Sample records for induce systemic plant

  1. MultiSite Gateway-Compatible Cell Type-Specific Gene-Inducible System for Plants1[OPEN

    PubMed Central

    Siligato, Riccardo; Wang, Xin; Yadav, Shri Ram; Lehesranta, Satu; Ma, Guojie; Ursache, Robertas; Sevilem, Iris; Zhang, Jing; Gorte, Maartje; Prasad, Kalika; Heidstra, Renze

    2016-01-01

    A powerful method to study gene function is expression or overexpression in an inducible, cell type-specific system followed by observation of consequent phenotypic changes and visualization of linked reporters in the target tissue. Multiple inducible gene overexpression systems have been developed for plants, but very few of these combine plant selection markers, control of expression domains, access to multiple promoters and protein fusion reporters, chemical induction, and high-throughput cloning capabilities. Here, we introduce a MultiSite Gateway-compatible inducible system for Arabidopsis (Arabidopsis thaliana) plants that provides the capability to generate such constructs in a single cloning step. The system is based on the tightly controlled, estrogen-inducible XVE system. We demonstrate that the transformants generated with this system exhibit the expected cell type-specific expression, similar to what is observed with constitutively expressed native promoters. With this new system, cloning of inducible constructs is no longer limited to a few special cases but can be used as a standard approach when gene function is studied. In addition, we present a set of entry clones consisting of histochemical and fluorescent reporter variants designed for gene and promoter expression studies. PMID:26644504

  2. Heritability of targeted gene modifications induced by plant-optimized CRISPR systems.

    PubMed

    Mao, Yanfei; Botella, Jose Ramon; Zhu, Jian-Kang

    2017-03-01

    The Streptococcus-derived CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 (CRISPR-associated protein 9) system has emerged as a very powerful tool for targeted gene modifications in many living organisms including plants. Since the first application of this system for plant gene modification in 2013, this RNA-guided DNA endonuclease system has been extensively engineered to meet the requirements of functional genomics and crop trait improvement in a number of plant species. Given its short history, the emphasis of many studies has been the optimization of the technology to improve its reliability and efficiency to generate heritable gene modifications in plants. Here we review and analyze the features of customized CRISPR/Cas9 systems developed for plant genetic studies and crop breeding. We focus on two essential aspects: the heritability of gene modifications induced by CRISPR/Cas9 and the factors affecting its efficiency, and we provide strategies for future design of systems with improved activity and heritability in plants.

  3. AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect.

    PubMed

    Elsen, A; Gervacio, D; Swennen, R; De Waele, D

    2008-07-01

    Although mycorrhizal colonization provides a bioprotectional effect against a broad range of soil-borne pathogens, including plant parasitic nematodes, the commercial use of arbuscular mycorrhizal fungi (AMF) as biocontrol agents is still in its infancy. One of the main reasons is the poor understanding of the modes of action. Most AMF mode of action studies focused on AMF-bacterial/fungal pathogens. Only few studies so far examined AMF-plant parasitic nematode interactions. Therefore, the aim of the study was to determine whether the AMF Glomus intraradices was able to incite systemic resistance in banana plants towards Radopholus similis and Pratylenchus coffeae, two plant parasitic nematodes using a split-root compartmental set-up. The AMF reduced both nematode species by more than 50%, even when the AMF and the plant parasitic nematodes were spatially separated. The results obtained demonstrate for the first time that AMF have the ability to induce systemic resistance against plant parasitic nematodes in a root system.

  4. Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles.

    PubMed

    Tahir, Hafiz Abdul Samad; Gu, Qin; Wu, Huijun; Raza, Waseem; Safdar, Asma; Huang, Ziyang; Rajer, Faheem Uddin; Gao, Xuewen

    2017-08-02

    Microbial volatiles play an expedient role in the agricultural ecological system by enhancing plant growth and inducing systemic resistance against plant pathogens, without causing hazardous effects on the environment. To explore the effects of VOCs of Ralstonia solanacearum TBBS1 (Rs) on tobacco plant growth and on plant growth promoting efficiency of VOCs produced by Bacillus subtilis SYST2, experiments were conducted both in vitro and in planta. The VOCs produced by SYST2 significantly enhanced the plant growth and induced the systemic resistance (ISR) against wilt pathogen Rs in all experiments. The SYST2-VOCs significantly increased PPO and PAL activity and over-expressed the genes relating to expansin, wilt resistance, and plant defense while repressed the genes relating to ethylene production. More interestingly, VOCs produced by pathogen, Rs had no significant effect on plant growth; however, Rs-VOCs decreased the growth promoting potential of SYST2-VOCs when plants were exposed to VOCs produced by both SYST2 and Rs. The co-culture of SYST2 and Rs revealed that they inhibited the growth of each other; however, the inhibition of Rs by SYST2-VOCs appeared to be greater than that of SYST2 by Rs-VOCs. Our findings provide new insights regarding the interaction among SYST2-VOCs, Rs-VOCs and plant, resulting in growth promotion and induced systemic resistance against the bacterial wilt pathogen Rs. This is the first report of the effect of VOCs produced by pathogenic microorganism on plant growth and on plant growth-promoting and systemic resistance-inducing potential of PGPR strain SYST2.

  5. Plant Immunity Inducer Development and Application.

    PubMed

    Dewen, Qiu; Yijie, Dong; Yi, Zhang; Shupeng, Li; Fachao, Shi

    2017-05-01

    Plant immunity inducers represent a new and rapidly developing field in plant-protection research. In this paper, we discuss recent research on plant immunity inducers and their development and applications in China. Plant immunity inducers include plant immunity-inducing proteins, chitosan oligosaccharides, and microbial inducers. These compounds and microorganisms can trigger defense responses and confer disease resistance in plants. We also describe the mechanisms of plant immunity inducers and how they promote plant health. Furthermore, we summarize the current situation in plant immunity inducer development in China and the global marketplace. Finally, we also deeply analyze the development trends and application prospects of plant immunity inducers in environmental protection and food safety.

  6. Systemic signaling during plant defense.

    PubMed

    Kachroo, Aardra; Robin, Guillaume P

    2013-08-01

    Systemic acquired resistance (SAR) is a type of pathogen-induced broad-spectrum resistance in plants. During SAR, primary infection-induced rapid generation and transportation of mobile signal(s) 'prepare' the rest of the plant for subsequent infections. Several, seemingly unrelated, mobile chemical inducers of SAR have been identified, at least two of which function in a feed-back regulatory loop with a lipid transfer-like protein. Signal(s) perception in the systemic tissues relies on the presence of an intact cuticle, the waxy layer covering all aerial parts of the plant. SAR results in chromatin modifications, which prime systemic tissues for enhanced and rapid signaling derived from salicylic acid, which along with its signaling components is key for SAR induction. This review summarizes recent findings related to SAR signal generation, movement, and perception. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. 28-Homobrassinolide mitigates boron induced toxicity through enhanced antioxidant system in Vigna radiata plants.

    PubMed

    Yusuf, Mohammad; Fariduddin, Qazi; Ahmad, Aqil

    2011-11-01

    The objective of this study was to establish relationship between boron induced oxidative stress and antioxidant system in Vigna radiata plants and also to investigate whether brassinosteroids will enhance the level of antioxidant system that could confer tolerance to the plants from the boron induced oxidative stress. The mung bean (V. radiata cv. T-44) plants were administered with 0.50, 1.0 and 2.0 mM boron at 6 d stage for 7 d along with nutrient solution. At 13 d stage, the seedlings were sprayed with deionized water (control) or 10(-8) M of 28-homobrassinolide and plants were harvested at 21 d stage to assess growth, leaf gas-exchange traits and biochemical parameters. The boron treatments diminished growth, water relations and photosynthetic attributes along with nitrate reductase and carbonic anhydrase activity in the concentration dependent manner whereas, it enhanced lipid peroxidation, electrolyte leakage, accumulation of H(2)O(2) as well as proline, and various antioxidant enzymes in the leaves of mung bean which were more pronounced at higher concentrations of boron. However, the follow-up application of 28-homobrassinolide to the boron stressed plants improved growth, water relations and photosynthesis and further enhanced the various antioxidant enzymes viz. catalase, peroxidase and superoxide dismutase and content of proline. The elevated level of antioxidant enzymes as well as proline could have conferred tolerance to the B-stressed plants resulting in improved growth, water relations and photosynthetic attributes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Herbivore-induced blueberry volatiles and intra-plant signaling.

    PubMed

    Rodriguez-Saona, Cesar R

    2011-12-18

    Herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack. These HIPVs are mainly regulated by the defensive plant hormone jasmonic acid (JA) and its volatile derivative methyl jasmonate (MeJA). Over the past 3 decades researchers have documented that HIPVs can repel or attract herbivores, attract the natural enemies of herbivores, and in some cases they can induce or prime plant defenses prior to herbivore attack. In a recent paper, I reported that feeding by gypsy moth caterpillars, exogenous MeJA application, and mechanical damage induce the emissions of volatiles from blueberry plants, albeit differently. In addition, blueberry branches respond to HIPVs emitted from neighboring branches of the same plant by increasing the levels of JA and resistance to herbivores (i.e., direct plant defenses), and by priming volatile emissions (i.e., indirect plant defenses). Similar findings have been reported recently for sagebrush, poplar, and lima beans. Here, I describe a push-pull method for collecting blueberry volatiles induced by herbivore (gypsy moth) feeding, exogenous MeJA application, and mechanical damage. The volatile collection unit consists of a 4 L volatile collection chamber, a 2-piece guillotine, an air delivery system that purifies incoming air, and a vacuum system connected to a trap filled with Super-Q adsorbent to collect volatiles. Volatiles collected in Super-Q traps are eluted with dichloromethane and then separated and quantified using Gas Chromatography (GC). This volatile collection method was used in my study to investigate the volatile response of undamaged branches to exposure to volatiles from herbivore-damaged branches within blueberry plants. These methods are described here. Briefly, undamaged blueberry branches are exposed to HIPVs from neighboring branches within the same plant. Using the same techniques described above, volatiles emitted from branches after exposure to HIPVs are collected and

  9. Herbivore-induced Blueberry Volatiles and Intra-plant Signaling

    PubMed Central

    Rodriguez-Saona, Cesar R.

    2011-01-01

    Herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack1,2. These HIPVs are mainly regulated by the defensive plant hormone jasmonic acid (JA) and its volatile derivative methyl jasmonate (MeJA)3,4,5. Over the past 3 decades researchers have documented that HIPVs can repel or attract herbivores, attract the natural enemies of herbivores, and in some cases they can induce or prime plant defenses prior to herbivore attack. In a recent paper6, I reported that feeding by gypsy moth caterpillars, exogenous MeJA application, and mechanical damage induce the emissions of volatiles from blueberry plants, albeit differently. In addition, blueberry branches respond to HIPVs emitted from neighboring branches of the same plant by increasing the levels of JA and resistance to herbivores (i.e., direct plant defenses), and by priming volatile emissions (i.e., indirect plant defenses). Similar findings have been reported recently for sagebrush7, poplar8, and lima beans9.. Here, I describe a push-pull method for collecting blueberry volatiles induced by herbivore (gypsy moth) feeding, exogenous MeJA application, and mechanical damage. The volatile collection unit consists of a 4 L volatile collection chamber, a 2-piece guillotine, an air delivery system that purifies incoming air, and a vacuum system connected to a trap filled with Super-Q adsorbent to collect volatiles5,6,10. Volatiles collected in Super-Q traps are eluted with dichloromethane and then separated and quantified using Gas Chromatography (GC). This volatile collection method was used n my study6 to investigate the volatile response of undamaged branches to exposure to volatiles from herbivore-damaged branches within blueberry plants. These methods are described here. Briefly, undamaged blueberry branches are exposed to HIPVs from neighboring branches within the same plant. Using the same techniques described above, volatiles emitted from branches after exposure to HIPVs are

  10. Foxtail Mosaic Virus-Induced Gene Silencing in Monocot Plants.

    PubMed

    Liu, Na; Xie, Ke; Jia, Qi; Zhao, Jinping; Chen, Tianyuan; Li, Huangai; Wei, Xiang; Diao, Xianmin; Hong, Yiguo; Liu, Yule

    2016-07-01

    Virus-induced gene silencing (VIGS) is a powerful technique to study gene function in plants. However, very few VIGS vectors are available for monocot plants. Here we report that Foxtail mosaic virus (FoMV) can be engineered as an effective VIGS system to induce efficient silencing of endogenous genes in monocot plants including barley (Hordeum vulgare L.), wheat (Triticum aestivum) and foxtail millet (Setaria italica). This is evidenced by FoMV-based silencing of phytoene desaturase (PDS) and magnesium chelatase in barley, of PDS and Cloroplastos alterados1 in foxtail millet and wheat, and of an additional gene IspH in foxtail millet. Silencing of these genes resulted in photobleached or chlorosis phenotypes in barley, wheat, and foxtail millet. Furthermore, our FoMV-based gene silencing is the first VIGS system reported for foxtail millet, an important C4 model plant. It may provide an efficient toolbox for high-throughput functional genomics in economically important monocot crops. © 2016 American Society of Plant Biologists. All Rights Reserved.

  11. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants.

    PubMed

    Planchamp, Chantal; Glauser, Gaetan; Mauch-Mani, Brigitte

    2014-01-01

    Pseudomonas putida KT2440 (KT2440) rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots) and systemic (leaves) early plant responses were investigated. The colonization behavior of KT2440 following application to maize seedlings was investigated and transcriptional analysis of stress- and defense-related genes as well as metabolite profiling of local and systemic maize tissues of KT2440-inoculated were performed. The local and systemic responses differed and more pronounced changes were observed in roots compared to leaves. Early in the interaction roots responded via jasmonic acid- and abscisic acid-dependent signaling. Interestingly, during later steps, the salicylic acid pathway was suppressed. Metabolite profiling revealed the importance of plant phospholipids in KT2440-maize interactions. An additional important maize secondary metabolite, a form of benzoxazinone, was also found to be differently abundant in roots 3 days after KT2440 inoculation. However, the transcriptional and metabolic changes observed in bacterized plants early during the interaction were minor and became even less pronounced with time, indicating an accommodation state of the plant to the presence of KT2440. Since the maize plants reacted to the presence of KT2440 in the rhizosphere, we also investigated the ability of these bacteria to trigger induced systemic resistance (ISR) against the maize anthracnose fungus Colletotrichum graminicola. The observed resistance was expressed as strongly reduced leaf necrosis and fungal growth in infected bacterized plants compared to non-bacterized controls, showing the potential of KT2440 to act as resistance inducers.

  12. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants

    PubMed Central

    Planchamp, Chantal; Glauser, Gaetan; Mauch-Mani, Brigitte

    2014-01-01

    Pseudomonas putida KT2440 (KT2440) rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots) and systemic (leaves) early plant responses were investigated. The colonization behavior of KT2440 following application to maize seedlings was investigated and transcriptional analysis of stress- and defense-related genes as well as metabolite profiling of local and systemic maize tissues of KT2440-inoculated were performed. The local and systemic responses differed and more pronounced changes were observed in roots compared to leaves. Early in the interaction roots responded via jasmonic acid- and abscisic acid-dependent signaling. Interestingly, during later steps, the salicylic acid pathway was suppressed. Metabolite profiling revealed the importance of plant phospholipids in KT2440-maize interactions. An additional important maize secondary metabolite, a form of benzoxazinone, was also found to be differently abundant in roots 3 days after KT2440 inoculation. However, the transcriptional and metabolic changes observed in bacterized plants early during the interaction were minor and became even less pronounced with time, indicating an accommodation state of the plant to the presence of KT2440. Since the maize plants reacted to the presence of KT2440 in the rhizosphere, we also investigated the ability of these bacteria to trigger induced systemic resistance (ISR) against the maize anthracnose fungus Colletotrichum graminicola. The observed resistance was expressed as strongly reduced leaf necrosis and fungal growth in infected bacterized plants compared to non-bacterized controls, showing the potential of KT2440 to act as resistance inducers. PMID

  13. Neonicotinoid insecticides induce salicylate-associated plant defense responses

    PubMed Central

    Ford, Kevin A.; Casida, John E.; Chandran, Divya; Gulevich, Alexander G.; Okrent, Rachel A.; Durkin, Kathleen A.; Sarpong, Richmond; Bunnelle, Eric M.; Wildermuth, Mary C.

    2010-01-01

    Neonicotinoid insecticides control crop pests based on their action as agonists at the insect nicotinic acetylcholine receptor, which accepts chloropyridinyl- and chlorothiazolyl-analogs almost equally well. In some cases, these compounds have also been reported to enhance plant vigor and (a)biotic stress tolerance, independent of their insecticidal function. However, this mode of action has not been defined. Using Arabidopsis thaliana, we show that the neonicotinoid compounds, imidacloprid (IMI) and clothianidin (CLO), via their 6-chloropyridinyl-3-carboxylic acid and 2-chlorothiazolyl-5-carboxylic acid metabolites, respectively, induce salicylic acid (SA)-associated plant responses. SA is a phytohormone best known for its role in plant defense against pathogens and as an inducer of systemic acquired resistance; however, it can also modulate abiotic stress responses. These neonicotinoids effect a similar global transcriptional response to that of SA, including genes involved in (a)biotic stress response. Furthermore, similar to SA, IMI and CLO induce systemic acquired resistance, resulting in reduced growth of a powdery mildew pathogen. The action of CLO induces the endogenous synthesis of SA via the SA biosynthetic enzyme ICS1, with ICS1 required for CLO-induced accumulation of SA, expression of the SA marker PR1, and fully enhanced resistance to powdery mildew. In contrast, the action of IMI does not induce endogenous synthesis of SA. Instead, IMI is further bioactivated to 6-chloro-2-hydroxypyridinyl-3-carboxylic acid, which is shown here to be a potent inducer of PR1 and inhibitor of SA-sensitive enzymes. Thus, via different mechanisms, these chloropyridinyl- and chlorothiazolyl-neonicotinoids induce SA responses associated with enhanced stress tolerance. PMID:20876120

  14. [Plant immune system: the basal immunity].

    PubMed

    Shamraĭ, S N

    2014-01-01

    Plants have an efficient system of innate immunity which is based on the effective detection of potentially harmful microorganisms and rapid induction of defense responses. The first level of plant immunity is the basal immunity which is induced by the conserved molecular structures of microbes such as bacterial flagellins or fungal chitin, or molecules that result from the interaction of plants with pathogens, for example oligosaccharides and peptides ("danger signals"). Plants recognize these inducers through receptors localized to the plasma membrane, represented mainly receptor-like protein kinases or receptor-like proteins. Activation of the receptor by a ligand triggers a complex network of signaling events which eventually cause an array of plant defense responses to prevent further spread of the pathogen.

  15. Monoterpenes Support Systemic Acquired Resistance within and between Plants.

    PubMed

    Riedlmeier, Marlies; Ghirardo, Andrea; Wenig, Marion; Knappe, Claudia; Koch, Kerstin; Georgii, Elisabeth; Dey, Sanjukta; Parker, Jane E; Schnitzler, Jörg-Peter; Vlot, A Corina

    2017-06-01

    This study investigates the role of volatile organic compounds in systemic acquired resistance (SAR), a salicylic acid (SA)-associated, broad-spectrum immune response in systemic, healthy tissues of locally infected plants. Gas chromatography coupled to mass spectrometry analyses of SAR-related emissions of wild-type and non-SAR-signal-producing mutant plants associated SAR with monoterpene emissions. Headspace exposure of Arabidopsis thaliana to a mixture of the bicyclic monoterpenes α-pinene and β-pinene induced defense, accumulation of reactive oxygen species, and expression of SA- and SAR-related genes, including the SAR regulatory AZELAIC ACID INDUCED1 ( AZI1 ) gene and three of its paralogs. Pinene-induced resistance was dependent on SA biosynthesis and signaling and on AZI1 Arabidopsis geranylgeranyl reductase1 mutants with reduced monoterpene biosynthesis were SAR-defective but mounted normal local resistance and methyl salicylate-induced defense responses, suggesting that monoterpenes act in parallel with SA The volatile emissions from SAR signal-emitting plants induced defense in neighboring plants, and this was associated with the presence of α-pinene, β-pinene, and camphene in the emissions of the "sender" plants. Our data suggest that monoterpenes, particularly pinenes, promote SAR, acting through ROS and AZI1 , and likely function as infochemicals in plant-to-plant signaling, thus allowing defense signal propagation between neighboring plants. © 2017 American Society of Plant Biologists. All rights reserved.

  16. Managing nuclear power plant induced disasters.

    PubMed

    Kyne, Dean

    2015-01-01

    To understand the management process of nuclear power plant (NPP) induced disasters. The study shields light on phases and issues associated with the NPP induced disaster management. This study uses Palo Verde Nuclear Generation Station as study subject and Arizona State as study area. This study uses the Radiological Assessment System for Consequence Analysis (RASCAL) Source Term to Dose (STDose) of the Nuclear Regulatory Commission, a computer software to project and assess the source term dose and release pathway. This study also uses ArcGIS, a geographic information system to analyze geospatial data. A detailed case study of Palo Verde Nuclear Power Generation (PVNPG) Plant was conducted. The findings reveal that the NPP induced disaster management process is conducted by various stakeholders. To save lives and to minimize the impacts, it is vital to relate planning and process of the disaster management. Number of people who expose to the radioactive plume pathway and level of radioactivity could vary depending on the speed and direction of wind on the day the event takes place. This study findings show that there is a need to address the burning issue of different racial and ethnic groups' unequal exposure and unequal protection to potential risks associated with the NPPs.

  17. Monoterpenes Support Systemic Acquired Resistance within and between Plants

    PubMed Central

    Ghirardo, Andrea; Knappe, Claudia; Koch, Kerstin; Dey, Sanjukta; Parker, Jane E.

    2017-01-01

    This study investigates the role of volatile organic compounds in systemic acquired resistance (SAR), a salicylic acid (SA)-associated, broad-spectrum immune response in systemic, healthy tissues of locally infected plants. Gas chromatography coupled to mass spectrometry analyses of SAR-related emissions of wild-type and non-SAR-signal-producing mutant plants associated SAR with monoterpene emissions. Headspace exposure of Arabidopsis thaliana to a mixture of the bicyclic monoterpenes α-pinene and β-pinene induced defense, accumulation of reactive oxygen species, and expression of SA- and SAR-related genes, including the SAR regulatory AZELAIC ACID INDUCED1 (AZI1) gene and three of its paralogs. Pinene-induced resistance was dependent on SA biosynthesis and signaling and on AZI1. Arabidopsis geranylgeranyl reductase1 mutants with reduced monoterpene biosynthesis were SAR-defective but mounted normal local resistance and methyl salicylate-induced defense responses, suggesting that monoterpenes act in parallel with SA. The volatile emissions from SAR signal-emitting plants induced defense in neighboring plants, and this was associated with the presence of α-pinene, β-pinene, and camphene in the emissions of the “sender” plants. Our data suggest that monoterpenes, particularly pinenes, promote SAR, acting through ROS and AZI1, and likely function as infochemicals in plant-to-plant signaling, thus allowing defense signal propagation between neighboring plants. PMID:28536145

  18. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants

    PubMed Central

    Khan, M. Iqbal R.; Fatma, Mehar; Per, Tasir S.; Anjum, Naser A.; Khan, Nafees A.

    2015-01-01

    Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures, and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reductions in plant growth, development and overall productivity. Phytohormones have been recognized as a strong tool for sustainably alleviating adverse effects of abiotic stresses in crop plants. In particular, the significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant-metabolic processes. However, the basic biochemical/physiological and molecular mechanisms that potentially underpin SA-induced plant-tolerance to major abiotic stresses remain least discussed. Based on recent reports, this paper: (a) overviews historical background and biosynthesis of SA under both optimal and stressful environments in plants; (b) critically appraises the role of SA in plants exposed to major abiotic stresses; (c) cross-talks potential mechanisms potentially governing SA-induced plant abiotic stress-tolerance; and finally (d) briefly highlights major aspects so far unexplored in the current context. PMID:26175738

  19. Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin

    PubMed Central

    2014-01-01

    Background Temperature extremes represent an important limiting factor to plant growth and productivity. The present study evaluated the effect of hydroponic pretreatment of strawberry (Fragaria x ananassa cv. ‘Camarosa’) roots with an H2S donor, sodium hydrosulfide (NaHS; 100 μM for 48 h), on the response of plants to acute heat shock treatment (42°C, 8 h). Results Heat stress-induced phenotypic damage was ameliorated in NaHS-pretreated plants, which managed to preserve higher maximum photochemical PSII quantum yields than stressed plants. Apparent mitigating effects of H2S pretreatment were registered regarding oxidative and nitrosative secondary stress, since malondialdehyde (MDA), H2O2 and nitric oxide (NO) were quantified in lower amounts than in heat-stressed plants. In addition, NaHS pretreatment preserved ascorbate/glutathione homeostasis, as evidenced by lower ASC and GSH pool redox disturbances and enhanced transcription of ASC (GDH) and GSH biosynthetic enzymes (GS, GCS), 8 h after heat stress imposition. Furthermore, NaHS root pretreatment resulted in induction of gene expression levels of an array of protective molecules, such as enzymatic antioxidants (cAPX, CAT, MnSOD, GR), heat shock proteins (HSP70, HSP80, HSP90) and aquaporins (PIP). Conclusion Overall, we propose that H2S root pretreatment activates a coordinated network of heat shock defense-related pathways at a transcriptional level and systemically protects strawberry plants from heat shock-induced damage. PMID:24499299

  20. Herbivore induced plant volatiles

    PubMed Central

    War, Abdul Rashid; Sharma, Hari Chand; Paulraj, Michael Gabriel; War, Mohd Yousf; Ignacimuthu, Savarimuthu

    2011-01-01

    Plants respond to herbivory through different defensive mechanisms. The induction of volatile emission is one of the important and immediate response of plants to herbivory. Herbivore-induced plant volatiles (HIPVs) are involved in plant communication with natural enemies of the insect herbivores, neighboring plants, and different parts of the damaged plant. Release of a wide variety of HIPVs in response to herbivore damage and their role in plant-plant, plant-carnivore and intraplant communications represents a new facet of the complex interactions among different trophic levels. HIPVs are released from leaves, flowers, and fruits into the atmosphere or into the soil from roots in response to herbivore attack. Moreover, HIPVs act as feeding and/or oviposition deterrents to insect pests. HIPVs also mediate the interactions between the plants and the microorganisms. This review presents an overview of HIPVs emitted by plants, their role in plant defense against herbivores and their implications for pest management. PMID:22105032

  1. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance.

    PubMed

    Chang, Yi-Hsuan; Yan, Hao-Zhi; Liou, Ruey-Fen

    2015-02-01

    The interaction between Phytophthora pathogens and host plants involves the exchange of complex molecular signals from both sides. Recent studies of Phytophthora have led to the identification of various apoplastic elicitors known to trigger plant immunity. Here, we provide evidence that the protein encoded by OPEL of Phytophthora parasitica is a novel elicitor. Homologues of OPEL were identified only in oomycetes, but not in fungi and other organisms. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) revealed that OPEL is expressed throughout the development of P. parasitica and is especially highly induced after plant infection. Infiltration of OPEL recombinant protein from Escherichia coli into leaves of Nicotiana tabacum (cv. Samsun NN) resulted in cell death, callose deposition, the production of reactive oxygen species and induced expression of pathogen-associated molecular pattern (PAMP)-triggered immunity markers and salicylic acid-responsive defence genes. Moreover, the infiltration conferred systemic resistance against a broad spectrum of pathogens, including Tobacco mosaic virus, the bacteria wilt pathogen Ralstonia solanacearum and P. parasitica. In addition to the signal peptide, OPEL contains three conserved domains: a thaumatin-like domain, a glycine-rich protein domain and a glycosyl hydrolase (GH) domain. Intriguingly, mutation of a putative laminarinase active site motif in the predicted GH domain abolished its elicitor activity, which suggests enzymatic activity of OPEL in triggering the defence response. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  2. Foxtail Mosaic Virus-Induced Gene Silencing in Monocot Plants1[OPEN

    PubMed Central

    Liu, Na; Xie, Ke; Jia, Qi; Zhao, Jinping; Chen, Tianyuan; Li, Huangai; Wei, Xiang; Diao, Xianmin; Hong, Yiguo

    2016-01-01

    Virus-induced gene silencing (VIGS) is a powerful technique to study gene function in plants. However, very few VIGS vectors are available for monocot plants. Here we report that Foxtail mosaic virus (FoMV) can be engineered as an effective VIGS system to induce efficient silencing of endogenous genes in monocot plants including barley (Hordeum vulgare L.), wheat (Triticum aestivum) and foxtail millet (Setaria italica). This is evidenced by FoMV-based silencing of phytoene desaturase (PDS) and magnesium chelatase in barley, of PDS and Cloroplastos alterados1 in foxtail millet and wheat, and of an additional gene IspH in foxtail millet. Silencing of these genes resulted in photobleached or chlorosis phenotypes in barley, wheat, and foxtail millet. Furthermore, our FoMV-based gene silencing is the first VIGS system reported for foxtail millet, an important C4 model plant. It may provide an efficient toolbox for high-throughput functional genomics in economically important monocot crops. PMID:27225900

  3. Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis.

    PubMed

    Kobayashi, Kazuo

    2015-04-01

    Bacillus subtilis is a rhizobacterium that promotes plant growth and health. Cultivation of B. subtilis with an uprooted weed on solid medium produced pleat-like architectures on colonies near the plant. To test whether plants emit signals that affect B. subtilis colony morphology, we examined the effect of plant-related compounds on colony morphology. Bacillus subtilis formed mucoid colonies specifically in response to methyl salicylate, which is a plant-defense signal released in response to pathogen infection. Methyl salicylate induced mucoid colony formation by stimulating poly-γ-glutamic acid biosynthesis, which formed enclosing capsules that protected the cells from exposure to antimicrobial compounds. Poly-γ-glutamic acid synthesis depended on the DegS-DegU two-component regulatory system, which activated DegSU-dependent gene transcription in response to methyl salicylate. Bacillus subtilis did not induce plant methyl salicylate production, indicating that the most probable source of methyl salicylate in the rhizosphere is pathogen-infected plants. Methyl salicylate induced B. subtilis biosynthesis of the antibiotics bacilysin and fengycin, the latter of which exhibited inhibitory activity against the plant pathogenic fungus Fusarium oxysporum. We propose that B. subtilis may sense plants under pathogen attack via methyl salicylate, and express defense responses that protect both B. subtilis and host plants in the rhizosphere. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants.

    PubMed

    Adam, Mohamed; Heuer, Holger; Hallmann, Johannes

    2014-01-01

    The potential of bacterial antagonists of fungal pathogens to control the root-knot nematode Meloidogyne incognita was investigated under greenhouse conditions. Treatment of tomato seeds with several strains significantly reduced the numbers of galls and egg masses compared with the untreated control. Best performed Bacillus subtilis isolates Sb4-23, Mc5-Re2, and Mc2-Re2, which were further studied for their mode of action with regard to direct effects by bacterial metabolites or repellents, and plant mediated effects. Drenching of soil with culture supernatants significantly reduced the number of egg masses produced by M. incognita on tomato by up to 62% compared to the control without culture supernatant. Repellence of juveniles by the antagonists was shown in a linked twin-pot set-up, where a majority of juveniles penetrated roots on the side without inoculated antagonists. All tested biocontrol strains induced systemic resistance against M. incognita in tomato, as revealed in a split-root system where the bacteria and the nematodes were inoculated at spatially separated roots of the same plant. This reduced the production of egg masses by up to 51%, while inoculation of bacteria and nematodes in the same pot had only a minor additive effect on suppression of M. incognita compared to induced systemic resistance alone. Therefore, the plant mediated effect was the major reason for antagonism rather than direct mechanisms. In conclusion, the bacteria known for their antagonistic potential against fungal pathogens also suppressed M. incognita. Such "multi-purpose" bacteria might provide new options for control strategies, especially with respect to nematode-fungus disease complexes that cause synergistic yield losses.

  5. UV-Induced cell death in plants.

    PubMed

    Nawkar, Ganesh M; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-14

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).

  6. A novel herbicide-inducible male sterility system.

    PubMed

    Zhang, Jinhui; Zhang, Wenlu; Yen, Yang; Long, Hai; Deng, Guangbing; Pan, Zhifen; Yu, Maoqun

    2010-11-01

    Heterosis is a phenomenon that first-generation offspring perform better than their parents. Conventional breeding methods have their shortcomings. It would be optimal to construct inducible male sterile plants. We developed a novel system for creating male sterile transgenic plants by downregulating the specific expression of the glyphosate tolerance CP4 EPSPS gene in male reproductive tissues. Transcriptional repression was achieved by manipulating DNA binding proteins with their specific corresponding sites. We transferred the CP4 EPSPS gene driven by a modified CaMV 35S promoter with three tetracycline operator copies in the vicinity of the TATA box and tetracycline repressor gene under the control of an anther-specific promoter Osg6B to Arabidopsis thaliana. As a result, we successfully obtained controllable transgenic plants: the whole plant could tolerate exposure of glyphosate but the male tissue was sensitive. The novel inducible male sterility system is applied and easy to handle, so it might be applicable to a wide range of crop plants. 2010 Society of Chemical Industry

  7. Assessing Cd-induced stress from plant spectral response

    NASA Astrophysics Data System (ADS)

    Kancheva, Rumiana; Georgiev, Georgi

    2014-10-01

    Remote sensing plays a significant role in local, regional and global monitoring of land covers. Ecological concerns worldwide determine the importance of remote sensing applications for the assessment of soil conditions, vegetation health and identification of stress-induced changes. The extensive industrial growth and intensive agricultural land-use arise the serious ecological problem of environmental pollution associated with the increasing anthropogenic pressure on the environment. Soil contamination is a reason for degradation processes and temporary or permanent decrease of the productive capacity of land. Heavy metals are among the most dangerous pollutants because of their toxicity, persistent nature, easy up-take by plants and long biological half-life. This paper takes as its focus the study of crop species spectral response to Cd pollution. Ground-based experiments were performed, using alfalfa, spring barley and pea grown in Cd contaminated soils and in different hydroponic systems under varying concentrations of the heavy metal. Cd toxicity manifested itself by inhibition of plant growth and synthesis of photosynthetic pigments. Multispectral reflectance, absorbance and transmittance, as well as red and far red fluorescence were measured and examined for their suitability to detect differences in plant condition. Statistical analysis was performed and empirical relationships were established between Cd concentration, plant growth variables and spectral response Various spectral properties proved to be indicators of plant performance and quantitative estimators of the degree of the Cd-induced stress.

  8. Viral-induced systemic necrosis in plants involves both programmed cell death and the inhibition of viral multiplication, which are regulated by independent pathways.

    PubMed

    Komatsu, Ken; Hashimoto, Masayoshi; Ozeki, Johji; Yamaji, Yasuyuki; Maejima, Kensaku; Senshu, Hiroko; Himeno, Misako; Okano, Yukari; Kagiwada, Satoshi; Namba, Shigetou

    2010-03-01

    Resistant plants respond rapidly to invading avirulent plant viruses by triggering a hypersensitive response (HR). An HR is accompanied by a restraint of virus multiplication and programmed cell death (PCD), both of which have been observed in systemic necrosis triggered by a successful viral infection. Here, we analyzed signaling pathways underlying the HR in resistance genotype plants and those leading to systemic necrosis. We show that systemic necrosis in Nicotiana benthamiana, induced by Plantago asiatica mosaic virus (PlAMV) infection, was associated with PCD, biochemical features, and gene expression patterns that are characteristic of HR. The induction of necrosis caused by PlAMV infection was dependent on SGT1, RAR1, and the downstream mitogen-activated protein kinase (MAPK) cascade involving MAPKKKalpha and MEK2. However, although SGT1 and RAR1 silencing led to an increased accumulation of PlAMV, silencing of the MAPKKKalpha-MEK2 cascade did not. This observation indicates that viral multiplication is partly restrained even in systemic necrosis induced by viral infection, and that this restraint requires SGT1 and RAR1 but not the MAPKKKalpha-MEK2 cascade. Similarly, although both SGT1 and MAPKKKalpha were essential for the Rx-mediated HR to Potato virus X (PVX), SGT1 but not MAPKKKalpha was involved in the restraint of PVX multiplication. These results suggest that systemic necrosis and HR consist of PCD and a restraint of virus multiplication, and that the latter is induced through unknown pathways independent from the former.

  9. UV-Induced Cell Death in Plants

    PubMed Central

    Nawkar, Ganesh M.; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-01

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400–700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280–320 nm) and UV-A (320–390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD). PMID:23344059

  10. Induced resistance enzymes in wild plants-do 'early birds' escape from pathogen attack?

    PubMed

    Heil, Martin; Ploss, Kerstin

    2006-09-01

    Systemic acquired resistance (SAR) of plants to pathogens is a well-defined phenomenon. The underlying signalling pathways and its application in crop protection are intensively studied. However, most studies are conducted on crop plants or on Arabidopsis as a model plant. The taxonomic distribution of this phenomenon and its dependence on life history are thus largely unknown. We quantified activities of three classes of resistance-related enzymes in 18 plant species to investigate whether plants with varying life histories differ in their investment in disease resistance. Enzyme activities were quantified in untreated plants, and in plants induced with BION, a chemical resistance elicitor. All species showed constitutive activities of chitinase, peroxidase, or glucanase. However, constitutive chitinase activities varied by 30 times, and peroxidase by 50 times, among species. Several species did not respond to the induction treatment, while enzyme activities in other species increased more than threefold after BION application. Plant species differ dramatically in the presence and inducibility of resistance enzymes. This variation could be related to life history: While all resistance enzymes were significantly induced in larger perennial plants that flower during summer, spring geophytes hardly showed inducible resistance. These plants grow in an environment that is characterised by a low-pathogen pressure, and thus may simply 'escape' from infection. Our study presents the first comparative data set on resistance-related enzymes in noncultivated plants. The current view on SAR-narrowed by the concentration on cultivated crops-is not sufficient to understand the ecological and evolutionary relevance of this widespread plant trait.

  11. Natural genetic and induced plant resistance, as a control strategy to plant-parasitic nematodes alternative to pesticides.

    PubMed

    Molinari, Sergio

    2011-03-01

    Plant-parasitic nematodes are pests of a wide range of economically important crops, causing severe losses to agriculture. Natural genetic resistance of plants is expected to be a valid solution of the many problems nematodes cause all over the world. Progress in resistance applications is particularly important for the less-developed countries of tropical and subtropical regions, since use of resistant cultivars may be the only possible and economically feasible control strategy in those farming systems. Resistance is being considered of particular importance also in modern high-input production systems of developed countries, as the customary reliance on chemical nematicides has been restricted or has come to an end. This review briefly describes the genetic bases of resistance to nematodes in plants and focuses on the chances and problems of its exploitation as a key element in an integrated management program. Much space is dedicated to the major problem of resistance durability, in that the intensive use of resistant cultivars is likely to increasingly induce the selection of virulent populations able to "break" the resistance. Protocols of pest-host suitability are described, as bioassays are being used to evaluate local nematode populations in their potential to be selected on resistant germplasm and endanger resistant crops. The recent progress in using robust and durable resistances against nematodes as an efficient method for growers in vegetable cropping systems is reported, as well as the possible use of chemicals that do not show any unfavorable impact on environment, to induce in plants resistance against plant-parasitic nematodes.

  12. Genome-wide analysis of bacterial determinants of plant growth promotion and induced systemic resistance by Pseudomonas fluorescens.

    PubMed

    Cheng, Xu; Etalo, Desalegn W; van de Mortel, Judith E; Dekkers, Ester; Nguyen, Linh; Medema, Marnix H; Raaijmakers, Jos M

    2017-11-01

    Pseudomonas fluorescens strain SS101 (Pf.SS101) promotes growth of Arabidopsis thaliana, enhances greening and lateral root formation, and induces systemic resistance (ISR) against the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Here, targeted and untargeted approaches were adopted to identify bacterial determinants and underlying mechanisms involved in plant growth promotion and ISR by Pf.SS101. Based on targeted analyses, no evidence was found for volatiles, lipopeptides and siderophores in plant growth promotion by Pf.SS101. Untargeted, genome-wide analyses of 7488 random transposon mutants of Pf.SS101 led to the identification of 21 mutants defective in both plant growth promotion and ISR. Many of these mutants, however, were auxotrophic and impaired in root colonization. Genetic analysis of three mutants followed by site-directed mutagenesis, genetic complementation and plant bioassays revealed the involvement of the phosphogluconate dehydratase gene edd, the response regulator gene colR and the adenylsulfate reductase gene cysH in both plant growth promotion and ISR. Subsequent comparative plant transcriptomics analyses strongly suggest that modulation of sulfur assimilation, auxin biosynthesis and transport, steroid biosynthesis and carbohydrate metabolism in Arabidopsis are key mechanisms linked to growth promotion and ISR by Pf.SS101. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Bacterial Outer Membrane Vesicles Induce Plant Immune Responses.

    PubMed

    Bahar, Ofir; Mordukhovich, Gideon; Luu, Dee Dee; Schwessinger, Benjamin; Daudi, Arsalan; Jehle, Anna Kristina; Felix, Georg; Ronald, Pamela C

    2016-05-01

    Gram-negative bacteria continuously pinch off portions of their outer membrane, releasing membrane vesicles. These outer membrane vesicles (OMVs) are involved in multiple processes including cell-to-cell communication, biofilm formation, stress tolerance, horizontal gene transfer, and virulence. OMVs are also known modulators of the mammalian immune response. Despite the well-documented role of OMVs in mammalian-bacterial communication, their interaction with plants is not well studied. To examine whether OMVs of plant pathogens modulate the plant immune response, we purified OMVs from four different plant pathogens and used them to treat Arabidopsis thaliana. OMVs rapidly induced a reactive oxygen species burst, medium alkalinization, and defense gene expression in A. thaliana leaf discs, cell cultures, and seedlings, respectively. Western blot analysis revealed that EF-Tu is present in OMVs and that it serves as an elicitor of the plant immune response in this form. Our results further show that the immune coreceptors BAK1 and SOBIR1 mediate OMV perception and response. Taken together, our results demonstrate that plants can detect and respond to OMV-associated molecules by activation of their immune system, revealing a new facet of plant-bacterial interactions.

  14. Emerald ash borer responses to induced plant volatiles

    Treesearch

    Cesar Rodriguez-Saona; Therese M. Poland; James Miller; Lukasz Stelinski; Linda Buchan; Gary Grant; Peter de Groot; Linda MacDonald

    2007-01-01

    Herbivore feeding and methyl jasmonate, a volatile derivative of the stress-eliciting plant hormone, jasmonic acid, induce responses in plants which include the synthesis and emission of volatiles. These induced volatiles can serve to attract or repel herbivores; therefore, they may have potential use in pest management programs. The exotic emerald ash borer (EAB),...

  15. Chitosan Effects on Plant Systems

    PubMed Central

    Malerba, Massimo; Cerana, Raffaella

    2016-01-01

    Chitosan (CHT) is a natural, safe, and cheap product of chitin deacetylation, widely used by several industries because of its interesting features. The availability of industrial quantities of CHT in the late 1980s enabled it to be tested in agriculture. CHT has been proven to stimulate plant growth, to protect the safety of edible products, and to induce abiotic and biotic stress tolerance in various horticultural commodities. The stimulating effect of different enzyme activities to detoxify reactive oxygen species suggests the involvement of hydrogen peroxide and nitric oxide in CHT signaling. CHT could also interact with chromatin and directly affect gene expression. Recent innovative uses of CHT include synthesis of CHT nanoparticles as a valuable delivery system for fertilizers, herbicides, pesticides, and micronutrients for crop growth promotion by a balanced and sustained nutrition. In addition, CHT nanoparticles can safely deliver genetic material for plant transformation. This review presents an overview on the status of the use of CHT in plant systems. Attention was given to the research that suggested the use of CHT for sustainable crop productivity. PMID:27347928

  16. Trickle water and feeding system in plant culture and light-dark cycle effects on plant growth

    NASA Technical Reports Server (NTRS)

    Takano, T.; Inada, K.; Takanashi, J.

    1987-01-01

    Rockwool, as an inert medium covered or bagged with polyethylene film, can be effectively used for plant culture in space stations. The most important machine is the pump adjusting the dripping rate in the feeding system. Hydro-aeroponics may be adaptable to a space laboratory. The shortening of the light-dark cycles inhibits plant growth and induces an abnormal morphogenesis. A photoperiod of 12 hr dark may be needed for plant growth.

  17. Experimental protocol for manipulating plant-induced soil heterogeneity.

    PubMed

    Brandt, Angela J; del Pino, Gaston A; Burns, Jean H

    2014-03-13

    Coexistence theory has often treated environmental heterogeneity as being independent of the community composition; however biotic feedbacks such as plant-soil feedbacks (PSF) have large effects on plant performance, and create environmental heterogeneity that depends on the community composition. Understanding the importance of PSF for plant community assembly necessitates understanding of the role of heterogeneity in PSF, in addition to mean PSF effects. Here, we describe a protocol for manipulating plant-induced soil heterogeneity. Two example experiments are presented: (1) a field experiment with a 6-patch grid of soils to measure plant population responses and (2) a greenhouse experiment with 2-patch soils to measure individual plant responses. Soils can be collected from the zone of root influence (soils from the rhizosphere and directly adjacent to the rhizosphere) of plants in the field from conspecific and heterospecific plant species. Replicate collections are used to avoid pseudoreplicating soil samples. These soils are then placed into separate patches for heterogeneous treatments or mixed for a homogenized treatment. Care should be taken to ensure that heterogeneous and homogenized treatments experience the same degree of soil disturbance. Plants can then be placed in these soil treatments to determine the effect of plant-induced soil heterogeneity on plant performance. We demonstrate that plant-induced heterogeneity results in different outcomes than predicted by traditional coexistence models, perhaps because of the dynamic nature of these feedbacks. Theory that incorporates environmental heterogeneity influenced by the assembling community and additional empirical work is needed to determine when heterogeneity intrinsic to the assembling community will result in different assembly outcomes compared with heterogeneity extrinsic to the community composition.

  18. Chemical inducible promotor used to obtain transgenic plants with a silent marker

    DOEpatents

    Chua, Nam-Hai; Aoyama, Takashi

    2000-01-01

    A chemically inducible promoter is described which may be used to transform plants with genes which are easily regulatable by adding plants or plant cells to a medium containing an inducer of the promoter or by removing the plants or plant cells from such medium. The promoter described is one which is inducible by a glucocorticoid which is not endogenous to plants. Such promoters may be used with a variety of genes such as ipt or knotted1 to induce shoot formation in the presence of a glucocorticoid. The promoter may also be used with antibiotic or herbicide resistance genes which are then regulatable by the presence or absence of inducer rather than being constitutive. Other examples of genes which may be placed under the control of the inducible promoter are also presented.

  19. Plant defenses against parasitic plants show similarities to those induced by herbivores and pathogens

    PubMed Central

    Runyon, Justin B; Mescher, Mark C

    2010-01-01

    Herbivores and pathogens come quickly to mind when one thinks of the biotic challenges faced by plants. Important but less appreciated enemies are parasitic plants, which can have important consequences for the fitness and survival of their hosts. Our knowledge of plant perception, signaling and response to herbivores and pathogens has expanded rapidly in recent years, but information is generally lacking for parasitic species. In a recent paper we reported that some of the same defense responses induced by herbivores and pathogens—notably increases in jasmonic acid (JA), salicylic acid (SA), and a hypersensitive-like response (HLR)—also occur in tomato plants upon attack by the parasitic plant Cuscuta pentagona (field dodder). Parasitism induced a distinct pattern of JA and SA accumulation, and growth trials using genetically-altered tomato hosts suggested that both JA and SA govern effective defenses against the parasite, though the extent of the response varied with host plant age. Here we discuss similarities between the induced responses we observed in response to Cuscuta parasitism to those previously described for herbivores and pathogens and present new data showing that trichomes should be added to the list of plant defenses that act against multiple enemies and across kingdoms. PMID:20495380

  20. Plant defenses against parasitic plants show similarities to those induced by herbivores and pathogens.

    PubMed

    Runyon, Justin B; Mescher, Mark C; De Moraes, Consuelo M

    2010-08-01

    Herbivores and pathogens come quickly to mind when one thinks of the biotic challenges faced by plants. Important but less appreciated enemies are parasitic plants, which can have important consequences for the fitness and survival of their hosts. Our knowledge of plant perception, signaling, and response to herbivores and pathogens has expanded rapidly in recent years, but information is generally lacking for parasitic species. In a recent paper we reported that some of the same defense responses induced by herbivores and pathogens--notably increases in jasmonic acid (JA), salicylic acid (SA), and a hypersensitive-like response (HLR)--also occur in tomato plants upon attack by the parasitic plant Cuscuta pentagona (field dodder). Parasitism induced a distinct pattern of JA and SA accumulation, and growth trials using genetically-altered tomato hosts suggested that both JA and SA govern effective defenses against the parasite, though the extent of the response varied with host plant age. Here we discuss similarities between the induced responses we observed in response to Cuscuta parasitism to those previously described for herbivores and pathogens and present new data showing that trichomes should be added to the list of plant defenses that act against multiple enemies and across Kingdoms.

  1. Chemical inducible promoter used to obtain transgenic plants with a silent marker

    DOEpatents

    Aoyama, Takashi; Zuo, Jianru; Chua, Nam-Hai

    2004-08-31

    A chemically inducible promoter is described that may be used to transform plants, including tobacco and lettuce, with genes which are easily regulatable by adding the plants or plant cells to a medium containing an inducer of the promoter or by removing the plants or plant cells from such medium. The promoter described is one that is inducible by a glucocorticoid which is not endogenous to plants. Such promoters may be used with a variety of genes such as ipt or knotted1 to induce shoot formation in the presence of a glucocorticoid. The promoter may also be used with antibiotic or herbicide resistance genes which are then regulatable by the presence or absence of inducer rather than being constitutive. Other examples of genes which may be placed under the control of the inducible promoter are also presented.

  2. Hyperparasitoids Use Herbivore-Induced Plant Volatiles to Locate Their Parasitoid Host

    PubMed Central

    Poelman, Erik H.; Bruinsma, Maaike; Zhu, Feng; Weldegergis, Berhane T.; Boursault, Aline E.; Jongema, Yde; van Loon, Joop J. A.; Vet, Louise E. M.; Harvey, Jeffrey A.; Dicke, Marcel

    2012-01-01

    Plants respond to herbivory with the emission of induced plant volatiles. These volatiles may attract parasitic wasps (parasitoids) that attack the herbivores. Although in this sense the emission of volatiles has been hypothesized to be beneficial to the plant, it is still debated whether this is also the case under natural conditions because other organisms such as herbivores also respond to the emitted volatiles. One important group of organisms, the enemies of parasitoids, hyperparasitoids, has not been included in this debate because little is known about their foraging behaviour. Here, we address whether hyperparasitoids use herbivore-induced plant volatiles to locate their host. We show that hyperparasitoids find their victims through herbivore-induced plant volatiles emitted in response to attack by caterpillars that in turn had been parasitized by primary parasitoids. Moreover, only one of two species of parasitoids affected herbivore-induced plant volatiles resulting in the attraction of more hyperparasitoids than volatiles from plants damaged by healthy caterpillars. This resulted in higher levels of hyperparasitism of the parasitoid that indirectly gave away its presence through its effect on plant odours induced by its caterpillar host. Here, we provide evidence for a role of compounds in the oral secretion of parasitized caterpillars that induce these changes in plant volatile emission. Our results demonstrate that the effects of herbivore-induced plant volatiles should be placed in a community-wide perspective that includes species in the fourth trophic level to improve our understanding of the ecological functions of volatile release by plants. Furthermore, these findings suggest that the impact of species in the fourth trophic level should also be considered when developing Integrated Pest Management strategies aimed at optimizing the control of insect pests using parasitoids. PMID:23209379

  3. Effects of Some Indigenous Plants of North Karnataka (India) on Cardiovascular and Glucose Regulatory Systems in Alloxan-Induced Diabetic Rats.

    PubMed

    Das, Kusal K; Chadchan, Kailash S; Reddy, R Chandramouli; Biradar, M S; Kanthe, Pallavi S; Patil, Bheemshetty S; Ambekar, Jeevan G; Bagoji, Ishwar B; Das, Swastika

    2017-11-08

    Kenaf (Hibiscus cannabinus Linn, Pundi), Chick pea (Cicer arietinum Linn, Chana) and Prickly lettuce (Lactuca scariola Linn, Hattaraki) leaves are a few of indigenous plants which are routinely consumed by the people of north Karnataka in the diet. Studies on these plants showed some potential anti-diabetic efficacies. To examine the effect of leaves extracts of Hibiscus cannabinus Linn, Cicer arietinum Linn and Lactuca scariola Linn on cardiovascular integrity, glucose homeostasis and oxygen sensing cell signaling mechanisms in alloxan induced diabetic rats. In vitro and in vivo tests on glucose regulatory systems and molecular markers such as - NOS3, HIF- 1α and VEGF were conducted in alloxan induced diabetic rats supplemented with all the three plant extracts. Electrophysiological analysis (HRV, LF: HF ratio, baroreflex sensitivity, BRS) and histopathogy of myocardial tissues and elastic artery were evaluated in diabetic rats treated with L. scariola linn. Out of these three plant extracts, Lactuca scariola Linn supplementation showed significant beneficial effects on glucose homeostasis and oxygen sensing cell signaling pathways in alloxaninduced diabetic rats. Furthermore, effects of sub chronic supplementation of Lactuca scariola Linn aqueous extracts showed significant improvement in sympatho-vagal balance in diabetic rats by increase of Heart Rate Variability (HRV) and regaining of Baroreflex Sensitivity (BRS). These results were also corroborated with myocardial and elastic artery histopathology of Lactuca scariola Linn supplemented diabetic rats. These findings indicate an adaptive pathway for glucose homeostasis, oxygen sensing cell signaling mechanisms and cardio protective actions in alloxan - induced diabetic rats supplemented with Lactuca scariola Linn extracts. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant.

    PubMed

    Giron, David; Huguet, Elisabeth; Stone, Graham N; Body, Mélanie

    2016-01-01

    Gall-inducing insects are iconic examples in the manipulation and reprogramming of plant development, inducing spectacular morphological and physiological changes of host-plant tissues within which the insect feeds and grows. Despite decades of research, effectors involved in gall induction and basic mechanisms of gall formation remain unknown. Recent research suggests that some aspects of the plant manipulation shown by gall-inducers may be shared with other insect herbivorous life histories. Here, we illustrate similarities and contrasts by reviewing current knowledge of metabolic and morphological effects induced on plants by gall-inducing and leaf-mining insects, and ask whether leaf-miners can also be considered to be plant reprogrammers. We review key plant functions targeted by various plant reprogrammers, including plant-manipulating insects and nematodes, and functionally characterize insect herbivore-derived effectors to provide a broader understanding of possible mechanisms used in host-plant manipulation. Consequences of plant reprogramming in terms of ecology, coevolution and diversification of plant-manipulating insects are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Microbial community induces a plant defense system under growing on the lunar regolith analogue

    NASA Astrophysics Data System (ADS)

    Zaetz, Irina; Mytrokhyn, Olexander; Lukashov, Dmitry; Mashkovska, Svitlana; Kozyrovska, Natalia; Foing, Bernard H.

    The lunar rock considered as a potential source of chemical elements essential for plant nutrition, however, this substrate is of a low bioavailability. The use of microorganisms for decomposition of silicate rocks and stimulation of plant growth is a key idea in precursory scenario of growing pioneer plants for a lunar base (Kozyrovska et al., 2004; 2006; Zaetz et al., 2006). In model experiments a consortium of well-defined plant-associated bacteria were used for growing of French marigold (Tagetes patula L.) in anorthosite, analogous to a lunar rock. Inoculated plants appeared better seed germination, more fast development and also increased accumulation of K, Mg, Mn, Co, Cu and lowered level of the toxic Zn, Ni, Cr, comparing to control tagetes'. Bacteria regulate metal homeostasis in plants by changing their bioavailability and by stimulating of plant defense mechanisms. Inoculated plants were being accommodated to growth under stress conditions on anorthosite used as a substrate. In contrast, control plants manifested a heavy metal-induced oxidative stress, as quantified by protein carbonyl accumulation. Depending on the plant organ sampled and developmental stage there were increases or loses in the antioxidant enzyme activities (guaiacol peroxidase and glutathione-S-transferase). These changes were most evident in inoculated plants. Production of phenolic compounds, known as antioxidants and heavy metal chelators, is rised in variants of inoculated marigolds. Guaiacol peroxidase plays the main role, finally, in a reducing toxicity of heavy metals in plant leaves, while glutathione-S-transferase and phenolics overcome stress in roots.

  6. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.

    PubMed

    Shahid, Muhammad; Pourrut, Bertrand; Dumat, Camille; Nadeem, Muhammad; Aslam, Muhammad; Pinelli, Eric

    2014-01-01

    As a result of the industrial revolution, anthropogenic activities have enhanced there distribution of many toxic heavy metals from the earth's crust to different environmental compartments. Environmental pollution by toxic heavy metals is increasing worldwide, and poses a rising threat to both the environment and to human health.Plants are exposed to heavy metals from various sources: mining and refining of ores, fertilizer and pesticide applications, battery chemicals, disposal of solid wastes(including sewage sludge), irrigation with wastewater, vehicular exhaust emissions and adjacent industrial activity.Heavy metals induce various morphological, physiological, and biochemical dysfunctions in plants, either directly or indirectly, and cause various damaging effects. The most frequently documented and earliest consequence of heavy metal toxicity in plants cells is the overproduction of ROS. Unlike redox-active metals such as iron and copper, heavy metals (e.g, Pb, Cd, Ni, AI, Mn and Zn) cannot generate ROS directly by participating in biological redox reactions such as Haber Weiss/Fenton reactions. However, these metals induce ROS generation via different indirect mechanisms, such as stimulating the activity of NADPH oxidases, displacing essential cations from specific binding sites of enzymes and inhibiting enzymatic activities from their affinity for -SH groups on the enzyme.Under normal conditions, ROS play several essential roles in regulating the expression of different genes. Reactive oxygen species control numerous processes like the cell cycle, plant growth, abiotic stress responses, systemic signalling, programmed cell death, pathogen defence and development. Enhanced generation of these species from heavy metal toxicity deteriorates the intrinsic antioxidant defense system of cells, and causes oxidative stress. Cells with oxidative stress display various chemical,biological and physiological toxic symptoms as a result of the interaction between ROS and

  7. Potential of plant genetic systems for monitoring and screening mutagens

    PubMed Central

    Nilan, R. A.

    1978-01-01

    Plants have too long been ignored as useful screening and monitoring systems of environmental mutagens. However, there are about a dozen reliable, some even unique, plant genetic systems that can increase the scope and effectiveness of chemical and physical mutagen screening and monitoring procedures. Some of these should be included in the Tier II tests. Moreover, plants are the only systems now in use as monitors of genetic effects caused by polluted atmosphere and water and by pesticides. There are several major advantages of the plant test systems which relate to their reproductive nature, easy culture and growth habits that should be considered in mutagen screening and monitoring. In addition to these advantages, the major plant test systems exhibit numerous genetic and chromosome changes for determining the effects of mutagens. Some of these have not yet been detected in other nonmammalian and mammalian test systems, but probably occur in the human organism. Plants have played major roles in various aspects of mutagenesis research, primarily in mutagen screening (detection and verification of mutagenic activity), mutagen monitoring, and determining mutagen effects and mechanisms of mutagen action. They have played lesser roles in quantification of mutagenic activity and understanding the nature of induced mutations. Mutagen monitoring with plants, especially in situ on land or in water, will help determine potential genetic hazards of air and water pollutants and protect the genetic purity of crop plants and the purity of the food supply. The Tradescantia stamen-hair system is used in a mobile laboratory for determining the genetic effects of industrial and automobile pollution in a number of sites in the U.S.A. The fern is employed for monitoring genetic effects of water pollution in the Eastern states. The maize pollen system and certain weeds have monitored genetic effects of pesticides. Several other systems that have considerable value and should be

  8. Experience-induced habituation and preference towards non-host plant odors in ovipositing females of a moth.

    PubMed

    Wang, Hua; Guo, Wen-Fei; Zhang, Peng-Jun; Wu, Zhi-Yi; Liu, Shu-Sheng

    2008-03-01

    In phytophagous insects, experience can increase positive responses towards non-host plant extracts or induce oviposition on non-host plants, but the underlying chemical and behavioral mechanisms are poorly understood. By using the diamondback moth, Plutella xylostella, its host plant Chinese cabbage, and a non-host plant Chrysanthemum morifolium, as a model system, we observed the experience-altered olfactory responses of ovipositing females towards volatiles of the non-host plant, volatiles of pure chemicals (p-cymene and alpha-terpinene) found in the non-host plant, and volatiles of host plants treated with these chemicals. We assessed the experience-altered oviposition preference towards host plants treated with p-cymene. Naive females showed aversion to the odors of the non-host plant, the pure chemicals, and the pure chemical-treated host plants. In contrast, experienced females either became attracted by these non-host odors or were no longer repelled by these odors. Similarly, naive females laid a significantly lower proportion of eggs on pure chemical-treated host plants than on untreated host plants, but experienced females laid a similar or higher proportion of eggs on pure chemical-treated host plants compared to untreated host plants. Chemical analysis indicated that application of the non-host pure chemicals on Chinese cabbage induced emissions of volatiles by this host plant. We conclude that induced preference for previously repellent compounds is a major mechanism that leads to behavioral changes of this moth towards non-host plants or their extracts.

  9. Mannose Induces an Endonuclease Responsible for DNA Laddering in Plant Cells

    PubMed Central

    Stein, Joshua C.; Hansen, Geneviève

    1999-01-01

    The effect of d-mannose (Man) on plant cells was studied in two different systems: Arabidopsis roots and maize (Zea mays) suspension-cultured cells. In both systems, exposure to d-Man was associated with a subset of features characteristic of apoptosis, as assessed by oligonucleosomal fragmentation and microscopy analysis. Furthermore, d-Man induced the release of cytochrome c from mitochondria. The specificity of d-Man was evaluated by comparing the effects of diastereomers such as l-Man, d-glucose, and d-galactose. Of these treatments, only d-Man caused a reduction in final fresh weight with concomitant oligonucleosomal fragmentation. Man-induced DNA laddering coincided with the activation of a DNase in maize cytosolic extracts and with the appearance of single 35-kD band detected using an in-gel DNase assay. The DNase activity was further confirmed by using covalently closed circular plasmid DNA as a substrate. It appears that d-Man, a safe and readily accessible compound, offers remarkable features for the study of apoptosis in plant cells. PMID:10482662

  10. Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles.

    PubMed

    Farag, Mohamed A; Zhang, Huiming; Ryu, Choong-Min

    2013-07-01

    Certain plant growth-promoting rhizobacteria (PGPR) elicit induced systemic resistance (ISR) and plant growth promotion in the absence of physical contact with plants via volatile organic compound (VOC) emissions. In this article, we review the recent progess made by research into the interactions between PGPR VOCs and plants, focusing on VOC emission by PGPR strains in plants. Particular attention is given to the mechanisms by which these bacterial VOCs elicit ISR. We provide an overview of recent progress in the elucidation of PGPR VOC interactions from studies utilizing transcriptome, metabolome, and proteome analyses. By monitoring defense gene expression patterns, performing 2-dimensional electrophoresis, and studying defense signaling null mutants, salicylic acid and ethylene have been found to be key players in plant signaling pathways involved in the ISR response. Bacterial VOCs also confer induced systemic tolerance to abiotic stresses, such as drought and heavy metals. A review of current analytical approaches for PGPR volatile profiling is also provided with needed future developments emphasized. To assess potential utilization of PGPR VOCs for crop plants, volatile suspensions have been applied to pepper and cucumber roots and found to be effective at protecting plants against plant pathogens and insect pests in the field. Taken together, these studies provide further insight into the biological and ecological potential of PGPR VOCs for enhancing plant self-immunity and/or adaptation to biotic and abiotic stresses in modern agriculture.

  11. Role of Tomato Lipoxygenase D in Wound-Induced Jasmonate Biosynthesis and Plant Immunity to Insect Herbivores

    PubMed Central

    Li, Shuyu; Wang, Bao; Huang, Tingting; Du, Minmin; Sun, Jiaqiang; Kang, Le; Li, Chang-Bao; Li, Chuanyou

    2013-01-01

    In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs) in tomato (Solanum lycopersicum) provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA). The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8) mutant, which was isolated as a suppressor of (pro)systemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera) and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against insects and

  12. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores.

    PubMed

    Yan, Liuhua; Zhai, Qingzhe; Wei, Jianing; Li, Shuyu; Wang, Bao; Huang, Tingting; Du, Minmin; Sun, Jiaqiang; Kang, Le; Li, Chang-Bao; Li, Chuanyou

    2013-01-01

    In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs) in tomato (Solanum lycopersicum) provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA). The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8) mutant, which was isolated as a suppressor of (pro)systemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera) and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against insects and

  13. Induction of Systemic Resistance against Insect Herbivores in Plants by Beneficial Soil Microbes

    PubMed Central

    Rashid, Md. Harun-Or; Chung, Young R.

    2017-01-01

    Soil microorganisms with growth-promoting activities in plants, including rhizobacteria and rhizofungi, can improve plant health in a variety of different ways. These beneficial microbes may confer broad-spectrum resistance to insect herbivores. Here, we provide evidence that beneficial microbes modulate plant defenses against insect herbivores. Beneficial soil microorganisms can regulate hormone signaling including the jasmonic acid, ethylene and salicylic acid pathways, thereby leading to gene expression, biosynthesis of secondary metabolites, plant defensive proteins and different enzymes and volatile compounds, that may induce defenses against leaf-chewing as well as phloem-feeding insects. In this review, we discuss how beneficial microbes trigger induced systemic resistance against insects by promoting plant growth and highlight changes in plant molecular mechanisms and biochemical profiles. PMID:29104585

  14. Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis.

    PubMed

    Zhang, Yi; Turner, John G

    2008-01-01

    When plants are repeatedly injured their growth is stunted and the size of organs such as leaves is greatly reduced. The basis of this effect is not well-understood however, even though it reduces yield of crops injured by herbivory, and produces dramatic effects exemplified in ornamental bonsai plants. We have investigated the genetic and physiological basis of this "bonsai effect" by repeatedly wounding leaves of the model plant Arabidopsis. This treatment stunted growth by 50% and increased the endogenous content of jasmonate (JA), a growth inhibitor, by seven-fold. Significantly, repeated wounding did not stunt the growth of the leaves of mutants unable to synthesise JA, or unable to respond to JA including coi1, jai3, myc2, but not jar1. The stunted growth did not result from reduced cell size, but resulted instead from reduced cell number, and was associated with reduced expression of CycB1;2. Wounding caused systemic disappearance of constitutively expressed JAZ1::GUS. Wounding also activates plant immunity. We show that a gene, 12-oxo-phytodienoate reductase, which catalyses a step in JA biosynthesis, and which we confirm is not required for defence, is however required for wound-induced stunting. Our data suggest that intermediates in the JA biosynthetic pathway activate defence, but a primary function of wound-induced JA is to stunt growth through the suppression of mitosis.

  15. Signals of Systemic Immunity in Plants: Progress and Open Questions

    PubMed Central

    Ádám, Attila L.; Nagy, Zoltán Á.; Kátay, György; Mergenthaler, Emese; Viczián, Orsolya

    2018-01-01

    Systemic acquired resistance (SAR) is a defence mechanism that induces protection against a wide range of pathogens in distant, pathogen-free parts of plants after a primary inoculation. Multiple mobile compounds were identified as putative SAR signals or important factors for influencing movement of SAR signalling elements in Arabidopsis and tobacco. These include compounds with very different chemical structures like lipid transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE1), methyl salicylate (MeSA), dehydroabietinal (DA), azelaic acid (AzA), glycerol-3-phosphate dependent factor (G3P) and the lysine catabolite pipecolic acid (Pip). Genetic studies with different SAR-deficient mutants and silenced lines support the idea that some of these compounds (MeSA, DIR1 and G3P) are activated only when SAR is induced in darkness. In addition, although AzA doubled in phloem exudate of tobacco mosaic virus (TMV) infected tobacco leaves, external AzA treatment could not induce resistance neither to viral nor bacterial pathogens, independent of light conditions. Besides light intensity and timing of light exposition after primary inoculation, spectral distribution of light could also influence the SAR induction capacity. Recent data indicated that TMV and CMV (cucumber mosaic virus) infection in tobacco, like bacteria in Arabidopsis, caused massive accumulation of Pip. Treatment of tobacco leaves with Pip in the light, caused a drastic and significant local and systemic decrease in lesion size of TMV infection. Moreover, two very recent papers, added in proof, demonstrated the role of FMO1 (FLAVIN-DEPENDENT-MONOOXYGENASE1) in conversion of Pip to N-hydroxypipecolic acid (NHP). NHP systemically accumulates after microbial attack and acts as a potent inducer of plant immunity to bacterial and oomycete pathogens in Arabidopsis. These results argue for the pivotal role of Pip and NHP as an important signal compound of SAR response in different plants against different

  16. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review.

    PubMed

    Shahid, Muhammad; Shamshad, Saliha; Rafiq, Marina; Khalid, Sana; Bibi, Irshad; Niazi, Nabeel Khan; Dumat, Camille; Rashid, Muhammad Imtiaz

    2017-07-01

    Chromium (Cr) is a potentially toxic heavy metal which does not have any essential metabolic function in plants. Various past and recent studies highlight the biogeochemistry of Cr in the soil-plant system. This review traces a plausible link among Cr speciation, bioavailability, phytouptake, phytotoxicity and detoxification based on available data, especially published from 2010 to 2016. Chromium occurs in different chemical forms (primarily as chromite (Cr(III)) and chromate (Cr(VI)) in soil which vary markedly in term of their biogeochemical behavior. Chromium behavior in soil, its soil-plant transfer and accumulation in different plant parts vary with its chemical form, plant type and soil physico-chemical properties. Soil microbial community plays a key role in governing Cr speciation and behavior in soil. Chromium does not have any specific transporter for its uptake by plants and it primarily enters the plants through specific and non-specific channels of essential ions. Chromium accumulates predominantly in plant root tissues with very limited translocation to shoots. Inside plants, Cr provokes numerous deleterious effects to several physiological, morphological, and biochemical processes. Chromium induces phytotoxicity by interfering plant growth, nutrient uptake and photosynthesis, inducing enhanced generation of reactive oxygen species, causing lipid peroxidation and altering the antioxidant activities. Plants tolerate Cr toxicity via various defense mechanisms such as complexation by organic ligands, compartmentation into the vacuole, and scavenging ROS via antioxidative enzymes. Consumption of Cr-contaminated-food can cause human health risks by inducing severe clinical conditions. Therefore, there is a dire need to monitor biogeochemical behavior of Cr in soil-plant system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Induced defences in plants reduce herbivory by increasing cannibalism.

    PubMed

    Orrock, John; Connolly, Brian; Kitchen, Anthony

    2017-08-01

    Plants are attacked by myriad herbivores, and many plants exhibit anti-herbivore defences. We tested the hypothesis that induced defences benefit tomato plants by encouraging insects to eat other members of their species. We found that defences that promote cannibalism benefit tomatoes in two ways: cannibalism directly reduces herbivore abundance, and cannibals eat significantly less plant material. This previously unknown means of defence may alter plant-herbivore dynamics, plant evolution and pathogen transmission.

  18. Feasibility of airborne detection of laser-induced fluorescence emissions from green terrestrial plants

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Yungel, J. K.

    1983-01-01

    The present investigation provides a demonstration of the feasibility of the airborne detection of the laser-induced fluorescence spectral emissions from living terrestrial grasses, shrubs, and trees using existing levels of lidar technology. Airborne studies were performed to ascertain system requirements necessary to detect laser-induced fluorescence from living terrestrial plants, to assess the practical acquisition of useful single-shot laser-induced fluorescence (LIF) waveforms over vegetative canopies, and to determine the comparative suitability of laser system, airborne platform, and terrestrial environmental parameters. The field experiment was conducted on May 3, 1982, over the northern portion of Wallops Island, VA. Attention is given to airborne lidar results and the description of laboratory investigations.

  19. Resistance Inducers Modulate Pseudomonas syringae pv. Tomato Strain DC3000 Response in Tomato Plants

    PubMed Central

    Scalschi, Loredana; Camañes, Gemma; Llorens, Eugenio; Fernández-Crespo, Emma; López, María M.; García-Agustín, Pilar; Vicedo, Begonya

    2014-01-01

    The efficacy of hexanoic acid (Hx) as an inducer of resistance in tomato plants against Pseudomonas syringae pv. tomato DC3000 was previously demonstrated, and the plant response was characterized. Because little is known about the reaction of the pathogen to this effect, the goal of the present work was to determine whether the changes in the plant defence system affect the pathogen behaviour. This work provides the first demonstration of the response of the pathogen to the changes observed in plants after Hx application in terms of not only the population size but also the transcriptional levels of genes involved in quorum sensing establishment and pathogenesis. Therefore, it is possible that Hx treatment attenuates the virulence and survival of bacteria by preventing or diminishing the appearance of symptoms and controlling the growth of the bacteria in the mesophyll. It is interesting to note that the gene transcriptional changes in the bacteria from the treated plants occur at the same time as the changes in the plants. Hx is able to alter bacteria pathogenesis and survival only when it is applied as a resistance inducer because the changes that it promotes in plants affect the bacteria. PMID:25244125

  20. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage

    PubMed Central

    Niinemets, Ülo; Kännaste, Astrid; Copolovici, Lucian

    2013-01-01

    Plants have to cope with a plethora of biotic stresses such as herbivory and pathogen attacks throughout their life cycle. The biotic stresses typically trigger rapid emissions of volatile products of lipoxygenase (LOX) pathway (LOX products: various C6 aldehydes, alcohols, and derivatives, also called green leaf volatiles) associated with oxidative burst. Further a variety of defense pathways is activated, leading to induction of synthesis and emission of a complex blend of volatiles, often including methyl salicylate, indole, mono-, homo-, and sesquiterpenes. The airborne volatiles are involved in systemic responses leading to elicitation of emissions from non-damaged plant parts. For several abiotic stresses, it has been demonstrated that volatile emissions are quantitatively related to the stress dose. The biotic impacts under natural conditions vary in severity from mild to severe, but it is unclear whether volatile emissions also scale with the severity of biotic stresses in a dose-dependent manner. Furthermore, biotic impacts are typically recurrent, but it is poorly understood how direct stress-triggered and systemic emission responses are silenced during periods intervening sequential stress events. Here we review the information on induced emissions elicited in response to biotic attacks, and argue that biotic stress severity vs. emission rate relationships should follow principally the same dose–response relationships as previously demonstrated for different abiotic stresses. Analysis of several case studies investigating the elicitation of emissions in response to chewing herbivores, aphids, rust fungi, powdery mildew, and Botrytis, suggests that induced emissions do respond to stress severity in dose-dependent manner. Bi-phasic emission kinetics of several induced volatiles have been demonstrated in these experiments, suggesting that next to immediate stress-triggered emissions, biotic stress elicited emissions typically have a secondary induction

  1. Melatonin mediates selenium-induced tolerance to cadmium stress in tomato plants.

    PubMed

    Li, Meng-Qi; Hasan, Md Kamrul; Li, Cai-Xia; Ahammed, Golam Jalal; Xia, Xiao-Jian; Shi, Kai; Zhou, Yan-Hong; Reiter, Russel J; Yu, Jing-Quan; Xu, Ming-Xing; Zhou, Jie

    2016-10-01

    Both selenium (Se) and melatonin reduce cadmium (Cd) uptake and mitigate Cd toxicity in plants. However, the relationship between Se and melatonin in Cd detoxification remains unclear. In this study, we investigated the influence of three forms of Se (selenocysteine, sodium selenite, and sodium selenate) on the biosynthesis of melatonin and the tolerance against Cd in tomato plants. Pretreatment with different forms of Se significantly induced the biosynthesis of melatonin and its precursors (tryptophan, tryptamine, and serotonin); selenocysteine had the most marked effect on melatonin biosynthesis. Furthermore, Se and melatonin supplements significantly increased plant Cd tolerance as evidenced by decreased growth inhibition, photoinhibition, and electrolyte leakage (EL). Se-induced Cd tolerance was compromised in melatonin-deficient plants following tryptophan decarboxylase (TDC) gene silencing. Se treatment increased the levels of glutathione (GSH) and phytochelatins (PCs), as well as the expression of GSH and PC biosynthetic genes in nonsilenced plants, but the effects of Se were compromised in TDC-silenced plants under Cd stress. In addition, Se and melatonin supplements reduced Cd content in leaves of nonsilenced plants, but Se-induced reduction in Cd content was compromised in leaves of TDC-silenced plants. Taken together, our results indicate that melatonin is involved in Se-induced Cd tolerance via the regulation of Cd detoxification. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels.

    PubMed

    Fatouros, Nina E; Lucas-Barbosa, Dani; Weldegergis, Berhane T; Pashalidou, Foteini G; van Loon, Joop J A; Dicke, Marcel; Harvey, Jeffrey A; Gols, Rieta; Huigens, Martinus E

    2012-01-01

    Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant's volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels.

  3. Plant growth-promoting rhizobacteria and root system functioning

    PubMed Central

    Vacheron, Jordan; Desbrosses, Guilhem; Bouffaud, Marie-Lara; Touraine, Bruno; Moënne-Loccoz, Yvan; Muller, Daniel; Legendre, Laurent; Wisniewski-Dyé, Florence; Prigent-Combaret, Claire

    2013-01-01

    The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture. PMID:24062756

  4. A specialist root herbivore reduces plant resistance and uses an induced plant volatile to aggregate in a density dependent manner

    USDA-ARS?s Scientific Manuscript database

    1. Leaf-herbivore attack often triggers induced resistance in plants. However, certain specialist herbivores can also take advantage of the induced metabolic changes. In some cases, they even manipulate plant resistance, leading to a phenomenon called induced susceptibility. Compared to above-ground...

  5. Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seedborne diseases of rice.

    PubMed

    Yoshioka, Yohei; Ichikawa, Haruki; Naznin, Hushna Ara; Kogure, Atsushi; Hyakumachi, Mitsuro

    2012-01-01

    Trichoderma asperellum SKT-1 is a microbial pesticide of seedborne diseases of rice. To investigate the mechanisms of disease suppression in SKT-1, the ability to induce systemic resistance by SKT-1, or its cell-free culture filtrate (CF), was tested using Arabidopsis thaliana Col-0 plants. Both SKT-1 and its CF elicit an induced systemic resistance against the bacterial leaf speck pathogen Pseudomonas syringae pv. tomato DC3000 in Col-0 plants. Involvement of plant hormones in the induced resistance by SKT-1 and CF was assessed using Arabidopsis genotypes such as the jasmonic acid (JA)-resistant mutant jar1, the ethylene (ET)-resistant mutant etr1, the plant impaired in salicylic acid (SA) signalling transgenic NahG and the mutant npr1 impaired in NPR1 activity. In soil experiments using SKT-1, no significant disease suppression effect was observed in NahG transgenic plants or npr1 mutant plants. Expression levels of SA-inducible genes such as PR-1, PR-2 and PR-5 increased substantially in the leaves of Col-0 plants. Expression levels of JA/ET-induced genes such as PDF1.2a, PR-3, PR-4 and AtVsp1 were also induced, but the levels were not as high as for SA-inducible genes. In a hydroponic experiment using CF from SKT-1, all Arabidopsis genotypes showed an induced systemic resistance by CF and increased expression levels of JA/ET- and SA-inducible genes in leaves of CF-treated plants. The SA signalling pathway is important in inducing systemic resistance to colonisation by SKT-1, and both SA and JA/ET signalling pathways combine in the signalling of induced resistance by CF. These results indicate that the response of A. thaliana is different from that found in root treatments with barley grain inoculum and CF from SKT-1. Copyright © 2011 Society of Chemical Industry.

  6. Predatory Mite Attraction to Herbivore-induced Plant Odors is not a Consequence of Attraction to Individual Herbivore-induced Plant Volatiles

    PubMed Central

    De Bruijn, Paulien J. A.; Sabelis, Maurice W.

    2008-01-01

    Predatory mites locate herbivorous mites, their prey, by the aid of herbivore-induced plant volatiles (HIPV). These HIPV differ with plant and/or herbivore species, and it is not well understood how predators cope with this variation. We hypothesized that predators are attracted to specific compounds in HIPV, and that they can identify these compounds in odor mixtures not previously experienced. To test this, we assessed the olfactory response of Phytoseiulus persimilis, a predatory mite that preys on the highly polyphagous herbivore Tetranychus urticae. The responses of the predatory mite to a dilution series of each of 30 structurally different compounds were tested. They mites responded to most of these compounds, but usually in an aversive way. Individual HIPV were no more attractive (or less repellent) than out-group compounds, i.e., volatiles not induced in plants fed upon by spider-mites. Only three samples were significantly attractive to the mites: octan-1-ol, not involved in indirect defense, and cis-3-hexen-1-ol and methyl salicylate, which are both induced by herbivory, but not specific for the herbivore that infests the plant. Attraction to individual compounds was low compared to the full HIPV blend from Lima bean. These results indicate that individual HIPV have no a priori meaning to the mites. Hence, there is no reason why they could profit from an ability to identify individual compounds in odor mixtures. Subsequent experiments confirmed that naive predatory mites do not prefer tomato HIPV, which included the attractive compound methyl salicylate, over the odor of an uninfested bean. However, upon associating each of these odors with food over a period of 15 min, both are preferred. The memory to this association wanes within 24 hr. We conclude that P. persimilis possesses a limited ability to identify individual spider mite-induced plant volatiles in odor mixtures. We suggest that predatory mites instead learn to respond to prey

  7. Cisgenesis strongly improves introgression breeding and induced translocation breeding of plants.

    PubMed

    Jacobsen, Evert; Schouten, Henk J

    2007-05-01

    There are two ways for genetic improvement in classical plant breeding: crossing and mutation. Plant varieties can also be improved through genetic modification; however, the present GMO regulations are based on risk assessments with the transgenes coming from non-crossable species. Nowadays, DNA sequence information of crop plants facilitates the isolation of cisgenes, which are genes from crop plants themselves or from crossable species. The increasing number of these isolated genes, and the development of transformation protocols that do not leave marker genes behind, provide an opportunity to improve plant breeding while remaining within the gene pool of the classical breeder. Compared with induced translocation and introgression breeding, cisgenesis is an improvement for gene transfer from crossable plants: it is a one-step gene transfer without linkage drag of other genes, whereas induced translocation and introgression breeding are multiple step gene transfer methods with linkage drag. The similarity of the genes used in cisgenesis compared with classical breeding is a compelling argument to treat cisgenic plants as classically bred plants. In the case of the classical breeding method induced translocation breeding, the insertion site of the genes is a priori unknown, as it is in cisgenesis. This provides another argument to treat cisgenic plants as classically bred plants, by exempting cisgenesis of plants from the GMO legislations.

  8. Plant Volatiles Induced by Herbivore Egg Deposition Affect Insects of Different Trophic Levels

    PubMed Central

    Fatouros, Nina E.; Lucas-Barbosa, Dani; Weldegergis, Berhane T.; Pashalidou, Foteini G.; van Loon, Joop J. A.; Dicke, Marcel; Harvey, Jeffrey A.; Gols, Rieta; Huigens, Martinus E.

    2012-01-01

    Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant’s volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels. PMID:22912893

  9. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity.

    PubMed

    Návarová, Hana; Bernsdorff, Friederike; Döring, Anne-Christin; Zeier, Jürgen

    2012-12-01

    Metabolic signals orchestrate plant defenses against microbial pathogen invasion. Here, we report the identification of the non-protein amino acid pipecolic acid (Pip), a common Lys catabolite in plants and animals, as a critical regulator of inducible plant immunity. Following pathogen recognition, Pip accumulates in inoculated Arabidopsis thaliana leaves, in leaves distal from the site of inoculation, and, most specifically, in petiole exudates from inoculated leaves. Defects of mutants in AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) in systemic acquired resistance (SAR) and in basal, specific, and β-aminobutyric acid-induced resistance to bacterial infection are associated with a lack of Pip production. Exogenous Pip complements these resistance defects and increases pathogen resistance of wild-type plants. We conclude that Pip accumulation is critical for SAR and local resistance to bacterial pathogens. Our data indicate that biologically induced SAR conditions plants to more effectively synthesize the phytoalexin camalexin, Pip, and salicylic acid and primes plants for early defense gene expression. Biological priming is absent in the pipecolate-deficient ald1 mutants. Exogenous pipecolate induces SAR-related defense priming and partly restores priming responses in ald1. We conclude that Pip orchestrates defense amplification, positive regulation of salicylic acid biosynthesis, and priming to guarantee effective local resistance induction and the establishment of SAR.

  10. Cation-induced coagulation of aquatic plant-derived dissolved organic matter: Investigation by EEM-PARAFAC and FT-IR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Interaction and coagulation of plant-derived dissolved organic matter (DOM) by metal cations are important biogeochemical processes of organic matter in lake systems. Thus, coagulation and fractionation of plant-derived DOM by di- and tri-valent Ca, Al, and Fe ions were investigated. Metal ion-induc...

  11. Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms.

    PubMed

    Hossain, Mohammad Anwar; Li, Zhong-Guang; Hoque, Tahsina Sharmin; Burritt, David J; Fujita, Masayuki; Munné-Bosch, Sergi

    2018-01-01

    Plants growing under field conditions are constantly exposed, either simultaneously or sequentially, to more than one abiotic stress factor. Plants have evolved sophisticated sensory systems to perceive a number of stress signals that allow them to activate the most adequate response to grow and survive in a given environment. Recently, cross-stress tolerance (i.e. tolerance to a second, strong stress after a different type of mild primary stress) has gained attention as a potential means of producing stress-resistant crops to aid with global food security. Heat or cold priming-induced cross-tolerance is very common in plants and often results from the synergistic co-activation of multiple stress signalling pathways, which involve reactive nitrogen species (RNS), reactive oxygen species (ROS), reactive carbonyl species (RCS), plant hormones and transcription factors. Recent studies have shown that the signalling functions of ROS, RNS and RCS, most particularly hydrogen peroxide, nitric oxide (NO) and methylglyoxal (MG), provide resistance to abiotic stresses and underpin cross-stress tolerance in plants by modulating the expression of genes as well as the post-translational modification of proteins. The current review highlights the key regulators and mechanisms underlying heat or cold priming-induced cross-stress tolerance in plants, with a focus on ROS, MG and NO signalling, as well as on the role of antioxidant and glyoxalase systems, osmolytes, heat-shock proteins (HSPs) and hormones. Our aim is also to provide a comprehensive idea on the topic for researchers using heat or cold priming-induced cross-tolerance as a mechanism to improve crop yields under multiple abiotic stresses.

  12. Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants.

    PubMed

    Hettenhausen, Christian; Li, Juan; Zhuang, Huifu; Sun, Huanhuan; Xu, Yuxing; Qi, Jinfeng; Zhang, Jingxiong; Lei, Yunting; Qin, Yan; Sun, Guiling; Wang, Lei; Baldwin, Ian T; Wu, Jianqiang

    2017-08-08

    Cuscuta spp. (i.e., dodders) are stem parasites that naturally graft to their host plants to extract water and nutrients; multiple adjacent hosts are often parasitized by one or more Cuscuta plants simultaneously, forming connected plant clusters. Metabolites, proteins, and mRNAs are known to be transferred from hosts to Cuscuta , and Cuscuta bridges even facilitate host-to-host virus movement. Whether Cuscuta bridges transmit ecologically meaningful signals remains unknown. Here we show that, when host plants are connected by Cuscuta bridges, systemic herbivory signals are transmitted from attacked plants to unattacked plants, as revealed by the large transcriptomic changes in the attacked local leaves, undamaged systemic leaves of the attacked plants, and leaves of unattacked but connected hosts. The interplant signaling is largely dependent on the jasmonic acid pathway of the damaged local plants, and can be found among conspecific or heterospecific hosts of different families. Importantly, herbivore attack of one host plant elevates defensive metabolites in the other systemic Cuscuta bridge-connected hosts, resulting in enhanced resistance against insects even in several consecutively Cuscuta -connected host plants over long distances (> 100 cm). By facilitating plant-to-plant signaling, Cuscuta provides an information-based means of countering the resource-based fitness costs to their hosts.

  13. Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants

    PubMed Central

    Hettenhausen, Christian; Li, Juan; Zhuang, Huifu; Sun, Huanhuan; Xu, Yuxing; Qi, Jinfeng; Zhang, Jingxiong; Lei, Yunting; Qin, Yan; Sun, Guiling; Wang, Lei; Baldwin, Ian T.

    2017-01-01

    Cuscuta spp. (i.e., dodders) are stem parasites that naturally graft to their host plants to extract water and nutrients; multiple adjacent hosts are often parasitized by one or more Cuscuta plants simultaneously, forming connected plant clusters. Metabolites, proteins, and mRNAs are known to be transferred from hosts to Cuscuta, and Cuscuta bridges even facilitate host-to-host virus movement. Whether Cuscuta bridges transmit ecologically meaningful signals remains unknown. Here we show that, when host plants are connected by Cuscuta bridges, systemic herbivory signals are transmitted from attacked plants to unattacked plants, as revealed by the large transcriptomic changes in the attacked local leaves, undamaged systemic leaves of the attacked plants, and leaves of unattacked but connected hosts. The interplant signaling is largely dependent on the jasmonic acid pathway of the damaged local plants, and can be found among conspecific or heterospecific hosts of different families. Importantly, herbivore attack of one host plant elevates defensive metabolites in the other systemic Cuscuta bridge-connected hosts, resulting in enhanced resistance against insects even in several consecutively Cuscuta-connected host plants over long distances (> 100 cm). By facilitating plant-to-plant signaling, Cuscuta provides an information-based means of countering the resource-based fitness costs to their hosts. PMID:28739895

  14. Caterpillar-induced plant volatiles attract conspecific adults in nature

    PubMed Central

    El-Sayed, Ashraf M.; Knight, Alan L.; Byers, John A.; Judd, Gary J. R.; Suckling, David M.

    2016-01-01

    Plants release volatiles in response to caterpillar feeding that attract natural enemies of the herbivores, a tri-trophic interaction which has been considered an indirect plant defence against herbivores. The caterpillar-induced plant volatiles have been reported to repel or attract conspecific adult herbivores. To date however, no volatile signals that either repel or attract conspecific adults under field conditions have been chemically identified. Apple seedlings uniquely released seven compounds including acetic acid, acetic anhydride, benzyl alcohol, benzyl nitrile, indole, 2-phenylethanol, and (E)-nerolidol only when infested by larvae of the light brown apple moth, Epiphyas postvittana. In field tests in New Zealand, a blend of two of these, benzyl nitrile and acetic acid, attracted a large number of conspecific male and female adult moths. In North America, male and female adults of the tortricid, oblique-banded leafroller, Choristoneura rosaceana, were most attracted to a blend of 2-phenylethanol and acetic acid. Both sexes of the eye-spotted bud moth, Spilonota ocellana, were highly attracted to a blend of benzyl nitrile and acetic acid. This study provides the first identification of caterpillar-induced plant volatiles that attract conspecific adult herbivores under natural conditions, challenging the expectation of herbivore avoidance of these induced volatiles. PMID:27892474

  15. High-level recombinant protein expression in transgenic plants by using a double-inducible viral vector

    PubMed Central

    Werner, Stefan; Breus, Oksana; Symonenko, Yuri; Marillonnet, Sylvestre; Gleba, Yuri

    2011-01-01

    We describe here a unique ethanol-inducible process for expression of recombinant proteins in transgenic plants. The process is based on inducible release of viral RNA replicons from stably integrated DNA proreplicons. A simple treatment with ethanol releases the replicon leading to RNA amplification and high-level protein production. To achieve tight control of replicon activation and spread in the uninduced state, the viral vector has been deconstructed, and its two components, the replicon and the cell-to-cell movement protein, have each been placed separately under the control of an inducible promoter. Transgenic Nicotiana benthamiana plants incorporating this double-inducible system demonstrate negligible background expression, high (over 0.5 × 104-fold) induction multiples, and high absolute levels of protein expression upon induction (up to 4.3 mg/g fresh biomass). The process can be easily scaled up, supports expression of practically important recombinant proteins, and thus can be directly used for industrial manufacturing. PMID:21825158

  16. Metabolism of Mevalonic Acid in Vegetative and Induced Plants of Xanthium strumarium.

    PubMed

    Bledsoe, C S

    1978-11-01

    The metabolism of mevalonic acid in Xanthium strumarium L. Chicago plants was studied to determine how mevalonate was metabolized and whether metabolism was related to induction of flowering. Leaves of vegetative, photoperiodically induced, and chemically inhibited cocklebur plants were supplied with [(14)C]mevalonic acid prior to or during a 16-hour inductive dark period. Vegetative, induced, and Tris(2-diethylaminoethyl)phosphate trihydrochloride-treated plants did not differ significantly in the amount of [(14)C]mevalonic acid they absorbed, nor in the distribution of radioactivity among the leaf blade (97%), petiole (2.3%), or shoot tip (0.7%). [(14)C]Mevalonic acid was rapidly metabolized and transported out of the leaves. Possible metabolites of mevalonate were mevalonic acid phosphates and sterols. No detectable (14)C was found in gibberellins, carotenoids, or the phytol alcohol of chlorophyll. Chemically inhibited plants accumulated (14)C compounds not found in vegetative or induced plants. When ethanol extracts of leaves, petioles, and buds were chromatographed, comparisons of chromatographic patterns did not show significant differences between vegetative and induced treatments.

  17. Turnabout Is Fair Play: Herbivory-Induced Plant Chitinases Excreted in Fall Armyworm Frass Suppress Herbivore Defenses in Maize1[OPEN

    PubMed Central

    Alves, Patrick C.M.S.; Gaffoor, Iffa; Acevedo, Flor E.; Peiffer, Michelle; Jin, Shan; Han, Yang; Shakeel, Samina; Felton, Gary W.

    2016-01-01

    The perception of herbivory by plants is known to be triggered by the deposition of insect-derived factors such as saliva and oral secretions, oviposition materials, and even feces. Such insect-derived materials harbor chemical cues that may elicit herbivore and/or pathogen-induced defenses in plants. Several insect-derived molecules that trigger herbivore-induced defenses in plants are known; however, insect-derived molecules suppressing them are largely unknown. In this study, we identified two plant chitinases from fall armyworm (Spodoptera frugiperda) larval frass that suppress herbivore defenses while simultaneously inducing pathogen defenses in maize (Zea mays). Fall armyworm larvae feed in enclosed whorls of maize plants, where frass accumulates over extended periods of time in close proximity to damaged leaf tissue. Our study shows that maize chitinases, Pr4 and Endochitinase A, are induced during herbivory and subsequently deposited on the host with the feces. These plant chitinases mediate the suppression of herbivore-induced defenses, thereby increasing the performance of the insect on the host. Pr4 and Endochitinase A also trigger the antagonistic pathogen defense pathway in maize and suppress fungal pathogen growth on maize leaves. Frass-induced suppression of herbivore defenses by deposition of the plant-derived chitinases Pr4 and Endochitinase A is a unique way an insect can co-opt the plant’s defense proteins for its own benefit. It is also a phenomenon unlike the induction of herbivore defenses by insect oral secretions in most host-herbivore systems. PMID:26979328

  18. Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants.

    PubMed

    Mostofa, Mohammad Golam; Hossain, Mohammad Anwar; Siddiqui, Md Nurealam; Fujita, Masayuki; Tran, Lam-Son

    2017-07-01

    The present study investigated the phenotypical, physiological and biochemical changes of rice plants exposed to high selenium (Se) concentrations to gain an insight into Se-induced phytotoxicity. Results showed that exposure of rice plants to excessive Se resulted in growth retardation and biomass reduction in connection with the decreased levels of chlorophyll, carotenoids and soluble proteins. The reduced water status and an associated increase in sugar and proline levels indicated Se-induced osmotic stress in rice plants. Measurements of Se contents in roots, leaf sheaths and leaves revealed that Se was highly accumulated in leaves followed by leaf sheaths and roots. Se also potentiated its toxicity by impairing oxidative metabolism, as evidenced by enhanced accumulation of hydrogen peroxide, superoxide and lipid peroxidation product. Se toxicity also displayed a desynchronized antioxidant system by elevating the level of glutathione and the activities of superoxide dismutase, glutathione-S-transferase and glutathione peroxidase, whereas decreasing the level of ascorbic acid and the activities of catalase, glutathione reductase and dehydroascorbate reductase. Furthermore, Se triggered methylglyoxal toxicity by inhibiting the activities of glyoxalases I and II, particularly at higher concentrations of Se. Collectively, our results suggest that excessive Se caused phytotoxic effects on rice plants by inducing chlorosis, reducing sugar, protein and antioxidant contents, and exacerbating oxidative stress and methylglyoxal toxicity. Accumulation levels of Se, proline and glutathione could be considered as efficient biomarkers to indicate degrees of Se-induced phytotoxicity in rice, and perhaps in other crops. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Plant age, communication, and resistance to herbivores: young sagebrush plants are better emitters and receivers.

    PubMed

    Shiojiri, Kaori; Karban, Richard

    2006-08-01

    Plants progress through a series of distinct stages during development, although the role of plant ontogeny in their defenses against herbivores is poorly understood. Recent work indicates that many plants activate systemic induced resistance after herbivore attack, although the relationship between resistance and ontogeny has not been a focus of this work. In addition, for sagebrush and a few other species, individuals near neighbors that experience simulated herbivory become more resistant to subsequent attack. Volatile, airborne cues are required for both systemic induced resistance among branches and for communication among individuals. We conducted experiments in stands of sagebrush of mixed ages to determine effects of plant age on volatile signaling between branches and individuals. Young and old control plants did not differ in levels of chewing damage that they experienced. Systemic induced resistance among branches was only observed for young plants. Young plants showed strong evidence of systemic resistance only if airflow was permitted among branches; plants with only vascular connections showed no systemic resistance. We also found evidence for volatile communication between individuals. For airborne communication, young plants were more effective emitters of cues as well as more responsive receivers of volatile cues.

  20. Phytohormone profiles induced by trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants.

    PubMed

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A; Van Wees, Saskia C M

    2014-07-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the phytohormonal network of their host plant, thus leading to an improvement of plant growth and stress tolerance. In this study, we tested whether alterations in the phytohormone signature induced by different Trichoderma isolates correspond with their ability for biocontrol and growth promotion. Four Trichoderma isolates were collected from agricultural soils and were identified as the species Trichoderma harzianum (two isolates), Trichoderma ghanense, and Trichoderma hamatum. Their antagonistic activity against the plant pathogen Fusarium oxysporum f. sp. melonis was tested in vitro, and their plant growth-promoting and biocontrol activity against Fusarium wilt on melon plants was examined in vivo, and compared to that of the commercial strain T. harzianum T-22. Several growth- and defense-related phytohormones were analyzed in the shoots of plants that were root-colonized by the different Trichoderma isolates. An increase in auxin and a decrease in cytokinins and abscisic acid content were induced by the isolates that promoted the plant growth. Principal component analysis (PCA) was used to evaluate the relationship between the plant phenotypic and hormonal variables. PCA pointed to a strong association of auxin induction with plant growth stimulation by Trichoderma. Furthermore, the disease-protectant ability of the Trichoderma strains against F. oxysporum infection seems to be more related to their induced alterations in the content of the hormones abscisic acid, ethylene, and the cytokinin trans-zeatin riboside than to the in vitro antagonism activity against F. oxysporum.

  1. Jasmonate-induced responses are costly but benefit plants under attack in native populations

    PubMed Central

    Baldwin, Ian T.

    1998-01-01

    Herbivore attack is widely known to reduce food quality and to increase chemical defenses and other traits responsible for herbivore resistance. Inducible defenses are commonly thought to allow plants to forgo the costs of defense when not needed; however, neither their defensive function (increasing a plant’s fitness) nor their cost-savings function have been demonstrated in nature. The root-produced toxin nicotine increases after herbivore attack in the native, postfire annual Nicotiana attenuata and is internally activated by the wound hormone, jasmonic acid. I treated the roots of plants with the methyl ester of this hormone (MeJA) to elicit a response in one member of each of 745 matched pairs of plants growing in native populations with different probabilities of attack from herbivores, and measured the lifetime production of viable seed. In populations with intermediate rates of attack, induced plants were attacked less often by herbivores and survived to produce more seed than did their uninduced counterparts. Previous induction did not significantly increase the fitness of plants suffering high rates of attack. However, if plants had not been attacked, induced plants produced less seed than did their uninduced counterparts. Jasmonate-induced responses function as defenses but are costly, and inducibility allows this species to forgo these costs when the defenses are unnecessary. PMID:9653149

  2. Penicillium sp. mitigates Fusarium-induced biotic stress in sesame plants.

    PubMed

    Radhakrishnan, Ramalingam; Pae, Suk-Bok; Shim, Kang-Bo; Baek, In-Youl

    2013-07-01

    Fusarium-infected sesame plants have significantly higher contents of amino acids (Asp, Thr, Ser, Asn, Glu, Gly, Ala, Val, Met, Ile, Leu, Tyr, Phe, Lys, His, Try, Arg, and Pro), compared with their respective levels in the healthy control. These higher levels of amino acids induced by Fusarium infection were decreased when Penicillium was co-inoculated with Fusarium. Compared with the control, Fusarium-infected plants showed higher contents of palmitic (8%), stearic (8%), oleic (7%), and linolenic acids (4%), and lower contents of oil (4%) and linoleic acid (11%). Co-inoculation with Penicillium mitigated the Fusarium-induced changes in fatty acids. The total chlorophyll content was lower in Fusarium- and Penicillium-infected plants than in the healthy control. The accumulation of carotenoids and γ-amino butyric acid in Fusarium-infected plants was slightly decreased by co-inoculation with Penicillium. Sesamin and sesamolin contents were higher in Penicillium- and Fusarium- infected plants than in the control. To clarify the mechanism of the biocontrol effect of Penicillium against Fusarium by evaluating changes in primary and secondary metabolite contents in sesame plants.

  3. Eco-evolutionary factors drive induced plant volatiles: a meta-analysis.

    PubMed

    Rowen, Elizabeth; Kaplan, Ian

    2016-04-01

    Herbivore-induced plant volatiles (HIPVs) mediate critical ecological functions, but no studies have quantitatively synthesized data published on HIPVs to evaluate broad patterns. We tested three hypotheses that use eco-evolutionary theory to predict volatile induction: feeding guild (chewing arthropods > sap feeders), diet breadth (specialist herbivores > generalists), and selection history (domesticated plants < wild species). To test these hypotheses, we extracted data from 236 experiments that report volatiles produced by herbivore-damaged and undamaged plants. These data were subjected to meta-analysis, including effects on total volatiles and major biochemical classes. Overall, we found that chewers induced more volatiles than sap feeders, for both total volatiles and most volatile classes (e.g. green leaf volatiles, monoterpenes). Although specialist herbivores induced more total volatiles than generalists, this was inconsistent across chemical classes. Contrary to our expectation, domesticated species induced stronger volatile responses than wild species, even when controlling for plant taxonomy. Surprisingly, this is the first quantitative synthesis of published studies on HIPVs. Our analysis provides support for perceptions in the published literature (chewers > sap feeders), while challenging other commonly held notions (wild > crop). Despite the large number of experiments, we identified several gaps in the existing literature that should guide future investigations. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Paenibacillus pabuli strain P7S promotes plant growth and induces anthocyanin accumulation in Arabidopsis thaliana.

    PubMed

    Trinh, Cao Son; Jeong, Chan Young; Lee, Won Je; Truong, Hai An; Chung, Namhyun; Han, Juhyeong; Hong, Suk-Whan; Lee, Hojoung

    2018-06-01

    In this study, a novel plant growth-promoting rhizobacteria (PGPR), the bacterial strain Paenibacillus pabuli P7S (PP7S), showed promising plant growth-promoting effects. Furthermore, it induced anthocyanin accumulation in Arabidopsis. When co-cultivated with PP7S, there was a significant increase in anthocyanin content and biomass of Arabidopsis seedlings compared with those of the control. The quantitative reverse transcription-polymerase chain reaction analysis revealed higher expression of many key genes regulating anthocyanin and flavonoid biosynthesis pathways in PP7S-treated seedlings when compared with that of the control. Furthermore, higher expression of pathogen-related genes and microbe-associated molecular pattern genes was also observed in response to PP7S, indicating that the PGPR triggered the induced systemic response (ISR) in A. thaliana. These results suggest that PP7S promotes plant growth in A. thaliana and increases anthocyanin biosynthesis by triggering specific ISRs in plant. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Microcystin-LR and Cylindrospermopsin Induced Alterations in Chromatin Organization of Plant Cells

    PubMed Central

    Máthé, Csaba; M-Hamvas, Márta; Vasas, Gábor

    2013-01-01

    Cyanobacteria produce metabolites with diverse bioactivities, structures and pharmacological properties. The effects of microcystins (MCYs), a family of peptide type protein-phosphatase inhibitors and cylindrospermopsin (CYN), an alkaloid type of protein synthesis blocker will be discussed in this review. We are focusing mainly on cyanotoxin-induced changes of chromatin organization and their possible cellular mechanisms. The particularities of plant cells explain the importance of such studies. Preprophase bands (PPBs) are premitotic cytoskeletal structures important in the determination of plant cell division plane. Phragmoplasts are cytoskeletal structures involved in plant cytokinesis. Both cyanotoxins induce the formation of multipolar spindles and disrupted phragmoplasts, leading to abnormal sister chromatid segregation during mitosis. Thus, MCY and CYN are probably inducing alterations of chromosome number. MCY induces programmed cell death: chromatin condensation, nucleus fragmentation, necrosis, alterations of nuclease and protease enzyme activities and patterns. The above effects may be related to elevated reactive oxygen species (ROS) and/or disfunctioning of microtubule associated proteins. Specific effects: MCY-LR induces histone H3 hyperphosphorylation leading to incomplete chromatid segregation and the formation of micronuclei. CYN induces the formation of split or double PPB directly related to protein synthesis inhibition. Cyanotoxins are powerful tools in the study of plant cell organization. PMID:24084787

  6. An Automated and Continuous Plant Weight Measurement System for Plant Factory

    PubMed Central

    Chen, Wei-Tai; Yeh, Yu-Hui F.; Liu, Ting-Yu; Lin, Ta-Te

    2016-01-01

    In plant factories, plants are usually cultivated in nutrient solution under a controllable environment. Plant quality and growth are closely monitored and precisely controlled. For plant growth evaluation, plant weight is an important and commonly used indicator. Traditional plant weight measurements are destructive and laborious. In order to measure and record the plant weight during plant growth, an automated measurement system was designed and developed herein. The weight measurement system comprises a weight measurement device and an imaging system. The weight measurement device consists of a top disk, a bottom disk, a plant holder and a load cell. The load cell with a resolution of 0.1 g converts the plant weight on the plant holder disk to an analog electrical signal for a precise measurement. The top disk and bottom disk are designed to be durable for different plant sizes, so plant weight can be measured continuously throughout the whole growth period, without hindering plant growth. The results show that plant weights measured by the weight measurement device are highly correlated with the weights estimated by the stereo-vision imaging system; hence, plant weight can be measured by either method. The weight growth of selected vegetables growing in the National Taiwan University plant factory were monitored and measured using our automated plant growth weight measurement system. The experimental results demonstrate the functionality, stability and durability of this system. The information gathered by this weight system can be valuable and beneficial for hydroponic plants monitoring research and agricultural research applications. PMID:27066040

  7. An Automated and Continuous Plant Weight Measurement System for Plant Factory.

    PubMed

    Chen, Wei-Tai; Yeh, Yu-Hui F; Liu, Ting-Yu; Lin, Ta-Te

    2016-01-01

    In plant factories, plants are usually cultivated in nutrient solution under a controllable environment. Plant quality and growth are closely monitored and precisely controlled. For plant growth evaluation, plant weight is an important and commonly used indicator. Traditional plant weight measurements are destructive and laborious. In order to measure and record the plant weight during plant growth, an automated measurement system was designed and developed herein. The weight measurement system comprises a weight measurement device and an imaging system. The weight measurement device consists of a top disk, a bottom disk, a plant holder and a load cell. The load cell with a resolution of 0.1 g converts the plant weight on the plant holder disk to an analog electrical signal for a precise measurement. The top disk and bottom disk are designed to be durable for different plant sizes, so plant weight can be measured continuously throughout the whole growth period, without hindering plant growth. The results show that plant weights measured by the weight measurement device are highly correlated with the weights estimated by the stereo-vision imaging system; hence, plant weight can be measured by either method. The weight growth of selected vegetables growing in the National Taiwan University plant factory were monitored and measured using our automated plant growth weight measurement system. The experimental results demonstrate the functionality, stability and durability of this system. The information gathered by this weight system can be valuable and beneficial for hydroponic plants monitoring research and agricultural research applications.

  8. Plant training for induced defense against insect pests: a promising tool for integrated pest management in cotton.

    PubMed

    Llandres, Ana L; Almohamad, Raki; Brévault, Thierry; Renou, Alain; Téréta, Idrissa; Jean, Janine; Goebel, François-Regis

    2018-04-17

    Enhancing cotton pest management using plant natural defenses has been described as a promising way to improve the management of crop pests. We here reviewed different studies on cotton growing systems to illustrate how an ancient technique called plant training, which includes plant topping and pruning, may contribute to this goal. Based on examples from cotton crops, we show how trained plants could be promoted to a state of enhanced defense that causes faster and more robust activation of their defense responses. We revisit agricultural benefits associated to this technique in cotton crops, with a focus on its potential as a supplementary tool for Integrated Pest Management (IPM). Particularly, we examine its role in mediating plant interactions with conspecific neighboring plants, pests and associated natural enemies. We propose a new IPM tool, plant training for induced defense, which involves inducing plant defense by artificial injuries. Experimental evidence from various studies shows that cotton training is a promising technique, particularly for smallholders, which can be used as part of an IPM program to significantly reduce insecticide use and to improve productivity in cotton farming. This article is protected by copyright. All rights reserved.

  9. Protein body-inducing fusions for high-level production and purification of recombinant proteins in plants.

    PubMed

    Conley, Andrew J; Joensuu, Jussi J; Richman, Alex; Menassa, Rima

    2011-05-01

    For the past two decades, therapeutic and industrially important proteins have been expressed in plants with varying levels of success. The two major challenges hindering the economical production of plant-made recombinant proteins include inadequate accumulation levels and the lack of efficient purification methods. To address these limitations, several fusion protein strategies have been recently developed to significantly enhance the production yield of plant-made recombinant proteins, while simultaneously assisting in their subsequent purification. Elastin-like polypeptides are thermally responsive biopolymers composed of a repeating pentapeptide 'VPGXG' sequence that are valuable for the purification of recombinant proteins. Hydrophobins are small fungal proteins capable of altering the hydrophobicity of their respective fusion partner, thus enabling efficient purification by surfactant-based aqueous two-phase systems. Zera, a domain of the maize seed storage protein γ-zein, can induce the formation of protein storage bodies, thus facilitating the recovery of fused proteins using density-based separation methods. These three novel protein fusion systems have also been shown to enhance the accumulation of a range of different recombinant proteins, while concurrently inducing the formation of protein bodies. The packing of these fusion proteins into protein bodies may exclude the recombinant protein from normal physiological turnover. Furthermore, these systems allow for quick, simple and inexpensive nonchromatographic purification of the recombinant protein, which can be scaled up to industrial levels of protein production. This review will focus on the similarities and differences of these artificial storage organelles, their biogenesis and their implication for the production of recombinant proteins in plants and their subsequent purification. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied

  10. The CRISPR-Cas system for plant genome editing: advances and opportunities.

    PubMed

    Kumar, Vinay; Jain, Mukesh

    2015-01-01

    Genome editing is an approach in which a specific target DNA sequence of the genome is altered by adding, removing, or replacing DNA bases. Artificially engineered hybrid enzymes, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), and the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated protein) system are being used for genome editing in various organisms including plants. The CRISPR-Cas system has been developed most recently and seems to be more efficient and less time-consuming compared with ZFNs or TALENs. This system employs an RNA-guided nuclease, Cas9, to induce double-strand breaks. The Cas9-mediated breaks are repaired by cellular DNA repair mechanisms and mediate gene/genome modifications. Here, we provide a detailed overview of the CRISPR-Cas system and its adoption in different organisms, especially plants, for various applications. Important considerations and future opportunities for deployment of the CRISPR-Cas system in plants for numerous applications are also discussed. Recent investigations have revealed the implications of the CRISPR-Cas system as a promising tool for targeted genetic modifications in plants. This technology is likely to be more commonly adopted in plant functional genomics studies and crop improvement in the near future. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Pathogen Phytosensing: Plants to Report Plant Pathogens.

    PubMed

    Mazarei, Mitra; Teplova, Irina; Hajimorad, M Reza; Stewart, C Neal

    2008-04-14

    Real-time systems that provide evidence of pathogen contamination in crops can be an important new line of early defense in agricultural centers. Plants possess defense mechanisms to protect against pathogen attack. Inducible plant defense is controlled by signal transduction pathways, inducible promoters and cis-regulatory elements corresponding to key genes involved in defense, and pathogen-specific responses. Identified inducible promoters and cis-acting elements could be utilized in plant sentinels, or 'phytosensors', by fusing these to reporter genes to produce plants with altered phenotypes in response to the presence of pathogens. Here, we have employed cis-acting elements from promoter regions of pathogen inducible genes as well as those responsive to the plant defense signal molecules salicylic acid, jasmonic acid, and ethylene. Synthetic promoters were constructed by combining various regulatory elements supplemented with the enhancer elements from the Cauliflower mosaic virus (CaMV) 35S promoter to increase basal level of the GUS expression. The inducibility of each synthetic promoter was first assessed in transient expression assays using Arabidopsis thaliana protoplasts and then examined for efficacy in stably transgenic Arabidopsis and tobacco plants. Histochemical and fluorometric GUS expression analyses showed that both transgenic Arabidopsis and tobacco plants responded to elicitor and phytohormone treatments with increased GUS expression when compared to untreated plants. Pathogen-inducible phytosensor studies were initiated by analyzing the sensitivity of the synthetic promoters against virus infection. Transgenic tobacco plants infected with Alfalfa mosaic virus showed an increase in GUS expression when compared to mock-inoculated control plants, whereas Tobacco mosaic virus infection caused no changes in GUS expression. Further research, using these transgenic plants against a range of different pathogens with the regulation of detectable

  12. Pathogen Phytosensing: Plants to Report Plant Pathogens

    PubMed Central

    Mazarei, Mitra; Teplova, Irina; Hajimorad, M. Reza; Stewart, C. Neal

    2008-01-01

    Real-time systems that provide evidence of pathogen contamination in crops can be an important new line of early defense in agricultural centers. Plants possess defense mechanisms to protect against pathogen attack. Inducible plant defense is controlled by signal transduction pathways, inducible promoters and cis-regulatory elements corresponding to key genes involved in defense, and pathogen-specific responses. Identified inducible promoters and cis-acting elements could be utilized in plant sentinels, or ‘phytosensors’, by fusing these to reporter genes to produce plants with altered phenotypes in response to the presence of pathogens. Here, we have employed cis-acting elements from promoter regions of pathogen inducible genes as well as those responsive to the plant defense signal molecules salicylic acid, jasmonic acid, and ethylene. Synthetic promoters were constructed by combining various regulatory elements supplemented with the enhancer elements from the Cauliflower mosaic virus (CaMV) 35S promoter to increase basal level of the GUS expression. The inducibility of each synthetic promoter was first assessed in transient expression assays using Arabidopsis thaliana protoplasts and then examined for efficacy in stably transgenic Arabidopsis and tobacco plants. Histochemical and fluorometric GUS expression analyses showed that both transgenic Arabidopsis and tobacco plants responded to elicitor and phytohormone treatments with increased GUS expression when compared to untreated plants. Pathogen-inducible phytosensor studies were initiated by analyzing the sensitivity of the synthetic promoters against virus infection. Transgenic tobacco plants infected with Alfalfa mosaic virus showed an increase in GUS expression when compared to mock-inoculated control plants, whereas Tobacco mosaic virus infection caused no changes in GUS expression. Further research, using these transgenic plants against a range of different pathogens with the regulation of detectable

  13. Towards mastering CRISPR-induced gene knock-in in plants: Survey of key features and focus on the model Physcomitrella patens.

    PubMed

    Collonnier, Cécile; Guyon-Debast, Anouchka; Maclot, François; Mara, Kostlend; Charlot, Florence; Nogué, Fabien

    2017-05-15

    Beyond its predominant role in human and animal therapy, the CRISPR-Cas9 system has also become an essential tool for plant research and plant breeding. Agronomic applications rely on the mastery of gene inactivation and gene modification. However, if the knock-out of genes by non-homologous end-joining (NHEJ)-mediated repair of the targeted double-strand breaks (DSBs) induced by the CRISPR-Cas9 system is rather well mastered, the knock-in of genes by homology-driven repair or end-joining remains difficult to perform efficiently in higher plants. In this review, we describe the different approaches that can be tested to improve the efficiency of CRISPR-induced gene modification in plants, which include the use of optimal transformation and regeneration protocols, the design of appropriate guide RNAs and donor templates and the choice of nucleases and means of delivery. We also present what can be done to orient DNA repair pathways in the target cells, and we show how the moss Physcomitrella patens can be used as a model plant to better understand what DNA repair mechanisms are involved, and how this knowledge could eventually be used to define more performant strategies of CRISPR-induced gene knock-in. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Kainic Acid-Induced Excitotoxicity Experimental Model: Protective Merits of Natural Products and Plant Extracts

    PubMed Central

    Mohd Sairazi, Nur Shafika; Sirajudeen, K. N. S.; Asari, Mohd Asnizam; Muzaimi, Mustapha; Mummedy, Swamy; Sulaiman, Siti Amrah

    2015-01-01

    Excitotoxicity is well recognized as a major pathological process of neuronal death in neurodegenerative diseases involving the central nervous system (CNS). In the animal models of neurodegeneration, excitotoxicity is commonly induced experimentally by chemical convulsants, particularly kainic acid (KA). KA-induced excitotoxicity in rodent models has been shown to result in seizures, behavioral changes, oxidative stress, glial activation, inflammatory mediator production, endoplasmic reticulum stress, mitochondrial dysfunction, and selective neurodegeneration in the brain upon KA administration. Recently, there is an emerging trend to search for natural sources to combat against excitotoxicity-associated neurodegenerative diseases. Natural products and plant extracts had attracted a considerable amount of attention because of their reported beneficial effects on the CNS, particularly their neuroprotective effect against excitotoxicity. They provide significant reduction and/or protection against the development and progression of acute and chronic neurodegeneration. This indicates that natural products and plants extracts may be useful in protecting against excitotoxicity-associated neurodegeneration. Thus, targeting of multiple pathways simultaneously may be the strategy to maximize the neuroprotection effect. This review summarizes the mechanisms involved in KA-induced excitotoxicity and attempts to collate the various researches related to the protective effect of natural products and plant extracts in the KA model of neurodegeneration. PMID:26793262

  15. Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds.

    PubMed

    Oliveira, D C; Isaias, R M S; Fernandes, G W; Ferreira, B G; Carneiro, R G S; Fuzaro, L

    2016-01-01

    Biologists who study insect-induced plant galls are faced with the overwhelming diversity of plant forms and insect species. A challenge is to find common themes amidst this diversity. We discuss common themes that have emerged from our cytological and histochemical studies of diverse neotropical insect-induced galls. Gall initiation begins with recognition of reactive plant tissues by gall inducers, with subsequent feeding and/or oviposition triggering a cascade of events. Besides, to induce the gall structure insects have to synchronize their life cycle with plant host phenology. We predict that reactive oxygen species (ROS) play a role in gall induction, development and histochemical gradient formation. Controlled levels of ROS mediate the accumulation of (poly)phenols, and phytohormones (such as auxin) at gall sites, which contributes to the new cell developmental pathways and biochemical alterations that lead to gall formation. The classical idea of an insect-induced gall is a chamber lined with a nutritive tissue that is occupied by an insect that directly harvests nutrients from nutritive cells via its mouthparts, which function mechanically and/or as a delivery system for salivary secretions. By studying diverse gall-inducing insects we have discovered that insects with needle-like sucking mouthparts may also induce a nutritive tissue, whose nutrients are indirectly harvested as the gall-inducing insects feeds on adjacent vascular tissues. Activity of carbohydrate-related enzymes across diverse galls corroborates this hypothesis. Our research points to the importance of cytological and histochemical studies for elucidating mechanisms of induced susceptibility and induced resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Metabolism of Mevalonic Acid in Vegetative and Induced Plants of Xanthium strumarium 1

    PubMed Central

    Bledsoe, Caroline S.; Ross, Cleon W.

    1978-01-01

    The metabolism of mevalonic acid in Xanthium strumarium L. Chicago plants was studied to determine how mevalonate was metabolized and whether metabolism was related to induction of flowering. Leaves of vegetative, photoperiodically induced, and chemically inhibited cocklebur plants were supplied with [14C]mevalonic acid prior to or during a 16-hour inductive dark period. Vegetative, induced, and Tris(2-diethylaminoethyl)phosphate trihydrochloride-treated plants did not differ significantly in the amount of [14C]mevalonic acid they absorbed, nor in the distribution of radioactivity among the leaf blade (97%), petiole (2.3%), or shoot tip (0.7%). [14C]Mevalonic acid was rapidly metabolized and transported out of the leaves. Possible metabolites of mevalonate were mevalonic acid phosphates and sterols. No detectable 14C was found in gibberellins, carotenoids, or the phytol alcohol of chlorophyll. Chemically inhibited plants accumulated 14C compounds not found in vegetative or induced plants. When ethanol extracts of leaves, petioles, and buds were chromatographed, comparisons of chromatographic patterns did not show significant differences between vegetative and induced treatments. ImagesFig. 1 PMID:16660583

  17. Pipecolic Acid, an Endogenous Mediator of Defense Amplification and Priming, Is a Critical Regulator of Inducible Plant Immunity[W

    PubMed Central

    Návarová, Hana; Bernsdorff, Friederike; Döring, Anne-Christin; Zeier, Jürgen

    2012-01-01

    Metabolic signals orchestrate plant defenses against microbial pathogen invasion. Here, we report the identification of the non-protein amino acid pipecolic acid (Pip), a common Lys catabolite in plants and animals, as a critical regulator of inducible plant immunity. Following pathogen recognition, Pip accumulates in inoculated Arabidopsis thaliana leaves, in leaves distal from the site of inoculation, and, most specifically, in petiole exudates from inoculated leaves. Defects of mutants in AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) in systemic acquired resistance (SAR) and in basal, specific, and β-aminobutyric acid–induced resistance to bacterial infection are associated with a lack of Pip production. Exogenous Pip complements these resistance defects and increases pathogen resistance of wild-type plants. We conclude that Pip accumulation is critical for SAR and local resistance to bacterial pathogens. Our data indicate that biologically induced SAR conditions plants to more effectively synthesize the phytoalexin camalexin, Pip, and salicylic acid and primes plants for early defense gene expression. Biological priming is absent in the pipecolate-deficient ald1 mutants. Exogenous pipecolate induces SAR-related defense priming and partly restores priming responses in ald1. We conclude that Pip orchestrates defense amplification, positive regulation of salicylic acid biosynthesis, and priming to guarantee effective local resistance induction and the establishment of SAR. PMID:23221596

  18. Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants.

    PubMed

    Das, Subha Narayan; Madhuprakash, Jogi; Sarma, P V S R N; Purushotham, Pallinti; Suma, Katta; Manjeet, Kaur; Rambabu, Samudrala; Gueddari, Nour Eddine El; Moerschbacher, Bruno M; Podile, Appa Rao

    2015-03-01

    Plants have evolved mechanisms to recognize a wide range of pathogen-derived molecules and to express induced resistance against pathogen attack. Exploitation of induced resistance, by application of novel bioactive elicitors, is an attractive alternative for crop protection. Chitooligosaccharide (COS) elicitors, released during plant fungal interactions, induce plant defenses upon recognition. Detailed analyses of structure/function relationships of bioactive chitosans as well as recent progress towards understanding the mechanism of COS sensing in plants through the identification and characterization of their cognate receptors have generated fresh impetus for approaches that would induce innate immunity in plants. These progresses combined with the application of chitin/chitosan/COS in disease management are reviewed here. In considering the field application of COS, however, efficient and large-scale production of desired COS is a challenging task. The available methods, including chemical or enzymatic hydrolysis and chemical or biotechnological synthesis to produce COS, are also reviewed.

  19. The Effects of Abiotic Factors on Induced Volatile Emissions in Corn Plants1

    PubMed Central

    Gouinguené, Sandrine P.; Turlings, Ted C.J.

    2002-01-01

    Many plants respond to herbivory by releasing a specific blend of volatiles that is attractive to natural enemies of the herbivores. In corn (Zea mays), this induced odor blend is mainly composed of terpenoids and indole. The induced signal varies with plant species and genotype, but little is known about the variation due to abiotic factors. Here, we tested the effect of soil humidity, air humidity, temperature, light, and fertilization rate on the emission of induced volatiles in young corn plants. Each factor was tested separately under constant conditions for the other factors. Plants released more when standing in dry soil than in wet soil, whereas for air humidity, the optimal release was found at around 60% relative humidity. Temperatures between 22°C and 27°C led to a higher emission than lower or higher temperatures. Light intensity had a dramatic effect. The emission of volatiles did not occur in the dark and increased steadily with an increase in the light intensity. An experiment with an unnatural light-dark cycle showed that the release was fully photophase dependent. Fertilization also had a strong positive effect; the emission of volatiles was minimal when plants were grown under low nutrition, even when results were corrected for plant biomass. Changes in all abiotic factors caused small but significant changes in the relative ratios among the different compounds (quality) in the induced odor blends, except for air humidity. Hence, climatic conditions and nutrient availability can be important factors in determining the intensity and variability in the release of induced plant volatiles. PMID:12114583

  20. Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions.

    PubMed

    Bellés, José M; Garro, Rafael; Pallás, Vicente; Fayos, Joaquín; Rodrigo, Ismael; Conejero, Vicente

    2006-02-01

    In the present work we have studied the accumulation of gentisic acid (2,5-dihydroxybenzoic acid, a metabolic derivative of salicylic acid, SA) in the plant-pathogen systems, Cucumis sativus and Gynura aurantiaca, infected with either prunus necrotic ringspot virus (PNRSV) or the exocortis viroid (CEVd), respectively. Both pathogens produced systemic infections and accumulated large amounts of the intermediary signal molecule gentisic acid as ascertained by electrospray ionization mass spectrometry (ESI-MS) coupled on line with high performance liquid chromatography (HPLC). The compound was found mostly in a conjugated (beta-glucoside) form. Gentisic acid has also been found to accumulate (although at lower levels) in cucumber inoculated with low doses of Pseudomonas syringae pv. tomato, producing a nonnecrotic reaction. In contrast, when cucumber was inoculated with high doses of this pathogen, a hypersensitive reaction occurred, but no gentisic-acid signal was induced. This is consistent with our results supporting the idea that gentisic-acid signaling may be restricted to nonnecrotizing reactions of the host plant (Bellés et al. in Mol Plant-Microbe Interact 12:227-235, 1999). In cucumber and Gynura plants, the activity of gentisic acid as inducing signal was different to that of SA, thus confirming the data found for tomato. Exogenously supplied gentisic acid was able to induce peroxidase activity in both Gynura and cucumber plants in a similar way as SA or pathogens. However, gentisic-acid treatments strongly induced polyphenol oxidase activity in cucumber, whereas pathogen infection or SA treatment resulted in a lower induction of this enzyme. Nevertheless, gentisic acid did not induce other defensive proteins which are induced by SA in these plants. This indicates that gentisic acid could act as an additional signal to SA for the activation of plant defenses in cucumber and Gynura plants.

  1. Independent Effects of a Herbivore's Bacterial Symbionts on Its Performance and Induced Plant Defences.

    PubMed

    Staudacher, Heike; Schimmel, Bernardus C J; Lamers, Mart M; Wybouw, Nicky; Groot, Astrid T; Kant, Merijn R

    2017-01-18

    It is well known that microbial pathogens and herbivores elicit defence responses in plants. Moreover, microorganisms associated with herbivores, such as bacteria or viruses, can modulate the plant's response to herbivores. Herbivorous spider mites can harbour different species of bacterial symbionts and exert a broad range of effects on host-plant defences. Hence, we tested the extent to which such symbionts affect the plant's defences induced by their mite host and assessed if this translates into changes in plant resistance. We assessed the bacterial communities of two strains of the common mite pest Tetranychus urticae . We found that these strains harboured distinct symbiotic bacteria and removed these using antibiotics. Subsequently, we tested to which extent mites with and without symbiotic bacteria induce plant defences in terms of phytohormone accumulation and defence gene expression, and assessed mite oviposition and survival as a measure for plant resistance. We observed that the absence/presence of these bacteria altered distinct plant defence parameters and affected mite performance but we did not find indications for a causal link between the two. We argue that although bacteria-related effects on host-induced plant defences may occur, these do not necessarily affect plant resistance concomitantly.

  2. Genotoxin induced mutagenesis in the model plant Physcomitrella patens.

    PubMed

    Holá, Marcela; Kozák, Jaroslav; Vágnerová, Radka; Angelis, Karel J

    2013-01-01

    The moss Physcomitrella patens is unique for the high frequency of homologous recombination, haploid state, and filamentous growth during early stages of the vegetative growth, which makes it an excellent model plant to study DNA damage responses. We used single cell gel electrophoresis (comet) assay to determine kinetics of response to Bleomycin induced DNA oxidative damage and single and double strand breaks in wild type and mutant lig4 Physcomitrella lines. Moreover, APT gene when inactivated by induced mutations was used as selectable marker to ascertain mutational background at nucleotide level by sequencing of the APT locus. We show that extensive repair of DSBs occurs also in the absence of the functional LIG4, whereas repair of SSBs is seriously compromised. From analysis of induced mutations we conclude that their accumulation rather than remaining lesions in DNA and blocking progression through cell cycle is incompatible with normal plant growth and development and leads to sensitive phenotype.

  3. Genotoxin Induced Mutagenesis in the Model Plant Physcomitrella patens

    PubMed Central

    Holá, Marcela; Kozák, Jaroslav; Vágnerová, Radka; Angelis, Karel J.

    2013-01-01

    The moss Physcomitrella patens is unique for the high frequency of homologous recombination, haploid state, and filamentous growth during early stages of the vegetative growth, which makes it an excellent model plant to study DNA damage responses. We used single cell gel electrophoresis (comet) assay to determine kinetics of response to Bleomycin induced DNA oxidative damage and single and double strand breaks in wild type and mutant lig4 Physcomitrella lines. Moreover, APT gene when inactivated by induced mutations was used as selectable marker to ascertain mutational background at nucleotide level by sequencing of the APT locus. We show that extensive repair of DSBs occurs also in the absence of the functional LIG4, whereas repair of SSBs is seriously compromised. From analysis of induced mutations we conclude that their accumulation rather than remaining lesions in DNA and blocking progression through cell cycle is incompatible with normal plant growth and development and leads to sensitive phenotype. PMID:24383055

  4. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato

    PubMed Central

    Martínez-Medina, Ainhoa; Fernández, Iván; Sánchez-Guzmán, María J.; Jung, Sabine C.; Pascual, Jose A.; Pozo, María J.

    2013-01-01

    Root colonization by selected Trichoderma isolates can activate in the plant a systemic defense response that is effective against a broad-spectrum of plant pathogens. Diverse plant hormones play pivotal roles in the regulation of the defense signaling network that leads to the induction of systemic resistance triggered by beneficial organisms [induced systemic resistance (ISR)]. Among them, jasmonic acid (JA) and ethylene (ET) signaling pathways are generally essential for ISR. However, Trichoderma ISR (TISR) is believed to involve a wider variety of signaling routes, interconnected in a complex network of cross-communicating hormone pathways. Using tomato as a model, an integrative analysis of the main mechanisms involved in the systemic resistance induced by Trichoderma harzianum against the necrotrophic leaf pathogen Botrytis cinerea was performed. Root colonization by T. harzianum rendered the leaves more resistant to B. cinerea independently of major effects on plant nutrition. The analysis of disease development in shoots of tomato mutant lines impaired in the synthesis of the key defense-related hormones JA, ET, salicylic acid (SA), and abscisic acid (ABA), and the peptide prosystemin (PS) evidenced the requirement of intact JA, SA, and ABA signaling pathways for a functional TISR. Expression analysis of several hormone-related marker genes point to the role of priming for enhanced JA-dependent defense responses upon pathogen infection. Together, our results indicate that although TISR induced in tomato against necrotrophs is mainly based on boosted JA-dependent responses, the pathways regulated by the plant hormones SA- and ABA are also required for successful TISR development. PMID:23805146

  5. New evidence for a multi-functional role of herbivore-induced plant volatiles in defense against herbivores.

    PubMed

    Rodriguez-Saona, Cesar R; Frost, Christopher J

    2010-01-01

    A diverse, often species-specific, array of herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack. Although research in the last 3 decades indicates a multi-functional role of these HIPVs, the evolutionary rationale underpinning HIPV emissions remains an open question. Many studies have documented that HIPVs can attract natural enemies, and some studies indicate that neighboring plants may eavesdrop their undamaged neighbors and induce or prime their own defenses prior to herbivore attack. Both of these ecological roles for HIPVs are risky strategies for the emitting plant. In a recent paper, we reported that most branches within a blueberry bush share limited vascular connectivity, which restricts the systemic movement of internal signals. Blueberry branches circumvent this limitation by responding to HIPVs emitted from neighboring branches of the same plant: exposure to HIPVs increases levels of defensive signaling hormones, changes their defensive status, and makes undamaged branches more resistant to herbivores. Similar findings have been reported recently for sagebrush, poplar and lima beans, where intra-plant communication played a role in activating or priming defenses against herbivores. Thus, there is increasing evidence that intra-plant communication occurs in a wide range of taxonomically unrelated plant species. While the degree to which this phenomenon increases a plant's fitness remains to be determined in most cases, we here argue that within-plant signaling provides more adaptive benefit for HIPV emissions than does between-plant signaling or attraction of predators. That is, the emission of HIPVs might have evolved primarily to protect undamaged parts of the plant against potential enemies, and neighboring plants and predators of herbivores later co-opted such HIPV signals for their own benefit.

  6. Plant genotype and induced defenses affect the productivity of an insect-killing obligate viral pathogen.

    PubMed

    Shikano, Ikkei; McCarthy, Elizabeth M; Elderd, Bret D; Hoover, Kelli

    2017-09-01

    Plant-mediated variations in the outcomes of host-pathogen interactions can strongly affect epizootics and the population dynamics of numerous species, including devastating agricultural pests such as the fall armyworm. Most studies of plant-mediated effects on insect pathogens focus on host mortality, but few have measured pathogen yield, which can affect whether or not an epizootic outbreak occurs. Insects challenged with baculoviruses on different plant species and parts can vary in levels of mortality and yield of infectious stages (occlusion bodies; OBs). We previously demonstrated that soybean genotypes and induced anti-herbivore defenses influence baculovirus infectivity. Here, we used a soybean genotype that strongly reduced baculovirus infectivity when virus was ingested on induced plants (Braxton) and another that did not reduce infectivity (Gasoy), to determine how soybean genotype and induced defenses influence OB yield and speed of kill. These are key fitness measures because baculoviruses are obligate-killing pathogens. We challenged fall armyworm, Spodoptera frugiperda, with the baculovirus S. frugiperda multi-nucleocapsid nucleopolyhedrovirus (SfMNPV) during short or long-term exposure to plant treatments (i.e., induced or non-induced genotypes). Caterpillars were either fed plant treatments only during virus ingestion (short-term exposure to foliage) or from the point of virus ingestion until death (long-term exposure). We found trade-offs of increasing OB yield with slower speed of kill and decreasing virus dose. OB yield increased more with longer time to death and decreased more with increasing virus dose after short-term feeding on Braxton compared with Gasoy. OB yield increased significantly more with time to death in larvae that fed until death on non-induced foliage than induced foliage. Moreover, fewer OBs per unit of host tissue were produced when larvae were fed induced foliage than non-induced foliage. These findings highlight the

  7. [Effects of azadirachtin on rice plant volatiles induced by Nilaparvata lugens].

    PubMed

    Lu, Hai-Yan; Liu, Fang; Zhu, Shu-De; Zhang, Qing

    2010-01-01

    With the method of solid phase microextraction (SPME), a total of twenty-five volatiles were collected from rice plants induced by Nilaparvata lugens, and after applying azadirachtin fourteen of them were qualitatively identified by gas chromatography coupled by mass spectrometry (GC-MS), mainly of nine kinds of sesquiterpenes. Comparing with healthy rice plants, the plants attacked by N. lugens had more kinds of volatiles, including limonene, linalool, methyl salicylate, unknown 6, unknown 7, zingiberene, nerolidol, and hexadecane. Applying azadirachtin did not result in the production of new kind volatiles, but affected the relative concentrations of the volatiles induced by N. lugens. The proportions of limonene, linalool, methyl salicylate, unknown 6, zingiberene, and hexadecane changed obviously with the concentration of applied azadirachtin, while those of methyl salicylate, unknown 6, unknown 7, zingiberene, and nerolidol changed significantly with the days after azadirachtin application. Azadirachtin concentration, rice variety, and N. lugens density had significant interactions on the relative concentrations of all test N. lugens-induced volatiles.

  8. Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants

    PubMed Central

    Song, Yuan Yuan; Ye, Mao; Li, Chuanyou; He, Xinhua; Zhu-Salzman, Keyan; Wang, Rui Long; Su, Yi Juan; Luo, Shi Ming; Zeng, Ren Sen

    2014-01-01

    Common mycorrhizal networks (CMNs) link multiple plants together. We hypothesized that CMNs can serve as an underground conduit for transferring herbivore-induced defence signals. We established CMN between two tomato plants in pots with mycorrhizal fungus Funneliformis mosseae, challenged a ‘donor' plant with caterpillar Spodoptera litura, and investigated defence responses and insect resistance in neighbouring CMN-connected ‘receiver' plants. After CMN establishment caterpillar infestation on ‘donor' plant led to increased insect resistance and activities of putative defensive enzymes, induction of defence-related genes and activation of jasmonate (JA) pathway in the ‘receiver' plant. However, use of a JA biosynthesis defective mutant spr2 as ‘donor' plants resulted in no induction of defence responses and no change in insect resistance in ‘receiver' plants, suggesting that JA signalling is required for CMN-mediated interplant communication. These results indicate that plants are able to hijack CMNs for herbivore-induced defence signal transfer and interplant defence communication. PMID:24468912

  9. Wound-Induced Deposition of Polyphenols in Transgenic Plants Overexpressing Peroxidase 1

    PubMed Central

    Lagrimini, L. Mark

    1991-01-01

    Tobacco (Nicotiana tabacum) plants transformed with a chimeric tobacco anionic peroxidase gene have previously been shown to synthesize high levels of peroxidase in all tissues throughout the plant. One of several distinguishable phenotypes of transformed plants is the rapid browning of pith tissue upon wounding. Pith tissue from plants expressing high levels of peroxidase browned within 24 hours of wounding, while tissue from control plants did not brown as late as 7 days after wounding. A correlation between peroxidase activity and wound-induced browning was observed, whereas no relationship between polyphenol oxidase activity and browning was found. The purified tobacco anionic peroxidase was subjected to kinetic analysis with substrates which resemble the precursors of lignin or polyphenolic acid. The purified enzyme was found to readily polymerize phenolic acids in the presence of H2O2 via a modified ping-pong mechanism. The percentage of lignin and lignin-related polymers in cell walls was nearly twofold greater in pith tissue isolated from peroxidase-overproducer plants compared to control plants. Lignin deposition in wounded pith tissue from control plants closely followed the induction of peroxidase activity. However, wound-induced lignification occurred 24 to 48 hours sooner in plants overexpressing the anionic peroxidase. This suggests that the availability of peroxidase rather than substrate may delay polyphenol deposition in wounded tissue. ImagesFigure 1Figure 2Figure 3 PMID:16668224

  10. Plant-eriophyoid mite interactions: cellular biochemistry and metabolic responses induced in mite-injured plants. Part I.

    PubMed

    Petanović, Radmila; Kielkiewicz, Malgorzata

    2010-07-01

    This review is a comprehensive study of recent advances related to cytological, biochemical and physiological changes induced in plants in response to eriophyoid mite attack. It has been shown that responses of host plants to eriophyoids are variable. Most of the variability is due to individual eriophyoid mite-plant interactions. Usually, the direction and intensity of changes in eriophyoid-infested plant organs depend on mite genotype, density, or the feeding period, and are strongly differentiated relative to host plant species, cultivar, age and location. Although the mechanisms of changes elicited by eriophyoid mites within plants are not fully understood, in many cases the qualitative and quantitative biochemical status of mite-infested plants are known to affect the performance of consecutive herbivorous arthropods. In future, elucidation of the pathways from eriophyoid mite damage to plant gene activation will be necessary to clarify plant responses and to explain variation in plant tissue damage at the feeding and adjacent sites.

  11. Plant Pathogen-Induced Water-Soaking Promotes Salmonella enterica Growth on Tomato Leaves

    PubMed Central

    Potnis, Neha; Colee, James; Jones, Jeffrey B.

    2015-01-01

    Plant pathogen infection is a critical factor for the persistence of Salmonella enterica on plants. We investigated the mechanisms responsible for the persistence of S. enterica on diseased tomato plants by using four diverse bacterial spot Xanthomonas species that differ in disease severities. Xanthomonas euvesicatoria and X. gardneri infection fostered S. enterica growth, while X. perforans infection did not induce growth but supported the persistence of S. enterica. X. vesicatoria-infected leaves harbored S. enterica populations similar to those on healthy leaves. Growth of S. enterica was associated with extensive water-soaking and necrosis in X. euvesicatoria- and X. gardneri-infected plants. The contribution of water-soaking to the growth of S. enterica was corroborated by an increased growth of populations on water-saturated leaves in the absence of a plant pathogen. S. enterica aggregates were observed with bacterial spot lesions caused by either X. euvesicatoria or X. vesicatoria; however, more S. enterica aggregates formed on X. euvesicatoria-infected leaves as a result of larger lesion sizes per leaf area and extensive water-soaking. Sparsely distributed lesions caused by X. vesicatoria infection do not support the overall growth of S. enterica or aggregates in areas without lesions or water-soaking; S. enterica was observed as single cells and not aggregates. Thus, pathogen-induced water-soaking and necrosis allow S. enterica to replicate and proliferate on tomato leaves. The finding that the pathogen-induced virulence phenotype affects the fate of S. enterica populations in diseased plants suggests that targeting of plant pathogen disease is important in controlling S. enterica populations on plants. PMID:26386057

  12. Design of the monitoring system at the Sant'Alessio induced riverbank filtration plant (Lucca, Italy)

    NASA Astrophysics Data System (ADS)

    Rossetto, Rudy; Barbagli, Alessio; Borsi, Iacopo; Mazzanti, Giorgio; Picciaia, Daniele; Vienken, Thomas; Bonari, Enrico

    2015-04-01

    In Managed Aquifer Recharge (MAR) schemes the monitoring system, for both water quality and quantity issues, plays a key role in assuring that a groundwater recharge plant is really managed. Considering induced Riverbank Filtration (RBF) schemes, while the effect of the augmented filtration consists in an improvement of the quality and quantity of the water infiltrating the aquifer, there is in turn the risk for groundwater contamination, as surface water bodies are highly susceptible to contamination. Within the framework of the MARSOL (2014) EU FPVII-ENV-2013 project, an experimental monitoring system has been designed and will be set in place at the Sant'Alessio RBF well field (Lucca, Italy) to demonstrate the sustainability and the benefits of managing induced RBF versus the unmanaged option. The RBF scheme in Sant'Alessio (Borsi et al. 2014) allows abstraction of an overall amount of about 0,5 m3/s groundwater providing drinking water for about 300000 people of the coastal Tuscany. Water is derived by ten vertical wells set along the Serchio River embankments inducing river water filtration into a high yield (10-2m2/s transmissivity) sand and gravel aquifer. Prior to the monitoring system design, a detailed site characterization has been completed taking advantage of previous and new investigations, the latter performed by means of MOSAIC on-site investigation platform (UFZ). A monitoring network has been set in place in the well field area using existing wells. There groundwater head and the main physico-chemical parameters (temperature, pH, dissolved oxygen, electrical conductivity and redox potential) are routinely monitored. Major geochemical compounds along with a large set of emerging pollutants are analysed (in cooperation with IWW Zentrum Wasser, Germany) both in surface-water and ground-water. The experimental monitoring system (including sensors in surface- and ground-water) has been designed focusing on managing abstraction efficiency and safety at

  13. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts.

    PubMed

    Mauck, Kerry E; De Moraes, Consuelo M; Mescher, Mark C

    2010-02-23

    Previous studies have shown that vector-borne pathogens can alter the phenotypes of their hosts and vectors in ways that influence the frequency and nature of interactions between them, with significant implications for the transmission and spread of disease. For insect-borne pathogens, host odors are particularly likely targets for manipulation, because both plant- and animal-feeding insects use volatile compounds derived from their hosts as key foraging cues. Here, we document the effects of a widespread plant pathogen, Cucumber mosaic virus (CMV), on the quality and attractiveness of one of its host plants (Cucurbita pepo cv. Dixie) for two aphid vectors, Myzus persicae and Aphis gossypii. Our results indicate that CMV greatly reduces host-plant quality-aphids performed poorly on infected plants and rapidly emigrated from them-but increases the attractiveness of infected plants to aphids by inducing elevated emissions of a plant volatile blend otherwise similar to that emitted by healthy plants. Thus, CMV appears to attract vectors deceptively to infected plants from which they then disperse rapidly, a pattern highly conducive to the nonpersistent transmission mechanism employed by CMV and very different from the pattern previously reported for persistently transmitted viruses that require sustained aphid feeding for transmission. In addition to providing a documented example of a pathogen inducing a deceptive signal of host-plant quality to vectors, our results suggest that the transmission mechanism is a major factor shaping pathogen-induced changes in host-plant phenotypes. Furthermore, our findings yield a general hypothesis that, when vector-borne plant or animal pathogens reduce host quality for vectors, pathogen-induced changes in host phenotypes that enhance vector attraction frequently will involve the exaggeration of existing host-location cues.

  14. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts

    PubMed Central

    Mauck, Kerry E.; De Moraes, Consuelo M.; Mescher, Mark C.

    2010-01-01

    Previous studies have shown that vector-borne pathogens can alter the phenotypes of their hosts and vectors in ways that influence the frequency and nature of interactions between them, with significant implications for the transmission and spread of disease. For insect-borne pathogens, host odors are particularly likely targets for manipulation, because both plant- and animal-feeding insects use volatile compounds derived from their hosts as key foraging cues. Here, we document the effects of a widespread plant pathogen, Cucumber mosaic virus (CMV), on the quality and attractiveness of one of its host plants (Cucurbita pepo cv. Dixie) for two aphid vectors, Myzus persicae and Aphis gossypii. Our results indicate that CMV greatly reduces host-plant quality—aphids performed poorly on infected plants and rapidly emigrated from them—but increases the attractiveness of infected plants to aphids by inducing elevated emissions of a plant volatile blend otherwise similar to that emitted by healthy plants. Thus, CMV appears to attract vectors deceptively to infected plants from which they then disperse rapidly, a pattern highly conducive to the nonpersistent transmission mechanism employed by CMV and very different from the pattern previously reported for persistently transmitted viruses that require sustained aphid feeding for transmission. In addition to providing a documented example of a pathogen inducing a deceptive signal of host-plant quality to vectors, our results suggest that the transmission mechanism is a major factor shaping pathogen-induced changes in host-plant phenotypes. Furthermore, our findings yield a general hypothesis that, when vector-borne plant or animal pathogens reduce host quality for vectors, pathogen-induced changes in host phenotypes that enhance vector attraction frequently will involve the exaggeration of existing host-location cues. PMID:20133719

  15. Silicon Regulates Antioxidant Activities of Crop Plants under Abiotic-Induced Oxidative Stress: A Review

    PubMed Central

    Kim, Yoon-Ha; Khan, Abdul L.; Waqas, Muhammad; Lee, In-Jung

    2017-01-01

    Silicon (Si) is the second most abundant element in soil, where its availability to plants can exhilarate to 10% of total dry weight of the plant. Si accumulation/transport occurs in the upward direction, and has been identified in several crop plants. Si application has been known to ameliorate plant growth and development during normal and stressful conditions over past two-decades. During abiotic (salinity, drought, thermal, and heavy metal etc) stress, one of the immediate responses by plant is the generation of reactive oxygen species (ROS), such as singlet oxygen (1O2), superoxide (O2−), hydrogen peroxide (H2O2), and hydroxyl radicals (OH), which cause severe damage to the cell structure, organelles, and functions. To alleviate and repair this damage, plants have developed a complex antioxidant system to maintain homeostasis through non-enzymatic (carotenoids, tocopherols, ascorbate, and glutathione) and enzymatic antioxidants [superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX)]. To this end, the exogenous application of Si has been found to induce stress tolerance by regulating the generation of ROS, reducing electrolytic leakage, and malondialdehyde (MDA) contents, and immobilizing and reducing the uptake of toxic ions like Na, under stressful conditions. However, the interaction of Si and plant antioxidant enzyme system remains poorly understood, and further in-depth analyses at the transcriptomic level are needed to understand the mechanisms responsible for the Si-mediated regulation of stress responses. PMID:28428797

  16. Silicon Regulates Antioxidant Activities of Crop Plants under Abiotic-Induced Oxidative Stress: A Review.

    PubMed

    Kim, Yoon-Ha; Khan, Abdul L; Waqas, Muhammad; Lee, In-Jung

    2017-01-01

    Silicon (Si) is the second most abundant element in soil, where its availability to plants can exhilarate to 10% of total dry weight of the plant. Si accumulation/transport occurs in the upward direction, and has been identified in several crop plants. Si application has been known to ameliorate plant growth and development during normal and stressful conditions over past two-decades. During abiotic (salinity, drought, thermal, and heavy metal etc) stress, one of the immediate responses by plant is the generation of reactive oxygen species (ROS), such as singlet oxygen ( 1 O 2 ), superoxide ([Formula: see text]), hydrogen peroxide (H 2 O 2 ), and hydroxyl radicals (OH), which cause severe damage to the cell structure, organelles, and functions. To alleviate and repair this damage, plants have developed a complex antioxidant system to maintain homeostasis through non-enzymatic (carotenoids, tocopherols, ascorbate, and glutathione) and enzymatic antioxidants [superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX)]. To this end, the exogenous application of Si has been found to induce stress tolerance by regulating the generation of ROS, reducing electrolytic leakage, and malondialdehyde (MDA) contents, and immobilizing and reducing the uptake of toxic ions like Na, under stressful conditions. However, the interaction of Si and plant antioxidant enzyme system remains poorly understood, and further in-depth analyses at the transcriptomic level are needed to understand the mechanisms responsible for the Si-mediated regulation of stress responses.

  17. Plant growth and gas balance in a plant and mushroom cultivation system

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Tani, A.; Kiyota, M.; Aiga, I.

    1994-11-01

    In order to obtain basic data for construction of a plant cultivation system incorporating a mushroom cultivation subsystem in the CELSS, plant growth and atmospheric CO2 balance in the system were investigated. The plant growth was promoted by a high level of CO2 which resulted from the respiration of the mushroom mycelium in the system. The atmospheric CO2 concentration inside the system changed significantly due to the slight change in the net photosynthetic rate of plants and/or the respiration rate of the mushroom when the plant cultivation system combined directly with the mushroom cultivation subsystem.

  18. Plant Systems Biology (editorial)

    USDA-ARS?s Scientific Manuscript database

    In June 2003, Plant Physiology published an Arabidopsis special issue devoted to plant systems biology. The intention of Natasha Raikhel and Gloria Coruzzi, the two editors of this first-of-its-kind issue, was ‘‘to help nucleate this new effort within the plant community’’ as they considered that ‘‘...

  19. Some Sensitivity Studies of Chemical Transport Simulated in Models of the Soil-Plant-Litter System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begovich, C.L.

    2002-10-28

    Fifteen parameters in a set of five coupled models describing carbon, water, and chemical dynamics in the soil-plant-litter system were varied in a sensitivity analysis of model response. Results are presented for chemical distribution in the components of soil, plants, and litter along with selected responses of biomass, internal chemical transport (xylem and phloem pathways), and chemical uptake. Response and sensitivity coefficients are presented for up to 102 model outputs in an appendix. Two soil properties (chemical distribution coefficient and chemical solubility) and three plant properties (leaf chemical permeability, cuticle thickness, and root chemical conductivity) had the greatest influence onmore » chemical transport in the soil-plant-litter system under the conditions examined. Pollutant gas uptake (SO{sub 2}) increased with change in plant properties that increased plant growth. Heavy metal dynamics in litter responded to plant properties (phloem resistance, respiration characteristics) which induced changes in the chemical cycling to the litter system. Some of the SO{sub 2} and heavy metal responses were not expected but became apparent through the modeling analysis.« less

  20. The Use of a Dexamethasone-inducible System to Synchronize Xa21 Expression to Study Rice Immunity.

    PubMed

    Caddell, Daniel F; Wei, Tong; Park, Chang-Jin; Ronald, Pamela C

    2015-05-05

    Inducible gene expression systems offer researchers the opportunity to synchronize target gene expression at particular developmental stages and in particular tissues. The glucocorticoid receptor (GR), a vertebrate steroid receptor, has been well adopted for this purpose in plants. To generate steroid-inducible plants, a construct of GAL4-binding domain-VP16 activation domain-GR fusion (GVG) with the target gene under the control of upstream activation sequence (UAS) has been developed and extensively used in plant research. Immune receptors perceive conserved molecular patterns secreted by pathogens and initiate robust immune responses. The rice immune receptor, XA21 , recognizes a molecular pattern highly conserved in all sequenced genomes of Xanthomonas , and confers robust resistance to X. oryzae pv. oryzae ( Xoo ). However, identifying genes downstream of XA21 has been hindered because of the restrained lesion and thus limited defense response region in the plants expressing Xa21 . Inducible expression allows for a synchronized immune response across a large amount of rice tissue, well suited for studying XA21-mediated immunity by genome-wide approaches such as transcriptomics and proteomics. In this protocol, we describe the use of this GVG system to synchronize Xa21 expression.

  1. The Use of a Dexamethasone-inducible System to Synchronize Xa21 Expression to Study Rice Immunity

    PubMed Central

    Caddell, Daniel F.; Wei, Tong; Park, Chang-Jin; Ronald, Pamela C.

    2016-01-01

    Inducible gene expression systems offer researchers the opportunity to synchronize target gene expression at particular developmental stages and in particular tissues. The glucocorticoid receptor (GR), a vertebrate steroid receptor, has been well adopted for this purpose in plants. To generate steroid-inducible plants, a construct of GAL4-binding domain-VP16 activation domain-GR fusion (GVG) with the target gene under the control of upstream activation sequence (UAS) has been developed and extensively used in plant research. Immune receptors perceive conserved molecular patterns secreted by pathogens and initiate robust immune responses. The rice immune receptor, XA21, recognizes a molecular pattern highly conserved in all sequenced genomes of Xanthomonas, and confers robust resistance to X. oryzae pv. oryzae (Xoo). However, identifying genes downstream of XA21 has been hindered because of the restrained lesion and thus limited defense response region in the plants expressing Xa21. Inducible expression allows for a synchronized immune response across a large amount of rice tissue, well suited for studying XA21-mediated immunity by genome-wide approaches such as transcriptomics and proteomics. In this protocol, we describe the use of this GVG system to synchronize Xa21 expression. PMID:27525297

  2. A genetically-based latitudinal cline in the emission of herbivore-induced plant volatile organic compounds.

    PubMed

    Wason, Elizabeth L; Agrawal, Anurag A; Hunter, Mark D

    2013-08-01

    The existence of predictable latitudinal variation in plant defense against herbivores remains controversial. A prevailing view holds that higher levels of plant defense evolve at low latitudes compared to high latitudes as an adaptive plant response to higher herbivore pressure on low-latitude plants. To date, this prediction has not been examined with respect to volatile organic compounds (VOCs) that many plants emit, often thus attracting the natural enemies of herbivores. Here, we compared genetically-based constitutive and herbivore-induced aboveground vegetative VOC emissions from plants originating across a gradient of more than 10° of latitude (>1,500 km). We collected headspace VOCs from Asclepias syriaca (common milkweed) originating from 20 populations across its natural range and grown in a common garden near the range center. Feeding by specialist Danaus plexippus (monarch) larvae induced VOCs, and field environmental conditions (temperature, light, and humidity) also influenced emissions. Monarch damage increased plant VOC concentrations and altered VOC blends. We found that genetically-based induced VOC emissions varied with the latitude of plant population origin, although the pattern followed the reverse of that predicted-induced VOC concentration increased with increasing latitude. This pattern appeared to be driven by a greater induction of sesquiterpenoids at higher latitudes. In contrast, constitutive VOC emission did not vary systematically with latitude, and the induction of green leafy volatiles declined with latitude. Our results do not support the prevailing view that plant defense is greater at lower than at higher latitudes. That the pattern holds only for herbivore-induced VOC emission, and not constitutive emission, suggests that latitudinal variation in VOCs is not a simple adaptive response to climatic factors.

  3. Plant pathogen-induced water-soaking promotes Salmonella enterica growth on tomato leaves.

    PubMed

    Potnis, Neha; Colee, James; Jones, Jeffrey B; Barak, Jeri D

    2015-12-01

    Plant pathogen infection is a critical factor for the persistence of Salmonella enterica on plants. We investigated the mechanisms responsible for the persistence of S. enterica on diseased tomato plants by using four diverse bacterial spot Xanthomonas species that differ in disease severities. Xanthomonas euvesicatoria and X. gardneri infection fostered S. enterica growth, while X. perforans infection did not induce growth but supported the persistence of S. enterica. X. vesicatoria-infected leaves harbored S. enterica populations similar to those on healthy leaves. Growth of S. enterica was associated with extensive water-soaking and necrosis in X. euvesicatoria- and X. gardneri-infected plants. The contribution of water-soaking to the growth of S. enterica was corroborated by an increased growth of populations on water-saturated leaves in the absence of a plant pathogen. S. enterica aggregates were observed with bacterial spot lesions caused by either X. euvesicatoria or X. vesicatoria; however, more S. enterica aggregates formed on X. euvesicatoria-infected leaves as a result of larger lesion sizes per leaf area and extensive water-soaking. Sparsely distributed lesions caused by X. vesicatoria infection do not support the overall growth of S. enterica or aggregates in areas without lesions or water-soaking; S. enterica was observed as single cells and not aggregates. Thus, pathogen-induced water-soaking and necrosis allow S. enterica to replicate and proliferate on tomato leaves. The finding that the pathogen-induced virulence phenotype affects the fate of S. enterica populations in diseased plants suggests that targeting of plant pathogen disease is important in controlling S. enterica populations on plants. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. How Predictable Are the Behavioral Responses of Insects to Herbivore Induced Changes in Plants? Responses of Two Congeneric Thrips to Induced Cotton Plants

    PubMed Central

    Silva, Rehan; Furlong, Michael J.; Wilson, Lewis J.; Walter, Gimme H.

    2013-01-01

    Changes in plants following insect attack are referred to as induced responses. These responses are widely viewed as a form of defence against further insect attack. In the current study we explore whether it is possible to make generalizations about induced plant responses given the unpredictability and variability observed in insect-plant interactions. Experiments were conducted to test for consistency in the responses of two congeneric thrips, Frankliniella schultzei Trybom and Frankliniella occidentalis Pergrande (Thysanoptera: Thripidae) to cotton seedlings (Gossypium hirsutum Linneaus (Malvales: Malvaceae)) damaged by various insect herbivores. In dual-choice experiments that compared intact and damaged cotton seedlings, F. schultzei was attracted to seedlings damaged by Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), Tetranychus urticae (Koch) (Trombidiforms: Tetranychidae), Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae), F. schultzei and F. occidentalis but not to mechanically damaged seedlings. In similar tests, F. occidentalis was attracted to undamaged cotton seedlings when simultaneously exposed to seedlings damaged by H. armigera, T. molitor or F. occidentalis. However, when exposed to F. schultzei or T. urticae damaged plants, F. occidentalis was more attracted towards damaged plants. A quantitative relationship was also apparent, F. schultzei showed increased attraction to damaged seedlings as the density of T. urticae or F. schultzei increased. In contrast, although F. occidentalis demonstrated increased attraction to plants damaged by higher densities of T. urticae, there was a negative relationship between attraction and the density of damaging conspecifics. Both species showed greater attraction to T. urticae damaged seedlings than to seedlings damaged by conspecifics. Results demonstrate that the responses of both species of thrips were context dependent, making generalizations difficult to formulate. PMID:23691075

  5. Plant host finding by parasitic plants: a new perspective on plant to plant communication.

    PubMed

    Mescher, Mark C; Runyon, Justin B; De Moraes, Consuelo M

    2006-11-01

    Plants release airborne chemicals that can convey ecologically relevant information to other organisms. These plant volatiles are known to mediate a large array of, often complex, interactions between plants and insects. It has been suggested that plant volatiles may have similar importance in mediating interactions among plant species, but there are few well-documented examples of plant-to-plant communication via volatiles, and the ecological significance of such interactions has been much debated. To date, nearly all studies of volatile-mediated interactions among plant species have focused on the reception of herbivore-induced volatiles by neighboring plants. We recently documented volatile effects in another system, demonstrating that the parasitic plant Cuscuta pentagona uses volatile cues to locate its hosts. This finding may broaden the discussion regarding plant-to-plant communication, and suggests that new classes of volatile-meditated interactions among plant species await discovery.

  6. Plant-to-plant communication triggered by systemin primes anti-herbivore resistance in tomato.

    PubMed

    Coppola, Mariangela; Cascone, Pasquale; Madonna, Valentina; Di Lelio, Ilaria; Esposito, Francesco; Avitabile, Concetta; Romanelli, Alessandra; Guerrieri, Emilio; Vitiello, Alessia; Pennacchio, Francesco; Rao, Rosa; Corrado, Giandomenico

    2017-11-14

    Plants actively respond to herbivory by inducing various defense mechanisms in both damaged (locally) and non-damaged tissues (systemically). In addition, it is currently widely accepted that plant-to-plant communication allows specific neighbors to be warned of likely incoming stress (defense priming). Systemin is a plant peptide hormone promoting the systemic response to herbivory in tomato. This 18-aa peptide is also able to induce the release of bioactive Volatile Organic Compounds, thus also promoting the interaction between the tomato and the third trophic level (e.g. predators and parasitoids of insect pests). In this work, using a combination of gene expression (RNA-Seq and qRT-PCR), behavioral and chemical approaches, we demonstrate that systemin triggers metabolic changes of the plant that are capable of inducing a primed state in neighboring unchallenged plants. At the molecular level, the primed state is mainly associated with an elevated transcription of pattern -recognition receptors, signaling enzymes and transcription factors. Compared to naïve plants, systemin-primed plants were significantly more resistant to herbivorous pests, more attractive to parasitoids and showed an increased response to wounding. Small peptides are nowadays considered fundamental signaling molecules in many plant processes and this work extends the range of downstream effects of this class of molecules to intraspecific plant-to-plant communication.

  7. Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants.

    PubMed

    MacLean, Allyson M; Sugio, Akiko; Makarova, Olga V; Findlay, Kim C; Grieve, Victoria M; Tóth, Réka; Nicolaisen, Mogens; Hogenhout, Saskia A

    2011-10-01

    Phytoplasmas are insect-transmitted bacterial plant pathogens that cause considerable damage to a diverse range of agricultural crops globally. Symptoms induced in infected plants suggest that these phytopathogens may modulate developmental processes within the plant host. We report herein that Aster Yellows phytoplasma strain Witches' Broom (AY-WB) readily infects the model plant Arabidopsis (Arabidopsis thaliana) ecotype Columbia, inducing symptoms that are characteristic of phytoplasma infection, such as the production of green leaf-like flowers (virescence and phyllody) and increased formation of stems and branches (witches' broom). We found that the majority of genes encoding secreted AY-WB proteins (SAPs), which are candidate effector proteins, are expressed in Arabidopsis and the AY-WB insect vector Macrosteles quadrilineatus (Hemiptera; Cicadellidae). To identify which of these effector proteins induce symptoms of phyllody and virescence, we individually expressed the effector genes in Arabidopsis. From this screen, we have identified a novel AY-WB effector protein, SAP54, that alters floral development, resulting in the production of leaf-like flowers that are similar to those produced by plants infected with this phytoplasma. This study offers novel insight into the effector profile of an insect-transmitted plant pathogen and reports to our knowledge the first example of a microbial pathogen effector protein that targets flower development in a host.

  8. Induced plant-defenses suppress herbivore reproduction but also constrain predation of their offspring.

    PubMed

    Ataide, Livia M S; Pappas, Maria L; Schimmel, Bernardus C J; Lopez-Orenes, Antonio; Alba, Juan M; Duarte, Marcus V A; Pallini, Angelo; Schuurink, Robert C; Kant, Merijn R

    2016-11-01

    Inducible anti-herbivore defenses in plants are predominantly regulated by jasmonic acid (JA). On tomato plants, most genotypes of the herbivorous generalist spider mite Tetranychus urticae induce JA defenses and perform poorly on it, whereas the Solanaceae specialist Tetranychus evansi, who suppresses JA defenses, performs well on it. We asked to which extent these spider mites and the predatory mite Phytoseiulus longipes preying on these spider mites eggs are affected by induced JA-defenses. By artificially inducing the JA-response of the tomato JA-biosynthesis mutant def-1 using exogenous JA and isoleucine (Ile), we first established the relationship between endogenous JA-Ile-levels and the reproductive performance of spider mites. For both mite species we observed that they produced more eggs when levels of JA-Ile were low. Subsequently, we allowed predatory mites to prey on spider mite-eggs derived from wild-type tomato plants, def-1 and JA-Ile-treated def-1 and observed that they preferred, and consumed more, eggs produced on tomato plants with weak JA defenses. However, predatory mite oviposition was similar across treatments. Our results show that induced JA-responses negatively affect spider mite performance, but positively affect the survival of their offspring by constraining egg-predation. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. Induced release of a plant-defense volatile 'deceptively' attracts insect vectors to plants infected with a bacterial pathogen.

    PubMed

    Mann, Rajinder S; Ali, Jared G; Hermann, Sara L; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S; Alborn, Hans T; Stelinski, Lukasz L

    2012-01-01

    Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace

  10. Microprocessor-based control systems application in nuclear power plant critical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, M.R.; Nowak, J.B.

    Microprocessor-based control systems have been used in fossil power plants and are receiving greater acceptance for application in nuclear plants. This technology is not new but it does require unique considerations when applied to nuclear power plants. Sargent and Lundy (S and L) has used a microprocessor-based component logic control system (interposing Logic System) for safety- and non-safety-related components in nuclear power plants under construction overseas. Currently, S and L is in the design stage to replace an existing analog control system with a microprocessor-based control system in the U.S. The trend in the industry is to replace systems inmore » existing plants or design new power plants with microprocessor-based control systems.« less

  11. Plant natriuretic peptides: systemic regulators of plant homeostasis and defense that can affect cardiomyoblasts.

    PubMed

    Gehring, Chris; Irving, Helen

    2013-06-01

    Immunologic evidence has suggested the presence of biologically active natriuretic peptide (NPs) hormones in plants because antiatrial NP antibodies affinity purify biologically active plant NPs (PNP). In the model plant, an Arabidopsis thaliana PNP (AtPNP-A) has been identified and characterized. AtPNP-A belongs to a novel class of molecules that share some similarity with the cell wall loosening expansins but do not contain the carbohydrate-binding wall anchor thus suggesting that PNPs and atrial natriuretic peptides are heterologs. AtPNP-A acts systemically, and this is consistent with its localization in the apoplastic extracellular space and the conductive tissue. Furthermore, AtPNP-A signals via the second messenger cyclic guanosine 3',5'-monophosphate and modulates ion and water transport and homeostasis. It also plays a critical role in host defense against pathogens. AtPNP-A can be classified as novel paracrine plant hormone because it is secreted into the apoplastic space in response to stress and can enhance its own expression. Interestingly, purified recombinant PNP induces apoptosis in a dose-dependent manner and was most effective on cardiac myoblast cell lines. Because PNP is mimicking the effect of ANP in some instances, PNP may prove to provide useful leads for development of novel therapeutic NPs.

  12. Induction and maintenance of DNA methylation in plant promoter sequences by apple latent spherical virus-induced transcriptional gene silencing

    PubMed Central

    Kon, Tatsuya; Yoshikawa, Nobuyuki

    2014-01-01

    Apple latent spherical virus (ALSV) is an efficient virus-induced gene silencing vector in functional genomics analyses of a broad range of plant species. Here, an Agrobacterium-mediated inoculation (agroinoculation) system was developed for the ALSV vector, and virus-induced transcriptional gene silencing (VITGS) is described in plants infected with the ALSV vector. The cDNAs of ALSV RNA1 and RNA2 were inserted between the cauliflower mosaic virus 35S promoter and the NOS-T sequences in a binary vector pCAMBIA1300 to produce pCALSR1 and pCALSR2-XSB or pCALSR2-XSB/MN. When these vector constructs were agroinoculated into Nicotiana benthamiana plants with a construct expressing a viral silencing suppressor, the infection efficiency of the vectors was 100%. A recombinant ALSV vector carrying part of the 35S promoter sequence induced transcriptional gene silencing of the green fluorescent protein gene in a line of N. benthamiana plants, resulting in the disappearance of green fluorescence of infected plants. Bisulfite sequencing showed that cytosine residues at CG and CHG sites of the 35S promoter sequence were highly methylated in the silenced generation zero plants infected with the ALSV carrying the promoter sequence as well as in progeny. The ALSV-mediated VITGS state was inherited by progeny for multiple generations. In addition, induction of VITGS of an endogenous gene (chalcone synthase-A) was demonstrated in petunia plants infected with an ALSV vector carrying the native promoter sequence. These results suggest that ALSV-based vectors can be applied to study DNA methylation in plant genomes, and provide a useful tool for plant breeding via epigenetic modification. PMID:25426109

  13. Plant systems biology: network matters.

    PubMed

    Lucas, Mikaël; Laplaze, Laurent; Bennett, Malcolm J

    2011-04-01

    Systems biology is all about networks. A recent trend has been to associate systems biology exclusively with the study of gene regulatory or protein-interaction networks. However, systems biology approaches can be applied at many other scales, from the subatomic to the ecosystem scales. In this review, we describe studies at the sub-cellular, tissue, whole plant and crop scales and highlight how these studies can be related to systems biology. We discuss the properties of system approaches at each scale as well as their current limits, and pinpoint in each case advances unique to the considered scale but representing potential for the other scales. We conclude by examining plant models bridging different scales and considering the future prospects of plant systems biology. © 2011 Blackwell Publishing Ltd.

  14. NH4 + protects tomato plants against Pseudomonas syringae by activation of systemic acquired acclimation

    PubMed Central

    Fernández-Crespo, Emma; Scalschi, Loredana; Llorens, Eugenio; García-Agustín, Pilar; Camañes, Gemma

    2015-01-01

    NH4 + nutrition provokes mild toxicity by enhancing H2O2 accumulation, which acts as a signal activating systemic acquired acclimation (SAA). Until now, induced resistance mechanisms in response to an abiotic stimulus and related to SAA were only reported for exposure to a subsequent abiotic stress. Herein, the first evidence is provided that this acclimation to an abiotic stimulus induces resistance to later pathogen infection, since NH4 + nutrition (N-NH4 +)-induced resistance (NH4 +-IR) against Pseudomonas syringae pv tomato DC3000 (Pst) in tomato plants was demonstrated. N-NH4 + plants displayed basal H2O2, abscisic acid (ABA), and putrescine (Put) accumulation. H2O2 accumulation acted as a signal to induce ABA-dependent signalling pathways required to prevent NH4 + toxicity. This acclimatory event provoked an increase in resistance against later pathogen infection. N-NH4 + plants displayed basal stomatal closure produced by H2O2 derived from enhanced CuAO and rboh1 activity that may reduce the entry of bacteria into the mesophyll, diminishing the disease symptoms as well as strongly inducing the oxidative burst upon Pst infection, favouring NH4 +-IR. Experiments with inhibitors of Put accumulation and the ABA-deficient mutant flacca demonstrated that Put and ABA downstream signalling pathways are required to complete NH4 +-IR. The metabolic profile revealed that infected N-NH4 + plants showed greater ferulic acid accumulation compared with control plants. Although classical salicylic acid (SA)-dependent responses against biotrophic pathogens were not found, the important role of Put in the resistance of tomato against Pst was demonstrated. Moreover, this work revealed the cross-talk between abiotic stress acclimation (NH4 + nutrition) and resistance to subsequent Pst infection. PMID:26246613

  15. NH4+ protects tomato plants against Pseudomonas syringae by activation of systemic acquired acclimation.

    PubMed

    Fernández-Crespo, Emma; Scalschi, Loredana; Llorens, Eugenio; García-Agustín, Pilar; Camañes, Gemma

    2015-11-01

    NH4 (+) nutrition provokes mild toxicity by enhancing H2O2 accumulation, which acts as a signal activating systemic acquired acclimation (SAA). Until now, induced resistance mechanisms in response to an abiotic stimulus and related to SAA were only reported for exposure to a subsequent abiotic stress. Herein, the first evidence is provided that this acclimation to an abiotic stimulus induces resistance to later pathogen infection, since NH4 (+) nutrition (N-NH4 (+))-induced resistance (NH4 (+)-IR) against Pseudomonas syringae pv tomato DC3000 (Pst) in tomato plants was demonstrated. N-NH4 (+) plants displayed basal H2O2, abscisic acid (ABA), and putrescine (Put) accumulation. H2O2 accumulation acted as a signal to induce ABA-dependent signalling pathways required to prevent NH4 (+) toxicity. This acclimatory event provoked an increase in resistance against later pathogen infection. N-NH4 (+) plants displayed basal stomatal closure produced by H2O2 derived from enhanced CuAO and rboh1 activity that may reduce the entry of bacteria into the mesophyll, diminishing the disease symptoms as well as strongly inducing the oxidative burst upon Pst infection, favouring NH4 (+)-IR. Experiments with inhibitors of Put accumulation and the ABA-deficient mutant flacca demonstrated that Put and ABA downstream signalling pathways are required to complete NH4 (+)-IR. The metabolic profile revealed that infected N-NH4 (+) plants showed greater ferulic acid accumulation compared with control plants. Although classical salicylic acid (SA)-dependent responses against biotrophic pathogens were not found, the important role of Put in the resistance of tomato against Pst was demonstrated. Moreover, this work revealed the cross-talk between abiotic stress acclimation (NH4 (+) nutrition) and resistance to subsequent Pst infection. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. N-Acyl-Homoserine Lactone Primes Plants for Cell Wall Reinforcement and Induces Resistance to Bacterial Pathogens via the Salicylic Acid/Oxylipin Pathway[C][W][OPEN

    PubMed Central

    Schenk, Sebastian T.; Hernández-Reyes, Casandra; Samans, Birgit; Stein, Elke; Neumann, Christina; Schikora, Marek; Reichelt, Michael; Mithöfer, Axel; Becker, Annette; Kogel, Karl-Heinz; Schikora, Adam

    2014-01-01

    The ability of plants to monitor their surroundings, for instance the perception of bacteria, is of crucial importance. The perception of microorganism-derived molecules and their effector proteins is the best understood of these monitoring processes. In addition, plants perceive bacterial quorum sensing (QS) molecules used for cell-to-cell communication between bacteria. Here, we propose a mechanism for how N-acyl-homoserine lactones (AHLs), a group of QS molecules, influence host defense and fortify resistance in Arabidopsis thaliana against bacterial pathogens. N-3-oxo-tetradecanoyl-l-homoserine lactone (oxo-C14-HSL) primed plants for enhanced callose deposition, accumulation of phenolic compounds, and lignification of cell walls. Moreover, increased levels of oxylipins and salicylic acid favored closure of stomata in response to Pseudomonas syringae infection. The AHL-induced resistance seems to differ from the systemic acquired and the induced systemic resistances, providing new insight into inter-kingdom communication. Consistent with the observation that short-chain AHLs, unlike oxo-C14-HSL, promote plant growth, treatments with C6-HSL, oxo-C10-HSL, or oxo-C14-HSL resulted in different transcriptional profiles in Arabidopsis. Understanding the priming induced by bacterial QS molecules augments our knowledge of plant reactions to bacteria and suggests strategies for using beneficial bacteria in plant protection. PMID:24963057

  17. Chapter 15. Plant pathology and managing wildland plant disease systems

    Treesearch

    David L. Nelson

    2004-01-01

    Obtaining specific, reliable knowledge on plant diseases is essential in wildland shrub resource management. However, plant disease is one of the most neglected areas of wildland resources experimental research. This section is a discussion of plant pathology and how to use it in managing plant disease systems.

  18. A Hydroponic Co-cultivation System for Simultaneous and Systematic Analysis of Plant/Microbe Molecular Interactions and Signaling.

    PubMed

    Nathoo, Naeem; Bernards, Mark A; MacDonald, Jacqueline; Yuan, Ze-Chun

    2017-07-22

    An experimental design mimicking natural plant-microbe interactions is very important to delineate the complex plant-microbe signaling processes. Arabidopsis thaliana-Agrobacterium tumefaciens provides an excellent model system to study bacterial pathogenesis and plant interactions. Previous studies of plant-Agrobacterium interactions have largely relied on plant cell suspension cultures, the artificial wounding of plants, or the artificial induction of microbial virulence factors or plant defenses by synthetic chemicals. However, these methods are distinct from the natural signaling in planta, where plants and microbes recognize and respond in spatial and temporal manners. This work presents a hydroponic cocultivation system where intact plants are supported by metal mesh screens and cocultivated with Agrobacterium. In this cocultivation system, no synthetic phytohormone or chemical that induces microbial virulence or plant defense is supplemented. The hydroponic cocultivation system closely resembles natural plant-microbe interactions and signaling homeostasis in planta. Plant roots can be separated from the medium containing Agrobacterium, and the signaling and responses of both the plant hosts and the interacting microbes can be investigated simultaneously and systematically. At any given timepoint/interval, plant tissues or bacteria can be harvested separately for various "omics" analyses, demonstrating the power and efficacy of this system. The hydroponic cocultivation system can be easily adapted to study: 1) the reciprocal signaling of diverse plant-microbe systems, 2) signaling between a plant host and multiple microbial species (i.e. microbial consortia or microbiomes), 3) how nutrients and chemicals are implicated in plant-microbe signaling, and 4) how microbes interact with plant hosts and contribute to plant tolerance to biotic or abiotic stresses.

  19. Virus-induced gene silencing offers a functional genomics platform for studying plant cell wall formation.

    PubMed

    Zhu, Xiaohong; Pattathil, Sivakumar; Mazumder, Koushik; Brehm, Amanda; Hahn, Michael G; Dinesh-Kumar, S P; Joshi, Chandrashekhar P

    2010-09-01

    Virus-induced gene silencing (VIGS) is a powerful genetic tool for rapid assessment of plant gene functions in the post-genomic era. Here, we successfully implemented a Tobacco Rattle Virus (TRV)-based VIGS system to study functions of genes involved in either primary or secondary cell wall formation in Nicotiana benthamiana plants. A 3-week post-VIGS time frame is sufficient to observe phenotypic alterations in the anatomical structure of stems and chemical composition of the primary and secondary cell walls. We used cell wall glycan-directed monoclonal antibodies to demonstrate that alteration of cell wall polymer synthesis during the secondary growth phase of VIGS plants has profound effects on the extractability of components from woody stem cell walls. Therefore, TRV-based VIGS together with cell wall component profiling methods provide a high-throughput gene discovery platform for studying plant cell wall formation from a bioenergy perspective.

  20. Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride.

    PubMed

    Medeiros, Hugo Agripino de; Araújo Filho, Jerônimo Vieira de; Freitas, Leandro Grassi de; Castillo, Pablo; Rubio, María Belén; Hermosa, Rosa; Monte, Enrique

    2017-01-10

    Root-knot nematodes (RKN) are major crop pathogens worldwide. Trichoderma genus fungi are recognized biocontrol agents and a direct activity of Trichoderma atroviride (Ta) against the RKN Meloidogyne javanica (Mj), in terms of 42% reduction of number of galls (NG), 60% of number of egg masses and 90% of number of adult nematodes inside the roots, has been observed in tomato grown under greenhouse conditions. An in vivo split-root designed experiment served to demonstrate that Ta induces systemic resistance towards Mj, without the need for the organisms to be in direct contact, and significantly reduces NG (20%) and adult nematodes inside tomato roots (87%). The first generation (F1) of Ta-primed tomato plants inherited resistance to RKN; although, the induction of defenses occurred through different mechanisms, and in varying degrees, depending on the Ta-Mj interaction. Plant growth promotion induced by Ta was inherited without compromising the level of resistance to Mj, as the progeny of Ta-primed plants displayed increased size and resistance to Mj without fitness costs. Gene expression results from the defense inductions in the offspring of Ta-primed plants, suggested that an auxin-induced reactive oxygen species production promoted by Ta may act as a major defense strategy during plant growth.

  1. System identification of the Arabidopsis plant circadian system

    NASA Astrophysics Data System (ADS)

    Foo, Mathias; Somers, David E.; Kim, Pan-Jun

    2015-02-01

    The circadian system generates an endogenous oscillatory rhythm that governs the daily activities of organisms in nature. It offers adaptive advantages to organisms through a coordination of their biological functions with the optimal time of day. In this paper, a model of the circadian system in the plant Arabidopsis (species thaliana) is built by using system identification techniques. Prior knowledge about the physical interactions of the genes and the proteins in the plant circadian system is incorporated in the model building exercise. The model is built by using primarily experimentally-verified direct interactions between the genes and the proteins with the available data on mRNA and protein abundances from the circadian system. Our analysis reveals a great performance of the model in predicting the dynamics of the plant circadian system through the effect of diverse internal and external perturbations (gene knockouts and day-length changes). Furthermore, we found that the circadian oscillatory rhythm is robust and does not vary much with the biochemical parameters except those of a light-sensitive protein P and a transcription factor TOC1. In other words, the circadian rhythmic profile is largely a consequence of the network's architecture rather than its particular parameters. Our work suggests that the current experimental knowledge of the gene-to-protein interactions in the plant Arabidopsis, without considering any additional hypothetical interactions, seems to suffice for system-level modeling of the circadian system of this plant and to present an exemplary platform for the control of network dynamics in complex living organisms.

  2. Induction of plant defense gene expression by plant activators and Pseudomonas syringae pv. tomato in greenhouse-grown tomatoes.

    PubMed

    Herman, M A B; Davidson, J K; Smart, C D

    2008-11-01

    Plant activators provide an appealing management option for bacterial diseases of greenhouse-grown tomatoes. Two types of plant activators, one that induces systemic acquired resistance (SAR) and a second that activates induced systemic resistance (ISR), were evaluated for control of Pseudomonas syringae pv. tomato and effect on plant defense gene activation. Benzothiadiazole (BTH, SAR-inducing compound) effectively reduced bacterial speck incidence and severity, both alone and in combination with the ISR-inducing product. Application of BTH also led to elevated activation of salicylic acid and ethylene-mediated responses, based on real-time polymerase chain reaction analysis of marker gene expression levels. In contrast, the ISR-inducing product (made up of plant growth-promoting rhizobacteria) inconsistently modified defense gene expression and did not provide disease control to the same level as did BTH. No antagonism was observed by combining the two activators as control of bacterial speck was similar to or better than BTH alone.

  3. Development of an Automated Seed Sowing and Induced Germination System for Space Flight Application

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.; Kliss, Mark

    1995-01-01

    The successful utilization of higher plants in space flight is likely to require the effective transition of plants through all phases of growth and development. A particularly sensitive and critical stage in this cycle is seed germination. The present inflight capability to manipulate seed from a state of dormancy to germination and the performance of such activity under aseptic conditions is extremely limited. An Automated Sowing Mechanism (ASM) has been designed to address this area of science and technology. The self-contained system is readily compatible with the existing Shuttle middeck locker Plant Growth Unit (PGU) and planned Plant Growth Facility (PGF), presenting an opportunity to extend the experimental capability of these systems. The ASM design encompasses the controlled transition of seed from a dry to hydrated state utilizing solid media substrate as the source of water and nutrient support. System activation has been achieved with both photo and timing mechanisms. Controlled induced germination and development of various plant species has been achieved in ground-based trials. The system is presently being prepared for a KC-135 flight test.

  4. Silicon Supplementation Alters the Composition of Herbivore Induced Plant Volatiles and Enhances Attraction of Parasitoids to Infested Rice Plants.

    PubMed

    Liu, Jian; Zhu, Jiwei; Zhang, Pengjun; Han, Liwei; Reynolds, Olivia L; Zeng, Rensen; Wu, Jinhong; Shao, Yue; You, Minsheng; Gurr, Geoff M

    2017-01-01

    Silicon (Si) is important in plant defenses that operate in a direct manner against herbivores, and work in rice ( Oryza sativa ) has established that this is mediated by the jasmonate signaling pathway. Plant defenses also operate indirectly, by the production of herbivore induced plant volatiles (HIPVs) that attract predators and parasitoids of herbivores. These indirect defenses too are mediated by the jasmonate pathway but no earlier work has demonstrated an effect of Si on HIPVs. In this study, we tested the effect of Si supplementation versus Si deprivation to rice plants on subsequent HIPV production following feeding by the important pest, rice leaffolder ( Cnaphalocrocis medinalis ). Gas chromatography-mass spectrometry analyses showed lower production of α-bergamotene, β-sesquiohellandrene, hexanal 2-ethyl, and cedrol from +Si herbivore-infested plants compared with -Si infested plants. These changes in plant chemistry were ecologically significant in altering the extent to which parasitoids were attracted to infested plants. Adult females of Trathala flavo-orbitalis and Microplitis mediator both exhibited greater attraction to the HIPV blend of +Si plants infested with their respective insect hosts compared to -Si infested plants. In equivalent studies using RNAi rice plants in which jasmonate perception was silenced there was no equivalent change to the HIPV blend associated with Si treatment; indicating that the effects of Si on HIPVs are modulated by the jasmonate pathway. Further, this work demonstrates that silicon alters the HIPV blend of herbivore-infested rice plants. The significance of this finding is that there are no earlier-published studies of this phenomenon in rice or any other plant species. Si treatment to crops offers scope for enhancing induced, indirect defenses and associated biological control of pests because parasitoids are more strongly attracted by the HIPVs produced by +Si plants.

  5. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants.

    PubMed

    Kim, J C; Lee, S H; Cheong, Y H; Yoo, C M; Lee, S I; Chun, H J; Yun, D J; Hong, J C; Lee, S Y; Lim, C O; Cho, M J

    2001-02-01

    Cold stress on plants induces changes in the transcription of cold response genes. A cDNA clone encoding C2H2-type zinc finger protein, SCOF-1, was isolated from soybean. The transcription of SCOF-1 is specifically induced by low temperature and abscisic acid (ABA) but not by dehydration or high salinity. Constitutive overexpression of SCOF-1 induced cold-regulated (COR) gene expression and enhanced cold tolerance of non-acclimated transgenic Arabidopsis and tobacco plants. SCOF-1 localized to the nucleus but did not bind directly to either C-repeat/dehydration (CRT/DRE) or ABA responsive element (ABRE), cis-acting DNA regulatory elements present in COR gene promoters. However, SCOF-1 greatly enhanced the DNA binding activity of SGBF-1, a soybean G-box binding bZIP transcription factor, to ABRE in vitro. SCOF-1 also interacted with SGBF-1 in a yeast two-hybrid system. The SGBF-1 transactivated the beta-glucuronidase reporter gene driven by the ABRE element in Arabidopsis leaf protoplasts. Furthermore, the SCOF-1 enhanced ABRE-dependent gene expression mediated by SGBF-1. These results suggest that SCOF-1 may function as a positive regulator of COR gene expression mediated by ABRE via protein-protein interaction, which in turn enhances cold tolerance of plants.

  6. Plant-Derived Agents for Counteracting Cisplatin-Induced Nephrotoxicity.

    PubMed

    Ojha, Shreesh; Venkataraman, Balaji; Kurdi, Amani; Mahgoub, Eglal; Sadek, Bassem; Rajesh, Mohanraj

    2016-01-01

    Cisplatin (CSP) is a chemotherapeutic agent commonly used to treat a variety of malignancies. The major setback with CSP treatment is that its clinical efficacy is compromised by its induction of organ toxicity, particular to the kidneys and ears. Despite the significant strides that have been made in understanding the mechanisms underlying CSP-induced renal toxicity, advances in developing renoprotective strategies are still lacking. In addition, the renoprotective approaches described in the literature reveal partial amelioration of CSP-induced renal toxicity, stressing the need to develop potent combinatorial/synergistic agents for the mitigation of renal toxicity. However, the ideal renoprotective adjuvant should not interfere with the anticancer efficacy of CSP. In this review, we have discussed the progress made in utilizing plant-derived agents (phytochemicals) to combat CSP-induced nephrotoxicity in preclinical studies. Furthermore, we have also presented strategies to utilize phytochemicals as prototypes for the development of novel renoprotective agents for counteracting chemotherapy-induced renal damage.

  7. Plant-Derived Agents for Counteracting Cisplatin-Induced Nephrotoxicity

    PubMed Central

    Venkataraman, Balaji; Kurdi, Amani; Mahgoub, Eglal; Sadek, Bassem

    2016-01-01

    Cisplatin (CSP) is a chemotherapeutic agent commonly used to treat a variety of malignancies. The major setback with CSP treatment is that its clinical efficacy is compromised by its induction of organ toxicity, particular to the kidneys and ears. Despite the significant strides that have been made in understanding the mechanisms underlying CSP-induced renal toxicity, advances in developing renoprotective strategies are still lacking. In addition, the renoprotective approaches described in the literature reveal partial amelioration of CSP-induced renal toxicity, stressing the need to develop potent combinatorial/synergistic agents for the mitigation of renal toxicity. However, the ideal renoprotective adjuvant should not interfere with the anticancer efficacy of CSP. In this review, we have discussed the progress made in utilizing plant-derived agents (phytochemicals) to combat CSP-induced nephrotoxicity in preclinical studies. Furthermore, we have also presented strategies to utilize phytochemicals as prototypes for the development of novel renoprotective agents for counteracting chemotherapy-induced renal damage. PMID:27774117

  8. Soil microbial species loss affects plant biomass and survival of an introduced bacterial strain, but not inducible plant defences.

    PubMed

    Kurm, Viola; van der Putten, Wim H; Pineda, Ana; Hol, W H Gera

    2018-02-12

    Plant growth-promoting rhizobacteria (PGPR) strains can influence plant-insect interactions. However, little is known about the effect of changes in the soil bacterial community in general and especially the loss of rare soil microbes on these interactions. Here, the influence of rare soil microbe reduction on induced systemic resistance (ISR) in a wild ecotype of Arabidopsis thaliana against the aphid Myzus persicae was investigated. To create a gradient of microbial abundances, soil was inoculated with a serial dilution of a microbial community and responses of Arabidopsis plants that originated from the same site as the soil microbes were tested. Plant biomass, transcription of genes involved in plant defences, and insect performance were measured. In addition, the effects of the PGPR strain Pseudomonas fluorescens SS101 on plant and insect performance were tested under the influence of the various soil dilution treatments. Plant biomass showed a hump-shaped relationship with soil microbial community dilution, independent of aphid or Pseudomonas treatments. Both aphid infestation and inoculation with Pseudomonas reduced plant biomass, and led to downregulation of PR1 (salicylic acid-responsive gene) and CYP79B3 (involved in synthesis of glucosinolates). Aphid performance and gene transcription were unaffected by soil dilution. Neither the loss of rare microbial species, as caused by soil dilution, nor Pseudomonas affect the resistance of A. thaliana against M. persicae. However, both Pseudomonas survival and plant biomass respond to rare species loss. Thus, loss of rare soil microbial species can have a significant impact on both above- and below-ground organisms. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. The Herbivore-Induced Plant Volatile Methyl Salicylate Negatively Affects Attraction of the Parasitoid Diadegma semiclausum

    PubMed Central

    Mumm, Roland; Poelman, Erik H.; Yang, Yue; Pichersky, Eran; Dicke, Marcel

    2010-01-01

    The indirect defense mechanisms of plants comprise the production of herbivore-induced plant volatiles that can attract natural enemies of plant attackers. One of the often emitted compounds after herbivory is methyl salicylate (MeSA). Here, we studied the importance of this caterpillar-induced compound in the attraction of the parasitoid wasp Diadegma semiclausum by using a mutant Arabidopsis line. Pieris rapae infested AtBSMT1-KO mutant Arabidopsis plants, compromised in the biosynthesis of MeSA, were more attractive to parasitoids than infested wild-type plants. This suggests that the presence of MeSA has negative effects on parasitoid host-finding behavior when exposed to wild-type production of herbivore-induced Arabidopsis volatiles. Furthermore, in line with this, we recorded a positive correlation between MeSA dose and repellence of D. semiclausum when supplementing the headspace of caterpillar-infested AtBSMT1-KO plants with synthetic MeSA. Electronic supplementary material The online version of this article (doi:10.1007/s10886-010-9787-1) contains supplementary material, which is available to authorized users. PMID:20407809

  10. Induced Release of a Plant-Defense Volatile ‘Deceptively’ Attracts Insect Vectors to Plants Infected with a Bacterial Pathogen

    PubMed Central

    Mann, Rajinder S.; Ali, Jared G.; Hermann, Sara L.; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S.; Alborn, Hans T.; Stelinski, Lukasz L.

    2012-01-01

    Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace

  11. Aquatic food production modules in bioregenerative life support systems based on higher plants

    NASA Astrophysics Data System (ADS)

    Bluem, V.; Paris, F.

    Most bioregenerative life support systems (BLSS) are based on gravitropic higher plants which exhibit growth and seed generation disturbances in microgravity. Even when used for a lunar or martian base the reduced gravity may induce a decreased productivity in comparison to Earth. Therefore, the implementation of aquatic biomass production modules in higher plant and/or hybrid BLSS may compensate for this and offer, in addition, the possibility to produce animal protein for human nutrition. It was shown on the SLS-89 and SLS-90 space shuttle missions with the C.E.B.A.S.-MINI MODULE that the edible non gravitropic rootless higher aquatic plant Ceratophyllum demeresum exhibits an undisturbed high biomass production rate in space and that the teleost fish species, Xiphophorus helleri, adapts rapidly to space conditions without loss of its normal reproductive functions. Based on these findings a series of ground-based aquatic food production systems were developed which are disposed for utilization in space. These are plant production bioreactors for the species mentioned above and another suitable candidate, the lemnacean (duckweed) species, Wolffia arrhiza. Moreover, combined intensive aquaculture systems with a closed food loop between herbivorous fishes and aquatic and land plants are being developed which may be suitable for integration into a BLSS of higher complexity.

  12. In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90.

    PubMed

    Iki, Taichiro; Yoshikawa, Manabu; Nishikiori, Masaki; Jaudal, Mauren C; Matsumoto-Yokoyama, Eiko; Mitsuhara, Ichiro; Meshi, Tetsuo; Ishikawa, Masayuki

    2010-07-30

    RNA-induced silencing complexes (RISCs) play central roles in posttranscriptional gene silencing. In plants, the mechanism of RISC assembly has remained elusive due to the lack of cell-free systems that recapitulate the process. In this report, we demonstrate that plant AGO1 protein synthesized by in vitro translation using an extract of evacuolated tobacco protoplasts incorporates synthetic small interfering RNA (siRNA) and microRNA (miRNA) duplexes to form RISCs that sequester the single-stranded siRNA guide strand and miRNA strand, respectively. The formed RISCs were able to recognize and cleave the complementary target RNAs. In this system, the siRNA duplex was incorporated into HSP90-bound AGO1, and subsequent removal of the passenger strand was triggered by ATP hydrolysis by HSP90. Removal of the siRNA passenger strand required the ribonuclease activity of AGO1, while that of the miRNA star strand did not. Based on these results, the mechanism of plant RISC formation is discussed. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Plant Water Content is the Best Predictor of Drought-induced Mortality

    NASA Astrophysics Data System (ADS)

    Sapes, G.; Roskilly, B.; Dobrowski, S.; Sala, A.

    2017-12-01

    Predicting drought-induced forest mortality remains extremely challenging. Recent research has shown that both plant hydraulics and stored non-structural carbohydrates (NSC) interact during drought-induced mortality. The strong interaction between these two variables and the fact that they are both difficult to measure render drought-induced plant mortality extremely difficult to monitor and predict. A variable that is easier to measure and that integrates hydraulic transport and carbohydrate dynamics may, therefore, improve our ability to monitor and predict mortality. Here, we tested whether plant water content is such an integrator variable and, therefore, a better predictor of mortality under drought. We subjected 250 two-year-old ponderosa pine seedlings to drought until they died in a greenhouse experiment. Periodically during the dry down, we measured percent loss of hydraulic conductivity (PLC), NSC concentration (starch and soluble sugars), and tissue volumetric water content (VWC) in roots, stems and leaves. At each measurement time, a separate set of seedlings were re-watered to estimate the probability of mortality at the population level. Linear models were used to explore whether PLC and NSC were linked to VWC and to determine which of the three variables predicted mortality the best. As expected, plants lost hydraulic conductivity in stems and roots during the dry down. Starch concentrations also decreased in all organs as the drought proceeded. In contrast, soluble sugars increased in stems and roots, consistent with the conversion of stored NSCs into osmotically active compounds. Models containing both PLC and NSC concentrations as predictors of VWC were highly significant in all organs and at the whole plant level, indicating that water content is influenced by both PLC and NSCs. PLC, NSC, and VWC explained mortality across organs and at the whole plant level, but VWC was the best predictor (R2 = 0.99). Our results indicate that plant water

  14. RNA Interference towards the Potato Psyllid, Bactericera cockerelli, Is Induced in Plants Infected with Recombinant Tobacco mosaic virus (TMV)

    PubMed Central

    Wuriyanghan, Hada; Falk, Bryce W.

    2013-01-01

    The potato/tomato psyllid, Bactericera cockerelli (B. cockerelli), is an important plant pest and the vector of the phloem-limited bacterium Candidatus Liberibacter psyllaurous (solanacearum), which is associated with the zebra chip disease of potatoes. Previously, we reported induction of RNA interference effects in B. cockerelli via in vitro-prepared dsRNA/siRNAs after intrathoracic injection, and after feeding of artificial diets containing these effector RNAs. In order to deliver RNAi effectors via plant hosts and to rapidly identify effective target sequences in plant-feeding B. cockerelli, here we developed a plant virus vector-based in planta system for evaluating candidate sequences. We show that recombinant Tobacco mosaic virus (TMV) containing B. cockerelli sequences can efficiently infect and generate small interfering RNAs in tomato (Solanum lycopersicum), tomatillo (Physalis philadelphica) and tobacco (Nicotiana tabacum) plants, and more importantly delivery of interfering sequences via TMV induces RNAi effects, as measured by actin and V-ATPase mRNA reductions, in B. cockerelli feeding on these plants. RNAi effects were primarily detected in the B. cockerelli guts. In contrast to our results with TMV, recombinant Potato virus X (PVX) and Tobacco rattle virus (TRV) did not give robust infections in all plants and did not induce detectable RNAi effects in B. cockerelli. The greatest RNA interference effects were observed when B. cockerelli nymphs were allowed to feed on leaf discs collected from inoculated or lower expanded leaves from corresponding TMV-infected plants. Tomatillo plants infected with recombinant TMV containing B. cockerelli actin or V-ATPase sequences also showed phenotypic effects resulting in decreased B. cockerelli progeny production as compared to plants infected by recombinant TMV containing GFP. These results showed that RNAi effects can be achieved in plants against the phloem feeder, B. cockerelli, and the TMV-plant system will

  15. Independent Effects of a Herbivore’s Bacterial Symbionts on Its Performance and Induced Plant Defences

    PubMed Central

    Staudacher, Heike; Schimmel, Bernardus C. J.; Lamers, Mart M.; Wybouw, Nicky; Groot, Astrid T.; Kant, Merijn R.

    2017-01-01

    It is well known that microbial pathogens and herbivores elicit defence responses in plants. Moreover, microorganisms associated with herbivores, such as bacteria or viruses, can modulate the plant’s response to herbivores. Herbivorous spider mites can harbour different species of bacterial symbionts and exert a broad range of effects on host-plant defences. Hence, we tested the extent to which such symbionts affect the plant’s defences induced by their mite host and assessed if this translates into changes in plant resistance. We assessed the bacterial communities of two strains of the common mite pest Tetranychus urticae. We found that these strains harboured distinct symbiotic bacteria and removed these using antibiotics. Subsequently, we tested to which extent mites with and without symbiotic bacteria induce plant defences in terms of phytohormone accumulation and defence gene expression, and assessed mite oviposition and survival as a measure for plant resistance. We observed that the absence/presence of these bacteria altered distinct plant defence parameters and affected mite performance but we did not find indications for a causal link between the two. We argue that although bacteria-related effects on host-induced plant defences may occur, these do not necessarily affect plant resistance concomitantly. PMID:28106771

  16. Two endogenous proteins that induce cell wall extension in plants

    NASA Technical Reports Server (NTRS)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  17. Analysis of a Plant Transcriptional Regulatory Network Using Transient Expression Systems.

    PubMed

    Díaz-Triviño, Sara; Long, Yuchen; Scheres, Ben; Blilou, Ikram

    2017-01-01

    In plant biology, transient expression systems have become valuable approaches used routinely to rapidly study protein expression, subcellular localization, protein-protein interactions, and transcriptional activity prior to in vivo studies. When studying transcriptional regulation, luciferase reporter assays offer a sensitive readout for assaying promoter behavior in response to different regulators or environmental contexts and to confirm and assess the functional relevance of predicted binding sites in target promoters. This chapter aims to provide detailed methods for using luciferase reporter system as a rapid, efficient, and versatile assay to analyze transcriptional regulation of target genes by transcriptional regulators. We describe a series of optimized transient expression systems consisting of Arabidopsis thaliana protoplasts, infiltrated Nicotiana benthamiana leaves, and human HeLa cells to study the transcriptional regulations of two well-characterized transcriptional regulators SCARECROW (SCR) and SHORT-ROOT (SHR) on one of their targets, CYCLIN D6 (CYCD6).Here, we illustrate similarities and differences in outcomes when using different systems. The plant-based systems revealed that the SCR-SHR complex enhances CYCD6 transcription, while analysis in HeLa cells showed that the complex is not sufficient to strongly induce CYCD6 transcription, suggesting that additional, plant-specific regulators are required for full activation. These results highlight the importance of the system and suggest that including heterologous systems, such as HeLa cells, can provide a more comprehensive analysis of a complex gene regulatory network.

  18. Analysis of Piping Systems for Life Extension of Heavy Water Plants in India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Rajesh K.; Soni, R.S.; Kushwaha, H.S.

    Heavy water production in India has achieved many milestones in the past. Two of the successfully running heavy water plants are on the verge of completion of their design life in the near future. One of these two plants, situated at Kota, is a hydrogen sulfide based plant and the other one at Tuticorin is an ammonia-based plant. Various exercises have been planned with an aim to assess the fatigue usage for the various components of these plants in order to extend their life. Considering the process parameters and the past history of the plant performance, critical piping systems andmore » equipment are identified. Analyses have been carried out for these critical piping systems for mainly two kinds of loading, viz. sustained loads and the expansion loads. Static analysis has been carried out to find the induced stress levels due to sustained as well as thermal expansion loading as per the design code ANSI B31.3. Due consideration has been given to the design corrosion allowance while evaluating the stresses due to sustained loads. At the locations where the induced stresses (S{sub L}) due to the sustained loads are exceeding the allowable limits (S{sub h}), exercises have been carried out considering the reduced corrosion allowance value. This strategy is adopted in view of the fact that the thickness measurements carried out at site at various critical locations show a very low rate of corrosion. It has been possible to qualify the system with reduced corrosion allowance values however, it is recommended to keep that location under periodic monitoring. The strategy adopted for carrying out analysis for thermal expansion loading is to qualify the system as per the code allowable value (S{sub a}). If the stresses are more than the allowable value, credit of liberal allowable value as suggested in the code i.e., with the addition of the term (S{sub h}-S{sub L}) to the term 0.25 S{sub h}, has been taken. However, if at any location, it is found that thermal stress

  19. Systemic acquired resistance in moss: further evidence for conserved defense mechanisms in plants.

    PubMed

    Winter, Peter S; Bowman, Collin E; Villani, Philip J; Dolan, Thomas E; Hauck, Nathanael R

    2014-01-01

    Vascular plants possess multiple mechanisms for defending themselves against pathogens. One well-characterized defense mechanism is systemic acquired resistance (SAR). In SAR, a plant detects the presence of a pathogen and transmits a signal throughout the plant, inducing changes in the expression of various pathogenesis-related (PR) genes. Once SAR is established, the plant is capable of mounting rapid responses to subsequent pathogen attacks. SAR has been characterized in numerous angiosperm and gymnosperm species; however, despite several pieces of evidence suggesting SAR may also exist in non-vascular plants6-8, its presence in non-vascular plants has not been conclusively demonstrated, in part due to the lack of an appropriate culture system. Here, we describe and use a novel culture system to demonstrate that the moss species Amblystegium serpens does initiate a SAR-like reaction upon inoculation with Pythium irregulare, a common soil-borne oomycete. Infection of A. serpens gametophores by P. irregulare is characterized by localized cytoplasmic shrinkage within 34 h and chlorosis and necrosis within 7 d of inoculation. Within 24 h of a primary inoculation (induction), moss gametophores grown in culture became highly resistant to infection following subsequent inoculation (challenge) by the same pathogen. This increased resistance was a response to the pathogen itself and not to physical wounding. Treatment with β-1,3 glucan, a structural component of oomycete cell walls, was equally effective at triggering SAR. Our results demonstrate, for the first time, that this important defense mechanism exists in a non-vascular plant, and, together with previous studies, suggest that SAR arose prior to the divergence of vascular and non-vascular plants. In addition, this novel moss - pathogen culture system will be valuable for future characterization of the mechanism of SAR in moss, which is necessary for a better understanding of the evolutionary history of SAR in

  20. Interaction of Plant Extracts with Central Nervous System Receptors

    PubMed Central

    Lundstrom, Kenneth; Pham, Huyen Thanh; Dinh, Long Doan

    2017-01-01

    Background: Plant extracts have been used in traditional medicine for the treatment of various maladies including neurological diseases. Several central nervous system receptors have been demonstrated to interact with plant extracts and components affecting the pharmacology and thereby potentially playing a role in human disease and treatment. For instance, extracts from Hypericum perforatum (St. John’s wort) targeted several CNS receptors. Similarly, extracts from Piper nigrum, Stephania cambodica, and Styphnolobium japonicum exerted inhibition of agonist-induced activity of the human neurokinin-1 receptor. Methods: Different methods have been established for receptor binding and functional assays based on radioactive and fluorescence-labeled ligands in cell lines and primary cell cultures. Behavioral studies of the effect of plant extracts have been conducted in rodents. Plant extracts have further been subjected to mood and cognition studies in humans. Results: Mechanisms of action at molecular and cellular levels have been elucidated for medicinal plants in support of standardization of herbal products and identification of active extract compounds. In several studies, plant extracts demonstrated affinity to a number of CNS receptors in parallel indicating the complexity of this interaction. In vivo studies showed modifications of CNS receptor affinity and behavioral responses in animal models after treatment with medicinal herbs. Certain plant extracts demonstrated neuroprotection and enhanced cognitive performance, respectively, when evaluated in humans. Noteworthy, the penetration of plant extracts and their protective effect on the blood-brain-barrier are discussed. Conclusion: The affinity of plant extracts and their isolated compounds for CNS receptors indicates an important role for medicinal plants in the treatment of neurological disorders. Moreover, studies in animal and human models have confirmed a scientific basis for the application of medicinal

  1. Plant Leucine Aminopeptidases Moonlight as Molecular Chaperones to Alleviate Stress-induced Damage*

    PubMed Central

    Scranton, Melissa A.; Yee, Ashley; Park, Sang-Youl; Walling, Linda L.

    2012-01-01

    Leucine aminopeptidases (LAPs) are present in animals, plants, and microbes. In plants, there are two classes of LAPs. The neutral LAPs (LAP-N and its orthologs) are constitutively expressed and detected in all plants, whereas the stress-induced acidic LAPs (LAP-A) are expressed only in a subset of the Solanaceae. LAPs have a role in insect defense and act as a regulator of the late branch of wound signaling in Solanum lycopersicum (tomato). Although the mechanism of LAP-A action is unknown, it has been presumed that LAP peptidase activity is essential for regulating wound signaling. Here we show that plant LAPs are bifunctional. Using three assays to monitor protein protection from heat-induced damage, it was shown that the tomato LAP-A and LAP-N and the Arabidopsis thaliana LAP1 and LAP2 are molecular chaperones. Assays using LAP-A catalytic site mutants demonstrated that LAP-A chaperone activity was independent of its peptidase activity. Furthermore, disruption of the LAP-A hexameric structure increased chaperone activity. Together, these data identify a new class of molecular chaperones and a new function for the plant LAPs as well as suggesting new mechanisms for LAP action in the defense of solanaceous plants against stress. PMID:22493451

  2. The evolution of resistance genes in multi-protein plant resistance systems.

    PubMed

    Friedman, Aaron R; Baker, Barbara J

    2007-12-01

    The genomic perspective aids in integrating the analysis of single resistance (R-) genes into a higher order model of complex plant resistance systems. The majority of R-genes encode a class of proteins with nucleotide binding (NB) and leucine-rich repeat (LRR) domains. Several R-proteins act in multi-protein R-complexes that mediate interaction with pathogen effectors to induce resistance signaling. The complexity of these systems seems to have resulted from multiple rounds of plant-pathogen co-evolution. R-gene evolution is thought to be facilitated by the formation of R-gene clusters, which permit sequence exchanges via recombinatorial mispairing and generate high haplotypic diversity. This pattern of evolution may also generate diversity at other loci that contribute to the R-complex. The rate of recombination at R-clusters is not necessarily homogeneous or consistent over evolutionary time: recent evidence suggests that recombination at R-clusters is increased following pathogen infection, suggesting a mechanism that induces temporary genome instability in response to extreme stress. DNA methylation and chromatin modifications may allow this instability to be conditionally regulated and targeted to specific genome regions. Knowledge of natural R-gene evolution may contribute to strategies for artificial evolution of novel resistance specificities.

  3. The RxLR effector Avh241 from Phytophthora sojae requires plasma membrane localization to induce plant cell death.

    PubMed

    Yu, Xiaoli; Tang, Junli; Wang, Qunqing; Ye, Wenwu; Tao, Kai; Duan, Shuyi; Lu, Chenchen; Yang, Xinyu; Dong, Suomeng; Zheng, Xiaobo; Wang, Yuanchao

    2012-10-01

    • The Phytophthora sojae genome encodes hundreds of RxLR effectors predicted to manipulate various plant defense responses, but the molecular mechanisms involved are largely unknown. Here we have characterized in detail the P. sojae RxLR effector Avh241. • To determine the function and localization of Avh241, we transiently expressed it on different plants. Silencing of Avh241 in P. sojae, we determined its virulence during infection. Through the assay of promoting infection by Phytophthora capsici to Nicotiana benthamiana, we further confirmed this virulence role. • Avh241 induced cell death in several different plants and localized to the plant plasma membrane. An N-terminal motif within Avh241 was important for membrane localization and cell death-inducing activity. Two mitogen-activated protein kinases, NbMEK2 and NbWIPK, were required for the cell death triggered by Avh241 in N. benthamiana. Avh241 was important for the pathogen's full virulence on soybean. Avh241 could also promote infection by P. capsici and the membrane localization motif was not required to promote infection. • This work suggests that Avh241 interacts with the plant immune system via at least two different mechanisms, one recognized by plants dependent on subcellular localization and one promoting infection independent on membrane localization. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  4. Plant growth-promoting Methylobacterium induces defense responses in groundnut (Arachis hypogaea L.) compared with rot pathogens.

    PubMed

    Madhaiyan, M; Suresh Reddy, B V; Anandham, R; Senthilkumar, M; Poonguzhali, S; Sundaram, S P; Sa, Tongmin

    2006-10-01

    This study, framed in two different phases, studied the plant-growth promotion and the induction of systemic resistance in groundnut by Methylobacterium. Seed imbibition with Methylobacterium sp. increased germination by 19.5% compared with controls. Combined inoculation of Methylobacterium sp. with Rhizobium sp. also significantly increased plant growth, nodulation, and yield attributes in groundnut compared with individual inoculation of Rhizobium sp. Methylobacterium sp. challenge-inoculated with Aspergillus niger/Sclerotium rolfsii in groundnut significantly enhanced germination percentage and seedling vigour and showed increased phenylalanine ammonia lyase (PAL), beta-1,3-glucanase, and peroxidase (PO) activities. Under pot-culture conditions, in Methylobacterium sp. seed-treated groundnut plants challenge-inoculated with A. niger/S. rolfsii through foliar sprays on day 30, the activities of enzymes PO, PAL, and beta-1,3-glucanase increased constantly from 24 to 72 hours, after which decreased activity was noted. Five isozymes of polyphenol oxidase and PO could be detected in Methylobacterium-treated plants challenged with A. niger/S. rolfsii. Induced systemic resistance activity in groundnut against rot pathogens in response to methylotrophic bacteria suggests the possibility that pink-pigmented facultative methylotrophic bacteria might be used as a means of biologic disease control.

  5. The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant.

    PubMed

    Zhang, Li; Lilley, Catherine J; Imren, Mustafa; Knox, J Paul; Urwin, Peter E

    2017-01-01

    Plant-parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida , Heterodera glycines , Heterodera avenae and Heterodera filipjevi , in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines . Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function.

  6. Tobacco overexpressing β-ocimene induces direct and indirect responses against aphids in receiver tomato plants.

    PubMed

    Cascone, Pasquale; Iodice, Luigi; Maffei, Massimo E; Bossi, Simone; Arimura, Gen-Ichiro; Guerrieri, Emilio

    2015-01-15

    In the last decade plant-to-plant communication has received an increasing attention, particularly for the role of Volatile Organic Compounds as possible elicitors of plant defense. The role of β-ocimene as an interspecific elicitor of plant defense has been recently assessed in multitrophic systems including different plant species (Solanaceae, Poaceae, legumes) and different pest species including chewer insects and phytophagous mites. Both chewer insects and phytophagous mites are known to elicit specific plant defensive pathways which are different (at least in part) from those elicited by sap feeders. The aim of this research was to fill this gap of knowledge and to assess the role of β-ocimene as an elicitor of plant defense against aphid pests, which are sap feeders. For this purpose we used as transgenic tobacco plant releasing an odour plume enriched in this compound as emitter and a tomato plant as receiver. We selected the aphid Macrosiphum euphorbiae and its natural enemy, the parasitoid Aphidius ervi, as the targets of plant induced defense. Tomato plant defense induced by β-ocimene was assessed by characterizing the aphid performance in terms of fixing behaviour, development and reproduction (direct plant defense) and the parasitoid performance in terms of attraction towards tomato plants (indirect plant defense). The characterization of tomato response to β-ocimene was completed by the identification of Volatile Organic Compounds as released by conditioned tomato plants. Tomato plants that were exposed to the volatiles of transgenic tobacco enriched in β-ocimene resulted in less suitable for the aphids in respect to control ones (direct defense). On tomato plants "elicited" by β-ocimene we recorded: a significant lower number of aphids settled; a significant lower number newborn nymphs; a significant lower weight of aphids feeding. In addition, tomato plants "elicited" by β-ocimene resulted became more attractive towards the parasitoid A. ervi

  7. How to induce defense responses in wild plant populations? Using bilberry (Vaccinium myrtillus) as example.

    PubMed

    Seldal, Tarald; Hegland, Stein Joar; Rydgren, Knut; Rodriguez-Saona, Cesar; Töpper, Joachim Paul

    2017-03-01

    Inducible plant defense is a beneficial strategy for plants, which imply that plants should allocate resources from growth and reproduction to defense when herbivores attack. Plant ecologist has often studied defense responses in wild populations by biomass clipping experiments, whereas laboratory and greenhouse experiments in addition apply chemical elicitors to induce defense responses. To investigate whether field ecologists could benefit from methods used in laboratory and greenhouse studies, we established a randomized block-design in a pine-bilberry forest in Western Norway. We tested whether we could activate defense responses in bilberry ( Vaccinium myrtillus ) by nine different treatments using clipping (leaf tissue or branch removal) with or without chemical treatment by methyljasmonate (MeJA). We subsequently measured consequences of induced defenses through vegetative growth and insect herbivory during one growing season. Our results showed that only MeJA-treated plants showed consistent defense responses through suppressed vegetative growth and reduced herbivory by leaf-chewing insects, suggesting an allocation of resources from growth to defense. Leaf tissue removal reduced insect herbivory equal to the effect of the MeJa treatments, but had no negative impact on growth. Branch removal did not reduce insect herbivory or vegetative growth. MeJa treatment and clipping combined did not give an additional defense response. In this study, we investigated how to induce defense responses in wild plant populations under natural field conditions. Our results show that using the chemical elicitor MeJA, with or without biomass clipping, may be a better method to induce defense response in field experiments than clipping of leaves or branches that often has been used in ecological field studies.

  8. Nitric Oxide and Hydrogen Peroxide Mediate Wounding-Induced Freezing Tolerance through Modifications in Photosystem and Antioxidant System in Wheat

    PubMed Central

    Si, Tong; Wang, Xiao; Wu, Lin; Zhao, Chunzhao; Zhang, Lini; Huang, Mei; Cai, Jian; Zhou, Qin; Dai, Tingbo; Zhu, Jian-Kang; Jiang, Dong

    2017-01-01

    Mechanical wounding is a common stress caused by herbivores or manual and natural manipulations, whereas its roles in acclimation response to a wide spectrum of abiotic stresses remain unclear. The present work showed that local mechanical wounding enhanced freezing tolerance in untreated systemic leaves of wheat plants (Triticum aestivum L.), and meanwhile the signal molecules hydrogen peroxide (H2O2) and nitric oxide (NO) were accumulated systemically. Pharmacological study showed that wounding-induced NO synthesis was substantially arrested by pretreatment with scavengers of reactive oxygen species and an inhibitor of NADPH oxidase (respiratory burst oxidase homolog, RBOH). On the contrary, wounding-induced H2O2 accumulation was not sensitive to NO synthetic inhibitors or scavenger, indicating that H2O2 acts upstream of NO in wounding signal transduction pathways. Cytochemical and vascular tissues localizations approved that RBOH-dependent H2O2 acts as long-distance signal in wounding response. Transcriptome analysis revealed that 279 genes were up-regulated in plants treated with wounding and freezing, but not in plants treated with freezing alone. Importantly, freezing- and wounding-induced genes were significantly enriched in the categories of “photosynthesis” and “signaling.” These results strongly supported that primary mechanical wounding can induce freezing tolerance in wheat through the systemic accumulation of NO and H2O2, and further modifications in photosystem and antioxidant system. PMID:28769973

  9. Ontogeny and Season Constrain the Production of Herbivore-Inducible Plant Volatiles in the Field

    PubMed Central

    2010-01-01

    Herbivores may induce plants to produce an array of volatile organic compounds (herbivore-induced plant volatiles, or HIPVs) after damage, and some natural enemies of herbivores are attracted by those HIPVs. The production of HIPVs by the undomesticated species Datura wrightii was quantified in response to damage by its natural community of herbivores or the plant hormone methyl jasmonate (MeJA) over plant’s 6-month growing season. Patterns of HIPV production were compared to the seasonal abundance of D. wrightii’s two most abundant herbivores, the chrysomelid beetle Lema daturaphila and the mirid bug Tupiocoris notatus, and their shared generalist predator, the lygaeid bug Geocoris pallens. HIPV production was especially high in the spring, when plants were growing vegetatively, but HIPV production declined after plants began to flower and produce fruit, and these volatiles no longer were inducible by September. The composition of the HIPV blends also changed seasonally. HIPV production and composition were partially restored by “rejuvenating” plants back to the vegetative growth stage independently of season by cutting them back and allowing them to resprout and regrow vegetatively. HIPV production of D. wrightii in the field is limited to the earlier ontogenetic stages of growth, despite the fact that both herbivores and their shared natural enemy inhabited plants throughout the full season. The adaptive value of HIPV production in D. wrightii may be constrained by plant ontogeny to the vegetative stages of plant growth. Electronic supplementary material The online version of this article (doi:10.1007/s10886-010-9878-z) contains supplementary material, which is available to authorized users. PMID:21058044

  10. Volatile-Mediated within-Plant Signaling in Hybrid Aspen: Required for Systemic Responses.

    PubMed

    Li, Tao; Blande, James D

    2017-04-01

    Plant volatiles play crucial roles in signaling between plants and their associated community members, but their role in within-plant signaling remains largely unexplored, particularly under field conditions. Using a system comprising the hybrid aspen (Populus tremula x tremuloides) and the specialized herbivorous leaf beetle (Phratora laticollis) and, combining field, greenhouse and laboratory experiments, we examined whether local damage triggered systemic responses in undamaged branches that lack vascular connection to the damaged branches, and to what extent this was caused by airborne volatile signals versus internal signals. An experiment tracing dye through the vasculature of saplings revealed no downward movement of the dye from upper to lower branches, suggesting a lack of vascular connectivity among branches. However, we found under both field and laboratory conditions that herbivore feeding on upper branches elicited volatile emissions by undamaged lower branches. Greenhouse experiments manipulating air contact between damaged and undamaged branches showed that systemic induction of volatiles was almost eliminated when air contact was interrupted. Our findings clearly demonstrate that herbivore-induced volatiles overcome vascular constraints and mediate within-plant signaling. Further, we found that volatile signaling led to induction of different classes of volatiles under field and environment controlled conditions, with a weaker response observed in the field. This difference not only reflects the dose- and time-dependent nature of volatile signaling, but also points out that future studies should focus more on field observations to better understand the ecological role of volatile-mediated within-plant signaling.

  11. A plant-based chemical genomics screen for the identification of flowering inducers.

    PubMed

    Fiers, Martijn; Hoogenboom, Jorin; Brunazzi, Alice; Wennekes, Tom; Angenent, Gerco C; Immink, Richard G H

    2017-01-01

    Floral timing is a carefully regulated process, in which the plant determines the optimal moment to switch from the vegetative to reproductive phase. While there are numerous genes known that control flowering time, little information is available on chemical compounds that are able to influence this process. We aimed to discover novel compounds that are able to induce flowering in the model plant Arabidopsis. For this purpose we developed a plant-based screening platform that can be used in a chemical genomics study. Here we describe the set-up of the screening platform and various issues and pitfalls that need to be addressed in order to perform a chemical genomics screening on Arabidopsis plantlets. We describe the choice for a molecular marker, in combination with a sensitive reporter that's active in plants and is sufficiently sensitive for detection. In this particular screen, the firefly Luciferase marker was used, fused to the regulatory sequences of the floral meristem identity gene APETALA1 (AP1) , which is an early marker for flowering. Using this screening platform almost 9000 compounds were screened, in triplicate, in 96-well plates at a concentration of 25 µM. One of the identified potential flowering inducing compounds was studied in more detail and named Flowering1 (F1). F1 turned out to be an analogue of the plant hormone Salicylic acid (SA) and appeared to be more potent than SA in the induction of flowering. The effect could be confirmed by watering Arabidopsis plants with SA or F1, in which F1 gave a significant reduction in time to flowering in comparison to SA treatment or the control. In this study a chemical genomics screening platform was developed to discover compounds that can induce flowering in Arabidopsis. This platform was used successfully, to identify a compound that can speed-up flowering in Arabidopsis.

  12. Studies on antioxidative enzymes induced by cadmium in pea plants (Pisum sativum).

    PubMed

    Pandey, Nalini; Singh, Gaurav Kumar

    2012-03-01

    Pea plants (Pisum sativum cv. Swati) exposed to different concentration of cadmium (50,100, 200 microM Cd) under controlled glass house conditions were quantified for different physiological parameters and antioxidative enzymes. In pea plants, Cd produced a significant inhibition of growth and induced chlorosis, marginal yellowing and necrosis in young leaves, the effect being most pronounced at 200 microM Cd supply. An alteration in the activated oxygen metabolism of pea plants were also detected as evidenced by an increase in concentration of H2O2 and TBARS along with decrease in the chlorophyll and carotenoid concentration in leaves. Cadmium toxicity induced an increase in non-protein thiol, ascorbate, proline and cysteine concentration. A significant increment in the activity of SOD, APX and GR, and a decrease in CAT was observed as a result of Cd treatment. The enhanced activity of SOD and inhibition of CAT and POD produces a high build up of H2O2 which appears to be the main cause of oxidative stress due to Cd toxicity in pea plants.

  13. Induced senescence promotes the feeding activities and nymph development of Myzus persicae (Hemiptera: Aphididae) on potato plants.

    PubMed

    Machado-Assefh, Cristina R; Lucatti, Alejandro F; Alvarez, Adriana E

    2014-01-01

    The effect of dark-induced senescence on Solanum tuberosum L. (Solanales: Solanaceae) plants was assessed on the feeding behavior and performance of the green peach aphid, Myzus persicae Sulzer (Hemiptera: Aphididae). Senescence was induced by covering the basal part of the plant with a black cloth for 5 d, avoiding the light passage, but keeping the apical buds uncovered. The basal part of control plants was covered with a white nonwoven cloth. The degree of senescence was determined by measuring the chlorophyll content of the covered leaves. The performance and feeding behavior of M. persicae were studied on the uncovered nonsenescent apical leaves. The aphid's performance was evaluated by measuring nymphal mortality and prereproductive time. Aphid feeding behavior was monitored by the electrical penetration graph technique. In plants with dark-induced senescence, the aphids showed a reduction in their prereproductive time. Aphids also spent more time ingesting sap from the phloem than in control plants and performed more test probes after the first sustained ingestion of phloem sap. These data suggest that M. persicae's phloem activities and nymph development benefit from the nutritional enrichment of phloem sap, derived from dark-induced senescence on potato plants. The induced senescence improved plant acceptance by M. persicae through an increase in sap ingestion that likely resulted in a reduction in developmental time. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  14. Activation of Pathogenesis-related Genes by the Rhizobacterium, Bacillus sp. JS, Which Induces Systemic Resistance in Tobacco Plants.

    PubMed

    Kim, Ji-Seong; Lee, Jeongeun; Lee, Chan-Hui; Woo, Su Young; Kang, Hoduck; Seo, Sang-Gyu; Kim, Sun-Hyung

    2015-06-01

    Plant growth promoting rhizobacteria (PGPR) are known to confer disease resistance to plants. Bacillus sp. JS demonstrated antifungal activities against five fungal pathogens in in vitro assays. To verify whether the volatiles of Bacillus sp. JS confer disease resistance, tobacco leaves pre-treated with the volatiles were damaged by the fungal pathogen, Rhizoctonia solani and oomycete Phytophthora nicotianae. Pre-treated tobacco leaves had smaller lesion than the control plant leaves. In pathogenesis-related (PR) gene expression analysis, volatiles of Bacillus sp. JS caused the up-regulation of PR-2 encoding β-1,3-glucanase and acidic PR-3 encoding chitinase. Expression of acidic PR-4 encoding chitinase and acidic PR-9 encoding peroxidase increased gradually after exposure of the volatiles to Bacillus sp. JS. Basic PR-14 encoding lipid transfer protein was also increased. However, PR-1 genes, as markers of salicylic acid (SA) induced resistance, were not expressed. These results suggested that the volatiles of Bacillus sp. JS confer disease resistance against fungal and oomycete pathogens through PR genes expression.

  15. The Jasmonate Pathway Is a Key Player in Systemically Induced Defense against Root Knot Nematodes in Rice1[C

    PubMed Central

    Nahar, Kamrun; Kyndt, Tina; De Vleesschauwer, David; Höfte, Monica; Gheysen, Godelieve

    2011-01-01

    Complex defense signaling pathways, controlled by different hormones, are involved in the reaction of plants to a wide range of biotic and abiotic stress factors. We studied the ability of salicylic acid, jasmonate (JA), and ethylene (ET) to induce systemic defense in rice (Oryza sativa) against the root knot nematode Meloidogyne graminicola. Exogenous ET (ethephon) and JA (methyl jasmonate) supply on the shoots induced a strong systemic defense response in the roots, exemplified by a major up-regulation of pathogenesis-related genes OsPR1a and OsPR1b, while the salicylic acid analog BTH (benzo-1,2,3-thiadiazole-7-carbothioic acid S-methyl ester) was a less potent systemic defense inducer from shoot to root. Experiments with JA biosynthesis mutants and ET-insensitive transgenics showed that ET-induced defense requires an intact JA pathway, while JA-induced defense was still functional when ET signaling was impaired. Pharmacological inhibition of JA and ET biosynthesis confirmed that JA biosynthesis is needed for ET-induced systemic defense, and quantitative real-time reverse transcription-polymerase chain reaction data revealed that ET application onto the shoots strongly activates JA biosynthesis and signaling genes in the roots. All data provided in this study point to the JA pathway to play a pivotal role in rice defense against root knot nematodes. The expression of defense-related genes was monitored in root galls caused by M. graminicola. Different analyzed defense genes were attenuated in root galls caused by the nematode at early time points after infection. However, when the exogenous defense inducers ethephon and methyl jasmonate were supplied to the plant, the nematode was less effective in counteracting root defense pathways, hence making the plant more resistant to nematode infection. PMID:21715672

  16. Spatially discriminating Russian wheat aphid induced plant stress from other wheat stressing factors

    USDA-ARS?s Scientific Manuscript database

    The Russian wheat aphid (RWA) Diuraphis noxia (Mordvilko) is a major pest of winter wheat and barley in the United States. RWA induces stress to the wheat crop by damaging plant foliage, lowering the greenness of plants, and affecting productivity. Multispectral remote sensing is effective at dete...

  17. Dynamics of a plant-herbivore-predator system with plant-toxicity.

    PubMed

    Feng, Zhilan; Qiu, Zhipeng; Liu, Rongsong; DeAngelis, Donald L

    2011-02-01

    A system of ordinary differential equations is considered that models the interactions of two plant species populations, an herbivore population, and a predator population. We use a toxin-determined functional response to describe the interactions between plant species and herbivores and use a Holling Type II functional response to model the interactions between herbivores and predators. In order to study how the predators impact the succession of vegetation, we derive invasion conditions under which a plant species can invade into an environment in which another plant species is co-existing with a herbivore population with or without a predator population. These conditions provide threshold quantities for several parameters that may play a key role in the dynamics of the system. Numerical simulations are conducted to reinforce the analytical results. This model can be applied to a boreal ecosystem trophic chain to examine the possible cascading effects of predator-control actions when plant species differ in their levels of toxic defense. Published by Elsevier Inc.

  18. Dynamics of a plant-herbivore-predator system with plant-toxicity

    USGS Publications Warehouse

    Feng, Zhilan; Qiu, Zhipeng; Liu, Rongsong; DeAngelis, Donald L.

    2011-01-01

    A system of ordinary differential equations is considered that models the interactions of two plant species populations, an herbivore population, and a predator population. We use a toxin-determined functional response to describe the interactions between plant species and herbivores and use a Holling Type II functional response to model the interactions between herbivores and predators. In order to study how the predators impact the succession of vegetation, we derive invasion conditions under which a plant species can invade into an environment in which another plant species is co-existing with a herbivore population with or without a predator population. These conditions provide threshold quantities for several parameters that may play a key role in the dynamics of the system. Numerical simulations are conducted to reinforce the analytical results. This model can be applied to a boreal ecosystem trophic chain to examine the possible cascading effects of predator-control actions when plant species differ in their levels of toxic defense.

  19. Costs of induced defenses for the invasive plant houndstongue (Cynoglossum officinale L.) and the potential importance for weed biocontrol

    Treesearch

    Justin B. Runyon; Jennifer L. Birdsall

    2016-01-01

    Inducible plant defenses - those produced in response to herbivore feeding - are thought to have evolved as a cost-saving tactic that allows plants to enact defenses only when needed. The costs of defense can be significant, and loss of plant fitness due to commitment of resources to induced defenses could affect plant populations and play a role in...

  20. Organelle-localized potassium transport systems in plants.

    PubMed

    Hamamoto, Shin; Uozumi, Nobuyuki

    2014-05-15

    Some intracellular organelles found in eukaryotes such as plants have arisen through the endocytotic engulfment of prokaryotic cells. This accounts for the presence of plant membrane intrinsic proteins that have homologs in prokaryotic cells. Other organelles, such as those of the endomembrane system, are thought to have evolved through infolding of the plasma membrane. Acquisition of intracellular components (organelles) in the cells supplied additional functions for survival in various natural environments. The organelles are surrounded by biological membranes, which contain membrane-embedded K(+) transport systems allowing K(+) to move across the membrane. K(+) transport systems in plant organelles act coordinately with the plasma membrane intrinsic K(+) transport systems to maintain cytosolic K(+) concentrations. Since it is sometimes difficult to perform direct studies of organellar membrane proteins in plant cells, heterologous expression in yeast and Escherichia coli has been used to elucidate the function of plant vacuole K(+) channels and other membrane transporters. The vacuole is the largest organelle in plant cells; it has an important task in the K(+) homeostasis of the cytoplasm. The initial electrophysiological measurements of K(+) transport have categorized three classes of plant vacuolar cation channels, and since then molecular cloning approaches have led to the isolation of genes for a number of K(+) transport systems. Plants contain chloroplasts, derived from photoautotrophic cyanobacteria. A novel K(+) transport system has been isolated from cyanobacteria, which may add to our understanding of K(+) flux across the thylakoid membrane and the inner membrane of the chloroplast. This chapter will provide an overview of recent findings regarding plant organellar K(+) transport proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. A novel regulatory system in plants involving medium-chain fatty acids.

    PubMed

    Hunzicker, Gretel Mara

    2009-12-01

    Polyethylene glycol sorbitan monoacylates (Tween) are detergents of widespread use in plant sciences. However, little is known about the plant response to these compounds. Interestingly, the structure of Tweens' detergents (especially from Tween 20) resembles the lipid A structure from gram-negative bacteria polysaccharides (a backbone with short saturated fatty acids). Thus, different assays (microarray, GC-MS, RT-PCR, Northern blots, alkalinization and mutant analyses) were conducted in order to elucidate physiological changes in the plant response to Tween 20 detergent. Tween 20 causes a rapid and complex change in transcript abundance which bears all characteristics of a pathogenesis-associated molecular pattern (PAMP)/elicitor-induced defense response, and they do so at concentrations which cause no detectable deleterious effects on plant cellular integrity. In the present work, it is shown that the PAMP/elicitor-induced defense responses are caused by medium-chain fatty acids which are efficiently released from the Tween backbone by the plant, notably lauric acid (12:0) and methyl lauric acid. These compounds induce the production of ethylene, medium alkalinization and gene activation in a jasmonate-independent manner. Medium-chain fatty acids are thus novel elicitors/regulators of plant pathogen defense as they have being proved in animals.

  2. 133. NORTH PLANT SCRUBBER SYSTEM FOR GB MANUFACTURING PLANT. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    133. NORTH PLANT SCRUBBER SYSTEM FOR GB MANUFACTURING PLANT. VIEW TO WEST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  3. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent.

    PubMed

    Elad, Yigal; David, Dalia Rav; Harel, Yael Meller; Borenshtein, Menahem; Kalifa, Hananel Ben; Silber, Avner; Graber, Ellen R

    2010-09-01

    Biochar is the solid coproduct of biomass pyrolysis, a technique used for carbon-negative production of second-generation biofuels. The biochar can be applied as a soil amendment, where it permanently sequesters carbon from the atmosphere as well as improves soil tilth, nutrient retention, and crop productivity. In addition to its other benefits in soil, we found that soil-applied biochar induces systemic resistance to the foliar fungal pathogens Botrytis cinerea (gray mold) and Leveillula taurica (powdery mildew) on pepper and tomato and to the broad mite pest (Polyphagotarsonemus latus Banks) on pepper. Levels of 1 to 5% biochar in a soil and a coconut fiber-tuff potting medium were found to be significantly effective at suppressing both diseases in leaves of different ages. In long-term tests (105 days), pepper powdery mildew was significantly less severe in the biochar-treated plants than in the plants from the unamended controls although, during the final 25 days, the rate of disease development in the treatments and controls was similar. Possible biochar-related elicitors of systemic induced resistance are discussed.

  4. A Physiological and Behavioral Mechanism for Leaf Herbivore-Induced Systemic Root Resistance1[OPEN

    PubMed Central

    Erb, Matthias; Robert, Christelle A.M.; Marti, Guillaume; Lu, Jing; Doyen, Gwladys R.; Villard, Neil; Barrière, Yves; Wolfender, Jean-Luc; Turlings, Ted C.J.

    2015-01-01

    Indirect plant-mediated interactions between herbivores are important drivers of community composition in terrestrial ecosystems. Among the most striking examples are the strong indirect interactions between spatially separated leaf- and root-feeding insects sharing a host plant. Although leaf feeders generally reduce the performance of root herbivores, little is known about the underlying systemic changes in root physiology and the associated behavioral responses of the root feeders. We investigated the consequences of maize (Zea mays) leaf infestation by Spodoptera littoralis caterpillars for the root-feeding larvae of the beetle Diabrotica virgifera virgifera, a major pest of maize. D. virgifera strongly avoided leaf-infested plants by recognizing systemic changes in soluble root components. The avoidance response occurred within 12 h and was induced by real and mimicked herbivory, but not wounding alone. Roots of leaf-infested plants showed altered patterns in soluble free and soluble conjugated phenolic acids. Biochemical inhibition and genetic manipulation of phenolic acid biosynthesis led to a complete disappearance of the avoidance response of D. virgifera. Furthermore, bioactivity-guided fractionation revealed a direct link between the avoidance response of D. virgifera and changes in soluble conjugated phenolic acids in the roots of leaf-attacked plants. Our study provides a physiological mechanism for a behavioral pattern that explains the negative effect of leaf attack on a root-feeding insect. Furthermore, it opens up the possibility to control D. virgifera in the field by genetically mimicking leaf herbivore-induced changes in root phenylpropanoid patterns. PMID:26430225

  5. Plant lighting system with five wavelength-band light-emitting diodes providing photon flux density and mixing ratio control

    PubMed Central

    2012-01-01

    Background Plant growth and development depend on the availability of light. Lighting systems therefore play crucial roles in plant studies. Recent advancements of light-emitting diode (LED) technologies provide abundant opportunities to study various plant light responses. The LED merits include solidity, longevity, small element volume, radiant flux controllability, and monochromaticity. To apply these merits in plant light response studies, a lighting system must provide precisely controlled light spectra that are useful for inducing various plant responses. Results We have developed a plant lighting system that irradiated a 0.18 m2 area with a highly uniform distribution of photon flux density (PFD). The average photosynthetic PFD (PPFD) in the irradiated area was 438 micro-mol m–2 s–1 (coefficient of variation 9.6%), which is appropriate for growing leafy vegetables. The irradiated light includes violet, blue, orange-red, red, and far-red wavelength bands created by LEDs of five types. The PFD and mixing ratio of the five wavelength-band lights are controllable using a computer and drive circuits. The phototropic response of oat coleoptiles was investigated to evaluate plant sensitivity to the light control quality of the lighting system. Oat coleoptiles irradiated for 23 h with a uniformly distributed spectral PFD (SPFD) of 1 micro-mol m–2 s–1 nm–1 at every peak wavelength (405, 460, 630, 660, and 735 nm) grew almost straight upwards. When they were irradiated with an SPFD gradient of blue light (460 nm peak wavelength), the coleoptiles showed a phototropic curvature in the direction of the greater SPFD of blue light. The greater SPFD gradient induced the greater curvature of coleoptiles. The relation between the phototropic curvature (deg) and the blue-light SPFD gradient (micro-mol m–2 s–1 nm–1 m–1) was 2 deg per 1 micro-mol m–2 s–1 nm–1 m–1. Conclusions The plant lighting system, with a computer with a graphical user interface

  6. The Herbivore-Induced Plant Volatiles Methyl Salicylate and Menthol Positively affect Growth and Pathogenicity of Entomopathogenic Fungi

    PubMed Central

    Lin, Yongwen; Qasim, Muhammad; Hussain, Mubasher; Akutse, Komivi Senyo; Avery, Pasco Bruce; Dash, Chandra Kanta; Wang, Liande

    2017-01-01

    Some herbivore-induced-plant volatiles (HIPVs) compounds are vital for the functioning of an ecosystem, by triggering multi-trophic interactions for natural enemies, plants and herbivores. However, the effect of these chemicals, which play a crucial role in regulating the multi-trophic interactions between plant-herbivore-entomopathogenic fungi, is still unknown. To fill this scientific gap, we therefore investigated how these chemicals influence the entomopathogenic fungi growth and efficacy. In this study, Lipaphis erysimi induced Arabidopsis thaliana HIPVs were collected using headspace system and detected with GC-MS, and then analyzed the effects of these HIPVs chemicals on Lecanicillium lecanii strain V3450. We found that the HIPVs menthol and methyl salicylate at 1 and 10 nmol·ml−1 improved many performance aspects of the fungus, such as germination, sporulation, appressorial formation as well as its pathogenicity and virulence. These findings are not only important for understanding the multi-trophic interactions in an ecosystem, but also would contribute for developing new and easier procedures for conidial mass production as well as improve the pathogenicity and virulence of entomopathogenic fungi in biological pest management strategies. PMID:28079180

  7. The Herbivore-Induced Plant Volatiles Methyl Salicylate and Menthol Positively affect Growth and Pathogenicity of Entomopathogenic Fungi

    NASA Astrophysics Data System (ADS)

    Lin, Yongwen; Qasim, Muhammad; Hussain, Mubasher; Akutse, Komivi Senyo; Avery, Pasco Bruce; Dash, Chandra Kanta; Wang, Liande

    2017-01-01

    Some herbivore-induced-plant volatiles (HIPVs) compounds are vital for the functioning of an ecosystem, by triggering multi-trophic interactions for natural enemies, plants and herbivores. However, the effect of these chemicals, which play a crucial role in regulating the multi-trophic interactions between plant-herbivore-entomopathogenic fungi, is still unknown. To fill this scientific gap, we therefore investigated how these chemicals influence the entomopathogenic fungi growth and efficacy. In this study, Lipaphis erysimi induced Arabidopsis thaliana HIPVs were collected using headspace system and detected with GC-MS, and then analyzed the effects of these HIPVs chemicals on Lecanicillium lecanii strain V3450. We found that the HIPVs menthol and methyl salicylate at 1 and 10 nmol·ml-1 improved many performance aspects of the fungus, such as germination, sporulation, appressorial formation as well as its pathogenicity and virulence. These findings are not only important for understanding the multi-trophic interactions in an ecosystem, but also would contribute for developing new and easier procedures for conidial mass production as well as improve the pathogenicity and virulence of entomopathogenic fungi in biological pest management strategies.

  8. The Herbivore-Induced Plant Volatiles Methyl Salicylate and Menthol Positively affect Growth and Pathogenicity of Entomopathogenic Fungi.

    PubMed

    Lin, Yongwen; Qasim, Muhammad; Hussain, Mubasher; Akutse, Komivi Senyo; Avery, Pasco Bruce; Dash, Chandra Kanta; Wang, Liande

    2017-01-12

    Some herbivore-induced-plant volatiles (HIPVs) compounds are vital for the functioning of an ecosystem, by triggering multi-trophic interactions for natural enemies, plants and herbivores. However, the effect of these chemicals, which play a crucial role in regulating the multi-trophic interactions between plant-herbivore-entomopathogenic fungi, is still unknown. To fill this scientific gap, we therefore investigated how these chemicals influence the entomopathogenic fungi growth and efficacy. In this study, Lipaphis erysimi induced Arabidopsis thaliana HIPVs were collected using headspace system and detected with GC-MS, and then analyzed the effects of these HIPVs chemicals on Lecanicillium lecanii strain V3450. We found that the HIPVs menthol and methyl salicylate at 1 and 10 nmol·ml -1 improved many performance aspects of the fungus, such as germination, sporulation, appressorial formation as well as its pathogenicity and virulence. These findings are not only important for understanding the multi-trophic interactions in an ecosystem, but also would contribute for developing new and easier procedures for conidial mass production as well as improve the pathogenicity and virulence of entomopathogenic fungi in biological pest management strategies.

  9. The rare earth element (REE) lanthanum (La) induces hormesis in plants.

    PubMed

    Agathokleous, Evgenios; Kitao, Mitsutoshi; Calabrese, Edward J

    2018-07-01

    Lanthanum is a rare earth element (REE) which has been extensively studied due to its wide application in numerous fields with a potential accumulation in the environment. It has long been known for its potential to stimulate plant growth within a hormetic-biphasic dose response framework. This article provides evidence from a series of high resolution studies published within the last two decades demonstrating a substantial and significant occurrence of lanthanum-induced hormesis in plants. These findings suggest that hormetic responses should be built into the study design of hazard assessment study protocols and included in the risk assessment process. Hormesis also offers the opportunity to substantially improve cost benefit estimates for environmental contaminants, which have the potential to induce beneficial/desirable effects at low doses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. District heating and cooling systems for communities through power plant retrofit and distribution networks. Phase 1: identificaion and assessment. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-09-01

    Appendix A, Utility Plant Characteristics, contains information describing the characteristics of seven utility plants that were considered during the final site selection process. The plants are: Valley Electric Generating Plant, downtown Milwaukee; Manitowoc Electric Generating Plant, downtown Manitowoc; Blount Street Electric Generating Plant, downtown Madison; Pulliam Electric Generating Plant, downtown Green Bay; Edgewater Electric Generating Plant, downtown Sheboygan; Rock River Electric Generating Plant, near Janesville and Beloit; and Black Hawk Electric Generating Plant, downtown Beloit. Additional appendices are: Future Loads; hvac Inventory; Load Calculations; Factors to Induce Potential Users; Turbine Retrofit/Distribution System Data; and Detailed Economic Analysis Results/Data.

  11. Discovery of Plant Phenolic Compounds That Act as Type III Secretion System Inhibitors or Inducers of the Fire Blight Pathogen, Erwinia amylovora

    PubMed Central

    Khokhani, Devanshi; Zhang, Chengfang; Li, Yan; Wang, Qi; Zeng, Quan; Yamazaki, Akihiro; Hutchins, William; Zhou, Shan-Shan

    2013-01-01

    Erwinia amylovora causes a devastating disease called fire blight in rosaceous plants. The type III secretion system (T3SS) is one of the important virulence factors utilized by E. amylovora in order to successfully infect its hosts. By using a green fluorescent protein (GFP) reporter construct combined with a high-throughput flow cytometry assay, a library of phenolic compounds and their derivatives was studied for their ability to alter the expression of the T3SS. Based on the effectiveness of the compounds on the expression of the T3SS pilus, the T3SS inhibitors 4-methoxy-cinnamic acid (TMCA) and benzoic acid (BA) and one T3SS inducer, trans-2-(4-hydroxyphenyl)-ethenylsulfonate (EHPES), were chosen for further study. Both the T3SS inhibitors (TMCA and BA) and the T3SS inducer (EHPES) were found to alter the expression of T3SS through the HrpS-HrpL pathway. Additionally, TMCA altered T3SS expression through the rsmBEa-RsmAEa system. Finally, we found that TMCA and BA weakened the hypersensitive response (HR) in tobacco by suppressing the T3SS of E. amylovora. In our study, we identified phenolic compounds that specifically targeted the T3SS. The T3SS inhibitor may offer an alternative approach to antimicrobial therapy by targeting virulence factors of bacterial pathogens. PMID:23770912

  12. Discovery of plant phenolic compounds that act as type III secretion system inhibitors or inducers of the fire blight pathogen, Erwinia amylovora.

    PubMed

    Khokhani, Devanshi; Zhang, Chengfang; Li, Yan; Wang, Qi; Zeng, Quan; Yamazaki, Akihiro; Hutchins, William; Zhou, Shan-Shan; Chen, Xin; Yang, Ching-Hong

    2013-09-01

    Erwinia amylovora causes a devastating disease called fire blight in rosaceous plants. The type III secretion system (T3SS) is one of the important virulence factors utilized by E. amylovora in order to successfully infect its hosts. By using a green fluorescent protein (GFP) reporter construct combined with a high-throughput flow cytometry assay, a library of phenolic compounds and their derivatives was studied for their ability to alter the expression of the T3SS. Based on the effectiveness of the compounds on the expression of the T3SS pilus, the T3SS inhibitors 4-methoxy-cinnamic acid (TMCA) and benzoic acid (BA) and one T3SS inducer, trans-2-(4-hydroxyphenyl)-ethenylsulfonate (EHPES), were chosen for further study. Both the T3SS inhibitors (TMCA and BA) and the T3SS inducer (EHPES) were found to alter the expression of T3SS through the HrpS-HrpL pathway. Additionally, TMCA altered T3SS expression through the rsmBEa-RsmAEa system. Finally, we found that TMCA and BA weakened the hypersensitive response (HR) in tobacco by suppressing the T3SS of E. amylovora. In our study, we identified phenolic compounds that specifically targeted the T3SS. The T3SS inhibitor may offer an alternative approach to antimicrobial therapy by targeting virulence factors of bacterial pathogens.

  13. Hexanoic Acid Treatment Prevents Systemic MNSV Movement in Cucumis melo Plants by Priming Callose Deposition Correlating SA and OPDA Accumulation.

    PubMed

    Fernández-Crespo, Emma; Navarro, Jose A; Serra-Soriano, Marta; Finiti, Iván; García-Agustín, Pilar; Pallás, Vicente; González-Bosch, Carmen

    2017-01-01

    Unlike fungal and bacterial diseases, no direct method is available to control viral diseases. The use of resistance-inducing compounds can be an alternative strategy for plant viruses. Here we studied the basal response of melon to Melon necrotic spot virus (MNSV) and demonstrated the efficacy of hexanoic acid (Hx) priming, which prevents the virus from systemically spreading. We analysed callose deposition and the hormonal profile and gene expression at the whole plant level. This allowed us to determine hormonal homeostasis in the melon roots, cotyledons, hypocotyls, stems and leaves involved in basal and hexanoic acid-induced resistance (Hx-IR) to MNSV. Our data indicate important roles of salicylic acid (SA), 12-oxo-phytodienoic acid (OPDA), jasmonic-isoleucine, and ferulic acid in both responses to MNSV. The hormonal and metabolites balance, depending on the time and location associated with basal and Hx-IR, demonstrated the reprogramming of plant metabolism in MNSV-inoculated plants. The treatment with both SA and OPDA prior to virus infection significantly reduced MNSV systemic movement by inducing callose deposition. This demonstrates their relevance in Hx-IR against MNSV and a high correlation with callose deposition. Our data also provide valuable evidence to unravel priming mechanisms by natural compounds.

  14. Hexanoic Acid Treatment Prevents Systemic MNSV Movement in Cucumis melo Plants by Priming Callose Deposition Correlating SA and OPDA Accumulation

    PubMed Central

    Fernández-Crespo, Emma; Navarro, Jose A.; Serra-Soriano, Marta; Finiti, Iván; García-Agustín, Pilar; Pallás, Vicente; González-Bosch, Carmen

    2017-01-01

    Unlike fungal and bacterial diseases, no direct method is available to control viral diseases. The use of resistance-inducing compounds can be an alternative strategy for plant viruses. Here we studied the basal response of melon to Melon necrotic spot virus (MNSV) and demonstrated the efficacy of hexanoic acid (Hx) priming, which prevents the virus from systemically spreading. We analysed callose deposition and the hormonal profile and gene expression at the whole plant level. This allowed us to determine hormonal homeostasis in the melon roots, cotyledons, hypocotyls, stems and leaves involved in basal and hexanoic acid-induced resistance (Hx-IR) to MNSV. Our data indicate important roles of salicylic acid (SA), 12-oxo-phytodienoic acid (OPDA), jasmonic-isoleucine, and ferulic acid in both responses to MNSV. The hormonal and metabolites balance, depending on the time and location associated with basal and Hx-IR, demonstrated the reprogramming of plant metabolism in MNSV-inoculated plants. The treatment with both SA and OPDA prior to virus infection significantly reduced MNSV systemic movement by inducing callose deposition. This demonstrates their relevance in Hx-IR against MNSV and a high correlation with callose deposition. Our data also provide valuable evidence to unravel priming mechanisms by natural compounds. PMID:29104580

  15. Field Evaluation of Plant Defense Inducers for the Control of Citrus Huanglongbing.

    PubMed

    Li, Jinyun; Trivedi, Pankaj; Wang, Nian

    2016-01-01

    Huanglongbing (HLB) is currently the most economically devastating disease of citrus worldwide and no established cure is available. Defense inducing compounds are able to induce plant resistance effective against various pathogens. In this study the effects of various chemical inducers on HLB diseased citrus were evaluated in four groves (three with sweet orange and one with mandarin) in Florida (United States) for two to four consecutive growing seasons. Results have demonstrated that plant defense inducers including β-aminobutyric acid (BABA), 2,1,3-benzothiadiazole (BTH), and 2,6-dichloroisonicotinic acid (INA), individually or in combination, were effective in suppressing progress of HLB disease. Ascorbic acid (AA) and the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DDG) also exhibited positive control effects on HLB. After three or four applications for each season, the treatments AA (60 to 600 µM), BABA (0.2 to 1.0 mM), BTH (1.0 mM), INA (0.1 mM), 2-DDG (100 µM), BABA (1.0 mM) plus BTH (1.0 mM), BTH (1.0 mM) plus AA (600 µM), and BTH (1.0 mM) plus 2-DDG (100 µM) slowed down the population growth in planta of 'Candidatus Liberibacter asiaticus', the putative pathogen of HLB and reduced HLB disease severity by approximately 15 to 30% compared with the nontreated control, depending on the age and initial HLB severity of infected trees. These treatments also conferred positive effect on fruit yield and quality. Altogether, these findings indicate that plant defense inducers may be a useful strategy for the management of citrus HLB.

  16. Nocturnal herbivore-induced plant volatiles attract the generalist predatory earwig Doru luteipes Scudder

    NASA Astrophysics Data System (ADS)

    Naranjo-Guevara, Natalia; Peñaflor, Maria Fernanda G. V.; Cabezas-Guerrero, Milton F.; Bento, José Maurício S.

    2017-10-01

    Numerous studies have demonstrated that entomophagous arthropods use herbivore-induced plant volatile (HIPV) blends to search for their prey or host. However, no study has yet focused on the response of nocturnal predators to volatile blends emitted by prey damaged plants. We investigated the olfactory behavioral responses of the night-active generalist predatory earwig Doru luteipes Scudder (Dermaptera: Forficulidae) to diurnal and nocturnal volatile blends emitted by maize plants ( Zea mays) attacked by either a stem borer ( Diatraea saccharalis) or a leaf-chewing caterpillar ( Spodoptera frugiperda), both suitable lepidopteran prey. Additionally, we examined whether the earwig preferred odors emitted from short- or long-term damaged maize. We first determined the earwig diel foraging rhythm and confirmed that D. luteipes is a nocturnal predator. Olfactometer assays showed that during the day, although the earwigs were walking actively, they did not discriminate the volatiles of undamaged maize plants from those of herbivore damaged maize plants. In contrast, at night, earwigs preferred volatiles emitted by maize plants attacked by D. saccharalis or S. frugiperda over undamaged plants and short- over long-term damaged maize. Our GC-MS analysis revealed that short-term damaged nocturnal plant volatile blends were comprised mainly of fatty acid derivatives (i.e., green leaf volatiles), while the long-term damaged plant volatile blend contained mostly terpenoids. We also observed distinct volatile blend composition emitted by maize damaged by the different caterpillars. Our results showed that D. luteipes innately uses nocturnal herbivore-induced plant volatiles to search for prey. Moreover, the attraction of the earwig to short-term damaged plants is likely mediated by fatty acid derivatives.

  17. Use of a highly sensitive two-dimensional luminescence imaging system to monitor endogenous bioluminescence in plant leaves

    PubMed Central

    Flor-Henry, Michel; McCabe, Tulene C; de Bruxelles, Guy L; Roberts, Michael R

    2004-01-01

    Background All living organisms emit spontaneous low-level bioluminescence, which can be increased in response to stress. Methods for imaging this ultra-weak luminescence have previously been limited by the sensitivity of the detection systems used. Results We developed a novel configuration of a cooled charge-coupled device (CCD) for 2-dimensional imaging of light emission from biological material. In this study, we imaged photon emission from plant leaves. The equipment allowed short integration times for image acquisition, providing high resolution spatial and temporal information on bioluminescence. We were able to carry out time course imaging of both delayed chlorophyll fluorescence from whole leaves, and of low level wound-induced luminescence that we showed to be localised to sites of tissue damage. We found that wound-induced luminescence was chlorophyll-dependent and was enhanced at higher temperatures. Conclusions The data gathered on plant bioluminescence illustrate that the equipment described here represents an improvement in 2-dimensional luminescence imaging technology. Using this system, we identify chlorophyll as the origin of wound-induced luminescence from leaves. PMID:15550176

  18. Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice

    PubMed Central

    De Vleesschauwer, David; Chernin, Leonid; Höfte, Monica M

    2009-01-01

    Background Induced resistance is a state of enhanced defensive capacity developed by a plant reacting to specific biotic or chemical stimuli. Over the years, several forms of induced resistance have been characterized, including systemic acquired resistance, which is induced upon localized infection by an avirulent necrotizing pathogen, and induced systemic resistance (ISR), which is elicited by selected strains of nonpathogenic rhizobacteria. However, contrary to the relative wealth of information on inducible defense responses in dicotyledoneous plants, our understanding of the molecular mechanisms underlying induced resistance phenomena in cereal crops is still in its infancy. Using a combined cytomolecular and pharmacological approach, we analyzed the host defense mechanisms associated with the establishment of ISR in rice by the rhizobacterium Serratia plymuthica IC1270. Results In a standardized soil-based assay, root treatment with IC1270 rendered foliar tissues more resistant to the hemibiotrophic pathogen Magnaporthe oryzae, causal agent of the devastating rice blast disease. Analysis of the cytological and biochemical alterations associated with restriction of fungal growth in IC1270-induced plants revealed that IC1270 primes rice for enhanced attacker-induced accumulation of reactive oxygen species (ROS) and autofluorescent phenolic compounds in and near epidermal cells displaying dense cytoplasmic granulation. Similar, yet more abundant, phenotypes of hypersensitively dying cells in the vicinity of fungal hyphae were evident in a gene-for-gene interaction with an avirulent M. oryzae strain, suggesting that IC1270-inducible ISR and R protein conditioned effector-triggered immunity (ETI) target similar defense mechanisms. Yet, this IC1270-inducible ISR response seems to act as a double-edged sword within the rice defense network as induced plants displayed an increased vulnerability to the necrotrophic pathogens Rhizoctonia solani and Cochliobolus

  19. Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice.

    PubMed

    De Vleesschauwer, David; Chernin, Leonid; Höfte, Monica M

    2009-01-22

    Induced resistance is a state of enhanced defensive capacity developed by a plant reacting to specific biotic or chemical stimuli. Over the years, several forms of induced resistance have been characterized, including systemic acquired resistance, which is induced upon localized infection by an avirulent necrotizing pathogen, and induced systemic resistance (ISR), which is elicited by selected strains of nonpathogenic rhizobacteria. However, contrary to the relative wealth of information on inducible defense responses in dicotyledoneous plants, our understanding of the molecular mechanisms underlying induced resistance phenomena in cereal crops is still in its infancy. Using a combined cytomolecular and pharmacological approach, we analyzed the host defense mechanisms associated with the establishment of ISR in rice by the rhizobacterium Serratia plymuthica IC1270. In a standardized soil-based assay, root treatment with IC1270 rendered foliar tissues more resistant to the hemibiotrophic pathogen Magnaporthe oryzae, causal agent of the devastating rice blast disease. Analysis of the cytological and biochemical alterations associated with restriction of fungal growth in IC1270-induced plants revealed that IC1270 primes rice for enhanced attacker-induced accumulation of reactive oxygen species (ROS) and autofluorescent phenolic compounds in and near epidermal cells displaying dense cytoplasmic granulation. Similar, yet more abundant, phenotypes of hypersensitively dying cells in the vicinity of fungal hyphae were evident in a gene-for-gene interaction with an avirulent M. oryzae strain, suggesting that IC1270-inducible ISR and R protein conditioned effector-triggered immunity (ETI) target similar defense mechanisms. Yet, this IC1270-inducible ISR response seems to act as a double-edged sword within the rice defense network as induced plants displayed an increased vulnerability to the necrotrophic pathogens Rhizoctonia solani and Cochliobolus miyabeanus. Artificial

  20. Hydroponics: A Versatile System to Study Nutrient Allocation and Plant Responses to Nutrient Availability and Exposure to Toxic Elements

    PubMed Central

    Nguyen, Nga T.; McInturf, Samuel A.; Mendoza-Cózatl, David G.

    2016-01-01

    Hydroponic systems have been utilized as one of the standard methods for plant biology research and are also used in commercial production for several crops, including lettuce and tomato. Within the plant research community, numerous hydroponic systems have been designed to study plant responses to biotic and abiotic stresses. Here we present a hydroponic protocol that can be easily implemented in laboratories interested in pursuing studies on plant mineral nutrition. This protocol describes the hydroponic system set up in detail and the preparation of plant material for successful experiments. Most of the materials described in this protocol can be found outside scientific supply companies, making the set up for hydroponic experiments less expensive and convenient. The use of a hydroponic growth system is most advantageous in situations where the nutrient media need to be well controlled and when intact roots need to be harvested for downstream applications. We also demonstrate how nutrient concentrations can be modified to induce plant responses to both essential nutrients and toxic non-essential elements. PMID:27500800

  1. Hydroponics: A Versatile System to Study Nutrient Allocation and Plant Responses to Nutrient Availability and Exposure to Toxic Elements.

    PubMed

    Nguyen, Nga T; McInturf, Samuel A; Mendoza-Cózatl, David G

    2016-07-13

    Hydroponic systems have been utilized as one of the standard methods for plant biology research and are also used in commercial production for several crops, including lettuce and tomato. Within the plant research community, numerous hydroponic systems have been designed to study plant responses to biotic and abiotic stresses. Here we present a hydroponic protocol that can be easily implemented in laboratories interested in pursuing studies on plant mineral nutrition. This protocol describes the hydroponic system set up in detail and the preparation of plant material for successful experiments. Most of the materials described in this protocol can be found outside scientific supply companies, making the set up for hydroponic experiments less expensive and convenient. The use of a hydroponic growth system is most advantageous in situations where the nutrient media need to be well controlled and when intact roots need to be harvested for downstream applications. We also demonstrate how nutrient concentrations can be modified to induce plant responses to both essential nutrients and toxic non-essential elements.

  2. Floral Scent Mimicry and Vector-Pathogen Associations in a Pseudoflower-Inducing Plant Pathogen System

    PubMed Central

    McArt, Scott H.; Miles, Timothy D.; Rodriguez-Saona, Cesar; Schilder, Annemiek; Adler, Lynn S.; Grieshop, Matthew J.

    2016-01-01

    Several fungal plant pathogens induce ‘pseudoflowers’ on their hosts to facilitate insect-mediated transmission of gametes and spores. When spores must be transmitted to host flowers to complete the fungal life cycle, we predict that pseudoflowers should evolve traits that mimic flowers and attract the most effective vectors in the flower-visiting community. We quantified insect visitation to flowers, healthy leaves and leaves infected with Monilinia vaccinii-corymbosi (Mvc), the causative agent of mummy berry disease of blueberry. We developed a nested PCR assay for detecting Mvc spores on bees, flies and other potential insect vectors. We also collected volatiles from blueberry flowers, healthy leaves and leaves infected with Mvc, and experimentally manipulated specific pathogen-induced volatiles to assess attractiveness to potential vectors. Bees and flies accounted for the majority of contacts with flowers, leaves infected with Mvc and healthy leaves. Flowers were contacted most often, while there was no difference between bee or fly contacts with healthy and infected leaves. While bees contacted flowers more often than flies, flies contacted infected leaves more often than bees. Bees were more likely to have Mvc spores on their bodies than flies, suggesting that bees may be more effective vectors than flies for transmitting Mvc spores to flowers. Leaves infected with Mvc had volatile profiles distinct from healthy leaves but similar to flowers. Two volatiles produced by flowers and infected leaves, cinnamyl alcohol and cinnamic aldehyde, were attractive to bees, while no volatiles manipulated were attractive to flies or any other insects. These results suggest that Mvc infection of leaves induces mimicry of floral volatiles, and that transmission occurs primarily via bees, which had the highest likelihood of carrying Mvc spores and visited flowers most frequently. PMID:27851747

  3. Floral Scent Mimicry and Vector-Pathogen Associations in a Pseudoflower-Inducing Plant Pathogen System.

    PubMed

    McArt, Scott H; Miles, Timothy D; Rodriguez-Saona, Cesar; Schilder, Annemiek; Adler, Lynn S; Grieshop, Matthew J

    2016-01-01

    Several fungal plant pathogens induce 'pseudoflowers' on their hosts to facilitate insect-mediated transmission of gametes and spores. When spores must be transmitted to host flowers to complete the fungal life cycle, we predict that pseudoflowers should evolve traits that mimic flowers and attract the most effective vectors in the flower-visiting community. We quantified insect visitation to flowers, healthy leaves and leaves infected with Monilinia vaccinii-corymbosi (Mvc), the causative agent of mummy berry disease of blueberry. We developed a nested PCR assay for detecting Mvc spores on bees, flies and other potential insect vectors. We also collected volatiles from blueberry flowers, healthy leaves and leaves infected with Mvc, and experimentally manipulated specific pathogen-induced volatiles to assess attractiveness to potential vectors. Bees and flies accounted for the majority of contacts with flowers, leaves infected with Mvc and healthy leaves. Flowers were contacted most often, while there was no difference between bee or fly contacts with healthy and infected leaves. While bees contacted flowers more often than flies, flies contacted infected leaves more often than bees. Bees were more likely to have Mvc spores on their bodies than flies, suggesting that bees may be more effective vectors than flies for transmitting Mvc spores to flowers. Leaves infected with Mvc had volatile profiles distinct from healthy leaves but similar to flowers. Two volatiles produced by flowers and infected leaves, cinnamyl alcohol and cinnamic aldehyde, were attractive to bees, while no volatiles manipulated were attractive to flies or any other insects. These results suggest that Mvc infection of leaves induces mimicry of floral volatiles, and that transmission occurs primarily via bees, which had the highest likelihood of carrying Mvc spores and visited flowers most frequently.

  4. O3-Induced Leaf Senescence in Tomato Plants Is Ethylene Signaling-Dependent and Enhances the Population Abundance of Bemisia tabaci

    PubMed Central

    Guo, Honggang; Sun, Yucheng; Yan, Hongyu; Li, Chuanyou; Ge, Feng

    2018-01-01

    Elevated ozone (O3) can alter the phenotypes of host plants particularly in induction of leaf senescence, but few reports examine the involvement of phytohormone in O3-induced changes in host phenotypes that influence the foraging quality for insects. Here, we used an ethylene (ET) receptor mutant Nr and its wild-type to determine the function of the ET signaling pathway in O3-induced leaf senescence, and bottom-up effects on the performance of Bemisia tabaci in field open-top chambers (OTCs). Our results showed that elevated O3 reduced photosynthetic efficiency and chlorophyll content and induced leaf senescence of plant regardless of plant genotype. Leaf senescence in Nr plants was alleviated relative to wild-type under elevated O3. Further analyses of foliar quality showed that elevated O3 had little effect on phytohormone-mediated defenses, but significantly increased the concentration of amino acids in two plant genotypes. Furthermore, Nr plants had lower amino acid content relative to wild-type under elevated O3. These results provided an explanation of O3-induced increase in abundance of B. tabaci. We concluded that O3-induced senescence of plant was ET signal-dependent, and positive effects of O3-induced leaf senescence on the performance of B. tabaci largely resulted from changes of nutritional quality of host plants. PMID:29946327

  5. Priming of cowpea volatile emissions with defense inducers enhances the plant's attractiveness to parasitoids when attacked by caterpillars.

    PubMed

    Sobhy, Islam S; Bruce, Toby Ja; Turlings, Ted Cj

    2018-04-01

    The manipulation of herbivore-induced volatile organic compounds (HI-VOCs) via the application of the inducers benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH) and laminarin (β-1,3-glucan) is known to enhance the attractiveness of caterpillar-damaged cotton and maize plants to parasitoids. To test if this is also the case for legumes, we treated cowpea (Vigna unguiculata var. unguiculata) with these inducers and studied the effects on HI-VOC emissions and the attraction of three generalist endoparasitoids. After the inducers had been applied and the plants subjected to either real or mimicked herbivory by Spodoptera littoralis caterpillars, females of the parasitoids Campoletis sonorensis and Microplitis rufiventris showed a strong preference for BTH-treated plants, whereas Cotesia females were strongly attracted to both BTH- and laminarin-treated plants with real or mimicked herbivory. Treated plants emitted more of certain HI-VOCs, but considerably less indole and linalool and less of several sesquiterpenes. Multivariate data analysis revealed that enhanced wasp attraction after treatment was correlated with high relative concentrations of nonanal, α-pinene, (E)-β-ocimene and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), and with low relative concentrations of indole, (S)-linalool and (E)-β-farnesene. Inducer treatments had no significant effect on leaf consumption by the caterpillars. Our findings confirm that treating cowpea plants with inducers can enhance their attractiveness to biological control agents. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Two poplar-associated bacterial isolates induce additive favorable responses in a constructed plant-microbiome system

    DOE PAGES

    Jawdy, Sara S.; Gunter, Lee E.; Engle, Nancy L.; ...

    2016-04-26

    Here, the biological function of the plant-microbiome system is the result of contributions from the host plant and microbiome members. In this work we study the function of a simplified community consisting of Pseudomonas and Burkholderia bacterial strains isolated from Populus hosts and inoculated on axenic Populus cutting in controlled laboratory conditions. Inoculation individually with either bacterial isolate increased root growth relative to uninoculated controls. Root area, photosynthetic efficiency, gene expression and metabolite expression data in individual and dual inoculated treatments indicate that the effects of these bacteria are unique and additive, suggesting that the function of a microbiome communitymore » may be predicted from the additive functions of the individual members.« less

  7. Protection of cadmium chloride induced DNA damage by Lamiaceae plants

    PubMed Central

    Thirugnanasampandan, Ramaraj; Jayakumar, Rajarajeswaran

    2011-01-01

    Objective To analyze the total phenolic content, DNA protecting and radical scavenging activity of ethanolic leaf extracts of three Lamiaceae plants, i.e. Anisomelos malabarica (A. malabarica), Leucas aspera (L. aspera) and Ocimum basilicum (O. basilicum). Methods The total polyphenols and flavonoids were analyzed in the ethanolic leaf extracts of the lamiaceae plants. To determine the DNA protecting activity, various concentrations of the plant extracts were prepared and treated on cultured HepG2 human lung cancer cells. The pretreated cells were exposed to H2O2 to induce DNA damage through oxidative stress. Comet assay was done and the tail length of individual comets was measured. Nitric oxide and superoxide anion scavenging activities of lamiaceae plants were analyzed. Results Among the three plant extracts, the highest amount of total phenolic content was found in O. basilicum (189.33 mg/g), whereas A. malabarica showed high levels of flavonoids (10.66 mg/g). O. basilicum also showed high levels of DNA protecting (85%) and radical scavenging activity. Conclusions The results of this study shows that bioactive phenols present in lamiaceae plants may prevent carcinogenesis through scavenging free radicals and inhibiting DNA damage. PMID:23569799

  8. Morphological, physiological, cytological and phytochemical studies in diploid and colchicine-induced tetraploid plants of Fagopyrum tataricum (L.) Gaertn.

    PubMed

    Wang, Lin-Jiao; Sheng, Mao-Yin; Wen, Pei-Cai; Du, Jia-Ying

    2017-12-01

    Tartary buckwheat are very popular as an important functional food material and its cultivation is very widespread in our whole world, but there obviously lack works in the researches of genetic breeding for agricultural and medicinal utilization. The aim of this study is to obtain good germplasm resources for agricultural and medicinal use of tartary buckwheat (Fagopyrum tataricum) by inducing the tetraploid plants. Four cultivars of F. tataricum, that is, Qianwei 2#, Jinku 2#, Chuanqiao 1#, and Liuqiao 1# were selected to experiment. The tips of seedlings with two true leaves were treated by 0.25% (w/v) colchicine solution for 48, 72, and 96 h, respectively. The chromosome number of treated plants was determined by metaphase chromosome counting of root tip cells and PMCs (pollen mother cells) meiosis observation. Tetraploid induction successfully occurred in all three treatments with an efficiency ranging from 12.13 to 54.55%. The chromosome number of the diploid plants was 2n = 2x = 16, and that of the induced tetraploid plants was 2n = 4x = 32. The typical morphological and physiological qualities were compared between the control diploid and corresponding induced tetraploid plants. Results showed that the induced tetraploid plants had obviously larger leaves, flowers, and seeds. Moreover, the content of seed protein and flavonoid were also increased in the tetraploid plants. The pollen diameter and capsule size of diploid plants were significantly smaller than those of tetraploid plants. Fagopyrum tataricum can be effectively induced into tetraploids by colchicines. The tetraploid induction can produce valuable germplasm resources for breeding and is a practicable breeding way in F. tataricum.

  9. When a Plant Resistance Inducer Leaves the Lab for the Field: Integrating ASM into Routine Apple Protection Practices.

    PubMed

    Marolleau, Brice; Gaucher, Matthieu; Heintz, Christelle; Degrave, Alexandre; Warneys, Romain; Orain, Gilles; Lemarquand, Arnaud; Brisset, Marie-Noëlle

    2017-01-01

    Plant resistance inducers, also called elicitors, could be useful to reduce the use of pesticides. However, their performance in controlling diseases in the field remains unsatisfactory due to lack of specific knowledge of how they can integrate crop protection practices. In this work, we focused on apple crop and acibenzolar- S -methyl (ASM), a well-known SAR (systemic acquired resistance) inducer of numerous plant species. We provide a protocol for orchard-effective control of apple scab due to the ascomycete fungus Venturia inaequalis , by applying ASM in combination with a light integrated pest management program. Besides we pave the way for future optimization levers by demonstrating in controlled conditions (i) the high influence of apple genotypes, (ii) the ability of ASM to prime defenses in newly formed leaves, (iii) the positive effect of repeated elicitor applications, (iv) the additive effect of a thinning fruit agent.

  10. When a Plant Resistance Inducer Leaves the Lab for the Field: Integrating ASM into Routine Apple Protection Practices

    PubMed Central

    Marolleau, Brice; Gaucher, Matthieu; Heintz, Christelle; Degrave, Alexandre; Warneys, Romain; Orain, Gilles; Lemarquand, Arnaud; Brisset, Marie-Noëlle

    2017-01-01

    Plant resistance inducers, also called elicitors, could be useful to reduce the use of pesticides. However, their performance in controlling diseases in the field remains unsatisfactory due to lack of specific knowledge of how they can integrate crop protection practices. In this work, we focused on apple crop and acibenzolar-S-methyl (ASM), a well-known SAR (systemic acquired resistance) inducer of numerous plant species. We provide a protocol for orchard-effective control of apple scab due to the ascomycete fungus Venturia inaequalis, by applying ASM in combination with a light integrated pest management program. Besides we pave the way for future optimization levers by demonstrating in controlled conditions (i) the high influence of apple genotypes, (ii) the ability of ASM to prime defenses in newly formed leaves, (iii) the positive effect of repeated elicitor applications, (iv) the additive effect of a thinning fruit agent. PMID:29255473

  11. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis.

    PubMed

    Lee, Unseok; Chang, Sungyul; Putra, Gian Anantrio; Kim, Hyoungseok; Kim, Dong Hwan

    2018-01-01

    A high-throughput plant phenotyping system automatically observes and grows many plant samples. Many plant sample images are acquired by the system to determine the characteristics of the plants (populations). Stable image acquisition and processing is very important to accurately determine the characteristics. However, hardware for acquiring plant images rapidly and stably, while minimizing plant stress, is lacking. Moreover, most software cannot adequately handle large-scale plant imaging. To address these problems, we developed a new, automated, high-throughput plant phenotyping system using simple and robust hardware, and an automated plant-imaging-analysis pipeline consisting of machine-learning-based plant segmentation. Our hardware acquires images reliably and quickly and minimizes plant stress. Furthermore, the images are processed automatically. In particular, large-scale plant-image datasets can be segmented precisely using a classifier developed using a superpixel-based machine-learning algorithm (Random Forest), and variations in plant parameters (such as area) over time can be assessed using the segmented images. We performed comparative evaluations to identify an appropriate learning algorithm for our proposed system, and tested three robust learning algorithms. We developed not only an automatic analysis pipeline but also a convenient means of plant-growth analysis that provides a learning data interface and visualization of plant growth trends. Thus, our system allows end-users such as plant biologists to analyze plant growth via large-scale plant image data easily.

  12. Florigen and anti-florigen – a systemic mechanism for coordinating growth and termination in flowering plants

    PubMed Central

    Lifschitz, Eliezer; Ayre, Brian G.; Eshed, Yuval

    2014-01-01

    Genetic studies in Arabidopsis established FLOWERING LOCUS T (FT) as a key flower-promoting gene in photoperiodic systems. Grafting experiments established unequivocal one-to-one relations between SINGLE FLOWER TRUSS (SFT), a tomato homolog of FT, and the hypothetical florigen, in all flowering plants. Additional studies of SFT and SELF PRUNING (SP, homolog of TFL1), two antagonistic genes regulating the architecture of the sympodial shoot system, have suggested that transition to flowering in the day-neutral and perennial tomato is synonymous with “termination.” Dosage manipulation of its endogenous and mobile, graft-transmissible levels demonstrated that florigen regulates termination and transition to flowering in an SP-dependent manner and, by the same token, that high florigen levels induce growth arrest and termination in meristems across the tomato shoot system. It was thus proposed that growth balances, and consequently the patterning of the shoot systems in all plants, are mediated by endogenous, meristem-specific dynamic SFT/SP ratios and that shifts to termination by changing SFT/SP ratios are triggered by the imported florigen, the mobile form of SFT. Florigen is a universal plant growth hormone inherently checked by a complementary antagonistic systemic system. Thus, an examination of the endogenous functions of FT-like genes, or of the systemic roles of the mobile florigen in any plant species, that fails to pay careful attention to the balancing antagonistic systems, or to consider its functions in day-neutral or perennial plants, would be incomplete. PMID:25278944

  13. Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy

    PubMed Central

    Wang, Yu; Cai, Shuyu; Yin, Lingling; Shi, Kai; Xia, Xiaojian; Zhou, Yanhong; Yu, Jingquan; Zhou, Jie

    2015-01-01

    Autophagy plays critical roles in plant responses to stress. In contrast to the wealth of information concerning the core process of plant autophagosome assembly, our understanding of the regulation of autophagy is limited. In this study, we demonstrated that transcription factor HsfA1a played a critical role in tomato tolerance to drought stress, in part through its positive role in induction of autophagy under drought stress. HsfA1a expression was induced by drought stress. Virus-induced HsfA1a gene silencing reduced while its overexpression increased plant drought tolerance based on both symptoms and membrane integrity. HsfA1a-silenced plants were more sensitive to endogenous ABA-mediated stomatal closure, while its overexpression lines were resistant under drought stress, indicating that phytohormone ABA did not play a major role in HsfA1a-induced drought tolerance. On the other hand, HsfA1a-silenced plants increased while its overexpression decreased the levels of insoluble proteins which were highly ubiquitinated under drought stress. Furthermore, drought stress induced numerous ATGs expression and autophagosome formation in wild-type plants. The expression of ATG10 and ATG18f, and the formation of autophagosomes were compromised in HsfA1a-silenced plants but were enhanced in HsfA1a-overexpressing plants. Both electrophoretic mobility shift assay and chromatin immunoprecipitation coupled with qPCR analysis revealed that HsfA1a bound to ATG10 and ATG18f gene promoters. Silencing of ATG10 and ATG18f reduced HsfA1a-induced drought tolerance and autophagosome formation in plants overexpressing HsfA1a. These results demonstrate that HsfA1a induces drought tolerance by activating ATG genes and inducing autophagy, which may promote plant survival by degrading ubiquitinated protein aggregates under drought stress. PMID:26649940

  14. Aquatic food production modules in bioregenerative life support systems based on higher plants.

    PubMed

    Bluem, V; Paris, F

    2001-01-01

    Most bioregenerative life support systems (BLSS) are based on gravitropic higher plants which exhibit growth and seed generation disturbances in microgravity. Even when used for a lunar or martian base the reduced gravity may induce a decreased productivity in comparison to Earth. Therefore, the implementation of aquatic biomass production modules in higher plant and/or hybrid BLSS may compensate for this and offer, in addition, the possibility to produce animal protein for human nutrition. It was shown on the SLS-89 and SLS-90 space shuttle missions with the C.E.B.A.S.-MINI MODULE that the edible non gravitropic rootless higher aquatic plant Ceratophyllum demeresum exhibits an undisturbed high biomass production rate in space and that the teleost fish species, Xiphophorus helleri, adapts rapidly to space conditions without loss of its normal reproductive functions. Based on these findings a series of ground-based aquatic food production systems were developed which are disposed for utilization in space. These are plant production bioreactors for the species mentioned above and another suitable candidate, the lemnacean (duckweed) species, Wolffia arrhiza. Moreover, combined intensive aquaculture systems with a closed food loop between herbivorous fishes and aquatic and land plants are being developed which may be suitable for integration into a BLSS of higher complexity. Grant numbers: WS50WB9319-3, IVA1216-00588. c 2001. COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  15. Bending-induced folding, an actuation mechanism for plant reconfiguration.

    NASA Astrophysics Data System (ADS)

    Terwagne, Denis; Segers, JéRéMy; trioS. lab-Soft Structures; Surfaces Lab Team

    Inspired by the sophisticated mechanism of the opening and closing of the ice seed plant valves (Aizoaceae), we present a simple model experiment of this mechanism based on an origami folding. By imposing a curvature to one of the plate connected to a fold designed along a curved path, we actuate its opening and closing. The imposed curvature induces inner mechanical constraints that give us a precise control of the deflection angle, which ultimately leads the fold to close completely. In this talk, we will present an analysis and characterization of this mechanism as a function of the geometrical and mechanical parameters of the system. From these insights, we will show how to build origami pliers with tunable mechanical properties. Possible out comings that might arise in various fields, ranging from deployable engineered structure to soft robotics and medical devices, are discussed. DT and JS thank the Belgian national science foundation F.R.S-FNRS for funding.

  16. Nuclear plants gain integrated information systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villavicencio-Ramirez, A.; Rodriquez-Alvarez, J.M.

    1994-10-01

    With the objective of simplifying the complex mesh of computing devices employed within nuclear power plants, modern technology and integration techniques are being used to form centralized (but backed up) databases and distributed processing and display networks. Benefits are immediate as a result of the integration and the use of standards. The use of a unique data acquisition and database subsystem optimizes the high costs of engineering, as this task is done only once for the life span of the system. This also contributes towards a uniform user interface and allows for graceful expansion and maintenance. This article features anmore » integrated information system, Sistema Integral de Informacion de Proceso (SIIP). The development of this system enabled the Laguna Verde Nuclear Power plant to fully use the already existing universe of signals and its related engineering during all plant conditions, namely, start up, normal operation, transient analysis, and emergency operation. Integrated systems offer many advantages over segregated systems, and this experience should benefit similar development efforts in other electric power utilities, not only for nuclear but also for other types of generating plants.« less

  17. Induced Resistance to Meloidogyne hapla by other Meloidogyne species on Tomato and Pyrethrum Plants

    PubMed Central

    Ogallo, J. L.; McClure, M. A.

    1995-01-01

    Advance inoculation of the tomato cv. Celebrity or the pyrethrum clone 223 with host-incompatible Meloidogyne incognita or M. javanica elicited induced resistance to host-compatible M. hapla in pot and field experiments. Induced resistance increased with the length of the time between inoculations and with the population density of the induction inoculum. Optimum interval before challenge inoculation, or population density of inoculum for inducing resistance, was 10 days, or 5,000 infective nematodes per 500-cm³ pot. The induced resistance suppressed population increase of M. hapla by 84% on potted tomato, 72% on potted pyrethrum, and 55% on field-grown pyrethrum seedlings, relative to unprotected treatments. Pyrethrum seedlings inoculated with M. javanica 10 days before infection with M. hapla were not stunted, whereas those that did not receive the advance inoculum were stunted 33% in pots and 36% in field plots. The results indicated that advance infection of plants with incompatible or mildly virulent nematode species induced resistance to normally compatible nematodes and that the induced resistance response may have potential as a biological control method for plant nematodes. PMID:19277310

  18. Steam plant startup and control in system restoration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mello, F.P. de; Westcott, J.C.

    1994-02-01

    The IEEE Working Group on Power System Restoration developed a panel session for the Summer Power Meeting on July 14, 1992 on Special Considerations in Power System Restoration. One of the contributions to this session is presented in this paper dealing with aspects of steam plant startup and control in scenarios of system restoration. The topics addressed include the complexity of a steam plant, the contrast between normal plant startups and shutdowns and those following major system blackouts including the effects of plant design, automatic controls, bypass valving and operator training.

  19. Fate of methane in aquatic systems dominated by free-floating plants.

    PubMed

    Kosten, Sarian; Piñeiro, Marcia; de Goede, Eefje; de Klein, Jeroen; Lamers, Leon P M; Ettwig, Katharina

    2016-11-01

    Worldwide the area of free-floating plants is increasing, which can be expected to alter methane (CH 4 ) emissions from aquatic systems in several ways. A large proportion of the CH 4 produced may become oxidized below the plants due to the accumulation of CH 4 as a result of a decrease in the diffusive water-atmosphere flux and the entrapment of part of the ebullitive CH 4 , in combination with suitable conditions for methane oxidizing (MOX) bacteria in the aerobic rhizosphere. We used a set of essays to test this hypothesis and to explore the effect of different densities for three widespread free-floating species: Azolla filiculoides, Salvinia natans, and Eichhornia crassipes. The gas exchange velocity, proportion of CH 4 bubbles trapped by the plants, occurrence of radial oxygen loss from roots, and MOX rates on the roots were assessed. We subsequently used the outcome of these experiments to parameterize a simple model. With this model we estimated the proportion of the produced CH 4 that is oxidized, for different plant species and different densities. We found that in a shallow (1 m) system up to 70% of the CH 4 produced may become oxidized as a result of a strong decrease in gas exchange combined with high MOX activity of the rhizosphere microbiome. As floating plants also are likely to increase CH 4 production by organic matter production, especially when their presence induces anaerobic conditions, the overall effect on CH 4 emission will strongly depend on local conditions. This explains the contrasting effects of floating plants on CH 4 emissions in literature as reviewed here. As the effect of floating plants on CH 4 emissions, including the high MOX rates we show here, can be substantial, there is an urgent need to consider this impact when assessing greenhouse gas budgets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Plant natriuretic peptides induce proteins diagnostic for an adaptive response to stress.

    PubMed

    Turek, Ilona; Marondedze, Claudius; Wheeler, Janet I; Gehring, Chris; Irving, Helen R

    2014-01-01

    In plants, structural and physiological evidence has suggested the presence of biologically active natriuretic peptides (PNPs). PNPs are secreted into the apoplast, are systemically mobile and elicit a range of responses signaling via cGMP. The PNP-dependent responses include tissue specific modifications of cation transport and changes in stomatal conductance and the photosynthetic rate. PNP also has a critical role in host defense responses. Surprisingly, PNP-homologs are produced by several plant pathogens during host colonization suppressing host defense responses. Here we show that a synthetic peptide representing the biologically active fragment of the Arabidopsis thaliana PNP (AtPNP-A) induces the production of reactive oxygen species in suspension-cultured A. thaliana (Col-0) cells. To identify proteins whose expression changes in an AtPNP-A dependent manner, we undertook a quantitative proteomic approach, employing tandem mass tag (TMT) labeling, to reveal temporal responses of suspension-cultured cells to 1 nM and 10 pM PNP at two different time-points post-treatment. Both concentrations yield a distinct differential proteome signature. Since only the higher (1 nM) concentration induces a ROS response, we conclude that the proteome response at the lower concentration reflects a ROS independent response. Furthermore, treatment with 1 nM PNP results in an over-representation of the gene ontology (GO) terms "oxidation-reduction process," "translation" and "response to salt stress" and this is consistent with a role of AtPNP-A in the adaptation to environmental stress conditions.

  1. Airborne Signals from a Wounded Leaf Facilitate Viral Spreading and Induce Antibacterial Resistance in Neighboring Plants

    PubMed Central

    Dorokhov, Yuri L.; Komarova, Tatiana V.; Petrunia, Igor V.; Frolova, Olga Y.; Pozdyshev, Denis V.; Gleba, Yuri Y.

    2012-01-01

    Many plants release airborne volatile compounds in response to wounding due to pathogenic assault. These compounds serve as plant defenses and are involved in plant signaling. Here, we study the effects of pectin methylesterase (PME)-generated methanol release from wounded plants (“emitters”) on the defensive reactions of neighboring “receiver” plants. Plant leaf wounding resulted in the synthesis of PME and a spike in methanol released into the air. Gaseous methanol or vapors from wounded PME-transgenic plants induced resistance to the bacterial pathogen Ralstonia solanacearum in the leaves of non-wounded neighboring “receiver” plants. In experiments with different volatile organic compounds, gaseous methanol was the only airborne factor that could induce antibacterial resistance in neighboring plants. In an effort to understand the mechanisms by which methanol stimulates the antibacterial resistance of “receiver” plants, we constructed forward and reverse suppression subtractive hybridization cDNA libraries from Nicotiana benthamiana plants exposed to methanol. We identified multiple methanol-inducible genes (MIGs), most of which are involved in defense or cell-to-cell trafficking. We then isolated the most affected genes for further analysis: β-1,3-glucanase (BG), a previously unidentified gene (MIG-21), and non-cell-autonomous pathway protein (NCAPP). Experiments with Tobacco mosaic virus (TMV) and a vector encoding two tandem copies of green fluorescent protein as a tracer of cell-to-cell movement showed the increased gating capacity of plasmodesmata in the presence of BG, MIG-21, and NCAPP. The increased gating capacity is accompanied by enhanced TMV reproduction in the “receivers”. Overall, our data indicate that methanol emitted by a wounded plant acts as a signal that enhances antibacterial resistance and facilitates viral spread in neighboring plants. PMID:22496658

  2. Regulating plant physiology with organic electronics.

    PubMed

    Poxson, David J; Karady, Michal; Gabrielsson, Roger; Alkattan, Aziz Y; Gustavsson, Anna; Doyle, Siamsa M; Robert, Stéphanie; Ljung, Karin; Grebe, Markus; Simon, Daniel T; Berggren, Magnus

    2017-05-02

    The organic electronic ion pump (OEIP) provides flow-free and accurate delivery of small signaling compounds at high spatiotemporal resolution. To date, the application of OEIPs has been limited to delivery of nonaromatic molecules to mammalian systems, particularly for neuroscience applications. However, many long-standing questions in plant biology remain unanswered due to a lack of technology that precisely delivers plant hormones, based on cyclic alkanes or aromatic structures, to regulate plant physiology. Here, we report the employment of OEIPs for the delivery of the plant hormone auxin to induce differential concentration gradients and modulate plant physiology. We fabricated OEIP devices based on a synthesized dendritic polyelectrolyte that enables electrophoretic transport of aromatic substances. Delivery of auxin to transgenic Arabidopsis thaliana seedlings in vivo was monitored in real time via dynamic fluorescent auxin-response reporters and induced physiological responses in roots. Our results provide a starting point for technologies enabling direct, rapid, and dynamic electronic interaction with the biochemical regulation systems of plants.

  3. Regulating plant physiology with organic electronics

    PubMed Central

    Poxson, David J.; Karady, Michal; Alkattan, Aziz Y.; Gustavsson, Anna; Robert, Stéphanie; Grebe, Markus; Berggren, Magnus

    2017-01-01

    The organic electronic ion pump (OEIP) provides flow-free and accurate delivery of small signaling compounds at high spatiotemporal resolution. To date, the application of OEIPs has been limited to delivery of nonaromatic molecules to mammalian systems, particularly for neuroscience applications. However, many long-standing questions in plant biology remain unanswered due to a lack of technology that precisely delivers plant hormones, based on cyclic alkanes or aromatic structures, to regulate plant physiology. Here, we report the employment of OEIPs for the delivery of the plant hormone auxin to induce differential concentration gradients and modulate plant physiology. We fabricated OEIP devices based on a synthesized dendritic polyelectrolyte that enables electrophoretic transport of aromatic substances. Delivery of auxin to transgenic Arabidopsis thaliana seedlings in vivo was monitored in real time via dynamic fluorescent auxin-response reporters and induced physiological responses in roots. Our results provide a starting point for technologies enabling direct, rapid, and dynamic electronic interaction with the biochemical regulation systems of plants. PMID:28420793

  4. Plant-uptake of uranium: Hydroponic and soil system studies

    USGS Publications Warehouse

    Ramaswami, A.; Carr, P.; Burkhardt, M.

    2001-01-01

    Limited information is available on screening and selection of terrestrial plants for uptake and translocation of uranium from soil. This article evaluates the removal of uranium from water and soil by selected plants, comparing plant performance in hydroponic systems with that in two soil systems (a sandy-loam soil and an organic-rich soil). Plants selected for this study were Sunflower (Helianthus giganteus), Spring Vetch (Vicia sativa), Hairy Vetch (Vicia villosa), Juniper (Juniperus monosperma), Indian Mustard (Brassica juncea), and Bush Bean (Phaseolus nanus). Plant performance was evaluated both in terms of the percent uranium extracted from the three systems, as well as the biological absorption coefficient (BAC) that normalized uranium uptake to plant biomass. Study results indicate that uranium extraction efficiency decreased sharply across hydroponic, sandy and organic soil systems, indicating that soil organic matter sequestered uranium, rendering it largely unavailable for plant uptake. These results indicate that site-specific soils must be used to screen plants for uranium extraction capability; plant behavior in hydroponic systems does not correlate well with that in soil systems. One plant species, Juniper, exhibited consistent uranium extraction efficiencies and BACs in both sandy and organic soils, suggesting unique uranium extraction capabilities.

  5. Derepression of the Plant Chromovirus LORE1 Induces Germline Transposition in Regenerated Plants

    PubMed Central

    Fukai, Eigo; Umehara, Yosuke; Sato, Shusei; Endo, Makoto; Kouchi, Hiroshi; Hayashi, Makoto; Stougaard, Jens; Hirochika, Hirohiko

    2010-01-01

    Transposable elements represent a large proportion of the eukaryotic genomes. Long Terminal Repeat (LTR) retrotransposons are very abundant and constitute the predominant family of transposable elements in plants. Recent studies have identified chromoviruses to be a widely distributed lineage of Gypsy elements. These elements contain chromodomains in their integrases, which suggests a preference for insertion into heterochromatin. In turn, this preference might have contributed to the patterning of heterochromatin observed in host genomes. Despite their potential importance for our understanding of plant genome dynamics and evolution, the regulatory mechanisms governing the behavior of chromoviruses and their activities remain largely uncharacterized. Here, we report a detailed analysis of the spatio-temporal activity of a plant chromovirus in the endogenous host. We examined LORE1a, a member of the endogenous chromovirus LORE1 family from the model legume Lotus japonicus. We found that this chromovirus is stochastically de-repressed in plant populations regenerated from de-differentiated cells and that LORE1a transposes in the male germline. Bisulfite sequencing of the 5′ LTR and its surrounding region suggests that tissue culture induces a loss of epigenetic silencing of LORE1a. Since LTR promoter activity is pollen specific, as shown by the analysis of transgenic plants containing an LTR::GUS fusion, we conclude that male germline-specific LORE1a transposition in pollen grains is controlled transcriptionally by its own cis-elements. New insertion sites of LORE1a copies were frequently found in genic regions and show no strong insertional preferences. These distinctive novel features of LORE1 indicate that this chromovirus has considerable potential for generating genetic and epigenetic diversity in the host plant population. Our results also define conditions for the use of LORE1a as a genetic tool. PMID:20221264

  6. Interface problems between material recycling systems and plants

    NASA Astrophysics Data System (ADS)

    Nitta, Keiji; Oguchi, Mitsuo; Otsubo, Koji

    A most important problem to creating a CELSS system to be used in space, for example, for a Lunar Base or Manned Mars mission, seems to be how to design and operate the various material recycling system to be used on the missions. Recent studies of a Lunar Base habitat have identified examples of CELSS configurations to be used for the Plant Cultivation Module. Material recycling subsystems to be installed in the Plant Cultivation Modules are proposed to consist of various sub-systems, such as dehumidifier, oxygen separation systems, catalytic wet oxidation systems, nitrogen adjusting systems, including tanks, and so on. The required performances of such various material recycling subsystems are determined based on precise metabolic data of derived from the various species of plants to be selected and investigated. The plant metabolic data, except that for wheat and potato, has not been fully collected at the present time. Therefore, much additional plant cultivation data is required to determine the performances of each material recycling subsystems introduced in Plant Cultivation Modules.

  7. Recombination and genetic variance among maize doubled haploids induced from F1 and F2 plants.

    PubMed

    Sleper, Joshua A; Bernardo, Rex

    2016-12-01

    Inducing maize doubled haploids from F 2 plants (DHF2) instead of F 1 plants (DHF1) led to more recombination events. However, the best DHF2 lines did not outperform the best DHF1 lines. Maize (Zea mays L.) breeders rely on doubled haploid (DH) technology for fast and efficient production of inbreds. Breeders can induce DH lines most quickly from F 1 plants (DHF1), or induce DH lines from F 2 plants (DHF2) to allow selection prior to DH induction and have more recombinations. Our objective was to determine if the additional recombinations in maize DHF2 lines lead to a larger genetic variance and a superior mean of the best lines. A total of 311 DHF1 and 241 DHF2 lines, derived from the same biparental cross, were crossed to two testers and evaluated in multilocation trials in Europe and the US. The mean number of recombinations per genome was 14.48 among the DHF1 lines and 21.38 among the DHF1 lines. The means of the DHF1 and DHF2 lines did not differ for yield, moisture, and plant height. The genetic variance was higher among DHF2 lines than among DHF1 lines for moisture, but not for yield and plant height. The ratio of repulsion to coupling linkages, which was estimated from genomewide marker effects, was higher among DHF1 lines than among DHF2 lines for moisture, but not for yield and plant height. The higher genetic variance for moisture among DHF2 lines did not lead to lower moisture of the best 10 % of the lines. Our results indicated that the decision of inducing DH lines from F 1 or F 2 plants needs to be made from considerations other than the performance of the resulting DHF1 or DHF2 lines.

  8. Assessment of ethylene diurea-induced protection in plants against ozone phytotoxicity.

    PubMed

    Singh, Aditya Abha; Singh, Shalini; Agrawal, Madhoolika; Agrawal, Shashi Bhushan

    2015-01-01

    Urbanization, industrialization and unsustainable utilization of natural resources have made tropospheric ozone (03) one of the world's most significant air pollutants. Past studies reveal that 0 3 is a phytotoxic air pollutant that causes or enhances food insecurity across the globe. Plant sensitivity, tolerance and resistance to 0 3 involve a wide array of responses that range from growth to the physiological, biochemical and molecular. Although plants have an array of defense systems to combat oxidative stress from 0 3 exposure, they still suffer sizable yield reductions. In recent years, the ground-level 0 3 concentrations to which crop plants have been exposed have caused yield loses that are economically damaging. Several types of chemicals have been applied or used to mitigate the effects produced by 0 3 on plants. These include agrochemicals (fungicides, insecticides, plant growth regulators), natural antioxidants, and others. Such treatments have been effective to one degree to another, in ameliorating Or generated stress in plants. Ethylene diurea (EDU) has been the most effective protectant used and has also served as a monitoring agent for assessing plant yield losses from 0 3 exposure. In this review, we summarize the data on how EDU has been used, the treatment methods tested, and application doses found to be both protective and toxic in plants. We have also summarized data that address the nature and modes of action (biophysical and biochemical) of EDU. In general, the literature discloses that EDU is effective in reducing ozone damage to plants, and indicates that EDU should be more widely used on 0 3 sensitive plants as a tool for biomonitoring of 0 3 concentrations. Biomonitoring studies that utilize EDU are very useful for rural and remote areas and in developing countries where 0 3 monitoring is constrained from unavailability of electricity. The mechanism(s) by which EDU prevents 0 3 toxicity in plants is still not completely known. EDU

  9. Induced resistance in soybean toHelicoverpa zea: Role of plant protein quality.

    PubMed

    Bi, J L; Felton, G W; Mueller, A J

    1994-01-01

    Resistance in soybean toHelicoverpa zea is comprised of both constitutive and inducible factors. In this study, we investigated the induction of resistance byH. zea in both greenhouse and field studies. In a greenhouse experiment, fourth-instarH. zea growth rates were reduced by 39% after 24 hr feeding and by 27% after 48 hr when larvae fed on previously wounded V3 foliage (cv. Forrest) compared with undamaged foliage. In a field study, the weight gain by larvae was more than 52% greater when larvae fed for 72 hr on undamaged R2/R3 soybean plants (cv. Braxton) compared to those that fed on previously wounded plants. A significant component of the induced resistance is due to a decline in the nutritional quality of foliar protein following foliar damage byH. zea. Foliar protein was extracted from damaged and undamaged foliage and incorporated into artificial diets. Larval growth was reduced 26% after four days and 49% after seven days on diets containing protein from damaged plants compared to larvae feeding on foliar protein from undamaged plants. Chemical analyses of protein quality also indicated a decline in quality in damaged plants compared to unwounded plants. Increases in lipoxygenase activity (53%), lipid peroxidation products (20%), and trypsin inhibitor content (34%) were observed in protein from wounded plants. Moreover, a 5.9% loss in free amines and 19% loss in total thiols occurred in protein from wounded plants. Larval feeding causes a significant increase in foliar lipoxygenase activity that varied among genotypes. Lipoxygenase isozymes were measured at pH 5.5, pH 7.0, and pH 8.5 in V3 stage plants of Forrest, Hark, D75-1069, and PI 417061 genotypes. Lipoxygenase activity in each genotype was significantly increased after 72 hr of larval feeding at each pH level tested, with the exception of lipoxygenase isozymes at pH 5.5 in genotype PI 417061. Larval feeding on R2/R3 stage plants (field-grown cv. Braxton) for six days also increased foliar

  10. Biochar addition induced the same plant responses as elevated CO2 in mine spoil.

    PubMed

    Zhang, Yaling; Drigo, Barbara; Bai, Shahla Hosseini; Menke, Carl; Zhang, Manyun; Xu, Zhihong

    2018-01-01

    Nitrogen (N) limitation is one of the major constrain factors for biochar in improving plant growth, the same for elevated atmospheric carbon dioxide (CO 2 ). Hence, we hypothesized that (1) biochar would induce the same plant responses as elevated CO 2 under N-poor conditions; (2) elevated CO 2 would decrease the potential of biochar application in improving plant growth. To test these hypotheses, we assessed the effects of pinewood biochar, produced at three pyrolytic temperatures (650, 750 and 850 °C), on C and N allocation at the whole-plant level of three plant species (Austrostipa ramossissima, Dichelachne micrantha and Isolepis nodosa) grown in the N poor mine spoil under both ambient (400 μL L -1 ) and elevated (700 μL L -1 ) CO 2 concentrations. Our data showed that biochar addition (1) significantly decreased leaf total N and δ 15 N (P < 0.05); (2) decreased leaf total N and δ 15 N more pronouncedly than those of root; and (3) showed more pronounced effects on improving plant biomass under ambient CO 2 than under elevated CO 2 concentration. Hence, it remained a strong possibility that biochar addition induced the same plant physiological responses as elevated CO 2 in the N-deficient mine spoil. As expected, elevated CO 2 decreased the ability of biochar addition in improving plant growth.

  11. Cascading effects of induced terrestrial plant defences on aquatic and terrestrial ecosystem function

    PubMed Central

    Jackrel, Sara L.; Wootton, J. Timothy

    2015-01-01

    Herbivores induce plants to undergo diverse processes that minimize costs to the plant, such as producing defences to deter herbivory or reallocating limited resources to inaccessible portions of the plant. Yet most plant tissue is consumed by decomposers, not herbivores, and these defensive processes aimed to deter herbivores may alter plant tissue even after detachment from the plant. All consumers value nutrients, but plants also require these nutrients for primary functions and defensive processes. We experimentally simulated herbivory with and without nutrient additions on red alder (Alnus rubra), which supplies the majority of leaf litter for many rivers in western North America. Simulated herbivory induced a defence response with cascading effects: terrestrial herbivores and aquatic decomposers fed less on leaves from stressed trees. This effect was context dependent: leaves from fertilized-only trees decomposed most rapidly while leaves from fertilized trees receiving the herbivory treatment decomposed least, suggesting plants funnelled a nutritionally valuable resource into enhanced defence. One component of the defence response was a decrease in leaf nitrogen leading to elevated carbon : nitrogen. Aquatic decomposers prefer leaves naturally low in C : N and this altered nutrient profile largely explains the lower rate of aquatic decomposition. Furthermore, terrestrial soil decomposers were unaffected by either treatment but did show a preference for local and nitrogen-rich leaves. Our study illustrates the ecological implications of terrestrial herbivory and these findings demonstrate that the effects of selection caused by terrestrial herbivory in one ecosystem can indirectly shape the structure of other ecosystems through ecological fluxes across boundaries. PMID:25788602

  12. Trophic transfer of soil arsenate and associated toxic effects in a plant-aphid-parasitoid system

    NASA Astrophysics Data System (ADS)

    Lee, Y. S.; Wee, J.; Lee, M.; Hong, J.; Cho, K.

    2017-12-01

    Terrestrial toxic effects of soil arsenic were studied using a model system consisting of soil which artificially treated with arsenic, Capsicum annum,Myzus persicae and Aphidus colemani. We investigated the transfer of arsenic in a soil-plant-aphid system and toxic effect of elevated arsenic through a plant-aphid-parasitoid system. To remove the effect of poor plant growth on aphid performance, test concentrations which have a no effect on health plant growth were selected. Arsenic concentration of growth medium, plant tissues (root, stem, leaf) aphids were measured to observe the arsenic transfer. Correlation matrix was made with arsenic in growth medium which extracted with three extractants (aquaregia, 0.01 M CaCl2 and deionized water), arsenic in plant tissues and plant performance. Toxic effects of elevated arsenic concentrations on each species were investigated at population level. Studied plant performances were dry weight of each tissue, elongation of roots and stems, area of leaves, chlorophyll content of leaves, protein content of leaves and sugar content of leaves. Mean development time, fecundity and honeydew excretion of the aphids and host choice capacity and parasitism success of the parasitoids were examined. In addition, enzyme activities of the plants and the aphids against reactive oxygen species (ROS) induced by arsenic stress were also investigated. The results suggest that arsenic concentration in plant tissues and aphids were elevated with increased concentration of arsenic in soil. Decreased fecundity and honeydew excretion of aphids were observed and decreased eclosion rate of parasitoids were observed with increased arsenic treatment in growth medium. The results showed low concentration of arsenic in soil can transfer through food chain and can impact on higher trophic level species.

  13. Oxidant induced alteration of carbohydrate production and allocation in plants

    Treesearch

    Robert L. Heath

    1998-01-01

    Urban air basin produced oxidants, notably ozone, induce a decline in productivity in plants. This loss of productivity is manifested by slower growth, hindered development, lower reproduction rates, impaired ability to resist disease, and other stresses. While many metabolic events have been linked to oxidant exposure, three major shifts have been well-studied:...

  14. Escherichia coli O157:H7 induces stronger plant immunity than Salmonella enterica Typhimurium SL1344.

    PubMed

    Roy, Debanjana; Panchal, Shweta; Rosa, Bruce A; Melotto, Maeli

    2013-04-01

    Consumption of fresh produce contaminated with bacterial human pathogens has resulted in various, sometimes deadly, disease outbreaks. In this study, we assessed plant defense responses induced by the fully pathogenic bacteria Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium SL1344 in both Arabidopsis thaliana and lettuce (Lactuca sativa). Unlike SL1344, O157:H7 induced strong plant immunity at both pre-invasion and post-invasion steps of infection. For instance, O157:H7 triggered stomatal closure even under high relative humidity, an environmental condition that generally weakens plant defenses against bacteria in the field and laboratory conditions. SL1344 instead induced a transient stomatal immunity. We also observed that PR1 gene expression was significantly higher in Arabidopsis leaves infected with O157:H7 compared with SL1344. These results suggest that plants may recognize and respond to some human pathogens more effectively than others. Furthermore, stomatal immunity can diminish the penetration of human pathogens through the leaf epidermis, resulting in low bacterial titers in the plant apoplast and suggesting that additional control measures can be employed to prevent food contamination. The understanding of how plant responses can diminish bacterial contamination is paramount in preventing outbreaks and improving the safety of food supplies.

  15. Hydrogen sulfide - cysteine cycle system enhances cadmium tolerance through alleviating cadmium-induced oxidative stress and ion toxicity in Arabidopsis roots

    PubMed Central

    Jia, Honglei; Wang, Xiaofeng; Dou, Yanhua; Liu, Dan; Si, Wantong; Fang, Hao; Zhao, Chen; Chen, Shaolin; Xi, Jiejun; Li, Jisheng

    2016-01-01

    Cadmium (Cd2+) is a common toxic heavy metal ion. We investigated the roles of hydrogen sulfide (H2S) and cysteine (Cys) in plant responses to Cd2+ stress. The expression of H2S synthetic genes LCD and DES1 were induced by Cd2+ within 3 h, and endogenous H2S was then rapidly released. H2S promoted the expression of Cys synthesis-related genes SAT1 and OASA1, which led to endogenous Cys accumulation. The H2S and Cys cycle system was stimulated by Cd2+ stress, and it maintained high levels in plant cells. H2S inhibited the ROS burst by inducing alternative respiration capacity (AP) and antioxidase activity. H2S weakened Cd2+ toxicity by inducing the metallothionein (MTs) genes expression. Cys promoted GSH accumulation and inhibited the ROS burst, and GSH induced the expression of phytochelatin (PCs) genes, counteracting Cd2+ toxicity. In summary, the H2S and Cys cycle system played a key role in plant responses to Cd2+ stress. The Cd2+ tolerance was weakened when the cycle system was blocked in lcddes1-1 and oasa1 mutants. This paper is the first to describe the role of the H2S and Cys cycle system in Cd2+ stress and to explore the relevant and specificity mechanisms of H2S and Cys in mediating Cd2+ stress. PMID:28004782

  16. Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric CO 2 concentration

    NASA Astrophysics Data System (ADS)

    Vuorinen, Terhi; Reddy, G. V. P.; Nerg, Anne-Marja; Holopainen, Jarmo K.

    The warming of the lower atmosphere due to elevating CO 2 concentration may increase volatile organic compound (VOC) emissions from plants. Also, direct effects of elevated CO 2 on plant secondary metabolism are expected to lead to increased VOC emissions due to allocation of excess carbon on secondary metabolites, of which many are volatile. We investigated how growing at doubled ambient CO 2 concentration affects emissions from cabbage plants ( Brassica oleracea subsp. capitata) damaged by either the leaf-chewing larvae of crucifer specialist diamondback moth ( Plutella xylostella L.) or generalist Egyptian cotton leafworm ( Spodoptera littoralis (Boisduval)). The emission from cabbage cv. Lennox grown in both CO 2 concentrations, consisted mainly of monoterpenes (sabinene, limonene, α-thujene, 1,8-cineole, β-pinene, myrcene, α-pinene and γ-terpinene). ( Z)-3-Hexenyl acetate, sesquiterpene ( E, E)- α-farnesene and homoterpene ( E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) were emitted mainly from herbivore-damaged plants. Plants grown at 720 μmol mol -1 of CO 2 had significantly lower total monoterpene emissions per shoot dry weight than plants grown at 360 μmol mol -1 of CO 2, while damage by both herbivores significantly increased the total monoterpene emissions compared to intact plants. ( Z)-3-Hexenyl acetate, ( E, E)- α-farnesene and DMNT emissions per shoot dry weight were not affected by the growth at elevated CO 2. The emission of DMNT was significantly enhanced from plants damaged by the specialist P. xylostella compared to the plants damaged by the generalist S. littoralis. The relative proportions of total monoterpenes and total herbivore-induced compounds of total VOCs did not change due to the growth at elevated CO 2, while insect damage increased significantly the proportion of induced compounds. The results suggest that VOC emissions that are induced by the leaf-chewing herbivores will not be influenced by elevated CO 2 concentration.

  17. Trichoderma harzianum T-22 Induces Systemic Resistance in Tomato Infected by Cucumber mosaic virus

    PubMed Central

    Vitti, Antonella; Pellegrini, Elisa; Nali, Cristina; Lovelli, Stella; Sofo, Adriano; Valerio, Maria; Scopa, Antonio; Nuzzaci, Maria

    2016-01-01

    Understanding the induction of plant defenses against viruses using biocontrol agents is essential for developing new strategies against these pathogens, given the ineffectiveness of chemical treatments. The ability of Trichoderma harzianum, strain T-22 (T22) to control Cucumber mosaic virus (CMV) in Solanum lycopersicum var. cerasiforme plants and the changes in the physiology of tomato treated/infected with T22/CMV were examined. Plant growth-promoting effects, photosynthetic performance, reactive oxygen species scavenging enzymes, and phytohormones were investigated. T22 improved tomato growth in terms of plant height and improved photosynthesis, total chlorophyll content and plant gas exchange. In contrast, CMV induced a negative effect on dry matter accumulation and inhibited the photosynthetic capacity. The analysis of plant hormones demonstrated that treating with T22 before or simultaneously to CMV infection, led to a systemic resistance by jasmonic acid/ethylene and salicylic acid signaling pathways. Conversely, systemic resistance was abscissic acid-dependent when T22 treatment was administered after the CMV infection. In conclusion, the data reported here indicate that the T22-based strategy may be the most effective measure against CMV. PMID:27777581

  18. A Virulence Essential CRN Effector of Phytophthora capsici Suppresses Host Defense and Induces Cell Death in Plant Nucleus.

    PubMed

    Mafurah, Joseph Juma; Ma, Huifei; Zhang, Meixiang; Xu, Jing; He, Feng; Ye, Tingyue; Shen, Danyu; Chen, Yanyu; Rajput, Nasir Ahmed; Dou, Daolong

    2015-01-01

    Phytophthora capsici is a soil-borne plant pathogen with a wide range of hosts. The pathogen secretes a large array of effectors during infection of host plants, including Crinkler (CRN) effectors. However, it remains largely unknown on the roles of these effectors in virulence especially in P. capsici. In this study, we identified a cell death-inducing CRN effector PcCRN4 using agroinfiltration approach. Transient expression of PcCRN4 gene induced cell death in N. benthamiana, N. tabacum and Solanum lycopersicum. Overexpression of the gene in N. benthamiana enhanced susceptibility to P. capsici. Subcellular localization results showed that PcCRN4 localized to the plant nucleus, and the localization was required for both of its cell death-inducing activity and virulent function. Silencing PcCRN4 gene in P. capsici significantly reduced pathogen virulence. The expression of the pathogenesis-related gene PR1b in N. benthamiana was significantly induced when plants were inoculated with PcCRN4-silenced P. capsici transformant compared to the wilt-type. Callose deposits were also abundant at sites inoculated with PcCRN4-silenced transformant, indicating that silencing of PcCRN4 in P. capsici reduced the ability of the pathogen to suppress plant defenses. Transcriptions of cell death-related genes were affected when PcCRN4-silenced line were inoculated on Arabidopsis thaliana, suggesting that PcCRN4 may induce cell death by manipulating cell death-related genes. Overall, our results demonstrate that PcCRN4 is a virulence essential effector and it needs target to the plant nucleus to suppress plant immune responses.

  19. Hypobaric Control of Ethylene-Induced Leaf Senescence in Intact Plants of Phaseolus vulgaris L. 1

    PubMed Central

    Nilsen, Karl N.; Hodges, Clinton F.

    1983-01-01

    A controlled atmospheric-environment system (CAES) designed to sustain normal or hypobaric ambient growing conditions was developed, described, and evaluated for its effectiveness as a research tool capable of controlling ethylene-induced leaf senescence in intact plants of Phaseolus vulgaris L. Senescence was prematurely-induced in primary leaves by treatment with 30 parts per million ethephon. Ethephon-derived endogenous ethylene reached peak levels within 6 hours at 26°C. Total endogenous ethylene levels then temporarily stabilized at approximately 1.75 microliters per liter from 6 to 24 hours. Thereafter, a progressive rise in ethylene resulted from leaf tissue metabolism and release. Throughout the study, the endogenous ethylene content of ethephon-treated leaves was greater than that of nontreated leaves. Subjecting ethephon-treated leaves to atmospheres of 200 millibars, with O2 and CO2 compositions set to approximate normal atmospheric partial pressures, prevented chlorophyll loss. Alternately, subjecting ethephon-treated plants to 200 millibars of air only partially prevented chlorophyll loss. Hypobaric conditions (200 millibars), with O2 and CO2 at normal atmospheric availability, could be delayed until 48 hours after ethephon treatment and still prevent most leaf senescence. In conclusion, hypobaric conditions established and maintained within the CAES prevented ethylene-induced senescence (chlorosis) in intact plants, provided O2 and CO2 partial pressures were maintained at levels approximating normal ambient availability. An unexpected increase in endogenous ethylene was detected within nontreated control leaves 48 hours subsequent to relocation from winter greenhouse conditions (latitude, 42°00″ N) to the CAES operating at normal ambient pressure. The longer photoperiod and/or higher temperature utilized within the CAES are hypothesized to influence ethylene metabolism directly and growth-promotive processes (e.g. response thresholds) indirectly

  20. The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant

    PubMed Central

    Zhang, Li; Lilley, Catherine J.; Imren, Mustafa; Knox, J. Paul; Urwin, Peter E.

    2017-01-01

    Plant–parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida, Heterodera glycines, Heterodera avenae and Heterodera filipjevi, in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines. Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function. PMID:28680436

  1. Differential response of a local population of entomopathogenic nematodes to non-native herbivore induced plant volatiles (HIPV) in the laboratory and field

    USDA-ARS?s Scientific Manuscript database

    Recent work has shown the potential for enhanced efficacy of entomopathogenic nematodes (EPN) through their attraction to herbivore induced plant volatiles. However, there has been little investigation into the utilization of these attractants in systems other than in those in which the compounds we...

  2. Development of a tightly regulated and highly responsive copper-inducible gene expression system and its application to control of flowering time.

    PubMed

    Saijo, Takanori; Nagasawa, Akitsu

    2014-01-01

    A newly developed copper-inducible gene expression system overcame the mixed results reported earlier, worked well both in cultured cells and a whole plant, and enabled to control flowering timing. Copper is one of the essential microelements and is readily taken up by plants. However, to date, it has rarely been used to control the expression of genes of interest, probably due to the inefficiency of the gene expression systems. In this study, we successfully developed a copper-inducible gene expression system that is based on the regulation of the yeast metallothionein gene. This system can be applied in the field and regulated at approximately one-hundredth of the rate used for registered copper-based fungicides. In the presence of copper, a translational fusion of the ACE1 transcription factor with the VP16 activation domain (VP16AD) of herpes simplex virus strongly activated transcription of the GFP gene in transgenic Arabidopsis. Interestingly, insertion of the To71 sequence, a 5'-untranslated region of the 130k/180k gene of tomato mosaic virus, upstream of the GFP gene reduced the basal expression of GFP in the absence of copper to almost negligible levels, even in soil-grown plants that were supplemented with ordinary liquid nutrients. Exposure of plants to 100 μM copper resulted in an over 1,000-fold induction ratio at the transcriptional level of GFP. This induction was copper-specific and dose-dependent with rapid and reversible responses. Using this expression system, we also succeeded in regulating floral transition by copper treatment. These results indicate that our newly developed copper-inducible system can accelerate gene functional analysis in model plants and can be used to generate novel agronomic traits in crop species.

  3. A protein kinase from Colletotrichum trifolii is induced by plant cutin and is required for appressorium formation.

    PubMed

    Dickman, M B; Ha, Y S; Yang, Z; Adams, B; Huang, C

    2003-05-01

    When certain phytopathogenic fungi contact plant surfaces, specialized infection structures (appressoria) are produced that facilitate penetration of the plant external barrier; the cuticle. Recognition of this hydrophobic host surface must be sensed by the fungus, initiating the appropriate signaling pathway or pathways for pathogenic development. Using polymerase chain reaction and primers designed from mammalian protein kinase C sequences (PKC), we have isolated, cloned, and characterized a protein kinase from Colletotrichum trifolii, causal agent of alfalfa anthracnose. Though sequence analysis indicated conserved sequences in mammalian PKC genes, we were unable to induce activity of the fungal protein using known activators of PKC. Instead, we show that the C. trifolii gene, designated LIPK (lipid-induced protein kinase) is induced specifically by purified plant cutin or long-chain fatty acids which are monomeric constituents of cutin. PKC inhibitors prevented appressorium formation and, to a lesser extent, spore germination. Overexpression of LIPK resulted in multiple, abnormally shaped appressoria. Gene replacement of lipk yielded strains which were unable to develop appressoria and were unable to infect intact host plant tissue. However, these mutants were able to colonize host tissue following artificial wounding, resulting in typical anthracnose lesions. Taken together, these data indicate a central role in triggering infection structure formation for this protein kinase, which is induced specifically by components of the plant cuticle. Thus, the fungus is able to sense and use host surface chemistry to induce a protein kinase-mediated pathway that is required for pathogenic development.

  4. Prey and Non-prey Arthropods Sharing a Host Plant: Effects on Induced Volatile Emission and Predator Attraction

    PubMed Central

    Hordijk, Cornelis A.; Posthumus, Maarten A.; Dicke, Marcel

    2008-01-01

    It is well established that plants infested with a single herbivore species can attract specific natural enemies through the emission of herbivore-induced volatiles. However, it is less clear what happens when plants are simultaneously attacked by more than one species. We analyzed volatile emissions of lima bean and cucumber plants upon multi-species herbivory by spider mites (Tetranychus urticae) and caterpillars (Spodoptera exigua) in comparison to single-species herbivory. Upon herbivory by single or multiple species, lima bean and cucumber plants emitted volatile blends that comprised mostly the same compounds. To detect additive, synergistic, or antagonistic effects, we compared the multi-species herbivory volatile blend with the sum of the volatile blends induced by each of the herbivore species feeding alone. In lima bean, the majority of compounds were more strongly induced by multi-species herbivory than expected based on the sum of volatile emissions by each of the herbivores separately, potentially caused by synergistic effects. In contrast, in cucumber, two compounds were suppressed by multi-species herbivory, suggesting the potential for antagonistic effects. We also studied the behavioral responses of the predatory mite Phytoseiulus persimilis, a specialized natural enemy of spider mites. Olfactometer experiments showed that P. persimilis preferred volatiles induced by multi-species herbivory to volatiles induced by S. exigua alone or by prey mites alone. We conclude that both lima bean and cucumber plants effectively attract predatory mites upon multi-species herbivory, but the underlying mechanisms appear different between these species. PMID:18185960

  5. Plant Systems Biology at the Single-Cell Level.

    PubMed

    Libault, Marc; Pingault, Lise; Zogli, Prince; Schiefelbein, John

    2017-11-01

    Our understanding of plant biology is increasingly being built upon studies using 'omics and system biology approaches performed at the level of the entire plant, organ, or tissue. Although these approaches open new avenues to better understand plant biology, they suffer from the cellular complexity of the analyzed sample. Recent methodological advances now allow plant scientists to overcome this limitation and enable biological analyses of single-cells or single-cell-types. Coupled with the development of bioinformatics and functional genomics resources, these studies provide opportunities for high-resolution systems analyses of plant phenomena. In this review, we describe the recent advances, current challenges, and future directions in exploring the biology of single-cells and single-cell-types to enhance our understanding of plant biology as a system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The effects of metallic engineered nanoparticles upon plant systems: An analytic examination of scientific evidence.

    PubMed

    Tolaymat, Thabet; Genaidy, Ash; Abdelraheem, Wael; Dionysiou, Dionysios; Andersen, Christian

    2017-02-01

    Recent evidence for the effects of metallic engineered nanoparticles (ENPs) on plants and plant systems was examined together with its implications for other constituents of the Society-Environment-Economy (SEE) system. In this study, we were particularly interested to determine whether or not metallic ENPs have both stimulatory and inhibitory effects upon plant performance. An emphasis was made to analyze the scientific evidence on investigations examining both types of effects in the same studies. Analysis of evidence demonstrated that metallic ENPs have both stimulatory and inhibitory effects mostly in well-controlled environments and soilless media. Nano zero-valent iron (nZVI) and Cu ENPs have potential for use as micronutrients for plant systems, keeping in mind the proper formulation at the right dose for each type of ENP. The concentration levels for the stimulatory effects of Cu ENPs are lower than for those for nZVI. Newer findings showed that extremely smaller concentrations of Au ENPs (smaller than those for nZVI and Cu ENPs) induce positive effects for plant growth, which is attributed to effects on secondary metabolites. Ag ENPs have demonstrated their usage as antimicrobial/pesticidal agents for plant protection; however, precautions should be taken to avoid higher concentrations not only for plant systems, but also, other constituents in the SEE. Further research is warranted to investigate the stimulatory and inhibitory effects of metallic ENPs in soil media in order to broaden the horizon of sustainable agriculture production in terms of higher and safer yields so as to meet the food requirements of human population. Copyright © 2016. Published by Elsevier B.V.

  7. Laser-induced breakdown spectroscopy for analysis of plant materials: A review

    NASA Astrophysics Data System (ADS)

    Santos, Dário, Jr.; Nunes, Lidiane Cristina; de Carvalho, Gabriel Gustinelli Arantes; Gomes, Marcos da Silva; de Souza, Paulino Florêncio; Leme, Flavio de Oliveira; dos Santos, Luis Gustavo Cofani; Krug, Francisco José

    2012-05-01

    Developments and contributions of laser-induced breakdown spectroscopy (LIBS) for the determination of elements in plant materials are reviewed. Several applications where the solid samples are interrogated by simply focusing the laser pulses directly onto a fresh or dried surface of leaves, roots, fruits, vegetables, wood and pollen are presented. For quantitative purposes aiming at plant nutrition diagnosis, the test sample presentation in the form of pressed pellets, prepared from clean, dried and properly ground/homogenized leaves, and the use of univariate or multivariate calibration strategies are revisited.

  8. Cold plasma interactions with plants: Morphing and movements of Venus flytrap and Mimosa pudica induced by argon plasma jet.

    PubMed

    Volkov, Alexander G; Xu, Kunning G; Kolobov, Vladimir I

    2017-12-01

    Low temperature (cold) plasma finds an increasing number of applications in biology, medicine and agriculture. In this paper, we report a new effect of plasma induced morphing and movements of Venus flytrap and Mimosa pudica. We have experimentally observed plasma activation of sensitive plant movements and morphing structures in these plants similar to stimulation of their mechanosensors in vivo. Application of an atmospheric pressure argon plasma jet to the inside or outside of a lobe, midrib, or cilia in Dionaea muscipula Ellis induces trap closing. Treatment of Mimosa pudica by plasma induces movements of pinnules and petioles similar to the effects of mechanical stimulation. We have conducted control experiments and simulations to illustrate that gas flow and UV radiation associated with plasma are not the primary reasons for the observed effects. Reactive oxygen and nitrogen species (RONS) produced by cold plasma in atmospheric air appear to be the primary reason of plasma-induced activation of phytoactuators in plants. Some of these RONS are known to be signaling molecules, which control plants' developmental processes. Understanding these mechanisms could promote plasma-based technology for plant developmental control and future use for plant protection from pathogens. Our work offers new insight into mechanisms which trigger plant morphing and movement. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum.

    PubMed

    Cai, Feng; Yu, Guanghui; Wang, Ping; Wei, Zhong; Fu, Lin; Shen, Qirong; Chen, Wei

    2013-12-01

    A detailed understanding of the effect of natural products on plant growth and protection will underpin new product development for plant production. The isolation and characterization of a known secondary metabolite named harzianolide from Trichoderma harzianum strain SQR-T037 were described, and the bioactivity of the purified compound as well as the crude metabolite extract in plant growth promotion and systemic resistance induction was investigated in this study. The results showed that harzianolide significantly promoted tomato seedling growth by up to 2.5-fold (dry weight) at a concentration of 0.1 ppm compared with the control. The result of root scan suggested that Trichoderma secondary metabolites may influence the early stages of plant growth through better root development for the enhancement of root length and tips. Both of the purified harzianolide and crude metabolite extract increased the activity of some defense-related enzymes to response to oxidative stress. Examination of six defense-related gene expression by real-time reverse transcription-PCR analysis revealed that harzianolide induces the expression of genes involved in the salicylic acid (PR1 and GLU) and jasmonate/ethylene (JERF3) signaling pathways while crude metabolite extract inhibited some gene expression (CHI-II and PGIP) related to basal defense in tomato plants. Further experiment showed that a subsequent challenge of harzianolide-pretreated plants with the pathogen Sclerotinia sclerotiorum resulted in higher systemic resistance by the reduction of lesion size. These results indicate that secondary metabolites of Trichoderma spp., like harzianolide, may play a novel role in both plant growth regulation and plant defense responses. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. A plant natriuretic peptide-like gene in the bacterial pathogen Xanthomonas axonopodis may induce hyper-hydration in the plant host: a hypothesis of molecular mimicry.

    PubMed

    Nembaware, Victoria; Seoighe, Cathal; Sayed, Muhammed; Gehring, Chris

    2004-03-24

    Plant natriuretic peptides (PNPs) are systemically mobile molecules that regulate homeostasis at nanomolar concentrations. PNPs are up-regulated under conditions of osmotic stress and PNP-dependent processes include changes in ion transport and increases of H2O uptake into protoplasts and whole tissue. The bacterial citrus pathogen Xanthomonas axonopodis pv. Citri str. 306 contains a gene encoding a PNP-like protein. We hypothesise that this bacterial protein can alter plant cell homeostasis and thus is likely to represent an example of molecular mimicry that enables the pathogen to manipulate plant responses in order to bring about conditions favourable to the pathogen such as the induced plant tissue hyper-hydration seen in the wet edged lesions associated with Xanthomonas axonopodis infection. We found a Xanthomonas axonopodis PNP-like protein that shares significant sequence similarity and identical domain organisation with PNPs. We also observed a significant excess of conserved residues between the two proteins within the domain previously identified as being sufficient to induce biological activity. Structural modelling predicts identical six stranded double-psi beta barrel folds for both proteins thus supporting the hypothesis of similar modes of action. No significant similarity between the Xanthomonas axonopodis protein and other bacterial proteins from GenBank was found. Sequence similarity of the Xanthomonas axonopodis PNP-like protein with the Arabidopsis thaliana PNP (AtPNP-A), shared domain organisation and incongruent phylogeny suggest that the PNP-gene may have been acquired by the bacteria in an ancient lateral gene transfer event. Finally, activity of a recombinant Xanthomonas axonopodis protein in plant tissue and changes in symptoms induced by a Xanthomonas axonopodis mutant with a knocked-out PNP-like gene will be experimental proof of molecular mimicry. If the hypothesis is true, it could at least in part explain why the citrus pathogen

  11. Plant natriuretic peptides induce proteins diagnostic for an adaptive response to stress

    PubMed Central

    Turek, Ilona; Marondedze, Claudius; Wheeler, Janet I.; Gehring, Chris; Irving, Helen R.

    2014-01-01

    In plants, structural and physiological evidence has suggested the presence of biologically active natriuretic peptides (PNPs). PNPs are secreted into the apoplast, are systemically mobile and elicit a range of responses signaling via cGMP. The PNP-dependent responses include tissue specific modifications of cation transport and changes in stomatal conductance and the photosynthetic rate. PNP also has a critical role in host defense responses. Surprisingly, PNP-homologs are produced by several plant pathogens during host colonization suppressing host defense responses. Here we show that a synthetic peptide representing the biologically active fragment of the Arabidopsis thaliana PNP (AtPNP-A) induces the production of reactive oxygen species in suspension-cultured A. thaliana (Col-0) cells. To identify proteins whose expression changes in an AtPNP-A dependent manner, we undertook a quantitative proteomic approach, employing tandem mass tag (TMT) labeling, to reveal temporal responses of suspension-cultured cells to 1 nM and 10 pM PNP at two different time-points post-treatment. Both concentrations yield a distinct differential proteome signature. Since only the higher (1 nM) concentration induces a ROS response, we conclude that the proteome response at the lower concentration reflects a ROS independent response. Furthermore, treatment with 1 nM PNP results in an over-representation of the gene ontology (GO) terms “oxidation-reduction process,” “translation” and “response to salt stress” and this is consistent with a role of AtPNP-A in the adaptation to environmental stress conditions. PMID:25505478

  12. Changes in antioxidants potential, secondary metabolites and plant hormones induced by different fungicides treatment in cotton plants.

    PubMed

    Mohamed, Heba Ibrahim; Akladious, Samia Ageeb

    2017-10-01

    The use of fungicides for an effective control of plant diseases has become crucial in the last decades in the agriculture system. Seeds of cotton plants were treated with systemic and contact fungicides to study the efficiency of seed dressing fungicides in controlling damping off caused by Rhizoctonia solani under greenhouse conditions and its effect on plant growth and metabolism. The results showed that Mon-cut showed the highest efficiency (67.99%) while each of Tondro and Hemixet showed the lowest efficiency (31.99%) in controlling damping off. Rhizolex T, Mon-cut and Tondro fungicides caused significant decrease in plant height, dry weight of plant, phytohormones, photosynthetic pigments, soluble sugars, soluble proteins, total free amino acids but caused significant increases in total phenols, flavonoids, antioxidant enzymes, ascorbic acid, reduced glutathione, MDA and hydrogen peroxide as compared with untreated plants. On the other hand, the other fungicides (Maxim, Hemixet and Flosan) increased all the above recorded parameters as compared with untreated plants. Our results indicated that the fungicides application could be a potential tool to increase plant growth, the antioxidative defense mechanisms and decreased infection with plant diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways.

    PubMed

    Bernsdorff, Friederike; Döring, Anne-Christin; Gruner, Katrin; Schuck, Stefan; Bräutigam, Andrea; Zeier, Jürgen

    2016-01-01

    We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants. © 2016 American Society of Plant Biologists. All rights reserved.

  14. The effect of plant water storage on water fluxes within the coupled soil-plant system [The role of plant water storage on water fluxes within the coupled soil-plant system

    DOE PAGES

    Huang, Cheng -Wei; Domec, Jean -Christophe; Ward, Eric J.; ...

    2016-11-21

    In addition to buffering plants from water stress during severe droughts, plant water storage (PWS) alters many features of the spatio-temporal dynamics of water movement in the soil–plant system. How PWS impacts water dynamics and drought resilience is explored using a multi-layer porous media model. Here, the model numerically resolves soil–plant hydrodynamics by coupling them to leaf-level gas exchange and soil–root interfacial layers. Novel features of the model are the considerations of a coordinated relationship between stomatal aperture variation and whole-system hydraulics and of the effects of PWS and nocturnal transpiration (F e,night) on hydraulic redistribution (HR) in the soil.

  15. The effect of plant water storage on water fluxes within the coupled soil-plant system [The role of plant water storage on water fluxes within the coupled soil-plant system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Cheng -Wei; Domec, Jean -Christophe; Ward, Eric J.

    In addition to buffering plants from water stress during severe droughts, plant water storage (PWS) alters many features of the spatio-temporal dynamics of water movement in the soil–plant system. How PWS impacts water dynamics and drought resilience is explored using a multi-layer porous media model. Here, the model numerically resolves soil–plant hydrodynamics by coupling them to leaf-level gas exchange and soil–root interfacial layers. Novel features of the model are the considerations of a coordinated relationship between stomatal aperture variation and whole-system hydraulics and of the effects of PWS and nocturnal transpiration (F e,night) on hydraulic redistribution (HR) in the soil.

  16. In Vivo Study of Trichoderma-Pathogen-Plant Interactions, Using Constitutive and Inducible Green Fluorescent Protein Reporter Systems

    PubMed Central

    Lu, Zexun; Tombolini, Riccardo; Woo, Sheridan; Zeilinger, Susanne; Lorito, Matteo; Jansson, Janet K.

    2004-01-01

    Plant tissue colonization by Trichoderma atroviride plays a critical role in the reduction of diseases caused by phytopathogenic fungi, but this process has not been thoroughly studied in situ. We monitored in situ interactions between gfp-tagged biocontrol strains of T. atroviride and soilborne plant pathogens that were grown in cocultures and on cucumber seeds by confocal scanning laser microscopy and fluorescence stereomicroscopy. Spores of T. atroviride adhered to Pythium ultimum mycelia in coculture experiments. In mycoparasitic interactions of T. atroviride with P. ultimum or Rhizoctonia solani, the mycoparasitic hyphae grew alongside the pathogen mycelia, and this was followed by coiling and formation of specialized structures similar to hooks, appressoria, and papillae. The morphological changes observed depended on the pathogen tested. Branching of T. atroviride mycelium appeared to be an active response to the presence of the pathogenic host. Mycoparasitism of P. ultimum by T. atroviride occurred on cucumber seed surfaces while the seeds were germinating. The interaction of these fungi on the cucumber seeds was similar to the interaction observed in coculture experiments. Green fluorescent protein expression under the control of host-inducible promoters was also studied. The induction of specific Trichoderma genes was monitored visually in cocultures, on plant surfaces, and in soil in the presence of colloidal chitin or Rhizoctonia by confocal microscopy and fluorescence stereomicroscopy. These tools allowed initiation of the mycoparasitic gene expression cascade to be monitored in vivo. PMID:15128569

  17. Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance.

    PubMed

    Brunner, Kurt; Zeilinger, Susanne; Ciliento, Rosalia; Woo, Sheridian L; Lorito, Matteo; Kubicek, Christian P; Mach, Robert L

    2005-07-01

    Biocontrol agents generally do not perform well enough under field conditions to compete with chemical fungicides. We determined whether transgenic strain SJ3-4 of Trichoderma atroviride, which expresses the Aspergillus niger glucose oxidase-encoding gene, goxA, under a homologous chitinase (nag1) promoter had increased capabilities as a fungal biocontrol agent. The transgenic strain differed only slightly from the wild-type in sporulation or the growth rate. goxA expression occurred immediately after contact with the plant pathogen, and the glucose oxidase formed was secreted. SJ3-4 had significantly less N-acetylglucosaminidase and endochitinase activities than its nontransformed parent. Glucose oxidase-containing culture filtrates exhibited threefold-greater inhibition of germination of spores of Botrytis cinerea. The transgenic strain also more quickly overgrew and lysed the plant pathogens Rhizoctonia solani and Pythium ultimum. In planta, SJ3-4 had no detectable improved effect against low inoculum levels of these pathogens. Beans planted in heavily infested soil and treated with conidia of the transgenic Trichoderma strain germinated, but beans treated with wild-type spores did not germinate. SJ3-4 also was more effective in inducing systemic resistance in plants. Beans with SJ3-4 root protection were highly resistant to leaf lesions caused by the foliar pathogen B. cinerea. This work demonstrates that heterologous genes driven by pathogen-inducible promoters can increase the biocontrol and systemic resistance-inducing properties of fungal biocontrol agents, such as Trichoderma spp., and that these microbes can be used as vectors to provide plants with useful molecules (e.g., glucose oxidase) that can increase their resistance to pathogens.

  18. Improvement of the Fungal Biocontrol Agent Trichoderma atroviride To Enhance both Antagonism and Induction of Plant Systemic Disease Resistance

    PubMed Central

    Brunner, Kurt; Zeilinger, Susanne; Ciliento, Rosalia; Woo, Sheridian L.; Lorito, Matteo; Kubicek, Christian P.; Mach, Robert L.

    2005-01-01

    Biocontrol agents generally do not perform well enough under field conditions to compete with chemical fungicides. We determined whether transgenic strain SJ3-4 of Trichoderma atroviride, which expresses the Aspergillus niger glucose oxidase-encoding gene, goxA, under a homologous chitinase (nag1) promoter had increased capabilities as a fungal biocontrol agent. The transgenic strain differed only slightly from the wild-type in sporulation or the growth rate. goxA expression occurred immediately after contact with the plant pathogen, and the glucose oxidase formed was secreted. SJ3-4 had significantly less N-acetylglucosaminidase and endochitinase activities than its nontransformed parent. Glucose oxidase-containing culture filtrates exhibited threefold-greater inhibition of germination of spores of Botrytis cinerea. The transgenic strain also more quickly overgrew and lysed the plant pathogens Rhizoctonia solani and Pythium ultimum. In planta, SJ3-4 had no detectable improved effect against low inoculum levels of these pathogens. Beans planted in heavily infested soil and treated with conidia of the transgenic Trichoderma strain germinated, but beans treated with wild-type spores did not germinate. SJ3-4 also was more effective in inducing systemic resistance in plants. Beans with SJ3-4 root protection were highly resistant to leaf lesions caused by the foliar pathogen B. cinerea. This work demonstrates that heterologous genes driven by pathogen-inducible promoters can increase the biocontrol and systemic resistance-inducing properties of fungal biocontrol agents, such as Trichoderma spp., and that these microbes can be used as vectors to provide plants with useful molecules (e.g., glucose oxidase) that can increase their resistance to pathogens. PMID:16000810

  19. Plant MetGenMAP: an integrative analysis system for plant systems biology

    USDA-ARS?s Scientific Manuscript database

    We have developed a web-based system, Plant MetGenMAP, which can identify significantly altered biochemical pathways and highly affected biological processes, predict functional roles of pathway genes, and potential pathway-related regulatory motifs from transcript and metabolite profile datasets. P...

  20. Exploitation of induced 2n-gametes for plant breeding.

    PubMed

    Younis, Adnan; Hwang, Yoon-Jung; Lim, Ki-Byung

    2014-02-01

    Unreduced gamete formation derived via abnormal meiotic cell division is an important approach to polyploidy breeding. This process is considered the main driving force in spontaneous polyploids formation in nature, but the potential application of these gametes to plant breeding has not been fully exploited. An effective mechanism for their artificial induction is needed to attain greater genetic variation and enable efficient use of unreduced gametes in breeding programs. Different approaches have been employed for 2n-pollen production including interspecific hybridization, manipulation of environmental factors and treatment with nitrous oxide, trifluralin, colchicine, oryzalin and other chemicals. These chemicals can act as a stimulus to produce viable 2n pollen; however, their exact mode of action, optimum concentration and developmental stages are still not known. Identification of efficient methods of inducing 2n-gamete formation will help increase pollen germination of sterile interspecific hybrids for inter-genomic recombination and introgression breeding to develop new polyploid cultivars and increase heterozygosity among plant populations. Additionally, the application of genomic tools and identification and isolation of genes and mechanisms involved in the induction of 2n-gamete will enable increased exploitation in different plant species, which will open new avenues for plant breeding.

  1. Air ion exposure system for plants

    NASA Technical Reports Server (NTRS)

    Morrow, R. C.; Tibbitts, T. W.

    1987-01-01

    A system was developed for subjecting plants to elevated air ion levels. This system consisted of a rectangular Plexiglas chamber lined with a Faraday cage. Air ions were generated by corona discharge from frayed stainless steel fibers placed at one end of the chamber. This source was capable of producing varying levels of either positive or negative air ions. During plant exposures, environmental conditions were controlled by operating the unit in a growth chamber.

  2. Air ion exposure system for plants.

    PubMed

    Morrow, R C; Tibbitts, T W

    1987-02-01

    A system was developed for subjecting plants to elevated air ion levels. This system consisted of a rectangular Plexiglas chamber lined with a Faraday cage. Air ions were generated by corona discharge from frayed stainless steel fibers placed at one end of the chamber. This source was capable of producing varying levels of either positive or negative air ions. During plant exposures, environmental conditions were controlled by operating the unit in a growth chamber.

  3. Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis.

    PubMed

    van der Linde, Karina; Kastner, Christine; Kumlehn, Jochen; Kahmann, Regine; Doehlemann, Gunther

    2011-01-01

    Infection of maize (Zea mays) plants with the corn smut fungus Ustilago maydis leads to the formation of large tumors on the stem, leaves and inflorescences. In this biotrophic interaction, plant defense responses are actively suppressed by the pathogen, and previous transcriptome analyses of infected maize plants showed massive and stage-specific changes in host gene expression during disease progression. To identify maize genes that are functionally involved in the interaction with U. maydis, we adapted a virus-induced gene silencing (VIGS) system based on the brome mosaic virus (BMV) for maize. Conditions were established that allowed successful U. maydis infection of BMV-preinfected maize plants. This set-up enabled quantification of VIGS and its impact on U. maydis infection using a quantitative real-time PCR (qRT-PCR)-based readout. In proof-of-principle experiments, an U. maydis-induced terpene synthase was shown to negatively regulate disease development while a protein involved in cell death inhibition was required for full virulence of U. maydis. The results suggest that this system is a versatile tool for the rapid identification of maize genes that determine compatibility with U. maydis. © (2010) Max Planck Society. Journal compilation © New Phytologist Trust (2010).

  4. Hybrid intelligent monironing systems for thermal power plant trips

    NASA Astrophysics Data System (ADS)

    Barsoum, Nader; Ismail, Firas Basim

    2012-11-01

    Steam boiler is one of the main equipment in thermal power plants. If the steam boiler trips it may lead to entire shutdown of the plant, which is economically burdensome. Early boiler trips monitoring is crucial to maintain normal and safe operational conditions. In the present work two artificial intelligent monitoring systems specialized in boiler trips have been proposed and coded within the MATLAB environment. The training and validation of the two systems has been performed using real operational data captured from the plant control system of selected power plant. An integrated plant data preparation framework for seven boiler trips with related operational variables has been proposed for IMSs data analysis. The first IMS represents the use of pure Artificial Neural Network system for boiler trip detection. All seven boiler trips under consideration have been detected by IMSs before or at the same time of the plant control system. The second IMS represents the use of Genetic Algorithms and Artificial Neural Networks as a hybrid intelligent system. A slightly lower root mean square error was observed in the second system which reveals that the hybrid intelligent system performed better than the pure neural network system. Also, the optimal selection of the most influencing variables performed successfully by the hybrid intelligent system.

  5. A Calcium-Dependent Protein Kinase Is Systemically Induced upon Wounding in Tomato Plants1

    PubMed Central

    Chico, José Manuel; Raíces, Marcela; Téllez-Iñón, María Teresa; Ulloa, Rita María

    2002-01-01

    A full-length cDNA clone (LeCDPK1) from tomato (Lycopersicon esculentum) encoding a calcium-dependent protein kinase (CDPK) was isolated by screening a cDNA library from tomato cell cultures exposed to Cladosporium fulvum elicitor preparations. The predicted amino acid sequence of the cDNA reveals a high degree of similarity with other members of the CDPK family. LeCDPK1 has a putative N-terminal myristoylation sequence and presents a possible palmitoylation site. The in vitro translated protein conserves the biochemical properties of a member of the CDPK family. In addition, CDPK activity was detected in soluble and particulate extracts of tomato leaves. Basal levels of LeCDPK1 mRNA were detected by northern-blot analysis in roots, stems, leaves, and flowers of tomato plants. The expression of LeCDPK1 was rapidly and transiently enhanced in detached tomato leaves treated with pathogen elicitors and H2O2. Moreover, when tomato greenhouse plants were subjected to mechanical wounding, a transient increase of LeCDPK1 steady-state mRNA levels was detected locally at the site of the injury and systemically in distant non-wounded leaves. The increase observed in LeCDPK1 mRNA upon wounding correlates with an increase in the amount and in the activity of a soluble CDPK detected in extracts of tomato leaves, suggesting that this kinase is part of physiological plant defense mechanisms against biotic or abiotic attacks. PMID:11788771

  6. N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens.

    PubMed

    Hernández-Reyes, Casandra; Schenk, Sebastian T; Neumann, Christina; Kogel, Karl-Heinz; Schikora, Adam

    2014-11-01

    The implementation of beneficial microorganisms for plant protection has a long history. Many rhizobia bacteria are able to influence the immune system of host plants by inducing resistance towards pathogenic microorganisms. In this report, we present a translational approach in which we demonstrate the resistance-inducing effect of Ensifer meliloti (Sinorhizobium meliloti) on crop plants that have a significant impact on the worldwide economy and on human nutrition. Ensifer meliloti is usually associated with root nodulation in legumes and nitrogen fixation. Here, we suggest that the ability of S. meliloti to induce resistance depends on the production of the quorum-sensing molecule, oxo-C14-HSL. The capacity to enhanced resistance provides a possibility to the use these beneficial bacteria in agriculture. Using the Arabidopsis-Salmonella model, we also demonstrate that the application of N-acyl-homoserine lactones-producing bacteria could be a successful strategy to prevent plant-originated infections with human pathogens. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Analysis of glycation induced protein cross-linking inhibitory effects of some antidiabetic plants and spices.

    PubMed

    Perera, Handunge Kumudu Irani; Handuwalage, Charith Sandaruwan

    2015-06-09

    Protein cross-linking which occurs towards the latter part of protein glycation is implicated in the development of chronic diabetic complications. Glycation induced protein cross-linking inhibitory effects of nine antidiabetic plants and three spices were evaluated in this study using a novel, simple, electrophoresis based method. Methanol extracts of thirteen plants including nine antidiabetic plants and three spices were used. Lysozyme and fructose were incubated at 37 °C in the presence or absence of different concentrations of plant extracts up to 31 days. Standard glycation inhibitor aminoguanidine and other appropriate controls were included. A recently established sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) method was used to detect the products of protein cross-linking in the incubation mixtures. High molecular weight protein products representing the dimer, trimer and tetramer of lysozyme were detected in the presence of fructose. Among the nine antidiabetic plants, seven showed glycation induced protein cross-linking inhibitory effects namely Ficus racemosa (FR) stem bark, Gymnema sylvestre (GS) leaves, Musa paradisiaca (MP) yam, Phyllanthus debilis (PD) whole plant, Phyllanthus emblica (PE) fruit, Pterocarpus marsupium (PM) latex and Tinospora cordifolia (TC) leaves. Inhibition observed with Coccinia grandis (CG) leaves and Strychnos potatorum (SP) seeds were much low. Leaves of Gymnema lactiferum (GL), the plant without known antidiabetic effects showed the lowest inhibition. All three spices namely Coriandrum sativum (CS) seeds, Cinnamomum zeylanicum (CZ) bark and Syzygium aromaticum (SA) flower buds showed cross-link inhibitory effects with higher effects in CS and SA. PD, PE, PM, CS and SA showed almost complete inhibition on the formation of cross-linking with 25 μg/ml extracts. Methanol extracts of PD, PE, PM, CS and SA have shown promising inhibitory effects on glycation induced protein cross-linking.

  8. The epiphytic fungus Pseudozyma aphidis induces jasmonic acid- and salicylic acid/nonexpressor of PR1-independent local and systemic resistance.

    PubMed

    Buxdorf, Kobi; Rahat, Ido; Gafni, Aviva; Levy, Maggie

    2013-04-01

    Pseudozyma spp. are yeast-like fungi, classified in the Ustilaginales, which are mostly epiphytic or saprophytic and are not pathogenic to plants. Several Pseudozyma species have been reported to exhibit biological activity against powdery mildews. However, previous studies have reported that Pseudozyma aphidis, which can colonize plant surfaces, is not associated with the collapse of powdery mildew colonies. In this report, we describe a novel P. aphidis strain and study its interactions with its plant host and the plant pathogen Botrytis cinerea. This isolate was found to secrete extracellular metabolites that inhibit various fungal pathogens in vitro and significantly reduce B. cinerea infection in vivo. Moreover, P. aphidis sensitized Arabidopsis (Arabidopsis thaliana) plants' defense machinery via local and systemic induction of pathogenesis-related1 (PR1) and plant defensin1.2 (PDF1.2) expression. P. aphidis also reduced B. cinerea infection, locally and systemically, in Arabidopsis mutants impaired in jasmonic acid (JA) or salicylic acid (SA) signaling. Thus, in addition to direct inhibition, P. aphidis may inhibit B. cinerea infection via induced resistance in a manner independent of SA, JA, and Nonexpressor of PR1 (NPR1). P. aphidis primed the plant defense machinery and induced stronger activation of PDF1.2 after B. cinerea infection. Finally, P. aphidis fully or partially reconstituted PR1 and PDF1.2 expression in npr1-1 mutant and in plants with the SA hydroxylase NahG transgene, but not in a jasmonate resistant1-1 mutant, after B. cinerea infection, suggesting that P. aphidis can bypass the SA/NPR1, but not JA, pathway to activate PR genes. Thus, either partial gene activation is sufficient to induce resistance, or the resistance is not directed solely through PR1 and PDF1.2 but probably through other pathogen-resistance genes or pathways as well.

  9. Diffuse-Illumination Systems for Growing Plants

    NASA Technical Reports Server (NTRS)

    May, George; Ryan, Robert

    2010-01-01

    Agriculture in both terrestrial and space-controlled environments relies heavily on artificial illumination for efficient photosynthesis. Plant-growth illumination systems require high photon flux in the spectral range corresponding with plant photosynthetic active radiation (PAR) (400 700 nm), high spatial uniformity to promote uniform growth, and high energy efficiency to minimize electricity usage. The proposed plant-growth system takes advantage of the highly diffuse reflective surfaces on the interior of a sphere, hemisphere, or other nearly enclosed structure that is coated with highly reflective materials. This type of surface and structure uniformly mixes discrete light sources to produce highly uniform illumination. Multiple reflections from within the domelike structures are exploited to obtain diffuse illumination, which promotes the efficient reuse of photons that have not yet been absorbed by plants. The highly reflective surfaces encourage only the plant tissue (placed inside the sphere or enclosure) to absorb the light. Discrete light sources, such as light emitting diodes (LEDs), are typically used because of their high efficiency, wavelength selection, and electronically dimmable properties. The light sources are arranged to minimize shadowing and to improve uniformity. Different wavelengths of LEDs (typically blue, green, and red) are used for photosynthesis. Wavelengths outside the PAR range can be added for plant diagnostics or for growth regulation

  10. Animal Models of Brain Maldevelopment Induced by Cycad Plant Genotoxins

    PubMed Central

    Kisby, Glen E.; Moore, Holly; Spencer, Peter S.

    2014-01-01

    Cycads are long-lived tropical and subtropical plants that contain azoxyglycosides (e.g., cycasin, macrozamin) and neurotoxic amino acids (notably β-N-methylamino-L-alanine L-BMAA), toxins that have been implicated in the etiology of a disappearing neurodegenerative disease, amyotrophic lateral sclerosis and parkinsonism-dementia complex that has been present in high incidence among three genetically distinct populations in the western Pacific. The neuropathology of amyotrophic lateral sclerosis/parkinsonism-dementia complex includes features suggestive of brain maldevelopment, an experimentally proven property of cycasin attributable to the genotoxic action of its aglycone methylazoxymethanol (MAM). This property of MAM has been exploited by neurobiologists as a tool to study perturbations of brain development. Depending on the neurodevelopmental stage, MAM can induce features in laboratory animals that model certain characteristics of epilepsy, schizophrenia, or ataxia. Studies in DNA repair-deficient mice show that MAM perturbs brain development through a DNA damage-mediated mechanism. The brain DNA lesions produced by systemic MAM appear to modulate the expression of genes that regulate neurodevelopment and contribute to neurodegeneration. Epigenetic changes (histone lysine methylation) have also been detected in the underdeveloped brain after MAM administration. The DNA damage and epigenetic changes produced by MAM and, perhaps by chemically related substances (e.g., nitrosamines, nitrosoureas, hydrazines), might be an important mechanism by which early-life exposure to genotoxicants can induce long-term brain dysfunction. PMID:24339036

  11. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling.

    PubMed

    Belimov, Andrey A; Dodd, Ian C; Hontzeas, Nikos; Theobald, Julian C; Safronova, Vera I; Davies, William J

    2009-01-01

    Decreased soil water availability can stimulate production of the plant hormone ethylene and inhibit plant growth. Strategies aimed at decreasing stress ethylene evolution might attenuate its negative effects. An environmentally benign (nonchemical) method of modifying crop ethylene relations - soil inoculation with a natural root-associated bacterium Variovorax paradoxus 5C-2 (containing the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase that degrades the ethylene precursor ACC), was assessed with pea (Pisum sativum) plants grown in drying soil. Inoculation with V. paradoxus 5C-2, but not with a transposome mutant with massively decreased ACC deaminase activity, improved growth, yield and water-use efficiency of droughted peas. Systemic effects of V. paradoxus 5C-2 included an amplified soil drying-induced increase of xylem abscisic acid (ABA) concentration, but an attenuated soil drying-induced increase of xylem ACC concentration. A local bacterial effect was increased nodulation by symbiotic nitrogen-fixing bacteria, which prevented a drought-induced decrease in nodulation and seed nitrogen content. Successfully deploying a single bacterial gene in the rhizosphere increased yield and nutritive value of plants grown in drying soil, via both local and systemic hormone signalling. Such bacteria may provide an easily realized, economic means of sustaining crop yields and using irrigation water more efficiently in dryland agriculture.

  12. Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling.

    PubMed

    Pineda, Ana; Soler, Roxina; Weldegergis, Berhane T; Shimwela, Mpoki M; VAN Loon, Joop J A; Dicke, Marcel

    2013-02-01

    Beneficial soil-borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it remains unknown how plants mediate the interactions between soil microbes and carnivorous insects, that is, the third trophic level. Using Arabidopsis thaliana Col-0 and the aphid Myzus persicae, we evaluate here the underlying mechanisms involved in the plant-mediated interaction between the non-pathogenic rhizobacterium Pseudomonas fluorescens and the parasitoid Diaeretiella rapae, by combining ecological, chemical and molecular approaches. Rhizobacterial colonization modifies the composition of the blend of herbivore-induced plant volatiles. The volatile blend from rhizobacteria-treated aphid-infested plants is less attractive to an aphid parasitoid, in terms of both olfactory preference behaviour and oviposition, than the volatile blend from aphid-infested plants without rhizobacteria. Importantly, the effect of rhizobacteria on both the emission of herbivore-induced volatiles and parasitoid response to aphid-infested plants is lost in an Arabidopsis mutant (aos/dde2-2) that is impaired in jasmonic acid production. By modifying the blend of herbivore-induced plant volatiles that depend on the jasmonic acid-signalling pathway, root-colonizing microbes interfere with the attraction of parasitoids of leaf herbivores. © 2012 Blackwell Publishing Ltd.

  13. Neuroprotective effects of Bacopa monniera whole-plant extract against aluminum-induced hippocampus damage in rats: evidence from electron microscopic images.

    PubMed

    Nannepaga, John Sushma; Korivi, Mallikarjuna; Tirumanyam, Madhavi; Bommavaram, Mahitha; Kuo, Chia-Hua

    2014-10-31

    Impaired antioxidant system and structural changes in hippocampus are considered as key instigators of neurodegenerative diseases. The present study aimed to investigate the antioxidant and tissue protective properties of Bacopa monniera whole-plant extract (BME) against aluminum (Al)- induced oxidative stress and hippocampus damage in rats. Male Wistar rats were evenly divided into four groups, nine in each and labeled as control, Al treated (10 mg/kg), BME administered (40 mg/kg) and combination of both Al plus BME (Al+BME) treated groups. After one month of treatment by oral administration, antioxidant status was determined, and structural changes in the hippocampus were evaluated by electron microscopy. Al-induced increased oxidative damage in the hippocampus was revealed by elevated thiobarbituric acid reactive substances (TBARS). This increased lipid peroxidation was associated with significantly decreased antioxidant enzyme activities, such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). However, aluminum intoxicated rats treated with BME for 30 days showed significantly restored antioxidant enzyme activities along with decreased TBARS (P < 0.01). Further evidences from electron micrographs clearly indicated that Al-induced vacuolation, lipofuscin deposition and pyramidal cell degeneration in the hippocampus was attenuated with co-administration of the whole-plant extract. Our results demonstrate that structural derangement in hippocampus by aluminum is directly proportionate with increased lipid peroxidation. Nevertheless, B. monniera treatment potentiates the antioxidant status and suppressed the tissue damage induced by Al-intoxication. These findings suggest that B. monniera whole-plant extracts can be considered as a possible remedy to counteract aluminum-associated neurological disorders.

  14. The Plant Microbiota: Systems-Level Insights and Perspectives.

    PubMed

    Müller, Daniel B; Vogel, Christine; Bai, Yang; Vorholt, Julia A

    2016-11-23

    Plants do not grow as axenic organisms in nature, but host a diverse community of microorganisms, termed the plant microbiota. There is an increasing awareness that the plant microbiota plays a role in plant growth and can provide protection from invading pathogens. Apart from intense research on crop plants, Arabidopsis is emerging as a valuable model system to investigate the drivers shaping stable bacterial communities on leaves and roots and as a tool to decipher the intricate relationship among the host and its colonizing microorganisms. Gnotobiotic experimental systems help establish causal relationships between plant and microbiota genotypes and phenotypes and test hypotheses on biotic and abiotic perturbations in a systematic way. We highlight major recent findings in plant microbiota research using comparative community profiling and omics analyses, and discuss these approaches in light of community establishment and beneficial traits like nutrient acquisition and plant health.

  15. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways

    PubMed Central

    Bernsdorff, Friederike; Döring, Anne-Christin; Gruner, Katrin; Schuck, Stefan; Bräutigam, Andrea; Zeier, Jürgen

    2016-01-01

    We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants. PMID:26672068

  16. A novel nematode effector suppresses plant immunity by activating host reactive oxygen species-scavenging system.

    PubMed

    Lin, Borong; Zhuo, Kan; Chen, Shiyan; Hu, Lili; Sun, Longhua; Wang, Xiaohong; Zhang, Lian-Hui; Liao, Jinling

    2016-02-01

    Evidence is emerging that plant-parasitic nematodes can secrete effectors to interfere with the host immune response, but it remains unknown how these effectors can conquer host immune responses. Here, we depict a novel effector, MjTTL5, that could suppress plant immune response. Immunolocalization and transcriptional analyses showed that MjTTL5 is expressed specifically within the subventral gland of Meloidogyne javanica and up-regulated in the early parasitic stage of the nematode. Transgenic Arabidopsis lines expressing MjTTL5 were significantly more susceptible to M. javanica infection than wild-type plants, and vice versa, in planta silencing of MjTTL5 substantially increased plant resistance to M. javanica. Yeast two-hybrid, coimmunoprecipitation and bimolecular fluorescent complementation assays showed that MjTTL5 interacts specifically with Arabidopsis ferredoxin : thioredoxin reductase catalytic subunit (AtFTRc), a key component of host antioxidant system. The expression of AtFTRc is induced by the infection of M. javanica. Interaction between AtFTRc and MjTTL could drastically increase host reactive oxygen species-scavenging activity, and result in suppression of plant basal defenses and attenuation of host resistance to the nematode infection. Our results demonstrate that the host ferredoxin : thioredoxin system can be exploited cunningly by M. javanica, revealing a novel mechanism utilized by plant-parasitic nematodes to subjugate plant innate immunity and thereby promoting parasitism. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. Mechanisms of plant defense against insect herbivores

    PubMed Central

    War, Abdul Rashid; Paulraj, Michael Gabriel; Ahmad, Tariq; Buhroo, Abdul Ahad; Hussain, Barkat; Ignacimuthu, Savarimuthu; Sharma, Hari Chand

    2012-01-01

    Plants respond to herbivory through various morphological, biochemicals, and molecular mechanisms to counter/offset the effects of herbivore attack. The biochemical mechanisms of defense against the herbivores are wide-ranging, highly dynamic, and are mediated both by direct and indirect defenses. The defensive compounds are either produced constitutively or in response to plant damage, and affect feeding, growth, and survival of herbivores. In addition, plants also release volatile organic compounds that attract the natural enemies of the herbivores. These strategies either act independently or in conjunction with each other. However, our understanding of these defensive mechanisms is still limited. Induced resistance could be exploited as an important tool for the pest management to minimize the amounts of insecticides used for pest control. Host plant resistance to insects, particularly, induced resistance, can also be manipulated with the use of chemical elicitors of secondary metabolites, which confer resistance to insects. By understanding the mechanisms of induced resistance, we can predict the herbivores that are likely to be affected by induced responses. The elicitors of induced responses can be sprayed on crop plants to build up the natural defense system against damage caused by herbivores. The induced responses can also be engineered genetically, so that the defensive compounds are constitutively produced in plants against are challenged by the herbivory. Induced resistance can be exploited for developing crop cultivars, which readily produce the inducible response upon mild infestation, and can act as one of components of integrated pest management for sustainable crop production. PMID:22895106

  18. RNA trafficking in parasitic plant systems

    PubMed Central

    LeBlanc, Megan; Kim, Gunjune; Westwood, James H.

    2012-01-01

    RNA trafficking in plants contributes to local and long-distance coordination of plant development and response to the environment. However, investigations of mobile RNA identity and function are hindered by the inherent difficulty of tracing a given molecule of RNA from its cell of origin to its destination. Several methods have been used to address this problem, but all are limited to some extent by constraints associated with accurately sampling phloem sap or detecting trafficked RNA. Certain parasitic plant species form symplastic connections to their hosts and thereby provide an additional system for studying RNA trafficking. The haustorial connections of Cuscuta and Phelipanche species are similar to graft junctions in that they are able to transmit mRNAs, viral RNAs, siRNAs, and proteins from the host plants to the parasite. In contrast to other graft systems, these parasites form connections with host species that span a wide phylogenetic range, such that a high degree of nucleotide sequence divergence may exist between host and parasites and allow confident identification of most host RNAs in the parasite system. The ability to identify host RNAs in parasites, and vice versa, will facilitate genomics approaches to understanding RNA trafficking. This review discusses the nature of host–parasite connections and the potential significance of host RNAs for the parasite. Additional research on host–parasite interactions is needed to interpret results of RNA trafficking studies, but parasitic plants may provide a fascinating new perspective on RNA trafficking. PMID:22936942

  19. Semiochemicals from herbivory induced cotton plants enhance the foraging behavior of the cotton boll weevil, Anthonomus grandis.

    PubMed

    Magalhães, D M; Borges, M; Laumann, R A; Sujii, E R; Mayon, P; Caulfield, J C; Midega, C A O; Khan, Z R; Pickett, J A; Birkett, M A; Blassioli-Moraes, M C

    2012-12-01

    The boll weevil, Anthonomus grandis, has been monitored through deployment of traps baited with aggregation pheromone components. However, field studies have shown that the number of insects caught in these traps is significantly reduced during cotton squaring, suggesting that volatiles produced by plants at this phenological stage may be involved in attraction. Here, we evaluated the chemical profile of volatile organic compounds (VOCs) emitted by undamaged or damaged cotton plants at different phenological stages, under different infestation conditions, and determined the attractiveness of these VOCs to adults of A. grandis. In addition, we investigated whether or not VOCs released by cotton plants enhanced the attractiveness of the aggregation pheromone emitted by male boll weevils. Behavioral responses of A. grandis to VOCs from conspecific-damaged, heterospecific-damaged (Spodoptera frugiperda and Euschistus heros) and undamaged cotton plants, at different phenological stages, were assessed in Y-tube olfactometers. The results showed that volatiles emitted from reproductive cotton plants damaged by conspecifics were attractive to adults boll weevils, whereas volatiles induced by heterospecific herbivores were not as attractive. Additionally, addition of boll weevil-induced volatiles from reproductive cotton plants to aggregation pheromone gave increased attraction, relative to the pheromone alone. The VOC profiles of undamaged and mechanically damaged cotton plants, in both phenological stages, were not different. Chemical analysis showed that cotton plants produced qualitatively similar volatile profiles regardless of damage type, but the quantities produced differed according to the plant's phenological stage and the herbivore species. Notably, vegetative cotton plants released higher amounts of VOCs compared to reproductive plants. At both stages, the highest rate of VOC release was observed in A. grandis-damaged plants. Results show that A. grandis uses

  20. Systemic spread of an RNA insect virus in plants expressing plant viral movement protein genes

    PubMed Central

    Dasgupta, Ranjit; Garcia, Bradley H.; Goodman, Robert M.

    2001-01-01

    Flock house virus (FHV), a single-stranded RNA insect virus, has previously been reported to cross the kingdom barrier and replicate in barley protoplasts and in inoculated leaves of several plant species [Selling, B. H., Allison, R. F. & Kaesberg, P. (1990) Proc. Natl. Acad. Sci. USA 87, 434–438]. There was no systemic movement of FHV in plants. We tested the ability of movement proteins (MPs) of plant viruses to provide movement functions and cause systemic spread of FHV in plants. We compared the growth of FHV in leaves of nontransgenic and transgenic plants expressing the MP of tobacco mosaic virus or red clover necrotic mosaic virus (RCNMV). Both MPs mobilized cell-to-cell and systemic movement of FHV in Nicotiana benthamiana plants. The yield of FHV was more than 100-fold higher in the inoculated leaves of transgenic plants than in the inoculated leaves of nontransgenic plants. In addition, FHV accumulated in the noninoculated upper leaves of both MP-transgenic plants. RCNMV MP was more efficient in mobilizing FHV to noninoculated upper leaves. We also report here that FHV replicates in inoculated leaves of six additional plant species: alfalfa, Arabidopsis, Brassica, cucumber, maize, and rice. Our results demonstrate that plant viral MPs cause cell-to-cell and long-distance movement of an animal virus in plants and offer approaches to the study of the evolution of viruses and mechanisms governing mRNA trafficking in plants as well as to the development of promising vectors for transient expression of foreign genes in plants. PMID:11296259

  1. The Soil-Plant-Atmosphere System - Past and Present.

    NASA Astrophysics Data System (ADS)

    Berry, J. A.; Baker, I. T.; Randall, D. A.; Sellers, P. J.

    2012-12-01

    Plants with stomata, roots and a vascular system first appeared on earth about 415 million years ago. This evolutionary innovation helped to set in motion non-linear feedback mechanisms that led to an acceleration of the hydrologic cycle over the continents and an expansion of the climate zones favorable for plant (and animal) life. Skeletal soils that developed long before plants came onto the land would have held water and nutrients in their pore space, yet these resources would have been largely unavailable to primitive, surface-dwelling non-vascular plants due to physical limitations on water transport once the surface layer of soil dries. Plants with roots and a vascular system that could span this dry surface layer could gain increased and prolonged access to the water and nutrients stored in the soil for photosynthesis. Maintenance of the hydraulic connections permitting water to be drawn through the vascular system from deep in the soil to the sites of evaporation in the leaves required a cuticle and physiological regulation of stomata. These anatomical and physiological innovations changed properties of the terrestrial surface (albedo, roughness, a vascular system and control of surface conductance) and set in motion complex interactions of the soil - plant - atmosphere system. We will use coupled physiological and meteorological models to examine some of these interactions.

  2. Phytoplasma Effector SAP54 Induces Indeterminate Leaf-Like Flower Development in Arabidopsis Plants1[C][W][OA

    PubMed Central

    MacLean, Allyson M.; Sugio, Akiko; Makarova, Olga V.; Findlay, Kim C.; Grieve, Victoria M.; Tóth, Réka; Nicolaisen, Mogens; Hogenhout, Saskia A.

    2011-01-01

    Phytoplasmas are insect-transmitted bacterial plant pathogens that cause considerable damage to a diverse range of agricultural crops globally. Symptoms induced in infected plants suggest that these phytopathogens may modulate developmental processes within the plant host. We report herein that Aster Yellows phytoplasma strain Witches’ Broom (AY-WB) readily infects the model plant Arabidopsis (Arabidopsis thaliana) ecotype Columbia, inducing symptoms that are characteristic of phytoplasma infection, such as the production of green leaf-like flowers (virescence and phyllody) and increased formation of stems and branches (witches’ broom). We found that the majority of genes encoding secreted AY-WB proteins (SAPs), which are candidate effector proteins, are expressed in Arabidopsis and the AY-WB insect vector Macrosteles quadrilineatus (Hemiptera; Cicadellidae). To identify which of these effector proteins induce symptoms of phyllody and virescence, we individually expressed the effector genes in Arabidopsis. From this screen, we have identified a novel AY-WB effector protein, SAP54, that alters floral development, resulting in the production of leaf-like flowers that are similar to those produced by plants infected with this phytoplasma. This study offers novel insight into the effector profile of an insect-transmitted plant pathogen and reports to our knowledge the first example of a microbial pathogen effector protein that targets flower development in a host. PMID:21849514

  3. Operational development of small plant growth systems

    NASA Technical Reports Server (NTRS)

    Scheld, H. W.; Magnuson, J. W.; Sauer, R. L.

    1986-01-01

    The results of a study undertaken on the first phase of an empricial effort in the development of small plant growth chambers for production of salad type vegetables on space shuttle or space station are discussed. The overall effort is visualized as providing the underpinning of practical experience in handling of plant systems in space which will provide major support for future efforts in planning, design, and construction of plant-based (phytomechanical) systems for support of human habitation in space. The assumptions underlying the effort hold that large scale phytomechanical habitability support systems for future space stations must evolve from the simple to the complex. The highly complex final systems will be developed from the accumulated experience and data gathered from repetitive tests and trials of fragments or subsystems of the whole in an operational mode. These developing system components will, meanwhile, serve a useful operational function in providing psychological support and diversion for the crews.

  4. The RootScope: a simple high-throughput screening system for quantitating gene expression dynamics in plant roots

    PubMed Central

    2013-01-01

    Background High temperature stress responses are vital for plant survival. The mechanisms that plants use to sense high temperatures are only partially understood and involve multiple sensing and signaling pathways. Here we describe the development of the RootScope, an automated microscopy system for quantitating heat shock responses in plant roots. Results The promoter of Hsp17.6 was used to build a Hsp17.6p:GFP transcriptional reporter that is induced by heat shock in Arabidopsis. An automated fluorescence microscopy system which enables multiple roots to be imaged in rapid succession was used to quantitate Hsp17.6p:GFP response dynamics. Hsp17.6p:GFP signal increased with temperature increases from 28°C to 37°C. At 40°C the kinetics and localization of the response are markedly different from those at 37°C. This suggests that different mechanisms mediate heat shock responses above and below 37°C. Finally, we demonstrate that Hsp17.6p:GFP expression exhibits wave like dynamics in growing roots. Conclusions The RootScope system is a simple and powerful platform for investigating the heat shock response in plants. PMID:24119322

  5. Silicon Isotopic Fractionation in a Tropical Soil-Plant System

    NASA Astrophysics Data System (ADS)

    Opfergelt, S.; Delstanche, S.; Cardinal, D.; Andre, L.; Delvaux, B.

    2006-12-01

    -0.33 (Ovs) and -0.56 permil (Yvs), close to the fractionation factor previously measured in hydroponics (-0.40 permil). The average delta29Si of phytoliths in banana plants was +0.17 permil. In the topsoil, the isotopic composition of Yvs ( 0.21 permil) was close to that of unweathered pumice (-0.20 permil). The Ovs were significantly lighter (-0.73 permil), confirming published data pointing to lighter isotopic composition with increased weathering. Heavier bulk plants at Ovs might be related to a heavier residual soil solution due to: (i) the formation of lighter clay minerals at Ovs (clay fraction: -0.94 permil) than at Yvs (-0.60 permil), and (ii) the quantitative adsorption of silica onto iron oxides (see Delstanche et al., 2006, AGU), more abundant in weathered Ovs. Our data support the view that plants can induce a strong imprint on the continental cycle of silicon, just as clay formation and possibly Si adsorption onto iron oxides can do. The quantification of Si-isotopic fractionation in the soil-plant system requires, however, further studies involving all the Si pools to achieve a comprehensive understanding of this cycle.

  6. [Transgenic plants as medicine production systems].

    PubMed

    Okada, Y

    1997-10-01

    Transgenic plants are emerging as an important system for the expression of many recombinant proteins, especially those intended for therapeutic purpose. The production of foreign proteins in plants has several advantages. In terms of required equipment and cost, mass production in plants is far easier to achieve than techniques involving animal cells. Successful production of several proteins in plants, including human serum albumin, haemoglobin, monoclonal antibodies, viral antigens (vaccines), enkephalin, and trichosanthin, has been reported. Particularly, the demonstration that vaccine antigens can be produced in plants in their native, immunogenic forms opens exciting possibilities for the "bio-farming" of vaccines. If the antigens are orally active, food-based "edible vaccines" could allow economical production. In this review, I will discuss the progress that has been made by several groups in what is now an expanding area of medicine research that utilizes transgenic plants.

  7. Bacterial Cysteine-Inducible Cysteine Resistance Systems

    PubMed Central

    Takumi, Kazuhiro

    2016-01-01

    ABSTRACT Cysteine donates sulfur to macromolecules and occurs naturally in many proteins. Because low concentrations of cysteine are cytotoxic, its intracellular concentration is stringently controlled. In bacteria, cysteine biosynthesis is regulated by feedback inhibition of the activities of serine acetyltransferase (SAT) and 3-phosphoglycerate dehydrogenase (3-PGDH) and is also regulated at the transcriptional level by inducing the cysteine regulon using the master regulator CysB. Here, we describe two novel cysteine-inducible systems that regulate the cysteine resistance of Pantoea ananatis, a member of the family Enterobacteriaceae that shows great potential for producing substances useful for biotechnological, medical, and industrial purposes. One locus, designated ccdA (formerly PAJ_0331), encodes a novel cysteine-inducible cysteine desulfhydrase (CD) that degrades cysteine, and its expression is controlled by the transcriptional regulator encoded by ccdR (formerly PAJ_0332 or ybaO), located just upstream of ccdA. The other locus, designated cefA (formerly PAJ_3026), encodes a novel cysteine-inducible cysteine efflux pump that is controlled by the transcriptional regulator cefR (formerly PAJ_3027), located just upstream of cefA. To our knowledge, this is the first example where the expression of CD and an efflux pump is regulated in response to cysteine and is directly involved in imparting resistance to excess levels of cysteine. We propose that ccdA and cefA function as safety valves that maintain homeostasis when the intra- or extracellular cysteine concentration fluctuates. Our findings contribute important insights into optimizing the production of cysteine and related biomaterials by P. ananatis. IMPORTANCE Because of its toxicity, the bacterial intracellular cysteine level is stringently regulated at biosynthesis. This work describes the identification and characterization of two novel cysteine-inducible systems that regulate, through degradation and

  8. Plant Resistance Inducers against Pathogens in Solanaceae Species—From Molecular Mechanisms to Field Application

    PubMed Central

    Alexandersson, Erik; Mulugeta, Tewodros; Lankinen, Åsa; Liljeroth, Erland; Andreasson, Erik

    2016-01-01

    This review provides a current summary of plant resistance inducers (PRIs) that have been successfully used in the Solanaceae plant family to protect against pathogens by activating the plant’s own defence. Solanaceous species include many important crops such as potato and tomato. We also present findings regarding the molecular processes after application of PRIs, even if the number of such studies still remains limited in this plant family. In general, there is a lack of patterns regarding the efficiency of induced resistance (IR) both between and within solanaceous species. In many cases, a hypersensitivity-like reaction needs to form in order for the PRI to be efficient. “-Omics” studies have already given insight in the complexity of responses, and can explain some of the differences seen in efficacy of PRIs between and within species as well as towards different pathogens. Finally, examples of field applications of PRIs for solanaceous crops are presented and discussed. We predict that PRIs will play a role in future plant protection strategies in Solanaceae crops if they are combined with other means of disease control in different spatial and temporal combinations. PMID:27706100

  9. Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants

    USDA-ARS?s Scientific Manuscript database

    Fat Storage-Inducing Transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)-localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. Here, we tested the function of FIT2 in plant cells by ectopi...

  10. Zoophytophagous mirids provide pest control by inducing direct defences, antixenosis and attraction to parasitoids in sweet pepper plants.

    PubMed

    Bouagga, Sarra; Urbaneja, Alberto; Rambla, José L; Flors, Víctor; Granell, Antonio; Jaques, Josep A; Pérez-Hedo, Meritxell

    2018-06-01

    In addition to their services as predators, mirid predators are able to induce plant defences by phytophagy. However, whether this induction occurs in sweet pepper and whether it could be an additional benefit to their role as a biological control agent in this crop remain unknown. Here, these questions were investigated in two model insects, the mirids Nesidiocoris tenuis and Macrolophus pygmaeus. Plant feeding behaviour was observed in both N. tenuis and M. pygmaeus on sweet pepper and occupied 33% and 14% of total time spent on the plant, respectively. The punctures caused by mirid plant feeding induced the release of a blend of volatile organic compounds (VOCs) which repelled the herbivore pests Frankliniella occidentalis and Bemisia tabaci and attracted the whitefly parasitoid Encarsia formosa. The repellent effect on B. tabaci was observed for at least 7 days after initial exposure of the plant to N. tenuis, and attraction of E. formosa remained functional for 14 days. Plant defences induced by the feeding of mirid predators, their subsequent effects on the behaviour of both pests and natural enemies, and the persistence of these observed effects open the door to new control strategies in the sweet pepper crop. Further application of this research is discussed, such as the vaccination of plants by zoophytophagous mirids in the nursery before transplantation. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. PACKAGE PLANTS FOR SMALL SYSTEMS: A FIELD STUDY

    EPA Science Inventory

    A joint field study was conducted by AWWA and the Drinking Water Research Division of USEPA to evaluate existing small community systems that use package plant technology. Forty-eight package plant systems representing a geographic and technological cross section were evaluated t...

  12. A feed-back regulatory loop between glycerol-3-phosphate and lipid transfer proteins DIR1 and AZI1 mediates azelaic acid-induced systemic immunity

    USDA-ARS?s Scientific Manuscript database

    Systemic acquired resistance (SAR), a highly desirable form of plant defense, provides broad-spectrum immunity against diverse pathogens. The recent identification of seemingly unrelated chemical inducers of SAR warrants an investigation of their mutual interrelationships. We show that SAR induced b...

  13. Plant defense compounds: systems approaches to metabolic analysis.

    PubMed

    Kliebenstein, Daniel J

    2012-01-01

    Systems biology attempts to answer biological questions by integrating across diverse genomic data sets. With the increasing ability to conduct genomics experiments, this integrative approach is being rapidly applied across numerous biological research communities. One of these research communities investigates how plants utilize secondary metabolites or defense metabolites to defend against attack by pathogens and other biotic organisms. This use of systems biology to integrate across transcriptomics, metabolomics, and genomics is significantly enhancing the rate of discovery of genes, metabolites, and bioactivities for plant defense compounds as well as extending our knowledge of how these compounds are regulated. Plant defense compounds are also providing a unique proving platform to develop new approaches that enhance the ability to conduct systems biology with existing and previously unforseen genomics data sets. This review attempts to illustrate both how systems biology is helping the study of plant defense compounds and vice versa.

  14. Chemical inducible promoter used to obtain transgenic plants with a silent marker and organisms and cells and methods of using same for screening for mutations

    DOEpatents

    Zuo, Jianru [New York, NY; Chua, Nam-Hai [Scarsdale, NY

    2007-06-12

    Disclosed is a chemically inducible promoter for transforming plants or plant cells with genes which are regulatable by adding the plants or cells to a medium containing an inducer or by removing them from such medium. The promoter is inducible by a glucocorticoid, estrogen or inducer not endogenous to plants. Such promoters may be used with any plant genes that can promote shoot regeneration and development to induce shoot formation in the presence of a glucocorticoid, estrogen or inducer. The promoter may be used with antibiotic or herbicide resistance genes or other genes which are regulatable by the presence or absence of a given inducer. Also presented are organisms or cells comprising a gene wherein the natural promoter of the gene is disrupted and the gene is placed under the control of a transgenic inducible promoter. These organisms and cells and their progeny are useful for screening for conditional gain of function and loss of function mutations.

  15. Jasmonates trigger prey-induced formation of 'outer stomach' in carnivorous sundew plants.

    PubMed

    Nakamura, Yoko; Reichelt, Michael; Mayer, Veronika E; Mithöfer, Axel

    2013-05-22

    It has been widely accepted that the growth-related phytohormone auxin is the endogenous signal that initiates bending movements of plant organs. In 1875, Charles Darwin described how the bending movement of leaves in carnivorous sundew species formed an 'outer stomach' that allowed the plants to enclose and digest captured insect prey. About 100 years later, auxin was suggested to be the factor responsible for this movement. We report that prey capture induces both leaf bending and the accumulation of defence-related jasmonate phytohormones. In Drosera capensis fed with fruitflies, within 3 h after prey capture and simultaneous with leaf movement, we detected an increase in jasmonic acid and its isoleucine conjugate. This accumulation was spatially restricted to the bending segment of the leaves. The application of jasmonates alone was sufficient to trigger leaf bending. Only living fruitflies or the body fluids of crushed fruitflies induced leaf curvature; neither dead flies nor mechanical treatment had any effect. Our findings strongly suggest that the formation of the 'outer stomach' in Drosera is a chemonastic movement that is triggered by accumulation of endogenous jasmonates. These results suggest that in carnivorous sundew plants the jasmonate cascade might have been adapted to facilitate carnivory rather than to defend against herbivores.

  16. Integrated monitoring of wind plant systems

    NASA Astrophysics Data System (ADS)

    Whelan, Matthew J.; Janoyan, Kerop D.; Qiu, Tong

    2008-03-01

    Wind power is a renewable source of energy that is quickly gaining acceptance by many. Advanced sensor technologies have currently focused solely on improving wind turbine rotor aerodynamics and increasing of the efficiency of the blade design and concentration. Alternatively, potential improvements in wind plant efficiency may be realized through reduction of reactionary losses of kinetic energy to the structural and substructural systems supporting the turbine mechanics. Investigation of the complete dynamic structural response of the wind plant is proposed using a large-scale, high-rate wireless sensor network. The wireless network enables sensors to be placed across the sizable structure, including the rotating blades, without consideration of cabling issues and the economic burden associated with large spools of measurement cables. A large array of multi-axis accelerometers is utilized to evaluate the modal properties of the system as well as individual members and would enable long-term structural condition monitoring of the wind turbine as well. Additionally, environmental parameters, including wind speed, temperature, and humidity, are wirelessly collected for correlation. Such a wireless system could be integrated with electrical monitoring sensors and actuators and incorporated into a remote multi-turbine centralized plant monitoring and control system.

  17. Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2‐keto‐4‐methylthiobutyric acid production

    PubMed Central

    Xie, Yakun; Rolli, Eleonora; Guerard, Florence; Colcombet, Jean; Benhamed, Moussa; Depaepe, Thomas

    2018-01-01

    Several plant species require microbial associations for survival under different biotic and abiotic stresses. In this study, we show that Enterobacter sp. SA187, a desert plant endophytic bacterium, enhances yield of the crop plant alfalfa under field conditions as well as growth of the model plant Arabidopsis thaliana in vitro, revealing a high potential of SA187 as a biological solution for improving crop production. Studying the SA187 interaction with Arabidopsis, we uncovered a number of mechanisms related to the beneficial association of SA187 with plants. SA187 colonizes both the surface and inner tissues of Arabidopsis roots and shoots. SA187 induces salt stress tolerance by production of bacterial 2-keto-4-methylthiobutyric acid (KMBA), known to be converted into ethylene. By transcriptomic, genetic and pharmacological analyses, we show that the ethylene signaling pathway, but not plant ethylene production, is required for KMBA-induced plant salt stress tolerance. These results reveal a novel molecular communication process during the beneficial microbe-induced plant stress tolerance. PMID:29554117

  18. Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes.

    PubMed

    Koebnik, Ralf; Krüger, Antje; Thieme, Frank; Urban, Alexander; Bonas, Ulla

    2006-11-01

    The pathogenicity of the plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria depends on a type III secretion system which is encoded by the 23-kb hrp (hypersensitive response and pathogenicity) gene cluster. Expression of the hrp operons is strongly induced in planta and in a special minimal medium and depends on two regulatory proteins, HrpG and HrpX. In this study, DNA affinity enrichment was used to demonstrate that the AraC-type transcriptional activator HrpX binds to a conserved cis-regulatory element, the plant-inducible promoter (PIP) box (TTCGC-N(15)-TTCGC), present in the promoter regions of four hrp operons. No binding of HrpX was observed when DNA fragments lacking a PIP box were used. HrpX also bound to a DNA fragment containing an imperfect PIP box (TTCGC-N(8)-TTCGT). Dinucleotide replacements in each half-site of the PIP box strongly decreased binding of HrpX, while simultaneous dinucleotide replacements in both half-sites completely abolished binding. Based on the complete genome sequence of Xanthomonas campestris pv. vesicatoria, putative plant-inducible promoters consisting of a PIP box and a -10 promoter motif were identified in the promoter regions of almost all HrpX-activated genes. Bioinformatic analyses and reverse transcription-PCR experiments revealed novel HrpX-dependent genes, among them a NUDIX hydrolase gene and several genes with a predicted role in the degradation of the plant cell wall. We conclude that HrpX is the most downstream component of the hrp regulatory cascade, which is proposed to directly activate most genes of the hrpX regulon via binding to corresponding PIP boxes.

  19. Methods and systems for seed planting management and control

    DOEpatents

    Svoboda, John M.; Hess, J. Richard; Hoskinson, Reed L.; Harker, David J.

    2002-01-01

    A seed planting system providing optimal seed spacing in an agricultural field. The seed planting system includes a mobile seed planter having one or more planting shoes, or members being adapted for towing by a farm vehicle or being self-propelled. Sensors, disposed proximate to respective planting shoes, detect seed planting events and send corresponding signals to a computer. Contemporaneously, a geospatial locator acquires, and transmits to the computer, the geospatial location of each planted seed. The computer correlates the geospatial location data with the seed deposition data and generates a seed distribution profile indicating the location of each seed planted in a zone of interest to enable the control of speed spacing.

  20. A Proteinaceous Elicitor Sm1 from the Beneficial Fungus Trichoderma virens Is Required for Induced Systemic Resistance in Maize1[W

    PubMed Central

    Djonović, Slavica; Vargas, Walter A.; Kolomiets, Michael V.; Horndeski, Michelle; Wiest, Aric; Kenerley, Charles M.

    2007-01-01

    We have previously shown that the beneficial filamentous fungus Trichoderma virens secretes the highly effective hydrophobin-like elicitor Sm1 that induces systemic disease resistance in the dicot cotton (Gossypium hirsutum). In this study we tested whether colonization of roots by T. virens can induce systemic protection against a foliar pathogen in the monocot maize (Zea mays), and we further demonstrated the importance of Sm1 during maize-fungal interactions using a functional genomics approach. Maize seedlings were inoculated with T. virens Gv29-8 wild type and transformants in which SM1 was disrupted or constitutively overexpressed in a hydroponic system or in soil-grown maize seedlings challenged with the pathogen Colletotrichum graminicola. We show that similar to dicot plants, colonization of maize roots by T. virens induces systemic protection of the leaves inoculated with C. graminicola. This protection was associated with notable induction of jasmonic acid- and green leaf volatile-biosynthetic genes. Neither deletion nor overexpression of SM1 affected normal growth or development of T. virens, conidial germination, production of gliotoxin, hyphal coiling, hydrophobicity, or the ability to colonize maize roots. Plant bioassays showed that maize grown with SM1-deletion strains exhibited the same levels of systemic protection as non-Trichoderma-treated plants. Moreover, deletion and overexpression of SM1 resulted in significantly reduced and enhanced levels of disease protection, respectively, compared to the wild type. These data together indicate that T. virens is able to effectively activate systemic disease protection in maize and that the functional Sm1 elicitor is required for this activity. PMID:17885089

  1. Bioassimilable sulphur provides effective control of Oidium neolycopersici in tomato, enhancing the plant immune system.

    PubMed

    Llorens, Eugenio; Agustí-Brisach, Carlos; González-Hernández, Ana I; Troncho, Pilar; Vicedo, Begonya; Yuste, Teresa; Orero, Mayte; Ledó, Carlos; García-Agustín, Pilar; Lapeña, Leonor

    2017-05-01

    Developments of alternatives to the use of chemical pesticides to control pests are focused on the induction of natural plant defences. The study of new compounds based on liquid bioassimilable sulphur and its effect as an inductor of the immune system of plants would provide an alternative option to farmers to enhance plant resistance against pathogen attacks such as powdery mildew. In order to elucidate the efficacy of this compound in tomato against powdery mildew, we tested several treatments: curative foliar, preventive foliar, preventive in soil drench and combining preventive in soil drench and curative foliar. In all cases, treated plants showed lower infection development, better physiological parameters and a higher level of chlorophyll. We also observed better performance in parameters involved in plant resistance such as antioxidant response, callose deposition and hormonal levels. The results indicate that preventive and curative treatments can be highly effective for the prevention and control of powdery mildew in tomato plants. Foliar treatments are able to stop the pathogen development when they are applied as curative. Soil drench treatments induce immune response mechanisms of plants, increasing significantly callose deposition and promoting plant development. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Smart plants, smart models? On adaptive responses in vegetation-soil systems

    NASA Astrophysics Data System (ADS)

    van der Ploeg, Martine; Teuling, Ryan; van Dam, Nicole; de Rooij, Gerrit

    2015-04-01

    functional type. Assigning plant functional types does not allow for local plant adaptation to be reflected in the model parameters, nor does it allow for correlations that might exist between root parameters and soil type. [1] Seibert, J. 2000. Multi-criteria calibration of a conceptual runoff model using a genetic algorithm. Hydrology and Earth System Sciences 4(2): 215-224. [2] Van der Ploeg, M.J., H.P.A. Gooren, G. Bakker, C.W. Hoogendam, C. Huiskes, L.K. Koopal, H. Kruidhof and G.H. de Rooij. 2010. Polymer tensiometers with ceramic cones: performance in drying soils and comparison with water-filled tensiometers and time domain reflectometry. Hydrol. Earth Syst. Sci. 14: 1787-1799, doi: 10.5194/hess-14-1787-2010. [3] McClintock B. The significance of responses of the genome to challenge. Science 1984; 226: 792-801 [4] Ries G, Heller W, Puchta H, Sandermann H, Seldlitz HK, Hohn B. Elevated UV-B radiation reduces genome stability in plants. Nature 2000; 406: 98-101 [5] Lucht JM, Mauch-Mani B, Steiner H-Y, Metraux J-P, Ryals, J, Hohn B. Pathogen stress increases somatic recombination frequency in Arabidopsis. Nature Genet. 2002; 30: 311-314 [6] Kovalchuk I, Kovalchuk O, Kalck V., Boyko V, Filkowski J, Heinlein M, Hohn B. Pathogen-induced systemic plant signal triggers DNA rearrangements. Nature 2003; 423: 760-762 [7] Cullis C A. Mechanisms and control of rapid genomic changes in flax. Ann. Bot. (Lond.) 2005; 95: 201-206

  3. Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida.

    PubMed

    Reitz, M; Rudolph, K; Schröder, I; Hoffmann-Hergarten, S; Hallmann, J; Sikora, R A

    2000-08-01

    Recent studies have shown that living and heat-killed cells of the rhizobacterium Rhizobium etli strain G12 induce in potato roots systemic resistance to infection by the potato cyst nematode Globodera pallida. To better understand the mechanisms of induced resistance, we focused on identifying the inducing agent. Since heat-stable bacterial surface carbohydrates such as exopolysaccharides (EPS) and lipopolysaccharides (LPS) are essential for recognition in the symbiotic interaction between Rhizobium and legumes, their role in the R. etli-potato interaction was studied. EPS and LPS were extracted from bacterial cultures, applied to potato roots, and tested for activity as an inducer of plant resistance to the plant-parasitic nematode. Whereas EPS did not affect G. pallida infection, LPS reduced nematode infection significantly in concentrations as low as 1 and 0.1 mg ml(-1). Split-root experiments, guaranteeing a spatial separation of inducing agent and challenging pathogen, showed that soil treatments of one half of the root system with LPS resulted in a highly significant (up to 37%) systemic induced reduction of G. pallida infection of potato roots in the other half. The results clearly showed that LPS of R. etli G12 act as the inducing agent of systemic resistance in potato roots.

  4. Trace element uptake and distribution in plants.

    PubMed

    Graham, Robin D; Stangoulis, James C R

    2003-05-01

    There are similarities between mammals and plants in the absorption and transport of trace elements. The chemistry of trace element uptake from food sources in both cases is based on the thermodynamics of adsorption on charged solid surfaces embedded in a solution phase of charged ions and metal-binding ligands together with redox systems in the case of iron and some other elements. Constitutive absorption systems function in nutrient uptake during normal conditions, and inducible "turbo" systems increase the supply of a particular nutrient during deficiency. Iron uptake is the most studied of the micronutrients, and divides the plant kingdom into two groups: dicotyledonous plants have a turbo system that is an upregulated version of the constitutive system, which consists of a membrane-bound reductase and an ATP-driven hydrogen ion extrusion pump; and monocotyledonous plants have a constitutive system similar to that of the dicots, but with an inducible system remarkably different that uses the mugeneic acid class of phytosiderophores (PS). The PS system may in fact be an important port of entry for iron from an iron-rich but exceedingly iron-insoluble lithosphere into the iron-starved biosphere. Absorption of trace metals in these graminaceous plants is normally via divalent ion channels after reduction in the plasma membrane. Once absorbed, iron can be stored in plants as phytoferritin or transported to active sites by transport-specific ligands. The transport of iron and zinc into seeds is dominated by the phloem sap system, which has a high pH that requires chelation of heavy metals. Loading into grains involves three or four genes each that control chelation, membrane transport and deposition as phytate.

  5. Plant Defense against Insect Herbivores

    PubMed Central

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-01-01

    Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar. Insect herbivory induce several internal signals from the wounded tissues, including calcium ion fluxes, phosphorylation cascades and systemic- and jasmonate signaling. These are perceived in undamaged tissues, which thereafter reinforce their defense by producing different, mostly low molecular weight, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects have adapted to resist plant defenses, and in some cases even sequester the compounds and reuse them in their own defense. Both plant defense and insect adaptation involve metabolic costs, so most plant-insect interactions reach a stand-off, where both host and herbivore survive although their development is suboptimal. PMID:23681010

  6. Beneficial Effects of Pentanema vestitum Linn. Whole Plant on the Glucose and Other Biochemical Parameters of Alloxan Induced Diabetic Rabbits

    PubMed Central

    Ilahi, Ikram; Asghar, Ali; Ali, Shujat; Khan, Murad; Khan, Nasrullah

    2012-01-01

    The residents of Lower Dir and Malakand agency, Khyber Pakhtunkhwa, Pakistan, use the dry powder of whole plant of Pentanema vestitum for the treatment of asthma and diabetes. No documented reports are available about the therapeutic action of Pentanema vestitum. The present study was aimed to explore the antihyperglycemic effect of 70% methanol extract of Pentanema vestitum whole plant in glucose-induced nondiabetic hyperglycemic and alloxan-induced diabetic rabbits. During this study, the effects of plant extract on the serum lipid profile, GPT, ALP, bilirubin and creatinine of diabetic rabbits were also studied. The extract of Pentanema vestitum whole plant exhibited significant (P < 0.05) antihyperglycemic activity in glucose-induced hyperglycemic rabbits. Treatment of alloxan-induced diabetic rabbits with extract significantly (P < 0.05) reduced the elevated levels of serum glucose, GPT, ALP, bilirubin and creatinine. During the study of lipid profile, the extract proved to be antihyperlipidemic and HDL boosting in diabetic rabbit models. From the finding of the present research, it was concluded that the 70% methanol extract of Pentanema vestitum whole plant has beneficial effects on serum levels of glucose, lipid profile, GPT, ALP, bilirubin, and creatinine of diabetic rabbits. PMID:23316385

  7. Effectiveness of beneficial plant-microbe interactions under hypobaric and hypoxic conditions in an advanced life support system

    NASA Astrophysics Data System (ADS)

    MacIntyre, Olathe; Stasiak, Michael; Cottenie, Karl; Trevors, Jack; Dixon, Mike

    An assembled microbial community in the hydroponics solution of an advanced life support system may improve plant performance and productivity in three ways: (1) exclusion of plant pathogens from the initial community, (2) resistance to infection, and (3) plant-growth promotion. However, the plant production area is likely to have a hypobaric (low pressure) and hypoxic (low oxygen) atmosphere to reduce structural mass and atmosphere leakage, and these conditions may alter plant-microbe interactions. Plant performance and productivity of radish (Raphanus sativus L. cv. Cherry Bomb II) grown under hypobaric and hypoxic conditions were investigated at the University of Guelph's Controlled Environment Systems Research Facility. Changes in the microbial communities that routinely colonized the re-circulated nutrient solution, roots, and leaves of radishes in these experiments were quantified in terms of similarity in community composition, abundance of bacteria, and community diversity before and after exposure to hypobaric and hypoxic conditions relative to communities maintained at ambient growth conditions. The microbial succession was affected by extreme hypoxia (2 kPa oxygen partial pressure) while hypobaria as low as 10 kPa total pressure had little effect on microbial ecology. There were no correlations found between the physiological profile of these unintentional microbial communities and radish growth. The effects of hypobaric and hypoxic conditions on specific plant-microbe interactions need to be determined before beneficial gnotobiotic communities can be developed for use in space. The bacterial strains Tal 629 of Bradyrhizobium japonicum and WCS417 of Pseudomonas fluorescens, and the plant pathogen Fusarium oxysporum f. sp. raphani will be used in future experiments. B. japonicum Tal 629 promotes radish growth in hydroponics systems and P. fluorescens WCS417 induces systemic resistance to fusarium wilt (F. oxysporum f. sp. raphani) in radish under ambient

  8. Subterranean, herbivore-induced plant volatile increases biological control activity of multiple beneficial nematode species in distinct habitats

    USDA-ARS?s Scientific Manuscript database

    While the role of herbivore-induced volatiles in plant-herbivore-natural enemy interactions is well documented aboveground, new evidence suggests that belowground volatile emissions can protect plants by attracting entomopathogenic nematodes (EPNs). However, due to methodological limitations, no stu...

  9. Plants and the central nervous system.

    PubMed

    Carlini, E A

    2003-06-01

    This review article draws the attention to the many species of plants possessing activity on the central nervous system (CNS). In fact, they cover the whole spectrum of central activity such as psychoanaleptic, psycholeptic and psychodysleptic effects, and several of these plants are currently used in therapeutics to treat human ailments. Among the psychoanaleptic (stimulant) plants, those utilized by human beings to reduce body weight [Ephedra spp. (Ma Huang), Paullinia spp. (guaraná), Catha edulis Forssk. (khat)] and plants used to improve general health conditions (plant adaptogens) were scrutinized. Many species of hallucinogenic (psychodysleptic) plants are used by humans throughout the world to achieve states of mind distortions; among those, a few have been used for therapeutic purposes, such as Cannabis sativa L., Tabernanthe iboga Baill. and the mixture of Psychotria viridis Ruiz and Pav. and Banisteriopsis caapi (Spruce ex Griseb.) C.V. Morton. Plants showing central psycholeptic activities, such as analgesic or anxiolytic actions (Passiflora incarnata L., Valeriana spp. and Piper methysticum G. Forst.), were also analysed.Finally, the use of crude or semipurified extracts of such plants instead of the active substances seemingly responsible for their therapeutic effect is discussed.

  10. Calcium Efflux Systems in Stress Signaling and Adaptation in Plants

    PubMed Central

    Bose, Jayakumar; Pottosin, Igor I.; Shabala, Stanislav S.; Palmgren, Michael G.; Shabala, Sergey

    2011-01-01

    Transient cytosolic calcium ([Ca2+]cyt) elevation is an ubiquitous denominator of the signaling network when plants are exposed to literally every known abiotic and biotic stress. These stress-induced [Ca2+]cyt elevations vary in magnitude, frequency, and shape, depending on the severity of the stress as well the type of stress experienced. This creates a unique stress-specific calcium “signature” that is then decoded by signal transduction networks. While most published papers have been focused predominantly on the role of Ca2+ influx mechanisms to shaping [Ca2+]cyt signatures, restoration of the basal [Ca2+]cyt levels is impossible without both cytosolic Ca2+ buffering and efficient Ca2+ efflux mechanisms removing excess Ca2+ from cytosol, to reload Ca2+ stores and to terminate Ca2+ signaling. This is the topic of the current review. The molecular identity of two major types of Ca2+ efflux systems, Ca2+-ATPase pumps and Ca2+/H+ exchangers, is described, and their regulatory modes are analyzed in detail. The spatial and temporal organization of calcium signaling networks is described, and the importance of existence of intracellular calcium microdomains is discussed. Experimental evidence for the role of Ca2+ efflux systems in plant responses to a range of abiotic and biotic factors is summarized. Contribution of Ca2+-ATPase pumps and Ca2+/H+ exchangers in shaping [Ca2+]cyt signatures is then modeled by using a four-component model (plasma- and endo-membrane-based Ca2+-permeable channels and efflux systems) taking into account the cytosolic Ca2+ buffering. It is concluded that physiologically relevant variations in the activity of Ca2+-ATPase pumps and Ca2+/H+ exchangers are sufficient to fully describe all the reported experimental evidence and determine the shape of [Ca2+]cyt signatures in response to environmental stimuli, emphasizing the crucial role these active efflux systems play in plant adaptive responses to environment. PMID:22639615

  11. Stress-related phenomena and detoxification mechanisms induced by common pharmaceuticals in alfalfa (Medicago sativa L.) plants.

    PubMed

    Christou, Anastasis; Antoniou, Chrystalla; Christodoulou, Charalampia; Hapeshi, Evroula; Stavrou, Ioannis; Michael, Costas; Fatta-Kassinos, Despo; Fotopoulos, Vasileios

    2016-07-01

    Pharmaceutically active compounds (PhACs) have been recently shown to exert phytotoxic effects. The present study explores the uptake, systemic translocation, and abiotic stress responses and detoxification mechanisms induced by the exposure of alfalfa plants grown in sand under greenhouse conditions to four common, individually applied PhACs (10μgL(-1)) (diclofenac, sulfamethoxazole, trimethoprim, 17a-ethinylestradiol) and their mixture. Stress physiology markers (lipid peroxidation, proline, H2O2 and NO content, antioxidant activity assays) and gene expression levels of key plant detoxification components (including glutathione S-transferases, GST7, GST17; superoxide dismutases, CuZnSOD, FeSOD; proton pump, H(+)-ATP, and cytochrome c oxidase, CytcOx), were evaluated. PhACs were detected in significantly higher concentrations in roots compared with leaves. Stress related effects, manifested via membrane lipid peroxidation and oxidative burst, were local (roots) rather than systemic (leaves), and exacerbated when the tested PhACs were applied in mixture. Systemic accumulation of H2O2 in leaves suggests its involvement in signal transduction and detoxification responses. Increased antioxidant enzymatic activities, as well as upregulated transcript levels of GST7, GST17, H(+)-ATPase and CytcOx, propose their role in the detoxification of the selected PhACs in plants. The current findings provide novel biochemical and molecular evidence highlighting the studied PhACs as an emerging abiotic stress factor, and point the need for further research on wastewater flows under natural agricultural environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Subterranean, Herbivore-Induced Plant Volatile Increases Biological Control Activity of Multiple Beneficial Nematode Species in Distinct Habitats

    PubMed Central

    Ali, Jared G.; Alborn, Hans T.; Campos-Herrera, Raquel; Kaplan, Fatma; Duncan, Larry W.; Rodriguez-Saona, Cesar; Koppenhöfer, Albrecht M.; Stelinski, Lukasz L.

    2012-01-01

    While the role of herbivore-induced volatiles in plant-herbivore-natural enemy interactions is well documented aboveground, new evidence suggests that belowground volatile emissions can protect plants by attracting entomopathogenic nematodes (EPNs). However, due to methodological limitations, no study has previously detected belowground herbivore-induced volatiles in the field or quantified their impact on attraction of diverse EPN species. Here we show how a belowground herbivore-induced volatile can enhance mortality of agriculturally significant root pests. First, in real time, we identified pregeijerene (1,5-dimethylcyclodeca-1,5,7-triene) from citrus roots 9–12 hours after initiation of larval Diaprepes abbreviatus feeding. This compound was also detected in the root zone of mature citrus trees in the field. Application of collected volatiles from weevil-damaged citrus roots attracted native EPNs and increased mortality of beetle larvae (D. abbreviatus) compared to controls in a citrus orchard. In addition, field applications of isolated pregeijerene caused similar results. Quantitative real-time PCR revealed that pregeijerene increased pest mortality by attracting four species of naturally occurring EPNs in the field. Finally, we tested the generality of this root-zone signal by application of pregeijerene in blueberry fields; mortality of larvae (Galleria mellonella and Anomala orientalis) again increased by attracting naturally occurring populations of an EPN. Thus, this specific belowground signal attracts natural enemies of widespread root pests in distinct agricultural systems and may have broad potential in biological control of root pests. PMID:22761668

  13. Effect of plant extracts on H2O2-induced inflammatory gene expression in macrophages

    PubMed Central

    Pomari, Elena; Stefanon, Bruno; Colitti, Monica

    2014-01-01

    Background Arctium lappa (AL), Camellia sinensis (CS), Echinacea angustifolia, Eleutherococcus senticosus, Panax ginseng (PG), and Vaccinium myrtillus (VM) are plants traditionally used in many herbal formulations for the treatment of various conditions. Although they are well known and already studied for their anti-inflammatory properties, their effects on H2O2-stimulated macrophages are a novel area of study. Materials and methods Cell viability was tested after treatment with increasing doses of H2O2 and/or plant extracts at different times of incubation to identify the optimal experimental conditions. The messenger (m)RNA expression of TNFα, COX2, IL1β, NFκB1, NFκB2, NOS2, NFE2L2, and PPARγ was analyzed in macrophages under H2O2 stimulation. The same genes were also quantified after plant extract treatment on cells pre-stimulated with H2O2. Results A noncytotoxic dose (200 μM) of H2O2 induced active mRNA expression of COX2, IL1β, NFE2L2, NFκB1, NFκB2, NOS2, and TNFα, while PPARγ was depressed. The expression of all genes tested was significantly (P<0.001) regulated by plant extracts after pre-stimulation with H2O2. COX2 was downregulated by AL, PG, and VM. All extracts depressed IL1β expression, but upregulated NFE2L2. NFκB1, NFκB2, and TNFα were downregulated by AL, CS, PG, and VM. NOS2 was inhibited by CS, PG, and VM. PPARγ was decreased only after treatment with E. angustifolia and E. senticosus. Conclusion The results of the present study indicate that the stimulation of H2O2 on RAW267.4 cells induced the transcription of proinflammatory mediators, showing that this could be an applicable system by which to activate macrophages. Plant extracts from AL, CS, PG, and VM possess in vitro anti-inflammatory activity on H2O2-stimulated macrophages by modulating key inflammation mediators. Further in vitro and in vivo investigation into molecular mechanisms modulated by herbal extracts should be undertaken to shed light on the development of novel

  14. The National Plant Germplasm System and GRIN-Global

    USDA-ARS?s Scientific Manuscript database

    The National Plant Germplasm System (NPGS) is a cooperative effort by public and private organizations to preserve plant genetic diversity. Federal and State personnel at 20 sites are responsible for approximately 547,000 unique accessions of a wide array of plant genetic resources (PGR) representi...

  15. The role of belowground plant-microbe interactions in climate change induced range shifts

    NASA Astrophysics Data System (ADS)

    Ramirez, Kelly; Snoek, Basten; van der Putten, Wim

    2017-04-01

    With climate change, plants have been able to shift their ranges into novel environments were conditions have been made suitable due to warming temperature and changes in precipitation. Much belowground range expansion research has focused on either positive plant-soil interactions, such as AMF symbiosis, or on negative plant-soil interactions, such as pathogens. Less focus has been given to the core microbiome of plant hosts. Many unknowns remain in how the soil microbiome may contribute to plant adaptation to climate change, and how this may feedback to plant-soil interactions and ecosystem functions. Using high-throughput Illumina sequencing we assessed soil and root microbial communities under native and range expanding plant species spanning a north-south latitudinal transect in central Europe. As expected, the soil and root microbiomes are both strongly influenced by the plant species under which they grow. Specifically, about 10% of the microbiome could be related to the host plant species. Interestingly, we found that microbiomes associated with range shifting species are less variable than those associated with native species. Further, the enrichment of microbes in roots (from the soil) is stronger with range expanding species than with native plant species. Our research indicates that the soil and root microbiomes can provide insight into plant range shifts and may be important for plant establishment. Our results are also important at a continental and global level, as ecosystems and plant communities worldwide are effected by climate change induced range-expansions.

  16. Higher Plants in life support systems: design of a model and plant experimental compartment

    NASA Astrophysics Data System (ADS)

    Hezard, Pauline; Farges, Berangere; Sasidharan L, Swathy; Dussap, Claude-Gilles

    The development of closed ecological life support systems (CELSS) requires full control and efficient engineering for fulfilling the common objectives of water and oxygen regeneration, CO2 elimination and food production. Most of the proposed CELSS contain higher plants, for which a growth chamber and a control system are needed. Inside the compartment the development of higher plants must be understood and modeled in order to be able to design and control the compartment as a function of operating variables. The plant behavior must be analyzed at different sub-process scales : (i) architecture and morphology describe the plant shape and lead to calculate the morphological parameters (leaf area, stem length, number of meristems. . . ) characteristic of life cycle stages; (ii) physiology and metabolism of the different organs permit to assess the plant composition depending on the plant input and output rates (oxygen, carbon dioxide, water and nutrients); (iii) finally, the physical processes are light interception, gas exchange, sap conduction and root uptake: they control the available energy from photosynthesis and the input and output rates. These three different sub-processes are modeled as a system of equations using environmental and plant parameters such as light intensity, temperature, pressure, humidity, CO2 and oxygen partial pressures, nutrient solution composition, total leaf surface and leaf area index, chlorophyll content, stomatal conductance, water potential, organ biomass distribution and composition, etc. The most challenging issue is to develop a comprehensive and operative mathematical model that assembles these different sub-processes in a unique framework. In order to assess the parameters for testing a model, a polyvalent growth chamber is necessary. It should permit a controlled environment in order to test and understand the physiological response and determine the control strategy. The final aim of this model is to have an envi

  17. Structured Light-Based 3D Reconstruction System for Plants

    PubMed Central

    Nguyen, Thuy Tuong; Slaughter, David C.; Max, Nelson; Maloof, Julin N.; Sinha, Neelima

    2015-01-01

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants.This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance. PMID:26230701

  18. Structured Light-Based 3D Reconstruction System for Plants.

    PubMed

    Nguyen, Thuy Tuong; Slaughter, David C; Max, Nelson; Maloof, Julin N; Sinha, Neelima

    2015-07-29

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance.

  19. Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine.

    PubMed

    Hao, Zhipeng; Fayolle, Léon; van Tuinen, Diederik; Chatagnier, Odile; Li, Xiaolin; Gianinazzi, Silvio; Gianinazzi-Pearson, Vivienne

    2012-06-01

    The ectoparasitic dagger nematode (Xiphinema index), vector of Grapevine fanleaf virus (GFLV), provokes gall formation and can cause severe damage to the root system of grapevines. Mycorrhiza formation by Glomus (syn. Rhizophagus) intraradices BEG141 reduced both gall formation on roots of the grapevine rootstock SO4 (Vitis berlandieri×V. riparia) and nematode number in the surrounding soil. Suppressive effects increased with time and were greater when the nematode was post-inoculated rather than co-inoculated with the arbuscular mycorrhizal (AM) fungus. Using a split-root system, decreased X. index development was shown in mycorrhizal and non-mycorrhizal parts of mycorrhizal root systems, indicating that both local and systemic induced bioprotection mechanisms were active against the ectoparasitic nematode. Expression analyses of ESTs (expressed sequence tags) generated in an SSH (subtractive suppressive hybridization) library, representing plant genes up-regulated during mycorrhiza-induced control of X. index, and of described grapevine defence genes showed activation of chitinase 1b, pathogenesis-related 10, glutathione S-transferase, stilbene synthase 1, 5-enolpyruvyl shikimate-3-phosphate synthase, and a heat shock proein 70-interacting protein in association with the observed local and/or systemic induced bioprotection against the nematode. Overall, the data suggest priming of grapevine defence responses by the AM fungus and transmission of a plant-mediated signal to non-mycorrhizal tissues. Grapevine gene responses during AM-induced local and systemic bioprotection against X. index point to biological processes that are related either to direct effects on the nematode or to protection against nematode-imposed stress to maintain root tissue integrity.

  20. Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine

    PubMed Central

    Hao, Zhipeng; Fayolle, Léon; van Tuinen, Diederik; Chatagnier, Odile; Gianinazzi, Silvio; Gianinazzi-Pearson, Vivienne

    2012-01-01

    The ectoparasitic dagger nematode (Xiphinema index), vector of Grapevine fanleaf virus (GFLV), provokes gall formation and can cause severe damage to the root system of grapevines. Mycorrhiza formation by Glomus (syn. Rhizophagus) intraradices BEG141 reduced both gall formation on roots of the grapevine rootstock SO4 (Vitis berlandieri×V. riparia) and nematode number in the surrounding soil. Suppressive effects increased with time and were greater when the nematode was post-inoculated rather than co-inoculated with the arbuscular mycorrhizal (AM) fungus. Using a split-root system, decreased X. index development was shown in mycorrhizal and non-mycorrhizal parts of mycorrhizal root systems, indicating that both local and systemic induced bioprotection mechanisms were active against the ectoparasitic nematode. Expression analyses of ESTs (expressed sequence tags) generated in an SSH (subtractive suppressive hybridization) library, representing plant genes up-regulated during mycorrhiza-induced control of X. index, and of described grapevine defence genes showed activation of chitinase 1b, pathogenesis-related 10, glutathione S-transferase, stilbene synthase 1, 5-enolpyruvyl shikimate-3-phosphate synthase, and a heat shock proein 70-interacting protein in association with the observed local and/or systemic induced bioprotection against the nematode. Overall, the data suggest priming of grapevine defence responses by the AM fungus and transmission of a plant-mediated signal to non-mycorrhizal tissues. Grapevine gene responses during AM-induced local and systemic bioprotection against X. index point to biological processes that are related either to direct effects on the nematode or to protection against nematode-imposed stress to maintain root tissue integrity. PMID:22407649

  1. The effect of plant water storage on water fluxes within the coupled soil-plant system.

    PubMed

    Huang, Cheng-Wei; Domec, Jean-Christophe; Ward, Eric J; Duman, Tomer; Manoli, Gabriele; Parolari, Anthony J; Katul, Gabriel G

    2017-02-01

    In addition to buffering plants from water stress during severe droughts, plant water storage (PWS) alters many features of the spatio-temporal dynamics of water movement in the soil-plant system. How PWS impacts water dynamics and drought resilience is explored using a multi-layer porous media model. The model numerically resolves soil-plant hydrodynamics by coupling them to leaf-level gas exchange and soil-root interfacial layers. Novel features of the model are the considerations of a coordinated relationship between stomatal aperture variation and whole-system hydraulics and of the effects of PWS and nocturnal transpiration (Fe,night) on hydraulic redistribution (HR) in the soil. The model results suggest that daytime PWS usage and Fe,night generate a residual water potential gradient (Δψp,night) along the plant vascular system overnight. This Δψp,night represents a non-negligible competing sink strength that diminishes the significance of HR. Considering the co-occurrence of PWS usage and HR during a single extended dry-down, a wide range of plant attributes and environmental/soil conditions selected to enhance or suppress plant drought resilience is discussed. When compared with HR, model calculations suggest that increased root water influx into plant conducting-tissues overnight maintains a more favorable water status at the leaf, thereby delaying the onset of drought stress. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  2. The endocrine disruptor nonylphenol induces sublethal toxicity in vascular plant development at environmental concentrations: A risk for riparian plants and irrigated crops?

    PubMed

    Esteban, S; Llamas, P M; García-Cortés, H; Catalá, M

    2016-09-01

    In recent years, there is a growing concern among the scientific community about the presence of the so-called emergent pollutants in waters of different countries, especially endocrine-disrupting compounds (EDCs) that have the ability to alter the hormonal system. One of the substances found almost ubiquitously and in higher concentrations is the alkylphenol nonylphenol. Albeit this compound is included in priority lists as a probable risk for human health and the environment, little is known about its effects on developing plants. The aim of this work is to assess the acute and sub-chronic toxicity of environmental concentrations of nonylphenol in riparian vascular plant development using spores of the fern Polystichum setiferum and a biomarker-based approach: mitochondrial activity (cell viability), chlorophyll (plant physiology) and DNA content (growth). Mitochondrial activity and DNA content show that nonylphenol induces acute and sub-chronic toxicity at 48 h and after 1 week, respectively. Significant effects are observed in both parameters in fern spores at ng L(-1) but chlorophyll autofluorescence shows little changes. The inhibition of germination by natural allelochemicals has been reported to be related with the active hydroxyl group of phenolic compounds and largely independent of the structural nucleus to which it is attached. Results presented in this study suggest that environmental concentrations of nonylphenol could interfere with higher plant germination development by mimicking natural allelochemicals and/or phytohormones acting as a "phytoendocrine disruptor" likely posing ecophysiological risks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Plant-centered biosystems in space environments: technological concepts for developing a plant genetic assessment and control system.

    PubMed

    Lomax, Terri L; Findlay, Kirk A; White, T J; Winner, William E

    2003-06-01

    Plants will play an essential role in providing life support for any long-term space exploration or habitation. We are evaluating the feasibility of an adaptable system for measuring the response of plants to any unique space condition and optimizing plant performance under those conditions. The proposed system is based on a unique combination of systems including the rapid advances in the field of plant genomics, microarray technology for measuring gene expression, bioinformatics, gene pathways and networks, physiological measurements in controlled environments, and advances in automation and robotics. The resulting flexible module for monitoring and optimizing plant responses will be able to be inserted as a cassette into a variety of platforms and missions for either experimental or life support purposes. The results from future plant functional genomics projects have great potential to be applied to those plant species most likely to be used in space environments. Eventually, it will be possible to use the plant genetic assessment and control system to optimize the performance of any plant in any space environment. In addition to allowing the effective control of environmental parameters for enhanced plant productivity and other life support functions, the proposed module will also allow the selection or engineering of plants to thrive in specific space environments. The proposed project will advance human exploration of space in the near- and mid-term future on the International Space Station and free-flying satellites and in the far-term for longer duration missions and eventual space habitation.

  4. Synthetic plant defense elicitors

    PubMed Central

    Bektas, Yasemin; Eulgem, Thomas

    2015-01-01

    To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection. PMID:25674095

  5. A simple Gateway-assisted construction system of TALEN genes for plant genome editing.

    PubMed

    Kusano, Hiroaki; Onodera, Hitomi; Kihira, Miho; Aoki, Hiromi; Matsuzaki, Hikaru; Shimada, Hiroaki

    2016-07-25

    TALEN is an artificial nuclease being applied for sequence-specific genome editing. For the plant genome editing, a pair of TALEN genes is expressed in the cells, and a binary plasmid for Agrobacterium-mediated transformation should be assembled. We developed a novel procedure using the Gateway-assisted plasmids, named Emerald-Gateway TALEN system. We constructed entry vectors, pPlat plasmids, for construction of a desired TALEN gene using Platinum Gate TALEN kit. We also created destination plasmid, pDual35SGw1301, which allowed two TALEN genes to both DNA strands to recruit using Gateway technology. Resultant TALEN genes were evaluated by the single-strand annealing (SSA) assay in E. coli cells. By this assay, the TALENs recognized the corresponding targets in the divided luciferase gene, and induced a specific recombination to generate an active luciferase gene. Using the TALEN genes constructed, we created a transformant potato cells in which a site-specific mutation occurred at the target site of the GBSS gene. This suggested that our system worked effectively and was applicable as a convenient tool for the plant genome editing.

  6. Methodological advances in predicting flow-induced dynamics of plants using mechanical-engineering theory.

    PubMed

    de Langre, Emmanuel

    2012-03-15

    The modeling of fluid-structure interactions, such as flow-induced vibrations, is a well-developed field of mechanical engineering. Many methods exist, and it seems natural to apply them to model the behavior of plants, and potentially other cantilever-like biological structures, under flow. Overcoming this disciplinary divide, and the application of such models to biological systems, will significantly advance our understanding of ecological patterns and processes and improve our predictive capabilities. Nonetheless, several methodological issues must first be addressed, which I describe here using two practical examples that have strong similarities: one from agricultural sciences and the other from nuclear engineering. Very similar issues arise in both: individual and collective behavior, small and large space and time scales, porous modeling, standard and extreme events, trade-off between the surface of exchange and individual or collective risk of damage, variability, hostile environments and, in some aspects, evolution. The conclusion is that, although similar issues do exist, which need to be exploited in some detail, there is a significant gap that requires new developments. It is obvious that living plants grow in and adapt to their environment, which certainly makes plant biomechanics fundamentally distinct from classical mechanical engineering. Moreover, the selection processes in biology and in human engineering are truly different, making the issue of safety different as well. A thorough understanding of these similarities and differences is needed to work efficiently in the application of a mechanistic approach to ecology.

  7. The regulatory mechanism of fungal elicitor-induced secondary metabolite biosynthesis in medical plants.

    PubMed

    Zhai, Xin; Jia, Min; Chen, Ling; Zheng, Cheng-Jian; Rahman, Khalid; Han, Ting; Qin, Lu-Ping

    2017-03-01

    A wide range of external stress stimuli trigger plant cells to undergo complex network of reactions that ultimately lead to the synthesis and accumulation of secondary metabolites. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Throughout evolution, endophytic fungi, an important constituent in the environment of medicinal plants, have known to form long-term stable and mutually beneficial symbiosis with medicinal plants. The endophytic fungal elicitor can rapidly and specifically induce the expression of specific genes in medicinal plants which can result in the activation of a series of specific secondary metabolic pathways resulting in the significant accumulation of active ingredients. Here we summarize the progress made on the mechanisms of fungal elicitor including elicitor signal recognition, signal transduction, gene expression and activation of the key enzymes and its application. This review provides guidance on studies which may be conducted to promote the efficient synthesis and accumulation of active ingredients by the endogenous fungal elicitor in medicinal plant cells, and provides new ideas and methods of studying the regulation of secondary metabolism in medicinal plants.

  8. Impact of large beam-induced heat loads on the transient operation of the beam screens and the cryogenic plants of the Future Circular Collider (FCC)

    NASA Astrophysics Data System (ADS)

    Correia Rodrigues, H.; Tavian, L.

    2017-12-01

    The Future Circular Collider (FCC) under study at CERN will produce 50-TeV high-energy proton beams. The high-energy particle beams are bent by 16-T superconducting dipole magnets operating at 1.9 K and distributed over a circumference of 80 km. The circulating beams induce 5 MW of dynamic heat loads by several processes such as synchrotron radiation, resistive dissipation of beam image currents and electron clouds. These beam-induced heat loads will be intercepted by beam screens operating between 40 and 60 K and induce transients during beam injection. Energy ramp-up and beam dumping on the distributed beam-screen cooling loops, the sector cryogenic plants and the dedicated circulators. Based on the current baseline parameters, numerical simulations of the fluid flow in the cryogenic distribution system during a beam operation cycle were performed. The effects of the thermal inertia of the headers on the helium flow temperature at the cryogenic plant inlet as well as the temperature gradient experienced by the beam screen has been assessed. Additionally, this work enabled a thorough exergetic analysis of different cryogenic plant configurations and laid the building-block for establishing design specification of cold and warm circulators.

  9. Effects of widespread drought-induced aspen mortality on understory plants.

    PubMed

    Anderegg, William R L; Anderegg, Leander D L; Sherman, Clare; Karp, Daniel S

    2012-12-01

    Forest die-off around the world is expected to increase in coming decades as temperature increases due to climate change. Forest die-off will likely affect understory plant communities, which have substantial influence on regional biological diversity, ecosystem function, and land-atmosphere interactions, but how die-off alters these plant communities is largely unknown. We examined changes in understory plant communities following a widespread, drought-induced die-off of trembling aspen (Populus tremuloides) in the western United States. We assessed shrub and herbaceous cover and volume in quadrats in 55 plots located across a wide range of levels of aspen mortality. We measured species richness and composition of herbaceous plant communities by recording species presence and absence in 12 sets of paired (1 healthy, 1 dying) aspen plots. Although understory composition in healthy and dying stands was heterogeneous across the landscape, shrub abundance, cover, and volume were higher and abundance of herbaceous species, cover, and volume were lower in dying aspen stands. Shrub cover and volume increased from 2009 to 2011 in dying stands, which suggests that shrub growth and expansion is ongoing. Species richness of herbs declined by 23% in dying stands. Composition of herbs differed significantly between dying and healthy stands. Richness of non-native species did not differ between stand types. The understory community in dying aspen stands was not similar to other shrub-dominated plant communities in the region and may constitute a novel community. Our results suggest that changes in understory plant communities as forests die off could be a significant indirect effect of climate change on biological diversity and forest communities. ©2012 Society for Conservation Biology.

  10. Island phytophagy: explaining the remarkable diversity of plant-feeding insects

    PubMed Central

    Joy, Jeffrey B.; Crespi, Bernard J.

    2012-01-01

    Plant-feeding insects have undergone unparalleled diversification among different plant taxa, yet explanations for variation in their diversity lack a quantitative, predictive framework. Island biogeographic theory has been applied to spatially discrete habitats but not to habitats, such as host plants, separated by genetic distance. We show that relationships between the diversity of gall-inducing flies and their host plants meet several fundamental predictions from island biogeographic theory. First, plant-taxon genetic distinctiveness, an integrator for long-term evolutionary history of plant lineages, is a significant predictor of variance in the diversity of gall-inducing flies among host-plant taxa. Second, range size and structural complexity also explain significant proportions of the variance in diversity of gall-inducing flies among different host-plant taxa. Third, as with other island systems, plant-lineage age does not predict species diversity. Island biogeographic theory, applied to habitats defined by genetic distance, provides a novel, comprehensive framework for analysing and explaining the diversity of plant-feeding insects and other host-specific taxa. PMID:22553094

  11. Island phytophagy: explaining the remarkable diversity of plant-feeding insects.

    PubMed

    Joy, Jeffrey B; Crespi, Bernard J

    2012-08-22

    Plant-feeding insects have undergone unparalleled diversification among different plant taxa, yet explanations for variation in their diversity lack a quantitative, predictive framework. Island biogeographic theory has been applied to spatially discrete habitats but not to habitats, such as host plants, separated by genetic distance. We show that relationships between the diversity of gall-inducing flies and their host plants meet several fundamental predictions from island biogeographic theory. First, plant-taxon genetic distinctiveness, an integrator for long-term evolutionary history of plant lineages, is a significant predictor of variance in the diversity of gall-inducing flies among host-plant taxa. Second, range size and structural complexity also explain significant proportions of the variance in diversity of gall-inducing flies among different host-plant taxa. Third, as with other island systems, plant-lineage age does not predict species diversity. Island biogeographic theory, applied to habitats defined by genetic distance, provides a novel, comprehensive framework for analysing and explaining the diversity of plant-feeding insects and other host-specific taxa.

  12. From the tumor-inducing principle to plant biotechnology and its importance for society.

    PubMed

    Angenon, Geert; Van Lijsebettens, Mieke; Van Montagu, Marc

    2013-01-01

    This dialogue was held between the Guest Editors of the Special Issue on "Plant Transgenesis" of the Int. J. Dev. Biol. and Marc Van Montagu. Research in the group of Marc Van Montagu and Jeff Schell in the 1970s was essential to reveal how the phytopathogenic bacterium Agrobacterium tumefaciens transfers DNA to host plants to cause crown gall disease. Knowledge of the molecular mechanism underlying gene transfer, subsequently led to the development of plant transgene technology, an indispensable tool in fundamental plant research and plant improvement. In the early 1980s, Marc Van Montagu founded a start-up company, Plant Genetic Systems, which successfully developed insect-resistant plants, herbicide-tolerant plants and a hybrid seed production system based on nuclear male sterility. Even before the first transgenic plant had been produced, Marc Van Montagu realized that the less developed countries might benefit most from plant biotechnology and throughout his subsequent career, this remained a focus of his efforts. After becoming emeritus professor, he founded the Institute of Plant Biotechnology Outreach (IPBO), which aims to raise awareness of the major role that plant biotechnology can play in sustainable agricultural systems, especially in less developed countries. Marc Van Montagu has been honored with many prizes and awards, the most recent being the prestigious World Food Prize 2013. In this paper, we look to the past and present of plant biotechnology and to the promises this technology holds for the future, on the basis of the personal perspective of Marc Van Montagu.

  13. Proteomic analysis of secreted protein induced by a component of prey in pitcher fluid of the carnivorous plant Nepenthes alata.

    PubMed

    Hatano, Naoya; Hamada, Tatsuro

    2012-08-03

    The Nepenthes species are carnivorous plants that have evolved a specialized leaf organ, the 'pitcher', to attract, capture, and digest insects. The digested insects provide nutrients for growth, allowing these plants to grow even in poor soil. Several proteins have been identified in the pitcher fluid, including aspartic proteases (nepenthesin I and II) and pathogenesis-related (PR) proteins (β-1,3-glucanase, class IV chitinase, and thaumatin-like protein). In this study, we collected and concentrated pitcher fluid to identify minor proteins. In addition, we tried to identify the protein secreted in response to trapping the insect. To make a similar situation in which the insect falls into the pitcher, chitin which was a major component of the insect exoskeleton was added to the fluid in the pitcher. Three PR proteins, class III peroxidase (Prx), β-1,3-glucanase, and class III chitinase, were newly identified. Prx was induced after the addition of chitin to the pitcher fluid. Proteins in the pitcher fluid of the carnivorous plant Nepenthes alata probably have two roles in nutrient supply: digestion of prey and the antibacterial effect. These results suggest that the system for digesting prey has evolved from the defense system against pathogens in the carnivorous plant Nepenthes. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Ferulic Acid, But Not All Hydroxycinnamic Acids, Is a Novel T3SS Inducer of Ralstonia solanacearum and Promotes Its Infection Process in Host Plants under Hydroponic Condition.

    PubMed

    Zhang, Yong; Li, Jing; Zhang, Weiqi; Wang, Rongsheng; Qiu, Qiaoqing; Luo, Feng; Hikichi, Yasufumi; Ohnishi, Kouhei; Ding, Wei

    2017-01-01

    Hydroxycinnamic acids (HCAs) are typical monocyclic phenylpropanoids, including cinnamic acid (Cin), coumaric acid (Cou), caffeic acid (Caf), ferulic acid (FA) and their isomers, and involved in the interactions between pathogens and host plants. Here, we focused on the impact of HCAs on expression of type III secretion system (T3SS) in Ralstonia solanacearum . FA significantly induced the expression of the T3SS and some type III effectors (T3Es) genes in hrp -inducing medium, while did not the other HCAs. However, exogenously supplemented FA did not affect the T3SS expression in planta and the elicitation of the hypersensitive response (HR) in tobacco leaves. Consistent with its central roles in pathogenicity, the FA-induced expression of the T3SS led to significant promotion on infection process of R. solanacearum in tomato plants under hydroponics cultivation. Moreover, the FA-induced expression of the T3SS was specifically mediated by the well-characterized signaling cascade PrhA-prhI/R-PrhJ-HrpG-HrpB, independent of the other known regulatory pathways. In summary, our results demonstrated that FA, a novel inducer of the T3SS in R. solanacearum , was able to promote its infection process in host plants under hydroponics condition.

  15. Cladosporium fulvum CfHNNI1 induces hypersensitive necrosis, defence gene expression and disease resistance in both host and nonhost plants.

    PubMed

    Cai, Xin-Zhong; Zhou, Xin; Xu, You-Ping; Joosten, Matthieu H A J; de Wit, Pierre J G M

    2007-05-01

    Nonhost resistance as a durable and broad-spectrum defence strategy is of great potential for agricultural applications. We have previously isolated a cDNA showing homology with genes encoding bZIP transcription factors from tomato leaf mould pathogen Cladosporium fulvum. Upon expression, the cDNA results in necrosis in C. fulvum host tomato and nonhost tobacco plants and is thus named CfHNNI1 (for C . f ulvum host and nonhost plant necrosis inducer 1). In the present study we report the induction of necrosis in a variety of nonhost plant species belonging to three families by the transient in planta expression of CfHNNI1 using virus-based vectors. Additionally, transient expression of CfHNNI1 also induced expression of the HR marker gene LeHSR203 and greatly reduced the accumulation of recombinant Potato virus X. Stable CfHNNI1 transgenic tobacco plants were generated in which the expression of CfHNNI1 is under the control of the pathogen-inducible hsr203J promoter. When infected with the oomycetes pathogen Phytophthora parasitica var. nicotianae, these transgenic plants manifested enhanced expression of CfHNNI1 and subsequent accumulation of CfHNNI1 protein, resulting in high expression of the HSR203J and PR genes, and strong resistance to the pathogen. The CfHNNI1 transgenic plants also exhibited induced resistance to Pseudomonas syringae pv. tabaci and Tobacco mosaic virus. Furthermore, CfHNNI1 was highly expressed and the protein was translocated into plant cells during the incompatible interactions between C. fulvum and host and nonhost plants. Our results demonstrate that CfHNNI1 is a potential general elicitor of hypersensitive response and nonhost resistance.

  16. Induced Pathogen Resistance in Bean Plants: A Model for Studying "Vaccination" in the Classroom.

    ERIC Educational Resources Information Center

    Goetsch, Emily; Mathias, Christine; Mosley, Sydnie; Shull, Meredith; Brock, David L.

    2002-01-01

    Shows how the tobacco mosaic virus can be used in conjunction with the common bean plant Phaseolus vulgaris to provide a discernable, experimental model that students can use to study induced resistance. (Contains 17 references.) (DDR)

  17. Expert System Control of Plant Growth in an Enclosed Space

    NASA Technical Reports Server (NTRS)

    May, George; Lanoue, Mark; Bathel, Matthew; Ryan, Robert E.

    2008-01-01

    The Expert System is an enclosed, controlled environment for growing plants, which incorporates a computerized, knowledge-based software program that is designed to capture the knowledge, experience, and problem-solving skills of one or more human experts in a particular discipline. The Expert System is trained to analyze crop/plant status, to monitor the condition of the plants and the environment, and to adjust operational parameters to optimize the plant-growth process. This system is intended to provide a way to remotely control plant growth with little or no human intervention. More specifically, the term control implies an autonomous method for detecting plant states such as health (biomass) or stress and then for recommending and implementing cultivation and/or remediation to optimize plant growth and to minimize consumption of energy and nutrients. Because of difficulties associated with delivering energy and nutrients remotely, a key feature of this Expert System is its ability to minimize this effort and to achieve optimum growth while taking into account the diverse range of environmental considerations that exist in an enclosed environment. The plant-growth environment for the Expert System could be made from a variety of structures, including a greenhouse, an underground cavern, or another enclosed chamber. Imaging equipment positioned within or around the chamber provides spatially distributed crop/plant-growth information. Sensors mounted in the chamber provide data and information pertaining to environmental conditions that could affect plant development. Lamps in the growth environment structure supply illumination, and other additional equipment in the chamber supplies essential nutrients and chemicals.

  18. Root Zone Respiration on Hydroponically Grown Wheat Plant Systems

    NASA Technical Reports Server (NTRS)

    Soler-Crespo, R. A.; Monje, O. A.

    2010-01-01

    Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.

  19. The Use of Grafting to Study Systemic Signaling in Plants.

    PubMed

    Tsutsui, Hiroki; Notaguchi, Michitaka

    2017-08-01

    Grafting has long been an important technique in agriculture. Nowadays, grafting is a widely used technique also to study systemic long-distance signaling in plants. Plants respond to their surrounding environment, and at that time many aspects of their physiology are regulated systemically; these start from local input signals and are followed by the transmission of information to the rest of the plant. For example, soil nutrient conditions, light/photoperiod, and biotic and abiotic stresses affect plants heterogeneously, and plants perceive such information in specific plant tissues or organs. Such environmental cues are crucial determinants of plant growth and development, and plants drastically change their morphology and physiology to adapt to various events in their life. Hitherto, intensive studies have been conducted to understand systemic signaling in plants, and grafting techniques have permitted advances in this field. The breakthrough technique of micrografting in Arabidopsis thaliana was established in 2002 and led to the development of molecular genetic tools in this field. Thereafter, various phenomena of systemic signaling have been identified at the molecular level, including nutrient fixation, flowering, circadian clock and defense against pathogens. The significance of grafting is that it can clarify the transmission of the stimulus and molecules. At present, many micro- and macromolecules have been identified as mobile signals, which are transported through plant vascular tissues to co-ordinate their physiology and development. In this review, we introduce the various grafting techniques that have been developed, we report on the recent advances in the field of plant systemic signaling where grafting techniques have been applied and provide insights for the future. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications.

    PubMed

    Ma, Xingliang; Zhu, Qinlong; Chen, Yuanling; Liu, Yao-Guang

    2016-07-06

    The clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein9 (Cas9) genome editing system (CRISPR/Cas9) is adapted from the prokaryotic type II adaptive immunity system. The CRISPR/Cas9 tool surpasses other programmable nucleases, such as ZFNs and TALENs, for its simplicity and high efficiency. Various plant-specific CRISPR/Cas9 vector systems have been established for adaption of this technology to many plant species. In this review, we present an overview of current advances on applications of this technology in plants, emphasizing general considerations for establishment of CRISPR/Cas9 vector platforms, strategies for multiplex editing, methods for analyzing the induced mutations, factors affecting editing efficiency and specificity, and features of the induced mutations and applications of the CRISPR/Cas9 system in plants. In addition, we provide a perspective on the challenges of CRISPR/Cas9 technology and its significance for basic plant research and crop genetic improvement. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  1. Coupling plant growth and waste recycling systems in a controlled life support system (CELSS)

    NASA Technical Reports Server (NTRS)

    Garland, Jay L.

    1992-01-01

    The development of bioregenerative systems as part of the Controlled Ecological Life Support System (CELSS) program depends, in large part, on the ability to recycle inorganic nutrients, contained in waste material, into plant growth systems. One significant waste (resource) stream is inedible plant material. This research compared wheat growth in hydroponic solutions based on inorganic salts (modified Hoagland's) with solutions based on the soluble fraction of inedible wheat biomass (leachate). Recycled nutrients in leachate solutions provided the majority of mineral nutrients for plant growth, although additions of inorganic nutrients to leachate solutions were necessary. Results indicate that plant growth and waste recyling systems can be effectively coupled within CELSS based on equivalent wheat yield in leachate and Hoagland solutions, and the rapid mineralization of waste organic material in the hydroponic systems. Selective enrichment for microbial communities able to mineralize organic material within the leachate was necessary to prevent accumulation of dissolved organic matter in leachate-based solutions. Extensive analysis of microbial abundance, growth, and activity in the hydroponic systems indicated that addition of soluble organic material from plants does not cause excessive microbial growth or 'biofouling', and helped define the microbially-mediated flux of carbon in hydroponic solutions.

  2. Compressed Air System Redesign Results in Increased Production at a Fuel System Plant (Caterpillar Fuel Systems Pontiac Plant)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the Caterpillar's Pontiac Plant project.

  3. Metabolic network flux analysis for engineering plant systems.

    PubMed

    Shachar-Hill, Yair

    2013-04-01

    Metabolic network flux analysis (NFA) tools have proven themselves to be powerful aids to metabolic engineering of microbes by providing quantitative insights into the flows of material and energy through cellular systems. The development and application of NFA tools to plant systems has advanced in recent years and are yielding significant insights and testable predictions. Plants present substantial opportunities for the practical application of NFA but they also pose serious challenges related to the complexity of plant metabolic networks and to deficiencies in our knowledge of their structure and regulation. By considering the tools available and selected examples, this article attempts to assess where and how NFA is most likely to have a real impact on plant biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Seat belt use-inducing system effectiveness

    DOT National Transportation Integrated Search

    1975-04-01

    Seat belt use inducing system effectiveness was measured in fleet automobiles of a private business and in rental automobiles at a large airport. There were three parts to the activity: 1. Seat belt use inducing systems and seat belt use counting sys...

  5. Arsenic-induced stress activates sulfur metabolism in different organs of garlic (Allium sativum L.) plants accompanied by a general decline of the NADPH-generating systems in roots.

    PubMed

    Ruíz-Torres, Carmelo; Feriche-Linares, Rafael; Rodríguez-Ruíz, Marta; Palma, José M; Corpas, Francisco J

    2017-04-01

    Arsenic (As) contamination is a major environmental problem which affects most living organisms from plants to animals. This metalloid poses a health risk for humans through its accumulation in crops and water. Using garlic (Allium sativum L.) plants as model crop exposed to 200μM arsenate, a comparative study among their main organs (roots and shoots) was made. The analysis of arsenic, glutathione (GSH), phytochelatins (PCs) and lipid peroxidation contents with the activities of antioxidant enzymes (catalase, superoxide dismutase, ascorbate-glutathione cycle), and the main components of the NADPH-generating system, including glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), NADP-malic enzyme (NADP-ME) and NADP-isocitrate dehydrogenase (NADP-ICDH) was carried out. Data showed a correlation among arsenic accumulation in the different organs, PCs content and the antioxidative response, with a general decline of the NADPH-generating systems in roots. Overall, our results demonstrate that there are clear connections between arsenic uptake, increase of their As-chelating capacity in roots and a decline of antioxidative enzyme activities (catalase and the ascorbate peroxidase) whose alteration provoked As-induced oxidative stress. Thus, the data suggest that roots act as barrier of arsenic mediated by a prominent sulfur metabolism which is characterized by the biosynthesis of high amount of PCs. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. A Systemic Small RNA Signaling System in Plants

    PubMed Central

    Yoo, Byung-Chun; Kragler, Friedrich; Varkonyi-Gasic, Erika; Haywood, Valerie; Archer-Evans, Sarah; Lee, Young Moo; Lough, Tony J.; Lucas, William J.

    2004-01-01

    Systemic translocation of RNA exerts non-cell-autonomous control over plant development and defense. Long-distance delivery of mRNA has been proven, but transport of small interfering RNA and microRNA remains to be demonstrated. Analyses performed on phloem sap collected from a range of plants identified populations of small RNA species. The dynamic nature of this population was reflected in its response to growth conditions and viral infection. The authenticity of these phloem small RNA molecules was confirmed by bioinformatic analysis; potential targets for a set of phloem small RNA species were identified. Heterografting studies, using spontaneously silencing coat protein (CP) plant lines, also established that transgene-derived siRNA move in the long-distance phloem and initiate CP gene silencing in the scion. Biochemical analysis of pumpkin (Cucurbita maxima) phloem sap led to the characterization of C. maxima Phloem SMALL RNA BINDING PROTEIN1 (CmPSRP1), a unique component of the protein machinery probably involved in small RNA trafficking. Equivalently sized small RNA binding proteins were detected in phloem sap from cucumber (Cucumis sativus) and lupin (Lupinus albus). PSRP1 binds selectively to 25-nucleotide single-stranded RNA species. Microinjection studies provided direct evidence that PSRP1 could mediate the cell-to-cell trafficking of 25-nucleotide single-stranded, but not double-stranded, RNA molecules. The potential role played by PSRP1 in long-distance transmission of silencing signals is discussed with respect to the pathways and mechanisms used by plants to exert systemic control over developmental and physiological processes. PMID:15258266

  7. Herbivory-induced volatiles function as defenses increasing fitness of the native plant Nicotiana attenuata in nature

    PubMed Central

    Schuman, Meredith C; Barthel, Kathleen; Baldwin, Ian T

    2012-01-01

    From an herbivore's first bite, plants release herbivory-induced plant volatiles (HIPVs) which can attract enemies of herbivores. However, other animals and competing plants can intercept HIPVs for their own use, and it remains unclear whether HIPVs serve as an indirect defense by increasing fitness for the emitting plant. In a 2-year field study, HIPV-emitting N. attenuata plants produced twice as many buds and flowers as HIPV-silenced plants, but only when native Geocoris spp. predators reduced herbivore loads (by 50%) on HIPV-emitters. In concert with HIPVs, plants also employ antidigestive trypsin protease inhibitors (TPIs), but TPI-producing plants were not fitter than TPI-silenced plants. TPIs weakened a specialist herbivore's behavioral evasive responses to simulated Geocoris spp. attack, indicating that TPIs function against specialists by enhancing indirect defense. DOI: http://dx.doi.org/10.7554/eLife.00007.001 PMID:23066503

  8. Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants.

    PubMed

    Anawar, Hossain M; Rengel, Zed; Damon, Paul; Tibbett, Mark

    2018-02-01

    High arsenic (As) concentrations in the soil, water and plant systems can pose a direct health risk to humans and ecosystems. Phosphate (Pi) ions strongly influence As availability in soil, its uptake and toxicity to plants. Better understanding of As(V)-Pi interactions in soils and plants will facilitate a potential remediation strategy for As contaminated soils, reducing As uptake by crop plants and toxicity to human populations via manipulation of soil Pi content. However, the As(V)-Pi interactions in soil-plant systems are complex, leading to contradictory findings among different studies. Therefore, this review investigates the role of soil type, soil properties, minerals, Pi levels in soil and plant, Pi transporters, mycorrhizal association and microbial activities on As-Pi interactions in soils and hydroponics, and uptake by plants, elucidate the key mechanisms, identify key knowledge gaps and recommend new research directions. Although Pi suppresses As uptake by plants in hydroponic systems, in soils it could either increase or decrease As availability and toxicity to plants depending on the soil types, properties and charge characteristics. In soil, As(V) availability is typically increased by the addition of Pi. At the root surface, the Pi transport system has high affinity for Pi over As(V). However, Pi concentration in plant influences the As transport from roots to shoots. Mycorrhizal association may reduce As uptake via a physiological shift to the mycorrhizal uptake pathway, which has a greater affinity for Pi over As(V) than the root epidermal uptake pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Qualitative and Quantitative Differences in Herbivore-Induced Plant Volatile Blends from Tomato Plants Infested by Either Tuta absoluta or Bemisia tabaci.

    PubMed

    Silva, Diego B; Weldegergis, Berhane T; Van Loon, Joop J A; Bueno, Vanda H P

    2017-01-01

    Plants release a variety of volatile organic compounds that play multiple roles in the interactions with other plants and animals. Natural enemies of plant-feeding insects use these volatiles as cues to find their prey or host. Here, we report differences between the volatile blends of tomato plants infested with the whitefly Bemisia tabaci or the tomato borer Tuta absoluta. We compared the volatile emission of: (1) clean tomato plants; (2) tomato plants infested with T. absoluta larvae; and (3) tomato plants infested with B. tabaci adults, nymphs, and eggs. A total of 80 volatiles were recorded of which 10 occurred consistently only in the headspace of T. absoluta-infested plants. Many of the compounds detected in the headspace of the two herbivory treatments were emitted at different rates. Plants damaged by T. absoluta emitted at least 10 times higher levels of many compounds compared to plants damaged by B. tabaci and intact plants. The multivariate separation of T. absoluta-infested plants from those infested with B. tabaci was due largely to the chorismate-derived compounds as well as volatile metabolites of C 18 -fatty acids and branched chain amino acids that had higher emission rates from T. absoluta-infested plants, whereas the cyclic sesquiterpenes α- and β-copaene, valencene, and aristolochene were emitted at significantly higher levels from B. tabaci-infested plants. Our findings imply that feeding by T. absoluta and B. tabaci induced emission of volatile blends that differ quantitatively and qualitatively, providing a chemical basis for the recently documented behavioral discrimination by two generalist predatory mirid species, natural enemies of T. absoluta and B. tabaci employed in biological control.

  10. The Airspace Concepts Evaluation System Architecture and System Plant

    NASA Technical Reports Server (NTRS)

    Windhorst, Robert; Meyn, Larry; Manikonda, Vikram; Carlos, Patrick; Capozzi, Brian

    2006-01-01

    The Airspace Concepts Evaluation System is a simulation of the National Airspace System. It includes models of flights, airports, airspaces, air traffic controls, traffic flow managements, and airline operation centers operating throughout the United States. It is used to predict system delays in response to future capacity and demand scenarios and perform benefits assessments of current and future airspace technologies and operational concepts. Facilitation of these studies requires that the simulation architecture supports plug and play of different air traffic control, traffic flow management, and airline operation center models and multi-fidelity modeling of flights, airports, and airspaces. The simulation is divided into two parts that are named, borrowing from classical control theory terminology, control and plant. The control consists of air traffic control, traffic flow management, and airline operation center models, and the plant consists of flight, airport, and airspace models. The plant can run open loop, in the absence of the control. However, undesired affects, such as conflicts and over congestions in the airspaces and airports, can occur. Different controls are applied, "plug and played", to the plant. A particular control is evaluated by analyzing how well it managed conflicts and congestions. Furthermore, the terminal area plants consist of models of airports and terminal airspaces. Each model consists of a set of nodes and links which are connected by the user to form a network. Nodes model runways, fixes, taxi intersections, gates, and/or other points of interest, and links model taxiways, departure paths, and arrival paths. Metering, flow distribution, and sequencing functions can be applied at nodes. Different fidelity model of how a flight transits are can be used by links. The fidelity of the model can be adjusted by the user by either changing the complexity of the node/link network-or the way that the link models how the flights transit

  11. Three-Step Test System for the Identification of Novel GABAA Receptor Modulating Food Plants.

    PubMed

    Sahin, Sümeyye; Eulenburg, Volker; Kreis, Wolfgang; Villmann, Carmen; Pischetsrieder, Monika

    2016-12-01

    Potentiation of γ-amino butyric acid (GABA)-induced GABA A receptor (GABA A R) activation is a common pathway to achieve sedative, sleep-enhancing, anxiolytic, and antidepressant effects. Presently, a three-component test system was established for the identification of novel GABA A R modulating food plants. In the first step, potentiation of GABA-induced response of the GABA A R was analysed by two-electrode voltage clamp (TEVC) for activity on human α1β2-GABA A R expressed in Xenopus laevis oocytes. Positively tested food plants were then subjected to quantification of GABA content by high-performance liquid chromatography with fluorescence detection (HPLC-FLD) to exclude test foods, which evoke a TEVC-response by endogenous GABA. In the third step, specificity of GABA A -modulating activity was assessed by TEVC analysis of Xenopus laevis oocytes expressing the homologous glycine receptor (GlyR). The three-component test was then applied to screen 10 aqueous extracts of food plants for their GABA A R activity. Thus, hop cones (Humulus lupulus) and Sideritis sipylea were identified as the most potent specific GABA A R modulators eliciting significant potentiation of the current by 182 ± 27 and 172 ± 19 %, respectively, at the lowest concentration of 0.5 μg/mL. The extracts can now be further evaluated by in vivo studies and by structural evaluation of the active components.

  12. Effects of artificial lighting on the detection of plant stress with spectral reflectance remote sensing in bioregenerative life support systems

    NASA Astrophysics Data System (ADS)

    Schuerger, Andrew C.; Richards, Jeffrey T.

    2006-09-01

    Plant-based life support systems that utilize bioregenerative technologies have been proposed for long-term human missions to both the Moon and Mars. Bioregenerative life support systems will utilize higher plants to regenerate oxygen, water, and edible biomass for crews, and are likely to significantly lower the ‘equivalent system mass’ of crewed vehicles. As part of an ongoing effort to begin the development of an automatic remote sensing system to monitor plant health in bioregenerative life support modules, we tested the efficacy of seven artificial illumination sources on the remote detection of plant stresses. A cohort of pepper plants (Capsicum annuum L.) were grown 42 days at 25 °C, 70% relative humidity, and 300 μmol m-2 s-1 of photosynthetically active radiation (PAR; from 400 to 700 nm). Plants were grown under nutritional stresses induced by irrigating subsets of the plants with 100, 50, 25, or 10% of a standard nutrient solution. Reflectance spectra of the healthy and stressed plants were collected under seven artificial lamps including two tungsten halogen lamps, plus high pressure sodium, metal halide, fluorescent, microwave, and red/blue light emitting diode (LED) sources. Results indicated that several common algorithms used to estimate biomass and leaf chlorophyll content were effective in predicting plant stress under all seven illumination sources. However, the two types of tungsten halogen lamps and the microwave illumination source yielded linear models with the highest residuals and thus the highest predictive capabilities of all lamps tested. The illumination sources with the least predictive capabilities were the red/blue LEDs and fluorescent lamps. Although the red/blue LEDs yielded the lowest residuals for linear models derived from the remote sensing data, the LED arrays used in these experiments were optimized for plant productivity and not the collection of remote sensing data. Thus, we propose that if adjusted to optimize the

  13. Sun-induced fluorescence - a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant.

    PubMed

    Rascher, U; Alonso, L; Burkart, A; Cilia, C; Cogliati, S; Colombo, R; Damm, A; Drusch, M; Guanter, L; Hanus, J; Hyvärinen, T; Julitta, T; Jussila, J; Kataja, K; Kokkalis, P; Kraft, S; Kraska, T; Matveeva, M; Moreno, J; Muller, O; Panigada, C; Pikl, M; Pinto, F; Prey, L; Pude, R; Rossini, M; Schickling, A; Schurr, U; Schüttemeyer, D; Verrelst, J; Zemek, F

    2015-12-01

    Variations in photosynthesis still cause substantial uncertainties in predicting photosynthetic CO2 uptake rates and monitoring plant stress. Changes in actual photosynthesis that are not related to greenness of vegetation are difficult to measure by reflectance based optical remote sensing techniques. Several activities are underway to evaluate the sun-induced fluorescence signal on the ground and on a coarse spatial scale using space-borne imaging spectrometers. Intermediate-scale observations using airborne-based imaging spectroscopy, which are critical to bridge the existing gap between small-scale field studies and global observations, are still insufficient. Here we present the first validated maps of sun-induced fluorescence in that critical, intermediate spatial resolution, employing the novel airborne imaging spectrometer HyPlant. HyPlant has an unprecedented spectral resolution, which allows for the first time quantifying sun-induced fluorescence fluxes in physical units according to the Fraunhofer Line Depth Principle that exploits solar and atmospheric absorption bands. Maps of sun-induced fluorescence show a large spatial variability between different vegetation types, which complement classical remote sensing approaches. Different crop types largely differ in emitting fluorescence that additionally changes within the seasonal cycle and thus may be related to the seasonal activation and deactivation of the photosynthetic machinery. We argue that sun-induced fluorescence emission is related to two processes: (i) the total absorbed radiation by photosynthetically active chlorophyll; and (ii) the functional status of actual photosynthesis and vegetation stress. © 2015 John Wiley & Sons Ltd.

  14. Visible light-induced oxidation of unsaturated components of cutins: a significant process during the senescence of higher plants.

    PubMed

    Rontani, Jean-François; Rabourdin, Adélaïde; Pinot, Franck; Kandel, Sylvie; Aubert, Claude

    2005-02-01

    9-Hydroperoxy-18-hydroxyoctadec-10(trans)-enoic and 10-hydroperoxy-18-hydroxyoctadec-8(trans)-enoic acids deriving from type II (i.e. involving 1O2) photooxidation of 18-hydroxyoleic acid were detected after visible light-induced senescence experiments carried out with Petroselinum sativum and subsequent cutin depolymerisation. These results showed that in senescent plants, where the 1O2 formation rate exceeds the quenching capacity of the photoprotective system, 1O2 can migrate outside the chloroplasts and affect the unsaturated components of cutins. Significant amounts of 9,18-dihydroxyoctadec-10(trans)-enoic and 10,18-dihydroxyoctadec-8(trans)-enoic acids resulting from the reduction of these photoproducts of 18-hydroxyoleic acid were also detected in different natural samples. These results well support the significance of the photooxidation of the unsaturated components of higher plant cutins in the natural environment.

  15. Study of antihyperglycaemic activity of medicinal plant extracts in alloxan induced diabetic rats

    PubMed Central

    Attanayake, Anoja P.; Jayatilaka, Kamani A. P. W.; Pathirana, Chitra; Mudduwa, Lakmini K. B.

    2013-01-01

    Background: Diabetes mellitus, for a long time, has been treated with plant derived medicines in Sri Lanka. Aim: The aim of this study is to determine the efficacy and dose response of oral antihyperglycaemic activity of eight Sri Lankan medicinal plant extracts, which are used to treat diabetes in traditional medicine in diabetic rats. Materials and Methods: Medicinal plants selected for the study on the basis of documented effectiveness and wide use among traditional Ayurveda physicians in the Southern region of Sri Lanka for the treatment of diabetes mellitus. The effect of different doses of aqueous stem bark extracts of Spondias pinnata (Anacardiaceae), Kokoona zeylanica (Celastraceae), Syzygium caryophyllatum (Myrtaceae), Gmelina arborea (Verbenaceae), aerial part extracts of Scoparia dulcis (Scrophulariaceae), Sida alnifolia (Malvaceae), leaf extract of Coccinia grandis (Cucurbitaceae) and root extract of Languas galanga (Zingiberaceae) on oral glucose tolerance test was evaluated. A single dose of 0.25, 0.50, 0.75, 1.00, 1.25, 2.00 g/kg of plant extract was administered orally to alloxan induced (150 mg/kg, ip) diabetic Wistar rats (n = 6). Glibenclamide (0.50 mg/kg) was used as the standard drug. The acute effect was evaluated over a 4 h period using area under the oral glucose tolerance curve. Statistical Analysis: The results were evaluated by analysis of variance followed by Dunnett's test. Results: The eight plant extracts showed statistically significant dose dependent improvement on glucose tolerance (P < 0.05). The optimum effective dose on glucose tolerance for six extracts was found to be 1.00 g/kg in diabetic rats with the exception of C. grandis: 0.75 g/kg and L. galanga: 1.25 g/kg. Conclusion: The aqueous extract of G. arborea, S. pinnata, K. zeylanica, S. caryophyllatum, S. dulcis, S. alnifolia, L. galanga and C. grandis possess potent acute antihyperglycaemic activity in alloxan induced diabetic rats. PMID:24991066

  16. Study of antihyperglycaemic activity of medicinal plant extracts in alloxan induced diabetic rats.

    PubMed

    Attanayake, Anoja P; Jayatilaka, Kamani A P W; Pathirana, Chitra; Mudduwa, Lakmini K B

    2013-04-01

    Diabetes mellitus, for a long time, has been treated with plant derived medicines in Sri Lanka. The aim of this study is to determine the efficacy and dose response of oral antihyperglycaemic activity of eight Sri Lankan medicinal plant extracts, which are used to treat diabetes in traditional medicine in diabetic rats. Medicinal plants selected for the study on the basis of documented effectiveness and wide use among traditional Ayurveda physicians in the Southern region of Sri Lanka for the treatment of diabetes mellitus. The effect of different doses of aqueous stem bark extracts of Spondias pinnata (Anacardiaceae), Kokoona zeylanica (Celastraceae), Syzygium caryophyllatum (Myrtaceae), Gmelina arborea (Verbenaceae), aerial part extracts of Scoparia dulcis (Scrophulariaceae), Sida alnifolia (Malvaceae), leaf extract of Coccinia grandis (Cucurbitaceae) and root extract of Languas galanga (Zingiberaceae) on oral glucose tolerance test was evaluated. A single dose of 0.25, 0.50, 0.75, 1.00, 1.25, 2.00 g/kg of plant extract was administered orally to alloxan induced (150 mg/kg, ip) diabetic Wistar rats (n = 6). Glibenclamide (0.50 mg/kg) was used as the standard drug. The acute effect was evaluated over a 4 h period using area under the oral glucose tolerance curve. The results were evaluated by analysis of variance followed by Dunnett's test. The eight plant extracts showed statistically significant dose dependent improvement on glucose tolerance (P < 0.05). The optimum effective dose on glucose tolerance for six extracts was found to be 1.00 g/kg in diabetic rats with the exception of C. grandis: 0.75 g/kg and L. galanga: 1.25 g/kg. The aqueous extract of G. arborea, S. pinnata, K. zeylanica, S. caryophyllatum, S. dulcis, S. alnifolia, L. galanga and C. grandis possess potent acute antihyperglycaemic activity in alloxan induced diabetic rats.

  17. Detection of bacterial infection of agave plants by laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Cervantes-Martinez, Jesus; Flores-Hernandez, Ricardo; Rodriguez-Garay, Benjamin; Santacruz-Ruvalcaba, Fernando

    2002-05-01

    Greenhouse-grown plants of Agave tequilana Weber var. azul were inoculated with Erwinia carotovora, the causal agent of stem soft rot. We investigated the laser-induced fluorescence (LIF) of agave plants to determine whether LIF can be used as a noninvasive sensing tool for pathological studies. The LIF technique was also investigated as a means of detecting the effect of the polyamine biosynthesis inhibitor beta-hydroxyethylhydrazine as a bactericide against the pathogenic bacterium Erwinia carotovora. A He-Ne laser at 632.8 nm was used as the excitation source, and in vivo fluorescence emission spectra were recorded in the 660-790-range. Fluorescence maxima were at 690 and 740 nm. The infected plants that were untreated with the bactericide showed a definite increase in fluorescence intensity at both maxima within the first three days after infection. Beginning on the fifth day, a steady decrease in fluorescence intensity was observed, with a greater effect at 740 than at 690 nm. After 30 days there was no fluorescence. The infected plants that had been treated with the bactericide showed no significant change in fluorescence compared with that of the uninfected plants. The ratio of fluorescence intensities was determined to be F 690 nm/F 740 nm for all treatments. These studies indicate that LIF measurements of agave plants may be used for the early detection of certain types of disease and for determining the effect of a bactericide on bacteria. The results also showed that fluorescence intensity ratios can be used as a reliable indicator of the progress of disease.

  18. Detection of bacterial infection of agave plants by laser-induced fluorescence.

    PubMed

    Cervantes-Martínez, Jesús; Flores-Hernández, Ricardo; Rodríguez-Garay, Benjamin; Santacruz-Ruvalcaba, Fernando

    2002-05-01

    Greenhouse-grown plants of Agave tequilana Weber var. azul were inoculated with Erwinia carotovora, the causal agent of stem soft rot. We investigated the laser-induced fluorescence (LIF) of agave plants to determine whether LIF can be used as a noninvasive sensing tool for pathological studies. The LIF technique was also investigated as a means of detecting the effect of the polyamine biosynthesis inhibitor beta-hydroxyethylhydrazine as a bactericide against the pathogenic bacterium Erwinia carotovora. A He-Ne laser at 632.8 nm was used as the excitation source, and in vivo fluorescence emission spectra were recorded in the 660-790-range. Fluorescence maxima were at 690 and 740 nm. The infected plants that were untreated with the bactericide showed a definite increase in fluorescence intensity at both maxima within the first three days after infection. Beginning on the fifth day, a steady decrease in fluorescence intensity was observed, with a greater effect at 740 than at 690 nm. After 30 days there was no fluorescence. The infected plants that had been treated with the bactericide showed no significant change in fluorescence compared with that of the uninfected plants. The ratio of fluorescence intensities was determined to be F 690 nm/F 740 nm for all treatments. These studies indicate that LIF measurements of agave plants may be used for the early detection of certain types of disease and for determining the effect of a bactericide on bacteria. The results also showed that fluorescence intensity ratios can be used as a reliable indicator of the progress of disease.

  19. Silicon induced systemic defense responses in perennial ryegrass against Magnaporthe oryzae infection

    USDA-ARS?s Scientific Manuscript database

    Sustainable integrated disease management for gray leaf spot of perennial ryegrass may involve use of plant defense elicitors with compatible traditional fungicides to reduce disease incidence and severity. Silicon (Si) is a potential inducer or modulator of plant defenses against different pathogen...

  20. DDTs-induced antioxidant responses in plants and their influence on phytoremediation process.

    PubMed

    Mitton, Francesca M; Gonzalez, Mariana; Monserrat, José M; Miglioranza, Karina S B

    2018-01-01

    Phytoremediation is a low cost technology based on the use of plants to remove a wide range of pollutants from the environment, including the insecticide DDT. However, some pollutants are known to enhance generation of reactive oxygen species (ROS), which can generate toxic effects on plants affecting the phytoremediation efficiency. This study aims to analyze the potential use of antioxidant responses as a measure of tolerance to select plants for phytoremediation purposes. Tomato and zucchini plants were grown for 15 days in soils contaminated with DDTs (DDT + DDE + DDD). Protein content, glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) and catalase (CAT) activities were measured in plant tissues. Exposure to DDTs did not affect protein content or CAT activity in any of the species. GST, GR and GPx activity showed different responses in exposed and control tomato plants. After DDTs exposure, tomato showed increased GR and GPX activity in stems and leaves, respectively, and a decrease in the GST activity in roots. As no effects were observed in zucchini, results suggest different susceptibility and/or defense mechanisms involved after pesticide exposure. Finally, both species differed also in terms of DDTs uptake and translocation. The knowledge about antioxidant responses induced by pesticides exposure could be helpful for planning phytoremediation strategies and for the selection of tolerant species according to particular scenarios. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Intersections between immune responses and morphological regulation in plants.

    PubMed

    Uchida, Naoyuki; Tasaka, Masao

    2010-06-01

    Successful plant pathogens have developed strategies to interfere with the defence mechanisms of their host plants through evolution. Conversely, host plants have evolved systems to counteract pathogen attack. Some pathogens induce pathogenic symptoms on plants that include morphological changes in addition to interference with plant growth. Recent studies, based on molecular biology and genetics using Arabidopsis thaliana, have revealed that factors derived from pathogens can modulate host systems and/or host factors that play important roles in the morphological regulation of host plants. Other reports, meanwhile, have shown that factors known to have roles in plant morphology also function in plant immune responses. Evolutionary conservation of these factors and systems implies that host-pathogen interactions and the evolution they drive have yielded tight links between morphological processes and immune responses. In this review, recent findings about these topics are introduced and discussed.

  2. Immunomodulatory lipids in plants: plant fatty acid amides and the human endocannabinoid system.

    PubMed

    Gertsch, Jürg

    2008-05-01

    Since the discovery that endogenous lipid mediators show similar cannabimimetic effects as phytocannabinoids from CANNABIS SATIVA, our knowledge about the endocannabinoid system has rapidly expanded. Today, endocannabinoid action is known to be involved in various diseases, including inflammation and pain. As a consequence, the G-protein coupled cannabinoid receptors, endocannabinoid transport, as well as endocannabinoid metabolizing enzymes represent targets to block or enhance cannabinoid receptor-mediated signalling for therapeutic intervention. Based on the finding that certain endocannabinoid-like fatty acid N-alkylamides from purple coneflower ( ECHINACEA spp.) potently activate CB2 cannabinoid receptors we have focused our interest on plant fatty acid amides (FAAs) and their overall cannabinomodulatory effects. Certain FAAs are also able to partially inhibit the action of fatty acid amide hydrolase (FAAH), which controls the breakdown of endocannabinoids. Intriguingly, plants lack CB receptors and do not synthesize endocannabinoids, but express FAAH homologues capable of metabolizing plant endogenous N-acylethanolamines (NAEs). While the site of action of these NAEs in plants is unknown, endogenous NAEs and arachidonic acid glycerols in animals interact with distinct physiological lipid receptors, including cannabinoid receptors. There is increasing evidence that also plant FAAs other than NAEs can pharmacologically modulate the action of these endogenous lipid signals. The interference of plant FAAs with the animal endocannabinoid system could thus be a fortunate evolutionary cross point with yet unexplored therapeutic potential.

  3. Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth.

    PubMed

    Wang, Yin; Noguchi, Ko; Ono, Natsuko; Inoue, Shin-ichiro; Terashima, Ichiro; Kinoshita, Toshinori

    2014-01-07

    Stomatal pores surrounded by a pair of guard cells in the plant epidermis control gas exchange between plants and the atmosphere in response to light, CO2, and the plant hormone abscisic acid. Light-induced stomatal opening is mediated by at least three key components: the blue light receptor phototropin (phot1 and phot2), plasma membrane H(+)-ATPase, and plasma membrane inward-rectifying K(+) channels. Very few attempts have been made to enhance stomatal opening with the goal of increasing photosynthesis and plant growth, even though stomatal resistance is thought to be the major limiting factor for CO2 uptake by plants. Here, we show that transgenic Arabidopsis plants overexpressing H(+)-ATPase using the strong guard cell promoter GC1 showed enhanced light-induced stomatal opening, photosynthesis, and plant growth. The transgenic plants produced larger and increased numbers of rosette leaves, with ∼42-63% greater fresh and dry weights than the wild type in the first 25 d of growth. The dry weights of total flowering stems of 45-d-old transgenic plants, including seeds, siliques, and flowers, were ∼36-41% greater than those of the wild type. In addition, stomata in the transgenic plants closed normally in response to darkness and abscisic acid. In contrast, the overexpression of phototropin or inward-rectifying K(+) channels in guard cells had no effect on these phenotypes. These results demonstrate that stomatal aperture is a limiting factor in photosynthesis and plant growth, and that manipulation of stomatal opening by overexpressing H(+)-ATPase in guard cells is useful for the promotion of plant growth.

  4. Bioelectric potentials in the soil-plant system

    NASA Astrophysics Data System (ADS)

    Pozdnyakov, A. I.

    2013-07-01

    A detailed study of the electric potentials in the soil-plant system was performed. It was found that the electric potential depends on the plant species and the soil properties. A theoretical interpretation of the obtained data was given. All the plants, independently from their species and their state, always had a negative electric potential relative to the soil. The electric potential of the herbaceous plants largely depended on the leaf area. In some plants, such as burdock ( Arctium lappa) and hogweed ( Heracleum sosnowskyi), the absolute values of the negative electric potential exceeded 100 mV. The electric potential was clearly differentiated by the plant organs: in the flowers, it was lower than in the leaves; in the leaves, it was usually lower than in the leaf rosettes and stems. The electric potentials displayed seasonal dynamics. As a rule, the higher the soil water content, the lower the electric potential of the plants. However, an inverse relationship was observed for dandelions ( Taraxacum officinale). It can be supposed that the electric potential between the soil and the plant characterizes the vital energy of the plant.

  5. Indole is an essential herbivore-induced volatile priming signal in maize

    PubMed Central

    Erb, Matthias; Veyrat, Nathalie; Robert, Christelle A. M.; Xu, Hao; Frey, Monika; Ton, Jurriaan; Turlings, Ted C. J.

    2015-01-01

    Herbivore-induced volatile organic compounds prime non-attacked plant tissues to respond more strongly to subsequent attacks. However, the key volatiles that trigger this primed state remain largely unidentified. In maize, the release of the aromatic compound indole is herbivore-specific and occurs earlier than other induced responses. We therefore hypothesized that indole may be involved in airborne priming. Using indole-deficient mutants and synthetic indole dispensers, we show that herbivore-induced indole enhances the induction of defensive volatiles in neighbouring maize plants in a species-specific manner. Furthermore, the release of indole is essential for priming of mono- and homoterpenes in systemic leaves of attacked plants. Indole exposure markedly increases the herbivore-induced production of the stress hormones jasmonate-isoleucine conjugate and abscisic acid, which represents a likely mechanism for indole-dependent priming. These results demonstrate that indole functions as a rapid and potent aerial priming agent that prepares systemic tissues and neighbouring plants for incoming attacks. PMID:25683900

  6. Gravisensitivity of various host plant -virus systems in simulated microgravity

    NASA Astrophysics Data System (ADS)

    Mishchenko, Lidiya; Taran, Oksana; Gordejchyk, Olga

    In spite of considerable achievements in the study of gravity effects on plant development, some issues of gravitropism, like species-specificity and gravitation response remain unclear. The so-lution of such problems is connected with the aspects of life supply, in piloted space expeditions. The role of microgravity remains practically unstudied in the development of relations in the system host plant-virus, which are important for biotechnologies in crop production. It is ev-ident that the conditions of space flight can act as stressors, and the stress inducted by them favors the reactivation of latest herpes viruses in humans (satish et al., 2009) Viral infections of plants, which also can be in a latest state at certain stages of plant organism development, cause great damage to the growth and development of a host plant. Space flight conditions may cause both reactivation of latent viral infection in plants and its elimination, as it has been found by us for the system WSMW -wheat (Mishchenko et al., 2004). Our further research activities were concentrated on the identification of gravisensitivity in the system virus -potato plant to find out whether there was any species -related specificity of the reaction. In our research we used potato plants of Krymska Rosa, Zhuravushka, Agave, Belarosa, Kupalinka, and Zdubytok varieties. Simulated microgravity was ensured by clinostats KG-8 and Cycle -2. Gravisensitiv-ity has been studied the systems including PVX, PVM and PVY. Virus concentrations have been determined by ELISA using LOEWE reagents (placecountry-regionGermany). Virus iden-tification by morphological features were done by electron microscopy. For the system PVX -potato plant, we found the reduction in virus antigens content with prolonged clinostating. On the 18th day of cultivation, the plants showed a high level of X-virus antigen content on both stationary (control) and clinostated variants. On 36th and 47th day, depending plant variety, clinostated

  7. Advances on plant-pathogen interactions from molecular toward systems biology perspectives.

    PubMed

    Peyraud, Rémi; Dubiella, Ullrich; Barbacci, Adelin; Genin, Stéphane; Raffaele, Sylvain; Roby, Dominique

    2017-05-01

    In the past 2 decades, progress in molecular analyses of the plant immune system has revealed key elements of a complex response network. Current paradigms depict the interaction of pathogen-secreted molecules with host target molecules leading to the activation of multiple plant response pathways. Further research will be required to fully understand how these responses are integrated in space and time, and exploit this knowledge in agriculture. In this review, we highlight systems biology as a promising approach to reveal properties of molecular plant-pathogen interactions and predict the outcome of such interactions. We first illustrate a few key concepts in plant immunity with a network and systems biology perspective. Next, we present some basic principles of systems biology and show how they allow integrating multiomics data and predict cell phenotypes. We identify challenges for systems biology of plant-pathogen interactions, including the reconstruction of multiscale mechanistic models and the connection of host and pathogen models. Finally, we outline studies on resistance durability through the robustness of immune system networks, the identification of trade-offs between immunity and growth and in silico plant-pathogen co-evolution as exciting perspectives in the field. We conclude that the development of sophisticated models of plant diseases incorporating plant, pathogen and climate properties represent a major challenge for agriculture in the future. © 2016 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  8. Lettuce germplasm collection in the National Plant Germplasm System

    USDA-ARS?s Scientific Manuscript database

    The National Plant Germplasm System (NPGS) holds more than half million accessions of crop plants and their related species that are coordinately assigned to four major Regional Plant Introduction Stations and an additional 21 crop-specific repositories. These Stations and repositories acquire, main...

  9. Induction of systemic resistance of benzothiadiazole and humic Acid in soybean plants against fusarium wilt disease.

    PubMed

    Abdel-Monaim, Montaser Fawzy; Ismail, Mamdoh Ewis; Morsy, Kadry Mohamed

    2011-12-01

    The ability of benzothiadiazole (BTH) and/or humic acid (HA) used as seed soaking to induce systemic resistance against a pathogenic strain of Fusarium oxysporum was examined in four soybean cultivars under greenhouse conditions. Alone and in combination the inducers were able to protect soybean plants against damping-off and wilt diseases compared with check treatment. These results were confirmed under field conditions in two different locations (Minia and New Valley governorates). The tested treatments significantly reduced damping-off and wilt diseases and increased growth parameters, except the number of branches per plant and also increased seed yield. Application of BTH (0.25 g/L) + HA (4 g/L) was the most potent in this respect. Soybean seed soaking in BTH + HA produced the highest activities of the testes of oxidative enzymes followed by BTH in the four soybean cultivars. HA treatment resulted in the lowest increases of these oxidative enzymes. Similar results were obtained with total phenol but HA increased total phenol more than did BTH in all tested cultivars.

  10. Thienopyrimidine-type compounds protect Arabidopsis plants against the hemibiotrophic fungal pathogen Colletotrichum higginsianum and bacterial pathogen Pseudomonas syringae pv. maculicola.

    PubMed

    Narusaka, Mari; Narusaka, Yoshihiro

    2017-03-04

    Plant activators activate systemic acquired resistance-like defense responses or induced systemic resistance, and thus protect plants from pathogens. We screened a chemical library composed of structurally diverse small molecules. We isolated six plant immune-inducing thienopyrimidine-type compounds and their analogous compounds. It was observed that the core structure of thienopyrimidine plays a role in induced resistance in plants. Furthermore, we highlight the protective effect of thienopyrimidine-type compounds against both hemibiotrophic fungal pathogen, Colletotrichum higginsianum, and bacterial pathogen, Pseudomonas syringae pv. maculicola, in Arabidopsis thaliana. We suggest that thienopyrimidine-type compounds could be potential lead compounds as novel plant activators, and can be useful and effective agrochemicals against various plant diseases.

  11. The Epiphytic Fungus Pseudozyma aphidis Induces Jasmonic Acid- and Salicylic Acid/Nonexpressor of PR1-Independent Local and Systemic Resistance1[C][W

    PubMed Central

    Buxdorf, Kobi; Rahat, Ido; Gafni, Aviva; Levy, Maggie

    2013-01-01

    Pseudozyma spp. are yeast-like fungi, classified in the Ustilaginales, which are mostly epiphytic or saprophytic and are not pathogenic to plants. Several Pseudozyma species have been reported to exhibit biological activity against powdery mildews. However, previous studies have reported that Pseudozyma aphidis, which can colonize plant surfaces, is not associated with the ‎‎collapse of powdery ‎mildew colonies. In this report, we describe a novel P. aphidis strain and study its interactions with its plant host and the plant pathogen Botrytis cinerea. This isolate was found to secrete extracellular metabolites that inhibit various fungal pathogens in vitro and significantly reduce B. cinerea infection in vivo. Moreover, P. aphidis sensitized Arabidopsis (Arabidopsis thaliana) plants’ defense machinery via local and systemic induction of PATHOGENESIS-RELATED1 (PR1) and PLANT DEFENSIN1.2 (PDF1.2) expression. P. aphidis also reduced B. cinerea infection, locally and systemically, in Arabidopsis mutants impaired in jasmonic acid (JA) or salicylic acid (SA) signaling. Thus, in addition to direct inhibition, P. aphidis may inhibit B. cinerea infection via induced resistance in a manner independent of SA, JA, and Nonexpressor of PR1 (NPR1). P. aphidis primed the plant defense machinery and induced stronger activation of PDF1.2 after B. cinerea infection. Finally, P. aphidis fully or partially reconstituted PR1 and PDF1.2 expression in npr1-1 mutant and in plants with the SA hydroxylase NahG transgene, but not in a jasmonate resistant1-1 mutant, after B. cinerea infection, suggesting that P. aphidis can bypass the SA/NPR1, but not JA, pathway to activate PR genes. Thus, either partial gene activation is sufficient to induce resistance, or the resistance is not directed solely through PR1 and PDF1.2 but probably through other pathogen-resistance genes or pathways as well. PMID:23388119

  12. Amelioration of iron toxicity: A mechanism for aluminum-induced growth stimulation in tea plants.

    PubMed

    Hajiboland, Roghieh; Barceló, Juan; Poschenrieder, Charlotte; Tolrà, Roser

    2013-11-01

    Tea plants (Camellia sinensis) are well adapted to acid soils with high Al availability. These plants not only accumulate high leaf Al concentrations, but also respond to Al with growth stimulation. Decreased oxidative stress has been associated with this effect. Why tea plants not exposed to Al suffer from oxidative stress has not been clarified. In this study, hydroponically grown tea plants treated with 0 to 300 μM Al were analyzed for growth, Al and Fe accumulation, and Al distribution by means of morin and hematoxylin staining. Roots of control plants stained black with hematoxylin. This indicates the formation of a Fe-hematoxylin complex. Young leaves of controls accumulated more than 1000 mg Fe kg(-1) dry weight. This concentration is above the Fe-toxicity threshold in most species. Supply of Al stimulated growth and reduced Fe uptake and transport. These results indicate that Al-induced growth stimulation might be due to alleviation of a latent Fe toxicity occurring in tea plants without Al supply. © 2013.

  13. Indicator system for advanced nuclear plant control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  14. Indicator system for a process plant control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  15. Alternaria toxin-induced resistance in rose plants against rose aphid (Macrosiphum rosivorum): effect of tenuazonic acid.

    PubMed

    Yang, Fa-zhong; Yang, Bin; Li, Bei-bei; Xiao, Chun

    2015-04-01

    Many different types of toxins are produced by the fungus, Alternaria alternata (Fr.) Keissler. Little is known, however, regarding the influence of these toxins on insects. In this study, we investigated the toxin-induced inhibitory effects of the toxin produced by A. alternata on the rose aphid, Macrosiphum rosivorum, when the toxin was applied to leaves of the rose, Rosa chinensis. The results demonstrated that the purified crude toxin was non-harmful to rose plants and rose aphids, but had an intensive inhibitory effect on the multiplication of aphids. The inhibitory index against rose aphids reached 87.99% when rose plants were sprayed with the toxin solution at a low concentration. Further results from bioassays with aphids and high performance liquid chromatography (HPLC) analyses demonstrated that tenuazonic acid (TeA) was one of the most important resistance-related active components in the crude toxin. The content of TeA was 0.1199% in the crude toxin under the HPLC method. Similar to the crude toxin, the inhibitory index of pure TeA reached 83.60% 15 d after the rose plants were sprayed with pure TeA solution at the lower concentration of 0.060 μg/ml, while the contents of residual TeA on the surface and in the inner portion of the rose plants were only 0.04 and 0.00 ng/g fresh weight of TeA-treated rose twigs, respectively, 7 d after the treatment. Our results show that TeA, an active component in the A. alternata toxin, can induce the indirect plant-mediated responses in rose plants to intensively enhance the plant's resistances against rose aphids, and the results are very helpful to understand the plant-mediated interaction between fungi and insects on their shared host plants.

  16. Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity.

    PubMed

    Henry, Elizabeth; Yadeta, Koste A; Coaker, Gitta

    2013-09-01

    Bacterial pathogens can cause multiple plant diseases and plants rely on their innate immune system to recognize and actively respond to these microbes. The plant innate immune system comprises extracellular pattern recognition receptors that recognize conserved microbial patterns and intracellular nucleotide binding leucine-rich repeat (NLR) proteins that recognize specific bacterial effectors delivered into host cells. Plants lack the adaptive immune branch present in animals, but still afford flexibility to pathogen attack through systemic and transgenerational resistance. Here, we focus on current research in plant immune responses against bacterial pathogens. Recent studies shed light onto the activation and inactivation of pattern recognition receptors and systemic acquired resistance. New research has also uncovered additional layers of complexity surrounding NLR immune receptor activation, cooperation and sub-cellular localizations. Taken together, these recent advances bring us closer to understanding the web of molecular interactions responsible for coordinating defense responses and ultimately resistance. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  17. An amino acid substitution inhibits specialist herbivore production of an antagonist effector and recovers insect-induced plant defenses

    USDA-ARS?s Scientific Manuscript database

    Plants respond to insect herbivory through the production of biochemicals that function as either direct defenses or indirect defenses via the attraction of natural enemies. Curiously, attack by even closely related insect pests can result in distinctive levels of induced plant defenses. Despite the...

  18. Expert agreements and disagreements on induced seismicity by Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Trutnevyte, E.; Azevedo, I. L.

    2016-12-01

    Enhanced or Engineered Geothermal Systems (EGS) are at an early stage of development and only a handful of projects exist worldwide. In face of limited empirical evidence on EGS induced seismicity, expert elicitation provides a complementary view to quantitative assessments and basic science. We present the results of an international expert elicitation exercise with 14 experts from 6 countries. The elicitation aimed at evaluating induced seismicity hazard and risk for EGS and characterizing associated uncertainty. The state-of-the-art expert elicitation method was used: it combines technical analysis with behavioral science-informed elicitation of expert judgement in order to minimize subjectivity. The experts assessed a harmonized scenario of an EGS plant, its operational characteristics, geological context, and surrounding buildings and infrastructures. The experts provided quantitative estimates of exceedance probabilities of induced M>=3 and M>=5, maximum magnitudes that could be observed, and made judgements on economic loss, injuries, and fatalities in the case of M=3 and M=5. The experts also rated the importance of factors that influence induced seismicity hazard and risk (e.g. reservoir depth, injected volumes, exposed building stock etc.) and the potential uncertainty reductions through future research. We present the findings of this elicitation and highlight the points of expert agreements and disagreements.

  19. Secondary metabolites in fungus-plant interactions

    PubMed Central

    Pusztahelyi, Tünde; Holb, Imre J.; Pócsi, István

    2015-01-01

    Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed. PMID:26300892

  20. Does plant-Microbe interaction confer stress tolerance in plants: A review?

    PubMed

    Kumar, Akhilesh; Verma, Jay Prakash

    2018-03-01

    The biotic and abiotic stresses are major constraints for crop yield, food quality and global food security. A number of parameters such as physiological, biochemical, molecular of plants are affected under stress condition. Since the use of inorganic fertilizers and pesticides in agriculture practices cause degradation of soil fertility and environmental pollutions. Hence it is necessary to develop safer and sustainable means for agriculture production. The application of plant growth promoting microbes (PGPM) and mycorrhizal fungi enhance plant growth, under such conditions. It offers an economically fascinating and ecologically sound ways for protecting plants against stress condition. PGPM may promote plant growth by regulating plant hormones, improve nutrition acquisition, siderophore production and enhance the antioxidant system. While acquired systemic resistance (ASR) and induced systemic resistance (ISR) effectively deal with biotic stress. Arbuscular mycorrhiza (AM) enhance the supply of nutrients and water during stress condition and increase tolerance to stress. This plant-microbe interaction is vital for sustainable agriculture and industrial purpose, because it depends on biological processes and replaces conventional agriculture practices. Therefore, microbes may play a key role as an ecological engineer to solve environmental stress problems. So, it is a feasible and potential technology in future to feed global population at available resources with reduced impact on environmental quality. In this review, we have attempted to explore about abiotic and biotic stress tolerant beneficial microorganisms and their modes of action to enhance the sustainable agricultural production. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. National Plant Germplasm System: Critical Role of Customer Service

    USDA-ARS?s Scientific Manuscript database

    The National Plant Germplasm System (NPGS) conserves plant genetic resources, not only for use by future generations, but for immediate use by scientists and educators around the world. With a great deal of interaction between genebank curators and users of plant genetic resources, customer service...

  2. Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island

    PubMed Central

    Ling, Jun; Wang, Hui; Wu, Ping; Li, Tao; Tang, Yu; Naseer, Nawar; Zheng, Huiming; Masson-Boivin, Catherine; Zhong, Zengtao

    2016-01-01

    Horizontal gene transfer (HGT) of genomic islands is a driving force of bacterial evolution. Many pathogens and symbionts use this mechanism to spread mobile genetic elements that carry genes important for interaction with their eukaryotic hosts. However, the role of the host in this process remains unclear. Here, we show that plant compounds inducing the nodulation process in the rhizobium-legume mutualistic symbiosis also enhance the transfer of symbiosis islands. We demonstrate that the symbiosis island of the Sesbania rostrata symbiont, Azorhizobium caulinodans, is an 87.6-kb integrative and conjugative element (ICEAc) that is able to excise, form a circular DNA, and conjugatively transfer to a specific site of gly-tRNA gene of other rhizobial genera, expanding their host range. The HGT frequency was significantly increased in the rhizosphere. An ICEAc-located LysR-family transcriptional regulatory protein AhaR triggered the HGT process in response to plant flavonoids that induce the expression of nodulation genes through another LysR-type protein, NodD. Our study suggests that rhizobia may sense rhizosphere environments and transfer their symbiosis gene contents to other genera of rhizobia, thereby broadening rhizobial host-range specificity. PMID:27849579

  3. Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island.

    PubMed

    Ling, Jun; Wang, Hui; Wu, Ping; Li, Tao; Tang, Yu; Naseer, Nawar; Zheng, Huiming; Masson-Boivin, Catherine; Zhong, Zengtao; Zhu, Jun

    2016-11-29

    Horizontal gene transfer (HGT) of genomic islands is a driving force of bacterial evolution. Many pathogens and symbionts use this mechanism to spread mobile genetic elements that carry genes important for interaction with their eukaryotic hosts. However, the role of the host in this process remains unclear. Here, we show that plant compounds inducing the nodulation process in the rhizobium-legume mutualistic symbiosis also enhance the transfer of symbiosis islands. We demonstrate that the symbiosis island of the Sesbania rostrata symbiont, Azorhizobium caulinodans, is an 87.6-kb integrative and conjugative element (ICE Ac ) that is able to excise, form a circular DNA, and conjugatively transfer to a specific site of gly-tRNA gene of other rhizobial genera, expanding their host range. The HGT frequency was significantly increased in the rhizosphere. An ICE Ac -located LysR-family transcriptional regulatory protein AhaR triggered the HGT process in response to plant flavonoids that induce the expression of nodulation genes through another LysR-type protein, NodD. Our study suggests that rhizobia may sense rhizosphere environments and transfer their symbiosis gene contents to other genera of rhizobia, thereby broadening rhizobial host-range specificity.

  4. Characterisation of SalRAB a Salicylic Acid Inducible Positively Regulated Efflux System of Rhizobium leguminosarum bv viciae 3841

    PubMed Central

    Tett, Adrian J.; Karunakaran, Ramakrishnan; Poole, Philip S.

    2014-01-01

    Salicylic acid is an important signalling molecule in plant-microbe defence and symbiosis. We analysed the transcriptional responses of the nitrogen fixing plant symbiont, Rhizobium leguminosarum bv viciae 3841 to salicylic acid. Two MFS-type multicomponent efflux systems were induced in response to salicylic acid, rmrAB and the hitherto undescribed system salRAB. Based on sequence similarity salA and salB encode a membrane fusion and inner membrane protein respectively. salAB are positively regulated by the LysR regulator SalR. Disruption of salA significantly increased the sensitivity of the mutant to salicylic acid, while disruption of rmrA did not. A salA/rmrA double mutation did not have increased sensitivity relative to the salA mutant. Pea plants nodulated by salA or rmrA strains did not have altered nodule number or nitrogen fixation rates, consistent with weak expression of salA in the rhizosphere and in nodule bacteria. However, BLAST analysis revealed seventeen putative efflux systems in Rlv3841 and several of these were highly differentially expressed during rhizosphere colonisation, host infection and bacteroid differentiation. This suggests they have an integral role in symbiosis with host plants. PMID:25133394

  5. Vitamins for enhancing plant resistance.

    PubMed

    Boubakri, Hatem; Gargouri, Mahmoud; Mliki, Ahmed; Brini, Faiçal; Chong, Julie; Jbara, Moez

    2016-09-01

    This paper provides an overview on vitamins with inducing activities in plants, the molecular and cellular mechanisms implicated, and the hormonal signalling-network regulating this process. Moreover, it reports how vitamins might be part of the molecular events linked to induced resistance by the conventional elicitors. Induced resistance (IR), exploiting the plant innate-defense system is a sustainable strategy for plant disease control. In the last decade, vitamins have been proven to act as inducers of disease resistance, and these findings have received an important attention owing to their safety and cost effectiveness. Vitamins, including thiamine (TH, vitamin B1), riboflavin (RF, vitamin B2), menadione sodium bisulfite (MSB, vitamin K3), Para-aminobenzoic acid (PABA, vitamin Bx), and folic acid (FA, vitamin B9) provided an efficient protection against a wide range of pathogens through the modulation of specific host-defense facets. However, other vitamins, such as ascorbic acid (AA, vitamin C) and tocopherols (vitamin E), have been shown to be a part of the molecular mechanisms associated to IR. The present review is the first to summarize what vitamins are acting as inducers of disease resistance in plants and how could they be modulated by the conventional elicitors. Thus, this report provides an overview on the protective abilities of vitamins and the molecular and cellular mechanisms underlying their activities. Moreover, it describes the hormonal-signalling network regulating vitamin-signal transduction during IR. Finally, a biochemical model describing how vitamins are involved in the establishment of IR process is discussed.

  6. Trauma-induced systemic inflammatory response versus exercise-induced immunomodulatory effects.

    PubMed

    Fehrenbach, Elvira; Schneider, Marion E

    2006-01-01

    Accidental trauma and heavy endurance exercise, both induce a kind of systemic inflammatory response, also called systemic inflammatory response syndrome (SIRS). Exercise-related SIRS is conditioned by hyperthermia and concomitant heat shock responses, whereas trauma-induced SIRS manifests concomitantly with tissue necrosis and immune activation, secondarily followed by fever. Inflammatory cytokines are common denominators in both trauma and exercise, although there are marked quantitative differences. Different anti-inflammatory cytokines may be involved in the control of inflammation in trauma- and exercise-induced stress. Exercise leads to a balanced equilibrium between inflammatory and anti-inflammatory responses. Intermittent states of rest, as well as anti-oxidant capacity, are lacking or minor in trauma but are high in exercising individuals. Regular training may enhance immune competence, whereas trauma-induced SIRS often paves the way for infectious complications, such as sepsis.

  7. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales.

    PubMed

    Aartsma, Yavanna; Bianchi, Felix J J A; van der Werf, Wopke; Poelman, Erik H; Dicke, Marcel

    2017-12-01

    Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger spatial scales. The spatial matrix of volatiles ('volatile mosaic') within which parasitoids locate their hosts is dynamic and heterogeneous. It is shaped by the spatial pattern of HIPV-emitting plants, the concentration, chemical composition and breakdown of the emitted HIPV blends, and by environmental factors such as wind, turbulence and vegetation that affect transport and mixing of odour plumes. The volatile mosaic may be exploited differentially by different parasitoid species, in relation to species traits such as sensory ability to perceive volatiles and the physical ability to move towards the source. Understanding how HIPVs influence parasitoids at larger spatial scales is crucial for our understanding of tritrophic interactions and sustainable pest management in agriculture. However, there is a large gap in our knowledge on how volatiles influence the process of host location by parasitoids at the landscape scale. Future studies should bridge the gap between the chemical and behavioural ecology of tritrophic interactions and landscape ecology. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. Long-distance signalling in plant defence.

    PubMed

    Heil, Martin; Ton, Jurriaan

    2008-06-01

    Plants use inducible defence mechanisms to fend off harmful organisms. Resistance that is induced in response to local attack is often expressed systemically, that is, in organs that are not yet damaged. In the search for translocated defence signals, biochemical studies follow the physical movement of putative signals, and grafting experiments use mutants that are impaired in the production or perception of these signals. Long-distance signals can directly activate defence or can prime for the stronger and faster induction of defence. Historically, research has focused on the vascular transport of signalling metabolites, but volatiles can play a crucial role as well. We compare the advantages and constraints of vascular and airborne signals for the plant, and discuss how they can act in synergy to achieve optimised resistance in distal plant parts.

  9. DNA Damage Repair System in Plants: A Worldwide Research Update.

    PubMed

    Gimenez, Estela; Manzano-Agugliaro, Francisco

    2017-10-30

    Living organisms are usually exposed to various DNA damaging agents so the mechanisms to detect and repair diverse DNA lesions have developed in all organisms with the result of maintaining genome integrity. Defects in DNA repair machinery contribute to cancer, certain diseases, and aging. Therefore, conserving the genomic sequence in organisms is key for the perpetuation of life. The machinery of DNA damage repair (DDR) in prokaryotes and eukaryotes is similar. Plants also share mechanisms for DNA repair with animals, although they differ in other important details. Plants have, surprisingly, been less investigated than other living organisms in this context, despite the fact that numerous lethal mutations in animals are viable in plants. In this manuscript, a worldwide bibliometric analysis of DDR systems and DDR research in plants was made. A comparison between both subjects was accomplished. The bibliometric analyses prove that the first study about DDR systems in plants (1987) was published thirteen years later than that for other living organisms (1975). Despite the increase in the number of papers about DDR mechanisms in plants in recent decades, nowadays the number of articles published each year about DDR systems in plants only represents 10% of the total number of articles about DDR. The DDR research field was done by 74 countries while the number of countries involved in the DDR & Plant field is 44. This indicates the great influence that DDR research in the plant field currently has, worldwide. As expected, the percentage of studies published about DDR systems in plants has increased in the subject area of agricultural and biological sciences and has diminished in medicine with respect to DDR studies in other living organisms. In short, bibliometric results highlight the current interest in DDR research in plants among DDR studies and can open new perspectives in the research field of DNA damage repair.

  10. Herbivore-Triggered Electrophysiological Reactions: Candidates for Systemic Signals in Higher Plants and the Challenge of Their Identification1

    PubMed Central

    Zimmermann, Matthias R.; Will, Torsten; Felle, Hubert H.; Furch, Alexandra C.U.

    2016-01-01

    In stressed plants, electrophysiological reactions (elRs) are presumed to contribute to long-distance intercellular communication between distant plant parts. Because of the focus on abiotic stress-induced elRs in recent decades, biotic stress-triggered elRs have been widely ignored. It is likely that the challenge to identify the particular elR types (action potential [AP], variation potential, and system potential [SP]) was responsible for this course of action. Thus, this survey focused on insect larva feeding (Spodoptera littoralis and Manduca sexta) that triggers distant APs, variation potentials, and SPs in monocotyledonous and dicotyledonous plant species (Hordeum vulgare, Vicia faba, and Nicotiana tabacum). APs were detected only after feeding on the stem/culm, whereas SPs were observed systemically following damage to both stem/culm and leaves. This was attributed to the unequal vascular innervation of the plant and a selective electrophysiological connectivity of the plant tissue. However, striking variations in voltage patterns were detected for each elR type. Further analyses (also in Brassica napus and Cucurbita maxima) employing complementary electrophysiological approaches in response to different stimuli revealed various reasons for these voltage pattern variations: an intrinsic plasticity of elRs, a plant-specific signature of elRs, a specific influence of the applied (a)biotic trigger, the impact of the technical approach, and/or the experimental setup. As a consequence, voltage pattern variations, which are not irregular but rather common, need to be included in electrophysiological signaling analysis. Due to their widespread occurrence, systemic propagation, and respective triggers, elRs should be considered as candidates for long-distance communication in higher plants. PMID:26872949

  11. Plant defense induced in in vitro propagated banana (Musa paradisiaca) plantlets by Fusarium derived elicitors.

    PubMed

    Patel, Miral; Kothari, I L; Mohan, J S S

    2004-07-01

    Perception of microbial signal molecules is part of the strategy evolved by plants to survive attacks by potential pathogens. To gain a more complete understanding of the early signaling events involved in these responses, we used fungal components of Fusarium under in vitro condition and checked the rise in signal molecule, salicylic acid (SA), and marker enzymes in defense reactions against the pathogen. SA level increased by 21 folds in elicitor treated plantlets as compared to that of control plantlets and there was marked increase in phenylalanine ammonia-lyase(PAL), peroxidase(POX), polyphenol oxidase(PPO) along with higher total phenolic content. Present results indicated that use of fungal components had successfully induced systemic resistance in in vitro cultured banana plantlets.

  12. Engineering Design of ITER Prototype Fast Plant System Controller

    NASA Astrophysics Data System (ADS)

    Goncalves, B.; Sousa, J.; Carvalho, B.; Rodrigues, A. P.; Correia, M.; Batista, A.; Vega, J.; Ruiz, M.; Lopez, J. M.; Rojo, R. Castro; Wallander, A.; Utzel, N.; Neto, A.; Alves, D.; Valcarcel, D.

    2011-08-01

    The ITER control, data access and communication (CODAC) design team identified the need for two types of plant systems. A slow control plant system is based on industrial automation technology with maximum sampling rates below 100 Hz, and a fast control plant system is based on embedded technology with higher sampling rates and more stringent real-time requirements than that required for slow controllers. The latter is applicable to diagnostics and plant systems in closed-control loops whose cycle times are below 1 ms. Fast controllers will be dedicated industrial controllers with the ability to supervise other fast and/or slow controllers, interface to actuators and sensors and, if necessary, high performance networks. Two prototypes of a fast plant system controller specialized for data acquisition and constrained by ITER technological choices are being built using two different form factors. This prototyping activity contributes to the Plant Control Design Handbook effort of standardization, specifically regarding fast controller characteristics. Envisaging a general purpose fast controller design, diagnostic use cases with specific requirements were analyzed and will be presented along with the interface with CODAC and sensors. The requirements and constraints that real-time plasma control imposes on the design were also taken into consideration. Functional specifications and technology neutral architecture, together with its implications on the engineering design, were considered. The detailed engineering design compliant with ITER standards was performed and will be discussed in detail. Emphasis will be given to the integration of the controller in the standard CODAC environment. Requirements for the EPICS IOC providing the interface to the outside world, the prototype decisions on form factor, real-time operating system, and high-performance networks will also be discussed, as well as the requirements for data streaming to CODAC for visualization and

  13. Beyond Cannabis: Plants and the Endocannabinoid System.

    PubMed

    Russo, Ethan B

    2016-07-01

    Plants have been the predominant source of medicines throughout the vast majority of human history, and remain so today outside of industrialized societies. One of the most versatile in terms of its phytochemistry is cannabis, whose investigation has led directly to the discovery of a unique and widespread homeostatic physiological regulator, the endocannabinoid system. While it had been the conventional wisdom until recently that only cannabis harbored active agents affecting the endocannabinoid system, in recent decades the search has widened and identified numerous additional plants whose components stimulate, antagonize, or modulate different aspects of this system. These include common foodstuffs, herbs, spices, and more exotic ingredients: kava, chocolate, black pepper, and many others that are examined in this review. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Establishing RNA virus resistance in plants by harnessing CRISPR immune system.

    PubMed

    Zhang, Tong; Zheng, Qiufeng; Yi, Xin; An, Hong; Zhao, Yaling; Ma, Siqi; Zhou, Guohui

    2018-01-11

    Recently, CRISPR-Cas (clustered, regularly interspaced short palindromic repeats-CRISPR-associated proteins) system has been used to produce plants resistant to DNA virus infections. However, there is no RNA virus control method in plants that uses CRISPR-Cas system to target the viral genome directly. Here, we reprogrammed the CRISPR-Cas9 system from Francisella novicida to confer molecular immunity against RNA viruses in Nicotiana benthamiana and Arabidopsis plants. Plants expressing FnCas9 and sgRNA specific for the cucumber mosaic virus (CMV) or tobacco mosaic virus (TMV) exhibited significantly attenuated virus infection symptoms and reduced viral RNA accumulation. Furthermore, in the transgenic virus-targeting plants, the resistance was inheritable and the progenies showed significantly less virus accumulation. These data reveal that the CRISPR/Cas9 system can be used to produce plant that stable resistant to RNA viruses, thereby broadening the use of such technology for virus control in agricultural field. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Plant strengtheners enhance parasitoid attraction to herbivore-damaged cotton via qualitative and quantitative changes in induced volatiles.

    PubMed

    Sobhy, Islam S; Erb, Matthias; Turlings, Ted C J

    2015-05-01

    Herbivore-damaged plants release a blend of volatile organic compounds (VOCs) that differs from undamaged plants. These induced changes are known to attract the natural enemies of the herbivores and therefore are expected to be important determinants of the effectiveness of biological control in agriculture. One way of boosting this phenomenon is the application of plant strengtheners, which has been shown to enhance parasitoid attraction in maize. It is unclear whether this is also the case for other important crops. The plant strengtheners BTH [benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester] and laminarin were applied to cotton plants, and the effects on volatile releases and the attraction of three hymenopteran parasitoids, Cotesia marginiventris, Campoletis sonorensis and Microplitis rufiventris, were studied. After treated and untreated plants were induced by real or simulated caterpillar feeding, it was found that BTH treatment increased the attraction of the parasitoids, whereas laminarin had no significant effect. BTH treatment selectively increased the release of two homoterpenes and reduced the emission of indole, the latter of which had been shown to interfere with parasitoid attraction in earlier studies. Canonical variate analyses of the data show that the parasitoid responses were dependent on the quality rather than the quantity of volatile emission in this tritrophic interaction. Overall, these results strengthen the emerging paradigm that induction of plant defences with chemical elicitors such as BTH could provide a sustainable and environmentally friendly strategy for biological control of pests by enhancing the attractiveness of cultivated plants to natural enemies of insect herbivores. © 2014 Society of Chemical Industry.

  16. Ornamental Plants and the US National Plant Germplasm System: Conserving, Evaluating, Seeking, and Sharing

    USDA-ARS?s Scientific Manuscript database

    This report presents an overview of the US National Plant Germplasm System (NPGS) for an audience of plant propagators from the nursery industry, academia, and public gardens. It describes the active sites that conserve germplasm of interest to propagators and how those sites conserve their germpla...

  17. Systems for harvesting and handling cotton plant residue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coates, W.

    1993-12-31

    In the warmer regions of the United States, cotton plant residue must be buried to prevent it from serving as an overwintering site for insect pests such as the pink bollworm. Most of the field operations used to bury the residue are high energy consumers and tend to degrade soil structure, thereby increasing the potential for erosion. The residue is of little value as a soil amendment and consequently is considered a negative value biomass. A commercial system to harvest cotton plant residue would be of both economic and environmental benefit to cotton producers. Research has been underway at themore » University of Arizona since the spring of 1991 to develop a commercially viable system for harvesting cotton plant residue. Equipment durability, degree of densification, energy required, cleanliness of the harvested material, and ease of product handling and transport are some of the performance variables which have been measured. Two systems have proven superior. In both, the plants are pulled from the ground using an implement developed specifically for the purpose. In one system, the stalks are baled using a large round baler, while in the other the stalks are chopped with a forage harvester, and then made into packages using a cotton module maker. Field capacities, energy requirements, package density and durability, and ease of handling with commercially available equipment have been measured for both systems. Selection of an optimum system for a specific operation depends upon end use of the product, and upon equipment availability.« less

  18. The plant vascular system: Evolution, development and functions

    USDA-ARS?s Scientific Manuscript database

    The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of ...

  19. Antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Linn.) in streptozotocin-induced diabetic rats.

    PubMed

    Petchi, Ramesh R; Parasuraman, S; Vijaya, C

    2013-09-01

    To study the antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Asteraceae) in streptozotocin-induced diabetic rats. The whole plant of T. procumbens was collected in different regions of Madurai districts, Tamil Nadu. The air dried whole plant of T. procumbens was extracted with ethanol (95%) in a Soxhlet apparatus for 72 h. Diabetes was induced in male Wistar rats by streptozotocin (50 mg/jk, i.p.) and nicotinamide (120 mg/kg, i.p) injection. The dry mass of the extract was used for preliminary phytochemical and pharmacological analysis. Diabetic rats were treated with glibenclamide (0.25 mg/kg, p.o.) or T. procumbens extract (250 and 500 mg/k, p.o.) for 21 consecutive days. The blood samples were collected at regular intervals to access hypoglycemic effect of an ethanolic extract of the whole plant of T. procumbens. At the end of the experiment, serum lipid profile and liver enzymes levels were analyzed for all the experimental animals and compared with diabetic control. The preliminary phytochemical analysis of an ethanolic extract of the whole plant of T. procumbens indicated the presence of alkaloids, tannins, flavonoids, saponins, and phenolic compounds. The ethanolic extract of the whole plant of T. procumbens at 250 and 500 mg/kg has significant antidiabetic and antihyperlipidemic activities. The diabetic control animals exhibited a significant decrease in body weight compared with control animals. T. procumbens inhibited streptozotocin-induced weight loss and significantly alter the lipid levels. The ethanolic extract of the whole plant of T. procumbens showed significant antidiabetic and antihyperlipidemic activities against streptozotocin-induced diabetes in rats.

  20. Antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Linn.) in streptozotocin-induced diabetic rats

    PubMed Central

    Petchi, Ramesh R.; Parasuraman, S.; Vijaya, C.

    2013-01-01

    Objective: To study the antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Asteraceae) in streptozotocin-induced diabetic rats. Materials and Methods: The whole plant of T. procumbens was collected in different regions of Madurai districts, Tamil Nadu. The air dried whole plant of T. procumbens was extracted with ethanol (95%) in a Soxhlet apparatus for 72 h. Diabetes was induced in male Wistar rats by streptozotocin (50 mg/jk, i.p.) and nicotinamide (120 mg/kg, i.p) injection. The dry mass of the extract was used for preliminary phytochemical and pharmacological analysis. Diabetic rats were treated with glibenclamide (0.25 mg/kg, p.o.) or T. procumbens extract (250 and 500 mg/k, p.o.) for 21 consecutive days. The blood samples were collected at regular intervals to access hypoglycemic effect of an ethanolic extract of the whole plant of T. procumbens. At the end of the experiment, serum lipid profile and liver enzymes levels were analyzed for all the experimental animals and compared with diabetic control. Results: The preliminary phytochemical analysis of an ethanolic extract of the whole plant of T. procumbens indicated the presence of alkaloids, tannins, flavonoids, saponins, and phenolic compounds. The ethanolic extract of the whole plant of T. procumbens at 250 and 500 mg/kg has significant antidiabetic and antihyperlipidemic activities. The diabetic control animals exhibited a significant decrease in body weight compared with control animals. T. procumbens inhibited streptozotocin-induced weight loss and significantly alter the lipid levels. Conclusion: The ethanolic extract of the whole plant of T. procumbens showed significant antidiabetic and antihyperlipidemic activities against streptozotocin-induced diabetes in rats. PMID:24808679

  1. Meadow vole-induced mortality of oak seedlings in a former agricultural field planting

    Treesearch

    Andrew B. Self; Andrew W. Ezell; Dennis Rowe; Emily B. Schultz; John D. Hodges

    2015-01-01

    Seedling mortality due to meadow vole herbivory is an often acknowledged but relatively unstudied aspect of hardwood afforestation. Vole-induced mortality is not typically a major item of concern in afforestation attempts. However, damage has been extreme in some plantings. A total of 4,320 bare-root Nuttall oak (Quercus texana Buckley), Shumard oak (Quercus shumardii...

  2. An Ontology for Identifying Cyber Intrusion Induced Faults in Process Control Systems

    NASA Astrophysics Data System (ADS)

    Hieb, Jeffrey; Graham, James; Guan, Jian

    This paper presents an ontological framework that permits formal representations of process control systems, including elements of the process being controlled and the control system itself. A fault diagnosis algorithm based on the ontological model is also presented. The algorithm can identify traditional process elements as well as control system elements (e.g., IP network and SCADA protocol) as fault sources. When these elements are identified as a likely fault source, the possibility exists that the process fault is induced by a cyber intrusion. A laboratory-scale distillation column is used to illustrate the model and the algorithm. Coupled with a well-defined statistical process model, this fault diagnosis approach provides cyber security enhanced fault diagnosis information to plant operators and can help identify that a cyber attack is underway before a major process failure is experienced.

  3. Identification of the protective effects of traditional medicinal plants against SDS-induced Drosophila gut damage.

    PubMed

    Zhou, Yang; Liu, Zonglin; Chen, Yuchen; Jin, Li Hua

    2016-10-01

    Traditional medicinal plants are widely used as immunomodulatory medicines that help improve health. A total of 50 different plants used for the treatment of toxicity were screened for their in vivo protective effects. Flies were fed a standard cornmeal-yeast medium (control group) or the standard medium containing medicinal plant extracts (experimental groups). Assessment of the survival rate was performed by feeding flies with toxic compounds. Gut epithelial cells were analyzed for cell proliferation and death by green fluorescent protein antibodies and 7-aminoactinomycin D staining under the microscope. The expression of antimicrobial peptides (AMPs) was evaluated by the quantitative polymerase chain reaction and the results revealed that after feeding the flies with toxic compounds, aqueous extracts from Codonopsis pilosula (Franch.) Nannf ( C. pilosula ), Saussurea lappa (Decne.) C.B.Clarke ( S. lappa ), Imperata cylindrica Beauv.var. major (Nees) C.E. Hubb. ( I. cylindrical var. major ) and Melia toosendan Sied. Et Zucc. ( M.toosendan ) increased the fly survival rate, reduced epithelial cell death and improved gut morphology. In addition, C. pilosula extracts induced the antimicrobial peptide levels (Dpt and Mtk) following treatment with sodium dodecyl sulfate (SDS). However, these extracts were not observed to increase SDS-induced cell proliferation in vivo . These results indicate that there are strong protective effects in extracts of C. pilosula , S. lappa , I. cylindrical var. major and M. toosendan on Drosophila intestinal cells among 50 medicinal plants.

  4. Single Plant Root System Modeling under Soil Moisture Variation

    NASA Astrophysics Data System (ADS)

    Yabusaki, S.; Fang, Y.; Chen, X.; Scheibe, T. D.

    2016-12-01

    A prognostic Virtual Plant-Atmosphere-Soil System (vPASS) model is being developed that integrates comprehensively detailed mechanistic single plant modeling with microbial, atmospheric, and soil system processes in its immediate environment. Three broad areas of process module development are targeted: Incorporating models for root growth and function, rhizosphere interactions with bacteria and other organisms, litter decomposition and soil respiration into established porous media flow and reactive transport models Incorporating root/shoot transport, growth, photosynthesis and carbon allocation process models into an integrated plant physiology model Incorporating transpiration, Volatile Organic Compounds (VOC) emission, particulate deposition and local atmospheric processes into a coupled plant/atmosphere model. The integrated plant ecosystem simulation capability is being developed as open source process modules and associated interfaces under a modeling framework. The initial focus addresses the coupling of root growth, vascular transport system, and soil under drought scenarios. Two types of root water uptake modeling approaches are tested: continuous root distribution and constitutive root system architecture. The continuous root distribution models are based on spatially averaged root development process parameters, which are relatively straightforward to accommodate in the continuum soil flow and reactive transport module. Conversely, the constitutive root system architecture models use root growth rates, root growth direction, and root branching to evolve explicit root geometries. The branching topologies require more complex data structures and additional input parameters. Preliminary results are presented for root model development and the vascular response to temporal and spatial variations in soil conditions.

  5. Vitamin B1 Functions as an Activator of Plant Disease Resistance1

    PubMed Central

    Ahn, Il-Pyung; Kim, Soonok; Lee, Yong-Hwan

    2005-01-01

    Vitamin B1 (thiamine) is an essential nutrient for humans. Vitamin B1 deficiency causes beriberi, which disturbs the central nervous and circulatory systems. In countries in which rice (Oryza sativa) is a major food, thiamine deficiency is prevalent because polishing of rice removes most of the thiamine in the grain. We demonstrate here that thiamine, in addition to its nutritional value, induces systemic acquired resistance (SAR) in plants. Thiamine-treated rice, Arabidopsis (Arabidopsis thaliana), and vegetable crop plants showed resistance to fungal, bacterial, and viral infections. Thiamine treatment induces the transient expression of pathogenesis-related (PR) genes in rice and other plants. In addition, thiamine treatment potentiates stronger and more rapid PR gene expression and the up-regulation of protein kinase C activity. The effects of thiamine on disease resistance and defense-related gene expression mobilize systemically throughout the plant and last for more than 15 d after treatment. Treatment of Arabidopsis ecotype Columbia-0 plants with thiamine resulted in the activation of PR-1 but not PDF1.2. Furthermore, thiamine prevented bacterial infection in Arabidopsis mutants insensitive to jasmonic acid or ethylene but not in mutants impaired in the SAR transduction pathway. These results clearly demonstrate that thiamine induces SAR in plants through the salicylic acid and Ca2+-related signaling pathways. The findings provide a novel paradigm for developing alternative strategies for the control of plant diseases. PMID:15980201

  6. Host structural carbohydrate induces vector transmission of a bacterial plant pathogen.

    PubMed

    Killiny, Nabil; Almeida, Rodrigo P P

    2009-12-29

    Many insect-borne pathogens have complex life histories because they must colonize both hosts and vectors for successful dissemination. In addition, the transition from host to vector environments may require changes in gene expression before the pathogen's departure from the host. Xylella fastidiosa is a xylem-limited plant-pathogenic bacterium transmitted by leafhopper vectors that causes diseases in a number of economically important plants. We hypothesized that factors of host origin, such as plant structural polysaccharides, are important in regulating X. fastidiosa gene expression and mediating vector transmission of this pathogen. The addition of pectin and glucan to a simple defined medium resulted in dramatic changes in X. fastidiosa's phenotype and gene-expression profile. Cells grown in the presence of pectin became more adhesive than in other media tested. In addition, the presence of pectin and glucan in media resulted in significant changes in the expression of several genes previously identified as important for X. fastidiosa's pathogenicity in plants. Furthermore, vector transmission of X. fastidiosa was induced in the presence of both polysaccharides. Our data show that host structural polysaccharides mediate gene regulation in X. fastidiosa, which results in phenotypic changes required for vector transmission. A better understanding of how vector-borne pathogens transition from host to vector, and vice versa, may lead to previously undiscovered disease-control strategies.

  7. Release of lipoxygenase products and monoterpenes by tomato plants as an indicator of Botrytis cinerea-induced stress.

    PubMed

    Jansen, R M C; Miebach, M; Kleist, E; van Henten, E J; Wildt, J

    2009-11-01

    Changes in emission of volatile organic compounds (VOCs) from tomato induced by the fungus Botrytis cinerea were studied in plants inoculated by spraying with suspensions containing B. cinerea spores. VOC emissions were analysed using on-line gas chromatography-mass spectrometry, with a time resolution of about 1 h, for up to 2 days after spraying. Four phases were delimited according to the starting point and the applied day/night rhythm of the experiments. These phases were used to demonstrate changes in VOC flux caused by B. cinerea infestation. Tomato plants inoculated with B. cinerea emitted a different number and amount of VOCs after inoculation compared to control plants that had been sprayed with a suspension without B. cinerea spores. The changes in emissions were dependent on time after inoculation as well as on the severity of infection. The predominant VOCs emitted after inoculation were volatile products from the lipoxygenase pathway (LOX products). The increased emission of LOX products proved to be a strong indicator of a stress response, indicating that VOC emissions can be used to detect plant stress at an early stage. Besides emission of LOX products, there were also increases in monoterpene emissions. However, neither increased emission of LOX products nor of monoterpenes is specific for B. cinerea attack. The emission of LOX products is also induced by other stresses, and increased emission of monoterpenes seems to be the result of mechanical damage induced by secondary stress impacts on leaves.

  8. Global biogeography of mating system variation in seed plants.

    PubMed

    Moeller, David A; Briscoe Runquist, Ryan D; Moe, Annika M; Geber, Monica A; Goodwillie, Carol; Cheptou, Pierre-Olivier; Eckert, Christopher G; Elle, Elizabeth; Johnston, Mark O; Kalisz, Susan; Ree, Richard H; Sargent, Risa D; Vallejo-Marin, Mario; Winn, Alice A

    2017-03-01

    Latitudinal gradients in biotic interactions have been suggested as causes of global patterns of biodiversity and phenotypic variation. Plant biologists have long speculated that outcrossing mating systems are more common at low than high latitudes owing to a greater predictability of plant-pollinator interactions in the tropics; however, these ideas have not previously been tested. Here, we present the first global biogeographic analysis of plant mating systems based on 624 published studies from 492 taxa. We found a weak decline in outcrossing rate towards higher latitudes and among some biomes, but no biogeographic patterns in the frequency of self-incompatibility. Incorporating life history and growth form into biogeographic analyses reduced or eliminated the importance of latitude and biome in predicting outcrossing or self-incompatibility. Our results suggest that biogeographic patterns in mating system are more likely a reflection of the frequency of life forms across latitudes rather than the strength of plant-pollinator interactions. © 2017 John Wiley & Sons Ltd/CNRS.

  9. Rhizosphere pseudomonads as probiotics improving plant health.

    PubMed

    Kim, Young Cheol; Anderson, Anne J

    2018-04-20

    Many root-colonizing microbes are multifaceted in traits that improve plant health. Although isolates designated as biological control agents directly reduce pathogen growth, many exert additional beneficial features that parallel changes induced in animal and other hosts by health-promoting microbes termed probiotics. Both animal and plant probiotics cause direct antagonism of pathogens and induce systemic immunity in the host to pathogens and other stresses. They also alter host development, and improve host nutrition. The probiotic root-colonizing pseudomonads are generalists in terms of plant hosts, soil habitats and the array of stress responses that are ameliorated in the plant. This review illustrates how the probiotic pseudomonads, nurtured by the C and N sources released by the plant in root exudates, form protective biofilms on the root surface and produce the metabolites or enzymes to boost plant health. The findings reveal the multifunctional nature of many of the microbial metabolites in the plant-probiotic interplay. The beneficial effects of probiotics on plant function can contribute to sustainable yield and quality in agricultural production. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.

  10. Stress-Inducible Expression of an F-box Gene TaFBA1 from Wheat Enhanced the Drought Tolerance in Transgenic Tobacco Plants without Impacting Growth and Development.

    PubMed

    Kong, Xiangzhu; Zhou, Shumei; Yin, Suhong; Zhao, Zhongxian; Han, Yangyang; Wang, Wei

    2016-01-01

    E3 ligase plays an important role in the response to many environment stresses in plants. In our previous study, constitutive overexpression of an F-box protein gene TaFBA1 driven by 35S promoter improved the drought tolerance in transgenic tobacco plants, but the growth and development in transgenic plants was altered in normal conditions. In this study, we used stress-inducible promoter RD29A instead of 35S promoter, as a results, the stress-inducible transgenic tobacco plants exhibit a similar phenotype with wild type (WT) plants. However, the drought tolerance of the transgenic plants with stress-inducible expressed TaFBA1 was enhanced. The improved drought tolerance of transgenic plants was indicated by their higher seed germination rate and survival rate, greater biomass and photosynthesis than those of WT under water stress, which may be related to their greater water retention capability and osmotic adjustment. Moreover, the transgenic plants accumulated less reactive oxygen species, kept lower MDA content and membrane leakage under water stress, which may be related to their higher levels of antioxidant enzyme activity and upregulated gene expression of some antioxidant enzymes. These results suggest that stress induced expression of TaFBA1 confers drought tolerance via the improved water retention and antioxidative compete ability. Meanwhile, this stress-inducible expression strategy by RD29A promoter can minimize the unexpectable effects by 35S constitutive promoter on phenotypes of the transgenic plants.

  11. Plants, plant pathogens, and microgravity--a deadly trio.

    PubMed

    Leach, J E; Ryba-White, M; Sun, Q; Wu, C J; Hilaire, E; Gartner, C; Nedukha, O; Kordyum, E; Keck, M; Leung, H; Guikema, J A

    2001-06-01

    Plants grown in spaceflight conditions are more susceptible to colonization by plant pathogens. The underlying causes for this enhanced susceptibility are not known. Possibly the formation of structural barriers and the activation of plant defense response components are impaired in spaceflight conditions. Either condition would result from altered gene expression of the plant. Because of the tools available, past studies focused on a few physiological responses or biochemical pathways. With recent advances in genomics research, new tools, including microarray technologies, are available to examine the global impact of growth in the spacecraft on the plant's gene expression profile. In ground-based studies, we have developed cDNA subtraction libraries of rice that are enriched for genes induced during pathogen infection and the defense response. Arrays of these genes are being used to dissect plant defense response pathways in a model system involving wild-type rice plants and lesion mimic mutants. The lesion mimic mutants are ideal experimental tools because they erratically develop defense response-like lesions in the absence of pathogens. The gene expression profiles from these ground-based studies will provide the molecular basis for understanding the biochemical and physiological impacts of spaceflight on plant growth, development and disease defense responses. This, in turn, will allow the development of strategies to manage plant disease for life in the space environment.

  12. Plants, plant pathogens, and microgravity--a deadly trio

    NASA Technical Reports Server (NTRS)

    Leach, J. E.; Ryba-White, M.; Sun, Q.; Wu, C. J.; Hilaire, E.; Gartner, C.; Nedukha, O.; Kordyum, E.; Keck, M.; Leung, H.; hide

    2001-01-01

    Plants grown in spaceflight conditions are more susceptible to colonization by plant pathogens. The underlying causes for this enhanced susceptibility are not known. Possibly the formation of structural barriers and the activation of plant defense response components are impaired in spaceflight conditions. Either condition would result from altered gene expression of the plant. Because of the tools available, past studies focused on a few physiological responses or biochemical pathways. With recent advances in genomics research, new tools, including microarray technologies, are available to examine the global impact of growth in the spacecraft on the plant's gene expression profile. In ground-based studies, we have developed cDNA subtraction libraries of rice that are enriched for genes induced during pathogen infection and the defense response. Arrays of these genes are being used to dissect plant defense response pathways in a model system involving wild-type rice plants and lesion mimic mutants. The lesion mimic mutants are ideal experimental tools because they erratically develop defense response-like lesions in the absence of pathogens. The gene expression profiles from these ground-based studies will provide the molecular basis for understanding the biochemical and physiological impacts of spaceflight on plant growth, development and disease defense responses. This, in turn, will allow the development of strategies to manage plant disease for life in the space environment.

  13. Investigating Gene Function in Cereal Rust Fungi by Plant-Mediated Virus-Induced Gene Silencing.

    PubMed

    Panwar, Vinay; Bakkeren, Guus

    2017-01-01

    Cereal rust fungi are destructive pathogens, threatening grain production worldwide. Targeted breeding for resistance utilizing host resistance genes has been effective. However, breakdown of resistance occurs frequently and continued efforts are needed to understand how these fungi overcome resistance and to expand the range of available resistance genes. Whole genome sequencing, transcriptomic and proteomic studies followed by genome-wide computational and comparative analyses have identified large repertoire of genes in rust fungi among which are candidates predicted to code for pathogenicity and virulence factors. Some of these genes represent defence triggering avirulence effectors. However, functions of most genes still needs to be assessed to understand the biology of these obligate biotrophic pathogens. Since genetic manipulations such as gene deletion and genetic transformation are not yet feasible in rust fungi, performing functional gene studies is challenging. Recently, Host-induced gene silencing (HIGS) has emerged as a useful tool to characterize gene function in rust fungi while infecting and growing in host plants. We utilized Barley stripe mosaic virus-mediated virus induced gene silencing (BSMV-VIGS) to induce HIGS of candidate rust fungal genes in the wheat host to determine their role in plant-fungal interactions. Here, we describe the methods for using BSMV-VIGS in wheat for functional genomics study in cereal rust fungi.

  14. Peripheral infrastructure vectors and an extended set of plant parts for the Modular Cloning system

    PubMed Central

    Kretschmer, Carola; Gruetzner, Ramona; Löfke, Christian; Dagdas, Yasin; Bürstenbinder, Katharina; Marillonnet, Sylvestre

    2018-01-01

    Standardized DNA assembly strategies facilitate the generation of multigene constructs from collections of building blocks in plant synthetic biology. A common syntax for hierarchical DNA assembly following the Golden Gate principle employing Type IIs restriction endonucleases was recently developed, and underlies the Modular Cloning and GoldenBraid systems. In these systems, transcriptional units and/or multigene constructs are assembled from libraries of standardized building blocks, also referred to as phytobricks, in several hierarchical levels and by iterative Golden Gate reactions. Here, a toolkit containing further modules for the novel DNA assembly standards was developed. Intended for use with Modular Cloning, most modules are also compatible with GoldenBraid. Firstly, a collection of approximately 80 additional phytobricks is provided, comprising e.g. modules for inducible expression systems, promoters or epitope tags. Furthermore, DNA modules were developed for connecting Modular Cloning and Gateway cloning, either for toggling between systems or for standardized Gateway destination vector assembly. Finally, first instances of a “peripheral infrastructure” around Modular Cloning are presented: While available toolkits are designed for the assembly of plant transformation constructs, vectors were created to also use coding sequence-containing phytobricks directly in yeast two hybrid interaction or bacterial infection assays. The presented material will further enhance versatility of hierarchical DNA assembly strategies. PMID:29847550

  15. Examining Dehydration and Hypoxic Stress in Wheat Plants Using a Porous Tube Plant Nutrient Delivery System Developed for Microgravity

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Hall, C. R.; Foster, T. E.; Salganic, M.; Warren, L.; Corbett, M.

    2005-01-01

    The Porous Tube Plant Nutrient Delivery System (PTPNDS) was designed for NASA to grow plants in microgravity of space. The system utilizes a controlled fluid loop to supply nutrients and water to plant roots growing on a ceramic surface moistened by capiflary action. A PTPNDS test bed was developed and utilizing remote sensing systems, spectral analyses procedures, gas-exchange, and fluorescence measurements, we examined differences in plant water status for wheat plants (Triticum aestivum, cv. Perigee) grown in a modified growth chamber during the summers of 2003 and 2004. Some differences in plant performance were detectable in the gas-exchange and fluorescence measurements. For instance, in both years the plants grown with the most available water had the lowest rates of photosynthesis and exhibited higher proportions of non-photochemical quenching particularly under low light levels. In addition, small differences in mean leaf water content between treatments were detected using spectral reflectance analyses.

  16. B-Plant Canyon Ventilation Control System Description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCDANIEL, K.S.

    1999-08-31

    Project W-059 installed a new B Plant Canyon Ventilation System. Monitoring and control of the system is implemented by the Canyon Ventilation Control System (CVCS). This document describes the CVCS system components which include a Programmable Logic Controller (PLC) coupled with an Operator Interface Unit (OIU) and application software. This document also includes an Alarm Index specifying the setpoints and technical basis for system analog and digital alarms.

  17. Inspirations on Virus Replication and Cell-to-Cell Movement from Studies Examining the Cytopathology Induced by Lettuce infectious yellows virus in Plant Cells

    PubMed Central

    Qiao, Wenjie; Medina, Vicente; Falk, Bryce W.

    2017-01-01

    Lettuce infectious yellows virus (LIYV) is the type member of the genus Crinivirus in the family Closteroviridae. Like many other positive-strand RNA viruses, LIYV infections induce a number of cytopathic changes in plant cells, of which the two most characteristic are: Beet yellows virus-type inclusion bodies composed of vesicles derived from cytoplasmic membranes; and conical plasmalemma deposits (PLDs) located at the plasmalemma over plasmodesmata pit fields. The former are not only found in various closterovirus infections, but similar structures are known as ‘viral factories’ or viroplasms in cells infected with diverse types of animal and plant viruses. These are generally sites of virus replication, virion assembly and in some cases are involved in cell-to-cell transport. By contrast, PLDs induced by the LIYV-encoded P26 non-virion protein are not involved in replication but are speculated to have roles in virus intercellular movement. These deposits often harbor LIYV virions arranged to be perpendicular to the plasma membrane over plasmodesmata, and our recent studies show that P26 is required for LIYV systemic plant infection. The functional mechanism of how LIYV P26 facilitates intercellular movement remains unclear, however, research on other plant viruses provides some insights on the possible ways of viral intercellular movement through targeting and modifying plasmodesmata via interactions between plant cellular components and viral-encoded factors. In summary, beginning with LIYV, we review the studies that have uncovered the biological determinants giving rise to these cytopathological effects and their importance in viral replication, virion assembly and intercellular movement during the plant infection by closteroviruses, and compare these findings with those for other positive-strand RNA viruses. PMID:29021801

  18. Controlled Ecological Life Support System: Use of Higher Plants

    NASA Technical Reports Server (NTRS)

    Tibbits, T. W.; Alford, D. K.

    1982-01-01

    Results of two workshops concerning the use of higher plants in Controlled Ecological Life Support Systems (CELSS) are summarized. Criteria for plant selection were identified from these categories: food production, nutrition, oxygen production and carbon dioxide utilization, water recycling, waste recycling, and other morphological and physiological considerations. Types of plant species suitable for use in CELSS, growing procedures, and research priorities were recommended. Also included are productivity values for selected plant species.

  19. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, K.; Graf, P.; Scott, G.

    2015-01-01

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems tomore » achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.« less

  20. Optimized production planning model for a multi-plant cultivation system under uncertainty

    NASA Astrophysics Data System (ADS)

    Ke, Shunkui; Guo, Doudou; Niu, Qingliang; Huang, Danfeng

    2015-02-01

    An inexact multi-constraint programming model under uncertainty was developed by incorporating a production plan algorithm into the crop production optimization framework under the multi-plant collaborative cultivation system. In the production plan, orders from the customers are assigned to a suitable plant under the constraints of plant capabilities and uncertainty parameters to maximize profit and achieve customer satisfaction. The developed model and solution method were applied to a case study of a multi-plant collaborative cultivation system to verify its applicability. As determined in the case analysis involving different orders from customers, the period of plant production planning and the interval between orders can significantly affect system benefits. Through the analysis of uncertain parameters, reliable and practical decisions can be generated using the suggested model of a multi-plant collaborative cultivation system.

  1. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways

    PubMed Central

    Christou, Anastasis; Manganaris, George A.; Papadopoulos, Ioannis; Fotopoulos, Vasileios

    2013-01-01

    Hydrogen sulfide (H2S) has been recently found to act as a potent priming agent. This study explored the hypothesis that hydroponic pretreatment of strawberry (Fragaria × ananassa cv. Camarosa) roots with a H2S donor, sodium hydrosulfide (NaHS; 100 μM for 48h), could induce long-lasting priming effects and tolerance to subsequent exposure to 100mM NaCI or 10% (w/v) PEG-6000 for 7 d. Hydrogen sulfide pretreatment of roots resulted in increased leaf chlorophyll fluorescence, stomatal conductance and leaf relative water content as well as lower lipid peroxidation levels in comparison with plants directly subjected to salt and non-ionic osmotic stress, thus suggesting a systemic mitigating effect of H2S pretreatment to cellular damage derived from abiotic stress factors. In addition, root pretreatment with NaHS resulted in the minimization of oxidative and nitrosative stress in strawberry plants, manifested via lower levels of synthesis of NO and H2O2 in leaves and the maintenance of high ascorbate and glutathione redox states, following subsequent salt and non-ionic osmotic stresses. Quantitative real-time RT-PCR gene expression analysis of key antioxidant (cAPX, CAT, MnSOD, GR), ascorbate and glutathione biosynthesis (GCS, GDH, GS), transcription factor (DREB), and salt overly sensitive (SOS) pathway (SOS2-like, SOS3-like, SOS4) genes suggests that H2S plays a pivotal role in the coordinated regulation of multiple transcriptional pathways. The ameliorative effects of H2S were more pronounced in strawberry plants subjected to both stress conditions immediately after NaHS root pretreatment, rather than in plants subjected to stress conditions 3 d after root pretreatment. Overall, H2S-pretreated plants managed to overcome the deleterious effects of salt and non-ionic osmotic stress by controlling oxidative and nitrosative cellular damage through increased performance of antioxidant mechanisms and the coordinated regulation of the SOS pathway, thus proposing a novel

  2. An amino acid substitution inhibits specialist herbivore production of a competitive antagonist effector and recovers insect-induced plant defenses

    USDA-ARS?s Scientific Manuscript database

    Plants respond to insect herbivory through the production of biochemicals that function as either direct defenses or indirect defenses via the attraction of natural enemies. Curiously, attack by even closely related insect pests can result in distinctive levels of induced plant defenses. Despite the...

  3. Expression of sunflower cytoplasmic male sterility-associated open reading frame, orfH522 induces male sterility in transgenic tobacco plants.

    PubMed

    Nizampatnam, Narasimha Rao; Doodhi, Harinath; Kalinati Narasimhan, Yamini; Mulpuri, Sujatha; Viswanathaswamy, Dinesh Kumar

    2009-03-01

    Sterility in the universally exploited PET1-CMS system of sunflower is associated with the expression of orfH522, a novel mitochondrial gene. Definitive evidence that ORFH522 is directly responsible for male sterility is lacking. To test the hypothesis that ORFH522 is sufficient to induce male sterility, a set of chimeric constructs were developed. The cDNA of orfH522 was cloned in-frame with yeast coxIV pre-sequence, and was expressed under tapetum-specific promoter TA29 (construct designated as TCON). For developing control vectors, orfH522 was cloned without the transit peptide under TA29 promoter (TON) or orfH522 was cloned with or without transit peptide under the constitutive CaMV35S promoter (SCOP and SOP). Among several independent transformants obtained with each of the gene cassettes, one third of the transgenics (6/17) with TCON were completely male sterile while more than 10 independent transformants obtained with each of the control vectors were fertile. The male sterile plants were morphologically similar to fertile plants, but had anthers that remained below the stigmatic surface at anthesis. RT-PCR analysis of the sterile plants confirmed the anther-specific expression of orfH522 and bright-field microscopy demonstrated ablation of the tapetal cell layer. Premature DNA fragmentation and programmed cell death was observed at meiosis stage in the anthers of sterile plants. Stable transmission of induced male sterility trait was confirmed in test cross progeny. This constitutes the first report at demonstrating the induction of male sterility by introducing orfH522 gene that could be useful for genetic engineering of male sterility.

  4. Arsenic-induced plant growth of arsenic-hyperaccumulator Pteris vittata: Impact of arsenic and phosphate rock.

    PubMed

    Han, Yong-He; Yang, Guang-Mei; Fu, Jing-Wei; Guan, Dong-Xing; Chen, Yanshan; Ma, Lena Q

    2016-04-01

    Phosphate rock (PR) has been shown to promote plant growth and arsenic (As) uptake by As-hyperaccumulator Pteris vittata (PV). However, little is known about its behaviors in agricultural soils. In this study, impact of 50 mg kg(-1) As and/or 1.5% PR amendment on plant As accumulation and growth was investigated by growing PV for 90 d in three agricultural soils. While As amendment significantly increased plant As uptake and substantially promoted PV growth, the opposite was observed with PR amendment. Arsenic amendment increased plant frond As from 16.9-265 to 961-6017 mg kg(-1),whereas PR amendment lowered frond As to 10.2-216 mg kg(-1). The As-induced plant growth stimulation was 69-71%. While PR amendment increased plant Ca and P uptake, As amendment showed opposite results. The PV biomass was highly correlated with plant As at r = 0.82, but with weak correlations with plant Ca or P at r < 0.30. This study confirmed that 1) As significantly promoted PV growth, probably independent of Ca or P uptake, 2) PR amendment didn't enhance plant growth or As uptake by PV in agricultural soils with adequate available P, and 3) PV effluxed arsenite (AsIII) growing in agricultural soils. Published by Elsevier Ltd.

  5. Crossfit analysis: a novel method to characterize the dynamics of induced plant responses.

    PubMed

    Jansen, Jeroen J; van Dam, Nicole M; Hoefsloot, Huub C J; Smilde, Age K

    2009-12-16

    Many plant species show induced responses that protect them against exogenous attacks. These responses involve the production of many different bioactive compounds. Plant species belonging to the Brassicaceae family produce defensive glucosinolates, which may greatly influence their favorable nutritional properties for humans. Each responding compound may have its own dynamic profile and metabolic relationships with other compounds. The chemical background of the induced response is therefore highly complex and may therefore not reveal all the properties of the response in any single model. This study therefore aims to describe the dynamics of the glucosinolate response, measured at three time points after induction in a feral Brassica, by a three-faceted approach, based on Principal Component Analysis. First the large-scale aspects of the response are described in a 'global model' and then each time-point in the experiment is individually described in 'local models' that focus on phenomena that occur at specific moments in time. Although each local model describes the variation among the plants at one time-point as well as possible, the response dynamics are lost. Therefore a novel method called the 'Crossfit' is described that links the local models of different time-points to each other. Each element of the described analysis approach reveals different aspects of the response. The crossfit shows that smaller dynamic changes may occur in the response that are overlooked by global models, as illustrated by the analysis of a metabolic profiling dataset of the same samples.

  6. CRISPR: From Prokaryotic Immune Systems to Plant Genome Editing Tools.

    PubMed

    Bandyopadhyay, Anindya; Mazumdar, Shamik; Yin, Xiaojia; Quick, William Paul

    2017-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR) system is a prokaryotic adaptive immune system that has the ability to identify specific locations on the bacteriophage (phage) genome to create breaks in it, and internalize the phage genome fragments in its own genome as CRISPR arrays for memory-dependent resistance. Although CRISPR has been used in the dairy industry for a long time, it recently gained importance in the field of genome editing because of its ability to precisely target locations in a genome. This system has further been modified to locate and target any region of a genome of choice due to modifications in the components of the system. By changing the nucleotide sequence of the 20-nucleotide target sequence in the guide RNA, targeting any location is possible. It has found an application in the modification of plant genomes with its ability to generate mutations and insertions, thus helping to create new varieties of plants. With the ability to introduce specific sequences into the plant genome after cleavage by the CRISPR system and subsequent DNA repair through homology-directed repair (HDR), CRISPR ensures that genome editing can be successfully applied in plants, thus generating stronger and more improved traits. Also, the use of the CRISPR editing system can generate plants that are transgene-free and have mutations that are stably inherited, thus helping to circumvent current GMO regulations.

  7. A thin film hydroponic system for plant studies

    NASA Technical Reports Server (NTRS)

    Hines, Robert; Prince, Ralph; Muller, Eldon; Schuerger, Andrew

    1990-01-01

    The Land Pavillion, EPCOT Center, houses a hydroponic, thin film growing system identical to that residing in NASA's Biomass Production Chamber at Kennedy Space Center. The system is targeted for plant disease and nutrition studies. The system is described.

  8. Analysis on energy consumption index system of thermal power plant

    NASA Astrophysics Data System (ADS)

    Qian, J. B.; Zhang, N.; Li, H. F.

    2017-05-01

    Currently, the increasingly tense situation in the context of resources, energy conservation is a realistic choice to ease the energy constraint contradictions, reduce energy consumption thermal power plants has become an inevitable development direction. And combined with computer network technology to build thermal power “small index” to monitor and optimize the management system, the power plant is the application of information technology and to meet the power requirements of the product market competition. This paper, first described the research status of thermal power saving theory, then attempted to establish the small index system and build “small index” monitoring and optimization management system in thermal power plant. Finally elaborated key issues in the field of small thermal power plant technical and economic indicators to be further studied and resolved.

  9. ER stress-induced protein, VIGG, disturbs plant cation homeostasis, which is correlated with growth retardation and robustness to ER stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katoh, Hironori; Fujita, Keiko; Takuhara, Yuki

    2011-02-18

    Highlights: {yields} VIGG is an ER stress-induced protein in plant. {yields} We examine the characteristics of VIGG-overexpressing Arabidopsis plants. {yields} VIGG-overexpressing plants reveal growth retardation and robustness to ER stress. {yields} VIGG disturbs cation homeostasis in plant. -- Abstract: VIGG is a putative endoplasmic reticulum (ER) resident protein induced by virus infection and ER stress, and is correlated with fruit quality in grapevine. The present study was undertaken to determine the biological function of VIGG in grapevine. Experiments using fluorescent protein-VIGG fusion protein demonstrated that VIGG is localized in ER and the ER targeting sequence is in the N-terminus. Themore » overexpression of VIGG in Arabidopsis plant led to growth retardation. The rosette leaves of VIGG-overexpressing plants were smaller than those of the control plants and rolled at 42 days after seeding. VIGG-overexpressing plants revealed robustness to ER stress as well as the low expression of ER stress marker proteins, such as the luminal binding proteins. These characteristics of VIGG-overexpressing plants were supported by a microarray experiment that demonstrated the disruption of genes related to ER stress response and flowering, as well as cation mobility, in the plants. Finally, cation homeostasis in the plants was disturbed by the overexpression of VIGG. Taken together, these results suggest that VIGG may disturb cation homeostasis in plant, which is correlated with the robustness to ER stress and growth retardation.« less

  10. The Redundant Compressor System for the Helium Cryogenic Plant at TPS

    NASA Astrophysics Data System (ADS)

    Li, H. C.; Tsai, H. H.; Lin, T. F.; Chiou, W. S.; Chang, S. H.; Hsiao, F. Z.; Liao, W. R.; Chuang, P. S. D.

    2017-02-01

    Recommissioning the 700-W helium cryogenic system was completed in 2014 and it entered service in 2015. The main target of this system is a stable supply of liquid helium to the superconducting RF cavities at Taiwan Photo Source. The annual maintenance of the compressor of the plant causes operation of the system to be suspended at least two weeks. To avoid such a long suspension for the cryogenic plant, we installed a redundant compressor system for the cryogenic plant in 2015. We can switch to this redundant compressor system and restart the cryogenic system in a few minutes. In this paper we present the configuration, local testing and long-term operation of this redundant compressor system.

  11. Design of Plant Eco-physiology Monitoring System Based on Embedded Technology

    NASA Astrophysics Data System (ADS)

    Li, Yunbing; Wang, Cheng; Qiao, Xiaojun; Liu, Yanfei; Zhang, Xinlu

    A real time system has been developed to collect plant's growth information comprehensively. Plant eco-physiological signals can be collected and analyzed effectively. The system adopted embedded technology: wireless sensors network collect the eco-physiological information. Touch screen and ARM microprocessor make the system work independently without PC. The system is versatile and all parameters can be set by the touch screen. Sensors' intelligent compensation can be realized in this system. Information can be displayed by either graphically or in table mode. The ARM microprocessor provides the interface to connect with the internet, so the system support remote monitoring and controlling. The system has advantages of friendly interface, flexible construction and extension. It's a good tool for plant's management.

  12. Silencing C19-GA 2-oxidases induces parthenocarpic development and inhibits lateral branching in tomato plants

    PubMed Central

    Martínez-Bello, Liliam; Moritz, Thomas; López-Díaz, Isabel

    2015-01-01

    Gibberellins (GAs) are phytohormones that regulate a wide range of developmental processes in plants. Levels of active GAs are regulated by biosynthetic and catabolic enzymes like the GA 2-oxidases (GA2oxs). In tomato (Solanum lycopersicum L.) C19 GA2oxs are encoded by a small multigenic family of five members with some degree of redundancy. In order to investigate their roles in tomato, the silencing of all five genes in transgenic plants was induced. A significant increase in active GA4 content was found in the ovaries of transgenic plants. In addition, the transgenic unfertilized ovaries were much bigger than wild-type ovaries (about 30 times) and a certain proportion (5–37%) were able to develop parthenocarpically. Among the GA2ox family, genes GA2ox1 and -2 seem to be the most relevant for this phenotype since their expression was induced in unfertilized ovaries and repressed in developing fruits, inversely correlating with ovary growth. Interestingly, transgenic lines exhibited a significant inhibition of branching and a higher content of active GA4 in axillary buds. This phenotype was reverted, in transgenic plants, by the application of paclobutrazol, a GA biosynthesis inhibitor, suggesting a role for GAs as repressors of branching. In summary, this work demonstrates that GA 2-oxidases regulate gibberellin levels in ovaries and axillary buds of tomato plants and their silencing is responsible for parthenocarpic fruit growth and branching inhibition. PMID:26093022

  13. Rapid in vitro propagation system through shoot tip cultures of Vitex trifolia L.-an important multipurpose plant of the Pacific traditional Medicine.

    PubMed

    Ahmed, Rafique; Anis, Mohammad

    2014-07-01

    A rapid and efficient plant propagation system through shoot tip explants was established in Vitex trifolia L., a medicinally important plant belonging to the family Verbenaceae. Multiple shoots were induced directly on Murashige and Skoog (MS) medium consisting of different cytokinins, 6-benzyladenine (BA), kinetin (Kin) and 2-isopentenyl adenine (2-iP), BA at an optimal concentration of 5.0 μM was most effective in inducing multiple shoots where 90 % explants responded with an average shoot number (4.4±0.1) and shoot length (2.0±0.1 cm) after 6 weeks of culture. Inclusion of NAA in the culture medium along with the optimum concentration of BA promoted a higher rate of shoot multiplication and length of the shoot, where 19.2±0.3 well-grown healthy shoots with an average shoot length of 4.4±0.1 cm were obtained on completion of 12 weeks culture period. Ex vitro rooting was achieved best directly in soilrite when basal portion of the shoots were treated with 500 μM indole-3-butyric acid for 15 min which was the most effective in inducing roots, as 95 % of the microshoots produced roots. Plantlets went through a hardening phase in a controlled plant growth chamber, prior to ex-vitro transfer. Micropropagated plants grew well, attained maturity and flowered with 92 % survival rate. The results of this study provide the first report on in vitro plant regeneration of Vitex trifolia L. using shoot tip explants.

  14. The Multifarious PGPR Serratia marcescens CDP-13 Augments Induced Systemic Resistance and Enhanced Salinity Tolerance of Wheat (Triticum aestivum L.)

    PubMed Central

    Singh, Rajnish Prakash; Jha, Prabhat Nath

    2016-01-01

    The present study demonstrates the plant growth promoting (PGP) potential of a bacterial isolate CDP-13 isolated from ‘Capparis decidua’ plant, and its ability to protect plants from the deleterious effect of biotic and abiotic stressors. Based on 16S rRNA gene sequence analysis, the isolate was identified as Serratia marcescens. Among the PGP traits, the isolate was found to be positive for ACC deaminase activity, phosphate solubilization, production of siderophore, indole acetic acid production, nitrogen fixation, and ammonia production. CDP-13 showed growth at an increased salt (NaCl) concentration of up to 6%, indicating its potential to survive and associate with plants growing in saline soil. The inoculation of S. marcescens enhanced the growth of wheat plant under salinity stress (150–200 mM). It significantly reduced inhibition of plant growth (15 to 85%) caused by salt stressors. Application of CDP-13 also modulated concentration (20 to 75%) of different osmoprotectants (proline, malondialdehyde, total soluble sugar, total protein content, and indole acetic acid) in plants suggesting its role in enabling plants to tolerate salt stressors. In addition, bacterial inoculation also reduced the disease severity caused by fungal infection, which illustrated its ability to confer induced systemic resistance (ISR) in host plants. Treatment of wheat plants with the test organism caused alteration in anti-oxidative enzymes activities (Superoxide dismutase, Catalase, and Peroxidase) under various salinity levels, and therefore minimizes the salinity-induced oxidative damages to the plants. Colonization efficiency of strain CDP-13 was confirmed by CFU count, epi-fluorescence microscopy, and ERIC-PCR-based DNA fingerprinting approach. Hence, the study indicates that bacterium CDP-13 enhances plant growth, and has potential for the amelioration of salinity stress in wheat plants. Likewise, the results also provide insights into biotechnological approaches to using

  15. The Multifarious PGPR Serratia marcescens CDP-13 Augments Induced Systemic Resistance and Enhanced Salinity Tolerance of Wheat (Triticum aestivum L.).

    PubMed

    Singh, Rajnish Prakash; Jha, Prabhat Nath

    2016-01-01

    The present study demonstrates the plant growth promoting (PGP) potential of a bacterial isolate CDP-13 isolated from 'Capparis decidua' plant, and its ability to protect plants from the deleterious effect of biotic and abiotic stressors. Based on 16S rRNA gene sequence analysis, the isolate was identified as Serratia marcescens. Among the PGP traits, the isolate was found to be positive for ACC deaminase activity, phosphate solubilization, production of siderophore, indole acetic acid production, nitrogen fixation, and ammonia production. CDP-13 showed growth at an increased salt (NaCl) concentration of up to 6%, indicating its potential to survive and associate with plants growing in saline soil. The inoculation of S. marcescens enhanced the growth of wheat plant under salinity stress (150-200 mM). It significantly reduced inhibition of plant growth (15 to 85%) caused by salt stressors. Application of CDP-13 also modulated concentration (20 to 75%) of different osmoprotectants (proline, malondialdehyde, total soluble sugar, total protein content, and indole acetic acid) in plants suggesting its role in enabling plants to tolerate salt stressors. In addition, bacterial inoculation also reduced the disease severity caused by fungal infection, which illustrated its ability to confer induced systemic resistance (ISR) in host plants. Treatment of wheat plants with the test organism caused alteration in anti-oxidative enzymes activities (Superoxide dismutase, Catalase, and Peroxidase) under various salinity levels, and therefore minimizes the salinity-induced oxidative damages to the plants. Colonization efficiency of strain CDP-13 was confirmed by CFU count, epi-fluorescence microscopy, and ERIC-PCR-based DNA fingerprinting approach. Hence, the study indicates that bacterium CDP-13 enhances plant growth, and has potential for the amelioration of salinity stress in wheat plants. Likewise, the results also provide insights into biotechnological approaches to using PGPR

  16. Plant pathogen resistance

    DOEpatents

    Greenberg, Jean T.; Jung, Ho Won; Tschaplinski, Timothy

    2015-10-20

    Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

  17. Plant pathogen resistance

    DOEpatents

    Greenberg, Jean T; Jung, Ho Won; Tschaplinski, Timothy

    2012-11-27

    Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

  18. Diuretics Prime Plant Immunity in Arabidopsis thaliana

    PubMed Central

    Noutoshi, Yoshiteru; Ikeda, Mika; Shirasu, Ken

    2012-01-01

    Plant activators are agrochemicals that activate the plant immune system, thereby enhancing disease resistance. Due to their prophylactic and durable effects on a wide spectrum of diseases, plant activators can provide synergistic crop protection when used in combination with traditional pest controls. Although plant activators have achieved great success in wet-rice farming practices in Asia, their use is still limited. To isolate novel plant activators applicable to other crops, we screened a chemical library using a method that can selectively identify immune-priming compounds. Here, we report the isolation and characterization of three diuretics, bumetanide, bendroflumethiazide and clopamide, as immune-priming compounds. These drugs upregulate the immunity-related cell death of Arabidopsis suspension-cultured cells induced with an avirulent strain of Pseudomonas syringae pv. tomato in a concentration-dependent manner. The application of these compounds to Arabidopsis plants confers disease resistance to not only the avirulent but also a virulent strain of the pathogen. Unlike salicylic acid, an endogenous phytohormone that governs disease resistance in response to biotrophic pathogens, the three diuretic compounds analyzed here do not induce PR1 or inhibit plant growth, showing potential as lead compounds in a practical application. PMID:23144763

  19. LED Systems Target Plant Growth

    NASA Technical Reports Server (NTRS)

    2010-01-01

    To help develop technologies for growing edible biomass (food crops) in space, Kennedy Space Center partnered with Orbital Technologies Corporation (ORBITEC), of Madison, Wisconsin, through the Small Business Innovation Research (SBIR) program. One result of this research was the High Efficiency Lighting with Integrated Adaptive Control (HELIAC) system, components of which have been incorporated into a variety of agricultural greenhouse and consumer aquarium lighting features. The new lighting systems can be adapted to a specific plant species during a specific growth stage, allowing maximum efficiency in light absorption by all available photosynthetic tissues.

  20. A review of the latest concepts in molecular plant pathology and applications to potato breeding

    USDA-ARS?s Scientific Manuscript database

    Co-evolution between pathogens and plants has led to the development of a range of constitutive and inducible resistance mechanisms that help plants survive pathogen attack. Different models have been proposed to describe the plant immune system. The most popular current model indicates that plants ...

  1. Sustaining the future of plant breeding: The critical role of the USDA-ARS National Plant Germplasm System

    USDA-ARS?s Scientific Manuscript database

    Plant breeders require genetic diversity in their breeding programs to develop cultivars that are productive, nutritious, tolerant of biotic and abiotic stresses, and make efficient use of water and fertilizer. The USDA-ARS National Plant Germplasm System (NPGS) is a major source for global plant ge...

  2. Chinese Milk Vetch Improves Plant Growth, Development and 15N Recovery in the Rice-Based Rotation System of South China.

    PubMed

    Xie, Zhijian; He, Yaqin; Tu, Shuxin; Xu, Changxu; Liu, Guangrong; Wang, Huimin; Cao, Weidong; Liu, Hui

    2017-06-15

    Chinese milk vetch (CMV) is vital for agriculture and environment in China. A pot experiment combined with 15 N labeling (including three treatments: control, no fertilizer N and CMV; 15 N-labeled urea alone, 15 NU; substituting partial 15 NU with CMV, 15 NU-M) was conducted to evaluate the impact of CMV on plant growth, development and 15 NU recovery in rice-based rotation system. The 15 NU-M mitigated oxidative damage by increasing antioxidant enzymes activities and chlorophyll content while decreased malondialdehyde content in rice root and shoot, increased the biomass, total N and 15 N uptake of plant shoots by 8%, 12% and 39% respectively, thus inducing a noticeable increase of annual 15 N recovery by 77% versus 15 NU alone. Remarkable increases in soil NH 4 + and populations of bacteria, actinomycetes and azotobacter were obtained in legume-rice rotation system while an adverse result was observed in soil NO 3 - content versus fallow-rice. CMV as green manure significantly increased the fungal population which was decreased with cultivating CMV as cover crop. Therefore, including legume cover crop in rice-based rotation system improves plant growth and development, annual N conservation and recovery probably by altering soil nitrogen forms plus ameliorating soil microbial communities and antioxidant system which alleviates oxidative damages in plants.

  3. Sugar beet germplasm collection in the National Plant Germplasm System.

    USDA-ARS?s Scientific Manuscript database

    The National Plant Germplasm System (NPGS) holds more than 500,000 accessions of crop plant and related species that are maintained, characterized, regenerated and distributed by four major Plant Introduction Stations and an additional 21 special clonal and seed germplasm repositories. The Western ...

  4. Suggesting a possible role of CA1 histaminergic system in harmane-induced amnesia.

    PubMed

    Nasehi, Mohammad; Mashaghi, Elham; Khakpai, Fatemeh; Zarrindast, Mohammad-Reza

    2013-11-27

    A number of tremorogenic β-carboline alkaloids such as harmane are naturally present in the human food chain. They are derived from medicinal plants such as Peganum harmala that have been used as folk medicine in anticancer therapy. In the present study, effects of the histaminergic system of the dorsal hippocampus (CA1) on harmane-induced amnesia were examined. One-trial step-down was used to assess memory retention in adult male mice. The results showed that pre-training intra-CA1 administration of histamine (5μg/mouse), ranitidine (H2 receptor antagonist; at the doses of 0.25 and 0.5μg/mouse) and pyrilamine (H1 receptor antagonist; at the dose of 5μg/mouse) decreased memory formation. Pre-training intraperitoneal (i.p.) administration of harmane (12mg/kg) also decreased memory formation. Moreover, pre-training intra-CA1 injection of a sub-threshold dose of histamine (2.5μg/mouse) could reverse harmane (12mg/kg, i.p.)-induced impairment of memory. On the other hand, pre-training intra-CA1 injection of sub-threshold doses of ranitidine (0.0625μg/mouse) and pyrilamine (2.5μg/mouse) increased harmane-induced impairment of memory. In conclusion, the present findings suggest the involvement of the CA1 histaminergic system in harmane-induced impairment of memory formation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Identification of the protective effects of traditional medicinal plants against SDS-induced Drosophila gut damage

    PubMed Central

    Zhou, Yang; Liu, Zonglin; Chen, Yuchen; Jin, Li Hua

    2016-01-01

    Traditional medicinal plants are widely used as immunomodulatory medicines that help improve health. A total of 50 different plants used for the treatment of toxicity were screened for their in vivo protective effects. Flies were fed a standard cornmeal-yeast medium (control group) or the standard medium containing medicinal plant extracts (experimental groups). Assessment of the survival rate was performed by feeding flies with toxic compounds. Gut epithelial cells were analyzed for cell proliferation and death by green fluorescent protein antibodies and 7-aminoactinomycin D staining under the microscope. The expression of antimicrobial peptides (AMPs) was evaluated by the quantitative polymerase chain reaction and the results revealed that after feeding the flies with toxic compounds, aqueous extracts from Codonopsis pilosula (Franch.) Nannf (C. pilosula), Saussurea lappa (Decne.) C.B.Clarke (S. lappa), Imperata cylindrica Beauv.var.major (Nees) C.E. Hubb. (I. cylindrical var. major) and Melia toosendan Sied. Et Zucc. (M.toosendan) increased the fly survival rate, reduced epithelial cell death and improved gut morphology. In addition, C. pilosula extracts induced the antimicrobial peptide levels (Dpt and Mtk) following treatment with sodium dodecyl sulfate (SDS). However, these extracts were not observed to increase SDS-induced cell proliferation in vivo. These results indicate that there are strong protective effects in extracts of C. pilosula, S. lappa, I. cylindrical var. major and M. toosendan on Drosophila intestinal cells among 50 medicinal plants. PMID:27698771

  6. Use of Laser-Induced Breakdown Spectroscopy for the Detection of Glycemic Elements in Indian Medicinal Plants

    PubMed Central

    Rai, Prashant Kumar; Srivastava, Amrita Kumari; Sharma, Bechan; Dhar, Preeti; Mishra, Ajay Kumar; Watal, Geeta

    2013-01-01

    The demand for interdisciplinary research is increasing in the new millennium to help us understand complex problems and find solutions by integrating the knowledge from different disciplines. The present review is an excellent example of this and shows how unique combination of physics, chemistry, and biological techniques can be used for the evaluation of Indian medicinal herbs used for treating diabetes mellitus. Laser-induced breakdown spectroscopy (LIBS) is a sensitive optical technique that is widely used for its simplicity and versatility. This review presents the most recent application of LIBS for detection of glycemic elements in medicinal plants. The characteristics of matrices, object analysis, use of laser system, and analytical performances with respect to Indian herbs are discussed. PMID:24228060

  7. Senescence-inducible LEC2 enhances triacylglycerol accumulation in leaves without negatively affecting plant growth

    PubMed Central

    Kim, Hyun Uk; Lee, Kyeong-Ryeol; Jung, Su-Jin; Shin, Hyun A; Go, Young Sam; Suh, Mi-Chung; Kim, Jong Bum

    2017-01-01

    Summary The synthesis of fatty acids and glycerolipids in wild-type Arabidopsis leaves do not typically lead to strong triacylglycerol (TAG) accumulation. LEAFY COTYLEDON2 (LEC2) is a master regulator of seed maturation and oil accumulation in seeds. Constitutive ectopic LEC2 expression causes somatic embryogenesis and defects in seedling growth. Here, we report that senescence-inducible LEC2 expression caused a 3-fold increase in TAG levels in transgenic leaves compared with that in the leaves of wild-type plants. Plant growth was not severely affected by the accumulation the TAG in response to LEC2 expression. The levels of plastid-synthesized lipids, mono- and di-galactosyldiacylglycerol and phosphatidylglycerol, were reduced more in senescence-induced LEC2 than endoplasmic reticulum-synthesized lipids, including phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Senescence-induced LEC2 upregulated the expression of many genes involved in fatty acid and TAG biosynthesis at precise times in senescent leaves, including WRINKLED1 (WRI1), which encodes a fatty acid transcription factor. The expression of glycerol-3-phosphate dehydrogenase 1 and phospholipid:diacylglycerol 2 were increased in the transgenic leaves. Five seed-type oleosin-encoding genes, expressed during oil-body formation, and the seed-specific FAE1 gene, which encodes the enzyme responsible for the synthesis of C20:1 and C22:1 fatty acids, were also expressed at higher levels in senescing transgenic leaves than in wild-type leaves. Senescence-inducible LEC2 triggers the key metabolic steps that increase TAG accumulation in vegetative tissues. PMID:25790072

  8. Cranberry Resistance to Dodder Parasitism: Induced Chemical Defenses and Behavior of a Parasitic Plant.

    PubMed

    Tjiurutue, Muvari Connie; Sandler, Hilary A; Kersch-Becker, Monica F; Theis, Nina; Adler, Lynn A

    2016-02-01

    Parasitic plants are common in many ecosystems, where they can structure community interactions and cause major economic damage. For example, parasitic dodder (Cuscuta spp.) can cause up to 80-100 % yield loss in heavily infested cranberry (Vaccinium macrocarpon) patches. Despite their ecological and economic importance, remarkably little is known about how parasitic plants affect, or are affected by, host chemistry. To examine chemically-mediated interactions between dodder and its cranberry host, we conducted a greenhouse experiment asking whether: (1) dodder performance varies with cranberry cultivar; (2) cultivars differ in levels of phytohormones, volatiles, or phenolics, and whether such variation correlates with dodder parasitism; (3) dodder parasitism induced changes in phytohormones, volatiles, or phenolics, and whether the level of inducible response varied among cultivars. We used five cranberry cultivars to assess host attractiveness to dodder and dodder performance. Dodder performance did not differ across cultivars, but there were marginally significant differences in host attractiveness to dodder, with fewer dodder attaching to Early Black than to any other cultivar. Dodder parasitism induced higher levels of salicylic acid (SA) across cultivars. Cultivars differed in overall levels of flavonols and volatile profiles, but not phenolic acids or proanthocyanidins, and dodder attachment induced changes in several flavonols and volatiles. While cultivars differed slightly in resistance to dodder attachment, we did not find evidence of chemical defenses that mediate these interactions. However, induction of several defenses indicates that parasitism alters traits that could influence subsequent interactions with other species, thus shaping community dynamics.

  9. Effects of microcystin-LR and cylindrospermopsin on plant-soil systems: A review of their relevance for agricultural plant quality and public health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machado, J.; Campos, A.

    Toxic cyanobacterial blooms are recognized as an emerging environmental threat worldwide. Although microcystin-LR is the most frequently documented cyanotoxin, studies on cylindrospermopsin have been increasing due to the invasive nature of cylindrospermopsin-producing cyanobacteria. The number of studies regarding the effects of cyanotoxins on agricultural plants has increased in recent years, and it has been suggested that the presence of microcystin-LR and cylindrospermopsin in irrigation water may cause toxic effects in edible plants. The uptake of these cyanotoxins by agricultural plants has been shown to induce morphological and physiological changes that lead to a potential loss of productivity. There is alsomore » evidence that edible terrestrial plants can bioaccumulate cyanotoxins in their tissues in a concentration dependent-manner. Moreover, the number of consecutive cycles of watering and planting in addition to the potential persistence of microcystin-LR and cylindrospermopsin in the environment are likely to result in groundwater contamination. The use of cyanotoxin-contaminated water for agricultural purposes may therefore represent a threat to both food security and food safety. However, the deleterious effects of cyanotoxins on agricultural plants and public health seem to be dependent on the concentrations studied, which in most cases are non-environmentally relevant. Interestingly, at ecologically relevant concentrations, the productivity and nutritional quality of some agricultural plants seem not to be impaired and may even be enhanced. However, studies assessing if the potential tolerance of agricultural plants to these concentrations can result in cyanotoxin and allergen accumulation in the edible tissues are lacking. This review combines the most current information available regarding this topic with a realistic assessment of the impact of cyanobacterial toxins on agricultural plants, groundwater quality and public health. - Highlights

  10. Production of phytotoxic cationic α-helical antimicrobial peptides in plant cells using inducible promoters.

    PubMed

    Company, Nuri; Nadal, Anna; Ruiz, Cristina; Pla, Maria

    2014-01-01

    Synthetic linear antimicrobial peptides with cationic α-helical structures, such as BP100, have potent and specific activities against economically important plant pathogenic bacteria. They are also recognized as valuable therapeutics and preservatives. However, highly active BP100 derivatives are often phytotoxic when expressed at high levels as recombinant peptides in plants. Here we demonstrate that production of recombinant phytotoxic peptides in transgenic plants is possible by strictly limiting transgene expression to certain tissues and conditions, and specifically that minimization of this expression during transformation and regeneration of transgenic plants is essential to obtain viable plant biofactories. On the basis of whole-genome transcriptomic data available online, we identified the Os.hsp82 promoter that fulfilled this requirement and was highly induced in response to heat shock. Using this strategy, we generated transgenic rice lines producing moderate yields of severely phytotoxic BP100 derivatives on exposure to high temperature. In addition, a threshold for gene expression in selected tissues and stages was experimentally established, below which the corresponding promoters should be suitable for driving the expression of recombinant phytotoxic proteins in genetically modified plants. In view of the growing transcriptomics data available, this approach is of interest to assist promoter selection for specific purposes.

  11. Production of Phytotoxic Cationic α-Helical Antimicrobial Peptides in Plant Cells Using Inducible Promoters

    PubMed Central

    Company, Nuri; Nadal, Anna; Ruiz, Cristina; Pla, Maria

    2014-01-01

    Synthetic linear antimicrobial peptides with cationic α-helical structures, such as BP100, have potent and specific activities against economically important plant pathogenic bacteria. They are also recognized as valuable therapeutics and preservatives. However, highly active BP100 derivatives are often phytotoxic when expressed at high levels as recombinant peptides in plants. Here we demonstrate that production of recombinant phytotoxic peptides in transgenic plants is possible by strictly limiting transgene expression to certain tissues and conditions, and specifically that minimization of this expression during transformation and regeneration of transgenic plants is essential to obtain viable plant biofactories. On the basis of whole-genome transcriptomic data available online, we identified the Os.hsp82 promoter that fulfilled this requirement and was highly induced in response to heat shock. Using this strategy, we generated transgenic rice lines producing moderate yields of severely phytotoxic BP100 derivatives on exposure to high temperature. In addition, a threshold for gene expression in selected tissues and stages was experimentally established, below which the corresponding promoters should be suitable for driving the expression of recombinant phytotoxic proteins in genetically modified plants. In view of the growing transcriptomics data available, this approach is of interest to assist promoter selection for specific purposes. PMID:25387106

  12. Naval facility energy conversion plants as resource recovery system components

    NASA Astrophysics Data System (ADS)

    Capps, A. G.

    1980-01-01

    This interim report addresses concepts for recovering energy from solid waste by using Naval facilities steam plants as principle building blocks of candidate solid waste/resource recovery systems at Navy installations. The major conclusions of this portion of the project are: although it is technically feasible to adapt Navy energy conversion systems to fire Waste Derived Fuels (WDF) in one or more of its forms, the optimal form selected should be a site-specific total system; near- to intermediate-term programs should probably continue to give first consideration to waterwall incinerators and to the cofiring of solid WDF in coal-capable plants; package incinerators and conversions of oil burning plants to fire a fluff form of solid waste fuel may be the options with the greatest potential for the intermediate term because waterwalls would be uneconomical in many small plants and because the majority of medium-sized oil-burning plants will not be converted to burn coal; and pyrolytic processes to produce gaseous and liquid fuels have not been sufficiently developed as yet to be specified for commerical operation.

  13. Probabilistic models to estimate fire-induced cable damage at nuclear power plants

    NASA Astrophysics Data System (ADS)

    Valbuena, Genebelin R.

    Even though numerous PRAs have shown that fire can be a major contributor to nuclear power plant risk, there are some specific areas of knowledge related to this issue, such as the prediction of fire-induced damage to electrical cables and circuits, and their potential effects in the safety of the nuclear power plant, that still constitute a practical enigma, particularly for the lack of approaches/models to perform consistent and objective assessments. This report contains a discussion of three different models to estimate fire-induced cable damage likelihood given a specified fire profile: the kinetic, the heat transfer and the IR "K Factor" model. These models not only are based on statistical analysis of data available in the open literature, but to the greatest extent possible they use physics based principles to describe the underlying mechanism of failures that take place among the electrical cables upon heating due to external fires. The characterization of cable damage, and consequently the loss of functionality of electrical cables in fire is a complex phenomenon that depends on a variety of intrinsic factors such as cable materials and dimensions, and extrinsic factors such as electrical and mechanical loads on the cables, heat flux severity, and exposure time. Some of these factors are difficult to estimate even in a well-characterized fire, not only for the variability related to the unknown material composition and physical arrangements, but also for the lack of objective frameworks and theoretical models to study the behavior of polymeric wire cable insulation under dynamic external thermal insults. The results of this research will (1) help to develop a consistent framework to predict fire-induced cable failure modes likelihood, and (2) develop some guidance to evaluate and/or reduce the risk associated with these failure modes in existing and new power plant facilities. Among the models evaluated, the physics-based heat transfer model takes into

  14. A hydroponic system for microgravity plant experiments

    NASA Technical Reports Server (NTRS)

    Wright, B. D.; Bausch, W. C.; Knott, W. M.

    1988-01-01

    The construction of a permanently manned space station will provide the opportunity to grow plants for weeks or months in orbit for experiments or food production. With this opportunity comes the need for a method to provide plants with a continuous supply of water and nutrients in microgravity. The Capillary Effect Root Environment System (CERES) uses capillary forces to maintain control of circulating plant nutrient solution in the weightless environment of an orbiting spacecraft. The nutrient solution is maintained at a pressure slightly less than the ambient air pressure while it flows on one side of a porous membrane. The root, on the other side of the membrane, is surrounded by a thin film of nutrient solution where it contacts the moist surface of the membrane. The root is provided with water, nutrients and air simultaneously. Air bubbles in the nutrient solution are removed using a hydrophobic/hydrophilic membrane system. A model scaled to the size necessary for flight hardware to test CERES in the space shuttle was constructed.

  15. Review and analysis of over 40 years of space plant growth systems

    NASA Astrophysics Data System (ADS)

    Zabel, P.; Bamsey, M.; Schubert, D.; Tajmar, M.

    2016-08-01

    The cultivation of higher plants occupies an essential role within bio-regenerative life support systems. It contributes to all major functional aspects by closing the different loops in a habitat like food production, CO2 reduction, O2 production, waste recycling and water management. Fresh crops are also expected to have a positive impact on crew psychological health. Plant material was first launched into orbit on unmanned vehicles as early as the 1960s. Since then, more than a dozen different plant cultivation experiments have been flown on crewed vehicles beginning with the launch of Oasis 1, in 1971. Continuous subsystem improvements and increasing knowledge of plant response to the spaceflight environment has led to the design of Veggie and the Advanced Plant Habitat, the latest in the series of plant growth systems. The paper reviews the different designs and technological solutions implemented in higher plant flight experiments. Using these analyses a comprehensive comparison is compiled to illustrate the development trends of controlled environment agriculture technologies in bio-regenerative life support systems, enabling future human long-duration missions into the solar system.

  16. MEDICINAL PLANTS OF RAJASTHAN IN INDIAN SYSTEM OF MEDICINE

    PubMed Central

    Tripathi, Y.C.; Prabhu, V.V.; Pal, R.S.; Mishra, R.N.

    1996-01-01

    Medicinal plants used in Indian system of medicine from Rajasthan state have been surveyed and catagorised systematically. The paper deals with 205 medicinal plants, thoroughly indexed along with their important traditional application for the cure of various ailments. PMID:22556743

  17. Cation-induced coagulation of aquatic plant-derived dissolved organic matter: Investigation by EEM-PARAFAC and FT-IR spectroscopy.

    PubMed

    Liu, Shasha; Zhu, Yuanrong; Liu, Leizhen; He, Zhongqi; Giesy, John P; Bai, Yingchen; Sun, Fuhong; Wu, Fengchang

    2018-03-01

    Complexation and coagulation of plant-derived dissolved organic matter (DOM) by metal cations are important biogeochemical processes of organic matter in aquatic systems. Thus, coagulation and fractionation of DOM derived from aquatic plants by Ca(II), Al(III), and Fe(III) ions were investigated. Metal ion-induced removal of DOM was determined by analyzing dissolved organic carbon in supernatants after addition of these metal cations individually. After additions of metal ions, both dissolved and coagulated organic fractions were characterized by use of fluorescence excitation emission matrix-parallel factor (EEM-PARAFAC) analysis and Fourier transform infrared (FT-IR) spectroscopy. Addition of Ca(II), Fe(III) or Al(III) resulted in net removal of aquatic plant-derived DOM. Efficiencies of removal of DOM by Fe(III) or Al(III) were greater than that by Ca(II). However, capacities to remove plant-derived DOM by the three metals were less than which had been previously reported for humic materials. Molecular and structural features of plant-derived DOM fractions in associations with metal cations were characterized by changes in fluorescent components and infrared absorption peaks. Both aromatic and carboxylic-like organic matters could be removed by Ca(II), Al(III) or Fe(III) ions. Whereas organic matters containing amides were preferentially removed by Ca(II), and phenolic materials were selectively removed by Fe(III) or Al(III). These observations indicated that plant-derived DOM might have a long-lasting effect on water quality and organisms due to its poor coagulation with metal cations in aquatic ecosystems. Plant-derived DOM is of different character than natural organic matter and it is not advisable to attempt removal through addition of metal salts during treatment of sewage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Simultaneous effects of food limitation and inducible resistance on herbivore population dynamics.

    PubMed

    Abbott, Karen C; Morris, William F; Gross, Kevin

    2008-02-01

    Many herbivore populations fluctuate temporally, but the causes of those fluctuations remain unclear. Plant inducible resistance can theoretically cause herbivore population fluctuations, because herbivory may induce plant changes that reduce the survival or reproduction of later-feeding herbivores. Herbivory can also simply reduce the quantity of food available for later feeders and this, too, can cause population fluctuations. Inducible resistance and food limitation often occur simultaneously, yet whether they jointly facilitate or suppress herbivore fluctuations remains largely unexplored. We present models that suggest that food limitation and inducible resistance may have synergistic effects on herbivore population dynamics. The population-level response of the food plant to herbivory and the details of how inducible resistance affects herbivore performance both influence the resulting herbivore dynamics. Our results identify some biological properties of plant-herbivore systems that might determine whether or not cycles occur, and suggest that future empirical and theoretical population dynamics studies should account for the effects of both food limitation and inducible resistance.

  19. Detecting the Hormonal Pathways in Oilseed Rape behind Induced Systemic Resistance by Trichoderma harzianum TH12 to Sclerotinia sclerotiorum.

    PubMed

    Alkooranee, Jawadayn Talib; Aledan, Tamarah Raad; Ali, Ali Kadhim; Lu, Guangyuan; Zhang, Xuekun; Wu, Jiangsheng; Fu, Chunhua; Li, Maoteng

    2017-01-01

    Plants have the ability to resist pathogen attack after infection or treatment with biotic and abiotic elicitors. In oilseed rape plant Brassica napus AACC and in the artificially synthesized Raphanus alboglabra RRCC, the root-colonizing Trichoderma harzianum TH12 fungus triggers induced systemic resistance (ISR), and its culture filtrate (CF) triggers a systemic acquired resistance (SAR) response against infection by the Sclerotinia sclerotiorum. Salicylic acid (SA) and jasmonic acid/ethylene (JA/ET) are plant hormone signals that play important roles in the regulation of ISR and SAR. In this study, at six different time points (1, 2, 4, 6, 8 and 10 days post-infection [dpi]), six resistance genes were used as markers of signaling pathways: JA/ET signaling used AOC3, PDF1.2 and ERF2 genes, while PR-1, TGA5 and TGA6 genes were used as markers of SA signaling. The results of quantitative real-time polymerase chain reaction (qRT-PCR) showed that AOC3, PDF1.2 and ERF2 expression levels in infected leaves of AACC and RRCC increase at 1 and 2 dpi with S. sclerotiorum or inoculation with TH12. PR-1, TGA5 and TGA6 expression levels increased at 8 and 10 dpi in infected leaves. PR-1, TGA5 and TGA6 expression levels increased early in plants treated with CF in both of the healthy genotypes. Furthermore, induction of SA- and JA/ET-dependent defense decreased disease symptoms in infected leaves at different times. The results suggest that the RRCC genotype exhibits resistance to disease and that the ability of TH12 and its CF to induce systemic resistance in susceptible and resistant oilseed rape genotypes exists. In addition, the results indicate for the first time that in RRCC the SA signaling pathway is involved in resistance to necrotrophic pathogens.

  20. Crossfit analysis: a novel method to characterize the dynamics of induced plant responses

    PubMed Central

    2009-01-01

    Background Many plant species show induced responses that protect them against exogenous attacks. These responses involve the production of many different bioactive compounds. Plant species belonging to the Brassicaceae family produce defensive glucosinolates, which may greatly influence their favorable nutritional properties for humans. Each responding compound may have its own dynamic profile and metabolic relationships with other compounds. The chemical background of the induced response is therefore highly complex and may therefore not reveal all the properties of the response in any single model. Results This study therefore aims to describe the dynamics of the glucosinolate response, measured at three time points after induction in a feral Brassica, by a three-faceted approach, based on Principal Component Analysis. First the large-scale aspects of the response are described in a 'global model' and then each time-point in the experiment is individually described in 'local models' that focus on phenomena that occur at specific moments in time. Although each local model describes the variation among the plants at one time-point as well as possible, the response dynamics are lost. Therefore a novel method called the 'Crossfit' is described that links the local models of different time-points to each other. Conclusions Each element of the described analysis approach reveals different aspects of the response. The crossfit shows that smaller dynamic changes may occur in the response that are overlooked by global models, as illustrated by the analysis of a metabolic profiling dataset of the same samples. PMID:20015363

  1. Application of CRISPR/Cas9 system in breeding of new antiviral plant germplasm.

    PubMed

    Zhang, Dao-wei; Zhang, Chao-fan; Dong, Fang; Huang, Yan-lan; Zhang, Ya; Zhou, Hong

    2016-09-01

    With the development and improvement of CRISPR/Cas9 system in genomic editing technology, the system has been applied to the prevention and control of animal viral infectious diseases, which has made considerable achievements. It has also been applied to the study of highly efficient gene targeting editing in plant virus genomes. The CRISPR/Cas9-mediated targeted gene modification has not only achieved the genome editing of plant DNA virus, but also showed the genome editing potential of plant RNA virus. In addition, the CRISPR/Cas9 system functions at the gene transcriptional and post-transcriptional level, indicating that the system could regulate the replication of plant viruses through different ways. Compared with other plant viral disease control strategies, this system is more accurate in genome editing, more stable in gene expression regulation, and has broader spectrum of resistance to virus disease. In this review, we summarized the advantages, main problems and development tendency of CRISPR/cas9 system in breeding of new antiviral plant germplasms.

  2. SCADA-based Operator Support System for Power Plant Equipment Fault Forecasting

    NASA Astrophysics Data System (ADS)

    Mayadevi, N.; Ushakumari, S. S.; Vinodchandra, S. S.

    2014-12-01

    Power plant equipment must be monitored closely to prevent failures from disrupting plant availability. Online monitoring technology integrated with hybrid forecasting techniques can be used to prevent plant equipment faults. A self learning rule-based expert system is proposed in this paper for fault forecasting in power plants controlled by supervisory control and data acquisition (SCADA) system. Self-learning utilizes associative data mining algorithms on the SCADA history database to form new rules that can dynamically update the knowledge base of the rule-based expert system. In this study, a number of popular associative learning algorithms are considered for rule formation. Data mining results show that the Tertius algorithm is best suited for developing a learning engine for power plants. For real-time monitoring of the plant condition, graphical models are constructed by K-means clustering. To build a time-series forecasting model, a multi layer preceptron (MLP) is used. Once created, the models are updated in the model library to provide an adaptive environment for the proposed system. Graphical user interface (GUI) illustrates the variation of all sensor values affecting a particular alarm/fault, as well as the step-by-step procedure for avoiding critical situations and consequent plant shutdown. The forecasting performance is evaluated by computing the mean absolute error and root mean square error of the predictions.

  3. Herbivore specificity and the chemical basis of plant-plant communication in Baccharis salicifolia (Asteraceae).

    PubMed

    Moreira, Xoaquín; Nell, Colleen S; Katsanis, Angelos; Rasmann, Sergio; Mooney, Kailen A

    2016-09-06

    It is well known that plant damage by leaf-chewing herbivores can induce resistance in neighbouring plants. It is unknown whether such communication occurs in response to sap-feeding herbivores, whether communication is specific to herbivore identity, and the chemical basis of communication, including specificity. We carried out glasshouse experiments using the California-native shrub Baccharis salicifolia and two ecologically distinct aphid species (one a dietary generalist and the other a specialist) to test for specificity of plant-plant communication and to document the underlying volatile organic compounds (VOCs). We show specificity of plant-plant communication to herbivore identity, as each aphid-damaged plant only induced resistance in neighbours against the same aphid species. The amount and composition of induced VOCs were markedly different between plants attacked by the two aphid species, providing a putative chemical mechanism for this specificity. Furthermore, a synthetic blend of the five major aphid-induced VOCs (ethanone, limonene, methyl salicylate, myrcene, ocimene) triggered resistance in receiving plants of comparable magnitude to aphid damage of neighbours, and the effects of the blend exceeded those of individual compounds. This study significantly advances our understanding of plant-plant communication by demonstrating the importance of sap-feeding herbivores and herbivore identity, as well as the chemical basis for such effects. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Minocycline suppresses morphine-induced respiratory depression, suppresses morphine-induced reward, and enhances systemic morphine-induced analgesia

    PubMed Central

    Hutchinson, Mark R.; Northcutt, Alexis L.; Chao, Lindsey W.; Kearney, Jeffrey J.; Zhang, Yingning; Berkelhammer, Debra L.; Loram, Lisa C.; Rozeske, Robert R.; Bland, Sondra T.; Maier, Steven F.; Gleeson, Todd T.; Watkins, Linda R.

    2008-01-01

    Recent data suggest that opioids can activate immune-like cells of the central nervous system (glia). This opioid-induced glial activation is associated with decreased analgesia, owing to the release of proinflammatory mediators. Here we examine in rats whether the putative microglial inhibitor, minocycline, may affect morphine-induced respiratory depression and/or morphine-induced reward (conditioned place preference). Systemic co-administration of minocycline significantly attenuated morphine-induced reductions in tidal volume, minute volume, inspiratory force and expiratory force, but did not affect morphine-induced reductions in respiratory rate. Minocycline attenuation of respiratory depression was also paralleled with significant attenuation by minocycline of morphine-induced reductions in blood oxygen saturation. Minocycline also attenuated morphine conditioned place preference. Minocycline did not simply reduce all actions of morphine, as morphine analgesia was significantly potentiated by minocycline co-administration. Lastly, morphine dose-dependently increased cyclooxygenase-1 gene expression in a rat microglial cell line, an effect that was dose-dependently blocked by minocycline. Together, these data support that morphine can directly activate microglia in a minocycline-suppressible manner and suggest a pivotal role for minocycline-sensitive processes in the mechanisms of morphine-induced respiration depression, reward, and pain modulation. PMID:18706994

  5. Controlled ecological life support system higher plant flight experiments

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W.; Wheeler, R. M.

    1984-01-01

    Requirements for spaceflight experments which involve higher plants were determined. The plants are studied for use in controlled ecological life support systems (CELSS). Two categories of research requirements are discussed: (1) the physical needs which include nutrient, water and gas exchange requirements; (2) the biological and physiological functions which affect plants in zero gravity environments. Physical problems studies are given the priority since they affect all biological experiments.

  6. An expert system for benzole recovery plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiguro, H.; Matsumura, S.; Kawashima, A.

    1993-01-01

    In the By-Product Plant of NKK's Keihin Works, systematization efforts were made in 1988, including integration of the control rooms, introduction of computers and installation of automatic analyzers. This has however increased the burden on operators with a huge volume of data, and a delay in coping with an operational abnormality might expand risk and extent of damages. There is, on the other hand, a pressing need to take measures to accommodate sophisticated operations resulting from the pursuit of high productivity operation. For the purpose of avoiding these possible inconveniences, development of a real-time operation system has been tried inmore » an attempt to improve safety and operating techniques and productivity in the benzole recovery plant. An offline system based on manual entry of operating data for diagnosis of operation and abnormality was developed in 1990, and an online real-time system operating by incorporating real-time operating data was developed in 1991, which is now smoothly operating in commercial operations. This report presents an outline of the benzole recovery operation diagnosis control expert system.« less

  7. Belowground Inoculation With Arbuscular Mycorrhizal Fungi Increases Local and Systemic Susceptibility of Rice Plants to Different Pest Organisms

    PubMed Central

    Bernaola, Lina; Cosme, Marco; Schneider, Raymond W.; Stout, Michael

    2018-01-01

    the first study conducted in the U.S. in rice showing AMF-induced plant susceptibility to several antagonists that specialize on different plant tissues. Given the widespread occurrence of AMF, our findings will help to provide a different perspective into the causal basis of rice systemic resistance/susceptibility to insects and pathogens. PMID:29922319

  8. Belowground Inoculation With Arbuscular Mycorrhizal Fungi Increases Local and Systemic Susceptibility of Rice Plants to Different Pest Organisms.

    PubMed

    Bernaola, Lina; Cosme, Marco; Schneider, Raymond W; Stout, Michael

    2018-01-01

    represents the first study conducted in the U.S. in rice showing AMF-induced plant susceptibility to several antagonists that specialize on different plant tissues. Given the widespread occurrence of AMF, our findings will help to provide a different perspective into the causal basis of rice systemic resistance/susceptibility to insects and pathogens.

  9. The Chemically Inducible Plant Cytochrome P450 CYP76B1 Actively Metabolizes Phenylureas and Other Xenobiotics1

    PubMed Central

    Robineau, Tiburce; Batard, Yannick; Nedelkina, Svetlana; Cabello-Hurtado, Francisco; LeRet, Monique; Sorokine, Odile; Didierjean, Luc; Werck-Reichhart, Danièle

    1998-01-01

    Cytochrome P450s (P450s) constitute one of the major classes of enzymes that are responsible for detoxification of exogenous molecules both in animals and plants. On the basis of its inducibility by exogenous chemicals, we recently isolated a new plant P450, CYP76B1, from Jerusalem artichoke (Helianthus tuberosus) and showed that it was capable of dealkylating a model xenobiotic compound, 7-ethoxycoumarin. In the present paper we show that CYP76B1 is more strongly induced by foreign compounds than other P450s isolated from the same plant, and metabolizes with high efficiency a wide range of xenobiotics, including alkoxycoumarins, alkoxyresorufins, and several herbicides of the class of phenylureas. CYP76B1 catalyzes the double N-dealkylation of phenylureas with turnover rates comparable to those reported for physiological substrates and produces nonphytotoxic compounds. Potential uses for CYP76B1 thus include control of herbicide tolerance and selectivity, as well as soil and groundwater bioremediation. PMID:9808750

  10. Involvement of nitrergic system of CA1in harmane induced learning and memory deficits.

    PubMed

    Nasehi, Mohammad; Piri, Morteza; Abdollahian, Mojgan; Zarrindast, Mohammad Reza

    2013-01-17

    Harmane (HA) is a β-carboline alkaloid derived from the Peganum harmala plant which induces memory impairment. On the other hand some of the investigations showed that β-carboline alkaloids inhibit NO production. Thus, the aim of the present study was to investigate the role of nitrergic system of the dorsal hippocampus (CA1) in HA-induced amnesia in male adult mice. One-trial step-down passive avoidance and hole-board apparatuses were used for the assessment of memory retrieval and exploratory behaviors respectively. The data indicated that pre-training intraperitoneal (i.p.) administration of HA (12 and 16 mg/kg) decreased memory acquisition. Sole pre-training or pre-testing administration of L-NAME, a nitric oxide synthesis inhibitor (5, 10 and 15 μg/mice, intra-CA1) did not alter memory retrieval. On the other hand, pre-training (10 and 15 μg/mice, intra-CA1) and pre-testing (5, 10 μg/mice, intra-CA1) injections of L-NAME restored HA-induced amnesia (16 mg/kg, i.p.). Furthermore, neither sole pre-training nor pre-testing administration of l-arginine, a NO precursor (3, 6 and 9 μg/mice, intra-CA1), altered memory retrieval. In addition, pre-testing (6 and 9 μg/mice, intra-CA1), but not pre-training, injection of l-arginine increased HA-induced amnesia (16 mg/kg, i.p.). These results suggest that the nitrergic system of CA1 is involved in HA-induced amnesia. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Fungal Infection Induces Sex-Specific Transcriptional Changes and Alters Sexual Dimorphism in the Dioecious Plant Silene latifolia

    PubMed Central

    Zemp, Niklaus; Tavares, Raquel; Widmer, Alex

    2015-01-01

    Sexual dimorphism, including differences in morphology, behavior and physiology between females and males, is widespread in animals and plants and is shaped by gene expression differences between the sexes. Such expression differences may also underlie sex-specific responses of hosts to pathogen infections, most notably when pathogens induce partial sex reversal in infected hosts. The genetic changes associated with sex-specific responses to pathogen infections on the one hand, and sexual dimorphism on the other hand, remain poorly understood. The dioecious White Campion (Silene latifolia) displays sexual dimorphism in floral traits and infection with the smut fungus Micobrotryum lychnidis-dioicae induces a partial sex reversal in females. We find strong sex-specific responses to pathogen infection and reduced sexual dimorphism in infected S. latifolia. This provides a direct link between pathogen-mediated changes in sex-biased gene expression and altered sexual dimorphism in the host. Expression changes following infection affected mainly genes with male-biased expression in healthy plants. In females, these genes were up-regulated, leading to a masculinization of the transcriptome. In contrast, infection in males was associated with down-regulation of these genes, leading to a demasculinization of the transcriptome. To a lesser extent, genes with female-biased expression in healthy plants were also affected in opposite directions in the two sexes. These genes were overall down-regulated in females and up-regulated in males, causing, respectively, a defeminization in infected females and a feminization of the transcriptome in infected males. Our results reveal strong sex-specific responses to pathogen infection in a dioecious plant and provide a link between pathogen-induced changes in sex-biased gene expression and sexual dimorphism. PMID:26448481

  12. Fungal Infection Induces Sex-Specific Transcriptional Changes and Alters Sexual Dimorphism in the Dioecious Plant Silene latifolia.

    PubMed

    Zemp, Niklaus; Tavares, Raquel; Widmer, Alex

    2015-10-01

    Sexual dimorphism, including differences in morphology, behavior and physiology between females and males, is widespread in animals and plants and is shaped by gene expression differences between the sexes. Such expression differences may also underlie sex-specific responses of hosts to pathogen infections, most notably when pathogens induce partial sex reversal in infected hosts. The genetic changes associated with sex-specific responses to pathogen infections on the one hand, and sexual dimorphism on the other hand, remain poorly understood. The dioecious White Campion (Silene latifolia) displays sexual dimorphism in floral traits and infection with the smut fungus Micobrotryum lychnidis-dioicae induces a partial sex reversal in females. We find strong sex-specific responses to pathogen infection and reduced sexual dimorphism in infected S. latifolia. This provides a direct link between pathogen-mediated changes in sex-biased gene expression and altered sexual dimorphism in the host. Expression changes following infection affected mainly genes with male-biased expression in healthy plants. In females, these genes were up-regulated, leading to a masculinization of the transcriptome. In contrast, infection in males was associated with down-regulation of these genes, leading to a demasculinization of the transcriptome. To a lesser extent, genes with female-biased expression in healthy plants were also affected in opposite directions in the two sexes. These genes were overall down-regulated in females and up-regulated in males, causing, respectively, a defeminization in infected females and a feminization of the transcriptome in infected males. Our results reveal strong sex-specific responses to pathogen infection in a dioecious plant and provide a link between pathogen-induced changes in sex-biased gene expression and sexual dimorphism.

  13. Memristors in plants

    PubMed Central

    Volkov, Alexander G; Tucket, Clayton; Reedus, Jada; Volkova, Maya I; Markin, Vladislav S; Chua, Leon

    2014-01-01

    We investigated electrical circuitry of the Venus flytrap, Mimosa pudica and Aloe vera. The goal was to discover if these plants might have a new electrical component—a resistor with memory. This element has attracted great interest recently and the researchers were looking for its presence in different systems. The analysis was based on cyclic current-voltage characteristic where the resistor with memory should manifest itself. We found that the electrostimulation of plants by bipolar sinusoidal or triangle periodic waves induces electrical responses in the Venus flytrap, Mimosa pudica and Aloe vera with fingerprints of memristors. Tetraethylammonium chloride, an inhibitor of voltage gated K+ channels, transforms a memristor to a resistor in plant tissue. Our results demonstrate that a voltage gated K+ channel in the excitable tissue of plants has properties of a memristor. This study can be a starting point for understanding mechanisms of memory, learning, circadian rhythms, and biological clocks. PMID:24556876

  14. Measuring whole-plant transpiration gravimetrically: a scalable automated system built from components

    Treesearch

    Damian Cirelli; Victor J. Lieffers; Melvin T. Tyree

    2012-01-01

    Measuring whole-plant transpiration is highly relevant considering the increasing interest in understanding and improving plant water use at the whole-plant level. We present an original software package (Amalthea) and a design to create a system for measuring transpiration using laboratory balances based on the readily available commodity hardware. The system is...

  15. Review and analysis of over 40 years of space plant growth systems.

    PubMed

    Zabel, P; Bamsey, M; Schubert, D; Tajmar, M

    2016-08-01

    The cultivation of higher plants occupies an essential role within bio-regenerative life support systems. It contributes to all major functional aspects by closing the different loops in a habitat like food production, CO2 reduction, O2 production, waste recycling and water management. Fresh crops are also expected to have a positive impact on crew psychological health. Plant material was first launched into orbit on unmanned vehicles as early as the 1960s. Since then, more than a dozen different plant cultivation experiments have been flown on crewed vehicles beginning with the launch of Oasis 1, in 1971. Continuous subsystem improvements and increasing knowledge of plant response to the spaceflight environment has led to the design of Veggie and the Advanced Plant Habitat, the latest in the series of plant growth systems. The paper reviews the different designs and technological solutions implemented in higher plant flight experiments. Using these analyses a comprehensive comparison is compiled to illustrate the development trends of controlled environment agriculture technologies in bio-regenerative life support systems, enabling future human long-duration missions into the solar system. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  16. Dynamic Plant-Plant-Herbivore Interactions Govern Plant Growth-Defence Integration.

    PubMed

    de Vries, Jorad; Evers, Jochem B; Poelman, Erik H

    2017-04-01

    Plants downregulate their defences against insect herbivores upon impending competition for light. This has long been considered a resource trade-off, but recent advances in plant physiology and ecology suggest this mechanism is more complex. Here we propose that to understand why plants regulate and balance growth and defence, the complex dynamics in plant-plant competition and plant-herbivore interactions needs to be considered. Induced growth-defence responses affect plant competition and herbivore colonisation in space and time, which has consequences for the adaptive value of these responses. Assessing these complex interactions strongly benefits from advanced modelling tools that can model multitrophic interactions in space and time. Such an exercise will allow a critical re-evaluation why and how plants integrate defence and competition for light. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A dynamical systems model for nuclear power plant risk

    NASA Astrophysics Data System (ADS)

    Hess, Stephen Michael

    The recent transition to an open access generation marketplace has forced nuclear plant operators to become much more cost conscious and focused on plant performance. Coincidentally, the regulatory perspective also is in a state of transition from a command and control framework to one that is risk-informed and performance-based. Due to these structural changes in the economics and regulatory system associated with commercial nuclear power plant operation, there is an increased need for plant management to explicitly manage nuclear safety risk. Application of probabilistic risk assessment techniques to model plant hardware has provided a significant contribution to understanding the potential initiating events and equipment failures that can lead to core damage accidents. Application of the lessons learned from these analyses has supported improved plant operation and safety over the previous decade. However, this analytical approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. Thus, the research described in this dissertation presents a different approach to address this issue. Here we propose a dynamical model that describes the interaction of important plant processes among themselves and their overall impact on nuclear safety risk. We first provide a review of the techniques that are applied in a conventional probabilistic risk assessment of commercially operating nuclear power plants and summarize the typical results obtained. The limitations of the conventional approach and the status of research previously performed to address these limitations also are presented. Next, we present the case for the application of an alternative approach using dynamical systems theory. This includes a discussion of previous applications of dynamical models to study other important socio-economic issues. Next, we review the analytical techniques that are applicable to analysis of

  18. Reactive oxygen species initiate a protective response in plant roots to stress induced by environmental bisphenol A.

    PubMed

    Zhang, Jiazhi; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2018-06-15

    Bisphenol A (BPA), a contaminant of emerging concern, can affect plant growth and development at high concentrations. Reactive oxygen species (ROS) production is a general primary response in plants to stress. Here, the aim is to investigate whether ROS in plants play protective roles for stress induced by BPA exposure at environmental concentrations. In this study, soybean roots (seedling, flowering and podding stages) were exposed to 1.5 and 3.0 mg L -1 BPA, and ROS response was measured. The relationship between ROS levels and residual BPA content in soybean roots was evaluated. The results showed that exposure (9 h) to 1.5 mg L -1 BPA elicited changes in ROS production. ROS then gradually accumulated in soybean roots (seedling stage). Exposure to 3.0 mg L -1 BPA elicited a stronger and earlier ROS responses at the flowering and podding stage, but did not lead to membrane lipid peroxidation. Residual BPA content in soybean roots reached peak concentrations after 9 h of exposure, and then gradually decreased at the flowering and podding stage. These results indicate that ROS in soybean roots might be involved in the oxidative metabolism of BPA, which could prevent BPA from damaging exposed plants. In conclusion, the observed ROS metabolic effects may be self-protection responses of plants to stress induced by BPA exposure. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Exogenous application of plant growth regulators (PGRs) induces chilling tolerance in short-duration hybrid maize.

    PubMed

    Waqas, Muhammad Ahmed; Khan, Imran; Akhter, Muhammad Javaid; Noor, Mehmood Ali; Ashraf, Umair

    2017-04-01

    Chilling stress hampers the optimal performance of maize under field conditions precipitously by inducing oxidative stress. To confer the damaging effects of chilling stress, the present study aimed to investigate the effects of some natural and synthetic plant growth regulators, i.e., salicylic acid (SA), thiourea (TU), sorghum water extract (SWE), and moringa leaf extract (MLE) on chilling stress tolerance in autumn maize hybrid. Foliar application of growth regulators at low concentrations was carried out at six leaf (V6) and tasseling stages. An increase in crop growth rate (CGR), leaf area index (LAI), leaf area duration (LAD), plant height (PH), grain yield (GY), and total dry matter accumulation (TDM) was observed in exogenously applied plants as compared to control. In addition, improved physio-biochemical, phenological, and grain nutritional quality attributes were noticed in foliar-treated maize plots as compared to non-treated ones. SA-treated plants reduced 20% electrolyte leakage in cell membrane against control. MLE and SA were proved best in improving total phenolic, relative water (19-23%), and chlorophyll contents among other applications. A similar trend was found for photosynthetic and transpiration rates, whereas MLE and SWE were found better in improving CGR, LAI, LAD, TDM, PH, GY, grains per cob, 1000 grain weight, and biological yield among all treatments including control. TU and MLE have significantly reduced the duration in phenological events of crop at the reproductive stage. MLE, TU, and SA also improved the grain protein, oil, and starch contents as compared to control. Enhanced crop water productivity was also observed in MLE-treated plants. Economic analysis suggested that MLE and SA applications were more economical in inducing chilling stress tolerance under field conditions. Although eliciting behavior of all growth regulators improved morpho-physiological attributes against suboptimal temperature stress conditions, MLE and SA

  20. Senescence-inducible LEC2 enhances triacylglycerol accumulation in leaves without negatively affecting plant growth.

    PubMed

    Kim, Hyun Uk; Lee, Kyeong-Ryeol; Jung, Su-Jin; Shin, Hyun A; Go, Young Sam; Suh, Mi-Chung; Kim, Jong Bum

    2015-12-01

    The synthesis of fatty acids and glycerolipids in wild-type Arabidopsis leaves does not typically lead to strong triacylglycerol (TAG) accumulation. LEAFY COTYLEDON2 (LEC2) is a master regulator of seed maturation and oil accumulation in seeds. Constitutive ectopic LEC2 expression causes somatic embryogenesis and defects in seedling growth. Here, we report that senescence-inducible LEC2 expression caused a threefold increase in TAG levels in transgenic leaves compared with that in the leaves of wild-type plants. Plant growth was not severely affected by the accumulation the TAG in response to LEC2 expression. The levels of plastid-synthesized lipids, mono- and di-galactosyldiacylglycerol and phosphatidylglycerol were reduced more in senescence-induced LEC2 than in endoplasmic reticulum-synthesized lipids, including phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol. Senescence-induced LEC2 up-regulated the expression of many genes involved in fatty acid and TAG biosynthesis at precise times in senescent leaves, including WRINKLED1 (WRI1), which encodes a fatty acid transcription factor. The expressions of glycerol-3-phosphate dehydrogenase 1 and phospholipid:diacylglycerol 2 were increased in the transgenic leaves. Five seed-type oleosin-encoding genes, expressed during oil-body formation, and the seed-specific FAE1 gene, which encodes the enzyme responsible for the synthesis of C20:1 and C22:1 fatty acids, were also expressed at higher levels in senescing transgenic leaves than in wild-type leaves. Senescence-inducible LEC2 triggers the key metabolic steps that increase TAG accumulation in vegetative tissues. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Altered sucrose synthase and invertase expression affects the local and systemic sugar metabolism of nematode-infected Arabidopsis thaliana plants.

    PubMed

    Cabello, Susana; Lorenz, Cindy; Crespo, Sara; Cabrera, Javier; Ludwig, Roland; Escobar, Carolina; Hofmann, Julia

    2014-01-01

    Sedentary endoparasitic nematodes of plants induce highly specific feeding cells in the root central cylinder. From these, the obligate parasites withdraw all required nutrients. The feeding cells were described as sink tissues in the plant's circulation system that are supplied with phloem-derived solutes such as sugars. Currently, there are several publications describing mechanisms of sugar import into the feeding cells. However, sugar processing has not been studied so far. Thus, in the present work, the roles of the sucrose-cleaving enzymes sucrose synthases (SUS) and invertases (INV) in the development of Heterodera schachtii were studied. Gene expression analyses indicate that both enzymes are regulated transcriptionally. Nematode development was enhanced on multiple INV and SUS mutants. Syncytia of these mutants were characterized by altered enzyme activity and changing sugar pool sizes. Further, the analyses revealed systemically affected sugar levels and enzyme activities in the shoots of the tested mutants, suggesting changes in the source-sink relationship. Finally, the development of the root-knot nematode Meloidogyne javanica was studied in different INV and SUS mutants and wild-type Arabidopsis plants. Similar effects on the development of both sedentary endoparasitic nematode species (root-knot and cyst nematode) were observed, suggesting a more general role of sucrose-degrading enzymes during plant-nematode interactions.

  2. Hepatoprotective Potential of Some Local Medicinal Plants against 2-Acetylaminoflourene-Induced Damage in Rat

    PubMed Central

    Adetutu, Adewale; Olorunnisola, Olubukola S.

    2013-01-01

    The in vivo micronucleus assay was used to examine the anticlastogenic effects of crude extracts of Bridelia ferruginea, Vernonia amygdalina, Tridax procumbens, Ocimum gratissimum, and Lawsonia inermis in Wistar albino rats. Extracts of doses of 100 mg/kg body weight were given to rats in five groups for seven consecutive days followed by a single dose of 2-AAF (0.5 mmol/kg body weight). The rats were sacrificed after 24 hours and their bone marrow smears were prepared on glass slides stained with Giemsa. The micronucleated polychromatic erythrocyte cells (mPCEs) were thereafter recorded. The hepatoprotective effects of the plant extracts against 2-AAF-induced liver toxicity in rats were evaluated by monitoring the levels of alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), and histopathological analysis. The results of the 2-AAF-induced liver toxicity experiments showed that rats treated with the plant extracts (100 mg/kg) showed a significant decrease in mPCEs as compared with the positive control. The rats treated with the plant extracts did not show any significant change in the concentration of ALP and GGT in comparison with the negative control group whereas the 2-AAF group showed a significant increase (P < 0.05) in these parameters. Some of the leaf extracts also showed protective effects against histopathological alterations. This study suggests that the leaf extracts have hepatoprotective potential, thereby justifying their ethnopharmacological uses. PMID:24163694

  3. Hepatoprotective Potential of Some Local Medicinal Plants against 2-Acetylaminoflourene-Induced Damage in Rat.

    PubMed

    Adetutu, Adewale; Olorunnisola, Olubukola S

    2013-01-01

    The in vivo micronucleus assay was used to examine the anticlastogenic effects of crude extracts of Bridelia ferruginea, Vernonia amygdalina, Tridax procumbens, Ocimum gratissimum, and Lawsonia inermis in Wistar albino rats. Extracts of doses of 100 mg/kg body weight were given to rats in five groups for seven consecutive days followed by a single dose of 2-AAF (0.5 mmol/kg body weight). The rats were sacrificed after 24 hours and their bone marrow smears were prepared on glass slides stained with Giemsa. The micronucleated polychromatic erythrocyte cells (mPCEs) were thereafter recorded. The hepatoprotective effects of the plant extracts against 2-AAF-induced liver toxicity in rats were evaluated by monitoring the levels of alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), and histopathological analysis. The results of the 2-AAF-induced liver toxicity experiments showed that rats treated with the plant extracts (100 mg/kg) showed a significant decrease in mPCEs as compared with the positive control. The rats treated with the plant extracts did not show any significant change in the concentration of ALP and GGT in comparison with the negative control group whereas the 2-AAF group showed a significant increase (P < 0.05) in these parameters. Some of the leaf extracts also showed protective effects against histopathological alterations. This study suggests that the leaf extracts have hepatoprotective potential, thereby justifying their ethnopharmacological uses.

  4. Exogenous application of methyl jasmonate induces a defense response and resistance against Sclerotinia sclerotiorum in dry bean plants.

    PubMed

    Oliveira, Marília Barros; Junior, Murillo Lobo; Grossi-de-Sá, Maria Fátima; Petrofeza, Silvana

    2015-06-15

    Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic fungal pathogen that causes a disease known as white mold, which is a major problem for dry bean (Phaseolus vulgaris L.) and other crops in many growing areas in Brazil. To investigate the role of methyl jasmonate (MeJA) in defending dry bean plants against S. sclerotiorum, we used suppression subtractive hybridization (SSH) of cDNA and identified genes that are differentially expressed during plant-pathogen interactions after treatment. Exogenous MeJA application enhanced resistance to the pathogen, and SSH analyses led to the identification of 94 unigenes, presumably involved in a variety of functions, which were classified into several functional categories, including metabolism, signal transduction, protein biogenesis and degradation, and cell defense and rescue. Using RT-qPCR, some unigenes were found to be differentially expressed in a time-dependent manner in dry bean plants during the interaction with S. sclerotiorum after MeJA treatment, including the pathogenesis-related protein PR3 (chitinase), PvCallose (callose synthase), PvNBS-LRR (NBS-LRR resistance-like protein), PvF-box (F-box family protein-like), and a polygalacturonase inhibitor protein (PGIP). Based on these expression data, the putative roles of differentially expressed genes were discussed in relation to the disease and MeJA resistance induction. Changes in the activity of the pathogenesis-related proteins β-1,3-glucanase, chitinase, phenylalanine ammonia-lyase, and peroxidase in plants after MeJA treatment and following inoculation of the pathogen were also investigated as molecular markers of induced resistance. Foliar application of MeJA induced partial resistance against S. sclerotiorum in plants as well as a consistent increase in pathogenesis-related protein activities. Our findings provide new insights into the physiological and molecular mechanisms of resistance induced by MeJA in the P. vulgaris-S. sclerotiorum pathosystem

  5. SEU induced errors observed in microprocessor systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asenek, V.; Underwood, C.; Oldfield, M.

    In this paper, the authors present software tools for predicting the rate and nature of observable SEU induced errors in microprocessor systems. These tools are built around a commercial microprocessor simulator and are used to analyze real satellite application systems. Results obtained from simulating the nature of SEU induced errors are shown to correlate with ground-based radiation test data.

  6. Photoinhibition-like damage to the photosynthetic apparatus in plant leaves induced by submergence treatment in the dark.

    PubMed

    Fan, Xingli; Zhang, Zishan; Gao, Huiyuan; Yang, Cheng; Liu, Meijun; Li, Yuting; Li, Pengmin

    2014-01-01

    Submergence is a common type of environmental stress for plants. It hampers survival and decreases crop yield, mainly by inhibiting plant photosynthesis. The inhibition of photosynthesis and photochemical efficiency by submergence is primarily due to leaf senescence and excess excitation energy, caused by signals from hypoxic roots and inhibition of gas exchange, respectively. However, the influence of mere leaf-submergence on the photosynthetic apparatus is currently unknown. Therefore, we studied the photosynthetic apparatus in detached leaves from four plant species under dark-submergence treatment (DST), without influence from roots and light. Results showed that the donor and acceptor sides, the reaction center of photosystem II (PSII) and photosystem I (PSI) in leaves were significantly damaged after 36 h of DST. This is a photoinhibition-like phenomenon similar to the photoinhibition induced by high light, as further indicated by the degradation of PsaA and D1, the core proteins of PSI and PSII. In contrast to previous research, the chlorophyll content remained unchanged and the H2O2 concentration did not increase in the leaves, implying that the damage to the photosynthetic apparatus was not caused by senescence or over-accumulation of reactive oxygen species (ROS). DST-induced damage to the photosynthetic apparatus was aggravated by increasing treatment temperature. This type of damage also occurred in the anaerobic environment (N2) without water, and could be eliminated or restored by supplying air to the water during or after DST. Our results demonstrate that DST-induced damage was caused by the hypoxic environment. The mechanism by which DST induces the photoinhibition-like damage is discussed below.

  7. Photoinhibition-Like Damage to the Photosynthetic Apparatus in Plant Leaves Induced by Submergence Treatment in the Dark

    PubMed Central

    Gao, Huiyuan; Yang, Cheng; Liu, Meijun; Li, Yuting; Li, Pengmin

    2014-01-01

    Submergence is a common type of environmental stress for plants. It hampers survival and decreases crop yield, mainly by inhibiting plant photosynthesis. The inhibition of photosynthesis and photochemical efficiency by submergence is primarily due to leaf senescence and excess excitation energy, caused by signals from hypoxic roots and inhibition of gas exchange, respectively. However, the influence of mere leaf-submergence on the photosynthetic apparatus is currently unknown. Therefore, we studied the photosynthetic apparatus in detached leaves from four plant species under dark-submergence treatment (DST), without influence from roots and light. Results showed that the donor and acceptor sides, the reaction center of photosystem II (PSII) and photosystem I (PSI) in leaves were significantly damaged after 36 h of DST. This is a photoinhibition-like phenomenon similar to the photoinhibition induced by high light, as further indicated by the degradation of PsaA and D1, the core proteins of PSI and PSII. In contrast to previous research, the chlorophyll content remained unchanged and the H2O2 concentration did not increase in the leaves, implying that the damage to the photosynthetic apparatus was not caused by senescence or over-accumulation of reactive oxygen species (ROS). DST-induced damage to the photosynthetic apparatus was aggravated by increasing treatment temperature. This type of damage also occurred in the anaerobic environment (N2) without water, and could be eliminated or restored by supplying air to the water during or after DST. Our results demonstrate that DST-induced damage was caused by the hypoxic environment. The mechanism by which DST induces the photoinhibition-like damage is discussed below. PMID:24586508

  8. Integrated network analysis and effective tools in plant systems biology

    PubMed Central

    Fukushima, Atsushi; Kanaya, Shigehiko; Nishida, Kozo

    2014-01-01

    One of the ultimate goals in plant systems biology is to elucidate the genotype-phenotype relationship in plant cellular systems. Integrated network analysis that combines omics data with mathematical models has received particular attention. Here we focus on the latest cutting-edge computational advances that facilitate their combination. We highlight (1) network visualization tools, (2) pathway analyses, (3) genome-scale metabolic reconstruction, and (4) the integration of high-throughput experimental data and mathematical models. Multi-omics data that contain the genome, transcriptome, proteome, and metabolome and mathematical models are expected to integrate and expand our knowledge of complex plant metabolisms. PMID:25408696

  9. Plant Growth Experiments in Zeoponic Substrates: Applications for Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Gruener, J. E.; Henderson, K. E.; Steinberg, S. L.; Barta, D. J.; Galindo, C.; Henninger, D. L.

    2001-01-01

    A zeoponic plant-growth system is defined as the cultivation of plants in artificial soils, which have zeolites as a major component (Allen and Ming, 1995). Zeolites are crystalline, hydrated aluminosilicate minerals that have the ability to exchange constituent cations without major change of the mineral structure. Recently, zeoponic systems developed at the National Aeronautics and Space Administration (NASA) slowly release some (Allen et at., 1995) or all of the essential plant-growth nutrients (Ming et at., 1995). These systems have NH4- and K-exchanged clinoptilolite (a natural zeolite) and either natural or synthetic apatite (a calcium phosphate mineral). For the natural apatite system, Ca and P were made available to the plant by the dissolution of apatite. Potassium and NH4-N were made available by ion-exchange reactions involving Ca(2+) from apatite dissolution and K(+) and NH4(+) on zeolitic exchange sites. In addition to NH4-N, K, Ca, and P, the synthetic apatite system also supplied Mg, S, and other micronutrients during dissolution (Figure 1). The overall objective of this research task is to develop zeoponic substrates wherein all plant growth nutrients are supplied by the plant growth medium for several growth seasons with only the addition of water. The substrate is being developed for plant growth in Advanced Life Support (ALS) testbeds (i.e., BioPLEX) and microgravity plant growth experiments. Zeoponic substrates have been used for plant growth experiments on two Space Shuttle flight experiments (STS-60; STS-63; Morrow et aI., 1995). These substrates may be ideally suited for plant growth experiments on the International Space Station and applications in ALS testbeds. However, there are several issues that need to be resolved before zeoponics will be the choice substrate for plant growth experiments in space. The objective of this paper is to provide an overview on recent research directed toward the refinement of zeoponic plant growth substrates.

  10. Plant utilization against digestive system disorder in Southern Assam, India.

    PubMed

    Choudhury, Prakash Roy; Choudhury, Manabendra Dutta; Ningthoujam, Sanjoy Singh; Mitra, Abhijit; Nath, Deepa; Talukdar, Anupam Das

    2015-12-04

    Being one of the most common types of life threatening diseases in Southern Assam, India, the digestive system disorders (DSD) have gained much attention in recent decades. Traditional beliefs and inadequate income of mass population result in the use of alternative phytotherapies to treat the diseases. The present paper documents the medicinal knowledge and utilization of plants for treatment of digestive system disorders in Southern Assam, India by Disease Consensus Index (DCI). It also determines the most suitable plant species used to treat digestive system disorders in the study area. The study was based on ethnomedicinal field survey covering a period of 1 year from 2014-2015. The ethnomedicinal information was collected by using semi-structured questionnaires from different traditional Bengali people having knowledge on medicinal plants. Collected data were analyzed by calculating DCI. During the survey, 29 informants were interviewed and a total of 49 plants under 46 genera belonging to 33 families were listed. Data analysis revealed that Litsea glutinosa, Momordica charantia, Andrographis paniculata, Lawsonia inermis, Cleome viscosa, Psidium guajava, Ageratum conyzoides, Cuscuta reflexa, Cynodon dactylon and Carica papaya are the most prominent plants among the people of Southern Assam for treating DSD. This explorative survey emphasizes the need to preserve and document the traditional healing practices for managing DSD inviting for more imminent scientific research on the plants to determine their efficacy as well as safety. With the help of statistical analysis (DCI), we propose 10 priority plants for DSD in present work. Systematic pharmacological study with these plants may contribute significant result. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L.

    PubMed

    Jiang, Wusheng; Liu, Donghua

    2010-03-02

    Electron microscopy (EM) techniques enable identification of the main accumulations of lead (Pb) in cells and cellular organelles and observations of changes in cell ultrastructure. Although there is extensive literature relating to studies on the influence of heavy metals on plants, Pb tolerance strategies of plants have not yet been fully explained. Allium sativum L. is a potential plant for absorption and accumulation of heavy metals. In previous investigations the effects of different concentrations (10(-5) to 10(-3) M) of Pb were investigated in A. sativum, indicating a significant inhibitory effect on shoot and root growth at 10(-3) to 10(-4) M Pb. In the present study, we used EM and cytochemistry to investigate ultrastructural alterations, identify the synthesis and distribution of cysteine-rich proteins induced by Pb and explain the possible mechanisms of the Pb-induced cellular defense system in A. sativum. After 1 h of Pb treatment, dictyosomes were accompanied by numerous vesicles within cytoplasm. The endoplasm reticulum (ER) with swollen cisternae was arranged along the cell wall after 2 h. Some flattened cisternae were broken up into small closed vesicles and the nuclear envelope was generally more dilated after 4 h. During 24-36 h, phenomena appeared such as high vacuolization of cytoplasm and electron-dense granules in cell walls, vacuoles, cytoplasm and mitochondrial membranes. Other changes included mitochondrial swelling and loss of cristae, and vacuolization of ER and dictyosomes during 48-72 h. In the Pb-treatment groups, silver grains were observed in cell walls and in cytoplasm, suggesting the Gomori-Swift reaction can indirectly evaluate the Pb effects on plant cells. Cell walls can immobilize some Pb ions. Cysteine-rich proteins in cell walls were confirmed by the Gomori-Swift reaction. The morphological alterations in plasma membrane, dictyosomes and ER reflect the features of detoxification and tolerance under Pb stress. Vacuoles are

  12. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L

    PubMed Central

    2010-01-01

    Background Electron microscopy (EM) techniques enable identification of the main accumulations of lead (Pb) in cells and cellular organelles and observations of changes in cell ultrastructure. Although there is extensive literature relating to studies on the influence of heavy metals on plants, Pb tolerance strategies of plants have not yet been fully explained. Allium sativum L. is a potential plant for absorption and accumulation of heavy metals. In previous investigations the effects of different concentrations (10-5 to 10-3 M) of Pb were investigated in A. sativum, indicating a significant inhibitory effect on shoot and root growth at 10-3 to 10-4 M Pb. In the present study, we used EM and cytochemistry to investigate ultrastructural alterations, identify the synthesis and distribution of cysteine-rich proteins induced by Pb and explain the possible mechanisms of the Pb-induced cellular defense system in A. sativum. Results After 1 h of Pb treatment, dictyosomes were accompanied by numerous vesicles within cytoplasm. The endoplasm reticulum (ER) with swollen cisternae was arranged along the cell wall after 2 h. Some flattened cisternae were broken up into small closed vesicles and the nuclear envelope was generally more dilated after 4 h. During 24-36 h, phenomena appeared such as high vacuolization of cytoplasm and electron-dense granules in cell walls, vacuoles, cytoplasm and mitochondrial membranes. Other changes included mitochondrial swelling and loss of cristae, and vacuolization of ER and dictyosomes during 48-72 h. In the Pb-treatment groups, silver grains were observed in cell walls and in cytoplasm, suggesting the Gomori-Swift reaction can indirectly evaluate the Pb effects on plant cells. Conclusions Cell walls can immobilize some Pb ions. Cysteine-rich proteins in cell walls were confirmed by the Gomori-Swift reaction. The morphological alterations in plasma membrane, dictyosomes and ER reflect the features of detoxification and tolerance under Pb

  13. A novel light-dependent selection marker system in plants.

    PubMed

    Koh, Serry; Kim, Hongsup; Kim, Jinwoo; Goo, Eunhye; Kim, Yun-Jung; Choi, Okhee; Jwa, Nam-Soo; Ma, Jun; Nagamatsu, Tomohisa; Moon, Jae Sun; Hwang, Ingyu

    2011-04-01

    Photosensitizers are common in nature and play diverse roles as defense compounds and pathogenicity determinants and as important molecules in many biological processes. Toxoflavin, a photosensitizer produced by Burkholderia glumae, has been implicated as an essential virulence factor causing bacterial rice grain rot. Toxoflavin produces superoxide and H₂O₂ during redox cycles under oxygen and light, and these reactive oxygen species cause phytotoxic effects. To utilize toxoflavin as a selection agent in plant transformation, we identified a gene, tflA, which encodes a toxoflavin-degrading enzyme in the Paenibacillus polymyxa JH2 strain. TflA was estimated as 24.56 kDa in size based on the amino acid sequence and is similar to a ring-cleavage extradiol dioxygenase in the Exiguobacterium sp. 255-15; however, unlike other extradiol dioxygenases, Mn(2+) and dithiothreitol were required for toxoflavin degradation by TflA. Here, our results suggested toxoflavin is a photosensitizer and its degradation by TflA serves as a light-dependent selection marker system in diverse plant species. We examined the efficiencies of two different plant selection systems, toxoflavin/tflA and hygromycin/hygromycin phosphotransferase (hpt) in both rice and Arabidopsis. The toxoflavin/tflA selection was more remarkable than hygromycin/hpt selection in the high-density screening of transgenic Arabidopsis seeds. Based on these results, we propose the toxoflavin/tflA selection system, which is based on the degradation of the photosensitizer, provides a new robust nonantibiotic selection marker system for diverse plants. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  14. Laser-Induced Fluorescence (LIF) from plant foliage

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Williams, D. L.

    1986-01-01

    The fluorescence spectra and fluorescence induction kinetics of green plants excited at 337 nm by a laser were studied. They correlate with plant type, as well as with changes in the physiology of the plant as the result of stress. The plant types studied include herbaceous dicots, monocots, hardwoods, conifers, and algae. These plant types could be identified on the basis of differences in either the number of fluorescent bands or the relative intensity of the bands. Differences in fluorescent spectra which could be related to vigor status are observed in conifers located in an area of high atmospheric deposition. Changes in the fluorescence spectra and induction kinetics are also seen in plants grown under conditions of nutrient deficiency and drought stress.

  15. Laser-Induced Fluorescence (LIF) from plant foliage

    NASA Technical Reports Server (NTRS)

    Chappelle, Emmett W.; Williams, Darrel L.

    1987-01-01

    The fluorescence spectra and fluorescence induction kinetics of green plants excited at 337 nm by a laser were studied. They correlate with plant type, as well as with changes in the physiology of the plant as the result of stress. The plant types studied include herbaceous dicots, monocots, hardwoods, conifers, and algae. These plant types could be identified on the basis of differences in either the number of fluorescent bands or the relative intensity of the bands. Differences in fluorescent spectra which could be related to vigor status are observed in conifers located in an area of high atmospheric deposition. Changes in the fluorescence spectra and induction kinetics are also seen in plants grown under conditions of nutrient deficiency and drought stress.

  16. The Role of Hydrogen Peroxide in Mediating the Mechanical Wounding-Induced Freezing Tolerance in Wheat

    PubMed Central

    Si, Tong; Wang, Xiao; Zhao, Chunzhao; Huang, Mei; Cai, Jian; Zhou, Qin; Dai, Tingbo; Jiang, Dong

    2018-01-01

    Systemic wound response (SWR), a well-characterized systemic signaling response, plays crucial roles in plant defense responses. Progress in understanding of the SWR in abiotic stress has also been aided by the researchers. However, the function of SWR in freezing stress remains elusive. In this study, we showed that local mild mechanical wounding enhanced freezing tolerance in newly occurred systemic leaves of wheat plants (Triticum aestivum L.). Wounding significantly increased the maximal photochemical efficiency of photosystem II, net photosynthetic rate, and the activities of the antioxidant enzymes under freezing stress. Wounding also alleviated freezing-induced chlorophyll decomposition, electrolyte leakage, water lose, and membrane peroxidation. In addition, wounding-induced freezing stress mitigation was closely associated with the ratio between reduced glutathione (GSH) and oxidized glutathione (GSSG), and the ratio between ascorbate (AsA) and dehydroascorbate (DHA), as well as the contents of total soluble sugars and free amino acids. Importantly, pharmacological study showed that wounding-induced freezing tolerance was substantially arrested by pretreatment of wheat leaves with the scavenger of hydrogen peroxide (H2O2) or the inhibitor of NADPH oxidase (RBOH). These results support the hypothesis that local mechanical wounding-induced SWR in newly occurred leaves is largely attributed to RBOH-dependent H2O2 production, which may subsequently induce freezing tolerance in wheat plants. This mechanism may have a potential application to reduce the yield losses of wheat under late spring freezing conditions. Highlights: In our previous research, we found that local mechanical wounding could induce freezing tolerance in the upper systemic leaves of wheat plants. Surprisingly, in this paper, we further demonstrated that local mechanical wounding could also increase freezing resistance in newly occurred leaves of wheat plants. RBOH mediated H2O2 and ascorbate

  17. Flexibility of CCS Power Plants and Transport Systems

    NASA Astrophysics Data System (ADS)

    Nimtz, Michael; Krautz, Hans-Joachim

    2013-04-01

    Growing shares of renewable energy in the German power grid urge fossil fuelled power plants to reduce load or to shut down completely with increasing frequency and amplitude. Shut down, load changes and the following restart or ramp-up often have to be carried out as fast as possible. To realize such fast transitions is already complicated and expensive for conventional power plants - if further measures for CO2 reduction are applied, the task is even harder. Capture equipment and transport systems will add further process steps as well as additional masses of fluids and construction material. This will result in a change of time constants and a generally slower system reaction on changes in parameters like load, temperature and pressure in the power plant components and capture units. On the other hand there is only limited time to earn money by selling electricity - if there is a chance to sell more electricity in a short term, efficiencies should be as high as possible. Any capture unit that would reduce the efficiency causes economic conflicts. Therefore measures are analysed to offset the power generation from the capture process in time or to reduce the capture load temporarily. The poster will present a case study for different CCS power plant configurations and load scenarios representing typical grid load from renewable energies. Approaches to balance the load and/or the CO2 output of these power plants will be presented. These approaches comprise: bypassing of flue gas, intermediate storage of heat and/or fluids. Amounts of additional steam, electrical energy and other process fluids (e.g. scrubbing fluids like MEA) and size of auxiliary equipment will be shown .Finally, effects on the transport system (e.g. cooling down of CO2 in the pipeline and changes in mass and volume flow) will be presented and discussed.

  18. Sweet smells prepare plants for future stress: airborne induction of plant disease immunity.

    PubMed

    Yi, Hwe-Su; Ryu, Choong-Min; Heil, Martin

    2010-05-01

    Plants require protection against a wide range of attackers such as insects and pathogens. The adequate plant defense responses are regulated via sophisticated signal cascades, which are activated following the perception of specific cues of the attackers. Plants might, however, gain a significant fitness advantage when pre-empting enemy attack before it actually occurs. Monitoring cues from attacked neighbors can permit plants to reach this goal. We have recently found airborne disease resistance against a bacterial pathogen in uninfected lima bean plants when these were located close to conspecific, resistance-expressing neighbors. The emitters could be chemically induced with benzothiadiazole or biologically with an avirulent pathogen. Unexpectedly, receiver plants, although expressing a functioning resistance, did not show reduced growth rates, which represent a common side-effect of directly induced pathogen resistance. Nonanal was identified as an active volatile and, rather than directly inducing full resistance, primed defense gene expression, which became fully activated only when the plants were subsequently challenged by a virulent pathogen. Priming by airborne signals allows for a more efficient and less costly preparation of plants for future attack and airborne signaling can affect resistance against both major groups of plant enemies: herbivores and pathogens.

  19. Regulation of epinasty induced by 2,4-dichlorophenoxyacetic acid in pea and Arabidopsis plants.

    PubMed

    Pazmiño, D M; Rodríguez-Serrano, M; Sanz, M; Romero-Puertas, M C; Sandalio, L M

    2014-07-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) causes uncontrolled cell division and malformed growth in plants, giving rise to leaf epinasty and stem curvature. In this study, mechanisms involved in the regulation of leaf epinasty induced by 2,4-D were studied using different chemicals involved in reactive oxygen species (ROS) accumulation (diphenyleniodonium, butylated hydroxyanisole, EDTA, allopurinol), calcium channels (LaCl3), protein phosphorylation (cantharidin, wortmannin) and ethylene emission/perception (aminoethoxyvinyl glycine, AgNO3). The effect of these compounds on the epinasty induced by 2,4-D was analysed in shoots and leaf strips from pea plants. For further insight into the effect of 2,4-D, studies were also made in Arabidopsis mutants deficient in ROS production (rbohD, rbohF, xdh), ethylene (ein 3-1, ctr 1-1, etr 1-1), abscisic acid (aba 3.1), and jasmonic acid (coi 1.1, jar 1.1, opr 3) pathways. The results suggest that ROS production, mainly ·OH, is essential in the development of epinasty triggered by 2,4-D. Epinasty was also found to be regulated by Ca2+, protein phosphorylation and ethylene, although all these factors act downstream of ROS production. The use of Arabidopsis mutants appears to indicate that abscisic and jasmonic acid are not involved in regulating epinasty, although they could be involved in other symptoms induced by 2,4-D. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Chlorophyll fluorescence lifetime imaging provides new insight into the chlorosis induced by plant virus infection.

    PubMed

    Lei, Rong; Jiang, Hongshan; Hu, Fan; Yan, Jin; Zhu, Shuifang

    2017-02-01

    Leaf chlorosis induced by plant virus infection has a short fluorescence lifetime, which reflects damaged photosynthetic complexes and degraded chloroplasts. Plant viruses often induce chlorosis and necrosis, which are intimately related to photosynthetic functions. Chlorophyll fluorescence lifetime measurement is a valuable noninvasive tool for analyzing photosynthetic processes and is a sensitive indicator of the environment surrounding the fluorescent molecules. In this study, our central goal was to explore the effect of viral infection on photosynthesis by employing chlorophyll fluorescence lifetime imaging (FLIM), steady-state fluorescence, non-photochemical quenching (NPQ), transmission electron microscopy (TEM), and pigment analysis. The data indicated that the chlorophyll fluorescence lifetime of chlorotic leaves was significantly shorter than that of healthy control leaves, and the fitted short lifetime component of chlorophyll fluorescence of chlorotic leaves was dominant. This dominant short lifetime component may result from damage to the structure of thylakoid, which was confirmed by TEM. The NPQ value of chlorotic leaves was slightly higher than that of healthy green leaves, which can be explained by increased neoxanthin, lutein and violaxanthin content relative to chlorophyll a. The difference in NPQ is slight, but FLIM can provide simple and direct characterization of PSII structure and photosynthetic function. Therefore, this technique shows great potential as a simple and rapid method for studying mechanisms of plant virus infection.