC proliferation, we investigated the influence of normoxia (N)-, IH- and sustained hypoxia (SH)-treated cell conditioned media on RASMC proliferation. IH-treated cell conditioned mediummore » significantly increased RASMC proliferation compared with N-treated cell conditioned medium, but SH-treated cell conditioned medium did not. We next investigated the epidermal growth factor (EGF) family as autocrine growth factors. Among the EGF family, we found significant increases in mRNAs for epiregulin (ER), amphiregulin (AR) and neuregulin-1 (NRG1) in IH-treated cells and mature ER in IH-treated cell conditioned medium. We next investigated the changes in erbB family receptors that are receptors for ER, AR and NRG1, and found that erbB2 receptor mRNA and protein expressions were increased by IH, but not by SH. Phosphorylation of erbB2 receptor at Tyr-1248 that mediates intracellular signaling for several physiological effects including cell proliferation was increased by IH, but not by SH. In addition, inhibitor for erbB2 receptor suppressed IH-induced cell proliferation. These results provide the first demonstration that IH induces VSMC proliferation, and suggest that EGF family, such as ER, AR and NRG1, and erbB2 receptor could be involved in the IH-induced VSMC proliferation. - Highlights: ●In vitro system for intermittent hypoxia (IH) and sustained hypoxia (SH). ●IH, but not SH, induces the proliferation of rat vascular smooth muscle cell.

  20. Functional vascular smooth muscle cells derived from human induced pluripotent stem cells via mesenchymal stem cell intermediates

    PubMed Central

    Bajpai, Vivek K.; Mistriotis, Panagiotis; Loh, Yuin-Han; Daley, George Q.; Andreadis, Stelios T.

    2012-01-01

    Aims Smooth muscle cells (SMC) play an important role in vascular homeostasis and disease. Although adult mesenchymal stem cells (MSC) have been used as a source of contractile SMC, they suffer from limited proliferation potential and culture senescence, particularly when originating from older donors. By comparison, human induced pluripotent stem cells (hiPSC) can provide an unlimited source of functional SMC for autologous cell-based therapies and for creating models of vascular disease. Our goal was to develop an efficient strategy to derive functional, contractile SMC from hiPSC. Methods and results We developed a robust, stage-wise, feeder-free strategy for hiPSC differentiation into functional SMC through an intermediate stage of multipotent MSC, which could be coaxed to differentiate into fat, bone, cartilage, and muscle. At this stage, the cells were highly proliferative and displayed higher clonogenic potential and reduced senescence when compared with parental hair follicle mesenchymal stem cells. In addition, when exposed to differentiation medium, the myogenic proteins such as α-smooth muscle actin, calponin, and myosin heavy chain were significantly upregulated and displayed robust fibrillar organization, suggesting the development of a contractile phenotype. Indeed, tissue constructs prepared from these cells exhibited high levels of contractility in response to receptor- and non-receptor-mediated agonists. Conclusion We developed an efficient stage-wise strategy that enabled hiPSC differentiation into contractile SMC through an intermediate population of clonogenic and multipotent MSC. The high yield of MSC and SMC derivation suggests that our strategy may facilitate an acquisition of the large numbers of cells required for regenerative medicine or for studying vascular disease pathophysiology. PMID:22941255

  1. Tachykinin receptor expression and function in human esophageal smooth muscle.

    PubMed

    Kovac, Jason R; Chrones, Tom; Preiksaitis, Harold G; Sims, Stephen M

    2006-08-01

    Tachykinins are present in enteric nerves of the gastrointestinal tract and cause contraction of esophageal smooth muscle; however, the mechanisms involved are not understood. Our aim was to characterize tachykinin signaling in human esophageal smooth muscle. We investigated functional effects of tachykinins on human esophageal smooth muscle using tension recordings and isolated cells, receptor expression with reverse transcription (RT)-polymerase chain reaction (PCR) and immunoblotting, intracellular Ca2+ responses using fluorescent indicator dyes, and membrane currents with patch-clamp electrophysiology. The mammalian tachykinins [substance P and neurokinin (NK) A and NKB] elicited concentration-dependent contractions of human esophageal smooth muscle. These responses were not affected by muscarinic receptor or neuronal blockade indicating a direct effect on smooth muscle cells (SMCs). Immunofluorescence and RT-PCR identified tachykinin receptors (NK1, NK2, and NK3) on SMCs. Contraction was mediated through a combination of Ca2+ release from intracellular stores and influx through L-type Ca2+ channels. NK2 receptor blockade inhibited the largest proportion of tachykinin-evoked responses. NKA evoked a nonselective cation current (I(NSC)) with properties similar to that elicited by muscarinic stimulation. The following paradigm is suggested: tachykinin receptor binding to SMCs releases Ca2+ from stores along with activation of I(NSC), which in turn results in membrane depolarization, L-type Ca2+ channel opening, rise of Ca2+ concentration, and contraction. These studies reveal new aspects of tachykinin signaling in human esophageal SMCs. Excitatory tachykinin pathways may represent targets for pharmacological intervention in disorders of esophageal dysmotility.

  2. The comparative effects of aminoglycoside antibiotics and muscle relaxants on electrical field stimulation response in rat bladder smooth muscle.

    PubMed

    Min, Chang Ho; Min, Young Sil; Lee, Sang Joon; Sohn, Uy Dong

    2016-06-01

    It has been reported that several aminoglycoside antibiotics have a potential of prolonging the action of non-depolarizing muscle relaxants by drug interactions acting pre-synaptically to inhibit acetylcholine release, but antibiotics itself also have a strong effect on relaxing the smooth muscle. In this study, four antibiotics of aminoglycosides such as gentamicin, streptomycin, kanamycin and neomycin were compared with skeletal muscle relaxants baclofen, tubocurarine, pancuronium and succinylcholine, and a smooth muscle relaxant, papaverine. The muscle strips isolated from the rat bladder were stimulated with pulse trains of 40 V in amplitude and 10 s in duration, with pulse duration of 1 ms at the frequency of 1-8 Hz, at 1, 2, 4, 6, 8 Hz respectively. To test the effect of four antibiotics on bladder smooth muscle relaxation, each of them was treated cumulatively from 1 μM to 0.1 mM with an interval of 5 min. Among the four antibiotics, gentamicin and neomycin inhibited the EFS response. The skeletal muscle relaxants (baclofen, tubocurarine, pancuronium and succinylcholine) and inhibitory neurotransmitters (GABA and glycine) did not show any significant effect. However, papaverine, had a significant effect in the relaxation of the smooth muscle. It was suggested that the aminoglycoside antibiotics have inhibitory effect on the bladder smooth muscle.

  3. Bisdemethoxycurcumin inhibits PDGF-induced vascular smooth muscle cell motility and proliferation

    PubMed Central

    Hua, Yinan; Dolence, Julia; Ramanan, Shalini; Ren, Jun; Nair, Sreejayan

    2013-01-01

    Scope A key event in the development of plaque in the arteries is the migration and proliferation of smooth muscle cells (SMCs) from the media to the intima of the blood vessel. This study was conducted to evaluate the effects of bisdemethoxycurcumin, a naturally occurring structural analog of curcumin, on PDGF-stimulated migration and proliferation of SMCs. Methods and results Demethoxycurcumin were synthesized by condensing vanillin and 4-hydroxybenzaldehyde. SMCs isolated from adult rat aorta were stimulated with PDGF in the presence or absence of curcumin or bisdemethoxycurcumin following which cell migration and proliferation were assessed by monolayer wound healing assay and [3H]-thymidine incorporation respectively. PDGF-induced phosphorylation of PDGF-receptor-β and its downstream effector Akt were assessed by Western blotting. Intracellular reactive oxygen species (ROS) was assessed using the fluorescent dye DCFDA. Bisdemethoxycurcumin elicited a concentration-dependent inhibition of PDGF-stimulated phosphorylation of PDGFR-β, Akt and Erk as well as the PDGF-stimulated SMC migration and proliferation. Bisdemethoxycurcumin was more potent than curcumin in inhibiting migration and proliferation and suppressing PDGF-signaling in SMCs. Both compounds were equipotent in inhibiting PDGF-stimulated intracellular ROS-generation. Conclusion Bisdemethoxycurcumin may be of potential use in the prevention or treatment of vascular disease. PMID:23554078

  4. Oxidized low-density lipoprotein acts synergistically with beta-glycerophosphate to induce osteoblast differentiation in primary cultures of vascular smooth muscle cells.

    PubMed

    Bear, Mackenzie; Butcher, Martin; Shaughnessy, Stephen G

    2008-09-01

    Previous studies have localized osteoblast specific markers to sites of calcified atherosclerotic lesions. We therefore decided to use an established in vitro model of vascular calcification in order to confirm earlier reports of oxidized low-density lipoprotein (oxLDL) promoting the osteogenic differentiation of vascular smooth muscle cells. Treatment of primary bovine aortic smooth muscle cells (BASMCs) with beta-glycerophosphate was found to induce a time-dependent increase in osteoblast differentiation. In contrast, no effect was seen when BASMCs were cultured in the presence of oxLDL alone. However, when the BASMCs were cultured in the presence of both beta-glycerophosphate and oxLDL, beta-glycerophosphate's ability to induce osteoblast differentiation was significantly enhanced. In an attempt to resolve the mechanism by which this effect was occurring, we examined the effect of beta-glycerophosphate and oxLDL on several pathways known to be critical to the differentiation of osteoblasts. Surprisingly, beta-glycerophosphate alone was found to enhance Osterix (Osx) expression by inducing both Smad 1/5/8 activation and Runx2 expression. In contrast, oxLDL did not affect either Smad 1/5/8 activation or Runx2 activation but rather, it enhanced both beta-glycerophosphate-induced Osx expression and osteoblast differentiation in an extracellular signal-regulated kinase 1 and 2 (Erk 1 and 2) -dependent manner. When taken together, these findings suggest a plausible mechanism by which oxLDL may promote osteogenic differentiation and vascular calcification in vivo. J. Cell. Biochem. 105: 185-193, 2008. (c) 2008 Wiley-Liss, Inc. (c) 2008 Wiley-Liss, Inc.

  5. Tangeretin, a citrus flavonoid, inhibits PGDF-BB-induced proliferation and migration of aortic smooth muscle cells by blocking AKT activation.

    PubMed

    Seo, Juhee; Lee, Hyun Sun; Ryoo, Sungwoo; Seo, Jee Hee; Min, Byung-Sun; Lee, Jeong-Hyung

    2011-12-30

    Tangeretin, a natural polymethoxylated flavone concentrated in the peel of citrus fruits, is known to have antiproliferative, antiinvasive, antimetastatic and antioxidant activities. However, the effect of tangeretin on vascular smooth muscle cells (VSMCs) is unknown. This study examined the effect of tangeretin on platelet-derived growth factor (PDGF)-BB-induced proliferation and migration of rat aortic smooth muscle cells (RASMCs) as well as its underlying mechanisms. Tangeretin significantly inhibited proliferation, DNA synthesis and migration of PDGF-BB-stimulated RASMCs without inducing cell death. Treatment with tangeretin-induced cell-cycle arrest in the G₀/G₁ phase was associated with down-regulation of cyclin D1 and cyclin E in addition to up-regulation of p27(kip1). We also showed that tangeretin inhibited PDGF-BB-induced phosphorylation of AKT, while it had no effect on the phosphorylation of phospholipase Cγ (PLCγ), PDGF receptor β-chain (PDGF-Rβ) and extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (MAPKs). An in vitro kinase assay revealed that tangeretin inhibited AKT activity in a dose-dependent manner. Moreover, treatment of LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, had similar effects than that of tangeretin on the expression of p27(kip1) and cyclin D1, as well as cell migration in PDFG-BB-stimulated RASMCs. Taken together, these findings suggest that tangeretin could suppress PDGF-BB-induced proliferation and migration of RASMCs through the suppression of PI3K/AKT signaling pathway, and may be a potential candidate for preventing or treating vascular diseases, such as atherosclerosis and restenosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Estrogen-Induced Maldevelopment of the Penis Involves Down-Regulation of Myosin Heavy Chain 11 (MYH11) Expression, a Biomarker for Smooth Muscle Cell Differentiation1

    PubMed Central

    Okumu, L.A.; Bruinton, Sequoia; Braden, Tim D.; Simon, Liz; Goyal, Hari O.

    2012-01-01

    ABSTRACT Cavernous smooth muscle cells are essential components in penile erection. In this study, we investigated effects of estrogen exposure on biomarkers for smooth muscle cell differentiation in the penis. Neonatal rats received diethylstilbestrol (DES), with or without the estrogen receptor (ESR) antagonist ICI 182,780 (ICI) or the androgen receptor (AR) agonist dihydrotestosterone (DHT), from Postnatal Days 1 to 6. Tissues were collected at 7, 10, or 21 days of age. The smooth muscle cell biomarker MYH11 was studied in depth because microarray data showed it was significantly down-regulated, along with other biomarkers, in DES treatment. Quantitative real time-PCR and Western blot analyses showed 50%–80% reduction (P ≤ 0.05) in Myh11 expression in DES-treated rats compared to that in controls; and ICI and DHT coadministration mitigated the decrease. Temporally, from 7 to 21 days of age, Myh11 expression was onefold increased (P ≥ 0.05) in DES-treated rats versus threefold increased (P ≤ 0.001) in controls, implying the long-lasting inhibitory effect of DES on smooth muscle cell differentiation. Immunohistochemical localization of smooth muscle alpha actin, another biomarker for smooth muscle cell differentiation, showed fewer cavernous smooth muscle cells in DES-treated animals than in controls. Additionally, DES treatment significantly up-regulated Esr1 mRNA expression and suppressed the neonatal testosterone surge by 90%, which was mitigated by ICI coadministration but not by DHT coadministration. Collectively, results provided evidence that DES treatment in neonatal rats inhibited cavernous smooth muscle cell differentiation, as shown by down-regulation of MYH11 expression at the mRNA and protein levels and by reduced immunohistochemical staining of smooth muscle alpha actin. Both the ESR and the AR pathways probably mediate this effect. PMID:22976277

  7. Interleukin-4 upregulates RhoA protein via an activation of STAT6 in cultured human bronchial smooth muscle cells.

    PubMed

    Chiba, Yoshihiko; Todoroki, Michiko; Misawa, Miwa

    2010-02-01

    Interleukin-4 (IL-4) is believed to play a role in allergic bronchial asthma, and has been suggested to cause hyperresponsiveness of airway smooth muscle. In the present study, the effects of IL-4 on the expression of RhoA protein, a monomeric GTP-binding protein that contributes to the contraction of smooth muscle, were determined in cultured human bronchial smooth muscle cells (hBSMCs). Incubation of hBSMCs with IL-4 (100ng/mL) caused a distinct phosphorylation of signal transducer and activator of transcription 6 (STAT6), a major signal transducer activated by IL-4, indicating that IL-4 is capable of activating signal transduction in the hBSMCs directly. IL-4 also caused a significant increase in the expression level of RhoA protein: the peak of the upregulation of RhoA protein was observed at 12-24h after the IL-4 treatment. Both the phosphorylation of STAT6 and the upregulation of RhoA protein induced by IL-4 were inhibited by the co-incubation with AS1517499, a selective inhibitor of STAT6, in a concentration-dependent fashion. These findings suggest that IL-4 is capable of inducing an upregulation of RhoA via an activation of STAT6 in cultured hBSMCs. The RhoA upregulation induced by IL-4, one of the Th2 cytokines upregulated in the airways of allergic bronchial asthmatics, might result in an augmentation of bronchial smooth muscle contractility, that is one of the causes of airway hyperresponsiveness. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Inhibition of adrenergic human prostate smooth muscle contraction by the inhibitors of c-Jun N-terminal kinase, SP600125 and BI-78D3.

    PubMed

    Strittmatter, F; Walther, S; Gratzke, C; Göttinger, J; Beckmann, C; Roosen, A; Schlenker, B; Hedlund, P; Andersson, K E; Stief, C G; Hennenberg, M

    2012-07-01

    BACKGROUND AND PURPOSE α(1) -Adrenoceptor-induced contraction of prostate smooth muscle is mediated by calcium- and Rho kinase-dependent mechanisms. In addition, other mechanisms, such as activation of c-jun N-terminal kinase (JNK) may be involved. Here, we investigated whether JNK participates in α(1)-adrenoceptor-induced contraction of human prostate smooth muscle. EXPERIMENTAL APPROACH Prostate tissue was obtained from patients undergoing radical prostatectomy. Effects of the JNK inhibitors SP600125 (50 µM) and BI-78D3 (30 µM) on contractions induced by phenylephrine, noradrenaline and electric field stimulation (EFS) were studied in myographic measurements. JNK activation by noradrenaline (30 µM) and phenylephrine (10 µM), and the effects of JNK inhibitors of c-Jun phosphorylation were assessed by Western blot analyses with phospho-specific antibodies. Expression of JNK was studied by immunohistochemistry and fluorescence double staining. KEY RESULTS The JNK inhibitors SP600125 and BI-78D3 reduced phenylephrine- and noradrenaline-induced contractions of human prostate strips. In addition, SP600125 reduced EFS-induced contraction of prostate strips. Stimulation of prostate tissue with noradrenaline or phenylephrine in vitro resulted in activation of JNK. Incubation of prostate tissue with SP600125 or BI-78D3 reduced the phosphorylation state of c-Jun. Immunohistochemical staining demonstrated the expression of JNK in smooth muscle cells of human prostate tissue. Fluorescence staining showed that α(1A)-adrenoceptors and JNK are expressed in the same cells. CONCLUSIONS AND IMPLICATIONS Activation of JNK is involved in α(1)-adrenoceptor-induced prostate smooth muscle contraction. Models of α(1)-adrenoceptor-mediated prostate smooth muscle contraction should include this JNK-dependent mechanism. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  9. Activation of G protein-coupled bile acid receptor, TGR5, induces smooth muscle relaxation via both Epac- and PKA-mediated inhibition of RhoA/Rho kinase pathway.

    PubMed

    Rajagopal, Senthilkumar; Kumar, Divya P; Mahavadi, Sunila; Bhattacharya, Sayak; Zhou, Ruizhe; Corvera, Carlos U; Bunnett, Nigel W; Grider, John R; Murthy, Karnam S

    2013-03-01

    The present study characterized the TGR5 expression and the signaling pathways coupled to this receptor that mediates the relaxation of gastric smooth muscle. TGR5 was detected in gastric muscle cells by RT-PCR and Western blotting. Treatment of cells with the TGR5-selective ligand oleanolic acid (OA) activated Gαs, but not Gαq, Gαi1, Gαi2, or Gαi3, and increased cAMP levels. OA did not elicit contraction, but caused relaxation of carbachol-induced contraction of gastric muscle cells from wild-type mice, but not tgr5(-/-) mice. OA, but not a selective exchange protein activated by cAMP (Epac) ligand (8-pCPT-2'-O-Me-cAMP), caused phosphorylation of RhoA and the phosphorylation was blocked by the PKA inhibitor, myristoylated PKI, and by the expression of phosphorylation-deficient mutant RhoA (S188A). Both OA and Epac ligand stimulated Ras-related protein 1 (Rap1) and inhibited carbachol (CCh)-induced Rho kinase activity. Expression of RhoA (S188A) or PKI partly reversed the inhibition of Rho kinase activity by OA but had no effect on inhibition by Epac ligand. However, suppression of Rap1 with siRNA blocked the inhibition of Rho kinase by Epac ligand, and partly reversed the inhibition by OA; the residual inhibition was blocked by PKI. Muscle relaxation in response to OA, but not Epac ligand, was partly reversed by PKI. We conclude that activation of TGR5 causes relaxation of gastric smooth muscle and the relaxation is mediated through inhibition of RhoA/Rho kinase pathway via both cAMP/Epac-dependent stimulation of Rap1 and cAMP/PKA-dependent phosphorylation of RhoA at Ser(188). TGR5 receptor activation on smooth muscle reveals a novel mechanism for the regulation of gut motility by bile acids.

  10. Selective inhibitory action of Biginelli-type dihydropyrimidines on depolarization-induced arterial smooth muscle contraction.

    PubMed

    Cernecka, Hana; Veizerova, Lucia; Mensikova, Lucia; Svetlik, Jan; Krenek, Peter

    2012-05-01

    Dihydropyridine calcium channel blockers have some disadvantages such as light sensitivity and relatively short plasma half-lives. Stability of dihydropyrimidines analogues could be of advantage, yet they remain less well characterized. We aimed to test four newly synthesized Biginelli-type dihydropyrimidines for their calcium channel blocking activity on rat isolated aorta. Dihydropyrimidines (compounds A-D) were prepared by the Biginelli-like three-component condensation of benzaldehydes with urea/thiourea and dimethyl or diethyl acetone-1,3-dicarboxylate, and their physicochemical properties and effects on depolarization-induced and noradrenaline-induced contractions of rat isolated aorta were evaluated. Dihydropyrimidines A and C blocked KCl-induced contraction only weakly (-log(IC50)=5.03 and 3.73, respectively), while dihydropyrimidine D (-log(IC50)=7.03) was almost as potent as nifedipine (-log(IC50)=8.14). Washout experiments revealed that dihydropyrimidine D may bind strongly to the L-type calcium channel or remains bound to membrane. All tested dihydropyrimidines only marginally inhibited noradrenaline-induced contractions of rat isolated aorta (20% reduction of noradrenaline E(max) ), indicating a more selective action on L-type calcium channel than nifedipine with 75% inhibition of noradrenaline E(max) at 10(-4) m nifedipine). Compounds A and, particularly, D are potent calcium channel blockers in vitro, with a better selectivity in inhibiting depolarization-induced arterial smooth muscle contraction than nifedipine. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  11. Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains.

    PubMed

    Stålhand, J; Klarbring, A; Holzapfel, G A

    2008-01-01

    Chemical kinetics of smooth muscle contraction affect mechanical properties of organs that function under finite strains. In an effort to gain further insight into organ physiology, we formulate a mechanochemical finite strain model by considering the interaction between mechanical and biochemical components of cell function during activation. We propose a new constitutive framework and use a mechanochemical device that consists of two parallel elements: (i) spring for the cell stiffness; (ii) contractile element for the sarcomere. We use a multiplicative decomposition of cell elongation into filament contraction and cross-bridge deformation, and suggest that the free energy be a function of stretches, four variables (free unphosphorylated myosin, phosphorylated cross-bridges, phosphorylated and dephosphorylated cross-bridges attached to actin), chemical state variable driven by Ca2+-concentration, and temperature. The derived constitutive laws are thermodynamically consistent. Assuming isothermal conditions, we specialize the mechanical phase such that we recover the linear model of Yang et al. [2003a. The myogenic response in isolated rat cerebrovascular arteries: smooth muscle cell. Med. Eng. Phys. 25, 691-709]. The chemical phase is also specialized so that the linearized chemical evolution law leads to the four-state model of Hai and Murphy [1988. Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am. J. Physiol. 254, C99-C106]. One numerical example shows typical mechanochemical effects and the efficiency of the proposed approach. We discuss related parameter identification, and illustrate the dependence of muscle contraction (Ca2+-concentration) on active stress and related stretch. Mechanochemical models of this kind serve the mathematical basis for analyzing coupled processes such as the dependency of tissue properties on the chemical kinetics of smooth muscle.

  12. Differentiation and Application of Induced Pluripotent Stem Cell-Derived Vascular Smooth Muscle Cells.

    PubMed

    Maguire, Eithne Margaret; Xiao, Qingzhong; Xu, Qingbo

    2017-11-01

    Vascular smooth muscle cells (VSMCs) play a role in the development of vascular disease, for example, neointimal formation, arterial aneurysm, and Marfan syndrome caused by genetic mutations in VSMCs, but little is known about the mechanisms of the disease process. Advances in induced pluripotent stem cell technology have now made it possible to derive VSMCs from several different somatic cells using a selection of protocols. As such, researchers have set out to delineate key signaling processes involved in triggering VSMC gene expression to grasp the extent of gene regulatory networks involved in phenotype commitment. This technology has also paved the way for investigations into diseases affecting VSMC behavior and function, which may be treatable once an identifiable culprit molecule or gene has been repaired. Moreover, induced pluripotent stem cell-derived VSMCs are also being considered for their use in tissue-engineered blood vessels as they may prove more beneficial than using autologous vessels. Finally, while several issues remains to be clarified before induced pluripotent stem cell-derived VSMCs can become used in regenerative medicine, they do offer both clinicians and researchers hope for both treating and understanding vascular disease. In this review, we aim to update the recent progress on VSMC generation from stem cells and the underlying molecular mechanisms of VSMC differentiation. We will also explore how the use of induced pluripotent stem cell-derived VSMCs has changed the game for regenerative medicine by offering new therapeutic avenues to clinicians, as well as providing researchers with a new platform for modeling of vascular disease. © 2017 American Heart Association, Inc.

  13. Bronchodilatory and B-adrenergic effects of methanolic and aqueous extracts of Althaea root on isolated tracheobronchial smooth rat muscle.

    PubMed

    Alani, Behrang; Zare, Mohammad; Noureddini, Mahdi

    2015-01-01

    The smooth muscle contractions of the tracheobronchial airways are mediated through the balance of adrenergic, cholinergic and peptidergic nervous mechanisms. This research was designed to determine the bronchodilatory and B-adrenergic effects of methanolic and aqueous extracts of root Althaea on the isolated tracheobronchial smooth muscle of the rat. In this experimental study, 116 tracheobronchial sections (5 mm) from 58 healthy male Sprague-Dawley rats were dissected and divided into 23 groups. The effect of methanolic and aqueous extracts of the root Althaea was assayed at different concentrations (0.2, 0.6, 2.6, 6.6, 14.6 μg/ml) and epinephrine (5 μm) in the presence and absence of propranolol (1 μM) under one g tension based on the isometric method. This assay was recorded in an organ bath containing Krebs-Henseleit solution for tracheobronchial smooth muscle contractions using potassium chloride (KCl) (60 mM) induction. Epinephrine (5 μm) alone and root methanolic and aqueous extract concentrations (0.6-14.6 μg/ml) reduced tracheobronchial smooth muscle contractions induced using KCl (60 mM) in a dose dependent manner. Propranolol inhibited the antispasmodic effect of epinephrine on tracheobronchial smooth muscle contractions, but could not reduce the antispasmodic effect of the root extract concentrations. The methanolic and aqueous extracts of Althaea root inhibited the tracheobronchial smooth muscle contractions of rats in a dose dependent manner, but B-adrenergic receptors do not appear to engage in this process. Understanding the mechanism of this process can be useful in the treatment of pulmonary obstructive diseases like asthma.

  14. p21‐Activated kinase (Pak) regulates airway smooth muscle contraction by regulating paxillin complexes that mediate actin polymerization

    PubMed Central

    Zhang, Wenwu; Huang, Youliang

    2016-01-01

    Key points In airway smooth muscle, tension development caused by a contractile stimulus requires phosphorylation of the 20 kDa myosin light chain (MLC), which activates crossbridge cycling and the polymerization of a pool of submembraneous actin.The p21‐activated kinases (Paks) can regulate the contractility of smooth muscle and non‐muscle cells, and there is evidence that this occurs through the regulation of MLC phosphorylation.We show that Pak has no effect on MLC phosphorylation during the contraction of airway smooth muscle, and that it regulates contraction by mediating actin polymerization.We find that Pak phosphorylates the adhesion junction protein, paxillin, on Ser273, which promotes the formation of a signalling complex that activates the small GTPase, cdc42, and the actin polymerization catalyst, neuronal Wiskott–Aldrich syndrome protein (N‐WASP).These studies demonstrate a novel role for Pak in regulating the contractility of smooth muscle by regulating actin polymerization. Abstract The p21‐activated kinases (Pak) can regulate contractility in smooth muscle and other cell and tissue types, but the mechanisms by which Paks regulate cell contractility are unclear. In airway smooth muscle, stimulus‐induced contraction requires phosphorylation of the 20 kDa light chain of myosin, which activates crossbridge cycling, as well as the polymerization of a small pool of actin. The role of Pak in airway smooth muscle contraction was evaluated by inhibiting acetylcholine (ACh)‐induced Pak activation through the expression of a kinase inactive mutant, Pak1 K299R, or by treating tissues with the Pak inhibitor, IPA3. Pak inhibition suppressed actin polymerization and contraction in response to ACh, but it did not affect myosin light chain phosphorylation. Pak activation induced paxillin phosphorylation on Ser273; the paxillin mutant, paxillin S273A, inhibited paxillin Ser273 phosphorylation and inhibited actin polymerization and contraction

  15. The Role of Rac1 on Carbachol-induced Contractile Activity in Detrusor Smooth Muscle from Streptozotocin-induced Diabetic Rats.

    PubMed

    Evcim, Atiye Sinem; Micili, Serap Cilaker; Karaman, Meral; Erbil, Guven; Guneli, Ensari; Gidener, Sedef; Gumustekin, Mukaddes

    2015-06-01

    This study was designed to determine the role of the small GTPase Rac1 on carbachol-induced contractile activity in detrusor smooth muscle using small inhibitor NSC 23766 in diabetic rats. Rac1 expression in bladder tissue was also evaluated. In the streptozotocin (STZ)-induced diabetic rat model, three study groups were composed of control, diabetic and insulin-treated diabetic subjects. The detrusor muscle strips were suspended in organ baths at the end of 8-12 weeks after STZ injection. Carbachol (CCh) (10(-9) -10(-4) M) concentration-response curves were obtained both in the absence and in the presence of Rac1 inhibitor NSC 23766 (0.1, 1 and 10 μM). Diabetes-related histopathological changes and Rac1 expressions were assessed by haematoxylin and eosin staining and immunohistochemical staining, respectively. CCh caused dose-dependent contractile responses in all the study groups. Rac1 inhibitor NSC 23766 inhibited CCh-induced contractile responses in all groups, but this inhibition seen in both diabetes groups was greater than in the control group. Histological examination revealed an increased bladder wall thickness both in the diabetes and in the insulin-treated diabetes groups compared to the control group. In immunohistochemical staining, expression of Rac1 was observed to be increased in all layers of bladder in both diabetic groups compared to the control group. In the diabetic bladders, increased expression of Rac1 and considerable inhibition of CCh-induced responses in the presence of NSC 23766 compared to those of the control group may indicate a specific role of Rac1 in diabetes-related bladder dysfunction, especially associated with cholinergic mediated detrusor overactivity. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  16. Recruitment of β-Catenin to N-Cadherin Is Necessary for Smooth Muscle Contraction*

    PubMed Central

    Wang, Tao; Wang, Ruping; Cleary, Rachel A.; Gannon, Olivia J.; Tang, Dale D.

    2015-01-01

    β-Catenin is a key component that connects transmembrane cadherin with the actin cytoskeleton at the cell-cell interface. However, the role of the β-catenin/cadherin interaction in smooth muscle has not been well characterized. Here stimulation with acetylcholine promoted the recruitment of β-catenin to N-cadherin in smooth muscle cells/tissues. Knockdown of β-catenin by lentivirus-mediated shRNA attenuated smooth muscle contraction. Nevertheless, myosin light chain phosphorylation at Ser-19 and actin polymerization in response to contractile activation were not reduced by β-catenin knockdown. In addition, the expression of the β-catenin armadillo domain disrupted the recruitment of β-catenin to N-cadherin. Force development, but not myosin light chain phosphorylation and actin polymerization, was reduced by the expression of the β-catenin armadillo domain. Furthermore, actin polymerization and microtubules have been implicated in intracellular trafficking. In this study, the treatment with the inhibitor latrunculin A diminished the interaction of β-catenin with N-cadherin in smooth muscle. In contrast, the exposure of smooth muscle to the microtubule depolymerizer nocodazole did not affect the protein-protein interaction. Together, these findings suggest that smooth muscle contraction is mediated by the recruitment of β-catenin to N-cadherin, which may facilitate intercellular mechanotransduction. The association of β-catenin with N-cadherin is regulated by actin polymerization during contractile activation. PMID:25713069

  17. Effects of 5-fluorouracil in nuclear and cellular morphology, proliferation, cell cycle, apoptosis, cytoskeletal and caveolar distribution in primary cultures of smooth muscle cells.

    PubMed

    Filgueiras, Marcelo de Carvalho; Morrot, Alexandre; Soares, Pedro Marcos Gomes; Costa, Manoel Luis; Mermelstein, Cláudia

    2013-01-01

    Colon cancer is one of the most prevalent types of cancer in the world and is one of the leading causes of cancer death. The anti-metabolite 5- fluorouracil (5-FU) is widely used in the treatment of patients with colon cancer and other cancer types. 5-FU-based chemotherapy has been shown to be very efficient in the improvement of overall survival of the patients and for the eradication of the disease. Unfortunately, common side effects of 5-FU include severe alterations in the motility of the gastrointestinal tissues. Nevertheless, the molecular and cellular effects of 5-FU in smooth muscle cells are poorly understood. Primary smooth muscle cell cultures are an important tool for studies of the biological consequences of 5-FU at the cellular level. The avian gizzard is one of the most robust organs of smooth muscle cells. Here we studied the molecular and cellular effects of the chemotherapic drug 5-FU in a primary culture of chick gizzard smooth muscle cells. We found that treatment of smooth muscle cells with 5-FU inhibits cell proliferation by the arrest of cells in the G1 phase of cell cycle and induce apoptosis. 5-FU induced a decrease in the percentage of histone H3-positive cells. Treatment of cells with 5-FU induced changes in cellular and nuclear morphology, a decrease in the number of stress fibers and a major decrease in the number of caveolin-3 positive cells. Our results suggest that the disorganization of the actin cytoskeleton and the reduction of caveolin-3 expression could explain the alterations in contractility observed in patients treated with 5-FU. These findings might have an impact in the understanding of the cellular effects of 5-FU in smooth muscle tissues and might help the improvement of new therapeutic protocols for the treatment of colon cancer.

  18. Effects of 5-Fluorouracil in Nuclear and Cellular Morphology, Proliferation, Cell Cycle, Apoptosis, Cytoskeletal and Caveolar Distribution in Primary Cultures of Smooth Muscle Cells

    PubMed Central

    Filgueiras, Marcelo de Carvalho; Morrot, Alexandre; Soares, Pedro Marcos Gomes; Costa, Manoel Luis; Mermelstein, Cláudia

    2013-01-01

    Colon cancer is one of the most prevalent types of cancer in the world and is one of the leading causes of cancer death. The anti-metabolite 5- fluorouracil (5-FU) is widely used in the treatment of patients with colon cancer and other cancer types. 5-FU-based chemotherapy has been shown to be very efficient in the improvement of overall survival of the patients and for the eradication of the disease. Unfortunately, common side effects of 5-FU include severe alterations in the motility of the gastrointestinal tissues. Nevertheless, the molecular and cellular effects of 5-FU in smooth muscle cells are poorly understood. Primary smooth muscle cell cultures are an important tool for studies of the biological consequences of 5-FU at the cellular level. The avian gizzard is one of the most robust organs of smooth muscle cells. Here we studied the molecular and cellular effects of the chemotherapic drug 5-FU in a primary culture of chick gizzard smooth muscle cells. We found that treatment of smooth muscle cells with 5-FU inhibits cell proliferation by the arrest of cells in the G1 phase of cell cycle and induce apoptosis. 5-FU induced a decrease in the percentage of histone H3-positive cells. Treatment of cells with 5-FU induced changes in cellular and nuclear morphology, a decrease in the number of stress fibers and a major decrease in the number of caveolin-3 positive cells. Our results suggest that the disorganization of the actin cytoskeleton and the reduction of caveolin-3 expression could explain the alterations in contractility observed in patients treated with 5-FU. These findings might have an impact in the understanding of the cellular effects of 5-FU in smooth muscle tissues and might help the improvement of new therapeutic protocols for the treatment of colon cancer. PMID:23646193

  19. Effect of Fenspiride on Bronchial Smooth Muscle of Rats with Chronic Obstructive Pulmonary Disease

    PubMed Central

    Kuzubova, Nataliya A.; Lebedeva, Elena S.; Fedin, Anatoliy N.; Dvorakovskaya, Ivetta V.; Preobrazhenskaya, Tatiana N.; Titova, Olga N.

    2013-01-01

    Chronic obstructive pulmonary disease (COPD) is among the leading causes of morbidity and mortality worldwide. Glucocorticoids are currently the most applicable anti-inflammatory treatment for COPD. However, a subset of COPD subjects is relatively insensitive to this treatment. Fenspiride, a non-corticosteroid anti-inflammatory drug, has been described to have beneficial effects in patients with COPD, although the mechanism of its action is not well known. The effect of fenspiride on contractile activity of bronchial smooth muscle was studied in a rat model of COPD induced by long-term exposure of the animals to nitrogen dioxide (NO2). Contractile activity of bronchial smooth muscle was evaluated in vitro. Isometric contraction of bronchial preparations was measured following electrical stimulation. Fenspiride administration to rats during the acute stage of COPD (15 days of NO2 exposure) prevented the bronchial constriction induced by NO2. The bronchodilator effect of a low-dose of fenspiride (0.15 mg/kg) was mediated by interaction with the nerve endings of capsaicin-sensitive C-fibers. Interaction of fenspiride with C-fibers was shown to prevent initiation of neurogenic inflammation, as evidenced by lack of COPD-like structural changes in the lungs. The bronchodilator effect of a high-dose of fenspiride (15 mg/kg) was mediated not only by the afferent component, but also involved a direct relaxing effect on smooth muscle cells. The anti-inflammatory and bronchodilator effects of a low-dose of fenspiride may be used for prevention of COPD development in individuals from high-risk cohorts exposed to aggressive environmental factors. PMID:24133694

  20. Gender differences in the regulation of MLC20 phosphorylation and smooth muscle contraction in rat stomach

    PubMed Central

    Al-Shboul, Othman A.; Al-Dwairi, Ahmed N.; Alqudah, Mohammad A.; Mustafa, Ayman G.

    2018-01-01

    Evidence of sex-related differences in gastrointestinal (GI) functions has been reported in the literature. In addition, various GI disorders have disproportionate prevalence between the sexes. An essential step in the initiation of smooth muscle contraction is the phosphorylation of the 20-kDa regulatory myosin light chain (MLC20) by the Ca2+/calmodulin-dependent myosin light chain kinase (MLCK). However, whether male stomach smooth muscle inherits different contractile signaling mechanisms for the regulation of MLC20 phosphorylation from that in females has not been established. The present study was designed to investigate sex-associated differences in the regulation of MLC20 phosphorylation and thus muscle contraction in gastric smooth muscle cells (GSMCs). Experiments were performed on GSMCs freshly isolated from male and female rats. Contraction of the GSMCs in response to acetylcholine (ACh), a muscarinic agonist, was measured via scanning micrometry in the presence or absence of the MLCK inhibitor, ML-7. Additionally, the protein levels of MLC20, MLCK and phosphorylated MLC20 were measured by ELISA. The protein levels of MLC20 and MLCK were indifferent between the sexes. ACh induced greater contraction (P<0.05) as well as greater MLC20 phosphorylation (P<0.05) in male GSMCs compared with female. Pretreatment of GSMCs with ML-7 significantly reduced the ACh-induced contraction (P<0.05) and MLC20 phosphorylation (P<0.05) in the male and female cells, and notably, abolished the contractile differences between the sexes. In conclusion, MLC20 phosphorylation and thus muscle contraction may be activated to a greater extent in male rat stomach compared with that in females. PMID:29599980

  1. Smooth muscle cell phenotypic switching in stroke.

    PubMed

    Poittevin, Marine; Lozeron, Pierre; Hilal, Rose; Levy, Bernard I; Merkulova-Rainon, Tatiana; Kubis, Nathalie

    2014-06-01

    Disruption of cerebral blood flow after stroke induces cerebral tissue injury through multiple mechanisms that are not yet fully understood. Smooth muscle cells (SMCs) in blood vessel walls play a key role in cerebral blood flow control. Cerebral ischemia triggers these cells to switch to a phenotype that will be either detrimental or beneficial to brain repair. Moreover, SMC can be primarily affected genetically or by toxic metabolic molecules. After stroke, this pathological phenotype has an impact on the incidence, pattern, severity, and outcome of the cerebral ischemic disease. Although little research has been conducted on the pathological role and molecular mechanisms of SMC in cerebrovascular ischemic diseases, some therapeutic targets have already been identified and could be considered for further pharmacological development. We examine these different aspects in this review.

  2. Investigation of terpinen-4-ol effects on vascular smooth muscle relaxation.

    PubMed

    Maia-Joca, Rebeca Peres Moreno; Joca, Humberto Cavalcante; Ribeiro, Francisca Jéssica Penha; do Nascimento, Renata Vieira; Silva-Alves, Kerly Shamyra; Cruz, Jader S; Coelho-de-Souza, Andrelina Noronha; Leal-Cardoso, José Henrique

    2014-10-12

    This study investigated the mechanisms underlying the vascular effects of terpinen-4-ol in isolated rat aortic ring preparations. The thoracic aortae of healthy rats were submitted to isometric tension recording. Membrane resting potential and input membrane resistance were measured by conventional microelectrode technique. Terpinen-4-ol reversibly relaxed endothelium-containing preparations pre-contracted with high K(+) and phenylephrine with IC50 values of 421.43 μM and 802.50 μM, respectively. These effects were significantly reduced by vascular endothelium removal. In Ca(2+)-free and high K(+) (80 mM) medium, the contractions produced by Ba(2+) were reduced by terpinen-4-ol (100-1000 μM) in a concentration-dependent manner. In aortic rings maintained under Ca(2+)-free conditions, terpinen-4-ol significantly reduced the contractions induced by either phenylephrine (1 μM) or phorbol 12,13-dibutyrate (1 μM). Terpinen-4-ol (10-1000 μM) also relaxed the contractions evoked by BAYK-8644 (3 μM) with an IC50 of 454.23 μM. Neither membrane resting potential nor input resistance of smooth muscle cells was altered by terpinen-4-ol exposure. The present results suggest that terpinen-4-ol induced vascular smooth muscle relaxation that was preferentially due to the inhibition of electromechanical pathways related to calcium influx through voltage-operated calcium channels. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Isoflavones isolated from red clover (Trifolium pratense) inhibit smooth muscle contraction of the isolated rat prostate gland.

    PubMed

    Brandli, A; Simpson, J S; Ventura, S

    2010-09-01

    This study investigated whether red clover contains any bioactive constituents which may affect contractility of rat prostatic smooth muscle in an attempt to determine whether its medicinal use in the treatment of benign prostatic hyperplasia is supported by pharmacological effects. A commercially available red clover extract was chemically fractionated and various isoflavones (genistein, formononetin and biochanin A) were isolated from these fractions and their effects on contractility were examined on preparations of the isolated rat prostate gland. Contractile effects of the isolated fractions were compared with commercially available isoflavones (genistein, formononetin and biochanin A). Pharmacological tools were used to investigate the mechanism of action modifying smooth muscle contraction. Crude red clover extract (Trinovin) inhibited electrical field stimulation induced contractions of the rat prostate across a range of frequencies with an IC(50) of approximately 68 microg/ml. Contractions of the rat prostate elicited by exogenous administration of acetylcholine, noradrenaline or adenosine 5'-triphosphate (ATP) were also inhibited. Chromatographic separation, and final purification by high performance liquid chromatography (HPLC) permitted the isolation of the isoflavones: daidzein, calycosin, formononetin, prunetin, pratensin, biochanin A and genistein. Genistein, formononetin and biochanin A (100 microM) from either commercial sources or isolated from red clover extract inhibited electrical field stimulation induced contractions of the isolated rat prostate. It is concluded that isoflavones contained in red clover are able to inhibit prostatic smooth muscle contractions in addition to their antiproliferative effects. However, the high concentrations required to observe these smooth muscle relaxant effects mean that a therapeutic benefit from this mechanism is unlikely at doses used clinically. Crown Copyright 2010. Published by Elsevier GmbH. All rights

  4. Cystic Fibrosis Transmembrane Conductance Regulator in Sarcoplasmic Reticulum of Airway Smooth Muscle. Implications for Airway Contractility

    PubMed Central

    Cook, Daniel P.; Rector, Michael V.; Bouzek, Drake C.; Michalski, Andrew S.; Gansemer, Nicholas D.; Reznikov, Leah R.; Li, Xiaopeng; Stroik, Mallory R.; Ostedgaard, Lynda S.; Abou Alaiwa, Mahmoud H.; Thompson, Michael A.; Prakash, Y. S.; Krishnan, Ramaswamy; Meyerholz, David K.; Seow, Chun Y.

    2016-01-01

    Rationale: An asthma-like airway phenotype has been described in people with cystic fibrosis (CF). Whether these findings are directly caused by loss of CF transmembrane conductance regulator (CFTR) function or secondary to chronic airway infection and/or inflammation has been difficult to determine. Objectives: Airway contractility is primarily determined by airway smooth muscle. We tested the hypothesis that CFTR is expressed in airway smooth muscle and directly affects airway smooth muscle contractility. Methods: Newborn pigs, both wild type and with CF (before the onset of airway infection and inflammation), were used in this study. High-resolution immunofluorescence was used to identify the subcellular localization of CFTR in airway smooth muscle. Airway smooth muscle function was determined with tissue myography, intracellular calcium measurements, and regulatory myosin light chain phosphorylation status. Precision-cut lung slices were used to investigate the therapeutic potential of CFTR modulation on airway reactivity. Measurements and Main Results: We found that CFTR localizes to the sarcoplasmic reticulum compartment of airway smooth muscle and regulates airway smooth muscle tone. Loss of CFTR function led to delayed calcium reuptake following cholinergic stimulation and increased myosin light chain phosphorylation. CFTR potentiation with ivacaftor decreased airway reactivity in precision-cut lung slices following cholinergic stimulation. Conclusions: Loss of CFTR alters porcine airway smooth muscle function and may contribute to the airflow obstruction phenotype observed in human CF. Airway smooth muscle CFTR may represent a therapeutic target in CF and other diseases of airway narrowing. PMID:26488271

  5. Sorcin modulation of Ca2+ sparks in rat vascular smooth muscle cells

    PubMed Central

    Rueda, Angélica; Song, Ming; Toro, Ligia; Stefani, Enrico; Valdivia, Héctor H

    2006-01-01

    Spontaneous, local Ca2+ release events or Ca2+ sparks by ryanodine receptors (RyRs) are important determinants of vascular tone and arteriolar resistance, but the mechanisms that modulate their properties in smooth muscle are poorly understood. Sorcin, a Ca2+-binding protein that associates with cardiac RyRs and quickly stops Ca2+ release in the heart, provides a potential mechanism to modulate Ca2+ sparks in vascular smooth muscle, but little is known about the functional role of sorcin in this tissue. In this work, we characterized the expression and intracellular location of sorcin in aorta and cerebral artery and gained mechanistic insights into its functional role as a modulator of Ca2+ sparks. Sorcin is present in endothelial and smooth muscle cells, as assessed by immunocytochemical and Western blot analyses. Smooth muscle sorcin translocates from cytosolic to membranous compartments in a Ca2+-dependent manner and associates with RyRs, as shown by coimmunoprecipitation and immunostaining experiments. Ca2+ sparks recorded in saponin-permeabilized vascular myocytes have increased frequency, duration and spatial spread but reduced amplitude with respect to Ca2+ sparks in intact cells, suggesting that permeabilization disrupts the normal organization of RyRs and releases diffusible substances that control Ca2+ spark properties. Perfusion of 2 μm sorcin onto permeabilized myocytes reduced the amplitude, duration and spatial spread of Ca2+ sparks, demonstrating that sorcin effectively regulates Ca2+ signalling in vascular smooth muscle. Together with a dense distribution in the perimeter of the cell along a pool of RyRs, these properties make sorcin a viable candidate to modulate vascular tone in smooth muscle. PMID:16931553

  6. Mechanism of soman-induced contractions in canine tracheal smooth muscle. (Reannouncement with new availability information)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adler, M.; Moore, D.H.; Filbert, M.G.

    1992-12-31

    The actions of the irreversible organophosphorus cholinesterase (ChE) inhibitor soman were investigated on canine trachea smooth muscle in vitro. Concentrations of soman > or - 1 nM increased the amplitude and decay of contractions elicited by electric field stimulation. The effect on decay showed a marked dependence on stimulation frequency, undergoing a 2.4-fold increase between 3 and 60 Hz. Soman also potentiated tensions due to bath applied acetylcholine (ACh). Little or no potentiation was observed for contractions elicited by carbamylcholine, an agonist that is not hydrolyzed by ChE. Concentration of soman > or - 3 nM led to the appearancemore » of sustained contractures. These contractures developed with a delayed onset and were well correlated with ChE activity. Alkylation of muscarinic receptors by propylbenzilylcholine mustard antagonized the actions of soman on both spontaneous and electrically-evoked muscle contractions. The results are consistent with a mechanism in which the toxic actions of soman are mediated by accumulation of neurally-released ACh secondary to inhibition of ChE activity. An important factor in this accumulation is suggested to be the buffering effect of the muscarinic receptors on the efflux of ACh from the neuroeffector junction. Tracheal smooth muscle, Cholinesterase inhibitors, Muscarinic receptor, Soman, Organophosphate.« less

  7. Consequences of metabolic inhibition in smooth muscle isolated from guinea-pig stomach.

    PubMed

    Nakayama, S; Chihara, S; Clark, J F; Huang, S M; Horiuchi, T; Tomita, T

    1997-11-15

    1. In smooth muscle isolated from the guinea-pig stomach, cyanide (CN) and iodoacetic acid (IAA) were applied to block oxidative phosphorylation and glycolysis, respectively. Effects of IAA on generation of spontaneous mechanical and electrical activities were systematically investigated by comparing those of CN. Spontaneous activity ceased in 10-20 min during applications of 1 mM IAA. On the other hand, application of 1 mM CN also reduced the spontaneous activity, but never terminated it. In the presence of CN the negativity of the resting membrane potential was slightly reduced. 2. When spontaneous activity ceased with IAA, the resting membrane potential was not significantly affected. Also, before ceasing, the amplitude and duration of the spontaneous electrical activity were significantly reduced. The amplitude of the electrotonic potential was, however, not changed by IAA. Further, glibenclamide did not prevent the effects of IAA. These results suggest that, unlike cardiac muscle, activation of metabolism-dependent K+ channels in stomach smooth muscle does not seem to play a major role in reducing and terminating spontaneous activity during metabolic inhibition. 3. Carbachol-induced contraction transiently increased, and subsequently decreased gradually during application of IAA. 4. After 50 min application of IAA, when there was no spontaneous activity, the concentrations of phosphocreatine (PCr) and ATP measured with 31P nuclear magnetic resonance decreased to 60 and 80% of the control, respectively, while inorganic phosphate (Pi) concentration paradoxically fell to below detectable levels. During subsequent prolonged application of IAA, high-energy phosphates steadily decreased. On the other hand, after 50 min CN application, [PCr] and [ATP] decreased to approximately 30 and 80% of the control, respectively, while [Pi] increased by 2.6-fold. 5. In the presence of either CN or IAA, spontaneous mechanical and electrical activities were reduced or eliminated

  8. Loss of Notch2 and Notch3 in vascular smooth muscle causes patent ductus arteriosus.

    PubMed

    Baeten, Jeremy T; Jackson, Ashley R; McHugh, Kirk M; Lilly, Brenda

    2015-12-01

    The overlapping roles of the predominant Notch receptors in vascular smooth muscle cells, Notch2 and Notch3, have not been clearly defined in vivo. In this study, we use a smooth muscle-specific deletion of Notch2 together with a global Notch3 deletion to produce mice with combinations of mutant and wild-type Notch2/3 alleles in vascular smooth muscle cells. Mice with complete loss of Notch3 and smooth muscle-expressed Notch2 display late embryonic lethality and subcutaneous hemorrhage. Mice without smooth muscle-Notch2 and only one wild-type copy of Notch3 die within one day of birth and present with vascular defects, most notably patent ductus arteriosus (DA) and aortic dilation. These defects were associated with decreased expression of contractile markers in both the DA and aorta. These results demonstrate that Notch2 and Notch3 have overlapping roles in promoting development of vascular smooth muscle cells, and together contribute to functional closure of the DA. © 2015 Wiley Periodicals, Inc.

  9. Smooth muscle relaxing flavonoids and terpenoids from Conyza filaginoides.

    PubMed

    Mata, R; Rojas, A; Acevedo, L; Estrada, S; Calzada, F; Rojas, I; Bye, R; Linares, E

    1997-02-01

    Activity-guided fractionation of the smooth muscle relaxing, chloroform-methanol (1:1) extract of Conyza filaginoides (D.C.) Hieron (Asteraceae) led to the isolation of three flavonoids (quercetin 3-glucoside, rutin, and pinostrobin), one sterol (alpha-spinasterol), a sesquiterpenoid (beta-caryophyllene 4,5-alpha-oxide), and two triterpenoids (erythrodiol and 3-beta-tridecanoyloxy-28-hydroxyolean-12-ene). 3-beta-Tridecanoyloxy-28-hydroxy-olean-12-ene is a new naturally occurring terpenoid. All the isolated compounds induced a concentration-dependent inhibition of the spontaneous contractions of rat ileum. The spasmolytic activity exhibited by the extract and active principles tends to support the traditional use of C filaginoides as an antispasmodic agent.

  10. Inhibition of Vascular Smooth Muscle Cell Proliferation by Gentiana lutea Root Extracts

    PubMed Central

    Kesavan, Rushendhiran; Potunuru, Uma Rani; Nastasijević, Branislav; T, Avaneesh; Joksić, Gordana; Dixit, Madhulika

    2013-01-01

    Gentiana lutea belonging to the Gentianaceae family of flowering plants are routinely used in traditional Serbian medicine for their beneficial gastro-intestinal and anti-inflammatory properties. The aim of the study was to determine whether aqueous root extracts of Gentiana lutea consisting of gentiopicroside, gentisin, bellidifolin-8-O-glucoside, demethylbellidifolin-8-O-glucoside, isovitexin, swertiamarin and amarogentin prevents proliferation of aortic smooth muscle cells in response to PDGF-BB. Cell proliferation and cell cycle analysis were performed based on alamar blue assay and propidium iodide labeling respectively. In primary cultures of rat aortic smooth muscle cells (RASMCs), PDGF-BB (20 ng/ml) induced a two-fold increase in cell proliferation which was significantly blocked by the root extract (1 mg/ml). The root extract also prevented the S-phase entry of synchronized cells in response to PDGF. Furthermore, PDGF-BB induced ERK1/2 activation and consequent increase in cellular nitric oxide (NO) levels were also blocked by the extract. These effects of extract were due to blockade of PDGF-BB induced expression of iNOS, cyclin D1 and proliferating cell nuclear antigen (PCNA). Docking analysis of the extract components on MEK1, the upstream ERK1/2 activating kinase using AutoDock4, indicated a likely binding of isovitexin to the inhibitor binding site of MEK1. Experiments performed with purified isovitexin demonstrated that it successfully blocks PDGF-induced ERK1/2 activation and proliferation of RASMCs in cell culture. Thus, Gentiana lutea can provide novel candidates for prevention and treatment of atherosclerosis. PMID:23637826

  11. Inhibition of vascular smooth muscle cell proliferation by Gentiana lutea root extracts.

    PubMed

    Kesavan, Rushendhiran; Potunuru, Uma Rani; Nastasijević, Branislav; T, Avaneesh; Joksić, Gordana; Dixit, Madhulika

    2013-01-01

    Gentiana lutea belonging to the Gentianaceae family of flowering plants are routinely used in traditional Serbian medicine for their beneficial gastro-intestinal and anti-inflammatory properties. The aim of the study was to determine whether aqueous root extracts of Gentiana lutea consisting of gentiopicroside, gentisin, bellidifolin-8-O-glucoside, demethylbellidifolin-8-O-glucoside, isovitexin, swertiamarin and amarogentin prevents proliferation of aortic smooth muscle cells in response to PDGF-BB. Cell proliferation and cell cycle analysis were performed based on alamar blue assay and propidium iodide labeling respectively. In primary cultures of rat aortic smooth muscle cells (RASMCs), PDGF-BB (20 ng/ml) induced a two-fold increase in cell proliferation which was significantly blocked by the root extract (1 mg/ml). The root extract also prevented the S-phase entry of synchronized cells in response to PDGF. Furthermore, PDGF-BB induced ERK1/2 activation and consequent increase in cellular nitric oxide (NO) levels were also blocked by the extract. These effects of extract were due to blockade of PDGF-BB induced expression of iNOS, cyclin D1 and proliferating cell nuclear antigen (PCNA). Docking analysis of the extract components on MEK1, the upstream ERK1/2 activating kinase using AutoDock4, indicated a likely binding of isovitexin to the inhibitor binding site of MEK1. Experiments performed with purified isovitexin demonstrated that it successfully blocks PDGF-induced ERK1/2 activation and proliferation of RASMCs in cell culture. Thus, Gentiana lutea can provide novel candidates for prevention and treatment of atherosclerosis.

  12. Oxygenation decreases elastin secretion from rat ductus arteriosus smooth muscle cells.

    PubMed

    Kawakami, Shoji; Minamisawa, Susumu

    2015-08-01

    The ductus arteriosus (DA), a fetal arterial connection between the main pulmonary artery and the descending aorta, normally closes immediately after birth. The oxygen concentration in the blood rises after birth, and in the DA this increase in oxygen concentration causes functional closure, which is induced by smooth muscle contraction. Previous studies have demonstrated that hypoxia and/or oxygenation affect vascular remodeling of various vessels. Therefore, we hypothesized that the rise in oxygen concentration would affect the vascular structure of the DA due to production of proteins secreted from DA smooth muscle cells (SMC). Liquid chromatography-tandem mass spectrometry was used to comprehensively investigate the secreted proteins in the supernatant of rat DA SMC harvested under hypoxic conditions (1% oxygen) or under normoxic conditions (21% oxygen). We found that the rise in oxygen concentration reduced the secretion of elastin from DA SMC. On reverse transcription-polymerase chain reaction, the expression of elastin mRNA was not significantly changed in DA SMC from hypoxic to normoxic conditions. Given that elastin forms internal elastic lamina and elastic fibers in the vascular muscle layers, and that a rise in oxygen concentration reduced the secretion of elastin, this suggests that the rise in blood oxygen concentration after birth reduces the secretion of elastin, and therefore may play a role in DA structural remodeling after birth. © 2015 Japan Pediatric Society.

  13. Non-muscle (NM) myosin heavy chain phosphorylation regulates the formation of NM myosin filaments, adhesome assembly and smooth muscle contraction.

    PubMed

    Zhang, Wenwu; Gunst, Susan J

    2017-07-01

    Non-muscle (NM) and smooth muscle (SM) myosin II are both expressed in smooth muscle tissues, however the role of NM myosin in SM contraction is unknown. Contractile stimulation of tracheal smooth muscle tissues stimulates phosphorylation of the NM myosin heavy chain on Ser1943 and causes NM myosin filament assembly at the SM cell cortex. Expression of a non-phosphorylatable NM myosin mutant, NM myosin S1943A, in SM tissues inhibits ACh-induced NM myosin filament assembly and SM contraction, and also inhibits the assembly of membrane adhesome complexes during contractile stimulation. NM myosin regulatory light chain (RLC) phosphorylation but not SM myosin RLC phosphorylation is regulated by RhoA GTPase during ACh stimulation, and NM RLC phosphorylation is required for NM myosin filament assembly and SM contraction. NM myosin II plays a critical role in airway SM contraction that is independent and distinct from the function of SM myosin. The molecular function of non-muscle (NM) isoforms of myosin II in smooth muscle (SM) tissues and their possible role in contraction are largely unknown. We evaluated the function of NM myosin during contractile stimulation of canine tracheal SM tissues. Stimulation with ACh caused NM myosin filament assembly, as assessed by a Triton solubility assay and a proximity ligation assay aiming to measure interactions between NM myosin monomers. ACh stimulated the phosphorylation of NM myosin heavy chain on Ser1943 in tracheal SM tissues, which can regulate NM myosin IIA filament assembly in vitro. Expression of the non-phosphorylatable mutant NM myosin S1943A in SM tissues inhibited ACh-induced endogenous NM myosin Ser1943 phosphorylation, NM myosin filament formation, the assembly of membrane adhesome complexes and tension development. The NM myosin cross-bridge cycling inhibitor blebbistatin suppressed adhesome complex assembly and SM contraction without inhibiting NM myosin Ser1943 phosphorylation or NM myosin filament assembly. Rho

  14. Inhibition of Adrenergic and Non-Adrenergic Smooth Muscle Contraction in the Human Prostate by the Phosphodiesterase 10-Selective Inhibitor TC-E 5005.

    PubMed

    Hennenberg, Martin; Schott, Melanie; Kan, Aysenur; Keller, Patrick; Tamalunas, Alexander; Ciotkowska, Anna; Rutz, Beata; Wang, Yiming; Strittmatter, Frank; Herlemann, Annika; Yu, Qingfeng; Stief, Christian G; Gratzke, Christian

    2016-11-01

    The phosphodiesterase (PDE) 5 inhibitor tadalafil is available for treatment of male lower urinary tract symptoms (LUTS), while the role of other PDE isoforms for prostate smooth muscle tone is still unknown. Here, we examined effects of the PDE10-selective inhibitor TC-E 5005 on smooth muscle contraction in human prostate tissue. Prostate samples were obtained from patients undergoing radical prostatectomy. Expression of PDE10 was addressed by RT-PCR, Western blot, and fluorescence staining with different markers. Effects of TC-E 5005 and tadalafil on contraction, and relaxation of prostate strips were studied via organ bath. PDE10A was detectable by RT-PCR, Western blot, and fluorescence staining in prostate tissues. Colocalization with markers suggested expression of PDE10A in smooth muscle cells and catecholaminergic nerves. Norepinephrine, the α1 -adrenergic agonist phenylephrine, the thromboxane A2 analogue U46619, and endothelins 1-3 induced concentration-dependent contractions of prostate strips, while electric field stimulation (EFS) induced frequence-dependent contractions. Application of TC-E 5005 (500 nM) caused significant inhibition of norepinephrine-, phenylephrine-, and endothelin-3-induced contractions. Inhibition of EFS-induced contractions by TC-E 5005 ranged around 50%, resembling inhibition of EFS-induced contractions by tadalafil (10 μM). The prostacyclin analog treprostinil and the nitric oxide donor DEA NONOate induced relaxations of precontracted prostate strips, which were significantly amplified by TCE 5005. The PDE10-selective inhibitor TC-E 5005 inhibits adrenergic and neurogenic smooth muscle contractions in the human prostate. TC-E 5005 inhibits neurogenic contractions with similar efficacy than tadalafil, so that urodynamic effects in vivo appear possible. Prostate 76:1364-1374, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Brain cytoplasmic RNA 1 suppresses smooth muscle differentiation and vascular development in mice.

    PubMed

    Wang, Yung-Chun; Chuang, Ya-Hui; Shao, Qiang; Chen, Jian-Fu; Chen, Shi-You

    2018-04-13

    The cardiovascular system develops during the early stages of embryogenesis, and differentiation of smooth muscle cells (SMCs) is essential for that process. SMC differentiation is critically regulated by transforming growth factor (TGF)-β/SMAD family member 3 (SMAD3) signaling, but other regulators may also play a role. For example, long noncoding RNAs (lncRNAs) regulate various cellular activities and events, such as proliferation, differentiation, and apoptosis. However, whether long noncoding RNAs also regulate SMC differentiation remains largely unknown. Here, using the murine cell line C3H10T1/2, we found that brain cytoplasmic RNA 1 (BC1) is an important regulator of SMC differentiation. BC1 overexpression suppressed, whereas BC1 knockdown promoted, TGF-β-induced SMC differentiation, as indicated by altered cell morphology and expression of multiple SMC markers, including smooth muscle α-actin (αSMA), calponin, and smooth muscle 22α (SM22α). BC1 appeared to block SMAD3 activity and inhibit SMC marker gene transcription. Mechanistically, BC1 bound to SMAD3 via RNA SMAD-binding elements (rSBEs) and thus impeded TGF-β-induced SMAD3 translocation to the nucleus. This prevented SMAD3 from binding to SBEs in SMC marker gene promoters, an essential event in SMC marker transcription. In vivo , BC1 overexpression in mouse embryos impaired vascular SMC differentiation, leading to structural defects in the artery wall, such as random breaks in the elastic lamina, abnormal collagen deposition on SM fibers, and disorganized extracellular matrix proteins in the media of the neonatal aorta. Our results suggest that BC1 is a suppressor of SMC differentiation during vascular development. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Rho Kinase (ROCK) collaborates with Pak to Regulate Actin Polymerization and Contraction in Airway Smooth Muscle.

    PubMed

    Zhang, Wenwu; Bhetwal, Bhupal P; Gunst, Susan J

    2018-05-10

    The mechanisms by which Rho kinase (ROCK) regulates airway smooth muscle contraction were determined in tracheal smooth muscle tissues. ROCK may mediate smooth muscle contraction by inhibiting myosin regulatory light chain (RLC) phosphatase. ROCK can also regulate F-actin dynamics during cell migration, and actin polymerization is critical for airway smooth muscle contraction. Our results show that ROCK does not regulate airway smooth muscle contraction by inhibiting myosin RLC phosphatase or by stimulating myosin RLC phosphorylation. We find that ROCK regulates airway smooth muscle contraction by activating the serine-threonine kinase Pak, which mediates the activation of Cdc42 and Neuronal-Wiskott-Aldrich Syndrome protein (N-WASp). N-WASP transmits signals from cdc42 to the Arp2/3 complex for the nucleation of actin filaments. These results demonstrate a novel molecular function for ROCK in the regulation of Pak and cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle. Rho kinase (ROCK), a RhoA GTPase effector, can regulate the contraction of airway and other smooth muscle tissues. In some tissues, ROCK can inhibit myosin regulatory light chain (RLC) phosphatase, which increases the phosphorylation of myosin RLC and promotes smooth muscle contraction. ROCK can also regulate cell motility and migration by affecting F-actin dynamics. Actin polymerization is stimulated by contractile agonists in airway smooth muscle tissues and is required for contractile tension development in addition to myosin RLC phosphorylation. We investigated the mechanisms by which ROCK regulates the contractility of tracheal smooth muscle tissues by expressing a kinase inactive mutant of ROCK, ROCK-K121G, in the tissues or by treating them with the ROCK inhibitor, H-1152P. Our results show no role for ROCK in the regulation of non-muscle or smooth muscle myosin RLC phosphorylation during contractile stimulation in this tissue

  17. Loss of MURC/Cavin-4 induces JNK and MMP-9 activity enhancement in vascular smooth muscle cells and exacerbates abdominal aortic aneurysm.

    PubMed

    Miyagawa, Kotaro; Ogata, Takehiro; Ueyama, Tomomi; Kasahara, Takeru; Nakanishi, Naohiko; Naito, Daisuke; Taniguchi, Takuya; Hamaoka, Tetsuro; Maruyama, Naoki; Nishi, Masahiro; Kimura, Taizo; Yamada, Hiroyuki; Aoki, Hiroki; Matoba, Satoaki

    2017-06-03

    Abdominal aortic aneurysm (AAA) is relatively common in elderly patients with atherosclerosis. MURC (muscle-restricted coiled-coil protein)/Cavin-4 modulating the caveolae function of muscle cells is expressed in cardiomyocytes, skeletal muscle cells and smooth muscle cells. Here, we show a novel functional role of MURC/Cavin-4 in vascular smooth muscle cells (VSMCs) and AAA development. Both wild-type (WT) and MURC/Cavin-4 knockout (MURC -/- ) mice subjected to periaortic application of CaCl 2 developed AAAs. Six weeks after CaCl 2 treatment, internal and external aortic diameters were significantly increased in MURC -/- AAAs compared with WT AAAs, which were accompanied by advanced fibrosis in the tunica media of MURC -/- AAAs. The activity of JNK and matrix metalloproteinase (MMP) -2 and -9 were increased in MURC -/- AAAs compared with WT AAAs at 5 days after CaCl 2 treatment. At 6 weeks after CaCl 2 treatment, MURC -/- AAAs exhibited attenuated JNK activity compared with WT AAAs. There was no difference in the activity of MMP-2 or -9 between saline and CaCl 2 treatments. In MURC/Cavin-4-knockdown VSMCs, TNFα-induced activity of JNK and MMP-9 was enhanced compared with control VSMCs. Furthermore, WT, MURC -/- , apolipoprotein E -/- (ApoE -/- ), and MURC/Cavin-4 and ApoE double-knockout (MURC -/- ApoE -/- ) mice were subjected to angiotensin II (Ang II) infusion. In both ApoE -/- and MURC -/- ApoE -/- mice infused for 4 weeks with Ang II, AAAs were promoted. The internal aortic diameter was significantly increased in Ang II-infused MURC -/- ApoE -/- mice compared with Ang II-infused ApoE -/- mice. In MURC/Cavin-4-knockdown VSMCs, Ang II-induced activity of JNK and MMP-9 was enhanced compared with control VSMCs. Our results suggest that MURC/Cavin-4 in VSMCs modulates AAA progression at the early stage via the activation of JNK and MMP-9. MURC/Cavin-4 is a potential therapeutic target against AAA progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Patent ductus arteriosus in mice with smooth muscle-specific Jag1 deletion

    PubMed Central

    Feng, Xuesong; Krebs, Luke T.; Gridley, Thomas

    2010-01-01

    The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus and is one of the most common congenital heart defects. Mice with smooth muscle cell-specific deletion of Jag1, which encodes a Notch ligand, die postnatally from patent ductus arteriosus. These mice exhibit defects in contractile smooth muscle cell differentiation in the vascular wall of the ductus arteriosus and adjacent descending aorta. These defects arise through an inability to propagate the JAG1-Notch signal via lateral induction throughout the width of the vascular wall. Both heterotypic endothelial smooth muscle cell interactions and homotypic vascular smooth muscle cell interactions are required for normal patterning and differentiation of the ductus arteriosus and adjacent descending aorta. This new model for a common congenital heart defect provides novel insights into the genetic programs that underlie ductus arteriosus development and closure. PMID:21068062

  19. Effects of magnesium sulfate on airway smooth muscle contraction in rats.

    PubMed

    Betul Altinisik, Hatice; Kirdemir, Pakize; Altinisik, Ugur; Gokalp, Osman

    2016-08-01

    Aim To investigate the effect of magnesium sulfate (MgSO4) at different doses on isolated tracheal smooth muscle contraction in rats induced by different mechanisms. Methods Twelve rats' tracheas were placed into organ bath. Consecutively, acetylcholine (10-6,10-5,10-4 M), histamine(10-8,10-5,10-3 M) and KCl (30,60 mM) solutions was administered for contractions. MgSO4 from 10-4 to 10-1 M concentrations were subsequently administered after each constrictive agent and relaxation degrees were recorded. Results In the acetylcholine and KCl groups, dose dependent strong contractions were observed, but not in the histamine group and that group was excluded. Significant relaxation occurred with gradually increasing doses of MgSO4. In the high dose KCl group, a slight increase in contractions after the administration of 10-4 and 10-3 M MgSO4 was recorded. Conclusion We suggest that MgSO4 is effective in relaxing airway smooth muscle contractions caused by different factors; however, it must be considered that low doses of MgSO4 may only lead to a slight increase in contractions. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  20. Activation of G protein-coupled bile acid receptor, TGR5, induces smooth muscle relaxation via both Epac- and PKA-mediated inhibition of RhoA/Rho kinase pathway

    PubMed Central

    Rajagopal, Senthilkumar; Kumar, Divya P.; Mahavadi, Sunila; Bhattacharya, Sayak; Zhou, Ruizhe; Corvera, Carlos U.; Bunnett, Nigel W.; Grider, John R.

    2013-01-01

    The present study characterized the TGR5 expression and the signaling pathways coupled to this receptor that mediates the relaxation of gastric smooth muscle. TGR5 was detected in gastric muscle cells by RT-PCR and Western blotting. Treatment of cells with the TGR5-selective ligand oleanolic acid (OA) activated Gαs, but not Gαq, Gαi1, Gαi2, or Gαi3, and increased cAMP levels. OA did not elicit contraction, but caused relaxation of carbachol-induced contraction of gastric muscle cells from wild-type mice, but not tgr5−/− mice. OA, but not a selective exchange protein activated by cAMP (Epac) ligand (8-pCPT-2′-O-Me-cAMP), caused phosphorylation of RhoA and the phosphorylation was blocked by the PKA inhibitor, myristoylated PKI, and by the expression of phosphorylation-deficient mutant RhoA (S188A). Both OA and Epac ligand stimulated Ras-related protein 1 (Rap1) and inhibited carbachol (CCh)-induced Rho kinase activity. Expression of RhoA (S188A) or PKI partly reversed the inhibition of Rho kinase activity by OA but had no effect on inhibition by Epac ligand. However, suppression of Rap1 with siRNA blocked the inhibition of Rho kinase by Epac ligand, and partly reversed the inhibition by OA; the residual inhibition was blocked by PKI. Muscle relaxation in response to OA, but not Epac ligand, was partly reversed by PKI. We conclude that activation of TGR5 causes relaxation of gastric smooth muscle and the relaxation is mediated through inhibition of RhoA/Rho kinase pathway via both cAMP/Epac-dependent stimulation of Rap1 and cAMP/PKA-dependent phosphorylation of RhoA at Ser188. TGR5 receptor activation on smooth muscle reveals a novel mechanism for the regulation of gut motility by bile acids. PMID:23275618

  1. Smitin, a novel smooth muscle titin-like protein, interacts with myosin filaments in vivo and in vitro.

    PubMed

    Kim, Kyoungtae; Keller, Thomas C S

    2002-01-07

    Smooth muscle cells use an actin-myosin II-based contractile apparatus to produce force for a variety of physiological functions, including blood pressure regulation and gut peristalsis. The organization of the smooth muscle contractile apparatus resembles that of striated skeletal and cardiac muscle, but remains much more poorly understood. We have found that avian vascular and visceral smooth muscles contain a novel, megadalton protein, smitin, that is similar to striated muscle titin in molecular morphology, localization in a contractile apparatus, and ability to interact with myosin filaments. Smitin, like titin, is a long fibrous molecule with a globular domain on one end. Specific reactivities of an anti-smitin polyclonal antibody and an anti-titin monoclonal antibody suggest that smitin and titin are distinct proteins rather than differentially spliced isoforms encoded by the same gene. Smitin immunofluorescently colocalizes with myosin in chicken gizzard smooth muscle, and interacts with two configurations of smooth muscle myosin filaments in vitro. In physiological ionic strength conditions, smitin and smooth muscle myosin coassemble into irregular aggregates containing large sidepolar myosin filaments. In low ionic strength conditions, smitin and smooth muscle myosin form highly ordered structures containing linear and polygonal end-to-end and side-by-side arrays of small bipolar myosin filaments. We have used immunogold localization and sucrose density gradient cosedimentation analyses to confirm association of smitin with both the sidepolar and bipolar smooth muscle myosin filaments. These findings suggest that the titin-like protein smitin may play a central role in organizing myosin filaments in the contractile apparatus and perhaps in other structures in smooth muscle cells.

  2. UAP56 is an important mediator of Angiotensin II/platelet derived growth factor induced vascular smooth muscle cell DNA synthesis and proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahni, Abha; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555; Wang, Nadan

    2013-02-15

    Highlights: ► Knockdown of UAP56 inhibits Angiotensin II/PDGF induced vascular smooth muscle cell proliferation. ► UAP56 is a positive regulator of E2F transcriptional activation. ► UAP56 is present in the vessel wall of low flow carotid arteries. -- Abstract: Angiotensin (Ang) II and platelet-derived growth factor (PDGF) are important mediators of pathologic vascular smooth muscle cell (VSMC) proliferation. Identifying downstream mediators of Ang II and PDGF signaling may provide insights for therapies to improve vascular proliferative diseases. We have previously demonstrated that breakpoint cluster region (Bcr) is an important mediator of Ang II/PDGF signaling in VSMC. We have recently reportedmore » that the DExD/H box protein UAP56 is an interacting partner of Bcr in regulating VSMC DNA synthesis. We hypothesized that UAP56 itself is an important regulator of VSMC proliferation. In this report we demonstrate that knockdown of UAP56 inhibits Ang II/PDGF induced VSMC DNA synthesis and proliferation, and inhibits E2F transcriptional activity. In addition, we demonstrate that UAP56 is present in the vessel wall of low-flow carotid arteries. These findings suggest that UAP56 is a regulator of VSMC proliferation and identify UAP56 as a target for preventing vascular proliferative disease.« less

  3. Inhibition of prostatic smooth muscle contraction by the inhibitor of G protein-coupled receptor kinase 2/3, CMPD101.

    PubMed

    Yu, Qingfeng; Gratzke, Christian; Wang, Yiming; Herlemann, Annika; Strittmatter, Frank; Rutz, Beata; Stief, Christian G; Hennenberg, Martin

    2018-07-15

    Alpha1-adrenoceptors induce prostate smooth muscle contraction, and hold a prominent role for pathophysiology and therapy of lower urinary tract symptoms in benign prostatic hyperplasia. G protein-coupled receptors are regulated by posttranslational regulation, including phosphorylation by G protein-coupled receptor kinases 2 and 3 (GRK2/3). Although posttranslational adrenoceptor regulation has been recently suggested to occur in the prostate, this is still marginally understood. With the newly developed CMPD101, a small molecule inhibitor with assumed specificity for GRK2/3 is now available. Here, we studied effects of CMPD101 on smooth muscle contraction of human prostate tissue. Electric field stimulation caused frequency-dependent contractions, which were inhibited concentration-dependently by CMPD101 (5 µM, 50 µM). 50 µM of CMPD101 did not affect myosin light chain (MCL) phosphorylation or Rho kinase activity, and did not alter contractions induced by highmolar KCl. Noradrenaline, the α 1 -adrenoceptor agonist phenylephrine, endothelin-1, and the thromboxane A 2 analogue U46619 induced concentration-dependent contractions, which were inhibited by CMPD101 (50 µM). CMPD101 (50 µM) did not change phosphorylation of β 2 -adrenoceptors or β 2 -adrenergic relaxation of prostate strips. Molecular detection by Western blot and peroxidase staining suggested expression of GRK2 and GRK3 in human prostates. Double labeling in fluorescence staining confirmed that immunoreactivity for GRK2 and GRK3 was located to smooth muscle cells in the prostate stroma. In conclusion, CMPD101 inhibits adrenergic, neurogenic, and non-adrenergic smooth muscle contractions in the human prostate. Underlying mechanisms may be independent from GRK inhibition, and from inhibition of MLC kinase and Rho kinase. This may point to unknown properties of CMPD101. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Notch signal reception is required in vascular smooth muscle cells for ductus arteriosus closure

    PubMed Central

    Krebs, Luke T.; Norton, Christine R.; Gridley, Thomas

    2017-01-01

    Summary The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus, and is one of the most common congenital heart defects. Our previous work demonstrated that vascular smooth muscle cell expression of the Jag1 gene, which encodes a ligand for Notch family receptors, is essential for postnatal closure of the ductus arteriosus in mice. However, it was not known what cell population was responsible for receiving the Jag1-mediated signal. Here we show, using smooth muscle cell-specific deletion of the Rbpj gene, which encodes a transcription factor that mediates all canonical Notch signaling, that Notch signal reception in the vascular smooth muscle cell compartment is required for ductus arteriosus closure. These data indicate that homotypic vascular smooth muscle cell interactions are required for proper contractile smooth muscle cell differentiation and postnatal closure of the ductus arteriosus in mice. PMID:26742650

  5. Nicotine-Induced Airway Smooth Muscle Cell Proliferation Involves TRPC6-Dependent Calcium Influx Via α7 nAChR.

    PubMed

    Hong, Wei; Peng, Gongyong; Hao, Binwei; Liao, Baoling; Zhao, Zhuxiang; Zhou, Yumin; Peng, Fang; Ye, Xiuqin; Huang, Lingmei; Zheng, Mengning; Pu, Jinding; Liang, Chunxiao; Yi, Erkang; Peng, Huanhuan; Li, Bing; Ran, Pixin

    2017-01-01

    The proliferation of human bronchial smooth muscle cells (HBSMCs) is a key pathophysiological component of airway remodeling in chronic obstructive pulmonary disease (COPD) for which pharmacotherapy is limited, and only slight improvements in survival have been achieved in recent decades. Cigarette smoke is a well-recognized risk factor for COPD; however, the pathogenesis of cigarette smoke-induced COPD remains incompletely understood. This study aimed to investigate the mechanisms by which nicotine affects HBSMC proliferation. Cell viability was assessed with a CCK-8 assay. Proliferation was measured by cell counting and EdU immunostaining. Fluorescence calcium imaging was performed to measure intracellular Ca2+ concentration ([Ca2+]i). The results showed that nicotine promotes HBSMC proliferation, which is accompanied by elevated store-operated calcium entry (SOCE), receptor-operated calcium entry (ROCE) and basal [Ca2+]i in HBSMCs. Moreover, we also confirmed that canonical transient receptor potential protein 6 (TRPC6) and α7 nicotinic acetylcholine receptor (α7 nAChR) are involved in nicotine-induced upregulation of cell proliferation. Furthermore, we verified that activation of the PI3K/Akt signaling pathway plays a pivotal role in nicotine-enhanced proliferation and calcium influx in HBSMCs. Inhibition of α7 nAChR significantly decreased Akt phosphorylation levels, and LY294002 inhibited the protein expression levels of TRPC6. Herein, these data provide compelling evidence that calcium entry via the α7 nAChR-PI3K/Akt-TRPC6 signaling pathway plays an important role in the physiological regulation of airway smooth muscle cell proliferation, representing an important target for augmenting airway remodeling. © 2017 The Author(s). Published by S. Karger AG, Basel.

  6. The angiotensin II receptor type 1b is the primary sensor of intraluminal pressure in cerebral artery smooth muscle cells.

    PubMed

    Pires, Paulo W; Ko, Eun-A; Pritchard, Harry A T; Rudokas, Michael; Yamasaki, Evan; Earley, Scott

    2017-07-15

    The angiotensin II receptor type 1b (AT 1 R b ) is the primary sensor of intraluminal pressure in cerebral arteries. Pressure or membrane-stretch induced stimulation of AT 1 R b activates the TRPM4 channel and results in inward transient cation currents that depolarize smooth muscle cells, leading to vasoconstriction. Activation of either AT 1 R a or AT 1 R b with angiotensin II stimulates TRPM4 currents in cerebral artery myocytes and vasoconstriction of cerebral arteries. The expression of AT 1 R b mRNA is ∼30-fold higher than AT 1 R a in whole cerebral arteries and ∼45-fold higher in isolated cerebral artery smooth muscle cells. Higher levels of expression are likely to account for the obligatory role of AT 1 R b for pressure-induced vasoconstriction . ABSTRACT: Myogenic vasoconstriction, which reflects the intrinsic ability of smooth muscle cells to contract in response to increases in intraluminal pressure, is critically important for the autoregulation of blood flow. In smooth muscle cells from cerebral arteries, increasing intraluminal pressure engages a signalling cascade that stimulates cation influx through transient receptor potential (TRP) melastatin 4 (TRPM4) channels to cause membrane depolarization and vasoconstriction. Substantial evidence indicates that the angiotensin II receptor type 1 (AT 1 R) is inherently mechanosensitive and initiates this signalling pathway. Rodents express two types of AT 1 R - AT 1 R a and AT 1 R b - and conflicting studies provide support for either isoform as the primary sensor of intraluminal pressure in peripheral arteries. We hypothesized that mechanical activation of AT 1 R a increases TRPM4 currents to induce myogenic constriction of cerebral arteries. However, we found that development of myogenic tone was greater in arteries from AT 1 R a knockout animals compared with controls. In patch-clamp experiments using native cerebral arterial myocytes, membrane stretch-induced cation currents were blocked by the TRPM

  7. Differential regulation of muscarinic M2 and M3 receptor signaling in gastrointestinal smooth muscle by caveolin-1.

    PubMed

    Bhattacharya, Sayak; Mahavadi, Sunila; Al-Shboul, Othman; Rajagopal, Senthilkumar; Grider, John R; Murthy, Karnam S

    2013-08-01

    Caveolae act as scaffolding proteins for several G protein-coupled receptor signaling molecules to regulate their activity. Caveolin-1, the predominant isoform in smooth muscle, drives the formation of caveolae. The precise role of caveolin-1 and caveolae as scaffolds for G protein-coupled receptor signaling and contraction in gastrointestinal muscle is unclear. Thus the aim of this study was to examine the role of caveolin-1 in the regulation of Gq- and Gi-coupled receptor signaling. RT-PCR, Western blot, and radioligand-binding studies demonstrated the selective expression of M2 and M3 receptors in gastric smooth muscle cells. Carbachol (CCh) stimulated phosphatidylinositol (PI) hydrolysis, Rho kinase and zipper-interacting protein (ZIP) kinase activity, induced myosin phosphatase 1 (MYPT1) phosphorylation (at Thr(696)) and 20-kDa myosin light chain (MLC20) phosphorylation (at Ser(19)) and muscle contraction, and inhibited cAMP formation. Stimulation of PI hydrolysis, Rho kinase, and ZIP kinase activity, phosphorylation of MYPT1 and MLC20, and muscle contraction in response to CCh were attenuated by methyl β-cyclodextrin (MβCD) or caveolin-1 small interfering RNA (siRNA). Similar inhibition of PI hydrolysis, Rho kinase, and ZIP kinase activity and muscle contraction in response to CCh and gastric emptying in vivo was obtained in caveolin-1-knockout mice compared with wild-type mice. Agonist-induced internalization of M2, but not M3, receptors was blocked by MβCD or caveolin-1 siRNA. Stimulation of PI hydrolysis, Rho kinase, and ZIP kinase activities in response to other Gq-coupled receptor agonists such as histamine and substance P was also attenuated by MβCD or caveolin-1 siRNA. Taken together, these results suggest that caveolin-1 facilitates signaling by Gq-coupled receptors and contributes to enhanced smooth muscle function.

  8. Phenotypic modulation of corpus cavernosum smooth muscle cells in a rat model of cavernous neurectomy.

    PubMed

    Yang, Fan; Zhao, Jian F; Shou, Qi Y; Huang, Xiao J; Chen, Gang; Yang, Ke B; Zhang, Shi G; Lv, Bo D; Fu, Hui Y

    2014-01-01

    Patients undergoing radical prostatectomy (RP) are at high risk for erectile dysfunction (ED) due to potential cavernous nerve (CN) damage during surgery. Penile hypoxia after RP is thought to significantly contribute to ED pathogenesis. We previously showed that corpora cavernosum smooth muscle cells (CCSMCs) undergo phenotypic modulation under hypoxic conditions in vitro. Here, we studied such changes in an in vivo post-RP ED model by investigating CCSMCs in bilateral cavernous neurectomy (BCN) rats. Sprague-Dawley rats underwent sham (n = 12) or BCN (n = 12) surgery. After 12 weeks, they were injected with apomorphine to determine erectile function. The penile tissues were harvested and assessed for fibrosis using Masson trichrome staining and for molecular markers of phenotypic modulation using immunohistochemistry and western blotting. CCSMC morphological structure was evaluated by hematoxylin-eosin (H&E) staining and transmission electron microscopy (TEM). Erectile function was significantly lower in BCN rats than in sham rats. BCN increased hypoxia-inducible factor-1α and collagen protein expression in corpora cavernous tissue. H&E staining and TEM showed that CCSMCs in BCN rats underwent hypertrophy and showed rough endoplasmic reticulum formation. The expression of CCSMC phenotypic markers, such as smooth muscle α-actin, smooth muscle myosin heavy chain, and desmin, was markedly lower, whereas vimentin protein expression was significantly higher in BCN rats than in control rats. CCSMCs undergo phenotype modulation in rats with cavernous neurectomy. The results have unveiled physiological transformations that occur at the cellular and molecular levels and have helped characterize CN injury-induced ED.

  9. Statins meditate anti-atherosclerotic action in smooth muscle cells by peroxisome proliferator-activated receptor-γ activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuda, Kazuki; Matsumura, Takeshi, E-mail: takeshim@gpo.kumamoto-u.ac.jp; Senokuchi, Takafumi

    Highlights: • Statins induce PPARγ activation in vascular smooth muscle cells. • Statin-induced PPARγ activation is mediated by COX-2 expression. • Statins suppress cell migration and proliferation in vascular smooth muscle cells. • Statins inhibit LPS-induced inflammatory responses by PPARγ activation. • Fluvastatin suppress the progression of atherosclerosis and induces PPARγ activation in the aorta of apoE-deficient mice. - Abstract: The peroxisome proliferator-activated receptor-γ (PPARγ) is an important regulator of lipid and glucose metabolism, and its activation is reported to suppress the progression of atherosclerosis. We have reported that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) activate PPARγ in macrophages. However,more » it is not yet known whether statins activate PPARγ in other vascular cells. In the present study, we investigated whether statins activate PPARγ in smooth muscle cells (SMCs) and endothelial cells (ECs) and thus mediate anti-atherosclerotic effects. Human aortic SMCs (HASMCs) and human umbilical vein ECs (HUVECs) were used in this study. Fluvastatin and pitavastatin activated PPARγ in HASMCs, but not in HUVECs. Statins induced cyclooxygenase-2 (COX-2) expression in HASMCs, but not in HUVECs. Moreover, treatment with COX-2-siRNA abrogated statin-mediated PPARγ activation in HASMCs. Statins suppressed migration and proliferation of HASMCs, and inhibited lipopolysaccharide-induced expression of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) in HASMCs. These effects of statins were abrogated by treatment with PPARγ-siRNA. Treatment with statins suppressed atherosclerotic lesion formation in Apoe{sup −/−} mice. In addition, transcriptional activity of PPARγ and CD36 expression were increased, and the expression of MCP-1 and TNF-α was decreased, in the aorta of statin-treated Apoe{sup −/−} mice. In conclusion, statins mediate anti

  10. Urokinase Receptor Counteracts Vascular Smooth Muscle Cell Functional Changes Induced by Surface Topography

    PubMed Central

    Kiyan, Yulia; Kurselis, Kestutis; Kiyan, Roman; Haller, Hermann; Chichkov, Boris N.; Dumler, Inna

    2013-01-01

    Current treatments for human coronary artery disease necessitate the development of the next generations of vascular bioimplants. Recent reports provide evidence that controlling cell orientation and morphology through topographical patterning might be beneficial for bioimplants and tissue engineering scaffolds. However, a concise understanding of cellular events underlying cell-biomaterial interaction remains missing. In this study, applying methods of laser material processing, we aimed to obtain useful markers to guide in the choice of better vascular biomaterials. Our data show that topographically treated human primary vascular smooth muscle cells (VSMC) have a distinct differentiation profile. In particular, cultivation of VSMC on the microgrooved biocompatible polymer E-shell induces VSMC modulation from synthetic to contractile phenotype and directs formation and maintaining of cell-cell communication and adhesion structures. We show that the urokinase receptor (uPAR) interferes with VSMC behavior on microstructured surfaces and serves as a critical regulator of VSMC functional fate. Our findings suggest that microtopography of the E-shell polymer could be important in determining VSMC phenotype and cytoskeleton organization. They further suggest uPAR as a useful target in the development of predictive models for clinical VSMC phenotyping on functional advanced biomaterials. PMID:23843899

  11. The Sophora flavescens flavonoid compound trifolirhizin inhibits acetylcholine induced airway smooth muscle contraction.

    PubMed

    Yang, Nan; Liang, Banghao; Srivastava, Kamal; Zeng, Jia; Zhan, Jixun; Brown, LaVerne; Sampson, Hugh; Goldfarb, Joseph; Emala, Charles; Li, Xiu-Min

    2013-11-01

    Asthma is a serious health problem worldwide, particularly in industrialized countries. Despite a better understanding of the pathophysiology of asthma, there are still considerable gaps in knowledge as well as a need for classes of drugs. ASHMI™ (Anti-asthma Herbal Medicine Intervention) is an aqueous extract of Ganoderma lucidum (Fr.) P. Karst (Ling Zhi), Sophora flavescens Aiton (Ku Shen) and Glycyrrhiza uralensis Fisch. ex DC (Gan Cao). It prevents allergic asthma airway hyper-reactivity in mice and inhibits acetylcholine (ACh) induced airway smooth muscle (ASM) contraction in tracheal rings from allergic asthmatic mice. The purpose of this research was to identify individual herb(s) and their active compound(s) that inhibit ASM contraction. It was found that S. flavescens, but not G. lucidum or G. uralensis aqueous extracts, inhibited ASM contraction in tracheal rings from asthmatic mice. Bioassay-guided isolation and identification of flavonoid fractions/compound(s) via methylene chloride extraction, preparative HPLC fractionation, and LC-MS and NMR spectroscopic analyses showed that trifolirhizin is an active constituent that inhibits acetylcholine mediated ASM contraction or directly relaxes pre-contracted ASM independent of β2-adrenoceptors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The Sophora Flavescens flavonoid compound trifolirhizin inhibits acetylcholine induced airway smooth muscle contraction

    PubMed Central

    Zeng, Jia; Zhan, Jixun; Brown, LaVerne; Sampson, Hugh; Goldfarb, Joseph; Emala, Charles; Li, Xiu-Min

    2014-01-01

    Asthma is a serious health problem worldwide, particularly in industrialized countries. Despite a better understanding of the pathophysiology of asthma, there are still considerable gaps in knowledge as well as a need for new classes of drugs. ASHMI™ (Anti-asthma Herbal Medicine Intervention) is an aqueous extract of Ganoderma lucidum (Fr.) P. Karst (Ling Zhi), Sophora flavescens Aiton (Ku Shen) and Glycyrrhiza uralensis Fisch. ex DC (Gan Cao). It prevents allergic asthma airway hyper-reactivity in mice and inhibits acetylcholine (ACh) induced airway smooth muscle (ASM) contraction in tracheal rings from allergic asthmatic mice. The purpose of this research was to identify individual herb(s) and their active compound(s) that inhibit ASM contraction. It was found that Sophora flavescens (S. flavescens), but not Ganoderma lucidum (G. lucidum) or Glycyrrhiza uralensis (G. uralensis) aqueous extracts, inhibited ASM contraction in tracheal rings from asthmatic mice. Bioassay-guided isolation and identification of flavonoid fractions/compound(s) via methylene chloride extraction, preparative HPLC fractionation, and LC-MS and NMR spectroscopic analyses showed that trifolirhizin is an active constituent that inhibits acetylcholine mediated ASM contraction or directly relaxes pre-contracted ASM independent of β2-adrenoceptors. PMID:23993294

  13. A newly synthesized Ligustrazine stilbene derivative inhibits PDGF-BB induced vascular smooth muscle cell phenotypic switch and proliferation via delaying cell cycle progression.

    PubMed

    Peng, Chunlian; Zhang, Siming; Liu, Haixin; Jiao, Yanxiao; Su, Guifa; Zhu, Yan

    2017-11-05

    Vascular Smooth muscle cells (VSMCs) possess remarkable phenotype plasticity that allows it to rapidly adapt to fluctuating environmental cues, including the period of development and progression of vascular diseases such as atherosclerosis and restenosis subsequent to vein grafting or coronary intervention. Although VSMC phenotypic switch is an attractive target, there is no effective drug so far. Using rat aortic VSMCs, we investigate the effects of Ligustrazine and its synthetic derivatives on platelet-derived growth factor-BB (PDGF-BB) induced proliferation and phenotypic switch by a cell image-based screening of 60 Ligustrazine stilbene derivatives. We showed that one of the Ligustrazine stilbene derivatives TMP-C 4a markedly inhibited PDGF-BB-induced VSMCs proliferation in a time and dose-dependent manner, which is more potent than Ligustrazine. Stimulation of contractile VSMCs with PDGF-BB significantly reduced the contractile marker protein α-smooth muscle actin expression and increased the synthetic marker proteins osteopontin expression. However, TMP-C 4a effectively reversed this phenotypic switch, which was accompanied by a decreased expression of Matrix metalloproteinase 2 and 9 (MMP2 and MMP9) and cell cycle related proteins, including cyclin D1 and CDK4. In conclusion, the present study showed that a new Ligustrazine stilbene derivative TMP-C 4a suppressed PDGF-induced VSMC proliferation and phenotypic switch, indicating that it has a potential to become a promising therapeutic agent for treating VSMC-related atherosclerosis and restenosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. P21-Activated Kinase Inhibitors FRAX486 and IPA3: Inhibition of Prostate Stromal Cell Growth and Effects on Smooth Muscle Contraction in the Human Prostate

    PubMed Central

    Wang, Yiming; Gratzke, Christian; Tamalunas, Alexander; Wiemer, Nicolas; Ciotkowska, Anna; Rutz, Beata; Waidelich, Raphaela; Strittmatter, Frank; Liu, Chunxiao; Stief, Christian G.; Hennenberg, Martin

    2016-01-01

    Prostate smooth muscle tone and hyperplastic growth are involved in the pathophysiology and treatment of male lower urinary tract symptoms (LUTS). Available drugs are characterized by limited efficacy. Patients’ adherence is particularly low to combination therapies of 5α-reductase inhibitors and α1-adrenoceptor antagonists, which are supposed to target contraction and growth simultaneously. Consequently, molecular etiology of benign prostatic hyperplasia (BPH) and new compounds interfering with smooth muscle contraction or growth in the prostate are of high interest. Here, we studied effects of p21-activated kinase (PAK) inhibitors (FRAX486, IPA3) in hyperplastic human prostate tissues, and in stromal cells (WPMY-1). In hyperplastic prostate tissues, PAK1, -2, -4, and -6 may be constitutively expressed in catecholaminergic neurons, while PAK1 was detected in smooth muscle and WPMY-1 cells. Neurogenic contractions of prostate strips by electric field stimulation were significantly inhibited by high concentrations of FRAX486 (30 μM) or IPA3 (300 μM), while noradrenaline- and phenylephrine-induced contractions were not affected. FRAX486 (30 μM) inhibited endothelin-1- and -2-induced contractions. In WPMY-1 cells, FRAX486 or IPA3 (24 h) induced concentration-dependent (1–10 μM) degeneration of actin filaments. This was paralleled by attenuation of proliferation rate, being observed from 1 to 10 μM FRAX486 or IPA3. Cytotoxicity of FRAX486 and IPA3 in WPMY-1 cells was time- and concentration-dependent. Stimulation of WPMY-1 cells with endothelin-1 or dihydrotestosterone, but not noradrenaline induced PAK phosphorylation, indicating PAK activation by endothelin-1. Thus, PAK inhibitors may inhibit neurogenic and endothelin-induced smooth muscle contractions in the hyperplastic human prostate, and growth of stromal cells. Targeting prostate smooth muscle contraction and stromal growth at once by a single compound is principally possible, at least under

  15. P21-Activated Kinase Inhibitors FRAX486 and IPA3: Inhibition of Prostate Stromal Cell Growth and Effects on Smooth Muscle Contraction in the Human Prostate.

    PubMed

    Wang, Yiming; Gratzke, Christian; Tamalunas, Alexander; Wiemer, Nicolas; Ciotkowska, Anna; Rutz, Beata; Waidelich, Raphaela; Strittmatter, Frank; Liu, Chunxiao; Stief, Christian G; Hennenberg, Martin

    2016-01-01

    Prostate smooth muscle tone and hyperplastic growth are involved in the pathophysiology and treatment of male lower urinary tract symptoms (LUTS). Available drugs are characterized by limited efficacy. Patients' adherence is particularly low to combination therapies of 5α-reductase inhibitors and α1-adrenoceptor antagonists, which are supposed to target contraction and growth simultaneously. Consequently, molecular etiology of benign prostatic hyperplasia (BPH) and new compounds interfering with smooth muscle contraction or growth in the prostate are of high interest. Here, we studied effects of p21-activated kinase (PAK) inhibitors (FRAX486, IPA3) in hyperplastic human prostate tissues, and in stromal cells (WPMY-1). In hyperplastic prostate tissues, PAK1, -2, -4, and -6 may be constitutively expressed in catecholaminergic neurons, while PAK1 was detected in smooth muscle and WPMY-1 cells. Neurogenic contractions of prostate strips by electric field stimulation were significantly inhibited by high concentrations of FRAX486 (30 μM) or IPA3 (300 μM), while noradrenaline- and phenylephrine-induced contractions were not affected. FRAX486 (30 μM) inhibited endothelin-1- and -2-induced contractions. In WPMY-1 cells, FRAX486 or IPA3 (24 h) induced concentration-dependent (1-10 μM) degeneration of actin filaments. This was paralleled by attenuation of proliferation rate, being observed from 1 to 10 μM FRAX486 or IPA3. Cytotoxicity of FRAX486 and IPA3 in WPMY-1 cells was time- and concentration-dependent. Stimulation of WPMY-1 cells with endothelin-1 or dihydrotestosterone, but not noradrenaline induced PAK phosphorylation, indicating PAK activation by endothelin-1. Thus, PAK inhibitors may inhibit neurogenic and endothelin-induced smooth muscle contractions in the hyperplastic human prostate, and growth of stromal cells. Targeting prostate smooth muscle contraction and stromal growth at once by a single compound is principally possible, at least under experimental

  16. Fragmented esophageal smooth muscle contraction segments on high resolution manometry: a marker of esophageal hypomotility.

    PubMed

    Porter, R F; Kumar, N; Drapekin, J E; Gyawali, C P

    2012-08-01

    Esophageal peristalsis consists of a chain of contracting striated and smooth muscle segments on high resolution manometry (HRM). We compared smooth muscle contraction segments in symptomatic subjects with reflux disease to healthy controls. High resolution manometry Clouse plots were analyzed in 110 subjects with reflux disease (50 ± 1.4 years, 51.5% women) and 15 controls (27 ± 2.1 years, 60.0% women). Using the 30 mmHg isobaric contour tool, sequences were designated fragmented if either smooth muscle contraction segment was absent or if the two smooth muscle segments were separated by a pressure trough, and failed if both smooth muscle contraction segments were absent. The discriminative value of contraction segment analysis was assessed. A total of 1115 swallows were analyzed (reflux group: 965, controls: 150). Reflux subjects had lower peak and averaged contraction amplitudes compared with controls (P < 0.0001 for all comparisons). Fragmented sequences followed 18.4% wet swallows in the reflux group, compared with 7.5% in controls (P < 0.0001), and were seen more frequently than failed sequences (7.9% and 2.5%, respectively). Using a threshold of 30% in individual subjects, a composite of failed and/or fragmented sequences was effective in segregating reflux subjects from control subjects (P = 0.04). Evaluation of smooth muscle contraction segments adds value to HRM analysis. Specifically, fragmented smooth muscle contraction segments may be a marker of esophageal hypomotility. © 2012 Blackwell Publishing Ltd.

  17. Circulating smooth muscle progenitor cells in atherosclerosis and plaque rupture: current perspective and methods of analysis.

    PubMed

    Bentzon, Jacob F; Falk, Erling

    2010-01-01

    Smooth muscle cells play a critical role in the development of atherosclerosis and its clinical complications. They were long thought to derive entirely from preexisting smooth muscle cells in the arterial wall, but this understanding has been challenged by the claim that circulating bone marrow-derived smooth muscle progenitor cells are an important source of plaque smooth muscle cells in human and experimental atherosclerosis. This theory is today accepted by many cardiovascular researchers and authors of contemporary review articles. Recently, however, we and others have refuted the existence of bone marrow-derived smooth muscle cells in animal models of atherosclerosis and other arterial diseases based on new experiments with high-resolution microscopy and improved techniques for smooth muscle cell identification and tracking. These studies have also pointed to a number of methodological deficiencies in some of the seminal papers in the field. For those unaccustomed with the methods used in this research area, it must be difficult to decide what to believe and why to do so. In this review, we summarize current knowledge about the origin of smooth muscle cells in atherosclerosis and direct the reader's attention to the methodological challenges that have contributed to the confusion in the field. 2009 Elsevier Inc. All rights reserved.

  18. Nogo-B regulates migration and contraction of airway smooth muscle cells by decreasing ARPC 2/3 and increasing MYL-9 expression.

    PubMed

    Xu, Wujian; Hong, Weijun; Shao, Yan; Ning, Yunye; Cai, Zailong; Li, Qiang

    2011-01-21

    Abnormal proliferation, apoptosis, migration and contraction of airway smooth muscle (ASM) cells in airway remodeling in asthma are basically excessive repair responses to a network of inflammatory mediators such as PDGF, but the mechanisms of such responses remain unclear. Nogo-B, a member of the reticulum family 4(RTN4), is known to play a key role in arteriogenesis and tissue repair. Further studies are needed to elucidate the role of Nogo-B in airway smooth muscle abnormalities. A mouse model of chronic asthma was established by repeated OVA inhalation and subjected to Nogo-B expression analysis using immunohistochemistry and Western Blotting. Then, primary human bronchial smooth muscle cells (HBSMCs) were cultured in vitro and a siRNA interference was performed to knockdown the expression of Nogo-B in the cells. The effects of Nogo-B inhibition on PDGF-induced HBSMCs proliferation, migration and contraction were evaluated. Finally, a proteomic analysis was conducted to unveil the underlying mechanisms responsible for the function of Nogo-B. Total Nogo-B expression was approximately 3.08-fold lower in chronic asthmatic mice compared to naïve mice, which was obvious in the smooth muscle layer of the airways. Interference of Nogo-B expression by siRNA resulted nearly 96% reduction in mRNA in cultured HBSMCs. In addition, knockdown of Nogo-B using specific siRNA significantly decreased PDGF-induced migration of HBSMCs by 2.3-fold, and increased the cellular contraction by 16% compared to negative controls, but had limited effects on PDGF-induced proliferation. Furthermore, using proteomic analysis, we demonstrate that the expression of actin related protein 2/3 complex subunit 5 (ARPC 2/3) decreased and, myosin regulatory light chain 9 isoform a (MYL-9) increased after Nogo-B knockdown. These data define a novel role for Nogo-B in airway remodeling in chronic asthma. Endogenous Nogo-B, which may exert its effects through ARPC 2/3 and MYL-9, is necessary for the

  19. Alterations in intestinal contractility during inflammation are caused by both smooth muscle damage and specific receptor-mediated mechanisms.

    PubMed

    Tanović, Adnan; Fernández, Ester; Jiménez, Marcel

    2006-04-01

    To evaluate motoric intestinal disturbances during inflammation with Trichinella spiralis in rats as an experimental model. We examined the changes in worm-positive (jejunum) and worm-free (ileum) intestinal segments of rats infected with T. spiralis. To investigate the relationship between structural and functional changes in smooth muscle, we measured the thickness of the muscle layers of rat jejunum and ileum. Mechanical responses to KCl 30 mmol/L, acetylcholine (ACh) 10(-8)-10(-4) mol/L, substance P (SP) 10(-9)-10(-5) mol/L, and to electrical field stimulation of longitudinal muscle strips in the jejunum and ileum were studied in muscle bath as controls (day 0) and on day 2, 6, 14, 23, and 72 after infection. After T. spiralis infestation, an inflammation of the mucosal and submucosal layers of jejunum was observed, whereas in the worm-free ileum there was not any inflammatory infiltrate. Increase in the smooth muscle thickness of both jejunum and ileum were correlated with increased responses to depolarizing agent KCl and to ACh. However, responses to SP were decreased on day 14-23 after infection in jejunum and from day 6-14 after infection in ileum. Electric field stimulation-induced contractions were transiently decreased in the jejunum (day 2 after infection) but in the ileum the contractile responses were decreased until the end of the study period. Alterations in intestinal smooth muscle function do not require the presence of the parasite and the absence of histopathological signs of inflammation do not warrant intact motor function. Changes in motor responses after T. spiralis infection are not only due to smooth muscle damage but also to disturbances in specific receptor-mediated mechanisms.

  20. Characterization of the EP receptor types that mediate longitudinal smooth muscle contraction of human colon, mouse colon and mouse ileum.

    PubMed

    Fairbrother, S E; Smith, J E; Borman, R A; Cox, H M

    2011-08-01

    Prostaglandin E(2) (PGE(2) ) is an inflammatory mediator implicated in several gastrointestinal pathologies that affect normal intestinal transit. The aim was to establish the contribution of the four EP receptor types (EP(1-4) ), in human colon, that mediate PGE(2) -induced longitudinal smooth muscle contraction. Changes in isometric muscle tension of human colon, mouse colon and mouse ileum were measured in organ baths in response to receptor-specific agonists and antagonists. In addition, lidocaine was used to block neurogenic activity to investigate whether EP receptors were pre- or post-junctional. PGE(2) contracted longitudinal muscle from human and mouse colon and mouse ileum. These contractions were inhibited by the EP(1) receptor antagonist, EP(1) A in human colon, whereas a combination of EP(1) A and the EP(3) antagonist, L798106 inhibited agonist responses in both mouse preparations. The EP(3) agonist, sulprostone also increased muscle tension in both mouse tissues, and these responses were inhibited by lidocaine in the colon but not in the ileum. Although PGE(2) consistently contracted all three muscle preparations, butaprost decreased tension by activating smooth muscle EP(2) receptors in both colonic tissues. Alternatively, in mouse ileum, butaprost responses were lidocaine-sensitive, suggesting that it was activating prejunctional EP(2) receptors on inhibitory motor neurons. Conversely, EP(4) receptors were not functional in all the intestinal muscle preparations tested. PGE(2) -induced contraction of longitudinal smooth muscle is mediated by EP(1) receptors in human colon and by a combination of EP(1) and EP(3) receptors in mouse intestine, whereas EP(2) receptors modulate relaxation in all three preparations. © 2011 Blackwell Publishing Ltd.

  1. Abnormalities in the contractile properties of colonic smooth muscle in idiopathic slow transit constipation.

    PubMed

    Slater, B J; Varma, J S; Gillespie, J I

    1997-02-01

    The underlying pathophysiology of idiopathic slow transit constipation (ISTC) remains unclear. At present, there is little evidence to implicate a smooth muscle myopathy in the aetiology of this condition. This study compared the effect of cisapride on the cholinergic response of colonic muscle strips from patients with this condition with that of control tissue. Isometric tension production was recorded from circular smooth muscle strips taken from five patients undergoing colectomy for ISTC in response to cumulative concentrations of carbachol (100 nmol/1-100 mumol/l) alone and in the presence of cisapride 400 nmol/l. Similar dose-response activity was obtained for a control group consisting of six patients undergoing resection for colorectal carcinoma. In the absence of cisapride, smooth muscle from patients with carcinoma exhibited a significantly lower sensitivity to cholinergic stimulation (agonist concentration required to produce half-maximal activation (EC50) 4.83 mumol/l) than that from patients with ISTC (EC50 1.63 mumol/l, P = 0.036), and also a greater maximal frequency of the oscillatory activity associated with the increase in isometric tension (0.070 versus 0.049 Hz, P = 0.035). Cisapride had no effect on the sensitivity to carbachol of the carcinoma tissue but brought about a significant reduction in the sensitivity of smooth muscle from patients with ISTC (EC50 3.24 mumol/l, P = 0.043). These findings indicate that colonic smooth muscle from patients with ISTC is hypersensitive to cholinergic stimulation and suggest the existence of a smooth muscle myopathy in this condition.

  2. Role of canonical transient receptor potential channel-3 in acetylcholine-induced mouse airway smooth muscle cell proliferation.

    PubMed

    Chen, Xiao-Xu; Zhang, Jia-Hua; Pan, Bin-Hua; Ren, Hui-Li; Feng, Xiu-Ling; Wang, Jia-Ling; Xiao, Jun-Hua

    2017-10-15

    Canonical transient receptor potential channel-3 (TRPC3)-encoded Ca 2+ -permeable nonselective cation channel (NSCC) has been proven to be an important native constitutively active channel in airway smooth muscle cell (ASMC), which plays significant roles in physiological and pathological conditions by controlling Ca 2+ homeostasis in ASMC. Acetylcholine (ACh) is generally accepted as a contractile parasympathetic neurotransmitter in the airway. Recently studies have revealed the pathological role of ACh in airway remodeling, however, the mechanisms remain unclear. Here, we investigated the role of TRPC3 in ACh-induced ASMC proliferation. Primary mouse ASMCs were cultured with or without ACh treatment, then cell viability, TRPC3 expression, NSCC currents and [Ca 2+ ] i changes were examined by MTT assay, cell counting, Western blotting, standard whole-cell patch clamp recording and calcium imaging, respectively. Small interfering RNA (siRNA) technology was used to confirm the contribution of TRPC3 to ACh-induced ASMC proliferation. TRPC3 blocker Gd 3+ , antibody or siRNA largely inhibited ACh-induced up-regulation of TRPC3 protein, enhancement of NSCC currents, resting [Ca 2+ ] i and KCl-induced changes in [Ca 2+ ] i , eventually inhibiting ACh-induced ASMC proliferation. Our data suggested ACh could induce ASMC proliferation, and TRPC3 may be involved in ACh-induced ASMC proliferation that occurs with airway remodeling. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Spontaneous and noradrenaline-induced transient depolarizations in the smooth muscle of guinea-pig mesenteric vein.

    PubMed

    Van Helden, D F

    1991-06-01

    1. Recordings of membrane current were made in the smooth muscle of short segments of mesenteric vein before or during stimulation with noradrenaline (NA). 2. Small veins (diameter less than 150 microns) when cut into short segments (of length less than 250 microns) had the passive electrical characteristics of short cables both before and during activation with NA. 3. Spontaneous transient depolarizations (STDs) or the underlying inward currents (STICs) were recorded in these preparations. STDs were of myogenic origin as they were not blocked by tetrodotoxin or antagonists to the alpha-adrenoreceptor and persisted after either denervation or disruption of the endothelium. 4. STDs had time courses similar to the underlying currents and were generally slow compared to the membrane time constant of the short segments. 5. STDs and the underlying currents showed large variability in frequency and amplitude both within and between short segments. Currents were typically less than 0.3 nA, were characteristic in shape, had half-durations normally in the range 0.1-0.7 s and reversed at about -25 mV. 6. STDs persisted, but at markedly reduced frequencies, after exposure (3-10 min) to a solution in which cobalt ions had been used to substitute for Ca2+. STDs were also substantially suppressed by exposure to low-chloride solution. 7. Caffeine induced excitatory and inhibitory conductances. An initial component of the caffeine-induced responses showed similar voltage dependence to STDs and was also suppressed by exposure to low-chloride solution. 8. NA, through activation of alpha-adrenoreceptors, caused a sustained depolarization or inward current (under voltage clamp) with considerable membrane potential or current noise often in the form of agonist-induced spontaneous transient depolarizations (ASTDs) or currents (ASTICs). There were marked increases in amplitude and frequency of ASTDs with increase in NA concentrations. 9. ASTDs appeared to be generated within the smooth

  4. Action on ileal smooth muscle of synthetic detergents and pardaxin.

    PubMed

    Primor, N

    1986-01-01

    Pardaxin (PX), a toxic and repellent substance isolated from the Red Sea flatfish, causes a sharp ball-like profile of drop of saline placed on a hydrophobic film to turn into a flattened one. This effect results with a decrease of the contact angle (theta) from 96 degrees to a maximum of 42 degrees at 10(-4) M of PX. The action of sodium dodecyl sulphate (SDS), a synthetic anionic detergent, benzalkonium chloride (BAC) cationic detergent and pardaxin (PX) a toxic protein with detergent properties, were studied in the ileal guinea-pig longitudinal smooth muscle preparation. SDS (4 X 10(-4) M) and PX (5 X 10(-6) M) diminished the muscle contractile response to field stimulation (0.1 Hz, 1 msec) and to acetylcholine (Ach) and to histamine and elicited a prolonged (4-6 min) TTX-insensitive muscle contraction. The dose dependence of muscle contraction to SDS and PX was found to be sigmoidal and occurred over a narrow range of concentrations. The SDS- but not PX-induced muscle contraction could be reduced by diphenhydramine (H1 antihistamine). BAC (10(-5)-10(-4) M) suppressed the muscle's contractile response to electrical stimulation (0.1 Hz, 1 msec), to Ach, histamine and 5-hydroxytryptamine but did not produce muscle contraction. PX at concentrations higher than 5 X 10(-6) M is a potent detergent and at this concentration shares several pharmacological similarities with SDS.

  5. Site-directed spin labeling reveals a conformational switch in the phosphorylation domain of smooth muscle myosin.

    PubMed

    Nelson, Wendy D; Blakely, Sarah E; Nesmelov, Yuri E; Thomas, David D

    2005-03-15

    We have used site-directed spin labeling and EPR spectroscopy to detect structural changes within the regulatory light chain (RLC) of smooth muscle myosin upon phosphorylation. Smooth muscle contraction is activated by phosphorylation of S19 on RLC, but the structural basis of this process is unknown. There is no crystal structure containing a phosphorylated RLC, and there is no crystal structure for the N-terminal region of any RLC. Therefore, we have prepared single-Cys mutations throughout RLC, exchanged each mutant onto smooth muscle heavy meromyosin, verified normal regulatory function, and used EPR to determine dynamics and solvent accessibility at each site. A survey of spin-label sites throughout the RLC revealed that only the N-terminal region (first 24 aa) shows a significant change in dynamics upon phosphorylation, with most of the first 17 residues showing an increase in rotational amplitude. Therefore, we focused on this N-terminal region. Additional structural information was obtained from the pattern of oxygen accessibility along the sequence. In the absence of phosphorylation, little or no periodicity was observed, suggesting a lack of secondary structural order in this region. However, phosphorylation induced a strong helical pattern (3.6-residue periodicity) in the first 17 residues, while increasing accessibility throughout the first 24 residues. We have identified a domain within RLC, the N-terminal phosphorylation domain, in which phosphorylation increases helical order, internal dynamics, and accessibility. These results support a model in which this disorder-to-order transition within the phosphorylation domain results in decreased head-head interactions, activating myosin in smooth muscle.

  6. Calcium-independent phospholipase A2 participates in KCl-induced calcium sensitization of vascular smooth muscle.

    PubMed

    Ratz, Paul H; Miner, Amy S; Barbour, Suzanne E

    2009-07-01

    In vascular smooth muscle, KCl not only elevates intracellular free Ca(2+) ([Ca(2+)](i)), myosin light chain kinase activity and tension (T), but also can inhibit myosin light chain phosphatase activity by activation of rhoA kinase (ROCK), resulting in Ca(2+) sensitization (increased T/[Ca(2+)](i) ratio). Precisely how KCl causes ROCK-dependent Ca(2+) sensitization remains to be determined. Using Fura-2-loaded isometric rings of rabbit artery, we found that the Ca(2+)-independent phospholipase A(2) (iPLA(2)) inhibitor, bromoenol lactone (BEL), reduced the KCl-induced tonic but not early phasic phase of T and potentiated [Ca(2+)](i), reducing Ca(2+) sensitization. The PKC inhibitor, GF-109203X (> or =3 microM) and the pseudo-substrate inhibitor of PKCzeta produced a response similar to BEL. BEL reduced basal and KCl-stimulated myosin phosphatase phosphorylation. Whereas BEL and H-1152 produced strong inhibition of KCl-induced tonic T (approximately 50%), H-1152 did not induce additional inhibition of tissues already inhibited by BEL, suggesting that iPLA(2) links KCl stimulation with ROCK activation. The cPLA(2) inhibitor, pyrrolidine-1, inhibited KCl-induced tonic increases in [Ca(2+)](i) but not T, whereas the inhibitor of 20-HETE production, HET0016, acted like the ROCK inhibitor H-1152 by causing Ca(2+) desensitization. These data support a model in which iPLA(2) activity regulates Ca(2+) sensitivity.

  7. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguado, Andrea; Galán, María; Zhenyukh, Olha

    2013-04-15

    Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl{sub 2} affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl{sub 2} (first dose 4.6 mg kg{sup −1}, subsequent doses 0.07 mg kg{sup −1} day{sup −1}, 30 days) and cultured aortic VSMC stimulated with HgCl{sub 2} (0.05–5 μg/ml) were used. Treatment of rats with HgCl{sub 2} decreased wall thickness of the resistance and conductance vasculature, increased the number ofmore » SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl{sub 2}: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl{sub 2}. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl{sub 2}-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease. - Highlights: ► Chronic HgCl{sub 2} exposure induces vascular remodeling. ► HgCl{sub 2} induces proliferation and decreased cell size in vascular smooth muscle cells. ► HgCl{sub 2

  8. Inhibition of prostate smooth muscle contraction and prostate stromal cell growth by the inhibitors of Rac, NSC23766 and EHT1864.

    PubMed

    Wang, Y; Kunit, T; Ciotkowska, A; Rutz, B; Schreiber, A; Strittmatter, F; Waidelich, R; Liu, C; Stief, C G; Gratzke, C; Hennenberg, M

    2015-06-01

    Medical therapy of lower urinary tract symptoms (LUTS) suggestive of benign prostatic hyperplasia (BPH) targets smooth muscle contraction in the prostate, or prostate growth. However, current therapeutic options are insufficient. Here, we investigated the role of Rac in the control of smooth muscle tone in human prostates and growth of prostate stromal cells. Experiments were performed using human prostate tissues from radical prostatectomy and cultured stromal cells (WPMY-1). Expression of Rac was examined by Western blot and fluorescence staining. Effects of Rac inhibitors (NSC23766 and EHT1864) on contractility were assessed in the organ bath. The effects of Rac inhibitors were assessed by pull-down, cytotoxicity using a cell counting kit, cytoskeletal organization by phalloidin staining and cell growth using an 5-ethynyl-2'-deoxyuridine assay. Expression of Rac1-3 was observed in prostate samples from each patient. Immunoreactivity for Rac1-3 was observed in the stroma, where it colocalized with the smooth muscle marker, calponin. NSC23766 and EHT1864 significantly reduced contractions of prostate strips induced by noradrenaline, phenylephrine or electrical field stimulation. NSC23766 and EHT1864 inhibited Rac activity in WPMY-1 cells. Survival of WPMY-1 cells ranged between 64 and 81% after incubation with NSC23766 (50 or 100 μM) or EHT1864 (25 μM) for 24 h. NSC23766 and EHT1864 induced cytoskeletal disorganization in WPMY-1 cells. Both inhibitors impaired the growth of WPMY-1 cells. Rac may be a link connecting the control of prostate smooth muscle tone with proliferation of smooth muscle cells. Improvements in LUTS suggestive of BPH by Rac inhibitors appears possible. © 2015 The British Pharmacological Society.

  9. Bladder smooth muscle organ culture preparation maintains the contractile phenotype

    PubMed Central

    Wang, Tanchun; Kendig, Derek M.; Chang, Shaohua; Trappanese, Danielle M.; Chacko, Samuel

    2012-01-01

    Smooth muscle cells, when subjected to culture, modulate from a contractile to a secretory phenotype. This has hampered the use of cell culture for molecular techniques to study the regulation of smooth muscle biology. The goal of this study was to develop a new organ culture model of bladder smooth muscle (BSM) that would maintain the contractile phenotype and aid in the study of BSM biology. Our results showed that strips of BSM subjected to up to 9 days of organ culture maintained their contractile phenotype, including the ability to achieve near-control levels of force with a temporal profile similar to that of noncultured tissues. The technical aspects of our organ culture preparation that were responsible, in part, for the maintenance of the contractile phenotype were a slight longitudinal stretch during culture and subjection of the strips to daily contraction-relaxation. The tissues contained viable cells throughout the cross section of the strips. There was an increase in extracellular collagenous matrix, resulting in a leftward shift in the passive length-tension relationship. There were no significant changes in the content of smooth muscle-specific α-actin, calponin, h-caldesmon, total myosin heavy chain, protein kinase G, Rho kinase-I, or the ratio of SM1 to SM2 myosin isoforms. Moreover the organ cultured tissues maintained functional voltage-gated calcium channels and large-conductance calcium-activated potassium channels. Therefore, we propose that this novel BSM organ culture model maintains the contractile phenotype and will be a valuable tool for the use in cellular/molecular biology studies of bladder myocytes. PMID:22896042

  10. The sphingosine analog fingolimod (FTY720) enhances tone and contractility of rat gastric fundus smooth muscle.

    PubMed

    Kraft, M; Zettl, U K; Noack, T; Patejdl, R

    2018-05-08

    Sphingosine and its metabolite sphingosine phosphate (S1P) regulate a multitude of biological functions, including the contractile state of smooth. Gastrointestinal side effects have been reported in patients treated with FTY720, a sphingosine analog that is approved for the treatment of multiple sclerosis. The aim of this study was to characterize the effects of FTY720 on rat gastric fundus smooth muscle under basal conditions and during activation induced by high-K + solution. Isometric contractions of isolated circular strips of gastric fundus smooth muscle were recorded using the organ bath method. The effects of FTY720 or vehicle were recorded under control conditions and in the presence of indomethacin, L-NAME, HA-1100, nifedipine, JTE-013, and suramin. Tone and contractions recorded in the presence of FTY720 or vehicle are reported as % of the amplitude of an initial high-K + contraction obtained under control conditions. From a concentration of 10 μmol L -1 onwards, FTY720 increased the tone, reaching 8.9% ± 7.5% at 100 μmol L -1 (P < .05). With indomethacin in the solution, the effects of FTY720 were enhanced (32.1% ± 7.7%; P < .001). The FTY720-induced increase in tone was abolished in the absence of extracellular Ca 2+ and reduced by nifedipine, HA-1100, JTE-013, and suramin. Furthermore, FTY720 increased high-K + contractions in the presence of indomethacin. FTY720 increases tone and contractile responses to depolarization in gastric fundus smooth muscle by triggering calcium entry and calcium sensitization in a S1P receptor-dependent manner. Taken together, the experimental results presented in this work suggest that FTY720 may increase gastric tone and contractility in patients. © 2018 John Wiley & Sons Ltd.

  11. Generalised smooth-muscle disease with defective muscarinic-receptor function.

    PubMed

    Bannister, R; Hoyes, A D

    1981-03-28

    A patient with widespread smooth-muscle disease presented with chronic intestinal pseudo-obstruction but had in addition defects of the bladder, pupils, sweating, and cardiovascular function. There was no evidence of a primary neural lesion, and minor changes in the muscle did not resemble those of a myopathy. In each organ affected muscarinic cholinergic function was at fault, but instead of supersensitivity to cholinergic drugs, which occurs in postganglionic autonomic neuropathies, there was a lack of response to cholinergic drugs and anticholinesterases. It was therefore concluded that the patient had a new type of defect of muscarinic-receptor function. The cause was unknown, but it may have been an autoimmune disease resembling myasthenia, in which there is a postjunctional defect of muscarinic receptors. In similar cases binding of muscarinic agonists and antagonists should be tested. When antibodies to purified human muscarinic receptors become available different patterns of smooth-muscle defect may be identifiable, enabling the lesion to be defined more precisely.

  12. Adenosine A1 receptors link to smooth muscle contraction via CYP4a, PKC-α, and ERK1/2

    PubMed Central

    Kunduri, SS; Mustafa, SJ; Ponnoth, DS; Dick, GM; Nayeem, MA

    2013-01-01

    Adenosine A1 receptor (A1AR) activation contracts smooth muscle, although signaling mechanisms aren’t thoroughly understood. Activation of A1AR leads to metabolism of arachidonic acid, including the production of 20-hydroxyeicosatetraenoic acid (20-HETE) by cytochrome P4504a (CYP4a). 20-HETE can activate protein kinase C-α (PKC-α) which crosstalks with extracellular signal-regulated kinase (ERK1/2) pathway. Both these pathways can regulate smooth muscle contraction, we tested the hypothesis that A1AR contracts smooth muscle through a pathway involving CYP4a, PKC-α, and ERK1/2. Experiments included isometric tension recordings of aortic contraction and Western blots of signaling molecules in wild type (WT) and A1AR knockout (A1KO) mice. Contraction to the A1-selective agonist CCPA was absent in A1KO mice aortae, indicating the contractile role of A1AR. Inhibition of CYP4a (HET0016) abolished CCPA-induced contraction in WT aortae, indicating a critical role for 20-HETE. Both WT and A1KO mice aortae contracted in response to exogenous 20-HETE. Inhibition of PKC-α (Gö6976) or ERK1/2 (PD98059) attenuated 20-HETE-induced contraction equally, suggesting that ERK1/2 is downstream of PKC-α. Contractions to exogenous 20-HETE were significantly less in A1KO mice; reduced protein levels of PKC-α, p-ERK1/2, and total ERK1/2 supported this observation. Our data indicate that A1AR mediates smooth muscle contraction via CYP4a and a PKC-α-ERK1/2 pathway. PMID:23519140

  13. Th1 cytokine-induced syndecan-4 shedding by airway smooth muscle cells is dependent on mitogen-activated protein kinases.

    PubMed

    Tan, Xiahui; Khalil, Najwa; Tesarik, Candice; Vanapalli, Karunasri; Yaputra, Viki; Alkhouri, Hatem; Oliver, Brian G G; Armour, Carol L; Hughes, J Margaret

    2012-04-01

    In asthma, airway smooth muscle (ASM) chemokine secretion can induce mast cell recruitment into the airways. The functions of the mast cell chemoattractant CXCL10, and other chemokines, are regulated by binding to heparan sulphates such as syndecan-4. This study is the first demonstration that airway smooth muscle cells (ASMC) from people with and without asthma express and shed syndecan-4 under basal conditions. Syndecan-4 shedding was enhanced by stimulation for 24 h with the Th1 cytokines interleukin-1β (IL-1β) or tumor necrosis factor-α (TNF-α), but not interferon-γ (IFNγ), nor the Th2 cytokines IL-4 and IL-13. ASMC stimulation with IL-1β, TNF-α, and IFNγ (cytomix) induced the highest level of syndecan-4 shedding. Nonasthmatic and asthmatic ASM cell-associated syndecan-4 protein expression was also increased by TNF-α or cytomix at 4-8 h, with the highest levels detected in cytomix-stimulated asthmatic cells. Cell-associated syndecan-4 levels were decreased by 24 h, whereas shedding remained elevated at 24 h, consistent with newly synthesized syndecan-4 being shed. Inhibition of ASMC matrix metalloproteinase-2 did not prevent syndecan-4 shedding, whereas inhibition of ERK MAPK activation reduced shedding from cytomix-stimulated ASMC. Although ERK inhibition had no effect on syndecan-4 mRNA levels stimulated by cytomix, it did cause an increase in cell-associated syndecan-4 levels, consistent with the shedding being inhibited. In conclusion, ASMC produce and shed syndecan-4 and although this is increased by the Th1 cytokines, the MAPK ERK only regulates shedding. ASMC syndecan-4 production during Th1 inflammatory conditions may regulate chemokine activity and mast cell recruitment to the ASM in asthma.

  14. Role of Hypoxia-Induced Brain Derived Neurotrophic Factor in Human Pulmonary Artery Smooth Muscle

    PubMed Central

    Hartman, William; Helan, Martin; Smelter, Dan; Sathish, Venkatachalem; Thompson, Michael; Pabelick, Christina M.; Johnson, Bruce; Prakash, Y. S.

    2015-01-01

    Background Hypoxia effects on pulmonary artery structure and function are key to diseases such as pulmonary hypertension. Recent studies suggest that growth factors called neurotrophins, particularly brain-derived neurotrophic factor (BDNF), can influence lung structure and function, and their role in the pulmonary artery warrants further investigation. In this study, we examined the effect of hypoxia on BDNF in humans, and the influence of hypoxia-enhanced BDNF expression and signaling in human pulmonary artery smooth muscle cells (PASMCs). Methods and Results 48h of 1% hypoxia enhanced BDNF and TrkB expression, as well as release of BDNF. In arteries of patients with pulmonary hypertension, BDNF expression and release was higher at baseline. In isolated PASMCs, hypoxia-induced BDNF increased intracellular Ca2+ responses to serotonin: an effect altered by HIF1α inhibition or by neutralization of extracellular BDNF via chimeric TrkB-Fc. Enhanced BDNF/TrkB signaling increased PASMC survival and proliferation, and decreased apoptosis following hypoxia. Conclusions Enhanced expression and signaling of the BDNF-TrkB system in PASMCs is a potential mechanism by which hypoxia can promote changes in pulmonary artery structure and function. Accordingly, the BDNF-TrkB system could be a key player in the pathogenesis of hypoxia-induced pulmonary vascular diseases, and thus a potential target for therapy. PMID:26192455

  15. Length-dependent modulation of cytoskeletal remodeling and mechanical energetics in airway smooth muscle.

    PubMed

    Kim, Hak Rim; Liu, Katrina; Roberts, Thomas J; Hai, Chi-Ming

    2011-06-01

    Actin cytoskeletal remodeling is an important mechanism of airway smooth muscle (ASM) contraction. We tested the hypothesis that mechanical strain modulates the cholinergic receptor-mediated cytoskeletal recruitment of actin-binding and integrin-binding proteins in intact airway smooth muscle, thereby regulating the mechanical energetics of airway smooth muscle. We found that the carbachol-stimulated cytoskeletal recruitment of actin-related protein-3 (Arp3), metavinculin, and talin were up-regulated at short muscle lengths and down-regulated at long muscle lengths, suggesting that the actin cytoskeleton--integrin complex becomes enriched in cross-linked and branched actin filaments in shortened ASM. The mechanical energy output/input ratio during sinusoidal length oscillation was dependent on muscle length, oscillatory amplitude, and cholinergic activation. The enhancing effect of cholinergic stimulation on mechanical energy output/input ratio at short and long muscle lengths may be explained by the length-dependent modulation of cytoskeletal recruitment and crossbridge cycling, respectively. We postulate that ASM functions as a hybrid biomaterial, capable of switching between operating as a cytoskeleton-based mechanical energy store at short muscle lengths to operating as an actomyosin-powered mechanical energy generator at long muscle lengths. This postulate predicts that targeting the signaling molecules involved in cytoskeletal recruitment may provide a novel approach to dilating collapsed airways in obstructive airway disease.

  16. Smooth muscle architecture within cell-dense vascular tissues influences functional contractility.

    PubMed

    Win, Zaw; Vrla, Geoffrey D; Steucke, Kerianne E; Sevcik, Emily N; Hald, Eric S; Alford, Patrick W

    2014-12-01

    The role of vascular smooth muscle architecture in the function of healthy and dysfunctional vessels is poorly understood. We aimed at determining the relationship between vascular smooth muscle architecture and contractile output using engineered vascular tissues. We utilized microcontact printing and a microfluidic cell seeding technique to provide three different initial seeding conditions, with the aim of influencing the cellular architecture within the tissue. Cells seeded in each condition formed confluent and aligned tissues but within the tissues, the cellular architecture varied. Tissues with a more elongated cellular architecture had significantly elevated basal stress and produced more contractile stress in response to endothelin-1 stimulation. We also found a correlation between the contractile phenotype marker expression and the cellular architecture, contrary to our previous findings in non-confluent tissues. Taken with previous results, these data suggest that within cell-dense vascular tissues, smooth muscle contractility is strongly influenced by cell and tissue architectures.

  17. Propylthiouracil, independent of its antithyroid effect, promotes vascular smooth muscle cells differentiation via PTEN induction.

    PubMed

    Chen, Wei-Jan; Pang, Jong-Hwei S; Lin, Kwang-Huei; Lee, Dany-Young; Hsu, Lung-An; Kuo, Chi-Tai

    2010-01-01

    Propylthiouracil (PTU), independent of its antithyroid effect, is recently found to have an antiatherosclerotic effect. The aim of this study is to determine the impact of PTU on phenotypic modulation of vascular smooth muscle cells (VSMCs), as phenotypic modulation may contribute to the growth of atherosclerotic lesions and neointimal formation after arterial injury. Propylthiouracil reduced neointimal formation in balloon-injured rat carotid arteries. In vitro, PTU may convert VSMCs from a serum-induced dedifferentiation state to a differentiated state, as indicated by a spindle-shaped morphology and an increase in the expression of SMC differentiation marker contractile proteins, including calponin and smooth muscle (SM)-myosin heavy chain (SM-MHC). Transient transfection studies in VSMCs demonstrated that PTU induced the activity of SMC marker genes (calponin and SM-MHC) promoters, indicating that PTU up-regulates these genes expression predominantly at the transcriptional level. Furthermore, PTU enhanced the expression of PTEN and inhibition of PTEN by siRNA knockdown blocked PTU-induced activation of contractile proteins expression and promoter activity. In the rat carotid injury model, PTU reversed the down-regulation of contractile proteins and up-regulated PTEN in the neointima induced by balloon injury. Propylthiouracil promotes VSMC differentiation, at lest in part, via induction of the PTEN-mediated pathway. These findings suggest a possible mechanism by which PTU may contribute to its beneficial effects on atherogenesis and neointimal formation after arterial injury.

  18. Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling.

    PubMed

    Lu, Ming; Luo, Ying; Hu, Pengfei; Dou, Liping; Huang, Shuwei

    2018-01-01

    Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell migration assay. And we explored the underlying mechanism by Western blotting. AGEs significantly induced the proliferation and migration of VSMCs, but treatment with tanshinone IIA attenuated these effects. AGEs could increase the activity of the ERK1/2 and p38 pathways but not the JNK pathway. Treatment with tanshinone IIA inhibited the AGEs-induced activation of the ERK1/2 pathway but not the p38 pathway. Tanshinone IIA inhibits AGEs-induced proliferation and migration of VSMCs by suppressing the ERK1/2 MAPK signaling pathway.

  19. Design of a muscle cell-specific expression vector utilising human vascular smooth muscle alpha-actin regulatory elements.

    PubMed

    Keogh, M C; Chen, D; Schmitt, J F; Dennehy, U; Kakkar, V V; Lemoine, N R

    1999-04-01

    The facility to direct tissue-specific expression of therapeutic gene constructs is desirable for many gene therapy applications. We describe the creation of a muscle-selective expression vector which supports transcription in vascular smooth muscle, cardiac muscle and skeletal muscle, while it is essentially silent in other cell types such as endothelial cells, hepatocytes and fibroblasts. Specific transcriptional regulatory elements have been identified in the human vascular smooth muscle cell (VSMC) alpha-actin gene, and used to create an expression vector which directs the expression of genes in cis to muscle cells. The vector contains an enhancer element we have identified in the 5' flanking region of the human VSMC alpha-actin gene involved in mediating VSMC expression. Heterologous pairing experiments have shown that the enhancer does not interact with the basal transcription complex recruited at the minimal SV40 early promoter. Such a vector has direct application in the modulation of VSMC proliferation associated with intimal hyperplasia/restenosis.

  20. Effects of tachykinins on uterine smooth muscle.

    PubMed

    Patak, E N; Pennefather, J N; Story, M E

    2000-11-01

    1. Sensory nerves supplying the mammalian uterus have been shown to contain substance P (SP) and neurokinin (NK)A. This review presents some of the advances that have led to a greater understanding of the effects of tachykinins on uterine smooth muscle. 2. The cell-surface peptidase neprilysin (EC.3 24.11, endopeptidase 24.11, enkephalinase, CALLA, CD10) has been shown to play a major role in regulating the actions of tachykinins on both rat and human myometrium. Because this peptidase is known to be regulated by steroids and pregnancy, its effects may be of physiological relevance. 3. Tachykinins produce contractions of isolated myometrial preparations from non-pregnant rats and mice. The NK2 receptor mediates these effects in rat uterus, while the NK1 receptor may mediate these effects in the mouse uterus. 4. The effects of tachykinins have been examined on myometrial preparations obtained at Caesarean section from near-term pregnant women. In the presence of the peptidase inhibitors (thiorphan, captopril and bestatin), the mammalian tachykinins SP, NKA and NKB produced concentration-dependent uterine contractions. 5. The order of agonist potency NKA > SP = NKB suggested that NK2 receptors mediate uterine contractions in the human. This was confirmed using the stable analogues [Sar9,Met(O2)11]SP, [Lys5MeLeu9Nle10]NKA(4-10) and [N-MePhe7]NKB, which are NK1, NK2 and NK3 receptor selective, respectively. Only [Lys5MeLeu9Nle10]NKA(4-10) produced concentration-related contractions of human uterine smooth muscle. 6. The experimental findings described in the present review, taken together with results published previously in the literature, indicate that tachykinin peptides may play a physiological or pathophysiological role in regulating uterine smooth muscle activity. However, more extensive research will be required to confirm such a role for these peptides.

  1. Disrupting actin-myosin-actin connectivity in airway smooth muscle as a treatment for asthma?

    PubMed

    Lavoie, Tera L; Dowell, Maria L; Lakser, Oren J; Gerthoffer, William T; Fredberg, Jeffrey J; Seow, Chun Y; Mitchell, Richard W; Solway, Julian

    2009-05-01

    Breathing is known to functionally antagonize bronchoconstriction caused by airway muscle contraction. During breathing, tidal lung inflation generates force fluctuations that are transmitted to the contracted airway muscle. In vitro, experimental application of force fluctuations to contracted airway smooth muscle strips causes them to relengthen. Such force fluctuation-induced relengthening (FFIR) likely represents the mechanism by which breathing antagonizes bronchoconstriction. Thus, understanding the mechanisms that regulate FFIR of contracted airway muscle could suggest novel therapeutic interventions to increase FFIR, and so to enhance the beneficial effects of breathing in suppressing bronchoconstriction. Here we propose that the connectivity between actin filaments in contracting airway myocytes is a key determinant of FFIR, and suggest that disrupting actin-myosin-actin connectivity by interfering with actin polymerization or with myosin polymerization merits further evaluation as a potential novel approach for preventing prolonged bronchoconstriction in asthma.

  2. Alterations in Intestinal Contractility during Inflammation Are Caused by Both Smooth Muscle Damage and Specific Receptor-mediated Mechanisms

    PubMed Central

    Tanović, Adnan; Fernández, Ester; Jiménez, Marcel

    2006-01-01

    Aim To evaluate motoric intestinal disturbances during inflammation with Trichinella spiralis in rats as an experimental model. Methods We examined the changes in worm-positive (jejunum) and worm-free (ileum) intestinal segments of rats infected with T. spiralis. To investigate the relationship between structural and functional changes in smooth muscle, we measured the thickness of the muscle layers of rat jejunum and ileum. Mechanical responses to KCl 30 mmol/L, acetylcholine (ACh) 10−8-10−4 mol/L, substance P (SP) 10−9-10−5 mol/L, and to electrical field stimulation of longitudinal muscle strips in the jejunum and ileum were studied in muscle bath as controls (day 0) and on day 2, 6, 14, 23, and 72 after infection. Results After T. spiralis infestation, an inflammation of the mucosal and submucosal layers of jejunum was observed, whereas in the worm-free ileum there was not any inflammatory infiltrate. Increase in the smooth muscle thickness of both jejunum and ileum were correlated with increased responses to depolarizing agent KCl and to ACh. However, responses to SP were decreased on day 14-23 after infection in jejunum and from day 6-14 after infection in ileum. Electric field stimulation-induced contractions were transiently decreased in the jejunum (day 2 after infection) but in the ileum the contractile responses were decreased until the end of the study period. Conclusions Alterations in intestinal smooth muscle function do not require the presence of the parasite and the absence of histopathological signs of inflammation do not warrant intact motor function. Changes in motor responses after T. spiralis infection are not only due to smooth muscle damage but also to disturbances in specific receptor-mediated mechanisms. PMID:16625700

  3. Rho-kinase inhibitors augment the inhibitory effect of propofol on rat bronchial smooth muscle contraction.

    PubMed

    Hanazaki, Motohiko; Yokoyama, Masataka; Morita, Kiyoshi; Kohjitani, Atsushi; Sakai, Hiroyasu; Chiba, Yoshihiko; Misawa, Miwa

    2008-06-01

    Airway smooth muscle contraction is not caused by the increase in intracellular Ca(2+) ([Ca(2+)](i)) alone because agonist stimulation increases tension at the same [Ca(2+)](i) (increase in Ca(2+) sensitivity). The small G protein Rho A and Rho-kinase (ROCK) play important roles in the regulation of Ca(2+) sensitivity. In this study, we investigated the effects of three ROCK inhibitors (fasudil, Y-27632, and H-1152) on rat airway smooth muscle contraction and the effects of ROCK inhibitors on propofol-induced bronchodilatory effects. Ring strips from intrapulmonary bronchus of male Wistar rats were placed in 400-microL organ baths containing Krebs-Henseleit solution. After obtaining stable contraction with 30 microM acetylcholine, (1) propofol (1 microM-1 mM) was cumulatively applied; (2) cumulative doses of Y-27632 (0.01-300 microM), fasudil (0.01-100 microM), or H-1152 (0.01-100 microM) were applied; (3) propofol (1 microM-1 mM), with Y-27632, fasudil or H-1152 (0.03 microM or 0.1 microM), was cumulatively applied. (1) Propofol produced concentration-dependent relaxation of rat bronchial smooth muscle. (2) All ROCK inhibitors produced concentration-dependent relaxation. (3) 0.03 microM Y-27632 and fasudil had no significant effect on the concentration-response curve for propofol, while 0.1 microM of both agents significantly shifted concentration-response curves to the left and decreased EC(50). H-1152 (both 0.03 microM and 0.1 microM) significantly sifted the concentration-response curve for propofol to the left and decreased EC(50). ROCK inhibitors, especially H-1152, can attenuate the contraction of rat airway smooth muscle. The combined use of ROCK inhibitors and propofol causes greater relaxation.

  4. Detection of Leishmania spp. and associated inflammation in ocular-associated smooth and striated muscles in dogs with patent leishmaniosis.

    PubMed

    Naranjo, Carolina; Fondevila, Dolors; Leiva, Marta; Roura, Xavier; Peña, Teresa

    2010-05-01

    Canine leishmaniosis is a disease characterized by the wide distribution of the parasite throughout the tissues of the host. The purpose of this study was to describe the presence of Leishmania spp. and associated inflammation in ocular-associated muscles of dogs with patent leishmaniosis. Smooth muscles (iris dilator muscle, iris sphincter muscle, ciliary muscle, Müller muscle, smooth muscle of the periorbita and smooth muscle of the nictitating membrane) and striated muscles (orbicularis oculi muscle, obliquus dorsalis muscle and dorsal rectus muscle) were evaluated. Routine staining with hematoxylin and eosin and immunohistochemistry to detect Leishmania spp. were performed on tissue sections. Granulomatous inflammation was seen surrounding muscular fibers and was composed mainly of macrophages with scattered lymphocytes and plasma cells. This infiltrate could be seen in 52/473 (10.99%) samples of smooth muscle and 36/142 (25.35%) samples of striated muscle. Parasites were detected in 43/473 (9.09%) samples of smooth muscle and in 28/142 (19.71%) samples of striated muscle. To the authors' knowledge, this is the first report assessing the presence of Leishmania spp. and associated infiltrate in intraocular, extraocular and adnexal smooth and striated muscles. The inflammation present in those muscles could contribute to clinical signs already described, such as blepharitis, uveitis, and orbital cellulitis.

  5. Ketamine relaxes airway smooth muscle contracted by endothelin.

    PubMed

    Sato, T; Matsuki, A; Zsigmond, E K; Rabito, S F

    1997-04-01

    Endothelins (ETs) are synthesized not only in vascular endothelial cells but also in airway epithelial cells. Increased ET-1 has been demonstrated in bronchial epithelium of asthmatic patients, and, in severe asthma attacks, ET-1 increases in plasma and bronchoalveolar lavage fluid. In this study, we investigated whether ketamine (KET) relaxes ET-induced tracheal contractions. Female guinea pigs were killed with an overdose of pentobarbital. The trachea was removed and cut spirally into two strips that were mounted in an organ bath filled with Krebs-bicarbonate buffer. The response of each strip to 10(-7) M carbachol was taken as 100% contraction to which the response to ET was referred. The contribution of the epithelium to the relaxant effect of KET was studied in denuded tracheae or in the presence of 5 x 10(-5) M indomethacin. ET-1 (3 x 10(-8) M) induced contractions that were 76 +/- 3% of those induced by carbachol. KET reversed the response to ET-1 in a dose-dependent fashion. Similarly, ET-2 (3 x 10(-8) M) induced contractions that were 74 +/- 5% of those induced by carbachol, and KET also reversed this response in a dose-dependent manner. In epithelium-denuded strips, ET-1 induced contractions that were 104 +/- 3% of those induced by carbachol, and KET still reversed this response. The tonic phase of the response to ET-1 was equal (100 +/- 6%) to the response to carbachol, and KET did not affect it significantly. In the presence of ryanodine, KET reduced the ET-1-induced contraction from 67 +/- 2% to 36 +/- 3.%, P < 0.01. In the presence of nicardipine, KET also inhibited the ET-1-induced contraction. We conclude that KET relaxes the tracheal smooth muscle contracted by ETs via a mechanism that is independent of the tracheal epithelium. The relaxant effect of KET on the ET-induced contraction of the trachealis muscle is not dependent upon blockade of 1) sarcolemma influx of Ca2+ through the dihydropyridine Ca2+ channel or 2) the release of intracellular Ca2

  6. Bladder Smooth Muscle Cells Differentiation from Dental Pulp Stem Cells: Future Potential for Bladder Tissue Engineering

    PubMed Central

    Song, Bing; Jiang, Wenkai; Alraies, Amr; Liu, Qian; Gudla, Vijay; Oni, Julia; Wei, Xiaoqing; Sloan, Alastair; Ni, Longxing; Agarwal, Meena

    2016-01-01

    Dental pulp stem cells (DPSCs) are multipotent cells capable of differentiating into multiple cell lines, thus providing an alternative source of cell for tissue engineering. Smooth muscle cell (SMC) regeneration is a crucial step in tissue engineering of the urinary bladder. It is known that DPSCs have the potential to differentiate into a smooth muscle phenotype in vitro with differentiation agents. However, most of these studies are focused on the vascular SMCs. The optimal approaches to induce human DPSCs to differentiate into bladder SMCs are still under investigation. We demonstrate in this study the ability of human DPSCs to differentiate into bladder SMCs in a growth environment containing bladder SMCs-conditioned medium with the addition of the transforming growth factor beta 1 (TGF-β1). After 14 days of exposure to this medium, the gene and protein expression of SMC-specific marker (α-SMA, desmin, and calponin) increased over time. In particular, myosin was present in differentiated cells after 11 days of induction, which indicated that the cells differentiated into the mature SMCs. These data suggested that human DPSCs could be used as an alternative and less invasive source of stem cells for smooth muscle regeneration, a technology that has applications for bladder tissue engineering. PMID:26880982

  7. The magnetic field of gastrointestinal smooth muscle activity

    NASA Astrophysics Data System (ADS)

    Bradshaw, Alan; Ladipo, Jk; Richards, William; Wikswo, John

    1997-11-01

    The gastrointestinal (GI) tract controls the absorption and transport of ingested materials. Its function is determined largely by the electrical activity of the smooth muscle that lines the GI tract. GI electrical activity consists of an omnipresent slowly oscillating wave known as the basic electrical rhythm (BER) that modulates a higher-frequency spiking activity associated with muscle contraction. The BER has been shown to be a reliable indicator of intestinal viability, and thus, recording of smooth muscle activity may have clinical value. The BER is difficult to measure with cutaneous electrodes because layers of low-conductivity fat between the GI tract and the abdominal surface attenuate the potential. On the other hand, the magnetic field associated with GI electrical activity is mostly unaffected by intervening fat layers. We recorded the magnetic fields from GI activity in 12 volunteers using a multichannel Superconducting QUantum Interference Device (SQUID) magnetometer. Characteristics typical of gastric and intestinal BER were apparent in the data. Channels near the epigastrium recorded gastric BER, and channels in intestinal areas recorded small bowel BER. These results suggest that a single multichannel SQUID magnetometer is able to measure gastrointestinal electrical activity from multiple locations around the abdomen simultaneously.

  8. Stimulation of synthesis and release of brain-derived neurotropic factor from intestinal smooth muscle cells by substance P and pituitary adenylate cyclase-activating peptide.

    PubMed

    Al-Qudah, M; Alkahtani, R; Akbarali, H I; Murthy, K S; Grider, J R

    2015-08-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin present in the intestine where it participates in survival and growth of enteric neurons, augmentation of enteric circuits, and stimulation of intestinal peristalsis and propulsion. Previous studies largely focused on the role of neural and mucosal BDNF. The expression and release of BDNF from intestinal smooth muscle and the interaction with enteric neuropeptides has not been studied in gut. The expression and secretion of BDNF from smooth muscle cultured from the rabbit intestinal longitudinal muscle layer in response to substance P (SP) and pituitary adenylate cyclase-activating peptide (PACAP) was measured by western blot and enzyme-linked immunosorbent assay. BDNF mRNA was measured by reverse-transcription polymerase chain reaction. The expression of BNDF protein and mRNA was greater in smooth muscle cells (SMCs) from the longitudinal muscle than from circular muscle layer. PACAP and SP increased the expression of BDNF protein and mRNA in cultured longitudinal SMCs. PACAP and SP also stimulated the secretion of BDNF from cultured longitudinal SMCs. Chelation of intracellular calcium with BAPTA (1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid) prevented SP-induced increase in BDNF mRNA and protein expression and SP-induced secretion of BDNF. Neuropeptides known to be present in enteric neurons innervating the longitudinal layer increase the expression of BDNF mRNA and protein in SMCs and stimulate the release of BDNF. Considering the ability of BDNF to enhance smooth muscle contraction, this autocrine loop may partially explain the characteristic hypercontractility of longitudinal muscle in inflammatory bowel disease. © 2015 John Wiley & Sons Ltd.

  9. Effect of glycine on recovery of bladder smooth muscle contractility after acute urinary retention in rats.

    PubMed

    Hong, Sung K; Son, Hwancheol; Kim, Soo W; Oh, Seung-June; Choi, Hwang

    2005-12-01

    To investigate the effects of glycine on the recovery of bladder smooth muscle contractility after acute urinary retention. Bladder overdistension was induced in Sprague-Dawley rats by an infusion of saline (twice the threshold volume), maintained for 2 h. From 15 min before emptying of the bladder until 2 h after, saline or glycine solution was infused i.v. At 30 min, 2 h and 1 week after bladder emptying, samples of bladder tissue were taken for muscle strip study, malondialdehyde (MDA) assay, ATP assay, Western blotting for apoptosis-related molecules (Bcl-2, Bax, Caspase-3), and histological analysis including terminal deoxynucleotidyl transferase-mediated nick-end labelling staining. The results were compared among normal control, saline-treated and glycine-treated rats. In the glycine-treated group, muscle strip contractile responses induced by electrical-field stimulation and carbachol were both significantly greater at 1 week after bladder emptying than in the saline-treated group. The results of the ATP assay appeared to correspond with those of the muscle strip study. The saline-treated group had significantly higher MDA levels at 30 min after bladder emptying than the glycine-treated group. At 2 h after bladder emptying, there was significantly more apoptosis and greater leukocyte infiltration in the saline-treated group than in the glycine-treated group. While pro-apoptotic Bax and caspase-3 were down-regulated, Bcl-2 was up-regulated in the glycine-treated group. Glycine infusions might improve the contractile responses of bladder smooth muscle after acute urinary retention by reducing oxidative damage and apoptosis.

  10. In a non-human primate model, aging disrupts the neural control of intestinal smooth muscle contractility in a region-specific manner.

    PubMed

    Tran, L; Greenwood-Van Meerveld, B

    2014-03-01

    Incidences of gastrointestinal (GI) motility disorders increase with age. However, there is a paucity of knowledge about the aging mechanisms leading to GI dysmotility. Motility in the GI tract is a function of smooth muscle contractility, which is modulated in part by the enteric nervous system (ENS). Evidence suggests that aging impairs the ENS, thus we tested the hypothesis that senescence in the GI tract precipitates abnormalities in smooth muscle and neurally mediated contractility in a region-specific manner. Jejunal and colonic circular muscle strips were isolated from young (4-10 years) and old (18+ years) baboons. Myogenic responses were investigated using potassium chloride (KCl) and carbachol (CCh). Neurally mediated contractile responses were evoked by electrical field stimulation (EFS) and were recorded in the absence and presence of atropine (1 μM) or NG-Nitro-l-arginine methyl ester (l-NAME; 100 μM). The myogenic responses to KCl in the jejunum and colon were unaffected by age. In the colon, but not the jejunum, CCh-induced contractile responses were reduced in aged animals. Compared to young baboons, there was enhanced EFS-induced contractility of old baboon jejunal smooth muscle in contrast to the reduced contractility in the colon. The effect of atropine on the EFS response was lower in aged colonic tissue, suggesting reduced participation of acetylcholine. In aged jejunal tissue, higher contractile responses to EFS were found to be due to reduced nitregic inhibition. These findings provide key evidence for the importance of intestinal smooth muscle and ENS senescence in age-associated GI motility disorders. © 2014 The Authors. Neurogastroenterology & Motility published by John Wiley & Sons Ltd.

  11. Cross talk between cyclic AMP and the polyphosphoinositide signaling cascade in iris sphincter and other nonvascular smooth muscle.

    PubMed

    Abdel-Latif, A A

    1996-02-01

    Nonvascular smooth muscle, such as the iris sphincter, receives double reciprocal innervation: stimulation of the parasympathetic nervous system (cholinergic muscarinic), which functions through the polyphosphoinositide (PPI) signaling pathway, contracts it, while activation of the sympathetic nervous system (beta-adrenergic), which functions through the cAMP system, relaxes it. Interactions between the two second messenger systems are important in regulation of smooth muscle tone and represent an important focal point for pharmacological manipulation. Here, I have summarized the experimental evidence in support of the hypothesis that the cross talk between cAMP and the PPI cascade could constitute a biochemical correlate for this functional antagonism. Recent studies suggest that cAMP inhibition is on Ca2+ mobilization rather than myosin light chain phosphorylation. Thus, cAMP-elevating agents, which inhibit agonist-induced PPI hydrolysis, are effective relaxants. Furthermore, inositol 1,4,5-trisphosphate (IP3) appears to be involved in both Ca2+ release from the sarcoplasmic reticulum and in Ca2+ influx through the plasma membrane, and since a reduction in intracellular Ca2+ ([Ca2+]i) is the underlying mechanism for cAMP-mediated relaxation, an important target for cAMP inhibition would be either to inhibit IP3 production or to stimulate IP3 inactivation. In the iris sphincter and other nonvascular smooth muscle there is reasonable experimental evidence that shows that cAMP inhibits phospholipase C activation and stimulates IP3 3-kinase activity, both of which can result in: [i) reduction in IP3 concentrations and (ii) reduction in IP3-dependent Ca2+ mobilization, which may lead to muscle relaxation. In addition to IP3-induced Ca2+ mobilization, changes in [Ca2+]i are the result of the interplay of many processes which may also serve as potential sites for cAMP inhibition. A great deal of progress has been made on the cross talk between cAMP and the PPI signaling

  12. Mini-titins in striated and smooth molluscan muscles: structure, location and immunological crossreactivity.

    PubMed

    Vibert, P; Edelstein, S M; Castellani, L; Elliott, B W

    1993-12-01

    Invertebrate mini-titins are members of a class of myosin-binding proteins belonging to the immunoglobulin superfamily that may have structural and/or regulatory properties. We have isolated mini-titins from three molluscan sources: the striated and smooth adductor muscles of the scallop, and the smooth catch muscles of the mussel. Electron microscopy reveals flexible rod-like molecules about 0.2 micron long and 30 A wide with a distinctive polarity. Antibodies to scallop mini-titin label the A-band and especially the A/I junction of scallop striated muscle myofibrils by indirect immunofluorescence and immuno-electron microscopy. This antibody crossreacts with mini-titins in scallop smooth and Mytilus catch muscles, as well as with proteins in striated muscles from Limulus, Lethocerus (asynchronous flight muscle), and crayfish. It labels the A/I junction (I-region in Lethocerus) in these striated muscles as well as in chicken skeletal muscle. Antibodies to the repetitive immunoglobulin-like regions and also to the kinase domain of nematode twitchin crossreact with scallop mini-titin and label the A-band of scallop myofibrils. Electron microscopy of single molecules shows that antibodies to twitchin kinase bind to scallop mini-titin near one end of the molecule, suggesting how the scallop structure might be aligned with the sequence of nematode twitchin.

  13. Neuronally mediated contraction responses of guinea-pig stomach smooth muscle preparations: modification by benzamide derivatives does not reflect a dopamine antagonist action.

    PubMed

    Costall, B; Naylor, R J; Tan, C C

    1984-06-15

    The actions of the substituted benzamide derivatives metoclopramide, clebopride, YM-09151-2, tiapride, (+)- and (-)-sulpiride and (+)- and (-)-sultopride, and the dopamine antagonists haloperidol and domperidone, were studied on the responses to field stimulation (0.125-10 Hz) of smooth muscle strips taken from cardia, fundus, body and antral regions of the longitudinal and circular muscle of guinea-pig stomach. Field stimulation of the longitudinal strips caused contraction responses which were antagonised by atropine (but not by prazosin, yohimbine, propranolol or methysergide) to indicate a muscarinic cholinergic involvement. Antagonism of the contractions revealed or enhanced relaxation responses mediated via unidentified mechanisms (resistant to cholinergic and adrenergic antagonists). Metoclopramide enhanced the field stimulation-induced contractions of the stomach smooth muscle preparations via atropine sensitive mechanisms but failed to attenuate the field stimulation-induced relaxation responses. Clebopride's action closely followed that of metoclopramide but YM-09151-2 only enhanced the contraction responses of the longitudinal muscle preparations. Other dopamine antagonists, (+)- and (-)-sulpiride, (+)- and (-)-sultopride, tiapride, haloperidol and domperidone failed to facilitate contraction to field stimulation of any stomach tissue. Thus, the actions of metoclopramide, clebopride and YM-09151-2 to facilitate contraction to field stimulation of stomach smooth muscle are mediated via a muscarinic cholinergic mechanism and are not the consequence of an antagonism at any recognisable dopamine receptor.

  14. Amino acid mutations in the caldesmon COOH-terminal functional domain increase force generation in bladder smooth muscle

    PubMed Central

    Deng, Maoxian; Boopathi, Ettickan; Hypolite, Joseph A.; Raabe, Tobias; Chang, Shaohua; Zderic, Stephen; Wein, Alan J.

    2013-01-01

    Caldesmon (CaD), a component of smooth muscle thin filaments, binds actin, tropomyosin, calmodulin, and myosin and inhibits actin-activated ATP hydrolysis by smooth muscle myosin. Internal deletions of the chicken CaD functional domain that spans from amino acids (aa) 718 to 731, which corresponds to aa 512–530 including the adjacent aa sequence in mouse CaD, lead to diminished CaD-induced inhibition of actin-activated ATP hydrolysis by myosin. Transgenic mice with mutations of five aa residues (Lys523 to Gln, Val524 to Leu, Ser526 to Thr, Pro527 to Cys, and Lys529 to Ser), which encompass the ATPase inhibitory determinants located in exon 12, were generated by homologous recombination. Homozygous (−/−) animals did not develop, but heterozygous (+/−) mice carrying the expected mutations in the CaD ATPase inhibitory domain (CaD mutant) matured and reproduced normally. The peak force produced in response to KCl and electrical field stimulation by the detrusor smooth muscle from the CaD mutant was high compared with that of the wild type. CaD mutant mice revealed nonvoiding contractions during bladder filling on awake cystometry, suggesting that the CaD ATPase inhibitory domain suppresses force generation during the filling phase and this suppression is partially released by mutations in 50% of CaD in heterozygous. Our data show for the first time a functional phenotype, at the intact smooth muscle tissue and in vivo organ levels, following mutation of a functional domain at the COOH-terminal region of CaD. PMID:23986516

  15. Decorin GAG synthesis and TGF-β signaling mediate Ox-LDL-induced mineralization of human vascular smooth muscle cells.

    PubMed

    Yan, Jianyun; Stringer, Sally E; Hamilton, Andrew; Charlton-Menys, Valentine; Götting, Christian; Müller, Benjamin; Aeschlimann, Daniel; Alexander, M Yvonne

    2011-03-01

    Decorin and oxidized low-density lipoprotein (Ox-LDL) independently induce osteogenic differentiation of vascular smooth muscle cells (VSMCs). We aimed to determine whether decorin glycosaminoglycan (GAG) chain synthesis contributes to Ox-LDL-induced differentiation and calcification of human VSMCs in vitro. Human VSMCs treated with Ox-LDL to induce oxidative stress showed increased alkaline phosphatase (ALP) activity, accelerated mineralization, and a difference in both decorin GAG chain biosynthesis and CS/DS structure compared with untreated controls. Ox-LDL increased mRNA abundance of both xylosyltransferase (XT)-I, the key enzyme responsible for GAG chain biosynthesis and Msx2, a marker of osteogenic differentiation. Furthermore, downregulation of XT-I expression using small interfering RNA blocked Ox-LDL-induced VSMC mineralization. Adenoviral-mediated overexpression of decorin, but not a mutated unglycanated form, accelerated mineralization of VSMCs, suggesting GAG chain addition on decorin is crucial for the process of differentiation. The decorin-induced VSMC osteogenic differentiation involved activation of the transforming growth factor (TGF)-β pathway, because it was attenuated by blocking of TGF-β receptor signaling and because decorin overexpression potentiated phosphorylation of the downstream signaling molecule smad2. These studies provide direct evidence that oxidative stress-mediated decorin GAG chain synthesis triggers TGF-β signaling and mineralization of VSMCs in vitro.

  16. Direct evidence for functional smooth muscle myosin II in the 10S self-inhibited monomeric conformation in airway smooth muscle cells

    PubMed Central

    Milton, Deanna L.; Schneck, Amy N.; Ziech, Dominique A.; Ba, Mariam; Facemyer, Kevin C.; Halayko, Andrew J.; Baker, Jonathan E.; Gerthoffer, William T.; Cremo, Christine R.

    2011-01-01

    The 10S self-inhibited monomeric conformation of myosin II has been characterized extensively in vitro. Based upon its structural and functional characteristics, it has been proposed to be an assembly-competent myosin pool in equilibrium with filaments in cells. It is known that myosin filaments can assemble and disassemble in nonmuscle cells, and in some smooth muscle cells, but whether or not the disassembled pool contains functional 10S myosin has not been determined. Here we address this question using human airway smooth muscle cells (hASMCs). Using two antibodies against different epitopes on smooth muscle myosin II (SMM), two distinct pools of SMM, diffuse, and stress-fiber–associated, were visualized by immunocytochemical staining. The two SMM pools were functional in that they could be interconverted in two ways: (i) by exposure to 10S- versus filament-promoting buffer conditions, and (ii) by exposure to a peptide that shifts the filament-10S equilibrium toward filaments in vitro by a known mechanism that requires the presence of the 10S conformation. The effect of the peptide was not due to a trivial increase in SMM phosphorylation, and its specificity was demonstrated by use of a scrambled peptide, which had no effect. Based upon these data, we conclude that hASMCs contain a significant pool of functional SMM in the 10S conformation that can assemble into filaments upon changing cellular conditions. This study provides unique direct evidence for the presence of a significant pool of functional myosin in the 10S conformation in cells. PMID:21205888

  17. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.

    PubMed

    Hsiao, Amy Y; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.

  18. Smooth Muscle-Like Tissue Constructs with Circumferentially Oriented Cells Formed by the Cell Fiber Technology

    PubMed Central

    Hsiao, Amy Y.; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments. PMID:25734774

  19. Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells.

    PubMed

    Petri, Marcelo H; Tellier, Céline; Michiels, Carine; Ellertsen, Ingvill; Dogné, Jean-Michel; Bäck, Magnus

    2013-11-15

    The prothrombotic mediator thromboxane A2 is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels of different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNFα incubation, whereas concentrations of 6-keto PGF1α in supernatants of endothelial cells incubated with TNFα were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNFα-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling

    PubMed Central

    Lu, Ming; Luo, Ying; Hu, Pengfei; Dou, Liping; Huang, Shuwei

    2018-01-01

    Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell migration assay. And we explored the underlying mechanism by Western blotting. Results: AGEs significantly induced the proliferation and migration of VSMCs, but treatment with tanshinone IIA attenuated these effects. AGEs could increase the activity of the ERK1/2 and p38 pathways but not the JNK pathway. Treatment with tanshinone IIA inhibited the AGEs-induced activation of the ERK1/2 pathway but not the p38 pathway. Conclusion: Tanshinone IIA inhibits AGEs-induced proliferation and migration of VSMCs by suppressing the ERK1/2 MAPK signaling pathway. PMID:29372041

  1. Transforming growth factor‐β enhances Rho‐kinase activity and contraction in airway smooth muscle via the nucleotide exchange factor ARHGEF1

    PubMed Central

    Shaifta, Yasin; MacKay, Charles E.; Irechukwu, Nneka; O'Brien, Katie A.; Wright, David B.; Ward, Jeremy P. T.

    2017-01-01

    Key points Transforming growth‐factor‐β (TGF‐β) and RhoA/Rho‐kinase are independently implicated in the airway hyper‐responsiveness associated with asthma, but how these proteins interact is not fully understood.We examined the effects of pre‐treatment with TGF‐β on expression and activity of RhoA, Rho‐kinase and ARHGEF1, an activator of RhoA, as well as on bradykinin‐induced contraction, in airway smooth muscle.TGF‐β enhanced bradykinin‐induced RhoA translocation, Rho‐kinase‐dependent phosphorylation and contraction, but partially suppressed bradykinin‐induced RhoA activity (RhoA‐GTP content).TGF‐β enhanced the expression of ARHGEF1, while a small interfering RNA against ARHGEF1 and a RhoGEF inhibitor prevented the effects of TGF‐β on RhoA and Rho‐kinase activity and contraction, respectively.ARHGEF1 expression was also enhanced in airway smooth muscle from asthmatic patients and ovalbumin‐sensitized mice.ARHGEF1 is a key TGF‐β target gene, an important regulator of Rho‐kinase activity and therefore a potential therapeutic target for the treatment of asthmatic airway hyper‐responsiveness. Abstract Transforming growth factor‐β (TGF‐β), RhoA/Rho‐kinase and Src‐family kinases (SrcFK) have independently been implicated in airway hyper‐responsiveness, but how they interact to regulate airway smooth muscle contractility is not fully understood. We found that TGF‐β pre‐treatment enhanced acute contractile responses to bradykinin (BK) in isolated rat bronchioles, and inhibitors of RhoGEFs (Y16) and Rho‐kinase (Y27632), but not the SrcFK inhibitor PP2, prevented this enhancement. In cultured human airway smooth muscle cells (hASMCs), TGF‐β pre‐treatment enhanced the protein expression of the Rho guanine nucleotide exchange factor ARHGEF1, MLC20, MYPT‐1 and the actin‐severing protein cofilin, but not of RhoA, ROCK2 or c‐Src. In hASMCs, acute treatment with BK triggered subcellular translocation

  2. Temporal and spatial dynamics underlying capacitative calcium entry in human colonic smooth muscle.

    PubMed

    Kovac, Jason R; Chrones, Tom; Sims, Stephen M

    2008-01-01

    Following smooth muscle excitation and contraction, depletion of intracellular Ca(2+) stores activates capacitative Ca(2+) entry (CCE) to replenish stores and sustain cytoplasmic Ca(2+) (Ca(2+)(i)) elevations. The objectives of the present study were to characterize CCE and the Ca(2+)(i) dynamics underlying human colonic smooth muscle contraction by using tension recordings, fluorescent Ca(2+)-indicator dyes, and patch-clamp electrophysiology. The neurotransmitter acetylcholine (ACh) contracted tissue strips and, in freshly isolated colonic smooth muscle cells (SMCs), caused elevation of Ca(2+)(i) as well as activation of nonselective cation currents. To deplete Ca(2+)(i) stores, the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitors thapsigargin and cyclopiazonic acid were added to a Ca(2+)-free bathing solution. Under these conditions, addition of extracellular Ca(2+) (3 mM) elicited increased tension that was inhibited by the cation channel blockers SKF-96365 (10 microM) and lanthanum (100 microM), suggestive of CCE. In a separate series of experiments on isolated SMCs, SERCA inhibition generated a gradual and sustained inward current. When combined with high-speed Ca(2+)-imaging techniques, the CCE-evoked rise of Ca(2+)(i) was associated with inward currents carrying Ca(2+) that were inhibited by SKF-96365. Regional specializations in Ca(2+) influx and handling during CCE were observed. Distinct "hotspot" regions of Ca(2+) rise and plateau were evident in 70% of cells, a feature not previously recognized in smooth muscle. We propose that store-operated Ca(2+) entry occurs in hotspots contributing to localized Ca(2+) elevations in human colonic smooth muscle.

  3. Effects of hypoxia and glucose-removal condition on muscle contraction of the smooth muscles of porcine urinary bladder

    PubMed Central

    NAGAI, Yuta; KANEDA, Takeharu; MIYAMOTO, Yasuyuki; NURUKI, Takaomi; KANDA, Hidenori; URAKAWA, Norimoto; SHIMIZU, Kazumasa

    2015-01-01

    To elucidate the dependence of aerobic energy metabolism and utilization of glucose in contraction of urinary bladder smooth muscle, we investigated the changes in the reduced pyridine nucleotide (PNred) fluorescence, representing glycolysis activity, and determined the phosphocreatine (PCr) and ATP contents of the porcine urinary bladder during contractions induced by high K+ or carbachol (CCh) and with and without hypoxia (achieved by bubbling N2 instead of O2) or in a glucose-free condition. Hyperosmotic addition of 65 mM KCl (H-65K+) and 1 µM CCh induced a phasic contraction followed by a tonic contraction. A glucose-free physiological salt solution (PSS) did not change the subsequent contractile responses to H-65K+ and CCh. However, hypoxia significantly attenuated H-65K+- and CCh-induced contraction. H-65K+ and CCh induced a sustained increase in PNred fluorescence, representing glycolysis activity. Hypoxia enhanced H-65K+- and CCh-induced increases in PNred fluorescence, whereas glucose-free PSS decreased these increases, significantly. In the presence of H-65K+, hypoxia decreased the PCr and ATP contents; however, the glucose-free PSS did not change the PCr contents. In conclusion, we demonstrated that high K+- and CCh-induced contractions depend on aerobic metabolism and that an endogenous substrate may be utilized to maintain muscle contraction in a glucose-free PSS in the porcine urinary bladder. PMID:26369431

  4. Effects of hypoxia and glucose-removal condition on muscle contraction of the smooth muscles of porcine urinary bladder.

    PubMed

    Nagai, Yuta; Kaneda, Takeharu; Miyamoto, Yasuyuki; Nuruki, Takaomi; Kanda, Hidenori; Urakawa, Norimoto; Shimizu, Kazumasa

    2016-01-01

    To elucidate the dependence of aerobic energy metabolism and utilization of glucose in contraction of urinary bladder smooth muscle, we investigated the changes in the reduced pyridine nucleotide (PNred) fluorescence, representing glycolysis activity, and determined the phosphocreatine (PCr) and ATP contents of the porcine urinary bladder during contractions induced by high K(+) or carbachol (CCh) and with and without hypoxia (achieved by bubbling N2 instead of O2) or in a glucose-free condition. Hyperosmotic addition of 65 mM KCl (H-65K(+)) and 1 µM CCh induced a phasic contraction followed by a tonic contraction. A glucose-free physiological salt solution (PSS) did not change the subsequent contractile responses to H-65K(+) and CCh. However, hypoxia significantly attenuated H-65K(+)- and CCh-induced contraction. H-65K(+) and CCh induced a sustained increase in PNred fluorescence, representing glycolysis activity. Hypoxia enhanced H-65K(+)- and CCh-induced increases in PNred fluorescence, whereas glucose-free PSS decreased these increases, significantly. In the presence of H-65K(+), hypoxia decreased the PCr and ATP contents; however, the glucose-free PSS did not change the PCr contents. In conclusion, we demonstrated that high K(+)- and CCh-induced contractions depend on aerobic metabolism and that an endogenous substrate may be utilized to maintain muscle contraction in a glucose-free PSS in the porcine urinary bladder.

  5. A mathematical model of airway and pulmonary arteriole smooth muscle.

    PubMed

    Wang, Inga; Politi, Antonio Z; Tania, Nessy; Bai, Yan; Sanderson, Michael J; Sneyd, James

    2008-03-15

    Airway hyperresponsiveness is a major characteristic of asthma and is believed to result from the excessive contraction of airway smooth muscle cells (SMCs). However, the identification of the mechanisms responsible for airway hyperresponsiveness is hindered by our limited understanding of how calcium (Ca2+), myosin light chain kinase (MLCK), and myosin light chain phosphatase (MLCP) interact to regulate airway SMC contraction. In this work, we present a modified Hai-Murphy cross-bridge model of SMC contraction that incorporates Ca2+ regulation of MLCK and MLCP. A comparative fit of the model simulations to experimental data predicts 1), that airway and arteriole SMC contraction is initiated by fast activation by Ca2+ of MLCK; 2), that airway SMC, but not arteriole SMC, is inhibited by a slower activation by Ca2+ of MLCP; and 3), that the presence of a contractile agonist inhibits MLCP to enhance the Ca2+ sensitivity of airway and arteriole SMCs. The implication of these findings is that murine airway SMCs exploit a Ca2+-dependent mechanism to favor a default state of relaxation. The rate of SMC relaxation is determined principally by the rate of release of the latch-bridge state, which is predicted to be faster in airway than in arteriole. In addition, the model also predicts that oscillations in calcium concentration, commonly observed during agonist-induced smooth muscle contraction, cause a significantly greater contraction than an elevated steady calcium concentration.

  6. A Mathematical Model of Airway and Pulmonary Arteriole Smooth Muscle

    PubMed Central

    Wang, Inga; Politi, Antonio Z.; Tania, Nessy; Bai, Yan; Sanderson, Michael J.; Sneyd, James

    2008-01-01

    Airway hyperresponsiveness is a major characteristic of asthma and is believed to result from the excessive contraction of airway smooth muscle cells (SMCs). However, the identification of the mechanisms responsible for airway hyperresponsiveness is hindered by our limited understanding of how calcium (Ca2+), myosin light chain kinase (MLCK), and myosin light chain phosphatase (MLCP) interact to regulate airway SMC contraction. In this work, we present a modified Hai-Murphy cross-bridge model of SMC contraction that incorporates Ca2+ regulation of MLCK and MLCP. A comparative fit of the model simulations to experimental data predicts 1), that airway and arteriole SMC contraction is initiated by fast activation by Ca2+ of MLCK; 2), that airway SMC, but not arteriole SMC, is inhibited by a slower activation by Ca2+ of MLCP; and 3), that the presence of a contractile agonist inhibits MLCP to enhance the Ca2+ sensitivity of airway and arteriole SMCs. The implication of these findings is that murine airway SMCs exploit a Ca2+-dependent mechanism to favor a default state of relaxation. The rate of SMC relaxation is determined principally by the rate of release of the latch-bridge state, which is predicted to be faster in airway than in arteriole. In addition, the model also predicts that oscillations in calcium concentration, commonly observed during agonist-induced smooth muscle contraction, cause a significantly greater contraction than an elevated steady calcium concentration. PMID:18065464

  7. Characterization of primary cilia in human airway smooth muscle cells.

    PubMed

    Wu, Jun; Du, Hui; Wang, Xiangling; Mei, Changlin; Sieck, Gary C; Qian, Qi

    2009-08-01

    Considerable evidence indicates a key role for primary cilia of mammalian cells in mechanochemical sensing. Dysfunctions of primary cilia have been linked to the pathogenesis of several human diseases. However, cilia-related research has been limited to a few cell and tissue types; to our knowledge, no literature exists on primary cilia in airway smooth muscle (ASM). The aim of this study was to characterize primary cilia in human ASM. Primary cilia of human bronchial smooth muscle cells (HBSMCs) were examined using immunofluorescence confocal microscopy, and scanning and transmission electron microscopy. HBSMC migration and injury repair were examined by scratch-wound and epidermal growth factor (EGF)-induced migration assays. Cross-sectional images of normal human bronchi revealed that primary cilia of HBSMCs within each ASM bundle aggregated at the same horizontal level, forming a "cilium layer." Individual cilia of HBSMCs projected into extracellular matrix and exhibited varying degrees of deflection. Mechanochemical sensing molecules, polycystins, and alpha2-, alpha5-, and beta1-integrins were enriched in cilia, as was EGF receptor, known to activate jointly with integrins during cell migration. Migration assays demonstrated a ciliary contribution to HBSMC migration and wound repair. The primary cilia of ASM cells exert a role in sensing and transducing extracellular mechanochemical signals and in ASM injury repair. Defects in ASM ciliary function could potentially affect airway wall maintenance and/or remodeling, possibly relating to the genesis of bronchiectasis in autosomal dominant polycystic kidney disease, a disease of ciliopathy.

  8. Assays for in vitro monitoring of human airway smooth muscle (ASM) and human pulmonary arterial vascular smooth muscle (VSM) cell migration.

    PubMed

    Goncharova, Elena A; Goncharov, Dmitry A; Krymskaya, Vera P

    2006-01-01

    Migration of human pulmonary vascular smooth muscle (VSM) cells contributes to vascular remodeling in pulmonary arterial hypertension and atherosclerosis. Evidence also indicates that, in part, migration of airway smooth muscle (ASM) cells may contribute to airway remodeling associated with asthma. Here we describe migration of VSM and ASM cells in vitro using Transwell or Boyden chamber assays. Because dissecting signaling mechanisms regulating cell migration requires molecular approaches, our protocol also describes how to assess migration of transfected VSM and ASM cells. Transwell or Boyden chamber assays can be completed in approximately 8 h and include plating of serum-deprived VSM or ASM cell suspension on membrane precoated with collagen, migration of cells toward chemotactic gradient and visual (Transwell) or digital (Boyden chamber) analysis of membrane. Although the Transwell assay is easy, the Boyden chamber assay requires hands-on experience; however, both assays are reliable cell-based approaches providing valuable information on how chemotactic and inflammatory factors modulate VSM and ASM migration.

  9. Novel mechanism of hydrogen sulfide-induced guinea pig urinary bladder smooth muscle contraction: role of BK channels and cholinergic neurotransmission

    PubMed Central

    Fernandes, Vítor S.; Xin, Wenkuan

    2015-01-01

    Hydrogen sulfide (H2S) is a key signaling molecule regulating important physiological processes, including smooth muscle function. However, the mechanisms underlying H2S-induced detrusor smooth muscle (DSM) contractions are not well understood. This study investigates the cellular and tissue mechanisms by which H2S regulates DSM contractility, excitatory neurotransmission, and large-conductance voltage- and Ca2+-activated K+ (BK) channels in freshly isolated guinea pig DSM. We used a multidisciplinary experimental approach including isometric DSM tension recordings, colorimetric ACh measurement, Ca2+ imaging, and patch-clamp electrophysiology. In isolated DSM strips, the novel slow release H2S donor, P-(4-methoxyphenyl)-p-4-morpholinylphosphinodithioic acid morpholine salt (GYY4137), significantly increased the spontaneous phasic and nerve-evoked DSM contractions. The blockade of neuronal voltage-gated Na+ channels or muscarinic ACh receptors with tetrodotoxin or atropine, respectively, reduced the stimulatory effect of GYY4137 on DSM contractility. GYY4137 increased ACh release from bladder nerves, which was inhibited upon blockade of L-type voltage-gated Ca2+ channels with nifedipine. Furthermore, GYY4137 increased the amplitude of the Ca2+ transients and basal Ca2+ levels in isolated DSM strips. GYY4137 reduced the DSM relaxation induced by the BK channel opener, NS11021. In freshly isolated DSM cells, GYY4137 decreased the amplitude and frequency of transient BK currents recorded in a perforated whole cell configuration and reduced the single BK channel open probability measured in excised inside-out patches. GYY4137 inhibited spontaneous transient hyperpolarizations and depolarized the DSM cell membrane potential. Our results reveal the novel findings that H2S increases spontaneous phasic and nerve-evoked DSM contractions by activating ACh release from bladder nerves in combination with a direct inhibition of DSM BK channels. PMID:25948731

  10. Dynamic equilibration of airway smooth muscle contraction during physiological loading.

    PubMed

    Latourelle, Jeanne; Fabry, Ben; Fredberg, Jeffrey J

    2002-02-01

    Airway smooth muscle contraction is the central event in acute airway narrowing in asthma. Most studies of isolated muscle have focused on statically equilibrated contractile states that arise from isometric or isotonic contractions. It has recently been established, however, that muscle length is determined by a dynamically equilibrated state of the muscle in which small tidal stretches associated with the ongoing action of breathing act to perturb the binding of myosin to actin. To further investigate this phenomenon, we describe in this report an experimental method for subjecting isolated muscle to a dynamic microenvironment designed to closely approximate that experienced in vivo. Unlike previous methods that used either time-varying length control, force control, or time-invariant auxotonic loads, this method uses transpulmonary pressure as the controlled variable, with both muscle force and muscle length free to adjust as they would in vivo. The method was implemented by using a servo-controlled lever arm to load activated airway smooth muscle strips with transpulmonary pressure fluctuations of increasing amplitude, simulating the action of breathing. The results are not consistent with classical ideas of airway narrowing, which rest on the assumption of a statically equilibrated contractile state; they are consistent, however, with the theory of perturbed equilibria of myosin binding. This experimental method will allow for quantitative experimental evaluation of factors that were previously outside of experimental control, including sensitivity of muscle length to changes of tidal volume, changes of lung volume, shape of the load characteristic, loss of parenchymal support and inflammatory thickening of airway wall compartments.

  11. Thrombospondin-1, -2 and -5 have differential effects on vascular smooth muscle cell physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helkin, Alex; Maier, Kristopher G.; Department of Veterans Affairs VA Healthcare Network Upstate New York at Syracuse, Syracuse, NY

    Introduction: The thrombospondins (TSPs) are matricellular proteins that exert multifunctional effects by binding cytokines, cell-surface receptors and other proteins. TSPs play important roles in vascular pathobiology and are all expressed in arterial lesions. The differential effects of TSP-1, -2, and -5 represent a gap in knowledge in vascular smooth muscle cell (VSMC) physiology. Our objective is to determine if structural differences of the TSPs imparted different effects on VSMC functions critical to the formation of neointimal hyperplasia. We hypothesize that TSP-1 and -2 induce similar patterns of migration, proliferation and gene expression, while the effects of TSP-5 are different. Methods:more » Human aortic VSMC chemotaxis was tested for TSP-2 and TSP-5 (1–40 μg/mL), and compared to TSP-1 and serum-free media (SFM) using a modified Boyden chamber. Next, VSMCs were exposed to TSP-1, TSP-2 or TSP-5 (0.2–40 μg/mL). Proliferation was assessed by MTS assay. Finally, VSMCs were exposed to TSP-1, TSP-2, TSP-5 or SFM for 3, 6 or 24 h. Quantitative real-time PCR was performed on 96 genes using a microfluidic card. Statistical analysis was performed by ANOVA or t-test, with p < 0.05 being significant. Results: TSP-1, TSP-2 and TSP-5 at 20 μg/mL all induce chemotaxis 3.1 fold compared to serum-free media. TSP-1 and TSP-2 induced proliferation 53% and 54% respectively, whereas TSP-5 did not. In the gene analysis, overall, cardiovascular system development and function is the canonical pathway most influenced by TSP treatment, and includes multiple growth factors, cytokines and proteases implicated in cellular migration, proliferation, vasculogenesis, apoptosis and inflammation pathways. Conclusions and relevance: The results of this study indicate TSP-1, -2, and -5 play active roles in VSMC physiology and gene expression. Similarly to TSP-1, VSMC chemotaxis to TSP-2 and -5 is dose-dependent. TSP-1 and -2 induces VSMC proliferation, but TSP-5 does not

  12. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the rolemore » of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca{sup 2+} signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.« less

  13. Mitogen-activated protein kinase inhibitors suppress prostaglandin F(2alpha)-induced myosin-light chain phosphorylation and contraction in iris sphincter smooth muscle.

    PubMed

    Yousufzai, S Y; Gao, G; Abdel-Latif, A A

    2000-10-27

    The purpose of this study was to investigate the potential role of mitogen-activated protein (MAP) kinase in contraction by monitoring MAP kinase phosphorylation (activation) and contraction during agonist stimulation of cat iris sphincter smooth muscle. Changes in tension in response to prostaglandin F(2alpha), latanoprost, a prostaglandin F(2alpha) analog used as an anti-glaucoma drug, and carbachol were recorded isometrically, and MAP kinase activation was monitored by Western blot using a phosphospecific p42/p44 MAP kinase antibody. We found that treatment of the muscle with 2'-Amino-3'-methoxyflavone (PD98059) (10 microM), a specific inhibitor of MAP kinase kinase (MEK), inhibited significantly prostaglandin F(2alpha)- and latanoprost-induced phosphorylation and contraction, but had little effect on those evoked by carbachol. Prostaglandin F(2alpha) increased MAP kinase phosphorylation in a concentration-dependent manner with EC(50) value of 1.1 x 10(-8) M and increased contraction with EC(50) of 0.92 x 10(-9) M. The MAP kinase inhibitors PD98059, Apigenin and 1,4-Diamino-2,3-dicyano-1, 4bis(2-aminophenylthio)butadiene (UO126) inhibited prostaglandin F(2alpha)-induced contraction in a concentration-dependent manner with IC(50) values of 2.4, 3.0 and 4.8 microM, respectively. PD98059 had no effect on prostaglandin F(2alpha)- or on carbachol-stimulated inositol-1,4,5-trisphosphate (IP(3)) production. In contrast, the MAP kinase inhibitor inhibited prostaglandin F(2alpha)-induced myosin-light chain (MLC) phosphorylation, but had no effect on that of carbachol. N-[2-(N-(4-Chloro-cinnamyl)-N-methylaminomethyl)phenyl]-N-[2- hydroxyethyl]-4-methoxybenzenesulfonamide (KN-93) (10 microM), a Ca(2+)-calmodulin-dependent protein kinase inhibitor, and Wortmannin (10 microM), an MLC kinase inhibitor, inhibited significantly (by 80%) prostaglandin F(2alpha)- and carbachol-induced contraction. It can be concluded that in this smooth muscle p42/p44 MAP kinases are involved in

  14. The Response of Prostate Smooth Muscle Cells to Testosterone Is Determined by the Subcellular Distribution of the Androgen Receptor.

    PubMed

    Peinetti, Nahuel; Scalerandi, María Victoria; Cuello Rubio, Mariana Micaela; Leimgruber, Carolina; Nicola, Juan Pablo; Torres, Alicia Ines; Quintar, Amado Alfredo; Maldonado, Cristina Alicia

    2018-02-01

    Androgen signaling in prostate smooth muscle cells (pSMCs) is critical for the maintenance of prostate homeostasis, the alterations of which are a central aspect in the development of pathological conditions. Testosterone can act through the classic androgen receptor (AR) in the cytoplasm, eliciting genomic signaling, or through different types of receptors located at the plasma membrane for nongenomic signaling. We aimed to find evidence of nongenomic testosterone-signaling mechanisms in pSMCs and their participation in cell proliferation, differentiation, and the modulation of the response to lipopolysaccharide. We demonstrated that pSMCs can respond to testosterone by a rapid activation of ERK1/2 and Akt. Furthermore, a pool of ARs localized at the cell surface of pSMCs is responsible for a nongenomic testosterone-induced increase in cell proliferation. Through membrane receptor stimulation, testosterone favors a muscle phenotype, indicated by an increase in smooth muscle markers. We also showed that the anti-inflammatory effects of testosterone, capable of attenuating lipopolysaccharide-induced proinflammatory actions, are promoted only by receptors located inside the cell. We postulate that testosterone might perform prohomeostatic effects through intracellular-initiated mechanisms by modulating cell proliferation and inflammation, whereas some pathological, hyperproliferative actions would be induced by membrane-initiated nongenomic signaling in pSMCs. Copyright © 2018 Endocrine Society.

  15. Kv7.5 Potassium Channel Subunits Are the Primary Targets for PKA-Dependent Enhancement of Vascular Smooth Muscle Kv7 Currents

    PubMed Central

    Mani, Bharath K.; Robakowski, Christina; Brueggemann, Lyubov I.; Cribbs, Leanne L.; Tripathi, Abhishek; Majetschak, Matthias

    2016-01-01

    Kv7 (KCNQ) channels, formed as homo- or heterotetramers of Kv7.4 and Kv7.5 α-subunits, are important regulators of vascular smooth muscle cell (VSMC) membrane voltage. Recent studies demonstrate that direct pharmacological modulation of VSMC Kv7 channel activity can influence blood vessel contractility and diameter. However, the physiologic regulation of Kv7 channel activity is still poorly understood. Here, we study the effect of cAMP/protein kinase A (PKA) activation on whole cell K+ currents through endogenous Kv7.5 channels in A7r5 rat aortic smooth muscle cells or through Kv7.4/Kv7.5 heteromeric channels natively expressed in rat mesenteric artery smooth muscle cells. The contributions of specific α-subunits are further dissected using exogenously expressed human Kv7.4 and Kv7.5 homo- or heterotetrameric channels in A7r5 cells. Stimulation of Gαs-coupled β-adrenergic receptors with isoproterenol induced PKA-dependent activation of endogenous Kv7.5 currents in A7r5 cells. The receptor-mediated enhancement of Kv7.5 currents was mimicked by pharmacological agents that increase [cAMP] (forskolin, rolipram, 3-isobutyl-1-methylxanthine, and papaverine) or mimic cAMP (8-bromo-cAMP); the 2- to 4-fold PKA-dependent enhancement of currents was also observed with exogenously expressed Kv7.5 channels. In contrast, exogenously-expressed heterotetrameric Kv7.4/7.5 channels in A7r5 cells or native mesenteric artery smooth muscle Kv7.4/7.5 channels were only modestly enhanced, and homo-tetrameric Kv7.4 channels were insensitive to this regulatory pathway. Correspondingly, proximity ligation assays indicated that isoproterenol induced PKA-dependent phosphorylation of exogenously expressed Kv7.5 channel subunits, but not of Kv7.4 subunits. These results suggest that signal transduction-mediated responsiveness of vascular smooth muscle Kv7 channel subunits to cAMP/PKA activation follows the order of Kv7.5 >> Kv7.4/Kv7.5 > Kv7.4. PMID:26700561

  16. Control of stomach smooth muscle development and intestinal rotation by transcription factor BARX1

    PubMed Central

    Jayewickreme, Chenura D.; Shivdasani, Ramesh A.

    2015-01-01

    Diverse functions of the homeodomain transcription factor BARX1 include Wnt-dependent, non-cell autonomous specification of the stomach epithelium, tracheo-bronchial septation, and Wnt-independent expansion of the spleen primordium. Tight spatio-temporal regulation of Barx1 levels in the mesentery and stomach mesenchyme suggests additional roles. To determine these functions, we forced constitutive BARX1 expression in the Bapx1 expression domain, which includes the mesentery and intestinal mesenchyme, and also examined Barx1−/− embryos in further detail. Transgenic embryos invariably showed intestinal truncation and malrotation, in part reflecting abnormal left-right patterning. Ectopic BARX1 expression did not affect intestinal epithelium, but intestinal smooth muscle developed with features typical of the stomach wall. BARX1, which is normally restricted to the developing stomach, drives robust smooth muscle expansion in this organ by promoting proliferation of myogenic progenitors at the expense of other sub-epithelial cells. Undifferentiated embryonic stomach and intestinal mesenchyme showed modest differences in mRNA expression and BARX1 was sufficient to induce much of the stomach profile in intestinal cells. However, limited binding at cis-regulatory sites implies that BARX1 may act principally through other transcription factors. Genes expressed ectopically in BARX1+ intestinal mesenchyme and reduced in Barx1−/− stomach mesenchyme include Isl1, Pitx1, Six2 and Pitx2, transcription factors known to control left-right patterning and influence smooth muscle development. The sum of evidence suggests that potent BARX1 functions in intestinal rotation and stomach myogenesis occur through this small group of intermediary transcription factors. PMID:26057579

  17. Transcriptional up-regulation of antioxidant genes by PPARδ inhibits angiotensin II-induced premature senescence in vascular smooth muscle cells.

    PubMed

    Kim, Hyo Jung; Ham, Sun Ah; Paek, Kyung Shin; Hwang, Jung Seok; Jung, Si Young; Kim, Min Young; Jin, Hanna; Kang, Eun Sil; Woo, Im Sun; Kim, Hye Jung; Lee, Jae Heun; Chang, Ki Churl; Han, Chang Woo; Seo, Han Geuk

    2011-03-25

    This study evaluated peroxisome proliferator-activated receptor (PPAR) δ as a potential target for therapeutic intervention in Ang II-induced senescence in human vascular smooth muscle cells (hVSMCs). Activation of PPARδ by GW501516, a specific agonist of PPARδ, significantly inhibited the Ang II-induced premature senescence of hVSMCs. Agonist-activated PPARδ suppressed the generation of Ang II-triggered reactive oxygen species (ROS) with a concomitant reduction in DNA damage. Notably, GW501516 up-regulated the expression of antioxidant genes, such as glutathione peroxidase 1, thioredoxin 1, manganese superoxide dismutase and heme oxygenase 1. siRNA-mediated down-regulation of these antioxidant genes almost completely abolished the effects of GW501516 on ROS production and premature senescence in hVSMCs treated with Ang II. Taken together, the enhanced transcription of antioxidant genes is responsible for the PPARδ-mediated inhibition of premature senescence through sequestration of ROS in hVSMCs treated with Ang II. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Vasorelaxant effects of aqueous leaf extract of Tridax procumbens on aortic smooth muscle isolated from the rat.

    PubMed

    Salahdeen, Hussein M; Murtala, Babatunde A

    2012-01-01

    Tridax procumbens is commonly used in traditional medicine in southern part of Nigeria for the treatment of hypertension. However, the mechanism of its antihypertensive properties remains unclear. Attempts were made to investigate the properties of direct actions of aqueous extract of the leaves of T. procumbens on mechanical responses of smooth muscles in aortic ring preparations isolated from the rat. Endothelium-intact aortic rings, isolated from the normotensive rats, had been pre-contracted with noradrenaline, and cumulative addition of the aqueous extract (0.15-1.05 mg/mL) to the bathing fluid induced a concentration-dependent relaxation. Aqueous extract of T. procumbens also attenuated the contractile responses to KCl and shifted the concentration-response curve to the right. The contractile responses to serotonin were also attenuated and the concentration-response curve was shifted to the right in the presence of the extract. The results of this study indicated that aqueous leaf extract of T. procumbens possesses vasodilatory effects on the aortic smooth muscles isolated from the rat. Based on these results, a possible mechanism involved in the relaxing actions of the extract on vascular smooth muscle was discussed. The results of this study may provide a scientific basis for the use of this extract to the treatment of hypertension in Nigerian traditional medicine.

  19. [Forskolin inhibits spontaneous contraction of gastric antral smooth muscle in rats].

    PubMed

    Jiang, Jing-Zhi; Sun, Qian; Xu, Dong-Yuan; Zhang, Mo-Han; Piao, Li-Hua; Cai, Ying-Lan; Jin, Zheng

    2013-04-25

    The aim of the present study was to investigate the effects of cyclic adenosine monophosphate (cAMP) on rat gastric antral circular smooth muscle function. Forskolin, a direct activator of adenylyl cyclase (AC), was used to observe the influences of cAMP. Multi-channel physiological recorder was used to record spontaneous contraction activity of gastric antral circular muscle from Wistar rats. And ELISA method was used to detect the change of cAMP production in perfusate. The results showed that forskolin concentration-dependently suppressed the amplitude and frequency of the spontaneous contraction of the gastric antral muscle, and lowered the baseline of contraction movement significantly. Forskolin concentration-dependently increased the production of cAMP in the perfusate, which showed a significant negative correlation with the contraction amplitude of gastric antral ring muscle. The inhibitory effect of forskolin on spontaneous contraction activity of rat gastric antral circular muscle could be blocked by cAMP-dependent protein kinase (PKA) inhibitor H-89. These results suggest forskolin increases cAMP production and then activates PKA pathway, resulting in the inhibition of the spontaneous contraction activity of rat gastric antral circular smooth muscle.

  20. Cordyceps sinensis extract suppresses hypoxia-induced proliferation of rat pulmonary artery smooth muscle cells.

    PubMed

    Gao, Bao-an; Yang, Jun; Huang, Ji; Cui, Xiang-jun; Chen, Shi-xiong; Den, Hong-yan; Xiang, Guang-ming

    2010-09-01

    To investigate the effects of a Chinese herb Cordyceps sinensis (C. sinensis) extract on hypoxia-induced proliferation and the underlying mechanisms involved. This prospective study was carried out at the Central Laboratory of Yichang Central People's Hospital, Yichang, China from March 2008 to April 2010. The C. sinensis was extracted from the Chinese herb C. sinensis using aqueous alcohol extraction techniques. Forty healthy adult male Sprague Dawley rats were used in the study. The proliferation of pulmonary artery smooth muscle cells (PASMCs) was measured using 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell viability was determined by trypan blue exclusion. Cell cycles were analyzed using FACSort flow cytometric analysis. The expression of proliferating cell nuclear antigen (PCNA), c-jun, and c-fos in rat PASMCs was determined by immunohistochemistry. We found an increased proliferation of PASMCs and increased expression of transcription factors, c-jun and c-fos in PASMCs cultured under hypoxic conditions. The C. sinensis extract significantly inhibited hypoxia-induced cell proliferation in a dose-dependent manner. In addition, C. sinensis extract also significantly inhibited the expression of PCNA, c-jun, and c-fos in these PASMCs. Our results indicated that C. sinensis extract inhibits hypoxia-induced proliferation of rat PASMCs, probably by suppressing the expression of PCNA, c-fos, c-jun, and decreasing the percentage of cells in synthesis phase, second gap phase, and mitotic phase in cell cycle (S+G2/M) phase. Our results therefore, provided novel evidence that C. sinensis extract may be used as a therapeutic reagent in the treatment of hypoxic pulmonary hypertension.

  1. Gingerol Inhibits Serum-Induced Vascular Smooth Muscle Cell Proliferation and Injury-Induced Neointimal Hyperplasia by Suppressing p38 MAPK Activation.

    PubMed

    Jain, Manish; Singh, Ankita; Singh, Vishal; Maurya, Preeti; Barthwal, Manoj Kumar

    2016-03-01

    Gingerol inhibits growth of cancerous cells; however, its role in vascular smooth muscle cell (VSMC) proliferation is not known. The present study investigated the effect of gingerol on VSMC proliferation in cell culture and during neointima formation after balloon injury. Rat VSMCs or carotid arteries were harvested at 15 minutes, 30 minutes, 1, 6, 12, and 24 hours of fetal bovine serum (FBS; 10%) stimulation or balloon injury, respectively. Gingerol prevented FBS (10%)-induced proliferation of VSMCs in a dose-dependent manner (50 μmol/L-400 μmol/L). The FBS-induced proliferating cell nuclear antigen (PCNA) upregulation and p27(Kip1) downregulation were also attenuated in gingerol (200 μmol/L) pretreated cells. Fetal bovine serum-induced p38 mitogen-activated protein kinase (MAPK) activation, PCNA upregulation, and p27(Kip1) downregulation were abrogated in gingerol (200 μmol/L) and p38 MAPK inhibitor (SB203580, 10 μmol/L) pretreated cells. Balloon injury induced time-dependent p38 MAPK activation in the carotid artery. Pretreatment with gingerol (200 μmol/L) significantly attenuated injury-induced p38 MAPK activation, PCNA upregulation, and p27(Kip1) downregulation. After 14 days of balloon injury, intimal thickening, neointimal proliferation, and endothelial dysfunction were significantly prevented in gingerol pretreated arteries. In isolated organ bath studies, gingerol (30 nmol/L-300 μmol/L) inhibited phenylephrine-induced contractions and induced dose-dependent relaxation of rat thoracic aortic rings in a partially endothelium-dependent manner. Gingerol prevented FBS-induced VSMC proliferation and balloon injury-induced neointima formation by regulating p38 MAPK. Vasodilator effect of gingerol observed in the thoracic aorta was partially endothelium dependent. Gingerol is thus proposed as an attractive agent for modulating VSMC proliferation, vascular reactivity, and progression of vascular proliferative diseases. © The Author(s) 2015.

  2. Force maintenance and myosin filament assembly regulated by Rho-kinase in airway smooth muscle.

    PubMed

    Lan, Bo; Deng, Linhong; Donovan, Graham M; Chin, Leslie Y M; Syyong, Harley T; Wang, Lu; Zhang, Jenny; Pascoe, Christopher D; Norris, Brandon A; Liu, Jeffrey C-Y; Swyngedouw, Nicholas E; Banaem, Saleha M; Paré, Peter D; Seow, Chun Y

    2015-01-01

    Smooth muscle contraction can be divided into two phases: the initial contraction determines the amount of developed force and the second phase determines how well the force is maintained. The initial phase is primarily due to activation of actomyosin interaction and is relatively well understood, whereas the second phase remains poorly understood. Force maintenance in the sustained phase can be disrupted by strains applied to the muscle; the strain causes actomyosin cross-bridges to detach and also the cytoskeletal structure to disassemble in a process known as fluidization, for which the underlying mechanism is largely unknown. In the present study we investigated the ability of airway smooth muscle to maintain force after the initial phase of contraction. Specifically, we examined the roles of Rho-kinase and protein kinase C (PKC) in force maintenance. We found that for the same degree of initial force inhibition, Rho-kinase substantially reduced the muscle's ability to sustain force under static conditions, whereas inhibition of PKC had a minimal effect on sustaining force. Under oscillatory strain, Rho-kinase inhibition caused further decline in force, but again, PKC inhibition had a minimal effect. We also found that Rho-kinase inhibition led to a decrease in the myosin filament mass in the muscle cells, suggesting that one of the functions of Rho-kinase is to stabilize myosin filaments. The results also suggest that dissolution of myosin filaments may be one of the mechanisms underlying the phenomenon of fluidization. These findings can shed light on the mechanism underlying deep inspiration induced bronchodilation. Copyright © 2015 the American Physiological Society.

  3. Force maintenance and myosin filament assembly regulated by Rho-kinase in airway smooth muscle

    PubMed Central

    Lan, Bo; Deng, Linhong; Donovan, Graham M.; Chin, Leslie Y. M.; Syyong, Harley T.; Wang, Lu; Zhang, Jenny; Pascoe, Christopher D.; Norris, Brandon A.; Liu, Jeffrey C.-Y.; Swyngedouw, Nicholas E.; Banaem, Saleha M.; Paré, Peter D.

    2014-01-01

    Smooth muscle contraction can be divided into two phases: the initial contraction determines the amount of developed force and the second phase determines how well the force is maintained. The initial phase is primarily due to activation of actomyosin interaction and is relatively well understood, whereas the second phase remains poorly understood. Force maintenance in the sustained phase can be disrupted by strains applied to the muscle; the strain causes actomyosin cross-bridges to detach and also the cytoskeletal structure to disassemble in a process known as fluidization, for which the underlying mechanism is largely unknown. In the present study we investigated the ability of airway smooth muscle to maintain force after the initial phase of contraction. Specifically, we examined the roles of Rho-kinase and protein kinase C (PKC) in force maintenance. We found that for the same degree of initial force inhibition, Rho-kinase substantially reduced the muscle's ability to sustain force under static conditions, whereas inhibition of PKC had a minimal effect on sustaining force. Under oscillatory strain, Rho-kinase inhibition caused further decline in force, but again, PKC inhibition had a minimal effect. We also found that Rho-kinase inhibition led to a decrease in the myosin filament mass in the muscle cells, suggesting that one of the functions of Rho-kinase is to stabilize myosin filaments. The results also suggest that dissolution of myosin filaments may be one of the mechanisms underlying the phenomenon of fluidization. These findings can shed light on the mechanism underlying deep inspiration induced bronchodilation. PMID:25305246

  4. Optimisation of isolation of richly pure and homogeneous primary human colonic smooth muscle cells.

    PubMed

    Tattoli, I; Corleto, V D; Taffuri, M; Campanini, N; Rindi, G; Caprilli, R; Delle Fave, G; Severi, C

    2004-11-01

    Inherent properties of gastrointestinal smooth muscle can be assessed using isolated cell suspensions. Currently available isolation techniques, based on short 2-h enzymatic digestion, however, present the disadvantage of low cellular yield with brief viability. These features are an important limiting factor especially in studies in humans in which tissue may not be available daily and mixing of samples is not recommended. To optimise the isolation procedure of cells from human colon to obtain a richly pure primary smooth muscle cell preparation. Slices of circular muscle layer, obtained from surgical specimens of human colon, were incubated overnight in Dulbecco's modified eagle's medium supplemented with antibiotics, foetal bovine serum, an ATP-regenerating system and collagenase. On the following day, digested muscle strips were suspended in HEPES buffer, and spontaneously dissociated smooth muscle cells were harvested and used either immediately or maintained in suspension for up to 72 h. Cell yield, purity, viability, contractile responses, associated intracellular calcium signals and RNA and protein extraction were evaluated and compared to cell suspensions obtained with the current short digestion protocol. The overnight isolation protocol offers the advantage of obtaining a pure, homogeneous, long-life viable cell suspension that maintains a fully differentiated smooth muscle phenotype unchanged for at least 72 h and that allows multiple functional/biochemical studies and efficient RNA extraction from a single human specimen.

  5. β-Agonist-mediated Relaxation of Airway Smooth Muscle Is Protein Kinase A-dependent*

    PubMed Central

    Morgan, Sarah J.; Deshpande, Deepak A.; Tiegs, Brian C.; Misior, Anna M.; Yan, Huandong; Hershfeld, Alena V.; Rich, Thomas C.; Panettieri, Reynold A.; An, Steven S.; Penn, Raymond B.

    2014-01-01

    Inhaled β-agonists are effective at reversing bronchoconstriction in asthma, but the mechanism by which they exert this effect is unclear and controversial. PKA is the historically accepted effector, although this assumption is made on the basis of associative and not direct evidence. Recent studies have asserted that exchange protein activated by cAMP (Epac), not PKA, mediates the relaxation of airway smooth muscle (ASM) observed with β-agonist treatment. This study aims to clarify the role of PKA in the prorelaxant effects of β-agonists on ASM. Inhibition of PKA activity via expression of the PKI and RevAB peptides results in increased β-agonist-mediated cAMP release, abolishes the inhibitory effect of isoproterenol on histamine-induced intracellular calcium flux, and significantly attenuates histamine-stimulated MLC-20 phosphorylation. Analyses of ASM cell and tissue contraction demonstrate that PKA inhibition eliminates most, if not all, β-agonist-mediated relaxation of contracted smooth muscle. Conversely, Epac knockdown had no effect on the regulation of contraction or procontractile signaling by isoproterenol. These findings suggest that PKA, not Epac, is the predominant and physiologically relevant effector through which β-agonists exert their relaxant effects. PMID:24973219

  6. Sivelestat relaxes vascular smooth muscle contraction in human gastric arteries.

    PubMed

    Amemori, Hiroko; Maeda, Yoshinori; Torikai, Arisu; Nakashima, Mikio

    2011-12-01

    Sivelestat sodium hydrate (sivelestat) is a novel synthetic drug and specific inhibitor of neutrophil elastase that has been approved in Japan as a treatment for acute lung injury associated with systemic inflammatory response syndrome. It is important to determine how sivelestat affects hemodynamics and the regulatory mechanisms of vascular smooth muscle (VSM). We recently found that sivelestat relaxes porcine coronary artery VSM via selective inhibition of Ca(2+) sensitization induced by a receptor agonist without affecting the normal Ca(2+)-induced contraction. Although sivelestat relaxes porcine artery, its effects on human artery are unknown; therefore, the purpose of the present study was to assess the effects of sivelestat on human artery. In the present study, sivelestat induced concentration-dependent (1 × 10(-6) to 3 × 10(-4) M) vasorelaxation in U46619 (1 nM) and sphingosylphosphorylcholine (SPC) (30 mM)-precontracted human gastric artery with or without endothelium, but sivelestat did not induce vasorelaxation in conditions of high K(+) (40 mM) depolarization. Sivelestat inhibited VSM contraction by an agonist and SPC, and it did not affect Ca(2+)-induced normal physiologic contraction.

  7. Ageing induced vascular smooth muscle cell senescence in atherosclerosis.

    PubMed

    Uryga, Anna K; Bennett, Martin R

    2016-04-15

    Atherosclerosis is a disease of ageing in that its incidence and prevalence increase with age. However, atherosclerosis is also associated with biological ageing, manifest by a number of typical hallmarks of ageing in the atherosclerotic plaque. Thus, accelerated biological ageing may be superimposed on the effects of chronological ageing in atherosclerosis. Tissue ageing is seen in all cells that comprise the plaque, but particularly in vascular smooth muscle cells (VSMCs). Hallmarks of ageing include evidence of cell senescence, DNA damage (including telomere attrition), mitochondrial dysfunction, a pro-inflammatory secretory phenotype, defects in proteostasis, epigenetic changes, deregulated nutrient sensing, and exhaustion of progenitor cells. In this model, initial damage to DNA (genomic, telomeric, mitochondrial and epigenetic changes) results in a number of cellular responses (cellular senescence, deregulated nutrient sensing and defects in proteostasis). Ultimately, ongoing damage and attempts at repair by continued proliferation overwhelm reparative capacity, causing loss of specialised cell functions, cell death and inflammation. This review summarises the evidence for accelerated biological ageing in atherosclerosis, the functional consequences of cell ageing on cells comprising the plaque, and the causal role that VSMC senescence plays in atherogenesis. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  8. Paradoxical behavior of neuromedin U in isolated smooth muscle cells and intact tissue.

    PubMed

    Brighton, Paul J; Wise, Alan; Dass, Narinder B; Willars, Gary B

    2008-04-01

    Neuromedin U (NmU) is a neuropeptide showing high levels of structural conservation across different species. Since its discovery in 1985, NmU has been implicated in numerous physiological roles, including smooth muscle contraction, energy homeostasis, stress, intestinal ion transport, pronociception, and circadian rhythm. Two G-protein-coupled receptors have been identified for NmU and cloned from humans, rats, and mice. Recombinantly expressed NmU receptors couple to both Galpha(q/11) and Galpha(i) G-proteins, and NmU binds essentially irreversibly, preventing signaling to repetitive applications of NmU. However, it is unclear whether these properties reflect those of endogenously expressed NmU receptors or how these properties influence the functional consequences of NmU receptor signaling. Here, we have explored the signaling by rat NmU receptors expressed endogenously in cultured rat colonic smooth muscle cells and explore the functional consequence of this signaling by investigating the NmU-mediated contraction of ex vivo rat colonic smooth muscle preparations. We demonstrate that endogenous rat NmU receptors couple to both Galpha(q/11) and Galpha(i) G-proteins. Furthermore, we show complex patterns of Ca(2+) signaling, including oscillations, and provide evidence of essentially irreversible binding of NmU to smooth muscle cells. Challenge of either circular or longitudinal rat isolated colonic smooth muscle preparations with NmU resulted in robust contractions. Stimulation was direct, and paradoxically, repetitive applications of NmU mediated repetitive contractions with no evidence of desensitization, highlighting a major discrepancy in the behavior of NmU in single cells and in intact tissues. The reason for this discrepancy is presently unknown.

  9. Non-Adrenergic, Tamsulosin-Insensitive Smooth Muscle Contraction is Sufficient to Replace α1 -Adrenergic Tension in the Human Prostate.

    PubMed

    Hennenberg, Martin; Acevedo, Alice; Wiemer, Nicolas; Kan, Aysenur; Tamalunas, Alexander; Wang, Yiming; Yu, Qingfeng; Rutz, Beata; Ciotkowska, Anna; Herlemann, Annika; Strittmatter, Frank; Stief, Christian G; Gratzke, Christian

    2017-05-01

    Lower urinary tract symptoms (LUTS) suggestive of benign prostatic hyperplasia may be caused by prostate smooth muscle contraction. Although α 1 -blockers may improve symptoms by prostate smooth muscle relaxation, their efficacy is limited. This may be explained by non-adrenergic mediators causing contraction in parallel to α 1 -adrenoceptors. However, little is known about the relevance and cooperative actions of non-adrenergic mediators in the prostate. Prostate tissues were obtained from radical prostatectomy (n = 127 patients). Contractile responses were studied in an organ bath. Endothelin-1 and noradrenaline induced contractions of similar magnitude (116 ± 23 and 117 ± 18% of KCl-induced contractions). Endothelin-2- and -3-induced maximum contractions of 63 ± 8.6 and 71 ± 19% of KCl, while contractions by the thromboxane analog U46619 amounted up to 63 ± 9.4%. Dopamine-induced contractions averaged to 22 ± 4.5% of KCl, while maximum contractions by serotonin, histamine, and carbachol stayed below 10% of KCl-induced. While noradrenaline-induced contractions were inhibited by tamsulosin (300 nM), endothelin-1-, -2-, or -3-induced contraction were not. No additive effects were observed if endothelins and noradrenaline were applied consecutively to the same samples. If endothelin-1 was applied after U46619, resulting tension (172 ± 43% of KCl) significantly exceeded noradrenaline-induced contraction. Tensions following combined application of endothelin-2 or -3 with U46619 stayed below noradrenaline-induced contractions. Tension following combined application of all three endothelins with U46619 resembled maximum noradrenaline-induced tone. Contractions following concomitant confrontation of human prostate tissue with noradrenaline and endothelin-1 are not additive. Endothelin-1 is sufficient to induce a smooth muscle tone resembling that of noradrenaline. This may replace lacking α 1 -adrenergic tone under therapy with

  10. Adenosine A1 receptors link to smooth muscle contraction via CYP4a, protein kinase C-α, and ERK1/2.

    PubMed

    Kunduri, Swati S; Mustafa, S Jamal; Ponnoth, Dovenia S; Dick, Gregory M; Nayeem, Mohammed A

    2013-07-01

    Adenosine A1 receptor (A1AR) activation contracts smooth muscle, although signaling mechanisms are not thoroughly understood. Activation of A1AR leads to metabolism of arachidonic acid, including the production of 20-hydroxyeicosatetraenoic acid (20-HETE) by cytochrome P4504a (CYP4a). The 20-HETE can activate protein kinase C-α (PKC-α), which crosstalks with extracellular signal-regulated kinase (ERK1/2) pathway. Both these pathways can regulate smooth muscle contraction, we tested the hypothesis that A1AR contracts smooth muscle through a pathway involving CYP4a, PKC-α, and ERK1/2. Experiments included isometric tension recordings of aortic contraction and Western blots of signaling molecules in wild type (WT) and A1AR knockout (A1KO) mice. Contraction to the A1-selective agonist 2-chloro-N cyclopentyladenosine (CCPA) was absent in A1KO mice aortae, indicating the contractile role of A1AR. Inhibition of CYP4a (HET0016) abolished 2-chloro-N cyclopentyladenosine-induced contraction in WT aortae, indicating a critical role for 20-HETE. Both WT and A1KO mice aortae contracted in response to exogenous 20-HETE. Inhibition of PKC-α (Gö6976) or ERK1/2 (PD98059) attenuated 20-HETE-induced contraction equally, suggesting that ERK1/2 is downstream of PKC-α. Contractions to exogenous 20-HETE were significantly less in A1KO mice; reduced protein levels of PKC-α, p-ERK1/2, and total ERK1/2 supported this observation. Our data indicate that A1AR mediates smooth muscle contraction via CYP4a and a PKC-α-ERK1/2 pathway.

  11. Suppressive activities and mechanisms of ugonin J on vascular smooth muscle cells and balloon angioplasty-induced neointimal hyperplasia.

    PubMed

    Pan, Chun-Hsu; Li, Pei-Chuan; Chien, Yi-Chung; Yeh, Wan-Ting; Liaw, Chih-Chuang; Sheu, Ming-Jyh; Wu, Chieh-Hsi

    2018-02-01

    Neointimal hyperplasia (or restenosis) is primarily attributed to excessive proliferation and migration of vascular smooth muscle cells (VSMCs). In this study, we investigated the inhibitory effects and mechanisms of ugonin J on VSMC proliferation and migration as well as neointimal formation. Cell viability and the cell-cycle distribution were, respectively, analyzed using an MTT assay and flow cytometry. Cell migration was examined using a wound-healing analysis and a transwell assay. Protein expressions and gelatinase activities were, respectively, measured using Western blot and gelatin zymography. Balloon angioplasty-induced neointimal formation was induced in a rat carotid artery model and then examined using immunohistochemical staining. Ugonin J induced cell-cycle arrest at the G 0 /G 1 phase and apoptosis to inhibit VSMC growth. Ugonin J also exhibited marked suppressive activity on VSMC migration. Ugonin J significantly reduced activations of focal adhesion kinase, phosphoinositide 3-kinase, v-akt murine thymoma viral oncogene homolog 1, and extracellular signal-regulated kinase 1/2 proteins. Moreover, ugonin J obviously reduced expressions and activity levels of matrix metalloproteinase-2 and matrix metalloproteinase-9. In vivo data indicated that ugonin J prevented balloon angioplasty-induced neointimal hyperplasia. Our study suggested that ugonin J has the potential for application in the prevention of balloon injury-induced neointimal formation. Copyright © 2017 John Wiley & Sons, Ltd.

  12. beta. -adrenergic relaxation of smooth muscle: differences between cells and tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheid, C.R.

    1987-09-01

    The present studies were carried out in an attempt to resolve the controversy about the Na/sup +/ dependence of ..beta..-adrenergic relaxation in smooth muscle. Previous studies on isolated smooth muscle cells from the toad stomach had suggested that at least some of the actions of ..beta..-adrenergic agents, including a stimulatory effect on /sup 45/Ca efflux, were dependent on the presence of a normal transmembrane Na/sup +/ gradient. Studies by other investigators using tissues derived from mammalian sources had suggested that the relaxing effect of ..beta..-adrenergic agents was Na/sup +/ independent. Uncertainty remained as to whether these discrepancies reflected differences betweenmore » cells and tissues or differences between species. Thus, in the present studies, the authors utilized both tissues and cells from the same source, the stomach muscle of the toad Bufo marinus, and assessed the Na/sup +/ dependence of ..beta..-adrenergic relaxation. They found that elimination of a normal Na/sup +/ gradient abolished ..beta..-adrenergic relaxation of isolated cells. In tissues, however, similar manipulations had no effect on relaxation. The reasons for this discrepancy are unclear but do not appear to be attributable to changes in smooth muscle function following enzymatic dispersion. Thus the controversy concerning the mechanisms of ..beta..-adrenergic relaxation may reflect inherent differences between tissues and cells.« less

  13. Activation of PPARδ counteracts angiotensin II-induced ROS generation by inhibiting rac1 translocation in vascular smooth muscle cells.

    PubMed

    Lee, Hanna; Ham, Sun Ah; Kim, Min Young; Kim, Jae-Hwan; Paek, Kyung Shin; Kang, Eun Sil; Kim, Hyo Jung; Hwang, Jung Seok; Yoo, Taesik; Park, Chankyu; Kim, Jin-Hoi; Lim, Dae-Seog; Han, Chang Woo; Seo, Han Geuk

    2012-07-01

    Angiotensin II (Ang II)-mediated modification of the redox milieu of vascular smooth muscle cells (VSMCs) has been implicated in several pathophysiological processes, including cell proliferation, migration and differentiation. In this study, we demonstrate that the peroxisome proliferator-activated receptor (PPAR) δ counteracts Ang II-induced production of reactive oxygen species (ROS) in VSMCs. Activation of PPARδ by GW501516, a specific ligand for PPARδ, significantly reduced Ang II-induced ROS generation in VSMCs. This effect was, however, reversed in the presence of small interfering (si)RNA against PPARδ. The marked increase in ROS levels induced by Ang II was also eliminated by the inhibition of phosphatidylinositol 3-kinase (PI3K) but not of protein kinase C, suggesting the involvement of the PI3K/Akt signalling pathway in this process. Accordingly, ablation of Akt with siRNA further enhanced the inhibitory effects of GW501516 in Ang II-induced superoxide production. Ligand-activated PPARδ also blocked Ang II-induced translocation of Rac1 to the cell membrane, inhibiting the activation of NADPH oxidases and consequently ROS generation. These results indicate that ligand-activated PPARδ plays an important role in the cellular response to oxidative stress by decreasing ROS generated by Ang II in vascular cells.

  14. Mechanics of smooth muscle in isolated single microvessels.

    PubMed

    Gore, R W; Davis, M J

    1984-01-01

    In vivo studies on frog mesenteric arterioles (4) indicate that segmental differences in the response of microvessels to physical and chemical stimuli can be explained simply in terms of the length-tension characteristics of vascular smooth muscle at different points along the vascular tree. Studies on single, isolated arterioles in vitro were initiated to examine more closely the validity of this explanation for regional response differences. This paper reports some of the results. First-, second-, and third-order arterioles (18-60 micron i.d.) were dissected from hamster cheek pouches. The vessels were cannulated with a modified Burg microperfusion system, and their mechanical properties studied using the methods described by Duling and Gore. Vessels were activated in four stages with K+ and norepinephrine. During activation, transmural pressures were adjusted to minimize vascular smooth-muscle shortening. Active pressure-diameter curves were recorded while adjusting transmural pressure through the range 5 to 400 cm H20 in 5-25 cm steps. Vessel dimensions were measured with a videomicrometer. Passive curves were obtained after equilibration overnight in Ca2+-free medium. The vessels were then fixed and prepared for histologic sectioning, and measurements of vessel-wall composition were made. The Laplace relationship was used to construct length-tension diagrams, and the histologic data were used to normalize the dimensional data to smooth-muscle lengths. Maximum active tension of second-order arterioles (1,170 dynes/cm) was two times previous values reported by Gore et al. This was due presumably to refinements in techniques and dissection procedures. Maximum active stress averaged 3.9 X 10(+6) dynes/cm2 for second-order arterioles. This number is identical to data obtained from hog carotid strips by Dillon et al.

  15. Pharmacological and molecular characterization of muscarinic receptor subtypes in human esophageal smooth muscle.

    PubMed

    Preiksaitis, H G; Krysiak, P S; Chrones, T; Rajgopal, V; Laurier, L G

    2000-12-01

    Esophageal peristalsis is dependent on activation of muscarinic receptors, but little is known about the roles of specific receptor subtypes in the human esophagus. We examined muscarinic receptor expression and function in human esophageal smooth muscle obtained from patients undergoing resection for cancer. [(3)H]Quinuclidinyl benzylate (QNB)-specific binding was similar in longitudinal muscle (B(max) = 106 +/- 22 fmol/mg of protein, K(d) = 68 +/- 9 pM) and circular muscle (B(max) = 81 +/- 16 fmol/mg of protein, K(d) = 79 +/- 15 pM). Subtype-selective antagonists inhibited [(3)H]QNB similarly in muscle from both layers. Further analysis of antagonist inhibition of [(3)H]QNB binding showed a major site (60-70%) with antagonist affinity profile consistent with the M2 subtype and a second site that could not be classified. Reverse transcription-polymerase chain reaction and immunoblotting demonstrated the presence of all five known muscarinic receptor subtypes, and immunocytochemistry on acutely isolated smooth muscle cells confirmed the expression of each subtype on the muscle cells. Subtype-selective antagonists had similar inhibitory effects on carbachol-evoked contractions in longitudinal muscle and circular muscle strips with pA(2) values of 9.5 +/- 0.1 and 9.6 +/- 0.2 for 4-diphenylacetoxy-N-methylpiperidine methiodide, 7.1 +/- 0.1 and 7.0 +/- 0.2 for pirenzepine, and 6.2 +/- 0.2 and 6.4 +/- 0.2 for methoctramine, respectively. We conclude that human esophageal smooth muscle expresses muscarinic receptor subtypes M1 through M5. The antagonist sensitivity profile for muscle contraction is consistent with activation of the M3 subtype.

  16. Activation of particulate guanylyl cyclase by endothelins in cultured SV-40 transformed cat iris sphincter smooth muscle cells.

    PubMed

    Ding, K H; Latimer, A J; Abdel-Latif, A A

    1999-01-01

    We investigated the effects of endothelins (ETs) on cGMP production in cultured SV-40 transformed cat iris sphincter smooth muscle (SV-CISM-2) cells. ET-3 increased cGMP formation in a concentration-dependent manner (EC50 = 98nM), which was 2.5 times higher than that of ET-1. The ET(B)receptor agonists sarafotoxin-S6c and IRL 1620 also increased cGMP production, mimicking the effects of the ETs. The ET(B) receptor antagonist BQ 788, but not the ET(A) receptor antagonist BQ610, dose-dependently blocked ET-3-stimulated cGMP formation (IC50=10nM). The phorbol ester, Phorbol 12, 13-dibutyrate (PDBu), which inhibits particulate guanylyl cyclase in smooth muscle, dose-dependently inhibited ET-3-stimulated cGMP accumulation (IC50=66nM). LY83583 and ODQ, inhibitors of soluble guanylyl cyclases, as well as inhibitors of the nitric oxide cascade and of intracellular Ca2+ elevation had no appreciable effect on ET-3-induced cGMP production. ET-3 markedly inhibited carbachol-induced intracellular Ca2+ mobilization. We conclude that ET-3 increases intracellular cGMP levels in SV-CISM-2 cells through activation of the ET(B) receptor subtype and subsequent stimulation of the membrane-bound guanylyl cyclase. Elevation of cGMP by ET and the subsequent inhibition of muscarinic stimulation of intracellular Ca2+ mobilization by the cyclic nucleotide could serve to modulate the contractile effects of Ca2+-mobilizing agonists in the iris sphincter smooth muscle.

  17. Structural limits on force production and shortening of smooth muscle.

    PubMed

    Siegman, Marion J; Davidheiser, Sandra; Mooers, Susan U; Butler, Thomas M

    2013-02-01

    This study determined the factors that limit force production and shortening in two smooth muscles having very different relationships between active and passive force as a function of muscle length. The rat anococcygeus muscle develops active force over the range of lengths 0.2-2.0× the optimum length for force production (Lo). Passive tension due to extension of the resting muscle occurs only at lengths exceeding Lo. In contrast, the rabbit taenia coli develops force in the range of lengths 0.4-1.1 Lo, and passive force which is detectable at 0.56 Lo, increases to ~0.45 maximum active force at Lo, and increases sharply with further extension. The anococcygeus muscle can shorten to 0.2 Lo and the taenia coli to 0.4 Lo. Dynamic stiffness and energy usage at short muscle lengths suggest that the limit of shortening in the taenia coli, in contrast to the anococcygeus muscle, is not due to a failure of cross bridge interaction. Phosphorylation of the regulatory myosin light chains in intact muscles decreased to a small extent at short lengths compared to the decrease in force production. The differences in force production and the extent of shortening in the two muscles was maintained even when, following permeabilization, the myosin light chains were irreversibly phosphorylated with ATPγS, indicating that differences in activation played little, if any role. Ultrastructural studies on resting and activated muscles show that the taenia coli, which is rich in connective tissue (unlike the anococcygeus muscle) undergoes marked cellular twisting and contractile filament misalignment at short lengths with compression of the extracellular matrix. As a result, force is not transmitted in the longitudinal axis of the muscle, but is dissipated against an internal load provided by the compressed extracellular matrix. These observations on two very different normal smooth muscles reveal how differences in the relative contribution of active and passive structural elements

  18. Transglutaminase-dependent RhoA activation and depletion by serotonin in vascular smooth muscle cells.

    PubMed

    Guilluy, Christophe; Rolli-Derkinderen, Malvyne; Tharaux, Pierre-Louis; Melino, Gerry; Pacaud, Pierre; Loirand, Gervaise

    2007-02-02

    The small G protein RhoA plays a major role in several vascular processes and cardiovascular disorders. Here we analyze the mechanisms of RhoA regulation by serotonin (5-HT) in arterial smooth muscle. 5-HT (0.1-10 microM) induced activation of RhoA followed by RhoA depletion at 24-72 h. Inhibition of 5-HT1 receptors reduced the early phase of RhoA activation but had no effect on 5-HT-induced delayed RhoA activation and depletion, which were suppressed by the 5-HT transporter inhibitor fluoxetine and the transglutaminase inhibitor monodansylcadaverin and in type 2 transglutaminase-deficient smooth muscle cells. Coimmunoprecipitations demonstrated that 5-HT associated with RhoA both in vitro and in vivo. This association was calcium-dependent and inhibited by fluoxetine and monodansylcadaverin. 5-HT promotes the association of RhoA with the E3 ubiquitin ligase Smurf1, and 5-HT-induced RhoA depletion was inhibited by the proteasome inhibitor MG132 and the RhoA inhibitor Tat-C3. Simvastatin, the Rho kinase inhibitor Y-27632, small interfering RNA-mediated RhoA gene silencing, and long-term 5-HT stimulation induced Akt activation. In contrast, inhibition of 5-HT-mediated RhoA degradation by MG132 prevented 5-HT-induced Akt activation. Long-term 5-HT stimulation also led to the inhibition of the RhoA/Rho kinase component of arterial contraction. Our data provide evidence that 5-HT, internalized through the 5-HT transporter, is transamidated to RhoA by transglutaminase. Transamidation of RhoA leads to RhoA activation and enhanced proteasomal degradation, which in turn is responsible for Akt activation and contraction inhibition. The observation of transamidation of 5-HT to RhoA in pulmonary artery of hypoxic rats suggests that this process could participate in pulmonary artery remodeling and hypertension.

  19. Cholesterol is necessary both for the toxic effect of Abeta peptides on vascular smooth muscle cells and for Abeta binding to vascular smooth muscle cell membranes.

    PubMed

    Subasinghe, Supundi; Unabia, Sharon; Barrow, Colin J; Mok, Su San; Aguilar, Marie-Isabel; Small, David H

    2003-02-01

    Accumulation of beta amyloid (Abeta) in the brain is central to the pathogenesis of Alzheimer's disease. Abeta can bind to membrane lipids and this binding may have detrimental effects on cell function. In this study, surface plasmon resonance technology was used to study Abeta binding to membranes. Abeta peptides bound to synthetic lipid mixtures and to an intact plasma membrane preparation isolated from vascular smooth muscle cells. Abeta peptides were also toxic to vascular smooth muscle cells. There was a good correlation between the toxic effect of Abeta peptides and their membrane binding. 'Ageing' the Abeta peptides by incubation for 5 days increased the proportion of oligomeric species, and also increased toxicity and the amount of binding to lipids. The toxicities of various Abeta analogs correlated with their lipid binding. Significantly, binding was influenced by the concentration of cholesterol in the lipid mixture. Reduction of cholesterol in vascular smooth muscle cells not only reduced the binding of Abeta to purified plasma membrane preparations but also reduced Abeta toxicity. The results support the view that Abeta toxicity is a direct consequence of binding to lipids in the membrane. Reduction of membrane cholesterol using cholesterol-lowering drugs may be of therapeutic benefit because it reduces Abeta-membrane binding.

  20. Astaxanthin supplementation attenuates immobilization-induced skeletal muscle fibrosis via suppression of oxidative stress.

    PubMed

    Maezawa, Toshiyuki; Tanaka, Masayuki; Kanazashi, Miho; Maeshige, Noriaki; Kondo, Hiroyo; Ishihara, Akihiko; Fujino, Hidemi

    2017-09-01

    Immobilization induces skeletal muscle fibrosis characterized by increasing collagen synthesis in the perimysium and endomysium. Transforming growth factor-β1 (TGF-β1) is associated with this lesion via promoting differentiation of fibroblasts into myofibroblasts. In addition, reactive oxygen species (ROS) are shown to mediate TGF-β1-induced fibrosis in tissues. These reports suggest the importance of ROS reduction for attenuating skeletal muscle fibrosis. Astaxanthin, a powerful antioxidant, has been shown to reduce ROS production in disused muscle. Therefore, we investigated the effects of astaxanthin supplementation on muscle fibrosis under immobilization. In the present study, immobilization increased the collagen fiber area, the expression levels of TGF-β1, α-smooth muscle actin, and superoxide dismutase-1 protein and ROS production. However, these changes induced by immobilization were attenuated by astaxanthin supplementation. These results indicate the effectiveness of astaxanthin supplementation on skeletal muscle fibrosis induced by ankle joint immobilization.

  1. Electrical properties of purinergic transmission in smooth muscle of the guinea-pig prostate.

    PubMed

    Lam, Michelle; Mitsui, Retsu; Hashitani, Hikaru

    2016-01-01

    Prostatic smooth muscle develops spontaneous myogenic tone which is modulated by autonomic neuromuscular transmission. This study aimed to investigate the role of purinergic transmission in regulating electrical activity of prostate smooth muscle and whether its contribution may be altered with age. Intracellular recordings were simultaneously made with isometric tension recordings in smooth muscle preparations of the guinea-pig prostate. Immunostaining for P2X1 receptors on whole mount preparations was also performed. In prostate preparations which generated spontaneous slow waves, electrical field stimulation (EFS)-evoked excitatory junction potentials (EJPs) which were abolished by guanethidine (10 μM), α-β-methylene ATP (10 μM) or pyridoxal phosphate-6-azophenyl-2,4-disulfonic acid (PPADS, 10 μM) but not phentolamine (1 μM). Consistently, immunostaining revealed the expression of P2X1 receptors on prostatic smooth muscle. EJPs themselves did not cause contractions, but EJPs could sum to trigger a slow wave and associated contraction. Yohimbine (1 μM) and 3,7-dimethyl-1-propargylxanthine (DMPX, 10 μM) but not propranolol (1 μM) potentiated EJPs. Although properties of EJPs were not different between young and aging guinea-pig prostates, ectoATPase inhibitor ARL 67156 (100 μM) augmented EJP amplitudes by 64.2 ± 29.6% in aging animals, compared to 22.1 ± 19.9% in young animals. These results suggest that ATP released from sympathetic nerves acts on P2X1 purinoceptors located on prostate smooth muscle to evoke EJPs, while pre-junctional α2-adrenergic and adenosine A2 receptors may play a role in preventing excessive transmitter release. Age-related up-regulation of enzymatic ATP breakdown may be a compensatory mechanism for the enhanced purinergic transmission which would cause hypercontractility arising from increased ATP release in older animals. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. PM2.5 promotes human bronchial smooth muscle cell migration via the sonic hedgehog signaling pathway.

    PubMed

    Ye, Xiuqin; Hong, Wei; Hao, Binwei; Peng, Gongyong; Huang, Lingmei; Zhao, Zhuxiang; Zhou, Yumin; Zheng, Mengning; Li, Chenglong; Liang, Chunxiao; Yi, Erkang; Pu, Jinding; Li, Bing; Ran, Pixin

    2018-03-02

    The contribution of airway remodeling in chronic obstructive pulmonary disease (COPD) has been well documented, with airway smooth muscle cell proliferation and migration playing a role in the remodeling process. Here, we aimed to verify the effects of fine particulate matter (PM2.5) on human bronchial smooth muscle cell (HBSMC) migration and to explore the underlying signaling pathways. HBSMC apoptosis, proliferation and migration were measured using flow cytometry, cell counting and transwell migration assays, respectively. The role of the hedgehog pathway in cell migration was assessed by western blotting to measure the expression of Sonic hedgehog (Shh), Gli1 and Snail. Furthermore, siRNA was used to knock down Gli1 or Snail expression. PM2.5 induced HBSMC apoptosis in a dose-dependent manner, although certain concentrations of PM2.5 did not induce HBSMC proliferation or apoptosis. Interestingly, cell migration was stimulated by PM2.5 doses far below those that induced apoptosis. Additional experiments revealed that these PM2.5 doses enhanced the expression of Shh, Gli1 and Snail in HBSMCs. Furthermore, PM2.5-induced cell migration and protein expression were enhanced by recombinant Shh and attenuated by cyclopamine. Similar results were obtained by knocking down Gli1 or Snail. These findings suggest that PM2.5, which may exert its effects through the Shh signaling pathway, is necessary for the migration of HBSMCs. These data define a novel role for PM2.5 in airway remodeling in COPD.

  3. Augmented vascular smooth muscle cell stiffness and adhesion when hypertension is superimposed on aging.

    PubMed

    Sehgel, Nancy L; Sun, Zhe; Hong, Zhongkui; Hunter, William C; Hill, Michael A; Vatner, Dorothy E; Vatner, Stephen F; Meininger, Gerald A

    2015-02-01

    Hypertension and aging are both recognized to increase aortic stiffness, but their interactions are not completely understood. Most previous studies have attributed increased aortic stiffness to changes in extracellular matrix proteins that alter the mechanical properties of the vascular wall. Alternatively, we hypothesized that a significant component of increased vascular stiffness in hypertension is due to changes in the mechanical and adhesive properties of vascular smooth muscle cells, and that aging would augment the contribution from vascular smooth muscle cells when compared with the extracellular matrix. Accordingly, we studied aortic stiffness in young (16-week-old) and old (64-week-old) spontaneously hypertensive rats and Wistar-Kyoto wild-type controls. Systolic and pulse pressures were significantly increased in young spontaneously hypertensive rats when compared with young Wistar-Kyoto rats, and these continued to rise in old spontaneously hypertensive rats when compared with age-matched controls. Excised aortic ring segments exhibited significantly greater elastic moduli in both young and old spontaneously hypertensive rats versus Wistar-Kyoto rats. were isolated from the thoracic aorta, and stiffness and adhesion to fibronectin were measured by atomic force microscopy. Hypertension increased both vascular smooth muscle cell stiffness and vascular smooth muscle cell adhesion, and these increases were both augmented with aging. By contrast, hypertension did not affect histological measures of aortic collagen and elastin, which were predominantly changed by aging. These findings support the concept that stiffness and adhesive properties of vascular smooth muscle cells are novel mechanisms contributing to the increased aortic stiffness occurring with hypertension superimposed on aging. © 2014 American Heart Association, Inc.

  4. Voltage-dependent inward currents in smooth muscle cells of skeletal muscle arterioles

    PubMed Central

    Shirokov, Roman E.

    2018-01-01

    Voltage-dependent inward currents responsible for the depolarizing phase of action potentials were characterized in smooth muscle cells of 4th order arterioles in mouse skeletal muscle. Currents through L-type Ca2+ channels were expected to be dominant; however, action potentials were not eliminated in nominally Ca2+-free bathing solution or by addition of L-type Ca2+ channel blocker nifedipine (10 μM). Instead, Na+ channel blocker tetrodotoxin (TTX, 1 μM) reduced the maximal velocity of the upstroke at low, but not at normal (2 mM), Ca2+ in the bath. The magnitude of TTX-sensitive currents recorded with 140 mM Na+ was about 20 pA/pF. TTX-sensitive currents decreased five-fold when Ca2+ increased from 2 to 10 mM. The currents reduced three-fold in the presence of 10 mM caffeine, but remained unaltered by 1 mM of isobutylmethylxanthine (IBMX). In addition to L-type Ca2+ currents (15 pA/pF in 20 mM Ca2+), we also found Ca2+ currents that are resistant to 10 μM nifedipine (5 pA/pF in 20 mM Ca2+). Based on their biophysical properties, these Ca2+ currents are likely to be through voltage-gated T-type Ca2+ channels. Our results suggest that Na+ and at least two types (T- and L-) of Ca2+ voltage-gated channels contribute to depolarization of smooth muscle cells in skeletal muscle arterioles. Voltage-gated Na+ channels appear to be under a tight control by Ca2+ signaling. PMID:29694371

  5. Overexpression of human Hsp27 inhibits serum-induced proliferation in airway smooth muscle myocytes and confers resistance to hydrogen peroxide cytotoxicity.

    PubMed

    Salinthone, Sonemany; Ba, Mariam; Hanson, Lisa; Martin, Jody L; Halayko, Andrew J; Gerthoffer, William T

    2007-11-01

    Airway smooth muscle (ASM) hypertrophy and hyperplasia are characteristics of asthma that lead to thickening of the airway wall and obstruction of airflow. Very little is known about mechanisms underlying ASM remodeling, but in vascular smooth muscle, it is known that progression of atherosclerosis depends on the balance of myocyte proliferation and cell death. Small heat shock protein 27 (Hsp27) is antiapoptotic in nonmuscle cells, but its role in ASM cell survival is unknown. Our hypothesis was that phosphorylation of Hsp27 may regulate airway remodeling by modifying proliferation, cell survival, or both. To test this hypothesis, adenoviral vectors were used to overexpress human Hsp27 in ASM cells. Cells were infected with empty vector (Ad5) or wild-type Hsp27 (AdHsp27 WT), and proliferation and death were assessed. Overexpressing Hsp27 WT caused a 50% reduction in serum-induced proliferation and increased cell survival after exposure to 100 microM hydrogen peroxide (H(2)O(2)) compared with mock-infected controls. Overexpression studies utilizing an S15A, S78A, and S82A non-phosphorylation mutant (AdHsp27 3A) and an S15D, S78D, and S82D pseudo-phosphorylation mutant (AdHsp27 3D) showed phosphorylation of Hsp27 was necessary for regulation of ASM proliferation, but not survival. Hsp27 provided protection against H(2)O(2)-induced cytotoxicity by upregulating cellular glutathione levels and preventing necrotic cell death, but not apoptotic cell death. The results support the notion that ASM cells can be stimulated to undergo proliferation and death and that Hsp27 may regulate these processes, thereby contributing to airway remodeling in asthmatics.

  6. Pharmacological action of DA-9701 on the motility of feline stomach circular smooth muscle.

    PubMed

    Nguyen, Thanh Thao; Song, Hyun Ju; Ko, Sung Kwon; Sohn, Uy Dong

    2015-03-01

    DA-9701, a new prokinetic agent for the treatment of functional dyspepsia, is formulated with Pharbitis semen and Corydalis tuber. This study wasconducted to determine the pharmacological action of DA-9701 and to identify the receptors involved in DA-9701 -induced contractile responsesin the feline gastric corporal, fundic and antral circular smooth muscle. Concentration-response curve to DA-9701 was established. The tissue trips were exposed to methylsergide, ketanserin, ondansetron, GR 113808, atropine and dopamine before administration of DA-9701. The contractile force was determined before and after administration of drugs by a polygraph.DA-9701 enhanced the spontaneous contractile amplitude of antrum, corpus and fundus. However, it did not change the spontaneous contractile frequency of antrum and corpus, but concentration-dependently reduced that of fundus. In the fundus, DA-9701 -induced tonic contractions were inhibited by dopamine, methylsergide, ketanserine, ondansetron or GR 113808 respectively, but not by atropine, indicating that the contractile responses are mediated by multiple receptors: 5-HT2, 5-HT3, 5-HT4, and dopamine receptors. In the corpus, DA-9701-induced contractions were blocked by atropine, dopamine or GR 113808, but not by methysergide, ketanserin or ondansetron, indicating that they are involved in receptors on both, smooth muscles and neurons: 5-HT4 and dopamine receptors. However, contractile responses to DA-9701 are mainly mediated by dopamine receptors in the antrum. These results suggest that DA-9701 has important roles in gastric accommodation by enhancing tonic activity of fundus, and in gastric emptying and gastrointestinal transit by phasic contractions of corpus and antrum mediated by multiple receptors.

  7. Control of stomach smooth muscle development and intestinal rotation by transcription factor BARX1.

    PubMed

    Jayewickreme, Chenura D; Shivdasani, Ramesh A

    2015-09-01

    Diverse functions of the homeodomain transcription factor BARX1 include Wnt-dependent, non-cell autonomous specification of the stomach epithelium, tracheo-bronchial septation, and Wnt-independent expansion of the spleen primordium. Tight spatio-temporal regulation of Barx1 levels in the mesentery and stomach mesenchyme suggests additional roles. To determine these functions, we forced constitutive BARX1 expression in the Bapx1 expression domain, which includes the mesentery and intestinal mesenchyme, and also examined Barx1(-/)(-) embryos in further detail. Transgenic embryos invariably showed intestinal truncation and malrotation, in part reflecting abnormal left-right patterning. Ectopic BARX1 expression did not affect intestinal epithelium, but intestinal smooth muscle developed with features typical of the stomach wall. BARX1, which is normally restricted to the developing stomach, drives robust smooth muscle expansion in this organ by promoting proliferation of myogenic progenitors at the expense of other sub-epithelial cells. Undifferentiated embryonic stomach and intestinal mesenchyme showed modest differences in mRNA expression and BARX1 was sufficient to induce much of the stomach profile in intestinal cells. However, limited binding at cis-regulatory sites implies that BARX1 may act principally through other transcription factors. Genes expressed ectopically in BARX1(+) intestinal mesenchyme and reduced in Barx1(-/-) stomach mesenchyme include Isl1, Pitx1, Six2 and Pitx2, transcription factors known to control left-right patterning and influence smooth muscle development. The sum of evidence suggests that potent BARX1 functions in intestinal rotation and stomach myogenesis occur through this small group of intermediary transcription factors. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Loss of neurotrophin-3 from smooth muscle disrupts vagal gastrointestinal afferent signaling and satiation

    PubMed Central

    Biddinger, Jessica E.; Baquet, Zachary C.; Jones, Kevin R.; McAdams, Jennifer

    2013-01-01

    A large proportion of vagal afferents are dependent on neurotrophin-3 (NT-3) for survival. NT-3 is expressed in developing gastrointestinal (GI) smooth muscle, a tissue densely innervated by vagal mechanoreceptors, and thus could regulate their survival. We genetically ablated NT-3 from developing GI smooth muscle and examined the pattern of loss of NT-3 expression in the GI tract and whether this loss altered vagal afferent signaling or feeding behavior. Meal-induced c-Fos activation was reduced in the solitary tract nucleus and area postrema in mice with a smooth muscle-specific NT-3 knockout (SM-NT-3KO) compared with controls, suggesting a decrease in vagal afferent signaling. Daily food intake and body weight of SM-NT-3KO mice and controls were similar. Meal pattern analysis revealed that mutants, however, had increases in average and total daily meal duration compared with controls. Mutants maintained normal meal size by decreasing eating rate compared with controls. Although microstructural analysis did not reveal a decrease in the rate of decay of eating in SM-NT-3KO mice, they ate continuously during the 30-min meal, whereas controls terminated feeding after 22 min. This led to a 74% increase in first daily meal size of SM-NT-3KO mice compared with controls. The increases in meal duration and first meal size of SM-NT-3KO mice are consistent with reduced satiation signaling by vagal afferents. This is the first demonstration of a role for GI NT-3 in short-term controls of feeding, most likely involving effects on development of vagal GI afferents that regulate satiation. PMID:24068045

  9. Ethanol-induced erectile dysfunction and increased expression of pro-inflammatory proteins in the rat cavernosal smooth muscle are mediated by NADPH oxidase-derived reactive oxygen species.

    PubMed

    Leite, Letícia N; do Vale, Gabriel T; Simplicio, Janaina A; De Martinis, Bruno S; Carneiro, Fernando S; Tirapelli, Carlos R

    2017-06-05

    Ethanol consumption is associated with an increased risk of erectile dysfunction (ED), but the molecular mechanisms through which ethanol causes ED remain elusive. Reactive oxygen species are described as mediators of ethanol-induced cell toxicity/damage in distinctive tissues. The enzyme NADPH oxidase is the main source of reactive oxygen species in the endothelium and vascular smooth muscle cells and ethanol is described to increase NADPH oxidase activation and reactive oxygen species generation. This study evaluated the contribution of NADPH oxidase-derived reactive oxygen species to ethanol-induced ED, endothelial dysfunction and production of pro-inflammatory and redox-sensitive proteins in the rat cavernosal smooth muscle (CSM). Male Wistar rats were treated with ethanol (20% v/v) or ethanol plus apocynin (30mg/kg/day; p.o. gavage) for six weeks. Apocynin prevented both the decreased in acetylcholine-induced relaxation and intracavernosal pressure induced by ethanol. Ethanol increased superoxide anion (O 2 - ) generation and catalase activity in CSM, and treatment with apocynin prevented these responses. Similarly, apocynin prevented the ethanol-induced decreased of nitrate/nitrite (NOx), hydrogen peroxide (H 2 O 2 ) and SOD activity. Treatment with ethanol increased p47phox translocation to the membrane as well as the expression of Nox2, COX-1, catalase, iNOS, ICAM-1 and p65. Apocynin prevented the effects of ethanol on protein expression and p47phox translocation. Finally, treatment with ethanol increased both TNF-α production and neutrophil migration in CSM. The major new finding of this study is that NADPH oxidase-derived reactive oxygen species play a role on chronic ethanol consumption-induced ED and endothelial dysfunction in the rat CSM. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Endothelin ETA receptor expression in human cerebrovascular smooth muscle cells.

    PubMed

    Yu, J C; Pickard, J D; Davenport, A P

    1995-11-01

    1. Endothelin (ET) has been implicated in cerebrovasospasm for example, following subarachnoid haemorrhage, and blocking the interaction of ET with its receptors on cerebral vessels, may be of therapeutic benefit. The aim of our study was to characterize endothelin receptor sub-types on medial smooth muscle cells of human cerebral vessels. Cultures of vascular smooth muscle cells were explanted from human cerebral resistance vessels and characterized as human brain smooth muscle cells (HBSMCs). 2. Over a 48 h incubation period, HBSMC cultures secreted comparable levels of immunoreactive (IR) big endothelin-1 (big ET-1) and IR endothelin (ET): 12.7 +/- 10.3 and 8.3 +/- 5.6 pmol/10(6) cells, respectively (mean +/- s.e. mean from three different individuals), into the culture medium. 3. Total RNA was extracted from cultures of human brain smooth muscle cells. Reverse-transcriptase polymerase chain reaction (RI-PCR) assays and subsequent product separation by agarose gel electrophoresis revealed single bands corresponding to the expected product sizes encoding cDNA for ETA (299 base pairs) and ETB (428 base pairs) (n = 3 different cultures). 4. Autoradiography demonstrated the presence of specific binding sites for [125I]-ET-1 which labels all ET receptors, and [125I]-PD151242, an ETA subtype-selective antagonist which exclusively labels ETA receptors, but no specific-binding was detected using ETB subtype-selective [125I]-BQ3020 (n = 3 different cultures, in duplicate). 5. In saturation binding assays, [123I]-ET-1 bound with high affinity: KD = 0.8 +/- 0.1 nM and Bmax = 690 +/- 108 fmol mg-1. A one-site fit was preferred and Hill slopes were close to unity over the concentration range (10(-12) to 10(-8) M). [125I]-PD151242 also bound with similar affinity: KD = 0.4 +/- 0.1 nM and Bmax = 388 +/- 68 fmol mg-1 (mean +/- s.e. mean, n = 3 different cultures). Again, a one-site fit was preferred and Hill slopes were close to unity over the concentration range. Unlabelled PD

  11. KCl cotransport regulation and protein kinase G in cultured vascular smooth muscle cells.

    PubMed

    Adragna, N C; Zhang, J; Di Fulvio, M; Lincoln, T M; Lauf, P K

    2002-05-15

    K-Cl cotransport is activated by vasodilators in erythrocytes and vascular smooth muscle cells and its regulation involves putative kinase/phosphatase cascades. N-ethylmaleimide (NEM) activates the system presumably by inhibiting a protein kinase. Nitrovasodilators relax smooth muscle via cGMP-dependent activation of protein kinase G (PKG), a regulator of membrane channels and transporters. We investigated whether PKG regulates K-Cl cotransport activity or mRNA expression in normal, PKG-deficient-vector-only-transfected (PKG-) and PKG-catalytic-domain-transfected (PKG+) rat aortic smooth muscle cells. K-Cl cotransport was calculated as the Cl-dependent Rb influx, and mRNA was determined by semiquantitative RT-PCR. Baseline K-Cl cotransport was higher in PKG+ than in PKG- cells (p <0.01). At 0.5 mM, NEM stimulated K-Cl cotransport by 5-fold in PKG- but not in PKG+ cells. However, NEM was more potent although less effective to activate K-Cl cotransport in normal (passage 1-3) and PKG+ than in PKG- cells. In PKG- cells, [(dihydroindenyl) oxy] alkanoic acid (300 mM) but not furosemide (1 mM) inhibited K-Cl cotransport. Furthermore, no difference in K-Cl cotransport mRNA expression was observed between these cells. In conclusion, this study shows that manipulation of PKG expression in vascular smooth muscle cells affects K-Cl cotransport activity and its activation by NEM.

  12. Laboratory practical to study the differential innervation pathways of urinary tract smooth muscle.

    PubMed

    Rembetski, Benjamin E; Cobine, Caroline A; Drumm, Bernard T

    2018-06-01

    In the mammalian lower urinary tract, there is a reciprocal relationship between the contractile state of the bladder and urethra. As the bladder fills with urine, it remains relaxed to accommodate increases in volume, while the urethra remains contracted to prevent leakage of urine from the bladder to the exterior. Disruptions to the normal contractile state of the bladder and urethra can lead to abnormal micturition patterns and urinary incontinence. While both the bladder and urethra are smooth-muscle organs, they are differentially contracted by input from cholinergic and sympathetic nerves, respectively. The laboratory practical described here provides an experiential approach to understanding the anatomy of the lower urinary tract. Several key factors in urinary tract physiology are outlined, e.g., the bladder is contracted by activation of the parasympathetic pathway via cholinergic stimulation on muscarinic receptors, whereas the urethra is contracted by activation of the sympathetic pathway via adrenergic stimulation on α 1 -adrenoceptors. This is achieved by measuring the force generated by bladder and urethra smooth muscle to demonstrate that acetylcholine contracts the smooth muscle of the bladder, whereas adrenergic agonists contract the urethral smooth muscle. An inhibition of these effects is also demonstrated by application of the muscarinic receptor antagonist atropine and the α 1 -adrenergic receptor blocker phentolamine. A list of suggested techniques and exam questions to evaluate student understanding on this topic is also provided.

  13. Value of counting positive PHH3 cells in the diagnosis of uterine smooth muscle tumors

    PubMed Central

    Pang, Shu-Jie; Li, Cheng-Cheng; Shen, Yan; Liu, Yian-Zhu; Shi, Yi-Quan; Liu, Yi-Xin

    2015-01-01

    The diagnosis of uterine smooth muscle tumors including leiomyosarcomas (LMS), smooth muscle tumors of uncertain malignant potential (STUMP), bizarre (atypical) leiomyoma (BLM), mitotically active leiomyoma (MAL) and leiomyoma (LM) depends on a combination of microscopic features, such as mitoses, cytologic atypia, and coagulative tumor cell necrosis. However, a small number of these tumors still pose difficult diagnostic challenges. The assessment of accurate mitotic figures (MF) is one of the major parameters in the proper classification of uterine smooth muscle tumors. This assessment can be hampered by the presence of increased number of apoptotic bodies or pyknotic nuclei, which frequently mimic mitoses. Phospho-histone H3 (PHH3) is a recently described immunomarker specific for cells undergoing mitoses. In our study, we collected 132 cases of uterine smooth muscle tumors, including 26 LMSs, 16 STUMPs, 30 BLMs, 30 MALs and 30 LMs. We used mitosis specific marker PHH3 to count mitotic indexes (MI) of uterine smooth muscle tumors and compared with the mitotic indexes of hematoxylin and eosin (H&E). There is a positive correlation with the number of mitotic figures in H&E-stained sections and PHH3-stained sections (r=0.944, P<0.05). The ratio of PHH3-MI to H&E-MI has no statistically significant difference in each group except for LMs (P>0.05). The counting value of PHH3 in LMSs have significantly higher than STUMPs, BLMs, MALs and LMs (P<0.001) and the counting value of PHH3 is 1.5±0.5 times of the number of mitotic indexes in H&E. To conclude, our results show that counting PHH3 is a useful index in the diagnosis of uterine smooth muscle tumors and it can provide a more accurate index instead of the time-honored mitotic figure counts at a certain ratio. PMID:26191133

  14. Kir2.1 encodes the inward rectifier potassium channel in rat arterial smooth muscle cells

    PubMed Central

    Bradley, Karri K; Jaggar, Jonathan H; Bonev, Adrian D; Heppner, Thomas J; Flynn, Elaine RM; Nelson, Mark T; Horowitz, Burton

    1999-01-01

    The molecular nature of the strong inward rectifier K+ channel in vascular smooth muscle was explored by using isolated cell RT-PCR, cDNA cloning and expression techniques.RT-PCR of RNA from single smooth muscle cells of rat cerebral (basilar), coronary and mesenteric arteries revealed transcripts for Kir2.1. Transcripts for Kir2.2 and Kir2.3 were not found.Quantitative PCR analysis revealed significant differences in transcript levels of Kir2.1 between the different vascular preparations (n = 3; P < 0.05). A two-fold difference was detected between Kir2.1 mRNA and β-actin mRNA in coronary arteries when compared with relative levels measured in mesenteric and basilar preparations.Kir2.1 was cloned from rat mesenteric vascular smooth muscle cells and expressed in Xenopus oocytes. Currents were strongly inwardly rectifying and selective for K+.The effect of extracellular Ba2+, Ca2+, Mg2+ and Cs2+ ions on cloned Kir2.1 channels expressed in Xenopus oocytes was examined. Ba2+ and Cs+ block were steeply voltage dependent, whereas block by external Ca2+ and Mg2+ exhibited little voltage dependence. The apparent half-block constants and voltage dependences for Ba2+, Cs+, Ca2+ and Mg2+ were very similar for inward rectifier K+ currents from native cells and cloned Kir2.1 channels expressed in oocytes.Molecular studies demonstrate that Kir2.1 is the only member of the Kir2 channel subfamily present in vascular arterial smooth muscle cells. Expression of cloned Kir2.1 in Xenopus oocytes resulted in inward rectifier K+ currents that strongly resemble those that are observed in native vascular arterial smooth muscle cells. We conclude that Kir2.1 encodes for inward rectifier K+ channels in arterial smooth muscle. PMID:10066894

  15. Differential Effect of Zoledronic Acid on Human Vascular Smooth Muscle Cells

    PubMed Central

    Albadawi, Hassan; Haurani, Mounir J.; Oklu, Rahmi; Trubiano, Jordan P.; Laub, Peter J.; Yoo, Hyung-Jin; Watkins, Michael T.

    2012-01-01

    Introduction The activation of human vascular smooth muscle cell proliferation, adhesion and migration is essential for intimal hyperplasia formation. These experiments were designed to test whether Zoledronic Acid (ZA) would modulate indices of human smooth muscle cell activation, exert differential effects on proliferating vs. quiescent cells and determine whether these effects were dependent on GTPase binding proteins prenylation. ZA was chosen for testing in these experiments because it is clinically used in humans with cancer, and has been shown to modulate rat smooth muscle cell proliferation and migration. Methods Human aortic smooth muscle cells (HASMC) were cultured under either proliferating or growth arrest (quiescent) conditions in the presence or absence of ZA for 48 hours, whereupon the effect of ZA on HASMC proliferation, cellular viability, metabolic activity and membrane integrity were compared. In addition, the effect of ZA on adhesion and migration were assessed in proliferating cells. The effect of increased concentration of ZA on the mevalonate pathway and genomic/cellular stress related poly ADP Ribose polymerase (PARP) enzyme activity were assessed using the relative prenylation of Rap-1A/B protein and the formation of poly ADP- ribosylated proteins (PAR) respectively. Results There was a dose dependent inhibition of cellular proliferation, adhesion and migration following ZA treatment. ZA treatment decreased indices of cellular viability and significantly increased membrane injury in proliferating vs. quiescent cells. This was correlated with the appearance of unprenylated Rap-1A protein and dose dependent down regulation of PARP activity. Conclusions These data suggest that ZA is effective in inhibiting HASMC proliferation, adhesion and migration which coincide with the appearance of unprenylated RAP-1A/B protein, thereby suggesting that the mevalonate pathway may play a role in the inhibition of HASMC activation. PMID:23164362

  16. Role of smooth muscle cells on endothelial cell cytosolic free calcium in porcine coronary arteries.

    PubMed

    Budel, S; Schuster, A; Stergiopoulos, N; Meister, J J; Bény, J L

    2001-09-01

    We tested the hypothesis that the cytosolic free calcium concentration in endothelial cells is under the influence of the smooth muscle cells in the coronary circulation. In the left descending branch of porcine coronary arteries, cytosolic free calcium concentration ([Ca(2+)](i)) was estimated by determining the fluorescence ratio of two calcium probes, fluo 4 and fura red, in smooth muscle and endothelial cells using confocal microscopy. Acetylcholine and potassium, which act directly on smooth muscle cells to increase [Ca(2+)](i), were found to indirectly elevate [Ca(2+)](i) in endothelial cells; in primary cultures of endothelial cells, neither stimulus affected [Ca(2+)](i), yet substance P increased the fluorescence ratio twofold. In response to acetylcholine and potassium, isometric tension developed by arterial strips with intact endothelium was attenuated by up to 22% (P < 0.05) compared with strips without endothelium. These findings suggest that stimuli that increase smooth muscle [Ca(2+)](i) can indirectly influence endothelial cell function in porcine coronary arteries. Such a pathway for negative feedback can moderate vasoconstriction and diminish the potential for vasospasm in the coronary circulation.

  17. Berberine alleviates the cerebrovascular contractility in streptozotocin-induced diabetic rats through modulation of intracellular Ca²⁺ handling in smooth muscle cells.

    PubMed

    Ma, Yu-Guang; Zhang, Yin-Bin; Bai, Yun-Gang; Dai, Zhi-Jun; Liang, Liang; Liu, Mei; Xie, Man-Jiang; Guan, Hai-Tao

    2016-04-12

    Vascular dysfunction is a distinctive phenotype in diabetes mellitus. Current treatments mostly focus on the tight glycemic control and few of these treatments have been designed to directly recover the vascular dysfunction in diabetes. As a classical natural medicine, berberine has been explored as a possible therapy for DM. In addition, it is reported that berberine has an extra-protective effect in diabetic vascular dysfunction. However, little is known whether the berberine treatment could ameliorate the smooth muscle contractility independent of a functional endothelium under hyperglycemia. Furthermore, it remains unknown whether berberine affects the arterial contractility by regulating the intracellular Ca(2+) handling in vascular smooth cells (VSMCs) under hyperglycemia. Sprague-Dawley rats were used to establish the diabetic model with a high-fat diet plus injections of streptozotocin (STZ). Berberine (50, 100, and 200 mg/kg/day) were intragastrically administered to control and diabetic rats for 8 weeks since the injection of STZ. The intracellular Ca(2+) handling of isolated cerebral VSMCs was investigated by recording the whole-cell L-type Ca(2+) channel (CaL) currents, assessing the protein expressions of CaL channel, and measuring the intracellular Ca(2+) in response to caffeine. Our results showed that chronic administration of 100 mg/kg/day berberine not only reduced glucose levels, but also inhibited the augmented contractile function of cerebral artery to KCl and 5-hydroxytryptamine (5-HT) in diabetic rats. Furthermore, chronic administration of 100 mg/kg/day berberine significantly inhibited the CaL channel current densities, reduced the α1C-subunit expressions of CaL channel, decreased the resting intracellular Ca(2+) ([Ca(2+)]i) level, and suppressed the Ca(2+) releases from RyRs in cerebral VSMCs isolated from diabetic rats. Correspondingly, acute application of 10 μM berberine could directly inhibit the hyperglycemia-induced CaL currents

  18. Crystal Structure of a Phosphorylated Light Chain Domain of Scallop Smooth-Muscle Myosin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, V.S.; Robinson, H.; O-Neall-Hennessey, E.

    2011-11-02

    We have determined the crystal structure of a phosphorylated smooth-muscle myosin light chain domain (LCD). This reconstituted LCD is of a sea scallop catch muscle myosin with its phosphorylatable regulatory light chain (RLC SmoA). In the crystal structure, Arg{sup 16}, an arginine residue that is present in this isoform but not in vertebrate smooth-muscle RLC, stabilizes the phosphorylation site. This arginine interacts with the carbonyl group of the phosphorylation-site serine in the unphosphorylated LCD (determined previously), and with the phosphate group when the serine is phosphorylated. However, the overall conformation of the LCD is essentially unchanged upon phosphorylation. This resultmore » provides additional evidence that phosphorylation of the RLC is unlikely to act as an on-switch in regulation of scallop catch muscle myosin.« less

  19. Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells.

    PubMed

    Pan, Shi; Sharma, Pawan; Shah, Sushrut D; Deshpande, Deepak A

    2017-07-01

    Airway remodeling, including increased airway smooth muscle (ASM) mass, is a hallmark feature of asthma and COPD. We previously identified the expression of bitter taste receptors (TAS2Rs) on human ASM cells and demonstrated that known TAS2R agonists could promote ASM relaxation and bronchodilation and inhibit mitogen-induced ASM growth. In this study, we explored cellular mechanisms mediating the antimitogenic effect of TAS2R agonists on human ASM cells. Pretreatment of ASM cells with TAS2R agonists chloroquine and quinine resulted in inhibition of cell survival, which was largely reversed by bafilomycin A1, an autophagy inhibitor. Transmission electron microscope studies demonstrated the presence of double-membrane autophagosomes and deformed mitochondria. In ASM cells, TAS2R agonists decreased mitochondrial membrane potential and increased mitochondrial ROS and mitochondrial fragmentation. Inhibiting dynamin-like protein 1 (DLP1) reversed TAS2R agonist-induced mitochondrial membrane potential change and attenuated mitochondrial fragmentation and cell death. Furthermore, the expression of mitochondrial protein BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (Bnip3) and mitochondrial localization of DLP1 were significantly upregulated by TAS2R agonists. More importantly, inhibiting Bnip3 mitochondrial localization by dominant-negative Bnip3 significantly attenuated cell death induced by TAS2R agonist. Collectively the TAS2R agonists chloroquine and quinine modulate mitochondrial structure and function, resulting in ASM cell death. Furthermore, Bnip3 plays a central role in TAS2R agonist-induced ASM functional changes via a mitochondrial pathway. These findings further establish the cellular mechanisms of antimitogenic effects of TAS2R agonists and identify a novel class of receptors and pathways that can be targeted to mitigate airway remodeling as well as bronchoconstriction in obstructive airway diseases. Copyright © 2017 the American Physiological

  20. Creatinine metabolite, HMH (5-hydroxy-1-methylhydantoin; NZ-419), modulates bradykinin-induced changes in vascular smooth muscle cells.

    PubMed

    Ienaga, Kazuharu; Sohn, Mimi; Naiki, Mitsuru; Jaffa, Ayad A

    2014-06-01

    A creatinine metabolite, 5-hydroxy-1-methylhydantoin (HMH: NZ-419), a hydroxyl radical scavenger, has previously been shown to confer renoprotection by inhibiting the progression of chronic kidney disease in rats. In the current study, we demonstrate that HMH modulates the effects of glucose and bradykinin (BK) in vascular smooth muscle cell (VSMC). HMH a novel anti-oxidant drug completely suppressed the expression of B2-kinin receptors (B2KR) in response to high glucose (25 mM) stimulation in VSMC and was also shown to attenuate the effects of BK on VSMC remodeling. HMH inhibited the BK-induced increase in MAPK phosphorylation and attenuated the increase in connective tissue growth factor (CTGF) protein levels in VSMC. These findings suggest that HMH may confer vascular protection against high glucose concentrations and BK-stimulation to ameliorate vascular injury and remodeling through its anti-oxidant properties.

  1. THE EFFECT OF SMOOTH MUSCLE ON THE INTERCELLULAR SPACES IN TOAD URINARY BLADDER

    PubMed Central

    DiBona, Donald R.; Civan, Mortimer M.

    1970-01-01

    Phase microscopy of toad urinary bladder has demonstrated that vasopressin can cause an enlargement of the epithelial intercellular spaces under conditions of no net transfer of water or sodium. The suggestion that this phenomenon is linked to the hormone's action as a smooth muscle relaxant has been tested and verified with the use of other agents effecting smooth muscle: atropine and adenine compounds (relaxants), K+ and acetylcholine (contractants). Furthermore, it was possible to reduce the size and number of intercellular spaces, relative to a control, while increasing the rate of osmotic water flow. A method for quantifying these results has been developed and shows that they are, indeed, significant. It is concluded, therefore, that the configuration of intercellular spaces is not a reliable index of water flow across this epithelium and that such a morphologic-physiologic relationship is tenuous in any epithelium supported by a submucosa rich in smooth muscle. PMID:4915450

  2. Progression from homologous to heterologous desensitization of contraction in gastric smooth muscle cells.

    PubMed

    Severi, C; Carnicelli, V; di Giulio, A; Romano, G; Bozzi, A; Oratore, A; Strom, R; delle Fave, G

    1999-02-01

    Acute desensitization of contraction and its relative mechanisms have been studied in smooth muscle cells isolated from guinea pig stomach. Desensitization was induced by pre-exposure of the cells to one of the excitatory neuropeptides linked to the phospholipase C intracellular cascade, i.e., cholecystokinin (CCK), gastrin-releasing peptide, and Substance P. Desensitization was homologous after a 30-s pre-exposure and heterologous if pre-exposure lasted for 5 min or longer. Homologous desensitization was studied in a more detailed way after pre-exposure to CCK. Preincubation with increasing concentrations of CCK (10 pM-1 microM) induced a progressive rightward shift of the dose-response curves associated with both a decrease in potency (ED50 4.5 pM-2.2 nM) and a maximum response that were not related to a modification of response kinetics. After brief pre-exposure to 1 nM CCK (Dmax), an inhibition of contraction was observed in response to an identical dose of CCK (45.1 +/- 8.6%), the decreased response being associated with an inhibition of inositol phosphates and [Ca++]i mobilization. Both inositol trisphosphate (InsP3)-induced contraction and [Ca++]i mobilization were inhibited to a lesser extent than CCK-induced responses. Any longer pre-exposure of cells to one of the above-mentioned neuropeptides caused heterologous desensitization, with an observed inhibition of contraction in response to all tested agonists (CCK, 60.3 +/- 5.9%; gastrin-releasing peptide: 56.7 +/- 3. 5%; Substance P, 60.6 +/- 6.5%). A similar decrease was observed in InsP3-induced contractions resulting in a desensitization of the InsP3 response as well. Full recovery of contractile responses appeared within 30 min from the end of preincubation, thus indicating that degradation of membrane receptors did not occur. Although pre-exposure of the cells to protein kinase C inhibitor GF109203X did not modify CCK-induced homologous desensitization, it blocked CCK-induced heterologous

  3. Estrogen receptor beta signaling inhibits PDGF induced human airway smooth muscle proliferation.

    PubMed

    Ambhore, Nilesh Sudhakar; Katragadda, Rathnavali; Raju Kalidhindi, Rama Satyanarayana; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S; Sathish, Venkatachalem

    2018-04-20

    Airway smooth muscle (ASM) cell hyperplasia driven by persistent inflammation is a hallmark feature of remodeling in asthma. Sex steroid signaling in the lungs is of considerable interest, given epidemiological data showing more asthma in pre-menopausal women and aging men. Our previous studies demonstrated that estrogen receptor (ER) expression increases in asthmatic human ASM; however, very limited data are available regarding differential roles of ERα vs. ERβ isoforms in human ASM cell proliferation. In this study, we evaluated the effect of selective ERα and ERβ modulators on platelet-derived growth factor (PDGF)-stimulated ASM proliferation and the mechanisms involved. Asthmatic and non-asthmatic primary human ASM cells were treated with PDGF, 17β-estradiol, ERα-agonist and/or ERβ-agonist and/or G-protein-coupled estrogen receptor 30 (GPR30/GPER) agonist and proliferation was measured using MTT and CyQuant assays followed by cell cycle analysis. Transfection of small interfering RNA (siRNA) ERα and ERβ significantly altered the human ASM proliferation. The specificity of siRNA transfection was confirmed by Western blot analysis. Gene and protein expression of cell cycle-related antigens (PCNA and Ki67) and C/EBP were measured by RT-PCR and Western analysis, along with cell signaling proteins. PDGF significantly increased ASM proliferation in non-asthmatic and asthmatic cells. Treatment with PPT showed no significant effect on PDGF-induced proliferation, whereas WAY interestingly suppressed proliferation via inhibition of ERK1/2, Akt, and p38 signaling. PDGF-induced gene expression of PCNA, Ki67 and C/EBP in human ASM was significantly lower in cells pre-treated with WAY. Furthermore, WAY also inhibited PDGF-activated PCNA, C/EBP, cyclin-D1, and cyclin-E. Overall, we demonstrate ER isoform-specific signaling in the context of ASM proliferation. Activation of ERβ can diminish remodeling in human ASM by inhibiting pro-proliferative signaling pathways

  4. Effects of ghrelin and motilin on smooth muscle contractility of the isolated gastrointestinal tract from the bullfrog and Japanese fire belly newt.

    PubMed

    Kitazawa, Takio; Shimazaki, Misato; Kikuta, Ayumi; Yaosaka, Noriko; Teraoka, Hiroki; Kaiya, Hiroyuki

    2016-06-01

    Ghrelin has been identified in some amphibians and is known to stimulate growth hormone release and food intake as seen in mammals. Ghrelin regulates gastrointestinal motility in mammals and birds. The aim of this study was to determine whether ghrelin affects gastrointestinal smooth muscle contractility in bullfrogs (anuran) and Japanese fire belly newts (urodelian) in vitro. Neither bullfrog ghrelin nor rat ghrelin affected longitudinal smooth muscle contractility of gastrointestinal strips from the bullfrog. Expression of growth hormone secretagogue receptor 1a (GHS-R1a) mRNA was confirmed in the bullfrog gastrointestinal tract, and the expression level in the gastric mucosa was lower than that in the intestinal mucosa. In contrast, some gastrointestinal peptides, including substance P, neurotensin and motilin, and the muscarinic receptor agonist carbachol showed marked contraction, indicating normality of the smooth muscle preparations. Similar results were obtained in another amphibian, the Japanese fire belly newt. Newt ghrelin and rat ghrelin did not cause any contraction in gastrointestinal longitudinal muscle, whereas substance P and carbachol were effective causing contraction. In conclusion, ghrelin does not affect contractility of the gastrointestinal smooth muscle in anuran and urodelian amphibians, similar to results for rainbow trout and goldfish (fish) but different from results for rats and chickens. The results suggest diversity of ghrelin actions on the gastrointestinal tract across animals. This study also showed for the first time that motilin induces gastrointestinal contraction in amphibians. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Arterial Smooth Muscle Mitochondria Amplify Hydrogen Peroxide Microdomains Functionally Coupled to L-Type Calcium Channels

    PubMed Central

    Chaplin, Nathan L.; Nieves-Cintrón, Madeline; Fresquez, Adriana M.; Navedo, Manuel F.; Amberg, Gregory C.

    2015-01-01

    Rationale Mitochondria are key integrators of convergent intracellular signaling pathways. Two important second messengers modulated by mitochondria are calcium and reactive oxygen species. To date, coherent mechanisms describing mitochondrial integration of calcium and oxidative signaling in arterial smooth muscle are incomplete. Objective To address and add clarity to this issue we tested the hypothesis that mitochondria regulate subplasmalemmal calcium and hydrogen peroxide microdomain signaling in cerebral arterial smooth muscle. Methods and Results Using an image-based approach we investigated the impact of mitochondrial regulation of L-type calcium channels on subcellular calcium and ROS signaling microdomains in isolated arterial smooth muscle cells. Our single cell observations were then related experimentally to intact arterial segments and to living animals. We found that subplasmalemmal mitochondrial amplification of hydrogen peroxide microdomain signaling stimulates L-type calcium channels and that this mechanism strongly impacts the functional capacity of the vasoconstrictor angiotensin II. Importantly, we also found that disrupting this mitochondrial amplification mechanism in vivo normalized arterial function and attenuated the hypertensive response to systemic endothelial dysfunction. Conclusions From these observations we conclude that mitochondrial amplification of subplasmalemmal calcium and hydrogen peroxide microdomain signaling is a fundamental mechanism regulating arterial smooth muscle function. As the principle components involved are fairly ubiquitous and positioning of mitochondria near the plasma membrane is not restricted to arterial smooth muscle, this mechanism could occur in many cell types and contribute to pathological elevations of intracellular calcium and increased oxidative stress associated with many diseases. PMID:26390880

  6. Kv7.5 Potassium Channel Subunits Are the Primary Targets for PKA-Dependent Enhancement of Vascular Smooth Muscle Kv7 Currents.

    PubMed

    Mani, Bharath K; Robakowski, Christina; Brueggemann, Lyubov I; Cribbs, Leanne L; Tripathi, Abhishek; Majetschak, Matthias; Byron, Kenneth L

    2016-03-01

    Kv7 (KCNQ) channels, formed as homo- or heterotetramers of Kv7.4 and Kv7.5 α-subunits, are important regulators of vascular smooth muscle cell (VSMC) membrane voltage. Recent studies demonstrate that direct pharmacological modulation of VSMC Kv7 channel activity can influence blood vessel contractility and diameter. However, the physiologic regulation of Kv7 channel activity is still poorly understood. Here, we study the effect of cAMP/protein kinase A (PKA) activation on whole cell K(+) currents through endogenous Kv7.5 channels in A7r5 rat aortic smooth muscle cells or through Kv7.4/Kv7.5 heteromeric channels natively expressed in rat mesenteric artery smooth muscle cells. The contributions of specific α-subunits are further dissected using exogenously expressed human Kv7.4 and Kv7.5 homo- or heterotetrameric channels in A7r5 cells. Stimulation of Gαs-coupled β-adrenergic receptors with isoproterenol induced PKA-dependent activation of endogenous Kv7.5 currents in A7r5 cells. The receptor-mediated enhancement of Kv7.5 currents was mimicked by pharmacological agents that increase [cAMP] (forskolin, rolipram, 3-isobutyl-1-methylxanthine, and papaverine) or mimic cAMP (8-bromo-cAMP); the 2- to 4-fold PKA-dependent enhancement of currents was also observed with exogenously expressed Kv7.5 channels. In contrast, exogenously-expressed heterotetrameric Kv7.4/7.5 channels in A7r5 cells or native mesenteric artery smooth muscle Kv7.4/7.5 channels were only modestly enhanced, and homo-tetrameric Kv7.4 channels were insensitive to this regulatory pathway. Correspondingly, proximity ligation assays indicated that isoproterenol induced PKA-dependent phosphorylation of exogenously expressed Kv7.5 channel subunits, but not of Kv7.4 subunits. These results suggest that signal transduction-mediated responsiveness of vascular smooth muscle Kv7 channel subunits to cAMP/PKA activation follows the order of Kv7.5 > Kv7.4/Kv7.5 > Kv7.4. Copyright © 2016 by The American Society for

  7. P2X and P2Y Receptors Mediate Contraction Induced by Electrical Field Stimulation in Feline Esophageal Smooth Muscle.

    PubMed

    Cho, Young Rae; Jang, Hyeon Soon; Kim, Won; Park, Sun Young; Sohn, Uy Dong

    2010-10-01

    It is well-known that electrical field stimulation (EFS)-induced contraction is mediated by a cholinergic mechanism and other neurotransmitters. NO, ATP, calcitonin gene-related peptide (CGRP), and substance P are released by EFS. To investigate the purinergic mechanism involved in the EFS-induced contraction, purinegic receptors antagonists were used. Suramine, a non-selective P2 receptor antagonist, reduced the contraction induced by EFS. NF023 (10(-7)~10(-4) M), a selective P2X antagonist, inhibited the contraction evoked by EFS. Reactive blue (10(-6)~10(-4) M), selective P2Y antagonist, also blocked the contraction in a dose-dependent manner. In addition, P2X agonist α,β-methylene 5'-adenosine triphosphate (αβMeATP, 10(-7)~10(-5) M) potentiated EFS-induced contraction in a dose-dependent manner. P2Y agonist adenosine 5'-[β-thio]diphosphate trilithium salt (ADPβS, 10(-7)~10(-5) M) also potentiated EFS-induced contractions in a dose-dependent manner. Ecto-ATPase activator apyrase (5 and 10 U/ml) reduced EFS-induced contractions. Inversely, 6-N,N-diethyl-D-β,γ-dibromomethylene 5'-triphosphate triammonium (ARL 67156, 10(-4) M) increased EFS-induced contraction. These data suggest that endogenous ATP plays a role in EFS-induced contractions which are mediated through both P2X-receptors and P2Y-receptors stimulation in cat esophageal smooth muscle.

  8. Lovastatin inhibits gap junctional communication in cultured aortic smooth muscle cells.

    PubMed

    Shen, Jing; Wang, Li-Hong; Zheng, Liang-Rong; Zhu, Jian-Hua; Hu, Shen-Jiang

    2010-09-01

    Gap junctions, which serve as intercellular channels that allow the passage of ions and other small molecules between neighboring cells, play an important role in vital functions, including the regulation of cell growth, differentiation, and development. Statins, the 3-hydroxy-3-methylglutaryl-coenzymeA (HMG-CoA) reductase inhibitors, have been shown to inhibit the migration and proliferation of smooth muscle cells (SMCs) leading to an antiproliferative effect. Recent studies have shown that statins can reduce gap junction protein connexin43 (Cx43) expression both in vivo and in vitro. However, little work has been done on the effects of statins on gap junctional intercellular communication (GJIC). We hypothesized in this study that lovastatin inhibits vascular smooth muscle cells (VSMCs) migration through the inhibition of the GJIC. Rat aortic SMCs (RASMCs) were exposed to lovastatin. Vascular smooth muscle cells migration was then assessed with a Transwell migration assay. Gap junctional intercellular communication was determined by using fluorescence recovery after photobleaching (FRAP) analysis, which was performed with a laser-scanning confocal microscope. The migration of the cultured RASMCs were detected by Transwell system. Cell migration was dose-dependently inhibited with lovastatin. Compared with that in the control (110 ± 26), the number of migrated SMCs was significantly reduced to 72 ± 24 (P < .05), 62 ± 18 (P < .01), and 58 ± 19 (P < .01) at the concentration of 0.4, 2, and 10 umol/L, per field. The rate of fluorescence recovery (R) at 5 minutes after photobleaching was adopted as the functional index of GJIC. The R- value of cells exposed to lovastatin 10 umol/L for 48 hours was 24.38% ± 4.84%, whereas the cells in the control group had an R- value of 36.11% ± 10.53%, demonstrating that the GJIC of RASMCs was significantly inhibited by lovastatin (P < .01). Smaller concentrations of lovastatin 0.08 umol/L did not change gap junction coupling

  9. β-Agonist-mediated relaxation of airway smooth muscle is protein kinase A-dependent.

    PubMed

    Morgan, Sarah J; Deshpande, Deepak A; Tiegs, Brian C; Misior, Anna M; Yan, Huandong; Hershfeld, Alena V; Rich, Thomas C; Panettieri, Reynold A; An, Steven S; Penn, Raymond B

    2014-08-15

    Inhaled β-agonists are effective at reversing bronchoconstriction in asthma, but the mechanism by which they exert this effect is unclear and controversial. PKA is the historically accepted effector, although this assumption is made on the basis of associative and not direct evidence. Recent studies have asserted that exchange protein activated by cAMP (Epac), not PKA, mediates the relaxation of airway smooth muscle (ASM) observed with β-agonist treatment. This study aims to clarify the role of PKA in the prorelaxant effects of β-agonists on ASM. Inhibition of PKA activity via expression of the PKI and RevAB peptides results in increased β-agonist-mediated cAMP release, abolishes the inhibitory effect of isoproterenol on histamine-induced intracellular calcium flux, and significantly attenuates histamine-stimulated MLC-20 phosphorylation. Analyses of ASM cell and tissue contraction demonstrate that PKA inhibition eliminates most, if not all, β-agonist-mediated relaxation of contracted smooth muscle. Conversely, Epac knockdown had no effect on the regulation of contraction or procontractile signaling by isoproterenol. These findings suggest that PKA, not Epac, is the predominant and physiologically relevant effector through which β-agonists exert their relaxant effects. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Intercellular ultrafast Ca2+ wave in vascular smooth muscle cells: numerical and experimental study

    NASA Astrophysics Data System (ADS)

    Quijano, J. C.; Raynaud, F.; Nguyen, D.; Piacentini, N.; Meister, J. J.

    2016-08-01

    Vascular smooth muscle cells exhibit intercellular Ca2+ waves in response to local mechanical or KCl stimulation. Recently, a new type of intercellular Ca2+ wave was observed in vitro in a linear arrangement of smooth muscle cells. The intercellular wave was denominated ultrafast Ca2+ wave and it was suggested to be the result of the interplay between membrane potential and Ca2+ dynamics which depended on influx of extracellular Ca2+, cell membrane depolarization and its intercel- lular propagation. In the present study we measured experimentally the conduction velocity of the membrane depolarization and performed simulations of the ultrafast Ca2+ wave along coupled smooth muscle cells. Numerical results reproduced a wide spectrum of experimental observations, including Ca2+ wave velocity, electrotonic membrane depolarization along the network, effects of inhibitors and independence of the Ca2+ wave speed on the intracellular stores. The numerical data also provided new physiological insights suggesting ranges of crucial model parameters that may be altered experimentally and that could significantly affect wave kinetics allowing the modulation of the wave characteristics experimentally. Numerical and experimental results supported the hypothesis that the propagation of membrane depolarization acts as an intercellular messenger mediating intercellular ultrafast Ca2+ waves in smooth muscle cells.

  11. Markers for human brain pericytes and smooth muscle cells.

    PubMed

    Smyth, Leon C D; Rustenhoven, Justin; Scotter, Emma L; Schweder, Patrick; Faull, Richard L M; Park, Thomas I H; Dragunow, Mike

    2018-06-07

    Brain pericytes and vascular smooth muscle cells (vSMCs) are a critical component of the neurovascular unit and are important in regulating cerebral blood flow and blood-brain barrier integrity. Identification of subtypes of mural cells in tissue and in vitro is important to any study of their function, therefore we identified distinct mural cell morphologies in neurologically normal post-mortem human brain. Further, the distribution of mural cell markers platelet-derived growth factor receptor-β (PDGFRβ), α-smooth muscle actin (αSMA), CD13, neural/glial antigen-2 (NG2), CD146 and desmin was examined. We determined that PDGFRβ, NG2, CD13, and CD146 were expressed in capillary-associated pericytes. NG2, and CD13 were also present on vSMCs in large vessels, however abundant CD146 and desmin staining was also detected in vSMCs on large vessels, co-labelling with αSMA. To determine whether cultures recapitulated observations from tissue, primary human brain pericytes derived from neurologically normal autopsies were analysed for the presence of pericyte markers by immunocytochemistry, western blotting and qPCR. The proteins observed in brain pericytes in tissue (PDGFRβ, αSMA, desmin, CD146, CD13, and NG2) were present in vitro, validating a panel of proteins that can be used to label brain pericytes and vSMCs in tissue and in vitro. Finally, we showed that the proteins CD146 and desmin that are expressed on large vessels in situ, are also selective markers of a smooth muscle cell phenotype in vitro. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Lysyl oxidase propeptide inhibits smooth muscle cell signaling and proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurtado, Paola A.; Vora, Siddharth; Sume, Siddika Selva

    2008-02-01

    Lysyl oxidase is required for the normal biosynthesis and maturation of collagen and elastin. It is expressed by vascular smooth muscle cells, and its increased expression has been previously found in atherosclerosis and in models of balloon angioplasty. The lysyl oxidase propeptide (LOX-PP) has more recently been found to have biological activity as a tumor suppressor, and it inhibits Erk1/2 Map kinase activation. We reasoned that LOX-PP may have functions in normal non-transformed cells. We, therefore, investigated its effects on smooth muscle cells, focusing on important biological processes mediated by Erk1/2-dependent signaling pathways including proliferation and matrix metalloproteinase-9 (MMP-9) expression.more » In addition, we investigated whether evidence for accumulation of LOX-PP could be found in vivo in a femoral artery injury model. Recombinant LOX-PP was expressed and purified, and was found to inhibit primary rat aorta smooth muscle cell proliferation and DNA synthesis by more than 50%. TNF-{alpha}-stimulated MMP-9 expression and Erk1/2 activation were both significantly inhibited by LOX-PP. Immunohistochemistry studies carried out with affinity purified anti-LOX-PP antibody showed that LOX-PP epitopes were expressed at elevated levels in vascular lesions of injured arteries. These novel data suggest that LOX-PP may provide a feedback control mechanism that serves to inhibit properties associated with the development of vascular pathology.« less

  13. 3-Isobutyl-1-methylxanthine increases alpha-1-adrenergic receptor sensitivity and density in DDT1-MF2 smooth muscle cells.

    PubMed

    Schachter, J B; Wolfe, B B

    1995-01-01

    The effect of chronic exposure of DDT1-MF2 smooth muscle cells to the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) was investigated with regard to the dynamics of alpha-1-adrenergic receptors. After 48 hr of exposure to 750 microM IBMX, the magnitude of the maximal phospholipase C response to norepinephrine was increased approximately 2-fold and the potency of norepinephrine was increased almost 3-fold. Similar effects were noted for the response to ATP. The density of alpha-1-adrenergic receptors, as defined by [3H]-prazosin binding to membranes was increased 2-fold. In addition, chronic treatment with IBMX prevented agonist-induced desensitization of alpha-1-adrenergic receptors and enhanced the rate of receptor resensitization subsequent to desensitization by a combination of agonist and phorbol ester. These effects appear to be regulated by a cyclic AMP-dependent mechanism. Thus, chronic exposure of smooth muscle cells to phosphodiesterase inhibition may activate compensatory mechanisms that lead to enhanced sensitivity to contractile stimuli. The potential importance of such compensatory mechanisms in the treatment and etiology of smooth muscle dysfunction is briefly discussed.

  14. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Gang; Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang; Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation,more » whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.« less

  15. Numerous eosinophilic globules (skeinoid fibers) in a duodenal stromal tumor: an exceptional case showing smooth muscle differentiation.

    PubMed

    Matsukuma, S; Doi, M; Suzuki, M; Ikegawa, K; Sato, K; Kuwabara, N

    1997-11-01

    A unique case of duodenal stromal tumor in a 51-year-old man is reported. The tumor histologically showed spindle cell proliferation and numerous eosinophilic globules. Most globules were composed of tangled 45 nm thick fibrils, which were ultrastructurally identical to 'skeinoid fibers'. The presence of glycogen granules in the tumor cells and the immunoreactivity for alpha-smooth muscle actin suggested smooth muscle differentiation. Focal ultrastructural findings also supported the smooth muscle nature of this tumor. There were no immunohistochemical and ultrastructural features indicating neural differentiation. In previous studies, the presence of such 'skeinoid fibers' was suggested to be a histological marker for neural differentiation in gastrointestinal stromal tumor. However, the findings in the present case suggest that numerous 'skeinoid fibers' can be identified in duodenal stromal tumor with smooth muscle differentiation, although this condition may be rare.

  16. Evaluation of pharmacological relaxation effect of the natural product naringin on in vitro cultured airway smooth muscle cells and in vivo ovalbumin-induced asthma Balb/c mice

    PubMed Central

    Wang, Yue; Lu, Yun; Luo, Mingzhi; Shi, Xiaohao; Pan, Yan; Zeng, Huilong; Deng, Linhong

    2016-01-01

    Asthma has become a common chronic respiratory disease worldwide and its prevalence is predicted to continue increasing in the next decade, particularly in developing countries. A key component in asthma therapy is to alleviate the excessive bronchial airway narrowing ultimately due to airway smooth muscle contraction, which is often facilitated by a smooth muscle relaxant, such as the β2-adrenergic agonists. Recently, bitter taste receptor (TAS2R) agonists, including saccharin and chloroquine, have been found to potently relax the airway smooth muscle cells (ASMCs) via intracellular Ca2+ signaling. This inspires a great interest in screening the vast resource of natural bitter substances for potential bronchodilatory drugs. In the present study, the relaxation effect of naringin, a compound extracted from common grapefruit, on ASMCs cultured in vitro or bronchial airways of Balb/c mice in vivo was evaluated. The results demonstrated that, when exposed to increasing doses of naringin (0.125, 0.25, 0.5 and 1.0 mM), the traction force generated by the cultured ASMCs decreased progressively, while the intracellular calcium flux signaling in the ASMCs increased. When inhaled at increasing doses (15, 30 and 60 µg), naringin also dose-dependently reduced the bronchial airway resistance of the normal and ovalbumin-induced asthma Balb/c mice in response to challenge with methacholine. In conclusion, these findings indicate that naringin was able to effectively relax murine ASMCs in vitro and in vivo, thus suggesting that it is a promising drug agent to be further investigated in the development of novel bronchodilators for the treatment of asthma. PMID:28101344

  17. TLR4-NOX4-AP-1 signaling mediates lipopolysaccharide-induced CXCR6 expression in human aortic smooth muscle cells.

    PubMed

    Patel, Devang N; Bailey, Steven R; Gresham, John K; Schuchman, David B; Shelhamer, James H; Goldstein, Barry J; Foxwell, Brian M; Stemerman, Michael B; Maranchie, Jodi K; Valente, Anthony J; Mummidi, Srinivas; Chandrasekar, Bysani

    2006-09-08

    CXCL16 is a transmembrane non-ELR CXC chemokine that signals via CXCR6 to induce aortic smooth muscle cell (ASMC) proliferation. While bacterial lipopolysaccharide (LPS) has been shown to stimulate CXCL16 expression in SMC, its effects on CXCR6 are not known. Here, we demonstrate that LPS upregulates CXCR6 mRNA, protein, and surface expression in human ASMC. Inhibition of TLR4 with neutralizing antibodies or specific siRNA interference blocked LPS-mediated CXCR6 expression. LPS stimulated both AP-1 (c-Fos, c-Jun) and NF-kappaB (p50 and p65) activation, but only inhibition of AP-1 attenuated LPS-induced CXCR6 expression. Using dominant negative expression vectors and siRNA interference, we demonstrate that LPS induces AP-1 activation via MyD88, TRAF6, ERK1/2, and JNK signaling pathways. Furthermore, the flavoprotein inhibitor diphenyleniodonium chloride significantly attenuated LPS-mediated AP-1-dependent CXCR6 expression, as did inhibition of NOX4 NADPH oxidase by siRNA. Finally, CXCR6 knockdown inhibited CXCL16-induced ASMC proliferation. These results demonstrate that LPS-TLR4-NOX4-AP-1 signaling can induce CXCR6 expression in ASMC, and suggest that the CXCL16-CXCR6 axis may be an important proinflammatory pathway in the pathogenesis of atherosclerosis.

  18. TLR4-NOX4-AP-1 signaling mediates lipopolysaccharide-induced CXCR6 expression in human aortic smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Devang N.; Bailey, Steven R.; Gresham, John K.

    2006-09-08

    CXCL16 is a transmembrane non-ELR CXC chemokine that signals via CXCR6 to induce aortic smooth muscle cell (ASMC) proliferation. While bacterial lipopolysaccharide (LPS) has been shown to stimulate CXCL16 expression in SMC, its effects on CXCR6 are not known. Here, we demonstrate that LPS upregulates CXCR6 mRNA, protein, and surface expression in human ASMC. Inhibition of TLR4 with neutralizing antibodies or specific siRNA interference blocked LPS-mediated CXCR6 expression. LPS stimulated both AP-1 (c-Fos, c-Jun) and NF-{kappa}B (p50 and p65) activation, but only inhibition of AP-1 attenuated LPS-induced CXCR6 expression. Using dominant negative expression vectors and siRNA interference, we demonstrate thatmore » LPS induces AP-1 activation via MyD88, TRAF6, ERK1/2, and JNK signaling pathways. Furthermore, the flavoprotein inhibitor diphenyleniodonium chloride significantly attenuated LPS-mediated AP-1-dependent CXCR6 expression, as did inhibition of NOX4 NADPH oxidase by siRNA. Finally, CXCR6 knockdown inhibited CXCL16-induced ASMC proliferation. These results demonstrate that LPS-TLR4-NOX4-AP-1 signaling can induce CXCR6 expression in ASMC, and suggest that the CXCL16-CXCR6 axis may be an important proinflammatory pathway in the pathogenesis of atherosclerosis.« less

  19. Hypoxia induces arginase II expression and increases viable human pulmonary artery smooth muscle cell numbers via AMPKα1 signaling

    PubMed Central

    Xue, Jianjing; Nelin, Leif D.

    2017-01-01

    Pulmonary artery smooth muscle cell (PASMC) proliferation is one of the hallmark features of hypoxia-induced pulmonary hypertension. With only supportive treatment options available for this life-threatening disease, treating and preventing the proliferation of PASMCs is a viable therapeutic option. A key promoter of hypoxia-induced increases in the number of viable human PASMCs is arginase II, with attenuation of viable cell numbers following pharmacologic inhibition or siRNA knockdown of the enzyme. Additionally, increased levels of arginase have been demonstrated in the pulmonary vasculature of patients with pulmonary hypertension. The signaling pathways responsible for the hypoxic induction of arginase II in PASMCs, however, remain unknown. Hypoxia is a recognized activator of AMPK, which is known to be expressed in human PASMCs (hPASMCs). Activation of AMPK by hypoxia has been shown to promote cell survival in PASMCs. In addition, pharmacologic agents targeting AMPK have been shown to attenuate chronic hypoxia-induced pulmonary hypertension in animal models. The present studies tested the hypothesis that hypoxia-induced arginase II expression in hPASMCs is mediated through AMPK signaling. We found that pharmacologic inhibitors of AMPK, as well as siRNA knockdown of AMPKα1, prevented hypoxia-induced arginase II. The hypoxia-induced increase in viable hPASMC numbers was also prevented following both pharmacologic inhibition and siRNA knockdown of AMPK. Furthermore, we demonstrate that overexpression of AMPK induced arginase II protein expression and viable cells numbers in hPASMCs. PMID:28213467

  20. Biphasic force response to iso-velocity stretch in airway smooth muscle.

    PubMed

    Norris, Brandon A; Lan, Bo; Wang, Lu; Pascoe, Christopher D; Swyngedouw, Nicholas E; Paré, Peter D; Seow, Chun Y

    2015-10-01

    Airway smooth muscle (ASM) in vivo is constantly subjected to oscillatory strain due to tidal breathing and deep inspirations. ASM contractility is known to be adversely affected by strains, especially those of large amplitudes. Based on the cross-bridge model of contraction, it is likely that strain impairs force generation by disrupting actomyosin cross-bridge interaction. There is also evidence that strain modulates muscle stiffness and force through induction of cytoskeletal remodeling. However, the molecular mechanism by which strain alters smooth muscle function is not entirely clear. Here, we examine the response of ASM to iso-velocity stretches to probe the components within the muscle preparation that give rise to different features in the force response. We found in ASM that force response to a ramp stretch showed a biphasic feature, with the initial phase associated with greater muscle stiffness compared with that in the later phase, and that the transition between the phases occurred at a critical strain of ∼3.3%. Only strains with amplitudes greater than the critical strain could lead to reduction in force and stiffness of the muscle in the subsequent stretches. The initial-phase stiffness was found to be linearly related to the degree of muscle activation, suggesting that the stiffness stems mainly from attached cross bridges. Both phases were affected by the degree of muscle activation and by inhibitors of myosin light-chain kinase, PKC, and Rho-kinase. Different responses due to different interventions suggest that cross-bridge and cytoskeletal stiffness is regulated differently by the kinases. Copyright © 2015 the American Physiological Society.

  1. The expression and crucial roles of BMP signaling in development of smooth muscle progenitor cells in the mouse embryonic gut.

    PubMed

    Torihashi, Shigeko; Hattori, Takako; Hasegawa, Hirotaka; Kurahashi, Masaaki; Ogaeri, Takunori; Fujimoto, Toyoshi

    2009-03-01

    Bone morphogenetic protein (BMP) signaling is essential for normal development of the gastrointestinal (GI) tract. BMPs also play multiple roles in vascular smooth muscle cells; however, the BMP signaling in the development of the GI musculature remains to be clarified. We investigated the expression of BMPs and their receptors in mouse embryonic GI tracts by immunohistochemistry and in situ hybridization. We demonstrated that BMP2, BMP receptor Ib and BMP receptor II were expressed in the smooth muscle progenitors from E12 to E13 for the first time. BMP signaling on smooth muscle differentiation was examined by implantation of agarose beads soaked with BMPs in the in vitro developmental model that is gut-like structures from mouse embryonic stem (ES) cells. BMP2 rather than BMP4 beads enhanced smooth muscle differentiation, and increased gut-like structures showing spontaneous contractions and expressing intensive alpha-smooth muscle actin immunoreactivity. This increase was confirmed by up-regulation of SM22 mRNA shown by real-time PCR. By addition of noggin beads or noggin to the medium at BMP2 bead implantation, the ratio of contractive gut-like structures decreased. Implantation of BMP2 beads at EB7 (EB--embryoid bodies) (corresponding to E12 or E13 of mouse embryo) showed the highest effects and up-regulation of transcription factors msx-1 after 24h. This increase was blocked by noggin, and msx-1 decreased to almost the control level after 60 h. BMP2 beads at EB7 increased platelet-derived growth factor-A (PDGF-A) in the differentiating smooth muscle cells. We have recently reported that PDGF-A is expressed in the developing inner circular smooth muscle and is crucial for the longitudinal smooth muscle differentiation. Taken together, BMP signaling was expressed for a short window in the smooth muscle progenitors and the signal, especially BMP2, plays an essential role in smooth muscle differentiation in cooperation with PDGF signaling.

  2. The effects of substance P on smooth muscle cells and on neuro-effector transmission in the guinea-pig ileum

    PubMed Central

    Fujisawa, Kazuaki; Ito, Yushi

    1982-01-01

    1 The effects of substance P (SP) on the membrane and contractile properties of the smooth muscle cell, or on neuro-effector transmission in the guinea-pig ileum were observed by means of microelectrodes, double sucrose gap and tension recording. 2 SP (10-13-10-10M) induced a phasic contraction of longitudinal muscle strips, but did not change the muscle tone of circular muscle strips, in concentrations up to 10-8M. 3 SP (10-10-10-8M) evoked three different membrane responses in longitudinal muscle cells: (i) bursts of spike discharges with no significant change in the membrane potential and input membrane resistance; (ii) bursts of spike discharges with a small but clear depolarization of the membrane and increase in the input membrane resistance; (iii) slow waves with no change in the membrane potential. 4 In the circular muscle cells, low concentrations of SP (<10-8M) did not affect the membrane potential or the spikes, but SP (10-7M) increased the spike discharges with no significant change in the membrane potential. 5 SP (10-10M) reduced the threshold depolarization required for the generation of action potentials with no change in membrane potential of the longitudinal muscle cells. 6 Pretreatment with atropine (5 × 10-6M), tetrodotoxin (TTX 10-6M) or baclofen (4.7 × 10-6M) had no effect on the excitatory actions of SP on the smooth muscle cells of longitudinal and circular muscle strips. 7 Excitatory actions of SP on the membrane potential or spike activities of longitudinal muscle cells were preserved in NaCl but not in Ca-deficient solution. 8 SP (10-10-10-9M) enhanced the amplitude of the excitatory junction potentials (e.j.ps) evoked by electrical field stimulation in longitudinal muscle cells with no change in the membrane potential and input resistance. SP (10-10-10-9M), however, did not change the amplitude of inhibitory junction potentials (i.j.ps) recorded from the circular muscle cells. 9 These results indicate that SP in relatively low

  3. Airways in smooth muscle α-actin null mice experience a compensatory mechanism that modulates their contractile response.

    PubMed

    Shardonofsky, Felix R; Moore, Joan; Schwartz, Robert J; Boriek, Aladin M

    2012-03-01

    We hypothesized that ablation of smooth muscle α-actin (SM α-A), a contractile-cytoskeletal protein expressed in airway smooth muscle (ASM) cells, abolishes ASM shortening capacity and decreases lung stiffness. In both SM α-A knockout and wild-type (WT) mice, airway resistance (Raw) determined by the forced oscillation technique rose in response to intravenous methacholine (Mch). However, the slope of Raw (cmH(2)O·ml(-1)·s) vs. log(2) Mch dose (μg·kg(-1)·min(-1)) was lower (P = 0.007) in mutant (0.54 ± 0.14) than in WT mice (1.23 ± 0.19). RT-PCR analysis performed on lung tissues confirmed that mutant mice lacked SM α-A mRNA and showed that these mice had robust expressions of both SM γ-A mRNA and skeletal muscle (SKM) α-A mRNA, which were not expressed in WT mice, and an enhanced SM22 mRNA expression relative to that in WT mice. Compared with corresponding spontaneously breathing mice, mechanical ventilation-induced lung mechanical strain increased the expression of SM α-A mRNA in WT lungs; in mutant mice, it augmented the expressions of SM γ-A mRNA and SM22 mRNA and did not alter that of SKM α-A mRNA. In mutant mice, the expression of SM γ-A mRNA in the lung during spontaneous breathing and its enhanced expression following mechanical ventilation are consistent with the likely possibility that in the absence of SM α-A, SM γ-A underwent polymerization and interacted with smooth muscle myosin to produce ASM shortening during cholinergic stimulation. Thus our data are consistent with ASM in mutant mice experiencing compensatory mechanisms that modulated its contractile muscle capacity.

  4. Divergent effects of 17-{beta}-estradiol on human vascular smooth muscle and endothelial cell function diminishes TNF-{alpha}-induced neointima formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nintasen, Rungrat; Multidisciplinary Cardiovascular Research Center; Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} augments neointimal hyperplasia in human saphenous vein. Black-Right-Pointing-Pointer TNF-{alpha} induces detrimental effects on endothelial and smooth muscle cell function. Black-Right-Pointing-Pointer Estradiol exerts modulatory effects on TNF-induced vascular cell functions. Black-Right-Pointing-Pointer The modulatory effects of estradiol are discriminatory and cell-type specific. -- Abstract: Coronary heart disease (CHD) is a condition characterized by increased levels of proinflammatory cytokines, including tumor necrosis factor-{alpha} (TNF-{alpha}). TNF-{alpha} can induce vascular endothelial cell (EC) and smooth muscle cell (SMC) dysfunction, central events in development of neointimal lesions. The reduced incidence of CHD in young women is believed to be due to the protectivemore » effects of estradiol (E2). We therefore investigated the effects of TNF-{alpha} on human neointima formation and SMC/EC functions and any modulatory effects of E2. Saphenous vein (SV) segments were cultured in the presence of TNF-{alpha} (10 ng/ml), E2 (2.5 nM) or both in combination. Neointimal thickening was augmented by incubation with TNF-{alpha}, an effect that was abolished by co-culture with E2. TNF-{alpha} increased SV-SMC proliferation in a concentration-dependent manner that was optimal at 10 ng/ml (1.5-fold increase), and abolished by E2 at all concentrations studied (1-50 nM). Surprisingly, E2 itself at low concentrations (1 and 5 nM) stimulated SV-SMC proliferation to a level comparable to that of TNF-{alpha} alone. SV-EC migration was significantly impaired by TNF-{alpha} (42% of control), and co-culture with E2 partially restored the ability of SV-EC to migrate and repair the wound. In contrast, TNF-{alpha} increased SV-SMC migration by 1.7-fold, an effect that was completely reversed by co-incubation with E2. Finally, TNF-{alpha} potently induced ICAM-1 and VCAM-1 expression in both SV-EC and SV-SMC. However

  5. A critical role of nicotinamide phosphoribosyltransferase in human telomerase reverse transcriptase induction by resveratrol in aortic smooth muscle cells

    PubMed Central

    Huang, Peixin; Riordan, Sean M.; Heruth, Daniel P.; Grigoryev, Dmitry N.; Zhang, Li Qin; Ye, Shui Qing

    2015-01-01

    Aging is the predominant risk factor for cardiovascular diseases and contributes to a considerably more severe outcome in patients with acute myocardial infarction. Resveratrol, a polyphenol found in red wine, is a caloric restriction mimetic with potential anti-aging properties which has emerged as a beneficial nutraceutical for patients with cardiovascular disease. Although resveratrol is widely consumed as a nutritional supplement, its mechanism of action remains to be elucidated fully. Here, we report that resveratrol activates human nicotinamide phosphoribosyltransferase (NAMPT), SIRT4 and telomerase reverse transcriptase (hTERT) in human aortic smooth muscle cells. Similar observations were obtained in resveratrol treated C57BL/6J mouse heart and liver tissues. Resverotrol can also augment telomerase activity in both human pulmonary microvascular endothelial cells and A549 cells. Blocking NAMPT and SIRT4 expression prevents induction of hTERT in human aortic smooth muscle cells while overexpression of NAMPT elevates the telomerase activity induced by resveratrol in A549 cells. Together, these results identify a NAMPT-SIRT4-hTERT axis as a novel mechanism by which resveratrol may affect the anti-aging process in human aortic smooth muscle cells, mouse hearts and other cells. These findings enrich our understanding of the positive effects of resveratrol in human cardiovascular diseases. PMID:25926556

  6. Ex vivo pharmacology of surgical samples of the uterosacral ligament. Part I: Effects of carbachol and oxytocin on smooth muscle.

    PubMed

    Drews, Ulrich; Renz, Matthias; Busch, Christian; Reisenauer, Christl

    2012-11-01

    In a previous study we observed impaired smooth muscle in the uterosacral ligament (USL) of patients with pelvic organ prolapse. The aims of the study were to describe the method of the novel microperfusion system and to determine normal function and pharmacology of smooth muscle in the USL. Samples from the USL were obtained during hysterectomy for benign reasons. Small stretches of connective tissue were mounted in a perfusion chamber under the stereomicroscope. Isotonic contractions of smooth muscle were monitored by digital time-lapse video and quantified by image processing. Constant perfusion with carbachol elicited tonic and pulse stimulation with carbachol and oxytocin rhythmic contractions of smooth muscle in the ground reticulum. Under constant perfusion with relaxin the tonic contraction after carbachol was abolished. With the novel microperfusion system, isotonic contractions of smooth muscle in the USL can be recorded and quantified in the tissue microenvironment on the microscopic level. The USL smooth muscle is cholinergic, stimulated by oxytocin and modulated by relaxin. Copyright © 2012 Wiley Periodicals, Inc.

  7. Comparison of angiotensin II (Ang II) effects in the internal anal sphincter (IAS) and lower esophageal sphincter smooth muscles.

    PubMed

    Rattan, Satish; Fan, Ya-Ping; Puri, Rajinder N

    2002-03-22

    Studies were performed to compare the actions of Ang II in the internal anal sphincter (IAS) vs. lower esophageal sphincter (LES) smooth muscles in vitro, in opossum and rabbit. Studies also were carried out in isolated smooth muscle cells. In opossum, Ang II produced no discernible effects in the IAS, but did produce a concentration-dependent contraction in the LES. Conversely, in the rabbit, while Ang II caused a modest response in the LES, it caused a significant contraction in the IAS. The contractile responses of Ang II in the opossum LES were mostly resistant to different neurohumoral antagonists but were antagonized by AT1 antagonist losartan. AT2 antagonist PD 123,319, rather than inhibiting, prolonged the contractile action of Ang II. The contractile actions of Ang II in the opossum LES were not modified by the tyrosine kinase inhibitors (genistein and tyrphostin 1 x 10(-6) M) but were partially attenuated by the PKC inhibitor H-7 (1 x 10(-6) M), Ca2+ channel blocker nicardipine (1 x 10(-5) M), Rho kinase inhibitor HA-1077 (1 x 10(-7) M) or p(44/42) MAP kinase inhibitor PD 98059 (5 x 10(-5) M). The combination of HA-1077 and H-7 did not cause an additive attenuation of Ang II responses. Western blot analyses revealed the presence of both AT1 and AT2 receptors. We conclude that Ang lI-induced contraction of sphincteric smooth muscle occurs primarily by the activation of AT1 receptors at the smooth muscle cells and involves multiple pathways, influx of Ca2+, and PKC, Rho kinase and p(44/42) MAP kinase.

  8. Functional expression of the TMEM16 family of calcium-activated chloride channels in airway smooth muscle

    PubMed Central

    Remy, Kenneth E.; Danielsson, Jennifer; Funayama, Hiromi; Fu, Xiao Wen; Chang, Herng-Yu Sucie; Yim, Peter; Xu, Dingbang; Emala, Charles W.

    2013-01-01

    Airway smooth muscle hyperresponsiveness is a key component in the pathophysiology of asthma. Although calcium-activated chloride channel (CaCC) flux has been described in many cell types, including human airway smooth muscle (HASM), the true molecular identity of the channels responsible for this chloride conductance remains controversial. Recently, a new family of proteins thought to represent the true CaCCs was identified as the TMEM16 family. This led us to question whether members of this family are functionally expressed in native and cultured HASM. We further questioned whether expression of these channels contributes to the contractile function of HASM. We identified the mRNA expression of eight members of the TMEM16 family in HASM cells and show immunohistochemical evidence of TMEM16A in both cultured and native HASM. Functionally, we demonstrate that the classic chloride channel inhibitor, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), inhibited halide flux in cultured HASM cells. Moreover, HASM cells displayed classical electrophysiological properties of CaCCs during whole cell electrophysiological recordings, which were blocked by using an antibody selective for TMEM16A. Furthermore, two distinct TMEM16A antagonists (tannic acid and benzbromarone) impaired a substance P-induced contraction in isolated guinea pig tracheal rings. These findings demonstrate that multiple members of this recently described family of CaCCs are expressed in HASM cells, they display classic electrophysiological properties of CaCCs, and they modulate contractile tone in airway smooth muscle. The TMEM16 family may provide a novel therapeutic target for limiting airway constriction in asthma. PMID:23997176

  9. Functional expression of the TMEM16 family of calcium-activated chloride channels in airway smooth muscle.

    PubMed

    Gallos, George; Remy, Kenneth E; Danielsson, Jennifer; Funayama, Hiromi; Fu, Xiao Wen; Chang, Herng-Yu Sucie; Yim, Peter; Xu, Dingbang; Emala, Charles W

    2013-11-01

    Airway smooth muscle hyperresponsiveness is a key component in the pathophysiology of asthma. Although calcium-activated chloride channel (CaCC) flux has been described in many cell types, including human airway smooth muscle (HASM), the true molecular identity of the channels responsible for this chloride conductance remains controversial. Recently, a new family of proteins thought to represent the true CaCCs was identified as the TMEM16 family. This led us to question whether members of this family are functionally expressed in native and cultured HASM. We further questioned whether expression of these channels contributes to the contractile function of HASM. We identified the mRNA expression of eight members of the TMEM16 family in HASM cells and show immunohistochemical evidence of TMEM16A in both cultured and native HASM. Functionally, we demonstrate that the classic chloride channel inhibitor, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), inhibited halide flux in cultured HASM cells. Moreover, HASM cells displayed classical electrophysiological properties of CaCCs during whole cell electrophysiological recordings, which were blocked by using an antibody selective for TMEM16A. Furthermore, two distinct TMEM16A antagonists (tannic acid and benzbromarone) impaired a substance P-induced contraction in isolated guinea pig tracheal rings. These findings demonstrate that multiple members of this recently described family of CaCCs are expressed in HASM cells, they display classic electrophysiological properties of CaCCs, and they modulate contractile tone in airway smooth muscle. The TMEM16 family may provide a novel therapeutic target for limiting airway constriction in asthma.

  10. Loss of Notch3 Signaling in Vascular Smooth Muscle Cells Promotes Severe Heart Failure Upon Hypertension.

    PubMed

    Ragot, Hélène; Monfort, Astrid; Baudet, Mathilde; Azibani, Fériel; Fazal, Loubina; Merval, Régine; Polidano, Evelyne; Cohen-Solal, Alain; Delcayre, Claude; Vodovar, Nicolas; Chatziantoniou, Christos; Samuel, Jane-Lise

    2016-08-01

    Hypertension, which is a risk factor of heart failure, provokes adaptive changes at the vasculature and cardiac levels. Notch3 signaling plays an important role in resistance arteries by controlling the maturation of vascular smooth muscle cells. Notch3 deletion is protective in pulmonary hypertension while deleterious in arterial hypertension. Although this latter phenotype was attributed to renal and cardiac alterations, the underlying mechanisms remained unknown. To investigate the role of Notch3 signaling in the cardiac adaptation to hypertension, we used mice with either constitutive Notch3 or smooth muscle cell-specific conditional RBPJκ knockout. At baseline, both genotypes exhibited a cardiac arteriolar rarefaction associated with oxidative stress. In response to angiotensin II-induced hypertension, the heart of Notch3 knockout and SM-RBPJκ knockout mice did not adapt to pressure overload and developed heart failure, which could lead to an early and fatal acute decompensation of heart failure. This cardiac maladaptation was characterized by an absence of media hypertrophy of the media arteries, the transition of smooth muscle cells toward a synthetic phenotype, and an alteration of angiogenic pathways. A subset of mice exhibited an early fatal acute decompensated heart failure, in which the same alterations were observed, although in a more rapid timeframe. Altogether, these observations indicate that Notch3 plays a major role in coronary adaptation to pressure overload. These data also show that the hypertrophy of coronary arterial media on pressure overload is mandatory to initially maintain a normal cardiac function and is regulated by the Notch3/RBPJκ pathway. © 2016 American Heart Association, Inc.

  11. Differentiation of Human Adipose Derived Stem Cells into Smooth Muscle Cells Is Modulated by CaMKIIγ

    PubMed Central

    Aji, Kaisaier; Maimaijiang, Munila; Aimaiti, Abudusaimi; Rexiati, Mulati; Azhati, Baihetiya; Tusong, Hamulati

    2016-01-01

    The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) is known to participate in maintenance and switches of smooth muscle cell (SMC) phenotypes. However, which isoform of CaMKII is involved in differentiation of adult mesenchymal stem cells into contractile SMCs remains unclear. In the present study, we detected γ isoform of CaMKII in differentiation of human adipose derived stem cells (hASCs) into SMCs that resulted from treatment with TGF-β1 and BMP4 in combination for 7 days. The results showed that CaMKIIγ increased gradually during differentiation of hASCs as determined by real-time PCR and western blot analysis. The siRNA-mediated knockdown of CaMKIIγ decreased the protein levels and transcriptional levels of smooth muscle contractile markers (a-SMA, SM22a, calponin, and SM-MHC), while CaMKIIγ overexpression increases the transcriptional and protein levels of smooth muscle contractile markers. These results suggested that γ isoform of CaMKII plays a significant role in smooth muscle differentiation of hASCs. PMID:27493668

  12. Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis.

    PubMed

    Findeisen, Hannes M; Kahles, Florian K; Bruemmer, Dennis

    2013-04-01

    Epigenetics involve heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Epigenetic mechanisms constitute a hierarchic upper-level of transcriptional control through complex modifications of chromosomal components and nuclear structures. These modifications include, for example, DNA methylation or post-translational modifications of core histones; they are mediated by various chromatin-modifying enzymes; and ultimately they define the accessibility of a transcriptional complex to its target DNA. Integrating epigenetic mechanisms into the pathophysiologic concept of complex and multifactorial diseases such as atherosclerosis may significantly enhance our understanding of related mechanisms and provide promising therapeutic approaches. Although still in its infancy, intriguing scientific progress has begun to elucidate the role of epigenetic mechanisms in vascular biology, particularly in the control of smooth muscle cell phenotypes. In this review, we will summarize epigenetic pathways in smooth muscle cells, focusing on mechanisms involved in the regulation of vascular remodeling.

  13. Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis.

    PubMed

    Findeisen, Hannes M; Kahles, Florian K; Bruemmer, Dennis

    2013-05-01

    Epigenetics involve heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Epigenetic mechanisms constitute a hierarchic upper-level of transcriptional control through complex modifications of chromosomal components and nuclear structures. These modifications include, for example, DNA methylation or post-translational modifications of core histones; they are mediated by various chromatin-modifying enzymes; and ultimately they define the accessibility of a transcriptional complex to its target DNA. Integrating epigenetic mechanisms into the pathophysiologic concept of complex and multifactorial diseases such as atherosclerosis may significantly enhance our understanding of related mechanisms and provide promising therapeutic approaches. Although still in its infancy, intriguing scientific progress has begun to elucidate the role of epigenetic mechanisms in vascular biology, particularly in the control of smooth muscle cell phenotypes. In this review, we will summarize epigenetic pathways in smooth muscle cells, focusing on mechanisms involved in the regulation of vascular remodeling.

  14. Immortalization of cat iris sphincter smooth muscle cells by SV40 virus: growth, morphological, biochemical and pharmacological characteristics.

    PubMed

    Ocklind, A; Yousufzai, S Y; Ghosh, S; Coca-Prados, M; St Jernschantz, J; Abdel-Latif, A A

    1995-11-01

    The purpose of this study was to establish immortalized cell cultures of cat iris sphincter smooth muscle cells for a model investigating ocular receptors and their signal transduction pathways. Cultured cat iris sphincter muscle cells were immortalized by viral transformation with SV40 virus and the morphological and immunocytochemical properties of the normal and immortalized cells were investigated. The transformed cell clone, SV-CISM-2, was further characterized biochemically and pharmacologically. The normal muscle cells showed characteristics of smooth muscle cells, as judged by their growth and the presence of smooth muscle alpha-actin and desmin. After seven passages the normal cells ceased to proliferate. In contrast, the immortalized cells retained their proliferative ability for more than 220 population doublings over 55 passages. The transformation phenotype in these cells was confirmed by their expression of the large T-antigen, the incorporation of viral DNA into cellular DNA, growth in agarose and in low-serum medium, and complete loss of contact inhibition. The immortalized cells expressed smooth muscle alpha-actin, desmin and MLC protein. Biochemical and pharmacological studies on the SV-CISM cells revealed the presence of several functional receptors including muscarinic cholinergic, beta-adrenergic, peptidergic (substance P and endothelin). Platelet-activating factor, and prostaglandin (PG). Muscarinic stimulation of these cells resulted in: (a) a dose-dependent increase in the release of arachidonic acid (AA) and (PGs) and enhancement in the production of inositol trisphosphate (IP3); and (b) a substantial increase in MLC phosphorylation (118%), an indicator of smooth muscle contractility. The stimulatory effects of carbachol on these responses were completely blocked by atropine, a muscarinic receptor antagonist. This study constitutes the first successful immortalization of iris sphincter smooth muscle cells. The SV-CISM-2 cells can serve as

  15. Piezo1 in Smooth Muscle Cells Is Involved in Hypertension-Dependent Arterial Remodeling.

    PubMed

    Retailleau, Kevin; Duprat, Fabrice; Arhatte, Malika; Ranade, Sanjeev Sumant; Peyronnet, Rémi; Martins, Joana Raquel; Jodar, Martine; Moro, Céline; Offermanns, Stefan; Feng, Yuanyi; Demolombe, Sophie; Patel, Amanda; Honoré, Eric

    2015-11-10

    The mechanically activated non-selective cation channel Piezo1 is a determinant of vascular architecture during early development. Piezo1-deficient embryos die at midgestation with disorganized blood vessels. However, the role of stretch-activated ion channels (SACs) in arterial smooth muscle cells in the adult remains unknown. Here, we show that Piezo1 is highly expressed in myocytes of small-diameter arteries and that smooth-muscle-specific Piezo1 deletion fully impairs SAC activity. While Piezo1 is dispensable for the arterial myogenic tone, it is involved in the structural remodeling of small arteries. Increased Piezo1 opening has a trophic effect on resistance arteries, influencing both diameter and wall thickness in hypertension. Piezo1 mediates a rise in cytosolic calcium and stimulates activity of transglutaminases, cross-linking enzymes required for the remodeling of small arteries. In conclusion, we have established the connection between an early mechanosensitive process, involving Piezo1 in smooth muscle cells, and a clinically relevant arterial remodeling. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Electrical coupling and release of K+ from endothelial cells co-mediate ACh-induced smooth muscle hyperpolarization in guinea-pig inner ear artery

    PubMed Central

    Jiang, Zhi-Gen; Nuttall, Alfred L; Zhao, Hui; Dai, Chun-Fu; Guan, Bing-Cai; Si, Jun-Qiang; Yang, Yu-Qin

    2005-01-01

    The physiological basis of ACh-elicited hyperpolarization in guinea-pig in vitro cochlear spiral modiolar artery (SMA) was investigated by intracellular recording combined with dye labelling of recorded cells and immunocytochemistry. We found the following. (1) The ACh-hyperpolarization was prominent only in cells that had a low resting potential (less negative than −60 mV). ACh-hyperpolarization was reversibly blocked by 4-DAMP, charybdotoxin or BAPTA-AM, but not by Nω-nitro-l-arginine methyl ester, glipizide, indomethacin or 17-octadecynoic acid. (2) Ba2+ (100 μm) and ouabain (1 μm) each attenuated ACh-hyperpolarization by ∼ 30% in smooth muscle cells (SMCs) but had only slight or no inhibition in endothelial cells (ECs). A combination of Ba2+ and 18β-glycyrrhetinic acid near completely blocked the ACh-hyperpolarization in SMCs. (3) High K+ (10 mm) induced a smaller hyperpolarization in ECs than in SMCs, with an amplitude ratio of 0.49: 1. Ba2+ blocked the K+-induced hyperpolarization by ∼ 85% in both cell types, whereas ouabain inhibited K+-hyperpolarization differently in SMCs (19%) and ECs (35%) and increased input resistance. 18β-Glycyrrhetinic acid blocked the high K+-hyperpolarization in ECs only. (4) Weak myoendothelial dye coupling was detected by confocal microscopy in cells recorded with a propidium iodide-containing electrode for longer than 30 min. A sparse plexus of choline acetyltransferase-immunoreactive (ChAT) fibres was observed around the SMA and its up-stream arteries. (5) Evoked excitatory junction potentials (EJP) were partially blocked by 4-DAMP in half of the cells tested. We conclude that ACh-induced hyperpolarization originates from ECs via activation of Ca2+-activated potassium channels, and is independent of the release of NO, cyclo-oxygenase or cytochrome P450 products. ACh-induced hyperpolarization in smooth muscle cells involves two mechanisms: (a) electrical spread of the hyperpolarization from the endothelium, and (b

  17. Electrical coupling and release of K+ from endothelial cells co-mediate ACh-induced smooth muscle hyperpolarization in guinea-pig inner ear artery.

    PubMed

    Jiang, Zhi-Gen; Nuttall, Alfred L; Zhao, Hui; Dai, Chun-Fu; Guan, Bing-Cai; Si, Jun-Qiang; Yang, Yu-Qin

    2005-04-15

    The physiological basis of ACh-elicited hyperpolarization in guinea-pig in vitro cochlear spiral modiolar artery (SMA) was investigated by intracellular recording combined with dye labelling of recorded cells and immunocytochemistry. We found the following. (1) The ACh-hyperpolarization was prominent only in cells that had a low resting potential (less negative than -60 mV). ACh-hyperpolarization was reversibly blocked by 4-DAMP, charybdotoxin or BAPTA-AM, but not by N(omega)-nitro-L-arginine methyl ester, glipizide, indomethacin or 17-octadecynoic acid. (2) Ba(2)(+) (100 microm) and ouabain (1 microm) each attenuated ACh-hyperpolarization by approximately 30% in smooth muscle cells (SMCs) but had only slight or no inhibition in endothelial cells (ECs). A combination of Ba(2)(+) and 18beta-glycyrrhetinic acid near completely blocked the ACh-hyperpolarization in SMCs. (3) High K(+) (10 mm) induced a smaller hyperpolarization in ECs than in SMCs, with an amplitude ratio of 0.49 : 1. Ba(2)(+) blocked the K(+)-induced hyperpolarization by approximately 85% in both cell types, whereas ouabain inhibited K(+)-hyperpolarization differently in SMCs (19%) and ECs (35%) and increased input resistance. 18beta-Glycyrrhetinic acid blocked the high K(+)-hyperpolarization in ECs only. (4) Weak myoendothelial dye coupling was detected by confocal microscopy in cells recorded with a propidium iodide-containing electrode for longer than 30 min. A sparse plexus of choline acetyltransferase-immunoreactive (ChAT) fibres was observed around the SMA and its up-stream arteries. (5) Evoked excitatory junction potentials (EJP) were partially blocked by 4-DAMP in half of the cells tested. We conclude that ACh-induced hyperpolarization originates from ECs via activation of Ca(2)(+)-activated potassium channels, and is independent of the release of NO, cyclo-oxygenase or cytochrome P450 products. ACh-induced hyperpolarization in smooth muscle cells involves two mechanisms: (a) electrical spread

  18. CysLT1 receptor-induced human airway smooth muscle cells proliferation requires ROS generation, EGF receptor transactivation and ERK1/2 phosphorylation

    PubMed Central

    Ravasi, Saula; Citro, Simona; Viviani, Barbara; Capra, Valérie; Rovati, G Enrico

    2006-01-01

    Background Cysteine-containing leukotrienes (cysteinyl-LTs) are pivotal inflammatory mediators that play important roles in the pathophysiology of asthma, allergic rhinitis, and other inflammatory conditions. In particular, cysteinyl-LTs exert a variety of effects with relevance to the aetiology of asthma such as smooth muscle contraction, eosinophil recruitment, increased microvascular permeability, enhanced mucus secretion and decreased mucus transport and, finally, airway smooth muscle cells (ASMC) proliferation. We used human ASMC (HASMC) to identify the signal transduction pathway(s) of the leukotriene D4 (LTD4)-induced DNA synthesis. Methods Proliferation of primary HASMC was measured by [3H]thymidine incorporation. Phosphorylation of EGF receptor (EGF-R) and ERK1/2 was assessed with a polyclonal anti-EGF-R or anti-phosphoERKl/2 monoclonal antibody. A Ras pull-down assay kit was used to evaluate Ras activation. The production of reactive oxygen species (ROS) was estimated by measuring dichlorodihydrofluorescein (DCF) oxidation. Results We demonstrate that in HASMC LTD4-stimulated thymidine incorporation and potentiation of EGF-induced mitogenic signaling mostly depends upon EGF-R transactivation through the stimulation of CysLT1-R. Accordingly, we found that LTD4 stimulation was able to trigger the increase of Ras-GTP and, in turn, to activate ERK1/2. We show here that EGF-R transactivation was sensitive to pertussis toxin (PTX) and phosphoinositide 3-kinase (PI3K) inhibitors and that it occurred independently from Src activity, despite the observation of a strong impairment of LTD4-induced DNA synthesis following Src inhibition. More interestingly, CysLT1-R stimulation increased the production of ROS and N-acetylcysteine (NAC) abolished LTD4-induced EGF-R phosphorylation and thymidine incorporation. Conclusion Collectively, our data demonstrate that in HASMC LTD4 stimulation of a Gi/o coupled CysLT1-R triggers the transactivation of the EGF-R through the

  19. α-Iso-Cubebene Inhibits PDGF-Induced Vascular Smooth Muscle Cell Proliferation by Suppressing Osteopontin Expression.

    PubMed

    Jang, Min A; Lee, Seung Jin; Baek, Seung Eun; Park, So Youn; Choi, Young Whan; Kim, Chi Dae

    2017-01-01

    α-Iso-cubebene (ICB) is a dibenzocyclooctadiene lignin contained in Schisandra chinensis (SC), a well-known medicinal herb that ameliorates cardiovascular symptoms. Thus, we examined the effect of ICB on vascular smooth muscle cell (VSMC) proliferation, a key feature of diverse vascular diseases. When VSMCs primary cultured from rat thoracic aorta were stimulated with PDGF (1-10 ng/ml), cell proliferation and osteopontin (OPN) expression were concomitantly up-regulated, but these effects were attenuated when cells were treated with MPIIIB10, a neutralizing monoclonal antibody for OPN. In aortic tissues exposed to PDGF, sprouting VSMC numbers increased, which was attenuated in tissues from OPN-deficient mice. Furthermore, VSMC proliferation and OPN expression induced by PDGF were attenuated dose-dependently by ICB (10 or 30 μg/ml). Reporter assays conducted using OPN promoter-luciferase constructs showed that the promoter region 538-234 bp of the transcription start site was responsible for transcriptional activity enhancement by PDGF, which was significantly inhibited by ICB. Putative binding sites for AP-1 and C/EBPβ in the indicated promoter region were suggested by TF Search, and increased binding of AP-1 and C/EBPβ in PDGF-treated VSMCs was demonstrated using a ChIP assay. The increased bindings of AP-1 and C/EBPβ into OPN promoter were attenuated by ICB. Moreover, the PDGF-induced expression of OPN was markedly attenuated in VSMCs transfected with siRNA for AP-1 and C/EBPβ. These results indicate that ICB inhibit VSMC proliferation by inhibiting the AP-1 and C/EBPβ signaling pathways and thus downregulating OPN expression.

  20. Role of vascular smooth muscle PPARγ in regulating AT1 receptor signaling and angiotensin II-dependent hypertension.

    PubMed

    Carrillo-Sepulveda, Maria Alicia; Keen, Henry L; Davis, Deborah R; Grobe, Justin L; Sigmund, Curt D

    2014-01-01

    Peroxisome proliferator activated receptor γ (PPARγ) has been reported to play a protective role in the vasculature; however, the underlying mechanisms involved are not entirely known. We previously showed that vascular smooth muscle-specific overexpression of a dominant negative human PPARγ mutation in mice (S-P467L) leads to enhanced myogenic tone and increased angiotensin-II-dependent vasoconstriction. S-P467L mice also exhibit increased arterial blood pressure. Here we tested the hypotheses that a) mesenteric smooth muscle cells isolated from S-P467L mice exhibit enhanced angiotensin-II AT1 receptor signaling, and b) the increased arterial pressure of S-P467L mice is angiotensin-II AT1 receptor dependent. Phosphorylation of mitogen-activated protein/extracellular signal-regulated kinase (ERK1/2) was robustly increased in mesenteric artery smooth muscle cell cultures from S-P467L in response to angiotensin-II. The increase in ERK1/2 activation by angiotensin-II was blocked by losartan, a blocker of AT1 receptors. Angiotensin-II-induced ERK1/2 activation was also blocked by Tempol, a scavenger of reactive oxygen species, and correlated with increased Nox4 protein expression. To investigate whether endogenous renin-angiotensin system activity contributes to the elevated arterial pressure in S-P467L, non-transgenic and S-P467L mice were treated with the AT1 receptor blocker, losartan (30 mg/kg per day), for 14-days and arterial pressure was assessed by radiotelemetry. At baseline S-P467L mice showed a significant increase of systolic arterial pressure (142.0 ± 10.2 vs 129.1 ± 3.0 mmHg, p<0.05). Treatment with losartan lowered systolic arterial pressure in S-P467L (132.2 ± 6.9 mmHg) to a level similar to untreated non-transgenic mice. Losartan also lowered arterial pressure in non-transgenic (113.0 ± 3.9 mmHg) mice, such that there was no difference in the losartan-induced depressor response between groups (-13.53 ± 1.39 in S-P467L vs -16.16 ± 3.14 mmHg in

  1. Proteinase-activated receptor-2 activation evokes oesophageal longitudinal smooth muscle contraction via a capsaicin-sensitive and neurokinin-2 receptor-dependent pathway.

    PubMed

    Liu, H; Miller, D V; Lourenssen, S; Wells, R W; Blennerhassett, M G; Paterson, W G

    2010-02-01

    Intraluminal acid evokes sustained oesophageal longitudinal smooth muscle (LSM) contraction and oesophageal shortening, which may play a role in oesophageal pain and the aetiology of hiatus hernia. In the opossum model, this reflex has been shown to involve mast cell activation and release of neurokinins from capsaicin-sensitive neurons. The aim of this study was to determine whether proteinase-activated receptor-2 (PAR-2) activation evokes reflex LSM contraction via similar mechanisms. Tension recording studies were performed using opossum oesophageal LSM strips in the presence and absence of pharmacological agents. In addition, the effect of trypsin on single isolated LSM cells was determined using videomicroscopy, and the expression of PAR-2 in oesophageal tissue was examined using immunohistochemistry. The PAR-2 agonist trypsin evoked sustained, concentration-dependent contraction of LSM muscle strips, but had no effect on isolated LSM cells. The trypsin-induced contraction was blocked by capsaicin desensitization, substance P (SP) desensitization or application of the selective neurokinin-2 (NK-2) receptor antagonist MEN 10376. Immunohistochemistry revealed co-localization of SP, calcitonin gene-related peptide and PAR-2 in axons of opossum oesophageal LSM. Longitudinal smooth muscle contraction induced by trypsin involves capsaicin-sensitive neurons and subsequent activation of NK-2, which is identical to the pathway involved in acid-induced LSM contraction and oesophageal shortening. This suggests that acid-induced LSM contraction may involve mast cell-derived mediators that activate capsaicin-sensitive neurons via PAR-2.

  2. LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-β.

    PubMed

    Kanekiyo, Takahisa; Liu, Chia-Chen; Shinohara, Mitsuru; Li, Jie; Bu, Guojun

    2012-11-14

    Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimer's disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood-brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in cerebrovasculature, in particular in vascular smooth muscle cells. Previous studies have indicated a role of LRP1 in endothelial cells in transcytosing Aβ out of the brain across the BBB; however, whether this represents a significant pathway for brain Aβ clearance remains controversial. Here, we demonstrate that Aβ can be cleared locally in the cerebrovasculature by an LRP1-dependent endocytic pathway in smooth muscle cells. The uptake and degradation of both endogenous and exogenous Aβ were significantly reduced in LRP1-suppressed human brain vascular smooth muscle cells. Conditional deletion of Lrp1 in vascular smooth muscle cell in amyloid model APP/PS1 mice accelerated brain Aβ accumulation and exacerbated Aβ deposition as amyloid plaques and CAA without affecting Aβ production. Our results demonstrate that LRP1 is a major Aβ clearance receptor in cerebral vascular smooth muscle cell and a disturbance of this pathway contributes to Aβ accumulation. These studies establish critical functions of the cerebrovasculature system in Aβ metabolism and identify a new pathway involved in the pathogenesis of both AD and CAA.

  3. LRP1 in Brain Vascular Smooth Muscle Cells Mediates Local Clearance of Alzheimer's Amyloid-β

    PubMed Central

    Kanekiyo, Takahisa; Liu, Chia-Chen; Shinohara, Mitsuru; Li, Jie; Bu, Guojun

    2012-01-01

    Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimer’s disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood-brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in cerebrovasculature, in particular in vascular smooth muscle cells. Previous studies have indicated a role of LRP1 in endothelial cells in transcytosing Aβ out of the brain across the BBB; however, whether this represents a significant pathway for brain Aβ clearance remains controversial. Here, we demonstrate that Aβ can be cleared locally in the cerebrovasculature by an LRP1-dependent endocytic pathway in smooth muscle cells. The uptake and degradation of both endogenous and exogenous Aβ were significantly reduced in LRP1-suppressed human brain vascular smooth muscle cells. Conditional deletion of Lrp1 in vascular smooth muscle cell in amyloid model APP/PS1 mice accelerated brain Aβ accumulation and exacerbated Aβ deposition as amyloid plaques and CAA without affecting Aβ production. Our results demonstrate that LRP1 is a major Aβ clearance receptor in cerebral vascular smooth muscle cell and a disturbance of this pathway contributes to Aβ accumulation. These studies establish critical functions of the cerebrovasculature system in Aβ metabolism and identify a new pathway involved in the pathogenesis of both AD and CAA. PMID:23152628

  4. Distinct function of estrogen receptor α in smooth muscle and fibroblast cells in prostate development.

    PubMed

    Vitkus, Spencer; Yeh, Chiuan-Ren; Lin, Hsiu-Hsia; Hsu, Iawen; Yu, Jiangzhou; Chen, Ming; Yeh, Shuyuan

    2013-01-01

    Estrogen signaling, through estrogen receptor (ER)α, has been shown to cause hypertrophy in the prostate. Our recent report has shown that epithelial ERα knockout (KO) will not affect the normal prostate development or homeostasis. However, it remains unclear whether ERα in different types of stromal cells has distinct roles in prostate development. This study proposed to elucidate how KO of ERα in the stromal smooth muscle or fibroblast cells may interrupt cross talk between prostate stromal and epithelial cells. Smooth muscle ERαKO (smERαKO) mice showed decreased glandular infolding with the proximal area exhibiting a significant decrease. Fibroblast ERαKO mouse prostates did not exhibit this phenotype but showed a decrease in the number of ductal tips. Additionally, the amount of collagen observed in the basement membrane was reduced in smERαKO prostates. Interestingly, these phenotypes were found to be mutually exclusive among smERαKO or fibroblast ERαKO mice. Compound KO of ERα in both fibroblast and smooth muscle showed combined phenotypes from each of the single KO. Further mechanistic studies showed that IGF-I and epidermal growth factor were down-regulated in prostate smooth muscle PS-1 cells lacking ERα. Together, our results indicate the distinct functions of fibroblast vs. smERα in prostate development.

  5. Cell biology of Smad2/3 linker region phosphorylation in vascular smooth muscle.

    PubMed

    Rezaei, Hossein B; Kamato, Danielle; Ansari, Ghazaleh; Osman, Narin; Little, Peter J

    2012-08-01

    The transforming growth factor (TGF)-β superfamily of ligands regulates a diverse set of cellular functions. Transforming growth factor-β induces its biological effects through Type I and Type II transmembrane receptors that have serine/threonine kinase activities and weak tyrosine kinase activity. In vascular smooth muscle, TGF-β binds to the TGF-β Type II receptor (TβRII) at the cell surface, recruiting the Type I receptor (TβRI) to form a heterocomplex. Consequently, after phosphorylation and activation of TβRI, the transcription factors receptor activated (R-) Smad2 and Smad3 are recruited and activated through phosphorylation of C terminal residues. Overall, Smad2/3 and co-Smad4 have similar structures consisting of three regions an N-terminal MH1 domain, a C-terminal MH2 domain and a central linker region. Phosphorylation of the Smad linker region appears to have an important role in the regulation of Smad activity and function. The mitogen-activated protein kinase (MAPK) family, CDK2, CDK4 and calcium-calmodulin dependent kinase are the main kinases that phosphorylate sites in the linker region. The role of the linker region includes enabling the formation of Smad homo-oligomers and provision of phosphorylation sites for MAPK and other kinases. In some instances, linker region phosphorylation regulates the inhibition of the nuclear translocation of Smads. In the present review, we describe TGF-β signalling through Smad2/3 and the importance of the linker region in the regulation and expression of genes induced by TGF-β superfamily ligands in the context of vascular smooth muscle. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.

  6. Mounier-Kuhn syndrome: a case of tracheal smooth muscle remodeling.

    PubMed

    Cook, Daniel P; Adam, Ryan J; Abou Alaiwa, Mahmoud H; Eberlein, Michael; Klesney-Tait, Julia A; Parekh, Kalpaj R; Meyerholz, David K; Stoltz, David A

    2017-02-01

    Mounier-Kuhn syndrome is a rare clinical disorder characterized by tracheobronchial dilation and recurrent lower respiratory tract infections. While the etiology of the disease remains unknown, histopathological analysis of Mounier-Kuhn airways demonstrates that the disease is, in part, characterized by cellular changes in airway smooth muscle.

  7. PKC-dependent regulation of Kv7.5 channels by the bronchoconstrictor histamine in human airway smooth muscle cells.

    PubMed

    Haick, Jennifer M; Brueggemann, Lioubov I; Cribbs, Leanne L; Denning, Mitchell F; Schwartz, Jeffrey; Byron, Kenneth L

    2017-06-01

    Kv7 potassium channels have recently been found to be expressed and functionally important for relaxation of airway smooth muscle. Previous research suggests that native Kv7 currents are inhibited following treatment of freshly isolated airway smooth muscle cells with bronchoconstrictor agonists, and in intact airways inhibition of Kv7 channels is sufficient to induce bronchiolar constriction. However, the mechanism by which Kv7 currents are inhibited by bronchoconstrictor agonists has yet to be elucidated. In the present study, native Kv7 currents in cultured human trachealis smooth muscle cells (HTSMCs) were observed to be inhibited upon treatment with histamine; inhibition of Kv7 currents was associated with membrane depolarization and an increase in cytosolic Ca 2+ ([Ca 2+ ] cyt ). The latter response was inhibited by verapamil, a blocker of L-type voltage-sensitive Ca 2+ channels (VSCCs). Protein kinase C (PKC) has been implicated as a mediator of bronchoconstrictor actions, although the targets of PKC are not clearly established. We found that histamine treatment significantly and dose-dependently suppressed currents through overexpressed wild-type human Kv7.5 (hKv7.5) channels in cultured HTSMCs, and this effect was inhibited by the PKC inhibitor Ro-31-8220 (3 µM). The PKC-dependent suppression of hKv7.5 currents corresponded with a PKC-dependent increase in hKv7.5 channel phosphorylation. Knocking down or inhibiting PKCα, or mutating hKv7.5 serine 441 to alanine, abolished the inhibitory effects of histamine on hKv7.5 currents. These findings provide the first evidence linking PKC activation to suppression of Kv7 currents, membrane depolarization, and Ca 2+ influx via L-type VSCCs as a mechanism for histamine-induced bronchoconstriction. Copyright © 2017 the American Physiological Society.

  8. Regional Differences in Rat Vaginal Smooth Muscle Contractility and Morphology

    PubMed Central

    Skoczylas, Laura C.; Jallah, Zegbeh; Sugino, Yoshio; Stein, Suzan E.; Feola, Andrew; Yoshimura, Naoki

    2013-01-01

    The objective of this study was to define the regional differences in rat vaginal smooth muscle contractility and morphology. We evaluated circumferential segments from the proximal, middle, and distal rat vagina (n = 21) in vitro. Contractile responses to carbachol, phenylephrine, potassium chloride, and electrical field stimulation (EFS) were measured. Immunohistochemical analyses were also performed. The dose–response curves for carbachol- and phenylephrine-dependent contractions were different in the distal (P = .05, P = .04) compared to the proximal/middle regions. Adjusted for region-dependent changes in contractility, the distal vagina generated lower force in response to carbachol and higher force in response to phenylephrine. There was less force with increasing EFS frequency in the distal (P = .03), compared to the proximal/middle regions. Cholinergic versus adrenergic nerves were more frequent in the proximal region (P = .03). In summary, the results indicate that functional and morphological differences in smooth muscle and nerve fibers of the distal versus proximal/middle regions of the vagina exist. PMID:23298869

  9. Chlorogenic acid inhibits hypoxia-induced pulmonary artery smooth muscle cells proliferation via c-Src and Shc/Grb2/ERK2 signaling pathway.

    PubMed

    Li, Qun-Yi; Zhu, Ying-Feng; Zhang, Meng; Chen, Li; Zhang, Zhen; Du, Yong-Li; Ren, Guo-Qiang; Tang, Jian-Min; Zhong, Ming-Kang; Shi, Xiao-Jin

    2015-03-15

    Chlorogenic acid (CGA), abundant in coffee and particular fruits, can modulate hypertension and vascular dysfunction. Hypoxia-induced pulmonary artery smooth muscle cells (PASMCs) proliferation has been tightly linked to vascular remodeling in pulmonary arterial hypertension (PAH). Thus, the present study was designed to investigate the effect of CGA on hypoxia-induced proliferation in cultured rat PASMCs. The data showed that CGA potently inhibited PASMCs proliferation and DNA synthesis induced by hypoxia. These inhibitory effects were associated with G1 cell cycle arrest and down-regulation of cell cycle proteins. Treatment with CGA reduced hypoxia-induced hypoxia inducible factor 1α (HIF-1α) expression and trans-activation. Furthermore, hypoxia-evoked c-Src phosphorylation was inhibited by CGA. In vitro ELISA-based tyrosine kinase assay indicated that CGA was a direct inhibitor of c-Src. Moreover, CGA attenuated physical co-association of c-Src/Shc/Grb2 and ERK2 phosphorylation in PASMCs. These results suggest that CGA inhibits hypoxia-induced proliferation in PASMCs via regulating c-Src-mediated signaling pathway. In vivo investigation showed that chronic CGA treatment inhibits monocrotaline-induced PAH in rats. These findings presented here highlight the possible therapeutic use of CGA in hypoxia-related PAH. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Gentiana lutea exerts anti-atherosclerotic effects by preventing endothelial inflammation and smooth muscle cell migration.

    PubMed

    Kesavan, R; Chandel, S; Upadhyay, S; Bendre, R; Ganugula, R; Potunuru, U R; Giri, H; Sahu, G; Kumar, P Uday; Reddy, G Bhanuprakash; Joksic, G; Bera, A K; Dixit, Madhulika

    2016-04-01

    Studies suggest that Gentiana lutea (GL), and its component isovitexin, may exhibit anti-atherosclerotic properties. In this study we sought to investigate the protective mechanism of GL aqueous root extract and isovitexin on endothelial inflammation, smooth muscle cell migation, and on the onset and progression of atherosclerosis in streptozotocin (STZ)-induced diabetic rats. Our results show that both GL extract and isovitexin, block leukocyte adhesion and generation of reactive oxygen species in human umbilical vein endothelial cells (HUVECs) and rat aortic smooth muscle cells (RASMCs), following TNF-alpha and platelet derived growth factor-BB (PDGF-BB) challenges respectively. Both the extract and isovitexin blocked TNF-α induced expression of ICAM-1 and VCAM-1 in HUVECs. PDGF-BB induced migration of RASMCs and phospholipase C-γ activation, were also abrogated by GL extract and isovitexin. Fura-2 based ratiometric measurements demonstrated that, both the extact, and isovitexin, inhibit PDGF-BB mediated intracellular calcium rise in RASMCs. Supplementation of regular diet with 2% GL root powder for STZ rats, reduced total cholesterol in blood. Oil Red O staining demonstrated decreased lipid accumulation in aortic wall of diabetic animals upon treatment with GL. Medial thickness and deposition of collagen in the aortic segment of diabetic rats were also reduced upon supplementation. Immunohistochemistry demonstrated reduced expression of vascular cell adhesion molecule-1 (VCAM-1), inducible nitric oxide synthase (iNOS), and vascular endothelial cadherin (VE-cadherin) in aortic segments of diabetic rats following GL treatment. Thus, our results support that GL root extract/powder and isovitexin exhibit anti-atherosclerotic activities. Copyright © 2016 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University

  11. Regulation of IGF-1 but not TGF-β1 by NGF in the smooth muscle of the inflamed urinary bladder

    PubMed Central

    Zhang, Qing L.; Qiao, Li-Ya

    2012-01-01

    Intraperitoneal injection of cyclophosphamide (CYP) causes haemorrhagic cystitis with excess growth of muscular layer leading to bladder hypertrophy; this could be attributable to changes in the expression profiles of growth factors in the inflamed urinary bladder. The growth factors characterized in the current study include nerve growth factor (NGF), insulin-like growth factor (IGF)-1, and transforming growth factor (TGF)-β1. We found that following CYP injection for 8h and 48h, the mRNA levels of all three factors were increased in the inflamed bladder when compared to control. The level of NGF mRNA was mainly increased in the urothelium layer while the levels of IGF-1 mRNA and TGF-β1 mRNA were increased in the smooth muscle layer. The level of NGF high affinity receptor TrkA mRNA was also increased in both the urothelium and the smooth muscle layers during bladder inflammation. When we blocked NGF action with NGF neutralizing antibody in vivo, we found that the up-regulation of IGF-1 in the inflamed bladder was reversed while the up-regulation of TGF-β1 was not affected by NGF neutralization. The effect of NGF on regulating IGF-1 expression was further confirmed in bladder smooth muscle culture showing that exogenous NGF increased the mRNA level of IGF-1 after 30 min to 1h stimulation. These results suggest that bladder inflammation induced region-specific changes in the expression profiles of NGF, IGF-1 and TGF-β1. The up-regulation of NGF in the urothelium may have a role in affecting bladder smooth muscle cell physiology by regulating IGF-1 expression. PMID:22579999

  12. SIRT1 deacetylates RFX5 and antagonizes repression of collagen type I (COL1A2) transcription in smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Jun; Department of Respiratory Medicine, Jiangsu Provincial Hospital of Chinese Traditional Medicine; Wu, Xiaoyan

    Highlights: Black-Right-Pointing-Pointer SIRT1 interacts with and deacetylates RFX5. Black-Right-Pointing-Pointer SIRT1 activation attenuates whereas SIRT1 inhibition enhances collagen repression by RFX5 in vascular smooth muscle cells. Black-Right-Pointing-Pointer SIRT1 promotes cytoplasmic localization and proteasomal degradation of RFX5 and cripples promoter recruitment of RFX5. Black-Right-Pointing-Pointer IFN-{gamma} represses SIRT1 expression in vascular smooth muscle cells. Black-Right-Pointing-Pointer SIRT1 agonist alleviates collagen repression by IFN-{gamma} in vascular smooth muscle cells. -- Abstract: Decreased expression of collagen by vascular smooth muscle cells (SMCs) within the atherosclerotic plaque contributes to the thinning of the fibrous cap and poses a great threat to plaque rupture. Elucidation of the mechanismmore » underlying repressed collagen type I (COL1A2) gene would potentially provide novel solutions that can prevent rupture-induced complications. We have previously shown that regulatory factor for X-box (RFX5) binds to the COL1A2 transcription start site and represses its transcription. Here we report that SIRT1, an NAD-dependent, class III deacetylase, forms a complex with RFX5. Over-expression of SIRT1 or NAMPT, which synthesizes NAD+ to activate SIRT1, or treatment with the SIRT1 agonist resveratrol decreases RFX5 acetylation and disrupts repression of the COL1A2 promoter activity by RFX5. On the contrary, knockdown of SIRT1 or treatment with SIRT1 inhibitors induces RFX5 acetylation and enhances the repression of collagen transcription. SIRT1 antagonizes RFX5 activity by promoting its nuclear expulsion and proteasomal degradation hence dampening its binding to the COL1A2 promoter. The pro-inflammatory cytokine IFN-{gamma} represses COL1A2 transcription by down-regulating SIRT1 expression in SMCs. Therefore, our data have identified as novel pathway whereby SIRT1 maintains collagen synthesis in SMCs by modulating RFX5 activity.« less

  13. Discoidin Domain Receptor-1 Deficiency Attenuates Atherosclerotic Calcification and Smooth Muscle Cell-Mediated Mineralization

    PubMed Central

    Ahmad, Pamela J.; Trcka, Daniel; Xue, Siming; Franco, Christopher; Speer, Mei Y.; Giachelli, Cecilia M.; Bendeck, Michelle P.

    2009-01-01

    Intimal calcification is a feature of advanced atherosclerotic disease that predicts a two- to eightfold increase in the risk of coronary events. Type I collagen promotes vascular smooth muscle cell-mediated calcification, although the mechanism by which this occurs is unknown. The discoidin domain receptor 1 (DDR1) is a collagen receptor that is emerging as a critical mediator of atherosclerosis. To determine whether DDR1 is involved in intimal calcification, we fed male Ddr1−/−;Ldlr−/− and Ddr1+/+;Ldlr−/− mice an atherogenic diet for 6, 12, or 24 weeks. DDR1 deficiency significantly reduced the calcium content of the aortic arch, and microcomputed tomography demonstrated a significant decrease in hydroxyapatite deposition after 24 weeks of atherogenic diet. Reduced calcification was correlated with decreases in macrophage accumulation and tumor necrosis factor α staining, suggesting that the reduction in calcification was in part due to decreased inflammation. The chondrogenic markers type II collagen, type X collagen, and Sox-9 were expressed within the mineralized foci. An in vitro assay performed with vascular smooth muscle cells revealed that DDR1 was required for cell-mediated calcification of the matrix, and Ddr1+/+ smooth muscle cells expressed more alkaline phosphatase activity, whereas Ddr1−/− smooth muscle cells expressed elevated levels of mRNA for nucleotide pyrophosphatase phosphodiesterase 1, an inhibitor of tissue mineralization. Taken together, our results demonstrate that DDR1 mediates an important mechanism for atherosclerotic calcification. PMID:19893047

  14. Discoidin domain receptor-1 deficiency attenuates atherosclerotic calcification and smooth muscle cell-mediated mineralization.

    PubMed

    Ahmad, Pamela J; Trcka, Daniel; Xue, Siming; Franco, Christopher; Speer, Mei Y; Giachelli, Cecilia M; Bendeck, Michelle P

    2009-12-01

    Intimal calcification is a feature of advanced atherosclerotic disease that predicts a two- to eightfold increase in the risk of coronary events. Type I collagen promotes vascular smooth muscle cell-mediated calcification, although the mechanism by which this occurs is unknown. The discoidin domain receptor 1 (DDR1) is a collagen receptor that is emerging as a critical mediator of atherosclerosis. To determine whether DDR1 is involved in intimal calcification, we fed male Ddr1(-/-);Ldlr(-/-) and Ddr1(+/+);Ldlr(-/-) mice an atherogenic diet for 6, 12, or 24 weeks. DDR1 deficiency significantly reduced the calcium content of the aortic arch, and microcomputed tomography demonstrated a significant decrease in hydroxyapatite deposition after 24 weeks of atherogenic diet. Reduced calcification was correlated with decreases in macrophage accumulation and tumor necrosis factor alpha staining, suggesting that the reduction in calcification was in part due to decreased inflammation. The chondrogenic markers type II collagen, type X collagen, and Sox-9 were expressed within the mineralized foci. An in vitro assay performed with vascular smooth muscle cells revealed that DDR1 was required for cell-mediated calcification of the matrix, and Ddr1(+/+) smooth muscle cells expressed more alkaline phosphatase activity, whereas Ddr1(-/-) smooth muscle cells expressed elevated levels of mRNA for nucleotide pyrophosphatase phosphodiesterase 1, an inhibitor of tissue mineralization. Taken together, our results demonstrate that DDR1 mediates an important mechanism for atherosclerotic calcification.

  15. Resveratrol prevents angiotensin II-induced hypertrophy of vascular smooth muscle cells through the transactivation of growth factor receptors.

    PubMed

    Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2017-08-01

    We previously showed that augmented levels of endogenous angiotensin II (AngII) contribute to vascular smooth muscle cell (VSMC) hypertrophy through the transactivation of growth factor receptors in spontaneously hypertensive rats. Resveratrol (RV), a polyphenolic component of red wine, has also been shown to attenuate AngII-evoked VSMC hypertrophy; however, the molecular mechanism mediating this response is obscure. The present study was therefore undertaken to examine whether RV could prevent AngII-induced VSMC hypertrophy through the transactivation of growth factor receptor and associated signaling pathways. AngII treatment of VSMC enhanced the protein synthesis that was attenuated towards control levels by RV pretreatment as well as by the inhibitors of NADPH oxidase, c-Src, and growth factor receptors. Furthermore, RV pretreatment also inhibited enhanced levels of superoxide anion, NADPH oxidase activity, increased expression of NADPH oxidase subunits, and phosphorylation of c-Src, EGF-R, PDGE-R, ERK1/2, and AKT1/2. In conclusion, these results indicate that RV attenuates AngII-induced VSMC hypertrophy through the inhibition of enhanced oxidative stress and activation of c-Src, growth factor receptors, and MAPK/AKT signaling. We suggest that RV could be used as a therapeutic agent in the treatment of vascular complications associated with hypertension and hypertrophy.

  16. Statin therapy exacerbates alcohol-induced constriction of cerebral arteries via modulation of ethanol-induced BK channel inhibition in vascular smooth muscle.

    PubMed

    Simakova, Maria N; Bisen, Shivantika; Dopico, Alex M; Bukiya, Anna N

    2017-12-01

    Statins constitute the most commonly prescribed drugs to decrease cholesterol (CLR). CLR is an important modulator of alcohol-induced cerebral artery constriction (AICAC). Using rats on a high CLR diet (2% CLR) we set to determine whether atorvastatin administration (10mg/kg daily for 18-23weeks) modified AICAC. Middle cerebral arteries were pressurized in vitro at 60mmHg and AICAC was evoked by 50mM ethanol, that is within the range of blood alcohol detected in humans following moderate-to-heavy drinking. AICAC was evident in high CLR+atorvastatin group but not in high CLR diet+placebo. Statin exacerbation of AICAC persisted in de-endothelialized arteries, and was blunted by CLR enrichment in vitro. Fluorescence imaging of filipin-stained arteries showed that atorvastatin decreased vascular smooth muscle (VSM) CLR when compared to placebo, this difference being reduced by CLR enrichment in vitro. Voltage- and calcium-gated potassium channels of large conductance (BK) are known VSM targets of ethanol, with their beta1 subunit being necessary for ethanol-induced channel inhibition and resulting AICAC. Ethanol-induced BK inhibition in excised membrane patches from freshly isolated myocytes was exacerbated in the high CLR diet+atorvastatin group when compared to high CLR diet+placebo. Unexpectedly, atorvastatin decreased the amount and function of BK beta1 subunit as documented by immunofluorescence imaging and functional patch-clamp studies. Atorvastatin exacerbation of ethanol-induced BK inhibition disappeared upon artery CLR enrichment in vitro. Our study demonstrates for the first time statin's ability to exacerbate the vascular effect of a widely consumed drug of abuse, this exacerbation being driven by statin modulation of ethanol-induced BK channel inhibition in the VSM via CLR-mediated mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Reserpine has a direct action as a calcium antagonist on mammalian smooth muscle cells.

    PubMed Central

    Casteels, R; Login, I S

    1983-01-01

    The effects of reserpine on excitation-contraction coupling and 45Ca exchange of smooth muscle cells of the rabbit ear artery and the guinea-pig taenia coli have been studied. Reserpine inhibited the spontaneous mechanical activity of the taenia coli and the force development induced by 59 mM-external K or 10(-5) M-carbachol. In the ear artery reserpine blocked the K-induced contraction but its effect on the contraction elicited by noradrenaline was smaller. At 0.2 mM-Ca, the inhibition of the tonic component of the noradrenaline-induced contraction was more pronounced than that of the phasic component. This reserpine action was fully reversible for the noradrenaline stimulus in the ear artery but less so for K-induced contractions. The inhibitory action on contractions induced in taenia coli by K-rich solution and by carbachol was even less reversible. The analysis of the effect of reserpine on the 45Ca exchange in the ear artery has revealed that it inhibits the increase of the fractional loss induced by K depolarization, but that it does not exert a significant effect on the increased fractional loss induced by 10(-5) M-noradrenaline. Reserpine slows down the filling with 45Ca of the agonist-sensitive store without affecting the steady-state amount of Ca taken up by the store. A study of the degree of filling of the store by measuring the force development and the 45Ca release elicited by noradrenaline in Ca-free medium, reveals that the force development after loading in a reserpine-containing medium remains less than the control, although the same amount of Ca is released from the store. It was shown by using tetrabenazine that the inhibitory action of reserpine on the Ca exchange and the force development is not due to an interaction of reserpine with the receptor molecules that are responsible for its depleting action on aminergic granules. These results strongly suggest that reserpine exerts a Ca antagonistic action on smooth muscle whereby it blocks the

  18. Myosin Va Plays a Role in Nitrergic Smooth Muscle Relaxation in Gastric Fundus and Corpora Cavernosa of Penis

    PubMed Central

    Carew, Josephine A.; Goyal, Raj K.; Sullivan, Maryrose P.

    2014-01-01

    The intracellular motor protein myosin Va is involved in nitrergic neurotransmission possibly by trafficking of neuronal nitric oxide synthase (nNOS) within the nerve terminals. In this study, we examined the role of myosin Va in the stomach and penis, proto-typical smooth muscle organs in which nitric oxide (NO) mediated relaxation is critical for function. We used confocal microscopy and co-immunoprecipitation of tissue from the gastric fundus (GF) and penile corpus cavernosum (CCP) to localize myosin Va with nNOS and demonstrate their molecular interaction. We utilized in vitro mechanical studies to test whether smooth muscle relaxations during nitrergic neuromuscular neurotransmission is altered in DBA (dilute, brown, non-agouti) mice which lack functional myosin Va. Myosin Va was localized in nNOS-positive nerve terminals and was co-immunoprecipitated with nNOS in both GF and CCP. In comparison to C57BL/6J wild type (WT) mice, electrical field stimulation (EFS) of precontracted smooth muscles of GF and CCP from DBA animals showed significant impairment of nitrergic relaxation. An NO donor, Sodium nitroprusside (SNP), caused comparable levels of relaxation in smooth muscles of WT and DBA mice. These normal postjunctional responses to SNP in DBA tissues suggest that impairment of smooth muscle relaxation resulted from inhibition of NO synthesis in prejunctional nerve terminals. Our results suggest that normal physiological processes of relaxation of gastric and cavernosal smooth muscles that facilitate food accommodation and penile erection, respectively, may be disrupted under conditions of myosin Va deficiency, resulting in complications like gastroparesis and erectile dysfunction. PMID:24516539

  19. STARS knockout attenuates hypoxia-induced pulmonary arterial hypertension by suppressing pulmonary arterial smooth muscle cell proliferation.

    PubMed

    Shi, Zhaoling; Wu, Huajie; Luo, Jianfeng; Sun, Xin

    2017-03-01

    STARS (STriated muscle Activator of Rho Signaling) is a sarcomeric protein, which expressed early in cardiac development and involved in pathological remodeling. Abundant evidence indicated that STARS could regulate cell proliferation, but it's exact function remains unclear. In this study, we aimed to investigate the role of STARS in the proliferation of pulmonary arterial smooth muscle cells (PASMC) and the potential effect on the progression of pulmonary arterial hypertension (PAH). In this study, we established a PAH mouse model through chronic hypoxia exposure as reflected by the increased RVSP and RVHI. Western blot and RT-qPCR detected the increased STARS protein and mRNA levels in PAH mice. Next, we cultured the primary PASMC from PAH mice. After STARS overexpression in PASMC, STARS, SRF and Egr-1 were up-regulated significantly. The MTT assay revealed an increase in cell proliferation. Flow cytometry showed a marked inhibition of cell apoptosis. However, STARS silence in PASMC exerted opposite effects with STARS overexpression. SRF siRNA transfection blocked the effects of STARS overexpression in PASMC. In order to further confirm the role of STARS in PAH mice in vivo, we exposed STARS knockout mice to hypoxia and found lower RVSP and RVHI in knockout mice as compared with controls. Our results not only suggest that STARS plays a crucial role in the development of PAH by increasing the proliferation of PASMC through activation of the SRF/Egr-1 pathway, but also provides a new mechanism for hypoxia-induced PAH. In addition, STARS may represent a potential treatment target. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Selectivity of ROCK inhibitors in the spontaneously tonic smooth muscle.

    PubMed

    Rattan, Satish; Patel, Chirag A

    2008-03-01

    The selectivity of different Rho kinase (ROCK) inhibitors in the spontaneously tonic smooth muscle has not been investigated. We examined this issue using Y-27632 [(R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarbox anecarboxamide, 2HCl], H-1152 [(S)-(+)-(2-methyl-5-isoquinolinyl) sulfonylhomopiperazine, 2HCl], HA-1077 [(5 isoquinolinesulfonyl) homopiperazine, 2HCl], and ROCK inhibitor II [N-(4-pyridyl)-N'-(2,4,6-trichlorophenyl)urea]. We compared these inhibitors in the spontaneously tonic smooth muscle of the internal anal sphincter (IAS). ROCK, protein kinase C (PKC), and myosin light chain kinase (MLCK) activities were determined in the IAS, before and after different ROCK inhibitors. Y-27632 and H-1152 were approximately 30-fold more potent in the IAS (IC(50): 4.4 x 10(-7) and 7.9 x 10(-8) M, respectively) vs. the phasic rectal smooth muscle (RSM) (IC(50): 1.3 x 10(-5) and 2.5 x 10(-6) M, respectively). HA-1077 and ROCK inhibitor II were equipotent in the IAS vs. RSM. In the IAS, H-1152 was the most potent whereas ROCK inhibitor II is the least. Y-27632 and H-1152 caused concentration-dependent decrease in the IAS tone that correlates directly with the decreases in ROCK activity, without significant effect in the PKC and MLCK activities. This specifically selective correlation between ROCK activity and decrease in the IAS tone was absent in the case of HA-1077 and ROCK inhibitor II, which also inhibited PKC and MLCK. We conclude that the IAS tone is critically dependent on ROCK activity, and H-1152 and Y-27632 are the most selective and potent ROCK inhibitors in the IAS.

  1. An RGS4-mediated phenotypic switch of bronchial smooth muscle cells promotes fixed airway obstruction in asthma.

    PubMed

    Damera, Gautam; Druey, Kirk M; Cooper, Philip R; Krymskaya, Vera P; Soberman, Roy J; Amrani, Yassine; Hoshi, Toshinori; Brightling, Christopher E; Panettieri, Reynold A

    2012-01-01

    In severe asthma, bronchodilator- and steroid-insensitive airflow obstruction develops through unknown mechanisms characterized by increased lung airway smooth muscle (ASM) mass and stiffness. We explored the role of a Regulator of G-protein Signaling protein (RGS4) in the ASM hyperplasia and reduced contractile capacity characteristic of advanced asthma. Using immunocytochemical staining, ASM expression of RGS4 was determined in endobronchial biopsies from healthy subjects and those from subjects with mild, moderate and severe asthma. Cell proliferation assays, agonist-induced calcium mobilization and bronchoconstriction were determined in cultured human ASM cells and in human precision cut lung slices. Using gain- and loss-of-function approaches, the precise role of RGS proteins was determined in stimulating human ASM proliferation and inhibiting bronchoconstriction. RGS4 expression was restricted to a subpopulation of ASM and was specifically upregulated by mitogens, which induced a hyperproliferative and hypocontractile ASM phenotype similar to that observed in recalcitrant asthma. RGS4 expression was markedly increased in bronchial smooth muscle of patients with severe asthma, and expression correlated significantly with reduced pulmonary function. Whereas RGS4 inhibited G protein-coupled receptor (GPCR)-mediated bronchoconstriction, unexpectedly RGS4 was required for PDGF-induced proliferation and sustained activation of PI3K, a mitogenic signaling molecule that regulates ASM proliferation. These studies indicate that increased RGS4 expression promotes a phenotypic switch of ASM, evoking irreversible airway obstruction in subjects with severe asthma.

  2. Cutaneous Malignant Melanoma With Rhabdoid Morphology and Smooth Muscle Differentiation: A Challenging Histopathologic Diagnosis.

    PubMed

    Prieto-Torres, Lucía; Alegría-Landa, Victoria; Llanos, Concepción; Córdoba, Alicia; Kutzner, Heinz; Requena, Luis

    2017-05-01

    Divergent differentiation or metaplastic change is a rare feature exhibited occasionally in malignant melanoma (MM), which is characterized by the development of morphologically, immunochemically, and/or ultrastructurally nonmelanocytic cells within the tumor. Smooth muscle differentiation in MM is an exceedingly rare phenomenon reported only in a few cases in the literature. We report the case of a 69-year-old woman who presented with a pure dermal amelanotic MM with smooth muscle cell differentiation and an area of rhabdoid morphology, which made the accurate histopathologic diagnostic of MM challenging.

  3. MiR-29-mediated elastin down-regulation contributes to inorganic phosphorus-induced osteoblastic differentiation in vascular smooth muscle cells.

    PubMed

    Sudo, Ryo; Sato, Fumiaki; Azechi, Takuya; Wachi, Hiroshi

    2015-12-01

    Vascular calcification increases the risk of cardiovascular mortality. We previously reported that expression of elastin decreases with progression of inorganic phosphorus (Pi)-induced vascular smooth muscle cell (VSMC) calcification. However, the regulatory mechanisms of elastin mRNA expression during vascular calcification remain unclear. MicroRNA-29 family members (miR-29a, b and c) are reported to mediate elastin mRNA expression. Therefore, we aimed to determine the effect of miR-29 on elastin expression and Pi-induced vascular calcification. Calcification of human VSMCs was induced by Pi and evaluated measuring calcium deposition. Pi stimulation promoted Ca deposition and suppressed elastin expression in VSMCs. Knockdown of elastin expression by shRNA also promoted Pi-induced VSMC calcification. Elastin pre-mRNA measurements indicated that Pi stimulation suppressed elastin expression without changing transcriptional activity. Conversely, Pi stimulation increased miR-29a and miR-29b expression. Inhibition of miR-29 recovered elastin expression and suppressed calcification in Pi-treated VSMCs. Furthermore, over-expression of miR-29b promoted Pi-induced VSMC calcification. RT-qPCR analysis showed knockdown of elastin expression in VSMCs induced expression of osteoblast-related genes, similar to Pi stimulation, and recovery of elastin expression by miR-29 inhibition reduced their expression. Our study shows that miR-29-mediated suppression of elastin expression in VSMCs plays a pivotal role in osteoblastic differentiation leading to vascular calcification. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  4. Effect of the Lippia alba (Mill.) N.E. Brown essential oil and its main constituents, citral and limonene, on the tracheal smooth muscle of rats.

    PubMed

    Carvalho, Poliana M M; Macêdo, Cícero A F; Ribeiro, Tiago F; Silva, Andressa A; Da Silva, Renata E R; de Morais, Luís P; Kerntopf, Marta R; Menezes, Irwin R A; Barbosa, Roseli

    2018-03-01

    The Lippia alba (Mill.) N.E. Brown (Verbenaceae) species, has effects sedative, analgesic and spasmolytic properties. This study had as its main objective to evaluate the essential oil of L. alba (EOLa) effect and that of its main constituents, citral and limonene, over tracheal smooth muscle from Wistar rats. EOLa, citral and limonene promoted relaxation of tracheal smooth muscle in contractions induced by potassium (60 mM K + ), presenting an EC 50 of 148 ± 7 μg/mL for the EOLa, 136 ± 7 μg/mL for citral and 581 ± 7 μg/mL for limonene. In contractions induced by Acetylcholine (Ach; 10 μM) the EC 50 for the EOLa and citral were of 731 ± 5 μg/mL and 795 ± 9 μg/mL, respectively. In preparations pre-incubated with 1000 μg/mL of the EOLa and citral, both agents were found to block the influx of BaCl 2 by VOCCs. This study demonstrated that the EOLa and its main component citral present antispasmodic effect over tracheal smooth muscle of rats.

  5. [Effect of substance P on the potassium and calcium currents of colonic smooth muscle cells].

    PubMed

    Tang, Qincai; Luo, Hesheng; Quan, Xiaojing; Fan, Han; Yu, Guang

    2015-08-11

    To investigate the effect of substance P(SP) on the spontaneous contractile activity of smooth muscle cells,the large-conductance calcium-activated potassium channel currents (IBKCa) and the L-type calcium channel currents (ICaL) in rat smooth muscle cells of the proximal colon. A total of 24 healthy male Wista rats were used in this test. The change of smooth muscle strips spontaneous contraction of rat proximal colon after adding SP was recorded by a physiological signal stystem (RM6240). The IBKCa and ICaL were measured via the whole cell patch-clamp technique. The longitudinal muscle contraction was obviously increased concentration-dependently after adding different concentrations of SP (10(-7)-10(-6) mol/L), so as the circular muscle while adding SP(10(-8)-10(-6) mol/L) (all P<0.05). Compared with the control group, IBKCa was decreased after adding SP(10(-6) mol/L). Under the stimulating voltage of 60 mV, the IBKCa current density was (11.71±1.65) pA/pF, which was significantly lower compared with the control group (14.42±2.89) pA/pF (P<0.05). The ICaL) was apparently increased. Under the stimulating voltage of 0 mV, the ICaL) currents density was (-5.04±0.67) pA/pF, compared with the control group (-4.25±0.46) pA/pF, which was significantly increased (P<0.01). SP can promote the spontaneous contractile activity of colon smooth muscle of rats in vitro.And SP decrease IBKCa representatively while apparently increase ICaL). That is probably one of the mechanism SP regulate the gastrointestinal motility.

  6. Shh mediates PDGF-induced contractile-to-synthetic phenotypic modulation in vascular smooth muscle cells through regulation of KLF4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Qiu; Wei, Bin; Zhao, Yu

    Platelet-derived growth factor (PDGF) is known to induce phenotypic switching of vascular smooth muscle cells (VSMCs) from contractile to a pathological synthetic state, which played an essential role in proliferation of VSMCs. Sonic hedgehog (Shh) contributes to the proliferation of VSMCs when induced by PDGF. Here, we investigated the probable role of Shh in PDGF-induced VSMC dedifferentiation and its underlying mechanisms. We found that PDGF stimulated Shh expression in VSMCs, which was mediated by activation of PDGFRβ/ERK1/2 cell signaling pathway. Further, we found PDGF-induced VSMC phenotypic modulation was accompanied by up-regulation of Shh/Gli family zinc finger 2 (Gli2) signaling andmore » Krüppel-like factor 4 (KLF4). When inhibited Shh in the presence of PDGF, the expressions of KLF4 and VSMC dedifferentiation markers were down-regulated and the effect of PDGF in inducing VSMC dedifferentiation was blocked. In the absence of PDGF, Shh signaling activation increased the expression of KLF4 and promoted VSMC dedifferentiation. The results indicate Shh participated in the regulation of PDGF-induced VSMC dedifferentiation. Finally, we found that KLF4 was closely involved in this process. On inhibition of KLF4, PDGF induced VSMC dedifferentiation was abrogated, even in the presence of Shh. Taken together, the results provide critical insights into the newly discovered role of Shh in phenotypic modulation of VSMCs which depends on KLF4. - Highlights: • Shh as a downstream effector of PDGF participates in PDGF-induced VSMC phenotypic modulation. • Shh can promote VSMC phenotypic switching from contractile to synthetic state. • Shh mediates VSMC phenotypic modulation through regulation of KLF4.« less

  7. Effects of lubiprostone on human uterine smooth muscle cells.

    PubMed

    Cuppoletti, John; Malinowska, Danuta H; Chakrabarti, Jayati; Ueno, Ryuji

    2008-06-01

    Lubiprostone, a bicyclic fatty acid derivative and member of a new class of compounds called prostones, locally activates ClC-2 Cl(-) channels without activation of prostaglandin receptors. The present study was specifically designed to test and compare lubiprostone and prostaglandin effects at the cellular level using human uterine smooth muscle cells. Effects on [Ca(2+)](i), membrane potential and [cAMP](i) in human uterine smooth muscle cells were measured. 10 nM lubiprostone significantly decreased [Ca(2+)](i) from 188 to 27 nM, which was unaffected by 100 nM SC-51322, a prostaglandin EP receptor antagonist. In contrast 10nM PGE(2) and PGE(1) both increased [Ca(2+)](i) 3-5-fold which was blocked by SC-51322. Similarly, lubiprostone and prostaglandins had opposite/different effects on membrane potential and [cAMP](i). Lubiprostone caused SC-51322-insensitive membrane hyperpolarization and no effect on [cAMP](i). PGE(2) and PGE(1) both caused SC-51322-sensitive membrane depolarization and increased [cAMP](i). Lubiprostone has fundamentally different cellular effects from prostaglandins that are not mediated by EP receptors.

  8. Smooth muscle membrane organization in the normal and dysfunctional human urinary bladder: a structural analysis.

    PubMed

    Burkhard, Fiona C; Monastyrskaya, Katia; Studer, Urs E; Draeger, Annette

    2005-01-01

    The decline in contractile properties is a characteristic feature of the dysfunctional bladder as a result of infravesical outlet obstruction. During clinical progression of the disease, smooth muscle cells undergo structural modifications. Since adaptations to constant changes in length require a high degree of structural organization within the sarcolemma, we have investigated the expression of several proteins, which are involved in smooth muscle membrane organization, in specimens derived from normal and dysfunctional organs. Specimen from patients with urodynamically normal/equivocal (n = 4), obstructed (n = 2), and acontractile (n = 2) bladders were analyzed relative to their structural features and sarcolemmal protein profile. Smooth muscle cells within the normal urinary bladder display a distinct sarcolemmal domain structure, characterized by firm actin-attachment sites, alternating with flexible "hinge" regions. In obstructed bladders, foci of cells displaying degenerative sarcolemmal changes alternate with areas of hypertrophic cells in which the membrane appears unaffected. In acontractile organs, the overall membrane structure remains intact, however annexin 6, a protein belonging to a family of Ca2+-dependent, "membrane-organizers," is downregulated. Degenerative changes in smooth muscle cells, which are chronically working against high resistance, are preferentially located within the actin-attachment sites. In acontractile bladders, the downregulation of annexin 6 might have a bearing on the fine-tuning of the plasma membrane during contraction/relaxation cycles. Copyright 2005 Wiley-Liss, Inc.

  9. TLR4 induces CREB-mediated IL-6 production via upregulation of F-spondin to promote vascular smooth muscle cell migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Guan-Lin; Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Wu, Jing-Yiing

    Toll-like receptor 4 (TLR4) is important in promoting inflammation and vascular smooth muscle cell (VSMC) migration, both of which contribute to atherosclerosis development and progression. But the mechanism underlying the regulation of TLR4 in VSMC migration remains unclear. Stimulation of VSMCs with LPS increased the cellular level of F-spondin which is associated with the regulation of proinflammatory cytokine production. The LPS-induced F-spondin expression depended on TLR4-mediated PI3K/Akt pathway. Suppression of F-spondin level by siRNA inhibited not only F-spondin expression but also LPS-induced phosphorylation of cAMP response element binding protein (CREB) and IL-6 expression, VSMC migration and proliferation as well asmore » MMP9 expression. Moreover, suppression of CREB level by siRNA inhibited TLR4-induced IL-6 production and VSMC migration. Inhibition of F-spondin siRNA on LPS-induced migration was restored by addition of exogenous recombinant mouse IL-6. We conclude that upon ligand binding, TLR4 activates PI3K/Akt signaling to induce F-spondin expression, subsequently control CREB-mediated IL-6 production to promote VSMC migration. These findings provide vital insights into the essential role of F-spondin in VSMC function and will be valuable for developing new therapeutic strategies against atherosclerosis. -- Highlights: •LPS-induced F-spondin expression of VSMCs is via a TLR4/PI3K/Akt signaling. •F-spondin is pivotal for LPS-induced CREB-mediated IL-6 production. •F-spondin is required for LPS-induced VSMC migration and proliferation.« less

  10. α-Iso-Cubebene Inhibits PDGF-Induced Vascular Smooth Muscle Cell Proliferation by Suppressing Osteopontin Expression

    PubMed Central

    Jang, Min A.; Lee, Seung Jin; Baek, Seung Eun; Park, So Youn; Choi, Young Whan; Kim, Chi Dae

    2017-01-01

    α-Iso-cubebene (ICB) is a dibenzocyclooctadiene lignin contained in Schisandra chinensis (SC), a well-known medicinal herb that ameliorates cardiovascular symptoms. Thus, we examined the effect of ICB on vascular smooth muscle cell (VSMC) proliferation, a key feature of diverse vascular diseases. When VSMCs primary cultured from rat thoracic aorta were stimulated with PDGF (1–10 ng/ml), cell proliferation and osteopontin (OPN) expression were concomitantly up-regulated, but these effects were attenuated when cells were treated with MPIIIB10, a neutralizing monoclonal antibody for OPN. In aortic tissues exposed to PDGF, sprouting VSMC numbers increased, which was attenuated in tissues from OPN-deficient mice. Furthermore, VSMC proliferation and OPN expression induced by PDGF were attenuated dose-dependently by ICB (10 or 30 μg/ml). Reporter assays conducted using OPN promoter-luciferase constructs showed that the promoter region 538–234 bp of the transcription start site was responsible for transcriptional activity enhancement by PDGF, which was significantly inhibited by ICB. Putative binding sites for AP-1 and C/EBPβ in the indicated promoter region were suggested by TF Search, and increased binding of AP-1 and C/EBPβ in PDGF-treated VSMCs was demonstrated using a ChIP assay. The increased bindings of AP-1 and C/EBPβ into OPN promoter were attenuated by ICB. Moreover, the PDGF-induced expression of OPN was markedly attenuated in VSMCs transfected with siRNA for AP-1 and C/EBPβ. These results indicate that ICB inhibit VSMC proliferation by inhibiting the AP-1 and C/EBPβ signaling pathways and thus downregulating OPN expression. PMID:28114367

  11. RhoA/ROCK signaling regulates smooth muscle phenotypic modulation and vascular remodeling via the JNK pathway and vimentin cytoskeleton.

    PubMed

    Tang, Lian; Dai, Fan; Liu, Yan; Yu, Xiaoqiang; Huang, Chao; Wang, Yuqin; Yao, Wenjuan

    2018-05-20

    The RhoA/ROCK signaling pathway regulates cell morphology, adhesion, proliferation, and migration. In this study, we investigated the regulatory role of RhoA/ROCK signaling on PDGF-BB-mediated smooth muscle phenotypic modulation and vascular remodeling and clarified the molecular mechanisms behind these effects. PDGF-BB treatment induced the activation of RhoA, ROCK, PDGF-Rβ, and the expression of PDGF-Rβ in HA-VSMCs (human aortic vascular smooth muscle cells). PDGF-Rβ inhibition and RhoA suppression blocked PDGF-BB-induced RhoA activation and ROCK induction. In addition, PDGF-BB-mediated cell proliferation and migration were suppressed by PDGF-Rβ inhibition, RhoA suppression, and ROCK inhibition, suggesting that PDGF-BB promotes phenotypic modulation of HA-VSMCs by activating the RhoA/ROCK pathway via the PDGF receptor. Moreover, suppressing both ROCK1 and ROCK2 blocked cell cycle progression from G0/G1 to S phase by decreasing the transcription and protein expression of cyclin D1, CDK2, and CDK4 via JNK/c-Jun pathway, thus reducing cell proliferation in PDGF-BB-treated HA-VSMCs. ROCK1 deletion, rather than ROCK2 suppression, significantly inhibited PDGF-BB-induced migration by reducing the expression of vimentin and preventing the remodeling of vimentin and phospho-vimentin. Furthermore, ROCK1 deletion suppressed vimentin by inhibiting the phosphorylation of Smad2/3 and the nuclear translocation of Smad4. These findings suggested that ROCK1 and ROCK2 might play different roles in PDGF-BB-mediated cell proliferation and migration in HA-VSMCs. In addition, PDGF-BB and its receptor participated in neointima formation and vascular remodeling by promoting cell cycle protein expression via the JNK pathway and enhancing vimentin expression in a rat balloon injury model; effects that were inhibited by treatment with fasudil. Together, the results of this study reveal a novel mechanism through which RhoA/ROCK signaling regulates smooth muscle phenotypic modulation and

  12. Glycolaldehyde-derived advanced glycation end products (glycol-AGEs)-induced vascular smooth muscle cell dysfunction is regulated by the AGES-receptor (RAGE) axis in endothelium.

    PubMed

    Nam, Mi-Hyun; Son, Won-Rak; Lee, Young Sik; Lee, Kwang-Won

    Advanced glycation end-products (AGEs) are involved in the development of vascular smooth muscle cell (VSMC) dysfunction and the progression of atherosclerosis. However, AGEs may indirectly affect VSMCs via AGEs-induced signal transduction between monocytes and human umbilical endothelial cells (HUVECs), rather than having a direct influence. This study was designed to elucidate the signaling pathway underlying AGEs-RAGE axis influence on VSMC dysfunction using a co-culture system with monocytes, HUVECs and VSMCs. AGEs stimulated production of reactive oxygen species and pro-inflammatory mediators such as tumor necrosis factor-α and interleukin-1β via extracellular-signal-regulated kinases phosphorylation and nuclear factor-κB activation in HUVECs. It was observed that AGEs-induced pro-inflammatory cytokines increase VSMC proliferation, inflammation and vascular remodeling in the co-culture system. This result implies that RAGE plays a role in AGEs-induced VSMC dysfunction. We suggest that the regulation of signal transduction via the AGEs-RAGE axis in the endothelium can be a therapeutic target for preventing atherosclerosis.

  13. Exogenous S100A8 protein inhibits PDGF-induced migration of airway smooth muscle cells in a RAGE-dependent manner.

    PubMed

    Xu, Yu-Dong; Wei, Ying; Wang, Yu; Yin, Lei-Miao; Park, Gyoung-Hee; Liu, Yan-Yan; Yang, Yong-Qing

    2016-03-25

    S100A8 is an important member of the S100 protein family, which is involved in intracellular and extracellular regulatory activities. We previously reported that the S100A8 protein was differentially expressed in the asthmatic respiratory tracts. To understand the potential role of S100A8 in asthma, we investigated the effect of recombinant S100A8 protein on the platelet-derived growth factor (PDGF)-induced migration of airway smooth muscle cells (ASMCs) and the underlying molecular mechanism by using multiple methods, such as impedance-based xCELLigence migration assay, transwell migration assays and wound-healing assays. We found that exogenous S100A8 protein significantly inhibited PDGF-induced ASMC migration. Furthermore, the migration inhibition effect of S100A8 was blocked by neutralizing antibody against the receptor for advanced glycation end-products (RAGE), a potential receptor for the S100A8 protein. These findings provide direct evidence that exogenous S100A8 protein inhibits the PDGF-induced migration of ASMCs through the membrane receptor RAGE. Our study highlights a novel role of S100A8 as a potential means of counteracting airway remodeling in chronic airway diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, Matthew P.; Sikkink, Laura A.; Penheiter, Alan R.

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chainmore » kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially

  15. Expression pattern and function of tyrosine receptor kinase B isoforms in rat mesenteric arterial smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otani, Kosuke; Okada, Muneyoshi; Yamawaki, Hideyuki, E-mail: yamawaki@vmas.kitasato-u.ac.jp

    Tyrosine receptor kinaseB (TrkB) is a high affinity receptor for brain-derived neurotrophic factor (BDNF). TrkB isoforms involve full length TrkB (TrkB FL) and truncated TrkB type1 (TrkB T1) and type 2 (TrkB T2) in rats. The aim of present study was to explore their expression pattern and function in mesenteric arterial smooth muscle cells (MASMCs). The expression of TrkB isoform protein and mRNA was examined by Western blotting, immunofluorescence and quantitative RT-PCR analyses. Cell proliferation was measured by a bromodeoxyuridine (BrdU) incorporation assay. Cell migration was measured by a Boyden chamber assay. Cell morphology was observed with a phase-contrast microscope.more » Protein and mRNA expression of BDNF and TrkB isoforms was confirmed in MASMCs. Expression level of TrkB FL was less, while that of TrkB T1 was the highest in MASMCs. Although BDNF increased phosphorylation of ERK, it had no influence on migration and proliferation of MASMCs. TrkB T1 gene knockdown by a RNA interference induced morphological changes and reduced expression level of α-smooth muscle actin (α-SMA) in MASMCs. Similar morphological changes and reduced α-SMA expression were induced in MASMCs by a Rho kinase inhibitor, Y-27632. In conclusion, we for the first time demonstrate that TrkB T1 expressed highly in MASMCs contributes to maintain normal cell morphology possibly via regulation of Rho activity. This study firstly defined expression level of TrkB isoforms and partly revealed their functions in peripheral vascular cells. - Highlights: • BDNF-TrkB axis mediates neurogenesis, growth, differentiation and survival. • Expression pattern and function of TrkB in vascular smooth muscle remain unclear. • Expression of TrkB FL is low, while that of TrkB T1 is the highest. • TrkB T1 contributes to maintain normal morphology possibly via activating Rho.« less

  16. Interleukin-18 Enhances Vascular Calcification and Osteogenic Differentiation of Vascular Smooth Muscle Cells Through TRPM7 Activation.

    PubMed

    Zhang, Kun; Zhang, Yinyin; Feng, Weijing; Chen, Renhua; Chen, Jie; Touyz, Rhian M; Wang, Jingfeng; Huang, Hui

    2017-10-01

    Vascular calcification (VC) is an important predictor of cardiovascular morbidity and mortality. Osteogenic differentiation of vascular smooth muscle cells (VSMCs) is a key mechanism of VC. Recent studies show that IL-18 (interleukin-18) favors VC while TRPM7 (transient receptor potential melastatin 7) channel upregulation inhibits VC. However, the relationship between IL-18 and TRPM7 is unclear. We questioned whether IL-18 enhances VC and osteogenic differentiation of VSMCs through TRPM7 channel activation. Coronary artery calcification and serum IL-18 were measured in patients by computed tomographic scanning and enzyme-linked immunosorbent assay, respectively. Primary rat VSMCs calcification were induced by high inorganic phosphate and exposed to IL-18. VSMCs were also treated with TRPM7 antagonist 2-aminoethoxy-diphenylborate or TRPM7 small interfering RNA to block TRPM7 channel activity and expression. TRPM7 currents were recorded by patch-clamp. Human studies showed that serum IL-18 levels were positively associated with coronary artery calcium scores ( r =0.91; P <0.001). In VSMCs, IL-18 significantly decreased expression of contractile markers α-smooth muscle actin, smooth muscle 22 α, and increased calcium deposition, alkaline phosphatase activity, and expression of osteogenic differentiation markers bone morphogenetic protein-2, Runx2 (runt-related transcription factor 2), and osteocalcin ( P <0.05). IL-18 increased TRPM7 expression through ERK1/2 (extracellular signal-regulated kinase 1/2) signaling activation, and TRPM7 currents were augmented by IL-18 treatment. Inhibition of TRPM7 channel by 2-aminoethoxy-diphenylborate or TRPM7 small interfering RNA prevented IL-18-enhanced osteogenic differentiation and VSMCs calcification. These findings suggest that coronary artery calcification is associated with increased IL-18 levels. IL-18 enhances VSMCs osteogenic differentiation and subsequent VC induced by β-glycerophosphate via TRPM7 channel activation

  17. The Pro-Proliferative Effects of Nicotine and Its Underlying Mechanism on Rat Airway Smooth Muscle Cells

    PubMed Central

    He, Fang; Li, Bing; Zhao, Zhuxiang; Zhou, Yumin; Hu, Guoping; Zou, Weifeng; Hong, Wei; Zou, Yimin; Jiang, Changbin; Zhao, Dongxing; Ran, Pixin

    2014-01-01

    Recent studies have shown that nicotine, a major component of cigarette smoke, can stimulate the proliferation of non-neuronal cells. Cigarette smoking can promote a variety of pulmonary and cardiovascular diseases, such as chronic obstructive pulmonary disease (COPD), atherosclerosis, and cancer. A predominant feature of COPD is airway remodeling, which includes increased airway smooth muscle (ASM) mass. The mechanisms underlying ASM remodeling in COPD have not yet been fully elucidated. Here, we show that nicotine induces a profound and time-dependent increase in DNA synthesis in rat airway smooth muscle cells (RASMCs) in vitro. Nicotine also significantly increased the number of RASMCs, which was associated with the increased expression of Cyclin D1, phosphorylation of the retinoblastoma protein (RB) and was dependent on the activation of Akt. The activation of Akt by nicotine occurred within minutes and depended upon the nicotinic acetylcholine receptors (nAchRs). Activated Akt increased the phosphorylation of downstream substrates such as GSK3β. Our data suggest that the binding of nicotine to the nAchRs on RASMCs can regulate cellular proliferation by activating the Akt pathway. PMID:24690900

  18. Extracellular Cl- regulates electrical slow waves and setting of smooth muscle membrane potential by interstitial cells of Cajal in mouse jejunum.

    PubMed

    Saravanaperumal, Siva Arumugam; Gibbons, Simon J; Malysz, John; Sha, Lei; Linden, David R; Szurszewski, Joseph H; Farrugia, Gianrico

    2018-01-01

    What is the central question of this study? The aim was to investigate the roles of extracellular chloride in electrical slow waves and resting membrane potential of mouse jejunal smooth muscle by replacing chloride with the impermeant anions gluconate and isethionate. What is the main finding and its importance? The main finding was that in smooth muscle cells, the resting Cl - conductance is low, whereas transmembrane Cl - movement in interstitial cells of Cajal (ICCs) is a major contributor to the shape of electrical slow waves. Furthermore, the data confirm that ICCs set the smooth muscle membrane potential and that altering Cl - homeostasis in ICCs can alter the smooth muscle membrane potential. Intracellular Cl - homeostasis is regulated by anion-permeable channels and transporters and contributes to excitability of many cell types, including smooth muscle and interstitial cells of Cajal (ICCs). Our aims were to investigate the effects on electrical activity in mouse jejunal muscle strips of replacing extracellular Cl - (Cl - o ) with the impermeant anions gluconate and isethionate. On reducing Cl - o , effects were observed on electrical slow waves, with small effects on smooth muscle membrane voltage (E m ). Restoration of Cl - hyperpolarized smooth muscle E m proportional to the change in Cl - o concentration. Replacement of 90% of Cl - o with gluconate reversibly abolished slow waves in five of nine preparations. Slow waves were maintained in isethionate. Gluconate and isethionate substitution had similar concentration-dependent effects on peak amplitude, frequency, width at half peak amplitude, rise time and decay time of residual slow waves. Gluconate reduced free ionized Ca 2+ in Krebs solutions to 0.13 mm. In Krebs solutions containing normal Cl - and 0.13 mm free Ca 2+ , slow wave frequency was lower, width at half peak amplitude was smaller, and decay time was faster. The transient hyperpolarization following restoration of Cl - o was not observed

  19. Peripheral Airway Smooth Muscle, but Not the Trachealis, Is Hypercontractile in an Equine Model of Asthma.

    PubMed

    Matusovsky, Oleg S; Kachmar, Linda; Ijpma, Gijs; Bates, Genevieve; Zitouni, Nedjma; Benedetti, Andrea; Lavoie, Jean-Pierre; Lauzon, Anne-Marie

    2016-05-01

    Heaves is a naturally occurring equine disease that shares many similarities with human asthma, including reversible antigen-induced bronchoconstriction, airway inflammation, and remodeling. The purpose of this study was to determine whether the trachealis muscle is mechanically representative of the peripheral airway smooth muscle (ASM) in an equine model of asthma. Tracheal and peripheral ASM of heaves-affected horses under exacerbation, or under clinical remission of the disease, and control horses were dissected and freed of epithelium to measure unloaded shortening velocity (Vmax), stress (force/cross-sectional area), methacholine effective concentration at which 50% of the maximum response is obtained, and stiffness. Myofibrillar Mg(2+)-ATPase activity, actomyosin in vitro motility, and contractile protein expression were also measured. Horses with heaves had significantly greater Vmax and Mg(2+)-ATPase activity in peripheral airway but not in tracheal smooth muscle. In addition, a significant correlation was found between Vmax and the time elapsed since the end of the corticosteroid treatment for the peripheral airways in horses with heaves. Maximal stress and stiffness were greater in the peripheral airways of the horses under remission compared with controls and the horses under exacerbation, potentially due to remodeling. Actomyosin in vitro motility was not different between controls and horses with heaves. These data demonstrate that peripheral ASM is mechanically and biochemically altered in heaves, whereas the trachealis behaves as in control horses. It is therefore conceivable that the trachealis muscle may not be representative of the peripheral ASM in human asthma either, but this will require further investigation.

  20. A multiscale active structural model of the arterial wall accounting for smooth muscle dynamics.

    PubMed

    Coccarelli, Alberto; Edwards, David Hughes; Aggarwal, Ankush; Nithiarasu, Perumal; Parthimos, Dimitris

    2018-02-01

    Arterial wall dynamics arise from the synergy of passive mechano-elastic properties of the vascular tissue and the active contractile behaviour of smooth muscle cells (SMCs) that form the media layer of vessels. We have developed a computational framework that incorporates both these components to account for vascular responses to mechanical and pharmacological stimuli. To validate the proposed framework and demonstrate its potential for testing hypotheses on the pathogenesis of vascular disease, we have employed a number of pharmacological probes that modulate the arterial wall contractile machinery by selectively inhibiting a range of intracellular signalling pathways. Experimental probes used on ring segments from the rabbit central ear artery are: phenylephrine, a selective α 1-adrenergic receptor agonist that induces vasoconstriction; cyclopiazonic acid (CPA), a specific inhibitor of sarcoplasmic/endoplasmic reticulum Ca 2+ -ATPase; and ryanodine, a diterpenoid that modulates Ca 2+ release from the sarcoplasmic reticulum. These interventions were able to delineate the role of membrane versus intracellular signalling, previously identified as main factors in smooth muscle contraction and the generation of vessel tone. Each SMC was modelled by a system of nonlinear differential equations that account for intracellular ionic signalling, and in particular Ca 2+ dynamics. Cytosolic Ca 2+ concentrations formed the catalytic input to a cross-bridge kinetics model. Contractile output from these cellular components forms the input to the finite-element model of the arterial rings under isometric conditions that reproduces the experimental conditions. The model does not account for the role of the endothelium, as the nitric oxide production was suppressed by the action of L-NAME, and also due to the absence of shear stress on the arterial ring, as the experimental set-up did not involve flow. Simulations generated by the integrated model closely matched experimental

  1. Troponin T3 expression in skeletal and smooth muscle is required for growth and postnatal survival: characterization of Tnnt3(tm2a(KOMP)Wtsi) mice.

    PubMed

    Ju, Yawen; Li, Jie; Xie, Chao; Ritchlin, Christopher T; Xing, Lianping; Hilton, Matthew J; Schwarz, Edward M

    2013-09-01

    The troponin complex, which consists of three regulatory proteins (troponin C, troponin I, and troponin T), is known to regulate muscle contraction in skeletal and cardiac muscle, but its role in smooth muscle remains controversial. Troponin T3 (TnnT3) is a fast skeletal muscle troponin believed to be expressed only in skeletal muscle cells. To determine the in vivo function and tissue-specific expression of Tnnt3, we obtained the heterozygous Tnnt3+/flox/lacZ mice from Knockout Mouse Project (KOMP) Repository. Tnnt3(lacZ/+) mice are smaller than their WT littermates throughout development but do not display any gross phenotypes. Tnnt3(lacZ/lacZ) embryos are smaller than heterozygotes and die shortly after birth. Histology revealed hemorrhagic tissue in Tnnt3(lacZ/lacZ) liver and kidney, which was not present in Tnnt3(lacZ/+) or WT, but no other gross tissue abnormalities. X-gal staining for Tnnt3 promoter-driven lacZ transgene expression revealed positive staining in skeletal muscle and diaphragm and smooth muscle cells located in the aorta, bladder, and bronchus. Collectively, these findings suggest that troponins are expressed in smooth muscle and are required for normal growth and breathing for postnatal survival. Moreover, future studies with this mouse model can explore TnnT3 function in adult muscle function using the conditional-inducible gene deletion approach Copyright © 2013 Wiley Periodicals, Inc.

  2. The platelet-derived growth factor receptor/STAT3 signaling pathway regulates the phenotypic transition of corpus cavernosum smooth muscle in rats.

    PubMed

    Yan, Jun-Feng; Huang, Wen-Jie; Zhao, Jian-Feng; Fu, Hui-Ying; Zhang, Gao-Yue; Huang, Xiao-Jun; Lv, Bo-Dong

    2017-01-01

    Erectile dysfunction (ED) is a common clinical disease that is difficult to treat. We previously found that hypoxia modulates the phenotype of primary corpus cavernosum smooth muscle cells (CCSMCs) in rats, but the underlying molecular mechanism is still unknown. Platelet-derived growth factor receptor (PDGFR)-related signaling pathways are correlated with cell phenotypic transition, but research has been focused more on vascular smooth muscle and tracheal smooth muscle and less on CCSMCs. Here, we investigated the role of PDGFR-related signaling pathways in penile CCSMCs, which were successfully isolated from rats and cultured in vitro. PDGF-BB at 5, 10, or 20 ng/ml altered CCSMC morphology from the original elongated, spindle shape to a broader shape and promoted the synthetic phenotype and expression of the related proteins vimentin and collagen-I, while inhibiting the contractile phenotype and expression of the related proteins smooth muscle (SM) α-actin (α-SMA) and desmin. Inhibition of PDGFR activity via siRNA or the PDGFR inhibitor crenolanib inhibited vimentin and collagen-I expression, increased α-SMA and desmin expression, and considerably inhibited serine-threonine protein kinase (AKT) and signal transducer and activator of transcription 3 (STAT3) phosphorylation. STAT3 knockdown promoted the contractile phenotype, inhibited vimentin and collagen-I expression, and increased α-SMA and desmin expression, whereas AKT knockdown did not affect phenotype-associated proteins. STAT3 overexpression in CCSMC cells weakened the suppressive effect of PDGFR inhibition on the morphology and phenotypic transformation induced by PDGF-BB. Through activation of the PDGFR/STAT3 signaling pathway, PDGF promoted the synthetic phenotype transition; thus, regulation of this pathway might contribute to ED therapy.

  3. Selective Expression of an Endogenous Inhibitor of FAK Regulates Proliferation and Migration of Vascular Smooth Muscle Cells

    PubMed Central

    Taylor, Joan M.; Mack, Christopher P.; Nolan, Kate; Regan, Christopher P.; Owens, Gary K.; Parsons, J. Thomas

    2001-01-01

    Extracellular matrix signaling via integrin receptors is important for smooth muscle cell (SMC) differentiation during vasculogenesis and for phenotypic modulation of SMCs during atherosclerosis. We previously reported that the noncatalytic carboxyl-terminal protein binding domain of focal adhesion kinase (FAK) is expressed as a separate protein termed FAK-related nonkinase (FRNK) and that ectopic expression of FRNK can attenuate FAK activity and integrin-dependent signaling (A. Richardson and J. T. Parsons, Nature 380:538–540, 1996). Herein we report that in contrast to FAK, which is expressed ubiquitously, FRNK is expressed selectively in SMCs, with particularly high levels observed in conduit blood vessels. FRNK expression was low during embryonic development, was significantly upregulated in the postnatal period, and returned to low but detectable levels in adult tissues. FRNK expression was also dramatically upregulated following balloon-induced carotid artery injury. In cultured rat aortic smooth muscle cells, overexpression of FRNK attenuated platelet-derived growth factor (PDGF)-BB-induced migration and also dramatically inhibited [3H]thymidine incorporation upon stimulation with PDGF-BB or 10% serum. These effects were concomitant with a reduction in SMC proliferation. Taken together, these data indicate that FRNK acts as an endogenous inhibitor of FAK signaling in SMCs. Furthermore, increased FRNK expression following vascular injury or during development may alter the SMC phenotype by negatively regulating proliferative and migratory signals. PMID:11238893

  4. Involvement of neuron-derived orphan receptor-1 (NOR-1) in LDL-induced mitogenic stimulus in vascular smooth muscle cells: role of CREB.

    PubMed

    Rius, Jordi; Martínez-González, José; Crespo, Javier; Badimon, Lina

    2004-04-01

    Low density lipoproteins (LDLs) modulate the expression of key genes involved in atherogenesis. Recently, we have shown that the transcription factor neuron-derived orphan receptor-1 (NOR-1) is involved in vascular smooth muscle cell (VSMC) proliferation. Our aim was to analyze whether NOR-1 is involved in LDL-induced mitogenic effects in VSMC. LDL induced NOR-1 expression in a time- and dose-dependent manner. Antisense oligonucleotides against NOR-1 inhibit DNA synthesis induced by LDL in VSMCs as efficiently as antisense against the protooncogene c-fos. The upregulation of NOR-1 mRNA levels by LDL involves pertusis-sensitive G protein-coupled receptors, Ca2+ mobilization, protein kinases A (PKA) and C (PKC) activation, and mitogen-activated protein kinase pathways (MAPK) (p44/p42 and p38). LDL promotes cAMP response element binding protein (CREB) activation (phosphorylation in Ser133). In transfection assays a dominant-negative of CREB inhibits NOR-1 promoter activity, while mutation of specific (cAMP response element) CRE sites in the NOR-1 promoter abolishes LDL-induced NOR-1 promoter activity. In VSMCs, LDL-induced mitogenesis involves NOR-1 upregulation through a CREB-dependent mechanism. CREB could play a role in the modulation by LDL of key genes (containing CRE sites) involved in atherogenesis.

  5. Isolation of pulmonary artery smooth muscle cells from neonatal mice.

    PubMed

    Lee, Keng Jin; Czech, Lyubov; Waypa, Gregory B; Farrow, Kathryn N

    2013-10-19

    Pulmonary hypertension is a significant cause of morbidity and mortality in infants. Historically, there has been significant study of the signaling pathways involved in vascular smooth muscle contraction in PASMC from fetal sheep. While sheep make an excellent model of term pulmonary hypertension, they are very expensive and lack the advantage of genetic manipulation found in mice. Conversely, the inability to isolate PASMC from mice was a significant limitation of that system. Here we described the isolation of primary cultures of mouse PASMC from P7, P14, and P21 mice using a variation of the previously described technique of Marshall et al. that was previously used to isolate rat PASMC. These murine PASMC represent a novel tool for the study of signaling pathways in the neonatal period. Briefly, a slurry of 0.5% (w/v) agarose + 0.5% iron particles in M199 media is infused into the pulmonary vascular bed via the right ventricle (RV). The iron particles are 0.2 μM in diameter and cannot pass through the pulmonary capillary bed. Thus, the iron lodges in the small pulmonary arteries (PA). The lungs are inflated with agarose, removed and dissociated. The iron-containing vessels are pulled down with a magnet. After collagenase (80 U/ml) treatment and further dissociation, the vessels are put into a tissue culture dish in M199 media containing 20% fetal bovine serum (FBS), and antibiotics (M199 complete media) to allow cell migration onto the culture dish. This initial plate of cells is a 50-50 mixture of fibroblasts and PASMC. Thus, the pull down procedure is repeated multiple times to achieve a more pure PASMC population and remove any residual iron. Smooth muscle cell identity is confirmed by immunostaining for smooth muscle myosin and desmin.

  6. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuzaki, Shinichi; Ishizuka, Tamotsu, E-mail: tamotsui@showa.gunma-u.ac.jp; Yamada, Hidenori

    Highlights: {yields} The involvement of extracellular acidification in airway remodeling was investigated. {yields} Extracellular acidification alone induced CTGF production in human ASMCs. {yields} Extracellular acidification enhanced TGF-{beta}-induced CTGF production in human ASMCs. {yields} Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. {yields} OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connectivemore » tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-{beta}-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G{sub q/11} protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP{sub 3}) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G{sub q/11} protein and inositol-1,4,5-trisphosphate-induced Ca{sup 2+} mobilization in human ASMCs.« less

  7. Chitosan-based scaffolds for the support of smooth muscle constructs in intestinal tissue engineering

    PubMed Central

    Zakhem, Elie; Raghavan, Shreya; Gilmont, Robert R; Bitar, Khalil N

    2012-01-01

    Intestinal tissue engineering is an emerging field due to a growing demand for intestinal lengthening and replacement procedures secondary to massive resections of the bowel. Here, we demonstrate the potential use of a chitosan/collagen scaffold as a 3D matrix to support the bioengineered circular muscle constructs maintain their physiological functionality. We investigated the biocompatibility of chitosan by growing rabbit colonic circular smooth muscle cells (RCSMCs) on chitosan-coated plates. The cells maintained their spindle-like morphology and preserved their smooth muscle phenotypic markers. We manufactured tubular scaffolds with central openings composed of chitosan and collagen in a 1:1 ratio. Concentrically-aligned 3D circular muscle constructs were bioengineered using fibrin-based hydrogel seeded with RCSMCs. The constructs were placed around the scaffold for 2 weeks, after which they were taken off and tested for their physiological functionality. The muscle constructs contracted in response to Acetylcholine (Ach) and potassium chloride (KCl) and they relaxed in response to vasoactive intestinal peptide (VIP). These results demonstrate that chitosan is a biomaterial possibly suitable for intestinal tissue engineering applications. PMID:22483012

  8. [The effect of 18beta-glycyrrhetinic acid on gap junction among cerebral arteriolar smooth muscle cells in Wistar rat and spontaneously hypertensive rat].

    PubMed

    Chen, Xin-Yan; Si, Jun-Qiang; Li, Li; Zhao, Lei; Wei, Li-Li; Jiang, Xue-Wei; Ma, Ke-Tao

    2013-05-01

    This study compared Wistar rat with spontaneously hypertensive rat (SHR) on the electrophysiology and coupling force of the smooth muscle cells in the cerebral arteriolar segments and observe the influence of 18beta-glycyrrhetinic acid(18beta-GA) on the gap junctions between the arterial smooth muscle cells. The outer layer's connective tissue of the cerebral arteriolar segments was removed. Whole-cell patch clamp recordings were used to observe the 18beta-GA's impaction on the arteriolar segment membrane's input capacitance (C(input)), input conductance (G(input)) and input resistance (R(input)) of the smooth muscle cells. (1) The C(input) and G(input) of the SHR arteriolar segment smooth muscle cells was much higher than the Wistar rats, there was significant difference (P < 0.05). (2) 18beta-GA concentration-dependently reduced C(input) and G(input) (or increase R(input)) on smooth muscle cells in arteriolar segment. IC50 of 18beta-GA suppression's G(input) of the Wistar rat and SHR were 1.7 and 2.0 micromol/L respectively, there was not significant difference (P > 0.05). After application of 18beta-GA concentration > or = 100 micrmol/L, the C(input), G(input) and R(input) of the single smooth muscle cells was very close. Gap junctional coupling is enhanced in the SHR cerebral arterial smooth muscle cells. 18beta-GA concentration-dependent inhibits Wistar rat's and SHR cerebral arteriolar gap junctions between arterial smooth muscle cells. The inhibitory potency is similar between the two different rats. When 18beta-GA concentration is > or = 100 micromol/L, it can completely block gap junctions between arteriolar smooth muscle cells.

  9. GATA-6 and NF-κB Activate CPI-17 Gene Transcription and Regulate Ca2+ Sensitization of Smooth Muscle Contraction

    PubMed Central

    Boopathi, Ettickan; Hypolite, Joseph A.; Zderic, Stephen A.; Gomes, Cristiano Mendes; Malkowicz, Bruce; Liou, Hsiou-Chi; Wein, Alan J.

    2013-01-01

    Protein kinase C (PKC)-potentiated inhibitory protein of 17 kDa (CPI-17) inhibits myosin light chain phosphatase, altering the levels of myosin light chain phosphorylation and Ca2+ sensitivity in smooth muscle. In this study, we characterized the CPI-17 promoter and identified binding sites for GATA-6 and nuclear factor kappa B (NF-κB). GATA-6 and NF-κB upregulated CPI-17 expression in cultured human and mouse bladder smooth muscle (BSM) cells in an additive manner. CPI-17 expression was decreased upon GATA-6 silencing in cultured BSM cells and in BSM from NF-κB knockout (KO) mice. Moreover, force maintenance by BSM strips from KO mice was decreased compared with the force maintenance of BSM strips from wild-type mice. GATA-6 and NF-κB overexpression was associated with CPI-17 overexpression in BSM from men with benign prostatic hyperplasia (BPH)-induced bladder hypertrophy and in a mouse model of bladder outlet obstruction. Thus, aberrant expression of NF-κB and GATA-6 deregulates CPI-17 expression and the contractile function of smooth muscle. Our data provide insight into how GATA-6 and NF-κB mediate CPI-17 transcription, PKC-mediated signaling, and BSM remodeling associated with lower urinary tract symptoms in patients with BPH. PMID:23275439

  10. Interleukin-6 downregulated vascular smooth muscle cell contractile proteins via ATG4B-mediated autophagy in thoracic aortic dissection.

    PubMed

    An, Zhao; Qiao, Fan; Lu, Qijue; Ma, Ye; Liu, Yang; Lu, Fanglin; Xu, Zhiyun

    2017-12-01

    Interleukin-6 (IL-6) overexpression played an important role in the pathogenesis of thoracic aortic dissection (TAD). Our previous study found enhanced autophagy accompanying with contractile proteins α smooth muscle actin (α-SMA) and smooth muscle 22α (SM22α) degradation in TAD aortic vascular smooth muscle cells (VSMCs). Autophagy is an important way for intracellular proteins degradation, while IL-6 has been found as a contributing factor of autophagy in some cancers. These indicated IL-6 might contribute to the occurrence of TAD by promoting autophagy-induced contractile proteins degradation, which has not been investigated. The aim of the present study is to verify this hypothesis and investigate the mechanism of it. We collected 10 TAD and 10 control aortic specimens from patients underwent TAD surgical repair and coronary artery bypass grafting, respectively. Quantitative real-time polymerase chain reaction was used to detect mRNA expression. Protein expression level was assessed by enzyme-linked immunosorbent assay, western blot, and immunohistochemistry. Microtubule-associated protein 1 light chain 3 beta overexpression adenovirus with green and red fluorescent protein tags and transmission electron microscopy were used to detect autophagy level in VSMCs. 3-Methyladenine (3-MA) and chloroquine were used to block autophagy in human VSMCs. Experiment results showed that the expression of IL-6 was significantly increased accompanying with up-regulated autophagy in TAD aortic wall compared with controls. In vitro results showed that IL-6 stimulation decreased the expression of VSMCs contractile proteins α-SMA and SM22α accompanying with up-regulated autophagy. Blocking autophagy with 3-MA or chloroquine inhibited IL-6 induced α-SMA and SM22α degradation. Further investigation showed that autophagy-related 4B cysteine peptidase (ATG4B) was significantly overexpressed in TAD aortic wall and played important role in IL-6 induced autophagy up

  11. Thin-film dielectric elastomer sensors to measure the contraction force of smooth muscle cells

    NASA Astrophysics Data System (ADS)

    Araromi, O.; Poulin, A.; Rosset, S.; Favre, M.; Giazzon, M.; Martin-Olmos, C.; Liley, M.; Shea, H.

    2015-04-01

    The development of thin-film dielectric elastomer strain sensors for the characterization of smooth muscle cell (SMC) contraction is presented here. Smooth muscle disorders are an integral part of diseases such as asthma and emphysema. Analytical tools enabling the characterization of SMC function i.e. contractile force and strain, in a low-cost and highly parallelized manner are necessary for toxicology screening and for the development of new and more effective drugs. The main challenge with the design of such tools is the accurate measurement of the extremely low contractile cell forces expected as a result of SMC monolayer contraction (as low as ~ 100 μN). Our approach utilizes ultrathin (~5 μm) and soft elastomer membranes patterned with elastomer-carbon composite electrodes, onto which the SMCs are cultured. The cell contraction induces an in-plane strain in the elastomer membrane, predicted to be in the order 1 %, which can be measured via the change in the membrane capacitance. The cell force can subsequently be deduced knowing the mechanical properties of the elastomer membrane. We discuss the materials and fabrication methods selected for our system and present preliminary results indicating their biocompatibility. We fabricate functional capacitive senor prototypes with good signal stability over the several hours (~ 0.5% variation). We succeed in measuring in-plane strains of 1 % with our fabricated devices with good repeatability and signal to noise ratio.

  12. Molecular Expression and Pharmacological Evidence for a Functional Role of Kv7 Channel Subtypes in Guinea Pig Urinary Bladder Smooth Muscle

    PubMed Central

    Afeli, Serge A. Y.; Malysz, John; Petkov, Georgi V.

    2013-01-01

    Voltage-gated Kv7 (KCNQ) channels are emerging as essential regulators of smooth muscle excitability and contractility. However, their physiological role in detrusor smooth muscle (DSM) remains to be elucidated. Here, we explored the molecular expression and function of Kv7 channel subtypes in guinea pig DSM by RT-PCR, qRT-PCR, immunohistochemistry, electrophysiology, and isometric tension recordings. In whole DSM tissue, mRNAs for all Kv7 channel subtypes were detected in a rank order: Kv7.1~Kv7.2Kv7.3~Kv7.5Kv7.4. In contrast, freshly-isolated DSM cells showed mRNA expression of: Kv7.1~Kv7.2Kv7.5Kv7.3~Kv7.4. Immunohistochemical confocal microscopy analyses of DSM, conducted by using co-labeling of Kv7 channel subtype-specific antibodies and α-smooth muscle actin, detected protein expression for all Kv7 channel subtypes, except for the Kv7.4, in DSM cells. L-364373 (R-L3), a Kv7.1 channel activator, and retigabine, a Kv7.2-7.5 channel activator, inhibited spontaneous phasic contractions and the 10-Hz electrical field stimulation (EFS)-induced contractions of DSM isolated strips. Linopiridine and XE991, two pan-Kv7 (effective at Kv7.1-Kv7.5 subtypes) channel inhibitors, had opposite effects increasing DSM spontaneous phasic and 10 Hz EFS-induced contractions. EFS-induced DSM contractions generated by a wide range of stimulation frequencies were decreased by L-364373 (10 µM) or retigabine (10 µM), and increased by XE991 (10 µM). Retigabine (10 µM) induced hyperpolarization and inhibited spontaneous action potentials in freshly-isolated DSM cells. In summary, Kv7 channel subtypes are expressed at mRNA and protein levels in guinea pig DSM cells. Their pharmacological modulation can control DSM contractility and excitability; therefore, Kv7 channel subtypes provide potential novel therapeutic targets for urinary bladder dysfunction. PMID:24073284

  13. Molecular expression and pharmacological evidence for a functional role of kv7 channel subtypes in Guinea pig urinary bladder smooth muscle.

    PubMed

    Afeli, Serge A Y; Malysz, John; Petkov, Georgi V

    2013-01-01

    Voltage-gated Kv7 (KCNQ) channels are emerging as essential regulators of smooth muscle excitability and contractility. However, their physiological role in detrusor smooth muscle (DSM) remains to be elucidated. Here, we explored the molecular expression and function of Kv7 channel subtypes in guinea pig DSM by RT-PCR, qRT-PCR, immunohistochemistry, electrophysiology, and isometric tension recordings. In whole DSM tissue, mRNAs for all Kv7 channel subtypes were detected in a rank order: Kv7.1~Kv7.2Kv7.3~Kv7.5Kv7.4. In contrast, freshly-isolated DSM cells showed mRNA expression of: Kv7.1~Kv7.2Kv7.5Kv7.3~Kv7.4. Immunohistochemical confocal microscopy analyses of DSM, conducted by using co-labeling of Kv7 channel subtype-specific antibodies and α-smooth muscle actin, detected protein expression for all Kv7 channel subtypes, except for the Kv7.4, in DSM cells. L-364373 (R-L3), a Kv7.1 channel activator, and retigabine, a Kv7.2-7.5 channel activator, inhibited spontaneous phasic contractions and the 10-Hz electrical field stimulation (EFS)-induced contractions of DSM isolated strips. Linopiridine and XE991, two pan-Kv7 (effective at Kv7.1-Kv7.5 subtypes) channel inhibitors, had opposite effects increasing DSM spontaneous phasic and 10 Hz EFS-induced contractions. EFS-induced DSM contractions generated by a wide range of stimulation frequencies were decreased by L-364373 (10 µM) or retigabine (10 µM), and increased by XE991 (10 µM). Retigabine (10 µM) induced hyperpolarization and inhibited spontaneous action potentials in freshly-isolated DSM cells. In summary, Kv7 channel subtypes are expressed at mRNA and protein levels in guinea pig DSM cells. Their pharmacological modulation can control DSM contractility and excitability; therefore, Kv7 channel subtypes provide potential novel therapeutic targets for urinary bladder dysfunction.

  14. Deletion of BMAL1 in Smooth Muscle Cells Protects Mice From Abdominal Aortic Aneurysms.

    PubMed

    Lutshumba, Jenny; Liu, Shu; Zhong, Yu; Hou, Tianfei; Daugherty, Alan; Lu, Hong; Guo, Zhenheng; Gong, Ming C

    2018-05-01

    Abdominal aortic aneurysm (AAA) has high mortality rate when ruptured, but currently, there is no proven pharmacological therapy for AAA because of our poor understanding of its pathogenesis. The current study explored a novel role of smooth muscle cell (SMC) BMAL1 (brain and muscle Arnt-like protein-1)-a transcription factor known to regulate circadian rhythm-in AAA development. SMC-selective deletion of BMAL1 potently protected mice from AAA induced by (1) MR (mineralocorticoid receptor) agonist deoxycorticosterone acetate or aldosterone plus high salt intake and (2) angiotensin II infusion in hypercholesterolemia mice. Aortic BMAL1 was upregulated by deoxycorticosterone acetate-salt, and deletion of BMAL1 in SMCs selectively upregulated TIMP4 (tissue inhibitor of metalloproteinase 4) and suppressed deoxycorticosterone acetate-salt-induced MMP (matrix metalloproteinase) activation and elastin breakages. Moreover, BMAL1 bound to the Timp4 promoter and suppressed Timp4 transcription. These results reveal an important, but previously unexplored, role of SMC BMAL1 in AAA. Moreover, these results identify TIMP4 as a novel target of BMAL1, which may mediate the AAA protective effect of SMC BMAL1 deletion. © 2018 American Heart Association, Inc.

  15. Unexpected Role of the Copper Transporter ATP7A in PDGF-Induced Vascular Smooth Muscle Cell Migration

    PubMed Central

    Ashino, Takashi; Sudhahar, Varadarajan; Urao, Norifumi; Oshikawa, Jin; Chen, Gin-Fu; Wang, Huan; Huo, Yuqing; Finney, Lydia; Vogt, Stefan; McKinney, Ronald D.; Maryon, Edward B.; Kaplan, Jack H.; Ushio-Fukai, Masuko; Fukai, Tohru

    2010-01-01

    Rationale Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1, but also by the copper exporter ATP7A (Menke ATPase) whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Platelet-derived growth factor (PDGF) promotes vascular smooth muscle cell (VSMC) migration, a key component of neointimal formation. Objective To determine the role of copper transporter ATP7A in PDGF-induced VSMC migration. Methods and Results Depletion of ATP7A inhibited VSMC migration in response to PDGF or wound scratch in a CTR1/copper-dependent manner. PDGF stimulation promoted ATP7A translocation from the TGN to lipid rafts which localized at the leading edge, where it colocalized with PDGF receptor and Rac1, in migrating VSMCs. Mechanistically, ATP7A siRNA or CTR siRNA prevented PDGF-induced Rac1 translocation to the leading edge, thereby inhibiting lamellipodia formation. In addition, ATP7A depletion prevented a PDGF-induced decrease in copper level and secretory copper enzyme precursor pro-lysyl oxidase (Pro-LOX) in lipid raft fraction as well as PDGF-induced increase in LOX activity. In vivo, ATP7A expression was markedly increased and copper accumulation was observed by synchrotron-based X-ray fluorescence microscopy at neointimal VSMCs in wire injury model. Conclusions These findings suggest that ATP7A plays an important role in copper-dependent PDGF-stimulated VSMC migration via recruiting Rac1 to lipid rafts at the leading edge as well as regulating LOX activity. This may contribute to neointimal formation after vascular injury. Our findings provide insight into ATP7A as a novel therapeutic target for vascular remodeling and atherosclerosis. PMID:20671235

  16. Unexpected role of the copper transporter ATP7A in PDGF-induced vascular smooth muscle cell migration.

    PubMed

    Ashino, Takashi; Sudhahar, Varadarajan; Urao, Norifumi; Oshikawa, Jin; Chen, Gin-Fu; Wang, Huan; Huo, Yuqing; Finney, Lydia; Vogt, Stefan; McKinney, Ronald D; Maryon, Edward B; Kaplan, Jack H; Ushio-Fukai, Masuko; Fukai, Tohru

    2010-09-17

    Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1 (copper transporter 1) but also by the copper exporter ATP7A (Menkes ATPase), whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Platelet-derived growth factor (PDGF) promotes vascular smooth muscle cell (VSMC) migration, a key component of neointimal formation. To determine the role of copper transporter ATP7A in PDGF-induced VSMC migration. Depletion of ATP7A inhibited VSMC migration in response to PDGF or wound scratch in a CTR1/copper-dependent manner. PDGF stimulation promoted ATP7A translocation from the TGN to lipid rafts, which localized at the leading edge, where it colocalized with PDGF receptor and Rac1, in migrating VSMCs. Mechanistically, ATP7A small interfering RNA or CTR small interfering RNA prevented PDGF-induced Rac1 translocation to the leading edge, thereby inhibiting lamellipodia formation. In addition, ATP7A depletion prevented a PDGF-induced decrease in copper level and secretory copper enzyme precursor prolysyl oxidase (Pro-LOX) in lipid raft fraction, as well as PDGF-induced increase in LOX activity. In vivo, ATP7A expression was markedly increased and copper accumulation was observed by synchrotron-based x-ray fluorescence microscopy at neointimal VSMCs in wire injury model. These findings suggest that ATP7A plays an important role in copper-dependent PDGF-stimulated VSMC migration via recruiting Rac1 to lipid rafts at the leading edge, as well as regulating LOX activity. This may contribute to neointimal formation after vascular injury. Our findings provide insight into ATP7A as a novel therapeutic target for vascular remodeling and atherosclerosis.

  17. KLF5/BTEB2, a Krüppel-like zinc-finger type transcription factor, mediates both smooth muscle cell activation and cardiac hypertrophy.

    PubMed

    Nagai, Ryozo; Shindo, Takayuki; Manabe, Ichiro; Suzuki, Toru; Kurabayashi, Masahiko

    2003-01-01

    Cardiac and vascular biology need to be approached interactively because they share many common biological features as seen in activation of the local renin-angiotensin system, angiogenesis, and extracellular matrix production. We previously reported KLF5/BTEB2, a Krüppel-like zinc-finger type transcription factor, to activate various gene promoters that are activated in phenotypically modulated smooth muscle cells, such as a nonmuscle type myosin heavy chain gene SMemb, plasminogen activator inhibitor-1 (PAI-1), iNOS, PDGF-A, Egr-1 and VEGF receptors at least in vitro. KLF5/BTEB2 mRNA levels are downregulated with vascular development but upregulated in neointima that is produced in response to vascular injury. Mitogenic stimulation activates KLF5/BTEB2 gene expression through MEK1 and Egr-1. Chromatin immunoprecipitation assay showed KLF5/BTEB2 to be induced and to bind the promoter of the PDGF-A gene in response to angiotensin II stimulation. In order to define the role of KLF5/BTEB2 in cardiovascular remodeling, we targeted the KLF5/BTEB2 gene in mice. Homozygous mice resulted in early embryonic lethality whereas heterozygous mice were apparently normal. However, in response to external stress, arteries of heterozygotes exhibited diminished levels of smooth muscle and adventitial cell activation. Furthermore, cardiac fibrosis and hypertrophy induced by continuous angiotensin II infusion. We also found that RARa binds KLF5/BTEB2, and that Am80, a potent synthetic RAR agonist, inhibits angiotensin II-induced cardiac hypertrophy. These results indicate that KLF5/BTEB2 is an essential transcription factor that causes not only smooth muscle phenotypic modulation but also cardiac hypertrophy and fibrosis.

  18. Possible role of bioactive peptides in the regulation of human detrusor smooth muscle - functional effects in vitro and immunohistochemical presence.

    PubMed

    Uckert, Stefan; Stief, Christian G; Lietz, Burckhard; Burmester, Martin; Jonas, Udo; Machtens, Stefan A

    2002-09-01

    Results from basic research implicate a role for bioactive peptides in controlling the mammalian lower urinary tract. Although various peptides are assumed to be involved in the potentiaton or inhibition of cholinergic or purinergic activity in the urinary bladder, there is still much controversy regarding the mode of action and functional significance of such peptides in detrusor smooth muscle. Thus, we evaluated the functional effects of atrial natriuretic peptide (ANP), calcitonin gene related peptide (CGRP), endothelin 1 (ET-1), substance P (SP) and vasoactive intestinal polypeptide (VIP) on isolated strip preparations of human detrusor smooth muscle and determined the presence of those peptides in the human detrusor by means of immunohistochemistry. The effects of peptides on isometric tension of isolated detrusor strip preparations and on tissue levels of cyclic nucleotides cAMP and cGMP were compared to those of adenylyl cyclase activator forskolin (F), nitric oxide donor Na(+)-nitroprusside (SNP) and non-specific phosphodiesterase (PDE) inhibitor papaverine (P). The effects of the compounds on isometric tension of isolated human detrusor smooth muscle were examined using the organ bath technique. To determine time- and dose-dependent effects on cyclic nucleotide levels, bladder strips were exposed to increasing doses of F, SNP, P, ANP, CGRP and VIP, then rapidly frozen in liquid nitrogen and homogenised in the frozen state. cAMP and cGMP were extracted and assayed using specific radioimmunoassays. The presence of peptides was investigated by light microscopy using the Avidin-Biotin-Complex (ABC) method. F, P and VIP most effectively reversed the carbachol-induced tension of isolated human detrusor strips. Relaxing effects of ANP, CGRP and SNP were negligible. In contrast, ET-1 and SP elicited dose-dependent contractions of the tissue. The relaxing effects of F, P and VIP were accompanied by an increase in cAMP and cGMP levels, respectively. Light microscopy

  19. Tungstate-Targeting of BKαβ1 Channels Tunes ERK Phosphorylation and Cell Proliferation in Human Vascular Smooth Muscle

    PubMed Central

    Fernández-Mariño, Ana Isabel; Cidad, Pilar; Zafra, Delia; Nocito, Laura; Domínguez, Jorge; Oliván-Viguera, Aida; Köhler, Ralf; López-López, José R.; Pérez-García, María Teresa; Valverde, Miguel Ángel; Guinovart, Joan J.; Fernández-Fernández, José M.

    2015-01-01

    Despite the substantial knowledge on the antidiabetic, antiobesity and antihypertensive actions of tungstate, information on its primary target/s is scarce. Tungstate activates both the ERK1/2 pathway and the vascular voltage- and Ca2+-dependent large-conductance BKαβ1 potassium channel, which modulates vascular smooth muscle cell (VSMC) proliferation and function, respectively. Here, we have assessed the possible involvement of BKαβ1 channels in the tungstate-induced ERK phosphorylation and its relevance for VSMC proliferation. Western blot analysis in HEK cell lines showed that expression of vascular BKαβ1 channels potentiates the tungstate-induced ERK1/2 phosphorylation in a Gi/o protein-dependent manner. Tungstate activated BKαβ1 channels upstream of G proteins as channel activation was not altered by the inhibition of G proteins with GDPβS or pertussis toxin. Moreover, analysis of Gi/o protein activation measuring the FRET among heterologously expressed Gi protein subunits suggested that tungstate-targeting of BKαβ1 channels promotes G protein activation. Single channel recordings on VSMCs from wild-type and β1-knockout mice indicated that the presence of the regulatory β1 subunit was essential for the tungstate-mediated activation of BK channels in VSMCs. Moreover, the specific BK channel blocker iberiotoxin lowered tungstate-induced ERK phosphorylation by 55% and partially reverted (by 51%) the tungstate-produced reduction of platelet-derived growth factor (PDGF)-induced proliferation in human VSMCs. Our observations indicate that tungstate-targeting of BKαβ1 channels promotes activation of PTX-sensitive Gi proteins to enhance the tungstate-induced phosphorylation of ERK, and inhibits PDGF-stimulated cell proliferation in human vascular smooth muscle. PMID:25659150

  20. Heterogeneous CPA sensitivity of spontaneous excitation in smooth muscle of the rabbit urethra.

    PubMed

    Hashitani, Hikaru; Yanai, Yoshimasa; Kohri, Kenjiro; Suzuki, Hikaru

    2006-06-01

    1. To investigate the role of intracellular Ca stores in generating spontaneous excitation of the urethra, the effects of cyclopiazonic acid (CPA) on spontaneous contractions, transient increases in intracellular calcium concentration ([Ca2+]i; Ca transients) and depolarizations were examined in smooth muscles of the rabbit urethra. 2. In about 90% of circular smooth muscle (CSM) preparations, CPA (10 microM) increased the amplitude of spontaneous contractions by about 180% and reduced their frequency to some 25% of control values (CPA-resistant), while it readily abolished the contractions in the remaining preparations. 3. In about 70% of CSM preparations, CPA prevented the generation of spontaneous depolarizations termed slow waves, but increased their amplitude and duration in the remainder. CPA also prevented the generation of spontaneous Ca transients in about 40% of CSM preparations, while increasing their amplitude and duration in the remaining preparations. In CPA-resistant preparations that had been exposed to nicardipine (1 microM), subsequent CPA invariably abolished residual spontaneous depolarizations or Ca transients. CPA abolished caffeine-induced Ca transients in Ca-free solutions, suggesting that it effectively depleted intracellular Ca stores. 4. Longitudinal smooth muscles generated spontaneous action potentials, which had a shape distinct from that of slow waves in CSM. Spontaneous action potentials were abolished by nicardipine but not CPA. 5. Transmural nerve stimulation increased the frequency of Ca transients to give a sustained rise in [Ca2+]i, but inhibited their generation after blocking alpha-adrenoceptors with phentolamine (1 microM). These nerve-evoked responses were preserved in preparations that had been exposed to CPA. Similarly, both in control and CPA-treated CSM preparations, spontaneous Ca transients were accelerated by noradrenaline (NAd, 1 microM) and were suppressed by 3-morpholino-sydnonimine (SIN-1, 10 microM), a nitric