Science.gov

Sample records for induced autocrine signaling

  1. Human neural stem cell-induced endothelial morphogenesis requires autocrine/paracrine and juxtacrine signaling

    PubMed Central

    Chou, Chung-Hsing; Modo, Michel

    2016-01-01

    Transplanted neural stem cells (NSC) interact with the host brain microenvironment. A neovascularization is commonly observed in the vicinity of the cell deposit, which is correlated with behavioral improvements. To elucidate the signaling mechanisms between human NSCs and endothelial cells (ECs), these were cocultured in an in vitro model in which NSC-induced endothelial morphogenesis produced a neurovascular environment. Soluble (autocrine/paracrine) and contact–mediated (juxtacrine) signaling molecules were evaluated for two conditionally immortalized fetal NSC lines derived from the cortical anlage (CTXOE03) and ganglionic eminence (STROC05), as well as an adult EC line (D3) derived from the cerebral microvasculature of a hippocampal biopsy. STROC05 were 4 times as efficient to induce endothelial morphogenesis compared to CTXOE03. The cascade of reciprocal interactions between NSCs and ECs in this process was determined by quantifying soluble factors, receptor mapping, and immunocytochemistry for extracellular matrix molecules. The mechanistic significance of these was further evaluated by pharmacological blockade. The sequential cell-specific regulation of autocrine/paracrine and juxtacrine signaling accounted for the differential efficiency of NSCs to induce endothelial morphogenesis. These in vitro studies shed new light on the reciprocal interactions between NSCs and ECs, which are pivotal for our mechanistic understanding of the efficacy of NSC transplantation. PMID:27374240

  2. Autocrine TGFbeta signaling mediates vitamin D3 analog-induced growth inhibition in breast cells.

    PubMed

    Yang, L; Yang, J; Venkateswarlu, S; Ko, T; Brattain, M G

    2001-09-01

    In this study, we address whether TGFbeta signaling mediates vitamin D3 analog-induced growth inhibition in nonmalignant and malignant breast cells. Normal mammary epithelial cells (184), immortalized nonmalignant mammary epithelial cells (184A1 and MCF10A), and breast cancer cells (early passage MCF7: MCF7E) were sensitive to the inhibitory effects of vitamin D3 analogs (EB1089 and MC1288) while late passage MCF7 breast cancer (MCF7L) cells were relatively resistant. A similar pattern of sensitivity to TGFbeta was observed with these cells. Thus, the sensitivity to the vitamin D3 analogs correlated with the sensitivity to TGFbeta. MCF7L TGFbetaRII-transfected cells, which have autocrine TGFbeta activity, were more sensitive to EB1089 than MCF7L cells. TGFbeta neutralizing antibody was found to block the inhibitory effects of these analogs. These results are consistent with the idea that autocrine TGFbeta signaling mediates the anti-proliferative effects of the vitamin D3 analogs in these cells. The expression of TGFbeta isoforms and/or TGFbeta receptors was induced by the analogs in the vitamin D3 and TGFbeta sensitive cells. Vitamin D3 analogs did not induce TGFbeta or TGFbeta receptor expression in the resistant MCF7L cells. Therefore, EB1089 induces autocrine TGFbeta activity through increasing expression of TGFbeta isoforms and/or TGFbeta receptors. In addition, EB1089 induced nuclear VDR protein levels in the sensitive 184A1 cells but not in the resistant MCF7L cells. 184A1 cells were more sensitive to EB1089-induced VDR-dependent transactivation than MCF7L cells as measured by a luciferase reporter construct containing the VDRE, indicating a defect of VDR signaling in MCF7L cells. Smad3, a TGFbeta signaling mediator, coactivated VDR-dependent transactivation in 184A1 cells but not in MCF7L cells. These results indicate that Smad3 coactivates VDR to further enhance TGFbeta signaling and vitamin D3 signaling in the sensitive 184A1 cells. The results also

  3. CXCR2 signaling regulates KRAS(G12D)-induced autocrine growth of pancreatic cancer

    PubMed Central

    Purohit, Abhilasha; Varney, Michelle; Rachagani, Satyanarayana; Ouellette, Michel M.; Batra, Surinder K.; Singh, Rakesh K.

    2016-01-01

    Pharmacological inhibition of RAS, the master regulator of pancreatic ductal adenocarcinoma (PDAC), continues to be a challenge. Mutations in various isoforms of RAS gene, including KRAS are known to upregulate CXC chemokines; however, their precise role in KRAS-driven pancreatic cancer remains unclear. In this report, we reveal a previously unidentified tumor cell-autonomous role of KRAS(G12D)-induced CXCR2 signaling in mediating growth of neoplastic PDAC cells. Progressively increasing expression of mCXCR2 and its ligands was detected in the malignant ductal cells of Pdx1-cre;LSL-Kras(G12D) mice. Knocking-down CXCR2 in KRAS(G12D)-bearing human pancreatic duct-derived cells demonstrated a significant decrease in the in vitro and in vivo tumor cell proliferation. Furthermore, CXCR2 antagonists showed selective growth inhibition of KRAS(G12D)-bearing cells in vitro. Intriguingly, both genetic and pharmacological inhibition of CXCR2 signaling in KRAS(G12D)-bearing pancreatic ductal cells reduced the levels of KRAS protein, strongly implying the presence of a KRAS-CXCR2 feed-forward loop. Together, these data demonstrate the role of CXCR2 signaling in KRAS(G12D)-induced growth transformation and progression in PDAC. PMID:26771140

  4. Defective platelet autocrine signaling in HPS.

    PubMed

    Storrie, Brian

    2015-03-01

    In this issue of Blood, Meng et al and Sharda et al use the Hermansky-Pudlak syndrome (HPS) as a model to show that adenosine 5′-diphosphate (ADP) released by dense granules serves as an autocrine signal to potentiate platelet release of α-granule and lysosome cargo and protein disulfide isomerase (PDI), all of which serve to stabilize thrombus formation. PMID:25745182

  5. The Ras/Raf/MEK/extracellular signal-regulated kinase pathway induces autocrine-paracrine growth inhibition via the leukemia inhibitory factor/JAK/STAT pathway.

    PubMed

    Park, Jong-In; Strock, Christopher J; Ball, Douglas W; Nelkin, Barry D

    2003-01-01

    Sustained activation of the Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway can lead to cell cycle arrest in many cell types. We have found, with human medullary thyroid cancer (MTC) cells, that activated Ras or c-Raf-1 can induce growth arrest by producing and secreting an autocrine-paracrine factor. This protein was purified from cell culture medium conditioned by Raf-activated MTC cells and was identified by mass spectrometry as leukemia inhibitory factor (LIF). LIF expression upon Raf activation and subsequent activation of JAK-STAT3 was also observed in small cell lung carcinoma cells, suggesting that this autocrine-paracrine signaling may be a common response to Ras/Raf activation. LIF was sufficient to induce growth arrest and differentiation of MTC cells. This effect was mediated through the gp130/JAK/STAT3 pathway, since anti-gp130 blocking antibody or dominant-negative STAT3 blocked the effects of LIF. Thus, LIF expression provides a novel mechanism allowing Ras/Raf signaling to activate the JAK-STAT3 pathway. In addition to this cell-extrinsic growth inhibitory pathway, we find that the Ras/Raf/MEK/ERK pathway induces an intracellular growth inhibitory signal, independent of the LIF/JAK/STAT3 pathway. Therefore, activation of the Ras/Raf/MEK/ERK pathway can lead to growth arrest and differentiation via at least two different signaling pathways. This use of multiple pathways may be important for "fail-safe" induction and maintenance of cell cycle arrest.

  6. The Ras/Raf/MEK/Extracellular Signal-Regulated Kinase Pathway Induces Autocrine-Paracrine Growth Inhibition via the Leukemia Inhibitory Factor/JAK/STAT Pathway

    PubMed Central

    Park, Jong-In; Strock, Christopher J.; Ball, Douglas W.; Nelkin, Barry D.

    2003-01-01

    Sustained activation of the Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway can lead to cell cycle arrest in many cell types. We have found, with human medullary thyroid cancer (MTC) cells, that activated Ras or c-Raf-1 can induce growth arrest by producing and secreting an autocrine-paracrine factor. This protein was purified from cell culture medium conditioned by Raf-activated MTC cells and was identified by mass spectrometry as leukemia inhibitory factor (LIF). LIF expression upon Raf activation and subsequent activation of JAK-STAT3 was also observed in small cell lung carcinoma cells, suggesting that this autocrine-paracrine signaling may be a common response to Ras/Raf activation. LIF was sufficient to induce growth arrest and differentiation of MTC cells. This effect was mediated through the gp130/JAK/STAT3 pathway, since anti-gp130 blocking antibody or dominant-negative STAT3 blocked the effects of LIF. Thus, LIF expression provides a novel mechanism allowing Ras/Raf signaling to activate the JAK-STAT3 pathway. In addition to this cell-extrinsic growth inhibitory pathway, we find that the Ras/Raf/MEK/ERK pathway induces an intracellular growth inhibitory signal, independent of the LIF/JAK/STAT3 pathway. Therefore, activation of the Ras/Raf/MEK/ERK pathway can lead to growth arrest and differentiation via at least two different signaling pathways. This use of multiple pathways may be important for “fail-safe” induction and maintenance of cell cycle arrest. PMID:12509453

  7. Autocrine signaling is a key regulatory element during osteoclastogenesis

    PubMed Central

    Kopesky, Paul; Tiedemann, Kerstin; Alkekhia, Dahlia; Zechner, Christoph; Millard, Bjorn; Schoeberl, Birgit; Komarova, Svetlana V.

    2014-01-01

    ABSTRACT Osteoclasts are responsible for bone destruction in degenerative, inflammatory and metastatic bone disorders. Although osteoclastogenesis has been well-characterized in mouse models, many questions remain regarding the regulation of osteoclast formation in human diseases. We examined the regulation of human precursors induced to differentiate and fuse into multinucleated osteoclasts by receptor activator of nuclear factor kappa-B ligand (RANKL). High-content single cell microscopy enabled the time-resolved quantification of both the population of monocytic precursors and the emerging osteoclasts. We observed that prior to induction of osteoclast fusion, RANKL stimulated precursor proliferation, acting in part through an autocrine mediator. Cytokines secreted during osteoclastogenesis were resolved using multiplexed quantification combined with a Partial Least Squares Regression model to identify the relative importance of specific cytokines for the osteoclastogenesis outcome. Interleukin 8 (IL-8) was identified as one of RANKL-induced cytokines and validated for its role in osteoclast formation using inhibitors of the IL-8 cognate receptors CXCR1 and CXCR2 or an IL-8 blocking antibody. These insights demonstrate that autocrine signaling induced by RANKL represents a key regulatory component of human osteoclastogenesis. PMID:25063197

  8. Soluble gC1qR Is an Autocrine Signal That Induces B1R Expression on Endothelial Cells

    PubMed Central

    Ji, Yan; Valentino, Alisa; Pednekar, Lina; Ramadass, Mahalakshmi; Habiel, David; Kew, Richard R.; Hosszu, Kinga H.; Galanakis, Dennis K.; Kishore, Uday; Peerschke, Ellinor I. B.

    2014-01-01

    Bradykinin (BK) is one of the most potent vasodilator agonists known and belongs to the kinin family of proinflammatory peptides. BK induces its activity via two G protein–coupled receptors: BK receptor 1 (B1R) and BK receptor 2. Although BK receptor 2 is constitutively expressed on endothelial cells (ECs), B1R is induced by IL-1β. The C1q receptor, receptor for the globular heads of C1q (gC1qR), which plays a role in BK generation, is expressed on activated ECs and is also secreted as soluble gC1qR (sgC1qR). Because sgC1qR can bind to ECs, we hypothesized that it may also serve as an autocrine/paracrine signal for the induction of B1R expression. In this study, we show that gC1qR binds to ECs via a highly conserved domain consisting of residues 174–180, as assessed by solid-phase binding assay and deconvolution fluorescence microscopy. Incubation of ECs (24 h, 37°C) with sgC1qR resulted in enhancement of B1R expression, whereas incubation with gC1qR lacking aa 174–180 and 154–162 had a diminished effect. Binding of sgC1qR to ECs was through surface-bound fibrinogen and was inhibited by anti-fibrinogen. In summary, our data suggest that, at sites of inflammation, sgC1qR can enhance vascular permeability by upregulation of B1R expression through de novo synthesis, as well as rapid translocation of preformed B1R. PMID:24319267

  9. Probing Embryonic Stem Cell Autocrine and Paracrine Signaling Using Microfluidics

    NASA Astrophysics Data System (ADS)

    Przybyla, Laralynne; Voldman, Joel

    2012-07-01

    Although stem cell fate is traditionally manipulated by exogenously altering the cells' extracellular signaling environment, the endogenous autocrine and paracrine signals produced by the cells also contribute to their two essential processes: self-renewal and differentiation. Autocrine and/or paracrine signals are fundamental to both embryonic stem cell self-renewal and early embryonic development, but the nature and contributions of these signals are often difficult to fully define using conventional methods. Microfluidic techniques have been used to explore the effects of cell-secreted signals by controlling cell organization or by providing precise control over the spatial and temporal cellular microenvironment. Here we review how such techniques have begun to be adapted for use with embryonic stem cells, and we illustrate how many remaining questions in embryonic stem cell biology could be addressed using microfluidic technologies.

  10. HCV Infection Induces Autocrine Interferon Signaling by Human Liver Endothelial Cell and Release of Exosomes, Which Inhibits Viral Replication

    PubMed Central

    Giugliano, Silvia; Kriss, Michael; Golden-Mason, Lucy; Dobrinskikh, Evgenia; Stone, Amy E.L.; Soto-Gutierrez, Alejandro; Mitchell, Angela; Khetani, Salman R.; Yamane, Daisuke; Stoddard, Mark; Li, Hui; Shaw, George M.; Edwards, Michael G.; Lemon, Stanley M.; Gale, Michael; Shah, Vijay H.; Rosen, Hugo R.

    2014-01-01

    Background & Aims Liver sinusoidal endothelial cells (LSECs) make up a large proportion of the non-parenchymal cells in the liver. LSECs are involved in induction of immune tolerance, but little is known about their functions during hepatitis C virus (HCV) infection. Methods Primary human LSECs (HLSECs) and immortalized liver endothelial cells (TMNK-1) were exposed to various forms of HCV, including full-length transmitted/founder virus, sucrose-purified Japanese Fulminant Hepatitis-1 (JFH-1), a virus encoding a luciferase reporter, and the HCV-specific pathogen-associated molecular pattern molecules. Cells were analyzed by confocal immunofluorescence, immunohistochemical, and PCR assays. Results HLSECs internalized HCV, independent of cell–cell contacts; HCV RNA was translated but not replicated. Through pattern recognition receptors (TLR7 and retinoic acid inducible gene 1), HCV RNA induced consistent and broad transcription of multiple interferons (IFNs); supernatants from primary HLSECs transfected with HCV-specific pathogen-associated molecular pattern molecules increased induction of IFNs and IFN-stimulated genes in HLSECs. Recombinant type I and type III IFNs strongly up-regulated HLSEC transcription of interferon λ 3 (IFNL3) and viperin (RSAD2), which inhibit replication of HCV. Compared to CD8+ T cells, HLSECs suppressed HCV replication within Huh7.5.1 cells, also inducing IFN-stimulated genes in co-culture. Conditioned media from IFN-stimulated HLSECs induced expression of antiviral genes by uninfected primary human hepatocytes. Exosomes, derived from HLSECs following stimulation with either type I or type III IFNs, controlled HCV replication in a dose-dependent manner. Conclusions Cultured HLSECs produce factors that mediate immunity against HCV. HLSECs induce self-amplifying IFN-mediated responses and release of exosomes with antiviral activity. PMID:25447848

  11. K-RAS(V12) Induces Autocrine Production of EGFR Ligands and Mediates Radioresistance Through EGFR-Dependent Akt Signaling and Activation of DNA-PKcs

    SciTech Connect

    Minjgee, Minjmaa; Toulany, Mahmoud; Kehlbach, Rainer; Giehl, Klaudia; Rodemann, H. Peter

    2011-12-01

    Purpose: It is known that postirradiation survival of tumor cells presenting mutated K-RAS is mediated through autocrine activation of epidermal growth factor receptor (EGFR). In this study the molecular mechanism of radioresistance of cells overexpressing mutated K-RAS(V12) was investigated. Methods and Materials: Head-and-neck cancer cells (FaDu) presenting wild-type K-RAS were transfected with empty vector or vector expressing mutated K-RAS(V12). The effect of K-RAS(V12) on autocrine production of EGFR ligands, activation of EGFR downstream pathways, DNA damage repair, and postirradiation survival was analyzed. Results: Conditioned medium collected from K-RAS(V12)-transfected cells enhanced activation of the phosphatidylinositol-3-kinase-Akt pathway and increased postirradiation survival of wild-type K-RAS parental cells when compared with controls. These effects were reversed by amphiregulin (AREG)-neutralizing antibody. In addition, secretion of the EGFR ligands AREG and transforming growth factor {alpha} was significantly increased upon overexpression of K-RAS(V12). Expression of mutated K-RAS(V12) resulted in an increase in radiation-induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation at S2056. This increase was accompanied by increased repair of DNA double-strand breaks. Abrogation of DNA-PKcs phosphorylation by serum depletion or AREG-neutralizing antibody underscored the role of autocrine production of EGFR ligands, namely, AREG, in regulating DNA-PKcs activation in K-RAS mutated cells. Conclusions: These data indicate that radioresistance of K-RAS mutated tumor cells is at least in part due to constitutive production of EGFR ligands, which mediate enhanced repair of DNA double-strand breaks through the EGFR-phosphatidylinositol-3-kinase-Akt cascade.

  12. Reactive Oxygen Species Alter Autocrine and Paracrine Signaling

    SciTech Connect

    Zangar, Richard C.; Bollinger, Nikki; Weber, Thomas J.; Tan, Ruimin; Markillie, Lye Meng; Karin, Norman J.

    2011-12-01

    Cytochrome P450 (P450) 3A4 (CYP3A4) is the most abundant P450 protein in human liver and intestine and is highly inducible by a variety of drugs and other compounds. The P450 catalytic cycle is known to uncouple and release reactive oxygen species (ROS), but the effects of ROS from P450 and other enzymes in the endo-plasmic reticulum have been poorly studied from the perspective of effects on cell biology. In this study, we expressed low levels of CYP3A4 in HepG2 cells, a human hepatocarcinoma cell line, and examined effects on intracellular levels of ROS and on the secretion of a variety of growth factors that are important in extracellular communication. Using the redox-sensitive dye RedoxSensor red, we demonstrate that CYP3A4 expression increases levels of ROS in viable cells. A customELISA microarray platform was employed to demonstrate that expression of CYP3A4 increased secretion of amphiregulin, intracellular adhesion molecule 1, matrix metalloprotease 2, platelet-derived growth factor (PDGF), and vascular endothelial growth factor, but suppressed secretion of CD14. The antioxidant N-acetylcysteine suppressed all P450-dependent changes in protein secretion except for CD14. Quantitative RT-PCR demonstrated that changes in protein secretion were consistently associated with corresponding changes in gene expression. Inhibition of the NF-{kappa}B pathway blocked P450 effects on PDGF secretion. CYP3A4 expression also altered protein secretion in human mammary epithelial cells and C10 mouse lung cells. Overall, these results suggest that increased ROS production in the endoplasmic reticulum alters the secretion of proteins that have key roles in paracrine and autocrine signaling.

  13. Electrical stimulation induces IL-6 in skeletal muscle through extracellular ATP by activating Ca(2+) signals and an IL-6 autocrine loop.

    PubMed

    Bustamante, Mario; Fernández-Verdejo, Rodrigo; Jaimovich, Enrique; Buvinic, Sonja

    2014-04-15

    Interleukin-6 (IL-6) is an important myokine that is highly expressed in skeletal muscle cells upon exercise. We assessed IL-6 expression in response to electrical stimulation (ES) or extracellular ATP as a known mediator of the excitation-transcription mechanism in skeletal muscle. We examined whether the canonical signaling cascade downstream of IL-6 (IL-6/JAK2/STAT3) also responds to muscle cell excitation, concluding that IL-6 influences its own expression through a positive loop. Either ES or exogenous ATP (100 μM) increased both IL-6 expression and p-STAT3 levels in rat myotubes, a process inhibited by 100 μM suramin and 2 U/ml apyrase. ATP also evoked IL-6 expression in both isolated skeletal fibers and extracts derived from whole FDB muscles. ATP increased IL-6 release up to 10-fold. STAT3 activation evoked by ATP was abolished by the JAK2 inhibitor HBC. Blockade of secreted IL-6 with a neutralizing antibody or preincubation with the STAT3 inhibitor VIII reduced STAT3 activation evoked by extracellular ATP by 70%. Inhibitor VIII also reduced by 70% IL-6 expression evoked by ATP, suggesting a positive IL-6 loop. In addition, ATP increased up to 60% the protein levels of SOCS3, a negative regulator of the IL-6 signaling pathway. On the other hand, intracellular calcium chelation or blockade of IP3-dependent calcium signals abolished STAT3 phosphorylation evoked by either extracellular ATP or ES. These results suggest that expression of IL-6 in stimulated skeletal muscle cells is mediated by extracellular ATP and nucleotide receptors, involving IP3-dependent calcium signals as an early step that triggers a positive IL-6 autocrine loop.

  14. Electrical stimulation induces IL-6 in skeletal muscle through extracellular ATP by activating Ca2+ signals and an IL-6 autocrine loop

    PubMed Central

    Bustamante, Mario; Fernández-Verdejo, Rodrigo; Jaimovich, Enrique

    2014-01-01

    Interleukin-6 (IL-6) is an important myokine that is highly expressed in skeletal muscle cells upon exercise. We assessed IL-6 expression in response to electrical stimulation (ES) or extracellular ATP as a known mediator of the excitation-transcription mechanism in skeletal muscle. We examined whether the canonical signaling cascade downstream of IL-6 (IL-6/JAK2/STAT3) also responds to muscle cell excitation, concluding that IL-6 influences its own expression through a positive loop. Either ES or exogenous ATP (100 μM) increased both IL-6 expression and p-STAT3 levels in rat myotubes, a process inhibited by 100 μM suramin and 2 U/ml apyrase. ATP also evoked IL-6 expression in both isolated skeletal fibers and extracts derived from whole FDB muscles. ATP increased IL-6 release up to 10-fold. STAT3 activation evoked by ATP was abolished by the JAK2 inhibitor HBC. Blockade of secreted IL-6 with a neutralizing antibody or preincubation with the STAT3 inhibitor VIII reduced STAT3 activation evoked by extracellular ATP by 70%. Inhibitor VIII also reduced by 70% IL-6 expression evoked by ATP, suggesting a positive IL-6 loop. In addition, ATP increased up to 60% the protein levels of SOCS3, a negative regulator of the IL-6 signaling pathway. On the other hand, intracellular calcium chelation or blockade of IP3-dependent calcium signals abolished STAT3 phosphorylation evoked by either extracellular ATP or ES. These results suggest that expression of IL-6 in stimulated skeletal muscle cells is mediated by extracellular ATP and nucleotide receptors, involving IP3-dependent calcium signals as an early step that triggers a positive IL-6 autocrine loop. PMID:24518675

  15. Electrical stimulation induces IL-6 in skeletal muscle through extracellular ATP by activating Ca(2+) signals and an IL-6 autocrine loop.

    PubMed

    Bustamante, Mario; Fernández-Verdejo, Rodrigo; Jaimovich, Enrique; Buvinic, Sonja

    2014-04-15

    Interleukin-6 (IL-6) is an important myokine that is highly expressed in skeletal muscle cells upon exercise. We assessed IL-6 expression in response to electrical stimulation (ES) or extracellular ATP as a known mediator of the excitation-transcription mechanism in skeletal muscle. We examined whether the canonical signaling cascade downstream of IL-6 (IL-6/JAK2/STAT3) also responds to muscle cell excitation, concluding that IL-6 influences its own expression through a positive loop. Either ES or exogenous ATP (100 μM) increased both IL-6 expression and p-STAT3 levels in rat myotubes, a process inhibited by 100 μM suramin and 2 U/ml apyrase. ATP also evoked IL-6 expression in both isolated skeletal fibers and extracts derived from whole FDB muscles. ATP increased IL-6 release up to 10-fold. STAT3 activation evoked by ATP was abolished by the JAK2 inhibitor HBC. Blockade of secreted IL-6 with a neutralizing antibody or preincubation with the STAT3 inhibitor VIII reduced STAT3 activation evoked by extracellular ATP by 70%. Inhibitor VIII also reduced by 70% IL-6 expression evoked by ATP, suggesting a positive IL-6 loop. In addition, ATP increased up to 60% the protein levels of SOCS3, a negative regulator of the IL-6 signaling pathway. On the other hand, intracellular calcium chelation or blockade of IP3-dependent calcium signals abolished STAT3 phosphorylation evoked by either extracellular ATP or ES. These results suggest that expression of IL-6 in stimulated skeletal muscle cells is mediated by extracellular ATP and nucleotide receptors, involving IP3-dependent calcium signals as an early step that triggers a positive IL-6 autocrine loop. PMID:24518675

  16. Direct Melanoma Cell Contact Induces Stromal Cell Autocrine Prostaglandin E2-EP4 Receptor Signaling That Drives Tumor Growth, Angiogenesis, and Metastasis.

    PubMed

    Inada, Masaki; Takita, Morichika; Yokoyama, Satoshi; Watanabe, Kenta; Tominari, Tsukasa; Matsumoto, Chiho; Hirata, Michiko; Maru, Yoshiro; Maruyama, Takayuki; Sugimoto, Yukihiko; Narumiya, Shuh; Uematsu, Satoshi; Akira, Shizuo; Murphy, Gillian; Nagase, Hideaki; Miyaura, Chisato

    2015-12-11

    The stromal cells associated with tumors such as melanoma are significant determinants of tumor growth and metastasis. Using membrane-bound prostaglandin E synthase 1 (mPges1(-/-)) mice, we show that prostaglandin E2 (PGE2) production by host tissues is critical for B16 melanoma growth, angiogenesis, and metastasis to both bone and soft tissues. Concomitant studies in vitro showed that PGE2 production by fibroblasts is regulated by direct interaction with B16 cells. Autocrine activity of PGE2 further regulates the production of angiogenic factors by fibroblasts, which are key to the vascularization of both primary and metastatic tumor growth. Similarly, cell-cell interactions between B16 cells and host osteoblasts modulate mPGES-1 activity and PGE2 production by the osteoblasts. PGE2, in turn, acts to stimulate receptor activator of NF-κB ligand expression, leading to osteoclast differentiation and bone erosion. Using eicosanoid receptor antagonists, we show that PGE2 acts on osteoblasts and fibroblasts in the tumor microenvironment through the EP4 receptor. Metastatic tumor growth and vascularization in soft tissues was abrogated by an EP4 receptor antagonist. EP4-null Ptger4(-/-) mice do not support B16 melanoma growth. In vitro, an EP4 receptor antagonist modulated PGE2 effects on fibroblast production of angiogenic factors. Our data show that B16 melanoma cells directly influence host stromal cells to generate PGE2 signals governing neoangiogenesis and metastatic growth in bone via osteoclast erosive activity as well as angiogenesis in soft tissue tumors.

  17. Regulation of Dense-Core Granule Replenishment by Autocrine BMP Signalling in Drosophila Secondary Cells

    PubMed Central

    Redhai, Siamak; Hellberg, Josephine E. E. U.; Wainwright, Mark; Perera, Sumeth W.; Castellanos, Felix; Kroeger, Benjamin; Gandy, Carina; Leiblich, Aaron; Corrigan, Laura; Hilton, Thomas; Patel, Benjamin; Fan, Shih-Jung; Hamdy, Freddie; Goberdhan, Deborah C. I.

    2016-01-01

    Regulated secretion by glands and neurons involves release of signalling molecules and enzymes selectively concentrated in dense-core granules (DCGs). Although we understand how many secretagogues stimulate DCG release, how DCG biogenesis is then accelerated to replenish the DCG pool remains poorly characterised. Here we demonstrate that each prostate-like secondary cell (SC) in the paired adult Drosophila melanogaster male accessory glands contains approximately ten large DCGs, which are loaded with the Bone Morphogenetic Protein (BMP) ligand Decapentaplegic (Dpp). These DCGs can be marked in living tissue by a glycophosphatidylinositol (GPI) lipid-anchored form of GFP. In virgin males, BMP signalling is sporadically activated by constitutive DCG secretion. Upon mating, approximately four DCGs are typically released immediately, increasing BMP signalling, primarily via an autocrine mechanism. Using inducible knockdown specifically in adult SCs, we show that secretion requires the Soluble NSF Attachment Protein, SNAP24. Furthermore, mating-dependent BMP signalling not only promotes cell growth, but is also necessary to accelerate biogenesis of new DCGs, restoring DCG number within 24 h. Our analysis therefore reveals an autocrine BMP-mediated feedback mechanism for matching DCG release to replenishment as secretion rates fluctuate, and might explain why in other disease-relevant systems, like pancreatic β-cells, BMP signalling is also implicated in the control of secretion. PMID:27727275

  18. Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform

    PubMed Central

    Müller, Eike; Wang, Weijia; Qiao, Wenlian; Bornhäuser, Martin; Zandstra, Peter W.; Werner, Carsten; Pompe, Tilo

    2016-01-01

    Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin. PMID:27535453

  19. Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform

    NASA Astrophysics Data System (ADS)

    Müller, Eike; Wang, Weijia; Qiao, Wenlian; Bornhäuser, Martin; Zandstra, Peter W.; Werner, Carsten; Pompe, Tilo

    2016-08-01

    Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin.

  20. Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform.

    PubMed

    Müller, Eike; Wang, Weijia; Qiao, Wenlian; Bornhäuser, Martin; Zandstra, Peter W; Werner, Carsten; Pompe, Tilo

    2016-01-01

    Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin. PMID:27535453

  1. Intracellular autocrine VEGF signaling promotes EBDC cell proliferation, which can be inhibited by Apatinib.

    PubMed

    Peng, Sui; Zhang, Yanyan; Peng, Hong; Ke, Zunfu; Xu, Lixia; Su, Tianhong; Tsung, Allan; Tohme, Samer; Huang, Hai; Zhang, Qiuyang; Lencioni, Riccardo; Zeng, Zhirong; Peng, Baogang; Chen, Minhu; Kuang, Ming

    2016-04-10

    Tumor cells produce vascular endothelial growth factor (VEGF) which can interact with membrane or cytoplasmic VEGF receptors (VEGFRs) to promote cell growth. We aimed to investigate the role of extracellular/intracellular autocrine VEGF signaling and Apatinib, a highly selective VEGFR2 inhibitor, in extrahepatic bile duct cancer (EBDC). We found conditioned medium or recombinant human VEGF treatment promoted EBDC cell proliferation through a phospholipase C-γ1-dependent pathway. This pro-proliferative effect was diminished by VEGF, VEGFR1 or VEGFR2 neutralizing antibodies, but more significantly suppressed by intracellular VEGFR inhibitor. The rhVEGF induced intracellular VEGF signaling by promoting nuclear accumulation of pVEGFR1/2 and enhancing VEGF promoter activity, mRNA and protein expression. Internal VEGFR2 inhibitor Apatinib significantly inhibited intracellular VEGF signaling, suppressed cell proliferation in vitro and delayed xenograft tumor growth in vivo, while anti-VEGF antibody Bevacizumab showed no effect. Clinically, overexpression of pVEGFR1 and pVEGFR2 was significantly correlated with poorer overall survival (P = .007 and P = .020, respectively). In conclusion, the intracellular autocrine VEGF loop plays a predominant role in VEGF-induced cell proliferation. Apatinib is an effective intracellular VEGF pathway blocker that presents a great therapeutic potential in EBDC. PMID:26805764

  2. An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition.

    PubMed

    Gregory, Philip A; Bracken, Cameron P; Smith, Eric; Bert, Andrew G; Wright, Josephine A; Roslan, Suraya; Morris, Melanie; Wyatt, Leila; Farshid, Gelareh; Lim, Yat-Yuen; Lindeman, Geoffrey J; Shannon, M Frances; Drew, Paul A; Khew-Goodall, Yeesim; Goodall, Gregory J

    2011-05-15

    Epithelial-mesenchymal transition (EMT) is a form of cellular plasticity that is critical for embryonic development and tumor metastasis. A double-negative feedback loop involving the miR-200 family and ZEB (zinc finger E-box-binding homeobox) transcription factors has been postulated to control the balance between epithelial and mesenchymal states. Here we demonstrate using the epithelial Madin Darby canine kidney cell line model that, although manipulation of the ZEB/miR-200 balance is able to repeatedly switch cells between epithelial and mesenchymal states, the induction and maintenance of a stable mesenchymal phenotype requires the establishment of autocrine transforming growth factor-β (TGF-β) signaling to drive sustained ZEB expression. Furthermore, we show that prolonged autocrine TGF-β signaling induced reversible DNA methylation of the miR-200 loci with corresponding changes in miR-200 levels. Collectively, these findings demonstrate the existence of an autocrine TGF-β/ZEB/miR-200 signaling network that regulates plasticity between epithelial and mesenchymal states. We find a strong correlation between ZEBs and TGF-β and negative correlations between miR-200 and TGF-β and between miR-200 and ZEBs, in invasive ductal carcinomas, consistent with an autocrine TGF-β/ZEB/miR-200 signaling network being active in breast cancers. PMID:21411626

  3. Autocrine signaling involved in cell volume regulation: the role of released transmitters and plasma membrane receptors.

    PubMed

    Franco, Rodrigo; Panayiotidis, Mihalis I; de la Paz, Lenin D Ochoa

    2008-07-01

    Cell volume regulation is a basic homeostatic mechanism transcendental for the normal physiology and function of cells. It is mediated principally by the activation of osmolyte transport pathways that result in net changes in solute concentration that counteract cell volume challenges in its constancy. This process has been described to be regulated by a complex assortment of intracellular signal transduction cascades. Recently, several studies have demonstrated that alterations in cell volume induce the release of a wide variety of transmitters including hormones, ATP and neurotransmitters, which have been proposed to act as extracellular signals that regulate the activation of cell volume regulatory mechanisms. In addition, changes in cell volume have also been reported to activate plasma membrane receptors (including tyrosine kinase receptors, G-protein coupled receptors and integrins) that have been demonstrated to participate in the regulatory process of cell volume. In this review, we summarize recent studies about the role of changes in cell volume in the regulation of transmitter release as well as in the activation of plasma membrane receptors and their further implications in the regulation of the signaling machinery that regulates the activation of osmolyte flux pathways. We propose that the autocrine regulation of Ca2+-dependent and tyrosine phosphorylation-dependent signaling pathways by the activation of plasma membrane receptors and swelling-induced transmitter release is necessary for the activation/regulation of osmolyte efflux pathways and cell volume recovery. Furthermore, we emphasize the importance of studying these extrinsic signals because of their significance in the understanding of the physiology of cell volume regulation and its role in cell biology in vivo, where the constraint of the extracellular space might enhance the autocrine or even paracrine signaling induced by these released transmitters. PMID:18300263

  4. Autocrine Signaling and Quorum Sensing: Extreme Ends of a Common Spectrum.

    PubMed

    Doğaner, Berkalp A; Yan, Lawrence K Q; Youk, Hyun

    2016-04-01

    'Secrete-and-sense cells' can communicate by secreting a signaling molecule while also producing a receptor that detects the molecule. The cell can potentially 'talk' to itself ('self-communication') or talk to neighboring cells with the same receptor ('neighbor communication'). The predominant forms of secrete-and-sense cells are self-communicating 'autocrine cells', which are largely found in animals, and neighbor-communicating 'quorum sensing cells', which are mostly associated with bacteria. While assumed to function independently of one another, recent studies have discovered quorum-sensing organs and autocrine-signaling microbes. Moreover, similar types of genetic circuit control many autocrine and quorum-sensing cells. Here, we outline these recent findings and explain how autocrine and quorum sensing are two sides of a many-sided 'dice' created by the versatile secrete-and-sense cell.

  5. An angiopoietin-like protein 2 autocrine signaling promotes EMT during pancreatic ductal carcinogenesis.

    PubMed

    Carbone, Carmine; Piro, Geny; Fassan, Matteo; Tamburrino, Anna; Mina, Maria Mihaela; Zanotto, Marco; Chiao, Paul J; Bassi, Claudio; Scarpa, Aldo; Tortora, Giampaolo; Melisi, Davide

    2015-05-30

    The identification of the earliest molecular events responsible for the metastatic dissemination of pancreatic ductal adenocarcinoma (PDAC) remains critical for early detection, prevention, and treatment interventions. In this study, we hypothesized that an autocrine signaling between Angiopoietin-like Protein (ANGPTL)2 and its receptor leukocyte immunoglobulin-like receptor B2 (LILRB2) might be responsible for the epithelial-to-mesenchymal transition (EMT) and, the early metastatic behavior of cells in pancreatic preneoplastic lesions.We demonstrated that the sequential activation of KRAS, expression of HER2 and silencing of p16/p14 are sufficient to progressively and significantly increase the secretion of ANGPTL2, and the expression of LILRB2. Silencing the expression of ANGPTL2 reverted EMT and reduced migration in these cell lines. Blocking ANGPTL2 receptor LILRB2 in KRAS, and KRAS/HER2/p16p14shRNA LILRB2- expressing cells reduced ANGPTL2-induced cell proliferation and invasion. An increasingly significant overexpression of ANGPTL2 was observed in in a series of 68 different human PanIN and 27 PDAC lesions if compared with normal pancreatic parenchyma.These findings showed that the autocrine signaling of ANGPTL2 and its receptor LILRB2 plays key roles in sustaining EMT and the early metastatic behavior of cells in pancreatic preneoplastic lesions supporting the potential role of ANGPTL2 for early detection, metastasis prevention, and treatment in PDAC.

  6. An angiopoietin-like protein 2 autocrine signaling promotes EMT during pancreatic ductal carcinogenesis

    PubMed Central

    Carbone, Carmine; Piro, Geny; Fassan, Matteo; Tamburrino, Anna; Mina, Maria Mihaela; Zanotto, Marco; Chiao, Paul J; Bassi, Claudio; Scarpa, Aldo; Tortora, Giampaolo; Melisi, Davide

    2015-01-01

    The identification of the earliest molecular events responsible for the metastatic dissemination of pancreatic ductal adenocarcinoma (PDAC) remains critical for early detection, prevention, and treatment interventions. In this study, we hypothesized that an autocrine signaling between Angiopoietin-like Protein (ANGPTL)2 and its receptor leukocyte immunoglobulin-like receptor B2 (LILRB2) might be responsible for the epithelial-to-mesenchymal transition (EMT) and, the early metastatic behavior of cells in pancreatic preneoplastic lesions. We demonstrated that the sequential activation of KRAS, expression of HER2 and silencing of p16/p14 are sufficient to progressively and significantly increase the secretion of ANGPTL2, and the expression of LILRB2. Silencing the expression of ANGPTL2 reverted EMT and reduced migration in these cell lines. Blocking ANGPTL2 receptor LILRB2 in KRAS, and KRAS/HER2/p16p14shRNA LILRB2- expressing cells reduced ANGPTL2-induced cell proliferation and invasion. An increasingly significant overexpression of ANGPTL2 was observed in in a series of 68 different human PanIN and 27 PDAC lesions if compared with normal pancreatic parenchyma. These findings showed that the autocrine signaling of ANGPTL2 and its receptor LILRB2 plays key roles in sustaining EMT and the early metastatic behavior of cells in pancreatic preneoplastic lesions supporting the potential role of ANGPTL2 for early detection, metastasis prevention, and treatment in PDAC. PMID:25360865

  7. Autocrine epidermal growth factor signaling stimulates directionally persistent mammary epithelial cell migration

    SciTech Connect

    Maheshwari, Gargi; Wiley, H Steven ); Lauffenburger, Douglas A.

    2001-12-24

    Autocrine receptor/ligand signaling loops were first identified in tumor cells, where it was found that transformation of cells resulted in overexpression of certain growth factors leading to unregulated proliferation of the tumor cells (Sporn and Todaro, 1980). However, in the ensuing decades autocrine signaling has been found to operate in numerous physiological situations (Sporn and Roberts, 1992), including wound healing (Tokumaru et al., 2000), angiogenesis (Seghezzi et al., 1998), and tissue organization during development (Wasserman and Freeman, 1998) and reproductive cycles (Xie et al., 1997). Although it is becoming evident that autocrine loops play crucial roles in regulation of cell function within tissue contexts, it is unclear whether their effects on cell responses are different from the effects of the same ligand presented in exogenous or paracrine manner.

  8. Autocrine activity of BDNF induced by the STAT3 signaling pathway causes prolonged TrkB activation and promotes human non-small-cell lung cancer proliferation

    PubMed Central

    Chen, Bo; Liang, Yan; He, Zheng; An, Yunhe; Zhao, Weihong; Wu, Jianqing

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin superfamily, which has been implicated in the pathophysiology of the nervous system. Recently, several studies have suggested that BDNF and/or its receptor, tropomyosin related kinase B (TrkB), are involved in tumor growth and metastasis in several cancers, including prostate cancer, neuroblastoma, pancreatic ductal carcinoma, hepatocellular carcinoma, and lung cancer. Despite the increasing emphasis on BDNF/TrkB signaling in human tumors, how it participates in primary tumors has not yet been determined. Additionally, little is known about the molecular mechanisms that elicit signaling downstream of TrkB in the progression of non-small-cell lung cancer (NSCLC). In this study, we report the significant expression of BDNF in NSCLC samples and show that BDNF stimulation increases the synthesis of BDNF itself through activation of STAT3 in lung cancer cells. The release of BDNF can in turn activate TrkB signaling. The activation of both TrkB and STAT3 contribute to downstream signaling and promote human non-small-cell lung cancer proliferation. PMID:27456333

  9. Control of autocrine and paracrine myocardial signals: an emerging therapeutic strategy in heart failure.

    PubMed

    Lionetti, Vincenzo; Bianchi, Giacomo; Recchia, Fabio A; Ventura, Carlo

    2010-11-01

    A growing body of evidence supports the hypothesis that autocrine and paracrine mechanisms, mediated by factors released by the resident cardiac cells, could play an essential role in the reparative process of the failing heart. Such signals may influence the function of cardiac stem cells via several mechanisms, among which the most extensively studied are cardiomyocyte survival and angiogenesis. Moreover, besides promoting cytoprotection and angiogenesis, paracrine factors released by resident cardiac cells may alter cardiac metabolism and extracellular matrix turnover, resulting in more favorable post-injury remodeling. It is reasonable to believe that critical intracellular signals are activated and modulated in a temporal and spatial manner exerting different effects, overall depending on the microenvironment changes present in the failing myocardium. The recent demonstration that chemically, mechanically or genetically activated cardiac cells may release peptides to protect tissue against ischemic injury provides a potential route to achieve the delivery of specific proteins produced by these cells for innovative pharmacological regenerative therapy of the heart. It is important to keep in mind that therapies currently used to treat heart failure (HF) and leading to improvement of cardiac function fail to induce tissue repair/regeneration. As a matter of facts, if specific autocrine/paracrine cell-derived factors that improve cardiac function will be identified, pharmacological-based therapy might be more easily translated into clinical benefits than cell-based therapy. This review will focus on the recent development of potential pharmacologic targets to promote and drive at molecular level the cardiac repair/regeneration in HF. PMID:20364318

  10. Islet amyloid polypeptide exerts a novel autocrine action in β-cell signaling and proliferation.

    PubMed

    Visa, Montse; Alcarraz-Vizán, Gema; Montane, Joel; Cadavez, Lisa; Castaño, Carlos; Villanueva-Peñacarrillo, María Luisa; Servitja, Joan-Marc; Novials, Anna

    2015-07-01

    The toxic effects of human islet amyloid polypeptide (IAPP) on pancreatic islets have been widely studied. However, much less attention has been paid to the physiologic actions of IAPP on pancreatic β cells, which secrete this peptide together with insulin upon glucose stimulation. Here, we aimed to explore the signaling pathways and mitogenic actions of IAPP on β cells. We show that IAPP activated Erk1/2 and v-akt murine thymoma viral oncogene homolog 1 (Akt) at the picomolar range (10-100 pM) in mouse pancreatic islets and MIN6 β cells cultured at low glucose concentrations. In contrast, IAPP decreased the induction of these pathways by high glucose levels. Consistently, IAPP induced a 1.7-fold increase of β-cell proliferation at low-glucose conditions, whereas it reduced β-cell proliferation at high glucose levels. Strikingly, the specific antagonist of the IAPP receptor AC187 (100 nM) decreased the activation of Erk1/2 and Akt and reduced β-cell proliferation by 24% in glucose-stimulated β cells, uncovering a key role of endogenously released IAPP in β-cell responses to glucose. We conclude that exogenously added IAPP exerts a dual effect on β-cell mitogenic signaling and proliferation, depending on the glucose concentration. Importantly, secreted IAPP contributes to the signaling and mitogenic response of β cells to glucose through an autocrine mechanism.

  11. TGF-β1 autocrine signalling and enamel matrix components.

    PubMed

    Kobayashi-Kinoshita, Saeko; Yamakoshi, Yasuo; Onuma, Kazuo; Yamamoto, Ryuji; Asada, Yoshinobu

    2016-01-01

    Transforming growth factor-β1 (TGF-β1) is present in porcine enamel extracts and is critical for proper mineralization of tooth enamel. Here, we show that the mRNA of latent TGF-β1 is expressed throughout amelogenesis. Latent TGF-β1 is activated by matrix metalloproteinase 20 (MMP20), coinciding with amelogenin processing by the same proteinase. Activated TGF-β1 binds to the major amelogenin cleavage products, particularly the neutral-soluble P103 amelogenin, to maintain its activity. The P103 amelogenin-TGF-β1 complex binds to TGFBR1 to induce TGF-β1 signalling. The P103 amelogenin-TGF-β1 complex is slowly cleaved by kallikrein 4 (KLK4), which is secreted into the transition- and maturation-stage enamel matrix, thereby reducing TGF-β1 activity. To exert the multiple biological functions of TGF-β1 for amelogenesis, we propose that TGF-β1 is activated or inactivated by MMP20 or KLK4 and that the amelogenin cleavage product is necessary for the in-solution mobility of TGF-β1, which is necessary for binding to its receptor on ameloblasts and retention of its activity. PMID:27633089

  12. TGF-β1 autocrine signalling and enamel matrix components.

    PubMed

    Kobayashi-Kinoshita, Saeko; Yamakoshi, Yasuo; Onuma, Kazuo; Yamamoto, Ryuji; Asada, Yoshinobu

    2016-09-16

    Transforming growth factor-β1 (TGF-β1) is present in porcine enamel extracts and is critical for proper mineralization of tooth enamel. Here, we show that the mRNA of latent TGF-β1 is expressed throughout amelogenesis. Latent TGF-β1 is activated by matrix metalloproteinase 20 (MMP20), coinciding with amelogenin processing by the same proteinase. Activated TGF-β1 binds to the major amelogenin cleavage products, particularly the neutral-soluble P103 amelogenin, to maintain its activity. The P103 amelogenin-TGF-β1 complex binds to TGFBR1 to induce TGF-β1 signalling. The P103 amelogenin-TGF-β1 complex is slowly cleaved by kallikrein 4 (KLK4), which is secreted into the transition- and maturation-stage enamel matrix, thereby reducing TGF-β1 activity. To exert the multiple biological functions of TGF-β1 for amelogenesis, we propose that TGF-β1 is activated or inactivated by MMP20 or KLK4 and that the amelogenin cleavage product is necessary for the in-solution mobility of TGF-β1, which is necessary for binding to its receptor on ameloblasts and retention of its activity.

  13. TGF-β1 autocrine signalling and enamel matrix components

    PubMed Central

    Kobayashi-Kinoshita, Saeko; Yamakoshi, Yasuo; Onuma, Kazuo; Yamamoto, Ryuji; Asada, Yoshinobu

    2016-01-01

    Transforming growth factor-β1 (TGF-β1) is present in porcine enamel extracts and is critical for proper mineralization of tooth enamel. Here, we show that the mRNA of latent TGF-β1 is expressed throughout amelogenesis. Latent TGF-β1 is activated by matrix metalloproteinase 20 (MMP20), coinciding with amelogenin processing by the same proteinase. Activated TGF-β1 binds to the major amelogenin cleavage products, particularly the neutral-soluble P103 amelogenin, to maintain its activity. The P103 amelogenin-TGF-β1 complex binds to TGFBR1 to induce TGF-β1 signalling. The P103 amelogenin-TGF-β1 complex is slowly cleaved by kallikrein 4 (KLK4), which is secreted into the transition- and maturation-stage enamel matrix, thereby reducing TGF-β1 activity. To exert the multiple biological functions of TGF-β1 for amelogenesis, we propose that TGF-β1 is activated or inactivated by MMP20 or KLK4 and that the amelogenin cleavage product is necessary for the in-solution mobility of TGF-β1, which is necessary for binding to its receptor on ameloblasts and retention of its activity. PMID:27633089

  14. Autocrine motility factor promotes HER2 cleavage and signaling in breast cancer cells

    PubMed Central

    Kho, Dhong Hyo; Nangia-Makker, Pratima; Balan, Vitaly; Hogan, Victor; Tait, Larry; Wang, Yi; Raz, Avraham

    2013-01-01

    Trastuzumab (Herceptin®) is an effective targeted therapy in HER2 overexpressing human breast carcinoma. However, many HER2-positive patients initially or eventually become resistant to this treatment, so elucidating mechanisms of trastuzumab resistance that emerge in breast carcinoma cells is clinically important. Here we show that autocrine motility factor (AMF) binds to HER2 and induces cleavage to the ectodomain-deleted and constitutively active form p95HER2. Mechanistic investigations indicated that interaction of AMF with HER2 triggers HER2 phosphorylation and metalloprotease-mediated ectodomain shedding, activating PI3K and MAPK signaling and ablating the ability of trastuzumab to inhibit breast carcinoma cell growth. Further, we found that HER2 expression and AMF secretion were inversely related in breast carcinoma cells. Based on this evidence that AMF may contribute to HER2-mediated breast cancer progression, our findings suggest that AMF-HER2 interaction might be a novel target for therapeutic management of breast cancer patients whose disease is resistant to trastuzumab. PMID:23248119

  15. Sonic Hedgehog Signaling Protects Human Hepatocellular Carcinoma Cells Against Ionizing Radiation in an Autocrine Manner

    SciTech Connect

    Chen, Yu-Jen; Lin, Chin-Ping; Hsu, Ming-Ling; Shieh, Hui-Ru; Chao, Nicholas K.; Chao, K.S. Clifford

    2011-07-01

    Purpose: Sonic hedgehog (Shh) signaling is critical to embryogenesis and resistance to chemotherapy. We aimed to examine the role of Shh signaling in the response to radiation of human hepatocellular carcinoma (HCC) cells. Methods and Materials: Response to ionizing radiation therapy (RT) was evaluated by clonogenic assay. Quantitative RT-polymerase chain reaction for patched-1 (PTCH-1) expression was performed. Cytosolic accumulation of Shh and nuclear translocation of Gli-1 were assessed by immunofluorescence. Gli-1 knockdown was done by RNA interference (RNAi). Immunoprecipitation was performed to detect Shh ligand in conditioned medium. Immunofluorescent stain for {gamma}-H2AX was used as an index of DNA double strand breaks (DSB). Expression of proteins related to DNA damage repair was assessed by Western blotting. Results: We found that Shh ligand could protect human HCC HA22T and Sk-Hep1 cells against RT. In HA22T cells, Shh ligand activated the Shh signaling with upregulation of Shh, PTCH-1, and Gli-1 expression. The nuclear translocation of Gli-1 further supports the activation of Gli-1. The radioprotection by Shh ligand was partly blocked by Shh antibody neutralization and was abolished by Gli-1 RNAi, suggesting a critical role of Shh signaling in radiation resistance. Furthermore, we noted that soluble factors secreted into conditioned medium, either constitutively or responding to radiation, by HA22T or Sk-Hep1 cells protected subsequent culturing cells against RT. Immunoprecipitation shows the presence of Shh peptide in conditioned medium. Intriguingly, antibody neutralization of Shh ligand or knockdown of Gli-1 reversed the radioprotective effect of conditioned medium. Furthermore, Shh ligand reduced the RT-induced phosphorylation of checkpoint kinase 1 and impaired the repair of DNA DSB. Conclusions: Activation of Shh signaling protects HCC cells against ionizing radiation in an autocrine manner. Impairment of DNA damage repair might involve

  16. Autocrine Signaling Underlies Fast Repetitive Plasma Membrane Translocation of Conventional and Novel Protein Kinase C Isoforms in β Cells.

    PubMed

    Wuttke, Anne; Yu, Qian; Tengholm, Anders

    2016-07-15

    PKC signaling has been implicated in the regulation of many cell functions, including metabolism, cell death, proliferation, and secretion. Activation of conventional and novel PKC isoforms is associated with their Ca(2+)- and/or diacylglycerol (DAG)-dependent translocation to the plasma membrane. In β cells, exocytosis of insulin granules evokes brief (<10 s) local DAG elevations ("spiking") at the plasma membrane because of autocrine activation of P2Y1 purinoceptors by ATP co-released with insulin. Using total internal reflection microscopy, fluorescent protein-tagged PKCs, and signaling biosensors, we investigated whether DAG spiking causes membrane recruitment of PKCs and whether different classes of PKCs show characteristic responses. Glucose stimulation of MIN6 cells triggered DAG spiking with concomitant repetitive translocation of the novel isoforms PKCδ, PKCϵ, and PKCη. The conventional PKCα, PKCβI, and PKCβII isoforms showed a more complex pattern with both rapid and slow translocation. K(+) depolarization-induced PKCϵ translocation entirely mirrored DAG spiking, whereas PKCβI translocation showed a sustained component, reflecting the subplasma membrane Ca(2+) concentration ([Ca(2+)]pm), with additional effect during DAG spikes. Interference with DAG spiking by purinoceptor inhibition prevented intermittent translocation of PKCs and reduced insulin secretion but did not affect [Ca(2+)]pm elevation or sustained PKCβI translocation. The muscarinic agonist carbachol induced pronounced transient PKCβI translocation and sustained recruitment of PKCϵ. When rise of [Ca(2+)]pm was prevented, the carbachol-induced DAG and PKCϵ responses were somewhat reduced, but PKCβI translocation was completely abolished. We conclude that exocytosis-induced DAG spikes efficiently recruit both conventional and novel PKCs to the β cell plasma membrane. PKC signaling is thus implicated in autocrine regulation of β cell function.

  17. Autocrine Signaling Underlies Fast Repetitive Plasma Membrane Translocation of Conventional and Novel Protein Kinase C Isoforms in β Cells*

    PubMed Central

    Wuttke, Anne; Yu, Qian; Tengholm, Anders

    2016-01-01

    PKC signaling has been implicated in the regulation of many cell functions, including metabolism, cell death, proliferation, and secretion. Activation of conventional and novel PKC isoforms is associated with their Ca2+- and/or diacylglycerol (DAG)-dependent translocation to the plasma membrane. In β cells, exocytosis of insulin granules evokes brief (<10 s) local DAG elevations (“spiking”) at the plasma membrane because of autocrine activation of P2Y1 purinoceptors by ATP co-released with insulin. Using total internal reflection microscopy, fluorescent protein-tagged PKCs, and signaling biosensors, we investigated whether DAG spiking causes membrane recruitment of PKCs and whether different classes of PKCs show characteristic responses. Glucose stimulation of MIN6 cells triggered DAG spiking with concomitant repetitive translocation of the novel isoforms PKCδ, PKCϵ, and PKCη. The conventional PKCα, PKCβI, and PKCβII isoforms showed a more complex pattern with both rapid and slow translocation. K+ depolarization-induced PKCϵ translocation entirely mirrored DAG spiking, whereas PKCβI translocation showed a sustained component, reflecting the subplasma membrane Ca2+ concentration ([Ca2+]pm), with additional effect during DAG spikes. Interference with DAG spiking by purinoceptor inhibition prevented intermittent translocation of PKCs and reduced insulin secretion but did not affect [Ca2+]pm elevation or sustained PKCβI translocation. The muscarinic agonist carbachol induced pronounced transient PKCβI translocation and sustained recruitment of PKCϵ. When rise of [Ca2+]pm was prevented, the carbachol-induced DAG and PKCϵ responses were somewhat reduced, but PKCβI translocation was completely abolished. We conclude that exocytosis-induced DAG spikes efficiently recruit both conventional and novel PKCs to the β cell plasma membrane. PKC signaling is thus implicated in autocrine regulation of β cell function. PMID:27226533

  18. Dendritic cell derived IL-2 inhibits survival of terminally mature cells via an autocrine signaling pathway.

    PubMed

    Balachander, Akhila; Nabti, Sabrina; Sobota, Radoslaw M; Foo, Shihui; Zolezzi, Francesca; Lee, Bernett T K; Poidinger, Michael; Ricciardi-Castagnoli, Paola

    2015-05-01

    DCs are crucial for sensing pathogens and triggering immune response. Upon activation by pathogen-associated molecular pattern (PAMP) ligands, GM-CSF myeloid DCs (GM-DCs) secrete several cytokines, including IL-2. DC IL-2 has been shown to be important for innate and adaptive immune responses; however, IL-2 importance in DC physiology has never been demonstrated. Here, we show that autocrine IL-2 signaling is functional in murine GM-DCs in an early time window after PAMPs stimulation. IL-2 signaling selectively activates the JAK/STAT5 pathway by assembling holo-receptor complexes at the cell surface. Using the sensitivity of targeted mass spectrometry, we show conclusively that GM-DCs express CD122, the IL-2 receptor β-chain, at steady state. In myeloid DCs, this cytokine pathway inhibits survival of PAMP-matured GM-DCs which is crucial for maintaining immune tolerance and preventing autoimmunity. Our findings suggest that immune regulation by this novel autocrine signaling pathway can potentially be used in DC immunotherapy. PMID:25652593

  19. The K-fgf/hst oncogene induces transformation through an autocrine mechanism that requires extracellular stimulation of the mitogenic pathway.

    PubMed Central

    Talarico, D; Basilico, C

    1991-01-01

    The K-fgf/hst oncogene encodes a secreted growth factor of the fibroblast growth factor (FGF) family. The ability of K-fgf-transformed cells to grow in soft agar and in serum-free medium is inhibited by anti-K-FGF neutralizing antibodies, consistent with an autocrine mechanism of transformation. The transformed properties of clones that express high levels of K-FGF are, however, only partially affected. To better define the autocrine mechanism of transformation by K-fgf and to determine whether receptor activation could occur intracellularly, we constructed two mutants of the K-fgf cDNA. Deletion of the sequences encoding the signal peptide suppressed K-fgf ability to induce foci in NIH 3T3 cells. A few morphologically transformed colonies were observed in cotransfection experiments, and they were found to express high levels of cytoplasmic K-FGF. However, their ability to grow in serum-free medium and in soft agar was inhibited by anti-K-FGF antibodies. Addition of a sequence encoding the KDEL endoplasmic reticulum and Golgi retention signal to the K-fgf cDNA led to accumulation of the growth factor in intracellular compartments. The ability of the KDEL mutant to induce foci in NIH 3T3 cells was much lower than that of the wild-type cDNA, and also in this case the transformed phenotype was reverted by anti-K-FGF antibodies. These and other findings indicate that the transformed phenotype of cells expressing a nonsecretory K-FGF is due to the extracellular activation of the receptor by the small amounts of growth factor that these cells still release. Thus, transformation by K-fgf appears to be due to an autocrine growth mechanisms that requires activation of the mitogenic pathway at the cell surface. Images PMID:1990270

  20. Identification of the ETA receptor subtype that mediates endothelin induced autocrine proliferation of normal human keratinocytes.

    PubMed

    Bagnato, A; Venuti, A; Di Castro, V; Marcante, M L

    1995-04-01

    Endothelin-1 has a wide range of pharmacological effects in various tissues and acts as autocrine/paracrine factor. The potential of ET-1 to function as an autocrine growth factor was evaluated in normal human keratinocytes. Radioligand binding studies showed that 125I-ET-1 bound to a single class of high-affinity-binding sites on the surface of the cells. The dissociation constant was 0.045 nM with receptor numbers of 1700 sites/cell. Treatment with serum caused increases in expression of binding sites (3500 sites/cell), with no change in binding affinity. ET-1 stimulated thymidine incorporation in these cells that expressed ET receptors. An ET antagonist selective for the ETA receptor subtype (BQ 123) inhibited DNA synthesis stimulated by ET-1 and reduced the basal growth rate of unstimulated cells. These data suggest that the ET-1 induced DNA synthesis is mediated by ETA receptor subtype and that endogenously produced ET-1 promotes the autocrine proliferation of keratinocytes.

  1. Chemical Hypoxia Brings to Light Altered Autocrine Sphingosine-1-Phosphate Signalling in Rheumatoid Arthritis Synovial Fibroblasts

    PubMed Central

    Zhao, Chenqi; Moreno-Nieves, Uriel; Di Battista, John A.; Fernandes, Maria J.; Touaibia, Mohamed; Bourgoin, Sylvain G.

    2015-01-01

    Emerging evidence suggests a role for sphingosine-1-phosphate (S1P) in various aspects of rheumatoid arthritis (RA) pathogenesis. In this study we compared the effect of chemical hypoxia induced by cobalt chloride (CoCl2) on the expression of S1P metabolic enzymes and cytokine/chemokine secretion in normal fibroblast-like synoviocytes (FLS) and RAFLS. RAFLS incubated with CoCl2, but not S1P, produced less IL-8 and MCP-1 than normal FLS. Furthermore, incubation with the S1P2 and S1P3 receptor antagonists, JTE-013 and CAY10444, reduced CoCl2-mediated chemokine production in normal FLS but not in RAFLS. RAFLS showed lower levels of intracellular S1P and enhanced mRNA expression of S1P phosphatase 1 (SGPP1) and S1P lyase (SPL), the enzymes that are involved in intracellular S1P degradation, when compared to normal FLS. Incubation with CoCl2 decreased SGPP1 mRNA and protein and SPL mRNA as well. Inhibition of SPL enhanced CoCl2-mediated cytokine/chemokine release and restored autocrine activation of S1P2 and S1P3 receptors in RAFLS. The results suggest that the sphingolipid pathway regulating the intracellular levels of S1P is dysregulated in RAFLS and has a significant impact on cell autocrine activation by S1P. Altered sphingolipid metabolism in FLS from patients with advanced RA raises the issue of synovial cell burnout due to chronic inflammation. PMID:26556954

  2. Autocrine MCP-1/CCR2 signaling stimulates proliferation and migration of renal carcinoma cells

    PubMed Central

    Küper, Christoph; Beck, Franz-Xaver; Neuhofer, Wolfgang

    2016-01-01

    The chemokine monocyte chemoattractant protein-1 [MCP-1; also known as chemokine (C-C motif) ligand 2] is an important mediator of monocyte recruitment during inflammatory processes. Pathologically high expression levels of MCP-1 by tumor cells have been observed in a variety of cancer types. In the majority of cases, high MCP-1 expression is associated with a poor prognosis, as infiltration of the tumor with inflammatory monocytes promotes tumor progression and metastasis. MCP-1 is also expressed in renal cell carcinoma (RCC). In the present study, the function and the regulation of MCP-1 was investigated in two RCC cell lines, CaKi-1 and 786-O. In both cell lines, expression of MCP-1 was significantly enhanced compared with non-cancerous control cells. As expected, secretion of MCP-1 into the medium facilitated the recruitment of peripheral blood monocytes via the chemokine (C-C motif) receptor type 2 (CCR2). As expression of CCR2 was also detected in 786-O and CaKi-1 cells, the effect of autocrine MCP-1/CCR2 signaling was evaluated in these cells. In proliferation assays, administration of an MCP-1 neutralizing antibody or of a CCR2 antagonist to CaKi-1 and 786-O cells significantly decreased cell growth; supplementation of the growth medium with recombinant human MCP-1 had no additional effect on proliferation. The migration ability of RCC cells was impaired by MCP-1 neutralization or pharmacological CCR2 inhibition, while it was stimulated by the addition of recombinant human MCP-1, compared with untreated control cells. Finally, substantial differences in the regulation of MCP-1 expression were observed between RCC cell lines. In CaKi-1 cells, expression of MCP-1 appears to be largely mediated by the transcription factor nuclear factor of activated T cells 5, while in 786-O cells, deletion of the tumor suppressor gene Von-Hippel-Lindau appeared to be responsible for MCP-1 upregulation, as suggested by previous studies. Taken together, the results of the

  3. Autocrine MCP-1/CCR2 signaling stimulates proliferation and migration of renal carcinoma cells

    PubMed Central

    Küper, Christoph; Beck, Franz-Xaver; Neuhofer, Wolfgang

    2016-01-01

    The chemokine monocyte chemoattractant protein-1 [MCP-1; also known as chemokine (C-C motif) ligand 2] is an important mediator of monocyte recruitment during inflammatory processes. Pathologically high expression levels of MCP-1 by tumor cells have been observed in a variety of cancer types. In the majority of cases, high MCP-1 expression is associated with a poor prognosis, as infiltration of the tumor with inflammatory monocytes promotes tumor progression and metastasis. MCP-1 is also expressed in renal cell carcinoma (RCC). In the present study, the function and the regulation of MCP-1 was investigated in two RCC cell lines, CaKi-1 and 786-O. In both cell lines, expression of MCP-1 was significantly enhanced compared with non-cancerous control cells. As expected, secretion of MCP-1 into the medium facilitated the recruitment of peripheral blood monocytes via the chemokine (C-C motif) receptor type 2 (CCR2). As expression of CCR2 was also detected in 786-O and CaKi-1 cells, the effect of autocrine MCP-1/CCR2 signaling was evaluated in these cells. In proliferation assays, administration of an MCP-1 neutralizing antibody or of a CCR2 antagonist to CaKi-1 and 786-O cells significantly decreased cell growth; supplementation of the growth medium with recombinant human MCP-1 had no additional effect on proliferation. The migration ability of RCC cells was impaired by MCP-1 neutralization or pharmacological CCR2 inhibition, while it was stimulated by the addition of recombinant human MCP-1, compared with untreated control cells. Finally, substantial differences in the regulation of MCP-1 expression were observed between RCC cell lines. In CaKi-1 cells, expression of MCP-1 appears to be largely mediated by the transcription factor nuclear factor of activated T cells 5, while in 786-O cells, deletion of the tumor suppressor gene Von-Hippel-Lindau appeared to be responsible for MCP-1 upregulation, as suggested by previous studies. Taken together, the results of the

  4. Identification of Liver Cancer Progenitors Whose Malignant Progression Depends on Autocrine IL-6 Signaling

    PubMed Central

    He, Guobin; Dhar, Debanjan; Nakagawa, Hayato; Font-Burgada, Joan; Ogata, Hisanobu; Jiang, Yuhong; Shalapour, Shabnam; Seki, Ekihiro; Yost, Shawn E.; Jepsen, Kristen; Frazer, Kelly A.; Harismendy, Olivier; Hatziapostolou, Maria; Iliopoulos, Dimitrios; Suetsugu, Atsushi; Hoffman, Robert M.; Tateishi, Ryosuke; Koike, Kazuhiko; Karin, Michael

    2014-01-01

    SUMMARY Hepatocellular carcinoma (HCC) is a slowly developing malignancy postulated to evolve from pre-malignant lesions in chronically damaged livers. However, it was never established that premalignant lesions actually contain tumor progenitors that give rise to cancer. Here, we describe isolation and characterization of HCC progenitor cells (HcPCs) from different mouse HCC models. Unlike fully malignant HCC, HcPCs give rise to cancer only when introduced into a liver undergoing chronic damage and compensatory proliferation. Although HcPCs exhibit a similar transcriptomic profile to bipotential hepatobiliary progenitors, the latter do not give rise to tumors. Cells resembling HcPCs reside within dysplastic lesions that appear several months before HCC nodules. Unlike early hepatocarcinogenesis, which depends on paracrine IL-6 production by inflammatory cells, due to upregulation of LIN28 expression, HcPCs had acquired autocrine IL-6 signaling that stimulates their in vivo growth and malignant progression. This may be a general mechanism that drives other IL-6-producing malignancies. PMID:24120137

  5. Hypoxia Stimulates the EMT of Gastric Cancer Cells through Autocrine TGFβ Signaling

    PubMed Central

    Matsuoka, Junko; Yashiro, Masakazu; Doi, Yosuke; Fuyuhiro, Yuhiko; Kato, Yukihiro; Shinto, Osamu; Noda, Satoru; Kashiwagi, Shinichiro; Aomatsu, Naoki; Hirakawa, Toshiki; Hasegawa, Tsuyoshi; Shimizu, Kiyoshi; Shimizu, Toshiyuki; Miwa, Atsushi; Yamada, Nobuya; Sawada, Tetsuji; Hirakawa, Kosei

    2013-01-01

    Epithelial mesenchymal transition (EMT) is considered to be correlated with malignancy of cancer cells and responsible for cancer invasion and metastasis. We previously reported that distant metastasis was associated with hypoxia in gastric cancer. We therefore investigated the effect of hypoxic condition on EMT of gastric cancer cells. Gastric cancer cells were cultured in normoxia (21% O2) or hypoxia (1% O2) for 24 h. EMT was evaluated as the percentage of spindle-shaped cells in total cells. Effect of transforming growth factor β1 (TGFβ1) or tyrosine kinase inhibitors on the EMT was evaluated. The expression level of TGFβ1 and TGFβR was evaluated by real time RT-PCR. The TGFβ1 production from cancer cells was measured by ELISA. Hypoxia stimulated EMT of OCUM-2MD3 and OCUM-12 cells, but not that of OCUM-2M cells. The expression level of TGFβ1 mRNA under hypoxia was significantly higher than that under normoxia in all of three cell lines. The expression level of TGFβR mRNA was significantly increased by hypoxia in OCUM-2MD3 cells, but not in OCUM-2M cells. TGFβR inhibitor, SB431542 or Ki26894, significantly suppressed EMT of OCUM-2MD3 and OCUM-12. TGFβ1 production from OCUM-2MD3 and OCUM-12 cells was significantly increased under hypoxia in comparison with that under normoxia. These findings might suggest that hypoxia stimulates the EMT of gastric cancer cells via autocrine TGFβ/TGFβR signaling. PMID:23690936

  6. Hypoxia stimulates the EMT of gastric cancer cells through autocrine TGFβ signaling.

    PubMed

    Matsuoka, Junko; Yashiro, Masakazu; Doi, Yosuke; Fuyuhiro, Yuhiko; Kato, Yukihiro; Shinto, Osamu; Noda, Satoru; Kashiwagi, Shinichiro; Aomatsu, Naoki; Hirakawa, Toshiki; Hasegawa, Tsuyoshi; Shimizu, Kiyoshi; Shimizu, Toshiyuki; Miwa, Atsushi; Yamada, Nobuya; Sawada, Tetsuji; Hirakawa, Kosei

    2013-01-01

    Epithelial mesenchymal transition (EMT) is considered to be correlated with malignancy of cancer cells and responsible for cancer invasion and metastasis. We previously reported that distant metastasis was associated with hypoxia in gastric cancer. We therefore investigated the effect of hypoxic condition on EMT of gastric cancer cells. Gastric cancer cells were cultured in normoxia (21% O2) or hypoxia (1% O2) for 24 h. EMT was evaluated as the percentage of spindle-shaped cells in total cells. Effect of transforming growth factor β1 (TGFβ1) or tyrosine kinase inhibitors on the EMT was evaluated. The expression level of TGFβ1 and TGFβR was evaluated by real time RT-PCR. The TGFβ1 production from cancer cells was measured by ELISA. Hypoxia stimulated EMT of OCUM-2MD3 and OCUM-12 cells, but not that of OCUM-2M cells. The expression level of TGFβ1 mRNA under hypoxia was significantly higher than that under normoxia in all of three cell lines. The expression level of TGFβR mRNA was significantly increased by hypoxia in OCUM-2MD3 cells, but not in OCUM-2M cells. TGFβR inhibitor, SB431542 or Ki26894, significantly suppressed EMT of OCUM-2MD3 and OCUM-12. TGFβ1 production from OCUM-2MD3 and OCUM-12 cells was significantly increased under hypoxia in comparison with that under normoxia. These findings might suggest that hypoxia stimulates the EMT of gastric cancer cells via autocrine TGFβ/TGFβR signaling.

  7. Autocrine VEGFR1 and VEGFR2 signaling promotes survival in human glioblastoma models in vitro and in vivo

    PubMed Central

    Szabo, Emese; Schneider, Hannah; Seystahl, Katharina; Rushing, Elisabeth Jane; Herting, Frank; Weidner, K. Michael

    2016-01-01

    Background Although the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) system has become a prime target for antiangiogenic treatment, its biological role in glioblastoma beyond angiogenesis has remained controversial. Methods Using neutralizing antibodies to VEGF or placental growth factor (PlGF) or the tyrosine kinase inhibitor, cediranib, or lentiviral gene silencing, we delineated autocrine signaling in glioma cell lines. The in vivo effects of VEGFR1 and VEGFR2 depletion were evaluated in orthotopic glioma xenograft models. Results VEGFR1 and VEGFR2 modulated glioma cell clonogenicity, viability, and invasiveness in vitro in an autocrine, cell–line-specific manner. VEGFR1 silencing promoted mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling, whereas VEGFR2 silencing resulted in cell-type dependent activation of the protein kinase B (PKB)/AKT and MAPK/ERK pathways. These responses may represent specific escape mechanisms from VEGFR inhibition. The survival of orthotopic glioma-bearing mice was prolonged upon VEGFR1 silencing in the LNT-229, LN-308, and U87MG models and upon VEGFR2 silencing in LN-308 and U87MG. Disruption of VEGFR1 and VEGFR2 signaling was associated with decreased tumor size, increased tumor necrosis, or loss of matrix metalloproteinase 9 (MMP9) immunoreactivity. Neutralizing VEGF and PlGF by specific antibodies was superior to either antibody treatment alone in the VEGFR1-dependent LNT-229 model. Conclusions Differential dependence on autocrine signaling through VEGFR1 and VEGFR2 suggests a need for biomarker–stratified VEGF(R)-based therapeutic approaches to glioblastoma. PMID:27009237

  8. Tumor necrosis factor as an autocrine and paracrine signal controlling the macrophage secretory response to Candida albicans.

    PubMed Central

    Blasi, E; Pitzurra, L; Bartoli, A; Puliti, M; Bistoni, F

    1994-01-01

    We have previously demonstrated that the hyphal form of Candida albicans (H-Candida), but not the yeast form (Y-Candida), acts as a macrophage-stimulating agent. The early response (1 to 3 h) of the macrophage cell line ANA-1 to H-Candida results in enhanced tumor necrosis factor (TNF) transcription and production. Here we show that when coincubation times are prolonged (3 to 24 h), Y-Candida also exhibits stimulatory properties. This phenomenon has been ascribed to the occurrence of the dimorphic transition, as demonstrated by microscopic evaluation of the cultures and by experiments in which both killed Y-Candida and the agerminative strain C. albicans PCA-2 failed to induce cytokine production. TNF produced in response to H-Candida acts as an autocrine and paracrine signal controlling the macrophage secretory response to C. albicans. In fact, addition of anti-TNF polyclonal antibodies to the coculture of ANA-1 macrophages and H-Candida results in a marked and time-dependent decrease of TNF transcript levels. Moreover, pretreatment of macrophages with recombinant TNF for 3 h enhances TNF and induces interleukin-1 production in response to both forms of Candida, while pretreatment for 18 h renders macrophages refractory to any stimuli. Interestingly, the kinetics of interleukin-1 transcription and secretion in response to H-Candida are delayed with respect to those of TNF. Overall, these data indicate that TNF, produced by macrophages in response to H-Candida, regulates its own production as well as that of other soluble factors, thus suggesting that this cytokine plays multiple roles in the immune mechanisms involved in Candida infection. Images PMID:8132326

  9. Autocrine abscisic acid plays a key role in quartz-induced macrophage activation.

    PubMed

    Magnone, Mirko; Sturla, Laura; Jacchetti, Emanuela; Scarfì, Sonia; Bruzzone, Santina; Usai, Cesare; Guida, Lucrezia; Salis, Annalisa; Damonte, Gianluca; De Flora, Antonio; Zocchi, Elena

    2012-03-01

    Inhalation of quartz induces silicosis, a lung disease where alveolar macrophages release inflammatory mediators, including prostaglandin-E(2) (PGE(2)) and tumor necrosis factor α (TNF-α). Here we report the pivotal role of abscisic acid (ABA), a recently discovered human inflammatory hormone, in silica-induced activation of murine RAW264.7 macrophages and of rat alveolar macrophages (AMs). Stimulation of both RAW264.7 cells and AMs with quartz induced a significant increase of ABA release (5- and 10-fold, respectively), compared to untreated cells. In RAW264.7 cells, autocrine ABA released after quartz stimulation sequentially activates the plasma membrane receptor LANCL2 and NADPH oxidase, generating a Ca(2+) influx resulting in NFκ B nuclear translocation and PGE(2) and TNF-α release (3-, 2-, and 3.5-fold increase, respectively, compared to control, unstimulated cells). Quartz-stimulated RAW264.7 cells silenced for LANCL2 or preincubated with a monoclonal antibody against ABA show an almost complete inhibition of NFκ B nuclear translocation and PGE(2) and TNF-α release compared to controls electroporated with a scramble oligonucleotide or preincubated with an unrelated antibody. AMs showed similar early and late ABA-induced responses as RAW264.7 cells. These findings identify ABA and LANCL2 as key mediators in quartz-induced inflammation, providing possible new targets for antisilicotic therapy.

  10. Overexpression of c-Met and CD44v6 receptors contributes to autocrine TGF-β1 signaling in interstitial lung disease.

    PubMed

    Ghatak, Shibnath; Bogatkevich, Galina S; Atnelishvili, Ilia; Akter, Tanjina; Feghali-Bostwick, Carol; Hoffman, Stanley; Fresco, Victor M; Fuchs, John C; Visconti, Richard P; Markwald, Roger R; Padhye, Subhas B; Silver, Richard M; Hascall, Vincent C; Misra, Suniti

    2014-03-14

    The hepatocyte growth factor (HGF) and the HGF receptor Met pathway are important in the pathogenesis of interstitial lung disease (ILD). Alternatively spliced isoforms of CD44 containing variable exon 6 (CD44v6) and its ligand hyaluronan (HA) alter cellular function in response to interaction between CD44v6 and HGF. TGF-β1 is the crucial cytokine that induces fibrotic action in ILD fibroblasts (ILDFbs). We have identified an autocrine TGF-β1 signaling that up-regulates both Met and CD44v6 mRNA and protein expression. Western blot analysis, flow cytometry, and immunostaining revealed that CD44v6 and Met colocalize in fibroblasts and in tissue sections from ILD patients and in lungs of bleomycin-treated mice. Interestingly, cell proliferation induced by TGF-β1 is mediated through Met and CD44v6. Further, cell proliferation mediated by TGF-β1/CD44v6 is ERK-dependent. In contrast, action of Met on ILDFb proliferation does not require ERK but does require p38(MAPK). ILDFbs were sorted into CD44v6(+)/Met(+) and CD44v6(-)/Met(+) subpopulations. HGF inhibited TGF-β1-stimulated collagen-1 and α-smooth muscle cell actin expression in both of these subpopulations by interfering with TGF-β1 signaling. HGF alone markedly stimulated CD44v6 expression, which in turn regulated collagen-1 synthesis. Our data with primary lung fibroblast cultures with respect to collagen-1, CD44v6, and Met expressions were supported by immunostaining of lung sections from bleomycin-treated mice and from ILD patients. These results define the relationships between CD44v6, Met, and autocrine TGF-β1 signaling and the potential modulating influence of HGF on TGF-β1-induced CD44v6-dependent fibroblast function in ILD fibrosis.

  11. Overexpression of c-Met and CD44v6 receptors contributes to autocrine TGF-β1 signaling in interstitial lung disease.

    PubMed

    Ghatak, Shibnath; Bogatkevich, Galina S; Atnelishvili, Ilia; Akter, Tanjina; Feghali-Bostwick, Carol; Hoffman, Stanley; Fresco, Victor M; Fuchs, John C; Visconti, Richard P; Markwald, Roger R; Padhye, Subhas B; Silver, Richard M; Hascall, Vincent C; Misra, Suniti

    2014-03-14

    The hepatocyte growth factor (HGF) and the HGF receptor Met pathway are important in the pathogenesis of interstitial lung disease (ILD). Alternatively spliced isoforms of CD44 containing variable exon 6 (CD44v6) and its ligand hyaluronan (HA) alter cellular function in response to interaction between CD44v6 and HGF. TGF-β1 is the crucial cytokine that induces fibrotic action in ILD fibroblasts (ILDFbs). We have identified an autocrine TGF-β1 signaling that up-regulates both Met and CD44v6 mRNA and protein expression. Western blot analysis, flow cytometry, and immunostaining revealed that CD44v6 and Met colocalize in fibroblasts and in tissue sections from ILD patients and in lungs of bleomycin-treated mice. Interestingly, cell proliferation induced by TGF-β1 is mediated through Met and CD44v6. Further, cell proliferation mediated by TGF-β1/CD44v6 is ERK-dependent. In contrast, action of Met on ILDFb proliferation does not require ERK but does require p38(MAPK). ILDFbs were sorted into CD44v6(+)/Met(+) and CD44v6(-)/Met(+) subpopulations. HGF inhibited TGF-β1-stimulated collagen-1 and α-smooth muscle cell actin expression in both of these subpopulations by interfering with TGF-β1 signaling. HGF alone markedly stimulated CD44v6 expression, which in turn regulated collagen-1 synthesis. Our data with primary lung fibroblast cultures with respect to collagen-1, CD44v6, and Met expressions were supported by immunostaining of lung sections from bleomycin-treated mice and from ILD patients. These results define the relationships between CD44v6, Met, and autocrine TGF-β1 signaling and the potential modulating influence of HGF on TGF-β1-induced CD44v6-dependent fibroblast function in ILD fibrosis. PMID:24324260

  12. Autocrine activation of neuronal NMDA receptors by aspartate mediates dopamine- and cAMP-induced CREB-dependent gene transcription.

    PubMed

    Almeida, Luis E F; Murray, Peter D; Zielke, H Ronald; Roby, Clinton D; Kingsbury, Tami J; Krueger, Bruce K

    2009-10-01

    cAMP can stimulate the transcription of many activity-dependent genes via activation of the transcription factor, cAMP response element-binding protein (CREB). However, in mouse cortical neuron cultures, prior to synaptogenesis, neither cAMP nor dopamine, which acts via cAMP, stimulated CREB-dependent gene transcription when NR2B-containing NMDA receptors (NMDARs) were blocked. Stimulation of transcription by cAMP was potentiated by inhibitors of excitatory amino acid uptake, suggesting a role for extracellular glutamate or aspartate in cAMP-induced transcription. Aspartate was identified as the extracellular messenger: enzymatic scavenging of l-aspartate, but not glutamate, blocked stimulation of CREB-dependent gene transcription by cAMP; moreover, cAMP induced aspartate but not glutamate release. Together, these results suggest that cAMP acts via an autocrine or paracrine pathway to release aspartate, which activates NR2B-containing NMDARs, leading to Ca(2+) entry and activation of transcription. This cAMP/aspartate/NMDAR signaling pathway may mediate the effects of transmitters such as dopamine on axon growth and synaptogenesis in developing neurons or on synaptic plasticity in mature neural networks.

  13. Interleukin 6 promotes endometrial cancer growth through an autocrine feedback loop involving ERK–NF-κB signaling pathway

    SciTech Connect

    Che, Qi; Liu, Bin-Ya; Wang, Fang-Yuan; He, Yin-Yan; Lu, Wen; Liao, Yun; Gu, Wei; Wan, Xiao-Ping

    2014-03-28

    Highlights: • IL-6 could promote endometrial cancer cells proliferation. • IL-6 promotes its own production through an autocrine feedback loop. • ERK and NF-κB pathway inhibitors inhibit IL-6 production and tumor growth. • IL-6 secretion relies on the activation of ERK–NF-κB pathway axis. • An orthotopic nude endometrial carcinoma model confirms the effect of IL-6. - Abstract: Interleukin (IL)-6 as an inflammation factor, has been proved to promote cancer proliferation in several human cancers. However, its role in endometrial cancer has not been studied clearly. Previously, we demonstrated that IL-6 promoted endometrial cancer progression through local estrogen biosynthesis. In this study, we proved that IL-6 could directly stimulate endometrial cancer cells proliferation and an autocrine feedback loop increased its production even after the withdrawal of IL-6 from the medium. Next, we analyzed the mechanism underlying IL-6 production in the feedback loop and found that its production and IL-6-stimulated cell proliferation were effectively blocked by pharmacologic inhibitors of nuclear factor-kappa B (NF-κB) and extra-cellular signal-regulated kinase (ERK). Importantly, activation of ERK was upstream of the NF-κB pathways, revealing the hierarchy of this event. Finally, we used an orthotopic nude endometrial carcinoma model to confirm the effects of IL-6 on the tumor progression. Taken together, these data indicate that IL-6 promotes endometrial carcinoma growth through an expanded autocrine regulatory loop and implicate the ERK–NF-κB pathway as a critical mediator of IL-6 production, implying IL-6 to be an important therapeutic target in endometrial carcinoma.

  14. Tachykinin acts upstream of autocrine Hedgehog signaling during nociceptive sensitization in Drosophila

    PubMed Central

    Im, Seol Hee; Takle, Kendra; Jo, Juyeon; Babcock, Daniel T; Ma, Zhiguo; Xiang, Yang; Galko, Michael J

    2015-01-01

    Pain signaling in vertebrates is modulated by neuropeptides like Substance P (SP). To determine whether such modulation is conserved and potentially uncover novel interactions between nociceptive signaling pathways we examined SP/Tachykinin signaling in a Drosophila model of tissue damage-induced nociceptive hypersensitivity. Tissue-specific knockdowns and genetic mutant analyses revealed that both Tachykinin and Tachykinin-like receptor (DTKR99D) are required for damage-induced thermal nociceptive sensitization. Electrophysiological recording showed that DTKR99D is required in nociceptive sensory neurons for temperature-dependent increases in firing frequency upon tissue damage. DTKR overexpression caused both behavioral and electrophysiological thermal nociceptive hypersensitivity. Hedgehog, another key regulator of nociceptive sensitization, was produced by nociceptive sensory neurons following tissue damage. Surprisingly, genetic epistasis analysis revealed that DTKR function was upstream of Hedgehog-dependent sensitization in nociceptive sensory neurons. Our results highlight a conserved role for Tachykinin signaling in regulating nociception and the power of Drosophila for genetic dissection of nociception. DOI: http://dx.doi.org/10.7554/eLife.10735.001 PMID:26575288

  15. Tachykinin acts upstream of autocrine Hedgehog signaling during nociceptive sensitization in Drosophila.

    PubMed

    Im, Seol Hee; Takle, Kendra; Jo, Juyeon; Babcock, Daniel T; Ma, Zhiguo; Xiang, Yang; Galko, Michael J

    2015-11-17

    Pain signaling in vertebrates is modulated by neuropeptides like Substance P (SP). To determine whether such modulation is conserved and potentially uncover novel interactions between nociceptive signaling pathways we examined SP/Tachykinin signaling in a Drosophila model of tissue damage-induced nociceptive hypersensitivity. Tissue-specific knockdowns and genetic mutant analyses revealed that both Tachykinin and Tachykinin-like receptor (DTKR99D) are required for damage-induced thermal nociceptive sensitization. Electrophysiological recording showed that DTKR99D is required in nociceptive sensory neurons for temperature-dependent increases in firing frequency upon tissue damage. DTKR overexpression caused both behavioral and electrophysiological thermal nociceptive hypersensitivity. Hedgehog, another key regulator of nociceptive sensitization, was produced by nociceptive sensory neurons following tissue damage. Surprisingly, genetic epistasis analysis revealed that DTKR function was upstream of Hedgehog-dependent sensitization in nociceptive sensory neurons. Our results highlight a conserved role for Tachykinin signaling in regulating nociception and the power of Drosophila for genetic dissection of nociception.

  16. Stable Ectopic Expression of ST6GALNAC5 Induces Autocrine MET Activation and Anchorage-Independence in MDCK Cells.

    PubMed

    Chu, Chia; Bottaro, Donald P; Betenbaugh, Michael J; Shiloach, Joseph

    2016-01-01

    The epithelial-mesenchymal transition (EMT) is a complex cancer progression that can boost the metastatic potential of transformed cells by inducing migration, loss of cell adhesion, and promoting proliferation under anchorage-independent conditions. A DNA microarray analysis was performed comparing parental anchorage-dependent MDCK cells and anchorage-independent MDCK cells that were engineered to express human siat7e (ST6GALNAC5). The comparison identified several genes involved in the EMT process that were differentially expressed between the anchorage-dependent and the anchorage-independent MDCK cell lines. The hepatocyte growth factor gene (hgf) was found to be over-expressed in the engineered MDCK-siat7e cells at both transcription and protein expression levels. Phosphorylation analysis of the MET receptor tyrosine kinase confirmed the activation of an autocrine loop of the HGF/ MET signaling pathway in the MDCK-siat7e cells. When MET activities were suppressed by using the small-molecular inhibitor drug PF-02341066 (Crizotinib), the anchorage-independent MDCK-siat7e cells reverted to the cellular morphology of the parental anchorage-dependent MDCK cells. These observations indicate that the MET receptor plays a central role in the growth properties of the MDCK cells and its phosphorylation status is likely dependent on sialylation. Further investigation of the downstream signaling targets in the MET network showed that the degree of MDCK cell adhesion correlated with secretion levels of a matrix metalloproteinase, MMP1, suggesting a role of metalloproteinases in the EMT process. These results demonstrate that in addition to its application in biotechnology processes, MDCK-siat7e may serve as a model cell for metastasis studies to decipher the sequence of events leading up to the activation of EMT. PMID:26848584

  17. Stable Ectopic Expression of ST6GALNAC5 Induces Autocrine MET Activation and Anchorage-Independence in MDCK Cells

    PubMed Central

    Chu, Chia; Bottaro, Donald P.; Betenbaugh, Michael J.; Shiloach, Joseph

    2016-01-01

    The epithelial-mesenchymal transition (EMT) is a complex cancer progression that can boost the metastatic potential of transformed cells by inducing migration, loss of cell adhesion, and promoting proliferation under anchorage-independent conditions. A DNA microarray analysis was performed comparing parental anchorage-dependent MDCK cells and anchorage-independent MDCK cells that were engineered to express human siat7e (ST6GALNAC5). The comparison identified several genes involved in the EMT process that were differentially expressed between the anchorage-dependent and the anchorage-independent MDCK cell lines. The hepatocyte growth factor gene (hgf) was found to be over-expressed in the engineered MDCK-siat7e cells at both transcription and protein expression levels. Phosphorylation analysis of the MET receptor tyrosine kinase confirmed the activation of an autocrine loop of the HGF/ MET signaling pathway in the MDCK-siat7e cells. When MET activities were suppressed by using the small-molecular inhibitor drug PF-02341066 (Crizotinib), the anchorage-independent MDCK-siat7e cells reverted to the cellular morphology of the parental anchorage-dependent MDCK cells. These observations indicate that the MET receptor plays a central role in the growth properties of the MDCK cells and its phosphorylation status is likely dependent on sialylation. Further investigation of the downstream signaling targets in the MET network showed that the degree of MDCK cell adhesion correlated with secretion levels of a matrix metalloproteinase, MMP1, suggesting a role of metalloproteinases in the EMT process. These results demonstrate that in addition to its application in biotechnology processes, MDCK-siat7e may serve as a model cell for metastasis studies to decipher the sequence of events leading up to the activation of EMT. PMID:26848584

  18. Autocrine insulin-like growth factor-I signaling promotes growth and survival of human acute myeloid leukemia cells via the phosphoinositide 3-kinase/Akt pathway.

    PubMed

    Doepfner, K T; Spertini, O; Arcaro, A

    2007-09-01

    Insulin-like growth factor (IGF) signaling plays an important role in various human cancers. Therefore, the role of insulin-like growth factor I (IGF-I) signaling in growth and survival of acute myeloid leukemia (AML) cells was investigated. Expression of the IGF-I receptor (IGF-IR) and its ligand IGF-I were detected in a panel of human AML blasts and cell lines. IGF-I and insulin promoted the growth of human AML blasts in vitro and activated the phosphoinositide 3-kinase (PI3K)/Akt and the extracellular signal-regulated kinase (Erk) pathways. IGF-I-stimulated growth of AML blasts was blocked by an inhibitor of the PI3K/Akt pathway. Moreover, downregulation of the class Ia PI3K isoforms p110beta and p110delta by RNA interference impaired IGF-I-stimulated Akt activation, cell growth and survival in AML cells. Proliferation of a panel of AML cell lines and blasts isolated from patients with AML was inhibited by the IGF-IR kinase inhibitor NVP-AEW541 or by an IGF-IR neutralizing antibody. In addition to its antiproliferative effects, NVP-AEW541 sensitized primary AML blasts and cell lines to etoposide-induced apoptosis. Together, our data describe a novel role for autocrine IGF-I signaling in the growth and survival of primary AML cells. IGF-IR inhibitors in combination with chemotherapeutic agents may represent a novel approach to target human AML.

  19. The Growth and Aggressive Behavior of Human Osteosarcoma Is Regulated by a CaMKII-Controlled Autocrine VEGF Signaling Mechanism

    PubMed Central

    Daft, Paul G.; Yang, Yang; Napierala, Dobrawa; Zayzafoon, Majd

    2015-01-01

    Osteosarcoma (OS) is a hyperproliferative malignant tumor that requires a high vascular density to maintain its large volume. Vascular Endothelial Growth Factor (VEGF) plays a crucial role in angiogenesis and acts as a paracrine and autocrine agent affecting both endothelial and tumor cells. The alpha-Ca2+/Calmodulin kinase two (α-CaMKII) protein is an important regulator of OS growth. Here, we investigate the role of α-CaMKII-induced VEGF in the growth and tumorigenicity of OS. We show that the pharmacologic and genetic inhibition of α-CaMKII results in decreases in VEGF gene expression (50%) and protein secretion (55%), while α- CaMKII overexpression increases VEGF gene expression (250%) and protein secretion (1,200%). We show that aggressive OS cells (143B) express high levels of VEGF receptor 2 (VEGFR-2) and respond to exogenous VEGF (100nm) by increasing intracellular calcium (30%). This response is ameliorated by the VEGFR inhibitor CBO-P11, suggesting that secreted VEGF results in autocrine stimulated α-CaMKII activation. Furthermore, we show that VEGF and α-CaMKII inhibition decreases the transactivation of the HIF-1α and AP-1 reporter constructs. Additionally, chromatin immunoprecipitation assay shows significantly decreased binding of HIF-1α and AP-1 to their responsive elements in the VEGF promoter. These data suggest that α-CaMKII regulates VEGF transcription by controlling HIF-1α and AP-1 transcriptional activities. Finally, CBO-P11, KN-93 (CaMKII inhibitor) and combination therapy significantly reduced tumor burden in vivo. Our results suggest that VEGF-induced OS tumor growth is controlled by CaMKII and dual therapy by CaMKII and VEGF inhibitors could be a promising therapy against this devastating adolescent disease. PMID:25860662

  20. 4-1BB Signaling Enhances Primary and Secondary Population Expansion of CD8+ T Cells by Maximizing Autocrine IL-2/IL-2 Receptor Signaling.

    PubMed

    Oh, Ho S; Choi, Beom K; Kim, Young H; Lee, Don G; Hwang, Sunhee; Lee, Myoung J; Park, Sang H; Bae, Yong-Soo; Kwon, Byoung S

    2015-01-01

    4-1BB (CD137), a member of the tumor necrosis factor receptor superfamily (TNFRSF), is primarily expressed on activated T cells and is known to enhance proliferation of T cells, prevent activation-induced cell death, and promote memory formation of CD8+ T cells. In particular, it is well acknowledged that 4-1BB triggering preferentially enhances the expansion of CD8+ T cells rather than CD4+ T cells, but the underlying mechanism remains unclear. Here we found that 4-1BB triggering markedly increased IL-2Rα (CD25) and IL-2 expressions of CD8+ T cells but minimally for CD4+ T cells. Proliferation of CD8+ T cells was moderately enhanced by direct 4-1BB triggering in the absence of signaling through IL-2Rα/IL-2 interactions, but further promoted in the presence of IL-2Rα/IL-2 interactions. Among the TNFRSF members including OX40, GITR, CD30, and CD27, 4-1BB was superior in the ability to induce IL-2Rα expression on CD8+ T cells. When the primary and secondary expansions of CD8+ T cells in vivo were examined by adoptively transferring OVA-specific CD8+ T cells along with the treatment with agonistic anti-4-1BB and/or antagonistic anti-CD25 F(ab')2 mAb, 4-1BB triggering enhanced both primary and secondary expansion of CD8+ T cells in vivo, and the 4-1BB effects were moderately suppressed in primary expansion while completely abolished in secondary expansion of OVA-specific CD8+ T cells by blocking IL-2Rα. These results suggest that 4-1BB-mediated increases of IL-2Rα and IL-2 prolong the effects of transient TCR- and 4-1BB-mediated signaling in CD8+ T cells, and that 4-1BB triggering preferentially enhances the expansion of CD8+ T cells through the amplification of autocrine IL-2/IL-2R signaling loop. PMID:25962156

  1. 4-1BB Signaling Enhances Primary and Secondary Population Expansion of CD8+ T Cells by Maximizing Autocrine IL-2/IL-2 Receptor Signaling

    PubMed Central

    Oh, Ho S.; Choi, Beom K.; Kim, Young H.; Lee, Don G.; Hwang, Sunhee; Lee, Myoung J.; Park, Sang H.; Bae, Yong-Soo; Kwon, Byoung S.

    2015-01-01

    4-1BB (CD137), a member of the tumor necrosis factor receptor superfamily (TNFRSF), is primarily expressed on activated T cells and is known to enhance proliferation of T cells, prevent activation-induced cell death, and promote memory formation of CD8+ T cells. In particular, it is well acknowledged that 4-1BB triggering preferentially enhances the expansion of CD8+ T cells rather than CD4+ T cells, but the underlying mechanism remains unclear. Here we found that 4-1BB triggering markedly increased IL-2Rα (CD25) and IL-2 expressions of CD8+ T cells but minimally for CD4+ T cells. Proliferation of CD8+ T cells was moderately enhanced by direct 4-1BB triggering in the absence of signaling through IL-2Rα/IL-2 interactions, but further promoted in the presence of IL-2Rα/IL-2 interactions. Among the TNFRSF members including OX40, GITR, CD30, and CD27, 4-1BB was superior in the ability to induce IL-2Rα expression on CD8+ T cells. When the primary and secondary expansions of CD8+ T cells in vivo were examined by adoptively transferring OVA-specific CD8+ T cells along with the treatment with agonistic anti-4-1BB and/or antagonistic anti-CD25 F(ab’)2 mAb, 4-1BB triggering enhanced both primary and secondary expansion of CD8+ T cells in vivo, and the 4-1BB effects were moderately suppressed in primary expansion while completely abolished in secondary expansion of OVA-specific CD8+ T cells by blocking IL-2Rα. These results suggest that 4-1BB-mediated increases of IL-2Rα and IL-2 prolong the effects of transient TCR- and 4-1BB-mediated signaling in CD8+ T cells, and that 4-1BB triggering preferentially enhances the expansion of CD8+ T cells through the amplification of autocrine IL-2/IL-2R signaling loop. PMID:25962156

  2. Axin2 marks quiescent hair follicle bulge stem cells that are maintained by autocrine Wnt/β-catenin signaling.

    PubMed

    Lim, Xinhong; Tan, Si Hui; Yu, Ka Lou; Lim, Sophia Beng Hui; Nusse, Roeland

    2016-03-15

    How stem cells maintain their identity and potency as tissues change during growth is not well understood. In mammalian hair, it is unclear how hair follicle stem cells can enter an extended period of quiescence during the resting phase but retain stem cell potential and be subsequently activated for growth. Here, we use lineage tracing and gene expression mapping to show that the Wnt target gene Axin2 is constantly expressed throughout the hair cycle quiescent phase in outer bulge stem cells that produce their own Wnt signals. Ablating Wnt signaling in the bulge cells causes them to lose their stem cell potency to contribute to hair growth and undergo premature differentiation instead. Bulge cells express secreted Wnt inhibitors, including Dickkopf (Dkk) and secreted frizzled-related protein 1 (Sfrp1). However, the Dickkopf 3 (Dkk3) protein becomes localized to the Wnt-inactive inner bulge that contains differentiated cells. We find that Axin2 expression remains confined to the outer bulge, whereas Dkk3 continues to be localized to the inner bulge during the hair cycle growth phase. Our data suggest that autocrine Wnt signaling in the outer bulge maintains stem cell potency throughout hair cycle quiescence and growth, whereas paracrine Wnt inhibition of inner bulge cells reinforces differentiation.

  3. Axin2 marks quiescent hair follicle bulge stem cells that are maintained by autocrine Wnt/β-catenin signaling.

    PubMed

    Lim, Xinhong; Tan, Si Hui; Yu, Ka Lou; Lim, Sophia Beng Hui; Nusse, Roeland

    2016-03-15

    How stem cells maintain their identity and potency as tissues change during growth is not well understood. In mammalian hair, it is unclear how hair follicle stem cells can enter an extended period of quiescence during the resting phase but retain stem cell potential and be subsequently activated for growth. Here, we use lineage tracing and gene expression mapping to show that the Wnt target gene Axin2 is constantly expressed throughout the hair cycle quiescent phase in outer bulge stem cells that produce their own Wnt signals. Ablating Wnt signaling in the bulge cells causes them to lose their stem cell potency to contribute to hair growth and undergo premature differentiation instead. Bulge cells express secreted Wnt inhibitors, including Dickkopf (Dkk) and secreted frizzled-related protein 1 (Sfrp1). However, the Dickkopf 3 (Dkk3) protein becomes localized to the Wnt-inactive inner bulge that contains differentiated cells. We find that Axin2 expression remains confined to the outer bulge, whereas Dkk3 continues to be localized to the inner bulge during the hair cycle growth phase. Our data suggest that autocrine Wnt signaling in the outer bulge maintains stem cell potency throughout hair cycle quiescence and growth, whereas paracrine Wnt inhibition of inner bulge cells reinforces differentiation. PMID:26903625

  4. Axin2 marks quiescent hair follicle bulge stem cells that are maintained by autocrine Wnt/β-catenin signaling

    PubMed Central

    Lim, Xinhong; Tan, Si Hui; Yu, Ka Lou; Lim, Sophia Beng Hui; Nusse, Roeland

    2016-01-01

    How stem cells maintain their identity and potency as tissues change during growth is not well understood. In mammalian hair, it is unclear how hair follicle stem cells can enter an extended period of quiescence during the resting phase but retain stem cell potential and be subsequently activated for growth. Here, we use lineage tracing and gene expression mapping to show that the Wnt target gene Axin2 is constantly expressed throughout the hair cycle quiescent phase in outer bulge stem cells that produce their own Wnt signals. Ablating Wnt signaling in the bulge cells causes them to lose their stem cell potency to contribute to hair growth and undergo premature differentiation instead. Bulge cells express secreted Wnt inhibitors, including Dickkopf (Dkk) and secreted frizzled-related protein 1 (Sfrp1). However, the Dickkopf 3 (Dkk3) protein becomes localized to the Wnt-inactive inner bulge that contains differentiated cells. We find that Axin2 expression remains confined to the outer bulge, whereas Dkk3 continues to be localized to the inner bulge during the hair cycle growth phase. Our data suggest that autocrine Wnt signaling in the outer bulge maintains stem cell potency throughout hair cycle quiescence and growth, whereas paracrine Wnt inhibition of inner bulge cells reinforces differentiation. PMID:26903625

  5. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells

    SciTech Connect

    Luo, Fei; Xu, Yuan; Ling, Min; Zhao, Yue; Xu, Wenchao; Liang, Xiao; Jiang, Rongrong; Wang, Bairu; Bian, Qian; Liu, Qizhan

    2013-11-15

    Arsenite is an established human carcinogen, and arsenite-induced inflammation contributes to malignant transformation of cells, but the molecular mechanisms by which cancers are produced remain to be established. The present results showed that, evoked by arsenite, secretion of interleukin-6 (IL-6), a pro-inflammatory cytokine, led to the activation of STAT3, a transcription activator, and to increased levels of a microRNA, miR-21. Blocking IL-6 with anti-IL-6 antibody and inhibiting STAT3 activation reduced miR-21 expression. For human bronchial epithelial cells, cultured in the presence of anti-IL-6 antibody for 3 days, the arsenite-induced EMT and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates miR-21in an autocrine manner, contributes to the EMT induced by arsenite. These data define a link from inflammation to EMT in the arsenite-induced malignant transformation of HBE cells. This link, mediated through miRNAs, establishes a mechanism for arsenite-induced lung carcinogenesis. - Highlights: • Arsenite evokes IL-6 secretion. • IL-6 autocrine mediates STAT3 signaling and up-regulates miR-21expression. • Inflammation is involved in arsenite-induced EMT.

  6. Autocrine TGF-β/ZEB/microRNA-200 signal transduction drives epithelial-mesenchymal transition: Kinetic models predict minimal drug dose to inhibit metastasis.

    PubMed

    Rateitschak, Katja; Kaderali, Lars; Wolkenhauer, Olaf; Jaster, Robert

    2016-08-01

    The epithelial-mesenchymal transition (EMT) is the crucial step that cancer cells must pass before they can undergo metastasis. The transition requires the activity of complex functional networks that downregulate properties of the epithelial phenotype and upregulate characteristics of the mesenchymal phenotype. The networks frequently include reciprocal repressions between transcription factors (TFs) driving the EMT and microRNAs (miRs) inducing the reverse process, termed mesenchymal-epithelial transition (MET). In this work we develop four kinetic models that are based on experimental data and hypotheses describing how autocrine transforming growth factor-β (TGF-β) signal transduction induces and maintains an EMT by upregulating the TFs ZEB1 and ZEB2 which repress the expression of the miR-200b/c family members. After successful model calibration we validate our models by predicting requirements for the maintenance of the mesenchymal steady state which agree with experimental data. Finally, we apply our validated kinetic models for the design of experiments in cancer therapy. We demonstrate how steady state properties of the kinetic models, combined with data from tumor-derived cell lines of individual patients, can predict the minimal amount of an inhibitor to induce a MET.

  7. Osteoclast Precursor Interaction with Bone Matrix Induces Osteoclast Formation Directly by an Interleukin-1-mediated Autocrine Mechanism*

    PubMed Central

    Yao, Zhenqiang; Xing, Lianping; Qin, Chunlin; Schwarz, Edward M.; Boyce, Brendan F.

    2008-01-01

    Interleukin-1 (IL-1) and tumor necrosis factor (TNF) mediate bone resorption in a variety of diseases affecting bone. Like TNF, IL-1 is secreted by osteoclast precursors (OCPs), but unlike TNF, it does not induce osteoclast formation directly from OCPs in vitro. TNF induces IL-1 expression and activates c-Fos, a transcription factor required in OCPs for osteoclast formation. Here, we examined whether IL-1 can induce osteoclast formation directly from OCPs overexpressing c-Fos and whether interaction with bone matrix affects OCP cytokine expression. We infected OCPs with c-Fos or green fluorescent protein retrovirus, cultured them with macrophage colony-stimulating factor and IL-1 on bone slices or plastic dishes, and assessed osteoclast and resorption pit formation and expression of IL-1 by OCPs. We used a Transwell assay to determine whether OCPs secrete IL-1 when they interact with bone matrix. IL-1 induced osteoclast formation directly from c-Fos-expressing OCPs on plastic. c-Fos-expressing OCPs formed osteoclasts spontaneously on bone slices without addition of cytokines. OCPs on bone secreted IL-1, which induced osteoclast formation from c-Fos-expressing OCPs in the lower Transwell dishes. The bone matrix proteins dentin sialoprotein and osteopontin, but not transforming growth factor-β, stimulated OCP expression of IL-1 and induced c-Fos-expressing OCP differentiation into osteoclasts. Osteoclasts eroding inflamed joints have higher c-Fos expression compared with osteoclasts inside bone. We conclude that OCPs expressing c-Fos may induce their differentiation directly into osteoclasts by an autocrine mechanism in which they produce IL-1 through interaction with bone matrix. TNF could induce c-Fos expression in OCPs at sites of inflammation in bone to promote this autocrine mechanism and thus amplify bone loss. PMID:18250170

  8. Transcriptional expression of myelin basic protein in oligodendrocytes depends on functional syntaxin 4: a potential correlation with autocrine signaling.

    PubMed

    Bijlard, Marjolein; Klunder, Bert; de Jonge, Jenny C; Nomden, Anita; Tyagi, Sanjay; de Vries, Hans; Hoekstra, Dick; Baron, Wia

    2015-02-01

    Myelination of axons by oligodendrocytes is essential for saltatory nerve conduction. To form myelin membranes, a coordinated synthesis and subsequent polarized transport of myelin components are necessary. Here, we show that as part of the mechanism to establish membrane polarity, oligodendrocytes exploit a polarized distribution of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery components syntaxins 3 and 4, localizing to the cell body and the myelin membrane, respectively. Our data further reveal that the expression of myelin basic protein (MBP), a myelin-specific protein that is synthesized "on site" after transport of its mRNA, depends on the correct functioning of the SNARE machinery, which is not required for mRNA granule assembly and transport per se. Thus, downregulation and overexpression of syntaxin 4 but not syntaxin 3 in oligodendrocyte progenitor cells but not immature oligodendrocytes impeded MBP mRNA transcription, thereby preventing MBP protein synthesis. The expression and localization of another myelin-specific protein, proteolipid protein (PLP), was unaltered. Strikingly, conditioned medium obtained from developing oligodendrocytes was able to rescue the block of MBP mRNA transcription in syntaxin 4-downregulated cells. These findings indicate that the initiation of the biosynthesis of MBP mRNA relies on a syntaxin 4-dependent mechanism, which likely involves activation of an autocrine signaling pathway.

  9. Hypertonic Stress Induces VEGF Production in Human Colon Cancer Cell Line Caco-2: Inhibitory Role of Autocrine PGE2

    PubMed Central

    Gentile, Luciana B.; Piva, Bruno; Diaz, Bruno L.

    2011-01-01

    Vascular Endothelial Growth Factor (VEGF) is a major regulator of angiogenesis. VEGF expression is up regulated in response to micro-environmental cues related to poor blood supply such as hypoxia. However, regulation of VEGF expression in cancer cells is not limited to the stress response due to increased volume of the tumor mass. Lipid mediators in particular arachidonic acid-derived prostaglandin (PG)E2 are regulators of VEGF expression and angiogenesis in colon cancer. In addition, increased osmolarity that is generated during colonic water absorption and feces consolidation seems to activate colon cancer cells and promote PGE2 generation. Such physiological stimulation may provide signaling for cancer promotion. Here we investigated the effect of exposure to a hypertonic medium, to emulate colonic environment, on VEGF production by colon cancer cells. The role of concomitant PGE2 generation and MAPK activation was addressed by specific pharmacological inhibition. Human colon cancer cell line Caco-2 exposed to a hypertonic environment responded with marked VEGF and PGE2 production. VEGF production was inhibited by selective inhibitors of ERK 1/2 and p38 MAPK pathways. To address the regulatory role of PGE2 on VEGF production, Caco-2 cells were treated with cPLA2 (ATK) and COX-2 (NS-398) inhibitors, that completely block PGE2 generation. The Caco-2 cells were also treated with a non selective PGE2 receptor antagonist. Each treatment significantly increased the hypertonic stress-induced VEGF production. Moreover, addition of PGE2 or selective EP2 receptor agonist to activated Caco-2 cells inhibited VEGF production. The autocrine inhibitory role for PGE2 appears to be selective to hypertonic environment since VEGF production induced by exposure to CoCl2 was decreased by inhibition of concomitant PGE2 generation. Our results indicated that hypertonicity stimulates VEGF production in colon cancer cell lines. Also PGE2 plays an inhibitory role on VEGF production by

  10. Is Dynamic Autocrine Insulin Signaling Possible? A Mathematical Model Predicts Picomolar Concentrations of Extracellular Monomeric Insulin within Human Pancreatic Islets

    PubMed Central

    Wang, Minghu; Li, Jiaxu; Lim, Gareth E.; Johnson, James D.

    2013-01-01

    Insulin signaling is essential for -cell survival and proliferation in vivo. Insulin also has potent mitogenic and anti-apoptotic actions on cultured -cells, with maximum effect in the high picomolar range and diminishing effect at high nanomolar doses. In order to understand whether these effects of insulin are constitutive or can be subjected to physiological modulation, it is essential to estimate the extracellular concentration of monomeric insulin within an intact islet. Unfortunately, the in vivo concentration of insulin monomers within the islet cannot be measured directly with current technology. Here, we present the first mathematical model designed to estimate the levels of monomeric insulin within the islet extracellular space. Insulin is released as insoluble crystals that exhibit a delayed dissociation into hexamers, dimers, and eventually monomers, which only then can act as signaling ligands. The rates at which different forms of insulin dissolve in vivo have been estimated from studies of peripheral insulin injection sites. We used this and other information to formulate a mathematical model to estimate the local insulin concentration within a single islet as a function of glucose. Model parameters were estimated from existing literature. Components of the model were validated using experimental data, if available. Model analysis predicted that the majority of monomeric insulin in the islet is that which has been returned from the periphery, and the concentration of intra-islet monomeric insulin varies from 50–300 pM when glucose is in the physiological range. Thus, our results suggest that the local concentration of monomeric insulin within the islet is in the picomolar ‘sweet spot’ range of insulin doses that activate the insulin receptor and have the most potent effects on -cells in vitro. Together with experimental data, these estimations support the concept that autocrine/paracrine insulin signalling within the islet is dynamic, rather

  11. Type I Interferons Function as Autocrine and Paracrine Factors to Induce Autotaxin in Response to TLR Activation

    PubMed Central

    Song, Jianwen; Guan, Ming; Zhao, Zhenwen; Zhang, Junjie

    2015-01-01

    Lysophosphatidic acid (LPA) is an important phospholipid mediator in inflammation and immunity. However, the mechanism of LPA regulation during inflammatory response is largely unknown. Autotaxin (ATX) is the key enzyme to produce extracellular LPA from lysophosphatidylcholine (LPC). In this study, we found that ATX was induced in monocytic THP-1 cells by TLR4 ligand lipopolysaccharide (LPS), TLR9 ligand CpG oligonucleotide, and TLR3 ligand poly(I:C), respectively. The ATX induction by TLR ligand was abolished by the neutralizing antibody against IFN-β or the knockdown of IFNAR1, indicating that type I IFN autocrine loop is responsible for the ATX induction upon TLR activation. Both IFN-β and IFN-α were able to induce ATX expression via the JAK-STAT and PI3K-AKT pathways but with different time-dependent manners. The ATX induction by IFN-β was dramatically enhanced by IFN-γ, which had no significant effect on ATX expression alone, suggesting a synergy effect between type I and type II IFNs in ATX induction. Extracellular LPA levels were significantly increased when THP-1 cells were treated with IFN-α/β or TLR ligands. In addition, the type I IFN-mediated ATX induction was identified in human monocyte-derived dendritic cells (moDCs) stimulated with LPS or poly(I:C), and IFN-α/β could induce ATX expression in human peripheral blood mononuclear cells (PBMCs) and monocytes isolated form blood samples. These results suggest that, in response to TLR activation, ATX is induced through a type I INF autocrine-paracrine loop to enhance LPA generation. PMID:26313906

  12. Constitutive IDO expression in human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR.

    PubMed

    Litzenburger, Ulrike M; Opitz, Christiane A; Sahm, Felix; Rauschenbach, Katharina J; Trump, Saskia; Winter, Marcus; Ott, Martina; Ochs, Katharina; Lutz, Christian; Liu, Xiangdong; Anastasov, Natasa; Lehmann, Irina; Höfer, Thomas; von Deimling, Andreas; Wick, Wolfgang; Platten, Michael

    2014-02-28

    Indoleamine-2,3-dioxygenase (IDO) inhibitors have entered clinical trials based on their ability to restore anti-tumor immunity in preclinical studies. However, the mechanisms leading to constitutive expression of IDO in human tumors are largely unknown. Here we analyzed the pathways mediating constitutive IDO expression in human cancer. IDO-positive tumor cells and tissues showed basal phosphorylation and acetylation of STAT3 as evidenced by western blotting and immunoprecipitation. Inhibition of IL-6 or STAT3 using siRNA and/or pharmacological inhibitors reduced IDO mRNA and protein expression as well as kynurenine formation. In turn, IDO enzymatic activity activated the AHR as shown by the induction of AHR target genes. IDO-mediated AHR activation induced IL-6 expression, while inhibition or knockdown of the AHR reduced IL-6 expression. IDO activity thus sustains its own expression via an autocrine AHR-IL-6-STAT3 signaling loop. Inhibition of the AHR-IL-6-STAT3 signaling loop restored T-cell proliferation in mixed leukocyte reactions performed in the presence of IDO-expressing human cancer cells. Identification of the IDO-AHR-IL-6-STAT3 signaling loop maintaining IDO expression in human cancers reveals novel therapeutic targets for the inhibition of this core pathway promoting immunosuppression of human cancers. The relevance of the IDO-AHR-IL-6-STAT3 transcriptional circuit is underscored by the finding that high expression of its members IDO, STAT3 and the AHR target gene CYP1B1 is associated with reduced relapse-free survival in lung cancer patients.

  13. Autocrine and paracrine angiopoietin 1/Tie-2 signaling promotes muscle satellite cell self-renewal.

    PubMed

    Abou-Khalil, Rana; Le Grand, Fabien; Pallafacchina, Giorgia; Valable, Samuel; Authier, François-Jérôme; Rudnicki, Michael A; Gherardi, Romain K; Germain, Stéphane; Chretien, Fabrice; Sotiropoulos, Athanassia; Lafuste, Peggy; Montarras, Didier; Chazaud, Bénédicte

    2009-09-01

    Mechanisms governing muscle satellite cell withdrawal from cell cycle to enter into quiescence remain poorly understood. We studied the role of angiopoietin 1 (Ang1) and its receptor Tie-2 in the regulation of myogenic precursor cell (mpc) fate. In human and mouse, Tie-2 was preferentially expressed by quiescent satellite cells in vivo and reserve cells (RCs) in vitro. Ang1/Tie-2 signaling, through ERK1/2 pathway, decreased mpc proliferation and differentiation, increased the number of cells in G0, increased expression of RC-associated markers (p130, Pax7, Myf-5, M-cadherin), and downregulated expression of differentiation-associated markers. Silencing Tie-2 had opposite effects. Cells located in the satellite cell neighborhood (smooth muscle cells, fibroblasts) upregulated RC-associated markers by secreting Ang1 in vitro. In vivo, Tie-2 blockade and Ang1 overexpression increased the number of cycling and quiescent satellite cells, respectively. We propose that Ang1/Tie-2 signaling regulates mpc self-renewal by controlling the return to quiescence of a subset of satellite cells.

  14. Targeting autocrine HB-EGF signaling with specific ADAM12 inhibition using recombinant ADAM12 prodomain

    NASA Astrophysics Data System (ADS)

    Miller, Miles A.; Moss, Marcia L.; Powell, Gary; Petrovich, Robert; Edwards, Lori; Meyer, Aaron S.; Griffith, Linda G.; Lauffenburger, Douglas A.

    2015-10-01

    Dysregulation of ErbB-family signaling underlies numerous pathologies and has been therapeutically targeted through inhibiting ErbB-receptors themselves or their cognate ligands. For the latter, “decoy” antibodies have been developed to sequester ligands including heparin-binding epidermal growth factor (HB-EGF); however, demonstrating sufficient efficacy has been difficult. Here, we hypothesized that this strategy depends on properties such as ligand-receptor binding affinity, which varies widely across the known ErbB-family ligands. Guided by computational modeling, we found that high-affinity ligands such as HB-EGF are more difficult to target with decoy antibodies compared to low-affinity ligands such as amphiregulin (AREG). To address this issue, we developed an alternative method for inhibiting HB-EGF activity by targeting its cleavage from the cell surface. In a model of the invasive disease endometriosis, we identified A Disintegrin and Metalloproteinase 12 (ADAM12) as a protease implicated in HB-EGF shedding. We designed a specific inhibitor of ADAM12 based on its recombinant prodomain (PA12), which selectively inhibits ADAM12 but not ADAM10 or ADAM17. In endometriotic cells, PA12 significantly reduced HB-EGF shedding and resultant cellular migration. Overall, specific inhibition of ligand shedding represents a possible alternative to decoy antibodies, especially for ligands such as HB-EGF that exhibit high binding affinity and localized signaling.

  15. Semaphorin 3D autocrine signaling mediates the metastatic role of annexin A2 in pancreatic cancer

    PubMed Central

    Foley, Kelly; Rucki, Agnieszka A.; Xiao, Qian; Zhou, Donger; Leubner, Ashley; Mo, Guanglan; Kleponis, Jennifer; Wu, Annie A.; Sharma, Rajni; Jiang, Qingguang; Anders, Robert A.; Iacobuzio-Donahue, Christine A.; Hajjar, Katherine A.; Maitra, Anirban; Jaffee, Elizabeth M.; Zheng, Lei

    2016-01-01

    Most patients with pancreatic ductal adenocarcinoma (PDA) present with metastatic disease at the time of diagnosis or will recur with metastases after surgical treatment. Semaphorin–plexin signaling mediates the migration of neuronal axons during development and of blood vessels during angiogenesis. The expression of the gene encoding semaphorin 3D (Sema3D) is increased in PDA tumors, and the presence of antibodies against the pleiotropic protein annexin A2 (AnxA2) in the sera of some patients after surgical resection of PDA is associated with longer recurrence-free survival. By knocking out AnxA2 in a transgenic mouse model of PDA (KPC) that recapitulates the progression of human PDA from premalignancy to metastatic disease, we found that AnxA2 promoted metastases in vivo. The expression of AnxA2 promoted the secretion of Sema3D from PDA cells, which coimmunoprecipitated with the co-receptor plexin D1 (PlxnD1) on PDA cells. Mouse PDA cells in which SEMA3D was knocked down or ANXA2-null PDA cells exhibited decreased invasive and metastatic potential in culture and in mice. However, restoring Sema3D in AnxA2-null cells did not entirely rescue metastatic behavior in culture and in vivo, suggesting that AnxA2 mediates additional prometastatic mechanisms. Patients with primary PDA tumors that have abundant Sema3D have widely metastatic disease and decreased survival compared to patients with tumors that have relatively low Sema3D abundance. Thus, AnxA2 and Sema3D may be new therapeutic targets and prognostic markers of metastatic PDA. PMID:26243191

  16. High salt induces autocrine actions of ET-1 on inner medullary collecting duct NO production via upregulated ETB receptor expression.

    PubMed

    Hyndman, Kelly Anne; Dugas, Courtney; Arguello, Alexandra M; Goodchild, Traci T; Buckley, Kathleen M; Burch, Mariah; Yanagisawa, Masashi; Pollock, Jennifer S

    2016-08-01

    The collecting duct endothelin-1 (ET-1), endothelin B (ETB) receptor, and nitric oxide synthase-1 (NOS1) pathways are critical for regulation of fluid-electrolyte balance and blood pressure control during high-salt feeding. ET-1, ETB receptor, and NOS1 are highly expressed in the inner medullary collecting duct (IMCD) and vasa recta, suggesting that there may be cross talk or paracrine signaling between the vasa recta and IMCD. The purpose of this study was to test the hypothesis that endothelial cell-derived ET-1 (paracrine) and collecting duct-derived ET-1 (autocrine) promote IMCD nitric oxide (NO) production through activation of the ETB receptor during high-salt feeding. We determined that after 7 days of a high-salt diet (HS7), there was a shift to 100% ETB expression in IMCDs, as well as a twofold increase in nitrite production (a metabolite of NO), and this increase could be prevented by acute inhibition of the ETB receptor. ETB receptor blockade or NOS1 inhibition also prevented the ET-1-dependent decrease in ion transport from primary IMCDs, as determined by transepithelial resistance. IMCD were also isolated from vascular endothelial ET-1 knockout mice (VEETKO), collecting duct ET-1 KO (CDET-1KO), and flox controls. Nitrite production by IMCD from VEETKO and flox mice was similarly increased twofold with HS7. However, IMCD NO production from CDET-1KO mice was significantly blunted with HS7 compared with flox control. Taken together, these data indicate that during high-salt feeding, the autocrine actions of ET-1 via upregulation of the ETB receptor are critical for IMCD NO production, facilitating inhibition of ion reabsorption.

  17. TGF-beta cooperates with TGF-alpha to induce the self-renewal of normal erythrocytic progenitors: evidence for an autocrine mechanism.

    PubMed Central

    Gandrillon, O; Schmidt, U; Beug, H; Samarut, J

    1999-01-01

    Simultaneous addition of both TGF-alpha and TGF-beta induces the sustained, long-term outgrowth of chicken erythrocytic progenitor cells, referred to as T2ECs from both chick bone marrow and 2-day-old chicken embryos. By analysis for differentiation antigens and gene expression, these cells were shown to represent very immature haematopoietic progenitors committed to the erythrocytic lineage. T2ECs differentiate into almost pure populations of fully mature erythrocytes within 6 days, when TGF-alpha and TGF-beta are withdrawn and the cells exposed to anaemic chicken serum plus insulin. Outgrowth of these cells from various sources invariably required both TGF-alpha and TGF-beta, as well as glucocorticoids. Proliferating, established T2ECs still require TGF-alpha, but are independent of exogenous TGF-beta. Using a TGF-beta-neutralizing antibody or expressing a dominant-negative TGF-beta receptor II, we demonstrate that T2ECs generate an autocrine loop involving TGF-beta during their establishment, which is required for sustained proliferation. Using specific inhibitors, we also show that signalling via Mek-1 is specifically required for induction and maintenance of cell proliferation driven by cooperation between the TGF-alpha and -beta receptors. These results establish a novel mechanism by which self-renewal of erythrocytic progenitors is induced and establish avian T2ECs as a new, quasi-optimal model system to study erythrocytic progenitors. PMID:10329623

  18. IL-33-Induced Cytokine Secretion and Survival of Mouse Eosinophils Is Promoted by Autocrine GM-CSF

    PubMed Central

    Willebrand, Ralf; Voehringer, David

    2016-01-01

    Eosinophils are major effector cells during allergic responses and helminth infections. Recent studies further highlight eosinophils as important players in many other biological processes. Therefore it is important to understand how these cells can be modulated in terms of survival and effector function. In the present study we investigated how eosinophils respond to the alarmin IL-33. We show that IL-33 promotes eosinophil survival in a ST2- and MyD88-dependent manner. IL-33-mediated protection from apoptosis was dependent on autocrine GM-CSF release. In addition, GM-CSF increased the IL-33-induced secretion of IL-4 and IL-13 from eosinophils. Unexpectedly, this effect was further enhanced by cross-linking of Siglec-F, a proposed inhibitory and apopotosis-inducing receptor on eosinophils. Co-culture experiments with eosinophils and macrophages revealed that the IL-33-induced release of IL-4 and IL-13 from eosinophils was required for differentiation of alternatively activated macrophages (AAMs). The differentiation of AAMs could be further increased in the presence of GM-CSF. These results indicate that cross-talk between Siglec-F and the receptors for IL-33, LPS and GM-CSF plays an important role for efficient secretion of IL-4 and IL-13. Deciphering the molecular details of this cross-talk could lead to the development of new therapeutic option to treat eosinophil-associated diseases. PMID:27690378

  19. Lipopolysaccharide induces the expression of an autocrine prolactin loop enhancing inflammatory response in monocytes

    PubMed Central

    2013-01-01

    Background Prolactin from pituitary gland helps maintain homeostasis but it is also released in immune cells where its function is not completely understood. Pleiotropic functions of prolactin (PRL) might be mediated by different isoforms of its receptor (PRLr). Methods The aim of this study was to investigate the relationship between the eventual synthesis of PRL and PRLr isoforms with the inflammatory response in monocytes. We used THP-1 and monocytes isolated from healthy subjects stimulated with lipopolysaccharide (LPS). Western blot, real time PCR and immunocytochemistry were performed to identify both molecules. The bioactivity of the PRL was assessed using a bioassay and ELISA to detect pro inflammatory cytokines. Results PRLr mRNA and PRL mRNA were synthesized in THP-1 monocytes activated with LPS with peaks of 300-fold and 130-fold, respectively. The long (100 kDa) and the intermediate (50 kDa) isoforms of PRLr and big PRL (60 kDa) were time-dependent upregulated for monocytes stimulated with LPS. This expression was confirmed in monocytes from healthy subjects. The PRLr intermediate isoform and the big PRL were found soluble in the culture media and later in the nucleus in THP-1 monocytes stimulated with LPS. Big PRL released by monocytes showed bioactivity in Nb2 Cells, and both PRL and PRLr, synthesized by monocytes were related with levels of nitrites and proinflammatory citokines. Conclusions Our results suggest the expression of a full-autocrine loop of PRL enhances the inflammatory response in activated monocytes. This response mediated by big PRL may contribute to the eradication of potential pathogens during innate immune response in monocytes but may also contribute to inflammatory disorders. PMID:23731754

  20. Autocrine CSF1R signaling mediates switching between invasion and proliferation downstream of TGFβ in claudin-low breast tumor cells.

    PubMed

    Patsialou, A; Wang, Y; Pignatelli, J; Chen, X; Entenberg, D; Oktay, M; Condeelis, J S

    2015-05-21

    Patient data suggest that colony-stimulating factor-1 (CSF1) and its receptor (CSF1R) have critical roles during breast cancer progression. We have previously shown that in human breast tumors expressing both CSF1 and CSF1R, invasion in vivo is dependent both on a paracrine interaction with tumor-associated macrophages and an autocrine regulation of CSF1R in the tumor cells themselves. Although the role of the paracrine interaction between tumor cells and macrophages has been extensively studied, very little is known about the mechanism by which the autocrine CSF1R signaling contributes to tumor progression. We show here that breast cancer patients of the claudin-low subtype have significantly increased expression of CSF1R. Using a panel of breast cancer cell lines, we confirm that CSF1R expression is elevated and regulated by TGFβ specifically in claudin-low cell lines. Abrogation of autocrine CSF1R signaling in MDA-MB-231 xenografts (a claudin-low cell line) leads to increased tumor size by enhanced proliferation, but significantly reduced invasion, dissemination and metastasis. Indeed, we show that proliferation and invasion are oppositely regulated by CSF1R downstream of TGFβ only in claudin-low cell lines. Intravital multiphoton imaging revealed that inhibition of CSF1R in the tumor cells leads to decreased in vivo motility and a more cohesive morphology. We show that, both in vitro and in vivo, CSF1R inhibition results in a reversal of claudin-low marker expression by significant upregulation of luminal keratins and tight-junction proteins such as claudins. Finally, we show that artificial overexpression of claudins in MDA-MB-231 cells is sufficient to tip the cells from an invasive state to a proliferative state. Our results suggest that autocrine CSF1R signaling is essential in maintaining low claudin expression and that it mediates a switch between the proliferative and the invasive state in claudin-low tumor cells downstream of TGFβ.

  1. Autocrine growth factors and solid tumor malignancy.

    PubMed Central

    Walsh, J. H.; Karnes, W. E.; Cuttitta, F.; Walker, A.

    1991-01-01

    The ability of malignant cells to escape the constraint that normally regulate cell growth and differentiation has been a primary focus of attention for investigators of cancer cell biology. An outcome of this attention has been the discovery that the protein products of oncogenes play a role in the activation of growth signal pathways. A second outcome, possibly related to abnormal oncogene expression, has been the discovery that malignant cells frequently show an ability to regulate their own growth by the release of autocrine growth modulatory substances. Most important, the growth of certain malignant cell types has been shown to depend on autocrine growth circuits. A malignant tumor whose continued growth depends on the release of an autocrine growth factor may be vulnerable to treatment with specific receptor antagonists or immunoneutralizing antibodies designed to break the autocrine circuit. Information is rapidly emerging concerning autocrine growth factors in selected human solid tissue malignancy. Images PMID:1926844

  2. Tumor necrosis factor alpha transcription in macrophages is attenuated by an autocrine factor that preferentially induces NF-kappaB p50.

    PubMed

    Baer, M; Dillner, A; Schwartz, R C; Sedon, C; Nedospasov, S; Johnson, P F

    1998-10-01

    Macrophages are a major source of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-alpha), which are expressed during conditions of inflammation, infection, or injury. We identified an activity secreted by a macrophage tumor cell line that negatively regulates bacterial lipopolysaccharide (LPS)-induced expression of TNF-alpha. This activity, termed TNF-alpha-inhibiting factor (TIF), suppressed the induction of TNF-alpha expression in macrophages, whereas induction of three other proinflammatory cytokines (interleukin-1beta [IL-1beta], IL-6, and monocyte chemoattractant protein 1) was accelerated or enhanced. A similar or identical inhibitory activity was secreted by IC-21 macrophages following LPS stimulation. Inhibition of TNF-alpha expression by macrophage conditioned medium was associated with selective induction of the NF-kappaB p50 subunit. Hyperinduction of p50 occurred with delayed kinetics in LPS-stimulated macrophages but not in fibroblasts. Overexpression of p50 blocked LPS-induced transcription from a TNF-alpha promoter reporter construct, showing that this transcription factor is an inhibitor of the TNF-alpha gene. Repression of the TNF-alpha promoter by TIF required a distal region that includes three NF-kappaB binding sites with preferential affinity for p50 homodimers. Thus, the selective repression of the TNF-alpha promoter by TIF may be explained by the specific binding of inhibitory p50 homodimers. We propose that TIF serves as a negative autocrine signal to attenuate TNF-alpha expression in activated macrophages. TIF is distinct from the known TNF-alpha-inhibiting factors IL-4, IL-10, and transforming growth factor beta and may represent a novel cytokine. PMID:9742085

  3. Tumor Necrosis Factor Alpha Transcription in Macrophages Is Attenuated by an Autocrine Factor That Preferentially Induces NF-κB p50

    PubMed Central

    Baer, Mark; Dillner, Allan; Schwartz, Richard C.; Sedon, Constance; Nedospasov, Sergei; Johnson, Peter F.

    1998-01-01

    Macrophages are a major source of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α), which are expressed during conditions of inflammation, infection, or injury. We identified an activity secreted by a macrophage tumor cell line that negatively regulates bacterial lipopolysaccharide (LPS)-induced expression of TNF-α. This activity, termed TNF-α-inhibiting factor (TIF), suppressed the induction of TNF-α expression in macrophages, whereas induction of three other proinflammatory cytokines (interleukin-1β [IL-1β], IL-6, and monocyte chemoattractant protein 1) was accelerated or enhanced. A similar or identical inhibitory activity was secreted by IC-21 macrophages following LPS stimulation. Inhibition of TNF-α expression by macrophage conditioned medium was associated with selective induction of the NF-κB p50 subunit. Hyperinduction of p50 occurred with delayed kinetics in LPS-stimulated macrophages but not in fibroblasts. Overexpression of p50 blocked LPS-induced transcription from a TNF-α promoter reporter construct, showing that this transcription factor is an inhibitor of the TNF-α gene. Repression of the TNF-α promoter by TIF required a distal region that includes three NF-κB binding sites with preferential affinity for p50 homodimers. Thus, the selective repression of the TNF-α promoter by TIF may be explained by the specific binding of inhibitory p50 homodimers. We propose that TIF serves as a negative autocrine signal to attenuate TNF-α expression in activated macrophages. TIF is distinct from the known TNF-α-inhibiting factors IL-4, IL-10, and transforming growth factor β and may represent a novel cytokine. PMID:9742085

  4. Notch signaling drives multiple myeloma induced osteoclastogenesis

    PubMed Central

    Colombo, Michela; Thümmler, Katja; Mirandola, Leonardo; Garavelli, Silvia; Todoerti, Katia; Apicella, Luana; Lazzari, Elisa; Lancellotti, Marialuigia; Platonova, Natalia; Akbar, Moeed; Chiriva-Internati, Maurizio; Soutar, Richard; Neri, Antonino; Goodyear, Carl S.; Chiaramonte, Raffaella

    2014-01-01

    Multiple myeloma (MM) is closely associated with bone destruction. Once migrated to the bone marrow, MM cells unbalance bone formation and resorption via the recruitment and maturation of osteoclast precursors. The Notch pathway plays a key role in different types of cancer and drives several biological processes relevant in MM, including cell localization within the bone marrow, proliferation, survival and pharmacological resistance. Here we present evidences that MM can efficiently drive osteoclastogenesis by contemporaneously activating Notch signaling on tumor cells and osteoclasts through the aberrant expression of Notch ligands belonging to the Jagged family. Active Notch signaling in MM cells induces the secretion of the key osteoclastogenic factor, RANKL, which can be boosted in the presence of stromal cells. In turn, MM cells-derived RANKL causes the upregulation of its receptor, RANK, and Notch2 in pre-osteoclasts. Notch2 stimulates osteoclast differentiation by promoting autocrine RANKL signaling. Finally, MM cells through Jagged ligands expression can also activate Notch signaling in pre-osteoclast by direct contact. Such synergism between tumor cells and pre-osteoclasts in MM-induced osteoclastogenesis can be disrupted by silencing tumor-derived Jagged1 and 2. These results make the Jagged ligands new promising therapeutic targets in MM to contrast bone disease and the associated co-morbidities. PMID:25257302

  5. Schlafen-3 decreases cancer stem cell marker expression and autocrine/juxtacrine signaling in FOLFOX-resistant colon cancer cells.

    PubMed

    Oh, Phil-Sun; Patel, Vaishali B; Sanders, Matthew A; Kanwar, Shailender S; Yu, Yingjie; Nautiyal, Jyoti; Patel, Bhaumik B; Majumdar, Adhip P N

    2011-08-01

    We have previously demonstrated that expression of the novel gene schlafen-3 (Slfn-3) correlates with intestinal epithelial cell differentiation (Patel VB, Yu Y, Das JK, Patel BB, Majumdar AP. Biochem Biophys Res Commun 388: 752-756, 2009). The present investigation was undertaken to examine whether Slfn-3 plays a role in regulating differentiation of FOLFOX-resistant (5-fluorouracil + oxaliplatin) colon cancer cells that are highly enriched in cancer stem cells (CSCs). Transfection of Slfn-3 in FOLFOX-resistant colon cancer HCT-116 cells resulted in increase of alkaline phosphatase activity, a marker of intestinal differentiation. Additionally, Slfn-3 transfection resulted in reduction of mRNA and protein levels of the CSC markers CD44, CD133, CD166, and aldehyde dehydrogenase 1 in both FOLFOX-resistant HCT-116 and HT-29 cells. This was accompanied by decreased formation of tumorosphere/colonosphere (an in vitro model of tumor growth) in stem cell medium and inhibition of expression of the chemotherapeutic drug transporter protein ABCG2. Additionally, Slfn-3 transfection of FOLFOX-resistant HCT-116 and HT-29 cells reduced Hoechst 33342 dye exclusion. Finally, Slfn-3 transfection inhibited the expression of transforming growth factor-α in both FOLFOX-resistant colon cancer cells, but stimulated apoptosis in response to additional FOLFOX treatment. In summary, our data demonstrate that Slfn-3 expression inhibits multiple characteristics of CSC-enriched, FOLFOX-resistant colon cancer cells, including induction of differentiation and reduction in tumorosphere/colonosphere formation, drug transporter activity, and autocrine stimulation of proliferation. Thus Slfn-3 expression may render colon CSCs more susceptible to cancer chemotherapeutics.

  6. Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow

    SciTech Connect

    Semino, Carlos E. . E-mail: semino@mit.edu; Kamm, Roger D.; Lauffenburger, Douglas A.

    2006-02-01

    We show here that autocrine ligand activation of epidermal growth factor (EGF) receptor in combination with interstitial flow is critically involved in the morphogenetic response of endothelial cells to VEGF stimulation. Human umbilical vein endothelial cell (HUVEC) monolayers cultured on a collagen gel and exposed to low interstitial flow in the absence of EGF and VEGF remained viable and mitotic but exhibited little evidence of vascular morphogenesis. Addition of VEGF produced a flow-dependent morphogenetic response within 48 to 72 h, characterized by branched capillary-like structures. The response was substantially abolished by inhibitors related to the autocrine EGF receptor pathway including Galardin, AG1478, PD98059, and an EGF receptor-blocking antibody, indicating that regulation of the morphogenetic process operates via autocrine EGF receptor activation. Moreover, we observed that in our system the EGF receptor was always activated independently of the interstitial flow, and, in addition, the EGF receptor inhibitors used above reduced the phosphorylation state of the receptor, correlating with inhibition of capillary morphogenesis. Finally, 5'bromo-2'-deoxyuridine (BrdU) labeling identified dividing cells at the monolayer but not in the extending capillary-like structures. EGF pathway inhibitors Galardin and AG1478 did not reduce BrdU incorporation in the monolayer, indicating that the EGF-receptor-mediated morphogenetic behavior is mainly due to cell migration rather than proliferation. Based on these results, we propose a two-step model for in vitro capillary morphogenesis in response to VEGF stimulation with interstitial fluid flow: monolayer maintenance by mitotic activity independent of EGF receptors and a migratory response mediated by autocrine EGF receptor activation wherein cells establish capillary-like structures.

  7. Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop.

    PubMed

    Liu, Hua; Xu, Guo Wei; Wang, Ya Fei; Zhao, Hong Shi; Xiong, Si; Wu, Yan; Heng, Boon Chin; An, Cheng Rui; Zhu, Gang Hua; Xie, Ding Hua

    2015-05-01

    Composite scaffolds of nano-hydroxyapatite (nHAp) and silk fibroin (SF) have been reported to promote bone regeneration mainly through signaling pathways associated with cell-biomaterial interaction. However, it is unclear whether soluble factors also play a role in osteoinduction with nHAp-SF. In this study, we confirmed the biocompatibility and superior osteoinductivity of nHAp-SF scaffolds versus SF scaffolds both in vitro and on a calvarial defect model in vivo. This was followed by further analysis with microarray assay. The cDNA microarray results identified 247 differentially expressed genes in bone marrow mesenchymal stem cells (BMSCs) cultured on SF-nHAp scaffolds versus SF scaffolds. The greatest disparity in gene expression levels were observed with Il1α and Ilr2. Real-time PCR assay validated the results. The addition of IL-1α into cultures of BMSCs with SF significantly increased both Bmp2 and Ilr2 expression. However, with BMSCs alone, the Il1r2 expression increased substantially, whereas Bmp2 expression exhibited a decrease rather than increase. These data suggested that nHAp may exert osteoinductive effects on BMSCs via the secretion of IL-1α in an autocrine/paracrine fashion, and IL-1α activity could be regulated through the synthesis of IL1R2 by BMSCs upon interaction with nHAp. These results complemented our understanding of the underlying mechanisms of biomaterial osteoinductivity.

  8. The Autocrine Mitogenic Loop of the Ciliate Euplotes raikovi: The Pheromone Membrane-bound Forms Are the Cell Binding Sites and Potential Signaling Receptors of Soluble Pheromones

    PubMed Central

    Ortenzi, Claudio; Alimenti, Claudio; Vallesi, Adriana; Di Pretoro, Barbara; Terza, Antonietta La; Luporini, Pierangelo

    2000-01-01

    Homologous proteins, denoted pheromones, promote cell mitotic proliferation and mating pair formation in the ciliate Euplotes raikovi, according to whether they bind to cells in an autocrine- or paracrine-like manner. The primary transcripts of the genes encoding these proteins undergo alternate splicing, which generates at least two distinct mRNAs. One is specific for the soluble pheromone, the other for a pheromone isoform that remains anchored to the cell surface as a type II protein, whose extracellular C-terminal region is structurally equivalent to the secreted form. The 15-kDa membrane-bound isoform of pheromone Er-1, denoted Er-1mem and synthesized by the same E. raikovi cells that secrete Er-1, has been purified from cell membranes by affinity chromatography prepared with matrix-bound Er-1, and its extracellular and cytoplasmic regions have been expressed as recombinant proteins. Using the purified material and these recombinant proteins, it has been shown that Er-1mem has the property of binding pheromones competitively through its extracellular pheromone-like domain and associating reversibly and specifically with a guanine nucleotide-binding protein through its intracellular domain. It has been concluded that the membrane-bound pheromone isoforms of E. raikovi represent the cell effective pheromone binding sites and are functionally equipped for transducing the signal generated by this binding. PMID:10749941

  9. Interleukin 22 protects colorectal cancer cells from chemotherapy by activating the STAT3 pathway and inducing autocrine expression of interleukin 8.

    PubMed

    Wu, Tingyu; Wang, Zhongchuan; Liu, Yun; Mei, Zubing; Wang, Guanghui; Liang, Zhonglin; Cui, Ang; Hu, Xuguang; Cui, Long; Yang, Yili; Liu, Chen-Ying

    2014-10-01

    Resistance to chemotherapy is the major cause of colorectal cancer (CRC) treatment failure. The cytokine IL-22, which is produced by T cells and NK cells, is associated with tumorigenesis and tumor progression in cancers. However, the role of IL-22 in chemoresistance has not been investigated. We found that IL-22 levels in tumor tissues and peripheral blood were associated with chemoresistance and indicate poor prognosis for patients who received FOLFOX chemotherapy. In CRC cells, IL-22 was able to attenuate the cytotoxic and apoptosis-inducing effects of 5-FU and OXA by activating the STAT3 pathway and subsequently increasing the expression of anti-apoptotic genes. In addition, IL-22 conferred resistance to 5-FU and OXA by inducing IL-8 autocrine expression through STAT3 activation. Our findings identify IL-22 as a novel chemoresistance cytokine and may be a useful prognostic biomarker for CRC patients receiving FOLFOX chemotherapy. PMID:25063444

  10. Overexpressed GRP78 affects EMT and cell-matrix adhesion via autocrine TGF-β/Smad2/3 signaling.

    PubMed

    Zhang, Lichao; Li, Zongwei; Fan, Yongsheng; Li, Hanqing; Li, Zhouyu; Li, Yaoping

    2015-07-01

    Glucose-regulated protein of 78kD (GRP78) is a multifunctional protein belonging to the heat shock protein 70 family. Overexpression of GRP78 triggered by environmental and physiological stresses is positively correlated with the occurrence and progression of various tumors, but the molecular mechanisms have not been well established. The present study indicated that overexpression of GRP78 in colon cancer cells could promote cell-matrix adhesion through the upregulation of fibronectin, integrin-β1 and phosphorylated FAK. Meanwhile, it resulted in a visible epithelial-mesenchymal transition in DLD1 cells, and the Snail-2 played the key role during the process. More importantly, the data indicated that GRP78 overexpression facilitated the expression and secretion of TGF-β1, which further activated the downstream Smad2/3 signaling module to effectuate the cell-matrix adhesion and epithelial-mesenchymal transition. Taken together, this study provides a novel molecular mechanism involving in the effects of GRP78 on colon cancer metastasis. PMID:25934251

  11. Autocrine fibronectin from differentiating mesenchymal stem cells induces the neurite elongation in vitro and promotes nerve fiber regeneration in transected spinal cord injury.

    PubMed

    Zeng, Xiang; Ma, Yuan-Huan; Chen, Yuan-Feng; Qiu, Xue-Cheng; Wu, Jin-Lang; Ling, Eng-Ang; Zeng, Yuan-Shan

    2016-08-01

    Extracellular matrix (ECM) expression is temporally and spatially regulated during the development of stem cells. We reported previously that fibronectin (FN) secreted by bone marrow mesenchymal stem cells (MSCs) was deposited on the surface of gelatin sponge (GS) soon after culture. In this study, we aimed to assess the function of accumulated FN on neuronal differentiating MSCs as induced by Schwann cells (SCs) in three dimensional transwell co-culture system. The expression pattern and amount of FN of differentiating MSCs was examined by immunofluorescence, Western blot and immunoelectron microscopy. The results showed that FN accumulated inside GS scaffold, although its mRNA expression in MSCs was progressively decreased during neural induction. MSC-derived neuron-like cells showed spindle-shaped cell body and long extending processes on FN-decorated scaffold surface. However, after blocking of FN function by application of monoclonal antibodies, neuron-like cells showed flattened cell body with short and thick neurites, together with decreased expression of integrin β1. In vivo transplantation study revealed that autocrine FN significantly facilitated endogenous nerve fiber regeneration in spinal cord transection model. Taken together, the present results showed that FN secreted by MSCs in the early stage accumulated on the GS scaffold and promoted the neurite elongation of neuronal differentiating MSCs as well as nerve fiber regeneration after spinal cord injury. This suggests that autocrine FN has a dynamic influence on MSCs in a three dimensional culture system and its potential application for treatment of traumatic spinal cord injury. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1902-1911, 2016. PMID:26991461

  12. Disruption of Interleukin-1β Autocrine Signaling Rescues Complex I Activity and Improves ROS Levels in Immortalized Epithelial Cells with Impaired Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Function

    PubMed Central

    Clauzure, Mariángeles; Valdivieso, Angel G.; Massip Copiz, María M.; Schulman, Gustavo; Teiber, María Luz; Santa-Coloma, Tomás A.

    2014-01-01

    Patients with cystic fibrosis (CF) have elevated concentration of cytokines in sputum and a general inflammatory condition. In addition, CF cells in culture produce diverse cytokines in excess, including IL-1β. We have previously shown that IL-1β, at low doses (∼30 pM), can stimulate the expression of CFTR in T84 colon carcinoma cells, through NF-κB signaling. However, at higher doses (>2.5 ng/ml, ∼150 pM), IL-1β inhibit CFTR mRNA expression. On the other hand, by using differential display, we found two genes with reduced expression in CF cells, corresponding to the mitochondrial proteins CISD1 and MTND4. The last is a key subunit for the activity of mitochondrial Complex I (mCx-I); accordingly, we later found a reduced mCx-I activity in CF cells. Here we found that IB3-1 cells (CF cells), cultured in serum-free media, secrete 323±5 pg/ml of IL-1β in 24 h vs 127±3 pg/ml for S9 cells (CFTR-corrected IB3-1 cells). Externally added IL-1β (5 ng/ml) reduces the mCx-I activity and increases the mitochondrial (MitoSOX probe) and cellular (DCFH-DA probe) ROS levels of S9 (CFTR-corrected IB3-1 CF cells) or Caco-2/pRSctrl cells (shRNA control cells) to values comparable to those of IB3-1 or Caco-2/pRS26 cells (shRNA specific for CFTR). Treatments of IB3-1 or Caco-2/pRS26 cells with either IL-1β blocking antibody, IL-1 receptor antagonist, IKK inhibitor III (NF-κB pathway) or SB203580 (p38 MAPK pathway), restored the mCx-I activity. In addition, in IB3-1 or Caco-2/pRS26 cells, IL-1β blocking antibody, IKK inhibitor III or SB203580 reduced the mitochondrial ROS levels by ∼50% and the cellular ROS levels near to basal values. The AP-1 inhibitors U0126 (MEK1/2) or SP600125 (JNK1/2/3 inhibitor) had no effects. The results suggest that in these cells IL-1β, through an autocrine effect, acts as a bridge connecting the CFTR with the mCx-I activity and the ROS levels. PMID:24901709

  13. The proliferative and morphologic responses of a colon carcinoma cell line (LIM 1215) require the production of two autocrine factors.

    PubMed Central

    Sizeland, A M; Burgess, A W

    1991-01-01

    The role of autocrine growth factors in tumor cell growth has been difficult to prove. Our results indicate that more than one autocrine factor is required for the autonomous growth of the LIM 1215 colonic carcinoma cell line. Furthermore, the morphologic changes induced by epidermal growth factor (EGF) are also density dependent and appear to require a synergistic autocrine factor. The serum-free proliferation of the colonic carcinoma cell line LIM 1215 depends on cell density and the presence of EGF (A. Sizeland, S. Bol, and A.W. Burgess, Growth Factors 4:129-143, 1991). At cell densities below 10(4)/cm2, conditioned medium (from cells at a density of 10(5)/cm2) was required for the cells to elicit a mitogenic response to exogenous EGF. At higher cell densities (10(5)/cm2), the cells were independent of both exogenous EGF and conditioned medium. In addition, the EGF receptor was found to be phosphorylated on tyrosine in LIM 1215 cells proliferating at high density, suggesting that the autocrine production of transforming growth factor alpha (TGF alpha) and subsequent ligation to the EGF receptor was occurring. The proliferation of cells at high density was partly inhibited by TGF alpha antibodies but was almost completely inhibited by an antisense oligonucleotide to TGF alpha. The antisense inhibition could be overcome by the addition of EGF, indicating that the effect of the antisense TGF alpha oligonucleotide was on the production of autocrine TGF alpha. LIM 1215 cells were also observed to undergo morphologic changes (spreading and actin cable organization) in response to EGF. These changes were density dependent, but they occurred with a cell density dependence different from that of the proliferative response. These results suggest two possibilities: that the morphologic changes and proliferative responses have different sensitivities to the autocrine factors or that the actions of the autocrine factors are mediated through different signal transduction

  14. Pro-nerve growth factor induces autocrine stimulation of breast cancer cell invasion through tropomyosin-related kinase A (TrkA) and sortilin protein.

    PubMed

    Demont, Yohann; Corbet, Cyril; Page, Adeline; Ataman-Önal, Yasemin; Choquet-Kastylevsky, Genevieve; Fliniaux, Ingrid; Le Bourhis, Xuefen; Toillon, Robert-Alain; Bradshaw, Ralph A; Hondermarck, Hubert

    2012-01-13

    The precursor of nerve growth factor (proNGF) has been described as a biologically active polypeptide able to induce apoptosis in neuronal cells, via the neurotrophin receptor p75(NTR) and the sortilin receptor. Herein, it is shown that proNGF is produced and secreted by breast cancer cells, stimulating their invasion. Using Western blotting and mass spectrometry, proNGF was detected in a panel of breast cancer cells as well as in their conditioned media. Immunohistochemical analysis indicated an overproduction of proNGF in breast tumors, when compared with benign and normal breast biopsies, and a relationship to lymph node invasion in ductal carcinomas. Interestingly, siRNA against proNGF induced a decrease of breast cancer cell invasion that was restored by the addition of non-cleavable proNGF. The activation of TrkA, Akt, and Src, but not the MAP kinases, was observed. In addition, the proNGF invasive effect was inhibited by the Trk pharmacological inhibitor K252a, a kinase-dead TrkA, and siRNA against TrkA sortilin, neurotensin, whereas siRNA against p75(NTR) and the MAP kinase inhibitor PD98059 had no impact. These data reveal the existence of an autocrine loop stimulated by proNGF and mediated by TrkA and sortilin, with the activation of Akt and Src, for the stimulation of breast cancer cell invasion.

  15. PGE2 maintains self-renewal of human adult stem cells via EP2-mediated autocrine signaling and its production is regulated by cell-to-cell contact

    PubMed Central

    Lee, Byung-Chul; Kim, Hyung-Sik; Shin, Tae-Hoon; Kang, Insung; Lee, Jin Young; Kim, Jae-Jun; Kang, Hyun Kyoung; Seo, Yoojin; Lee, Seunghee; Yu, Kyung-Rok; Choi, Soon Won; Kang, Kyung-Sun

    2016-01-01

    Mesenchymal stem cells (MSCs) possess unique immunomodulatory abilities. Many studies have elucidated the clinical efficacy and underlying mechanisms of MSCs in immune disorders. Although immunoregulatory factors, such as Prostaglandin E2 (PGE2), and their mechanisms of action on immune cells have been revealed, their effects on MSCs and regulation of their production by the culture environment are less clear. Therefore, we investigated the autocrine effect of PGE2 on human adult stem cells from cord blood or adipose tissue, and the regulation of its production by cell-to-cell contact, followed by the determination of its immunomodulatory properties. MSCs were treated with specific inhibitors to suppress PGE2 secretion, and proliferation was assessed. PGE2 exerted an autocrine regulatory function in MSCs by triggering E-Prostanoid (EP) 2 receptor. Inhibiting PGE2 production led to growth arrest, whereas addition of MSC-derived PGE2 restored proliferation. The level of PGE2 production from an equivalent number of MSCs was down-regulated via gap junctional intercellular communication. This cell contact-mediated decrease in PGE2 secretion down-regulated the suppressive effect of MSCs on immune cells. In conclusion, PGE2 produced by MSCs contributes to maintenance of self-renewal capacity through EP2 in an autocrine manner, and PGE2 secretion is down-regulated by cell-to-cell contact, attenuating its immunomodulatory potency. PMID:27230257

  16. Affinity Regulates Spatial Range of EGF Receptor Autocrine Ligand Binding

    SciTech Connect

    Dewitt, Ann; Iida, Tomoko; Lam, Ho-Yan; Hill, Virginia; Wiley, H S.; Lauffenburger, Douglas A.

    2002-08-08

    Proper spatial localization of EGFR signaling activated by autocrine ligands represents a critical factor in embryonic development as well as tissue organization and function, and ligand/receptor binding affinity is among the molecular and cellular properties suggested to play a role in governing this localization. The authors employ a computational model to predict how receptor-binding affinity affects local capture of autocrine ligand vis-a-vis escape to distal regions, and provide experimental test by constructing cell lines expressing EGFR along with either wild-type EGF or a low-affinity mutant, EGF{sup L47M}. The model predicts local capture of a lower affinity autocrine ligand to be less efficient when the ligand production rate is small relative to receptor appearance rate. The experimental data confirm this prediction, demonstrating that cells can use ligand/receptor binding affinity to regulate ligand spatial distribution when autocrine ligand production is limiting for receptor signaling.

  17. Tolerogenic Phenotype of IFN-γ-Induced IDO+ Dendritic Cells Is Maintained via an Autocrine IDO-Kynurenine/AhR-IDO Loop.

    PubMed

    Li, Qingsheng; Harden, Jamie L; Anderson, Charles D; Egilmez, Nejat K

    2016-08-01

    Previous studies demonstrated that IL-12-driven antitumor activity is short-circuited by a rapid switch in dendritic cell (DC) function from immunogenic to tolerogenic activity. This process was dependent on IFN-γ and the tolerogenic phenotype was conferred by IDO. Extended monitoring of IDO(+) DC in the tumor-draining lymph nodes of IL-12 plus GM-CSF-treated tumor-bearing mice revealed that whereas IFN-γ induction was transient, IDO expression in DC was maintained long-term. An in vitro system modeling the IFN-γ-mediated change in DC function was developed to dissect the molecular basis of persistent IDO expression in post-IL-12 DC. Stimulation of DC with IFN-γ and CD40L resulted in rapid induction of IDO1 and IDO2 transcription and recapitulated the in vivo switch from immunogenic to tolerogenic activity. Long-term maintenance of IDO expression was found to be independent of exogenous and autocrine IFN-γ, or the secondary cytokines TGF-β, TNF-α, and IL-6. In contrast, both IDO enzymatic activity and IFN-γ-induced AhR expression were required for continued IDO transcription in vitro and in vivo. Addition of the tryptophan catabolite kynurenine to DC cultures in which IDO activity was blocked restored long-term IDO expression in wild-type DC but not in AhR-deficient DC, establishing the central role of the kynurenine-AhR pathway in maintaining IDO expression in tolerogenic DC. These findings shed further light on the cellular and molecular biology of the post-IL-12 regulatory rebound and provide insight into how feedback inhibitory mechanisms dominate in the long-term.

  18. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    SciTech Connect

    Gao, Fei; Kishida, Tsunao; Ejima, Akika; Gojo, Satoshi; Mazda, Osam

    2013-02-08

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases.

  19. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells.

    PubMed

    Gao, Fei; Kishida, Tsunao; Ejima, Akika; Gojo, Satoshi; Mazda, Osam

    2013-02-01

    Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases. PMID:23291166

  20. Interleukin-8 (IL-8) over-production and autocrine cell activation are key factors in monomethylarsonous acid [MMA(III)]-induced malignant transformation of urothelial cells

    SciTech Connect

    Escudero-Lourdes, C.; Wu, T.; Camarillo, J.M.; Gandolfi, A.J.

    2012-01-01

    The association between chronic human exposure to arsenicals and bladder cancer development is well recognized; however, the underlying molecular mechanisms have not been fully determined. We propose that inflammatory responses can play a pathogenic role in arsenic-related bladder carcinogenesis. In previous studies, it was demonstrated that chronic exposure to 50 nM monomethylarsenous acid [MMA(III)] leads to malignant transformation of an immortalized model of urothelial cells (UROtsa), with only 3 mo of exposure necessary to trigger the transformation-related changes. In the three-month window of exposure, the cells over-expressed pro-inflammatory cytokines (IL-1β, IL-6 and IL-8), consistent with the sustained activation of NFKβ and AP1/c-jun, ERK2, and STAT3. IL-8 was over-expressed within hours after exposure to MMA(III), and sustained over-expression was observed during chronic exposure. In this study, we profiled IL-8 expression in UROtsa cells exposed to 50 nM MMA(III) for 1 to 5 mo. IL-8 expression was increased mainly in cells after 3 mo MMA(III) exposure, and its production was also found increased in tumors derived from these cells after heterotransplantation in SCID mice. UROtsa cells do express both receptors, CXCR1 and CXCR2, suggesting that autocrine cell activation could be important in cell transformation. Supporting this observation and consistent with IL-8 over-expression, CXCR1 internalization was significantly increased after three months of exposure to MMA(III). The expression of MMP-9, cyclin D1, bcl-2, and VGEF was significantly increased in cells exposed to MMA(III) for 3 mo, but these mitogen-activated kinases were significantly decreased after IL-8 gene silencing, together with a decrease in cell proliferation rate and in anchorage-independent colony formation. These results suggest a relevant role of IL-8 in MMA(III)-induced UROtsa cell transformation. -- Highlights: ► IL-8 is over-expressed in human MMA(III)-exposed urothelial

  1. Nodal promotes the self-renewal of human colon cancer stem cells via an autocrine manner through Smad2/3 signaling pathway.

    PubMed

    Gong, Yuehua; Guo, Ying; Hai, Yanan; Yang, Hao; Liu, Yang; Yang, Shi; Zhang, Zhenzhen; Ma, Meng; Liu, Linhong; Li, Zheng; He, Zuping

    2014-01-01

    Colorectal cancer is one of the most common and fatal tumors. However, molecular mechanisms underlying carcinogenesis of colorectal cancer remain largely undefined. Here, we explored the expression and function of Nodal in colon cancer stem cells (CCSCs). Nodal and its receptors were present in numerous human colorectal cancer cell lines. NODAL and ALK-4 were coexpressed in human colon cancerous tissues, and NODAL, CD24, and CD44, markers for CCSCs, were expressed at higher levels in human colon cancerous tissues than adjacent noncancerous colon tissues. Human CCSCs were isolated by magnetic activated cell sorting using anti-CD24 and anti-CD44. Nodal transcript and protein were hardly detectable in CD44- or CD24-negative human colorectal cancer cell lines, whereas Nodal and its receptors were present in CCSCs. Notably, Nodal facilitated spheroid formation of human CCSCs, and phosphorylation of Smad2 and Smad3 was activated by Nodal in cells of spheres derived from human CCSCs. Collectively, these results suggest that Nodal promotes the self-renewal of human CCSCs and mediate carcinogenesis of human colorectal cancer via an autocrine manner through Smad2/3 pathway. This study provides a novel insight into molecular mechanisms controlling fate of human CCSCs and offers new targets for gene therapy of human colorectal cancer.

  2. Autocrine CCL5 signaling promotes invasion and migration of CD133+ ovarian cancer stem-like cells via NF-κB-mediated MMP-9 upregulation.

    PubMed

    Long, Haixia; Xie, Rongkai; Xiang, Tong; Zhao, Zhongquan; Lin, Sheng; Liang, Zhiqing; Chen, Zhengtang; Zhu, Bo

    2012-10-01

    The concept of cancer stem cells (CSCs) proposes that solely CSCs are capable of generating tumor metastases. However, how CSCs maintain their invasion and migration abilities, the most important properties of metastatic cells, still remains elusive. Here we used CD133 to mark a specific population from human ovarian cancer cell line and ovarian cancer tissue and determined its hyperactivity in migration and invasion. Therefore, we labeled this population as cancer stem-like cells (CSLCs). In comparison to CD133- non-CSLCs, chemokine CCL5 and its receptors, CCR1, CCR3, and CCR5, were consistently upregulated in CSLCs, and most importantly, blocking of CCL5, CCR1, or CCR3 effectively inhibits the invasive capacity of CSLCs. Mechanistically, we identified that this enhanced invasiveness is mediated through nuclear factor κB (NF-κB) activation and the consequently elevated MMP9 secretion. Our results suggested that the autocrine activation of CCR1 and CCR3 by CCL5 represents one of major mechanisms underlying the metastatic property of ovarian CSLCs. PMID:22887854

  3. Immunoregulation of autocrine prolactin: suppressing the expression of costimulatory molecules and cytokines in T lymphocytes by prolactin receptor knockdown.

    PubMed

    Xu, Dongming; Lin, Ling; Lin, Xiahong; Huang, Ziyang; Lei, Zhenmin

    2010-01-01

    Ample evidence indicates that prolactin (PRL) secreted from the pituitary gland plays an important role in a variety of human immune responses. However, the immunoregulation of autocrine PRL in T lymphocytes is not fully understood. To evaluate the role of autocrine PRL in T lymphocyte activation, PRL receptor (PRLR) in Jurkat cells was silenced by lentivirus-mediated stable expression of PRLR shRNAi. Knockdown of PRLR resulted in a considerable reduction of phytohemagglutinin (PHA)-induced T cell proliferation. Moreover, the synthesis and secretion of CD137, CD154, IL-2 and IL-4 were significantly decreased, while the production of CD28, IFN-gamma and IL-10 was not affected in PHA-primed PRLR-deficient cells. These results demonstrate the importance of autocrine regulation of the PRL signaling in T lymphocyte growth and activation, and support a mechanism by which autocrine PRL participates in the immunoregulation through selectively influencing the expression of certain critical costimulatory molecules and cytokines.

  4. The insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 induces apoptosis in acute myeloid leukemia cells exhibiting autocrine insulin-like growth factor-I secretion.

    PubMed

    Tazzari, P L; Tabellini, G; Bortul, R; Papa, V; Evangelisti, C; Grafone, T; Martinelli, G; McCubrey, J A; Martelli, A M

    2007-05-01

    Insulin-like growth factor-I (IGF-I) and its receptor (IGF-IR) have been implicated in the pathophysiology of many human cancers, including those of hematopoietic lineage. We investigated the therapeutic potential of the novel IGF-IR tyrosine kinase activity inhibitor, NVP-AEW541, on human acute myeloid leukemia (AML) cells. NVP-AEW541 was tested on a HL60 cell subclone, which is dependent on autocrine secretion of IGF-I for survival and drug resistance, as well as primary drug resistant leukemia cells. NVP-AEW541 treatment (24 h) induced dephosphorylation of IGF-IR. NVP-AEW541 also caused Akt dephosphorylation and changes in the expression of key regulatory proteins of the cell cycle. At longer incubation times (48 h), NVP-AEW541-induced apoptotic cell death, as demonstrated by caspase-3 cleavage. Apoptosis was accompanied by decreased expression of anti-apoptotic proteins. NVP-AEW541 enhanced sensitivity of HL60 cells to either cytarabine or etoposide. Moreover, NVP-AEW541 reduced the clonogenic capacity of AML CD34(+) cells cultured in the presence of IGF-I. Chemoresistant AML blasts displayed enhanced IGF-I secretion, and were sensitized to etoposide-induced apoptosis by NVP-AEW541. Our findings indicate that NVP-AEW541 might be a promising therapeutic agent for the treatment of those AML cases characterized by IGF-I autocrine secretion.

  5. Acoustically-Induced Electrical Signals

    NASA Astrophysics Data System (ADS)

    Brown, S. R.

    2014-12-01

    We have observed electrical signals excited by and moving along with an acoustic pulse propagating in a sandstone sample. Using resonance we are now studying the characteristics of this acousto-electric signal and determining its origin and the controlling physical parameters. Four rock samples with a range of porosities, permeabilities, and mineralogies were chosen: Berea, Boise, and Colton sandstones and Austin Chalk. Pore water salinity was varied from deionized water to sea water. Ag-AgCl electrodes were attached to the sample and were interfaced to a 4-wire electrical resistivity system. Under computer control, the acoustic signals were excited and the electrical response was recorded. We see strong acoustically-induced electrical signals in all samples, with the magnitude of the effect for each rock getting stronger as we move from the 1st to the 3rd harmonics in resonance. Given a particular fluid salinity, each rock has its own distinct sensitivity in the induced electrical effect. For example at the 2nd harmonic, Berea Sandstone produces the largest electrical signal per acoustic power input even though Austin Chalk and Boise Sandstone tend to resonate with much larger amplitudes at the same harmonic. Two effects are potentially responsible for this acoustically-induced electrical response: one the co-seismic seismo-electric effect and the other a strain-induced resistivity change known as the acousto-electric effect. We have designed experimental tests to separate these mechanisms. The tests show that the seismo-electric effect is dominant in our studies. We note that these experiments are in a fluid viscosity dominated seismo-electric regime, leading to a simple interpretation of the signals where the electric potential developed is proportional to the local acceleration of the rock. Toward a test of this theory we have measured the local time-varying acoustic strain in our samples using a laser vibrometer.

  6. Sphingosine 1-phosphate-mediated α1B-adrenoceptor desensitization and phosphorylation. Direct and paracrine/autocrine actions

    PubMed Central

    Castillo-Badillo, Jean A.; Molina-Muñoz, Tzindilú; Romero-Ávila, M. Teresa; Vázquez-Macías, Aleida; Rivera, Richard; Chun, Jerold; García-Sáinz, J. Adolfo

    2012-01-01

    Sphingosine-1-phosphate-induced α1B-adrenergic receptor desensitization and phosphorylation was studied in rat-1 fibroblasts stably expressing enhanced green fluorescent protein-tagged adrenoceptors. Sphingosine-1-phosphate induced adrenoceptor desensitization and phosphorylation through a signaling cascade that involved phosphoinositide 3-kinase and protein kinase C activities. The autocrine/paracrine role of sphingosine-1-phosphate was also studied. It was observed that activation of receptor tyrosine kinases, such as insulin growth factor-1 (IGF-I) and epidermal growth factor (EGF) receptors increased sphingosine kinase activity. Such activation and consequent production of sphingosine-1-phosphate appears to be functionally relevant in IGF-I- and EGF-induced α1B-adrenoceptor phosphorylation and desensitization as evidenced by the following facts: a) expression of a catalytically inactive (dominant-negative) mutant of sphingosine kinase 1 or b) S1P1 receptor knockdown markedly reduced this growth factor action. This action of sphingosine-1-phosphate involves EGF receptor transactivation. In addition, taking advantage of the presence of the eGFP tag in the receptor construction, we showed that S1P was capable of inducing α1B-adrenergic receptor internalization and that its autocrine/paracrine generation was relevant for internalization induced by IGF-I. Four distinct hormone receptors and two autocrine/paracrine mediators participate in IGF-I receptor- α1B-adrenergic receptor crosstalk. PMID:22019450

  7. Autocrine effects of tumor-derived complement.

    PubMed

    Cho, Min Soon; Vasquez, Hernan G; Rupaimoole, Rajesha; Pradeep, Sunila; Wu, Sherry; Zand, Behrouz; Han, Hee-Dong; Rodriguez-Aguayo, Cristian; Bottsford-Miller, Justin; Huang, Jie; Miyake, Takahito; Choi, Hyun-Jin; Dalton, Heather J; Ivan, Cristina; Baggerly, Keith; Lopez-Berestein, Gabriel; Sood, Anil K; Afshar-Kharghan, Vahid

    2014-03-27

    We describe a role for the complement system in enhancing cancer growth. Cancer cells secrete complement proteins that stimulate tumor growth upon activation. Complement promotes tumor growth via a direct autocrine effect that is partially independent of tumor-infiltrating cytotoxic T cells. Activated C5aR and C3aR signal through the PI3K/AKT pathway in cancer cells, and silencing the PI3K or AKT gene in cancer cells eliminates the progrowth effects of C5aR and C3aR stimulation. In patients with ovarian or lung cancer, higher tumoral C3 or C5aR mRNA levels were associated with decreased overall survival. These data identify a role for tumor-derived complement proteins in promoting tumor growth, and they therefore have substantial clinical and therapeutic implications.

  8. GLI1 regulates a novel neuropilin-2/α6β1 integrin based autocrine pathway that contributes to breast cancer initiation.

    PubMed

    Goel, Hira Lal; Pursell, Bryan; Chang, Cheng; Shaw, Leslie M; Mao, Junhao; Simin, Karl; Kumar, Prashant; Vander Kooi, Craig W; Shultz, Leonard D; Greiner, Dale L; Norum, Jens Henrik; Toftgard, Rune; Kuperwasser, Charlotte; Mercurio, Arthur M

    2013-04-01

    The characterization of cells with tumour initiating potential is significant for advancing our understanding of cancer and improving therapy. Aggressive, triple-negative breast cancers (TNBCs) are enriched for tumour-initiating cells (TICs). We investigated that hypothesis that VEGF receptors expressed on TNBC cells mediate autocrine signalling that contributes to tumour initiation. We discovered the VEGF receptor neuropilin-2 (NRP2) is expressed preferentially on TICs, involved in the genesis of TNBCs and necessary for tumour initiation. The mechanism by which NRP2 signalling promotes tumour initiation involves stimulation of the α6β1 integrin, focal adhesion kinase-mediated activation of Ras/MEK signalling and consequent expression of the Hedgehog effector GLI1. GLI1 also induces BMI-1, a key stem cell factor, and it enhances NRP2 expression and the function of α6β1, establishing an autocrine loop. NRP2 can be targeted in vivo to retard tumour initiation. These findings reveal a novel autocrine pathway involving VEGF/NRP2, α6β1 and GLI1 that contributes to the initiation of TNBC. They also support the feasibility of NRP2-based therapy for the treatment of TNBC that targets and impedes the function of TICs.

  9. High glucose induces suppression of insulin signalling and apoptosis via upregulation of endogenous IL-1beta and suppressor of cytokine signalling-1 in mouse pancreatic beta cells.

    PubMed

    Venieratos, Panagiotis D; Drossopoulou, Garyfalia I; Kapodistria, Katerina D; Tsilibary, Effie C; Kitsiou, Paraskevi V

    2010-05-01

    Chronic hyperglycemia and inflammatory cytokines disrupt and/or attenuate signal transduction pathways that promote normal beta-cell survival, leading to the destruction of endocrine pancreas in type 2 diabetes. There is convincing evidence that autocrine insulin signalling exerts protective anti-apoptotic effects on beta cells. Suppressors of cytokine signalling (SOCS) were induced by several cytokines and inhibit insulin-initiated signal transduction. The aim of this study was to investigate whether high glucose can influence endogenous interleukin-1beta (IL-1beta) and SOCS expression thus affecting insulin signalling and survival in insulin-producing mouse pancreatic beta cells (betaTC-6). Results showed that prolonged exposure of betaTC-6 cells to increased glucose concentrations resulted in significant inhibition of insulin-induced tyrosine phosphorylation of the insulin receptor (IR), and insulin receptor substrate-2 (IRS-2) as well as PI3-kinase activation. These changes were accompanied by impaired activation of the anti-apoptotic signalling protein Akt and annulment of Akt-mediated suppression of the Forkhead family of transcription factors (FoxO) activation. Glucose-induced attenuation of IRS-2/Akt-mediated signalling was associated with increased IL-1beta expression. Enhanced endogenous IL-1beta specifically induced mRNA and protein expression of SOCS-1 in betaTC-6 cells. Inhibition of SOCS-1 expression by SOCS-1-specific small interfering RNA restored IRS-2/PI3K-mediated Akt phosphorylation suppressed by high glucose. The upregulation of endogenous cytokine signalling and FoxO activation were accompanied by enhanced caspase-3 activation and increased susceptibility of cells to apoptosis. These results indicated that glucose-induced endogenous IL-1beta expression increased betaTC-6 cells apoptosis by inhibiting, at least in part, IRS-2/Akt-mediated signalling through SOCS-1 upregulation.

  10. Axotomy-induced HIF-serotonin signalling axis promotes axon regeneration in C. elegans

    PubMed Central

    Alam, Tanimul; Maruyama, Hiroki; Li, Chun; Pastuhov, Strahil Iv.; Nix, Paola; Bastiani, Michael; Hisamoto, Naoki; Matsumoto, Kunihiro

    2016-01-01

    The molecular mechanisms underlying the ability of axons to regenerate after injury remain poorly understood. Here we show that in Caenorhabditis elegans, axotomy induces ectopic expression of serotonin (5-HT) in axotomized non-serotonergic neurons via HIF-1, a hypoxia-inducible transcription factor, and that 5-HT subsequently promotes axon regeneration by autocrine signalling through the SER-7 5-HT receptor. Furthermore, we identify the rhgf-1 and rga-5 genes, encoding homologues of RhoGEF and RhoGAP, respectively, as regulators of axon regeneration. We demonstrate that one pathway initiated by SER-7 acts upstream of the C. elegans RhoA homolog RHO-1 in neuron regeneration, which functions via G12α and RHGF-1. In this pathway, RHO-1 inhibits diacylglycerol kinase, resulting in an increase in diacylglycerol. SER-7 also promotes axon regeneration by activating the cyclic AMP (cAMP) signalling pathway. Thus, HIF-1-mediated activation of 5-HT signalling promotes axon regeneration by activating both the RhoA and cAMP pathways. PMID:26790951

  11. MTMR3 risk allele enhances innate receptor-induced signaling and cytokines by decreasing autophagy and increasing caspase-1 activation.

    PubMed

    Lahiri, Amit; Hedl, Matija; Abraham, Clara

    2015-08-18

    Inflammatory bowel disease (IBD) is characterized by dysregulated host:microbial interactions and cytokine production. Host pattern recognition receptors (PRRs) are critical in regulating these interactions. Multiple genetic loci are associated with IBD, but altered functions for most, including in the rs713875 MTMR3/HORMAD2/LIF/OSM region, are unknown. We identified a previously undefined role for myotubularin-related protein 3 (MTMR3) in amplifying PRR-induced cytokine secretion in human macrophages and defined MTMR3-initiated mechanisms contributing to this amplification. MTMR3 decreased PRR-induced phosphatidylinositol 3-phosphate (PtdIns3P) and autophagy levels, thereby increasing PRR-induced caspase-1 activation, autocrine IL-1β secretion, NFκB signaling, and, ultimately, overall cytokine secretion. This MTMR3-mediated regulation required the N-terminal pleckstrin homology-GRAM domain and Cys413 within the phosphatase domain of MTMR3. In MTMR3-deficient macrophages, reducing the enhanced autophagy or restoring NFκB signaling rescued PRR-induced cytokines. Macrophages from rs713875 CC IBD risk carriers demonstrated increased MTMR3 expression and, in turn, decreased PRR-induced PtdIns3P and autophagy and increased PRR-induced caspase-1 activation, signaling, and cytokine secretion. Thus, the rs713875 IBD risk polymorphism increases MTMR3 expression, which modulates PRR-induced outcomes, ultimately leading to enhanced PRR-induced cytokines.

  12. MTMR3 risk allele enhances innate receptor-induced signaling and cytokines by decreasing autophagy and increasing caspase-1 activation

    PubMed Central

    Lahiri, Amit; Hedl, Matija; Abraham, Clara

    2015-01-01

    Inflammatory bowel disease (IBD) is characterized by dysregulated host:microbial interactions and cytokine production. Host pattern recognition receptors (PRRs) are critical in regulating these interactions. Multiple genetic loci are associated with IBD, but altered functions for most, including in the rs713875 MTMR3/HORMAD2/LIF/OSM region, are unknown. We identified a previously undefined role for myotubularin-related protein 3 (MTMR3) in amplifying PRR-induced cytokine secretion in human macrophages and defined MTMR3-initiated mechanisms contributing to this amplification. MTMR3 decreased PRR-induced phosphatidylinositol 3-phosphate (PtdIns3P) and autophagy levels, thereby increasing PRR-induced caspase-1 activation, autocrine IL-1β secretion, NFκB signaling, and, ultimately, overall cytokine secretion. This MTMR3-mediated regulation required the N-terminal pleckstrin homology-GRAM domain and Cys413 within the phosphatase domain of MTMR3. In MTMR3-deficient macrophages, reducing the enhanced autophagy or restoring NFκB signaling rescued PRR-induced cytokines. Macrophages from rs713875 CC IBD risk carriers demonstrated increased MTMR3 expression and, in turn, decreased PRR-induced PtdIns3P and autophagy and increased PRR-induced caspase-1 activation, signaling, and cytokine secretion. Thus, the rs713875 IBD risk polymorphism increases MTMR3 expression, which modulates PRR-induced outcomes, ultimately leading to enhanced PRR-induced cytokines. PMID:26240347

  13. A TNFSF15 disease-risk polymorphism increases pattern-recognition receptor-induced signaling through caspase-8-induced IL-1.

    PubMed

    Hedl, Matija; Abraham, Clara

    2014-09-16

    Inflammatory diseases are characterized by dysregulated cytokine production. Altered functions for most risk loci, including the inflammatory bowel disease and leprosy-associated tumor necrosis factor ligand superfamily member 15 (TNFSF15) region, are unclear. Regulation of pattern-recognition-receptor (PRR)-induced signaling and cytokines is crucial for immune homeostasis; TNFSF15:death receptor 3 (DR3) contributions to PRR responses have not been described. We found that human macrophages expressed DR3 and that TNFSF15:DR3 interactions were critical for amplifying PRR-initiated MAPK/NF-κB/PI3K signaling and cytokine secretion in macrophages. Mechanisms mediating TNFSF15:DR3 contributions to PRR outcomes included TACE-induced TNFSF15 cleavage to soluble TNFSF15; soluble TNFSF15 then led to TRADD/FADD/MALT-1- and caspase-8-mediated autocrine IL-1 secretion. Notably, TNFSF15 treatment also induced cytokine secretion through a caspase-8-dependent pathway in intestinal myeloid cells. Importantly, rs6478108 A disease risk-carrier macrophages demonstrated increased TNFSF15 expression and PRR-induced signaling and cytokines. Taken together, TNFSF15:DR3 interactions amplify PRR-induced signaling and cytokines, and the rs6478108 TNFSF15 disease-risk polymorphism results in a gain of function.

  14. Gamma Interferon Augments Macrophage Activation by Lipopolysaccharide by Two Distinct Mechanisms, at the Signal Transduction Level and via an Autocrine Mechanism Involving Tumor Necrosis Factor Alpha and Interleukin-1

    PubMed Central

    Held, Thomas K.; Weihua, Xiao; Yuan, Liang; Kalvakolanu, Dhananjaya V.; Cross, Alan S.

    1999-01-01

    When given in the presence of gamma interferon (IFN-γ), otherwise nontoxic doses of lipopolysaccharide (LPS or endotoxin) become highly lethal for mice. The mechanisms of this synergistic toxicity are not known. We considered the possibility that an interaction between the LPS-induced NF-κB and IFN-γ-induced JAK-STAT pathways at the pretranscriptional level may enhance the LPS-induced signals. To test this hypothesis, we incubated murine macrophage RAW 264.7 cells with IFN-γ for 2 h before addition of different doses of LPS. Consistent with the synergistic induction of inducible nitric oxide synthase mRNA and nitric oxide production by a combination of LPS and IFN-γ, IFN-γ strongly augmented LPS-induced NF-κB activation and accelerated the binding of NF-κB to DNA to as early as 5 min. In agreement with this, IFN-γ pretreatment promoted rapid degradation of IκB-α but not that of IκB-β. Inhibition of protein synthesis during IFN-γ treatment suppressed LPS-initiated NF-κB binding. A rapidly induced protein appeared to be involved in IFN-γ priming. Preincubation of cells with antibodies to tumor necrosis factor alpha or the interleukin-1 receptor partially reduced the priming effect of IFN-γ. In a complementary manner, LPS enhanced the activation of signal-transducing activator of transcription 1 by IFN-γ. These data suggest novel mechanisms for the synergy between IFN-γ and LPS by which they cross-regulate the signal-transducing molecules. Through this mechanism, IFN-γ may transform a given dose of LPS into a lethal stimulus capable of causing sepsis. It may also serve a beneficial purpose by enabling the host to respond quickly to relatively low doses of LPS and thereby activating antibacterial defenses. PMID:9864217

  15. Autocrine VEGF Isoforms Differentially Regulate Endothelial Cell Behavior

    PubMed Central

    Yamamoto, Hideki; Rundqvist, Helene; Branco, Cristina; Johnson, Randall S.

    2016-01-01

    Vascular endothelial growth factor A (VEGF) is involved in all the essential biology of endothelial cells, from proliferation to vessel function, by mediating intercellular interactions and monolayer integrity. It is expressed as three major alternative spliced variants. In mice, these are VEGF120, VEGF164, and VEGF188, each with different affinities for extracellular matrices and cell surfaces, depending on the inclusion of heparin-binding sites, encoded by exons 6 and 7. To determine the role of each VEGF isoform in endothelial homeostasis, we compared phenotypes of primary endothelial cells isolated from lungs of mice expressing single VEGF isoforms in normoxic and hypoxic conditions. The differential expression and distribution of VEGF isoforms affect endothelial cell functions, such as proliferation, adhesion, migration, and integrity, which are dependent on the stability of and affinity to VEGF receptor 2 (VEGFR2). We found a correlation between autocrine VEGF164 and VEGFR2 stability, which is also associated with increased expression of proteins involved in cell adhesion. Endothelial cells expressing only VEGF188, which localizes to extracellular matrices or cell surfaces, presented a mesenchymal morphology and weakened monolayer integrity. Cells expressing only VEGF120 lacked stable VEGFR2 and dysfunctional downstream processes, rendering the cells unviable. Endothelial cells expressing these different isoforms in isolation also had differing rates of apoptosis, proliferation, and signaling via nitric oxide (NO) synthesis. These data indicate that autocrine signaling of each VEGF isoform has unique functions on endothelial homeostasis and response to hypoxia, due to both distinct VEGF distribution and VEGFR2 stability, which appears to be, at least partly, affected by differential NO production. This study demonstrates that each autocrine VEGF isoform has a distinct effect on downstream functions, namely VEGFR2-regulated endothelial cell homeostasis in

  16. Long-term exposure of proximal tubular epithelial cells to glucose induces transforming growth factor-beta 1 synthesis via an autocrine PDGF loop.

    PubMed

    Fraser, Donald; Brunskill, Nigel; Ito, Takafumi; Phillips, Aled

    2003-12-01

    We have recently reported increased transforming growth factor (TGF)-beta1 gene transcription in proximal tubular cells within 12 hours of exposure to 25 mmol/L D-glucose, with a requirement for a second stimulus such as platelet-derived growth factor (PDGF) to increase its translation in short-term experiments. In the current study we investigated the effect on TGF-beta 1 production of prolonged exposure of proximal tubular cells to high glucose concentrations. Enzyme-linked immunosorbent assay of cell culture supernatant showed significant increase in latent TGF-beta 1 only after 7 days exposure to high glucose. Radiolabeling of glucose-stimulated cells with (3)H amino acids and subsequent immunoprecipitation of TGF-beta 1 demonstrated de novo synthesis from day 5 of high glucose exposure onwards. Similarly, polysome analysis showed enhanced translation of TGF-beta mRNA after 4 or more days of high glucose exposure. TGF-beta 1 synthesis, following addition of glucose, was inhibited by blockade of the PDGF-alpha receptor subunit. Glucose did not alter PDGF expression, nor expression of PDGF alpha-receptors. Activation of the receptor following addition of 25 mm D-glucose could be demonstrated suggesting increased sensitivity to endogenous PDGF. Exposure to glucose activated p38MAP kinase, and inhibition of this activation abrogated both glucose induced TGF-beta 1 transcriptional activation and TGF-beta 1 synthesis. Inhibition of p38MAP kinase did not influence the effect of exogenous PDGF when cells were stimulated sequentially by glucose and PDGF. We postulate that glucose induces an early increase in TGF-beta 1 transcription via activation of p38MAP kinase. In addition, glucose causes a late increase in PDGF-dependent TGF-beta 1 translation by enhancing cellular sensitivity to PDGF. This provides a potential explanation for the clinical observation that prolonged poor glycemic control may contribute to progression of diabetic nephropathy. PMID:14633628

  17. Ethanol induced impairment of glucose metabolism involves alterations of GABAergic signaling in pancreatic β-cells.

    PubMed

    Wang, Shuanglian; Luo, Yan; Feng, Allen; Li, Tao; Yang, Xupeng; Nofech-Mozes, Roy; Yu, Meng; Wang, Changhui; Li, Ziwei; Yi, Fan; Liu, Chuanyong; Lu, Wei-Yang

    2014-12-01

    Alcohol overindulgence is a risk factor of type 2 diabetes mellitus. However, the mechanisms by which alcohol overindulgence damages glucose metabolism remain unclear. Pancreatic islet β-cells are endowed with type-A γ-aminobutyric acid receptor (GABAAR) mediated autocrine signaling mechanism, which regulates insulin secretion and fine-tunes glucose metabolism. In neurons GABAAR is one of the major targets for alcohol. This study investigated whether ethanol alters glucose metabolism by affecting GABAAR signaling in pancreatic β-cells. Blood glucose level of test mice was measured using a blood glucose meter. Insulin secretion by the pancreatic β-cell line INS-1 cells was examined using a specific insulin ELISA kit. Whole-cell patch-clamp recording was used to evaluate GABA-elicited current in INS-1 cells. Western blot and immunostaining were used to measure the expression of GABAAR subunits in mouse pancreatic tissues or in INS-1 cells. Intraperitoneal (i.p.) administration of ethanol (3.0g/kg body weight) to mice altered glucose metabolism, which was associated with decreased expression of GABAAR α1- and δ- subunits on the surface of pancreatic β-cells. Acute treatment of cultured INS-1cells with ethanol (60mM) decreased the GABA-induced current and reduced insulin secretion. In contrast, treating INS-1 cells with GABA (100μM) largely prevented the ethanol-induced reduction of insulin release. Importantly, pre-treating mice with GABA (i.p., 1.5mg/kg body weight) partially reversed ethanol-induced impairment of glucose homeostasis in mice. Our data suggest a novel role of pancreatic GABA signaling in protecting pancreatic islet β-cells from ethanol-induced dysfunction.

  18. Wnt signaling induces gene expression of factors associated with bone destruction in lung and breast cancer.

    PubMed

    Johnson, Rachelle W; Merkel, Alyssa R; Page, Jonathan M; Ruppender, Nazanin S; Guelcher, Scott A; Sterling, Julie A

    2014-12-01

    Parathyroid hormone-related protein (PTHrP) is an important regulator of bone destruction in bone metastatic tumors. Transforming growth factor-beta (TGF-β) stimulates PTHrP production in part through the transcription factor Gli2, which is regulated independent of the Hedgehog signaling pathway in osteolytic cancer cells. However, inhibition of TGF-β in vivo does not fully inhibit tumor growth in bone or tumor-induced bone destruction, suggesting other pathways are involved. While Wnt signaling regulates Gli2 in development, the role of Wnt signaling in bone metastasis is unknown. Therefore, we investigated whether Wnt signaling regulates Gli2 expression in tumor cells that induce bone destruction. We report here that Wnt activation by β-catenin/T cell factor 4 (TCF4) over-expression or lithium chloride (LiCl) treatment increased Gli2 and PTHrP expression in osteolytic cancer cells. This was mediated through the TCF and Smad binding sites within the Gli2 promoter as determined by promoter mutation studies, suggesting cross-talk between TGF-β and Wnt signaling. Culture of tumor cells on substrates with bone-like rigidity increased Gli2 and PTHrP production, enhanced autocrine Wnt activity and led to an increase in the TCF/Wnt signaling reporter (TOPFlash), enriched β-catenin nuclear accumulation, and elevated Wnt-related genes by PCR-array. Stromal cells serve as an additional paracrine source of Wnt ligands and enhanced Gli2 and PTHrP mRNA levels in MDA-MB-231 and RWGT2 cells in vitro and promoted tumor-induced bone destruction in vivo in a β-catenin/Wnt3a-dependent mechanism. These data indicate that a combination of matrix rigidity and stromal-secreted factors stimulate Gli2 and PTHrP through Wnt signaling in osteolytic breast cancer cells, and there is significant cross-talk between the Wnt and TGF-β signaling pathways. This suggests that the Wnt signaling pathway may be a potential therapeutic target for inhibiting tumor cell response to the bone

  19. Alcohol-induced disruption of endocrine signaling.

    PubMed

    Ronis, Martin J J; Wands, Jack R; Badger, Thomas M; de la Monte, Suzanne M; Lang, Charles H; Calissendorff, Jan

    2007-08-01

    This article contains the proceedings of a symposium at the 2006 ISBRA meeting in Sydney Australia, organized and cochaired by Martin J. Ronis and Thomas M. Badger. The presentations were (1) Effect of long-term ethanol consumption on liver injury and repair, by Jack R. Wands; (2) Alcohol-induced insulin resistance in liver: potential roles in regulation of ADH expression, ethanol clearance, and alcoholic liver disease, by Thomas M. Badger; (3) Chronic gestational exposure to ethanol causes brain insulin and insulin-like growth factor resistance, by Suzanne M de la Monte; (4) Disruption of IGF-1 signaling in muscle: a mechanism underlying alcoholic myopathy, by Charles H. Lang; (5) The role of reduced plasma estradiol and impaired estrogen signaling in alcohol-induced bone loss, by Martin J. Ronis; and (6) Short-term influence of alcohol on appetite-regulating hormones in man, by Jan Calissendorff.

  20. Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit.

    PubMed

    Zhu, Zehua; Aref, Amir R; Cohoon, Travis J; Barbie, Thanh U; Imamura, Yu; Yang, Shenghong; Moody, Susan E; Shen, Rhine R; Schinzel, Anna C; Thai, Tran C; Reibel, Jacob B; Tamayo, Pablo; Godfrey, Jason T; Qian, Zhi Rong; Page, Asher N; Maciag, Karolina; Chan, Edmond M; Silkworth, Whitney; Labowsky, Mary T; Rozhansky, Lior; Mesirov, Jill P; Gillanders, William E; Ogino, Shuji; Hacohen, Nir; Gaudet, Suzanne; Eck, Michael J; Engelman, Jeffrey A; Corcoran, Ryan B; Wong, Kwok-Kin; Hahn, William C; Barbie, David A

    2014-04-01

    Although the roles of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling in KRAS-driven tumorigenesis are well established, KRAS activates additional pathways required for tumor maintenance, the inhibition of which are likely to be necessary for effective KRAS-directed therapy. Here, we show that the IκB kinase (IKK)-related kinases Tank-binding kinase-1 (TBK1) and IKKε promote KRAS-driven tumorigenesis by regulating autocrine CCL5 and interleukin (IL)-6 and identify CYT387 as a potent JAK/TBK1/IKKε inhibitor. CYT387 treatment ablates RAS-associated cytokine signaling and impairs Kras-driven murine lung cancer growth. Combined CYT387 treatment and MAPK pathway inhibition induces regression of aggressive murine lung adenocarcinomas driven by Kras mutation and p53 loss. These observations reveal that TBK1/IKKε promote tumor survival by activating CCL5 and IL-6 and identify concurrent inhibition of TBK1/IKKε, Janus-activated kinase (JAK), and MEK signaling as an effective approach to inhibit the actions of oncogenic KRAS. PMID:24444711

  1. Pancreatic cancer cells require an EGF receptor-mediated autocrine pathway for proliferation in serum-free conditions

    PubMed Central

    Murphy, L O; Cluck, M W; Lovas, S; Ötvös, F; Murphy, R F; Schally, A V; Permert, J; Larsson, J; Knezetic, J A; Adrian, T E

    2001-01-01

    In-vitro and in-vivo studies have shown that autocrine growth factors and receptors are frequently expressed in human malignancies. Few of these studies, however, provide evidence that the identified autocrine pathway is functional. In this study, a functional autocrine growth pathway in pancreatic cancer has been identified using an in-vitro cell culture system. When pancreatic cancer cells were grown without change of medium, proliferation was greater than when either medium was replaced frequently (HPAF, CAPAN-2, PANC-1 or SW1990) or cells were grown in the presence of the EGF receptor tyrosine kinase inhibitor AG1478 or the MEK inhibitor PD098059 (HPAF or CAPAN-2). Activity of extracellular-regulated kinases (ERK) 1 and 2 and c- jun and c- fos mRNA levels were significantly elevated in CAPAN-2 cells cultured continuously in serum-free medium. Collectively, the observations indicate that the EGF receptor and the ERK MAP kinase pathway mediate autocrine signals. In contrast to previous reports, the GRP and IGF-I receptors were shown not to be required for autocrine effects on pancreatic cancer cell proliferation. Autocrine stimulation of the EGF receptor can contribute to sustained mitogenic activity and proliferation of pancreatic cancer cells. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11286473

  2. Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling

    PubMed Central

    Shih, Yu-Ru V.; Hwang, YongSung; Phadke, Ameya; Kang, Heemin; Hwang, Nathaniel S.; Caro, Eduardo J.; Nguyen, Steven; Siu, Michael; Theodorakis, Emmanuel A.; Gianneschi, Nathan C.; Vecchio, Kenneth S.; Chien, Shu; Lee, Oscar K.; Varghese, Shyni

    2014-01-01

    Synthetic matrices emulating the physicochemical properties of tissue-specific ECMs are being developed at a rapid pace to regulate stem cell fate. Biomaterials containing calcium phosphate (CaP) moieties have been shown to support osteogenic differentiation of stem and progenitor cells and bone tissue formation. By using a mineralized synthetic matrix mimicking a CaP-rich bone microenvironment, we examine a molecular mechanism through which CaP minerals induce osteogenesis of human mesenchymal stem cells with an emphasis on phosphate metabolism. Our studies show that extracellular phosphate uptake through solute carrier family 20 (phosphate transporter), member 1 (SLC20a1) supports osteogenic differentiation of human mesenchymal stem cells via adenosine, an ATP metabolite, which acts as an autocrine/paracrine signaling molecule through A2b adenosine receptor. Perturbation of SLC20a1 abrogates osteogenic differentiation by decreasing intramitochondrial phosphate and ATP synthesis. Collectively, this study offers the demonstration of a previously unknown mechanism for the beneficial role of CaP biomaterials in bone repair and the role of phosphate ions in bone physiology and regeneration. These findings also begin to shed light on the role of ATP metabolism in bone homeostasis, which may be exploited to treat bone metabolic diseases. PMID:24395775

  3. FGF19 functions as autocrine growth factor for hepatoblastoma

    PubMed Central

    Elzi, David J.; Song, Meihua; Blackman, Barron; Weintraub, Susan T.; López-Terrada, Dolores; Chen, Yidong; Tomlinson, Gail E.; Shiio, Yuzuru

    2016-01-01

    Hepatoblastoma is the most common liver cancer in children, accounting for over 65% of all childhood liver malignancies. Hepatoblastoma is distinct from adult liver cancer in that it is not associated with hepatitis virus infection, cirrhosis, or other underlying liver pathology. The paucity of appropriate cell and animal models has been hampering the mechanistic understanding of hepatoblastoma pathogenesis. Consequently, there is no molecularly targeted therapy for hepatoblastoma. To gain insight into cytokine signaling in hepatoblastoma, we employed mass spectrometry to analyze the proteins secreted from Hep293TT hepatoblastoma cell line we established and identified the specific secretion of fibroblast growth factor 19 (FGF19), a growth factor for liver cells. We determined that silencing FGF19 by shRNAs or neutralizing secreted FGF19 by anti-FGF19 antibody inhibits the proliferation of hepatoblastoma cells. Furthermore, blocking FGF19 signaling by an FGF receptor kinase inhibitor suppressed hepatoblastoma growth. RNA expression analysis in hepatoblastoma tumors revealed that the high expression of FGF19 signaling pathway components as well as the low expression of FGF19 signaling repression targets correlates with the aggressiveness of the tumors. These results suggest the role of FGF19 as autocrine growth factor for hepatoblastoma. PMID:27382436

  4. Competence for collagenase gene expression by tissue fibroblasts requires activation of an interleukin 1 alpha autocrine loop.

    PubMed Central

    West-Mays, J A; Strissel, K J; Sadow, P M; Fini, M E

    1995-01-01

    The enzyme collagenase (EC 3.4.24.7), a key mediator in biological remodeling, can be induced in early-passage fibroblasts by a wide variety of agents and conditions. In contrast, at least some primary tissue fibroblasts are incompetent to synthesize collagenase in response to many of these stimulators. In this study, we investigate mechanisms controlling response to two of the conditions in question: (i) trypsin or cytochalasin B, which disrupt actin stress fibers, or (ii) phorbol 12-myristate 13-acetate (PMA), which activates growth factor signaling pathways. We demonstrate that collagenase expression stimulated by trypsin or cytochalasin B is regulated entirely through an autocrine cytokine, interleukin 1 alpha (IL-1 alpha). The IL-1 alpha intermediate also constitutes the major mechanism by which PMA stimulates collagenase expression, although a second signaling pathway(s) contributes to a minor extent. Elevation of the IL-1 alpha level in response to stimulators is found to be sustained by means of an autocrine feedback loop in early-passage fibroblast cultures. In contrast, fibroblasts freshly isolated from the tissue are incompetent to activate and sustain the IL-1 alpha feedback loop, even though they synthesize collagenase in response to exogenous IL-1. We conclude that this is the reason why tissue fibroblasts are limited, in comparison with subcultured fibroblasts, in their capacity to synthesize collagenase. Activation of the IL-1 alpha feedback loop, therefore, seems likely to be an important mechanism by which resident tissue cells adopt the remodeling phenotype. Images Fig. 1 Fig. 2 Fig. 3 PMID:7624317

  5. YAP forms autocrine loops with the ERBB pathway to regulate ovarian cancer initiation and progression

    PubMed Central

    He, Chunbo; Lv, Xiangmin; Hua, Guohua; Lele, Subodh M; Remmenga, Steven; Dong, Jixin; Davis, John S; Wang, Cheng

    2014-01-01

    Mechanisms underlying ovarian cancer initiation and progression are unclear. Herein, we report that the Yes-associated protein (YAP), a major effector of the Hippo tumor suppressor pathway, interacts with ERBB signaling pathways to regulate the initiation and progression of ovarian cancer. Immunohistochemistry studies indicate that YAP expression is associated with poor clinical outcomes in patients. Overexpression or constitutive activation of YAP leads to transformation and tumorigenesis in human ovarian surface epithelial cells, and promotes growth of cancer cells in vivo and in vitro. YAP induces expression of EGF receptors (EGFR, ERBB3) and production of EGF-like ligands (HBEGF, NRG1 and NRG2). HBEGF or NRG1, in turn, activates YAP and stimulates cancer cell growth. Knockdown of ERBB3 or HBEGF eliminates YAP effects on cell growth and transformation, while knockdown of YAP abrogates NRG1- and HBEGF-stimulated cell proliferation. Collectively, our study demonstrates the existence of HBEGF&NRGs/ERBBs/YAP/HBEGF&NRGs autocrine loop that controls ovarian cell tumorigenesis and cancer progression. PMID:25798835

  6. Neurotensin (NTS) and its receptor (NTSR1) causes EGFR, HER2 and HER3 over-expression and their autocrine/paracrine activation in lung tumors, confirming responsiveness to erlotinib

    PubMed Central

    Lupo, Audrey Mansuet; Mourra, Najat; Takahashi, Takashi; Fléjou, Jean François; Trédaniel, Jean; Régnard, Jean François; Damotte, Diane; Alifano, Marco; Forgez, Patricia

    2014-01-01

    Alterations in the signaling pathways of epidermal growth factor receptors (HERs) are associated with tumor aggressiveness. Neurotensin (NTS) and its high affinity receptor (NTSR1) are up regulated in 60% of lung cancers. In a previous clinical study, NTSR1 overexpression was shown to predict a poor prognosis for 5 year overall survival in a selected population of stage I lung adenocarcinomas treated by surgery alone. In a second study, shown here, the frequent and high expression of NTSR1 was correlated with a pejorative prognosis in 389 patients with stage I to III lung adenocarcinoma, and was an independent prognosis marker. Interactions between NTS and NTSR1 induce pro-oncogenic biological effects associated with neoplastic processes and tumor progression. Here we highlight the cellular mechanisms activated by Neurotensin (NTS) and its high affinity receptor (NTSR1) contributing to lung cancer cell aggressiveness. We show that the NTS autocrine and/or paracrine regulation causes EGFR, HER2, and HER3 over-expression and activation in lung tumor cells. The EGFR and HER3 autocrine activation is mediated by MMP1 activation and EGF “like” ligands (HB-EGF, Neuregulin 1) release. By establishing autocrine and/or paracrine NTS regulation, we show that tumor growth is modulated according to NTS expression, with a low growth rate in those tumors that do not express NTS. Accordingly, xenografted tumors expressing NTS and NTSR1 showed a positive response to erlotinib, whereas tumors void of NTSR1 expression had no detectable response. This is consistent with the presence of a NTS autocrine loop, leading to the sustained activation of EGFR and responsible for cancer aggressiveness. We propose the use of NTS/NTSR1 tumor expression, as a biomarker for the use of EGFR tyrosine kinase inhibitors in patients lacking EGFR mutation. PMID:25249545

  7. Neurotensin (NTS) and its receptor (NTSR1) causes EGFR, HER2 and HER3 over-expression and their autocrine/paracrine activation in lung tumors, confirming responsiveness to erlotinib.

    PubMed

    Younes, Mohamad; Wu, Zherui; Dupouy, Sandra; Lupo, Audrey Mansuet; Mourra, Najat; Takahashi, Takashi; Fléjou, Jean François; Trédaniel, Jean; Régnard, Jean François; Damotte, Diane; Alifano, Marco; Forgez, Patricia

    2014-09-30

    Alterations in the signaling pathways of epidermal growth factor receptors (HERs) are associated with tumor aggressiveness. Neurotensin (NTS) and its high affinity receptor (NTSR1) are up regulated in 60% of lung cancers. In a previous clinical study, NTSR1 overexpression was shown to predict a poor prognosis for 5 year overall survival in a selected population of stage I lung adenocarcinomas treated by surgery alone. In a second study, shown here, the frequent and high expression of NTSR1 was correlated with a pejorative prognosis in 389 patients with stage I to III lung adenocarcinoma, and was an independent prognosis marker. Interactions between NTS and NTSR1 induce pro-oncogenic biological effects associated with neoplastic processes and tumor progression. Here we highlight the cellular mechanisms activated by Neurotensin (NTS) and its high affinity receptor (NTSR1) contributing to lung cancer cell aggressiveness. We show that the NTS autocrine and/or paracrine regulation causes EGFR, HER2, and HER3 over-expression and activation in lung tumor cells. The EGFR and HER3 autocrine activation is mediated by MMP1 activation and EGF "like" ligands (HB-EGF, Neuregulin 1) release. By establishing autocrine and/or paracrine NTS regulation, we show that tumor growth is modulated according to NTS expression, with a low growth rate in those tumors that do not express NTS. Accordingly, xenografted tumors expressing NTS and NTSR1 showed a positive response to erlotinib, whereas tumors void of NTSR1 expression had no detectable response. This is consistent with the presence of a NTS autocrine loop, leading to the sustained activation of EGFR and responsible for cancer aggressiveness. We propose the use of NTS/NTSR1 tumor expression, as a biomarker for the use of EGFR tyrosine kinase inhibitors in patients lacking EGFR mutation.

  8. Autocrine epiregulin activates EGFR pathway for lung metastasis via EMT in salivary adenoid cystic carcinoma

    PubMed Central

    Xu, Dongliang; Liao, Yueling; Zhang, Ling; Liu, Liu; Yu, Wenwen; Wang, Yanan; He, Yue; Hu, Jingzhou; Guo, Wenzheng; Wang, Tong; Sun, Beibei; Song, Hongyong; Yin, Huijing; Liu, Jingyi; Wu, Yadi; Zhu, Hanguang; Zhou, Binhua P.; Deng, Jiong; Zhang, Zhiyuan

    2016-01-01

    Salivary adenoid cystic carcinoma (SACC) is characterized by invasive local growth and a high incidence of lung metastasis. Patients with lung metastasis have a poor prognosis. Treatment of metastatic SACC has been unsuccessful, largely due to a lack of specific targets for the metastatic cells. In this study, we showed that epidermal growth factor receptors (EGFR) were constitutively activated in metastatic lung subtypes of SACC cells, and that this activation was induced by autocrine expression of epiregulin (EREG), a ligand of EGFR. Autocrine EREG expression was increased in metastatic SACC-LM cells compared to that in non-metastatic parental SACC cells. Importantly, EREG-neutralizing antibody, but not normal IgG, blocked the autocrine EREG-induced EGFR phosphorylation and the migration of SACC cells, suggesting that EREG-induced EGFR activation is essential for induction of cell migration and invasion by SACC cells. Moreover, EREG-activated EGFR stabilized Snail and Slug, which promoted EMT and metastatic features in SACC cells. Of note, targeting EGFR with inhibitors significantly suppressed both the motility of SACC cells in vitro and lung metastasis in vivo. Finally, elevated EREG expression showed a strong correlation with poor prognosis in head and neck cancer. Thus, targeting the EREG-EGFR-Snail/Slug axis represents a novel strategy for the treatment of metastatic SACC even no genetic EGFR mutation. PMID:26958807

  9. VEGF elicits epithelial-mesenchymal transition (EMT) in prostate intraepithelial neoplasia (PIN)-like cells via an autocrine loop.

    PubMed

    Gonzalez-Moreno, Oscar; Lecanda, Jon; Green, Jeffrey E; Segura, Victor; Catena, Raul; Serrano, Diego; Calvo, Alfonso

    2010-02-15

    Vascular endothelial growth factor (VEGF) is overexpressed during the transition from prostate intraepithelial neoplasia (PIN) to invasive carcinoma. We have mimicked such a process in vitro using the PIN-like C3(1)/Tag-derived Pr-111 cell line, which expresses low levels of VEGF and exhibits very low tumorigenicity in vivo. Elevated expression of VEGF164 in Pr-111 cells led to a significant increase in tumorigenicity, invasiveness, proliferation rates and angiogenesis. Moreover, VEGF164 induced strong changes in cell morphology and cell transcriptome through an autocrine mechanism, with changes in TGF-beta1- and cytoskeleton-related pathways, among others. Further analysis of VEGF-overexpressing Pr-111 cells or following exogenous addition of recombinant VEGF shows acquisition of epithelial-mesenchymal transition (EMT) features, with an increased expression of mesenchymal markers, such as N-cadherin, Snail1, Snail2 (Slug) and vimentin, and a decrease in E-cadherin. Administration of VEGF led to changes in TGF-beta1 signaling, including reduction of Smad7 (TGF-beta inhibitory Smad), increase in TGF-betaR-II, and translocation of phospho-Smad3 to the nucleus. Our results suggest that increased expression of VEGF in malignant cells during the transition from PIN to invasive carcinoma leads to EMT through an autocrine loop, which would promote tumor cell invasion and motility. Therapeutic blockade of VEGF/TGF-beta1 in PIN lesions might impair not only tumor angiogenesis, but also the early dissemination of malignant cells outside the epithelial layer.

  10. 8-Chloro-cyclic AMP inhibits autocrine and angiogenic growth factor production in human colorectal and breast cancer.

    PubMed

    Bianco, C; Tortora, G; Baldassarre, G; Caputo, R; Fontanini, G; Chinè, S; Bianco, A R; Ciardiello, F

    1997-03-01

    8-Chloro-cyclic AMP (8-Cl-cAMP) is a cAMP analogue that specifically down-regulates type I protein kinase A, a signaling protein directly involved in cell proliferation and neoplastic transformation, and that causes growth inhibition in a variety of human cancer cell types. In this report, we have investigated the effects of 8-Cl-cAMP on the expression of several growth factors in human colon (GEO and LS174T) and breast (MDA-MB468) cancer cell lines. 8-Cl-cAMP treatment caused in the three cancer cell lines a significant dose- and time-dependent inhibition in the expression of various endogenous autocrine growth factors, such as transforming growth factor alpha, amphiregulin, and CRIPTO, and of two angiogenic factors, such as vascular endothelial growth factor and basic fibroblast growth factor, at both the mRNA and protein levels. Furthermore, 8-Cl-cAMP treatment markedly inhibited the ability of all three cell lines to invade a basement membrane matrix in a chemoinvasion assay. Finally, 8-Cl-cAMP-induced inhibition of GEO tumor growth in nude mice was accompanied by a significant suppression of transforming growth factor alpha, amphiregulin, CRIPTO, basic fibroblast growth factor, and vascular endothelial growth factor production by the tumor cells, and of neoangiogenesis, as detected by factor VIII staining of host blood cells. These results demonstrate that 8-Cl-cAMP is a novel anticancer drug that inhibits the production of various autocrine and paracrine tumor growth factors that are important in sustaining autonomous local growth and facilitate invasion and metastasis.

  11. The local corticotropin-releasing hormone receptor 2 signalling pathway partly mediates hypoxia-induced increases in lipolysis via the cAMP-protein kinase A signalling pathway in white adipose tissue.

    PubMed

    Xiong, Yanlei; Qu, Zhuan; Chen, Nan; Gong, Hui; Song, Mintao; Chen, Xuequn; Du, Jizeng; Xu, Chengli

    2014-07-01

    Our objective was to investigate the mechanisms by which the endogenous CRHR2 in white adipose tissue (WAT) regulates metabolic activities associated with lipogenesis and lipolysis under continuous exposure to hypoxia. We found that hypobaric hypoxia at a simulated altitude of 5000 m significantly reduced the body weight, food intake, and WAT mass of rats. Hypoxia also accelerated lipolysis and suppressed lipogenesis in WAT. Pretreatment with astressin 2B, a selective CRHR2 antagonist, partly but significantly attenuated the hypoxia-induced reductions in body weight and WAT mass by blocking the cAMP-protein kinase A (PKA)-hormone-sensitive lipase (HSL)/perilipin signalling pathway. Astressin 2B treatment failed to attenuate hypoxia induced lipogenic inhibition. In conclusion, activation of endogenous WAT Ucn2/3 autocrine/paracrine pathway was involved in hypoxia induced lipolysis via CRHR2 - cAMP-PKA signalling pathway. This study provides the novel understanding of local CRHR2 signaling pathway playing important role in WAT loss and lipid metabolism under hypoxia.

  12. Purinergic Signaling is Required for Fluid Shear Stress-Induced NF-kB Translocation in Osteoblasts

    SciTech Connect

    Genetos, Damian C.; Karin, Norman J.; Geist, Derik J.; Donahue, Henry J.; Duncan, Randall L.

    2011-04-01

    Fluid shear stress regulates gene expression in osteoblasts, in part by activation of the transcription factor NF-kB. We examined whether this process was under control of purinoceptor activation. MC3T3-E1 osteoblasts under static conditions expressed the NF-kB inhibitory protein IkB alpha and exhibited cytosolic localization of NF-kB. Under fluid shear stress, IκBα levels decreased, and concomitant nuclear localization of NF-kB was observed. Cells exposed to fluid shear stress in ATP-depleted medium exhibited no significant reduction in IκBα, and NF-kB remained within the cytosol. Similar results were found using oxidized ATP or Brilliant Blue G, P2X7 receptor antagonists, indicating that the P2X7 receptor is responsible for fluid shear-stress-induced IκBα degradation and nuclear accumulation of NF-kB. Pharmacologic blockage of the P2Y6 receptor also prevented shear-induced IkB alpha degradation. These phenomena involved neither ERK1/2 signaling nor autocrine activation by P2X7-generated lysophosphatidic acid. Our results suggest that fluid shear stress regulates NF-kB activity through the P2Y6 and P2X7 receptor.

  13. Purinergic signaling is required for fluid shear stress-induced NF-{kappa}B translocation in osteoblasts

    SciTech Connect

    Genetos, Damian C.; Karin, Norman J.; Geist, Derik J.; Donahue, Henry J.; Duncan, Randall L.

    2011-04-01

    Fluid shear stress regulates gene expression in osteoblasts, in part by activation of the transcription factor NF-{kappa}B. We examined whether this process was under the control of purinoceptor activation. MC3T3-E1 osteoblasts under static conditions expressed the NF-{kappa}B inhibitory protein I{kappa}B{alpha} and exhibited cytosolic localization of NF-{kappa}B. Under fluid shear stress, I{kappa}B{alpha} levels decreased, and concomitant nuclear localization of NF-{kappa}B was observed. Cells exposed to fluid shear stress in ATP-depleted medium exhibited no significant reduction in I{kappa}B{alpha}, and NF-{kappa}B remained within the cytosol. Similar results were found using oxidized ATP or Brilliant Blue G, P2X{sub 7} receptor antagonists, indicating that the P2X{sub 7} receptor is responsible for fluid shear-stress-induced I{kappa}B{alpha} degradation and nuclear accumulation of NF-{kappa}B. Pharmacologic blockage of the P2Y6 receptor also prevented shear-induced I{kappa}B{alpha} degradation. These phenomena involved neither ERK1/2 signaling nor autocrine activation by P2X{sub 7}-generated lysophosphatidic acid. Our results suggest that fluid shear stress regulates NF-{kappa}B activity through the P2Y{sub 6} and P2X{sub 7} receptor.

  14. Regulation of the expression of proto-oncogenes by autocrine embryotropins in the early mouse embryo.

    PubMed

    Jin, Xing Liang; O'Neill, C

    2011-06-01

    Autocrine embryotropins act as survival signals for the preimplantation embryo. In this study we examined the role of Paf in the transcription of the key proto-oncogenes Bcl2 and Fos. Transcripts were detected in oocytes and some cohorts of zygotes but not in cohorts of 2-cell, 8-cell, and blastocyst stage embryos. Immunolocalization of BCL2 and FOS showed little staining in oocytes and zygotes but increased staining in the embryo from the 2-cell to blastocyst stage. Paf (37 nM) treatment of 2-cell embryos caused an alpha-amanitin (26 μM)-sensitive increase in Bcl2 and Fos transcripts 20 min after treatment that subsided by 40 min. This increase was blocked by inhibition of calcium (by BAPTA-AM) or phosphatidylinositol-3-kinase signaling (by LY294002). Paf challenge also caused increased staining of BCL2 and FOS. Increased staining of FOS required new protein synthesis that had a half-life of 2-4 h after Paf challenge. Only a small proportion (∼12%) of individual 2-cell embryos collected from the reproductive tract had detectable Bcl2 and Fos. This dichotomous pattern of transcript expression is consistent with the known periodic actions of Paf (which has a periodicity of ∼90 min) and the relatively short half-life of the resulting transcripts. A BCL2 antagonist (HA14-1) caused a dose-dependent decrease in the capacity of cultured zygotes to develop to morphological blastocysts, which was partially reversed by the simultaneous addition of Paf to medium. The results show that Paf induces periodic transient transcriptions of key proto-oncogenes that result in the persistent presence of the resulting proteins in the preimplantation phase of development.

  15. miR-200c Targets a NF-κB Up-Regulated TrkB/NTF3 Autocrine Signaling Loop to Enhance Anoikis Sensitivity in Triple Negative Breast Cancer

    PubMed Central

    Howe, Erin N.; Cochrane, Dawn R.; Cittelly, Diana M.; Richer, Jennifer K.

    2012-01-01

    Anoikis is apoptosis initiated upon cell detachment from the native extracellular matrix. Since survival upon detachment from basement membrane is required for metastasis, the ability to resist anoikis contributes to the metastatic potential of breast tumors. miR-200c, a potent repressor of epithelial to mesenchymal transition, is expressed in luminal breast cancers, but is lost in more aggressive basal-like, or triple negative breast cancers (TNBC). We previously demonstrated that miR-200c restores anoikis sensitivity to TNBC cells by directly targeting the neurotrophic receptor tyrosine kinase, TrkB. In this study, we identify a TrkB ligand, neurotrophin 3 (NTF3), as capable of activating TrkB to induce anoikis resistance, and show that NTF3 is also a direct target of miR-200c. We present the first evidence that anoikis resistant TNBC cells up-regulate both TrkB and NTF3 when suspended, and show that this up-regulation is necessary for survival in suspension. We further demonstrate that NF-κB activity increases 6 fold in suspended TNBC cells, and identify RelA and NF-κB1 as the transcription factors responsible for suspension-induced up-regulation of TrkB and NTF3. Consequently, inhibition of NF-κB activity represses anoikis resistance. Taken together, our findings define a critical mechanism for transcriptional and post-transcriptional control of suspension-induced up-regulation of TrkB and NTF3 in anoikis resistant breast cancer cells. PMID:23185507

  16. Autocrine-paracrine regulation of the mammary gland.

    PubMed

    Weaver, S R; Hernandez, L L

    2016-01-01

    The mammary gland has a remarkable capacity for regulation at a local level, particularly with respect to its main function: milk secretion. Regulation of milk synthesis has significant effects on animal and human health, at the level of both the mother and the neonate. Control by the mammary gland of its essential function, milk synthesis, is an evolutionary necessity and is therefore tightly regulated at a local level. For at least the last 60 yr, researchers have been interested in elucidating the mechanisms underpinning the mammary gland's ability to self-regulate, largely without the influence from systemic hormones or signals. By the 1960s, scientists realized the importance of milk removal in the capacity of the gland to produce milk and that the dynamics of this removal, including emptying of the alveolar spaces and frequency of milking, were controlled locally as opposed to traditional systemic hormonal regulation. Using both in vitro systems and various mammalian species, including goats, marsupials, humans, and dairy cows, it has been demonstrated that the mammary gland is largely self-regulating in its capacity to support the young, which is the evolutionary basis for milk production. Local control occurs at the level of the mammary epithelial cell through pressure and stretching negative-feedback mechanisms, and also in an autocrine fashion through bioactive factors within the milk which act as inhibitors, regulating milk secretion within the alveoli themselves. It is only within the last 20 to 30 yr that potential candidates for these bioactive factors have been examined at a molecular level. Several, including parathyroid hormone-related protein, growth factors (transforming growth factor, insulin-like growth factor, epidermal growth factor), and serotonin, are synthesized within and act upon the gland and possess dynamic receptor activity resulting in diverse effects on growth, calcium homeostasis, and milk composition. This review will focus on the

  17. Autocrine-paracrine regulation of the mammary gland.

    PubMed

    Weaver, S R; Hernandez, L L

    2016-01-01

    The mammary gland has a remarkable capacity for regulation at a local level, particularly with respect to its main function: milk secretion. Regulation of milk synthesis has significant effects on animal and human health, at the level of both the mother and the neonate. Control by the mammary gland of its essential function, milk synthesis, is an evolutionary necessity and is therefore tightly regulated at a local level. For at least the last 60 yr, researchers have been interested in elucidating the mechanisms underpinning the mammary gland's ability to self-regulate, largely without the influence from systemic hormones or signals. By the 1960s, scientists realized the importance of milk removal in the capacity of the gland to produce milk and that the dynamics of this removal, including emptying of the alveolar spaces and frequency of milking, were controlled locally as opposed to traditional systemic hormonal regulation. Using both in vitro systems and various mammalian species, including goats, marsupials, humans, and dairy cows, it has been demonstrated that the mammary gland is largely self-regulating in its capacity to support the young, which is the evolutionary basis for milk production. Local control occurs at the level of the mammary epithelial cell through pressure and stretching negative-feedback mechanisms, and also in an autocrine fashion through bioactive factors within the milk which act as inhibitors, regulating milk secretion within the alveoli themselves. It is only within the last 20 to 30 yr that potential candidates for these bioactive factors have been examined at a molecular level. Several, including parathyroid hormone-related protein, growth factors (transforming growth factor, insulin-like growth factor, epidermal growth factor), and serotonin, are synthesized within and act upon the gland and possess dynamic receptor activity resulting in diverse effects on growth, calcium homeostasis, and milk composition. This review will focus on the

  18. Autocrine Acetylcholine, Induced by IL-17A via NFκB and ERK1/2 Pathway Activation, Promotes MUC5AC and IL-8 Synthesis in Bronchial Epithelial Cells.

    PubMed

    Montalbano, Angela Marina; Albano, Giusy Daniela; Bonanno, Anna; Riccobono, Loredana; Di Sano, Caterina; Ferraro, Maria; Siena, Liboria; Anzalone, Giulia; Gagliardo, Rosalia; Pieper, Michael Paul; Gjomarkaj, Mark; Profita, Mirella

    2016-01-01

    IL-17A is overexpressed in the lung during acute neutrophilic inflammation. Acetylcholine (ACh) increases IL-8 and Muc5AC production in airway epithelial cells. We aimed to characterize the involvement of nonneuronal components of cholinergic system on IL-8 and Muc5AC production in bronchial epithelial cells stimulated with IL-17A. Bronchial epithelial cells were stimulated with recombinant human IL-17A (rhIL-17A) to evaluate the ChAT expression, the ACh binding and production, the IL-8 release, and the Muc5AC production. Furthermore, the effectiveness of PD098,059 (inhibitor of MAPKK activation), Bay11-7082 (inhibitor of IkBα phosphorylation), Hemicholinium-3 (HCh-3) (choline uptake blocker), and Tiotropium bromide (Spiriva®) (anticholinergic drug) was tested in our in vitro model. We showed that rhIL-17A increased the expression of ChAT, the levels of ACh binding and production, and the IL-8 and Muc5AC production in stimulated bronchial epithelial cells compared with untreated cells. The pretreatment of the cells with PD098,059 and Bay11-7082 decreased the ChAT expression and the ACh production/binding, while HCh-3 and Tiotropium decreased the IL-8 and Muc5AC synthesis in bronchial epithelial cells stimulated with rhIL-17A. IL-17A is involved in the IL-8 and Muc5AC production promoting, via NFκB and ERK1/2 pathway activation, the synthesis of ChAT, and the related activity of autocrine ACh in bronchial epithelial cells. PMID:27298519

  19. Autocrine Acetylcholine, Induced by IL-17A via NFκB and ERK1/2 Pathway Activation, Promotes MUC5AC and IL-8 Synthesis in Bronchial Epithelial Cells

    PubMed Central

    Montalbano, Angela Marina; Albano, Giusy Daniela; Bonanno, Anna; Riccobono, Loredana; Di Sano, Caterina; Ferraro, Maria; Siena, Liboria; Anzalone, Giulia; Gagliardo, Rosalia; Pieper, Michael Paul; Gjomarkaj, Mark; Profita, Mirella

    2016-01-01

    IL-17A is overexpressed in the lung during acute neutrophilic inflammation. Acetylcholine (ACh) increases IL-8 and Muc5AC production in airway epithelial cells. We aimed to characterize the involvement of nonneuronal components of cholinergic system on IL-8 and Muc5AC production in bronchial epithelial cells stimulated with IL-17A. Bronchial epithelial cells were stimulated with recombinant human IL-17A (rhIL-17A) to evaluate the ChAT expression, the ACh binding and production, the IL-8 release, and the Muc5AC production. Furthermore, the effectiveness of PD098,059 (inhibitor of MAPKK activation), Bay11-7082 (inhibitor of IkBα phosphorylation), Hemicholinium-3 (HCh-3) (choline uptake blocker), and Tiotropium bromide (Spiriva®) (anticholinergic drug) was tested in our in vitro model. We showed that rhIL-17A increased the expression of ChAT, the levels of ACh binding and production, and the IL-8 and Muc5AC production in stimulated bronchial epithelial cells compared with untreated cells. The pretreatment of the cells with PD098,059 and Bay11-7082 decreased the ChAT expression and the ACh production/binding, while HCh-3 and Tiotropium decreased the IL-8 and Muc5AC synthesis in bronchial epithelial cells stimulated with rhIL-17A. IL-17A is involved in the IL-8 and Muc5AC production promoting, via NFκB and ERK1/2 pathway activation, the synthesis of ChAT, and the related activity of autocrine ACh in bronchial epithelial cells. PMID:27298519

  20. [Autocrine growth mechanisms of cholesteatoma epithelium].

    PubMed

    Schilling, V; Holly, A; Bujía, J; Schulz, P

    1993-07-01

    Transforming growth factor alpha (TGF alpha) and interleukin 1 alpha (IL-1 alpha) are known to be produced by normal human keratinocytes stimulating their proliferation. The distribution and expression of TGF alpha and IL-1 alpha were examined in specimens of middle ear cholesteatoma by means of immunohistochemical methods using a monoclonal antibody against TGF alpha and a polyclonal one against IL-1 alpha. Normal retroauricular skin was stained for comparison. Staining for TGF alpha was consistently stronger in cholesteatoma epithelium than in normal epidermis, and encompassed all epithelial cell layers. Immune cells occurring in the stroma of cholesteatoma also reacted positively for TGF alpha. The intensity of staining for IL-1 alpha was markedly stronger in cholesteatoma tissue than in normal epidermis. All cellular layers of the squamous epithelium of cholesteatoma stained strongly and uniformly for IL-1 alpha, whereas the keratin layer was negative for IL-1 alpha. In the connective tissue beneath the cholesteatoma epithelium intensely positive cells were scattered between negative stromal cells. These data are consistent with autocrine stimulation of the squamous epithelium of cholesteatoma by TGF alpha and IL-1 alpha as well as with a paracrine stimulation by immune cells. Both factors contribute to the unrestrained growth of cholesteatoma in the middle ear cavity.

  1. WNT4 mediates the autocrine effects of growth hormone in mammary carcinoma cells.

    PubMed

    Vouyovitch, Cécile M; Perry, Jo K; Liu, Dong Xu; Bezin, Laurent; Vilain, Eric; Diaz, Jean-Jacques; Lobie, Peter E; Mertani, Hichem C

    2016-07-01

    The expression of Wingless and Int-related protein (Wnt) ligands is aberrantly high in human breast cancer. We report here that WNT4 is significantly upregulated at the mRNA and protein level in mammary carcinoma cells expressing autocrine human growth hormone (hGH). Depletion of WNT4 using small interfering (si) RNA markedly decreased the rate of human breast cancer cell proliferation induced by autocrine hGH. Forced expression of WNT4 in the nonmalignant human mammary epithelial cell line MCF-12A stimulated cell proliferation in low and normal serum conditions, enhanced cell survival and promoted anchorage-independent growth and colony formation in soft agar. The effects of sustained production of WNT4 were concomitant with upregulation of proliferative markers (c-Myc, Cyclin D1), the survival marker BCL-XL, the putative WNT4 receptor FZD6 and activation of ERK1 and STAT3. Forced expression of WNT4 resulted in phenotypic conversion of MCF-12A cells, such that they exhibited the molecular and morphological characteristics of mesenchymal cells with increased cell motility. WNT4 production resulted in increased mesenchymal and cytoskeletal remodeling markers, promoted actin cytoskeleton reorganization and led to dissolution of cell-cell contacts. In xenograft studies, tumors with autocrine hGH expressed higher levels of WNT4 and FZD6 when compared with control tumors. In addition, Oncomine data indicated that WNT4 expression is increased in neoplastic compared with normal human breast tissue. Accordingly, immunohistochemical detection of WNT4 in human breast cancer biopsies revealed higher expression in tumor tissue vs normal breast epithelium. WNT4 is thus an autocrine hGH-regulated gene involved in the growth and development of the tumorigenic phenotype.

  2. WNT4 mediates the autocrine effects of growth hormone in mammary carcinoma cells.

    PubMed

    Vouyovitch, Cécile M; Perry, Jo K; Liu, Dong Xu; Bezin, Laurent; Vilain, Eric; Diaz, Jean-Jacques; Lobie, Peter E; Mertani, Hichem C

    2016-07-01

    The expression of Wingless and Int-related protein (Wnt) ligands is aberrantly high in human breast cancer. We report here that WNT4 is significantly upregulated at the mRNA and protein level in mammary carcinoma cells expressing autocrine human growth hormone (hGH). Depletion of WNT4 using small interfering (si) RNA markedly decreased the rate of human breast cancer cell proliferation induced by autocrine hGH. Forced expression of WNT4 in the nonmalignant human mammary epithelial cell line MCF-12A stimulated cell proliferation in low and normal serum conditions, enhanced cell survival and promoted anchorage-independent growth and colony formation in soft agar. The effects of sustained production of WNT4 were concomitant with upregulation of proliferative markers (c-Myc, Cyclin D1), the survival marker BCL-XL, the putative WNT4 receptor FZD6 and activation of ERK1 and STAT3. Forced expression of WNT4 resulted in phenotypic conversion of MCF-12A cells, such that they exhibited the molecular and morphological characteristics of mesenchymal cells with increased cell motility. WNT4 production resulted in increased mesenchymal and cytoskeletal remodeling markers, promoted actin cytoskeleton reorganization and led to dissolution of cell-cell contacts. In xenograft studies, tumors with autocrine hGH expressed higher levels of WNT4 and FZD6 when compared with control tumors. In addition, Oncomine data indicated that WNT4 expression is increased in neoplastic compared with normal human breast tissue. Accordingly, immunohistochemical detection of WNT4 in human breast cancer biopsies revealed higher expression in tumor tissue vs normal breast epithelium. WNT4 is thus an autocrine hGH-regulated gene involved in the growth and development of the tumorigenic phenotype. PMID:27323961

  3. Autocrine HBEGF expression promotes breast cancer intravasation, metastasis and macrophage-independent invasion in vivo

    SciTech Connect

    Zhou, Z. N.; Sharma, V. P.; Beaty, B. T.; Roh-Johnson, M.; Peterson, E. A.; Van Rooijen, N.; Kenny, P. A.; Wiley, H. S.; Condeelis, J. S.; Segall, J. E.

    2014-10-13

    Increased expression of HBEGF in estrogen receptor-negative breast tumors is correlated with enhanced metastasis to distant organ sites and more rapid disease recurrence upon removal of the primary tumor. Our previous work has demonstrated a paracrine loop between breast cancer cells and macrophages in which the tumor cells are capable of stimulating macrophages through the secretion of colony-stimulating factor-1 while the tumor-associated macrophages (TAMs), in turn, aid in tumor cell invasion by secreting epidermal growth factor. To determine how the autocrine expression of epidermal growth factor receptor (EGFR) ligands by carcinoma cells would affect this paracrine loop mechanism, and in particular whether tumor cell invasion depends on spatial ligand gradients generated by TAMs, we generated cell lines with increased HBEGF expression. We found that autocrine HBEGF expression enhanced in vivo intravasation and metastasis and resulted in a novel phenomenon in which macrophages were no longer required for in vivo invasion of breast cancer cells. In vitro studies revealed that expression of HBEGF enhanced invadopodium formation, thus providing a mechanism for cell autonomous invasion. The increased invadopodium formation was directly dependent on EGFR signaling, as demonstrated by a rapid decrease in invadopodia upon inhibition of autocrine HBEGF/EGFR signaling as well as inhibition of signaling downstream of EGFR activation. HBEGF expression also resulted in enhanced invadopodium function via upregulation of matrix metalloprotease 2 (MMP2) and MMP9 expression levels. We conclude that high levels of HBEGF expression can short-circuit the tumor cell/macrophage paracrine invasion loop, resulting in enhanced tumor invasion that is independent of macrophage signaling.

  4. Vasoactive Intestinal Peptide modulates trophoblast-derived cell line function and interaction with phagocytic cells through autocrine pathways

    PubMed Central

    Vota, Daiana; Paparini, Daniel; Hauk, Vanesa; Toro, Ayelén; Merech, Fatima; Varone, Cecilia; Ramhorst, Rosanna; Pérez Leirós, Claudia

    2016-01-01

    Trophoblast cells migrate and invade the decidual stroma in a tightly regulated process to maintain immune homeostasis at the maternal-placental interface during the first weeks of pregnancy. Locally synthesized factors modulate trophoblast cell function and their interaction with maternal leukocytes to promote the silent clearance of apoptotic cells. The vasoactive intestinal peptide (VIP) is a pleiotropic polypeptide with trophic and anti-inflammatory effects in murine pregnancy models. We explored the effect of VIP on two human first trimester trophoblast cell lines, particularly on their migration, invasiveness and interaction with phagocytic cells, and the signalling and regulatory pathways involved. We found that VIP enhanced trophoblast cell migration and invasion through the activation of high affinity VPAC receptors and PKA-CRE signalling pathways. VIP knocked-down trophoblast cells showed reduced migration in basal and leukemic inhibitor factor (LIF)-elicited conditions. In parallel, VIP-silenced trophoblast cells failed to induce the phagocytosis of apoptotic bodies and the expression of immunosuppressant markers by human monocytes. Our results suggest that VIP-mediated autocrine pathways regulate trophoblast cell function and contribute to immune homeostasis maintenance at placentation and may provide new clues for therapeutic intervention in pregnancies complicated by defective deep placentation. PMID:27212399

  5. Vasoactive Intestinal Peptide modulates trophoblast-derived cell line function and interaction with phagocytic cells through autocrine pathways.

    PubMed

    Vota, Daiana; Paparini, Daniel; Hauk, Vanesa; Toro, Ayelén; Merech, Fatima; Varone, Cecilia; Ramhorst, Rosanna; Pérez Leirós, Claudia

    2016-01-01

    Trophoblast cells migrate and invade the decidual stroma in a tightly regulated process to maintain immune homeostasis at the maternal-placental interface during the first weeks of pregnancy. Locally synthesized factors modulate trophoblast cell function and their interaction with maternal leukocytes to promote the silent clearance of apoptotic cells. The vasoactive intestinal peptide (VIP) is a pleiotropic polypeptide with trophic and anti-inflammatory effects in murine pregnancy models. We explored the effect of VIP on two human first trimester trophoblast cell lines, particularly on their migration, invasiveness and interaction with phagocytic cells, and the signalling and regulatory pathways involved. We found that VIP enhanced trophoblast cell migration and invasion through the activation of high affinity VPAC receptors and PKA-CRE signalling pathways. VIP knocked-down trophoblast cells showed reduced migration in basal and leukemic inhibitor factor (LIF)-elicited conditions. In parallel, VIP-silenced trophoblast cells failed to induce the phagocytosis of apoptotic bodies and the expression of immunosuppressant markers by human monocytes. Our results suggest that VIP-mediated autocrine pathways regulate trophoblast cell function and contribute to immune homeostasis maintenance at placentation and may provide new clues for therapeutic intervention in pregnancies complicated by defective deep placentation. PMID:27212399

  6. Bradykinin-induced proinflammatory signaling mechanisms.

    PubMed

    Shigematsu, Sakuji; Ishida, Shuji; Gute, Dean C; Korthuis, Ronald J

    2002-12-01

    Intravital microscopic techniques were used to examine the mechanisms underlying bradykinin-induced leukocyte/endothelial cell adhesive interactions (LECA) and venular protein leakage (VPL) in single postcapillary venules of the rat mesentery. The effects of bradykinin superfusion to increase LECA and VPL were prevented by coincident topical application of either a bradykinin-B(2) receptor antagonist, a cell-permeant superoxide dismutase (SOD) mimetic or antioxidant, or inhibitors of cytochrome P-450 epoxygenase (CYPE) or protein kinase C (PKC) but not by concomitant treatment with either SOD, a mast cell stabilizer, or inhibitors of nitric oxide synthase, cyclooxygenase, xanthine oxidase, NADPH oxidase, or platelet-activating factor. Immunoneutralizing P-selectin or intercellular adhesion molecule-1 (ICAM-1) completely prevented bradykinin-induced leukocyte adhesion and emigration but did not affect VPL. On the other hand, stabilization of F-actin with phalloidin prevented bradykinin-induced leukocyte emigration and VPL but did not alter leukocyte adhesion. These data indicate that bradykinin induces LECA in rat mesenteric venules via a B(2)-receptor-initiated, CYPE-, oxidant- and PKC-mediated, P-selectin- and ICAM-1-dependent mechanism. Bradykinin also produced VPL, an effect that was initiated by stimulation of B(2) receptors and involved CYPE and PKC activation, oxidant generation, and cytoskeletal reorganization but was independent of leukocyte adherence and emigration. PMID:12388246

  7. Calcium signaling in UV-induced damage

    NASA Astrophysics Data System (ADS)

    Sun, Dan; Zhang, Su-juan; Li, Yuan-yuan; Qu, Ying; Ren, Zhao-Yu

    2007-05-01

    Hepa1-6 cells were irradiated with UV and incubated for varying periods of time. [Ca 2+] i (intracellular calcium concentration) of UV-irradiated cell was measured by ratio fluorescence imaging system. The comet assay was used to determine DNA damage. During the UVB-irradiation, [Ca 2+] i had an ascending tendency from 0.88 J/m2 to 92.4J/m2. Comet assay instant test indicated that when the irradiation dosage was above 0.88J/m2, DNA damage was observed. Even after approximate 2 h of incubation, DNA damage was still not detected by 0.88J/m2 of UVB irradiation. During UVA-irradiation, the elevation of [Ca 2+] i was not dose-dependent in a range of 1200 J/m2-6000J/m2 and DNA damage was not observed by comet assay. These results suggested that several intracellular UV receptors might induce [Ca 2+] i rising by absorption of the UV energy. Just [Ca 2+] i rising can't induce DNA damage certainly, it is very likely that the breakdown of calcium steady state induces DNA damage.u

  8. Autocrine regulation of ecdysone synthesis by β3-octopamine receptor in the prothoracic gland is essential for Drosophila metamorphosis.

    PubMed

    Ohhara, Yuya; Shimada-Niwa, Yuko; Niwa, Ryusuke; Kayashima, Yasunari; Hayashi, Yoshiki; Akagi, Kazutaka; Ueda, Hitoshi; Yamakawa-Kobayashi, Kimiko; Kobayashi, Satoru

    2015-02-01

    In Drosophila, pulsed production of the steroid hormone ecdysone plays a pivotal role in developmental transitions such as metamorphosis. Ecdysone production is regulated in the prothoracic gland (PG) by prothoracicotropic hormone (PTTH) and insulin-like peptides (Ilps). Here, we show that monoaminergic autocrine regulation of ecdysone biosynthesis in the PG is essential for metamorphosis. PG-specific knockdown of a monoamine G protein-coupled receptor, β3-octopamine receptor (Octβ3R), resulted in arrested metamorphosis due to lack of ecdysone. Knockdown of tyramine biosynthesis genes expressed in the PG caused similar defects in ecdysone production and metamorphosis. Moreover, PTTH and Ilps signaling were impaired by Octβ3R knockdown in the PG, and activation of these signaling pathways rescued the defect in metamorphosis. Thus, monoaminergic autocrine signaling in the PG regulates ecdysone biogenesis in a coordinated fashion on activation by PTTH and Ilps. We propose that monoaminergic autocrine signaling acts downstream of a body size checkpoint that allows metamorphosis to occur when nutrients are sufficiently abundant.

  9. Autocrine regulation of ecdysone synthesis by β3-octopamine receptor in the prothoracic gland is essential for Drosophila metamorphosis

    PubMed Central

    Ohhara, Yuya; Shimada-Niwa, Yuko; Niwa, Ryusuke; Kayashima, Yasunari; Hayashi, Yoshiki; Akagi, Kazutaka; Ueda, Hitoshi; Yamakawa-Kobayashi, Kimiko; Kobayashi, Satoru

    2015-01-01

    In Drosophila, pulsed production of the steroid hormone ecdysone plays a pivotal role in developmental transitions such as metamorphosis. Ecdysone production is regulated in the prothoracic gland (PG) by prothoracicotropic hormone (PTTH) and insulin-like peptides (Ilps). Here, we show that monoaminergic autocrine regulation of ecdysone biosynthesis in the PG is essential for metamorphosis. PG-specific knockdown of a monoamine G protein-coupled receptor, β3-octopamine receptor (Octβ3R), resulted in arrested metamorphosis due to lack of ecdysone. Knockdown of tyramine biosynthesis genes expressed in the PG caused similar defects in ecdysone production and metamorphosis. Moreover, PTTH and Ilps signaling were impaired by Octβ3R knockdown in the PG, and activation of these signaling pathways rescued the defect in metamorphosis. Thus, monoaminergic autocrine signaling in the PG regulates ecdysone biogenesis in a coordinated fashion on activation by PTTH and Ilps. We propose that monoaminergic autocrine signaling acts downstream of a body size checkpoint that allows metamorphosis to occur when nutrients are sufficiently abundant. PMID:25605909

  10. Quantitative Analysis of the EGF Receptor Autocrine System Reveals Cryptic Regulation of Cell Response by Ligand Capture

    SciTech Connect

    Dewitt, Ann E.; Dong, Jian Y.; Wiley, H S.; Lauffenburger, Douglas A.

    2001-06-15

    Autocrine signaling is important in normal tissue physiology as well as pathological conditions. It is difficult to analyze these systems, however, because they are both self-contained and recursive. To understand how parameters, such as ligand production and receptor expression influence autocrine activity, we investigated a human epidermal growth factor/epidermal growth factor receptor (EGF/EGFR) loop engineered into mouse B82 fibroblasts. We varied the level of ligand production using the tet-off expression system and used metalloprotease inhibitors to modulate ligand release. Receptor expression was varied using antagonistic, blocking antibodies. We compared autocrine ligand release to receptor activation using a microphysiometer-based assay and analyzed our data with a quantitative model of ligand release and receptor dynamics. We found that the activity of our autocrine system could be described in terms of a simple ratio between the rate of ligand production (VL) and the rate of receptor production (VR). At a VL/VR ratio of < 0.3, essentially no ligand was found in the extracellular medium, but a significant number cell receptors (30-40%) were occupied. As the VL/VR ratio increased from 0.3 towards unity, receptor occupancy increased, and significant amounts of ligand now appeared in the medium. Above a VL/VR ratio of 1.0, receptor occupancy approached saturation and most of the released ligand was lost into the medium. Analysis of human mammary epithelial cells showed that a VL/VR ratio of < 5 x 10 -4 was sufficient to evoke >20% of a maximal proliferative response. This suggests that natural autocrine systems are active even when no ligand appears in the extracellular medium; i.e., they operate 'invisibly' to general detection.

  11. Properties of light induced EPR signals in enamel and their possible interference with gamma-induced signals

    SciTech Connect

    Shalom, S.V.; Chumak, V.V.; Haskell, E.H.; Hayes, R.B.; Kenner, G.H.

    1996-01-01

    Exposure of enamel to UV light (sunlight and artificial) results in EPR signals with g-factors of 2.0018 (perpendicular),1.9975 (parallel), 2.0045, 20052, and 2.0083. The first two signals correspond to the components of the radiation induced signal and the third signal corresponds to the native signal reported in dosimetry and dating studies. The remaining signals were found to be stable and sensitive to both gamma and sunlight exposure. Their sensitivity response to light and radiation was considerably different which gives rise to the possibility that the g=2.0052 and g=2.0083 signals might be used as indicators of the dose resulting from light exposure.

  12. Acetylcholine is an autocrine or paracrine hormone synthesized and secreted by airway bronchial epithelial cells.

    PubMed

    Proskocil, Becky J; Sekhon, Harmanjatinder S; Jia, Yibing; Savchenko, Valentina; Blakely, Randy D; Lindstrom, Jon; Spindel, Eliot R

    2004-05-01

    The role of acetylcholine (ACh) as a key neurotransmitter in the central and peripheral nervous system is well established. However, the role of ACh may be broader because ACh may also function as an autocrine or paracrine signaling molecule in a variety of nonneuronal tissues. To begin to establish ACh of nonneuronal origin as a paracrine hormone in lung, we have examined neonatal and adult monkey bronchial epithelium for the components involved in nicotinic cholinergic signaling. Using immunohistochemistry and RT-PCR, we have demonstrated in lung bronchial epithelial cells (BECs) expression of choline acetyltransferase, the vesicular ACh transporter, the choline high-affinity transporter, alpha7, alpha4, and beta2 nicotinic ACh receptor (nAChR) subunits, and the nAChR accessory protein lynx1. Confocal microscopy demonstrates that these factors are expressed in epithelial cells and are clearly distinct from neighboring nerve fibers. Confirmation of RNA identity has been confirmed by partial sequence analysis of PCR products and by cDNA cloning. Primary culture of BECs confirms the synthesis and secretion of ACh and the activity of cholinesterases. Thus, ACh meets all the criteria for an autocrine/paracrine hormone in lung bronchial epithelium. The nonneuronal cholinergic signaling pathway in lung provides a potentially important target for cholinergic drugs. This pathway may also explain some of the effects of nicotine on fetal development and also provides additional mechanisms by which smoking affects lung cancer growth and development. PMID:14764638

  13. Autocrine regulation of human urothelial cell proliferation and migration during regenerative responses in vitro

    SciTech Connect

    Varley, Claire; Hill, Gemma; Pellegrin, Stephanie; Shaw, Nicola J.; Selby, Peter J.; Trejdosiewicz, Ludwik K.; Southgate, Jennifer . E-mail: js35@york.ac.uk

    2005-05-15

    Regeneration of the urothelium is rapid and effective in order to maintain a barrier to urine following tissue injury. Whereas normal human urothelial (NHU) cells are mitotically quiescent and G0 arrested in situ, they rapidly enter the cell cycle upon seeding in primary culture and show reversible growth arrest at confluency. We have used this as a model to investigate the role of EGF receptor signaling in urothelial regeneration and wound-healing. Transcripts for HER-1, HER-2, and HER-3 were expressed by quiescent human urothelium in situ. Expression of HER-1 was upregulated in proliferating cultures, whereas HER-2 and HER-3 were more associated with a growth-arrested phenotype. NHU cells could be propagated in the absence of exogenous EGF, but autocrine signaling through HER-1 via the MAPK and PI3-kinase pathways was essential for proliferation and migration during urothelial wound repair. HB-EGF was expressed by urothelium in situ and HB-EGF, epiregulin, TGF-{alpha}, and amphiregulin were expressed by proliferating NHU cells. Urothelial wound repair in vitro was attenuated by neutralizing antibodies against HER-1 ligands, particularly amphiregulin. By contrast, the same ligands applied exogenously promoted migration, but inhibited proliferation, implying that HER-1 ligands provoke differential effects in NHU cells depending upon whether they are presented as soluble or juxtacrine ligands. We conclude that proliferation and migration during wound healing in NHU cells are mediated through an EGFR autocrine signalling loop and our results implicate amphiregulin as a key mediator.

  14. Elevated hepatocyte growth factor expression as an autocrine c-Met activation mechanism in acquired resistance to sorafenib in hepatocellular carcinoma cells.

    PubMed

    Firtina Karagonlar, Zeynep; Koc, Dogukan; Iscan, Evin; Erdal, Esra; Atabey, Neşe

    2016-04-01

    Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and the third leading cause of cancer-related deaths worldwide. Limitations in HCC treatment result due to poor prognosis and resistance against traditional radiotherapy and chemotherapies. The multikinase inhibitor sorafenib is the only FDA approved drug available for advanced HCC patients, and development of second-line treatment options for patients who cannot tolerate or develop resistance to sorafenib is an urgent medical need. In this study, we established sorafenib-resistant cells from Huh7 and Mahlavu cell lines by long-term sorafenib exposure. Sorafenib-resistant HCC cells acquired spindle-shape morphology, upregulated mesenchymal markers, and showed significant increase in both migration and invasion abilities compared to their parental counterparts. Moreover, after long-term sorafenib treatment, HCC cells showed induction of hepatocyte growth factor (HGF) synthesis and secretion along with increased levels of c-Met kinase and its active phosphorylated form, indicating autocrine activation of HGF/c-Met signaling. Importantly, the combined treatment of the resistant cells with c-Met kinase inhibitor SU11274 and HGF neutralizing antibody significantly reversed the increased invasion ability of the cells. The combined treatment also significantly augmented sorafenib-induced apoptosis, suggesting restoration of sorafenib sensitivity. These results describe, for the first time, compensatory upregulation of HGF synthesis leading to autocrine activation of HGF/c-Met signaling as a novel cellular strategy in the acquisition of sorafenib resistance. Therefore, we suggest that combinatorial therapeutic strategies with HGF and c-Met inhibitors comprise promising candidates for overcoming sorafenib resistance. PMID:26790028

  15. Lipopolysaccharide (LPS)-mediated angiopoietin-2-dependent autocrine angiogenesis is regulated by NADPH oxidase 2 (Nox2) in human pulmonary microvascular endothelial cells.

    PubMed

    Menden, Heather; Welak, Scott; Cossette, Stephanie; Ramchandran, Ramani; Sampath, Venkatesh

    2015-02-27

    Sepsis-mediated endothelial Angiopoeitin-2 (Ang2) signaling may contribute to microvascular remodeling in the developing lung. The mechanisms by which bacterial cell wall components such as LPS mediate Ang2 signaling in human pulmonary microvascular endothelial cells (HPMECs) remain understudied. In HPMEC, LPS-induced Ang2, Tie2, and VEGF-A protein expression was preceded by increased superoxide formation. NADPH oxidase 2 (Nox2) inhibition, but not Nox4 or Nox1 inhibition, attenuated LPS-induced superoxide formation and Ang2, Tie2, and VEGF-A expression. Nox2 silencing, but not Nox4 or Nox1 silencing, inhibited LPS-mediated inhibitor of κ-B kinase β (IKKβ) and p38 phosphorylation and nuclear translocation of NF-κB and AP-1. In HPMECs, LPS increased the number of angiogenic tube and network formations in Matrigel by >3-fold. Conditioned media from LPS-treated cells also induced angiogenic tube and network formation in the presence of Toll-like receptor 4 blockade but not in the presence of Ang2 and VEGF blockade. Nox2 inhibition or conditioned media from Nox2-silenced cells attenuated LPS-induced tube and network formation. Ang2 and VEGF-A treatment rescued angiogenesis in Nox2-silenced cells. We propose that Nox2 regulates LPS-mediated Ang2-dependent autocrine angiogenesis in HPMECs through the IKKβ/NF-κB and MAPK/AP-1 pathways. PMID:25568324

  16. Prion protein induced signaling cascades in monocytes

    SciTech Connect

    Krebs, Bjarne; Dorner-Ciossek, Cornelia; Vassallo, Neville; Herms, Jochen; Kretzschmar, Hans A. . E-mail: Hans.Kretzschmar@med.uni-muenchen.de

    2006-02-03

    Prion proteins play a central role in transmission and pathogenesis of transmissible spongiform encephalopathies. The cellular prion protein (PrP{sup C}), whose physiological function remains elusive, is anchored to the surface of a variety of cell types including neurons and cells of the lymphoreticular system. In this study, we investigated the response of a mouse monocyte/macrophage cell line to exposure with PrP{sup C} fusion proteins synthesized with a human Fc-tag. PrP{sup C} fusion proteins showed an attachment to the surface of monocyte/macrophages in nanomolar concentrations. This was accompanied by an increase of cellular tyrosine phosphorylation as a result of activated signaling pathways. Detailed investigations exhibited activation of downstream pathways through a stimulation with PrP fusion proteins, which include phosphorylation of ERK{sub 1,2} and Akt kinase. Macrophages opsonize and present antigenic structures, contact lymphocytes, and deliver cytokines. The findings reported here may become the basis of understanding the molecular function of PrP{sup C} in monocytes and macrophages.

  17. TNF-α Affects Human Cortical Neural Progenitor Cell Differentiation through the Autocrine Secretion of Leukemia Inhibitory Factor

    PubMed Central

    Lan, Xiqian; Chen, Qiang; Wang, Yongxiang; Jia, Beibei; Sun, Lijun; Zheng, Jialin; Peng, Hui

    2012-01-01

    Proinflammatory cytokine tumor necrosis factor-alpha (TNF-α) is a crucial effector of immune responses in the brain that participates in the pathogenesis of several acute and chronic neurodegenerative disorders. Accumulating evidence has suggested that TNF-α negatively regulates embryonic and adult neurogenesis. However, the effect of TNF-α on cell fate decision in human neural progenitor cells (NPCs) has rarely been studied. Our previous studies have shown that recombinant TNF-α enhances astrogliogenesis and inhibits neurogenesis of human NPCs through the STAT3 (signal transducer and activator of transcription 3) pathway. In the current study, we further elucidated the specific mechanism involved in TNF-α-induced astrogliogenesis. We found that TNF-α activated STAT3 at delayed time points (6 h and 24 h), whereas conditioned medium collected from TNF-α-treated NPCs induced an immediate STAT3 activation. These data suggest TNF-α plays an indirect role on STAT3 activation and the subsequent NPC differentiation. Further, we showed that TNF-α induced abundant amounts of the IL-6 family cytokines, including Leukemia inhibitory factor (LIF) and Interleukin 6 (IL-6), in human NPCs. TNF-α-induced STAT3 phosphorylation and astrogliogenesis were abrogated by the addition of neutralizing antibody for LIF, but not for IL-6, revealing a critical role of autocrine secretion of LIF in TNF-α-induced STAT3 activation and astrogliogenesis. This study generates important data elucidating the role of TNF-α in neurogenesis and may provide insight into new therapeutic strategies for brain inflammation. PMID:23236394

  18. Activation of the Canonical Wnt Signaling Pathway Induces Cementum Regeneration.

    PubMed

    Han, Pingping; Ivanovski, Saso; Crawford, Ross; Xiao, Yin

    2015-07-01

    Canonical Wnt signaling is important in tooth development but it is unclear whether it can induce cementogenesis and promote the regeneration of periodontal tissues lost because of disease. Therefore, the aim of this study is to investigate the influence of canonical Wnt signaling enhancers on human periodontal ligament cell (hPDLCs) cementogenic differentiation in vitro and cementum repair in a rat periodontal defect model. Canonical Wnt signaling was induced by (1) local injection of lithium chloride; (2) local injection of sclerostin antibody; and (3) local injection of a lentiviral construct overexpressing β-catenin. The results showed that the local activation of canonical Wnt signaling resulted in significant new cellular cementum deposition and the formation of well-organized periodontal ligament fibers, which was absent in the control group. In vitro experiments using hPDLCs showed that the Wnt signaling pathway activators significantly increased mineralization, alkaline phosphatase (ALP) activity, and gene and protein expression of the bone and cementum markers osteocalcin (OCN), osteopontin (OPN), cementum protein 1 (CEMP1), and cementum attachment protein (CAP). Our results show that the activation of the canonical Wnt signaling pathway can induce in vivo cementum regeneration and in vitro cementogenic differentiation of hPDLCs.

  19. Signaling induced by hop/STI-1 depends on endocytosis

    SciTech Connect

    Americo, Tatiana A.; Chiarini, Luciana B.; Linden, Rafael . E-mail: rlinden@biof.ufrj.br

    2007-06-29

    The co-chaperone hop/STI-1 is a ligand of the cell surface prion protein (PrP{sup C}), and their interaction leads to signaling and biological effects. Among these, hop/STI-1 induces proliferation of A172 glioblastoma cells, dependent on both PrP{sup C} and activation of the Erk pathway. We tested whether clathrin-mediated endocytosis affects signaling induced by hop/STI-1. Both hyperosmolarity induced by sucrose and monodansyl-cadaverine blocked Erk activity induced by hop/STI-1, without affecting the high basal Akt activity typical of A172. The endocytosis inhibitors also affected the sub-cellular distribution of phosphorylated Erk, consistent with blockade of the latter's activity. The data indicate that signaling induced by hop/STI-1 depends on endocytosis. These findings are consistent with a role of sub-cellular trafficking in signal transduction following engagement by PrP{sup C} by ligands such as hop/STI-1, and may help help unravel both the functions of the prion protein, as well as possible loss-of-function components of prion diseases.

  20. Prolactin as an autocrine/paracrine factor in breast tissue.

    PubMed

    Clevenger, C V; Plank, T L

    1997-01-01

    The neuroendocrine hormone prolactin (PRL) stimulates breast growth and differentiation during puberty, pregnancy, and lactation. Despite extensive and convincing data indicating that PRL significantly contributes to the pathogenesis and progression of rodent mammary carcinoma, parallel observations for human breast cancer have not been concordant. In particular, the therapeutic alteration of somatolactogenic hormone levels has not consistently altered the course of human breast cancer. Recent data, however, suggest that extra-pituitary tissues are capable of elaborating PRL; indeed, the observation of sustained serum levels of PRL in post-hypophysectomy patients supports this hypothesis. Proof of an autocrine/paracrine loop for PRL within normal and malignant human breast tissues requires that the following three criteria be met: (1) PRL must be synthesized and secreted within mammary tissues; (2) the receptor for PRL (PRLR) must be present within these tissues; and, (3) proliferative responses to autocrine/paracrine PRL must be demonstrated. These criteria have now been fulfilled in several laboratories. With the demonstration of a PRL autocrine/paracrine loop in mammary glands, the basis for the ineffective treatment of human breast cancer by prior endocrine-based anti-somatolactogenic therapies is evident. These findings provide the precedent for novel therapeutic strategies aimed at interrupting the stimulation of breast cancer growth by PRL at both endocrine and autocrine/paracrine levels.

  1. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    PubMed Central

    Cannonier, Shellese A.; Sterling, Julie A.

    2015-01-01

    Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors. PMID:26343726

  2. Ionizing radiation induces a motile phenotype in human carcinoma cells in vitro through hyperactivation of the TGF-beta signaling pathway.

    PubMed

    Carl, Cedric; Flindt, Anne; Hartmann, Julian; Dahlke, Markus; Rades, Dirk; Dunst, Jürgen; Lehnert, Hendrik; Gieseler, Frank; Ungefroren, Hendrik

    2016-01-01

    Radiotherapy, a major treatment modality against cancer, can lead to secondary malignancies but it is uncertain as to whether tumor cells that survive ionizing radiation (IR) treatment undergo epithelial-mesenchymal transition (EMT) and eventually become invasive or metastatic. Here, we have tested the hypothesis that the application of IR (10 MeV photon beams, 2-20 Gy) to lung and pancreatic carcinoma cells induces a migratory/invasive phenotype in these cells by hyperactivation of TGF-β and/or activin signaling. In accordance with this assumption, IR induced gene expression patterns and migratory responses consistent with an EMT phenotype. Moreover, in A549 cells, IR triggered the synthesis and secretion of both TGF-β1 and activin A as well as activation of intracellular TGF-β/activin signaling as evidenced by Smad phosphorylation and transcriptional activation of a TGF-β-responsive reporter gene. These responses were sensitive to SB431542, an inhibitor of type I receptors for TGF-β and activin. Likewise, specific antibody-mediated neutralization of soluble TGF-β, or dominant-negative inhibition of the TGF-β receptors, but not the activin type I receptor, alleviated IR-induced cell migration. Moreover, the TGF-β-specific approaches also blocked IR-dependent TGF-β1 secretion, Smad phosphorylation, and reporter gene activity, collectively indicating that autocrine production of TGF-β(s) and subsequent activation of TGF-β rather than activin signaling drives these changes. IR strongly sensitized cells to further increase their migration in response to recombinant TGF-β1 and this was accompanied by upregulation of TGF-β receptor expression. Our data raise the possibility that hyperactivation of TGF-β signaling during radiotherapy contributes to EMT-associated changes like metastasis, cancer stem cell formation and chemoresistance of tumor cells.

  3. Regulation of testicular function in the stallion: an intricate network of endocrine, paracrine and autocrine systems.

    PubMed

    Roser, Janet F

    2008-09-01

    It is well established in many mammalian species, including the horse that normal testicular function is dependent upon a functional hypothalamic-pituitary-testicular (HPT) axis, which involves classic feedback mechanisms. The major HPT hormones involved in the stallion are gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone (T), estrogens (Es) and inhibin (INH). Although prolactin (PRL) fluctuates with season in the stallion and both PRL and thyroid hormone (TH) affect reproduction in other male species, their effects on stallion reproduction have not been elucidated. Growth hormone (GH) in the stallion may be involved in sperm motility, production and secretion of insulin-like growth factor-1 (IGF-1) and LH-induced testosterone release. The action of these hormones and the products involved for normal spermatogenesis require cell to cell communication within the testis. The somatic cell types, Leydig, Sertoli and peritubular myoid cells, all support germ cell development, maturation and release into the seminiferous tubule lumen. The cell to cell crosstalk involves an intricate network of paracrine-autocrine systems that support the endocrine input to modulate cell function. In other male species, researchers have demonstrated the reproductive effects of such paracrine-autocrine factors as IGF-1, transferrin, androgens, estrogens, inhibin, insulin like peptide 3 (INSL3), beta-endorphin and oxytocin. The specific nature and relative contribution of these various factors on testicular function in fertile and subfertile stallions are under investigation. This review summarizes current information regarding the nature of the multiple endocrine-paracrine-autocrine systems that may be necessary for normal testicular function in the stallion.

  4. Using Imaging Methods to Interrogate Radiation-Induced Cell Signaling

    SciTech Connect

    Shankaran, Harish; Weber, Thomas J.; Freiin von Neubeck, Claere H.; Sowa, Marianne B.

    2012-04-01

    There is increasing emphasis on the use of systems biology approaches to define radiation induced responses in cells and tissues. Such approaches frequently rely on global screening using various high throughput 'omics' platforms. Although these methods are ideal for obtaining an unbiased overview of cellular responses, they often cannot reflect the inherent heterogeneity of the system or provide detailed spatial information. Additionally, performing such studies with multiple sampling time points can be prohibitively expensive. Imaging provides a complementary method with high spatial and temporal resolution capable of following the dynamics of signaling processes. In this review, we utilize specific examples to illustrate how imaging approaches have furthered our understanding of radiation induced cellular signaling. Particular emphasis is placed on protein co-localization, and oscillatory and transient signaling dynamics.

  5. LIG4 mediates Wnt signalling-induced radioresistance

    PubMed Central

    Jun, Sohee; Jung, Youn-Sang; Suh, Han Na; Wang, Wenqi; Kim, Moon Jong; Oh, Young Sun; Lien, Esther M.; Shen, Xi; Matsumoto, Yoshihisa; McCrea, Pierre D.; Li, Lei; Chen, Junjie; Park, Jae-Il

    2016-01-01

    Despite the implication of Wnt signalling in radioresistance, the underlying mechanisms are unknown. Here we find that high Wnt signalling is associated with radioresistance in colorectal cancer (CRC) cells and intestinal stem cells (ISCs). We find that LIG4, a DNA ligase in DNA double-strand break repair, is a direct target of β-catenin. Wnt signalling enhances non-homologous end-joining repair in CRC, which is mediated by LIG4 transactivated by β-catenin. During radiation-induced intestinal regeneration, LIG4 mainly expressed in the crypts is conditionally upregulated in ISCs, accompanied by Wnt/β-catenin signalling activation. Importantly, among the DNA repair genes, LIG4 is highly upregulated in human CRC cells, in correlation with β-catenin hyperactivation. Furthermore, blocking LIG4 sensitizes CRC cells to radiation. Our results reveal the molecular mechanism of Wnt signalling-induced radioresistance in CRC and ISCs, and further unveils the unexpected convergence between Wnt signalling and DNA repair pathways in tumorigenesis and tissue regeneration. PMID:27009971

  6. LIG4 mediates Wnt signalling-induced radioresistance.

    PubMed

    Jun, Sohee; Jung, Youn-Sang; Suh, Han Na; Wang, Wenqi; Kim, Moon Jong; Oh, Young Sun; Lien, Esther M; Shen, Xi; Matsumoto, Yoshihisa; McCrea, Pierre D; Li, Lei; Chen, Junjie; Park, Jae-Il

    2016-01-01

    Despite the implication of Wnt signalling in radioresistance, the underlying mechanisms are unknown. Here we find that high Wnt signalling is associated with radioresistance in colorectal cancer (CRC) cells and intestinal stem cells (ISCs). We find that LIG4, a DNA ligase in DNA double-strand break repair, is a direct target of β-catenin. Wnt signalling enhances non-homologous end-joining repair in CRC, which is mediated by LIG4 transactivated by β-catenin. During radiation-induced intestinal regeneration, LIG4 mainly expressed in the crypts is conditionally upregulated in ISCs, accompanied by Wnt/β-catenin signalling activation. Importantly, among the DNA repair genes, LIG4 is highly upregulated in human CRC cells, in correlation with β-catenin hyperactivation. Furthermore, blocking LIG4 sensitizes CRC cells to radiation. Our results reveal the molecular mechanism of Wnt signalling-induced radioresistance in CRC and ISCs, and further unveils the unexpected convergence between Wnt signalling and DNA repair pathways in tumorigenesis and tissue regeneration. PMID:27009971

  7. Overcoming low-alignment signal contrast induced alignment failure by alignment signal enhancement

    NASA Astrophysics Data System (ADS)

    Lee, Byeong Soo; Kim, Young Ha; Hwang, Hyunwoo; Lee, Jeongjin; Kong, Jeong Heung; Kang, Young Seog; Paarhuis, Bart; Kok, Haico; de Graaf, Roelof; Weichselbaum, Stefan; Droste, Richard; Mason, Christopher; Aarts, Igor; de Boeij, Wim P.

    2016-03-01

    Overlay is one of the key factors which enables optical lithography extension to 1X node DRAM manufacturing. It is natural that accurate wafer alignment is a prerequisite for good device overlay. However, alignment failures or misalignments are commonly observed in a fab. There are many factors which could induce alignment problems. Low alignment signal contrast is one of the main issues. Alignment signal contrast can be degraded by opaque stack materials or by alignment mark degradation due to processes like CMP. This issue can be compounded by mark sub-segmentation from design rules in combination with double or quadruple spacer process. Alignment signal contrast can be improved by applying new material or process optimization, which sometimes lead to the addition of another process-step with higher costs. If we can amplify the signal components containing the position information and reduce other unwanted signal and background contributions then we can improve alignment performance without process change. In this paper we use ASML's new alignment sensor (as was introduced and released on the NXT:1980Di) and sample wafers with special stacks which can induce poor alignment signal to demonstrate alignment and overlay improvement.

  8. Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men

    PubMed Central

    O’Hara, Laura; McInnes, Kerry; Simitsidellis, Ioannis; Morgan, Stephanie; Atanassova, Nina; Slowikowska-Hilczer, Jolanta; Kula, Krzysztof; Szarras-Czapnik, Maria; Milne, Laura; Mitchell, Rod T.; Smith, Lee B.

    2015-01-01

    Leydig cell number and function decline as men age, and low testosterone is associated with all “Western” cardio-metabolic disorders. However, whether perturbed androgen action within the adult Leydig cell lineage predisposes individuals to this late-onset degeneration remains unknown. To address this, we generated a novel mouse model in which androgen receptor (AR) is ablated from ∼75% of adult Leydig stem cell/cell progenitors, from fetal life onward (Leydig cell AR knockout mice), permitting interrogation of the specific roles of autocrine Leydig cell AR signaling through comparison to adjacent AR-retaining Leydig cells, testes from littermate controls, and to human testes, including from patients with complete androgen insensitivity syndrome (CAIS). This revealed that autocrine AR signaling is dispensable for the attainment of final Leydig cell number but is essential for Leydig cell maturation and regulation of steroidogenic enzymes in adulthood. Furthermore, these studies reveal that autocrine AR signaling in Leydig cells protects against late-onset degeneration of the seminiferous epithelium in mice and inhibits Leydig cell apoptosis in both adult mice and patients with CAIS, possibly via opposing aberrant estrogen signaling. We conclude that autocrine androgen action within Leydig cells is essential for the lifelong support of spermatogenesis and the development and lifelong health of Leydig cells.—O’Hara, L., McInnes, K., Simitsidellis, I., Morgan, S., Atanassova, N., Slowikowska-Hilczer, J., Kula, K., Szarras-Czapnik, M., Milne, L., Mitchell, R. T., Smith, L. B. Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men. PMID:25404712

  9. Transforming growth factor-beta1-induced activation of the Raf-MEK-MAPK signaling pathway in rat lung fibroblasts via a PKC-dependent mechanism.

    PubMed

    Axmann, A; Seidel, D; Reimann, T; Hempel, U; Wenzel, K W

    1998-08-19

    In fibroblasts transforming growth factor-beta1 (TGF-beta1) regulates cell proliferation and turnover of macromolecular components of the extracellular matrix. Here, intracellular signaling events in growth-inhibited embryonic rat lung fibroblasts (RFL-6) upon stimulation with TGF-beta1 were investigated. TGF-beta1 rapidly induced the activation of c-Raf-1, MEK-1, and MAPK p42 and p44. The activation of this pathway by TGF-beta1 did not depend on autocrine platelet-derived growth factor (PDGF) or basic fibroblast growth factor (bFGF). Inhibition of the binding of growth factors to their tyrosine kinase receptors did not affect MAPK activation by TGF-beta1. Ras activation by TGF-beta1 was significantly lower compared to the activation by PDGF or bFGF. The intracellular transduction of the TGF-beta1 signal was completely suppressed by depletion or inhibition of protein kinase C (PKC). It is shown that calcium-dependent isoforms of PKC are required for MAPK activation by TGF-beta1. PMID:9712718

  10. Morphine dependence and withdrawal induced changes in cholinergic signaling

    PubMed Central

    Neugebauer, Nichole M.; Einstein, Emily B.; Lopez, Maria B.; McClure-Begley, Tristan D.; Mineur, Yann S.; Picciotto, Marina R.

    2013-01-01

    Cholinergic signaling is thought to be involved in morphine dependence and withdrawal, but the specific mechanisms involved remain unclear. The current study aimed to identify alterations in the cholinergic system that may contribute to the development of morphine dependence and withdrawal. Acetylcholinesterase (AChE) activity and [3H]-epibatidine binding were evaluated in order to determine if morphine dependence and withdrawal induces alterations in cholinergic signaling or expression of high affinity nicotinic acetylcholine receptors (nAChRs) in the midbrain (MB), medial habenula (MHb) and interpeduncular nucleus (IPN). The effect of cholinergic signaling through nAChRs on morphine-withdrawal induced jumping behavior was then determined. Lastly, the contribution of β4-containing nAChRs receptors in the MHb to morphine-withdrawal induced jumping behavior and neuronal activity as indicated by c-fos expression was assessed. Chronic morphine administration decreased AChE activity in MB and MHb, an effect that was no longer present following precipitated withdrawal. Morphine dependent mice showed increased nicotinic acetylcholine receptor (nAChR) levels in MB. Further, nicotine (0.4 mg/kg) and lobeline (3 mg/kg) decreased jumping behavior while mecamylamine (1 mg/kg) had no effect. Knock-down of β4 subunit-containing nAChRs in the MHb attenuated c-fos activation, but did not decrease morphine withdrawal-induced jumping. Thus, morphine withdrawal induces cholinergic signaling in the MHb, but this does not appear to be responsible for the effects of cholinergic drugs on somatic signs of opiate withdrawal, as measured by jumping behavior. PMID:23651795

  11. Autocrine growth factors for human tumor clonogenic cells.

    PubMed

    Hamburger, A W; White, C P

    1985-11-01

    A human epithelial-derived cell line, SW-13, releases a soluble substance that functions as an autocrine growth factor. SW-13 cells, derived from a human adenocarcinoma of the adrenal cortex, form a few small colonies when suspended in soft agar at low densities. The number of colonies increased significantly when either viable SW-13 cells or serum-free medium conditioned by SW-13 cells (CM) was added to agar underlayers. CM increased colony formation in a dose-dependent fashion. Clonal growth at low cell densities was dependent on the presence of both horse serum and SW-13 CM. Neither activity alone was capable of sustaining growth. Even when cells were plated at high densities CM could not substitute for serum, but could reduce the threshold serum concentration. The results suggest that autocrine and serum-derived factors act in concert to maintain clonal growth of epithelial tumor cells in soft agar.

  12. FGF signaling induces mesoderm in the hemichordate Saccoglossus kowalevskii.

    PubMed

    Green, Stephen A; Norris, Rachael P; Terasaki, Mark; Lowe, Christopher J

    2013-03-01

    FGFs act in vertebrate mesoderm induction and also play key roles in early mesoderm formation in ascidians and amphioxus. However, in sea urchins initial characterizations of FGF function do not support a role in early mesoderm induction, making the ancestral roles of FGF signaling and mechanisms of mesoderm specification in deuterostomes unclear. In order to better characterize the evolution of mesoderm formation, we have examined the role of FGF signaling during mesoderm development in Saccoglossus kowalevskii, an experimentally tractable representative of hemichordates. We report the expression of an FGF ligand, fgf8/17/18, in ectoderm overlying sites of mesoderm specification within the archenteron endomesoderm. Embryological experiments demonstrate that mesoderm induction in the archenteron requires contact with ectoderm, and loss-of-function experiments indicate that both FGF ligand and receptor are necessary for mesoderm specification. fgf8/17/18 gain-of-function experiments establish that FGF8/17/18 is sufficient to induce mesoderm in adjacent endomesoderm. These experiments suggest that FGF signaling is necessary from the earliest stages of mesoderm specification and is required for all mesoderm development. Furthermore, they suggest that the archenteron is competent to form mesoderm or endoderm, and that FGF signaling from the ectoderm defines the location and amount of mesoderm. When considered in a comparative context, these data support a phylogenetically broad requirement for FGF8/17/18 signaling in mesoderm specification and suggest that FGF signaling played an ancestral role in deuterostome mesoderm formation.

  13. FGF signaling induces mesoderm in the hemichordate Saccoglossus kowalevskii

    PubMed Central

    Green, Stephen A.; Norris, Rachael P.; Terasaki, Mark; Lowe, Christopher J.

    2013-01-01

    FGFs act in vertebrate mesoderm induction and also play key roles in early mesoderm formation in ascidians and amphioxus. However, in sea urchins initial characterizations of FGF function do not support a role in early mesoderm induction, making the ancestral roles of FGF signaling and mechanisms of mesoderm specification in deuterostomes unclear. In order to better characterize the evolution of mesoderm formation, we have examined the role of FGF signaling during mesoderm development in Saccoglossus kowalevskii, an experimentally tractable representative of hemichordates. We report the expression of an FGF ligand, fgf8/17/18, in ectoderm overlying sites of mesoderm specification within the archenteron endomesoderm. Embryological experiments demonstrate that mesoderm induction in the archenteron requires contact with ectoderm, and loss-of-function experiments indicate that both FGF ligand and receptor are necessary for mesoderm specification. fgf8/17/18 gain-of-function experiments establish that FGF8/17/18 is sufficient to induce mesoderm in adjacent endomesoderm. These experiments suggest that FGF signaling is necessary from the earliest stages of mesoderm specification and is required for all mesoderm development. Furthermore, they suggest that the archenteron is competent to form mesoderm or endoderm, and that FGF signaling from the ectoderm defines the location and amount of mesoderm. When considered in a comparative context, these data support a phylogenetically broad requirement for FGF8/17/18 signaling in mesoderm specification and suggest that FGF signaling played an ancestral role in deuterostome mesoderm formation. PMID:23344709

  14. Pneumococcal hydrogen peroxide-induced stress signaling regulates inflammatory genes.

    PubMed

    Loose, Maria; Hudel, Martina; Zimmer, Klaus-Peter; Garcia, Ernesto; Hammerschmidt, Sven; Lucas, Rudolf; Chakraborty, Trinad; Pillich, Helena

    2015-01-15

    Microbial infections can induce aberrant responses in cellular stress pathways, leading to translational attenuation, metabolic restriction, and activation of oxidative stress, with detrimental effects on cell survival. Here we show that infection of human airway epithelial cells with Streptococcus pneumoniae leads to induction of endoplasmic reticulum (ER) and oxidative stress, activation of mitogen-associated protein kinase (MAPK) signaling pathways, and regulation of their respective target genes. We identify pneumococcal H2O2 as the causative agent for these responses, as both catalase-treated and pyruvate oxidase-deficient bacteria lacked these activities. Pneumococcal H2O2 induced nuclear NF-κB translocation and transcription of proinflammatory cytokines. Inhibition of translational arrest and ER stress by salubrinal or of MAPK signaling pathways attenuate cytokine transcription. These results provide strong evidence for the notion that inhibition of translation is an important host pathway in monitoring harmful pathogen-associated activities, thereby enabling differentiation between pathogenic and nonpathogenic bacteria. PMID:25183769

  15. PI3K signaling supports amphetamine-induced dopamine efflux.

    PubMed

    Lute, Brandon J; Khoshbouei, Habibeh; Saunders, Christine; Sen, Namita; Lin, Richard Z; Javitch, Jonathan A; Galli, Aurelio

    2008-08-01

    The dopamine (DA) transporter (DAT) is a major molecular target of the psychostimulant amphetamine (AMPH). AMPH, as a result of its ability to reverse DAT-mediated inward transport of DA, induces DA efflux thereby increasing extracellular DA levels. This increase is thought to underlie the behavioral effects of AMPH. We have demonstrated previously that insulin, through phosphatidylinositol 3-kinase (PI3K) signaling, regulates DA clearance by fine-tuning DAT plasma membrane expression. PI3K signaling may represent a novel mechanism for regulating DA efflux evoked by AMPH, since only active DAT at the plasma membrane can efflux DA. Here, we show in both a heterologous expression system and DA neurons that inhibition of PI3K decreases DAT cell surface expression and, as a consequence, AMPH-induced DA efflux.

  16. Optical communication system performance with tracking error induced signal fading.

    NASA Technical Reports Server (NTRS)

    Tycz, M.; Fitzmaurice, M. W.; Premo, D. A.

    1973-01-01

    System performance is determined for an optical communication system using noncoherent detection in the presence of tracking error induced signal fading assuming (1) binary on-off modulation (OOK) with both fixed and adaptive threshold receivers, and (2) binary polarization modulation (BPM). BPM is shown to maintain its inherent 2- to 3-dB advantage over OOK when adaptive thresholding is used, and to have a substantially greater advantage when the OOK system is restricted to a fixed decision threshold.

  17. Autocrine regulation of biliary pathology by activated cholangiocytes

    PubMed Central

    Jensen, Kendal; Marzioni, Marco; Munshi, Kamruzzaman; Afroze, Syeda

    2012-01-01

    The bile duct system of the liver is lined by epithelial cells (i.e., cholangiocytes) that respond to a large number of neuroendocrine factors through alterations in their proliferative activities and the subsequent modification of the microenvironment. As such, activation of biliary proliferation compensates for the loss of cholangiocytes due to apoptosis and slows the progression of toxic injury and cholestasis. Over the course of the last three decades, much progress has been made in identifying the factors that trigger the biliary epithelium to remodel and grow. Because a large number of autocrine factors have recently been identified as relevant clinical targets, a compiled review of their contributions and function in cholestatic liver diseases would be beneficial. In this context, it is important to define the specific processes triggered by autocrine factors that promote cholangiocytes to proliferate, activate neighboring cells, and ultimately lead to extracellular matrix deposition. In this review, we discuss the role of each of the known autocrine factors with particular emphasis on proliferation and fibrogenesis. Because many of these molecules interact with one another throughout the progression of liver fibrosis, a model speculating their involvement in the progression of cholestatic liver disease is also presented. PMID:22194419

  18. Insulin-like growth factor-binding protein-3 inhibits IGF-1-induced proliferation of human hepatocellular carcinoma cells by controlling bFGF and PDGF autocrine/paracrine loops.

    PubMed

    Ma, Yang; Han, Chen-Chen; Li, Yifan; Wang, Yang; Wei, Wei

    2016-09-16

    Basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) produced by hepatocellular carcinoma (HCC) cells are responsible for the growth of HCC cells. Accumulating evidence shows that insulin-like growth factor-binding protein-3 (IGFBP-3) suppresses HCC cell proliferation in both IGF-dependent and independent manners. It's unknown, however, whether treatment with exogenous IGFBP-3 inhibits bFGF and PDGF production in HCC cells. The present study demonstrates that IGFBP-3 suppressed IGF-1-induced bFGF and PDGF expression while it does not affect their expression in the absence of IGF-1. To delineate the underlying mechanism, western-blot and RT-PCR assays confirmed that the transcription factor early growth response protein 1 (EGR1) is involved in IGFBP-3 regulation of bFGF and PDGF. IGFBP-3 inhibition of type 1 insulin-like growth factor receptor (IGF1R), ERK and AKT activation is IGF-1-dependent. Furthermore, transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1, bFGF and PDGF expression. In conclusion, these findings suggest that IGFBP-3 suppresses transcription of EGR1 and its target genes bFGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation. It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation, suggesting that IGFBP-3 could be a target for the treatment of HCC. PMID:27521890

  19. Expression of GADS enhances FLT3-induced mitogenic signaling

    PubMed Central

    Chougule, Rohit A.; Cordero, Eugenia; Moharram, Sausan A.; Pietras, Kristian; Rönnstrand, Lars; Kazi, Julhash U.

    2016-01-01

    GADS is a member of a family of SH2 and SH3 domain-containing adaptors that functions in tyrosine kinase-mediated signaling cascades. Its expression is largely restricted to hematopoietic tissues and cell lines. Therefore, GADS is mainly involved in leukocyte-specific protein tyrosine kinase signaling. GADS is known to interact with tyrosine-phosphorylated SHC, BCR-ABL and KIT. The SH2 domain of GADS has a similar binding specificity to that of GRB2 but its SH3 domain displays a different binding specificity, and thus it is involved in other downstream signaling pathways than GRB2. In the present study, we examined the role of GADS in FLT3 signaling. FLT3 is a type III receptor tyrosine kinase, which is mutated in more than 30% of acute myeloid leukemia (AML) and the most common mutations is the internal tandem duplication (ITD) mutations. We observed that expression of GADS enhanced oncogenic FLT3-ITD-induced cell proliferation and colony formation in vitro. In a mouse xenograft model, GADS accelerated FLT3-ITD-dependent tumor formation. Furthermore, expression of GADS induced a transcriptional program leading to upregulation of MYC and mTORC1 target genes. GADS localizes to the cell membrane and strongly binds to ligand-stimulated wild-type FLT3 or is constitutively associated with the oncogenic mutant FLT3-ITD. We mapped the binding sites in FLT3 to pY955 and pY969 which overlaps with the GRB2 binding sites. Expression of GADS enhanced FLT3-mediated phosphorylation of AKT, ERK1/2, p38 and STAT5. Taken together, our data suggests that GADS is an important downstream component of FLT3 signaling and expression of GADS potentiates FLT3-mediated mitogenic signaling. PMID:26895103

  20. Constitutive and ligand-induced EGFR signaling triggers distinct and mutually exclusive downstream signaling networks

    PubMed Central

    Chakraborty, Sharmistha; Li, Li; Puliyappadamba, VineshkumarThidil; Guo, Gao; Hatanpaa, Kimmo J.; Mickey, Bruce; Souza, Rhonda F.; Vo, Peggy; Herz, Joachim; Chen, Mei-Ru; Boothman, David A.; Pandita, Tej K.; Wang, David H.; Sen, Ganes C.; Habib, Amyn A.

    2014-01-01

    EGFR overexpression plays an important oncogenic role in cancer. Regular EGFR protein levels are increased in cancer cells and the receptor then becomes constitutively active. However, downstream signals generated by constitutively activated EGFR are unknown. Here we report that the overexpressed EGFR oscillates between two distinct and mutually exclusive modes of signaling. Constitutive or non-canonical EGFR signaling activates the transcription factor IRF3 leading to expression of IFI27, IFIT1, and TRAIL. Ligand-mediated activation of EGFR switches off IRF3 dependent transcription, activates canonical ERK and Akt signals, and confers sensitivity to chemotherapy and virus-induced cell death. Mechanistically, the distinct downstream signals result from a switch of EGFR associated proteins. EGFR constitutively complexes with IRF3 and TBK1 leading to TBK1 and IRF3 phosphorylation. Addition of EGF dissociates TBK1, IRF3, and EGFR leading to a loss of IRF3 activity, Shc-EGFR association and ERK activation. Finally, we provide evidence for non-canonical EGFR signaling in glioblastoma. PMID:25503978

  1. Interleukin-6/Soluble Interleukin-6 Receptor Signaling Attenuates Proliferation and Invasion, and Induces Morphological Changes of a Newly Established Pleomorphic Malignant Fibrous Histiocytoma Cell Line

    PubMed Central

    Nakanishi, Hirofumi; Yoshioka, Kiyoko; Joyama, Susumu; Araki, Nobuhito; Myoui, Akira; Ishiguro, Shingo; Ueda, Takafumi; Yoshikawa, Hideki; Itoh, Kazuyuki

    2004-01-01

    Pleomorphic malignant fibrous histiocytoma (MFH) is occasionally associated with inflammatory paraneoplastic syndrome (PNS). Recently, we reported that interleukin (IL)-6, one of the candidate cytokines, which induces such systemic inflammatory reaction, may be a tumor-associated factor involved in the pathogenesis and its clinical manifestations of MFH. In the local microenvironment, tumor-induced inflammatory reaction may play a role favoring tumor progression. To clarify the biological relevance of IL-6 in MFH, we established a human MFH cell line, named MIPS-2, derived from a resected specimen of a patient presenting with PNS. In this patient, the serum IL-6 level ran parallel to the disease course: elevated serum IL-6 concentration normalized immediately after radical surgery, and re-elevation occurred on tumor recurrence. MIPS-2 presented pleomorphic appearance, severe nuclear abnormalities with prominent nucleoli, and tumorigenesis in nude mice. MIPS-2 expressed IL-6, IL-6 receptor (IL-6R), and glycoprotein 130 (gp130) but lacked the soluble form of IL-6R (sIL-6R), as determined by flow cytometry and reverse transcriptase-polymerase chain reaction analyses. Stimulation of MIPS-2 with IL-6 combined with exogenous sIL-6R induced phosphorylation of both signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase (MAPK), decreased cell proliferation, attenuated invasion, and induced morphological changes. Collectively, these data suggested that the IL-6/sIL-6R signaling pathway plays a pivotal role for proliferation, invasion, and morphology of MFH via STAT3 and MAPK pathway as autocrine and/or paracrine manner, and proposed the therapeutic potential for the use of both anti-growth factor and proinflammatory cytokine-targeting strategies to combat devastating MFH. PMID:15277221

  2. The autonomous growth of human papillomavirus type 16-immortalized keratinocytes is related to the endothelin-1 autocrine loop.

    PubMed

    Venuti, A; Marcante, M L; Flamini, S; Di Castro, V; Bagnato, A

    1997-09-01

    Some human papillomaviruses (HPVs) such as HPV type 16 (HPV16) and HPV18 are involved in cervical carcinoma, and they can immortalize and transform keratinocytes. Endothelin-1 (ET-1) is produced in keratinocytes and has been shown to act through ETA receptors as an autocrine growth factor for keratinocytes. This study examines whether HPV16 alters the ET-1-mediated autocrine loop in human keratinocytes, providing a selective growth advantage for transformed cells. ET-1 is released in similar amounts from normal and HPV-transfected keratinocytes. All HPV-transfected cell lines express high-affinity ETA receptors. A two-fold increase in ET-1 binding sites is present in HPV16-immortalized keratinocytes, and this effect seems to be linked to the overexpression of mRNA for this receptor rather than to differences in the surface/internalized ratio of the receptors. ET-1 induces significant increases in [3H]thymidine incorporation and cell proliferation. Furthermore, HPV-transfected keratinocytes can proliferate in the absence of any growth factor added to the growth medium, and the ETA receptor antagonist BQ123 prevents this proliferation. These data suggest a new mechanism in the growth control of HPV-transformed cells mediated by the upregulation of ET-1 autocrine loop.

  3. FMRFamide signaling promotes stress-induced sleep in Drosophila.

    PubMed

    Lenz, Olivia; Xiong, Jianmei; Nelson, Matthew D; Raizen, David M; Williams, Julie A

    2015-07-01

    Enhanced sleep in response to cellular stress is a conserved adaptive behavior across multiple species, but the mechanism of this process is poorly understood. Drosophila melanogaster increases sleep following exposure to septic or aseptic injury, and Caenorhabditis elegans displays sleep-like quiescence following exposure to high temperatures that stress cells. We show here that, similar to C. elegans, Drosophila responds to heat stress with an increase in sleep. In contrast to Drosophila infection-induced sleep, heat-induced sleep is not sensitive to the time-of-day of the heat pulse. Moreover, the sleep response to heat stress does not require Relish, the NFκB transcription factor that is necessary for infection-induced sleep, indicating that sleep is induced by multiple mechanisms from different stress modalities. We identify a sleep-regulating role for a signaling pathway involving FMRFamide neuropeptides and their receptor FR. Animals mutant for either FMRFamide or for the FMRFamide receptor (FR) have a reduced recovery sleep in response to heat stress. FR mutants, in addition, show reduced sleep responses following infection with Serratia marcescens, and succumb to infection at a faster rate than wild-type controls. Together, these findings support the hypothesis that FMRFamide and its receptor promote an adaptive increase in sleep following stress. Because an FMRFamide-like neuropeptide plays a similar role in C. elegans, we propose that FRMFamide neuropeptide signaling is an ancient regulator of recovery sleep which occurs in response to cellular stress.

  4. FMRFamide signaling promotes stress-induced sleep in Drosophila

    PubMed Central

    Lenz, Olivia; Xiong, Jianmei; Nelson, Matthew D.; Raizen, David M.; Williams, Julie A.

    2015-01-01

    Enhanced sleep in response to cellular stress is a conserved adaptive behavior across multiple species, but the mechanism of this process is poorly understood. Drosophila melanogaster increases sleep following exposure to septic or aseptic injury, and Caenorhabditis elegans displays sleep-like quiescence following exposure to high temperatures that stress cells. We show here that, similar to C. elegans, Drosophila responds to heat stress with an increase in sleep. In contrast to Drosophila infection-induced sleep, heat-induced sleep is not sensitive to the time-of-day of the heat pulse. Moreover, the sleep response to heat stress does not require Relish, the NFκB transcription factor that is necessary for infection-induced sleep, indicating that sleep is induced by multiple mechanisms from different stress modalities. We identify a sleep-regulating role for a signaling pathway involving FMRFamide neuropeptides and their receptor FR. Animals mutant for either FMRFamide or for the FMRFamide receptor (FR) have a reduced recovery sleep in response to heat stress. FR mutants, in addition, show reduced sleep responses following infection with Serratia marcescens, and succumb to infection at a faster rate than wild-type controls. Together, these findings support the hypothesis that FMRFamide and its receptor promote an adaptive increase in sleep following stress. Because an FMRFamide-like neuropeptide plays a similar role in C. elegans, we propose that FRMFamide neuropeptide signaling is an ancient regulator of recovery sleep which occurs in response to cellular stress. PMID:25668617

  5. Leptin-Induced JAK/STAT Signaling and Cancer Growth

    PubMed Central

    Mullen, McKay; Gonzalez-Perez, Ruben Rene

    2016-01-01

    Growth factor and cytokine signaling can influence the development of several cancer types. One of the key players in the development of cancer is the Janus kinas (JAK) signal transducer of activators of transcription (STAT) signaling pathway. The majority of growth factors and cytokine interactions with their membrane-bound receptors trigger JAK-STAT activation. The influential relationship between obesity and cancer is a fact. However, there is a complex sequence of events contributing to the regulation of this mechanism to promote tumor growth, yet to be fully elucidated. The JAK-STAT pathway is influenced by obesity-associated changes that have been shown to impact cancer growth and progression. This intricate process is highly regulated by a vast array of adipokines and cytokines that exert their pleiotropic effects on cancer cells to enhance metastasis to distant target sites. Leptin is a cytokine, or more precise, an adipokine secreted mainly by adipose tissue that requires JAK-STAT activation to exert its biological functions. Leptin is the central regulator of energy balance and appetite. Leptin binding to its receptor OB-R in turn activates JAK-STAT, which induces proliferation, angiogenesis, and anti-apoptotic events in normal cells and malignant cells expressing the receptor. Leptin also induces crosstalk with Notch and IL-1 (NILCO), which involves other angiogenic factors promoting tumor growth. Therefore, the existence of multiple novel classes of therapeutics that target the JAK/STAT pathway has significant clinical implications. Then, the identification of the signaling networks and factors that regulate the obesity-cancer link to which potential pharmacologic interventions can be implemented to inhibit tumor growth and metastasis. In this review, we will discuss the specific relationship between leptin-JAK-STAT signaling and cancer. PMID:27472371

  6. Signaling factors and pathways of α-particle irradiation induced bilateral bystander responses between Beas-2B and U937 cells.

    PubMed

    Fu, Jiamei; Wang, Juan; Wang, Xiangdong; Wang, Ping; Xu, Jinping; Zhou, Cuiping; Bai, Yang; Shao, Chunlin

    2016-07-01

    Although radiation induced bystander effects (RIBE) have been investigated for decades for their potential health risk, the underlying gene regulation is still largely unclear, especially the roles of immune system and inflammatory response in RIBE. In the present study, macrophage U937 cells and epithelial Beas-2B cells were co-cultured to disclose the cascades of bystander signaling factors and intercellular communications. After α-particle irradiation, both ERK and p38 pathways were activated in Beas-2B cells and were associated with the autocrine and paracrine signaling of TNF-α and IL-8, resulting in direct damage to the irradiated cells. Similar upregulation of TNF-α and IL-8 was induced in the bystander U937 cells after co-culture with α-irradiated Beas-2B cells. This upregulation was dependent on the activation of NF-κB pathway and was responsible for the enhanced damage of α-irradiated Beas-2B cells. Interestingly, the increased expressions of TNF-α and IL-8 mRNAs in the bystander U937 cells were clearly relayed on the activated ERK and p38 pathways in the irradiated Beas-2B cells, and the upregulation of TNF-α and IL-8 mRNAs in co-cultured Beas-2B cells was also partly due to the activated NF-κB pathway in the bystander U937 cells. With the pretreatment of U0126 (MEK1/2 inhibitor), SB203580 (p38 inhibitor) or BAY 11-7082 (NF-κB inhibitor), the aggravated damage in the α-irradiated Beas-2B cells could be largely alleviated. Our results disclosed novel signaling cascades of macrophage-mediated bilateral bystander responses that the release of TNF-α and IL-8 regulated by MAPK and NF-κB pathways synergistically increased cellular injury after α-particle irradiation. PMID:27155559

  7. Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling

    SciTech Connect

    Lovelace, Erica S.; Wagoner, Jessica; MacDonald, James; Bammler, Theo; Bruckner, Jacob; Brownell, Jessica; Beyer, Richard; Zink, Erika M.; Kim, Young-Mo; Kyle, Jennifer E.; Webb-Robertson, Bobbie-Jo M.; Waters, Katrina M.; Metz, Thomas O.; Farin, Federico; Oberlies, Nicholas H.; Polyak, Steve

    2015-08-28

    Silymarin (SM), a natural product, is touted as a liver protectant and preventer of both chronic inflammation and diseases. To define how SM elicits these effects at a systems level, we performed transcriptional profiling, metabolomics, and signaling studies in human liver and T cell lines. Multiple pathways associated with cellular stress and metabolism were modulated by SM treatment within 0.5 to four hours: activation of Activating Transcription Factor 4 (ATF-4) and adenosine monophosphate protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) signaling, the latter being associated with induction of DNA-damage-inducible transcript 4 (DDIT4). Metabolomics analyses revealed suppression of glycolytic, TCA cycle, and amino acid metabolism by SM treatment. Antiinflammatory effects arose with prolonged (i.e. 24 hours) SM exposure, with suppression of multiple proinflammatory mRNAs and nuclear factor kappa B (NF-κB) and forkhead box O (FOXO) signaling. Studies with murine knock out cells revealed that SM inhibition of both mTOR and NF-κB was partially AMPK dependent, while SM inhibition of the mTOR pathway in part required DDIT4. Thus, SM activates stress and repair responses that culminate in an anti-inflammatory phenotype. Other natural products induced similar stress responses, which correlated with their ability to suppress inflammation. Therefore, natural products like SM may be useful as tools to define how metabolic, stress, and repair pathways regulate cellular inflammation.

  8. Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling

    PubMed Central

    Lovelace, Erica S.; Wagoner, Jessica; MacDonald, James; Bammler, Theo; Bruckner, Jacob; Brownell, Jessica; Beyer, Richard; Zink, Erika M.; Kim, Young-Mo; Kyle, Jennifer E.; Webb-Robertson, Bobbie-Jo; Waters, Katrina M.; Metz, Thomas O.; Farin, Federico; Oberlies, Nicholas H.; Polyak, Stephen J.

    2016-01-01

    Silymarin, a characterized extract of the seeds of milk thistle (Silybum marianum), suppresses cellular inflammation. To define how this occurs, transcriptional profiling, metabolomics, and signaling studies were performed in human liver and T cell lines. Cellular stress and metabolic pathways were modulated within 4 h of silymarin treatment: activation of Activating Transcription Factor 4 (ATF-4) and adenosine monophosphate protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) signaling, the latter being associated with induction of DNA-damage-inducible transcript 4 (DDIT4). Metabolomics analyses revealed silymarin suppression of glycolytic, tricarboxylic acid (TCA) cycle, and amino acid metabolism. Anti-inflammatory effects arose with prolonged (i.e. 24 h) silymarin exposure, with suppression of multiple pro-inflammatory mRNAs and signaling pathways including nuclear factor kappa B (NF-κB) and forkhead box O (FOXO). Studies with murine knock out cells revealed that silymarin inhibition of both mTOR and NF-κB was partially AMPK dependent, while silymarin inhibition of mTOR required DDIT4. Other natural products induced similar stress responses, which correlated with their ability to suppress inflammation. Thus, natural products activate stress and repair responses that culminate in an anti-inflammatory cellular phenotype. Natural products like silymarin may be useful as tools to define how metabolic, stress, and repair pathways regulate cellular inflammation. PMID:26186142

  9. Identification and targeting of a TACE-dependent autocrine loopwhich predicts poor prognosis in breast cancer

    SciTech Connect

    Kenny, Paraic A.; Bissell, Mina J.

    2005-06-15

    The ability to proliferate independently of signals from other cell types is a fundamental characteristic of tumor cells. Using a 3D culture model of human breast cancer progression, we have delineated a protease-dependent autocrine loop which provides an oncogenic stimulus in the absence of proto-oncogene mutation. Inhibition of this protease, TACE/ADAM17, reverts the malignant phenotype by preventing mobilization of two crucial growth factors, Amphiregulin and TGF{alpha}. We show further that the efficacy of EGFR inhibitors is overcome by physiological levels of growth factors and that successful EGFR inhibition is dependent on reducing ligand bioavailability. Using existing patient outcome data, we demonstrate a strong correlation between TACE and TGF{alpha} expression in human breast cancers that is predictive of poor prognosis.

  10. Loss of apical monocilia on collecting duct principal cells impairs ATP secretion across the apical cell surface and ATP-dependent and flow-induced calcium signals.

    PubMed

    Hovater, Michael B; Olteanu, Dragos; Hanson, Elizabeth L; Cheng, Nai-Lin; Siroky, Brian; Fintha, Attila; Komlosi, Peter; Liu, Wen; Satlin, Lisa M; Bell, P Darwin; Yoder, Bradley K; Schwiebert, Erik M

    2008-06-01

    mechanical pipetting stimuli trigger release of a common ATP pool. Cilium-competent monolayers responded to flow with an increase in cell Ca(2+) derived from both extracellular and intracellular stores. This flow-induced Ca(2+) signal was less robust in cilium-deficient monolayers. Flow-induced Ca(2+) signals in both preparations were attenuated by extracellular gadolinium and by extracellular apyrase, an ATPase/ADPase. Taken together, these data suggest that apical monocilia are sensory organelles and that their presence in the apical membrane facilitates the formation of a mature ATP secretion apparatus responsive to chemical, osmotic, and mechanical stimuli. The cilium and autocrine ATP signaling appear to work in concert to control cell Ca(2+). Loss of a cilium-dedicated autocrine purinergic signaling system may be a critical underlying etiology for ARPKD and may lead to disinhibition and/or upregulation of multiple sodium (Na(+)) absorptive mechanisms and a resultant severe hypertensive phenotype in ARPKD and, possibly, other diseases. PMID:18368523

  11. Autocrine/Paracrine Human Growth Hormone-stimulated MicroRNA 96-182-183 Cluster Promotes Epithelial-Mesenchymal Transition and Invasion in Breast Cancer*

    PubMed Central

    Zhang, Weijie; Qian, Pengxu; Zhang, Xiao; Zhang, Min; Wang, Hong; Wu, Mingming; Kong, Xiangjun; Tan, Sheng; Ding, Keshuo; Perry, Jo K.; Wu, Zhengsheng; Cao, Yuan; Lobie, Peter E.; Zhu, Tao

    2015-01-01

    Human growth hormone (hGH) plays critical roles in pubertal mammary gland growth, development, and sexual maturation. Accumulated studies have reported that autocrine/paracrine hGH is an orthotopically expressed oncoprotein that promotes normal mammary epithelial cell oncogenic transformation. Autocrine/paracrine hGH has also been reported to promote mammary epithelial cell epithelial-mesenchymal transition (EMT) and invasion. However, the underlying mechanism remains largely obscure. MicroRNAs (miRNAs) are reported to be involved in regulation of multiple cellular functions of cancer. To determine whether autocrine/paracrine hGH promotes EMT and invasion through modulation of miRNA expression, we performed microarray profiling using MCF-7 cells stably expressing wild type or a translation-deficient hGH gene and identified miR-96-182-183 as an autocrine/paracrine hGH-regulated miRNA cluster. Forced expression of miR-96-182-183 conferred on epithelioid MCF-7 cells a mesenchymal phenotype and promoted invasive behavior in vitro and dissemination in vivo. Moreover, we observed that miR-96-182-183 promoted EMT and invasion by directly and simultaneously suppressing BRMS1L (breast cancer metastasis suppressor 1-like) gene expression. miR-96 and miR-182 also targeted GHR, providing a potential negative feedback loop in the hGH-GHR signaling pathway. We further demonstrated that autocrine/paracrine hGH stimulated miR-96-182-183 expression and facilitated EMT and invasion via STAT3 and STAT5 signaling. Consistent with elevated expression of autocrine/paracrine hGH in metastatic breast cancer tissue, miR-96-182-183 expression was also remarkably enhanced. Hence, we delineate the roles of the miRNA-96-182-183 cluster and elucidate a novel hGH-GHR-STAT3/STAT5-miR-96-182-183-BRMS1L-ZEB1/E47-EMT/invasion axis, which provides further understanding of the mechanism of autocrine/paracrine hGH-stimulated EMT and invasion in breast cancer. PMID:25873390

  12. Testicular hyperthermia induces Unfolded Protein Response signaling activation in spermatocyte.

    PubMed

    Kim, Jung-Hak; Park, Sun-Ji; Kim, Tae-Shin; Park, Hyo-Jin; Park, Junghyung; Kim, Bo Kyung; Kim, Gyeong-Ryul; Kim, Jin-Man; Huang, Song Mei; Chae, Jung-Il; Park, Choon-Keun; Lee, Dong-Seok

    2013-05-17

    The testes of most mammals are sensitive to temperature. To survive and adapt under conditions that promote endoplasmic reticulum (ER) stress such as heat shock, cells have a self-protective mechanism against ER stress that has been termed the "Unfolded Protein Response" (UPR). However, the cellular and molecular events underlying spermatogenesis with testicular hyperthermia involved in the UPR signaling pathway under ER stress remain poorly understood. In the present study, we verified that UPR signaling via phospho-eIF2α/ATF4/GADD34, p90ATF6, and phospho-IRE1α/XBP-1 is activated with testicular hyperthermia (43 °C, 15 min/day) and induced ER stress-mediated apoptosis associated with CHOP, phospho-JNK, and caspase-3 after repetitive periods of hyperthermia. Levels of phospho-eIF2α protein of mouse spermatocytes in the testis were rapidly increased by one cycle of testicular hyperthermia. ATF4/GADD34 and p90ATF6 expression gradually increased and decreased, respectively, with repetitive cycles of hyperthermia. Spliced XBP1 mRNA as a marker of IRE1 activity was increased after one, three cycles of hyperthermia and decreased by five cycles of hyperthermia. Although the levels of anti-apoptotic phospho-JNK (p54) were gradually decreased after three cycles of hyperthermia, CHOP expression was rapidly increased. After five cycles of testicular hyperthermia, the levels of cleaved caspase-3 and TUNEL-positive apoptotic spermatocytes cells were significantly increased. Our data demonstrated that testicular hyperthermia induces UPR signaling and repetitive cycles of hyperthermia lead to apoptosis of spermatocytes in mouse testis. These results suggest a link between the UPR signaling pathway and testicular hyperthermia.

  13. Purification of autocrine growth factor from conditioned medium of rat sarcoma (XC) cells.

    PubMed

    Checiówna, D; Klein, A

    1996-01-01

    Transformation of rat cells by Rous sarcoma virus(es) induced the release of growth factors into serum-free conditioned media. An PR-RSV-transformed rat cell line, XC, produced and released polypeptide factors which promote anchorage-dependent and anchorage-independent growth of XC cells. One of the autocrine factors of XC cells was purified to homogeneity by four-step procedure: ultrafiltration, ion-exchange chromatography on MonoS, reverse-phase chromatography on Spherisorb ODS2 and gel filtration on Superose 12. The factor gave a single band on SDS-electrophoresis on polyacrylamide gel and was assumed to have a molecular weight of 16 kDa. The factor is a potent mitogen for XC cells; half-maximal stimulation of DNA synthesis was achieved at a concentration of 0.8 ng/ml. The peptide is probably one of the family of EGF-like heparin-binding growth factors.

  14. Autocrine and paracrine regulation of lymphocyte CB2 receptor expression by TGF-beta.

    PubMed

    Gardner, Brian; Zu, Li X; Sharma, Sherven; Liu, Qian; Makriyannis, Alexandros; Tashkin, Donald P; Dubinett, Steven M

    2002-01-11

    The marijuana-derived cannabinoid Delta(9)-tetrahydrocannabinol (THC) has been shown to be immunosuppressive. We report that THC induces the immunosuppressive cytokine TGF-beta by human peripheral blood lymphocytes (PBL). The ability of THC to stimulate TGF-beta production was blocked by the CB2 receptor specific antagonist SR144528 but not by the CB1 specific antagonist AM251. Furthermore, our data suggest that TGF-beta actively regulates lymphocyte CB2 receptor expression in an autocrine and paracrine manner. Whereas the addition of recombinant TGF-beta to PBL cultures downregulated CB2 receptor expression, anti-TGF-beta antibody treatment increased CB2 receptor expression. We conclude that one mechanism by which THC contributes to immune suppression is by stimulating an enhanced production of lymphocyte TGF-beta.

  15. Analysis of oxidative signalling induced by ozone in Arabidopsis thaliana.

    PubMed

    Mahalingam, Ramamurthy; Jambunathan, Niranjani; Gunjan, Samir Kumar; Faustin, Enock; Weng, Hua; Ayoubi, Patricia

    2006-07-01

    We are using acute ozone as an elicitor of endogenous reactive oxygen species (ROS) to understand oxidative signalling in Arabidopsis. Temporal patterns of ROS following a 6 h exposure to 300 nL L(-1) of ozone in ozone-sensitive Wassilewskija (Ws-0) ecotype showed a biphasic ROS burst with a smaller peak at 4 h and a larger peak at 16 h. This was accompanied by a nitric oxide (NO) burst that peaked at 9 h. An analysis of antioxidant levels showed that both ascorbate (AsA) and glutathione (GSH) were at their lowest levels, when ROS levels were high in ozone-stressed plants. Whole genome expression profiling analysis at 1, 4, 8, 12 and 24 h after initiation of ozone treatment identified 371 differentially expressed genes. Early induction of proteolysis and hormone-responsive genes indicated that an oxidative cell death pathway was triggered rapidly. Down-regulation of genes involved in carbon utilization, energy pathways and signalling suggested an inefficient defense response. Comparisons with other large-scale expression profiling studies indicated some overlap between genes induced by ethylene and ozone, and a significant overlap between genes repressed by ozone and methyl jasmonate treatment. Further, analysis of cis elements in the promoters of ozone-responsive genes also supports the view that phytohormones play a significant role in ozone-induced cell death. PMID:17080957

  16. Signaling Pathways Involved in Lunar Dust Induced Cytotoxicity

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Lam, Chiu-Wing; Scully, Robert R.; Williams, Kyle; Zalesak, Selina; Wu, Honglu; James, John T.

    2014-01-01

    The Moon's surface is covered by a layer of fine, reactive dust. Lunar dust contain about 1-2% of very fine dust (< 3 micron), that is respirable. The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to evaluate the toxicity of Apollo moon dust in rodents to assess the health risk of dust exposures to humans. One of the particular interests in the study is to evaluate dust-induced changes of the expression of fibrosis-related genes, and to identify specific signaling pathways involved in lunar dust-induced toxicity. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.1, 21, and 61 mg/m(exp 3) of lunar dust. Five rats per group were euthanized 1 day, 1 week, 1 month, and 3 months after the last inhalation exposure. The total RNAs were isolated from the blood or lung tissue after being lavaged, using the Qigen RNeasy kit. The Rat Fibrosis RT2 Profile PCR Array was used to profile the expression of 84 genes relevant to fibrosis. The genes with significant expression changes are identified and the gene expression data were further analyzed using IPA pathway analysis tool to determine the signaling pathways with significant changes.

  17. Calcium signal induced by mechanical perturbation of osteoclasts.

    PubMed

    Xia, S L; Ferrier, J

    1995-06-01

    Multinucleated osteoclasts from rabbit long bone, 1-6 days in culture, respond to mechanical perturbation with a transient increase of intracellular calcium concentration ([Ca2+]i), as measured with the fluorescent indicator fluo-3 on a confocal laser scanning microscope. In experiments with different extracellular calcium concentrations (from 11.8 mM to calcium-free), the incidence, the magnitude, and the duration of [Ca2+]i responses decreases with decreasing bathing [Ca2+]. Following mechanical perturbation, a thapsigargin-induced [Ca2+]i response has a lower magnitude than the thapsigargin-induced response without mechanical perturbation. In thapsigargin-pretreated osteoclasts the mechanical perturbation-induced rise in [Ca2+]i is larger and longer than in control cells. Ni2+ inhibits the incidence and decreases both the magnitude and the duration of the responses, while nifedipine, verapamil, and Gd3+ have no effect. These measurements show that rabbit osteoclasts transduce a mechanical perturbation of the cell membrane into a [Ca2+]i signal via both a calcium influx and an internal calcium release.

  18. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity.

    PubMed

    Vilela, Luciano R; Gobira, Pedro H; Viana, Thercia G; Medeiros, Daniel C; Ferreira-Vieira, Talita H; Doria, Juliana G; Rodrigues, Flávia; Aguiar, Daniele C; Pereira, Grace S; Massessini, André R; Ribeiro, Fabíola M; de Oliveira, Antonio Carlos P; Moraes, Marcio F D; Moreira, Fabricio A

    2015-08-01

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB1 receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB1 receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity.

  19. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity

    SciTech Connect

    Vilela, Luciano R.; Gobira, Pedro H.; Viana, Thercia G.; Medeiros, Daniel C.; Ferreira-Vieira, Talita H.; Doria, Juliana G.; Rodrigues, Flávia; Aguiar, Daniele C.; Pereira, Grace S.; Massessini, André R.; Ribeiro, Fabíola M.; Oliveira, Antonio Carlos P. de; Moraes, Marcio F.D.; Moreira, Fabricio A.

    2015-08-01

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB{sub 1} receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB{sub 1} receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity. - Highlights: • Cocaine toxicity is characterized by seizures and hippocampal cell death. • The endocannabinoid anandamide acts as a brain protective mechanism. • Inhibition of anandamide hydrolysis

  20. P2Y1 Receptor Signaling Contributes to High Salt-Induced Priming of the NLRP3 Inflammasome in Retinal Pigment Epithelial Cells

    PubMed Central

    Prager, Philipp; Hollborn, Margrit; Steffen, Anja; Wiedemann, Peter; Kohen, Leon; Bringmann, Andreas

    2016-01-01

    Background Systemic hypertension is a risk factor of age-related macular degeneration (AMD), a chronic inflammatory disease. Acute hypertension is caused by increased extracellular osmolarity after intake of dietary salt (NaCl). We determined in cultured human retinal pigment epithelial (RPE) cells whether high extracellular NaCl alters the gene expression of inflammasome-associated proteins, and whether autocrine/paracrine purinergic (P2) receptor signaling contributes to the NaCl-induced NLRP3 gene expression. Methodology/Principal Findings Hyperosmolarity was induced by the addition of 100 mM NaCl or sucrose to the culture medium. Gene and protein expression levels were determined with real-time RT-PCR and Western blot analysis, respectively. IL-1β and IL-18 levels were evaluated with ELISA. Nuclear factor of activated T cell 5 (NFAT5) expression was knocked down with siRNA. High extracellular NaCl induced NLRP3 and pro-IL-1β gene expression, while the gene expression of further inflammasome-associated proteins (NLRP1, NLRP2, NLRP6, NLRP7, NLRP12, NLRC4, AIM2, ASC, procaspase-1, pro-IL-18) was not altered or below the detection threshold. The NaCl-induced NLRP3 gene expression was partially dependent on the activities of phospholipase C, IP3 receptors, protein kinase C, the serum and glucocorticoid-regulated kinase, p38 MAPK, ERK1/2, JNK, PI3K, and the transcription factors HIF-1 and NFAT5. Pannexin-dependent ATP release and P2Y1 receptor activation is required for the full induction of NLRP3 gene expression. High NaCl induced a transient increase of the NLRP3 protein level and a moderate NLRP3 inflammasome activation, as indicated by the transient increase of the cytosolic level of mature IL-1β. High NaCl also induced secretion of IL-18. Conclusion High extracellular NaCl induces priming of the NLRP3 inflammasome in RPE cells, in part via P2Y1 receptor signaling. The inflammasome priming effect of NaCl suggests that high intake of dietary salt may promote

  1. Signal-Induced Noise Effects in a Photon Counting System for Stratospheric Ozone Measurement

    NASA Technical Reports Server (NTRS)

    Harper, David B.; DeYoung, Russell J.

    1998-01-01

    A significant source of error in making atmospheric differential absorption lidar ozone measurements is the saturation of the photomultiplier tube by the strong, near field light return. Some time after the near field light signal is gone, the photomultiplier tube gate is opened and a noise signal, called signal-induced noise, is observed. Research reported here gives experimental results from measurement of photomultiplier signal-induced noise. Results show that signal-induced noise has several decaying exponential signals, suggesting that electrons are slowly emitted from different surfaces internal to the photomultiplier tube.

  2. Magnetic torquer induced disturbing signals within GRACE accelerometer data

    NASA Astrophysics Data System (ADS)

    Peterseim, Nadja; Flury, Jakob; Schlicht, Anja

    2012-05-01

    The GRACE (Gravity Recovery And Climate Experiment) gravity field satellite mission was launched in 2002. Although many investigations have been carried out, not all disturbances and perturbations upon satellite instruments and sensors are resolved yet. In this work the issue of acceleration disturbances onboard of GRACE due to magnetic torquers is investigated and discussed. Each of the GRACE satellites is equipped with a three-axes capacitive accelerometer to measure non-gravitational forces acting on the spacecraft. We used 10 Hz Level 1a raw accelerometer data in order to determine the impact of electric current changes on the accelerometer. After reducing signals which are induced by highly dominating processes in the low frequency range, such as thermospheric drag and solar radiation pressure, which can easily be done by applying a high-pass filter, disturbing signals from onboard instruments such as thruster firing events or heater switch events need to be removed from the previously filtered data. Afterwards the spikes which are induced by the torquers can be very well observed. Spikes vary in amplitude with respect to an increasing or decreasing current used for magnetic torquers, and can be as large as 20 nm/s2. Furthermore, we were able to set up a model for the spikes of each scenario with which we were able to compute model spike time series. With these time series the spikes can successfully be removed from the 10 Hz raw accelerometer data. Spectral analysis of the time series reveal that an influence onto gravity field determination due to these effects is very unlikely, but can theoretically not be excluded.

  3. Inhibition of the autocrine IL-6–JAK2–STAT3–calprotectin axis as targeted therapy for HR−/HER2+ breast cancers

    PubMed Central

    Rodriguez-Barrueco, Ruth; Yu, Jiyang; Saucedo-Cuevas, Laura P.; Olivan, Mireia; Llobet-Navas, David; Putcha, Preeti; Castro, Veronica; Murga-Penas, Eva M.; Collazo-Lorduy, Ana; Castillo-Martin, Mireia; Alvarez, Mariano; Cordon-Cardo, Carlos; Kalinsky, Kevin; Maurer, Matthew; Califano, Andrea; Silva, Jose M.

    2015-01-01

    HER2-positive (HER2+) breast adenocarcinomas are a heterogeneous group in which hormone receptor (HR) status influences therapeutic decisions and patient outcome. By combining genome-wide RNAi screens with regulatory network analysis, we identified STAT3 as a critically activated master regulator of HR−/HER2+ tumors, eliciting tumor dependency in these cells. Mechanistically, HR−/HER2+ cells secrete high levels of the interleukin-6 (IL-6) cytokine, inducing the activation of STAT3, which in turn promotes a second autocrine stimulus to increase S100A8/9 complex (calprotectin) production and secretion. Increased calprotectin levels activate signaling pathways involved in proliferation and resistance. Importantly, we demonstrated that inhibition of the IL-6–Janus kinase 2 (JAK2)–STAT3–calprotectin axis with FDA-approved drugs, alone and in combination with HER2 inhibitors, reduced the tumorigenicity of HR−/HER2+ breast cancers, opening novel targeted therapeutic opportunities. PMID:26227964

  4. Autocrine selection of a GLP-1R G-protein biased agonist with potent antidiabetic effects

    PubMed Central

    Zhang, Hongkai; Sturchler, Emmanuel; Zhu, Jiang; Nieto, Ainhoa; Cistrone, Philip A.; Xie, Jia; He, LinLing; Yea, Kyungmoo; Jones, Teresa; Turn, Rachel; Di Stefano, Peter S.; Griffin, Patrick R.; Dawson, Philip E.; McDonald, Patricia H.; Lerner, Richard A.

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists have emerged as treatment options for type 2 diabetes mellitus (T2DM). GLP-1R signals through G-protein-dependent, and G-protein-independent pathways by engaging the scaffold protein β-arrestin; preferential signalling of ligands through one or the other of these branches is known as ‘ligand bias'. Here we report the discovery of the potent and selective GLP-1R G-protein-biased agonist, P5. We identified P5 in a high-throughput autocrine-based screening of large combinatorial peptide libraries, and show that P5 promotes G-protein signalling comparable to GLP-1 and Exendin-4, but exhibited a significantly reduced β-arrestin response. Preclinical studies using different mouse models of T2DM demonstrate that P5 is a weak insulin secretagogue. Nevertheless, chronic treatment of diabetic mice with P5 increased adipogenesis, reduced adipose tissue inflammation as well as hepatic steatosis and was more effective at correcting hyperglycaemia and lowering haemoglobin A1c levels than Exendin-4, suggesting that GLP-1R G-protein-biased agonists may provide a novel therapeutic approach to T2DM. PMID:26621478

  5. Alcohol induced changes in phosphoinositide signaling system in rat brain

    SciTech Connect

    Pandey, S.; Piano, M.; Schwertz, D.; Davis, J.; Pandey, G. )

    1991-03-11

    Agonist-induced phosphoinositide break down functions as a signal generating system in a manner similar to the C-AMP system. In order to examine if the changes produced by chronic ethanol treatment on membrane lipid composition and metabolism effect the cellular functions of the neuron, the authors have examined the effect of chronic ethanol exposure on norepinephrine (NE) serotonin (5HT) and calcium ionophore (CI) stimulated phosphoinositide (PI) hydrolysis in rat cortical slices. Rats were maintained on liber-decarli diet alcohol and control liquid diet containing isocaloric sucrose substitute for two months. They were then sacrificed and brain was removed for determination of PI turnover. 5HT stimulated {sup 3}H- inositol monophosphate ({sup 3}H-IPI) formation was significantly lower in the cortex of alcohol treated rats as compared to control rats. However, neither CI nor NE stimulated IP1 formation was significantly different from control rats. The results thus indicate that chronic exposure to ethanol decreases 5HT induced PI breakdown in rat cortex. In order to examine if this decrease is related to a decrease in 5HT2 receptors, or decreased in coupling of receptor to the effector pathway, the authors are currently determining the number and affinity of 5HT2 receptors in alcohol treated rats.

  6. Autocrine regulation of milk secretion by a protein in milk.

    PubMed Central

    Wilde, C J; Addey, C V; Boddy, L M; Peaker, M

    1995-01-01

    Frequency or completeness of milk removal from the lactating mammary gland regulates the rate of milk secretion by a mechanism which is local, chemical and inhibitory in nature. Screening of goat's milk proteins in rabbit mammary explant cultures identified a single whey protein of M(r) 7600 able to inhibit synthesis of milk constituents. The active whey protein, which we term FIL (Feedback inhibitor of Lactation), also decreased milk secretion temporarily when introduced into a mammary gland of lactating goats. FIL was synthesized by primary cultures of goat mammary epithelial cells, and was secreted vectorially together with other milk proteins. N-terminal amino acid sequencing indicated that it is a hitherto unknown protein. The evidence indicates that local regulation of milk secretion by milk removal is through autocrine feedback inhibition by this milk protein. Images Figure 1 Figure 2 Figure 5 PMID:7826353

  7. Autocrine interferon-beta stimulation augments nitric oxide production by mouse macrophage J774A.1 cells infected with herpes simplex virus type 1.

    PubMed

    Fujioka, N; Ohashi, K; Ikeda, M; Kurimoto, M

    2000-01-01

    The pathogenic roles of nitric oxide (NO) in mouse models have been reported for herpes simplex virus type 1 (HSV-1)-induced pneumonia as well as endotoxin shock. We compared the mechanism of NO production induced by HSV-1 with that induced by lipopolysaccharide (LPS) using a mouse macrophage cell line, J774A.1. Both HSV-1 and LPS induced NO production as well as antiviral activity, which were attenuated by anti-interferon (IFN)-beta treatment. These results suggest that autocrine IFN-beta plays a role in NO release by J774A.1 cells stimulated with HSV-1 or LPS.

  8. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    SciTech Connect

    Yin, Xinhua; Wang, Xiaoyuan; Hu, Xiongke; Chen, Yong; Zeng, Kefeng; Zhang, Hongqi

    2015-07-01

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expression were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression.

  9. An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81.

    PubMed

    Ahmed, Kashan; Tunaru, Sorin; Tang, Cong; Müller, Michaela; Gille, Andreas; Sassmann, Antonia; Hanson, Julien; Offermanns, Stefan

    2010-04-01

    Lactate is an important metabolic intermediate released by skeletal muscle and other organs including the adipose tissue, which converts glucose into lactate under the influence of insulin. Here we show that lactate activates the G protein-coupled receptor GPR81, which is expressed in adipocytes and mediates antilipolytic effects through G(i)-dependent inhibition of adenylyl cyclase. Using GPR81-deficient mice, we demonstrate that the receptor is not involved in the regulation of lipolysis during intensive exercise. However, insulin-induced inhibition of lipolysis and insulin-induced decrease in adipocyte cAMP levels were strongly reduced in mice lacking GPR81, although insulin-dependent release of lactate by adipocytes was comparable between wild-type and GPR81-deficient mice. Thus, lactate and its receptor GPR81 unexpectedly function in an autocrine and paracrine loop to mediate insulin-induced antilipolytic effects. These data show that lactate can directly modulate metabolic processes in a hormone-like manner, and they reveal a new mechanism underlying the antilipolytic effects of insulin.

  10. Knockdown of lncRNA-ATB suppresses autocrine secretion of TGF-β2 by targeting ZNF217 via miR-200c in keloid fibroblasts.

    PubMed

    Zhu, Hua-Yu; Bai, Wen-Dong; Li, Chao; Zheng, Zhao; Guan, Hao; Liu, Jia-Qi; Yang, Xue-Kang; Han, Shi-Chao; Gao, Jian-Xin; Wang, Hong-Tao; Hu, Da-Hai

    2016-01-01

    Abnormally high activation of transforming growth factor-β (TGF-β) signaling has been demonstrated to be involved in the initiation and progression of keloids. However, the functional role of long non-coding RNA (lncRNA)-activated by TGF-β (lncRNA-ATB) in keloids has not been documented. Here we investigated the role of lncRNA-ATB in the autocrine secretion of TGF-β in keloid fibroblasts (KFs) and explored the underlying molecular mechanism. Using immunohistochemistry and quantitative RT-PCR analysis, we showed that lncRNA-ATB and ZNF217, a transcriptional activator of TGF-β, were overexpressed and miR-200c, which targets ZNF217, was under-expressed in keloid tissue and keloid fibroblasts. Through gain- and loss-of-function studies, we demonstrated that knockdown of lncRNA-ATB decreased autocrine secretion of TGF-β2 and ZNF217 expression but upregulated expression of miR-200c in KFs. Stable downregulation of ZNF217 expression decreased the autocrine secretion of TGF-β2. miR-200c was endogenously associated with lncRNA-ATB, and inhibition of miR-200c overcame the decrease in ZNF217 expression in KFs. Taken together, these findings indicate that lncRNA-ATB governs the autocrine secretion of TGF-β2 in KFs, at least in part, by downregulating the expression level of ZNF217 via miR-200c, suggesting a signaling axis consisting of lncRNA-ATB/miR-200c/ZNF217/TGF-β2. These findings may provide potential biomarkers and targets for novel diagnostic and therapeutic approaches for keloids. PMID:27090737

  11. Optimizing Electromagnetically Induced Transparency Signals with Laguerre-Gaussian Beams

    NASA Astrophysics Data System (ADS)

    Holtfrerich, Matthew; Akin, Tom; Krzyzewski, Sean; Marino, Alberto; Abraham, Eric

    2016-05-01

    We have performed electromagnetically induced transparency in ultracold Rubidium atoms using a Laguerre-Gaussian laser mode as the control beam. Laguerre-Gaussian modes are characterized by a ring type transverse intensity profile and carry intrinsic orbital angular momentum. This angular momentum carried by the control beam can be utilized in optical computing applications which is unavailable to the more common Gaussian laser field. Specifically, we use a Laguerre-Gaussian control beam with a Gaussian probe to show that the linewidth of the transmission spectrum can be narrowed when compared to a Gaussian control beam that has the same peak intensity. We present data extending this work to compare control fields in both the Gaussian and Laguerre-Gaussian modes with constant total power. We have made efforts to find the optical overlap that best minimizes the transmission linewidth while also maintaining signal contrast. This was done by changing the waist size of the control beam with respect to the probe. The best results were obtained when the waist of a Laguerre-Gaussian control beam is equal to the waist of the Gaussian probe resulting in narrow linewidth features.

  12. Nitric Oxide Signaling in Hypergravity-Induced Neuronal Plasticity

    NASA Technical Reports Server (NTRS)

    Holstein, Gay R.

    2003-01-01

    The goal of this research project was to identify the neurons and circuits in the vestibular nuclei and nucleus prepositus hypoglossi that utilize nitric oxide (NO) for intercellular signaling during gravity-induced plasticity. This objective was pursued using histochemical and immunocytochemical approaches to localize NO-producing neurons and characterize the fine morphology of the cells in ground-based studies of normal rats, rats adapted to hypergravity, and rats adapted to hypergravity and then re-adapted to the 1G environment. NO-producing neurons were identified and studied using four methodologies: i) immunocytochemistry employing polyclonal antibodies directed against neuronal nitric oxide synthase (nNOS), to provide an indication of the capacity of a cell for NO production; ii) immunocytochemistry employing a monoclonal antibody directed against L-citrulline, to provide an indirect index of the enzyme's activity; iii) histochemistry based on the NADPH-diaphorase reaction, for fuI1 cytological visualization of neurons; and iv) double immunofluorescence to co-localize nNOS and L-citrulline in individual vestibular nuclei (VN) and neurons.

  13. LDL-cholesterol signaling induces breast cancer proliferation and invasion.

    PubMed

    dos Santos, Catarina Rodrigues; Domingues, Germana; Matias, Inês; Matos, João; Fonseca, Isabel; de Almeida, José Mendes; Dias, Sérgio

    2014-01-15

    Lipids and cholesterol in particular, have long been associated with breast cancer (BC) onset and progression. However, the causative effects of elevated lipid levels and breast cancer remain largely undisclosed and were the subject of the present study.We took advantage of well-established in vitro and in vivo models of cholesterol enrichment to exploit the mechanism involved in LDL-cholesterol favouring BC growth and invasiveness. We analyzed its effects in models that mimic different BC subtypes and stages.Our data show that LDL-cholesterol (but not HDL-cholesterol) promotes BC cells proliferation, migration and loss of adhesion, hallmarks of the epithelial to mesenchymal transition. In vivo studies modeling cholesterol levels showed that breast tumors are consistently larger and more proliferative in hypercholesterolemic mice, which also have more frequently lung metastases. Microarray analysis revealed an over expression of intermediates of Akt and ERK pathways suggesting a survival response induced by LDL, confirmed by WB analyses. Gene expression analysis also evidenced an activation of ErbB2 signaling pathway and decreased expression of adhesion molecules (cadherin-related family member3, CD226, Claudin 7 and Ocludin) in the cells exposed to LDL.Together, the present work shows novel mechanistic evidence that high LDL-cholesterol levels promote BC progression. These data provide rationale for the clinical control of cholesterol levels in BC patients.

  14. BDNF, produced by a TPO-stimulated megakaryocytic cell line, regulates autocrine proliferation

    SciTech Connect

    Tamura, Shogo; Nagasawa, Ayumi; Masuda, Yuya; Tsunematsu, Tetsuya; Hayasaka, Koji; Matsuno, Kazuhiko; Shimizu, Chikara; Ozaki, Yukio; Moriyama, Takanori

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer It has been thought that BDNF is not produced in the megakaryocytic lineage. Black-Right-Pointing-Pointer MEG-01 produces BDNF upon TPO stimulation and regulates its proliferation. Black-Right-Pointing-Pointer BDNF accelerates proliferation of MEG-01 in an autocrine manner. Black-Right-Pointing-Pointer BDNF may be an autocrine MEG-CSF, which regulates megakaryopoiesis. -- Abstract: While human platelets release endogenous brain-derived neurotrophic factor (BDNF) upon activation, a previous report on MEG-01, a megakaryocytic cell line, found no trace of BDNF production, and the pathophysiological function of platelet BDNF has remained elusive. In the present study, we demonstrate that MEG-01 produces BDNF in the presence of TPO and that this serves to potentiate cell proliferation. Our in vitro findings suggest that BDNF regulates MEG-01 proliferation in an autocrine manner, and we suggest that BDNF may be a physiological autocrine regulator of megakaryocyte progenitors.

  15. Elevated autocrine chemokine ligand 18 expression promotes oral cancer cell growth and invasion via Akt activation

    PubMed Central

    Hong, Yun; Wu, Tong; Chen, Xiaobing; Xia, Juan; Cheng, Bin

    2016-01-01

    Chemokine (C-C motif) ligand 18 (CCL18) has been implicated in the pathogenesis and progression of various cancers; however, in oral squamous cell carcinoma (OSCC), the role of CCL18 is unknown. In this study, we found that CCL18 was overexpressed in primary OSCC tissues and was associated with an advanced clinical stage. CCL18 was found in both the cytoplasm and cell membrane of OSCC cells and was predominantly produced by cancer epithelial cells, as opposed to tumor-infiltrating macrophages. In vitro studies indicated that the effects of endogenous CCL18 on OSCC cell growth, migration, and invasion could be blocked by treatment with a neutralizing anti-CCL18 antibody or CCL18 knockdown, while exogenous recombinant CCL18 (rCCL18) rescued those effects. Akt was activated in rCCL18-treated OSCC cells, while LY294002, a pan-PI3K inhibitor, abolished both endogenous and exogenous CCL18-induced OSCC cell invasion. In vivo, LY294002 treatment attenuated rCCL18-induced OSCC cell growth. Our results indicate that CCL18 acts in an autocrine manner via Akt activation to stimulate OSCC cell growth and invasion during OSCC progression. They also provide a potential therapeutic target for the treatment of oral cancer. PMID:26919103

  16. Cutting off the power: inhibition of leukemia cell growth by pausing basal ATP release and P2X receptor signaling?

    PubMed

    Ledderose, Carola; Woehrle, Tobias; Ledderose, Stephan; Strasser, Katharina; Seist, Richard; Bao, Yi; Zhang, Jingping; Junger, Wolfgang G

    2016-09-01

    T cells respond to antigen stimulation with the rapid release of cellular ATP, which stimulates an autocrine feedback mechanism that regulates calcium influx through P2X receptors. This autocrine purinergic feedback mechanism plays an essential role in the activation of T cells resulting in cell proliferation and clonal expansion. We recently reported that increases in mitochondrial ATP production drive this stimulation-induced purinergic signaling mechanism but that low-level mitochondrial ATP production fuels basal T cell functions required to maintain vigilance of unstimulated T cells. Here we studied whether defects in these purinergic signaling mechanisms are involved in the unwanted proliferation of leukemia T cells. We found that acute leukemia T cells (Jurkat) possess a larger number and more active mitochondria than their healthy counterparts. Jurkat cells have higher intracellular ATP concentrations and generat more extracellular ATP than unstimulated T cells from healthy donors. As a result, increased purinergic signaling through P2X1 and P2X7 receptors elevates baseline levels of cytosolic Ca(2+) in Jurkat cells. We found that pharmacological inhibition of this basal purinergic signaling mechanism decreases mitochondrial activity, Ca(2+) signaling, and cell proliferation. Similar results were seen in the leukemic cell lines THP-1, U-937, and HL-60. Combined treatment with inhibitors of P2X1 or P2X7 receptors and the chemotherapeutic agent 6-mercaptopurine completely blocked Jurkat cell proliferation. Our results demonstrate that increased mitochondrial metabolism promotes autocrine purinergic signaling and uncontrolled proliferation of leukemia cells. These findings suggest that deranged purinergic signaling can result in T cell malignancy and that therapeutic targeting aimed at purinergic signaling is a potential strategy to combat T cell leukemia.

  17. Cutting off the power: inhibition of leukemia cell growth by pausing basal ATP release and P2X receptor signaling?

    PubMed

    Ledderose, Carola; Woehrle, Tobias; Ledderose, Stephan; Strasser, Katharina; Seist, Richard; Bao, Yi; Zhang, Jingping; Junger, Wolfgang G

    2016-09-01

    T cells respond to antigen stimulation with the rapid release of cellular ATP, which stimulates an autocrine feedback mechanism that regulates calcium influx through P2X receptors. This autocrine purinergic feedback mechanism plays an essential role in the activation of T cells resulting in cell proliferation and clonal expansion. We recently reported that increases in mitochondrial ATP production drive this stimulation-induced purinergic signaling mechanism but that low-level mitochondrial ATP production fuels basal T cell functions required to maintain vigilance of unstimulated T cells. Here we studied whether defects in these purinergic signaling mechanisms are involved in the unwanted proliferation of leukemia T cells. We found that acute leukemia T cells (Jurkat) possess a larger number and more active mitochondria than their healthy counterparts. Jurkat cells have higher intracellular ATP concentrations and generat more extracellular ATP than unstimulated T cells from healthy donors. As a result, increased purinergic signaling through P2X1 and P2X7 receptors elevates baseline levels of cytosolic Ca(2+) in Jurkat cells. We found that pharmacological inhibition of this basal purinergic signaling mechanism decreases mitochondrial activity, Ca(2+) signaling, and cell proliferation. Similar results were seen in the leukemic cell lines THP-1, U-937, and HL-60. Combined treatment with inhibitors of P2X1 or P2X7 receptors and the chemotherapeutic agent 6-mercaptopurine completely blocked Jurkat cell proliferation. Our results demonstrate that increased mitochondrial metabolism promotes autocrine purinergic signaling and uncontrolled proliferation of leukemia cells. These findings suggest that deranged purinergic signaling can result in T cell malignancy and that therapeutic targeting aimed at purinergic signaling is a potential strategy to combat T cell leukemia. PMID:27020575

  18. Autocrine and paracrine roles for ATP and serotonin in mouse taste buds.

    PubMed

    Huang, Yijen A; Dando, Robin; Roper, Stephen D

    2009-11-01

    Receptor (type II) taste bud cells secrete ATP during taste stimulation. In turn, ATP activates adjacent presynaptic (type III) cells to release serotonin (5-hydroxytryptamine, or 5-HT) and norepinephrine (NE). The roles of these neurotransmitters in taste buds have not been fully elucidated. Here we tested whether ATP or 5-HT exert feedback onto receptor (type II) cells during taste stimulation. Our previous studies showed NE does not appear to act on adjacent taste bud cells, or at least on receptor cells. Our data show that 5-HT released from presynaptic (type III) cells provides negative paracrine feedback onto receptor cells by activating 5-HT(1A) receptors, inhibiting taste-evoked Ca(2+) mobilization in receptor cells, and reducing ATP secretion. The findings also demonstrate that ATP exerts positive autocrine feedback onto receptor (type II) cells by activating P2Y1 receptors and enhancing ATP secretion. These results begin to sort out how purinergic and aminergic transmitters function within the taste bud to modulate gustatory signaling in these peripheral sensory organs.

  19. Autocrine and paracrine roles for ATP and Serotonin in mouse taste buds

    PubMed Central

    Huang, Yijen A.; Dando, Robin; Roper, Stephen D.

    2009-01-01

    Receptor (Type II) taste bud cells secrete ATP during taste stimulation. In turn, ATP activates adjacent Presynaptic (Type III) cells to release serotonin (5 hydroxytryptamine, or 5-HT) and norepinephrine (NE). The roles of these neurotransmitters in taste buds have not been fully elucidated. Here we tested whether ATP or 5-HT exert feedback onto Receptor (Type II) cells during taste stimulation. Our previous studies showed NE does not appear to act on adjacent taste bud cells, or at least on Receptor cells. Our data show that 5-HT released from Presynaptic (Type III) cells provides negative paracrine feedback onto Receptor cells by activating 5-HT1A receptors, inhibiting taste-evoked Ca2+ mobilization in Receptor cells and reducing ATP secretion. The findings also demonstrate that ATP exerts positive autocrine feedback onto Receptor (Type II) cells by activating P2Y1 receptors and enhancing ATP secretion. These results begin to sort out how purinergic and aminergic transmitters function within the taste bud to modulate gustatory signalling in these peripheral sensory organs. PMID:19890001

  20. A local autocrine axis in the testes that regulates spermatogenesis.

    PubMed

    Cheng, C Yan; Mruk, Dolores D

    2010-07-01

    Spermiation--the release of mature spermatozoa from Sertoli cells into the seminiferous tubule lumen--occurs by the disruption of an anchoring device known as the apical ectoplasmic specialization (apical ES). At the same time, the blood-testis barrier (BTB) undergoes extensive restructuring to facilitate the transit of preleptotene spermatocytes. While these two cellular events take place at opposite ends of the Sertoli cell epithelium, the events are in fact tightly coordinated, as any disruption in either process will lead to infertility. A local regulatory axis exists between the apical ES and the BTB in which biologically active laminin fragments produced at the apical ES by the action of matrix metalloproteinase 2 can regulate BTB restructuring directly or indirectly via the hemidesmosome. Equally important, polarity proteins play a crucial part in coordinating cellular events within this apical ES-BTB-hemidesmosome axis. Additionally, testosterone and cytokines work in concert to facilitate BTB restructuring, which enables the transit of spermatocytes while maintaining immunological barrier function. Herein, we will discuss this important autocrine-based cellular axis that parallels the hormonal-based hypothalamic-pituitary-testicular axis that regulates spermatogenesis. This local regulatory axis is the emerging target for male contraception.

  1. Attenuation of TGF-β signaling suppresses premature senescence in a p21-dependent manner and promotes oncogenic Ras-mediated metastatic transformation in human mammary epithelial cells

    PubMed Central

    Lin, Shu; Yang, Junhua; Elkahloun, Abdel G.; Bandyopadhyay, Abhik; Wang, Long; Cornell, John E.; Yeh, I-Tien; Agyin, Joseph; Tomlinson, Gail; Sun, Lu-Zhe

    2012-01-01

    The molecular mechanisms that drive triple-negative, basal-like breast cancer progression are elusive. Few molecular targets have been identified for the prevention or treatment of this disease. Here we developed a series of isogenic basal-like human mammary epithelial cells (HMECs) with altered transforming growth factor-β (TGF-β) sensitivity and different malignancy, resembling a full spectrum of basal-like breast carcinogenesis, and determined the molecular mechanisms that contribute to oncogene-induced transformation of basal-like HMECs when TGF-β signaling is attenuated. We found that expression of a dominant-negative type II receptor (DNRII) of TGF-β abrogated autocrine TGF-β signaling in telomerase-immortalized HMECs and suppressed H-Ras-V12–induced senescence-like growth arrest (SLGA). Furthermore, coexpression of DNRII and H-Ras-V12 rendered HMECs highly tumorigenic and metastatic in vivo in comparison with H-Ras-V12–transformed HMECs that spontaneously escaped H-Ras-V12–induced SLGA. Microarray analysis revealed that p21 was the major player mediating Ras-induced SLGA, and attenuated or loss of p21 expression contributed to the escape from SLGA when autocrine TGF-β signaling was blocked in HMECs. Furthermore, knockdown of p21 also suppressed H-Ras-V12–induced SLGA. Our results identify that autocrine TGF-β signaling is an integral part of the cellular anti-transformation network by suppressing the expression of a host of genes, including p21-regulated genes, that mediate oncogene-induced transformation in basal-like breast cancer. PMID:22357622

  2. Kurarinol induces hepatocellular carcinoma cell apoptosis through suppressing cellular signal transducer and activator of transcription 3 signaling

    SciTech Connect

    Shu, Guangwen; Yang, Jing; Zhao, Wenhao; Xu, Chan; Hong, Zongguo; Mei, Zhinan; Yang, Xinzhou

    2014-12-01

    Kurarinol is a flavonoid isolated from roots of the medical plant Sophora flavescens. However, its cytotoxic activity against hepatocellular carcinoma (HCC) cells and toxic effects on mammalians remain largely unexplored. Here, the pro-apoptotic activities of kurarinol on HCC cells and its toxic impacts on tumor-bearing mice were evaluated. The molecular mechanisms underlying kurarinol-induced HCC cell apoptosis were also investigated. We found that kurarinol dose-dependently provoked HepG2, Huh-7 and H22 HCC cell apoptosis. In addition, kurarinol gave rise to a considerable decrease in the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) in HCC cells. Suppression of STAT3 signaling is involved in kurarinol-induced HCC cell apoptosis. In vivo studies showed that kurarinol injection substantially induced transplanted H22 cell apoptosis with low toxic impacts on tumor-bearing mice. Similarly, the transcriptional activity of STAT3 in transplanted tumor tissues was significantly suppressed after kurarinol treatment. Collectively, our current research demonstrated that kurarinol has the capacity of inducing HCC cell apoptosis both in vitro and in vivo with undetectable toxic impacts on the host. Suppressing STAT3 signaling is implicated in kurarinol-mediated HCC cell apoptosis. - Highlights: • Kurarinol induces hepatocellular carcinoma (HCC) cell apoptosis. • Kurarinol induces HCC cell apoptosis via inhibiting STAT3. • Kurarinol exhibits low toxic effects on tumor-bearing animals.

  3. Calorie-induced ER stress suppresses uroguanylin satiety signaling in diet-induced obesity

    PubMed Central

    Kim, G W; Lin, J E; Snook, A E; Aing, A S; Merlino, D J; Li, P; Waldman, S A

    2016-01-01

    Background/Objectives: The uroguanylin-GUCY2C gut–brain axis has emerged as one component regulating feeding, energy homeostasis, body mass and metabolism. Here, we explore a role for this axis in mechanisms underlying diet-induced obesity (DIO). Subjects/Methods: Intestinal uroguanylin expression and secretion, and hypothalamic GUCY2C expression and anorexigenic signaling, were quantified in mice on high-calorie diets for 14 weeks. The role of endoplasmic reticulum (ER) stress in suppressing uroguanylin in DIO was explored using tunicamycin, an inducer of ER stress, and tauroursodeoxycholic acid (TUDCA), a chemical chaperone that inhibits ER stress. The impact of consumed calories on uroguanylin expression was explored by dietary manipulation. The role of uroguanylin in mechanisms underlying obesity was examined using Camk2a-Cre-ERT2-Rosa-STOPloxP/loxP-Guca2b mice in which tamoxifen induces transgenic hormone expression in brain. Results: DIO suppressed intestinal uroguanylin expression and eliminated its postprandial secretion into the circulation. DIO suppressed uroguanylin through ER stress, an effect mimicked by tunicamycin and blocked by TUDCA. Hormone suppression by DIO reflected consumed calories, rather than the pathophysiological milieu of obesity, as a diet high in calories from carbohydrates suppressed uroguanylin in lean mice, whereas calorie restriction restored uroguanylin in obese mice. However, hypothalamic GUCY2C, enriched in the arcuate nucleus, produced anorexigenic signals mediating satiety upon exogenous agonist administration, and DIO did not impair these responses. Uroguanylin replacement by transgenic expression in brain repaired the hormone insufficiency and reconstituted satiety responses opposing DIO and its associated comorbidities, including visceral adiposity, glucose intolerance and hepatic steatosis. Conclusions: These studies reveal a novel pathophysiological mechanism contributing to obesity in which calorie-induced suppression

  4. Age-related autocrine diabetogenic effects of transgenic resistin in spontaneously hypertensive rats: gene expression profile analysis

    PubMed Central

    Zídek, Václav; Landa, Vladimír; Šimáková, Miroslava; Mlejnek, Petr; Šilhavý, Jan; Maxová, Martina; Kazdová, Ludmila; Seidman, Jonathan G.; Seidman, Christine E.; Eminaga, Seda; Gorham, Joshua; Wang, Jiaming; Kurtz, Theodore W.

    2011-01-01

    Increased circulating levels of resistin have been proposed as a possible link between obesity and insulin resistance; however, many of the potential metabolic effects of resistin remain to be investigated, including systemic versus local resistin action. We investigated potential autocrine effects of resistin on lipid and glucose metabolism in 2- and 16-mo-old transgenic spontaneously hypertensive rats (SHR) expressing a nonsecreted form of mouse resistin under control of the aP2 promoter. To search for possible molecular mechanisms, we compared gene expression profiles in adipose tissue in 6-wk-old transgenic SHR versus control rats, before development of insulin resistance, by digital transcriptional profiling using high-throughput sequencing. Both young and old transgenic rats showed moderate expression of the resistin transgene in adipose tissue but had serum resistin levels similar to control SHR and undetectable levels of transgenic resistin in the circulation. Young transgenic rats exhibited mild glucose intolerance. In contrast, older transgenic rats displayed marked glucose intolerance in association with near total resistance of adipose tissue to insulin-stimulated glucose incorporation into lipids (6 ± 2 vs. 77 ± 19 nmol glucose·g−1·2 h−1, P < 0.00001). Ingenuity Pathway Analysis of differentially expressed genes revealed calcium signaling, Nuclear factor-erythroid 2-related factor-2 (NRF2)-mediated oxidative stress response, and actin cytoskeletal signaling canonical pathways as those most significantly affected. Analysis using DAVID software revealed oxidative phosphorylation, glutathione metabolism, pyruvate metabolism, and peroxisome proliferator-activated receptor (PPAR) signaling as top Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. These results suggest that with increasing age autocrine effects of resistin in fat tissue may predispose to diabetes in part by impairing insulin action in adipose tissue. PMID:21285283

  5. Activation of endothelial β-catenin signaling induces heart failure.

    PubMed

    Nakagawa, Akito; Naito, Atsuhiko T; Sumida, Tomokazu; Nomura, Seitaro; Shibamoto, Masato; Higo, Tomoaki; Okada, Katsuki; Sakai, Taku; Hashimoto, Akihito; Kuramoto, Yuki; Oka, Toru; Lee, Jong-Kook; Harada, Mutsuo; Ueda, Kazutaka; Shiojima, Ichiro; Limbourg, Florian P; Adams, Ralf H; Noda, Tetsuo; Sakata, Yasushi; Akazawa, Hiroshi; Komuro, Issei

    2016-01-01

    Activation of β-catenin-dependent canonical Wnt signaling in endothelial cells plays a key role in angiogenesis during development and ischemic diseases, however, other roles of Wnt/β-catenin signaling in endothelial cells remain poorly understood. Here, we report that sustained activation of β-catenin signaling in endothelial cells causes cardiac dysfunction through suppressing neuregulin-ErbB pathway in the heart. Conditional gain-of-function mutation of β-catenin, which activates Wnt/β-catenin signaling in Bmx-positive arterial endothelial cells (Bmx/CA mice) led to progressive cardiac dysfunction and 100% mortality at 40 weeks after tamoxifen treatment. Electron microscopic analysis revealed dilatation of T-tubules and degeneration of mitochondria in cardiomyocytes of Bmx/CA mice, which are similar to the changes observed in mice with decreased neuregulin-ErbB signaling. Endothelial expression of Nrg1 and cardiac ErbB signaling were suppressed in Bmx/CA mice. The cardiac dysfunction of Bmx/CA mice was ameliorated by administration of recombinant neuregulin protein. These results collectively suggest that sustained activation of Wnt/β-catenin signaling in endothelial cells might be a cause of heart failure through suppressing neuregulin-ErbB signaling, and that the Wnt/β-catenin/NRG axis in cardiac endothelial cells might become a therapeutic target for heart failure. PMID:27146149

  6. Activation of endothelial β-catenin signaling induces heart failure

    PubMed Central

    Nakagawa, Akito; Naito, Atsuhiko T.; Sumida, Tomokazu; Nomura, Seitaro; Shibamoto, Masato; Higo, Tomoaki; Okada, Katsuki; Sakai, Taku; Hashimoto, Akihito; Kuramoto, Yuki; Oka, Toru; Lee, Jong-Kook; Harada, Mutsuo; Ueda, Kazutaka; Shiojima, Ichiro; Limbourg, Florian P.; Adams, Ralf H.; Noda, Tetsuo; Sakata, Yasushi; Akazawa, Hiroshi; Komuro, Issei

    2016-01-01

    Activation of β-catenin-dependent canonical Wnt signaling in endothelial cells plays a key role in angiogenesis during development and ischemic diseases, however, other roles of Wnt/β-catenin signaling in endothelial cells remain poorly understood. Here, we report that sustained activation of β-catenin signaling in endothelial cells causes cardiac dysfunction through suppressing neuregulin-ErbB pathway in the heart. Conditional gain-of-function mutation of β-catenin, which activates Wnt/β-catenin signaling in Bmx-positive arterial endothelial cells (Bmx/CA mice) led to progressive cardiac dysfunction and 100% mortality at 40 weeks after tamoxifen treatment. Electron microscopic analysis revealed dilatation of T-tubules and degeneration of mitochondria in cardiomyocytes of Bmx/CA mice, which are similar to the changes observed in mice with decreased neuregulin-ErbB signaling. Endothelial expression of Nrg1 and cardiac ErbB signaling were suppressed in Bmx/CA mice. The cardiac dysfunction of Bmx/CA mice was ameliorated by administration of recombinant neuregulin protein. These results collectively suggest that sustained activation of Wnt/β-catenin signaling in endothelial cells might be a cause of heart failure through suppressing neuregulin-ErbB signaling, and that the Wnt/β-catenin/NRG axis in cardiac endothelial cells might become a therapeutic target for heart failure. PMID:27146149

  7. MCP-1 expressed by osteoclasts stimulates osteoclastogenesis in an autocrine/paracrine manner

    SciTech Connect

    Miyamoto, Kana; Ninomiya, Ken; Sonoda, Koh-Hei; Miyauchi, Yoshiteru; Hoshi, Hiroko; Iwasaki, Ryotaro; Miyamoto, Hiroya; and others

    2009-06-05

    Monocyte chemoattractant protein-1 (MCP-1) is a chemokine that plays a critical role in the recruitment and activation of leukocytes. Here, we describe that multinuclear osteoclast formation was significantly inhibited in cells derived from MCP-1-deficient mice. MCP-1 has been implicated in the regulation of osteoclast cell-cell fusion; however defects of multinuclear osteoclast formation in the cells from mice deficient in DC-STAMP, a seven transmembrane receptor essential for osteoclast cell-cell fusion, was not rescued by recombinant MCP-1. The lack of MCP-1 in osteoclasts resulted in a down-regulation of DC-STAMP, NFATc1, and cathepsin K, all of which were highly expressed in normal osteoclasts, suggesting that osteoclast differentiation was inhibited in MCP-1-deficient cells. MCP-1 alone did not induce osteoclastogenesis, however, the inhibition of osteoclastogenesis in MCP-1-deficient cells was restored by addition of recombinant MCP-1, indicating that osteoclastogenesis was regulated in an autocrine/paracrine manner by MCP-1 under the stimulation of RANKL in osteoclasts.

  8. IL-8, a novel messenger to cross-link inflammation and tumor EMT via autocrine and paracrine pathways (Review).

    PubMed

    Long, Xinxin; Ye, Yingnan; Zhang, Lijie; Liu, Pengpeng; Yu, Wenwen; Wei, Feng; Ren, Xiubao; Yu, Jinpu

    2016-01-01

    The epithelial-mesenchymal transition (EMT) is a process through which epithelial cells trans-differentiate and acquire an aggressive mesenchymal phenotype. In tumor cells, EMT is a vital step of tumor progression and metastasis. Amid the increasing interest in tumor EMT, only a few studies focused on the soluble mediators secreted by tumor cells passing through this phenotypic switch. In this review, we focus on the essential role of interleukin-8 (IL-8) signaling for the acquisition and maintenance of tumor EMT via direct and indirect mechanisms. Besides the autocrine loop between IL-8 and tumor cells that have gone through EMT, IL-8 could potentiate adjacent epithelial tumor cells into a mesenchymal phenotype via a paracrine mode. Moreover, understanding the role of IL-8 in EMT will provide insight into the pathogenesis of tumor progression and may facilitate the development of an effective strategy for the prevention and treatment of metastatic cancer.

  9. Autocrine/paracrine proliferative effect of ovarian GH and IGF-I in chicken granulosa cell cultures.

    PubMed

    Ahumada-Solórzano, S Marisela; Martínez-Moreno, Carlos G; Carranza, Martha; Ávila-Mendoza, José; Luna-Acosta, José Luis; Harvey, Steve; Luna, Maricela; Arámburo, Carlos

    2016-08-01

    It is known that growth hormone (GH) and its receptor (GHR) are expressed in granulosa cells (GC) and thecal cells during the follicular development in the hen ovary, which suggests GH is involved in autocrine/paracrine actions in the female reproductive system. In this work, we show that the knockdown of local ovarian GH with a specific cGH siRNA in GC cultures significantly decreased both cGH mRNA expression and GH secretion to the media, and also reduced their proliferative rate. Thus, we analyzed the effect of ovarian GH and recombinant chicken GH (rcGH) on the proliferation of pre-hierarchical GCs in primary cultures. Incubation of GCs with either rcGH or conditioned media, containing predominantly a 15-kDa GH isoform, showed that both significantly increased proliferation as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, proliferating cell nuclear antigen (PCNA) quantification and ((3)H)-thymidine incorporation ((3)H-T) assays in a dose response fashion. Both, locally produced GH and rcGH also induced the phosphorylation of Erk1/2 in GC cultures. Furthermore, GH increased IGF-I synthesis and its release into the GC culture incubation media. These results suggest that GH may act through local IGF-I to induce GC proliferation, since IGF-I immunoneutralization completely abolished the GH-induced proliferative effect. These data suggest that GH and IGF-I may play a role as autocrine/paracrine regulators during the follicular development in the hen ovary at the pre-hierarchical stage. PMID:27174747

  10. LIMB DEFECTS INDUCED BY RETINOIC ACID SIGNALING ANTAGONISM AND SYNTHESIS INHIBITION ARE CONSISTENT WITH ETHANOL-INDUCED LIMB DEFECTS

    EPA Science Inventory

    Limb defects induced by retinoic acid signaling antagonism and synthesis inhibition are consistent with ethanol-induced limb defects

    Johnson CS1, Sulik KK1,2, Hunter, ES III3
    1Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, NC....

  11. Phosphoglucose isomerase/autocrine motility factor mediates epithelial and mesenchymal phenotype conversions in breast cancer.

    PubMed

    Funasaka, Tatsuyoshi; Hogan, Victor; Raz, Avraham

    2009-07-01

    Phosphoglucose isomerase/autocrine motility factor (PGI/AMF) is a housekeeping gene product/cytokine that catalyzes a step in glycolysis and gluconeogenesis, and acts as a multifunctional cytokine associated with aggressive tumors. PGI/AMF has been correlated significantly with breast cancer progression and poor prognosis in breast cancer. We show here that ectopic expression of PGI/AMF induced epithelial-to-mesenchymal transition (EMT) in MCF10A normal human breast epithelial cells, and inhibition of PGI/AMF expression triggered mesenchymal-to-epithelial transition (MET) in aggressive mesenchymal-type human breast cancer MDA-MB-231 cells. EMT in MCF10A cells was shown by morphologic changes and loss of E-cadherin/beta-catenin-mediated cell-cell adhesion, which is concomitant with the induction of the E-cadherin transcriptional repressor Snail and proteosome-dependent degradation of beta-catenin protein. Molecular analysis showed that PGI/AMF suppressed epithelial marker expressions and enhanced mesenchymal marker expressions. Silencing of PGI/AMF expression by RNA interference in MDA-MB-231 cells induced the reverse processes of EMT including altered cell shape, gain of epithelial marker, and reduction of mesenchymal marker, e.g., MET. Taken together, the results show the involvement of PGI/AMF in both EMT and MET: overexpression of PGI/AMF induces EMT in normal breast epithelial cells and reduction of PGI/AMF expression led to MET in aggressive breast cancer cells. These results suggest for the first time that PGI/AMF is a key gene to both EMT in the initiating step of cancer metastasis and MET in the later stage of metastasis during breast cancer progression.

  12. Oscillation-Induced Signal Transmission and Gating in Neural Circuits

    PubMed Central

    Jahnke, Sven; Memmesheimer, Raoul-Martin; Timme, Marc

    2014-01-01

    Reliable signal transmission constitutes a key requirement for neural circuit function. The propagation of synchronous pulse packets through recurrent circuits is hypothesized to be one robust form of signal transmission and has been extensively studied in computational and theoretical works. Yet, although external or internally generated oscillations are ubiquitous across neural systems, their influence on such signal propagation is unclear. Here we systematically investigate the impact of oscillations on propagating synchrony. We find that for standard, additive couplings and a net excitatory effect of oscillations, robust propagation of synchrony is enabled in less prominent feed-forward structures than in systems without oscillations. In the presence of non-additive coupling (as mediated by fast dendritic spikes), even balanced oscillatory inputs may enable robust propagation. Here, emerging resonances create complex locking patterns between oscillations and spike synchrony. Interestingly, these resonances make the circuits capable of selecting specific pathways for signal transmission. Oscillations may thus promote reliable transmission and, in co-action with dendritic nonlinearities, provide a mechanism for information processing by selectively gating and routing of signals. Our results are of particular interest for the interpretation of sharp wave/ripple complexes in the hippocampus, where previously learned spike patterns are replayed in conjunction with global high-frequency oscillations. We suggest that the oscillations may serve to stabilize the replay. PMID:25503492

  13. Intraspecific Signals Inducing Aggregation in Periplaneta americana (Insecta: Dictyoptera).

    PubMed

    Imen, Saïd; Christian, Malosse; Virginie, Durier; Colette, Rivault

    2015-06-01

    Chemical communication is necessary to induce aggregation and to maintain the cohesion of aggregates in Periplaneta americana (L.) cockroaches. We aimed to identify the chemical message inducing aggregation in this species. Two types of bioassays were used-binary choice tests in Petri dishes and tests in Y-olfactometer. Papers conditioned by direct contact of conspecifics induce aggregation when proposed in binary choice tests and were attractive in a Y-olfactometer. The identification of the molecules present on these conditioned papers indicated that dichloromethane extracts contained mainly cuticular hydrocarbons whereas methanol extracts contained more volatile molecules. Only a mixture of extracts in both solvents induced aggregation. High concentrations of cuticular hydrocarbons are necessary to induce aggregation when presented alone. When presented with volatile molecules present in methanol extracts, low concentrations of cuticular hydrocarbons are sufficient to induce aggregation if they are presented in contact. Among volatile molecules collected on filter paper, a mixture of three compounds-hexadecanoic acid, pentadecanoic acid, and pentaethylene glycol-induced aggregation. Our results provide evidence that aggregation processes in P. americana relies on a dual mechanism: attraction over long distances by three volatile molecules and maintenance on site by contact with cuticular hydrocarbons. PMID:26313978

  14. Genetic variation in insulin-induced kinase signaling

    PubMed Central

    Wang, Isabel Xiaorong; Ramrattan, Girish; Cheung, Vivian G

    2015-01-01

    Individual differences in sensitivity to insulin contribute to disease susceptibility including diabetes and metabolic syndrome. Cellular responses to insulin are well studied. However, which steps in these response pathways differ across individuals remains largely unknown. Such knowledge is needed to guide more precise therapeutic interventions. Here, we studied insulin response and found extensive individual variation in the activation of key signaling factors, including ERK whose induction differs by more than 20-fold among our subjects. This variation in kinase activity is propagated to differences in downstream gene expression response to insulin. By genetic analysis, we identified cis-acting DNA variants that influence signaling response, which in turn affects downstream changes in gene expression and cellular phenotypes, such as protein translation and cell proliferation. These findings show that polymorphic differences in signal transduction contribute to individual variation in insulin response, and suggest kinase modulators as promising therapeutics for diseases characterized by insulin resistance. PMID:26202599

  15. Opioid-induced central immune signaling: implications for opioid analgesia

    PubMed Central

    Grace, Peter M.; Maier, Steven F.; Watkins, Linda R.

    2015-01-01

    Despite being the mainstay of pain management, opioids are limited in their clinical utility by adverse effects, such as tolerance and paradoxical hyperalgesia. Research of the past 15 years has extended beyond neurons, to implicate central nervous system immune signaling in these adverse effects. This article will provide an overview of these central immune mechanisms in opioid tolerance and paradoxical hyperalgesia, including those mediated by toll like receptor 4, purinergic, ceramide and chemokine signaling. Challenges for the future, as well as new lines of investigation will be highlighted. PMID:25833219

  16. Vasoreparative dysfunction of CD34+ cells in diabetic individuals involves hypoxic desensitization and impaired autocrine/paracrine mechanisms.

    PubMed

    Jarajapu, Yagna P R; Hazra, Sugata; Segal, Mark; Li Calzi, Sergio; LiCalzi, Sergio; Jadhao, Chandra; Jhadao, Chandra; Qian, Kevin; Mitter, Sayak K; Raizada, Mohan K; Boulton, Michael E; Grant, Maria B

    2014-01-01

    We hypothesized that endothelial progenitor cells derived from individuals with diabetes would exhibit functional defects including inability to respond to hypoxia and altered paracrine/autocrine function that would impair the angiogenic potential of these cells. Circulating mononuclear cells isolated from diabetic (n = 69) and nondiabetic (n = 46) individuals were used to grow endothelial colony forming cells (ECFC), early endothelial progenitor cells (eEPCs) and isolate CD34+ cells. ECFCs and eEPCs were established from only 15% of the diabetic individuals tested thus directing our main effort toward examination of CD34+ cells. CD34+ cells were plated in basal medium to obtain cell-free conditioned medium (CM). In CM derived from CD34+ cells of diabetic individuals (diabetic-CM), the levels of stem cell factor, hepatocyte growth factor, and thrombopoietin were lower, and IL-1β and tumor necrosis factor (TNFα) levels were higher than CM derived from nondiabetic individuals (nondiabetic-CM). Hypoxia did not upregulate HIF1α in CD34+ cells of diabetic origin. Migration and proliferation of nondiabetic CD34+ cells toward diabetic-CM were lower compared to nondiabetic-CM. Attenuation of pressure-induced constriction, potentiation of bradykinin relaxation, and generation of cGMP and cAMP in arterioles were observed with nondiabetic-CM, but not with diabetic-CM. Diabetic-CM failed to induce endothelial tube formation from vascular tissue. These results suggest that diabetic subjects with microvascular complications exhibit severely limited capacity to generate ex-vivo expanded endothelial progenitor populations and that the vasoreparative dysfunction observed in diabetic CD34+ cells is due to impaired autocrine/paracrine function and reduced sensitivity to hypoxia. PMID:24713821

  17. Peach (Prunus persica) extract inhibits angiotensin II-induced signal transduction in vascular smooth muscle cells.

    PubMed

    Kono, Ryohei; Okuno, Yoshiharu; Nakamura, Misa; Inada, Ken-ichi; Tokuda, Akihiko; Yamashita, Miki; Hidaka, Ryu; Utsunomiya, Hirotoshi

    2013-08-15

    Angiotensin II (Ang II) is a vasoactive hormone that has been implicated in cardiovascular diseases. Here, the effect of peach, Prunus persica L. Batsch, pulp extract on Ang II-induced intracellular Ca(2+) mobilization, reactive oxygen species (ROS) production and signal transduction events in cultured vascular smooth muscle cells (VSMCs) was investigated. Pretreatment of peach ethyl acetate extract inhibited Ang II-induced intracellular Ca(2+) elevation in VSMCs. Furthermore, Ang II-induced ROS generation, essential for signal transduction events, was diminished by the peach ethyl acetate extract. The peach ethyl acetate extract also attenuated the Ang II-induced phosphorylation of epidermal growth factor receptor and myosin phosphatase target subunit 1, both of which are associated with atherosclerosis and hypertension. These results suggest that peach ethyl acetate extract may have clinical potential for preventing cardiovascular diseases by interfering with Ang II-induced intracellular Ca(2+) elevation, the generation of ROS, and then blocking signal transduction events.

  18. Real-time monitoring of cAMP response element binding protein signaling in porcine granulosa cells modulated by ovarian factors.

    PubMed

    He, Pei Jian; Fujimoto, Yasunori; Yamauchi, Nobuhiko; Hattori, Masa-Aki

    2006-10-01

    The present study was performed to establish a real-time monitoring of the cAMP response element binding protein (CREB) signalling using granulosa cells, and to assess the modulation of CREB activity by potential ovarian autocrine/paracrine and oocyte-derived factors. Granulosa cells were isolated from porcine follicles and cultured for 2 days, and then transfected with CRE-containing pGL3. The cells were directly stimulated or cultured with FSH, LH, forskolin, or a permeable cAMP analog, and/or IGF-I, EGF, bFGF, TGF-beta2 or TNF-alpha, or cumulus-oocyte complex (COCs) for the real-time monitoring of CREB signaling. The activation pattern of CREB signaling consisted of three distinct phases, i.e., burst, attenuation and refractory. In contrast to FSH, LH, and forskolin, a cAMP analog induced the prolonged activation, although three distinct phases were observed at its high concentration. Of all the autocrine/paracrine factors, only IGF-I slightly induced CREB activity. On the other hand, TGF-beta2 and TNF-alpha significantly repressed FSH-stimulated transcriptional activation of CREB by 30% (P < 0.05) and 45% (P < 0.05), respectively. Additionally, coculture with COCs caused a significant suppression of transcriptional activation of CREB signaling stimulated by FSH. These results indicate that ovarian autocrine/paracrine factors such as IGF-I, TGF-beta2, TNF-alpha and oocyte-derived factors modulate the CREB signaling. The present study provides a new approach for direct signaling study on transcription factors under the influences of potential factors.

  19. Autocrine ligands of the epithelial growth factor receptor mediate inflammatory responses to diesel exhaust particles

    PubMed Central

    2014-01-01

    Background Diesel exhaust is associated with cardiovascular and respiratory mortality and morbidity. Acute exposure leads to increased IL-8 expression and airway neutrophilia, however the mechanism of this response is unknown. Objectives: As cigarette smoke-induced IL-8 expression by epithelial cells involves transactivation of the epidermal growth factor receptor (EGFR), we studied the effects of diesel exhaust particles (DEP) on IL-8 release and the role of the EGFR. Methods Primary bronchial epithelial cells (PBEC) were exposed to DEPs or carbon black. IL-8 and EGFR ligand expression (transforming growth factor alpha (TGFα), heparin-binding EGF-like growth factor, and amphiregulin (AR)) were assessed by quantitative RT-PCR and ELISA. Results DEP, but not carbon black, caused a dose-dependent increase in mitogen-activated protein kinase (MAPK) activation and IL-8 expression, however above 50 μg/ml there was an increase in cytotoxicity. At 50 μg/ml, DEPs stimulated transcription and release of IL-8 and EGFR ligands. IL-8 release was blocked by EGFR neutralizing antibodies, an EGFR-selective tyrosine kinase inhibitor and by the metalloprotease inhibitor, GM6001, which blocks EGFR ligand shedding. Neutralizing antibodies to AR, TGFα and heparin-binding (HB)-EGF reduced DEP-induced IL-8 by >50%. Conclusion Expression of IL-8 in response to DEPs is dependent on EGFR activation and that autocrine production of EGFR ligands makes a substantial contribution to this response. Capsule Summary: This study identifies a mechanism whereby diesel particles stimulates IL-8 release from bronchial epithelial cells. This mechanism may help to explain the recruitment of neutrophils into the airways of people exposed to particulate air pollution. PMID:24555532

  20. RNAi Induces Innate Immunity through Multiple Cellular Signaling Pathways

    PubMed Central

    Wu, Jun; Pei, Rongjuan; Xu, Yang; Yang, Dongliang; Roggendorf, Michael; Lu, Mengji

    2013-01-01

    Background & Aims Our previous results showed that the knockdown of woodchuck hepatitis virus (WHV) by RNA interference (RNAi) led to upregulation of interferon stimulated genes (ISGs) in primary hepatocytes. In the present study, we tested the hypothesis that the cellular signaling pathways recognizing RNA molecules may be involved the ISG stimulation by RNAi. Methods Primary murine hepatocytes (PMHs) from wild type mice and WHV transgenic (Tg) mice were prepared and treated with defined siRNAs. The mRNA levels of target genes and ISGs were detected by real-time RT-PCR. The involvement of the signaling pathways including RIG-I/MDA5, PKR, and TLR3/7/8/9 was examined by specific inhibition and the analysis of their activation by Western blotting. Results In PMHs from WHV Tg mice, specific siRNAs targeting WHV, mouse β-actin, and GAPDH reduced the levels of targeted mRNAs and increased the mRNA expression of IFN-β, MxA, and IP-10. The enhanced ISG expression by siRNA transfection were abolished by siRNA-specific 2′-O-methyl antisense RNA and the inhibitors 2-AP and chloroquine blocking PKR and other TLR-mediated signaling pathways. Furthermore, Western blotting revealed that RNAi results in an increase in PKR phosphorylation and nuclear translocation of IRF3 and NF-êB, indicating the possible role of IRF3 in the RNAi-directed induction of ISGs. In contrast, silencing of RIG-I and MDA5 failed to block RNAi-mediated MxA induction. Conclusions RNAi is capable of enhancing innate immune responses through the PKR- and TLR-dependent signaling pathways in primary hepatocytes. The immune stimulation by RNAi may contribute to the antiviral activity of siRNAs in vivo. PMID:23700487

  1. Nuclear Localization Signal Peptides Induce Molecular Delivery along Microtubules

    PubMed Central

    Salman, Hanna; Abu-Arish, Asmahan; Oliel, Shachar; Loyter, Avraham; Klafter, Joseph; Granek, Rony; Elbaum, Michael

    2005-01-01

    Many essential processes in eukaryotic cells depend on regulated molecular exchange between its two major compartments, the cytoplasm and the nucleus. In general, nuclear import of macromolecular complexes is dependent on specific peptide signals and their recognition by receptors that mediate translocation through the nuclear pores. Here we address the question of how protein products bearing such nuclear localization signals arrive at the nuclear membrane before import, i.e., by simple diffusion or perhaps with assistance of cytoskeletal elements or cytoskeleton-associated motor proteins. Using direct single-particle tracking and detailed statistical analysis, we show that the presence of nuclear localization signals invokes active transport along microtubules in a cell-free Xenopus egg extract. Chemical and antibody inhibition of minus-end directed cytoplasmic dynein blocks this active movement. In the intact cell, where microtubules project radially from the centrosome, such an interaction would effectively deliver nuclear-targeted cargo to the nuclear envelope in preparation for import. PMID:16040740

  2. Epidermal growth factor receptor signaling in tissue

    SciTech Connect

    Shvartsman, Stanislav; Wiley, H. S.; Lauffenburger, Douglas A.

    2004-08-01

    Abstract: A peptide purified from the salivary gland of a mouse was shown few years ago to accelerate incisor eruption and eyelid opening in newborn mice, and was named epidermal growth factor (EGF). The members of this family of peptide growth factors had been identified in numerous physiological and pathological contexts. EGF binds to a cell surface EGF receptor, which induces a biochemical modification (phosphorylation) of the receptor's cytoplasmic tail. There is a growing consensus in the research community that, in addition to cellular and molecular studies, the dynamics of the EGFR network and its operation must be examined in tissues. A key challenge is to integrate the existing molecular and cellular information into a system-level description of the EGFR network at the tissue and organism level. In this paper, the two examples of EGFR signaling in tissues are described, and the recent efforts to model EGFR autocrine loops, which is a predominant mode of EGFR activation in vivo, are summarized.

  3. Superoxide fluxes limit nitric oxide-induced signaling.

    PubMed

    Thomas, Douglas D; Ridnour, Lisa A; Espey, Michael Graham; Donzelli, Sonia; Ambs, Stefan; Hussain, S Perwez; Harris, Curtis C; DeGraff, William; Roberts, David D; Mitchell, James B; Wink, David A

    2006-09-01

    Independently, superoxide (O2-) and nitric oxide (NO) are biologically important signaling molecules. When co-generated, these radicals react rapidly to form powerful oxidizing and nitrating intermediates. Although this reaction was once thought to be solely cytotoxic, herein we demonstrate using MCF7, macrophage, and endothelial cells that when nanomolar levels of NO and O2- were produced concomitantly, the effective NO concentration was established by the relative fluxes of these two radicals. Differential regulation of sGC, pERK, HIF-1alpha, and p53 were used as biological dosimeters for NO concentration. Introduction of intracellular- or extracellular-generated O2- during NO generation resulted in a concomitant increase in oxidative intermediates with a decrease in steady-state NO concentrations and a proportional reduction in the levels of sGC, ERK, HIF-1alpha, and p53 regulation. NO responses were restored by addition of SOD. The intermediates formed from the reactions of NO with O2- were non-toxic, did not form 3-nitrotyrosine, nor did they elicit any signal transduction responses. H2O2 in bolus or generated from the dismutation of O2- by SOD, was cytotoxic at high concentrations and activated p53 independent of NO. This effect was completely inhibited by catalase, suppressed by NO, and exacerbated by intracellular catalase inhibition. We conclude that the reaction of O2- with NO is an important regulatory mechanism, which modulates signaling pathways by limiting steady-state levels of NO and preventing H2O2 formation from O2-.

  4. TGF-β but not BMP signaling induces prechondrogenic condensation through ATP oscillations during chondrogenesis.

    PubMed

    Kwon, Hyuck Joon

    2012-08-10

    Although both TGF-β and BMP signaling enhance expression of adhesion molecules during chondrogenesis, TGF-β but not BMP signaling can initiate condensation of uncondensed mesenchymal cells. However, it remains unclear what causes the differential effects between TGF-β and BMP signaling on prechondrogenic condensation. Our previous report demonstrated that ATP oscillations play a critical role in prechondrogenic condensation. Thus, the current study examined whether ATP oscillations are associated with the differential actions of TGF-β and BMP signaling on prechondrogenic condensation. The result revealed that while both TGF-β1 and BMP2 stimulated chondrogenic differentiation, TGF-β1 but not BMP2 induced prechondrogenic condensation. It was also found that TGF-β1 but not BMP2 induced ATP oscillations and inhibition of TGF-β but not BMP signaling prevented insulin-induced ATP oscillations. Moreover, blockage of ATP oscillations inhibited TGF-β1-induced prechondrogenic condensation. In addition, TGF-β1-driven ATP oscillations and prechondrogenic condensation depended on Ca(2+) influx via voltage-dependent calcium channels. This study suggests that Ca(2+)-driven ATP oscillations mediate TGF-β-induced the initiation step of prechondrogenic condensation and determine the differential effects between TGF-β and BMP signaling on chondrogenesis.

  5. Substance P Is a Mechanoresponsive, Autocrine Regulator of Human Tenocyte Proliferation

    PubMed Central

    Backman, Ludvig J.; Fong, Gloria; Andersson, Gustav; Scott, Alexander; Danielson, Patrik

    2011-01-01

    It has been hypothesised that substance P (SP) may be produced by primary fibroblastic tendon cells (tenocytes), and that this production, together with the widespread distribution of the neurokinin-1 receptor (NK-1 R) in tendon tissue, could play an important role in the development of tendinopathy, a condition of chronic tendon pain and thickening. The aim of this study was to examine the possibility of endogenous SP production and the expression of NK-1 R by human tenocytes. Because tendinopathy is related to overload, and because the predominant tissue pathology (tendinosis) underlying early tendinopathy is characterized by tenocyte hypercellularity, the production of SP in response to loading/strain and the effects of exogenously administered SP on tenocyte proliferation were also studied. A cell culture model of primary human tendon cells was used. The vast majority of tendon cells were immunopositive for the tenocyte/fibroblast markers tenomodulin and vimentin, and immunocytochemical counterstaining revealed that positive immunoreactions for SP and NK-1 R were seen in a majority of these cells. Gene expression analyses showed that mechanical loading (strain) of tendon cell cultures using the FlexCell© technique significantly increased the mRNA levels of SP, whereas the expression of NK-1 R mRNA decreased in loaded as compared to unloaded tendon cells. Reduced NK-1 R protein was also observed, using Western blot, after exogenously administered SP at a concentration of 10−7 M. SP exposure furthermore resulted in increased cell metabolism, increased cell viability, and increased cell proliferation, all of which were found to be specifically mediated via the NK-1 R; this in turn involving a common mitogenic cell signalling pathway, namely phosphorylation of ERK1/2. This study indicates that SP, produced by tenocytes in response to mechanical loading, may regulate proliferation through an autocrine loop involving the NK-1 R. PMID:22069500

  6. Anticancer agent xanthohumol inhibits IL-2 induced signaling pathways involved in T cell proliferation.

    PubMed

    Liu, Yongbo; Gao, Xiaohua; Deeb, Dorrah; Arbab, Ali S; Dulchavsky, Scott A; Gautam, Subhash C

    2012-01-01

    Xanthohumol (XN), a prenylated chalcone present in hops exhibits anti-inflammatory, antioxidant and anticancer activity. In the present study we show that XN inhibits the proliferation of mouse lymphoma cells and IL-2 induced proliferation and cell cycle progression in mouse splenic T cells. The suppression of T cell proliferation by XN was due to the inhibition of IL-2 induced Janus kinase/signal transducers and activators of transcription (Jak/STAT) and extracellular signal-regulated kinase 1 and 2 (Erk1/2) signaling pathways. XN also inhibited proliferation-related cellular proteins such as c-Myc, c-Fos and NF-kappaB and cyclin D1. Thus, understanding of IL-2 induced cell signaling pathways in normal T cells, which are constitutively turned on in T cell lymphomas may facilitate development of XN for the treatment of hematologic cancers. PMID:22946339

  7. Anticancer agent xanthohumol inhibits IL-2 induced signaling pathways involved in T cell proliferation

    PubMed Central

    Liu, Yongbo; Gao, Xiaohua; Deeb, Dorrah; Arbab, Ali S.; Dulchavsky, Scott A.; Gautam, Subhash C.

    2013-01-01

    Xanthohumol (XN), a prenylated chalcone present in hops exhibits anti-inflammatory, antioxidant and anticancer activity. In the present study we show that XN inhibits the proliferation of mouse lymphoma cells and IL-2 induced proliferation and cell cycle progression in mouse splenic T cells. The suppression of T cell proliferation by XN was due to the inhibition of IL-2 induced Janus kinase/signal transducers and activators of transcription (Jak/STAT) and extracellular signal-regulated kinase 1 and 2 (Erk1/2) signaling pathways. XN also inhibited proliferation-related cellular proteins such as c-Myc, c-Fos and NF-κB and cyclin D1. Thus, understanding of IL-2 induced cell signaling pathways in normal T cells, which are constitutively turned on in T cell lymphomas may facilitate development of XN for the treatment of hematologic cancers. PMID:22946339

  8. A New Method for Reduction of Photomultiplier Signal-Induced Noise

    NASA Technical Reports Server (NTRS)

    Koble, Andrea; DeYoung, Russell

    2000-01-01

    For lidar measurements of ozone, photomultiplier tube (PMT) detector signal-induced noise represents a fundamental problem that complicates the extraction of information from lidar data. A new method is developed to significantly reduce signal-induced noise in lidar receiver PMT detectors. The electron optics of the lidar photomultiplier detector is modified to filter the source of signal-induced noise. A mesh electrode external to the PMT is utilized to control photoemission and disorient electron trajectories from the photocathode to the first dynode. Experiments were taken both with simulated and actual lidar return signals at Langley Research Center. Results show at least 40 percent more accurate ozone number density values with a mesh voltage of 60 V applied than with no voltage applied.

  9. Capsaicin mimics mechanical load-induced intracellular signaling events: involvement of TRPV1-mediated calcium signaling in induction of skeletal muscle hypertrophy.

    PubMed

    Ito, Naoki; Ruegg, Urs T; Kudo, Akira; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi

    2013-01-01

    Mechanical load-induced intracellular signaling events are important for subsequent skeletal muscle hypertrophy. We previously showed that load-induced activation of the cation channel TRPV1 caused an increase in intracellular calcium concentrations ([Ca ( 2+) ]i) and that this activated mammalian target of rapamycin (mTOR) and promoted muscle hypertrophy. However, the link between mechanical load-induced intracellular signaling events, and the TRPV1-mediated increases in [Ca ( 2+) ]i are not fully understood. Here we show that administration of the TRPV1 agonist, capsaicin, induces phosphorylation of mTOR, p70S6K, S6, Erk1/2 and p38 MAPK, but not Akt, AMPK or GSK3β. Furthermore, the TRPV1-induced phosphorylation patterns resembled those induced by mechanical load. Our results continue to highlight the importance of TRPV1-mediated calcium signaling in load-induced intracellular signaling pathways.

  10. Signaling events in pathogen-induced macrophage foam cell formation.

    PubMed

    Shaik-Dasthagirisaheb, Yazdani B; Mekasha, Samrawit; He, Xianbao; Gibson, Frank C; Ingalls, Robin R

    2016-08-01

    Macrophage foam cell formation is a key event in atherosclerosis. Several triggers induce low-density lipoprotein (LDL) uptake by macrophages to create foam cells, including infections with Porphyromonas gingivalis and Chlamydia pneumoniae, two pathogens that have been linked to atherosclerosis. While gene regulation during foam cell formation has been examined, comparative investigations to identify shared and specific pathogen-elicited molecular events relevant to foam cell formation are not well documented. We infected mouse bone marrow-derived macrophages with P. gingivalis or C. pneumoniae in the presence of LDL to induce foam cell formation, and examined gene expression using an atherosclerosis pathway targeted plate array. We found over 30 genes were significantly induced in response to both pathogens, including PPAR family members that are broadly important in atherosclerosis and matrix remodeling genes that may play a role in plaque development and stability. Six genes mainly involved in lipid transport were significantly downregulated. The response overall was remarkably similar and few genes were regulated in a pathogen-specific manner. Despite very divergent lifestyles, P. gingivalis and C. pneumoniae activate similar gene expression profiles during foam cell formation that may ultimately serve as targets for modulating infection-elicited foam cell burden, and progression of atherosclerosis.

  11. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    SciTech Connect

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang

    2015-05-15

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment.

  12. Interleukin-1 alpha production during Rickettsia rickettsii infection of cultured endothelial cells: potential role in autocrine cell stimulation.

    PubMed Central

    Sporn, L A; Marder, V J

    1996-01-01

    Rickettsia rickettsii infection results in numerous responses by cultured endothelial cells, among them a rapid, transient increase in steady-state levels of tissue factor mRNA (L.A. Sporn, P.J. Haidaris, R.-J. Shi, Y. Nemerson, D.J. Silverman, and V.J. Marder, Blood 83:1527-1534, 1994). In this study, production of interleukin-1 (IL-1) was measured during infection and its potential role in autocrine cell stimulation was investigated. A fivefold increase in levels of IL-1 alpha antigen was measured in cell lysate samples by enzyme-linked immunosorbent assay at 18 h of infection. The majority of IL-1 alpha remained cell associated, as no significant increase was detected in culture medium. No IL-1 beta antigen was detected in cell lysates or culture medium from either control or infected cultures. A dramatic increase in the levels of IL-1 alpha mRNA occurred following infection, as measured by reverse transcriptase PCR, which revealed the appearance of the expected 421-kb product with RNA extracted from cells infected for 4 h and no detectable product from control cell samples. The presence of functional, cell-associated IL-1 alpha activity in infected cells was confirmed, following disruption, by the ability of the infected cells to induce tissue factor expression in target endothelial cells. Such induction was eliminated by pretreatment of the disrupted cell samples with neutralizing antibodies against IL-1 alpha but not against IL-1 beta. To investigate whether endogenously produced IL-1 participates in the stimulation of tissue factor expression, neutralizing antibodies against IL-1 or the IL-1 receptor antagonist were added to culture medium during infection. Both anti-IL-1 alpha and the IL-1 receptor antagonist resulted in approximately 40% inhibition of tissue factor expression, thus implicating IL-1 alpha in autocrine cell stimulation. PMID:8613368

  13. Mesoscale variations in acoustic signals induced by atmospheric gravity waves.

    PubMed

    Chunchuzov, Igor; Kulichkov, Sergey; Perepelkin, Vitaly; Ziemann, Astrid; Arnold, Klaus; Kniffka, Anke

    2009-02-01

    The results of acoustic tomographic monitoring of the coherent structures in the lower atmosphere and the effects of these structures on acoustic signal parameters are analyzed in the present study. From the measurements of acoustic travel time fluctuations (periods 1 min-1 h) with distant receivers, the temporal fluctuations of the effective sound speed and wind speed are retrieved along different ray paths connecting an acoustic pulse source and several receivers. By using a coherence analysis of the fluctuations near spatially distanced ray turning points, the internal wave-associated fluctuations are filtered and their spatial characteristics (coherences, horizontal phase velocities, and spatial scales) are estimated. The capability of acoustic tomography in estimating wind shear near ground is shown. A possible mechanism describing the temporal modulation of the near-ground wind field by ducted internal waves in the troposphere is proposed.

  14. Autocrine motility factor receptor promotes the proliferation of human acute monocytic leukemia THP-1 cells

    PubMed Central

    WANG, YINGCHAO; MA, LINA; WANG, CHUNMEI; SHENG, GUANGYAO; FENG, LEI; YIN, CHUYUN

    2015-01-01

    The aberrant activation of autocrine motility factor receptor (AMFR) has been implicated in several types of human cancer. The present study aimed to elucidate the effect of AMFR on the regulation of proliferation in an acute monocytic leukemia cell line, THP-1. THP-1 cells were transfected with AMFR-targeted small interfering (si)RNA and a plasmid encoding a truncated AMFR, AMFR-C, (pcDNA3.1-AMFR-C). The mRNA and protein levels of AMFR and the downstream targets, rho-associated, coiled-coil containing protein kinase 2 (ROCK2), cyclin D1, and B-cell lymphoma (Bcl)-2, were measured using reverse transcription-quantitatibe polymerase chain reaction and immunoblot analyses. The effects on cell cycle and apoptosis were investigated using flow cytometry. The present study successfully established the knockdown of AMFR and expression of AMFR-C in the THP-1 cells. Downregulation of AMFR induced cell cycle arrest at the G0/G1 phase, and increased apoptosis of the THP-1 cells (all P<0.05). The AMFR siRNA increased the percentage of early apoptotic cells between 3.88±1.43 and 19.58±4.29% (P<0.05). The expression levels of ROCK2, cyclin D1 and Bcl-2 were reduced by the downregulation of AMFR and enhanced by overexpression of AMFR-C. In conclusion, AMFR appears to be crucial for the proliferation of the THP-1 acute monocytic leukemia cell line. Therefore, AMFR may represent a potential target for the treatment of acute monocytic leukemia. PMID:26136223

  15. Opposing regulation of the late phase TNF response by mTORC1-IL-10 signaling and hypoxia in human macrophages

    PubMed Central

    Huynh, Linda; Kusnadi, Anthony; Park, Sung Ho; Murata, Koichi; Park-Min, Kyung-Hyun; Ivashkiv, Lionel B.

    2016-01-01

    Tumor necrosis factor (TNF) is best known for inducing a rapid but transient NF-κB-mediated inflammatory response. We investigated later phases of TNF signaling, after the initial transient induction of inflammatory genes has subsided, in primary human macrophages. TNF signaling induced expression of late response genes, including inhibitors of NF-κB and TLR signaling, with delayed and sustained kinetics 6–24 hr after TNF stimulation. A subset of late phase genes was expressed in rheumatoid arthritis synovial macrophages, confirming their expression under chronic inflammatory conditions in vivo. Expression of a subset of late phase genes was mediated by autocrine IL-10, which activated STAT3 with delayed kinetics. Hypoxia, which occurs at sites of infection or inflammation where TNF is expressed, suppressed this IL-10-STAT3 autocrine loop and expression of late phase genes. TNF-induced expression of IL-10 and downstream genes was also dependent on signaling by mTORC1, which senses the metabolic state of cells and is modulated by hypoxia. These results reveal an mTORC1-dependent IL-10-mediated late phase response to TNF by primary human macrophages, and identify suppression of IL-10 responses as a new mechanism by which hypoxia can promote inflammation. Thus, hypoxic and metabolic pathways may modulate TNF responses during chronic inflammation. PMID:27558590

  16. Signals mediating Klotho-induced neuroprotection in hippocampal neuronal cells.

    PubMed

    Cheng, Meng-Fu; Chen, Li-Jen; Niu, Ho-Shan; Yang, Ting-Ting; Lin, Kao-Chang; Cheng, Juei-Tang

    2015-01-01

    The erythropoietin (Epo) receptor (EpoR) is expressed in the brain and was shown to have neuroprotective effects against brain damage in animal models. A recent study indicated that EpoR and its activity are the downstream effectors of Klotho for cytoprotection in the kidney. Thus, we propose that Klotho can stimulate the expression of EpoR in neuronal cells to enhance Epo-mediated protection. H19-7 hippocampal neuronal cells were treated with recombinant Klotho. In H19-7 cells, Klotho increased the expression of both the EpoR protein and mRNA. Klotho also enhanced the transcription activity of the EpoR promoter in H19-7 cells. Moreover, Klotho augmented the Epo-triggered phosphorylation of Jak2 and Stat5 and protected H19-7 cells from hydrogen peroxide cytotoxicity. The silencing of EpoR abolished the protective effect of Klotho against peroxide-induced cytotoxicity. Finally, the silencing of GATA1 diminished the Klotho-induced increase in EpoR protein and mRNA expression as well as its promoter activity. In conclusion, Klotho increased EpoR expression in neuronal cells through GATA1, thereby enabling EpoR to function as a cytoprotective protein against oxidative injury. PMID:25856523

  17. Autocrine stimulation of osteoblast activity by Wnt5a in response to TNF-α in human mesenchymal stem cells

    SciTech Connect

    Briolay, A.; Lencel, P.; Caverzasio, J.; Buchet, R.; Magne, D.

    2013-01-18

    Highlights: ► Ankylosing spondylitis (AS) leads to bone fusions and ankylosis. ► TNF-α stimulates osteoblasts through growth factors in AS. ► We compare the involvement of canonical vs non-canonical Wnt signaling. ► Canonical Wnt signaling is not involved in TNF-α effects in differentiating hMSCs. ► TNF-α stimulates osteoblasts through Wnt5a autocrine secretion in hMSCs. -- Abstract: Although anti-tumor necrosis factor (TNF)-α treatments efficiently block inflammation in ankylosing spondylitis (AS), they are inefficient to prevent excessive bone formation. In AS, ossification seems more prone to develop in sites where inflammation has resolved following anti-TNF therapy, suggesting that TNF-α indirectly stimulates ossification. In this context, our objectives were to determine and compare the involvement of Wnt proteins, which are potent growth factors of bone formation, in the effects of TNF-α on osteoblast function. In human mesenchymal stem cells (MSCs), TNF-α significantly increased the levels of Wnt10b and Wnt5a. Associated with this effect, TNF-α stimulated tissue-non specific alkaline phosphatase (TNAP) and mineralization. This effect was mimicked by activation of the canonical β-catenin pathway with either anti-Dkk1 antibodies, lithium chloride (LiCl) or SB216763. TNF-α reduced, and activation of β-catenin had little effect on expression of osteocalcin, a late marker of osteoblast differentiation. Surprisingly, TNF-α failed to stabilize β-catenin and Dkk1 did not inhibit TNF-α effects. In fact, Dkk1 expression was also enhanced in response to TNF-α, perhaps explaining why canonical signaling by Wnt10b was not activated by TNF-α. However, we found that Wnt5a also stimulated TNAP in MSCs cultured in osteogenic conditions, and increased the levels of inflammatory markers such as COX-2. Interestingly, treatment with anti-Wnt5a antibodies reduced endogenous TNAP expression and activity. Collectively, these data suggest that increased

  18. Non-Ligand-Induced Dimerization is Sufficient to Initiate the Signalling and Endocytosis of EGF Receptor

    PubMed Central

    Kourouniotis, George; Wang, Yi; Pennock, Steven; Chen, Xinmei; Wang, Zhixiang

    2016-01-01

    The binding of epidermal growth factor (EGF) to EGF receptor (EGFR) stimulates cell mitogenesis and survival through various signalling cascades. EGF also stimulates rapid EGFR endocytosis and its eventual degradation in lysosomes. The immediate events induced by ligand binding include receptor dimerization, activation of intrinsic tyrosine kinase and autophosphorylation. However, in spite of intensified efforts, the results regarding the roles of these events in EGFR signalling and internalization is still very controversial. In this study, we constructed a chimeric EGFR by replacing its extracellular domain with leucine zipper (LZ) and tagged a green fluorescent protein (GFP) at its C-terminus. We showed that the chimeric LZ-EGFR-GFP was constitutively dimerized. The LZ-EGFR-GFP dimer autophosphorylated each of its five well-defined C-terminal tyrosine residues as the ligand-induced EGFR dimer does. Phosphorylated LZ-EGFR-GFP was localized to both the plasma membrane and endosomes, suggesting it is capable of endocytosis. We also showed that LZ-EGFR-GFP activated major signalling proteins including Src homology collagen-like (Shc), extracellular signal-regulated kinase (ERK) and Akt. Moreover, LZ-EGFR-GFP was able to stimulate cell proliferation. These results indicate that non-ligand induced dimerization is sufficient to activate EGFR and initiate cell signalling and EGFR endocytosis. We conclude that receptor dimerization is a critical event in EGF-induced cell signalling and EGFR endocytosis. PMID:27463710

  19. CD38-mediated Ca(2+) signaling contributes to glucagon-induced hepatic gluconeogenesis.

    PubMed

    Rah, So-Young; Kim, Uh-Hyun

    2015-06-03

    CD38 is a multifunctional enzyme for the synthesis of Ca(2+) second messengers. Glucagon promotes hepatic glucose production through Ca(2+) signaling in the fasting condition. In this study, we investigated the role of CD38 in the glucagon signaling of hepatocytes. Here, we show that glucagon induces cyclic ADP-ribose (cADPR) production and sustained Ca(2+) increases via CD38 in hepatocytes. 8-Br-cADPR, an antagonistic cADPR analog, completely blocked glucagon-induced Ca(2+) increases and phosphorylation of cAMP response element-binding protein (CREB). Moreover, glucagon-induced sustained Ca(2+) signals and translocation of CREB-regulated transcription coactivator 2 to the nucleus were absent and glucagon-induced glucose production and expression of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (Pck1) are remarkably reduced in hepatocytes from CD38(-/-) mice. Furthermore, in the fasting condition, CD38(-/-) mice have decreased blood glucose and hepatic expression of G6Pase and Pck1 compared to wild type mice. Our data suggest that CD38/cADPR-mediated Ca(2+) signals play a key role in glucagon-induced gluconeogenesis in hepatocytes, and that the signal pathway has significant clinical implications in metabolic diseases, including type 2 diabetes.

  20. CD38-mediated Ca2+ signaling contributes to glucagon-induced hepatic gluconeogenesis

    PubMed Central

    Rah, So-Young; Kim, Uh-Hyun

    2015-01-01

    CD38 is a multifunctional enzyme for the synthesis of Ca2+ second messengers. Glucagon promotes hepatic glucose production through Ca2+ signaling in the fasting condition. In this study, we investigated the role of CD38 in the glucagon signaling of hepatocytes. Here, we show that glucagon induces cyclic ADP-ribose (cADPR) production and sustained Ca2+ increases via CD38 in hepatocytes. 8-Br-cADPR, an antagonistic cADPR analog, completely blocked glucagon-induced Ca2+ increases and phosphorylation of cAMP response element-binding protein (CREB). Moreover, glucagon-induced sustained Ca2+ signals and translocation of CREB-regulated transcription coactivator 2 to the nucleus were absent and glucagon-induced glucose production and expression of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (Pck1) are remarkably reduced in hepatocytes from CD38−/− mice. Furthermore, in the fasting condition, CD38−/− mice have decreased blood glucose and hepatic expression of G6Pase and Pck1 compared to wild type mice. Our data suggest that CD38/cADPR-mediated Ca2+ signals play a key role in glucagon-induced gluconeogenesis in hepatocytes, and that the signal pathway has significant clinical implications in metabolic diseases, including type 2 diabetes. PMID:26038839

  1. The basic chemistry of exercise-induced DNA oxidation: oxidative damage, redox signaling, and their interplay

    PubMed Central

    Cobley, James N.; Margaritelis, Nikos V.; Morton, James P.; Close, Graeme L.; Nikolaidis, Michalis G.; Malone, John K.

    2015-01-01

    Acute exercise increases reactive oxygen and nitrogen species generation. This phenomenon is associated with two major outcomes: (1) redox signaling and (2) macromolecule damage. Mechanistic knowledge of how exercise-induced redox signaling and macromolecule damage are interlinked is limited. This review focuses on the interplay between exercise-induced redox signaling and DNA damage, using hydroxyl radical (·OH) and hydrogen peroxide (H2O2) as exemplars. It is postulated that the biological fate of H2O2 links the two processes and thus represents a bifurcation point between redox signaling and damage. Indeed, H2O2 can participate in two electron signaling reactions but its diffusion and chemical properties permit DNA oxidation following reaction with transition metals and ·OH generation. It is also considered that the sensing of DNA oxidation by repair proteins constitutes a non-canonical redox signaling mechanism. Further layers of interaction are provided by the redox regulation of DNA repair proteins and their capacity to modulate intracellular H2O2 levels. Overall, exercise-induced redox signaling and DNA damage may be interlinked to a greater extent than was previously thought but this requires further investigation. PMID:26136689

  2. Notch signaling represses hypoxia-inducible factor-1α-induced activation of Wnt/β-catenin signaling in osteoblasts under cobalt-mimicked hypoxia

    PubMed Central

    LI, CHEN-TIAN; LIU, JIAN-XIU; YU, BO; LIU, RUI; DONG, CHAO; LI, SONG-JIAN

    2016-01-01

    The modification of Wnt and Notch signaling pathways by hypoxia, and its association with osteoblast proliferation and apoptosis remain to be fully elucidated. To investigate Wnt-Notch crosstalk, and its role in hypoxia-induced osteoblast proliferation and apoptosis regulation, the present study investigated the effects of cobalt-mimicked hypoxia on the mouse pre-osteoblast-like cell line, MC3T3-E1, when the Notch signals were repressed using a γ-secretase inhibitor DAPT. The data showed that the cobalt-mimicked hypoxia suppressed cell proliferation under normal conditions, but increased cell proliferation under conditions of Notch repression, in a concentration-dependent manner. The results of western blot and reverse transcription-quantitative polymerase chain reaction analyses showed that the cobalt treatment increased the levels of activated β-catenin protein and the expression levels of the target genes, axis inhibition protein 2 and myelocytomatosis oncogene, under DAPT-induced Notch repression. However, no significant changes were found in the expression levels of the Notch intracellular domain protein or the Notch target gene, hes1. In a β-catenin gene-knockdown experiment, the proliferation of the MC3T3-E1 cells under hypoxia were decreased by DAPT treatment, and knockdown of the expression of hypoxia-inducible factor-1α (HIF-1α) suppressed the cobalt-induced increase in Wnt target gene levels. No significant difference in cell proliferation rate was found following DAPT treatment when the expression of HIF-1α was knocked down. The results of the present study showed the opposing effects of Wnt and Notch signaling under cobalt-mimicked hypoxia, which were partially regulated by HIF-1α, The results also showed that osteoblast proliferation was dependent on Wnt-Notch signal crosstalk. PMID:27220406

  3. Oxidative stress-induced calcium signalling in Aspergillus nidulans.

    PubMed

    Greene, Vilma; Cao, Hong; Schanne, Francis A X; Bartelt, Diana C

    2002-05-01

    The effects of oxidative stress on levels of calcium ion (Ca(2+)) in Aspergillus nidulans were measured using strains expressing aequorin in the cytoplasm (Aeq(cyt)) and mitochondria (Aeq(mt)). When oxidative stress was induced by exposure to 10-mM H(2)O(2), the mitochondrial calcium response (Ca(mt)(2+)) was greater than the change in cytoplasmic calcium (Ca(c)(2+)). The Ca(mt)(2+) response to H(2)O(2) was dose dependent, while the increase in [Ca(c)(2+)] did not change with increasing H(2)O(2). The increase in both [Ca(c)(2+)] and [Ca(mt)(2+)] in response to oxidative stress was enhanced by exposure of cells to Ca(2+). The presence of chelator in the external medium only partially inhibited the Ca(mt)(2+) and Ca(c)(2+) responses to oxidative stress. Reagents that alter calcium fluxes had varied effects on the Ca(mt)(2+) response to peroxide. Ruthenium red blocked the increase in [Ca(mt)(2+)], while neomycin caused an even greater increase in [Ca(mt)(2+)]. Treatment with ruthenium red and neomycin had no effect on the Ca(c)(2+) response. Bafilomycin A and oligomycin had no effect on either the mitochondrial or cytoplasmic response. Inhibitors of both voltage-regulated calcium channels and intracellular calcium release channels inhibited the Ca(2+)-dependent component of the Ca(mt)(2+) response to oxidative stress. We conclude that the more significant Ca(2+) response to oxidative stress occurs in the mitochondria and that both intracellular and extracellular calcium pools can contribute to the increases in [Ca(c)(2+)] and [Ca(mt)(2+)] induced by oxidative stress.

  4. New signal transduction paradigms in anthracycline-induced cardiotoxicity.

    PubMed

    Ghigo, Alessandra; Li, Mingchuan; Hirsch, Emilio

    2016-07-01

    Anthracyclines, such as doxorubicin, are the most potent and widely used chemotherapeutic agents for the treatment of a variety of human cancers, including solid tumors and hematological malignancies. However, their clinical use is hampered by severe cardiotoxic side effects and cancer therapy-related heart disease has become a leading cause of morbidity and mortality among cancer survivors. The identification of therapeutic strategies limiting anthracycline cardiotoxicity with preserved antitumor efficacy thus represents the current challenge of cardio-oncologists. Anthracycline cardiotoxicity has been originally ascribed to the ability of this class of drugs to disrupt iron metabolism and generate excess of reactive oxygen species (ROS). However, small clinical trials with iron chelators and anti-oxidants failed to provide any benefit and suggested that doxorubicin cardiotoxicity is not solely due to redox cycling. New emerging explanations include anthracycline-dependent regulation of major signaling pathways controlling DNA damage response, cardiomyocyte survival, cardiac inflammation, energetic stress and gene expression modulation. This review will summarize recent studies unraveling the complex web of mechanisms of doxorubicin-mediated cardiotoxicity, and identifying new druggable players for the prevention of heart disease in cancer patients. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  5. [A TIM-3/galectin-9 autocrine stimulatory loop drives self-renewal of human myeloid leukemia stem cells and leukemia progression].

    PubMed

    Kikushige, Yoshikane

    2016-04-01

    Acute myeloid leukemia (AML) originates from self-renewing leukemic stem cells (LSCs), an ultimate therapeutic target for AML. We previously reported that the T-cell immunoglobulin mucin-3 (TIM-3) is expressed on the LCS surface in most types of AML. Since only the TIM-3(+), i.e. not the TIM-3(-), fraction of human AML cells can reconstitute human AML in immunodeficient mice, we hypothesized that the TIM-3 has an essential function in maintaining AML LSCs. Herein, we show that TIM-3 and its ligand, galectin-9 (Gal-9), constitute an autocrine loop critical for human AML LSC development. Serum Gal-9 was significantly elevated in primary AML patients and in mice xenografted with human AML. Neutralization of Gal-9 inhibited xenogeneic reconstitution of human AML, as well as Gal-9 ligation of TIM-3 co-activated NF-κB and β-catenin signaling, suggesting that TIM-3 signaling is necessary for LSC self-renewal. Interestingly, identical changes were found to be involved in the progressive transformation of a variety of pre-leukemic disorders into myeloid leukemia. Thus, molecules constituting the TIM-3/Gal-9 autocrine loop are potential therapeutic targets applicable to most types of myeloid leukemia.

  6. A TIM-3/Gal-9 Autocrine Stimulatory Loop Drives Self-Renewal of Human Myeloid Leukemia Stem Cells and Leukemic Progression.

    PubMed

    Kikushige, Yoshikane; Miyamoto, Toshihiro; Yuda, Junichiro; Jabbarzadeh-Tabrizi, Siamak; Shima, Takahiro; Takayanagi, Shin-ichiro; Niiro, Hiroaki; Yurino, Ayano; Miyawaki, Kohta; Takenaka, Katsuto; Iwasaki, Hiromi; Akashi, Koichi

    2015-09-01

    Signaling mechanisms underlying self-renewal of leukemic stem cells (LSCs) are poorly understood, and identifying pathways specifically active in LSCs could provide opportunities for therapeutic intervention. T-cell immunoglobin mucin-3 (TIM-3) is expressed on the surface of LSCs in many types of human acute myeloid leukemia (AML), but not on hematopoietic stem cells (HSCs). Here, we show that TIM-3 and its ligand, galectin-9 (Gal-9), constitute an autocrine loop critical for LSC self-renewal and development of human AML. Serum Gal-9 levels were significantly elevated in AML patients and in mice xenografted with primary human AML samples, and neutralization of Gal-9 inhibited xenogeneic reconstitution of human AML. Gal-9-mediated stimulation of TIM-3 co-activated NF-κB and β-catenin signaling, pathways known to promote LSC self-renewal. These changes were further associated with leukemic transformation of a variety of pre-leukemic disorders and together highlight that targeting the TIM-3/Gal-9 autocrine loop could be a useful strategy for treating myeloid leukemias. PMID:26279267

  7. [A TIM-3/galectin-9 autocrine stimulatory loop drives self-renewal of human myeloid leukemia stem cells and leukemia progression].

    PubMed

    Kikushige, Yoshikane

    2016-04-01

    Acute myeloid leukemia (AML) originates from self-renewing leukemic stem cells (LSCs), an ultimate therapeutic target for AML. We previously reported that the T-cell immunoglobulin mucin-3 (TIM-3) is expressed on the LCS surface in most types of AML. Since only the TIM-3(+), i.e. not the TIM-3(-), fraction of human AML cells can reconstitute human AML in immunodeficient mice, we hypothesized that the TIM-3 has an essential function in maintaining AML LSCs. Herein, we show that TIM-3 and its ligand, galectin-9 (Gal-9), constitute an autocrine loop critical for human AML LSC development. Serum Gal-9 was significantly elevated in primary AML patients and in mice xenografted with human AML. Neutralization of Gal-9 inhibited xenogeneic reconstitution of human AML, as well as Gal-9 ligation of TIM-3 co-activated NF-κB and β-catenin signaling, suggesting that TIM-3 signaling is necessary for LSC self-renewal. Interestingly, identical changes were found to be involved in the progressive transformation of a variety of pre-leukemic disorders into myeloid leukemia. Thus, molecules constituting the TIM-3/Gal-9 autocrine loop are potential therapeutic targets applicable to most types of myeloid leukemia. PMID:27169443

  8. The effects of hispidulin on bupivacaine-induced neurotoxicity: role of AMPK signaling pathway.

    PubMed

    Niu, Xinhuan; Chen, Jie; Wang, Ping; Zhou, Hui; Li, Song; Zhang, Mengyuan

    2014-09-01

    Bupivacaine is a sodium channel blocker, which is widely used for local infiltration nerve block, epidural and intrathecal anesthesia. However, bupivacaine could cause nerve damage. Hispidulin was shown to be able to penetrate the blood-brain barrier and possess antiepileptic activity. In this study, we investigate whether hispidulin administration could attenuate bupivacaine-induced neurotoxicity. Bupivacaine-challenged mouse neuroblastoma N2a cells were treated with hispidulin. The neuron injury was assessed by examination of cell viability and apoptosis. The levels of activation of AMP-activated protein kinase (AMPK) signaling pathway were examined along with the effect of blocking AMPK signaling on cell viability in the presence of hispidulin and bupivacaine. Our results showed that Bupivacaine treatment significantly decreased cell viability and induced apoptosis. Treatment with hispidulin significantly attenuated bupivacaine-induced cell injury. In addition, hispidulin treatment increased the levels of phospho-AMPK and phospho-GSK3β and attenuated bupivacaine-induced loss in mitochondrial membrane potential. Furthermore, we found that blocking AMPK signaling pathway significantly abolished the cytoprotective effect of hispidulin against bupivacaine-induced cell injury. Our findings suggest that treatment of neuroblastoma cells with hispidulin-protected neural cells from Bupivacaine-induced injury via the activation of the AMPK/GSK3β signaling pathway.

  9. Notch1 endocytosis is induced by ligand and is required for signal transduction.

    PubMed

    Chapman, G; Major, J A; Iyer, K; James, A C; Pursglove, S E; Moreau, J L M; Dunwoodie, S L

    2016-01-01

    The Notch signalling pathway is widely utilised during embryogenesis in situations where cell-cell interactions are important for cell fate specification and differentiation. DSL ligand endocytosis into the ligand-expressing cell is an important aspect of Notch signalling because it is thought to supply the force needed to separate the Notch heterodimer to initiate signal transduction. A functional role for receptor endocytosis during Notch signal transduction is more controversial. Here we have used live-cell imaging to examine trafficking of the Notch1 receptor in response to ligand binding. Contact with cells expressing ligands induced internalisation and intracellular trafficking of Notch1. Notch1 endocytosis was accompanied by transendocytosis of ligand into the Notch1-expressing signal-receiving cell. Ligand caused Notch1 endocytosis into SARA-positive endosomes in a manner dependent on clathrin and dynamin function. Moreover, inhibition of endocytosis in the receptor-expressing cell impaired ligand-induced Notch1 signalling. Our findings resolve conflicting observations from mammalian and Drosophila studies by demonstrating that ligand-dependent activation of Notch1 signalling requires receptor endocytosis. Endocytosis of Notch1 may provide a force on the ligand:receptor complex that is important for potent signal transduction.

  10. Macrophage Migration Inhibitor Factor Upregulates MCP-1 Expression in an Autocrine Manner in Hepatocytes during Acute Mouse Liver Injury

    PubMed Central

    Xie, Jieshi; Yang, Le; Tian, Lei; Li, Weiyang; Yang, Lin; Li, Liying

    2016-01-01

    Macrophage migration inhibitor factor (MIF), a multipotent innate immune mediator, is an upstream component of the inflammatory cascade in diseases such as liver disease. Monocyte chemoattractant protein-1 (MCP-1), a highly representative chemokine, is critical in liver disease pathogenesis. We investigated the role of MIF in regulating hepatocytic MCP-1 expression. MIF and MCP-1 expression were characterized by immunochemistry, RT-PCR, ELISA, and immunoblotting in CCl4-treated mouse liver and isolated hepatocytes. MIF was primarily distributed in hepatocytes, and its expression increased upon acute liver injury. Its expression was also increased in injured hepatocytes, induced by LPS or CCl4, which mimic liver injury in vitro. MIF was expressed earlier than MCP-1, strongly inducing hepatocytic MCP-1 expression. Moreover, the increase in MCP-1 expression induced by MIF was inhibited by CD74- or CD44-specific siRNAs and SB203580, a p38 MAPK inhibitor. Further, CD74 or CD44 deficiency effectively inhibited MIF-induced p38 activation. MIF inhibitor ISO-1 reduced MCP-1 expression and p38 phosphorylation in CCl4-treated mouse liver. Our results showed that MIF regulates MCP-1 expression in hepatocytes of injured liver via CD74, CD44, and p38 MAPK in an autocrine manner, providing compelling information on the role of MIF in liver injury, and implying a new regulatory mechanism for liver inflammation. PMID:27273604

  11. Detection of beam induced dipole-mode signals in the SLC S-band structures

    SciTech Connect

    Seidel, M.; Adolphsen, C.; Assmann, R.; Whittum, D.H.

    1997-06-01

    Beam emittance dilution caused by wakefield effects is one of the important issues in the SLC linac. The detection of beam induced dipole mode signals in the C-band range could provide a direct measure of the strength of transverse wakefield kicks the beam experiences in the accelerating structures. The authors investigate the applicability of these microwave signals for the beam steering purposes. The RF distribution system in the linac sectors 2, 6 and 29 has been equipped with a simple experimental setup to observe the beam induced dipole mode signals. The paper discusses the setup, the mode-structure of the observed signals as well as experimental results from beam steering scans, obtained during the 95/96 SLC runs.

  12. Radiation-Induced Notch Signaling in Breast Cancer Stem Cells

    SciTech Connect

    Lagadec, Chann; Vlashi, Erina; Alhiyari, Yazeed; Phillips, Tiffany M.; Bochkur Dratver, Milana; Pajonk, Frank

    2013-11-01

    Purpose: To explore patterns of Notch receptor and ligand expression in response to radiation that could be crucial in defining optimal dosing schemes for γ-secretase inhibitors if combined with radiation. Methods and Materials: Using MCF-7 and T47D breast cancer cell lines, we used real-time reverse transcription–polymerase chain reaction to study the Notch pathway in response to radiation. Results: We show that Notch receptor and ligand expression during the first 48 hours after irradiation followed a complex radiation dose–dependent pattern and was most pronounced in mammospheres, enriched for breast cancer stem cells. Additionally, radiation activated the Notch pathway. Treatment with a γ-secretase inhibitor prevented radiation-induced Notch family gene expression and led to a significant reduction in the size of the breast cancer stem cell pool. Conclusions: Our results indicate that, if combined with radiation, γ-secretase inhibitors may prevent up-regulation of Notch receptor and ligand family members and thus reduce the number of surviving breast cancer stem cells.

  13. Connective tissue growth factor induces cardiac hypertrophy through Akt signaling

    SciTech Connect

    Hayata, Nozomi; Fujio, Yasushi; Yamamoto, Yasuhiro; Iwakura, Tomohiko; Obana, Masanori; Takai, Mika; Mohri, Tomomi; Nonen, Shinpei; Maeda, Makiko; Azuma, Junichi

    2008-05-30

    In the process of cardiac remodeling, connective tissue growth factor (CTGF/CCN2) is secreted from cardiac myocytes. Though CTGF is well known to promote fibroblast proliferation, its pathophysiological effects in cardiac myocytes remain to be elucidated. In this study, we examined the biological effects of CTGF in rat neonatal cardiomyocytes. Cardiac myocytes stimulated with full length CTGF and its C-terminal region peptide showed the increase in cell surface area. Similar to hypertrophic ligands for G-protein coupled receptors, such as endothelin-1, CTGF activated amino acid uptake; however, CTGF-induced hypertrophy is not associated with the increased expression of skeletal actin or BNP, analyzed by Northern-blotting. CTGF treatment activated ERK1/2, p38 MAPK, JNK and Akt. The inhibition of Akt by transducing dominant-negative Akt abrogated CTGF-mediated increase in cell size, while the inhibition of MAP kinases did not affect the cardiac hypertrophy. These findings indicate that CTGF is a novel hypertrophic factor in cardiac myocytes.

  14. Redox Nanodomains Are Induced by and Control Calcium Signaling at the ER-Mitochondrial Interface.

    PubMed

    Booth, David M; Enyedi, Balázs; Geiszt, Miklós; Várnai, Péter; Hajnóczky, György

    2016-07-21

    The ER-mitochondrial interface is central to calcium signaling, organellar dynamics, and lipid biosynthesis. The ER and mitochondrial membranes also host sources and targets of reactive oxygen species (ROS), but their local dynamics and relevance remained elusive since measurement and perturbation of ROS at the organellar interface has proven difficult. Employing drug-inducible synthetic ER-mitochondrial linkers, we overcame this problem and demonstrate that the ER-mitochondrial interface hosts a nanodomain of H2O2, which is induced by cytoplasmic [Ca(2+)] spikes and exerts a positive feedback on calcium oscillations. H2O2 nanodomains originate from the mitochondrial cristae, which are compressed upon calcium signal propagation to the mitochondria, likely due to Ca(2+)-induced K(+) and concomitant water influx to the matrix. Thus, ER-mitochondrial H2O2 nanodomains represent a component of inter-organelle communication, regulating calcium signaling and mitochondrial activities.

  15. Photodynamic therapy-induced angiogenic signaling: consequences and solutions to improve therapeutic response

    PubMed Central

    Gallagher-Colombo, Shannon M.; Maas, Amanda L.; Yuan, Min; Busch, Theresa M.

    2015-01-01

    Photodynamic therapy (PDT) can be a highly effective treatment for diseases ranging from actinic keratosis to cancer. While use of this therapy shows great promise in preclinical and clinical studies, understanding the molecular consequences of PDT is critical to designing better treatment protocols. A number of publications have documented alteration in angiogenic factors and growth factor receptors following PDT, which could abrogate treatment effect by inducing angiogenesis and re-establishment of the tumor vasculature. In response to these findings, work over the past decade has examined the efficacy of combining PDT with molecular targeting drugs, such as anti-angiogenic compounds, in an effort to combat these PDT-induced molecular changes. These combinatorial approaches increase rates of apoptosis, impair pro-tumorigenic signaling, and enhance tumor response. This report will examine the current understanding of PDT-induced angiogenic signaling and address molecular-based approaches to abrogate this signaling or its consequences thereby enhancing PDT efficacy. PMID:26109742

  16. Schisantherin A suppresses osteoclast formation and wear particle-induced osteolysis via modulating RANKL signaling pathways

    SciTech Connect

    He, Yi; Zhang, Qing; Shen, Yi; Chen, Xia; Zhou, Feng; Peng, Dan

    2014-07-04

    Highlights: • Schisantherin A suppresses osteoclasts formation and function in vitro. • Schisantherin A impairs RANKL signaling pathway. • Schisantherin A suppresses osteolysis in vivo. • Schisantherin A may be used for treating osteoclast related diseases. - Abstract: Receptor activator of NF-κB ligand (RANKL) plays critical role in osteoclastogenesis. Targeting RANKL signaling pathways has been a promising strategy for treating osteoclast related bone diseases such as osteoporosis and aseptic prosthetic loosening. Schisantherin A (SA), a dibenzocyclooctadiene lignan isolated from the fruit of Schisandra sphenanthera, has been used as an antitussive, tonic, and sedative agent, but its effect on osteoclasts has been hitherto unknown. In the present study, SA was found to inhibit RANKL-induced osteoclast formation and bone resorption. The osteoclastic specific marker genes induced by RANKL including c-Src, SA inhibited OSCAR, cathepsin K and TRAP in a dose dependent manner. Further signal transduction studies revealed that SA down-regulate RANKL-induced nuclear factor-kappaB (NF-κB) signaling activation by suppressing the phosphorylation and degradation of IκBα, and subsequently preventing the NF-κB transcriptional activity. Moreover, SA also decreased the RANKL-induced MAPKs signaling pathway, including JNK and ERK1/2 posphorylation while had no obvious effects on p38 activation. Finally, SA suppressed the NF-κB and MAPKs subsequent gene expression of NFATc1 and c-Fos. In vivo studies, SA inhibited osteoclast function and exhibited bone protection effect in wear-particle-induced bone erosion model. Taken together, SA could attenuate osteoclast formation and wear particle-induced osteolysis by mediating RANKL signaling pathways. These data indicated that SA is a promising therapeutic natural compound for the treatment of osteoclast-related prosthesis loosening.

  17. Autocrine/paracrine roles of extrapituitary growth hormone and prolactin in health and disease: An overview.

    PubMed

    Harvey, Steve; Martínez-Moreno, Carlos G; Luna, Maricela; Arámburo, Carlos

    2015-09-01

    Growth hormone (GH) and prolactin (PRL) are both endocrines that are synthesized and released from the pituitary gland into systemic circulation. Both are therefore hormones and both have numerous physiological roles mediated through a myriad of target sites and both have pathophysiological consequences when present in excess or deficiency. GH or PRL gene expression is not, however, confined to the anterior pituitary gland and it occurs widely in many of their central and peripheral sites of action. This may reflect "leaky gene" phenomena and the fact that all cells have the potential to express every gene that is present in their genome. However, the presence of GH or PRL receptors in these extrapituitary sites of GH and PRL production suggests that they are autocrine or paracrine sites of GH and PRL action. These local actions often occur prior to the ontogeny of pituitary somatotrophs and lactotrophs and they may complement or differ from the roles of their pituitary counterparts. Many of these local actions are also of physiological significance, since they are impaired by a blockade of local GH or PRL production or by an antagonism of local GH or PRL action. These local actions may also be of pathophysiological significance, since autocrine or paracrine actions of GH and PRL are thought to be causally involved in a number of disease states, particularly in cancer. Autocrine GH for instance, is thought to be more oncogenic than pituitary GH and selective targeting of the autocrine moiety may provide a therapeutic approach to prevent tumor progression. In summary, GH and PRL are not just endocrine hormones, as they have autocrine and/or paracrine roles in health and disease.

  18. Complement C1q-induced activation of β-catenin signalling causes hypertensive arterial remodelling

    PubMed Central

    Sumida, Tomokazu; Naito, Atsuhiko T.; Nomura, Seitaro; Nakagawa, Akito; Higo, Tomoaki; Hashimoto, Akihito; Okada, Katsuki; Sakai, Taku; Ito, Masamichi; Yamaguchi, Toshihiro; Oka, Toru; Akazawa, Hiroshi; Lee, Jong-Kook; Minamino, Tohru; Offermanns, Stefan; Noda, Tetsuo; Botto, Marina; Kobayashi, Yoshio; Morita, Hiroyuki; Manabe, Ichiro; Nagai, Toshio; Shiojima, Ichiro; Komuro, Issei

    2015-01-01

    Hypertension induces structural remodelling of arteries, which leads to arteriosclerosis and end-organ damage. Hyperplasia of vascular smooth muscle cells (VSMCs) and infiltration of immune cells are the hallmark of hypertensive arterial remodelling. However, the precise molecular mechanisms of arterial remodelling remain elusive. We have recently reported that complement C1q activates β-catenin signalling independent of Wnts. Here, we show a critical role of complement C1-induced activation of β-catenin signalling in hypertensive arterial remodelling. Activation of β-catenin and proliferation of VSMCs were observed after blood-pressure elevation, which were prevented by genetic and chemical inhibition of β-catenin signalling. Macrophage depletion and C1qa gene deletion attenuated the hypertension-induced β-catenin signalling, proliferation of VSMCs and pathological arterial remodelling. Our findings unveil the link between complement C1 and arterial remodelling and suggest that C1-induced activation of β-catenin signalling becomes a novel therapeutic target to prevent arteriosclerosis in patients with hypertension. PMID:25716000

  19. Ca²⁺ signal-induced cardiomyocyte hypertrophy through activation of myocardin.

    PubMed

    Li, Man; Wang, Nan; Gong, Hui-Qin; Li, Wei-Zong; Liao, Xing-Hua; Yang, Xiao-Long; He, Hong-Peng; Cao, Dong-Sun; Zhang, Tong-Cun

    2015-02-15

    Hypertrophic growth of cardiomyocytes in response to pressure overload is an important stage during the development of many cardiac diseases. Ca(2+) overload as well as subsequent activation of Ca(2+) signaling pathways has been reported to induce cardiac hypertrophy. Myocardin, a transcription cofactor of serum response factor (SRF), is a key transducer of hypertrophic signals. However, the direct role of myocardin in Ca(2+) signal-induced cardiomyocyte hypertrophy has not been explained clearly. In the present study, we discovered that embryonic rat heart-derived H9c2 cells responded to the stimulation of calcium ionophore A23187 with a cell surface area enlargement and an increased expression of cardiac hypertrophy marker genes. Increased Ca(2+) also induces an organization of sarcomeres in neonatal rat cardiomyocytes, as revealed by α-actinin staining. Increased Ca(2+) could upregulate the expression of myocardin. Knockdown of myocardin by shRNA attenuates hypertrophic responses triggered by increased intracellular Ca(2+), suggesting that Ca(2+) signals induce cardiomyocyte hypertrophy partly through activation of myocardin. Furthermore, A23187 treatment directly activates myocardin promoter, chelation of Ca(2+) by EGTA inhibits this activation and knockdown of myocardin expression using shRNA also abrogates A23187-induced ANF and SK-α-actin promoter activity. CSA (calcineurin inhibitor) and KN93 (CaMKII inhibitor) inhibit A23187-induced the increase in myocardin expression. These results suggest that myocardin plays a critical role in Ca(2+) signal-induced cardiomyocyte hypertrophy, which may serve as a novel mechanism that is important for cardiac hypertrophy.

  20. Ca²⁺ signal-induced cardiomyocyte hypertrophy through activation of myocardin.

    PubMed

    Li, Man; Wang, Nan; Gong, Hui-Qin; Li, Wei-Zong; Liao, Xing-Hua; Yang, Xiao-Long; He, Hong-Peng; Cao, Dong-Sun; Zhang, Tong-Cun

    2015-02-15

    Hypertrophic growth of cardiomyocytes in response to pressure overload is an important stage during the development of many cardiac diseases. Ca(2+) overload as well as subsequent activation of Ca(2+) signaling pathways has been reported to induce cardiac hypertrophy. Myocardin, a transcription cofactor of serum response factor (SRF), is a key transducer of hypertrophic signals. However, the direct role of myocardin in Ca(2+) signal-induced cardiomyocyte hypertrophy has not been explained clearly. In the present study, we discovered that embryonic rat heart-derived H9c2 cells responded to the stimulation of calcium ionophore A23187 with a cell surface area enlargement and an increased expression of cardiac hypertrophy marker genes. Increased Ca(2+) also induces an organization of sarcomeres in neonatal rat cardiomyocytes, as revealed by α-actinin staining. Increased Ca(2+) could upregulate the expression of myocardin. Knockdown of myocardin by shRNA attenuates hypertrophic responses triggered by increased intracellular Ca(2+), suggesting that Ca(2+) signals induce cardiomyocyte hypertrophy partly through activation of myocardin. Furthermore, A23187 treatment directly activates myocardin promoter, chelation of Ca(2+) by EGTA inhibits this activation and knockdown of myocardin expression using shRNA also abrogates A23187-induced ANF and SK-α-actin promoter activity. CSA (calcineurin inhibitor) and KN93 (CaMKII inhibitor) inhibit A23187-induced the increase in myocardin expression. These results suggest that myocardin plays a critical role in Ca(2+) signal-induced cardiomyocyte hypertrophy, which may serve as a novel mechanism that is important for cardiac hypertrophy. PMID:25485719

  1. Atorvastatin Prevents Glutamate Uptake Reduction Induced by Quinolinic Acid Via MAPKs Signaling.

    PubMed

    Vandresen-Filho, S; Martins, W C; Bertoldo, D B; Rieger, D K; Maestri, M; Leal, R B; Tasca, C I

    2016-08-01

    Statins have been shown to promote neuroprotection in a wide range of neurological disorders. However, the mechanisms involved in such effects of statins are not fully understood. Quinolinic acid (QA) is a neurotoxin that induces seizures when infused in vivo and promotes glutamatergic excitotoxicity in the central nervous system. The aim of this study was to evaluate the putative glutamatergic mechanisms and the intracellular signaling pathways involved in the atorvastatin neuroprotective effects against QA toxicity. Atorvastatin (10 mg/kg) treatment for 7 days prevented the QA-induced decrease in glutamate uptake, but had no effect on increased glutamate release induced by QA. Moreover, atorvastatin treatment increased the phosphorylation of ERK1 and prevented the decrease in Akt phosphorylation induced by QA. Neither atorvastatin treatment nor QA infusion altered glutamine synthetase activity or the levels of phosphorylation of p38(MAPK) or JNK1/2 during the evaluation. Inhibition of MEK/ERK signaling pathway, but not PI3K/Akt signaling, abolished the neuroprotective effect of atorvastatin against QA-induced decrease in glutamate uptake. Our data suggest that atorvastatin protective effects against QA toxicity are related to modulation of glutamate transporters via MAPK/ERK signaling pathway.

  2. p53 signaling is involved in leptin-induced growth of hepatic and breast cancer cells.

    PubMed

    Shrestha, Mohan; Park, Pil-Hoon

    2016-09-01

    Leptin, an adipokine predominantly produced from adipose tissue, is well known to induce tumor growth. However, underlying molecular mechanisms are not established yet. While p53 has long been well recognized as a potent tumor suppressor gene, accumulating evidence has also indicated its potential role in growth and survival of cancer cells depending on experimental environments. In the present study, we examined if p53 signaling is implicated in leptin-induced growth of cancer cells. Herein, we demonstrated that leptin treatment significantly increased p53 protein expression in both hepatic (HepG2) and breast (MCF-7) cancer cells without significant effect on mRNA expression. Enhanced p53 expression by leptin was mediated via modulation of ubiquitination, in particular ubiquitin specific protease 2 (USP2)-dependent manner. Furthermore, gene silencing of p53 by small interfering RNA (siRNA) suppressed leptin-induced growth of hepatic and breast cancer cells, indicating the role of p53 signaling in tumor growth by leptin. In addition, we also showed that knockdown of p53 restored suppression of caspase-3 activity by leptin through modulating Bax expression and prevented leptin-induced cell cycle progression, implying the involvement of p53 signaling in the regulation of both apoptosis and cell cycle progression in cancer cells treated with leptin. Taken together, the results in the present study demonstrated the potential role of p53 signaling in leptin-induced tumor growth.

  3. JMJD8 is a positive regulator of TNF-induced NF-κB signaling

    PubMed Central

    Yeo, Kok Siong; Tan, Ming Cheang; Wong, Wan Ying; Loh, Sheng Wei; Lam, Yi Lyn; Tan, Chin Leng; Lim, Yat-Yuen; Ea, Chee-Kwee

    2016-01-01

    TNF-induced signaling mediates pleiotropic biological consequences including inflammation, immunity, cell proliferation and apoptosis. Misregulation of TNF signaling has been attributed as a major cause of chronic inflammatory diseases and cancer. Jumonji domain-containing protein 8 (JMJD8) belongs to the JmjC family. However, only part of the family members has been described as hydroxylase enzymes that function as histone demethylases. Here, we report that JMJD8 positively regulates TNF-induced NF-κB signaling. Silencing the expression of JMJD8 using RNA interference (RNAi) greatly suppresses TNF-induced expression of several NF-κB-dependent genes. Furthermore, knockdown of JMJD8 expression reduces RIP ubiquitination, IKK kinase activity, delays IκBα degradation and subsequently blocks nuclear translocation of p65. In addition, JMJD8 deficiency enhances TNF-induced apoptosis. Taken together, these findings indicate that JMJD8 functions as a positive regulator of TNF-induced NF-κB signaling. PMID:27671354

  4. Role of Ca2+ signaling in initiation of stretch-induced apoptosis in neonatal heart cells.

    PubMed

    Liao, Xu Dong; Tang, Ai Hui; Chen, Quan; Jin, Hai Jing; Wu, Cai Hong; Chen, Lan-Ying; Wang, Shi Qiang

    2003-10-17

    Abnormal mechanical load, as seen in hypertension, is found to induce heart cell apoptosis, yet the signaling link between cell stretch and apoptotic pathways is not known. Using an in vitro stretch model mimicking diastolic pressure stress, here we show that Ca(2+) signaling participates essentially in the early stage of stretch-induced apoptosis. In neonatal rat cardiomyocytes, the moderate 20% stretch resulted in tonic elevation of intracellular free Ca(2+) ([Ca(2+)](i)). Buffering [Ca(2+)](i) by EGTA-AM, suppressing ryanodine-sensitive Ca(2+) release, and blocking L-type Ca(2+) channels all prevented the stretch-induced apoptosis as assessed by phosphatidylserine exposure and nuclear fragmentation. Notably, Ca(2+) suppression also prevented known stretch-activated apoptotic events, including caspase-3/-9 activation, mitochondrial membrane potential corruption, and reactive oxygen species production, suggesting that Ca(2+) signaling is the upstream of these events. Since [Ca(2+)](i) did not change without activating mechanosensitive Ca(2+) entry, we conclude that stretch-induced Ca(2+) entry, via the Ca(2+)-induced Ca(2+) release mechanism, plays an important role in initiating apoptotic signaling during mechanical stress.

  5. p53 signaling is involved in leptin-induced growth of hepatic and breast cancer cells

    PubMed Central

    Shrestha, Mohan

    2016-01-01

    Leptin, an adipokine predominantly produced from adipose tissue, is well known to induce tumor growth. However, underlying molecular mechanisms are not established yet. While p53 has long been well recognized as a potent tumor suppressor gene, accumulating evidence has also indicated its potential role in growth and survival of cancer cells depending on experimental environments. In the present study, we examined if p53 signaling is implicated in leptin-induced growth of cancer cells. Herein, we demonstrated that leptin treatment significantly increased p53 protein expression in both hepatic (HepG2) and breast (MCF-7) cancer cells without significant effect on mRNA expression. Enhanced p53 expression by leptin was mediated via modulation of ubiquitination, in particular ubiquitin specific protease 2 (USP2)-dependent manner. Furthermore, gene silencing of p53 by small interfering RNA (siRNA) suppressed leptin-induced growth of hepatic and breast cancer cells, indicating the role of p53 signaling in tumor growth by leptin. In addition, we also showed that knockdown of p53 restored suppression of caspase-3 activity by leptin through modulating Bax expression and prevented leptin-induced cell cycle progression, implying the involvement of p53 signaling in the regulation of both apoptosis and cell cycle progression in cancer cells treated with leptin. Taken together, the results in the present study demonstrated the potential role of p53 signaling in leptin-induced tumor growth. PMID:27610035

  6. p53 signaling is involved in leptin-induced growth of hepatic and breast cancer cells.

    PubMed

    Shrestha, Mohan; Park, Pil-Hoon

    2016-09-01

    Leptin, an adipokine predominantly produced from adipose tissue, is well known to induce tumor growth. However, underlying molecular mechanisms are not established yet. While p53 has long been well recognized as a potent tumor suppressor gene, accumulating evidence has also indicated its potential role in growth and survival of cancer cells depending on experimental environments. In the present study, we examined if p53 signaling is implicated in leptin-induced growth of cancer cells. Herein, we demonstrated that leptin treatment significantly increased p53 protein expression in both hepatic (HepG2) and breast (MCF-7) cancer cells without significant effect on mRNA expression. Enhanced p53 expression by leptin was mediated via modulation of ubiquitination, in particular ubiquitin specific protease 2 (USP2)-dependent manner. Furthermore, gene silencing of p53 by small interfering RNA (siRNA) suppressed leptin-induced growth of hepatic and breast cancer cells, indicating the role of p53 signaling in tumor growth by leptin. In addition, we also showed that knockdown of p53 restored suppression of caspase-3 activity by leptin through modulating Bax expression and prevented leptin-induced cell cycle progression, implying the involvement of p53 signaling in the regulation of both apoptosis and cell cycle progression in cancer cells treated with leptin. Taken together, the results in the present study demonstrated the potential role of p53 signaling in leptin-induced tumor growth. PMID:27610035

  7. Identification of Small Molecules That Suppress Ricin-Induced Stress-Activated Signaling Pathways

    PubMed Central

    Wahome, Paul G.; Ahlawat, Sarita; Mantis, Nicholas J.

    2012-01-01

    Ricin is a member of the ribosome-inactivating protein (RIP) family of plant and bacterial toxins. In this study we used a high-throughput, cell-based assay to screen more than 118,000 compounds from diverse chemical libraries for molecules that reduced ricin-induced cell death. We describe three compounds, PW66, PW69, and PW72 that at micromolar concentrations significantly delayed ricin-induced cell death. None of the compounds had any demonstrable effect on ricin's ability to arrest protein synthesis in cells or on ricin's enzymatic activity as assessed in vitro. Instead, all three compounds appear to function by blocking downstream stress-induced signaling pathways associated with the toxin-mediated apoptosis. PW66 virtually eliminated ricin-induced TNF-α secretion by J774A.1 macrophages and concomitantly blocked activation of the p38 MAPK and JNK signaling pathways. PW72 suppressed ricin-induced TNF-α secretion, but not p38 MAPK and JNK signaling. PW69 suppressed activity of the executioner caspases 3/7 in ricin toxin- and Shiga toxin 2-treated cells. While the actual molecular targets of the three compounds have yet to be identified, these data nevertheless underscore the potential of small molecules to down-regulate inflammatory signaling pathways associated with exposure to the RIP family of toxins. PMID:23133670

  8. p53 signaling is involved in leptin-induced growth of hepatic and breast cancer cells

    PubMed Central

    Shrestha, Mohan

    2016-01-01

    Leptin, an adipokine predominantly produced from adipose tissue, is well known to induce tumor growth. However, underlying molecular mechanisms are not established yet. While p53 has long been well recognized as a potent tumor suppressor gene, accumulating evidence has also indicated its potential role in growth and survival of cancer cells depending on experimental environments. In the present study, we examined if p53 signaling is implicated in leptin-induced growth of cancer cells. Herein, we demonstrated that leptin treatment significantly increased p53 protein expression in both hepatic (HepG2) and breast (MCF-7) cancer cells without significant effect on mRNA expression. Enhanced p53 expression by leptin was mediated via modulation of ubiquitination, in particular ubiquitin specific protease 2 (USP2)-dependent manner. Furthermore, gene silencing of p53 by small interfering RNA (siRNA) suppressed leptin-induced growth of hepatic and breast cancer cells, indicating the role of p53 signaling in tumor growth by leptin. In addition, we also showed that knockdown of p53 restored suppression of caspase-3 activity by leptin through modulating Bax expression and prevented leptin-induced cell cycle progression, implying the involvement of p53 signaling in the regulation of both apoptosis and cell cycle progression in cancer cells treated with leptin. Taken together, the results in the present study demonstrated the potential role of p53 signaling in leptin-induced tumor growth.

  9. PMA and crystal-induced neutrophil extracellular trap formation involves RIPK1-RIPK3-MLKL signaling.

    PubMed

    Desai, Jyaysi; Kumar, Santhosh V; Mulay, Shrikant R; Konrad, Lukas; Romoli, Simone; Schauer, Christine; Herrmann, Martin; Bilyy, Rostyslav; Müller, Susanna; Popper, Bastian; Nakazawa, Daigo; Weidenbusch, Marc; Thomasova, Dana; Krautwald, Stefan; Linkermann, Andreas; Anders, Hans-Joachim

    2016-01-01

    Neutrophil extracellular trap (NET) formation contributes to gout, autoimmune vasculitis, thrombosis, and atherosclerosis. The outside-in signaling pathway triggering NET formation is unknown. Here, we show that the receptor-interacting protein kinase (RIPK)-1-stabilizers necrostatin-1 or necrostatin-1s and the mixed lineage kinase domain-like (MLKL)-inhibitor necrosulfonamide prevent monosodium urate (MSU) crystal- or PMA-induced NET formation in human and mouse neutrophils. These compounds do not affect PMA- or urate crystal-induced production of ROS. Moreover, neutrophils of chronic granulomatous disease patients are shown to lack PMA-induced MLKL phosphorylation. Genetic deficiency of RIPK3 in mice prevents MSU crystal-induced NET formation in vitro and in vivo. Thus, neutrophil death and NET formation may involve the signaling pathway defining necroptosis downstream of ROS production. These data imply that RIPK1, RIPK3, and MLKL could represent molecular targets in gout or other crystallopathies. PMID:26531064

  10. Tetrandrine induces autophagy and differentiation by activating ROS and Notch1 signaling in leukemia cells.

    PubMed

    Liu, Ting; Men, Qiuxu; Wu, Guixian; Yu, Chunrong; Huang, Zan; Liu, Xin; Li, Wenhua

    2015-04-10

    All-trans retinoic acid (ATRA) is a differentiating agent for the treatment of acute promyelocytic leukemia (APL). However, the therapeutic efficacy of ATRA has limitations. Tetrandrine is a traditional Chinese medicinal herb extract with antitumor effects. In this study, we investigated the effects of tetrandrine on human PML-RARα-positive acute promyelocytic leukemia cells. Tetrandrine inhibited tumors in vivo. It induced autophagy and differentiation by triggering ROS generation and activating Notch1 signaling. Tetrandrine induced autophagy and differentiation in M5 type patient primary leukemia cells. The in vivo results indicated that low concentrations of tetrandrine inhibited leukemia cells proliferation and induced autophagy and then facilitated their differentiation, by activating ROS and Notch1 signaling. We suggest that tetrandrine is a potential agent for the treatment of APL by inducing differentiation of leukemia cells. PMID:25797266

  11. The TOR signaling pathway regulates starvation-induced pseudouridylation of yeast U2 snRNA.

    PubMed

    Wu, Guowei; Radwan, Mohamed K; Xiao, Mu; Adachi, Hironori; Fan, Jason; Yu, Yi-Tao

    2016-08-01

    Pseudouridine (Ψ) has been identified in various types of RNAs, including mRNA, rRNA, tRNA, snRNA, and many other noncoding RNAs. We have previously shown that RNA pseudouridylation, like DNA and protein modifications, can be induced by stress. For instance, growing yeast cells to saturation induces the formation of Ψ93 in U2 snRNA. Here, we further investigate this inducible RNA modification. We show that switching yeast cells from nutrient-rich medium to different nutrient-deprived media (including water) results in the formation of Ψ93 in U2 snRNA. Using gene deletion/conditional depletion as well as rapamycin treatment, we further show that the TOR signaling pathway, which controls cell entry into stationary phase, regulates Ψ93 formation. The RAS/cAMP signaling pathway, which parallels the TOR pathway, plays no role in this inducible modification.

  12. Impulse-induced optimum signal amplification in scale-free networks.

    PubMed

    Martínez, Pedro J; Chacón, Ricardo

    2016-04-01

    Optimizing information transmission across a network is an essential task for controlling and manipulating generic information-processing systems. Here, we show how topological amplification effects in scale-free networks of signaling devices are optimally enhanced when the impulse transmitted by periodic external signals (time integral over two consecutive zeros) is maximum. This is demonstrated theoretically by means of a star-like network of overdamped bistable systems subjected to generic zero-mean periodic signals and confirmed numerically by simulations of scale-free networks of such systems. Our results show that the enhancer effect of increasing values of the signal's impulse is due to a correlative increase of the energy transmitted by the periodic signals, while it is found to be resonant-like with respect to the topology-induced amplification mechanism.

  13. Parameter-induced stochastic resonance based on spectral entropy and its application to weak signal detection.

    PubMed

    Zhang, Jinjing; Zhang, Tao

    2015-02-01

    The parameter-induced stochastic resonance based on spectral entropy (PSRSE) method is introduced for the detection of a very weak signal in the presence of strong noise. The effect of stochastic resonance on the detection is optimized using parameters obtained in spectral entropy analysis. Upon processing employing the PSRSE method, the amplitude of the weak signal is enhanced and the noise power is reduced, so that the frequency of the signal can be estimated with greater precision through spectral analysis. While the improvement in the signal-to-noise ratio is similar to that obtained using the Duffing oscillator algorithm, the computational cost reduces from O(N(2)) to O(N). The PSRSE approach is applied to the frequency measurement of a weak signal made by a vortex flow meter. The results are compared with those obtained applying the Duffing oscillator algorithm. PMID:25725879

  14. Parameter-induced stochastic resonance based on spectral entropy and its application to weak signal detection

    SciTech Connect

    Zhang, Jinjing; Zhang, Tao

    2015-02-15

    The parameter-induced stochastic resonance based on spectral entropy (PSRSE) method is introduced for the detection of a very weak signal in the presence of strong noise. The effect of stochastic resonance on the detection is optimized using parameters obtained in spectral entropy analysis. Upon processing employing the PSRSE method, the amplitude of the weak signal is enhanced and the noise power is reduced, so that the frequency of the signal can be estimated with greater precision through spectral analysis. While the improvement in the signal-to-noise ratio is similar to that obtained using the Duffing oscillator algorithm, the computational cost reduces from O(N{sup 2}) to O(N). The PSRSE approach is applied to the frequency measurement of a weak signal made by a vortex flow meter. The results are compared with those obtained applying the Duffing oscillator algorithm.

  15. Impulse-induced optimum signal amplification in scale-free networks

    NASA Astrophysics Data System (ADS)

    Martínez, Pedro J.; Chacón, Ricardo

    2016-04-01

    Optimizing information transmission across a network is an essential task for controlling and manipulating generic information-processing systems. Here, we show how topological amplification effects in scale-free networks of signaling devices are optimally enhanced when the impulse transmitted by periodic external signals (time integral over two consecutive zeros) is maximum. This is demonstrated theoretically by means of a star-like network of overdamped bistable systems subjected to generic zero-mean periodic signals and confirmed numerically by simulations of scale-free networks of such systems. Our results show that the enhancer effect of increasing values of the signal's impulse is due to a correlative increase of the energy transmitted by the periodic signals, while it is found to be resonant-like with respect to the topology-induced amplification mechanism.

  16. Impulse-induced optimum signal amplification in scale-free networks.

    PubMed

    Martínez, Pedro J; Chacón, Ricardo

    2016-04-01

    Optimizing information transmission across a network is an essential task for controlling and manipulating generic information-processing systems. Here, we show how topological amplification effects in scale-free networks of signaling devices are optimally enhanced when the impulse transmitted by periodic external signals (time integral over two consecutive zeros) is maximum. This is demonstrated theoretically by means of a star-like network of overdamped bistable systems subjected to generic zero-mean periodic signals and confirmed numerically by simulations of scale-free networks of such systems. Our results show that the enhancer effect of increasing values of the signal's impulse is due to a correlative increase of the energy transmitted by the periodic signals, while it is found to be resonant-like with respect to the topology-induced amplification mechanism. PMID:27176316

  17. Parameter-induced stochastic resonance based on spectral entropy and its application to weak signal detection.

    PubMed

    Zhang, Jinjing; Zhang, Tao

    2015-02-01

    The parameter-induced stochastic resonance based on spectral entropy (PSRSE) method is introduced for the detection of a very weak signal in the presence of strong noise. The effect of stochastic resonance on the detection is optimized using parameters obtained in spectral entropy analysis. Upon processing employing the PSRSE method, the amplitude of the weak signal is enhanced and the noise power is reduced, so that the frequency of the signal can be estimated with greater precision through spectral analysis. While the improvement in the signal-to-noise ratio is similar to that obtained using the Duffing oscillator algorithm, the computational cost reduces from O(N(2)) to O(N). The PSRSE approach is applied to the frequency measurement of a weak signal made by a vortex flow meter. The results are compared with those obtained applying the Duffing oscillator algorithm.

  18. CREB modulates calcium signaling in cAMP-induced bone marrow stromal cells (BMSCs).

    PubMed

    Zhang, Linxia; Liu, Li; Thompson, Ryan; Chan, Christina

    2014-10-01

    Calcium signaling has a versatile role in many important cellular functions. Despite its importance, regulation of calcium signaling in bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) has not been explored extensively. Our previous study revealed that cyclic adenosine monophosphate (cAMP) enabled BMSCs to generate calcium signal upon stimulation by dopamine, KCl and glutamate. Concurrently, cAMP transiently activated the transcription factor cAMP response element binding protein (CREB) in BMSCs. Activity of CREB can be modulated by the calcium/calmodulin-dependent kinase signaling pathway, however, whether the calcium signaling observed in cAMP-induced BMSCs requires CREB has not been investigated. In an effort to uncover the role of CREB in the generation of calcium signaling in response to modulators such as dopamine and KCl, we knocked down CREB activity in BMSCs. Our study indicated that BMSCs, but not its close relative fibroblasts, are responsive to dopamine and KCl after cAMP treatment. Calcium signal elicited by dopamine depends, in part, on calcium influx whereas that elicited by KCl depends completely on calcium influx. Knock-down of CREB activity significantly reduced or abolished the cAMP-induced calcium response, and reintroducing a constitutively active CREB partially restored the calcium response.

  19. CREB modulates calcium signaling in cAMP-induced bone marrow stromal cells (BMSCs)

    PubMed Central

    Zhang, Linxia; Liu, Li; Thompson, Ryan; Chan, Christina

    2014-01-01

    Calcium signaling has a versatile role in many important cellular functions. Despite its importance, regulation of calcium signaling in bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) has not been explored extensively. Our previous study revealed that cyclic adenosine monophosphate (cAMP) enabled BMSCs to generate calcium signal upon stimulation by dopamine, KCl and glutamate. Concurrently, cAMP transiently activated the transcription factor cAMP response element binding protein (CREB) in BMSCs. Activity of CREB can be modulated by the calcium/calmodulin-dependent kinase signaling pathway, however, whether the calcium signaling observed in cAMP-induced BMSCs requires CREB has not been investigated. In an effort to uncover the role of CREB in the generation of calcium signaling in response to modulators such as dopamine and KCl, we knocked down CREB activity in BMSCs. Our study indicated that BMSCs, but not its close relative fibroblasts, are responsive to dopamine and KCl after cAMP treatment. Calcium signal elicited by dopamine depends, in part, on calcium influx whereas that elicited by KCl depends completely on calcium influx. Knock-down of CREB activity significantly reduced or abolished the cAMP-induced calcium response, and reintroducing a constitutively active CREB partially restored the calcium response. PMID:25154887

  20. Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling

    SciTech Connect

    Johnson, Karen E.; Song, Byeongwoon; Knipe, David M.

    2008-05-10

    Host cells respond to viral infection by many mechanisms, including the production of type I interferons which act in a paracrine and autocrine manner to induce the expression of antiviral interferon-stimulated genes (ISGs). Viruses have evolved means to inhibit interferon signaling to avoid induction of the innate immune response. Herpes simplex virus 1 (HSV-1) has several mechanisms to inhibit type I interferon production, the activities of ISGs, and the interferon signaling pathway itself. We report that the inhibition of the Jak/STAT pathway by HSV-1 requires viral gene expression and that viral immediate-early protein ICP27 plays a role in downregulating STAT-1 phosphorylation and in preventing the accumulation of STAT-1 in the nucleus. We also show that expression of ICP27 by transfection causes an inhibition of IFN-induced STAT-1 nuclear accumulation. Therefore, ICP27 is necessary and sufficient for at least some of the effects of HSV infection on STAT-1.

  1. Salicylic acid induces vanillin synthesis through the phospholipid signaling pathway in Capsicum chinense cell cultures.

    PubMed

    Rodas-Junco, Beatriz A; Cab-Guillén, Yahaira; Muñoz-Sánchez, J Armando; Vázquez-Flota, Felipe; Monforte-González, Miriam; Hernández-Sotomayor, S M Teresa

    2013-10-01

    Signal transduction via phospholipids is mediated by phospholipases such as phospholipase C (PLC) and D (PLD), which catalyze hydrolysis of plasma membrane structural phospholipids. Phospholipid signaling is also involved in plant responses to phytohormones such as salicylic acid (SA). The relationships between phospholipid signaling, SA, and secondary metabolism are not fully understood. Using a Capsicum chinense cell suspension as a model, we evaluated whether phospholipid signaling modulates SA-induced vanillin production through the activation of phenylalanine ammonia lyase (PAL), a key enzyme in the biosynthetic pathway. Salicylic acid was found to elicit PAL activity and consequently vanillin production, which was diminished or reversed upon exposure to the phosphoinositide-phospholipase C (PI-PLC) signaling inhibitors neomycin and U73122. Exposure to the phosphatidic acid inhibitor 1-butanol altered PLD activity and prevented SA-induced vanillin production. Our results suggest that PLC and PLD-generated secondary messengers may be modulating SA-induced vanillin production through the activation of key biosynthetic pathway enzymes.

  2. Brain signaling and behavioral responses induced by exposure to (56)Fe-particle radiation

    NASA Technical Reports Server (NTRS)

    Denisova, N. A.; Shukitt-Hale, B.; Rabin, B. M.; Joseph, J. A.

    2002-01-01

    Previous experiments have demonstrated that exposure to 56Fe-particle irradiation (1.5 Gy, 1 GeV) produced aging-like accelerations in neuronal and behavioral deficits. Astronauts on long-term space flights will be exposed to similar heavy-particle radiations that might have similar deleterious effects on neuronal signaling and cognitive behavior. Therefore, the present study evaluated whether radiation-induced spatial learning and memory behavioral deficits are associated with region-specific brain signaling deficits by measuring signaling molecules previously found to be essential for behavior [pre-synaptic vesicle proteins, synaptobrevin and synaptophysin, and protein kinases, calcium-dependent PRKCs (also known as PKCs) and PRKA (PRKA RIIbeta)]. The results demonstrated a significant radiation-induced increase in reference memory errors. The increases in reference memory errors were significantly negatively correlated with striatal synaptobrevin and frontal cortical synaptophysin expression. Both synaptophysin and synaptobrevin are synaptic vesicle proteins that are important in cognition. Striatal PRKA, a memory signaling molecule, was also significantly negatively correlated with reference memory errors. Overall, our findings suggest that radiation-induced pre-synaptic facilitation may contribute to some previously reported radiation-induced decrease in striatal dopamine release and for the disruption of the central dopaminergic system integrity and dopamine-mediated behavior.

  3. ASBESTOS-INDUCED ACTIVATION OF SIGNALING PATHWAYS IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Title: Asbestos-Induced Activation of Signaling Pathways in Human
    Bronchial Epithelial Cells

    X. Wang, MD 1, J. M. Samet, PhD 2 and A. J. Ghio, MD 2. 1 Center for
    Environmental Medicine, Asthma and Lung Biology, University of North
    Carolina, Chapel Hill, NC, Uni...

  4. DAMP Signaling is a Key Pathway Inducing Immune Modulation after Brain Injury

    PubMed Central

    Dalpke, Alexander; Mracsko, Eva; Antoine, Daniel J.; Roth, Stefan; Zhou, Wei; Yang, Huan; Na, Shin-Young; Akhisaroglu, Mustafa; Fleming, Thomas; Eigenbrod, Tatjana; Nawroth, Peter P.; Tracey, Kevin J.

    2015-01-01

    Acute brain lesions induce profound alterations of the peripheral immune response comprising the opposing phenomena of early immune activation and subsequent immunosuppression. The mechanisms underlying this brain-immune signaling are largely unknown. We used animal models for experimental brain ischemia as a paradigm of acute brain lesions and additionally investigated a large cohort of stroke patients. We analyzed release of HMGB1 isoforms by mass spectrometry and investigated its inflammatory potency and signaling pathways by immunological in vivo and in vitro techniques. Features of the complex behavioral sickness behavior syndrome were characterized by homecage behavior analysis. HMGB1 downstream signaling, particularly with RAGE, was studied in various transgenic animal models and by pharmacological blockade. Our results indicate that the cytokine-inducing, fully reduced isoform of HMGB1 was released from the ischemic brain in the hyperacute phase of stroke in mice and patients. Cytokines secreted in the periphery in response to brain injury induced sickness behavior, which could be abrogated by inhibition of the HMGB1-RAGE pathway or direct cytokine neutralization. Subsequently, HMGB1-release induced bone marrow egress and splenic proliferation of bone marrow-derived suppressor cells, inhibiting the adaptive immune responses in vivo and vitro. Furthermore, HMGB1-RAGE signaling resulted in functional exhaustion of mature monocytes and lymphopenia, the hallmarks of immune suppression after extensive ischemia. This study introduces the HMGB1-RAGE-mediated pathway as a key mechanism explaining the complex postischemic brain-immune interactions. PMID:25589753

  5. Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis.

    PubMed

    Li, Jianzhong; Ren, Jiafa; Liu, Xin; Jiang, Lei; He, Weichun; Yuan, Weiping; Yang, Junwei; Dai, Chunsun

    2015-09-01

    The mammalian target of rapamycin (mTOR) was recently identified in two structurally distinct multiprotein complexes: mTORC1 and mTORC2. Previously, we found that Rictor/mTORC2 protects against cisplatin-induced acute kidney injury, but the role and mechanisms for Rictor/mTORC2 in TGFβ1-induced fibroblast activation and kidney fibrosis remains unknown. To study this, we initially treated NRK-49F cells with TGFβ1 and found that TGFβ1 could activate Rictor/mTORC2 signaling in cultured cells. Blocking Rictor/mTORC2 signaling with Rictor or Akt1 small interfering RNAs markedly inhibited TGFβ1-induced fibronection and α-smooth muscle actin expression. Ensuing western blotting or immunostaining results showed that Rictor/mTORC2 signaling was activated in kidney interstitial myofibroblasts from mice with unilateral ureteral obstruction. Next, a mouse model with fibroblast-specific deletion of Rictor was generated. These knockout mice were normal at birth and had no obvious kidney dysfunction or kidney morphological abnormality within 2 months of birth. Compared with control littermates, the kidneys of Rictor knockout mice developed less interstitial extracellular matrix deposition and inflammatory cell infiltration at 1 or 2 weeks after ureteral obstruction. Thus our study suggests that Rictor/mTORC2 signaling activation mediates TGFβ1-induced fibroblast activation and contributes to the development of kidney fibrosis. This may provide a therapeutic target for chronic kidney diseases.

  6. Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis

    PubMed Central

    Li, Jianzhong; Ren, Jiafa; Liu, Xin; Jiang, Lei; He, Weichun; Yuan, Weiping; Yang, Junwei; Dai, Chunsun

    2015-01-01

    The mammalian target of rapamycin (mTOR) was recently identified in two structurally distinct multiprotein complexes: mTORC1 and mTORC2. Previously, we found that Rictor/mTORC2 protects against cisplatin-induced acute kidney injury, but the role and mechanisms for Rictor/mTORC2 in TGFβ1-induced fibroblast activation and kidney fibrosis remains unknown. To study this, we initially treated NRK-49F cells with TGFβ1 and found that TGFβ1 could activate Rictor/mTORC2 signaling in cultured cells. Blocking Rictor/mTORC2 signaling with Rictor or Akt1 small interfering RNAs markedly inhibited TGFβ1-induced fibronection and α-smooth muscle actin expression. Ensuing western blotting or immunostaining results showed that Rictor/mTORC2 signaling was activated in kidney interstitial myofibroblasts from mice with unilateral ureteral obstruction. Next, a mouse model with fibroblast-specific deletion of Rictor was generated. These knockout mice were normal at birth and had no obvious kidney dysfunction or kidney morphological abnormality within 2 months of birth. Compared with control littermates, the kidneys of Rictor knockout mice developed less interstitial extracellular matrix deposition and inflammatory cell infiltration at 1 or 2 weeks after ureteral obstruction. Thus our study suggests that Rictor/mTORC2 signaling activation mediates TGFβ1-induced fibroblast activation and contributes to the development of kidney fibrosis. This may provide a therapeutic target for chronic kidney diseases. PMID:25970154

  7. Using induced signals to sense position from a microchannel plate detector

    NASA Astrophysics Data System (ADS)

    deSouza, R. T.; Gosser, Z. Q.; Hudan, S.

    2012-05-01

    We demonstrate a novel concept for a position sensitive microchannel plate detector. This detector provides sub-millimeter spatial resolution by examining the signal induced on a wire harp by the electron cloud from a microchannel plate detector. Wires in the harp are efficiently read out by coupling them to a delay line.

  8. Curcumol suppresses RANKL-induced osteoclast formation by attenuating the JNK signaling pathway

    SciTech Connect

    Yu, Mingxiang; Chen, Xianying; Lv, Chaoyang; Yi, Xilu; Zhang, Yao; Xue, Mengjuan; He, Shunmei; Zhu, Guoying; Wang, Hongfu

    2014-05-02

    Highlights: • Curcumol suppresses osteoclasts differentiation in vitro. • Curcumol impairs JNK/AP-1 signaling pathway. • Curcumol may be used for treating osteoclast related diseases. - Abstract: Osteoclasts, derived from hemopoietic progenitors of the monocyte/macrophage lineage, have a unique role in bone resorption, and are considered a potential therapeutic target in the treatment of such pathologic bone diseases as osteoporosis, rheumatoid arthritis, and periodontitis. In the present study, we demonstrate that curcumol, one of the major components of the essential oil of Rhizoma Curcumae, exhibits an inhibitory effect on receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclast differentiation with both bone marrow-derived macrophages and RAW264.7 cells in a dose-dependent manner. In addition, RANKL-induced mRNA expression of osteoclast-specific genes, such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K, is prominently reduced in the presence of curcumol. Furthermore, the molecular mechanism of action was investigated, and curcumol inhibited osteoclastogenesis by specifically impairing RANKL-induced c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) signaling, which was further identified in rescue studies by means of anisomycin, a JNK signaling-specific activator. Taken together, these findings suggest that curcumol suppresses RANKL-induced osteoclast differentiation through the JNK/AP-1 signaling pathway, and may be useful as a therapeutic treatment for bone resorption-associated diseases.

  9. Mitogen-activated protein kinase activation in UV-induced signal transduction.

    PubMed

    Bode, Ann M; Dong, Zigang

    2003-01-28

    Experimental evidence supported by epidemiological findings suggests that solar ultraviolet (UV) irradiation is the most important environmental carcinogen leading to the development of skin cancers. Because the ozone layer blocks UVC (wavelength, 180 to 280 nm) exposure, UVA (UVA I, 340 to 400 nm; UVA II, 320 to 340 nm) and UVB (280 to 320 nm) are probably the chief carcinogenic components of sunlight with relevance for human skin cancer. Substantial contributions to the elucidation of the specific signal transduction pathways involved in UV-induced skin carcinogenesis have been made over the past few years, and most evidence suggests that the cellular signaling response is UV wavelength-dependent. The mitogen-activated protein kinase (MAPK) signaling cascades are targets for UV and are important in the regulation of the multitude of UV-induced cellular responses. Experimental studies have used a range of UVA, UVB, UVC, and various combinations in multiple doses, and the observed effects on activation and phosphorylation of MAPKs are varied. This review focuses on the mechanistic data supporting a role for MAPKs in UV-induced skin carcinogenesis. Progress in understanding the mechanisms of UV-induced signal transduction could lead to the use of these protein kinases as specific targets for the prevention and control of skin cancer.

  10. MECHANISMS OF ZN-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)

    EPA Science Inventory

    MECHANISMS OF Zn-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)
    James M. Samet*, Lee M. Graves? and Weidong Wu?. *Human Studies Division, NHEERL, ORD, Research Triangle Park, NC 27711, and ?Center for Environmental Medicine, University of North C...

  11. ALTERED RA SIGNALING IN THE GENESIS OF ETHANOL-INDUCED LIMB DEFECTS

    EPA Science Inventory

    Altered RA Signaling in the Genesis of Ethanol-Induced Limb Defects

    Johnson CS(1), Sulik KK(1,2) Hunter, ES III(3)
    (1) Dept of Cell and Developmental Biology, UNC-Chapel Hill (2) Bowles Center for Alcohol Studies, UNC-CH (3) NHEERL, ORD, US EPA, RTP, NC

    Administr...

  12. Helicobacter pylori-Induced Signaling Pathways Contribute to Intestinal Metaplasia and Gastric Carcinogenesis

    PubMed Central

    Sue, Soichiro; Shibata, Wataru; Maeda, Shin

    2015-01-01

    Helicobacter pylori (H. pylori) induces chronic gastric inflammation, atrophic gastritis, intestinal metaplasia, and cancer. Although the risk of gastric cancer increases exponentially with the extent of atrophic gastritis, the precise mechanisms of gastric carcinogenesis have not been fully elucidated. H. pylori induces genetic and epigenetic changes in gastric epithelial cells through activating intracellular signaling pathways in a cagPAI-dependent manner. H. pylori eventually induces gastric cancer with chromosomal instability (CIN) or microsatellite instability (MSI), which are classified as two major subtypes of gastric cancer. Elucidation of the precise mechanisms of gastric carcinogenesis will also be important for cancer therapy. PMID:26064948

  13. Regulation of drug-induced liver injury by signal transduction pathways: critical role of mitochondria

    PubMed Central

    Han, Derick; Dara, Lily; Win, Sanda; Than, Tin Aung; Yuan, Liyun; Abbasi, Sadeea Q; Liu, Zhang-Xu; Kaplowitz, Neil

    2013-01-01

    Drugs that cause liver injury often “stress” mitochondria and activate signal transduction pathways important in determining cell survival or death. In most cases, hepatocytes adapt to the drug-induced stress by activating adaptive signaling pathways, such as mitochondrial adaptive responses and erythroid 2-related factor 2 (Nrf-2), a transcription factor that upregulates antioxidant defenses. Due to adaptation, drugs alone rarely cause liver injury, with acetaminophen being the notable exception. Drug-induced liver injury (DILI) usually involves other extrinsic factors, such as the adaptive immune system, that cause “stressed” hepatocytes to become injured; leading to idiosyncratic DILI, the rare and unpredictable adverse drug reaction in the liver. Hepatocyte injury, due to drug and extrinsic insult, causes a second wave of signaling changes associated with adaptation, cell death, and repair. If the stress and injury reach a critical threshold, then death signaling pathways such as JNK become dominant and hepatocytes enter a failsafe mode to undergo self-destruction. DILI can be seen as an active process involving recruitment of death signaling pathways that mediate cell death rather than a passive process due to overwhelming biochemical injury. In this review, we highlight the role of signal transduction pathways, which frequently involve mitochondria, in the development of DILI. PMID:23453390

  14. Interferon gamma induces protective non-canonical signaling pathways in primary neurons.

    PubMed

    O'Donnell, Lauren A; Henkins, Kristen M; Kulkarni, Apurva; Matullo, Christine M; Balachandran, Siddharth; Pattisapu, Anil K; Rall, Glenn F

    2015-10-01

    The signal transduction molecule, Stat1, is critical for the expression of type I and II interferon (IFN)-responsive genes in most cells; however, we previously showed that primary hippocampal mouse neurons express low basal Stat1, with delayed and attenuated expression of IFN-responsive genes. Moreover, IFNγ-dependent resolution of a neurotropic viral challenge in permissive mice is Stat1-independent. Here, we show that exogenous IFNγ has no deleterious impact on neuronal viability, and staurosporine-induced apoptosis in neurons is significantly blunted by the addition of IFNγ, suggesting that IFNγ confers a pro-survival signal in neurons. To identify the pathways induced by IFNγ in neurons, the activation of alternative signal transducers associated with IFNγ signaling was assessed. Rapid and pronounced activation of extracellular signal regulated kinase (Erk1/2) was observed in neurons, compared to a modest response in fibroblasts. Moreover, the absence of Stat1 in primary fibroblasts led to enhanced Erk activation following IFNγ addition, implying that the cell-specific availability of signal transducers can diversify the cellular response following IFN engagement.

  15. Regulation of drug-induced liver injury by signal transduction pathways: critical role of mitochondria.

    PubMed

    Han, Derick; Dara, Lily; Win, Sanda; Than, Tin Aung; Yuan, Liyun; Abbasi, Sadeea Q; Liu, Zhang-Xu; Kaplowitz, Neil

    2013-04-01

    Drugs that cause liver injury often 'stress' mitochondria and activate signal transduction pathways important in determining cell survival or death. In most cases, hepatocytes adapt to the drug-induced stress by activating adaptive signaling pathways, such as mitochondrial adaptive responses and nuclear factor erythroid 2-related factor 2 (Nrf-2), a transcription factor that upregulates antioxidant defenses. Owing to adaptation, drugs alone rarely cause liver injury, with acetaminophen (APAP) being the notable exception. Drug-induced liver injury (DILI) usually involves other extrinsic factors, such as the adaptive immune system, that cause 'stressed' hepatocytes to become injured, leading to idiosyncratic DILI, the rare and unpredictable adverse drug reaction in the liver. Hepatocyte injury, due to drug and extrinsic insult, causes a second wave of signaling changes associated with adaptation, cell death, and repair. If the stress and injury reach a critical threshold, then death signaling pathways such as c-Jun N-terminal kinase (JNK) become dominant and hepatocytes enter a failsafe mode to undergo self-destruction. DILI can be seen as an active process involving recruitment of death signaling pathways that mediate cell death rather than a passive process due to overwhelming biochemical injury. In this review, we highlight the role of signal transduction pathways, which frequently involve mitochondria, in the development of DILI. PMID:23453390

  16. Regulation of starvation-induced hyperactivity by insulin and glucagon signaling in adult Drosophila

    PubMed Central

    Yu, Yue; Huang, Rui; Ye, Jie; Zhang, Vivian; Wu, Chao; Cheng, Guo; Jia, Junling; Wang, Liming

    2016-01-01

    Starvation induces sustained increase in locomotion, which facilitates food localization and acquisition and hence composes an important aspect of food-seeking behavior. We investigated how nutritional states modulated starvation-induced hyperactivity in adult Drosophila. The receptor of the adipokinetic hormone (AKHR), the insect analog of glucagon, was required for starvation-induced hyperactivity. AKHR was expressed in a small group of octopaminergic neurons in the brain. Silencing AKHR+ neurons and blocking octopamine signaling in these neurons eliminated starvation-induced hyperactivity, whereas activation of these neurons accelerated the onset of hyperactivity upon starvation. Neither AKHR nor AKHR+ neurons were involved in increased food consumption upon starvation, suggesting that starvation-induced hyperactivity and food consumption are independently regulated. Single cell analysis of AKHR+ neurons identified the co-expression of Drosophila insulin-like receptor (dInR), which imposed suppressive effect on starvation-induced hyperactivity. Therefore, insulin and glucagon signaling exert opposite effects on starvation-induced hyperactivity via a common neural target in Drosophila. DOI: http://dx.doi.org/10.7554/eLife.15693.001 PMID:27612383

  17. Thalidomide induces limb deformities by perturbing the Bmp/Dkk1/Wnt signaling pathway.

    PubMed

    Knobloch, Jürgen; Shaughnessy, John D; Rüther, Ulrich

    2007-05-01

    Thalidomide, a sedative originally used to treat morning sickness and now used to treat leprosy and multiple myeloma, is also a teratogen that induces birth defects in humans such as limb truncations and microphthalmia. However, the teratogenic mechanism of action of this drug remains obscure. Thalidomide induces limb and eye defects in the chicken embryo at an EC50 of 50 microg/kg egg wt and apoptosis in primary human embryonic fibroblasts (HEFs) at an EC50 of 8.9 microM. Using these model systems, we demonstrate by semiquantitative reverse transcriptase-polymerase chain reaction and whole-mount in situ hybridization that thalidomide-induced oxidative stress enhances signaling through bone morphogenetic proteins (Bmps). This leads to up-regulation of the Bmp target gene and Wnt antagonist Dickkopf1 (Dkk1) with subsequent inhibition of canonical Wnt/beta-catenin signaling and increased cell death as shown by trypan blue and terminal deoxynucleotidyl transferase-mediated nick end labeling staining. Thalidomide-induced cell death was dramatically reduced in HEFs and in embryonic limb buds by the use of inhibitors against Bmps, Dkk1, and Gsk3beta, a beta-catenin antagonist acting downstream of Dkk1 in the Wnt pathway. Most interestingly, blocking of Dkk1 or Gsk3beta dramatically counteracts thalidomide-induced limb truncations and microphthalmia. From this, we conclude that perturbing of Bmp/Dkk1/Wnt signaling is central to the teratogenic effects of thalidomide.

  18. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation.

    PubMed

    Tomita, Masanori; Matsumoto, Hideki; Funayama, Tomoo; Yokota, Yuichiro; Otsuka, Kensuke; Maeda, Munetoshi; Kobayashi, Yasuhiko

    2015-07-01

    In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time

  19. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation

    NASA Astrophysics Data System (ADS)

    Tomita, Masanori; Matsumoto, Hideki; Funayama, Tomoo; Yokota, Yuichiro; Otsuka, Kensuke; Maeda, Munetoshi; Kobayashi, Yasuhiko

    2015-07-01

    In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time

  20. Colony-stimulating Factor-1 Receptor Utilizes Multiple Signaling Pathways to Induce Cyclin D2 Expression

    PubMed Central

    Dey, Arunangsu; She, Hongyun; Kim, Leopold; Boruch, Allan; Guris, Deborah L.; Carlberg, Kristen; Sebti, Saïd M.; Woodley, David T.; Imamoto, Akira; Li, Wei

    2000-01-01

    Colony-stimulating factor-1 (CSF-1) induces expression of immediate early gene, such as c-myc and c-fos and delayed early genes such as D-type cyclins (D1 and D2), whose products play essential roles in the G1 to S phase transition of the cell cycle. Little is known, however, about the cytoplasmic signal transduction pathways that connect the surface CSF-1 receptor to these genes in the nucleus. We have investigated the signaling mechanism of CSF-1-induced D2 expression. Analyses of CSF-1 receptor autophosphorylation mutants show that, although certain individual mutation has a partial inhibitory effect, only multiple combined mutations completely block induction of D2 in response to CSF-1. We report that at least three parallel pathways, the Src pathway, the MAPK/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway, and the c-myc pathway, are involved. Induction of D2 is partially inhibited in Src−/− bone marrow-derived macrophages and by Src inhibitor PP1 and is enhanced in v-Src-overexpressing cells. Activation of myc's transactivating activity selectively induces D2 but not D1. Blockade of c-myc expression partially blocks CSF-1-induced D2 expression. Complete inhibition of the MEK/ERK pathway causes 50% decrease of D2 expression. Finally, simultaneous inhibition of Src, MEK activation, and c-myc expression additively blocks CSF-1-induced D2 expression. This study indicates that multiple signaling pathways are involved in full induction of a single gene, and this finding may also apply broadly to other growth factor-inducible genes. PMID:11071910

  1. Jagged1-selective notch signaling induces smooth muscle differentiation via a RBP-Jkappa-dependent pathway.

    PubMed

    Doi, Hiroshi; Iso, Tatsuya; Sato, Hiroko; Yamazaki, Miki; Matsui, Hiroki; Tanaka, Toru; Manabe, Ichiro; Arai, Masashi; Nagai, Ryozo; Kurabayashi, Masahiko

    2006-09-29

    The Notch signaling pathway plays a crucial role in specifying cellular fates by interaction between cellular neighbors; however, the molecular mechanism underlying smooth muscle cell (SMC) differentiation by Notch signaling has not been well characterized. Here we demonstrate that Jagged1-Notch signaling promotes SMC differentiation from mesenchymal cells. Overexpression of the Notch intracellular domain, an activated form of Notch, up-regulates the expression of multiple SMC marker genes including SMC-myosin heavy chain (Sm-mhc) in mesenchymal 10T1/2 cells, but not in non-mesenchymal cells. Physiological Notch stimulation by its ligand Jagged1, but not Dll4, directly induces Sm-mhc expression in 10T1/2 cells without de novo protein synthesis, indicative of a ligand-selective effect. Jagged1-induced expression of SM-MHC was blocked bygamma-secretase inhibitor, N-(N-(3,5-difluorophenyl)-l-alanyl)-S-phenylglycine t-butyl ester, which impedes Notch signaling. Using Rbp-jkappa-deficient cells and site-specific mutagenesis of the SM-MHC gene, we show that such an induction is independent of the myocardin-serum response factor-CArG complex, but absolutely dependent on RBP-Jkappa, a major mediator of Notch signaling, and its cognate binding sequence. Of importance, Notch signaling and myocardin synergistically activate SM-MHC gene expression. Taken together, these data suggest that the Jagged1-Notch pathway constitutes an instructive signal for SMC differentiation through an RBP-Jkappa-dependent mechanism and augments gene expression mediated by the myocardin-SRF-CArG complex. Given that Notch pathway components are expressed in vascular SMC during normal development and disease, Notch signaling is likely to play a pivotal role in such situations to modulate the vascular smooth muscle cell phenotype. PMID:16867989

  2. Role of the TGF-β/Alk5 Signaling Pathway in Monocrotaline-induced Pulmonary Hypertension

    PubMed Central

    Zaiman, Ari L.; Podowski, Megan; Medicherla, Satya; Gordy, Kimberley; Xu, Fang; Zhen, Lijie; Shimoda, Larissa A.; Neptune, Enid; Higgins, Linda; Murphy, Alison; Chakravarty, Sarvajit; Protter, Andrew; Sehgal, Pravin B.; Champion, Hunter C.; Tuder, Rubin M.

    2008-01-01

    Rationale: Pulmonary arterial hypertension is a progressive disease characterized by an elevation in the mean pulmonary artery pressure leading to right heart failure and a significant risk of death. Alterations in two transforming growth factor (TGF) signaling pathways, bone morphogenetic protein receptor II and the TGF-β receptor I, Alk1, have been implicated in the pathogenesis of pulmonary hypertension (PH). However, the role of TGF-β family signaling in PH and pulmonary vascular remodeling remains unclear. Objectives: To determine whether inhibition of TGF-β signaling will attenuate and reverse monocrotaline-induced PH (MCT-PH). Methods: We have used an orally active small-molecule TGF-β receptor I inhibitor, SD-208, to determine the functional role of this pathway in MCT-PH. Measurements and Main Results: The development of MCT-PH was associated with increased vascular cell apoptosis, which paralleled TGF-β signaling as documented by psmad2 expression. Inhibition of TGF-β signaling with SD-208 significantly attenuated the development of the PH and reduced pulmonary vascular remodeling. These effects were associated with decreased early vascular cell apoptosis, adventitial cell proliferation, and matrix metalloproteinase expression. Inhibition of TGF-β signaling with SD-208 in established MCT-PH resulted in a small but significant improvement in hemodynamic parameters and medial remodeling. Conclusions: These findings provide evidence that increased TGF-β signaling participates in the pathogenesis of experimental severe PH. PMID:18202349

  3. Autocrine-Based Selection of Drugs That Target Ion Channels from Combinatorial Venom Peptide Libraries.

    PubMed

    Zhang, Hongkai; Du, Mingjuan; Xie, Jia; Liu, Xiao; Sun, Jingying; Wang, Wei; Xin, Xiu; Possani, Lourival D; Yea, Kyungmoo; Lerner, Richard A

    2016-08-01

    Animal venoms represent a rich source of pharmacologically active peptides that interact with ion channels. However, a challenge to discovering drugs remains because of the slow pace at which venom peptides are discovered and refined. An efficient autocrine-based high-throughput selection system was developed to discover and refine venom peptides that target ion channels. The utility of this system was demonstrated by the discovery of novel Kv1.3 channel blockers from a natural venom peptide library that was formatted for autocrine-based selection. We also engineered a Kv1.3 blocker peptide (ShK) derived from sea anemone to generate a subtype-selective Kv1.3 blocker with a long half-life in vivo. PMID:27197631

  4. Molecular/cell engineering approach to autocrine ligand control of cell function.

    PubMed

    Lauffenburger, D A; Forsten, K E; Will, B; Wiley, H S

    1995-01-01

    Tissue engineering, along with other modern cell- and tissue-based health care technologies, depends on successful regulation of cell function by molecular means, including pharmacological agents, materials, and genetics. This regulation is generally mediated by cell receptor/ligand interactions providing primary targets for molecular intervention. While regulatory ligands may often be exogenous in nature, in the categories of endocrine and paracrine hormone systems, they are being increasingly appreciated as crucial in local control of cell and tissue function. Improvements in design of health care technologies involving autocrine ligand interactions with cell receptors should benefit from increased qualitative and quantitative understanding of the kinetic and transport processes governing these interactions. In this symposium paper we offer a concise overview of our recent efforts combining molecular cell biology and engineering approaches to increase the understanding of how molecular and cellular parameters may be manipulated for improved control of cell and tissue function regulated by autocrine ligands.

  5. Insulin enhanced leptin-induced STAT3 signaling by inducing GRP78

    PubMed Central

    Thon, Mina; Hosoi, Toru; Ozawa, Koichiro

    2016-01-01

    Leptin, an adipocyte-derived hormone, centrally regulates energy homeostasis. Overlaps in the regulation of glucose and energy homeostasis have been reported between leptin and insulin. However, the effects of insulin on leptin’s actions in the central nervous system (CNS) have not yet been elucidated in detail. In the present study, we found that insulin potentiated leptin’s actions through GRP78 in the neuronal cell line, SH-SY5Y-ObRb. Since insulin induces GRP78, we speculated that it may also enhance leptin’s actions through this induction. We found that insulin enhanced leptin-induced STAT3 phosphorylation and this effect was ameliorated by the knockdown of GRP78. The role of GRP78 in leptin’s actions was also confirmed by impairments in leptin-induced STAT3 phosphorylation in HEK293-ObRb cells in which GRP78 was knocked down. Furthermore, we found that the overexpression of GRP78 enhanced leptin-induced STAT3 phosphorylation. These results suggest that GRP78 plays an important role in leptin’s actions. Furthermore, insulin may enhance the leptin-induced activation of STAT3 by inducing GRP78, which may provide an important connection between insulin and leptin in the CNS. PMID:27677243

  6. Environmental Enrichment Attenuated Sevoflurane-Induced Neurotoxicity through the PPAR-γ Signaling Pathway.

    PubMed

    Zhao, Yupeng; Chen, Kaizheng; Shen, Xia

    2015-01-01

    Sevoflurane is the most widely used inhaled anesthetic. Environmental enrichment (EE) can reverse sevoflurane-induced learning and memory impairment in young mice. However, the mechanism by which EE elicits this effect is unclear. The peroxisome proliferator-activated receptor (PPAR) regulatory pathway plays a critical role in the regulation of inflammation in central nervous system diseases. In this study, we investigated whether EE attenuates sevoflurane-induced learning and memory disability via the PPAR signaling pathway. Six-day-old mice were treated with 3% sevoflurane for 2 hours daily from postnatal day 6 (P6) to P8. Then, the mice were treated with EE. The effects of sevoflurane on learning and memory function, PPAR-γ expression in the brain, and the numbers of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells and 5-bromodeoxyuridine-positive cells in the hippocampus were determined. Sevoflurane induced neuronal apoptosis and neurogenesis inhibition, which may impair learning and memory in young mice. Furthermore, sevoflurane downregulated PPAR-γ expression. Both EE and the PPAR-γ agonist, rosiglitazone, attenuated sevoflurane-induced neuronal apoptosis, neurogenesis inhibition, and learning and memory impairment. Our findings suggest that EE ameliorated sevoflurane-induced neurotoxicity and learning and memory impairment through the PPAR-γ signaling pathway. PPAR-γ may be a potential therapeutic target for preventing or treating sevoflurane-induced neurotoxicity.

  7. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway.

    PubMed

    Zhu, Yao; Zhang, Ya-Jie; Liu, Wei-Wei; Shi, Ai-Wu; Gu, Ning

    2016-01-01

    Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL), one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2)-regulated genes such as heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase (quinone1) (NQO1). However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS) and malondialdehyde (MDA), and improved the activities of superoxide dismutase (SOD) and catalase (CAT), resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. PMID:27517893

  8. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway.

    PubMed

    Zhu, Yao; Zhang, Ya-Jie; Liu, Wei-Wei; Shi, Ai-Wu; Gu, Ning

    2016-01-01

    Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL), one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2)-regulated genes such as heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase (quinone1) (NQO1). However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS) and malondialdehyde (MDA), and improved the activities of superoxide dismutase (SOD) and catalase (CAT), resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  9. HMGB1 mediates hyperglycaemia-induced cardiomyocyte apoptosis via ERK/Ets-1 signalling pathway.

    PubMed

    Wang, Wen-Ke; Lu, Qing-Hua; Zhang, Jia-Ning; Wang, Ben; Liu, Xiang-Juan; An, Feng-Shuang; Qin, Wei-Dong; Chen, Xue-Ying; Dong, Wen-Qian; Zhang, Cheng; Zhang, Yun; Zhang, Ming-Xiang

    2014-11-01

    Apoptosis is a key event involved in diabetic cardiomyopathy. The expression of high mobility group box 1 protein (HMGB1) is up-regulated in diabetic mice. However, the molecular mechanism of high glucose (HG)-induced cardiomyocyte apoptosis remains obscure. We aimed to determine the role of HMGB1 in HG-induced apoptosis of cardiomyocytes. Treating neonatal primary cardiomyocytes with HG increased cell apoptosis, which was accompanied by elevated levels of HMGB1. Inhibition of HMGB1 by short-hairpin RNA significantly decreased HG-induced cell apoptosis by reducing caspase-3 activation and ratio of Bcl2-associated X protein to B-cell lymphoma/leukemia-2 (bax/bcl-2). Furthermore, HG activated E26 transformation-specific sequence-1 (Ets-1), and HMGB1 inhibition attenuated HG-induced activation of Ets-1 via extracellular signal-regulated kinase 1/2 (ERK1/2) signalling. In addition, inhibition of Ets-1 significantly decreased HG-induced cardiomyocyte apoptosis. Similar results were observed in streptozotocin-treated diabetic mice. Inhibition of HMGB1 by short-hairpin RNA markedly decreased myocardial cell apoptosis and activation of ERK and Ets-1 in diabetic mice. In conclusion, inhibition of HMGB1 may protect against hyperglycaemia-induced cardiomyocyte apoptosis by down-regulating ERK-dependent activation of Ets-1.

  10. Autocrine stimulation of IL-10 is critical to the enrichment of IL-10-producing CD40(hi)CD5(+) regulatory B cells in vitro and in vivo.

    PubMed

    Kim, Hyuk Soon; Lee, Jun Ho; Han, Hee Dong; Kim, A-Ram; Nam, Seung Taek; Kim, Hyun Woo; Park, Young Hwan; Lee, Dajeong; Lee, Min Bum; Park, Yeong Min; Kim, Hyung Sik; Kim, Young Mi; You, Ji Chang; Choi, Wahn Soo

    2015-01-01

    IL-10-producing B (Breg) cells regulate various immune responses. However, their phenotype remains unclear. CD40 expression was significantly increased in B cells by LPS, and the Breg cells were also enriched in CD40(hi)CD5(+) B cells. Furthermore, CD40 expression on Breg cells was increased by IL-10, CD40 ligand, and B cell-activating factor, suggesting that CD40(hi) is a common phenotype of Breg cells. LPS-induced CD40 expression was largely suppressed by an anti-IL-10 receptor antibody and in IL-10(-/-)CD5(+)CD19(+) B cells. The autocrine effect of IL-10 on the CD40 expression was largely suppressed by an inhibitor of JAK/STAT3. In vivo, the LPS treatment increased the population of CD40(hi)CD5(+) Breg cells in mice. However, the population of CD40(hi)CD5(+) B cells was minimal in IL-10(-/-) mice by LPS. Altogether, our findings show that Breg cells are largely enriched in CD40(hi)CD5(+) B cells and the autocrine effect of IL-10 is critical to the formation of CD40(hi)CD5(+) Breg cells.

  11. Role of pigment epithelium-derived factor in the involution of hemangioma: Autocrine growth inhibition of hemangioma-derived endothelial cells

    SciTech Connect

    Kim, Kyung-Jin; Yun, Jang-Hyuk; Heo, Jong-Ik; Lee, Eun Hui; Min, Hye Sook; Choi, Tae Hyun; Cho, Chung-Hyun

    2014-11-14

    Highlights: • PEDF was expressed and induced during the involuting phase of IH. • PEDF inhibited the cell growth of the involuting HemECs in an autocrine manner. • PEDF suppression restored the impaired cell growth of the involuting HemECs. - Abstract: Hemangioma is a benign tumor derived from abnormal blood vessel growth. Unlike other vascular tumor counterparts, a hemangioma is known to proliferate during its early stage but it is followed by a stage of involution where regression of the tumor occurs. The critical onset leading to the involution of hemangioma is currently not well understood. This study focused on the molecular identities of the involution of hemangioma. We demonstrated that a soluble factor released from the involuting phase of hemangioma-derived endothelial cells (HemECs) and identified pigment epithelium-derived factor (PEDF) as an anti-angiogenic factor that was associated with the growth inhibition of the involuting HemECs. The growth inhibition of the involuting HemECs was reversed by suppression of PEDF in the involuting HemECs. Furthermore, we found that PEDF was more up-regulated in the involuting phase of hemangioma tissues than in the proliferating or the involuted. Taken together, we propose that PEDF accelerates the involution of hemangioma by growth inhibition of HemECs in an autocrine manner. The regulatory mechanism of PEDF expression could be a potential therapeutic target to treat hemangiomas.

  12. Radiation-induced bystander signaling from somatic cells to germ cells in Caenorhabditis elegans.

    PubMed

    Guo, Xiaoying; Sun, Jie; Bian, Po; Chen, Lianyun; Zhan, Furu; Wang, Jun; Xu, An; Wang, Yugang; Hei, Tom K; Wu, Lijun

    2013-09-01

    Recently, radiation-induced bystander effects (RIBE) have been studied in mouse models in vivo, which clearly demonstrated bystander effects among somatic cells. However, there is currently no evidence for RIBE between somatic cells and germ cells in animal models in vivo. In the current study, the model animal Caenorhabditis elegans was used to investigate the bystander signaling from somatic cells to germ cells, as well as underlying mechanisms. C. elegans body size allows for precise microbeam irradiation and the abundant mutant strains for genetic dissection relative to currently adopted mouse models make it ideal for such analysis. Our results showed that irradiation of posterior pharynx bulbs and tails of C. elegans enhanced the level of germ cell apoptosis in bystander gonads. The irradiation of posterior pharynx bulbs also increased the level of DNA damage in bystander germ cells and genomic instability in the F1 progeny of irradiated worms, suggesting a potential carcinogenic risk in progeny even only somatic cells of parents are exposed to ionizing radiation (IR). It was also shown that DNA damage-induced germ cell death machinery and MAPK signaling pathways were both involved in the induction of germ cell apoptosis by microbeam induced bystander signaling, indicating a complex cooperation among multiple signaling pathways for bystander effects from somatic cells to germ cells.

  13. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling.

    PubMed

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang

    2015-05-15

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD.

  14. Ethylene signalling is mediating the early cadmium-induced oxidative challenge in Arabidopsis thaliana.

    PubMed

    Schellingen, Kerim; Van Der Straeten, Dominique; Remans, Tony; Vangronsveld, Jaco; Keunen, Els; Cuypers, Ann

    2015-10-01

    Cadmium (Cd) induces the generation of reactive oxygen species (ROS) and stimulates ethylene biosynthesis. The phytohormone ethylene is a regulator of many developmental and physiological plant processes as well as stress responses. Previous research indicated various links between ethylene signalling and oxidative stress. Our results support a correlation between the Cd-induced oxidative challenge and ethylene signalling in Arabidopsis thaliana leaves. The effects of 24 or 72 h exposure to 5 μM Cd on plant growth and several oxidative stress-related parameters were compared between wild-type (WT) and ethylene insensitive mutants (etr1-1, ein2-1, ein3-1). Cadmium-induced responses observed in WT plants were mainly affected in etr1-1 and ein2-1 mutants, of which the growth was less inhibited by Cd exposure as compared to WT and ein3-1 mutants. Both etr1-1 and ein2-1 showed a delayed response in the glutathione (GSH) metabolism, including GSH levels and transcript levels of GSH synthesising and recycling enzymes. Furthermore, the expression of different oxidative stress marker genes was significantly lower in Cd-exposed ein2-1 mutants, evidencing that ethylene signalling is involved in early responses to Cd stress. A model for the cross-talk between ethylene signalling and oxidative stress is proposed. PMID:26398798

  15. Role of TLR2- and TLR4-mediated signaling in Mycobacterium tuberculosis-induced macrophage death.

    PubMed

    Sánchez, Dulfary; Rojas, Mauricio; Hernández, Israel; Radzioch, Danuta; García, Luis F; Barrera, Luis F

    2010-01-01

    Infection of macrophages with Mycobacterium tuberculosis (Mtb) induces cell death by apoptosis or necrosis. TLRs 2 and 4 recognition of mycobacterial ligands has been independently associated to apoptosis induction. To try to understand the particular contribution of these receptors to apoptotic or necrotic signaling upon infection with live Mtb H37Rv, we used macrophage lines derived from wild-type or TLR2-, TLR4-, and MyD88-deficient mouse strains. Mtb-infection triggered apoptosis depending on a TLR2/TLR4/MyD88/p38/ERK/PI-3K/NF-kB pathway; however, necrosis was favored in absence of TLR4 signaling independently of p38, ERK1/2, PI-3K or NF-kappaB activity. In conclusion, our results indicate that cooperation between TLR2- and TLR4-dependent mediated signals play a critical role in macrophage apoptosis induced by Mtb and the TLR4-mediated signaling has important role in the maintenance of the balance between apoptotic vs. necrotic cell death induced by macrophage infection with Mtb.

  16. An Investigation on the Characteristics of the Seismic Signals Induced by Overtopping Dam Breach

    NASA Astrophysics Data System (ADS)

    Feng, Z.; Chen, S.; Kao, S.

    2012-12-01

    Deep-seated landslide masses often block rivers and form landslide dams. Most landslide dams are prone to failure by overtopping water and may induce strong surge wave in the downstream. This study discussed the characteristics of dam break surge wave by experimental methods. We established an artificial dam on a creek in Nantou, Taiwan, for the large-scale dam breach test by overtopping. Flume tests in laboratory were also setup to observe the stability and erosion process of model dams. Accelerometers were used to record the vibrational signals induced by the overtopped water. The vibration signals induced by the surge wave were successfully captured. The velocity of the surge wave front was calculated using the time-frequency spectral magnitude obtained from Hilbert-Huang Transform (HHT). The frequency contents of the seismic signals of the surge waves were also analyzed. The erosion process and erosion rate and duration were discussed. The characteristics including frequency range, duration and corresponding processes, of the vibration signals from the artificial dam and flume tests were compared to the analyzed characteristics of the actual landslide dam breach event at Xiaolin, Kaohsiung occurred in 2009 (Feng, 2012).; An artificial dam on a creek in Nantou, Taiwan, for the large-scale dam breach test by overtopping. ; Opening after the large-scale dam breach test by overtopping.

  17. Role of the ceramide-signaling pathways in ionizing radiation-induced apoptosis.

    PubMed

    Vit, Jean-Philippe; Rosselli, Filippo

    2003-11-27

    Ionizing radiations (IR) exposure leads to damage on several cellular targets. How signals from different targets are integrated to determine the cell fate remains a controversial issue. Understanding the pathway(s) responsible(s) for the cell killing effect of the IR exposure is of prime importance in light of using radiations as anticancer agent or as diagnostic tool. In this study, we have established that IR-induced cell damage initiates two independent signaling pathways that lead to a biphasic intracellular ceramide increase. A transitory increase of ceramide is observed within minutes after IR exposure as a consequence of DNA damage-independent acid sphingomyelinase activation. Several hours after irradiation, a second wave of ceramide accumulation is observed depending on the DNA damage-dependent activation of ceramide synthase, which requires a signaling pathway involving ATM. Importantly, we have demonstrated that the late ceramide accumulation is also dependent on the first one and is rate limiting for the apoptotic process induced by IR. In conclusion, our observations suggest that ceramide is a major determinant of the IR-induced apoptotic process at the cross-point of different signal transduction pathways.

  18. Nerve growth factor induces survival and differentiation through two distinct signaling cascades in PC12 cells.

    PubMed

    Klesse, L J; Meyers, K A; Marshall, C J; Parada, L F

    1999-03-25

    Nerve growth factor induces differentiation and survival of rat PC12 pheochromocytoma cells. The activation of the erk cascade has been implicated in transducing the multitude of signals induced by NGF. In order to explore the role of this signaling cascade in NGF mediated survival, differentiation and proliferation, we generated recombinant adenoviruses which express the intermediates of the erk cascade in their wild type, dominant negative and constitutively activated forms. We show that differentiation of PC12 cells requires activity of the ras/erk pathway, whereas inhibition of this pathway had no effect on survival or proliferation. Constitutively active forms of ras, raf and mek induced PC12 cell differentiation, while dominant interfering forms inhibited differentiation. Survival of PC12 cells in serum-free medium did not require activity of the ras/erk pathway. Instead, PI3 Kinase signaling was necessary for PC12 cell survival. Interestingly, constitutively activated versions of raf and mek were able to promote survival, but again this was dependent on activation of PI3 Kinase. Therefore, at least two distinct signaling pathways are required in PC12 cells for mediation of NGF functions.

  19. Regulation of antiviral innate immune signaling by stress-induced RNA granules

    PubMed Central

    Yoneyama, Mitsutoshi; Jogi, Michihiko; Onomoto, Koji

    2016-01-01

    Activation of antiviral innate immunity is triggered by cellular pattern recognition receptors. Retinoic acid inducible gene-I (RIG-I)-like receptors (RLRs) detect viral non-self RNA in cytoplasm of virus-infected cells and play a critical role in the clearance of the invaded viruses through production of antiviral cytokines. Among the three known RLRs, RIG-I and melanoma differentiation-associated gene 5 recognize distinct non-self signatures of viral RNA and activate antiviral signaling. Recent reports have clearly described the molecular machinery underlying the activation of RLRs and interactions with the downstream adaptor, mitochondrial antiviral signaling protein (MAVS). RLRs and MAVS are thought to form large multimeric filaments around cytoplasmic organelles depending on the presence of Lys63-linked ubiquitin chains. Furthermore, RLRs have been shown to localize to stress-induced ribonucleoprotein aggregate known as stress granules and utilize them as a platform for recognition/activation of signaling. In this review, we will focus on the current understanding of RLR-mediated signal activation and the interactions with stress-induced RNA granules. PMID:26748340

  20. Ethylene signalling is mediating the early cadmium-induced oxidative challenge in Arabidopsis thaliana.

    PubMed

    Schellingen, Kerim; Van Der Straeten, Dominique; Remans, Tony; Vangronsveld, Jaco; Keunen, Els; Cuypers, Ann

    2015-10-01

    Cadmium (Cd) induces the generation of reactive oxygen species (ROS) and stimulates ethylene biosynthesis. The phytohormone ethylene is a regulator of many developmental and physiological plant processes as well as stress responses. Previous research indicated various links between ethylene signalling and oxidative stress. Our results support a correlation between the Cd-induced oxidative challenge and ethylene signalling in Arabidopsis thaliana leaves. The effects of 24 or 72 h exposure to 5 μM Cd on plant growth and several oxidative stress-related parameters were compared between wild-type (WT) and ethylene insensitive mutants (etr1-1, ein2-1, ein3-1). Cadmium-induced responses observed in WT plants were mainly affected in etr1-1 and ein2-1 mutants, of which the growth was less inhibited by Cd exposure as compared to WT and ein3-1 mutants. Both etr1-1 and ein2-1 showed a delayed response in the glutathione (GSH) metabolism, including GSH levels and transcript levels of GSH synthesising and recycling enzymes. Furthermore, the expression of different oxidative stress marker genes was significantly lower in Cd-exposed ein2-1 mutants, evidencing that ethylene signalling is involved in early responses to Cd stress. A model for the cross-talk between ethylene signalling and oxidative stress is proposed.

  1. Phytochrome and retrograde signalling pathways converge to antagonistically regulate a light-induced transcriptional network

    PubMed Central

    Martín, Guiomar; Leivar, Pablo; Ludevid, Dolores; Tepperman, James M.; Quail, Peter H.; Monte, Elena

    2016-01-01

    Plastid-to-nucleus retrograde signals emitted by dysfunctional chloroplasts impact photomorphogenic development, but the molecular link between retrograde- and photosensory-receptor signalling has remained unclear. Here, we show that the phytochrome and retrograde signalling (RS) pathways converge antagonistically to regulate the expression of the nuclear-encoded transcription factor GLK1, a key regulator of a light-induced transcriptional network central to photomorphogenesis. GLK1 gene transcription is directly repressed by PHYTOCHROME-INTERACTING FACTOR (PIF)-class bHLH transcription factors in darkness, but light-activated phytochrome reverses this activity, thereby inducing expression. Conversely, we show that retrograde signals repress this induction by a mechanism independent of PIF mediation. Collectively, our data indicate that light at moderate levels acts through the plant's nuclear-localized sensory-photoreceptor system to induce appropriate photomorphogenic development, but at excessive levels, sensed through the separate plastid-localized RS system, acts to suppress such development, thus providing a mechanism for protection against photo-oxidative damage by minimizing the tissue exposure to deleterious radiation. PMID:27150909

  2. Cadmium Induces Apoptosis in Freshwater Crab Sinopotamon henanense through Activating Calcium Signal Transduction Pathway

    PubMed Central

    Wang, Jinxiang; Zhang, Pingping; Liu, Na; Wang, Qian; Luo, Jixian; Wang, Lan

    2015-01-01

    Calcium ion (Ca2+) is one of the key intracellular signals, which is implicated in the regulation of cell functions such as impregnation, cell proliferation, differentiation and death. Cadmium (Cd) is a toxic environmental pollutant that can disturb cell functions and even lead to cell death. Recently, we have found that Cd induced apoptosis in gill cells of the freshwater crab Sinopotamon henanense via caspase activation. In the present study, we further investigated the role of calcium signaling in the Cd-induced apoptosis in the animals. Our data showed that Cd triggered gill cell apoptosis which is evidenced by apoptotic DNA fragmentation, activations of caspases-3, -8 and -9 and the presence of apoptotic morphological features. Moreover, Cd elevated the intracellular concentration of Ca2+, the protein concentration of calmodulin (CaM) and the activity of Ca2+-ATPase in the gill cells of the crabs. Pretreatment of the animals with ethylene glycol-bis-(b-aminoethyl ether)-N,N,N’,N’-tetraacetic acid (EGTA), Ca2+ chelator, inhibited Cd-induced activation of caspases-3, -8 and -9 as well as blocked the Cd-triggered apoptotic DNA fragmentation. The apoptotic morphological features were no longer observed in gill cells pretreated with the Ca2+ signaling inhibitors before Cd treatment. Our results indicate that Cd evokes gill cell apoptosis through activating Ca2+-CaM signaling transduction pathway. PMID:26714174

  3. Pathogen-Triggered Ethylene Signaling Mediates Systemic-Induced Susceptibility to Herbivory in Arabidopsis[W

    PubMed Central

    Groen, Simon C.; Whiteman, Noah K.; Bahrami, Adam K.; Wilczek, Amity M.; Cui, Jianping; Russell, Jacob A.; Cibrian-Jaramillo, Angelica; Butler, Ian A.; Rana, Jignasha D.; Huang, Guo-Hua; Bush, Jenifer; Ausubel, Frederick M.; Pierce, Naomi E.

    2013-01-01

    Multicellular eukaryotic organisms are attacked by numerous parasites from diverse phyla, often simultaneously or sequentially. An outstanding question in these interactions is how hosts integrate signals induced by the attack of different parasites. We used a model system comprised of the plant host Arabidopsis thaliana, the hemibiotrophic bacterial phytopathogen Pseudomonas syringae, and herbivorous larvae of the moth Trichoplusia ni (cabbage looper) to characterize mechanisms involved in systemic-induced susceptibility (SIS) to T. ni herbivory caused by prior infection by virulent P. syringae. We uncovered a complex multilayered induction mechanism for SIS to herbivory. In this mechanism, antiherbivore defenses that depend on signaling via (1) the jasmonic acid–isoleucine conjugate (JA-Ile) and (2) other octadecanoids are suppressed by microbe-associated molecular pattern–triggered salicylic acid (SA) signaling and infection-triggered ethylene signaling, respectively. SIS to herbivory is, in turn, counteracted by a combination of the bacterial JA-Ile mimic coronatine and type III virulence-associated effectors. Our results show that SIS to herbivory involves more than antagonistic signaling between SA and JA-Ile and provide insight into the unexpectedly complex mechanisms behind a seemingly simple trade-off in plant defense against multiple enemies. PMID:24285796

  4. Wind- and Rain-Induced Vibrations Impose Different Selection Pressures on Multimodal Signaling.

    PubMed

    Halfwerk, Wouter; Ryan, Michael J; Wilson, Preston S

    2016-09-01

    The world is a noisy place, and animals have evolved a myriad of strategies to communicate in it. Animal communication signals are, however, often multimodal; their components can be processed by multiple sensory systems, and noise can thus affect signal components across different modalities. We studied the effect of environmental noise on multimodal communication in the túngara frog (Physalaemus pustulosus). Males communicate with rivals using airborne sounds combined with call-induced water ripples. We tested males under control as well as noisy conditions in which we mimicked rain- and wind-induced vibrations on the water surface. Males responded more strongly to a multimodal playback in which sound and ripples were combined, compared to a unimodal sound-only playback, but only in the absence of rain and wind. Under windy conditions, males decreased their response to the multimodal playback, suggesting that wind noise interferes with the detection of rival ripples. Under rainy conditions, males increased their response, irrespective of signal playback, suggesting that different noise sources can have different impacts on communication. Our findings show that noise in an additional sensory channel can affect multimodal signal perception and thereby drive signal evolution, but not always in the expected direction. PMID:27501086

  5. Wind- and Rain-Induced Vibrations Impose Different Selection Pressures on Multimodal Signaling.

    PubMed

    Halfwerk, Wouter; Ryan, Michael J; Wilson, Preston S

    2016-09-01

    The world is a noisy place, and animals have evolved a myriad of strategies to communicate in it. Animal communication signals are, however, often multimodal; their components can be processed by multiple sensory systems, and noise can thus affect signal components across different modalities. We studied the effect of environmental noise on multimodal communication in the túngara frog (Physalaemus pustulosus). Males communicate with rivals using airborne sounds combined with call-induced water ripples. We tested males under control as well as noisy conditions in which we mimicked rain- and wind-induced vibrations on the water surface. Males responded more strongly to a multimodal playback in which sound and ripples were combined, compared to a unimodal sound-only playback, but only in the absence of rain and wind. Under windy conditions, males decreased their response to the multimodal playback, suggesting that wind noise interferes with the detection of rival ripples. Under rainy conditions, males increased their response, irrespective of signal playback, suggesting that different noise sources can have different impacts on communication. Our findings show that noise in an additional sensory channel can affect multimodal signal perception and thereby drive signal evolution, but not always in the expected direction.

  6. Disruption of TGF-β signaling in smooth muscle cell prevents flow-induced vascular remodeling

    SciTech Connect

    Gao, Fu; Chambon, Pierre; Tellides, George; Kong, Wei; Zhang, Xiaoming; Li, Wei

    2014-11-07

    Highlights: • TGF-β signaling in SMC contributes to the flow-induced vascular remodeling. • Disruption of TGF-β signaling in SMC can prevent this process. • Targeting SM-specific Tgfbr2 could be a novel therapeutic strategy for vascular remodeling. - Abstract: Transforming growth factor-β (TGF-β) signaling has been prominently implicated in the pathogenesis of vascular remodeling, especially the initiation and progression of flow-induced vascular remodeling. Smooth muscle cells (SMCs) are the principal resident cells in arterial wall and are critical for arterial remodeling. However, the role of TGF-β signaling in SMC for flow-induced vascular remodeling remains unknown. Therefore, the goal of our study was to determine the effect of TGF-β pathway in SMC for vascular remodeling, by using a genetical smooth muscle-specific (SM-specific) TGF-β type II receptor (Tgfbr2) deletion mice model. Mice deficient in the expression of Tgfbr2 (MyhCre.Tgfbr2{sup f/f}) and their corresponding wild-type background mice (MyhCre.Tgfbr2{sup WT/WT}) underwent partial ligation of left common carotid artery for 1, 2, or 4 weeks. Then the carotid arteries were harvested and indicated that the disruption of Tgfbr2 in SMC provided prominent inhibition of vascular remodeling. And the thickening of carotid media, proliferation of SMC, infiltration of macrophage, and expression of matrix metalloproteinase (MMP) were all significantly attenuated in Tgfbr2 disruption mice. Our study demonstrated, for the first time, that the TGF-β signaling in SMC plays an essential role in flow-induced vascular remodeling and disruption can prevent this process.

  7. Estrogen-induced mitochondrial reactive oxygen species as signal-transducing messengers.

    PubMed

    Felty, Quentin; Xiong, Wen-Cheng; Sun, Dongmei; Sarkar, Shubhashish; Singh, Kamaleshwar P; Parkash, Jai; Roy, Deodutta

    2005-05-10

    We report here evidence in support of the role of 17beta-estradiol- (E2-) induced mitochondrial (mt) reactive oxygen species (ROS) as signal-transducing messengers. On the basis of monitoring the oxidation of 2',7'-dichlorofluorescin by spectrofluorometry, flow cytometry, and confocal microscopy, we have identified that exposure of E2 triggers the immediate rapid production of intracellular ROS ranging from a 1- to severalfold increase in a variety of cells. E2-stimulated ROS production does not correlate with the activity of the estrogen receptor (ER) in the cells. The ROS is most likely hydrogen peroxide based on its inhibition by antioxidants and catalase and lack of any effects of E2 on O(2)(*)(-) or NO(*) formation. Confocal microscopy showed that ROS is localized in the perinuclear mitochondria. E2 through anchorage- and integrin-dependent signaling to mitochondria increased ROS generation. Increased intracellular ROS formation identified here for the first time may explain the mechanism of previously reported oxidative damage and subsequent genetic alterations including mutations produced by elevated concentrations of estrogens. The functional consequences of E2-induced ROS formation included the enhanced cell motility as shown by the increase in cdc42 and activation of Pyk2 and the increased phosphorylation of signaling proteins c-jun and CREB. E2-induced ROS activated the binding of three oxidant-sensitive transcription factors: AP-1, CREB, and nuclear respiratory factor 1. In addition to ERs as signaling molecules, our findings further revealed that E2-induced mt ROS also act as signal transducing messengers and suggest new targets for the development of antioxidant-based drugs or antioxidant gene therapy for the prevention and treatment of estrogen-dependent cancer.

  8. Nedd4-induced monoubiquitination of IRS-2 enhances IGF signalling and mitogenic activity.

    PubMed

    Fukushima, Toshiaki; Yoshihara, Hidehito; Furuta, Haruka; Kamei, Hiroyasu; Hakuno, Fumihiko; Luan, Jing; Duan, Cunming; Saeki, Yasushi; Tanaka, Keiji; Iemura, Shun-Ichiro; Natsume, Tohru; Chida, Kazuhiro; Nakatsu, Yusuke; Kamata, Hideaki; Asano, Tomoichiro; Takahashi, Shin-Ichiro

    2015-04-16

    Insulin-like growth factors (IGFs) induce proliferation of various cell types and play important roles in somatic growth and cancer development. Phosphorylation of insulin receptor substrate (IRS)-1/2 by IGF-I receptor tyrosine kinase is essential for IGF action. Here we identify Nedd4 as an IRS-2 ubiquitin ligase. Nedd4 monoubiquitinates IRS-2, which promotes its association with Epsin1, a ubiquitin-binding protein. Nedd4 recruits IRS-2 to the membrane, probably through promoting Epsin1 binding, and enhances IGF-I receptor-induced IRS-2 tyrosine phosphorylation. In thyroid FRTL-5 cells, activation of the cyclic AMP pathway increases the association of Nedd4 with IRS-2, thereby enhancing IRS-2-mediated signalling and cell proliferation induced by IGF-I. The Nedd4 and IRS-2 association is also required for maximal activation of IGF-I signalling and cell proliferation in prostate cancer PC-3 cells. Nedd4 overexpression accelerates zebrafish embryonic growth through IRS-2 in vivo. We conclude that Nedd4-induced monoubiquitination of IRS-2 enhances IGF signalling and mitogenic activity.

  9. Caloric Restriction Normalizes Obesity-Induced Alterations on Regulators of Skeletal Muscle Growth Signaling.

    PubMed

    Dungan, Cory M; Li, Ji; Williamson, David L

    2016-08-01

    The objective of this study was to establish the impact of caloric restriction on high fat diet-induced alterations on regulators of skeletal muscle growth. We hypothesized that caloric restriction would reverse the negative effects of high fat diet-induced obesity on REDD1 and mTOR-related signaling. Following an initial 8 week period of HF diet-induced obesity, caloric restriction (CR ~30 %) was employed while mice continued to consume either a low (LF) or high fat (HF) diet for 8 weeks. Western analysis of skeletal muscle showed that CR reduced (p < 0.05) the obesity-related effects on the lipogenic protein, SREBP1. Likewise, CR reduced (p < 0.05) the obesity-related effects on the hyperactivation of mTORC1 and ERK1/2 signaling to levels comparable to the LF mice. CR also reduced (p < 0.05) obesity-induced expression of negative regulators of growth, REDD1 and cleaved caspase 3. These findings have implications for on the reversibility of dysregulated growth signaling in obese skeletal muscle, using short-term caloric restriction. PMID:27289530

  10. MITF Modulates Therapeutic Resistance through EGFR Signaling.

    PubMed

    Ji, Zhenyu; Erin Chen, Yiyin; Kumar, Raj; Taylor, Michael; Jenny Njauw, Ching-Ni; Miao, Benchun; Frederick, Dennie T; Wargo, Jennifer A; Flaherty, Keith T; Jönsson, Göran; Tsao, Hensin

    2015-07-01

    Response to targeted therapies varies significantly despite shared oncogenic mutations. Nowhere is this more apparent than in BRAF (V600E)-mutated melanomas where initial drug response can be striking and yet relapse is commonplace. Resistance to BRAF inhibitors have been attributed to the activation of various receptor tyrosine kinases (RTKs), although the underlying mechanisms have been largely uncharacterized. Here, we found that EGFR-induced vemurafenib resistance is ligand dependent. We employed whole-genome expression analysis and discovered that vemurafenib resistance correlated with the loss of microphthalmia-associated transcription factor (MITF), along with its melanocyte lineage program, and with the activation of EGFR signaling. An inverse relationship between MITF, vemurafenib resistance, and EGFR was then observed in patient samples of recurrent melanoma and was conserved across melanoma cell lines and patients' tumor specimens. Functional studies revealed that MITF depletion activated EGFR signaling and consequently recapitulated the resistance phenotype. In contrast, forced expression of MITF in melanoma and colon cancer cells inhibited EGFR and conferred sensitivity to BRAF/MEK inhibitors. These findings indicate that an "autocrine drug resistance loop" is suppressed by melanocyte lineage signal(s), such as MITF. This resistance loop modulates drug response and could explain the unique sensitivity of melanomas to BRAF inhibition. PMID:25789707

  11. Autocrine and paracrine actions of intestinal fibroblast-derived insulin-like growth factors.

    PubMed

    Simmons, J G; Pucilowska, J B; Lund, P K

    1999-04-01

    Paracrine and autocrine actions of the insulin-like growth factors (IGFs) are inferred by local expression within the bowel. CCD-18Co cells, IEC-6 cells, and immunoneutralization were used to analyze whether IGFs have direct autocrine or paracrine effects on proliferation of cultured intestinal fibroblasts and epithelial cells. Growth factor expression was analyzed by ribonuclease protection assay and RT-PCR. Extracellular matrix (ECM) was analyzed for effects on cell proliferation. CCD-18Co cells express IGF-II mRNAs and low levels of IGF-I mRNA. Conditioned medium from CCD-18Co cells (CCD-CM) stimulated proliferation of IEC-6 and CCD-18Co cells. Neutralization of IGF immunoreactivity in CCD-CM reduced but did not abolish this effect. RT-PCR and immunoneutralization demonstrated that other growth factors contribute to mitogenic activity of CCD-CM. Preincubation of CCD-CM with ECM prepared from IEC-6 or CCD-18Co cells reduced its mitogenic activity. ECM from CCD-18Co cells enhanced growth factor-dependent proliferation of IEC-6 cells. IEC-6 cell ECM inhibited IGF-I action on CCD-18Co cells. We conclude that IGF-II is a potent autocrine mitogen for intestinal fibroblasts. IGF-II interacts with other fibroblast-derived growth factors and ECM to stimulate proliferation of intestinal epithelial cells in a paracrine manner. PMID:10198323

  12. Withaferin A disrupts ubiquitin-based NEMO reorganization induced by canonical NF-κB signaling

    SciTech Connect

    Jackson, Shawn S.; Oberley, Christopher; Hooper, Christopher P.; Grindle, Kreg; Wuerzberger-Davis, Shelly; Wolff, Jared; and others

    2015-02-01

    The NF-κB family of transcription factors regulates numerous cellular processes, including cell proliferation and survival responses. The constitutive activation of NF-κB has also emerged as an important oncogenic driver in many malignancies, such as activated B-cell like diffuse large B cell lymphoma, among others. In this study, we investigated the impact and mechanisms of action of Withaferin A, a naturally produced steroidal lactone, against both signal-inducible as well as constitutive NF-κB activities. We found that Withaferin A is a robust inhibitor of canonical and constitutive NF-κB activities, leading to apoptosis of certain lymphoma lines. In the canonical pathway induced by TNF, Withaferin A did not disrupt RIP1 polyubiquitination or NEMO–IKKβ interaction and was a poor direct IKKβ inhibitor, but prevented the formation of TNF-induced NEMO foci which colocalized with TNF ligand. While GFP-NEMO efficiently formed TNF-induced foci, a GFP-NEMO{sup Y308S} mutant that is defective in binding to polyubiquitin chains did not form foci. Our study reveals that Withaferin A is a novel type of IKK inhibitor which acts by disrupting NEMO reorganization into ubiquitin-based signaling structures in vivo. - Highlights: • Withaferin A, a NF-κB inhibitor, disrupts signaling induced NEMO localization, a novel point of inhibition. • NEMO can be localized to distinct signaling foci after treatment with TNF. • ABC-type DLCBL cells can be sensitized to apoptosis after treatment with Withaferin A.

  13. IGF-1 signaling in neonatal hypoxia-induced pulmonary hypertension: Role of epigenetic regulation.

    PubMed

    Yang, Qiwei; Sun, Miranda; Ramchandran, Ramaswamy; Raj, J Usha

    2015-10-01

    Pulmonary hypertension is a fatal disease characterized by a progressive increase in pulmonary artery pressure accompanied by pulmonary vascular remodeling and increased vasomotor tone. Although some biological pathways have been identified in neonatal hypoxia-induced pulmonary hypertension (PH), little is known regarding the role of growth factors in the pathogenesis of PH in neonates. In this study, using a model of hypoxia-induced PH in neonatal mice, we demonstrate that the growth factor insulin-like growth factor-1 (IGF-1), a potent activator of the AKT signaling pathway, is involved in neonatal PH. After exposure to hypoxia, IGF-1 signaling is activated in pulmonary endothelial and smooth muscle cells in vitro, and the IGF-1 downstream signal pAKT(S473) is upregulated in lungs of neonatal mice. We found that IGF-1 regulates ET-1 expression in pulmonary endothelial cells and that IGF-1 expression is regulated by histone deacetylases (HDACs). In addition, there is a differential cytosine methylation site in the IGF-1 promoter region in response to neonatal hypoxia. Moreover, inhibition of HDACs with apicidin decreases neonatal hypoxia-induced global DNA methylation levels in lungs and specific cytosine methylation levels around the pulmonary IGF-1 promoter region. Finally, HDAC inhibition with apicidin reduces chronic hypoxia-induced activation of IGF-1/pAKT signaling in lungs and attenuates right ventricular hypertrophy and pulmonary vascular remodeling. Taken together, we conclude that IGF-1, which is epigenetically regulated, is involved in the pathogenesis of pulmonary hypertension in neonatal mice. This study implicates a novel HDAC/IGF-1 epigenetic pathway in the regulation of hypoxia-induced PH and warrants further study of the role of IGF-1 in neonatal pulmonary hypertensive disease. PMID:25921925

  14. Phospholipase D signaling mediates reactive oxygen species-induced lung endothelial barrier dysfunction.

    PubMed

    Usatyuk, Peter V; Kotha, Sainath R; Parinandi, Narasimham L; Natarajan, Viswanathan

    2013-01-01

    Reactive oxygen species (ROS) have emerged as critical players in the pathophysiology of pulmonary disorders and diseases. Earlier, we have demonstrated that ROS stimulate lung endothelial cell (EC) phospholipase D (PLD) that generates phosphatidic acid (PA), a second messenger involved in signal transduction. In the current study, we investigated the role of PLD signaling in the ROS-induced lung vascular EC barrier dysfunction. Our results demonstrated that hydrogen peroxide (H2O2), a typical physiological ROS, induced PLD activation and altered the barrier function in bovine pulmonary artery ECs (BPAECs). 1-Butanol, the quencher of PLD, generated PA leading to the formation of physiologically inactive phosphatidyl butanol but not its biologically inactive analog, 2-butanol, blocked the H2O2-mediated barrier dysfunction. Furthermore, cell permeable C2 ceramide, an inhibitor of PLD but not the C2 dihydroceramide, attenuated the H2O2-induced PLD activation and enhancement of paracellular permeability of Evans blue conjugated albumin across the BPAEC monolayers. In addition, transfection of BPAECs with adenoviral constructs of hPLD1 and mPLD2 mutants attenuated the H2O2-induced barrier dysfunction, cytoskeletal reorganization and distribution of focal adhesion proteins. For the first time, this study demonstrated that the PLD-generated intracellular bioactive lipid signal mediator, PA, played a critical role in the ROS-induced barrier dysfunction in lung vascular ECs. This study also underscores the importance of PLD signaling in vascular leak and associated tissue injury in the etiology of lung diseases among critically ill patients encountering oxygen toxicity and excess ROS production during ventilator-assisted breathing.

  15. Glucocorticoid signaling drives epigenetic and transcription factors to induce key regulators of human parturition.

    PubMed

    Zannas, Anthony S; Chrousos, George P

    2015-10-27

    Glucocorticoids are thought to play an important role in parturition. Two recent articles by Di Stefano et al. in the Archives and Wang et al. in this issue of Science Signaling reveal novel mechanisms by which glucocorticoid signaling can drive the epigenetic and transcriptional machinery to induce molecules involved in parturition, including the neuropeptide corticotropin-releasing hormone (CRH), the enzyme cyclooxygenase-2 (COX-2), and the autacoid hormone prostaglandin E2. These findings contribute to our understanding of how glucocorticoids may regulate human parturition.

  16. Combined inhibition of TGFβ and PDGF signaling attenuates radiation-induced pulmonary fibrosis.

    PubMed

    Dadrich, Monika; Nicolay, Nils H; Flechsig, Paul; Bickelhaupt, Sebastian; Hoeltgen, Line; Roeder, Falk; Hauser, Kai; Tietz, Alexandra; Jenne, Jürgen; Lopez, Ramon; Roehrich, Manuel; Wirkner, Ute; Lahn, Michael; Huber, Peter E

    2016-05-01

    Background : Radiotherapy (RT) is a mainstay for the treatment of lung cancer, but the effective dose is often limited by the development of radiation-induced pneumonitis and pulmonary fibrosis. Transforming growth factor β (TGFβ) and platelet-derived growth factor (PDGF) play crucial roles in the development of these diseases, but the effects of dual growth factor inhibition on pulmonary fibrosis development remain unclear. Methods : C57BL/6 mice were treated with 20 Gy to the thorax to induce pulmonary fibrosis. PDGF receptor inhibitors SU9518 and SU14816 (imatinib) and TGFβ receptor inhibitor galunisertib were applied individually or in combinations after RT. Lung density and septal fibrosis were measured by high-resolution CT and MRI. Lung histology and gene expression analyses were performed and Osteopontin levels were studied. Results : Treatment with SU9518, SU14816 or galunisertib individually attenuated radiation-induced pulmonary inflammation and fibrosis and decreased radiological and histological signs of lung damage. Combining PDGF and TGFβ inhibitors showed to be feasible and safe in a mouse model, and dual inhibition significantly attenuated radiation-induced lung damage and extended mouse survival compared to blockage of either pathway alone. Gene expression analysis of irradiated lung tissue showed upregulation of PDGF and TGFβ-dependent signaling components by thoracic irradiation, and upregulation patterns show crosstalk between downstream mediators of the PDGF and TGFβ pathways. Conclusion : Combined small-molecule inhibition of PDGF and TGFβ signaling is a safe and effective treatment for radiation-induced pulmonary inflammation and fibrosis in mice and may offer a novel approach for treatment of fibrotic lung diseases in humans. Translational statement : RT is an effective treatment modality for cancer with limitations due to acute and chronic toxicities, where TGFβ and PDGF play a key role. Here, we show that a combined inhibition of

  17. Combined inhibition of TGFβ and PDGF signaling attenuates radiation-induced pulmonary fibrosis

    PubMed Central

    Dadrich, Monika; Nicolay, Nils H.; Flechsig, Paul; Bickelhaupt, Sebastian; Hoeltgen, Line; Roeder, Falk; Hauser, Kai; Tietz, Alexandra; Jenne, Jürgen; Lopez, Ramon; Roehrich, Manuel; Wirkner, Ute; Lahn, Michael; Huber, Peter E.

    2016-01-01

    ABSTRACT Background: Radiotherapy (RT) is a mainstay for the treatment of lung cancer, but the effective dose is often limited by the development of radiation-induced pneumonitis and pulmonary fibrosis. Transforming growth factor β (TGFβ) and platelet-derived growth factor (PDGF) play crucial roles in the development of these diseases, but the effects of dual growth factor inhibition on pulmonary fibrosis development remain unclear. Methods: C57BL/6 mice were treated with 20 Gy to the thorax to induce pulmonary fibrosis. PDGF receptor inhibitors SU9518 and SU14816 (imatinib) and TGFβ receptor inhibitor galunisertib were applied individually or in combinations after RT. Lung density and septal fibrosis were measured by high-resolution CT and MRI. Lung histology and gene expression analyses were performed and Osteopontin levels were studied. Results: Treatment with SU9518, SU14816 or galunisertib individually attenuated radiation-induced pulmonary inflammation and fibrosis and decreased radiological and histological signs of lung damage. Combining PDGF and TGFβ inhibitors showed to be feasible and safe in a mouse model, and dual inhibition significantly attenuated radiation-induced lung damage and extended mouse survival compared to blockage of either pathway alone. Gene expression analysis of irradiated lung tissue showed upregulation of PDGF and TGFβ-dependent signaling components by thoracic irradiation, and upregulation patterns show crosstalk between downstream mediators of the PDGF and TGFβ pathways. Conclusion: Combined small-molecule inhibition of PDGF and TGFβ signaling is a safe and effective treatment for radiation-induced pulmonary inflammation and fibrosis in mice and may offer a novel approach for treatment of fibrotic lung diseases in humans. Translational statement: RT is an effective treatment modality for cancer with limitations due to acute and chronic toxicities, where TGFβ and PDGF play a key role. Here, we show that a combined

  18. Lipopolysaccharide Induces Human Pulmonary Micro-Vascular Endothelial Apoptosis via the YAP Signaling Pathway

    PubMed Central

    Yi, Lei; Huang, Xiaoqin; Guo, Feng; Zhou, Zengding; Chang, Mengling; Tang, Jiajun; Huan, Jingning

    2016-01-01

    Gram-negative bacterial lipopolysaccharide (LPS) induces a pathologic increase in lung vascular leakage under septic conditions. LPS-induced human pulmonary micro-vascular endothelial cell (HPMEC) apoptosis launches and aggravates micro-vascular hyper-permeability and acute lung injury (ALI). Previous studies show that the activation of intrinsic apoptotic pathway is vital for LPS-induced EC apoptosis. Yes-associated protein (YAP) has been reported to positively regulate intrinsic apoptotic pathway in tumor cells apoptosis. However, the potential role of YAP protein in LPS-induced HPMEC apoptosis has not been determined. In this study, we found that LPS-induced activation and nuclear accumulation of YAP accelerated HPMECs apoptosis. LPS-induced YAP translocation from cytoplasm to nucleus by the increased phosphorylation on Y357 resulted in the interaction between YAP and transcription factor P73. Furthermore, inhibition of YAP by small interfering RNA (siRNA) not only suppressed the LPS-induced HPMEC apoptosis but also regulated P73-mediated up-regulation of BAX and down-regulation of BCL-2. Taken together, our results demonstrated that activation of the YAP/P73/(BAX and BCL-2)/caspase-3 signaling pathway played a critical role in LPS-induced HPMEC apoptosis. Inhibition of the YAP might be a potential therapeutic strategy for lung injury under sepsis. PMID:27807512

  19. Autocrine role of vascular IL-15 in intimal thickening

    SciTech Connect

    Cercek, Miha . E-mail: DimayugaP@cshs.org

    2006-01-13

    Interleukin 15 (IL-15) is a pro-inflammatory cytokine that modulates T cell recruitment and activation, independent of antigen. It has been detected in human atherosclerotic plaques and atherosclerotic plaques of apoE-/- mice. IL-15 regulates fractalkine (FKN)-CX3CR1 chemokine signaling which is involved in atherogenesis and promotes SMC proliferation. We investigated the role of IL-15 in intimal thickening after arterial injury. Treatment of serum-stimulated SMC with IL-15 in vitro attenuated proliferation and suppressed CX3CR1 and FKN mRNA expression. The role of endogenous IL-15 in vivo was investigated in injured carotid arteries of mice. Periadventitial arterial injury resulted in increased IL-15 expression in the media and neointima, paralleled by increased IL-15 receptor {alpha} expression. Blockade of endogenous IL-15 increased intimal thickening. FKN and CX3CR1 expression increased after injury and were further augmented after IL-15 blockade. These data suggest that endogenous IL-15 attenuated intimal thickening after arterial injury. The potential mechanism of action is suppression of CX3CR1 signaling.

  20. Murine Macrophages Secrete Interferon γ upon Combined Stimulation with Interleukin (IL)-12 and IL-18: A Novel Pathway of Autocrine Macrophage Activation

    PubMed Central

    Munder, Markus; Mallo, Moisés; Eichmann, Klaus; Modolell, Manuel

    1998-01-01

    Interferon (IFN)-γ, a key immunoregulatory cytokine, has been thought to be produced solely by activated T cells and natural killer cells. In this study, we show that murine bone marrow– derived macrophages (BMMΦ) secrete large amounts of IFN-γ upon appropriate stimulation. Although interleukin (IL)-12 and IL-18 alone induce low levels of IFN-γ mRNA transcripts, the combined stimulation of BMMΦ with both cytokines leads to the efficient production of IFN-γ protein. The macrophage-derived IFN-γ is biologically active as shown by induction of inducible nitric oxide synthase as well as upregulation of CD40 in macrophages. Our findings uncover a novel pathway of autocrine macrophage activation by demonstrating that the macrophage is not only a key cell type responding to IFN-γ but also a potent IFN-γ–producing cell. PMID:9625771

  1. Reactive oxygen species regulate Smac mimetic/TNFα-induced necroptotic signaling and cell death.

    PubMed

    Schenk, B; Fulda, S

    2015-11-19

    Necroptosis represents a key programmed cell death pathway involved in various physiological and pathophysiological conditions. However, the role of reactive oxygen species (ROS) in necroptotic signaling has remained unclear. In the present study, we identify ROS as critical regulators of BV6/tumor necrosis factor-α (TNFα)-induced necroptotic signaling and cell death. We show that BV6/TNFα-induced cell death depends on ROS production, as several ROS scavengers such as butylated hydroxyanisole, N-acetylcysteine, α-tocopherol and ethyl pyruvate significantly rescue cell death. Before cell death, BV6/TNFα-stimulated ROS generation promotes stabilization of the receptor-interacting protein kinase 1 (RIP1)/RIP3 necrosome complex via a potential positive feedback loop, as on the one hand radical scavengers attenuate RIP1/RIP3 necrosome assembly and phosphorylation of mixed lineage kinase domain like (MLKL), but on the other hand silencing of RIP1 or RIP3 reduces ROS production. Although MLKL knockdown effectively decreases BV6/TNFα-induced cell death, it does not affect RIP1/RIP3 interaction and only partly reduces ROS generation. Moreover, the deubiquitinase cylindromatosis (CYLD) promotes BV6/TNFα-induced ROS generation and necrosome assembly even in the presence of BV6, as CYLD silencing attenuates these events. Genetic silencing of phosphoglycerate mutase 5 or dynamin-related protein 1 (Drp1) fails to protect against BV6/TNFα-induced cell death. By demonstrating that ROS are involved in regulating BV6/TNFα-induced necroptotic signaling, our study provides new insights into redox regulation of necroptosis. PMID:25867066

  2. Metformin induces differentiation in acute promyelocytic leukemia by activating the MEK/ERK signaling pathway

    SciTech Connect

    Huai, Lei; Wang, Cuicui; Zhang, Cuiping; Li, Qihui; Chen, Yirui; Jia, Yujiao; Li, Yan; Xing, Haiyan; Tian, Zheng; Rao, Qing; Wang, Min; Wang, Jianxiang

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer Metformin induces differentiation in NB4 and primary APL cells. Black-Right-Pointing-Pointer Metformin induces activation of the MEK/ERK signaling pathway in APL cells. Black-Right-Pointing-Pointer Metformin synergizes with ATRA to trigger maturation of NB4 and primary APL cells. Black-Right-Pointing-Pointer Metformin induces the relocalization and degradation of the PML-RAR{alpha} fusion protein. Black-Right-Pointing-Pointer The study may be applicable for new differentiation therapy in cancer treatment. -- Abstract: Recent studies have shown that metformin, a widely used antidiabetic agent, may reduce the risk of cancer development. In this study, we investigated the antitumoral effect of metformin on both acute myeloid leukemia (AML) and acute promyelocytic leukemia (APL) cells. Metformin induced apoptosis with partial differentiation in an APL cell line, NB4, but only displayed a proapoptotic effect on several non-M3 AML cell lines. Further analysis revealed that a strong synergistic effect existed between metformin and all-trans retinoic acid (ATRA) during APL cell maturation and that metformin induced the hyperphosphorylation of extracellular signal-regulated kinase (ERK) in APL cells. U0126, a specific MEK/ERK activation inhibitor, abrogated metformin-induced differentiation. Finally, we found that metformin induced the degradation of the oncoproteins PML-RAR{alpha} and c-Myc and activated caspase-3. In conclusion, these results suggest that metformin treatment may contribute to the enhancement of ATRA-induced differentiation in APL, which may deepen the understanding of APL maturation and thus provide insight for new therapy strategies.

  3. Hedgehog signaling induces osteosarcoma development through Yap1 and H19 overexpression.

    PubMed

    Chan, L H; Wang, W; Yeung, W; Deng, Y; Yuan, P; Mak, K K

    2014-10-01

    Osteosarcoma is one of the most common bone tumors. However, the genetic basis for its pathogenesis remains elusive. Here, we investigated the roles of Hedgehog (Hh) signaling in osteosarcoma development. Genetically-engineered mice with ubiquitous upregulated Hh signaling specifically in mature osteoblasts develop focal bone overgrowth, which greatly resembles the early stage of osteosarcoma. However, these mice die within three months, which prohibits further analysis of tumor progression. We therefore generated a mouse model with partial upregulated Hh signaling in mature osteoblasts and crossed it into a p53 heterozygous background to potentiate tumor development. We found that these mutant mice developed malignant osteosarcoma with high penetrance. Isolated primary tumor cells were mainly osteoblastic and highly proliferative with many characteristics of human osteosarcomas. Allograft transplantation into immunocompromised mice displayed high tumorigenic potential. More importantly, both human and mouse tumor tissues express high level of yes-associated protein 1 (Yap1), a potent oncogene that is amplified in various cancers. We show that inhibition of Hh signaling reduces Yap1 expression and knockdown of Yap1 significantly inhibits tumor progression. Moreover, long non-coding RNA H19 is aberrantly expressed and induced by upregulated Hh signaling and Yap1 overexpression. Our results demonstrate that aberrant Hh signaling in mature osteoblasts is responsible for the pathogenesis of osteoblastic osteosarcoma through Yap1 and H19 overexpression.

  4. p38γ regulates UV-induced checkpoint signaling and repair of UV-induced DNA damage.

    PubMed

    Wu, Chia-Cheng; Wu, Xiaohua; Han, Jiahuai; Sun, Peiqing

    2010-06-01

    In eukaryotic cells, DNA damage triggers activation of checkpoint signaling pathways that coordinate cell cycle arrest and repair of damaged DNA. These DNA damage responses serve to maintain genome stability and prevent accumulation of genetic mutations and development of cancer. The p38 MAPK was previously implicated in cellular responses to several types of DNA damage. However, the role of each of the four p38 isoforms and the mechanism for their involvement in DNA damage responses remained poorly understood. In this study, we demonstrate that p38γ, but not the other p38 isoforms, contributes to the survival of UV-treated cells. Deletion of p38γ sensitizes cells to UV exposure, accompanied by prolonged S phase cell cycle arrest and increased rate of apoptosis. Further investigation reveal that p38γ is essential for the optimal activation of the checkpoint signaling caused by UV, and for the efficient repair of UV-induced DNA damage. These findings have established a novel role of p38γ in UV-induced DNA damage responses, and suggested that p38γ contributes to the ability of cells to cope with UV exposure by regulating the checkpoint signaling pathways and the repair of damaged DNA.

  5. Amyloid beta-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons.

    PubMed

    Kelly, J F; Furukawa, K; Barger, S W; Rengen, M R; Mark, R J; Blanc, E M; Roth, G S; Mattson, M P

    1996-06-25

    Cholinergic pathways serve important functions in learning and memory processes, and deficits in cholinergic transmission occur in Alzheimer disease (AD). A subset of muscarinic cholinergic receptors are linked to G-proteins that activate phospholipase C, resulting in the liberation of inositol trisphosphate and Ca2+ release from intracellular stores. We now report that amyloid beta-peptide (Abeta), which forms plaques in the brain in AD, impairs muscarinic receptor activation of G proteins in cultured rat cortical neurons. Exposure of rodent fetal cortical neurons to Abeta25-35 and Abeta1-40 resulted in a concentration and time-dependent attenuation of carbachol-induced GTPase activity without affecting muscarinic receptor ligand binding parameters. Downstream events in the signal transduction cascade were similarly attenuated by Abeta. Carbachol-induced accumulation of inositol phosphates (IP, IP2, IP3, and IP4) was decreased and calcium imaging studies revealed that carbachol-induced release of calcium was severely impaired in neurons pretreated with Abeta. Muscarinic cholinergic signal transduction was disrupted with subtoxic levels of exposure to AP. The effects of Abeta on carbachol-induced GTPase activity and calcium release were attenuated by antioxidants, implicating free radicals in the mechanism whereby Abeta induced uncoupling of muscarinic receptors. These data demonstrate that Abeta disrupts muscarinic receptor coupling to G proteins that mediate induction of phosphoinositide accumulation and calcium release, findings that implicate Abeta in the impairment of cholinergic transmission that occurs in AD. PMID:8692890

  6. Fufang Kushen injection inhibits sarcoma growth and tumor-induced hyperalgesia via TRPV1 signaling pathways

    PubMed Central

    Zhao, Zhizheng; Fan, Huiting; Higgins, Tim; Qi, Jia; Haines, Diana; Trivett, Anna; Oppenheim, Joost J.; Wei, Hou; Li, Jie; Lin, Hongsheng; Howard, O.M. Zack

    2014-01-01

    Cancer pain is a deleterious consequence of tumor growth and related inflammation. Opioids and antiinflammatory drugs provide first line treatment for cancer pain, but both are limited by side effects. Fufang Kushen injection (FKI) is GMP produced, traditional Chinese medicine used alone or with chemotherapy to reduce cancer-associated pain. FKI limited mouse sarcoma growth both in vivo and in vitro, in part, by reducing the phosphorylation of ERK and AKT kinases and BAD. FKI inhibited TRPV1 mediated capsaicin-induced ERK phosphorylation and reduced tumor-induced proinflammatory cytokine production. Thus, FKI limited cancer pain both directly by blocking TRPV1 signaling and indirectly by reducing tumor growth. PMID:25242356

  7. Resveratrol improves hepatic insulin signaling and reduces the inflammatory response in streptozotocin-induced diabetes.

    PubMed

    Sadi, Gökhan; Pektaş, Mehmet Bilgehan; Koca, Halit Bugra; Tosun, Murat; Koca, Tulay

    2015-10-10

    Diabetes mellitus is a heterogeneous metabolic disorder essentially characterized by deficiency of insulin secretion, insulin receptor or post-receptor events. This study aims to investigate the effects of resveratrol administration on the metabolic characteristics, hepatic functions, histopathological features and insulin signaling pathway components in streptozotocin induced diabetes. Male Wistar rats were randomly divided into four groups: (1) control/vehicle; (2) control/20mg/kg resveratrol; (3) diabetic/vehicle; and (4) diabetic/20mg/kg resveratrol. Histopathological examinations were carried out to reveal hepatic tissue damage and inflammation. In addition to hepatic glucose, lipid, insulin, ALT, AST, resistin and XOD contents, gene and protein expressions of insulin signaling pathway components such as insulin Rβ, IRS-1, IRS-2, eNOS, PI3K, Akt, and FOXO3a were analyzed by qRT-PCR and Western blot. The rats in the diabetes group had significantly lower terminal body weight and hepatic insulin level, but significantly higher hepatic glucose, total cholesterol, triglyceride and resistin concentrations. Diabetes triggered the inflammatory process in the liver tissues that was evidenced by histopathological deformations and increase in the hepatic ALT and AST levels. Hepatic inflammation was considerably associated with insulin signaling pathway ever since a significant down-regulation of insulin signaling components; IRS-1, IRS-2, PI3K, Akt and mTOR have been identified in the diabetic group. To some extent, resveratrol treatment reversed the diabetes-induced changes in the liver tissues. Taken together, resveratrol partly improved hepatic dysfunction induced by diabetes. This may be due to the healing activity of resveratrol on insulin signaling pathway, resistin levels and hepatic glucose-lipid contents.

  8. The role of TRADD in TRAIL-induced apoptosis and signaling.

    PubMed

    Cao, Xiumei; Pobezinskaya, Yelena L; Morgan, Michael J; Liu, Zheng-gang

    2011-04-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily. TRAIL is promising for anticancer therapy because it induces apoptosis in cancer cells with little or no toxicity to normal cells; hence, TRAIL-receptor agonists are currently undergoing clinical trials for cancer treatment. However, many molecular signaling mechanisms in TRAIL signaling are not completely characterized. The functions of adaptor proteins, including TNF-receptor-associated death domain protein (TRADD) and receptor-interacting protein-1 (RIP1) in TRAIL signaling have been controversial. We demonstrate that while wild-type mouse embryonic fibroblasts (MEFs) are completely resistant to TRAIL-induced apoptosis, MEFs derived from Tradd(-/-) mice are hypersensitive to TRAIL (IC(50)~0.5 nM rmTRAIL, 24 h), an effect also seen in primary keratinocytes treated with TRAIL/CHX. Restoration of TRADD in Tradd(-/-) MEFs restores TRAIL resistance, indicating that TRADD plays a survival role in TRAIL signaling. We show that TRADD is recruited to the TRAIL-receptor complex, and RIP1 recruitment is mediated by TRADD. While early activation of the MAP kinase ERK is deficient in Tradd(-/-) cells, the main mechanism for enhanced TRAIL sensitivity is likely due to increased recruitment of FADD to the receptor complex, indicating that TRADD may limit FADD binding within the receptor complex and also mediate RIP1-dependent nonapoptotic signaling events, thus reducing caspase activation and subsequent apoptosis. These novel findings have potential implications for cancer therapy using TRAIL-receptor agonists. PMID:21187341

  9. Artificially induced changes of butterfly wing colour patterns: dynamic signal interactions in eyespot development.

    PubMed

    Otaki, Joji M

    2011-01-01

    Eyespot formation in butterfly wings has been explained by the concentration gradient model. However, this model has recently been questioned, and dynamic interactions between the black-inducing signal and its inhibitory signal have been proposed. Here, the validity of these models was examined using a nymphalid butterfly Junonia almana. Early focal damage to the major eyespots often made them smaller, whereas the late damage made the outer ring larger and the inner ring smaller in a single eyespot. Non-focal damage at the outer ring not only attracted the whole eyespot structure toward the damaged site but also reduced the overall size of the eyespot. Surprisingly, a reduction of the major eyespot was accompanied by an enlargement of the associated miniature eyespots. These results demonstrate limitations of the conventional gradient model and support a dynamic interactive nature of morphogenic signals for colour-pattern determination in butterfly wings. PMID:22355628

  10. Artificially induced changes of butterfly wing colour patterns: dynamic signal interactions in eyespot development

    NASA Astrophysics Data System (ADS)

    Otaki, Joji M.

    2011-10-01

    Eyespot formation in butterfly wings has been explained by the concentration gradient model. However, this model has recently been questioned, and dynamic interactions between the black-inducing signal and its inhibitory signal have been proposed. Here, the validity of these models was examined using a nymphalid butterfly Junonia almana. Early focal damage to the major eyespots often made them smaller, whereas the late damage made the outer ring larger and the inner ring smaller in a single eyespot. Non-focal damage at the outer ring not only attracted the whole eyespot structure toward the damaged site but also reduced the overall size of the eyespot. Surprisingly, a reduction of the major eyespot was accompanied by an enlargement of the associated miniature eyespots. These results demonstrate limitations of the conventional gradient model and support a dynamic interactive nature of morphogenic signals for colour-pattern determination in butterfly wings.

  11. Artificially induced changes of butterfly wing colour patterns: dynamic signal interactions in eyespot development.

    PubMed

    Otaki, Joji M

    2011-01-01

    Eyespot formation in butterfly wings has been explained by the concentration gradient model. However, this model has recently been questioned, and dynamic interactions between the black-inducing signal and its inhibitory signal have been proposed. Here, the validity of these models was examined using a nymphalid butterfly Junonia almana. Early focal damage to the major eyespots often made them smaller, whereas the late damage made the outer ring larger and the inner ring smaller in a single eyespot. Non-focal damage at the outer ring not only attracted the whole eyespot structure toward the damaged site but also reduced the overall size of the eyespot. Surprisingly, a reduction of the major eyespot was accompanied by an enlargement of the associated miniature eyespots. These results demonstrate limitations of the conventional gradient model and support a dynamic interactive nature of morphogenic signals for colour-pattern determination in butterfly wings.

  12. Temperature and Pressure Dependence of Signal Amplitudes for Electrostriction Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.

    2015-01-01

    The relative signal strength of electrostriction-only (no thermal grating) laser-induced thermal acoustics (LITA) in gas-phase air is reported as a function of temperature T and pressure P. Measurements were made in the free stream of a variable Mach number supersonic wind tunnel, where T and P are varied simultaneously as Mach number is varied. Using optical heterodyning, the measured signal amplitude (related to the optical reflectivity of the acoustic grating) was averaged for each of 11 flow conditions and compared to the expected theoretical dependence of a pure-electrostriction LITA process, where the signal is proportional to the square root of [P*P /( T*T*T)].

  13. Signal transduction events in aluminum-induced cell death in tomato suspension cells.

    PubMed

    Yakimova, Elena T; Kapchina-Toteva, Veneta M; Woltering, Ernst J

    2007-06-01

    In this study, some of the signal transduction events involved in AlCl(3)-induced cell death in tomato (Lycopersicon esculentum Mill.) suspension cells were elucidated. Cells treated with 100 microM AlCl(3) showed typical features of programmed cell death (PCD) such as nuclear and cytoplasmic condensation. Cell death was effectively inhibited by protease and human caspase inhibitors indicating a cell death execution mechanism with similarities to animal apoptosis. Cell death was suppressed by application of antoxidants and by inhibitors of phospholipase C (PLC), phospholipase D (PLD) and ethylene signalling pathways. The results suggest that low concentrations of heavy metal ions stimulate both PLC and PLD signalling pathways leading to the production of reactive oxygen species (ROS) and subsequent cell death executed by caspase-like proteases.

  14. Chronic uremia attenuates growth hormone-induced signal transduction in skeletal muscle.

    PubMed

    Sun, Di Fei; Zheng, Zhilan; Tummala, Padmaja; Oh, Jun; Schaefer, Franz; Rabkin, Ralph

    2004-10-01

    Malnutrition and muscle wasting are common in chronic renal failure (CRF) and adversely affect morbidity and mortality. Contributing to the muscle wasting is resistance to growth hormone (GH). For testing whether impaired GH signaling is a cause of the skeletal muscle GH resistance and for elucidating its mechanisms, muscle GH signaling and action were studied in GH-deficient rats with surgically induced CRF and sham-operated pairfed control rats. GH treatment increased gastrocnemius muscle IGF-1 mRNA levels significantly in control but not in CRF rats. GH-activated Janus-associated kinase 2 (JAK2)-signal transducers and activators of transcription 5 (STAT5) signaling was impaired in CRF rats, despite normal GH receptor (GHR), JAK2, and STAT5 protein levels. Phosphorylation of the GHR, JAK2, and STAT5 in response to GH was depressed by nearly half in CRF (P < 0.05), and nuclear phospho-STAT5 levels were depressed by approximately one third (P < 0.01). GH-stimulated suppressors of cytokine signaling 2 mRNA levels were significantly higher in CRF. This may be related to inflammatory cytokine activity because C-reactive protein levels were elevated. Muscle protein-tyrosine phosphatase activity was also increased significantly by twofold. In conclusion, rats with CRF acquire skeletal muscle resistance to GH that is caused at least in part by impaired JAK2-GHR-STAT5 phosphorylation and nuclear STAT5 translocation. Furthermore, it seems that the attenuated JAK2-STAT5 phosphorylation may be caused by at least two different processes. One involves depressed phosphorylation of the signaling proteins because of increased suppressors of cytokine signaling 2 expression that may be linked to low-grade inflammation. The other may involve increased signaling protein dephosphorylation because of heightened protein-tyrosine phosphatase activity.

  15. Elevated CO2-Induced Responses in Stomata Require ABA and ABA Signaling.

    PubMed

    Chater, Caspar; Peng, Kai; Movahedi, Mahsa; Dunn, Jessica A; Walker, Heather J; Liang, Yun-Kuan; McLachlan, Deirdre H; Casson, Stuart; Isner, Jean Charles; Wilson, Ian; Neill, Steven J; Hedrich, Rainer; Gray, Julie E; Hetherington, Alistair M

    2015-10-19

    An integral part of global environment change is an increase in the atmospheric concentration of CO2 ([CO2]) [1]. Increased [CO2] reduces leaf stomatal apertures and density of stomata that plays out as reductions in evapotranspiration [2-4]. Surprisingly, given the importance of transpiration to the control of terrestrial water fluxes [5] and plant nutrient acquisition [6], we know comparatively little about the molecular components involved in the intracellular signaling pathways by which [CO2] controls stomatal development and function [7]. Here, we report that elevated [CO2]-induced closure and reductions in stomatal density require the generation of reactive oxygen species (ROS), thereby adding a new common element to these signaling pathways. We also show that the PYR/RCAR family of ABA receptors [8, 9] and ABA itself are required in both responses. Using genetic approaches, we show that ABA in guard cells or their precursors is sufficient to mediate the [CO2]-induced stomatal density response. Taken together, our results suggest that stomatal responses to increased [CO2] operate through the intermediacy of ABA. In the case of [CO2]-induced reductions in stomatal aperture, this occurs by accessing the guard cell ABA signaling pathway. In both [CO2]-mediated responses, our data are consistent with a mechanism in which ABA increases the sensitivity of the system to [CO2] but could also be explained by requirement for a CO2-induced increase in ABA biosynthesis specifically in the guard cell lineage. Furthermore, the dependency of stomatal [CO2] signaling on ABA suggests that the ABA pathway is, in evolutionary terms, likely to be ancestral.

  16. Spinal 5-HT7 receptors induce phrenic motor facilitation via EPAC-mTORC1 signaling.

    PubMed

    Fields, D P; Springborn, S R; Mitchell, G S

    2015-09-01

    Spinal serotonin type 7 (5-HT7) receptors elicit complex effects on motor activity. Whereas 5-HT7 receptor activation gives rise to long-lasting phrenic motor facilitation (pMF), it also constrains 5-HT2 receptor-induced pMF via "cross-talk inhibition." We hypothesized that divergent cAMP-dependent signaling pathways give rise to these distinct 5-HT7 receptor actions. Specifically, we hypothesized that protein kinase A (PKA) mediates cross-talk inhibition of 5-HT2 receptor-induced pMF whereas 5-HT7 receptor-induced pMF results from exchange protein activated by cAMP (EPAC) signaling. Anesthetized, paralyzed, and ventilated rats receiving intrathecal (C4) 5-HT7 receptor agonist (AS-19) injections expressed pMF for >90 min, an effect abolished by pretreatment with a selective EPAC inhibitor (ESI-05) but not a selective PKA inhibitor (KT-5720). Furthermore, intrathecal injections of a selective EPAC activator (8-pCPT-2'-Me-cAMP) were sufficient to elicit pMF. Finally, spinal mammalian target of rapamycin complex-1 (mTORC1) inhibition via intrathecal rapamycin abolished 5-HT7 receptor- and EPAC-induced pMF, demonstrating that spinal 5-HT7 receptors elicit pMF by an EPAC-mTORC1 signaling pathway. Thus 5-HT7 receptors elicit and constrain spinal phrenic motor plasticity via distinct signaling mechanisms that diverge at cAMP (EPAC vs. PKA). Selective manipulation of these molecules may enable refined regulation of serotonin-dependent spinal motor plasticity for therapeutic advantage. PMID:26269554

  17. Elevated CO2-Induced Responses in Stomata Require ABA and ABA Signaling.

    PubMed

    Chater, Caspar; Peng, Kai; Movahedi, Mahsa; Dunn, Jessica A; Walker, Heather J; Liang, Yun-Kuan; McLachlan, Deirdre H; Casson, Stuart; Isner, Jean Charles; Wilson, Ian; Neill, Steven J; Hedrich, Rainer; Gray, Julie E; Hetherington, Alistair M

    2015-10-19

    An integral part of global environment change is an increase in the atmospheric concentration of CO2 ([CO2]) [1]. Increased [CO2] reduces leaf stomatal apertures and density of stomata that plays out as reductions in evapotranspiration [2-4]. Surprisingly, given the importance of transpiration to the control of terrestrial water fluxes [5] and plant nutrient acquisition [6], we know comparatively little about the molecular components involved in the intracellular signaling pathways by which [CO2] controls stomatal development and function [7]. Here, we report that elevated [CO2]-induced closure and reductions in stomatal density require the generation of reactive oxygen species (ROS), thereby adding a new common element to these signaling pathways. We also show that the PYR/RCAR family of ABA receptors [8, 9] and ABA itself are required in both responses. Using genetic approaches, we show that ABA in guard cells or their precursors is sufficient to mediate the [CO2]-induced stomatal density response. Taken together, our results suggest that stomatal responses to increased [CO2] operate through the intermediacy of ABA. In the case of [CO2]-induced reductions in stomatal aperture, this occurs by accessing the guard cell ABA signaling pathway. In both [CO2]-mediated responses, our data are consistent with a mechanism in which ABA increases the sensitivity of the system to [CO2] but could also be explained by requirement for a CO2-induced increase in ABA biosynthesis specifically in the guard cell lineage. Furthermore, the dependency of stomatal [CO2] signaling on ABA suggests that the ABA pathway is, in evolutionary terms, likely to be ancestral. PMID:26455301

  18. Phospholipase D signaling in serotonin-induced mitogenesis of pulmonary artery smooth muscle cells.

    PubMed

    Liu, Y; Fanburg, B L

    2008-09-01

    We have previously reported the participation of mitogen-activated protein, Rho, and phosphoinositide-3 (PI3) kinases in separate pathways in serotonin (5-HT)-induced proliferation of pulmonary artery smooth muscle cells (SMCs). In this study, we investigated the possible participation of phospholipase D (PLD) and phosphatidic acid (PA) in this growth process. 5-HT stimulated a time-dependent increase in [(3)H]phosphatidylbutanol and PA generation. Exposure of SMCs to 1-butanol or overexpression of an inactive mutant of human PLD1R898R blocked 5-HT-induced proliferation. Furthermore, 1-butanol inhibited 5-HT activation of S6K1 and S6 protein, downstream effectors of mammalian target of rapamycin (mTOR), by 80 and 72%, respectively, and partially blocked activation of extracellular signal-regulated kinase (ERK) by 30% but had no effect on other associated signaling pathways. Exogenous PA caused cellular proliferation and revitalized cyclin D1 expression by 5-HT of the 1-butanol-treated cells. PA also reproduced activations by 5-HT of mTOR, S6K1, and ERK. Transfection with inactive human PLD1 reduced 5-HT-induced activation of S6K1 by approximately 50%. Inhibition of 5-HT receptor 2A (R 2A) with ketaserin blocked PLD activation by 5-HT. Inhibition with PI3-kinase inhibitor failed to block either activation of PLD by 5-HT or PA-dependent S6K1 phosphorylation. Taken together, these results indicate that ligation of the 5-HTR 2A by 5-HT initiates PLD activation in SMCs, and that its product, PA, is an early signaling molecule in 5-HT-induced pulmonary artery SMC proliferation. Signaling by PA produces its downstream effects primarily through the mTOR/S6K1 pathway and to a lesser extent through the ERK pathway. Hydrolysis of cell membrane lipid may be important in vascular effects of 5-HT. PMID:18621911

  19. Sangivamycin induces apoptosis by suppressing Erk signaling in primary effusion lymphoma cells

    SciTech Connect

    Wakao, Kazufumi; Watanabe, Tadashi; Takadama, Tadatoshi; Ui, Sadaharu; Shigemi, Zenpei; Kagawa, Hiroki; Higashi, Chizuka; Ohga, Rie; Taira, Takahiro; Fujimuro, Masahiro

    2014-02-07

    Highlights: • Sangivamycin induces the apoptosis of B cell lymphoma PEL cells. • Sangivamycin suppresses Erk signaling by inhibiting Erk phosphorylation in PEL cells. • The activation of Erk signaling is essential for PEL cell survival. • Sangivamycin induces the apoptosis of PEL cells without production of progeny virus. • Sangivamycin may serve as a novel drug for the treatment of PEL. - Abstract: Sangivamycin, a structural analog of adenosine and antibiotic exhibiting antitumor and antivirus activities, inhibits protein kinase C and the synthesis of both DNA and RNA. Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients and HIV-infected homosexual males. PEL cells are derived from post-germinal center B cells, and are infected with KSHV. Herein, we asked if sangivamycin might be useful to treat PEL. We found that sangivamycin killed PEL cells, and we explored the underlying mechanism. Sangivamycin treatment drastically decreased the viability of PEL cell lines compared to KSHV-uninfected B lymphoma cell lines. Sangivamycin induced the apoptosis of PEL cells by activating caspase-7 and -9. Further, sangivamycin suppressed the phosphorylation of Erk1/2 and Akt, thus inhibiting activation of the proteins. Inhibitors of Akt and MEK suppressed the proliferation of PEL cells compared to KSHV-uninfected cells. It is known that activation of Erk and Akt signaling inhibits apoptosis and promotes proliferation in PEL cells. Our data therefore suggest that sangivamycin induces apoptosis by inhibiting Erk and Akt signaling in such cells. We next investigated whether sangivamycin, in combination with an HSP90 inhibitor geldanamycin (GA) or valproate (valproic acid), potentiated the cytotoxic effects of the latter drugs on PEL cells. Compared to treatment with GA or valproate alone, the addition of sangivamycin enhanced cytotoxic activity. Our data thus indicate that

  20. Amylin-Induced Central IL-6 Production Enhances Ventromedial Hypothalamic Leptin Signaling

    PubMed Central

    Johnson, Miranda D.; Dunn-Meynell, Ambrose A.; Boyle, Christina N.; Lutz, Thomas A.; Levin, Barry E.

    2015-01-01

    Amylin acts acutely via the area postrema to reduce food intake and body weight, but it also interacts with leptin over longer periods of time, possibly via the ventromedial hypothalamus (VMH), to increase leptin signaling and phosphorylation of STAT3. We postulated that amylin enhances VMH leptin signaling by inducing interleukin (IL)-6, which then interacts with its gp130 receptor to activate STAT3 signaling and gene transcription downstream of the leptin receptor. We found that components of the amylin receptor (RAMPs1–3, CTR1a,b) are expressed in cultured VMH astrocytes, neurons, and microglia, as well as in micropunches of arcuate and ventromedial hypothalamic nuclei (VMN). Amylin exposure for 5 days increased IL-6 mRNA expression in VMH explants and microglia by two- to threefold, respectively, as well as protein abundance in culture supernatants by five- and twofold, respectively. Amylin had no similar effects on cultured astrocytes or neurons. In rats, 5 days of amylin treatment decreased body weight gain and/or food intake and increased IL-6 mRNA expression in the VMN. Similar 5-day amylin treatment increased VMN leptin-induced phosphorylation of STAT3 expression in wild-type mice and rats infused with lateral ventricular IgG but not in IL-6 knockout mice or rats infused with ventricular IL-6 antibody. Lateral ventricular infusion of IL-6 antibody also prevented the amylin-induced decrease of body weight gain. These results show that amylin-induced VMH microglial IL-6 production is the likely mechanism by which amylin treatment interacts with VMH leptin signaling to increase its effect on weight loss. PMID:25409701

  1. Spinal 5-HT7 receptors induce phrenic motor facilitation via EPAC-mTORC1 signaling

    PubMed Central

    Fields, D. P.; Springborn, S. R.

    2015-01-01

    Spinal serotonin type 7 (5-HT7) receptors elicit complex effects on motor activity. Whereas 5-HT7 receptor activation gives rise to long-lasting phrenic motor facilitation (pMF), it also constrains 5-HT2 receptor-induced pMF via “cross-talk inhibition.” We hypothesized that divergent cAMP-dependent signaling pathways give rise to these distinct 5-HT7 receptor actions. Specifically, we hypothesized that protein kinase A (PKA) mediates cross-talk inhibition of 5-HT2 receptor-induced pMF whereas 5-HT7 receptor-induced pMF results from exchange protein activated by cAMP (EPAC) signaling. Anesthetized, paralyzed, and ventilated rats receiving intrathecal (C4) 5-HT7 receptor agonist (AS-19) injections expressed pMF for >90 min, an effect abolished by pretreatment with a selective EPAC inhibitor (ESI-05) but not a selective PKA inhibitor (KT-5720). Furthermore, intrathecal injections of a selective EPAC activator (8-pCPT-2′-Me-cAMP) were sufficient to elicit pMF. Finally, spinal mammalian target of rapamycin complex-1 (mTORC1) inhibition via intrathecal rapamycin abolished 5-HT7 receptor- and EPAC-induced pMF, demonstrating that spinal 5-HT7 receptors elicit pMF by an EPAC-mTORC1 signaling pathway. Thus 5-HT7 receptors elicit and constrain spinal phrenic motor plasticity via distinct signaling mechanisms that diverge at cAMP (EPAC vs. PKA). Selective manipulation of these molecules may enable refined regulation of serotonin-dependent spinal motor plasticity for therapeutic advantage. PMID:26269554

  2. Phospholipase D signaling in serotonin-induced mitogenesis of pulmonary artery smooth muscle cells.

    PubMed

    Liu, Y; Fanburg, B L

    2008-09-01

    We have previously reported the participation of mitogen-activated protein, Rho, and phosphoinositide-3 (PI3) kinases in separate pathways in serotonin (5-HT)-induced proliferation of pulmonary artery smooth muscle cells (SMCs). In this study, we investigated the possible participation of phospholipase D (PLD) and phosphatidic acid (PA) in this growth process. 5-HT stimulated a time-dependent increase in [(3)H]phosphatidylbutanol and PA generation. Exposure of SMCs to 1-butanol or overexpression of an inactive mutant of human PLD1R898R blocked 5-HT-induced proliferation. Furthermore, 1-butanol inhibited 5-HT activation of S6K1 and S6 protein, downstream effectors of mammalian target of rapamycin (mTOR), by 80 and 72%, respectively, and partially blocked activation of extracellular signal-regulated kinase (ERK) by 30% but had no effect on other associated signaling pathways. Exogenous PA caused cellular proliferation and revitalized cyclin D1 expression by 5-HT of the 1-butanol-treated cells. PA also reproduced activations by 5-HT of mTOR, S6K1, and ERK. Transfection with inactive human PLD1 reduced 5-HT-induced activation of S6K1 by approximately 50%. Inhibition of 5-HT receptor 2A (R 2A) with ketaserin blocked PLD activation by 5-HT. Inhibition with PI3-kinase inhibitor failed to block either activation of PLD by 5-HT or PA-dependent S6K1 phosphorylation. Taken together, these results indicate that ligation of the 5-HTR 2A by 5-HT initiates PLD activation in SMCs, and that its product, PA, is an early signaling molecule in 5-HT-induced pulmonary artery SMC proliferation. Signaling by PA produces its downstream effects primarily through the mTOR/S6K1 pathway and to a lesser extent through the ERK pathway. Hydrolysis of cell membrane lipid may be important in vascular effects of 5-HT.

  3. Nmp4/CIZ inhibits mechanically-induced β-catenin signaling activity in osteoblasts

    PubMed Central

    Yang, Zhouqi; Bidwell, Joseph P.; Young, Suzanne R.; Gerard-O’Riley, Rita; Wang, Haifang; Pavalko, Fredrick M.

    2010-01-01

    Cellular mechanotransduction, the process of converting mechanical signals into biochemical responses within cells, is a critical aspect of bone health. While the effects of mechanical loading on bone are well recognized, elucidating the specific molecular pathways involved in the processing of mechanical signals by bone cells represents a challenge and an opportunity to identify therapeutic strategies to combat bone loss. In this study we have for the first time examined the relationship between the nucleocytoplasmic shuttling transcription factor nuclear matrix protein-4/cas interacting zinc finger protein (Nmp4/CIZ) and β-catenin signaling in response to a physiologic mechanical stimulation (oscillatory fluid shear stress, OFSS) in osteoblasts. Using calvaria-derived osteoblasts from Nmp4-deficient and wild-type mice, we found that the normal translocation of β-catenin to the nucleus in osteoblasts that is induced by OFSS is enhanced when Nmp4/CIZ is absent. Furthermore, we found that other aspects of OFSS-induced mechanotransduction generally associated with the β-catenin signaling pathway, including ERK, Akt and GSK3β activity, as well as expression of the β-catenin-responsive protein cyclin D1 are also enhanced in cells lacking Nmp4/CIZ. Finally, we found that in the absence of Nmp4/CIZ, OFSS-induced cytoskeletal reorganization and the formation of focal adhesions between osteoblasts and the extracellular substrate is qualitatively enhanced, suggesting that Nmp4/CIZ may reduce the sensitivity of bone cells to mechanical stimuli. Together these results provide experimental support for the concept that Nmp4/CIZ plays an inhibitory role in the response of bone cells to mechanical stimulation induced by OFSS. PMID:20112285

  4. O-GlcNAc signaling attenuates ER stress-induced cardiomyocyte death.

    PubMed

    Ngoh, Gladys A; Hamid, Tariq; Prabhu, Sumanth D; Jones, Steven P

    2009-11-01

    We previously demonstrated that the O-linked beta-N-acetylglucosamine (O-GlcNAc) posttranslational modification confers cardioprotection at least partially through mitochondrial-dependent mechanisms, but it remained unclear if O-GlcNAc signaling interfered with other mechanisms of cell death. Because ischemia/hypoxia causes endoplasmic reticulum (ER) stress, we ascertained whether O-GlcNAc signaling could attenuate ER stress-induced cell death per se. Before induction of ER stress (with tunicamycin or brefeldin A), we adenovirally overexpressed O-GlcNAc transferase (AdOGT) or pharmacologically inhibited O-GlcNAcase [via O-(2-acetamido-2-deoxy-d-glucopyranosylidene) amino-N-phenylcarbamate] to augment O-GlcNAc levels or adenovirally overexpressed O-GlcNAcase to reduce O-GlcNAc levels. AdOGT significantly (P < 0.05) attenuated the activation of the maladaptive arm of the unfolded protein response [according to C/EBP homologous protein (CHOP) activation] and cardiomyocyte death (reflected by percent propidium iodide positivity). Moreover, pharmacological inhibition of O-GlcNAcase significantly (P < 0.05) mitigated ER stress-induced CHOP activation and cardiac myocyte death. Interestingly, overexpression of GCA did not alter ER stress markers but exacerbated brefeldin A-induced cardiomyocyte death. We conclude that enhanced O-GlcNAc signaling represents a partially proadaptive response to reduce ER stress-induced cell death. These results provide new insights into a possible interaction between O-GlcNAc signaling and ER stress and may partially explain a mechanism of O-GlcNAc-mediated cardioprotection. PMID:19734355

  5. Progranulin suppresses titanium particle induced inflammatory osteolysis by targeting TNFα signaling

    PubMed Central

    Zhao, Yun-peng; Wei, Jian-lu; Tian, Qing-yun; Liu, Alexander Tianxing; Yi, Young-Su; Einhorn, Thomas A.; Liu, Chuan-ju

    2016-01-01

    Aseptic loosening is a major complication of prosthetic joint surgery, characterized by chronic inflammation, pain, and osteolysis surrounding the bone-implant interface. Progranulin (PGRN) is known to have anti-inflammatory action by binding to Tumor Necrosis Factor (TNF) receptors and antagonizing TNFα. Here we report that titanium particles significantly induced PGRN expression in RAW264.7 cells and also in a mouse air-pouch model of inflammation. PGRN-deficiency enhanced, whereas administration of recombinant PGRN effectively inhibited, titanium particle-induced inflammation in an air pouch model. In addition, PGRN also significantly inhibited titanium particle-induced osteoclastogenesis and calvarial osteolysis in vitro, ex vivo and in vivo. Mechanistic studies demonstrated that the inhibition of PGRN on titanium particle induced-inflammation is primarily via neutralizing the titanium particle-activated TNFα/NF-κB signaling pathway and this is evidenced by the suppression of particle-induced IκB phosphorylation, NF-κB p65 nuclear translocation, and activity of the NF-κB-specific reporter gene. Collectively, these findings not only demonstrate that PGRN plays an important role in inhibiting titanium particle-induced inflammation, but also provide a potential therapeutic agent for the prevention of wear debris-induced inflammation and osteolysis. PMID:26864916

  6. Progranulin suppresses titanium particle induced inflammatory osteolysis by targeting TNFα signaling.

    PubMed

    Zhao, Yun-peng; Wei, Jian-lu; Tian, Qing-yun; Liu, Alexander Tianxing; Yi, Young-su; Einhorn, Thomas A; Liu, Chuan-ju

    2016-01-01

    Aseptic loosening is a major complication of prosthetic joint surgery, characterized by chronic inflammation, pain, and osteolysis surrounding the bone-implant interface. Progranulin (PGRN) is known to have anti-inflammatory action by binding to Tumor Necrosis Factor (TNF) receptors and antagonizing TNFα. Here we report that titanium particles significantly induced PGRN expression in RAW264.7 cells and also in a mouse air-pouch model of inflammation. PGRN-deficiency enhanced, whereas administration of recombinant PGRN effectively inhibited, titanium particle-induced inflammation in an air pouch model. In addition, PGRN also significantly inhibited titanium particle-induced osteoclastogenesis and calvarial osteolysis in vitro, ex vivo and in vivo. Mechanistic studies demonstrated that the inhibition of PGRN on titanium particle induced-inflammation is primarily via neutralizing the titanium particle-activated TNFα/NF-κB signaling pathway and this is evidenced by the suppression of particle-induced IκB phosphorylation, NF-κB p65 nuclear translocation, and activity of the NF-κB-specific reporter gene. Collectively, these findings not only demonstrate that PGRN plays an important role in inhibiting titanium particle-induced inflammation, but also provide a potential therapeutic agent for the prevention of wear debris-induced inflammation and osteolysis. PMID:26864916

  7. Transforming growth factor-beta1 induces activation of Ras, Raf-1, MEK and MAPK in rat hepatic stellate cells.

    PubMed

    Reimann, T; Hempel, U; Krautwald, S; Axmann, A; Scheibe, R; Seidel, D; Wenzel, K W

    1997-02-10

    The transdifferentiation of hepatic stellate cells into myofibroblast-like cells and the proliferation of the transdifferentiated cells are controlled by TGF-beta1. Little is known about the intracellular signal transducers of TGF-beta1. In this paper we show that in cultured hepatic stellate cells TGF-beta1 induces activation of Ras, Raf-1, MEK and MAPK p42 and p44. The activation of MAPK depends on the activation of MEK. Our data exclude that the observed effects are mediated by a bFGF or PDGF autocrine loop. PMID:9038360

  8. A quick signal of starvation induced autophagy: transcription versus post-translational modification of LC3.

    PubMed

    Karim, Md Razaul; Kawanago, Hisayo; Kadowaki, Motoni

    2014-11-15

    Autophagy is the major intracellular lysosomal bulk degradation pathway induced by nutrient starvation and contributes to the elimination of damaged organelles and protein aggregates to recycle building block and is essential for cell survival. Microtubule-associated protein 1 light chain 3 (LC3) plays an indispensable role in macroautophagy formation and is a molecular marker for the process. Here, we show that autophagy increased through quick robust signaling from starvation by enhanced levels of LC3, LC3-EGFP (enhanced green fluorescent protein) punctate, and bulk proteolysis in rat hepatoma H4-II-E cells and fresh rat hepatocytes. After the addition of amino acids to the starvation condition, a similar quick signal appeared by significant reduction of the LC3 ratio and bulk proteolysis. Interestingly, we observed that post-translational modification of LC3 conversion occurred even long before the changes happened in the level of LC3-mRNA (messenger RNA) expression. A similar coordinated but diverse effect on LC3 was confirmed by using autophagy and lysosomal inhibitors. These results indicated that during starvation the initial robust signal to the cytoplasm can induce autophagy activity through modification at the protein level, whereas after depleting readily available autophagy proteins the signal goes to the DNA transcription level to maintain the autophagy capacity of cells.

  9. Effect of PLC Signal Induced into VDSL System by Conductive Coupling

    NASA Astrophysics Data System (ADS)

    Akiyama, Yoshiharu; Yamane, Hiroshi; Kuwabara, Nobuo

    We investigated the effect of a high-speed power line communication (PLC) signal induced into a very high-speed digital subscriber line (VDSL) system by conductive coupling based on a network model. Four electronic devices with AC mains and telecommunication ports were modeled using a 4-port network, and the parameters of the network were obtained from measuring impedance and transmission loss. We evaluated the decoupling factor from the mains port to the telecommunication port of a VDSL modem using these parameters for the four electric and electronic devices. The results indicate that the mean value of the decoupling factor for the differential and common mode signals were more than 88 and 62dB, respectively, in the frequency range of a PLC system. Taking the following parameters into consideration; decoupling factor Ld, the average transmission signal powers of VDSL and PLC, desired and undesired (DU) ratio, and transmission loss of a typical 300-m-long indoor telecommunication line, the VDSL system cannot be disturbed by the PLC signal induced into the VDSL modem from the AC mains port in normal installation.

  10. PECAM-1 engagement counteracts ICAM-1-induced signaling in brain vascular endothelial cells.

    PubMed

    Couty, Jean-Pierre; Rampon, Christine; Leveque, Mathilde; Laran-Chich, Marie-Pierre; Bourdoulous, Sandrine; Greenwood, John; Couraud, Pierre-Olivier

    2007-10-01

    Interactions between leukocytes and vascular endothelial cells are mediated by a complex set of membrane adhesion molecules which transduce bi-directional signals in both cell types. Endothelium of the cerebral blood vessels, which constitute the blood-brain barrier, strictly controls adhesion and trafficking of leukocytes into the brain. Investigating signaling pathways triggered by the engagement of adhesion molecules expressed on brain endothelial cells, we previously documented the role of ICAM-1 in activation of the tyrosine phosphorylation of several actin-binding proteins and subsequent rearrangements of the actin cytoskeleton. In the present study, we show that, whereas PECAM-1 is known to control positively the trans-endothelial migration of leukocytes via homophilic interactions between leukocytes and endothelial cells, PECAM-1 engagement on brain endothelial surface unexpectedly counteracts the ICAM-1-induced tyrosine phosphorylation of cortactin and rearrangements of the actin cytoskeleton. We present evidence that the PECAM-1-associated tyrosine phosphatase SHP-2 is required for ICAM-1 signaling, suggesting that its activity might crucially contribute to the regulation of ICAM-1 signaling by PECAM-1. Our findings reveal a novel activity for PECAM-1 which, by counteracting ICAM-1-induced activation, could directly contribute to limit activation and maintain integrity of brain vascular endothelium. PMID:17662049

  11. Role of Radiation-induced TGF-beta Signaling in Cancer Therapy

    PubMed Central

    Dancea, Horatiu C.; Shareef, Mohammed M.; Ahmed, Mansoor M.

    2010-01-01

    TGF-β signaling regulates several different biological processes involving cell-growth, differentiation, apoptosis, motility, angiogenesis, epithelial mesenchymal transition and extracellular matrix production that affects embryonic development and pathogenesis of various diseases, including cancer, its effects depending on the cellular context and physiological environment. Growth suppression mediated by TGF-β signaling often associated with inhibition of c-myc, cdks and induction of p15, p27, Bax and p21. Despite its growth inhibitory effect, in certain conditions TGF-β may act as a promoter of cell proliferation and invasion. Loss of responsiveness to growth suppression by TGF-β due to mutation or loss of TGF-beta type II receptor (TβRII) and Smad4 in several different cancer cells are reported. In addition, TGF-β binding to its receptor activates many non-canonical signaling pathways. Radiation induced TGF-β is primarily involved in normal tissue injury and fibrosis. Seminal studies from our group have used radio-adjuvant therapies, involving classical components of the pathway such as TβRII and SMAD4 to overcome the growth promoting effects of TGF-β. The main impediment in the radiation-induced TGF-β signaling is the induction of SMAD7 that blocks TGF-β signaling in a negative feedback manner. It is well demonstrated from our studies that the use of neutralizing antibodies against TGF- β can render a robust radio-resistant effect. Thus, understanding the functional interactions of TGF-β signaling components of the pathway with other molecules may help tailor appropriate adjuvant radio-therapeutic strategies for treatment of solid tumors. PMID:20336170

  12. VE-cadherin facilitates BMP-induced endothelial cell permeability and signaling.

    PubMed

    Benn, Andreas; Bredow, Clara; Casanova, Isabel; Vukičević, Slobodan; Knaus, Petra

    2016-01-01

    Several vascular disorders, such as aberrant angiogenesis, atherosclerosis and pulmonary hypertension, have been linked to dysfunctional BMP signaling. Vascular hyperpermeability via distortion of endothelial cell adherens junctions is a common feature of these diseases, but the role of BMPs in this process has not been investigated. BMP signaling is initiated by binding of ligand to, and activation of, BMP type I (BMPRI) and type II (BMPRII) receptors. Internalization of VE-cadherin as well as c-Src kinase-dependent phosphorylation have been implicated in the loosening of cell-cell contacts, thereby modulating vascular permeability. Here we demonstrate that BMP6 induces hyperpermeabilization of human endothelial cells by inducing internalization and c-Src-dependent phosphorylation of VE-cadherin. Furthermore, we show BMP-dependent physical interaction of VE-cadherin with the BMP receptor ALK2 (BMPRI) and BMPRII, resulting in stabilization of the BMP receptor complex and, thereby, the support of BMP6-Smad signaling. Our results provide first insights into the molecular mechanism of BMP-induced vascular permeability, a hallmark of various vascular diseases, and provide the basis for further investigations of BMPs as regulators of vascular integrity, both under physiological and pathophysiological conditions. PMID:26598555

  13. Titanium With Nanotopography Induces Osteoblast Differentiation by Regulating Endogenous Bone Morphogenetic Protein Expression and Signaling Pathway.

    PubMed

    M S Castro-Raucci, Larissa; S Francischini, Marcelo; N Teixeira, Lucas; P Ferraz, Emanuela; B Lopes, Helena; T de Oliveira, Paulo; Hassan, Mohammad Q; Losa, Adalberto L; Beloti, Marcio M

    2016-07-01

    We aimed at evaluating the effect of titanium (Ti) with nanotopography (Nano) on the endogenous expression of BMP-2 and BMP-4 and the relevance of this process to the nanotopography-induced osteoblast differentiation. MC3T3-E1 cells were grown on Nano and machined (Machined) Ti surfaces and the endogenous BMP-2/4 expression and the effect of BMP receptor BMPR1A silencing in both osteoblast differentiation and expression of genes related to TGF-β/BMP signaling were evaluated. Nano supported higher BMP-2 gene and protein expression and upregulated the osteoblast differentiation compared with Machined Ti surface. The BMPR1A silencing inhibited the osteogenic potential induced by Nano Ti surface as indicated by reduced alkaline phosphatase (ALP), osteocalcin and RUNX2 gene expression, RUNX2 protein expression and ALP activity. In addition, the expression of genes related to TGF-β/BMP signaling was deeply affected by BMPR1A-silenced cells grown on Nano Ti surface. In conclusion, we have demonstrated for the first time that nanotopography induces osteoblast differentiation, at least in part, by upregulating the endogenous production of BMP-2 and modulating BMP signaling pathway. J. Cell. Biochem. 117: 1718-1726, 2016. © 2015 Wiley Periodicals, Inc. PMID:26681207

  14. A pain-mediated neural signal induces relapse in murine autoimmune encephalomyelitis, a multiple sclerosis model

    PubMed Central

    Arima, Yasunobu; Kamimura, Daisuke; Atsumi, Toru; Harada, Masaya; Kawamoto, Tadafumi; Nishikawa, Naoki; Stofkova, Andrea; Ohki, Takuto; Higuchi, Kotaro; Morimoto, Yuji; Wieghofer, Peter; Okada, Yuka; Mori, Yuki; Sakoda, Saburo; Saika, Shizuya; Yoshioka, Yoshichika; Komuro, Issei; Yamashita, Toshihide; Hirano, Toshio; Prinz, Marco; Murakami, Masaaki

    2015-01-01

    Although pain is a common symptom of various diseases and disorders, its contribution to disease pathogenesis is not well understood. Here we show using murine experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis (MS), that pain induces EAE relapse. Mechanistic analysis showed that pain induction activates a sensory-sympathetic signal followed by a chemokine-mediated accumulation of MHC class II+CD11b+ cells that showed antigen-presentation activity at specific ventral vessels in the fifth lumbar cord of EAE-recovered mice. Following this accumulation, various immune cells including pathogenic CD4+ T cells recruited in the spinal cord in a manner dependent on a local chemokine inducer in endothelial cells, resulting in EAE relapse. Our results demonstrate that a pain-mediated neural signal can be transformed into an inflammation reaction at specific vessels to induce disease relapse, thus making this signal a potential therapeutic target. DOI: http://dx.doi.org/10.7554/eLife.08733.001 PMID:26193120

  15. Sulfuretin induces osteoblast differentiation through activation of TGF-β signaling.

    PubMed

    Song, No-Joon; Kwon, So-Mi; Kim, Suji; Yoon, Hyang-Jin; Seo, Cho-Rong; Jang, Byunghyun; Chang, Seo-Hyuk; Ku, Jin-Mo; Lee, Jeong-Soo; Park, Ki-Moon; Hong, Joung-Woo; Kim, Geun Hyung; Park, Kye Won

    2015-12-01

    The identification and examination of potential determinants controlling the progression of cell fate toward osteoblasts can be intriguing subjects. In this study, the effects of sulfuretin, a major compound isolated from Rhus verniciflua Stokes, on osteoblast differentiation were investigated. Treatments of sulfuretin induced alkaline phosphatase (ALP) activity in mesenchymal C3H10T1/2 cells and mineralization in preosteoblast MC3T3-E1 cells. Pro-osteogenic effects of sulfuretin were consistently observed in freshly isolated primary bone marrow cells. In mechanical studies, sulfuretin specifically induced expression of TGF-β target genes, such as SMAD7 and PAI-1, but not other signaling pathway-related genes. Similar to the results of gene expression analysis, reporter assays further demonstrated TGF-β-specific induction by sulfuretin. Furthermore, disruption of TGF-β signaling using treatment with TGF-β-specific inhibitor, SB-431542, and introduction of SMAD2/3 small interfering RNA impaired the effects of sulfuretin in inducing ALP activity and expression of ALP mRNA. Together, these data indicate that the pro-osteogenic effects of sulfuretin are mediated through activation of TGF-β signaling, further supporting the potential of sulfuretin in the prevention of bone-related diseases such as bone fracture and osteoporosis.

  16. VE-cadherin facilitates BMP-induced endothelial cell permeability and signaling

    PubMed Central

    Benn, Andreas; Bredow, Clara; Casanova, Isabel; Vukičević, Slobodan; Knaus, Petra

    2016-01-01

    ABSTRACT Several vascular disorders, such as aberrant angiogenesis, atherosclerosis and pulmonary hypertension, have been linked to dysfunctional BMP signaling. Vascular hyperpermeability via distortion of endothelial cell adherens junctions is a common feature of these diseases, but the role of BMPs in this process has not been investigated. BMP signaling is initiated by binding of ligand to, and activation of, BMP type I (BMPRI) and type II (BMPRII) receptors. Internalization of VE-cadherin as well as c-Src kinase-dependent phosphorylation have been implicated in the loosening of cell–cell contacts, thereby modulating vascular permeability. Here we demonstrate that BMP6 induces hyperpermeabilization of human endothelial cells by inducing internalization and c-Src-dependent phosphorylation of VE-cadherin. Furthermore, we show BMP-dependent physical interaction of VE-cadherin with the BMP receptor ALK2 (BMPRI) and BMPRII, resulting in stabilization of the BMP receptor complex and, thereby, the support of BMP6-Smad signaling. Our results provide first insights into the molecular mechanism of BMP-induced vascular permeability, a hallmark of various vascular diseases, and provide the basis for further investigations of BMPs as regulators of vascular integrity, both under physiological and pathophysiological conditions. PMID:26598555

  17. Jasmonic acid is a crucial signal transducer in heat shock induced sesquiterpene formation in Aquilaria sinensis.

    PubMed

    Xu, Yan-Hong; Liao, Yong-Cui; Zhang, Zheng; Liu, Juan; Sun, Pei-Wen; Gao, Zhi-Hui; Sui, Chun; Wei, Jian-He

    2016-01-01

    Agarwood, a highly valuable resinous and fragrant heartwood of Aquilaria plants, is widely used in traditional medicines, incense and perfume. Only when Aquilaria trees are wounded by external stimuli do they form agarwood sesquiterpene defensive compounds. Therefore, understanding the signaling pathway of wound-induced agarwood formation is important. Jasmonic acid (JA) is a well-characterized molecule that mediates a plant's defense response and secondary metabolism. However, little is known about the function of endogenous JA in agarwood sesquiterpene biosynthesis. Here, we report that heat shock can up-regulate the expression of genes in JA signaling pathway, induce JA production and the accumulation of agarwood sesquiterpene in A. sinensis cell suspension cultures. A specific inhibitor of JA, nordihydroguaiaretic acid (NDGA), could block the JA signaling pathway and reduce the accumulation of sesquiterpene compounds. Additionally, compared to SA and H2O2, exogenously supplied methyl jasmonate has the strongest stimulation effect on the production of sesquiterpene compounds. These results clearly demonstrate the central induction role of JA in heat-shock-induced sesquiterpene production in A. sinensis.

  18. Urtica dioica modulates hippocampal insulin signaling and recognition memory deficit in streptozotocin induced diabetic mice.

    PubMed

    Patel, Sita Sharan; Gupta, Sahil; Udayabanu, Malairaman

    2016-06-01

    Diabetes mellitus has been associated with functional abnormalities in the hippocampus and performance of cognitive function. Urtica dioica (UD) has been used in the treatment of diabetes. In our previous report we observed that UD extract attenuate diabetes mediated associative and spatial memory dysfunction. The present study aimed to evaluate the effect of UD extract on mouse model of diabetes-induced recognition memory deficit and explore the possible mechanism behind it. Streptozotocin (STZ) (50 mg/kg, i.p. consecutively for 5 days) was used to induce diabetes followed by UD extract (50 mg/kg, oral) or rosiglitazone (ROSI) (5 mg/kg, oral) administration for 8 weeks. STZ induced diabetic mice showed significant decrease in hippocampal insulin signaling and translocation of glucose transporter type 4 (GLUT4) to neuronal membrane resulting in cognitive dysfunction and hypolocomotion. UD treatment effectively improved hippocampal insulin signaling, glucose tolerance and recognition memory performance in diabetic mice, which was comparable to ROSI. Further, diabetes mediated oxidative stress and inflammation was reversed by chronic UD or ROSI administration. UD leaves extract acts via insulin signaling pathway and might prove to be effective for the diabetes mediated central nervous system complications. PMID:26767366

  19. Jasmonic acid is a crucial signal transducer in heat shock induced sesquiterpene formation in Aquilaria sinensis.

    PubMed

    Xu, Yan-Hong; Liao, Yong-Cui; Zhang, Zheng; Liu, Juan; Sun, Pei-Wen; Gao, Zhi-Hui; Sui, Chun; Wei, Jian-He

    2016-01-01

    Agarwood, a highly valuable resinous and fragrant heartwood of Aquilaria plants, is widely used in traditional medicines, incense and perfume. Only when Aquilaria trees are wounded by external stimuli do they form agarwood sesquiterpene defensive compounds. Therefore, understanding the signaling pathway of wound-induced agarwood formation is important. Jasmonic acid (JA) is a well-characterized molecule that mediates a plant's defense response and secondary metabolism. However, little is known about the function of endogenous JA in agarwood sesquiterpene biosynthesis. Here, we report that heat shock can up-regulate the expression of genes in JA signaling pathway, induce JA production and the accumulation of agarwood sesquiterpene in A. sinensis cell suspension cultures. A specific inhibitor of JA, nordihydroguaiaretic acid (NDGA), could block the JA signaling pathway and reduce the accumulation of sesquiterpene compounds. Additionally, compared to SA and H2O2, exogenously supplied methyl jasmonate has the strongest stimulation effect on the production of sesquiterpene compounds. These results clearly demonstrate the central induction role of JA in heat-shock-induced sesquiterpene production in A. sinensis. PMID:26902148

  20. Jasmonic acid is a crucial signal transducer in heat shock induced sesquiterpene formation in Aquilaria sinensis

    PubMed Central

    Xu, Yan-Hong; Liao, Yong-Cui; Zhang, Zheng; Liu, Juan; Sun, Pei-Wen; Gao, Zhi-Hui; Sui, Chun; Wei, Jian-He

    2016-01-01

    Agarwood, a highly valuable resinous and fragrant heartwood of Aquilaria plants, is widely used in traditional medicines, incense and perfume. Only when Aquilaria trees are wounded by external stimuli do they form agarwood sesquiterpene defensive compounds. Therefore, understanding the signaling pathway of wound-induced agarwood formation is important. Jasmonic acid (JA) is a well-characterized molecule that mediates a plant’s defense response and secondary metabolism. However, little is known about the function of endogenous JA in agarwood sesquiterpene biosynthesis. Here, we report that heat shock can up-regulate the expression of genes in JA signaling pathway, induce JA production and the accumulation of agarwood sesquiterpene in A. sinensis cell suspension cultures. A specific inhibitor of JA, nordihydroguaiaretic acid (NDGA), could block the JA signaling pathway and reduce the accumulation of sesquiterpene compounds. Additionally, compared to SA and H2O2, exogenously supplied methyl jasmonate has the strongest stimulation effect on the production of sesquiterpene compounds. These results clearly demonstrate the central induction role of JA in heat-shock-induced sesquiterpene production in A. sinensis. PMID:26902148

  1. Transforming growth factor alpha may be a physiological regulator of liver regeneration by means of an autocrine mechanism.

    PubMed Central

    Mead, J E; Fausto, N

    1989-01-01

    We investigated whether transforming growth factor alpha (TGF-alpha) is involved in hepatocyte growth responses both in vivo and in culture. During liver regeneration after partial hepatectomy in rats, TGF-alpha mRNA increased; it reached a maximum (approximately 9-fold higher than normal) at the peak of DNA synthesis. The message and the peptide were localized in hepatocytes and found in higher amounts in hepatocytes obtained from regenerating liver. TGF-alpha caused a 13-fold elevation of DNA synthesis in hepatocytes in primary culture and was slightly more effective than epidermal growth factor. TGF-beta blocked TGF-alpha stimulation when added either simultaneously with TGF-alpha or a day later. TGF-alpha message increased in hepatocytes stimulated to undergo DNA synthesis by TGF-alpha or epidermal growth factor, and the peptide was detected in the culture medium by RIA. In the regenerating liver, the increase in TGF-alpha mRNA during the first day after partial hepatectomy coincided with an increase in epidermal growth factor/TGF-alpha receptor mRNA and a decrease (already reported) in the number of these receptors. We conclude that TGF-alpha may function as a physiological inducer of hepatocyte DNA synthesis during liver regeneration by means of an autocrine mechanism and that its stimulatory effects in this growth process are balanced by the inhibitory action of TGF-beta 1. Images PMID:2922399

  2. Angiopoietin-1 promotes endothelial cell proliferation and migration through AP-1-dependent autocrine production of interleukin-8.

    PubMed

    Abdel-Malak, Nelly A; Srikant, Coimbatore B; Kristof, Arnold S; Magder, Sheldon A; Di Battista, John A; Hussain, Sabah N A

    2008-04-15

    Angiopoietin-1 (Ang-1), ligand for the endothelial cell-specific Tie-2 receptors, promotes migration and proliferation of endothelial cells, however, whether these effects are promoted through the release of a secondary mediator remains unclear. In this study, we assessed whether Ang-1 promotes endothelial cell migration and proliferation through the release of interleukin-8 (IL-8). Ang-1 elicited in human umbilical vein endothelial cells (HUVECs) a dose- and time-dependent increase in IL-8 production as a result of induction of mRNA and enhanced mRNA stability of IL-8 transcripts. IL-8 production is also elevated in HUVECs transduced with retroviruses expressing Ang-1. Neutralization of IL-8 in these cells with a specific antibody significantly attenuated proliferation and migration and induced caspase-3 activation. Exposure to Ang-1 triggered a significant increase in DNA binding of activator protein-1 (AP-1) to a relatively short fragment of IL-8 promoter. Upstream from the AP-1 complex, up-regulation of IL-8 transcription by Ang-1 was mediated through the Erk1/2, SAPK/JNK, and PI-3 kinase pathways, which triggered c-Jun phosphorylation on Ser63 and Ser73. These results suggest that promotion of endothelial migration and proliferation by Ang-1 is mediated, in part, through the production of IL-8, which acts in an autocrine fashion to suppress apoptosis and facilitate cell proliferation and migration.

  3. Autocrine IL-10 activation of the STAT3 pathway is required for pathological macrophage differentiation in polycystic kidney disease

    PubMed Central

    Peda, Jacqueline D.; Salah, Sally M.; Wallace, Darren P.; Fields, Patrick E.; Grantham, Connor J.; Fields, Timothy A.

    2016-01-01

    ABSTRACT Polycystic kidney disease (PKD) is characterized by slow expansion of fluid-filled cysts derived from tubules within the kidney. Cystic expansion results in injury to surrounding parenchyma and leads to inflammation, scarring and ultimately loss of renal function. Macrophages are a key element in this process, promoting cyst epithelial cell proliferation, cyst expansion and disease progression. Previously, we have shown that the microenvironment established by cystic epithelial cells can ‘program’ macrophages, inducing M2-like macrophage polarization that is characterized by expression of markers that include Arg1 and Il10. Here, we functionally characterize these macrophages, demonstrating that their differentiation enhances their ability to promote cyst cell proliferation. This observation indicates a model of reciprocal pathological interactions between cysts and the innate immune system: cyst epithelial cells promote macrophage polarization to a phenotype that, in turn, is especially efficient in promoting cyst cell proliferation and cyst growth. To better understand the genesis of this macrophage phenotype, we examined the role of IL-10, a regulatory cytokine shown to be important for macrophage-stimulated tissue repair in other settings. Herein, we show that the acquisition of the pathological macrophage phenotype requires IL-10 secretion by the macrophages. Further, we demonstrate a requirement for IL-10-dependent autocrine activation of the STAT3 pathway. These data suggest that the IL-10 pathway in macrophages plays an essential role in the pathological relationship between cysts and the innate immune system in PKD, and thus could be a potential therapeutic target. PMID:27491076

  4. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    SciTech Connect

    Ding, Li; Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang; Tong, Dewen

    2014-03-07

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.

  5. Cold inducible RNA binding protein upregulation in pituitary corticotroph adenoma induces corticotroph cell proliferation via Erk signaling pathway

    PubMed Central

    Fu, Wei; Tang, Hao; Chen, Xiao; Zhao, Yao; Zheng, Lili; Pan, Sijian; Wang, Weiqing; Bian, Liuguan; Sun, Qingfang

    2016-01-01

    Cushing's disease is caused by pituitary corticotroph adenoma, and the pathogenesis of it has remained obscure. Here, we showed that cold inducible RNA binding protein (CIRP) was markedly elevated in corticotroph tumors. Forced overexpression of CIRP in murine AtT20 pituitary corticotroph cell line increased corticotroph precursor hormone proopiomelanocortin (POMC) transcription, ACTH secretion and cellular proliferation. In vivo, CIRP overexpression promotes murine corticotroph tumor growth and enhances ACTH production. Mechanistically, we show that CIRP could promote AtT20 cells proliferation by inducing cyclinD1 and decreasing p27 expression via Erk1/2 signaling pathway. Clinically, CIRP overexpression is significantly correlated with Cushing's disease recurrence. CIRP appears to play a critical tumorigenesis function in Cushing's disease and its expression might be a useful biomarker for tumor recurrence. PMID:26824322

  6. TLR2 signaling and Th2 responses drive Tannerella forsythia-induced periodontal bone loss1

    PubMed Central

    Myneni, Srinivas R.; Settem, Rajendra P.; Connell, Terry D.; Keegan, Achsah D.; Gaffen, Sarah L.; Sharma, Ashu

    2011-01-01

    Periodontal disease (PD) is a chronic inflammation of the tooth supporting soft tissue and alveolar bone due to infection by a select group of gram negative microbes, and leads to tooth loss if untreated. Since mice deficient in CD4+ cells are resistant to infection-induced alveolar bone loss, Th cells have been implicated in bone destructive processes during PD. However, the extent to which different Th-cell subtypes play roles in pathogenesis or host protection remains to be defined, and is likely to vary depending on the dominant microorganism involved. By far the best studied periodontal microbe in PD is Porphyromonas gingivalis. Even though the gram negative anaerobe Tannerella forsythia is also a vital contributor to periodontal bone loss, almost nothing is known about immune responses to this organism. Previous studies from our laboratory have revealed that T. forsythia induces periodontal bone loss in mice, and that this bone loss depends on the bacterially-expressed BspA protein. In this study, we show that T. forsythia activates murine APCs primarily through TLR2-dependent signaling via BspA. Furthermore, T. forsythia infection causes a pronounced Th2 bias, evidenced by T cell expression of IL-5 but not IFN-γ or IL-17 in draining LN. Consistently, deficiencies in TLR2 or STAT6 result in resistance to T. forsythia-induced alveolar bone loss. Thus, TLR2 signaling and Th2 cells play pathogenic roles in T. forsythia-induced alveolar bone destruction. PMID:21632710

  7. Cadmium Induces Retinoic Acid Signaling by Regulating Retinoic Acid Metabolic Gene Expression*

    PubMed Central

    Cui, Yuxia; Freedman, Jonathan H.

    2009-01-01

    The transition metal cadmium is an environmental teratogen. In addition, cadmium and retinoic acid can act synergistically to induce forelimb malformations. The molecular mechanism underlying the teratogenicity of cadmium and the synergistic effect with retinoic acid has not been addressed. An evolutionarily conserved gene, β,β-carotene 15,15′-monooxygenase (BCMO), which is involved in retinoic acid biosynthesis, was studied in both Caenorhabditis elegans and murine Hepa 1–6 cells. In C. elegans, bcmo-1 was expressed in the intestine and was cadmium inducible. Similarly, in Hepa 1–6 cells, Bcmo1 was induced by cadmium. Retinoic acid-mediated signaling increased after 24-h exposures to 5 and 10 μm cadmium in Hepa 1–6 cells. Examination of gene expression demonstrated that the induction of retinoic acid signaling by cadmium may be mediated by overexpression of Bcmo1. Furthermore, cadmium inhibited the expression of Cyp26a1 and Cyp26b1, which are involved in retinoic acid degradation. These results indicate that cadmium-induced teratogenicity may be due to the ability of the metal to increase the levels of retinoic acid by disrupting the expression of retinoic acid-metabolizing genes. PMID:19556237

  8. Potential signaling pathway involved in sphingosine-1-phosphate-induced epithelial-mesenchymal transition in cancer

    PubMed Central

    ZENG, YE; YAO, XING-HONG; YAN, ZHI-PING; LIU, JING-XIA; LIU, XIAO-HENG

    2016-01-01

    The developmental process of epithelial-mesenchymal transition (EMT) occurs when epithelial cells acquire invasive mesenchymal cell characteristics, and the activation of this process has been indicated to be involved in tumor progression. EMT could be induced by growth factors, cytokines and matrix metalloproteinases (MMPs). sphingosine-1-phosphate (S1P) is a biologically-active lipid that plays an important role in cancer metastasis. S1P also contributes to the activation of EMT. However, the mechanism underlying S1P-induced EMT is unclear. Increased evidence has demonstrated that the cell surface glycocalyx is closed associated with S1P and plays an important role in tumor progression, suggesting that S1P-induced EMT could be Snail-MMP signaling-dependent. Thus, we hypothesize that an S1P-glycocalyx-Snail-MMP signaling axis mediates S1P-induced EMT. This is an essential step towards improved understanding of the underlying mechanism involved in S1P-regulted EMT, and the development of novel diagnostic and anticancer therapeutic strategies. PMID:27347154

  9. Lactoferrin attenuates fatty acid-induced lipotoxicity via Akt signaling in hepatocarcinoma cells.

    PubMed

    Morishita, Satoru; Tomita, Keiko; Ono, Tomoji; Murakoshi, Michiaki; Saito, Kenji; Sugiyama, Keikichi; Nishino, Hoyoku; Kato, Hisanori

    2015-12-01

    Nonalcoholic fatty liver disease (NAFLD) describes a spectrum of lesions ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). The excess influx of fatty acids (FAs) into the liver is recognized as a main cause of simple steatosis formation and progression to NASH. Recently, administration of lactoferrin (LF), a glycoprotein present in milk, was suggested to prevent NAFLD development. However, the effect of LF on the contribution of FA to NAFLD development remains unclear. In this study, the effects of LF on FA mixture (FAm)-induced lipotoxicity using human hepatocarcinoma G2 cells were assessed. FAm significantly decreased cell viability and increased intracellular lipid accumulation, whereas LF significantly recovered cell viability without affecting lipid accumulation. FAm-induced lactic dehydrogenase (LDH) and caspase-3/7 activities were significantly decreased by LF and SP600125, a c-Jun N-terminal kinase (JNK) specific inhibitor. We also found that LF added to FAm-treated cells induced Akt phosphorylation, which contributed to inhibition of JNK signaling pathway-dependent apoptosis. Akt inhibitor VIII, an allosteric Akt inhibitor, significantly attenuated the effect of LF on LDH activity and abrogated the ones on cell viability and caspase-3/7 activity. In summary, the present study has revealed that LF has a protective effect on FAm-induced lipotoxicity in a HepG2 model of NAFLD and identified the activation of the Akt signaling pathway as a possibly major mechanism.

  10. Oxygen-induced frequency shifts in hyperoxia: a significant component of BOLD signal.

    PubMed

    Song, Youngkyu; Cho, Gyunggoo; Chun, Song-I; Baek, Jin Hee; Cho, HyungJoon; Kim, Young Ro; Park, Sung Bin; Kim, Jeong Kon

    2014-07-01

    In comparison to the well-documented significance of intravascular deoxyhemoglobin (deoxyHgb), the effects of dissolved oxygen on the blood-oxygen-level-dependent (BOLD) signal have not been widely reported. Based on the fact that the prolonged inspiration of high oxygen fraction gas can result in up to a sixfold increase of the baseline tissue oxygenation, the current study focused on the influence of dissolved oxygen on the BOLD signal during hyperoxia. As results, our in vitro study revealed that the r1 and r2 (relaxivities) of the oxygen-treated serum were 0.22 mM(-1) · s(-1) and 0.19 mM(-1) · s(-1) , respectively. In an in vivo experiment, hyperoxic respiration induced negative BOLD contrast (i.e. signal decrease) in 18-42% of measured brain regions, voxels with accompanying significant decreases in both the T(*)2 (-12.1% to -19.4%) and T1 (-5.8% to -3.3%) relaxation times. In contrast, the T(*)2 relaxation time significantly increased (11.2% to 14.0%) for the voxels displaying positive BOLD contrast (in 41-50% of the measured brain), which reflected a hyperoxygenation-induced reduction in tissue deoxyHgb concentration. These data imply that hyperoxia-driven BOLD signal changes are primarily determined by the counteracting effects of extravascular oxygen and intravascular deoxyHgb. Oxygen-induced magnetic susceptibility was further demonstrated by the study of 1 min hypoxia, which induced BOLD signal changes opposite to those under hyperoxia. Vasoconstriction was more common in voxels with negative BOLD contrast than in voxels with positive contrast (% change of blood volume, -9.8% to -12.8% versus 2.0% to 2.2%), which further suggests that negative BOLD contrast is mainly evoked by an increase in extravascular oxygen concentration. Conclusively, frequency shifts, which are induced by the accumulation of oxygen molecules and associated magnetic field inhomogeneity, are a significant source of the negative BOLD contrast during hyperoxia.

  11. Wnt-induced calcium signaling mediates axon growth and guidance in the developing corpus callosum.

    PubMed

    Hutchins, B Ian; Li, Li; Kalil, Katherine

    2012-01-10

    Wnt5a gradients guide callosal axons by repulsion through Ryk receptors in vivo. We recently found that Wnt5a repels cortical axons and promotes axon outgrowth through calcium signaling in vitro. Here, using cortical slices, we show that Wnt5a signals through Ryk to guide and promote outgrowth of callosal axons after they cross the midline. Calcium transient frequencies in callosal growth cones positively correlate with axon outgrowth rates in vitro. In cortical slices, calcium release through inositol 1,4,5-trisphosphate (IP(3)) receptors and calcium entry through transient receptor potential channels modulate axon growth and guidance. Knocking down Ryk inhibits calcium signaling in cortical axons, reduces rates of axon outgrowth subsequent to midline crossing, and causes axon guidance defects. Calcium- and calmodulin-dependent protein kinase II (CaMKII) is required downstream of Wnt-induced calcium signaling for postcrossing callosal axon growth and guidance. Taken together, these results suggest that growth and guidance of postcrossing callosal axons by Wnt-Ryk-calcium signaling involves axon repulsion through CaMKII.

  12. Intercellular signaling through secreted proteins induces free-energy gradient-directed cell movement.

    PubMed

    Kravchenko-Balasha, Nataly; Shin, Young Shik; Sutherland, Alex; Levine, R D; Heath, James R

    2016-05-17

    Controlling cell migration is important in tissue engineering and medicine. Cell motility depends on factors such as nutrient concentration gradients and soluble factor signaling. In particular, cell-cell signaling can depend on cell-cell separation distance and can influence cellular arrangements in bulk cultures. Here, we seek a physical-based approach, which identifies a potential governed by cell-cell signaling that induces a directed cell-cell motion. A single-cell barcode chip (SCBC) was used to experimentally interrogate secreted proteins in hundreds of isolated glioblastoma brain cancer cell pairs and to monitor their relative motions over time. We used these trajectories to identify a range of cell-cell separation distances where the signaling was most stable. We then used a thermodynamics-motivated analysis of secreted protein levels to characterize free-energy changes for different cell-cell distances. We show that glioblastoma cell-cell movement can be described as Brownian motion biased by cell-cell potential. To demonstrate that the free-energy potential as determined by the signaling is the driver of motion, we inhibited two proteins most involved in maintaining the free-energy gradient. Following inhibition, cell pairs showed an essentially random Brownian motion, similar to the case for untreated, isolated single cells.

  13. Deficient IFN Signaling by Myeloid Cells Leads to MAVS-Dependent Virus-Induced Sepsis

    PubMed Central

    Pinto, Amelia K.; Ramos, Hilario J.; Wu, Xiaobo; Shrestha, Bimmi; Gorman, Matthew; Kim, Kristin Y.; Suthar, Mehul S.; Atkinson, John P.; Gale Jr, Michael; Diamond, Michael S.

    2014-01-01

    The type I interferon (IFN) signaling response limits infection of many RNA and DNA viruses. To define key cell types that require type I IFN signaling to orchestrate immunity against West Nile virus (WNV), we infected mice with conditional deletions of the type I IFN receptor (IFNAR) gene. Deletion of the Ifnar gene in subsets of myeloid cells resulted in uncontrolled WNV replication, vasoactive cytokine production, sepsis, organ damage, and death that were remarkably similar to infection of Ifnar−/− mice completely lacking type I IFN signaling. In Mavs−/−×Ifnar−/− myeloid cells and mice lacking both Ifnar and the RIG-I-like receptor adaptor gene Mavs, cytokine production was muted despite high levels of WNV infection. Thus, in myeloid cells, viral infection triggers signaling through MAVS to induce proinflammatory cytokines that can result in sepsis and organ damage. Viral pathogenesis was caused in part by massive complement activation, as liver damage was minimized in animals lacking complement components C3 or factor B or treated with neutralizing anti-C5 antibodies. Disease in Ifnar−/− and CD11c Cre+Ifnarf/f mice also was facilitated by the proinflammatory cytokine TNF-α, as blocking antibodies diminished complement activation and prolonged survival without altering viral burden. Collectively, our findings establish the dominant role of type I IFN signaling in myeloid cells in restricting virus infection and controlling pathological inflammation and tissue injury. PMID:24743949

  14. Hypoxia-Inducible Factor Signaling in Pheochromocytoma: Turning the Rudder in the Right Direction

    PubMed Central

    2013-01-01

    Many solid tumors, including pheochromocytoma (PHEO) and paraganglioma (PGL), are characterized by a (pseudo)hypoxic signature. (Pseudo)hypoxia has been shown to promote both tumor progression and resistance to therapy. The major mediators of the transcriptional hypoxic response are hypoxia-inducible factors (HIFs). High levels of HIFs lead to transcription of hypoxia-responsive genes, which are involved in tumorigenesis. PHEOs and PGLs are catecholamine-producing tumors arising from sympathetic- or parasympathetic-derived chromaffin tissue. In recent years, substantial progress has been made in understanding the metabolic disturbances present in PHEO and PGL, especially because of the identification of some disease-susceptibility genes. To date, fifteen PHEO and PGL susceptibility genes have been identified. Based on the main transcription signatures of the mutated genes, PHEOs and PGLs have been divided into two clusters, pseudohypoxic cluster 1 and cluster 2, rich in kinase receptor signaling and protein translation pathways. Although these two clusters seem to show distinct signaling pathways, recent data suggest that both clusters are interconnected by HIF signaling as the important driver in their tumorigenesis, and mutations in most PHEO and PGL susceptibility genes seem to affect HIF-α regulation and its downstream signaling pathways. HIF signaling appears to play an important role in the development and growth of PHEOs and PGLs, which could suggest new therapeutic approaches for the treatment of these tumors. PMID:23940289

  15. The influence of smoking on radiation-induced bystander signal production in esophageal cancer patients.

    PubMed

    Hanu, C; Timotin, E; Wong, R; Sur, R K; Hayward, J E; Seymour, C B; Mothersill, C E

    2016-05-01

    The relevance of radiation-induced bystander effects in humans is unclear. Much of the existing data relate to cell lines but the effect of bystander signals in complex human tissues is unclear. A phase II clinical study was untaken, where blood sera from 60 patients along with 15 cancer-free volunteers were used to detect whether measurable bystander factor(s) could be found in the blood following high dose rate (HDR) brachytherapy. Overall, there was no significant change in bystander signal production (measured in a human keratinocyte reporter system) before and after one treatment fraction of HDR brachytherapy (p>0.05). Further assessment of patient characteristics and environmental modifiable factors including smoking were also analyzed. Similar to previously published data, samples taken from smokers produced weaker signals compared to non-smokers (p<0.05). Although the number of non-smoking subjects was low, there was a clear decrease in cloning efficiency observed in keratinocyte cultures for these patients that requires further study. This study found that samples taken from smokers do not produce bystander signals, whereas samples taken from non-smokers can produce such signals following HDR brachytherapy. These findings highlight the importance of studying the interactions of multiple stressors including environmental modifiers with radiation, since some factors such as smoking may elicit protection in tumor cells which could counteract the effectiveness of radiation therapy. PMID:26750714

  16. Detection of Treatment-Induced Changes in Signaling Pathways in Gastrointestinal Stromal Tumors using Transcriptomic Data

    PubMed Central

    Ochs, Michael F.; Rink, Lori; Tarn, Chi; Mburu, Sarah; Taguchi, Takahiro; Eisenberg, Burton; Godwin, Andrew K.

    2009-01-01

    Cell signaling plays a central role in the etiology of cancer. Numerous therapeutics in use or under development target signaling proteins, however off-target effects often limit assignment of positive clinical response to the intended target. As direct measurements of signaling protein activity are not generally feasible during treatment, there is a need for more powerful methods to determine if therapeutics inhibit their targets and when off-target effects occur. We have used the Bayesian Decomposition algorithm and data on transcriptional regulation to create a novel methodology, DESIDE (Differential Expression for SIgnaling DEtermination), for inferring signaling activity from microarray measurements. We applied DESIDE to deduce signaling activity in gastrointestinal stromal tumor cell lines treated with the targeted therapeutic imatinib mesylate (Gleevec). We detected the expected reduced activity in the KIT pathway, as well as unexpected changes in the P53 pathway. Pursuing these findings, we have determined that imatinib-induced DNA damage is responsible for the increased activity of P53, identifying a novel off-target activity for this drug. We then used DESIDE on data from resected, post-imatinib treatment tumor samples and identified a pattern in these tumors similar to that at late time points in the cell lines, and this pattern correlated with initial clinical response. The pattern showed increased activity of ELK1 and STAT3 transcription factors, which are associated with the growth of side population cells. DESIDE infers the global reprogramming of signaling networks during treatment, permitting treatment modification that leverages ongoing drug development efforts, which is crucial for personalized medicine. PMID:19903850

  17. Orexin Signaling in the VTA Gates Morphine-Induced Synaptic Plasticity.

    PubMed

    Baimel, Corey; Borgland, Stephanie L

    2015-05-01

    Dopamine neurons in the ventral tegmental area (VTA) are a key target of addictive drugs, and neuroplasticity in this region may underlie some of the core features of addiction. From the very first exposure, all drugs of abuse induce synaptic plasticity in the VTA. However, it is not well understood how this diverse group of drugs brings about common synaptic change. Orexin (also known as hypocretin) is a lateral hypothalamic neuropeptide released into the VTA that promotes drug-seeking behaviors and potentiates excitatory synaptic transmission onto VTA dopamine neurons. Here we show that signaling at orexin receptor type 1 (OxR1) in the VTA is required for morphine-induced plasticity of dopamine neurons. Systemic or intra-VTA administration of the OxR1 antagonist SB 334867 in rats blocked a morphine-induced increase in the AMPAR/NMDAR ratio, an increase in presynaptic glutamate release, and a postsynaptic change in AMPAR number or function, including a switch in subunit composition. Furthermore, SB 334867 blocked a morphine-induced decrease in presynaptic GABA release, and a morphine-induced shift in the balance of excitatory and inhibitory synaptic inputs to dopamine neurons. These findings identify a novel role for orexin in morphine-induced plasticity in the VTA and provide a mechanism by which orexin can gate the output of dopamine neurons.

  18. Agonist-induced platelet procoagulant activity requires shear and a Rac1-dependent signaling mechanism

    PubMed Central

    Delaney, Michael Keegan; Liu, Junling; Kim, Kyungho; Shen, Bo; Stojanovic-Terpo, Aleksandra; Zheng, Yi; Cho, Jaehyung

    2014-01-01

    Activated platelets facilitate blood coagulation by exposing phosphatidylserine (PS) and releasing microvesicles (MVs). However, the potent physiological agonists thrombin and collagen poorly induce PS exposure when a single agonist is used. To obtain a greater procoagulant response, thrombin is commonly used in combination with glycoprotein VI agonists. However, even under these conditions, only a percentage of platelets express procoagulant activity. To date, it remains unclear why platelets poorly expose PS even when stimulated with multiple agonists and what the signaling pathways are of soluble agonist-induced platelet procoagulant activity. Here we show that physiological levels of shear present in blood significantly enhance agonist-induced platelet PS exposure and MV release, enabling low doses of a single agonist to induce full-scale platelet procoagulant activity. PS exposed on the platelet surface was immediately released as MVs, revealing a tight coupling between the 2 processes under shear. Using platelet-specific Rac1−/− mice, we discovered that Rac1 plays a common role in mediating the low-dose agonist-induced procoagulant response independent of platelet aggregation, secretion, and the apoptosis pathway. Platelet-specific Rac1 function was not only important for coagulation in vitro but also for fibrin accumulation in vivo following laser-induced arteriolar injury. PMID:25079357

  19. Epigenetic alteration to activate Bmp2-Smad signaling in Raf-induced senescence

    PubMed Central

    Fujimoto, Mai; Mano, Yasunobu; Anai, Motonobu; Yamamoto, Shogo; Fukuyo, Masaki; Aburatani, Hiroyuki; Kaneda, Atsushi

    2016-01-01

    AIM: To investigate epigenomic and gene expression alterations during cellular senescence induced by oncogenic Raf. METHODS: Cellular senescence was induced into mouse embryonic fibroblasts (MEFs) by infecting retrovirus to express oncogenic Raf (RafV600E). RNA was collected from RafV600E cells as well as MEFs without infection and MEFs with mock infection, and a genome-wide gene expression analysis was performed using microarray. The epigenomic status for active H3K4me3 and repressive H3K27me3 histone marks was analyzed by chromatin immunoprecipitation-sequencing for RafV600E cells on day 7 and for MEFs without infection. These data for Raf-induced senescence were compared with data for Ras-induced senescence that were obtained in our previous study. Gene knockdown and overexpression were done by retrovirus infection. RESULTS: Although the expression of some genes including secreted factors was specifically altered in either Ras- or Raf-induced senescence, many genes showed similar alteration pattern in Raf- and Ras-induced senescence. A total of 841 commonly upregulated 841 genes and 573 commonly downregulated genes showed a significant enrichment of genes related to signal and secreted proteins, suggesting the importance of alterations in secreted factors. Bmp2, a secreted protein to activate Bmp2-Smad signaling, was highly upregulated with gain of H3K4me3 and loss of H3K27me3 during Raf-induced senescence, as previously detected in Ras-induced senescence, and the knockdown of Bmp2 by shRNA lead to escape from Raf-induced senescence. Bmp2-Smad inhibitor Smad6 was strongly repressed with H3K4me3 loss in Raf-induced senescence, as detected in Ras-induced senescence, and senescence was also bypassed by Smad6 induction in Raf-activated cells. Different from Ras-induced senescence, however, gain of H3K27me3 did not occur in the Smad6 promoter region during Raf-induced senescence. When comparing genome-wide alteration between Ras- and Raf-induced senescence, genes

  20. Stepwise metamorphosis of the tubeworm Hydroides elegans is mediated by a bacterial inducer and MAPK signaling

    PubMed Central

    Shikuma, Nicholas J.; Antoshechkin, Igor; Medeiros, João M.; Pilhofer, Martin; Newman, Dianne K.

    2016-01-01

    Diverse animal taxa metamorphose between larval and juvenile phases in response to bacteria. Although bacteria-induced metamorphosis is widespread among metazoans, little is known about the molecular changes that occur in the animal upon stimulation by bacteria. Larvae of the tubeworm Hydroides elegans metamorphose in response to surface-bound Pseudoalteromonas luteoviolacea bacteria, producing ordered arrays of phage tail-like metamorphosis-associated contractile structures (MACs). Sequencing the Hydroides genome and transcripts during five developmental stages revealed that MACs induce the regulation of groups of genes important for tissue remodeling, innate immunity, and mitogen-activated protein kinase (MAPK) signaling. Using two MAC mutations that block P. luteoviolacea from inducing settlement or metamorphosis and three MAPK inhibitors, we established a sequence of bacteria-induced metamorphic events: MACs induce larval settlement; then, particular properties of MACs encoded by a specific locus in P. luteoviolacea initiate cilia loss and activate metamorphosis-associated transcription; finally, signaling through p38 and c-Jun N-terminal kinase (JNK) MAPK pathways alters gene expression and leads to morphological changes upon initiation of metamorphosis. Our results reveal that the intricate interaction between Hydroides and P. luteoviolacea can be dissected using genomic, genetic, and pharmacological tools. Hydroides' dependency on bacteria for metamorphosis highlights the importance of external stimuli to orchestrate animal development. The conservation of Hydroides genome content with distantly related deuterostomes (urchins, sea squirts, and humans) suggests that mechanisms of bacteria-induced metamorphosis in Hydroides may have conserved features in diverse animals. As a major biofouling agent, insight into the triggers of Hydroides metamorphosis might lead to practical strategies for fouling control. PMID:27551098

  1. Stepwise metamorphosis of the tubeworm Hydroides elegans is mediated by a bacterial inducer and MAPK signaling.

    PubMed

    Shikuma, Nicholas J; Antoshechkin, Igor; Medeiros, João M; Pilhofer, Martin; Newman, Dianne K

    2016-09-01

    Diverse animal taxa metamorphose between larval and juvenile phases in response to bacteria. Although bacteria-induced metamorphosis is widespread among metazoans, little is known about the molecular changes that occur in the animal upon stimulation by bacteria. Larvae of the tubeworm Hydroides elegans metamorphose in response to surface-bound Pseudoalteromonas luteoviolacea bacteria, producing ordered arrays of phage tail-like metamorphosis-associated contractile structures (MACs). Sequencing the Hydroides genome and transcripts during five developmental stages revealed that MACs induce the regulation of groups of genes important for tissue remodeling, innate immunity, and mitogen-activated protein kinase (MAPK) signaling. Using two MAC mutations that block P. luteoviolacea from inducing settlement or metamorphosis and three MAPK inhibitors, we established a sequence of bacteria-induced metamorphic events: MACs induce larval settlement; then, particular properties of MACs encoded by a specific locus in P. luteoviolacea initiate cilia loss and activate metamorphosis-associated transcription; finally, signaling through p38 and c-Jun N-terminal kinase (JNK) MAPK pathways alters gene expression and leads to morphological changes upon initiation of metamorphosis. Our results reveal that the intricate interaction between Hydroides and P. luteoviolacea can be dissected using genomic, genetic, and pharmacological tools. Hydroides' dependency on bacteria for metamorphosis highlights the importance of external stimuli to orchestrate animal development. The conservation of Hydroides genome content with distantly related deuterostomes (urchins, sea squirts, and humans) suggests that mechanisms of bacteria-induced metamorphosis in Hydroides may have conserved features in diverse animals. As a major biofouling agent, insight into the triggers of Hydroides metamorphosis might lead to practical strategies for fouling control.

  2. Adrenomedullin blockade induces regression of tumor neovessels through interference with vascular endothelial-cadherin signalling

    PubMed Central

    Fernandez-Sauze, Samantha; Berenguer-Daizé, Caroline; Sigaud, Romain; Delfino, Christine; Cayol, Mylène; Metellus, Philippe; Chinot, Olivier; Mabrouk, Kamel; Martin, Pierre-Marie; Ouafik, L'Houcine

    2015-01-01

    The cellular and molecular mechanisms by which adrenomedullin (AM) blockade suppresses tumor neovessels are not well defined. Herein, we show that AM blockade using anti-AM and anti-AM receptors antibodies targets vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), and induces regression of unstable nascent tumor neovessels. The underlying mechanism involved, and shown in vitro and in vivo in mice, is the disruption of the molecular engagement of the endothelial cell-specific junctional molecules vascular endothelial-cadherin (VE-cadherin)/β-catenin complex. AM blockade increases endothelial cell permeability by inhibiting cell-cell contacts predominantly through disruption of VE-cadherin/β-catenin/Akt signalling pathway, thereby leading to vascular collapse and regression of tumor neovessels. At a molecular level, we show that AM blockade induces tyrosine phosphorylation of VE-cadherin at a critical tyrosine, Tyr731, which is sufficient to prevent the binding of β-catenin to the cytoplasmic tail of VE-cadherin leading to the inhibition of cell barrier function. Furthermore, we demonstrate activation of Src kinase by phosphorylation on Tyr416, supporting a role of Src to phosphorylate Tyr731-VE-cadherin. In this model, Src inhibition impairs αAM and αAMR-induced Tyr731-VE-cadherin phosphorylation in a dose-dependent manner, indicating that Tyr731-VE-cadherin phosphorylation state is dependent on Src activation. We found that AM blockade induces β-catenin phosphorylation on Ser33/Ser37/Thr41 sites in both ECs and VSMCs both in vitro and in vivo in mice. These data suggest that AM blockade selectively induces regression of unstable tumor neovessels, through disruption of VE-cadherin signalling. Targeting AM system may present a novel therapeutic target to selectively disrupt assembly and induce regression of nascent tumor neovessels, without affecting normal stabilized vasculature. PMID:25924235

  3. Adrenomedullin blockade induces regression of tumor neovessels through interference with vascular endothelial-cadherin signalling.

    PubMed

    Khalfaoui-Bendriss, Ghizlane; Dussault, Nadège; Fernandez-Sauze, Samantha; Berenguer-Daizé, Caroline; Sigaud, Romain; Delfino, Christine; Cayol, Mylène; Metellus, Philippe; Chinot, Olivier; Mabrouk, Kamel; Martin, Pierre-Marie; Ouafik, L'Houcine

    2015-04-10

    The cellular and molecular mechanisms by which adrenomedullin (AM) blockade suppresses tumor neovessels are not well defined. Herein, we show that AM blockade using anti-AM and anti-AM receptors antibodies targets vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), and induces regression of unstable nascent tumor neovessels. The underlying mechanism involved, and shown in vitro and in vivo in mice, is the disruption of the molecular engagement of the endothelial cell-specific junctional molecules vascular endothelial-cadherin (VE-cadherin)/β-catenin complex. AM blockade increases endothelial cell permeability by inhibiting cell-cell contacts predominantly through disruption of VE-cadherin/β-catenin/Akt signalling pathway, thereby leading to vascular collapse and regression of tumor neovessels. At a molecular level, we show that AM blockade induces tyrosine phosphorylation of VE-cadherin at a critical tyrosine, Tyr731, which is sufficient to prevent the binding of β-catenin to the cytoplasmic tail of VE-cadherin leading to the inhibition of cell barrier function. Furthermore, we demonstrate activation of Src kinase by phosphorylation on Tyr416, supporting a role of Src to phosphorylate Tyr731-VE-cadherin. In this model, Src inhibition impairs αAM and αAMR-induced Tyr731-VE-cadherin phosphorylation in a dose-dependent manner, indicating that Tyr731-VE-cadherin phosphorylation state is dependent on Src activation. We found that AM blockade induces β-catenin phosphorylation on Ser33/Ser37/Thr41 sites in both ECs and VSMCs both in vitro and in vivo in mice. These data suggest that AM blockade selectively induces regression of unstable tumor neovessels, through disruption of VE-cadherin signalling. Targeting AM system may present a novel therapeutic target to selectively disrupt assembly and induce regression of nascent tumor neovessels, without affecting normal stabilized vasculature. PMID:25924235

  4. Stepwise metamorphosis of the tubeworm Hydroides elegans is mediated by a bacterial inducer and MAPK signaling.

    PubMed

    Shikuma, Nicholas J; Antoshechkin, Igor; Medeiros, João M; Pilhofer, Martin; Newman, Dianne K

    2016-09-01

    Diverse animal taxa metamorphose between larval and juvenile phases in response to bacteria. Although bacteria-induced metamorphosis is widespread among metazoans, little is known about the molecular changes that occur in the animal upon stimulation by bacteria. Larvae of the tubeworm Hydroides elegans metamorphose in response to surface-bound Pseudoalteromonas luteoviolacea bacteria, producing ordered arrays of phage tail-like metamorphosis-associated contractile structures (MACs). Sequencing the Hydroides genome and transcripts during five developmental stages revealed that MACs induce the regulation of groups of genes important for tissue remodeling, innate immunity, and mitogen-activated protein kinase (MAPK) signaling. Using two MAC mutations that block P. luteoviolacea from inducing settlement or metamorphosis and three MAPK inhibitors, we established a sequence of bacteria-induced metamorphic events: MACs induce larval settlement; then, particular properties of MACs encoded by a specific locus in P. luteoviolacea initiate cilia loss and activate metamorphosis-associated transcription; finally, signaling through p38 and c-Jun N-terminal kinase (JNK) MAPK pathways alters gene expression and leads to morphological changes upon initiation of metamorphosis. Our results reveal that the intricate interaction between Hydroides and P. luteoviolacea can be dissected using genomic, genetic, and pharmacological tools. Hydroides' dependency on bacteria for metamorphosis highlights the importance of external stimuli to orchestrate animal development. The conservation of Hydroides genome content with distantly related deuterostomes (urchins, sea squirts, and humans) suggests that mechanisms of bacteria-induced metamorphosis in Hydroides may have conserved features in diverse animals. As a major biofouling agent, insight into the triggers of Hydroides metamorphosis might lead to practical strategies for fouling control. PMID:27551098

  5. Nitric oxide signaling in ghrelin-induced LH release from goldfish pituitary cells.

    PubMed

    Grey, Caleb L; Chang, John P

    2013-03-01

    Among its many known functions, ghrelin has been proposed to participate in the regulation of reproduction; however, its effect on pituitary LH release is controversial, especially in mammals. In the goldfish, ghrelin directly stimulates pituitary LH release via increased entry of calcium through voltage sensitive channels and activation of protein kinase C. Nitric oxide (NO) is an important signaling molecule in many physiological systems including hormone regulation at the level of the pituitary. Goldfish pituitary cells and extracts have previously been reported to express immunoreactivity for inducible and neuronal NO synthase (iNOS and nNOS). In this study, we determined if NO is involved in goldfish ghrelin (gGRLN(19))-induced LH release from primary cultures of dispersed goldfish pituitary cells in column perifusion. Treatment with the NO scavenger PTIO significantly decreased gGRLN(19)-induced LH release and co-treatment with the NO donor SNP and gGRLN(19) did not induce an additive increase in LH release, suggesting that NO is critical to gGRLN(19) stimulation of LH release in goldfish pituitary cells. Further work examined the involvement of the NOS using the NOS isoform-selective inhibitors 1400W, 7-Ni, and AGH. While 1400W (selective for iNOS) and AGH (selective for iNOS and nNOS) abolished gGRLN(19)-induced LH release from goldfish pituitary cells, 7-Ni (selective for nNOS and endothelial NOS) had no significant effect on this stimulation. Our results indicate, for the first time in a teleost species, that gGRLN(19)-induced LH release from pituitary cells is NO-dependent and likely involves iNOS, adding to the understanding of GRLN intracellular signaling in general and specifically to the regulation of LH release from the pituitary.

  6. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato

    PubMed Central

    Martínez-Medina, Ainhoa; Fernández, Iván; Sánchez-Guzmán, María J.; Jung, Sabine C.; Pascual, Jose A.; Pozo, María J.

    2013-01-01

    Root colonization by selected Trichoderma isolates can activate in the plant a systemic defense response that is effective against a broad-spectrum of plant pathogens. Diverse plant hormones play pivotal roles in the regulation of the defense signaling network that leads to the induction of systemic resistance triggered by beneficial organisms [induced systemic resistance (ISR)]. Among them, jasmonic acid (JA) and ethylene (ET) signaling pathways are generally essential for ISR. However, Trichoderma ISR (TISR) is believed to involve a wider variety of signaling routes, interconnected in a complex network of cross-communicating hormone pathways. Using tomato as a model, an integrative analysis of the main mechanisms involved in the systemic resistance induced by Trichoderma harzianum against the necrotrophic leaf pathogen Botrytis cinerea was performed. Root colonization by T. harzianum rendered the leaves more resistant to B. cinerea independently of major effects on plant nutrition. The analysis of disease development in shoots of tomato mutant lines impaired in the synthesis of the key defense-related hormones JA, ET, salicylic acid (SA), and abscisic acid (ABA), and the peptide prosystemin (PS) evidenced the requirement of intact JA, SA, and ABA signaling pathways for a functional TISR. Expression analysis of several hormone-related marker genes point to the role of priming for enhanced JA-dependent defense responses upon pathogen infection. Together, our results indicate that although TISR induced in tomato against necrotrophs is mainly based on boosted JA-dependent responses, the pathways regulated by the plant hormones SA- and ABA are also required for successful TISR development. PMID:23805146

  7. Role played by Disabled-2 in albumin induced MAP Kinase signalling

    SciTech Connect

    Diwakar, Ramaswamy Pearson, Alexander L.; Colville-Nash, Paul; Baines, Deborah L.; Dockrell, Mark E.C.

    2008-02-15

    Albumin has been shown to activate the mitogen activated protein kinase (MAPK) pathway in proximal tubular cells (PTECs) of the kidney. Megalin, the putative receptor for albumin has potential signalling properties. However, the mechanisms by which megalin signals are unclear. The adaptor phosphoprotein Disabled-2 (Dab2) is known to interact with the cytoplasmic tail of megalin and may be involved in albumin-mediated MAPK signalling. In this study, we investigated the role of Dab2 in albumin-mediated MAPK signalling and further studied the role of Dab2 in albumin-induced TGF{beta}-1 secretion, a MAPK dependent event. We used RNA interference to knockdown Dab2 protein abundance in HKC-8 cells a model of human PTECs. Albumin activated ERK1,2 and Elk-1 in a MEK-1 dependent manner and resulted in secretion of TGF{beta}-1. In the absence of albumin, knockdown of Dab2 resulted in a trend towards increase in pERK1,2 consistent with its putative role as an inhibitor of cell proliferation. However albumin-induced ERK1,2 activation was completely abolished by Dab2 knockdown. Dab2 knockdown did not however result in inhibition of albumin-induced TGF{beta}-1 secretion. These results suggest that Dab2 is a ligand dependent bi-directional regulator of ERK1,2 activity by demonstrating that in addition to its more traditional role as an inhibitor of ERK1,2 it may also activate ERK1,2.

  8. Acute Overactive Endocannabinoid Signaling Induces Glucose Intolerance, Hepatic Steatosis, and Novel Cannabinoid Receptor 1 Responsive Genes

    PubMed Central

    Ruby, Maxwell A.; Nomura, Daniel K.; Hudak, Carolyn S. S.; Barber, Anne; Casida, John E.; Krauss, Ronald M.

    2011-01-01

    Endocannabinoids regulate energy balance and lipid metabolism by stimulating the cannabinoid receptor type 1 (CB1). Genetic deletion and pharmacological antagonism have shown that CB1 signaling is necessary for the development of obesity and related metabolic disturbances. However, the sufficiency of endogenously produced endocannabinoids to cause hepatic lipid accumulation and insulin resistance, independent of food intake, has not been demonstrated. Here, we show that a single administration of isopropyl dodecylfluorophosphonate (IDFP), perhaps the most potent pharmacological inhibitor of endocannabinoid degradation, increases hepatic triglycerides (TG) and induces insulin resistance in mice. These effects involve increased CB1 signaling, as they are mitigated by pre-administration of a CB1 antagonist (AM251) and in CB1 knockout mice. Despite the strong physiological effects of CB1 on hepatic lipid and glucose metabolism, little is known about the downstream targets responsible for these effects. To elucidate transcriptional targets of CB1 signaling, we performed microarrays on hepatic RNA isolated from DMSO (control), IDFP and AM251/IDFP-treated mice. The gene for the secreted glycoprotein lipocalin 2 (lcn2), which has been implicated in obesity and insulin resistance, was among those most responsive to alterations in CB1 signaling. The expression pattern of IDFP mice segregated from DMSO mice in hierarchal cluster analysis and AM251 pre-administration reduced (>50%) the majority (303 of 533) of the IDFP induced alterations. Pathway analysis revealed that IDFP altered expression of genes involved in lipid, fatty acid and steroid metabolism, the acute phase response, and amino acid metabolism in a CB1-dependent manner. PCR confirmed array results of key target genes in multiple independent experiments. Overall, we show that acute IDFP treatment induces hepatic TG accumulation and insulin resistance, at least in part through the CB1 receptor, and identify novel

  9. Functional Consequences of Wnt-induced Dishevelled 2 Phosphorylation in Canonical and Noncanonical Wnt Signaling*

    PubMed Central

    González-Sancho, José M.; Greer, Yoshimi Endo; Abrahams, Cristina L.; Takigawa, Yutaka; Baljinnyam, Bolormaa; Lee, Kyung Ho; Lee, Kyung S.; Rubin, Jeffrey S.; Brown, Anthony M. C.

    2013-01-01

    Dishevelled (Dvl) proteins are intracellular effectors of Wnt signaling that have essential roles in both canonical and noncanonical Wnt pathways. It has long been known that Wnts stimulate Dvl phosphorylation, but relatively little is known about its functional significance. We have previously reported that both Wnt3a and Wnt5a induce Dvl2 phosphorylation that is associated with an electrophoretic mobility shift and loss of recognition by monoclonal antibody 10B5. In the present study, we mapped the 10B5 epitope to a 16-amino acid segment of human Dvl2 (residues 594–609) that contains four Ser/Thr residues. Alanine substitution of these residues (P4m) eliminated the mobility shift induced by either Wnt3a or Wnt5a. The Dvl2 P4m mutant showed a modest increase in canonical Wnt/β-catenin signaling activity relative to wild type. Consistent with this finding, Dvl2 4Pm preferentially localized to cytoplasmic puncta. In contrast to wild-type Dvl2, however, the P4m mutant was unable to rescue Wnt3a-dependent neurite outgrowth in TC-32 cells following suppression of endogenous Dvl2/3. Earlier work has implicated casein kinase 1δ/ϵ as responsible for the Dvl mobility shift, and a CK1δ in vitro kinase assay confirmed that Ser594, Thr595, and Ser597 of Dvl2 are CK1 targets. Alanine substitution of these three residues was sufficient to abrogate the Wnt-dependent mobility shift. Thus, we have identified a cluster of Ser/Thr residues in the C-terminal domain of Dvl2 that are Wnt-induced phosphorylation (WIP) sites. Our results indicate that phosphorylation at the WIP sites reduces Dvl accumulation in puncta and attenuates β-catenin signaling, whereas it enables noncanonical signaling that is required for neurite outgrowth. PMID:23396967

  10. Autocrine enhancement of leukotriene synthesis by endogenous leukotriene B4 and platelet-activating factor in human neutrophils.

    PubMed Central

    McDonald, P. P.; McColl, S. R.; Braquet, P.; Borgeat, P.

    1994-01-01

    1. Platelet-activating factor (PAF) and leukotriene B4 (LTB4), two potent lipid mediators synthesized by activated neutrophils, are known to stimulate several neutrophil functional responses. In this study, we have determined that endogenous LTB4 and PAF exert autocrine effects on LT synthesis, as well as the underlying mechanism involved. 2. Pretreatment of neutrophils with either pertussis toxin (PT), or with receptor antagonists for LTB4 and PAF, resulted in an inhibition of LT synthesis induced by calcium ionophore, A23187. This inhibition was most marked at submaximal (100-300 nM) A23187 concentrations, whilst it was least at ionophore concentrations which induce maximal LT synthesis (1-3 microM). Thus newly-synthesized PAF and LTB4 can enhance LT synthesis induced by A23187 under conditions where the LT-generating system is not fully activated. 3. In recombinant human (rh) granulocyte-macrophage colony-stimulating factor (GM-CSF)-primed neutrophils, LT synthesis in response to chemoattractants (fMet-Leu-Phe or rhC5a) was also significantly inhibited by the LTB4 receptor antagonist, and to a lesser extent by PAF receptor antagonists. 4. Further investigation revealed that LTB4 and/or PAF exert their effects on LT synthesis via an effect on arachidonic acid (AA) availability, as opposed to 5-lipoxygenase (5-LO) activation. Indeed, the receptor antagonists, as well as PT, inhibited LT synthesis and AA release to a similar extent, whereas 5-LO activation (assessed with an exogenous 5-LO substrate) was virtually unaffected under the same conditions. Accordingly, we showed that addition of exogenous LTB4 could enhance AA availability in response to chemoattractant challenge in rhGM-CSF-primed cells, without significantly affecting the 5-LO activation status.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8019762

  11. Humid heat exposure induced oxidative stress and apoptosis in cardiomyocytes through the angiotensin II signaling pathway.

    PubMed

    Wang, Xiaowu; Yuan, Binbin; Dong, Wenpeng; Yang, Bo; Yang, Yongchao; Lin, Xi; Gong, Gu

    2015-05-01

    Exposure to humid heat stress leads to the initiation of serious physiological dysfunction that may result in heat-related diseases, including heat stroke, heat cramp, heat exhaustion, and even death. Increasing evidences have shown that the humid heat stress-induced dysfunction of the cardiovascular system was accompanied with severe cardiomyocyte injury; however, the precise mechanism of heat stress-induced injury of cardiomyocyte remains unknown. In the present study, we hypothesized that humid heat stress promoted oxidative stress through the activation of angiotensin II (Ang II) in cardiomyocytes. To test our hypothesis, we established mouse models of humid heat stress. Using the animal models, we found that Ang II levels in serum were significantly up-regulated and that the Ang II receptor AT1 was increased in cardiomyocytes. The antioxidant ability in plasma and heart tissues which was detected by the ferric reducing/antioxidant power assay was also decreased with the increased ROS production under humid heat stress, as was the expression of antioxidant genes (SOD2, HO-1, GPx). Furthermore, we demonstrated that the Ang II receptor antagonist, valsartan, effectively relieved oxidative stress, blocked Ang II signaling pathway and suppressed cardiomyocyte apoptosis induced by humid heat stress. In addition, overexpression of antioxidant genes reversed cardiomyocyte apoptosis induced by Ang II. Overall, these results implied that humid heat stress increased oxidative stress and caused apoptosis of cardiomyocytes through the Ang II signaling pathway. Thus, targeting the Ang II signaling pathway may provide a promising approach for the prevention and treatment of cardiovascular diseases caused by humid heat stress.

  12. Hydrogen peroxide inducible clone-5 mediates reactive oxygen species signaling for hepatocellular carcinoma progression.

    PubMed

    Wu, Jia-Ru; Hu, Chi-Tan; You, Ren-In; Pan, Siou-Mei; Cheng, Chuan-Chu; Lee, Ming-Che; Wu, Chao-Chuan; Chang, Yao-Jen; Lin, Shu-Chuan; Chen, Chang-Shan; Lin, Teng-Yi; Wu, Wen-Sheng

    2015-10-20

    One of the signaling components involved in hepatocellular carcinoma (HCC) progression is the focal adhesion adaptor paxillin. Hydrogen peroxide inducible clone-5 (Hic-5), one of the paralogs of paxillin, exhibits many biological functions distinct from paxillin, but may cooperate with paxillin to trigger tumor progression. Screening of Hic-5 in 145 surgical HCCs demonstrated overexpression of Hic-5 correlated well with intra- and extra-hepatic metastasis. Hic-5 highly expressed in the patient derived HCCs with high motility such as HCC329 and HCC353 but not in the HCCs with low motility such as HCC340. Blockade of Hic-5 expression prevented constitutive migration of HCC329 and HCC353 and HGF-induced cell migration of HCC340. HCC329Hic-5(-), HCC353Hic-5(-), HCC372Hic-5(-), the HCCs stably depleted of Hic-5, exhibited reduced motility compared with each HCC expressing Scramble shRNA. Moreover, intra/extrahepatic metastasis of HCC329Hic-5(-) in SCID mice greatly decreased compared with HCC329Scramble. On the other hand, ectopic Hic-5 expression in HCC340 promoted its progression. Constitutive and HGF-induced Hic-5 expression in HCCs were suppressed by the reactive oxygen species (ROS) scavengers catalase and dithiotheritol and c-Jun N-terminal kinase (JNK) inhibitor SP600125. On the contrary, depletion of Hic-5 blocked constitutive and HGF-induced ROS generation and JNK phosphorylation in HCCs. Also, ectopic expression of Hic-5 enhanced ROS generation and JNK phosphorylation. These highlighted that Hic-5 plays a central role in the positive feedback ROS-JNK signal cascade. Finally, the Chinese herbal derived anti-HCC peptide LZ-8 suppressed constitutive Hic-5 expression and JNK phosphorylation. In conclusion, Hic-5 mediates ROS-JNK signaling and may serve as a therapeutic target for prevention of HCC progression. PMID:26416447

  13. Molecular Mechanism of Switching of TrkA/p75NTR Signaling in Monocrotophos Induced Neurotoxicity

    PubMed Central

    Kumar, Vivek; Gupta, Amit Kumar; Shukla, Rajendra Kumar; Tripathi, Vinay Kumar; Jahan, Sadaf; Pandey, Ankita; Srivastava, Akriti; Agrawal, Megha; Yadav, Sanjay; Khanna, Vinay Kumar; Pant, Aditya Bhushan

    2015-01-01

    We demonstrate the role of molecular switching of TrkA/p75NTR signaling cascade in organophosphate pesticide-Monocrotophos (MCP) induced neurotoxicity in stem cell derived cholinergic neurons and in rat brain. Our in-silico studies reveal that MCP followed the similar pattern of binding as staurosporine and AG-879 (known inhibitors of TrkA) with TrkA protein (PDB ID: 4AOJ) at the ATP binding sites. This binding of MCP to TrkA led to the conformational change in this protein and triggers the cell death cascades. The in-silico findings are validated by observing the down regulated levels of phosphorylated TrkA and its downstream molecules viz., pERK1/2, pAkt and pCREB in MCP-exposed cells. We observe that these MCP induced alterations in pTrkA and downstream signaling molecules are found to be associated with apoptosis and injury to neurons. The down-regulation of TrkA could be linked to increased p75NTR. The in-vitro studies could be correlated in the rat model. The switching of TrkA/p75NTR signaling plays a central role in MCP-induced neural injury in rBNSCs and behavioral changes in exposed rats. Our studies significantly advance the understanding of the switching of TrkA/p75NTR that may pave the way for the application of TrkA inducer/p75NTR inhibitor for potential therapeutic intervention in various neurodegenerative disorders. PMID:26370177

  14. Bigelovin inhibits STAT3 signaling by inactivating JAK2 and induces apoptosis in human cancer cells

    PubMed Central

    Zhang, Hao-hao; Kuang, Shan; Wang, Ying; Sun, Xiao-xiao; Gu, Yuan; Hu, Li-hong; Yu, Qiang

    2015-01-01

    Aim: To study the function and mechanism of bigelovin, a sesquiterpene lactone from the flower of Chinese herb Inula hupehensis, in regulating JAK2/STAT3 signaling and cancer cell growth. Methods: HepG2 cells stably transfected with the STAT3-responsive firefly luciferase reporter plasmid (HepG2/STAT3 cells), and a panel of human cancer cell lines were used to identify active compounds. Cell viability was measured using MTT assay. Western blotting was used to detect protein expression and phosphorylation. Kinase assays were performed and the reaction between bigelovin and thiol-containing compounds was analyzed with LC-MS. Results: Bigelovin (1–50 μmol/L) dose-dependently inhibited the IL-6-induced STAT3 activation in HepG2/STAT3 cells (IC50=3.37 μmol/L) and the constitutive STAT3 activation in A549 and MDA-MB-468 cells. Furthermore, bigelovin dose-dependently inhibited JAK2 phosphorylation in HeLa and MDA-MB-468 cells, as well as the enzymatic activity of JAK2 in vitro (IC50=44.24 μmol/L). Pretreatment of the cells with DTT (500 μmol/L) or GSH (500 μmol/L) eliminated the inhibitory effects of bigelovin on the IL-6-induced and the constitutive STAT3 activation. The results in LC-MS analysis suggested that bigelovin might react with cysteine residues of JAK2 leading to inactivation of JAK2. Bigelovin (5 and 20 μmol/L) had no effects on the signaling pathways of growth factors EGF, PDGF or insulin. Finally, bigelovin suppressed the cell viability and induced apoptosis in 10 different human cancer cell lines, particularly those with constitutively activated STAT3. Conclusion: Bigelovin potently inhibits STAT3 signaling by inactivating JAK2, and induces apoptosis of a variety of human cancer cells in vitro. PMID:25619393

  15. Hydrogen peroxide inducible clone-5 mediates reactive oxygen species signaling for hepatocellular carcinoma progression

    PubMed Central

    Wu, Jia-Ru; Hu, Chi-Tan; You, Ren-In; Pan, Siou-Mei; Cheng, Chuan-Chu; Lee, Ming-Che; Wu, Chao-Chuan; Chang, Yao-Jen; Lin, Shu-Chuan; Chen, Chang-Shan; Lin, Teng-Yi; Wu, Wen-Sheng

    2015-01-01

    One of the signaling components involved in hepatocellular carcinoma (HCC) progression is the focal adhesion adaptor paxillin. Hydrogen peroxide inducible clone-5 (Hic-5), one of the paralogs of paxillin, exhibits many biological functions distinct from paxillin, but may cooperate with paxillin to trigger tumor progression. Screening of Hic-5 in 145 surgical HCCs demonstrated overexpression of Hic-5 correlated well with intra- and extra-hepatic metastasis. Hic-5 highly expressed in the patient derived HCCs with high motility such as HCC329 and HCC353 but not in the HCCs with low motility such as HCC340. Blockade of Hic-5 expression prevented constitutive migration of HCC329 and HCC353 and HGF-induced cell migration of HCC340. HCC329Hic-5(−), HCC353Hic-5(−), HCC372Hic-5(−), the HCCs stably depleted of Hic-5, exhibited reduced motility compared with each HCC expressing Scramble shRNA. Moreover, intra/extrahepatic metastasis of HCC329Hic-5(−) in SCID mice greatly decreased compared with HCC329Scramble. On the other hand, ectopic Hic-5 expression in HCC340 promoted its progression. Constitutive and HGF-induced Hic-5 expression in HCCs were suppressed by the reactive oxygen species (ROS) scavengers catalase and dithiotheritol and c-Jun N-terminal kinase (JNK) inhibitor SP600125. On the contrary, depletion of Hic-5 blocked constitutive and HGF-induced ROS generation and JNK phosphorylation in HCCs. Also, ectopic expression of Hic-5 enhanced ROS generation and JNK phosphorylation. These highlighted that Hic-5 plays a central role in the positive feedback ROS-JNK signal cascade. Finally, the Chinese herbal derived anti-HCC peptide LZ-8 suppressed constitutive Hic-5 expression and JNK phosphorylation. In conclusion, Hic-5 mediates ROS-JNK signaling and may serve as a therapeutic target for prevention of HCC progression. PMID:26416447

  16. Hydrogen peroxide inducible clone-5 mediates reactive oxygen species signaling for hepatocellular carcinoma progression.

    PubMed

    Wu, Jia-Ru; Hu, Chi-Tan; You, Ren-In; Pan, Siou-Mei; Cheng, Chuan-Chu; Lee, Ming-Che; Wu, Chao-Chuan; Chang, Yao-Jen; Lin, Shu-Chuan; Chen, Chang-Shan; Lin, Teng-Yi; Wu, Wen-Sheng

    2015-10-20

    One of the signaling components involved in hepatocellular carcinoma (HCC) progression is the focal adhesion adaptor paxillin. Hydrogen peroxide inducible clone-5 (Hic-5), one of the paralogs of paxillin, exhibits many biological functions distinct from paxillin, but may cooperate with paxillin to trigger tumor progression. Screening of Hic-5 in 145 surgical HCCs demonstrated overexpression of Hic-5 correlated well with intra- and extra-hepatic metastasis. Hic-5 highly expressed in the patient derived HCCs with high motility such as HCC329 and HCC353 but not in the HCCs with low motility such as HCC340. Blockade of Hic-5 expression prevented constitutive migration of HCC329 and HCC353 and HGF-induced cell migration of HCC340. HCC329Hic-5(-), HCC353Hic-5(-), HCC372Hic-5(-), the HCCs stably depleted of Hic-5, exhibited reduced motility compared with each HCC expressing Scramble shRNA. Moreover, intra/extrahepatic metastasis of HCC329Hic-5(-) in SCID mice greatly decreased compared with HCC329Scramble. On the other hand, ectopic Hic-5 expression in HCC340 promoted its progression. Constitutive and HGF-induced Hic-5 expression in HCCs were suppressed by the reactive oxygen species (ROS) scavengers catalase and dithiotheritol and c-Jun N-terminal kinase (JNK) inhibitor SP600125. On the contrary, depletion of Hic-5 blocked constitutive and HGF-induced ROS generation and JNK phosphorylation in HCCs. Also, ectopic expression of Hic-5 enhanced ROS generation and JNK phosphorylation. These highlighted that Hic-5 plays a central role in the positive feedback ROS-JNK signal cascade. Finally, the Chinese herbal derived anti-HCC peptide LZ-8 suppressed constitutive Hic-5 expression and JNK phosphorylation. In conclusion, Hic-5 mediates ROS-JNK signaling and may serve as a therapeutic target for prevention of HCC progression.

  17. Potential role of purinergic signaling in lithium-induced nephrogenic diabetes insipidus.

    PubMed

    Zhang, Yue; Nelson, Raoul D; Carlson, Noel G; Kamerath, Craig D; Kohan, Donald E; Kishore, Bellamkonda K

    2009-05-01

    Lithium (Li)-induced nephrogenic diabetes insipidus (NDI) has been attributed to the increased production of renal prostaglandin (PG)E(2). Previously we reported that extracellular nucleotides (ATP/UTP), acting through P(2y2) receptor in rat medullary collecting duct (mCD), produce and release PGE(2). Hence we hypothesized that increased production of PGE(2) in Li-induced NDI may be mediated by enhanced purinergic signaling in the mCD. Sprague-Dawley rats were fed either control or Li-added diet for 14 or 21 days. Li feeding resulted in marked polyuria and polydipsia associated with a decrease in aquaporin (AQP)2 protein abundance in inner medulla ( approximately 20% of controls) and a twofold increase in urinary PGE(2). When acutely challenged ex vivo with adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS), UTP, or ADP, mCD of Li-fed rats showed significantly higher increases (50-130% over control diet-fed rats) in PGE(2) production, indicating that more than one subtype of P(2y) receptor is involved. This was associated with a 3.4-fold increase in P(2y4), but not P(2y2), receptor mRNA expression in the inner medulla of Li-fed rats compared with control diet-fed rats. Confocal laser immunofluorescence microscopy revealed predominant localization of both P(2y2) and P(2y4) receptors in the mCD of control or Li diet-fed rats. Together, these data indicate that in Li-induced NDI 1) purinergic signaling in the mCD is sensitized with increased production of PGE(2) and 2) P(2y2) and/or P(2y4) receptors may be involved in the enhanced purinergic signaling. Our study also reveals the potential beneficial effects of P(2y) receptor antagonists in the treatment and/or prevention of Li-induced NDI.

  18. Respiratory Syncytial Virus Nonstructural Proteins Upregulate SOCS1 and SOCS3 in the Different Manner from Endogenous IFN Signaling

    PubMed Central

    Zheng, Junwen; Yang, Pu; Tang, Yan; Pan, Zishu; Zhao, Dongchi

    2015-01-01

    Respiratory syncytial virus (RSV) infection upregulates genes of the suppressor of cytokine signaling (SOCS) family, which utilize a feedback loop to inhibit type I interferon dependent antiviral signaling pathway. Here, we reconstituted RSV nonstructural (NS) protein expression plasmids (pNS1, pNS2, and pNS1/2) and tested whether NS1 or NS2 would trigger SOCS1 and SOCS3 protein expression. These NS proteins inhibited interferon- (IFN-) α signaling through a mechanism involving the induction of SOCS1 and SOCS3, which appeared to be different from autocrine IFN dependent. NS1 induced both SOCS1 and SOCS3 upregulation, while NS2 only induced SOCS1 expression. The induced expression of SOCS1 and SOCS3 preceded endogenous IFN-signaling activation and inhibited the IFN-inducible antiviral response as well as chemokine induction. Treatments with INF-α and NS proteins both induced SOCS1 expression; however, they had opposing effects on IFN-α-dependent antiviral gene expression. Our results indicate that NS1 and NS2, which induce the expression of SOCS1 or SOCS3, might represent an independent pathway of stimulating endogenous IFN signaling. PMID:26557722

  19. No evidence for attenuated stress-induced extrastriatal dopamine signaling in psychotic disorder.

    PubMed

    Hernaus, D; Collip, D; Kasanova, Z; Winz, O; Heinzel, A; van Amelsvoort, T; Shali, S M; Booij, J; Rong, Y; Piel, M; Pruessner, J; Mottaghy, F M; Myin-Germeys, I

    2015-01-01

    Stress is an important risk factor in the etiology of psychotic disorder. Preclinical work has shown that stress primarily increases dopamine (DA) transmission in the frontal cortex. Given that DA-mediated hypofrontality is hypothesized to be a cardinal feature of psychotic disorder, stress-related extrastriatal DA release may be altered in psychotic disorder. Here we quantified for the first time stress-induced extrastriatal DA release and the spatial extent of extrastriatal DA release in individuals with non-affective psychotic disorder (NAPD). Twelve healthy volunteers (HV) and 12 matched drug-free NAPD patients underwent a single infusion [(18)F]fallypride positron emission tomography scan during which they completed the control and stress condition of the Montreal Imaging Stress Task. HV and NAPD did not differ in stress-induced [(18)F]fallypride displacement and the spatial extent of stress-induced [(18)F]fallypride displacement in medial prefrontal cortex (mPFC) and temporal cortex (TC). In the whole sample, the spatial extent of stress-induced radioligand displacement in right ventro-mPFC, but not dorso-mPFC or TC, was positively associated with task-induced subjective stress. Psychotic symptoms during the scan or negative, positive and general subscales of the Positive and Negative Syndrome Scale were not associated with stress-induced [(18)F]fallypride displacement nor the spatial extent of stress-induced [(18)F]fallypride displacement in NAPD. Our results do not offer evidence for altered stress-induced extrastriatal DA signaling in NAPD, nor altered functional relevance. The implications of these findings for the role of the DA system in NAPD and stress processing are discussed.

  20. Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants

    PubMed Central

    Song, Yuan Yuan; Ye, Mao; Li, Chuanyou; He, Xinhua; Zhu-Salzman, Keyan; Wang, Rui Long; Su, Yi Juan; Luo, Shi Ming; Zeng, Ren Sen

    2014-01-01

    Common mycorrhizal networks (CMNs) link multiple plants together. We hypothesized that CMNs can serve as an underground conduit for transferring herbivore-induced defence signals. We established CMN between two tomato plants in pots with mycorrhizal fungus Funneliformis mosseae, challenged a ‘donor' plant with caterpillar Spodoptera litura, and investigated defence responses and insect resistance in neighbouring CMN-connected ‘receiver' plants. After CMN establishment caterpillar infestation on ‘donor' plant led to increased insect resistance and activities of putative defensive enzymes, induction of defence-related genes and activation of jasmonate (JA) pathway in the ‘receiver' plant. However, use of a JA biosynthesis defective mutant spr2 as ‘donor' plants resulted in no induction of defence responses and no change in insect resistance in ‘receiver' plants, suggesting that JA signalling is required for CMN-mediated interplant communication. These results indicate that plants are able to hijack CMNs for herbivore-induced defence signal transfer and interplant defence communication. PMID:24468912

  1. Comparative Analysis of VLF Signal Variation along Trajectory Induced by X-ray Solar Flares

    NASA Astrophysics Data System (ADS)

    Kolarski, A.; Grubor, D.

    2015-12-01

    Comparative qualitative analysis of amplitude and phase delay variations was carried out along the trajectory of GQD/22.1 kHz and NAA/24.0 kHz VLF signal traces, propagating from Skelton (UK) and Maine (USA) toward Belgrade, induced by four isolated solar X-ray flare events occurred during the period from September 2005 to December 2006. For monitoring, recording and for storage of VLF data at the Institute of Physics in Belgrade, Serbia, the AbsPAL system was used. For modeling purposes of propagating conditions along GQD and NAA signal propagation paths, LWPCv21 program code was used. Occurred solar flare events induced lower ionosphere electron density height profile changes, causing perturbations in VLF wave propagation within Earth-ionosphere waveguides. As analyzed VLF signals characterize by different propagation parameters along trajectories from their transmitters to the Belgrade receiver site, their propagation is affected in different ways for different solar flare events and also for the same solar flare events.

  2. Activated Wnt signaling induces myofibroblast differentiation of mesenchymal stem cells, contributing to pulmonary fibrosis.

    PubMed

    Sun, Zhaorui; Wang, Cong; Shi, Chaowen; Sun, Fangfang; Xu, Xiaomeng; Qian, Weiping; Nie, Shinan; Han, Xiaodong

    2014-05-01

    Acute lung injury may lead to fibrogenesis. However, no treatment is currently available. This study was conducted to determine the effects of bone marrow-derived mesenchymal stem cells (MSCs) in a model of HCl-induced acute lung injury in Sprague-Dawley (SD) rats. Stromal cell-derived factor (SDF)-1 and its receptor CXC chemokine receptor (CXCR)4 have been shown to participate in mobilizing MSCs. Adenovirus carrying the CXCR4 gene was used to transfect MSCs in order to increase the engraftment numbers of MSCs at injured sites. Histological examination data demonstrated that the engraftment of MSCs did not attenuate lung injury and pulmonary fibrosis. The results showed that engraftment of MSCs almost differentiated into myofibroblasts, but rarely differentiated into lung epithelial cells. Additionally, it was demonstrated that activated canonical Wnt/β-catenin signaling in injured lung tissue regulated the myofibroblast differentiation of MSCs in vivo. The in vitro study results demonstrated that activation of the Wnt/β-catenin signaling stimulated MSCs to express myofibroblast markers; however, this process was attenuated by Wnt antagonist DKK1. Therefore, the results demonstrated that the aberrant activation of Wnt signaling induces the myofibroblast differentiation of engrafted MSCs, thus contributing to pulmonary fibrosis following lung injury. PMID:24573542

  3. Acetaminophen-induced liver injury: Implications for temporal homeostasis of lipid metabolism and eicosanoid signaling pathway.

    PubMed

    Suciu, Maria; Gruia, Alexandra T; Nica, Dragos V; Azghadi, Seyed M R; Mic, Ani A; Mic, Felix A

    2015-12-01

    Acetaminophen is a commonly used drug that induces serious hepatotoxicity when overdosed, leading to increased levels of serum aminotransferases. However, little knowledge exists linking acetaminophen to liver free fatty acids and the eicosanoid-mediated signaling pathway. To this end, adult NMRI mice injected with a dose of 400 mg/kg acetaminophen were monitored for one week post-treatment. Consistent changes were observed in serum transaminases, profile of hepatic free fatty acids, expression of cyclooxygenase, elongase, lipogenesis, and lipolysis genes; as well as in expression patterns of cyclooxygenase-1 and -2 in the liver. Both linoleic acid and arachidonic acid--substrates in eicosanoid biosynthesis--were significantly influenced by overdose, and the latter peaked first among the free fatty acids examined here. There was a close similarity between the temporal dynamics of linoleic acid and aspartate aminotransferases. Moreover, serum transaminases were reduced by cyclooxygenase-2 inhibitors, but not by cyclooxygenase-1 inhibitors. Our results hence attest to the hazard of acetaminophen overdose on the temporal homeostasis of hepatic concentrations of free fatty acids and expression of key genes underlying liver lipid metabolism. There is also evidence for activation of a cyclooxygenase-mediated signaling pathway, especially the cyclooxygenase 2-prostanoid pathway, during acetaminophen-induced liver injury. Therefore, the results of the present study should provide valuable information to a wide audience, working to understand the health hazard of this drug and the implications of the eicosanoid signaling pathway in liver pathophysiology.

  4. A study on waviness induced vibration of ball bearings based on signal coherence theory

    NASA Astrophysics Data System (ADS)

    Liu, Wentao; Zhang, Yun; Feng, Zhi-Jing; Zhao, Jing-Shan; Wang, Dongfeng

    2014-11-01

    This paper focuses on the effects of waviness on vibration of ball bearings. An experimental analysis method is developed by adopting signal coherence theory of multiple-inputs/single-output (MISO) system. The inputs are waviness excitations of the inner and outer races, and the output is vibration response of the outer ring. Waviness excitation signals are first derived from the manufacturing deviations, and found to be strongly coherent in low frequency range. Virtual input signals are then introduced by the method of orthogonalization. In both cases of vibration acceleration and speed responses, the cumulated virtual input-output coherence function verifies that the first peak region of vibration spectrum is mainly induced by the waviness excitations. In order to distinguish the contributions of the inner and outer races, coherence functions of the virtual inputs with real inputs are calculated, and the results indicate that the outer race waviness contributes more to vibration than the inner race waviness does in the example. Further, a multi-body dynamic model is constructed and employed to frequency response analyses. It is discovered that the waviness induced spectral peak frequency is close to the natural frequency of bearing.