Zhao, Bo; Gao, Wen-Wei; Liu, Ya-Jing; Jiang, Meng; Liu, Lian; Yuan, Quan; Hou, Jia-Bao; Xia, Zhong-Yuan
2017-10-01
Myocardial ischemia/reperfusion injury can lead to severe brain injury. Glycogen synthase kinase 3 beta is known to be involved in myo-cardial ischemia/reperfusion injury and diabetes mellitus. However, the precise role of glycogen synthase kinase 3 beta in myocardial ischemia/reperfusion injury-induced brain injury is unclear. In this study, we observed the effects of glycogen synthase kinase 3 beta on brain injury induced by myocardial ischemia/reperfusion injury in diabetic rats. Rat models of diabetes mellitus were generated via intraperitoneal injection of streptozotocin. Models of myocardial ischemia/reperfusion injury were generated by occluding the anterior descending branch of the left coronary artery. Post-conditioning comprised three cycles of ischemia/reperfusion. Immunohistochemical staining and western blot assays demonstrated that after 48 hours of reperfusion, the structure of the brain was seriously damaged in the experimental rats compared with normal controls. Expression of Bax, interleukin-6, interleukin-8, terminal deoxynucleotidyl transferase dUTP nick end labeling, and cleaved caspase-3 in the brain was significantly increased, while expression of Bcl-2, interleukin-10, and phospho-glycogen synthase kinase 3 beta was decreased. Diabetes mellitus can aggravate inflammatory reactions and apoptosis. Ischemic post-conditioning with glycogen synthase kinase 3 beta inhibitor lithium chloride can effectively reverse these changes. Our results showed that myocardial ischemic post-conditioning attenuated myocardial ischemia/reperfusion injury-induced brain injury by activating glyco-gen synthase kinase 3 beta. According to these results, glycogen synthase kinase 3 beta appears to be an important factor in brain injury induced by myocardial ischemia/reperfusion injury.
Aging increases amyloid beta-peptide-induced 8-iso-prostaglandin F2alpha release from rat brain.
Brunetti, Luigi; Michelotto, Barbara; Orlando, Giustino; Recinella, Lucia; Di Nisio, Chiara; Ciabattoni, Giovanni; Vacca, Michele
2004-01-01
In order to investigate whether amyloid beta-peptide-induced oxidative damage in the brain could be related to aging, we studied the release of 8-iso-prostaglandin (PG)F2alpha, a stable marker of cellular oxidative stress, in brain synaptosomes from Wistar rats of different ages (3, 6, 12, 18 months old), both basally and after amyloid beta-peptide (1-40) perfusion. We found that basal release of 8-iso-PGF2alpha was not significantly different among all age groups of rats. Either phospholipase A2 activation induced by calcium ionophore A23187 (10 nM) or amyloid beta-peptide (5 microM) did not modify isoprostane release, when these substances were used alone. In contrast, amyloid beta-peptide (1-5 microM) preincubation caused a dose-dependent increase of A23187-stimulated 8-iso-PGF2alpha release in each age group, which was also strikingly correlated to aging of rats. Furthermore, ferric ammonium sulfate stimulates isoprostane production to levels comparable to those induced by amyloid beta-peptide. In conclusion, although 8-iso-PGF2alpha production from rat brain synaptosomes is independent from aging in the basal state, aging renders neurons more vulnerable to amyloid beta-peptide-induced oxidative toxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Yong-Whan; Yoon, Seung-Yong, E-mail: ysy@amc.seoul.kr; Institute for Biomacromolecules, University of Ulsan College of Medicine, Seoul
2010-04-30
Glycogen synthase kinase-3{beta} (GSK3{beta}) is recognized as one of major kinases to phosphorylate tau in Alzheimer's disease (AD), thus lots of AD drug discoveries target GSK3{beta}. However, the inactive form of GSK3{beta} which is phosphorylated at serine-9 is increased in AD brains. This is also inconsistent with phosphorylation status of other GSK3{beta} substrates, such as {beta}-catenin and collapsin response mediator protein-2 (CRMP2) since their phosphorylation is all increased in AD brains. Thus, we addressed this paradoxical condition of AD in rat neurons treated with okadaic acid (OA) which inhibits protein phosphatase-2A (PP2A) and induces tau hyperphosphorylation and cell death. Interestingly,more » OA also induces phosphorylation of GSK3{beta} at serine-9 and other substrates including tau, {beta}-catenin and CRMP2 like in AD brains. In this context, we observed that GSK3{beta} inhibitors such as lithium chloride and 6-bromoindirubin-3'-monoxime (6-BIO) reversed those phosphorylation events and protected neurons. These data suggest that GSK3{beta} may still have its kinase activity despite increase of its phosphorylation at serine-9 in AD brains at least in PP2A-compromised conditions and that GSK3{beta} inhibitors could be a valuable drug candidate in AD.« less
Role of 5-hydroxytryptamine in the regulation of brain neuropeptides in normal and diabetic rat
NASA Technical Reports Server (NTRS)
Kolta, Malak G.; Williams, Byron B.; Soliman, Karam F. A.
1986-01-01
The effect of 5-hydroxytryptamine (5-HT) alteration on brain dopamine (DA), norepinephrine (NE), beta-endorphin (beta-E), and immunoreactive insulin was studied in Sprague-Dawley diabetic and control rats. Diabetes was induced using alloxan (45 mg/kg), 15 days prior to sacrificing. Both control and diabetic animals were treated with either p-chlorophenylalanine (PCPA, 300 mg/kg) three days prior to sacrificing or fluoxetine (10 mg/kg) twice daily for three days. PCPA treatment significantly decreased brain content of 5-HT and 5-hydroxyindolel acetic acid, while it caused significant increase and decrease in brain beta-E and insulin levels, respectively, in both normal and diabetic rat. Meanwhile, the administration of fluoxetine resulted in significant increase in brain content of 5-HT, DA, NE and insulin but significant decline of beta-E in diabetic and saline control rats. The results of this experiment indicate that 5-HT may be regulating both beta-E and insulin regardless of the availability of pancreatic insulin.
Defaux, Antoinette; Zurich, Marie-Gabrielle; Braissant, Olivier; Honegger, Paul; Monnet-Tschudi, Florianne
2009-05-07
Brain inflammation plays a central role in numerous brain pathologies, including multiple sclerosis (MS). Microglial cells and astrocytes are the effector cells of neuroinflammation. They can be activated also by agents such as interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS). Peroxisome proliferator-associated receptor (PPAR) pathways are involved in the control of the inflammatory processes, and PPAR-beta seems to play an important role in the regulation of central inflammation. In addition, PPAR-beta agonists were shown to have trophic effects on oligodendrocytes in vitro, and to confer partial protection in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In the present work, a three-dimensional brain cell culture system was used as in vitro model to study antibody-induced demyelination and inflammatory responses. GW 501516, a specific PPAR-beta agonist, was examined for its capacity to protect from antibody-mediated demyelination and to prevent inflammatory responses induced by IFN-gamma and LPS. Aggregating brain cells cultures were prepared from embryonal rat brain, and used to study the inflammatory responses triggered by IFN-gamma and LPS and by antibody-mediated demyelination induced by antibodies directed against myelin-oligodendrocyte glycoprotein (MOG). The effects of GW 501516 on cellular responses were characterized by the quantification of the mRNA expression of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), inducible NO synthase (i-NOS), PPAR-beta, PPAR-gamma, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), and high molecular weight neurofilament protein (NF-H). GFAP expression was also examined by immunocytochemistry, and microglial cells were visualized by isolectin B4 (IB4) and ED1 labeling. GW 501516 decreased the IFN-gamma-induced up-regulation of TNF-alpha and iNOS in accord with the proposed anti-inflammatory effects of this PPAR-beta agonist. However, it increased IL-6 m-RNA expression. In demyelinating cultures, reactivity of both microglial cells and astrocytes was observed, while the expression of the inflammatory cytokines and iNOS remained unaffected. Furthermore, GW 501516 did not protect against the demyelination-induced changes in gene expression. Although GW 501516 showed anti-inflammatory activity, it did not protect against antibody-mediated demyelination. This suggests that the protective effects of PPAR-beta agonists observed in vivo can be attributed to their anti-inflammatory properties rather than to a direct protective or trophic effect on oligodendrocytes.
Diabetes synergistically exacerbates poststroke dementia and tau abnormality in brain.
Zhang, Ting; Pan, Bai-Shen; Sun, Guang-Chun; Sun, Xiao; Sun, Feng-Yan
2010-07-01
This study investigated whether exacerbation of poststroke dementia by diabetes associated abnormal tau phosphorylation and its mechanism. Streptozotocin (STZ) injection and/or a high fat diet (HFD) were used to treat rats to induce type 1 and 2 diabetes. Animals were randomly divided into STZ, HFD, STZ-HFD, and normal diet (NPD) groups. Focal ischemic stroke was induced by middle cerebral artery occlusion (MCAO). Cognitive function was tested by the Morris water maze. STZ or STZ-HFD treatment exacerbated ischemia-induced cognitive deficits, brain infarction and reduction of synaptophysin expression. Moreover, we found that diabetes further increased AT8, a marker of hyperphosphorylated tau, protein and immunopositive stained cells in the hippocampus of rats following MCAO while reduced the level of phosphorylated glycogen synthase kinase 3-beta at serine-9 residues (p-ser9-GSK-3beta), indicating activation of GSK-3beta. We conclude that diabetes further deteriorates ischemia-induced brain damage and cognitive deficits which may be associated with abnormal phosphorylation of tau as well as activation of GSK-3beta. These findings may be helpful for developing new strategies to prevent/delay formation of poststroke dementia in patients with diabetes. 2010 Elsevier Ltd. All rights reserved.
Beta-Amyloid Deposition and Alzheimer's Type Changes Induced by Borrelia Spirochetes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miklossy,J.; Kis, A.; Radenovic, A.
2006-01-01
The pathological hallmarks of Alzheimer's disease (AD) consist of {beta}-amyloid plaques and neurofibrillary tangles in affected brain areas. The processes, which drive this host reaction are unknown. To determine whether an analogous host reaction to that occurring in AD could be induced by infectious agents, we exposed mammalian glial and neuronal cells in vitro to Borrelia burgdorferi spirochetes and to the inflammatory bacterial lipopolysaccharide (LPS). Morphological changes analogous to the amyloid deposits of AD brain were observed following 2-8 weeks of exposure to the spirochetes. Increased levels of {beta}-amyloid presursor protein (A{beta}PP) and hyperphosphorylated tau were also detected by Westernmore » blots of extracts of cultured cells that had been treated with spirochetes or LPS. These observations indicate that, by exposure to bacteria or to their toxic products, host responses similar in nature to those observed in AD may be induced.« less
Ni, Mei-Hui; Wu, Chih-Ching; Chan, Wen-Hsiung; Chien, Kun-Yi; Yu, Jau-Song
2008-04-15
Collapsin response mediator protein-2 (CRMP-2), a phosphoprotein involved in axonal outgrowth and microtubule dynamics, is aberrantly phosphorylated in Alzheimer's disease (AD) brain. Alteration of glycogen synthase kinase-3 (GSK-3) activity is associated with the pathogenesis of AD. Here, we show that CRMP-2 is one of the major substrates for GSK-3 in pig brain extracts. Both GSK-3alpha and 3beta phosphorylate purified pig brain CRMP-2 and significantly alter its mobility in SDS-gels, resembling the CRMP-2 modification observed in AD brain. Interestingly, this modification can be detected in SK-N-SH neuroblastoma cells treated with a phosphatase inhibitor, okadaic acid (OA), and GSK-3 inhibitors completely block this OA-induced event. Knockdown of both GSK-3alpha and 3beta, but not either kinase alone, impairs OA-induced modification of CRMP-2. Mutation of Ser-518 or Ser-522 of CRMP-2, which are highly phosphorylated in AD brain, to Ala blocks the OA-induced modification of CRMP-2 in SK-N-SH cells. Ser-522 prephosphorylated by Cdk5 is required for subsequent GSK-3alpha-mediated phosphorylation of CRMP-2 in vitro. Collectively, our results demonstrate for the first time that OA can induce phosphorylation of CRMP-2 in SK-N-SH cells at sites aberrantly phosphorylated in AD brain, and both GSK-3alpha and 3beta and Ser-522 kinase(s) are involved in this process.
Nadjar, A; Combe, C; Busquet, P; Dantzer, R; Parnet, P
2005-01-01
Interleukin-1beta is released at the periphery during infection and acts on the nervous system to induce fever, neuroendocrine activation, and behavioral changes. These effects are mediated by brain type I IL-1 receptors. In vitro studies have shown the ability of interleukin-1beta to activate mitogen-activated protein kinase signaling pathways including p38, c-Jun N-terminal kinase and extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). In contrast to other mitogen-activated protein kinases, little is known about ERK1/2 activation in the rat brain in response to interleukin-1beta. The aim of the present study was therefore to investigate spatial and temporal activation of ERK1/2 in the rat brain after peripheral administration of interleukin-1beta using immunohistochemistry to detect the phosphorylated form of the kinase. In non-stimulated conditions, phosphorylated ERK1/2 immunoreactivity was observed in neurons throughout the brain. Administration of interleukin-1beta (60 microg/kg, i.p.) induced the phosphorylation of ERK1/2 in areas at the interface between brain and blood or cerebrospinal fluid: meninges, circumventricular organs, endothelial like cells of the blood vessels, and in brain nuclei involved in behavioral depression, fever and neuroendocrine activation: paraventricular nucleus of the hypothalamus, supraoptic nucleus, central amygdala and arcuate nucleus. Double labeling of phosphorylated ERK1/2 and cell markers revealed the expression of phosphorylated ERK1/2 in neurons, astrocytes and microglia. Since phosphorylated ERK1/2 was found in structures in which type I IL-1 receptor has already been identified as well as in structures lacking this receptor, activation of ERK1/2 is likely to occur in response to both direct and indirect action of interleukin-1beta on its target cells.
Levetiracetam protects against kainic acid-induced toxicity.
Marini, Herbert; Costa, Cinzia; Passaniti, Maria; Esposito, Maria; Campo, Giuseppe M; Ientile, Riccardo; Adamo, Elena Bianca; Marini, Rolando; Calabresi, Paolo; Altavilla, Domenica; Minutoli, Letteria; Pisani, Francesco; Squadrito, Francesco
2004-01-23
We investigated the Levetiracetam (LVT) ability to protect the brain against kainic acid (KA) induced neurotoxicity. Brain injury was induced by intraperitoneal administration of KA (10 mg/kg). Sham brain injury rats were used as controls. Animals were randomized to receive either LVT (50 mg/kg) or its vehicle (1 ml/kg) 30 min. before KA administration. Animals were sacrificed 6 hours after KA injection to measure brain malonildialdehyde (MDA), glutathione levels (GSH) and the mRNA for interleukin-1beta (IL-1beta) in the cortex and in the diencephalon. Behavioral changes were also monitored. Intraperitoneal administration of LVT decreased significantly MDA in the cortex (KA + vehicle = 0.25 +/- 0.03 nmol/mg protein; KA + LVT = 0.13 +/- 0.01 nmol/mg protein; P < 0.005), and in the diencephalons (KA + vehicle = 1,01 +/- 0.2 nmol/mg protein; KA + LVT = 0,33 +/- 0,08 nmol/mg protein; P < 0.005), prevented the brain loss of GSH in both cortex (KA + vehicle = 5 +/- 1 micromol/g protein; KA + LVT = 15 +/- 2 micromol/g protein; P < 0.005) and diencephalons (KA + vehicle = 9 +/- 0.8 micromol/g protein; KA + LVT = 13 +/- 0.3 micromol/g protein; P < 0.05), reduced brain IL-1beta mRNA and markedly controlled seizures. Histological analysis showed a reduction of cell damage in LVT treated samples. The present data indicate that LVT displays neuro-protective effects against KA induced brain toxicity and suggest that these effects are mediated, at least in part, by inhibition of lipid peroxidation.
Hypothermia blocks beta-catenin degradation after focal ischemia in rats.
Zhang, Hanfeng; Ren, Chuancheng; Gao, Xuwen; Takahashi, Tetsuya; Sapolsky, Robert M; Steinberg, Gary K; Zhao, Heng
2008-03-10
Dephosphorylated and activated glycogen synthase kinase (GSK) 3beta hyperphosphorylates beta-catenin, leading to its ubiquitin-proteosome-mediated degradation. beta-catenin-knockdown increases while beta-catenin overexpression prevents neuronal death in vitro; in addition, protein levels of beta-catenin are reduced in the brain of Alzheimer's patients. However, whether beta-catenin degradation is involved in stroke-induced brain injury is unknown. Here we studied activities of GSK 3beta and beta-catenin, and the protective effect of moderate hypothermia (30 degrees C) on these activities after focal ischemia in rats. The results of Western blot showed that GSK 3beta was dephosphorylated at 5 and 24 h after stroke in the normothermic (37 degrees C) brain; hypothermia augmented GSK 3beta dephosphorylation. Because hypothermia reduces infarction, these results contradict with previous studies showing that GSK 3beta dephosphorylation worsens neuronal death. Nevertheless, hypothermia blocked degradation of total GSK 3beta protein. Corresponding to GSK 3beta activity in normothermic rats, beta-catenin phosphorylation transiently increased at 5 h in both the ischemic penumbra and core, and the total protein level of beta-catenin degraded after normothermic stroke. Hypothermia did not inhibit beta-catenin phosphorylation, but it blocked beta-catenin degradation in the ischemic penumbra. In conclusion, moderate hypothermia can stabilize beta-catenin, which may contribute to the protective effect of moderate hypothermia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, N.; Sundmark, V.C.; Van Middlesworth, L.
1982-06-01
The contents of immunoreactive somatostatin (IR-SRIF) and ..beta..-endorphin (IR-..beta..-EP) in 12 brain regions were examined in rats exposed neonatally to propylthiouracil (PTU) through the mother's milk. Since the dose of PTU used in the study is lower than the usual dose employed to induce hypothyroidism, a milder form of neonatal hypothyroidism resulted. This conclusion is supported by the only mild subnormal growth of rats to adulthood and serum T/sub 4/ and T/sub 3/ concentrations in the normal range. Adult rats treated with PTU neonatally had significantly higher IR-SRIF contents in several brain regions compared to controls, whereas IR-..beta..-EP levels weremore » not significantly different (significant increase only in the thalamus) in most regions. The results indicate that even mild hypothyroidism during early postnatal development causes permanent impairment of brain function, which manifests itself in part by an altered brain content of IR-SRIF.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, N.; Sundmark, V.C.; Van Middlesworth, L.
1982-01-01
The contents of immunoreactive somatostatin (IR-SRIF) and ..beta..-endorphin (IR-..beta..-EP) in 12 brain regions were examined in rats exposed neonatally to propylthiouracil (PTU) through the mother's milk. Since the dose of PTU used in this study is lower than the usual dose employed to induce hypothyroidism, a milder form of neonatal hypothyroidism resulted. This conclusion is supported by the only mild subnormal growth of rats to adulthood and serum T/sub 4/ and T/sub 3/ concentrations in the normal range. Adult rats treated with PTU neonatally had significantly higher IR-SRIF contents in several brain regions compared to controls, whereas IR-..beta..-EP levels weremore » not significantly different in most regions. The results indicate that even mild hypothyroidism during early postnatal development causes permanent impairment of brain function, which manifests itself in part by an altered brain content of IR-SRIF.« less
ERIC Educational Resources Information Center
Middei, Silvia; Geracitano, Raffaella; Caprioli, Antonio; Mercuri, Nicola; Ammassari-Teule, Martine
2004-01-01
Mutations in the amyloid precursor protein (APP) gene inducing abnormal processing and deposition of [beta]-amyloid protein in the brain have been implicated in the pathogenesis of Alzheimer's disease (AD). Although Tg2576 mice with the Swedish mutation ("hAPPswe") exhibit age-related [Alpha][beta]-plaque formation in brain regions like the…
The role of protein kinase C in the opening of blood-brain barrier induced by electromagnetic pulse.
Qiu, Lian-Bo; Ding, Gui-Rong; Li, Kang-Chu; Wang, Xiao-Wu; Zhou, Yan; Zhou, Yong-Chun; Li, Yu-Rong; Guo, Guo-Zhen
2010-06-29
The aim of this study was to determine the role of protein kinase C signaling in electromagnetic pulse (EMP)-induced blood-brain barrier (BBB) permeability change in rats. The protein level of total PKC and two PKC isoforms (PKC-alpha, and PKC-beta II) were determined in brain cerebral cortex microvessels by Western blot after exposing rats to EMP at 200kV/m for 200 pulses with 1Hz repetition rate. It was found that the protein level of PKC and PKC-betaII (but not PKC-alpha) in cerebral cortex microvessels increased significantly at 0.5h and 1h after EMP exposure compared with sham-exposed animals and then recovered at 3h. A specific PKC antagonist (H7) almost blocked EMP-induced BBB permeability change. EMP-induced BBB tight junction protein ZO-1 translocation was also inhibited. Our data indicated that PKC signaling was involved in EMP-induced BBB permeability change and ZO-1 translocation in rat.
Huebl, Julius; Brücke, Christof; Merkl, Angela; Bajbouj, Malek; Schneider, Gerd-Helge
2016-01-01
Deep brain stimulation (DBS) of the subgenual anterior cingulate cortex (sgACC) has emerged as a new therapeutic option in patients with treatment resistant depression (TRD). At the same time, DBS offers a unique opportunity as an innovative research tool to study brain function in vivo. Indirect measures of brain function such as positron-emission-tomography imaging findings have revealed a hypermetabolism in the sgACC area in patients with TRD that normalizes in parallel with treatment response to DBS. We used direct intracranial recordings via implanted DBS electrodes to study the neuronal oscillatory activity in the sgACC area during a picture viewing task including emotional and neutral stimuli in eight patients with TRD who underwent DBS. We found a stimulus-induced decrease in beta-band and increase in gamma-band activity, with a main effect of valence for event-related desynchronisation in the beta-frequency range (14–30 Hz). Unpleasant stimuli induced the strongest and most sustained beta-power decrease. The degree of beta-band modulation upon emotional stimuli correlated with the patients’ rating of stimulus valence. Our findings confirm the involvement of the sgACC area in emotional processing that was more enhanced for unpleasant stimuli. Moreover, stimulus evaluation may be encoded by modulations of beta-band activity. PMID:27013105
Rodriguez, C; Huang, L J; Son, J K; McKee, A; Xiao, Z; Lodish, H F
2001-08-10
Using the plasminogen activator inhibitor (PAI) promoter to drive the expression of a reporter gene (mouse CD2), we devised a system to clone negative regulators of the transforming growth factor-beta (TGF-beta) signaling pathway. We infected a TGF-beta-responsive cell line (MvLu1) with a retroviral cDNA library, selecting by fluorescence-activated cell sorter single cells displaying low PAI promoter activity in response to TGF-beta. Using this strategy we cloned the proto-oncogene brain factor-1 (BF-1). BF-1 represses the PAI promoter in part by associating with both unphosphorylated Smad3 (in the cytoplasm) and phosphorylated Smad3 (in the nucleus), thus preventing its binding to DNA. BF-1 also associates with Smad1, -2, and -4; the Smad MH2 domain binds to BF-1, and the C-terminal segment of BF-1 is uniquely and solely required for binding to Smads. Further, BF-1 represses another TGF-beta-induced promoter (p15), it up-regulates a TGF-beta-repressed promoter (Cyclin A), and it reverses the growth arrest caused by TGF-beta. Our results suggest that BF-1 is a general inhibitor of TGF-beta signaling and as such may play a key role during brain development.
Qiu, Shuang; Yi, Weibo; Xu, Jiapeng; Qi, Hongzhi; Du, Jingang; Wang, Chunfang; He, Feng; Ming, Dong
2016-02-01
A number of electroencephalographic (EEG) studies have reported on event-related desynchronization/synchronization (ERD/ERS) during active movements, passive movements, and the movements induced by functional electrical stimulation (FES). However, the quantitative differences in ERD values and affected frequency bands associated with the lower limb have not been discussed. The goal of this paper was to quantitatively compare the ERD patterns during active movement, passive movement and FES-induced movement of the lower limb. 64-channel EEG signals were recorded to investigate the brain oscillatory patterns during active movement, passive movement and FES-induced movement of the lower limb in twelve healthy subjects. And passive movement and FES-induced movement were also performed in a hemiplegic stroke patient. For healthy subjects, FES-induced movement presented significantly higher characteristic frequency of central beta ERD while there was no significant difference in ERD values compared with active or passive movement. Meanwhile, beta ERD values of FES-induced movement were significantly correlated with those of active movement, and spatial distribution of beta ERD pattern for FES-induced movement was more correlated with that for active movement. In addition, the stroke patient presented central ERD patterns during FES-induced movement, while no ERD with similar frequencies could be found during passive movement. This work implies that the EEG oscillatory pattern under FES-induced movement tends more towards active movement instead of passive movement. The quantification of ERD patterns could be expected as a potential technique to evaluate the brain response during FES-induced movement.
Huebl, Julius; Brücke, Christof; Merkl, Angela; Bajbouj, Malek; Schneider, Gerd-Helge; Kühn, Andrea A
2016-08-01
Deep brain stimulation (DBS) of the subgenual anterior cingulate cortex (sgACC) has emerged as a new therapeutic option in patients with treatment resistant depression (TRD). At the same time, DBS offers a unique opportunity as an innovative research tool to study brain function in vivo Indirect measures of brain function such as positron-emission-tomography imaging findings have revealed a hypermetabolism in the sgACC area in patients with TRD that normalizes in parallel with treatment response to DBS. We used direct intracranial recordings via implanted DBS electrodes to study the neuronal oscillatory activity in the sgACC area during a picture viewing task including emotional and neutral stimuli in eight patients with TRD who underwent DBS.We found a stimulus-induced decrease in beta-band and increase in gamma-band activity, with a main effect of valence for event-related desynchronisation in the beta-frequency range (14-30 Hz). Unpleasant stimuli induced the strongest and most sustained beta-power decrease. The degree of beta-band modulation upon emotional stimuli correlated with the patients' rating of stimulus valence. Our findings confirm the involvement of the sgACC area in emotional processing that was more enhanced for unpleasant stimuli. Moreover, stimulus evaluation may be encoded by modulations of beta-band activity. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Kurz, C; Ungerer, I; Lipka, U; Kirr, S; Schütt, T; Eckert, A; Leuner, K; Müller, W E
2010-05-01
beta-Amyloid peptide (Abeta) is implicated in the pathogenesis of Alzheimer's disease by initiating a cascade of events from mitochondrial dysfunction to neuronal death. The metabolic enhancer piracetam has been shown to improve mitochondrial dysfunction following brain aging and experimentally induced oxidative stress. We used cell lines (PC12 and HEK cells) and murine dissociated brain cells. The protective effects of piracetam in vitro and ex vivo on Abeta-induced impairment of mitochondrial function (as mitochondrial membrane potential and ATP production), on secretion of soluble Abeta and on neurite outgrowth in PC12 cells were investigated. Piracetam improves mitochondrial function of PC12 cells and acutely dissociated brain cells from young NMRI mice following exposure to extracellular Abeta(1-42). Similar protective effects against Abeta(1-42) were observed in dissociated brain cells from aged NMRI mice, or mice transgenic for mutant human amyloid precursor protein (APP) treated with piracetam for 14 days. Soluble Abeta load was markedly diminished in the brain of those animals after treatment with piracetam. Abeta production by HEK cells stably transfected with mutant human APP was elevated by oxidative stress and this was reduced by piracetam. Impairment of neuritogenesis is an important consequence of Abeta-induced mitochondrial dysfunction and Abeta-induced reduction of neurite growth in PC12 cells was substantially improved by piracetam. Our findings strongly support the concept of improving mitochondrial function as an approach to ameliorate the detrimental effects of Abeta on brain function.
Xie, Zhongcong; Culley, Deborah J; Dong, Yuanlin; Zhang, Guohua; Zhang, Bin; Moir, Robert D; Frosch, Matthew P; Crosby, Gregory; Tanzi, Rudolph E
2008-12-01
An estimated 200 million patients worldwide have surgery each year. Anesthesia and surgery have been reported to facilitate emergence of Alzheimer's disease. The commonly used inhalation anesthetic isoflurane has previously been reported to induce apoptosis, and to increase levels and aggregation of Alzheimer's disease-associated amyloid beta-protein (Abeta) in cultured cells. However, the in vivo relevance has not been addressed. We therefore set out to determine effects of isoflurane on caspase activation and levels of beta-site amyloid precursor protein-cleaving enzyme (BACE) and Abeta in naive mice, using Western blot, immunohistochemistry, and reverse transcriptase polymerase chain reaction. Here we show for the first time that a clinically relevant isoflurane anesthesia (1.4% isoflurane for 2 hours) leads to caspase activation and modest increases in levels of BACE 6 hours after anesthesia in mouse brain. Isoflurane anesthesia induces caspase activation, and increases levels of BACE and Abeta up to 24 hours after anesthesia. Isoflurane may increase BACE levels by reducing BACE degradation. Moreover, the Abeta aggregation inhibitor, clioquinol, was able to attenuate isoflurane-induced caspase-3 activation in vivo. Given that transient insults to brain may lead to long-term brain damage, these findings suggest that isoflurane may promote Alzheimer's disease neuropathogenesis and, as such, have implications for use of isoflurane in humans, pending human study confirmation.
Cafeteria feeding induces interleukin-1beta mRNA expression in rat liver and brain.
Hansen, M K; Taishi, P; Chen, Z; Krueger, J M
1998-06-01
intake affects gut-immune function and can provide a strong intestinal antigen challenge resulting in activation of host defense mechanisms in the digestive system. Previously, we showed that feeding rats a cafeteria diet increases non-rapid eye movement sleep by a subdiaphragmatic mechanism. Food intake and sleep regulation and the immune system share the regulatory molecule interleukin-1beta (IL-1beta). Thus this study examined the effects of a cafeteria diet on IL-1beta mRNA and IL-1 receptor accessory protein (IL-1RAP) mRNA expression in rat liver and brain. Rats were fed normal rat chow or a palatable diet consisting of bread, chocolate, and shortbread cookies (cafeteria diet). After 3 days, midway between the light period of the light-dark cycle, rats were killed by decapitation. Feeding rats a cafeteria diet resulted in increased IL-1beta mRNA expression in the liver and hypothalamus compared with rats fed only the normal rat chow. In addition, cafeteria feeding decreased IL-1RAP mRNA levels in the liver and brain stem. These results indicate that feeding has direct effects on cytokine production and together with other data suggest that the increased sleep that accompanies increased feeding may be the result of increased brain IL-1beta. These results further suggest that cytokine-to-brain communication may be important in normal physiological conditions, such as feeding, as well as being important during inflammatory responses.
Mangia, Anna L.; Pirini, Marco; Cappello, Angelo
2014-01-01
Transcranial direct current stimulation (tDCS) delivers low electric currents to the brain through the scalp. Constant electric currents induce shifts in neuronal membrane excitability, resulting in secondary changes in cortical activity. Concomitant electroencephalography (EEG) monitoring during tDCS can provide valuable information on the tDCS mechanisms of action. This study examined the effects of anodal tDCS on spontaneous cortical activity in a resting brain to disclose possible modulation of spontaneous oscillatory brain activity. EEG activity was measured in ten healthy subjects during and after a session of anodal stimulation of the postero-parietal cortex to detect the tDCS-induced alterations. Changes in the theta, alpha, beta, and gamma power bands were investigated. Three main findings emerged: (1) an increase in theta band activity during the first minutes of stimulation; (2) an increase in alpha and beta power during and after stimulation; (3) a widespread activation in several brain regions. PMID:25147519
HIV-1 stimulates nuclear entry of amyloid beta via dynamin dependent EEA1 and TGF-β/Smad signaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
András, Ibolya E., E-mail: iandras@med.miami; Toborek, Michal, E-mail: mtoborek@med.miami.edu
Clinical evidence indicates increased amyloid deposition in HIV-1-infected brains, which contributes to neurocognitive dysfunction in infected patients. Here we show that HIV-1 exposure stimulates amyloid beta (Aβ) nuclear entry in human brain endothelial cells (HBMEC), the main component of the blood–brain barrier (BBB). Treatment with HIV-1 and/or Aβ resulted in concurrent increase in early endosomal antigen-1 (EEA1), Smad, and phosphorylated Smad (pSmad) in nuclear fraction of HBMEC. A series of inhibition and silencing studies indicated that Smad and EEA1 closely interact by influencing their own nuclear entry; the effect that was attenuated by dynasore, a blocker of GTP-ase activity ofmore » dynamin. Importantly, inhibition of dynamin, EEA1, or TGF-β/Smad effectively attenuated HIV-1-induced Aβ accumulation in the nuclei of HBMEC. The present study indicates that nuclear uptake of Aβ involves the dynamin-dependent EEA1 and TGF-β/Smad signaling pathways. These results identify potential novel targets to protect against HIV-1-associated dysregulation of amyloid processes at the BBB level. - Highlights: • HIV-1 induces nuclear accumulation of amyloid beta (Aβ) in brain endothelial cells. • EEA-1 and TGF-Β/Smad act in concert to regulate nuclear entry of Aβ. • Dynamin appropriates the EEA-1 and TGF-Β/Smad signaling. • Dynamin serves as a master regulator of HIV-1-induced nuclear accumulation of Aβ.« less
Brain networks modulated by subthalamic nucleus deep brain stimulation.
Accolla, Ettore A; Herrojo Ruiz, Maria; Horn, Andreas; Schneider, Gerd-Helge; Schmitz-Hübsch, Tanja; Draganski, Bogdan; Kühn, Andrea A
2016-09-01
Deep brain stimulation of the subthalamic nucleus is an established treatment for the motor symptoms of Parkinson's disease. Given the frequent occurrence of stimulation-induced affective and cognitive adverse effects, a better understanding about the role of the subthalamic nucleus in non-motor functions is needed. The main goal of this study is to characterize anatomical circuits modulated by subthalamic deep brain stimulation, and infer about the inner organization of the nucleus in terms of motor and non-motor areas. Given its small size and anatomical intersubject variability, functional organization of the subthalamic nucleus is difficult to investigate in vivo with current methods. Here, we used local field potential recordings obtained from 10 patients with Parkinson's disease to identify a subthalamic area with an analogous electrophysiological signature, namely a predominant beta oscillatory activity. The spatial accuracy was improved by identifying a single contact per macroelectrode for its vicinity to the electrophysiological source of the beta oscillation. We then conducted whole brain probabilistic tractography seeding from the previously identified contacts, and further described connectivity modifications along the macroelectrode's main axis. The designated subthalamic 'beta' area projected predominantly to motor and premotor cortical regions additional to connections to limbic and associative areas. More ventral subthalamic areas showed predominant connectivity to medial temporal regions including amygdala and hippocampus. We interpret our findings as evidence for the convergence of different functional circuits within subthalamic nucleus' portions deemed to be appropriate as deep brain stimulation target to treat motor symptoms in Parkinson's disease. Potential clinical implications of our study are illustrated by an index case where deep brain stimulation of estimated predominant non-motor subthalamic nucleus induced hypomanic behaviour. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Interferon β induces clearance of mutant ataxin 7 and improves locomotion in SCA7 knock-in mice.
Chort, Alice; Alves, Sandro; Marinello, Martina; Dufresnois, Béatrice; Dornbierer, Jean-Gabriel; Tesson, Christelle; Latouche, Morwena; Baker, Darren P; Barkats, Martine; El Hachimi, Khalid H; Ruberg, Merle; Janer, Alexandre; Stevanin, Giovanni; Brice, Alexis; Sittler, Annie
2013-06-01
We showed previously, in a cell model of spinocerebellar ataxia 7, that interferon beta induces the expression of PML protein and the formation of PML protein nuclear bodies that degrade mutant ataxin 7, suggesting that the cytokine, used to treat multiple sclerosis, might have therapeutic value in spinocerebellar ataxia 7. We now show that interferon beta also induces PML-dependent clearance of ataxin 7 in a preclinical model, SCA7(266Q/5Q) knock-in mice, and improves motor function. Interestingly, the presence of mutant ataxin 7 in the mice induces itself the expression of endogenous interferon beta and its receptor. Immunohistological studies in brains from two patients with spinocerebellar ataxia 7 confirmed that these modifications are also caused by the disease in humans. Interferon beta, administered intraperitoneally three times a week in the knock-in mice, was internalized with its receptor in Purkinje and other cells and translocated to the nucleus. The treatment induced PML protein expression and the formation of PML protein nuclear bodies and decreased mutant ataxin 7 in neuronal intranuclear inclusions, the hallmark of the disease. No reactive gliosis or other signs of toxicity were observed in the brain or internal organs. The performance of the SCA7(266Q/5Q) knock-in mice was significantly improved on two behavioural tests sensitive to cerebellar function: the Locotronic® Test of locomotor function and the Beam Walking Test of balance, motor coordination and fine movements, which are affected in patients with spinocerebellar ataxia 7. In addition to motor dysfunction, SCA7(266Q/5Q) mice present abnormalities in the retina as in patients: ataxin 7-positive neuronal intranuclear inclusions that were reduced by interferon beta treatment. Finally, since neuronal death does not occur in the cerebellum of SCA7(266Q/5Q) mice, we showed in primary cell cultures expressing mutant ataxin 7 that interferon beta treatment improves Purkinje cell survival.
Amyloid-beta oligomers impair fear conditioned memory in a calcineurin-dependent fashion in mice.
Dineley, Kelly T; Kayed, Rakez; Neugebauer, Volker; Fu, Yu; Zhang, Wenru; Reese, Lindsay C; Taglialatela, Giulio
2010-10-01
Soluble oligomeric aggregates of the amyloid-beta (A beta) peptide are believed to be the most neurotoxic A beta species affecting the brain in Alzheimer disease (AD), a terminal neurodegenerative disorder involving severe cognitive decline underscored by initial synaptic dysfunction and later extensive neuronal death in the CNS. Recent evidence indicates that A beta oligomers are recruited at the synapse, oppose expression of long-term potentiation (LTP), perturb intracellular calcium balance, disrupt dendritic spines, and induce memory deficits. However, the molecular mechanisms behind these outcomes are only partially understood; achieving such insight is necessary for the comprehension of A beta-mediated neuronal dysfunction. We have investigated the role of the phosphatase calcineurin (CaN) in these pathological processes of AD. CaN is especially abundant in the CNS, where it is involved in synaptic activity, LTP, and memory function. Here, we describe how oligomeric A beta treatment causes memory deficits and depresses LTP expression in a CaN-dependent fashion. Mice given a single intracerebroventricular injection of A beta oligomers exhibited increased CaN activity and decreased pCREB, a transcription factor involved in proper synaptic function, accompanied by decreased memory in a fear conditioning task. These effects were reversed by treatment with the CaN inhibitor FK506. We further found that expression of hippocampal LTP in acutely cultured rodent brain slices was opposed by A beta oligomers and that this effect was also reversed by FK506. Collectively, these results indicate that CaN activation may play a central role in mediating synaptic and memory disruption induced by acute oligomeric A beta treatment in mice. (c) 2010 Wiley-Liss, Inc.
Rostron, Anthony J; Avlonitis, Vassilios S; Cork, David M W; Grenade, Danielle S; Kirby, John A; Dark, John H
2008-02-27
The autonomic storm accompanying brain death leads to neurogenic pulmonary edema and triggers development of systemic and pulmonary inflammatory responses. Neurogenic vasoplegia exacerbates the pulmonary injury caused by brain death and primes the lung for ischemia reperfusion injury and primary graft dysfunction in the recipient. Donor resuscitation with norepinephrine ameliorates the inflammatory response to brain death, however norepinephrine has deleterious effects, particularly on the heart. We tested the hypothesis that arginine vasopressin is a suitable alternative to norepinephrine in managing the hypotensive brain dead donor. Brain death was induced in Wistar rats by intracranial balloon inflation. Pulmonary capillary leak was estimated using radioiodinated albumin. Development of pulmonary edema was assessed by measurement of wet and dry lung weights. Cell surface expression of CD11b/CD18 by neutrophils was determined using flow cytometry. Enzyme-linked immunosorbent assays were used to measure the levels of TNFalpha, IL-1beta, CINC-1, and CINC-3 in serum and bronchoalveolar lavage. Quantitative reverse-transcription polymerase chain reaction was used to determine the expression of cytokine mRNA (IL-1beta, CINC-1 and CINC-3) in lung tissue. There was a significant increase in pulmonary capillary permeability, wet/dry lung weight ratios, neutrophil integrin expression and pro-inflammatory cytokines in serum (TNFalpha, IL-1beta, CINC-1 and CINC-3), bronchoalveolar lavage (TNFalpha and IL-1beta) and lung tissue (IL-1beta and CINC-1) in braindead animals compared to controls. Correction of neurogenic hypotension with either arginine vasopressin or norepinephrine limits edema, reduces pulmonary capillary leak, and modulates systemic and pulmonary inflammatory responses to brain death. Arginine vasopressin and norepinephrine are equally effective in treating the hypotensive pulmonary donor in this rodent model.
Kitamura, Taro; Munakata, Mitsutoshi; Haginoya, Kazuhiro; Tsuchiya, Shigeru; Iinuma, Kazuie
2008-08-01
beta-Phenylethylamine (beta-PEA), an endogenous amine synthesized in the brain, serves as a neuromodulator and is involved in the pathophysiology of various neurological disorders such as depression, schizophrenia, and attention-deficit hyperactivity disorder. beta-PEA fully exerts the physiological effects within the nanomolar concentration range via the trace amine receptors, but beta-PEA also causes convulsions at much higher concentrations via an as yet unknown mechanism. To investigate the electrophysiological mechanism by which beta-PEA induces convulsions, we examined the effect of beta-PEA on ionic currents passing through the cell membrane of dissociated rat cerebral cortical neurons, using a patch-clamp technique. The external application of beta-PEA suppressed ionic currents which continuously flowed when the membrane potential was held at -25 mV. The suppression was in a concentration-dependent manner and a half-maximal effective concentration was 540 muM. These currents suppressed by beta-PEA consisted of two K(+) currents: a time- and voltage-dependent K(+) current (M-current) and a leakage K(+) current. The suppression of the M-current reduces the efficacy of the current in limiting excessive neuronal firing, and the suppression of the leakage K(+) current can cause membrane depolarization and thus promote neuronal excitation. Reducing both of these currents in concert may produce neuronal seizing activity, which could conceivably underlie the convulsions induced by high-dose beta-PEA.
Qu, Qiuhao; Sun, Guoqiang; Li, Wenwu; Yang, Su; Ye, Peng; Zhao, Chunnian; Yu, Ruth T; Gage, Fred H; Evans, Ronald M; Shi, Yanhong
2010-01-01
The nuclear receptor TLX (also known as NR2E1) is essential for adult neural stem cell self-renewal; however, the molecular mechanisms involved remain elusive. Here we show that TLX activates the canonical Wnt/beta-catenin pathway in adult mouse neural stem cells. Furthermore, we demonstrate that Wnt/beta-catenin signalling is important in the proliferation and self-renewal of adult neural stem cells in the presence of epidermal growth factor and fibroblast growth factor. Wnt7a and active beta-catenin promote neural stem cell self-renewal, whereas the deletion of Wnt7a or the lentiviral transduction of axin, a beta-catenin inhibitor, led to decreased cell proliferation in adult neurogenic areas. Lentiviral transduction of active beta-catenin led to increased numbers of type B neural stem cells in the subventricular zone of adult brains, whereas deletion of Wnt7a or TLX resulted in decreased numbers of neural stem cells retaining bromodeoxyuridine label in the adult brain. Both Wnt7a and active beta-catenin significantly rescued a TLX (also known as Nr2e1) short interfering RNA-induced deficiency in neural stem cell proliferation. Lentiviral transduction of an active beta-catenin increased cell proliferation in neurogenic areas of TLX-null adult brains markedly. These results strongly support the hypothesis that TLX acts through the Wnt/beta-catenin pathway to regulate neural stem cell proliferation and self-renewal. Moreover, this study suggests that neural stem cells can promote their own self-renewal by secreting signalling molecules that act in an autocrine/paracrine mode.
Stable Microsaccades and Microsaccade-Induced Global Alpha Band Phase Reset Across the Life Span.
Gao, Ying; Huber, Carl; Sabel, Bernhard A
2018-04-01
To understand the effect of aging on microsaccade functions and brain physiologic responses, we quantified microsaccades and their physiologic correlates (including their interaction with alpha band brain oscillation) in normal subjects of different ages. Twenty-two normally sighted young (18 to 29 years), 22 middle-aged (31 to 55 years), and 22 elderly subjects (56 to 77 years) participated in this cross-sectional study. Dense array EEG and high-resolution eye-tracking data were simultaneously recorded during a fixation task. We quantified microsaccade features, spike potential (SP), microsaccadic lambda response (MLR) and microsaccade-related spectral perturbation (ERSP), and intertrial coherence (ITC) in the alpha and beta frequency bands and compared them between three age groups. After microsaccade onset, (1) alpha band ERSP increased (100 to 150 ms) occipitally and ITC increased (150 to 220 ms) globally in the brain; (2) low beta ITC increased (150 to 220 ms) in occipital and central regions and peaked (0 to 50 ms) in frontal region; and (3) high beta ITC increased (0 to 50 ms) globally with no beta band ERSP changes. Microsaccade features, the latency and amplitude of SP and MLR, and microsaccade-related temporal-spectral power and synchronization dynamics were all stable across different age groups. Microsaccades are well preserved in aging and can be used as reference points for studying neurodegenerative or neuro-ophthalmologic diseases where the oculomotor system is affected. Microsaccade-induced alpha band activity is a potential biomarker to better understand and monitor these diseases, and we propose that microsaccades trigger "cortical refreshment" by resetting alpha band phase globally to prepare (sensitize) the brain for subsequent visual processing.
The interleukins-1 alpha, -1 beta, and -2 do not acutely disrupt the murine blood-brain barrier.
Banks, W A; Kastin, A J
1992-05-01
Previous studies have suggested that some of the central nervous system (CNS) effects of interleukin-2 (IL-2) and perhaps other cytokines might be mediated through disruption of the blood-brain barrier (BBB). We investigated the ability of human IL-2 and, in selected studies, human IL-1 alpha and human IL-1 beta to disrupt the BBB to radioiodinated bovine serum albumin (RISA) after intravenous (i.v.) and intracerebroventricular (i.c.v.) injection. No disruption of the BBB occurred for up to 2 h after the i.v. injection of 2 micrograms/mouse of IL-2 (10(5) U/kg of body weight), 2 micrograms of IL-1 alpha (10(7) U/kg), or 2 micrograms of IL-1 beta (10(7) U/kg). This dose of i.v. IL-2 also did not affect BBB permeability to RISA in the brain to blood direction. Damage to the BBB induced by hypertension elicited by i.v. epinephrine was not enhanced or prolonged by IL-2. When given directly into the CNS by the i.c.v. route, 100 ng of IL-2 (2.2 x 10(5) U/kg of brain), 100 ng of IL-1 alpha (2.2 x 10(7) U/kg of brain), or 100 ng of IL-1 beta (2.2 x 10(7) U/kg of brain) had no effect on BBB integrity in either the blood to brain or the brain to blood direction. We conclude that the effects of IL-1 alpha, IL-1 beta, and IL-2 on the CNS, as studied under these conditions, are not due to disruption of the BBB but are mediated by other mechanisms including the ability of some interleukins to cross the BBB by a saturable transport system described previously.
Electroencephalographic identifiers of motor adaptation learning
NASA Astrophysics Data System (ADS)
Özdenizci, Ozan; Yalçın, Mustafa; Erdoğan, Ahmetcan; Patoğlu, Volkan; Grosse-Wentrup, Moritz; Çetin, Müjdat
2017-08-01
Objective. Recent brain-computer interface (BCI) assisted stroke rehabilitation protocols tend to focus on sensorimotor activity of the brain. Relying on evidence claiming that a variety of brain rhythms beyond sensorimotor areas are related to the extent of motor deficits, we propose to identify neural correlates of motor learning beyond sensorimotor areas spatially and spectrally for further use in novel BCI-assisted neurorehabilitation settings. Approach. Electroencephalographic (EEG) data were recorded from healthy subjects participating in a physical force-field adaptation task involving reaching movements through a robotic handle. EEG activity recorded during rest prior to the experiment and during pre-trial movement preparation was used as features to predict motor adaptation learning performance across subjects. Main results. Subjects learned to perform straight movements under the force-field at different adaptation rates. Both resting-state and pre-trial EEG features were predictive of individual adaptation rates with relevance of a broad network of beta activity. Beyond sensorimotor regions, a parieto-occipital cortical component observed across subjects was involved strongly in predictions and a fronto-parietal cortical component showed significant decrease in pre-trial beta-powers for users with higher adaptation rates and increase in pre-trial beta-powers for users with lower adaptation rates. Significance. Including sensorimotor areas, a large-scale network of beta activity is presented as predictive of motor learning. Strength of resting-state parieto-occipital beta activity or pre-trial fronto-parietal beta activity can be considered in BCI-assisted stroke rehabilitation protocols with neurofeedback training or volitional control of neural activity for brain-robot interfaces to induce plasticity.
Turco, Cristina; Di Pino, Giovanni; Arcara, Giorgio
2018-01-01
Transcranial direct current stimulation (tDCS) can noninvasively induce brain plasticity, and it is potentially useful to treat patients affected by neurological conditions. However, little is known about tDCS effects on resting-state brain networks, which are largely involved in brain physiological functions and in diseases. In this randomized, sham-controlled, double-blind study on healthy subjects, we have assessed the effect of bilateral tDCS applied over the sensorimotor cortices on brain and network activity using a whole-head magnetoencephalography system. Bilateral tDCS, with the cathode (−) centered over C4 and the anode (+) centered over C3, reshapes brain networks in a nonfocal fashion. Compared to sham stimulation, tDCS reduces left frontal alpha, beta, and gamma power and increases global connectivity, especially in delta, alpha, beta, and gamma frequencies. The increase of connectivity is consistent across bands and widespread. These results shed new light on the effects of tDCS and may be of help in personalizing treatments in neurological disorders. PMID:29593782
Fonseca, Ana Catarina R G; Ferreiro, Elisabete; Oliveira, Catarina R; Cardoso, Sandra M; Pereira, Cláudia F
2013-12-01
Neurovascular dysfunction arising from endothelial cell damage is an early pathogenic event that contributes to the neurodegenerative process occurring in Alzheimer's disease (AD). Since the mechanisms underlying endothelial dysfunction are not fully elucidated, this study was aimed to explore the hypothesis that brain endothelial cell death is induced upon the sustained activation of the endoplasmic reticulum (ER) stress response by amyloid-beta (Aβ) peptide, which deposits in the cerebral vessels in many AD patients and transgenic mice. Incubation of rat brain endothelial cells (RBE4 cell line) with Aβ1-40 increased the levels of several markers of ER stress-induced unfolded protein response (UPR), in a time-dependent manner, and affected the Ca(2+) homeostasis due to the release of Ca(2+) from this intracellular store. Finally, Aβ1-40 was shown to activate both mitochondria-dependent and -independent apoptotic cell death pathways. Enhanced release of cytochrome c from mitochondria and activation of the downstream caspase-9 were observed in cells treated with Aβ1-40 concomitantly with caspase-12 activation. Furthermore, Aβ1-40 activated the apoptosis effectors' caspase-3 and promoted the translocation of apoptosis-inducing factor (AIF) to the nucleus demonstrating the involvement of caspase-dependent and -independent mechanisms during Aβ-induced endothelial cell death. In conclusion, our data demonstrate that ER stress plays a significant role in Aβ1-40-induced apoptotic cell death in brain endothelial cells suggesting that ER stress-targeted therapeutic strategies might be useful in AD to counteract vascular defects and ultimately neurodegeneration. © 2013.
The ontogeny of seizures induced by leucine-enkephalin and beta-endorphin.
Snead, O C; Stephens, H
1984-06-01
Rats ranging in postnatal age from 6 hours to 28 days were implanted with cortical and depth electrodes as well as an indwelling cannula in the lateral ventricle. We then administered varying amounts of the opiate peptides leucine-enkephalin and beta-endorphin intracerebroventricularly with continuous electroencephalographic monitoring. Leucine-enkephalin produced electrical seizure activity in rats as young as 2 days. beta-Endorphin administration was associated with seizures at the fifth postnatal day, with a high incidence of apnea resulting in death in animals as young as 6 hours. An adult seizure response to beta-endorphin and leucine-enkephalin was seen at 15 and 28 days of age, respectively. Naloxone blocked the seizure produced by these opiate peptides in all age groups. The data indicate that the opiate peptides are potent epileptogenic compounds in developing brain, that seizures induced by leucine-enkephalin differ from those caused by beta-endorphin, and that petit mal-like seizure activity can be an adult response in the rodent.
Kim, Sungwoo; Nishimoto, Satoru K; Bumgardner, Joel D; Haggard, Warren O; Gaber, M Waleed; Yang, Yunzhi
2010-05-01
We report here the development of a chitosan/beta-glycerophosphate(Ch/beta-GP) thermo-sensitive gel to deliver ellagic acid (EA) for cancer treatment. The properties of the Ch/beta-GP gels were characterized regarding chemical structure, surface morphology, and viscoelasticity. In vitro EA release rate from the EA loaded Ch/beta-GP gel and chitosan degradation rate were investigated. The anti-tumor effect of the EA loaded Ch/beta-GP gel on brain cancer cells (human U87 glioblastomas and rat C6 glioma cells) was evaluated by examining cell viability. Cell number and activity were monitored by the MTS assay. The Ch/beta-GP solution formed a heat-induced gel at body temperature, and the gelation temperature and time were affected by the final pH of the Ch/beta-GP solution. The lysozyme increased the EA release rate by 2.5 times higher than that in the absence of lysozyme. Dialyzed chitosan solution with final pH 6.3 greatly reduced the beta-GP needed for gelation, thereby significantly improving the biocompatibility of gel (p < 0.001). The chitosan gels containing 1% (w/v) of ellagic acid significantly reduced viability of U87 cells and C6 cells compared with the chitosan gels at 3 days incubation (p < 0.01, and p < 0.001, respectively). Copyright 2010 Elsevier Ltd. All rights reserved.
Modulation of post‐movement beta rebound by contraction force and rate of force development
Fry, Adam; Mullinger, Karen J.; O'Neill, George C.; Barratt, Eleanor L.; Morris, Peter G.; Bauer, Markus; Folland, Jonathan P.
2016-01-01
Abstract Movement induced modulation of the beta rhythm is one of the most robust neural oscillatory phenomena in the brain. In the preparation and execution phases of movement, a loss in beta amplitude is observed [movement related beta decrease (MRBD)]. This is followed by a rebound above baseline on movement cessation [post movement beta rebound (PMBR)]. These effects have been measured widely, and recent work suggests that they may have significant importance. Specifically, they have potential to form the basis of biomarkers for disease, and have been used in neuroscience applications ranging from brain computer interfaces to markers of neural plasticity. However, despite the robust nature of both MRBD and PMBR, the phenomena themselves are poorly understood. In this study, we characterise MRBD and PMBR during a carefully controlled isometric wrist flexion paradigm, isolating two fundamental movement parameters; force output, and the rate of force development (RFD). Our results show that neither altered force output nor RFD has a significant effect on MRBD. In contrast, PMBR was altered by both parameters. Higher force output results in greater PMBR amplitude, and greater RFD results in a PMBR which is higher in amplitude and shorter in duration. These findings demonstrate that careful control of movement parameters can systematically change PMBR. Further, for temporally protracted movements, the PMBR can be over 7 s in duration. This means accurate control of movement and judicious selection of paradigm parameters are critical in future clinical and basic neuroscientific studies of sensorimotor beta oscillations. Hum Brain Mapp 37:2493–2511, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc PMID:27061243
Onishi, Hideaki; Otsuru, Naofumi; Kojima, Sho; Miyaguchi, Shota; Saito, Kei; Inukai, Yasuto; Yamashiro, Koya; Sato, Daisuke; Tamaki, Hiroyuki; Shirozu, Hiroshi; Kameyama, Shigeki
2018-05-08
Paired-pulse depression (PPD) has been widely used to investigate the functional profiles of somatosensory cortical inhibition. However, PPD induced by somatosensory stimulation is variable, and the reasons for between- and within-subject PPD variability remains unclear. Therefore, the purpose of this study was to clarify the factors influencing PPD variability induced by somatosensory stimulation. The study participants were 19 healthy volunteers. First, we investigated the relationship between the PPD ratio of each component (N20m, P35m, and P60m) of the somatosensory magnetic field, and the alpha, beta, and gamma band changes in power [event-related desynchronization (ERD) and event-related synchronization (ERS)] induced by median nerve stimulation. Second, because brain-derived neurotrophic factor (BDNF) gene polymorphisms reportedly influence the PPD ratio, we assessed whether BDNF genotype influences PPD ratio variability. Finally, we evaluated the test-retest reliability of PPD and the alpha, beta, and gamma ERD/ERS induced by somatosensory stimulation. Significant positive correlations were observed between the P60m_PPD ratio and beta power change, and the P60m_PPD ratio was significantly smaller for the beta ERD group than for the beta ERS group. P35m_PPD was found to be robust and highly reproducible; however, P60m_PPD reproducibility was poor. In addition, the ICC values for alpha, beta, and gamma ERD/ERS were 0.680, 0.760, and 0.552 respectively. These results suggest that the variability of PPD for the P60m deflection may be influenced by the ERD/ERS magnitude, which is induced by median nerve stimulation.
The Reorganization of Human Brain Networks Modulated by Driving Mental Fatigue.
Chunlin Zhao; Min Zhao; Yong Yang; Junfeng Gao; Nini Rao; Pan Lin
2017-05-01
The organization of the brain functional network is associated with mental fatigue, but little is known about the brain network topology that is modulated by the mental fatigue. In this study, we used the graph theory approach to investigate reconfiguration changes in functional networks of different electroen-cephalography (EEG) bands from 16 subjects performing a simulated driving task. Behavior and brain functional networks were compared between the normal and driving mental fatigue states. The scores of subjective self-reports indicated that 90 min of simulated driving-induced mental fatigue. We observed that coherence was significantly increased in the frontal, central, and temporal brain regions. Furthermore, in the brain network topology metric, significant increases were observed in the clustering coefficient (Cp) for beta, alpha, and delta bands and the character path length (Lp) for all EEG bands. The normalized measures γ showed significant increases in beta, alpha, and delta bands, and λ showed similar patterns in beta and theta bands. These results indicate that functional network topology can shift the network topology structure toward a more economic but less efficient configuration, which suggests low wiring costs in functional networks and disruption of the effective interactions between and across cortical regions during mental fatigue states. Graph theory analysis might be a useful tool for further understanding the neural mechanisms of driving mental fatigue.
Matrix metalloproteinase 14 modulates diabetes and Alzheimer's disease cross-talk: a meta-analysis.
Cheng, Jack; Liu, Hsin-Ping; Lee, Cheng-Chun; Chen, Mei-Ying; Lin, Wei-Yong; Tsai, Fuu-Jen
2018-02-01
Diabetes mellitus is associated with dementia, but whether diabetes is associated with Alzheimer's disease remains controversial. Alzheimer's disease is characterized by amyloid beta aggregation. We hypothesized that genes, involved in amyloid beta degradation, may be altered due to diabetes and thus participate in progression of Alzheimer's disease. Expression profiling of amyloid beta-degrading enzymes in streptozotocin-induced diabetic mice and their correlation with expression of amyloid precursor protein in hippocampus of Alzheimer's disease patients were accessed. We found that matrix metalloproteinase 14 decreased in brain but not in other tissues of streptozotocin-induced diabetic mice, and was negatively correlated with expression of amyloid precursor protein in hippocampus of Alzheimer's disease patients. These findings suggested matrix metalloproteinase 14 may link insulin-deficient diabetes to Alzheimer's disease.
Anderer, P; Saletu, B; Pascual-Marqui, R D
2000-12-04
In a double-blind, placebo-controlled study, the effects of 20 mg buspirone - a 5-HT(1A) partial agonist - on regional electrical generators within the human brain were investigated utilizing three-dimensional EEG tomography. Nineteen-channel vigilance-controlled EEG recordings were carried out in 20 healthy subjects before and 1, 2, 4, 6 and 8 h after drug intake. Low-resolution electromagnetic tomography (LORETA; Key Institute for Brain-Mind Research, software: http://www.keyinst.unizh.ch) was computed from spectrally analyzed EEG data, and differences between drug- and placebo-induced changes were displayed as statistical parametric maps. Data were registered to the Talairach-Tournoux human brain atlas available as a digitized MRI (McConnell Brain Imaging Centre: http://www.bic.mni.mcgill.ca). At the pharmacodynamic peak (1st hour), buspirone increased theta and decreased fast alpha and beta sources. Areas of theta increase were mainly the left temporo-occipito-parietal and left prefrontal cortices, which is consistent with PET studies on buspirone-induced decreases in regional cerebral blood flow and fenfluramine-induced serotonin activation demonstrated by changes in regional cerebral glucose metabolism. In later hours (8th hour) with lower buspirone plasma levels, delta, theta, slow alpha and fast beta decreased, predominantly in the prefrontal and anterior limbic lobe. Whereas the results of the 1st hour speak for a slight CNS sedation (more in the sense of relaxation), those obtained in the 8th hour indicate activation. Thus, LORETA may provide useful and direct information on drug-induced changes in central nervous system function in man.
Tucsek, Zsuzsanna; Toth, Peter; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Szalai, Gabor; Sonntag, William E; Ungvari, Zoltan; Csiszar, Anna
2014-10-01
There is growing evidence that obesity has deleterious effects on the brain and cognitive function in the elderly population. However, the specific mechanisms through which aging and obesity interact to promote cognitive decline remain unclear. To test the hypothesis that aging exacerbates obesity-induced cerebromicrovascular damage and neuroinflammation, we compared young (7 months) and aged (24 months) high fat diet-fed obese C57BL/6 mice. Aging exacerbated obesity-induced systemic inflammation and blood-brain barrier disruption, as indicated by the increased circulating levels of proinflammatory cytokines and increased presence of extravasated immunoglobulin G in the hippocampus, respectively. Obesity-induced blood-brain barrier damage was associated with microglia activation, upregulation of activating Fc-gamma receptors and proinflammatory cytokines, and increased oxidative stress. Treatment of cultured primary microglia with sera derived from aged obese mice resulted in significantly more pronounced microglia activation and oxidative stress, as compared with treatment with young sera. Serum-induced activation and oxidative stress were also exacerbated in primary microglia derived from aged animals. Hippocampal expression of genes involved in regulation of the cellular amyloid precursor protein-dependent signaling pathways, beta-amyloid generation, and the pathogenesis of tauopathy were largely unaffected by obesity in aged mice. Collectively, obesity in aging is associated with a heightened state of systemic inflammation, which exacerbates blood-brain barrier disruption. The resulting neuroinflammation and oxidative stress in the mouse hippocampus likely contribute to the significant cognitive decline observed in aged obese animals. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Sabo-Attwood, Tara; Kroll, Kevin J; Denslow, Nancy D
2004-04-15
The expression levels of three estrogen receptor (ER) isotypes alpha, beta, and gamma were quantified in female largemouth bass (Micropterus salmoides) (LMB) liver, ovary, brain, and pituitary tissues. ER alpha and beta expression predominated in the liver, while ERs beta and gamma predominated in the other tissues. Temporally in females, ER alpha was highly up-regulated, ER gamma was slightly up-regulated, and ER beta levels remained unchanged in the liver when plasma 17-beta estradiol (E2) and vitellogenin (Vtg) levels were elevated in the spring. In ovarian tissue from these same fish, all three ERs were maximally expressed in the fall, during early oocyte development and prior to peak plasma E2 levels. When males were injected with E2, ER alpha was highly inducible, ER gamma was moderately up-regulated, and ER beta levels were not affected. None of the ER isotypes were induced by E2 in gonadal tissues. These results combined suggest that the ERs themselves are not regulated in the same manner by E2, and furthermore, do not contribute equally to the transcriptional regulation of genes involved in fish reproduction such as Vtg.
de Souza Gomes, Júlia Ariana; de Souza, Greicy Coelho; Berk, Michael; Cavalcante, Lígia Menezes; de Sousa, Francisca Cléa F; Budni, Josiane; de Lucena, David Freitas; Quevedo, João; Carvalho, André F; Macêdo, Danielle
2015-11-01
Activation of the brain angiotensin II type 1 receptor (AT1R) triggers pro-oxidant and pro-inflammatory mechanisms which are involved in the neurobiology of bipolar disorder (BD). Candesartan (CDS) is an AT1 receptor antagonist with potential neuroprotective properties. Herein we investigated CDS effects against oxidative, neurotrophic inflammatory and cognitive effects of amphetamine (AMPH)-induced mania. In the reversal protocol adult mice were given AMPH 2 mg/kg i.p. or saline and between days 8 and 14 received CDS 0.1, 0.3 or 1 mg/kg orally, lithium (Li) 47.5 mg/kg i.p., or saline. In the prevention treatment, mice were pretreated with CDS, Li or saline prior to AMPH. Locomotor activity and working memory performance were assessed. Glutathione (GSH), thiobarbituric acid-reactive substance (TBARS) and TNF-α levels were evaluated in the hippocampus (HC) and cerebellar vermis (CV). Brain-derived neurotrophic factor (BDNF) and glycogen synthase kinase 3-beta (GSK-3beta) levels were measured in the HC. CDS and Li prevented and reversed the AMPH-induced increases in locomotor activity. Only CDS prevented and reversed AMPH-induced working memory deficits. CDS prevented AMPH-induced alterations in GSH (HC and CV), TBARS (HC and CV), TNF-α (HC and CV) and BDNF (HC) levels. Li prevented alterations in BDNF and phospho-Ser9-GSK3beta. CDS reversed AMPH-induced alterations in GSH (HC and CV), TBARS (HC), TNF-α (CV) and BDNF levels. Li reversed AMPH-induced alterations in TNF-α (HC and CV) and BDNF (HC) levels. CDS is effective in reversing and preventing AMPH-induced behavioral and biochemical alterations, providing a rationale for the design of clinical trials investigating CDS׳s possible therapeutic effects. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.
The effect of inflammation and its reduction on brain plasticity in multiple sclerosis: MRI evidence
d'Ambrosio, Alessandro; Petsas, Nikolaos; Wise, Richard G.; Sbardella, Emilia; Allen, Marek; Tona, Francesca; Fanelli, Fulvia; Foster, Catherine; Carnì, Marco; Gallo, Antonio; Pantano, Patrizia; Pozzilli, Carlo
2016-01-01
Abstract Brain plasticity is the basis for systems‐level functional reorganization that promotes recovery in multiple sclerosis (MS). As inflammation interferes with plasticity, its pharmacological modulation may restore plasticity by promoting desired patterns of functional reorganization. Here, we tested the hypothesis that brain plasticity probed by a visuomotor adaptation task is impaired with MS inflammation and that pharmacological reduction of inflammation facilitates its restoration. MS patients were assessed twice before (sessions 1 and 2) and once after (session 3) the beginning of Interferon beta (IFN beta), using behavioural and structural MRI measures. During each session, 2 functional MRI runs of a visuomotor task, separated by 25‐minutes of task practice, were performed. Within‐session between‐run change in task‐related functional signal was our imaging marker of plasticity. During session 1, patients were compared with healthy controls. Comparison of patients' sessions 2 and 3 tested the effect of reduced inflammation on our imaging marker of plasticity. The proportion of patients with gadolinium‐enhancing lesions reduced significantly during IFN beta. In session 1, patients demonstrated a greater between‐run difference in functional MRI activity of secondary visual areas and cerebellum than controls. This abnormally large practice‐induced signal change in visual areas, and in functionally connected posterior parietal and motor cortices, was reduced in patients in session 3 compared with 2. Our results suggest that MS inflammation alters short‐term plasticity underlying motor practice. Reduction of inflammation with IFN beta is associated with a restoration of this plasticity, suggesting that modulation of inflammation may enhance recovery‐oriented strategies that rely on patients' brain plasticity. Hum Brain Mapp 37:2431–2445, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26991559
Avraham, Yosefa; Berry, Elliot M; Donskoy, Marina; Ahmad, Wiessam Abu; Vorobiev, Lia; Albeck, Amnon; Mankuta, David
2017-09-28
Autism-affected individuals are characterized by lower plasma oxytocin and its ectoenzyme regulator CD38. Oxytocin, a hypothalamic hormone secreted upon the release of CD38, plays a role in social behavior and bonding. All-trans retinoic acid is a potent inducer of CD38 and can be used as a novel therapeutic strategy in autism. We investigated the role of beta-carotene in rescuing autistic-like behavior in BALB/c and BTBR mice. Beta-carotene derivatives are preferred as they are neither toxic nor teratogenic. Beta-carotene at 0.1-5.0mg/kg was administered orally to BALB/c and BTBR newborn mice on days 1-7. They were tested at age 2-3 months for five behavioral tests for "autism"; in addition, brain CD38, oxytocin, oxytocin receptor, Brain Derived Neurotrophic Factor (BDNF) and retinoic acid receptor gene expression, serum oxytocin levels, and neurological score were evaluated. Beta-carotene administered at birth significantly increased T-maze alternations and led to longer time spent with an unfamiliar mouse in the "three-chamber test" and less time spent in the empty chamber. Furthermore, enhanced activity in the open field test; increased time spent in the reciprocal social interaction test; decreased grooming and bedding behaviors; and enhanced brain CD38, oxytocin, oxytocin receptor, BDNF, retinoic acid gene expression, and serum oxytocin levels. No changes in neurological score were observed. Beta-carotene oral supplementation to BALB/c and BTBR mice at birth significantly reduced restricted and stereotyped behaviors and interests, increased social interactions and communication, CD38, and oxytocin, probably by enhancing brain neuroplasticity without toxicity. Thus, beta-carotene administered after birth to newborns of families predisposed to "autism" has the potential to prevent/ameliorate" autistic like behavior". These results support further clinical studies. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Hae Jin; Park, Joongkyu; Seo, Su Ryeon
Down syndrome is mainly caused by a trisomy of chromosome 21. The Down syndrome critical region 2 (DSCR2) gene is located within a part of chromosome 21, the Down syndrome critical region (DSCR). To investigate the function of DSCR2, we sought to identify DSCR2-interacting proteins using yeast two-hybrid assays. A human fetal brain cDNA library was screened, and DSCR2 was found to interact with a member of the nuclear receptor superfamily, peroxisome proliferator-activated receptor {beta}, (PPAR{beta}). A co-immunoprecipitation assay demonstrated that DSCR2 physically interacts with PPAR{beta} in mammalian HEK293 cells. DSCR2 also inhibited the ligand-induced transcriptional activity of PPAR{beta}. Furthermore,more » PPAR{beta} also decreased the solubility of DSCR2, which increased levels of insoluble DSCR2.« less
Ho, C L; Li, C H
1985-03-01
Three synthetic analogs of human beta-endorphin (beta h-EP) (I, [Gln8, Gly31]-beta h-EP-Gly-Gly-NH2; II, [Arg9,12,24,28,29]-beta h-EP and III, [Cys11,26, Phe27, Gly31]-beta h-EP), which have been shown to possess potent inhibiting activity to beta h-EP-induced analgesia, were assayed in rat vas deferens and guinea pig ileum bioassay systems. In the rat vas deferens assay, relative potencies of these analogs were beta h-EP, 100; I, 30; II, 40; III, 1, whereas in the guinea pig ileum assay: beta h-EP, 100; I, 184; II, 81; III, 163. From previous studies on their analgesia potency in mice and opiate receptor-binding activity in rat brain membranes, their activity in rat vas deferens correlates well with the analgesic potency and the activity from guinea pig ileum assay shows good correlations with that from the opiate receptor-binding assay.
NASA Astrophysics Data System (ADS)
Kouyoumdjian, Hovig
The development of a non-invasive method for the detection of Alzheimer's disease is of high current interest, which can be critical in early diagnosis and in guiding preventive treatment of the disease. The aggregates of beta amyloids are a pathological hallmark of Alzheimer's disease. Carbohydrates such as sialic acid terminated gangliosides have been shown to play significant roles in initiation of amyloid aggregation. Herein, we report a biomimetic approach using sialic acid coated iron oxide superparamagnetic nanoparticles for in vitro detection in addition to the assessment of the in vivo mouse-BBB (Blood brain barrier) crossing of the BSA (bovine serum albumin)-modified ones. The sialic acid functionalized dextran nanoparticles were shown to bind with beta amyloids through several techniques including ELISA (enzyme linked immunosorbent assay), MRI (magnetic resonance imaging), TEM (transmission electron microscopy), gel electrophoresis and tyrosine fluorescence assay. The superparamagnetic nature of the nanoparticles allowed easy detection of the beta amyloids in mouse brains in both in vitro and ex vivo model by magnetic resonance imaging. Furthermore, the sialic acid nanoparticles greatly reduced beta amyloid induced cytotoxicity to SH-SY5Y neuroblastoma cells, highlighting the potential of the glyconanoparticles for detection and imaging of beta amyloids. Sialic acid functionalized BSA (bovine serum albumin) nanoparticles also showed significant binding to beta amyloids, through ELISA and ex vivo mouse brain MRI experiments. Alternatively, the BBB crossing was demonstrated by several techniques such as confocal microscopy, endocytosis, exocytosis assays and were affirmed by nanoparticles transcytosis assays through bEnd.3 endothelial cells. Finally, the BBB crossing was confirmed by analyzing the MRI signal of nanoparticle-injected CD-1 mice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, J.U.; Andrews, J.S.; Hiller, J.M.
This study was essentially an in vivo protection experiment designed to test further the hypothesis that stress induces release of endogenous opiods which then act at opioid receptors. Rats that were either subjected to restraint stress for 1 yr or unstressed were injected ICV with either saline or 2.5 ..mu..g of ..beta..-funaltrexamine (..beta..-FNA), an irreversible opioid antagonist that alkylates the mu-opioid receptor. Twenty-four hours later, subjects were tested unstressed for morphine analgesia or were sacrificed and opioid binding in brain was determined. (/sup 3/H)D-Ala/sup 2/NMePhe/sup 4/-Gly/sup 5/(ol)enkephalin (DAGO) served as a specific ligand for mu-opioid receptors, and (/sup 3/H)-bremazocine asmore » a general ligand for all opioid receptors. Rats injected with saline while stressed were significantly less sensitive to the analgesic action of morphine 24 hr later than were their unstressed counterparts. ..beta..-FNA pretreatment attenuated morphine analgesia in an insurmountable manner. Animals pretreated with ..beta..-FNA while stressed were significantly more sensitive to the analgesic effect of morphine than were animals that received ..beta..-FNA while unstressed. ..beta..-FNA caused small and similar decreases in (/sup 3/H)-DAGO binding in brain of both stressed and unstressed animals. 35 references, 2 figures, 2 tables.« less
Modulation of post-movement beta rebound by contraction force and rate of force development.
Fry, Adam; Mullinger, Karen J; O'Neill, George C; Barratt, Eleanor L; Morris, Peter G; Bauer, Markus; Folland, Jonathan P; Brookes, Matthew J
2016-07-01
Movement induced modulation of the beta rhythm is one of the most robust neural oscillatory phenomena in the brain. In the preparation and execution phases of movement, a loss in beta amplitude is observed [movement related beta decrease (MRBD)]. This is followed by a rebound above baseline on movement cessation [post movement beta rebound (PMBR)]. These effects have been measured widely, and recent work suggests that they may have significant importance. Specifically, they have potential to form the basis of biomarkers for disease, and have been used in neuroscience applications ranging from brain computer interfaces to markers of neural plasticity. However, despite the robust nature of both MRBD and PMBR, the phenomena themselves are poorly understood. In this study, we characterise MRBD and PMBR during a carefully controlled isometric wrist flexion paradigm, isolating two fundamental movement parameters; force output, and the rate of force development (RFD). Our results show that neither altered force output nor RFD has a significant effect on MRBD. In contrast, PMBR was altered by both parameters. Higher force output results in greater PMBR amplitude, and greater RFD results in a PMBR which is higher in amplitude and shorter in duration. These findings demonstrate that careful control of movement parameters can systematically change PMBR. Further, for temporally protracted movements, the PMBR can be over 7 s in duration. This means accurate control of movement and judicious selection of paradigm parameters are critical in future clinical and basic neuroscientific studies of sensorimotor beta oscillations. Hum Brain Mapp 37:2493-2511, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Brauchli, Christian; Elmer, Stefan; Rogenmoser, Lars; Burkhard, Anja; Jäncke, Lutz
2018-01-01
Auditory-visual (AV) synesthesia is a rare phenomenon in which an auditory stimulus induces a "concurrent" color sensation. Current neurophysiological models of synesthesia mainly hypothesize "hyperconnected" and "hyperactivated" brains, but differ in the directionality of signal transmission. The two-stage model proposes bottom-up signal transmission from inducer- to concurrent- to higher-order brain areas, whereas the disinhibited feedback model postulates top-down signal transmission from inducer- to higher-order- to concurrent brain areas. To test the different models of synesthesia, we estimated local current density, directed and undirected connectivity patterns in the intracranial space during 2 min of resting-state (RS) EEG in 11 AV synesthetes and 11 nonsynesthetes. AV synesthetes demonstrated increased parietal theta, alpha, and lower beta current density compared to nonsynesthetes. Furthermore, AV synesthetes were characterized by increased top-down signal transmission from the superior parietal lobe to the left color processing area V4 in the upper beta frequency band. Analyses of undirected connectivity revealed a global, synesthesia-specific hyperconnectivity in the alpha frequency band. The involvement of the superior parietal lobe even during rest is a strong indicator for its key role in AV synesthesia. By demonstrating top-down signal transmission in AV synesthetes, we provide direct support for the disinhibited feedback model of synesthesia. Finally, we suggest that synesthesia is a consequence of global hyperconnectivity. Hum Brain Mapp 39:522-531, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Sánchez, G M; Re, L; Giuliani, A; Núñez-Sellés, A J; Davison, G P; León-Fernández, O S
2000-12-01
We compared the protective abilities of Mangifera indica L. stem bark extract (Vimang) 50-250 mgkg(-1), mangiferin 50 mgkg(-1), vitamin C 100 mgkg(-1), vitamin E 100 mgkg(-1)and beta -carotene 50 mgkg(-1)against the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced oxidative damage in serum, liver, brain as well as in the hyper-production of reactive oxygen species (ROS) by peritoneal macrophages. The treatment of mice with Vimang, vitamin E and mangiferin reduced the TPA-induced production of ROS by the peritoneal macrophages by 70, 17 and 44%, respectively. Similarly, the H(2)O(2)levels were reduced by 55-73, 37 and 40%, respectively, when compared to the control group. The TPA-induced sulfhydryl group loss in liver homogenates was attenuated by all the tested antioxidants. Vimang, mangiferin, vitamin C plus E and beta -carotene decreased TPA-induced DNA fragmentation by 46-52, 35, 42 and 17%, respectively, in hepatic tissues, and by 29-34, 22, 41 and 17%, in brain tissues. Similar results were observed in respect to lipid peroxidation in serum, in hepatic mitochondria and microsomes, and in brain homogenate supernatants. Vimang exhibited a dose-dependent inhibition of TPA-induced biomolecule oxidation and of H(2)O(2)production by peritoneal macrophages. Even if Vimang, as well as other antioxidants, provided significant protection against TPA-induced oxidative damage, the former lead to better protection when compared with the other antioxidants at the used doses. Furthermore, the results indicated that Vimang is bioavailable for some vital target organs, including liver and brain tissues, peritoneal exudate cells and serum. Therefore, we conclude that Vimang could be useful to prevent the production of ROS and the oxidative tissue damages in vivo. Copyright 2000 Academic Press.
Short-lived brain state after cued motor imagery in naive subjects.
Pfurtscheller, G; Scherer, R; Müller-Putz, G R; Lopes da Silva, F H
2008-10-01
Multi-channel electroencephalography recordings have shown that a visual cue, indicating right hand, left hand or foot motor imagery, can induce a short-lived brain state in the order of about 500 ms. In the present study, 10 able-bodied subjects without any motor imagery experience (naive subjects) were asked to imagine the indicated limb movement for some seconds. Common spatial filtering and linear single-trial classification was applied to discriminate between two conditions (two brain states: right hand vs. left hand, left hand vs. foot and right hand vs. foot). The corresponding classification accuracies (mean +/- SD) were 80.0 +/- 10.6%, 83.3 +/- 10.2% and 83.6 +/- 8.8%, respectively. Inspection of central mu and beta rhythms revealed a short-lasting somatotopically specific event-related desynchronization (ERD) in the upper mu and/or beta bands starting approximately 300 ms after the cue onset and lasting for less than 1 s.
Luoma, Jarkko; Pekkonen, Eero; Airaksinen, Katja; Helle, Liisa; Nurminen, Jussi; Taulu, Samu; Mäkelä, Jyrki P
2018-06-22
Advanced Parkinson's disease (PD) is characterized by an excessive oscillatory beta band activity in the subthalamic nucleus (STN). Deep brain stimulation (DBS) of STN alleviates motor symptoms in PD and suppresses the STN beta band activity. The effect of DBS on cortical sensorimotor activity is more ambiguous; both increases and decreases of beta band activity have been reported. Non-invasive studies with simultaneous DBS are problematic due to DBS-induced artifacts. We recorded magnetoencephalography (MEG) from 16 advanced PD patients with and without STN DBS during rest and wrist extension. The strong magnetic artifacts related to stimulation were removed by temporal signal space separation. MEG oscillatory activity at 5-25 Hz was suppressed during DBS in a widespread frontoparietal region, including the sensorimotor cortex identified by the cortico-muscular coherence. The strength of suppression did not correlate with clinical improvement. Our results indicate that alpha and beta band oscillations are suppressed at the frontoparietal cortex by STN DBS in PD. Copyright © 2018. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noy,D.; Solomonov, I.; Sinkevich, O.
2008-01-01
The role of zinc, an essential element for normal brain function, in the pathology of Alzheimer's disease (AD) is poorly understood. On one hand, physiological and genetic evidence from transgenic mouse models supports its pathogenic role in promoting the deposition of the amyloid {beta}-protein (A{beta}) in senile plaques. On the other hand, levels of extracellular ('free') zinc in the brain, as inferred by the levels of zinc in cerebrospinal fluid, were found to be too low for inducing A{beta} aggregation. Remarkably, the release of transient high local concentrations of zinc during rapid synaptic events was reported. The role of suchmore » free zinc pulses in promoting A{beta} aggregation has never been established. Using a range of time-resolved structural and spectroscopic techniques, we found that zinc, when introduced in millisecond pulses of micromolar concentrations, immediately interacts with A{beta} 1-40 and promotes its aggregation. These interactions specifically stabilize non-fibrillar pathogenic related aggregate forms and prevent the formation of A{beta} fibrils (more benign species) presumably by interfering with the self-assembly process of A{beta}. These in vitro results strongly suggest a significant role for zinc pulses in A{beta} pathology. We further propose that by interfering with A{beta} self-assembly, which leads to insoluble, non-pathological fibrillar forms, zinc stabilizes transient, harmful amyloid forms. This report argues that zinc represents a class of molecular pathogens that effectively perturb the self-assembly of benign A{beta} fibrils, and stabilize harmful non-fibrillar forms.« less
Hsu, Chien-Chang; Cheng, Ching-Wen; Chiu, Yi-Shiuan
2017-02-15
Electroencephalograms can record wave variations in any brain activity. Beta waves are produced when an external stimulus induces logical thinking, computation, and reasoning during consciousness. This work uses the beta wave of major scale working memory N-back tasks to analyze the differences between young musicians and non-musicians. After the feature analysis uses signal filtering, Hilbert-Huang transformation, and feature extraction methods to identify differences, k-means clustering algorithm are used to group them into different clusters. The results of feature analysis showed that beta waves significantly differ between young musicians and non-musicians from the low memory load of working memory task. Copyright © 2017 Elsevier B.V. All rights reserved.
Tomassini, Valentina; d'Ambrosio, Alessandro; Petsas, Nikolaos; Wise, Richard G; Sbardella, Emilia; Allen, Marek; Tona, Francesca; Fanelli, Fulvia; Foster, Catherine; Carnì, Marco; Gallo, Antonio; Pantano, Patrizia; Pozzilli, Carlo
2016-07-01
Brain plasticity is the basis for systems-level functional reorganization that promotes recovery in multiple sclerosis (MS). As inflammation interferes with plasticity, its pharmacological modulation may restore plasticity by promoting desired patterns of functional reorganization. Here, we tested the hypothesis that brain plasticity probed by a visuomotor adaptation task is impaired with MS inflammation and that pharmacological reduction of inflammation facilitates its restoration. MS patients were assessed twice before (sessions 1 and 2) and once after (session 3) the beginning of Interferon beta (IFN beta), using behavioural and structural MRI measures. During each session, 2 functional MRI runs of a visuomotor task, separated by 25-minutes of task practice, were performed. Within-session between-run change in task-related functional signal was our imaging marker of plasticity. During session 1, patients were compared with healthy controls. Comparison of patients' sessions 2 and 3 tested the effect of reduced inflammation on our imaging marker of plasticity. The proportion of patients with gadolinium-enhancing lesions reduced significantly during IFN beta. In session 1, patients demonstrated a greater between-run difference in functional MRI activity of secondary visual areas and cerebellum than controls. This abnormally large practice-induced signal change in visual areas, and in functionally connected posterior parietal and motor cortices, was reduced in patients in session 3 compared with 2. Our results suggest that MS inflammation alters short-term plasticity underlying motor practice. Reduction of inflammation with IFN beta is associated with a restoration of this plasticity, suggesting that modulation of inflammation may enhance recovery-oriented strategies that rely on patients' brain plasticity. Hum Brain Mapp 37:2431-2445, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
In situ immunodetection of neuronal caspase-3 activation in Alzheimer disease.
Selznick, L A; Holtzman, D M; Han, B H; Gökden, M; Srinivasan, A N; Johnson, E M; Roth, K A
1999-09-01
The mechanism by which cells die in Alzheimer disease (AD) is unknown. Several investigators speculate that much of the cell loss may be due to apoptosis, a highly regulated form of programmed cell death. Caspase-3 is a critical effector of neuronal apoptosis and may be inappropriately activated in AD. To address this possibility, we examined cortical and hippocampal brain sections from AD patients, as well as 2 animal models of AD, for in situ evidence of caspase-3 activation. We report here that senile plaques and neurofibrillary tangles in the AD brain are not associated with caspase-3 activation. Furthermore, amyloid beta (A beta) deposition in the APPsw transgenic mouse model of AD does not result in caspase-3 activation despite the ability of A beta to induce caspase-3 activation and neuronal apoptosis in vitro. AD brain sections do, however, exhibit caspase-3 activation in hippocampal neurons undergoing granulovacuolar degeneration. Our data suggests that caspase-3 does not have a significant role in the widespread neuronal cell death that occurs in AD, but may contribute to the specific loss of hippocampal neurons involved in learning and memory.
Chung, F Z; Lentes, K U; Gocayne, J; Fitzgerald, M; Robinson, D; Kerlavage, A R; Fraser, C M; Venter, J C
1987-01-26
Two cDNA clones, lambda-CLFV-108 and lambda-CLFV-119, encoding for the beta-adrenergic receptor, have been isolated from a human brain stem cDNA library. One human genomic clone, LCV-517 (20 kb), was characterized by restriction mapping and partial sequencing. The human brain beta-receptor consists of 413 amino acids with a calculated Mr of 46480. The gene contains three potential glucocorticoid receptor-binding sites. The beta-receptor expressed in human brain was homology with rodent (88%) and avian (52%) beta-receptors and with porcine muscarinic cholinergic receptors (31%), supporting our proposal [(1984) Proc. Natl. Acad. Sci. USA 81, 272 276] that adrenergic and muscarinic cholinergic receptors are structurally related. This represents the first cloning of a neurotransmitter receptor gene from human brain.
Shiraishi, Jun-Ichi; Yanagita, Kouchi; Fujita, Masanori; Bungo, Takashi
2008-07-18
Pro-opiomelanocortin (POMC) neurons in the hypothalamus are direct targets of peripheral satiety signals, such as leptin and insulin in mammals. The stimulation of these signals activates hypothalamic POMC neurons and elevates POMC-derived melanocortin peptides that inhibit food intake in mammals. On the other hand, it has been recognized that beta-endorphin, a post-translational processing of POMC, acts in an autoreceptor manner to the micro-opioid receptor (MOR) on POMC neurons, diminishing POMC neuronal activity in mammals. Recently, we found that central insulin functions as an anorexic peptide in chicks. Thus, the present study was done to elucidate whether beta-endorphin affects the activation of POMC neurons by insulin in neonatal chicks. Consequently, quantitative real-time PCR analysis shows that intracerebroventricular (ICV) injection of insulin with beta-endorphin significantly decreases brain POMC mRNA expression when compared with insulin alone. In addition, co-injection of MOR agonist (beta-endorphin or [d-Ala2, N-MePhe4, Gly5-ol]-enkephalin (DAMGO)) significantly attenuates insulin-induced hypophagia in chicks. These data suggest that beta-endorphin regulates the activity of the central melanocortin system, and its activation may provide an inhibitory feedback mechanism in the brain of neonatal chicks.
Komatsu, M; Hiramatsu, M
2000-08-07
Mixed natural antioxidants can be combined in a prophylactic food against age related disease involving reactive oxygen species. beta-Catechin is an antioxidant drink, having free radical scavenging activities. It contains green tea extract as a main component as well as ascorbic acid, sunflower seed extract, dunaliella carotene and natural vitamin E. In the present study, we examined the effect of beta-catechin on lipid peroxide formation and superoxide dismutase (SOD) activity in aged rat brain and the effect on 8-hydroxy-2'-deoxyguanosine (8-OHdG) in ipsilateral cortex, 30 min after ferric chloride solution was injected into the left cortex of rats. beta-Catechin solution was orally administered to aged rats and normal rats for 1 month. One-month administration of beta-catechin solution increased SOD activity in the mitochondria fraction of striatum and midbrain and decreased thiobarbiturate reactive substance formation in the cortex and cerebellum of aged rats. It also inhibited 8-OHdG formation in the ipsilateral cortex 30 min after injection of ferric chloride solution. These results suggest that beta-catechin is a suitable prophylactic beverage against age-related neurological diseases associated with reactive oxygen species.
NASA Astrophysics Data System (ADS)
Shah, Shahid Ali; Yoon, Gwang Ho; Ahmad, Ashfaq; Ullah, Faheem; Amin, Faiz Ul; Kim, Myeong Ok
2015-09-01
The adverse effects of nanoscale-alumina (Al2O3-NPs) have been previously demonstrated in both in vitro and in vivo studies, whereas little is known about their mechanism of neurotoxicity. It is the goal of this research to determine the toxic effects of nano-alumina on human neuroblastoma SH-SY5Y and mouse hippocampal HT22 cells in vitro and on ICR female mice in vivo. Nano-alumina displayed toxic effects on SH-SY5Y cell lines in three different concentrations also increased aluminium abundance and induced oxidative stress in HT22 cells. Nano-alumina peripherally administered to ICR female mice for three weeks increased brain aluminium and ROS production, disturbing brain energy homeostasis, and led to the impairment of hippocampus-dependent memory. Most importantly, these nano-particles induced Alzheimer disease (AD) neuropathology by enhancing the amyloidogenic pathway of Amyloid Beta (Aβ) production, aggregation and implied the progression of neurodegeneration in the cortex and hippocampus of these mice. In conclusion, these data demonstrate that nano-alumina is toxic to both cells and female mice and that prolonged exposure may heighten the chances of developing a neurodegenerative disease, such as AD.
Dopamine transporter-dependent and -independent actions of trace amine beta-phenylethylamine.
Sotnikova, Tatyana D; Budygin, Evgeny A; Jones, Sara R; Dykstra, Linda A; Caron, Marc G; Gainetdinov, Raul R
2004-10-01
Beta-phenylethylamine (beta-PEA) is an endogenous amine that is found in trace amounts in the brain. It is believed that the locomotor-stimulating action of beta-PEA, much like amphetamine, depends on its ability to increase extracellular dopamine (DA) concentrations owing to reversal of the direction of dopamine transporter (DAT)-mediated DA transport. beta-PEA can also bind directly to the recently identified G protein-coupled receptors, but the physiological significance of this interaction is unclear. To assess the mechanism by which beta-PEA mediates its effects, we compared the neurochemical and behavioral effects of this amine in wild type (WT), heterozygous and 'null' DAT mutant mice. In microdialysis studies, beta-PEA, administered either systemically or locally via intrastriatal infusion, produced a pronounced outflow of striatal DA in WT mice whereas no increase was detected in mice lacking the DAT (DAT-KO mice). Similarly, in fast-scan voltammetry studies beta-PEA did not alter DA release and clearance rate in striatal slices from DAT-KO mice. In behavioral studies beta-PEA produced a robust but transient increase in locomotor activity in WT and heterozygous mice. In DAT-KO mice, whose locomotor activity and stereotypy are increased in a novel environment, beta-PEA (10-100 mg/kg) exerted a potent inhibitory action. At high doses, beta-PEA induced stereotypies in WT and heterozygous mice; some manifestations of stereotypy were also observed in the DAT-KO mice. These data demonstrate that the DAT is required for the striatal DA-releasing and hyperlocomotor actions of beta-PEA. The inhibitory action on hyperactivity and certain stereotypies induced by beta-PEA in DAT-KO mice indicate that targets other than the DAT are responsible for these effects.
Loss of proteostasis induced by amyloid beta peptide in brain endothelial cells.
Fonseca, Ana Catarina; Oliveira, Catarina R; Pereira, Cláudia F; Cardoso, Sandra M
2014-06-01
Abnormal accumulation of amyloid-β (Aβ) peptide in the brain is a pathological hallmark of Alzheimer's disease (AD). In addition to neurotoxic effects, Aβ also damages brain endothelial cells (ECs) and may thus contribute to the degeneration of cerebral vasculature, which has been proposed as an early pathogenic event in the course of AD and is able to trigger and/or potentiate the neurodegenerative process and cognitive decline. However, the mechanisms underlying Aβ-induced endothelial dysfunction are not completely understood. Here we hypothesized that Aβ impairs protein quality control mechanisms both in the secretory pathway and in the cytosol in brain ECs, leading cells to death. In rat brain RBE4 cells, we demonstrated that Aβ1-40 induces the failure of the ER stress-adaptive unfolded protein response (UPR), deregulates the ubiquitin-proteasome system (UPS) decreasing overall proteasome activity with accumulation of ubiquitinated proteins and impairs the autophagic protein degradation pathway due to failure in the autophagic flux, which culminates in cell demise. In conclusion, Aβ deregulates proteostasis in brain ECs and, as a consequence, these cells die by apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.
Dinarello, C A; Cannon, J G; Mancilla, J; Bishai, I; Lees, J; Coceani, F
1991-10-25
Fever induced by endogenous as well as exogenous pyrogens is often prevented by cyclooxygenase inhibitors; endogenous pyrogens stimulate prostaglandin E2 (PGE2) in or near the thermoregulatory centers of the brain. The cytokines, interleukin-1 (IL-1) and tumor necrosis factor (TNF), are two pyrogens which stimulate brain PGE2 formation during fever and also increase PGE2 synthesis in human mononuclear cells in vitro. In the present study, we examined whether interleukin-6 (IL-6) stimulates PGE2 formation in a manner similar to IL-1 and TNF. Both glycosylated and non-glycosylated forms of recombinant human IL-6 were tested. Following intravenous injection into rabbits, the glycosylated IL-6 was more pyrogenic than the non-glycosylated form and there was no evidence of synergy in the production of fever when IL-6 and IL-1 were given simultaneously. IL-6 fever was blocked by prior administration of the cyclooxygenase inhibitor ibuprofen. IL-6 was also pyrogenic in the cat by either the systemic or the intraventricular route. However, in both species, IL-6 was less effective than IL-1 beta. When given intraventricularly to cats, IL-6 produced an increase in PGE2 levels of the cerebrospinal fluid in parallel with the rise in body temperature. In the latter respect, IL-6 imitated IL-1 beta; however, IL-6 from 0.15-15 micrograms/ml did not increase mononuclear cell PGE2 production in vitro whereas IL-1 beta induced 20-30-fold increases in PGE2 at 100 ng/ml.(ABSTRACT TRUNCATED AT 250 WORDS)
Catalytic antibodies to amyloid beta peptide in defense against Alzheimer disease.
Taguchi, Hiroaki; Planque, Stephanie; Nishiyama, Yasuhiro; Szabo, Paul; Weksler, Marc E; Friedland, Robert P; Paul, Sudhir
2008-05-01
Immunoglobulins (Igs) that bind amyloid beta peptide (Abeta) are under clinical trials for immunotherapy of Alzheimer disease (AD). We have identified IgMs and recombinant Ig fragments that hydrolyze Abeta. Hydrolysis of peripheral Abeta by the IgMs may induce increased Abeta release from the brain. The catalytic IgMs are increased in AD patients, presumably reflecting a protective autoimmune response. Reduced Abeta aggregation and neurotoxicity attributable to the catalytic function were evident. These findings provide a foundation for development of catalytic Igs for AD immunotherapy.
Acute high-altitude hypoxic brain injury: Identification of ten differential proteins
Li, Jianyu; Qi, Yuting; Liu, Hui; Cui, Ying; Zhang, Li; Gong, Haiying; Li, Yaxiao; Li, Lingzhi; Zhang, Yongliang
2013-01-01
Hypobaric hypoxia can cause severe brain damage and mitochondrial dysfunction, and is involved in hypoxic brain injury. However, little is currently known about the mechanisms responsible for mitochondrial dysfunction in hypobaric hypoxic brain damage. In this study, a rat model of hypobaric hypoxic brain injury was established to investigate the molecular mechanisms associated with mitochondrial dysfunction. As revealed by two-dimensional electrophoresis analysis, 16, 21, and 36 differential protein spots in cerebral mitochondria were observed at 6, 12, and 24 hours post-hypobaric hypoxia, respectively. Furthermore, ten protein spots selected from each hypobaric hypoxia subgroup were similarly regulated and were identified by mass spectrometry. These detected proteins included dihydropyrimidinase-related protein 2, creatine kinase B-type, isovaleryl-CoA dehydrogenase, elongation factor Ts, ATP synthase beta-subunit, 3-mercaptopyruvate sulfurtransferase, electron transfer flavoprotein alpha-subunit, Chain A of 2-enoyl-CoA hydratase, NADH dehydrogenase iron-sulfur protein 8 and tropomyosin beta chain. These ten proteins are all involved in the electron transport chain and the function of ATP synthase. Our findings indicate that hypobaric hypoxia can induce the differential expression of several cerebral mitochondrial proteins, which are involved in the regulation of mitochondrial energy production. PMID:25206614
Caraci, Filippo; Chisari, Mariangela; Frasca, Giuseppina; Canonico, Pier Luigi; Battaglia, Angelo; Calafiore, Marco; Battaglia, Giuseppe; Bosco, Paolo; Nicoletti, Ferdinando; Copani, Agata; Sortino, Maria Angela
2005-06-14
Nicergoline, a drug used for the treatment of Alzheimer's disease and other types of dementia, was tested for its ability to protect neurons against beta-amyloid toxicity. Pure cultures of rat cortical neurons were challenged with a toxic fragment of beta-amyloid peptide (betaAP(25-35)) and toxicity was assessed after 24 h. Micromolar concentrations of nicergoline or its metabolite, MDL, attenuated betaAP(25-35)-induced neuronal death, whereas MMDL (another metabolite of nicergoline), the alpha1-adrenergic receptor antagonist, prazosin, or the serotonin 5HT-2 receptor antagonist, methysergide, were inactive. Nicergoline increased the basal levels of Bcl-2 and reduced the increase in Bax levels induced by beta-amyloid, indicating that the drug inhibits the execution of an apoptotic program in cortical neurons. In mixed cultures of rat cortical cells containing both neurons and astrocytes, nicergoline and MDL were more efficacious than in pure neuronal cultures in reducing beta-amyloid neurotoxicity. Experiments carried out in pure cultures of astrocytes showed that a component of neuroprotection was mediated by a mechanism of glial-neuronal interaction. The conditioned medium of cultured astrocytes treated with nicergoline or MDL for 72-96 h (collected 24 h after drug withdrawal) was neuroprotective when transferred to pure neuronal cultures challenged with beta-amyloid. In cultured astrocytes, nicergoline increased the intracellular levels of transforming-growth factor-beta and glial-derived neurotrophic factor, two trophic factors that are known to protect neurons against beta-amyloid toxicity. These results raise the possibility that nicergoline reduces neurodegeneration in the Alzheimer's brain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulholland, G.K.; Zheng, Q.H.; Zhou, F.C.
1996-05-01
There is considerable interest in measuring serotonin (5HT) and dopamine (DA) function in the human brain. Altered levels of 5HT and DA are recognized in drug abuse, neurotoxicities, psychiatric disorders, and neurodegenerative conditions including Alzheimer`s and Parkinson`s disease. Several phenyltropane analogs of cocaine bind tightly to both DA and 5HT uptake proteins. We have made a new agent from this class called {beta}CNT, 2{beta}-carboxymethyl-3{beta}-(2-naphthyl)-tropane, the isosteric O-for-CH{sub 2} analog of a compound reported to have among the highest measured affinities for DA and 5HT transporters and studied its in vivo brain distributions in animals for the first time. Optically puremore » {beta}CNT was made from cocaine, and labeled at the O-methyl position by esterification of {beta}CNT-acid with [C-11]CH{sub 3}OTfl under conditions similar to Wilson`s. HPLC-purified (99+%) final products (15-50% eob yield from CO{sub 2}, 40 min synth) had specific activities 0.1-1.2 Ci/{mu}mol at the time of injection. Preliminary [C-11]{beta}{beta}CNT rodent distribution showed very high brain uptake (3% ID at 60 min) and localization (striat: fr cort: hypo: cer: blood, 11: 5: 4: 1: 06). {beta}CNT-PET studies in juvenile pigs (5-20 mCi, 20-35 kg) found rapid brain uptake, and prominent retention (85 min) in midbrain, anterior brainstem and striatum, followed by cortex and olfactory bulb. Paroxetine pretreatment (5HT uptake blocker, 2mg/kg), diminished retention in most brain areas; nomifensine (DA/NE uptake blocker, 6 mg/kg) reduced striatum selectively. Direct comparisons of [C-11]{beta}CNT with other PET transporter radioligands {beta}CFT, {beta}CIT, and {beta}CTT (RTI-32) in the same pig found {beta}CNT had highest overall brain uptake among the agents. These initial results suggest {beta}CNT has favorable properties for imaging both 5HT and DA transporters in vivo, and further evaluation of its potential as a human PET agent is warranted.« less
Saito, Takashi; Iwata, Nobuhisa; Tsubuki, Satoshi; Takaki, Yoshie; Takano, Jiro; Huang, Shu-Ming; Suemoto, Takahiro; Higuchi, Makoto; Saido, Takaomi C
2005-04-01
Expression of somatostatin in the brain declines during aging in various mammals including apes and humans. A prominent decrease in this neuropeptide also represents a pathological characteristic of Alzheimer disease. Using in vitro and in vivo paradigms, we show that somatostatin regulates the metabolism of amyloid beta peptide (Abeta), the primary pathogenic agent of Alzheimer disease, in the brain through modulating proteolytic degradation catalyzed by neprilysin. Among various effector candidates, only somatostatin upregulated neprilysin activity in primary cortical neurons. A genetic deficiency of somatostatin altered hippocampal neprilysin activity and localization, and increased the quantity of a hydrophobic 42-mer form of Abeta, Abeta(42), in a manner similar to presenilin gene mutations that cause familial Alzheimer disease. These results indicate that the aging-induced downregulation of somatostatin expression may be a trigger for Abeta accumulation leading to late-onset sporadic Alzheimer disease, and suggest that somatostatin receptors may be pharmacological-target candidates for prevention and treatment of Alzheimer disease.
Hassanain, M; Bhatt, S; Zalcman, S; Siegel, A
2005-06-28
Recently, this laboratory provided evidence that interleukin-1beta (IL-1beta), an immune and brain-derived cytokine, microinjected into the medial hypothalamus, potentiates defensive rage behavior in the cat elicited from the midbrain periaqueductal gray (PAG), and that such effects are blocked by a 5-HT2 receptor antagonist. Since this finding represents the first time that a brain cytokine has been shown to affect defensive rage behavior, the present study replicated and extended these findings by documenting the specific potentiating role played by IL-1beta Type 1 receptor (IL-1RI), and the anatomical relationship between IL-1beta and 5-HT2 receptors in the medial hypothalamus. IL-1beta (10 ng) microinjected into the medial hypothalamus induced two separate phases of facilitation, one at 60 min and another at 180 min, post-injection. In turn, these effects were blocked with pretreatment of the selective IL-1 Type I receptor antagonist (IL-1ra) (10 ng), demonstrating the selectivity of the effects of IL-1beta on medial hypothalamic neurons upon PAG-elicited defensive rage behavior. The next stage of the study utilized immunohistochemical methods to demonstrate that IL-1beta and 5-HT2 receptors were present on the same neurons within regions of the medial hypothalamus where IL-1beta and the IL-1beta receptor antagonists were administered. This provided anatomical evidence suggesting a relationship between IL-1RI and 5-HT2 receptors in the medial hypothalamus that is consistent with the previous pharmacological observations in our laboratory. The overall findings show that activation of IL-1RI in the medial hypothalamus potentiates defensive rage behavior in the cat and that these effects may also be linked to the presence of 5-HT2 receptors on the same groups of neurons in this region of hypothalamus.
The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson's disease.
Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M; Tan, Huiling; Brown, Peter
2017-04-01
Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson's disease, elevations in beta activity (13-35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson's disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could be more efficacious than conventional continuous deep brain stimulation in the treatment of Parkinson's disease, and helps inform how adaptive deep brain stimulation might best be delivered. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved.
Ovadia, H; Wohlman, A; Mechoulam, R; Weidenfeld, J
1995-02-01
In the present study we have characterized the hypothermic effect of the psychoactive cannabinoid HU-210, by investigating its interaction with the endogenous pyrogens, IL-1 and PGE2. We also studied the involvement of the adrenergic system in mediation of this hypothermic effect. Injection of HU-210 directly into the preoptic area caused a dose dependent reduction of rectal temperature from 37 to 32.1 degrees C. Injection of the non-psychoactive analog, HU-211 which does not bind to brain cannabinoid receptor, did not affect body temperature. Injection of the adrenergic agonists, CGP-12177 and clonidine (beta, and alpha adrenergic agonists, respectively) abrogated the hypothermia induced by HU-210. Injection of the adrenergic antagonists, prazosin (alpha 1) and propranolol (beta) enhanced the hypothermic effect of HU-210. Intracerebral administration of IL-1 or PGE2 to rats pretreated with HU-210 caused a transient inhibition of the hypothermia. The ex vivo rate of basal or bacterial endotoxin-induced synthesis of PGE2 by different brain regions, including the preoptic area was not affected by HU-210 administration. These results suggest that the synthetic cannabinoid HU-210 acts in the preoptic area, probably via the brain cannabinoid receptor to induce hypothermia. The hypothermic effect can be antagonized by adrenergic agonists and enhanced by adrenergic antagonists. HU-210 does not interfere with the pyrogenic effect of IL-1 or PGE2.
Sleep deprivation compromises resting-state emotional regulatory processes: An EEG study.
Zhang, Jinxiao; Lau, Esther Yuet Ying; Hsiao, Janet H
2018-03-01
Resting-state spontaneous neural activities consume far more biological energy than stimulus-induced activities, suggesting their significance. However, existing studies of sleep loss and emotional functioning have focused on how sleep deprivation modulates stimulus-induced emotional neural activities. The current study aimed to investigate the impacts of sleep deprivation on the brain network of emotional functioning using electroencephalogram during a resting state. Two established resting-state electroencephalogram indexes (i.e. frontal alpha asymmetry and frontal theta/beta ratio) were used to reflect the functioning of the emotion regulatory neural network. Participants completed an 8-min resting-state electroencephalogram recording after a well-rested night or 24 hr sleep deprivation. The Sleep Deprivation group had a heightened ratio of the power density in theta band to beta band (theta/beta ratio) in the frontal area than the Sleep Control group, suggesting an effective approach with reduced frontal cortical regulation of subcortical drive after sleep deprivation. There was also marginally more left-lateralized frontal alpha power (left frontal alpha asymmetry) in the Sleep Deprivation group compared with the Sleep Control group. Besides, higher theta/beta ratio and more left alpha lateralization were correlated with higher sleepiness and lower vigilance. The results converged in suggesting compromised emotional regulatory processes during resting state after sleep deprivation. Our work provided the first resting-state neural evidence for compromised emotional functioning after sleep loss, highlighting the significance of examining resting-state neural activities within the affective brain network as a default functional mode in investigating the sleep-emotion relationship. © 2018 European Sleep Research Society.
Moncrieff, J
1989-11-24
Increased blood aldehyde levels, as occur in alcohol intoxication, could lead to the formation of beta-carbolines such as harmane by condensation with indoleamines. Endogenous beta-carbolines, therefore, should occur in specific brain areas where indoleamine concentrations are high, whilst exogenous beta-carbolines should exhibit an even distribution. The author presents direct and sensitive methods for assaying the beta-carbolines harmane, harmine and harmaline in brain tissue, cerebrospinal fluid and plasma at picogram sample concentrations using reversed-phase high-performance liquid chromatography with fluorimetric detection and minimal sample preparation. Using these assay methods, it was found that the distribution of beta-carbolines from a source exogenous to the brain results in a relatively even distribution within the brain tissue.
Perry, TracyAnn; Greig, Nigel H
2002-12-01
Glucagon-like peptide-1 (7-36)-amide (GLP-1) is an insulinotropic hormone, secreted from the enteroendocrine L cells of the intestinal tract in response to nutrient ingestion. It enhances pancreatic islet beta-cell proliferation and glucose-dependent insulin secretion, and lowers blood glucose in patients with type 2 diabetes mellitus. GLP-1 receptors, which are coupled to the cyclic AMP second messenger pathway, are expressed throughout the brains of rodents and humans. The chemoarchitecture of receptor distribution in the brain correlates well with a central role for GLP-1 in the regulation of food intake and response to aversive stress. We have recently reported that GLP-1 and several longer acting analogs that bind at the GLP-1 receptor, possess neurotrophic properties, and offer protection against glutamate-induced apoptosis and oxidative injury in cultured neuronal cells. Furthermore, GLP-1 can modify processing of the amyloid beta- protein precursor in cell culture and dose-dependently reduces amyloid beta-peptide levels in the brain in vivo. As such, this review discusses the known role of GLP-1 within the central nervous system, and considers the potential of GLP-1 and analogs as novel therapeutic targets for intervention in Alzheimer's disease (AD) and potentially other central and peripheral neurodegenerative conditions.
The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease
Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M.; Tan, Huiling
2017-01-01
Abstract Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson’s disease, elevations in beta activity (13–35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson’s disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could be more efficacious than conventional continuous deep brain stimulation in the treatment of Parkinson’s disease, and helps inform how adaptive deep brain stimulation might best be delivered. PMID:28334851
Kempuraj, Duraisamy; Thangavel, Ramasamy; Selvakumar, Govindhasamy P; Zaheer, Smita; Ahmed, Mohammad E; Raikwar, Sudhanshu P; Zahoor, Haris; Saeed, Daniyal; Natteru, Prashant A; Iyer, Shankar; Zaheer, Asgar
2017-01-01
Neuroinflammatory response is primarily a protective mechanism in the brain. However, excessive and chronic inflammatory responses can lead to deleterious effects involving immune cells, brain cells and signaling molecules. Neuroinflammation induces and accelerates pathogenesis of Parkinson's disease (PD), Alzheimer's disease (AD) and Multiple sclerosis (MS). Neuroinflammatory pathways are indicated as novel therapeutic targets for these diseases. Mast cells are immune cells of hematopoietic origin that regulate inflammation and upon activation release many proinflammatory mediators in systemic and central nervous system (CNS) inflammatory conditions. In addition, inflammatory mediators released from activated glial cells induce neurodegeneration in the brain. Systemic inflammation-derived proinflammatory cytokines/chemokines and other factors cause a breach in the blood brain-barrier (BBB) thereby allowing for the entry of immune/inflammatory cells including mast cell progenitors, mast cells and proinflammatory cytokines and chemokines into the brain. These peripheral-derived factors and intrinsically generated cytokines/chemokines, α-synuclein, corticotropin-releasing hormone (CRH), substance P (SP), beta amyloid 1-42 (Aβ1-42) peptide and amyloid precursor proteins can activate glial cells, T-cells and mast cells in the brain can induce additional release of inflammatory and neurotoxic molecules contributing to chronic neuroinflammation and neuronal death. The glia maturation factor (GMF), a proinflammatory protein discovered in our laboratory released from glia, activates mast cells to release inflammatory cytokines and chemokines. Chronic increase in the proinflammatory mediators induces neurotoxic Aβ and plaque formation in AD brains and neurodegeneration in PD brains. Glial cells, mast cells and T-cells can reactivate each other in neuroinflammatory conditions in the brain and augment neuroinflammation. Further, inflammatory mediators from the brain can also enter into the peripheral system through defective BBB, recruit immune cells into the brain, and exacerbate neuroinflammation. We suggest that mast cell-associated inflammatory mediators from systemic inflammation and brain could augment neuroinflammation and neurodegeneration in the brain. This review article addresses the role of some atypical inflammatory mediators that are associated with mast cell inflammation and their activation of glial cells to induce neurodegeneration.
Feurra, Matteo; Pasqualetti, Patrizio; Bianco, Giovanni; Santarnecchi, Emiliano; Rossi, Alessandro; Rossi, Simone
2013-10-30
Imperceptible transcranial alternating current stimulation (tACS) changes the endogenous cortical oscillatory activity in a frequency-specific manner. In the human motor system, tACS coincident with the idling beta rhythm of the quiescent motor cortex increased the corticospinal output. We reasoned that changing the initial state of the brain (i.e., from quiescence to a motor imagery task that desynchronizes the local beta rhythm) might also change the susceptibility of the corticospinal system to resonance effects induced by beta-tACS. We tested this hypothesis by delivering tACS at different frequencies (theta, alpha, beta, and gamma) on the primary motor cortex at rest and during motor imagery. Motor-evoked potentials (MEPs) were obtained by transcranial magnetic stimulation (TMS) on the primary motor cortex with an online-navigated TMS-tACS setting. During motor imagery, the increase of corticospinal excitability was maximal with theta-tACS, likely reflecting a reinforcement of working memory processes required to mentally process and "execute" the cognitive task. As expected, the maximal MEPs increase with subjects at rest was instead obtained with beta-tACS, substantiating previous evidence. This dissociation provides new evidence of state and frequency dependency of tACS effects on the motor system and helps discern the functional role of different oscillatory frequencies of this brain region. These findings may be relevant for rehabilitative neuromodulatory interventions.
NASA Astrophysics Data System (ADS)
Kim, Yuna; Park, Ji-Hyun; Lee, Hyojin; Nam, Jwa-Min
2016-01-01
Here, we studied the effect of the size, shape, and surface charge of Au nanoparticles (AuNPs) on amyloid beta (Aβ) aggregation on a total brain lipid-based supported lipid bilayer (brain SLB), a fluid platform that facilitates Aβ-AuNP aggregation process. We found that larger AuNPs induce large and amorphous aggregates on the brain SLB, whereas smaller AuNPs induce protofibrillar Aβ structures. Positively charged AuNPs were more strongly attracted to Aβ than negatively charged AuNPs, and the stronger interactions between AuNPs and Aβ resulted in fewer β-sheets and more random coil structures. We also compared spherical AuNPs, gold nanorods (AuNRs), and gold nanocubes (AuNCs) to study the effect of nanoparticle shape on Aβ aggregation on the brain SLB. Aβ was preferentially bound to the long axis of AuNRs and fewer fibrils were formed whereas all the facets of AuNCs interacted with Aβ to produce the fibril networks. Finally, it was revealed that different nanostructures induce different cytotoxicity on neuroblastoma cells, and, overall, smaller Aβ aggregates induce higher cytotoxicity. The results offer insight into the roles of NPs and brain SLB in Aβ aggregation on the cell membrane and can facilitate the understanding of Aβ-nanostructure co-aggregation mechanism and tuning Aβ aggregate structures.
Negreş, Simona; Zanfirescu, Anca; Ionică, Floriana Elvira; Moroşan, Elena; Velescu, Bruno Ştefan; Şeremet, Oana Cristina; Zbârcea, Cristina Elena; Ştefănescu, Emil; Militaru, Manuella; Arsene, Andreea LetiŢia; Margină, Denisa Marilena; Uncu, Livia; Scutari, Corina; ChiriŢă, Cornel
2016-01-01
Beta3-adrenergic receptors (beta3-ARs) have been initially characterized in 1989. Afterwards, their tissue distribution was established: white and brown adipose tissue, central nervous system, myocardium (atrial and ventricular), blood vessels, smooth gastrointestinal muscles (stomach, small intestine, colon), gallbladder, urinary bladder, prostate, skeletal muscles. Non-clinical trials have demonstrated the major implication of beta3-ARs in glucose metabolism, implicitly, in insulin release, and also in obesity. Therefore, new compounds were synthesized starting from beta-phenylethylamine nucleus and substituted in various positions, for possible antidiabetic and÷or antiobesity action. In the present research, the antidiabetic action of newly synthesized compounds was investigated on an experimental model of alloxan-induced diabetes, administered in dose of 130 mg÷kg body weight (bw), intraperitoneally (i.p.). After 14 days of treatment, glycemia and enzymes involved in homeostasis of glucose metabolism, glucose-6-phosphate dehydrogenase (G6PD), glucose-6-phosphatase (G6Pase) and hexokinase were determined. Animals were then euthanized and histopathology examinations were performed on harvested liver, kidney, spleen and brain in order to document pathological changes induced by alloxan-induced diabetes and÷or by tested compounds. Glycemia in animals treated with the tested compounds decreased statistically significant for groups C2 and C3 (-42.13% and -37.2%, respectively), compared to diabetic control group. C2 was also the compound to favorably modify the dynamics of determined enzymes, together with the display of very good safety profile supported by minor, non-significant, histopathological changes.
Crofton, Elizabeth J.; Nenov, Miroslav N.; Zhang, Yafang; Scala, Federico; Page, Sean A.; McCue, David L.; Li, Dingge; Hommel, Jonathan D.; Laezza, Fernanda; Green, Thomas A.
2017-01-01
Psychiatric disorders such as anxiety, depression and addiction are often comorbid brain pathologies thought to share common mechanistic biology. As part of the cortico-limbic circuit, the nucleus accumbens shell (NAcSh) plays a fundamental role in integrating information in the circuit, such that modulation of NAcSh circuitry alters anxiety, depression, and addiction-related behaviors. Intracellular kinase cascades in the NAcSh have proven important mediators of behavior. To investigate glycogen-synthase kinase 3 (GSK3) beta signaling in the NAcSh in vivo we knocked down GSK3beta expression with a novel adeno-associated viral vector (AAV2) and assessed changes in anxiety- and depression-like behavior and cocaine self-administration in GSK3beta knockdown rats. GSK3beta knockdown reduced anxiety-like behavior while increasing depression-like behavior and cocaine self-administration. Correlative electrophysiological recordings in acute brain slices were used to assess the effect of AAV-shGSK3beta on spontaneous firing and intrinsic excitability of tonically active interneurons (TANs), cells required for input and output signal integration in the NAcSh and for processing reward-related behaviors. Loose-patch recordings showed that TANs transduced by AAV-shGSK3beta exhibited reduction in tonic firing and increased spike half width. When assessed by whole-cell patch clamp recordings these changes were mirrored by reduction in action potential firing and accompanied by decreased hyperpolarization-induced depolarizing sag potentials, increased action potential current threshold, and decreased maximum rise time. These results suggest that silencing of GSK3beta in the NAcSh increases depression- and addiction-related behavior, possibly by decreasing intrinsic excitability of TANs. However, this study does not rule out contributions from other neuronal sub-types. PMID:28126496
Loane, David J.; Washington, Patricia M.; Vardanian, Lilit; Pocivavsek, Ana; Hoe, Hyang-Sook; Duff, Karen E.; Cernak, Ibolja; Rebeck, G. William; Faden, Alan I.
2011-01-01
Abstract Traumatic brain injury (TBI) increases brain beta-amyloid (Aβ) in humans and animals. Although the role of Aβ in the injury cascade is unknown, multiple preclinical studies have demonstrated a correlation between reduced Aβ and improved outcome. Therefore, therapeutic strategies that enhance Aβ clearance may be beneficial after TBI. Increased levels of ATP-binding cassette A1 (ABCA1) transporters can enhance Aβ clearance through an apolipoprotein E (apoE)-mediated pathway. By measuring Aβ and ABCA1 after experimental TBI in C57BL/6J mice, we found that Aβ peaked early after injury (1–3 days), whereas ABCA1 had a delayed response (beginning at 3 days). As ABCA1 levels increased, Aβ levels returned to baseline levels—consistent with the known role of ABCA1 in Aβ clearance. To test if enhancing ABCA1 levels could block TBI-induced Aβ, we treated TBI mice with the liver X-receptor (LXR) agonist T0901317. Pre- and post-injury treatment increased ABCA1 levels at 24 h post-injury, and reduced the TBI-induced increase in Aβ. This reduction in Aβ was not due to decreased amyloid precursor protein processing, or a shift in the solubility of Aβ, indicating enhanced clearance. T0901317 also limited motor coordination deficits in injured mice and reduced brain lesion volume. These data indicate that activation of LXR can reduce Aβ accumulation after TBI, and is accompanied by improved functional recovery. PMID:21175399
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, M.L.; Golde, T.E.; Usiak, M.F.
1988-02-01
To determine which cells within the brain produce ..beta..-amyloid mRNA and to assess expression of the ..beta..-amyloid gene in Alzheimer disease, the authors analyzed brain tissue from Alzheimer and control patients by in situ hybridization. The results demonstrate that ..beta..-amyloid mRNA is produced by neurons in the nucleus basalis of Meynert and cerebral cortex and that nuclues basalis perikarya from Alzheimer patients consistently hybridize more ..beta..-amyloid probe than those from controls. These observations support the hypothesis that increased expression of the ..beta..-amyloid gene plays an important role in the deposition of amyloid in the brains of patients with Alzheimer disease.
The effect of altered 5-hydroxytryptamine levels on beta-endorphin
NASA Technical Reports Server (NTRS)
Soliman, Karam F. A.; Mash, Deborah C.; Walker, Charles A.
1986-01-01
The purpose of the present study was to examine the effect of altering the concentration of 5-hydroxytryptamine (5-HT) on beta-endorphin (beta-Ep) content in the hypothalamus, thalamus, and periaqueductal gray (PAG)-rostral pons regions of the rat brain. The selective 5-HT reuptake inhibitor, fluoxetine (10 mg/kg), significantly lowered beta-Ep content in the hypothalamus and the PAG. Parachlorophenylalanine, which inhibits 5-HT synthesis, significantly elevated beta-Ep in all brain parts studied. Intracisternal injections of the neurotoxin 5-prime, 7-prime-dihydroxytryptamine with desmethylimipramine pretreatment significantly increased beta-Ep content in the hypothalamus and the PAG. In adrenalectomized rats, fluoxetine significantly decreased beta-Ep levels in the hypothalamus and increased the levels in the PAG. The results indicate that 5-HT may modulate the levels of brain beta-Ep.
Moon, C; Fraser, S P; Djamgoz, M B
2000-02-01
The GABA(A) receptor and the non-NMDA subtype of the ionotropic glutamate receptor were co-expressed in Xenopus oocytes by injection of quail brain mRNA. The oocytes were treated with various protein kinase (PK) and protein phosphatase (PP) activators and inhibitors and the effects on receptor functioning were monitored. Two phorbol esters, 4-beta-phorbol 12-myristate-13-acetate (PMA) and 4-beta-phorbol 12,13-dibutyrate (PDBu); the cGMP-dependent PK activators sodium nitroprusside (SNP) and S-nitrosoglutathione (SNOG); and the PP inhibitor okadaic acid (OA) reduced the amplitude of the GABA-induced currents, whilst the PK inhibitor staurosporine potentiated it. In addition, PMA, PDBu, SNP, and OA reduced the desensitization of the GABA-induced response. Identical treatments generally had similar but less pronounced effects on responses generated by kainate (KA) but the desensitization characteristic of the non-NMDA receptor was not affected. None of the treatments had any effect on the reversal potentials of the induced currents. Immunoblots revealed that the oocytes express endogenous PKG and guanylate cyclase. The results are discussed in terms of the molecular structures of GABA(A) and non-NMDA receptors and the potential functional consequences of phosphorylation/dephosphorylation.
Inflammatory Macrophages Promotes Development of Diabetic Encephalopathy.
Wang, Beiyun; Miao, Ya; Zhao, Zhe; Zhong, Yuan
2015-01-01
Diabetes and Alzheimer's disease are often associated with each other, whereas the relationship between two diseases is ill-defined. Although hyperglycemia during diabetes is a major cause of encephalopathy, diabetes may also cause chronic inflammatory complications including peripheral neuropathy. Hence the role and the characteristics of inflammatory macrophages in the development of diabetic encephalopathy need to be clarified. Diabetes were induced in mice by i.p. injection of streptozotocin (STZ). Two weeks after STZ injection and confirmation of development of diabetes, inflammatory macrophages were eliminated by i.p. injection of 20µg saporin-conjugated antibody against a macrophage surface marker CD11b (saporin-CD11b) twice per week, while a STZ-treated group received injection of rat IgG of same frequency as a control. The effects of macrophage depletion on brain degradation markers, brain malondialdehyde (MDA), catalase, superoxidase anion-positive cells and nitric oxide (NO) were measured. Saporin-CD11b significantly reduced inflammatory macrophages in brain, without affecting mouse blood glucose, serum insulin, glucose responses and beta cell mass. However, reduced brain macrophages significantly inhibited the STZ-induced decreases in brain MDA, catalase and superoxidase anion-positive cells, and the STZ-induced decreases in brain NO. Inflammatory macrophages may promote development of diabetic encephalopathy. © 2015 S. Karger AG, Basel.
Lithium prevents acrolein-induced neurotoxicity in HT22 mouse hippocampal cells.
Huang, Yingjuan; Qin, Jian; Chen, Meihui; Chao, Xiaojuan; Chen, Ziwei; Ramassamy, Charles; Pi, Rongbiao; Jin, Minghua
2014-04-01
Acrolein is a highly electrophilic alpha, beta-unsaturated aldehyde to which humans are exposed in many situations and has been implicated in neurodegenerative diseases, such as Alzheimer's disease. Lithium is demonstrated to have neuroprotective and neurotrophic effects in brain ischemia, trauma, neurodegenerative disorders, and psychiatric disorders. Previously we have found that acrolein induced neuronal death in HT22 mouse hippocampal cells. In this study, the effects of lithium on the acrolein-induced neurotoxicity in HT22 cells as well as its mechanism(s) were investigated. We found that lithium protected HT22 cells against acrolein-induced damage by the attenuation of reactive oxygen species and the enhancement of the glutathione level. Lithium also attenuated the mitochondrial dysfunction caused by acrolein. Furthermore, lithium significantly increased the level of phospho-glycogen synthase kinase-3 beta (GSK-3β), the non-activated GSK-3β. Taken together, our findings suggest that lithium is a protective agent for acrolein-related neurotoxicity.
Schmidt, R; Shashoua, V E
1983-03-01
Ependymins beta and gamma (MW 32,000 and 26,000 daltons) are two secreted goldfish brain glycoproteins that exhibit a specifically enhanced turnover rate when the animals successfully acquire a new pattern of swimming behaviour. Both proteins are bound identically to concanavalin A and can be isolated from brain extracellular fluid and from brain cytoplasm by lectin affinity chromatography. Radioimmunoassay data, using purified 125I-labeled ependymins and antisera directed against ependymin beta or ependymin gamma, show complete cross-reactivity between the two proteins. It is demonstrated by Scatchard-plot analysis that the antisera recognize identical immunological determinants in both proteins. The amino acid composition of the ependymins is similar, and several identical polypeptide fragments are obtained after limited proteolysis with Staphylococcus aureus protease. The proteins are capable of forming complexes of the compositions gamma 2, beta gamma, and beta 2. A protease present in the extracellular fluid of goldfish brain promotes proteolysis of ependymin beta to ependymin gamma. The finding that ependymin gamma is physiologically derived from ependymin beta suggests the possibility that ependymin beta might exert its biological function during consolidation of new behavioural patterns via smaller polypeptide fragments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selkoe, D.J.; Podlisny, M.B.; Joachim, C.L.
1988-10-01
Progressive cerebral deposition of extracellular filaments composed of the {beta}-amyloid protein ({beta}AP) is a constant feature of Alzheimer disease (AD). Since the gene on chromosome 21 encoding the {beta}AP precursor ({beta}APP) is not known to be altered in AD, transcriptional or posttranslational changes may underlie accelerated {beta}AP deposition. Using two antibodies to the predicted carboxyl terminus of {beta}APP, the authors have identified the native {beta}APP in brain and nonneural human tissues as a 110- to 135-kDa protein complex that is insoluble in buffer and found in various membrane-rich subcellular fractions. These proteins are relatively uniformly distributed in adult brain, abundantmore » in fetal brain, and detected in nonneural tissues that contain {beta}APP mRNA. Similarly sized proteins occur in rat, cow, and monkey brain and in cultured human HL-60 and HeLa cells; the precise patterns in the 110- to 135-kDa range are heterogeneous among various tissues and cell lines. They conclude that the highly conserved {beta}APP molecule occurs in mammalian tissues as a heterogeneous group of membrane-associated proteins of {approx} 120 kDa. Detection of the nonamyloidogenic carboxyl terminus within plaques suggests that proteolytic processing of the {beta}APP into insoluble filaments occurs locally in cortical regions that develop {beta}-amyloid deposits with age.« less
Schabacker, D S; Kirschbaum, K S; Segre, M
2000-05-01
Conventional vaccination with the cocaine molecule conjugated to a protein carrier is a new approach in the treatment of addiction. Experimentally, this strategy has been shown to alter the pharmacokinetics as well as the psychostimulant effect of a cocaine challenge. The purpose of this study was to investigate whether a more stable and less controversial molecule, an anti-idiotypic antibody, which mimics the configuration of the cocaine molecule (Ab2beta), could be successfully used instead of cocaine. Two cocaine conjugates that presented different areas of the cocaine molecule to the immune system were used to produce monoclonal antibodies specific for cocaine (Ab1). Several anti-idiotypic antibodies were then produced. Four were identified as Ab2beta, or internal images of the antigen; when injected into BALB/c mice, they elicited an anticocaine response. The anticocaine response elicited by one of the four Ab2beta (K1-4c) was sufficient to significantly reduce the level of cocaine that targeted the brain following cocaine challenge, compared with the level of cocaine found in the brain of control animals immunized with irrelevant antibody. In conclusion, the possibility of an anti-idiotypic vaccine seems to be worth pursuing.
de Rivero Vaccari, Juan Pablo; Lotocki, George; Alonso, Ofelia F; Bramlett, Helen M; Dietrich, W Dalton; Keane, Robert W
2009-07-01
Traumatic brain injury elicits acute inflammation that in turn exacerbates primary brain damage. A crucial part of innate immunity in the immune privileged central nervous system involves production of proinflammatory cytokines mediated by inflammasome signaling. Here, we show that the nucleotide-binding, leucine-rich repeat pyrin domain containing protein 1 (NLRP1) inflammasome consisting of NLRP1, caspase-1, caspase-11, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), the X-linked inhibitor of apoptosis protein, and pannexin 1 is expressed in neurons of the cerebral cortex. Moderate parasagittal fluid-percussion injury (FPI) induced processing of interleukin-1beta, activation of caspase-1, cleavage of X-linked inhibitor of apoptosis protein, and promoted assembly of the NLRP1 inflammasome complex. Anti-ASC neutralizing antibodies administered immediately after fluid-percussion injury to injured rats reduced caspase-1 activation, X-linked inhibitor of apoptosis protein cleavage, and processing of interleukin-1beta, resulting in a significant decrease in contusion volume. These studies show that the NLRP1 inflammasome constitutes an important component of the innate central nervous system inflammatory response after traumatic brain injury and may be a novel therapeutic target for reducing the damaging effects of posttraumatic brain inflammation.
Freese, Christian; Reinhardt, Sven; Hefner, Gudrun; Unger, Ronald E; Kirkpatrick, C James; Endres, Kristina
2014-01-01
In the pathogenesis of Alzheimer's disease (AD) the homeostasis of amyloid precursor protein (APP) processing in the brain is impaired. The expression of the competing proteases ADAM10 (a disintegrin and metalloproteinase 10) and BACE-1 (beta site APP cleaving enzyme 1) is shifted in favor of the A-beta generating enzyme BACE-1. Acitretin--a synthetic retinoid-e.g., has been shown to increase ADAM10 gene expression, resulting in a decreased level of A-beta peptides within the brain of AD model mice and thus is of possible value for AD therapy. A striking challenge in evaluating novel therapeutically applicable drugs is the analysis of their potential to overcome the blood-brain barrier (BBB) for central nervous system targeting. In this study, we established a novel cell-based bio-assay model to test ADAM10-inducing drugs for their ability to cross the BBB. We therefore used primary porcine brain endothelial cells (PBECs) and human neuroblastoma cells (SH-SY5Y) transfected with an ADAM10-promoter luciferase reporter vector in an indirect co-culture system. Acitretin served as a model substance that crosses the BBB and induces ADAM10 expression. We ensured that ADAM10-dependent constitutive APP metabolism in the neuronal cells was unaffected under co-cultivation conditions. Barrier properties established by PBECs were augmented by co-cultivation with SH-SY5Y cells and they remained stable during the treatment with acitretin as demonstrated by electrical resistance measurement and permeability-coefficient determination. As a consequence of transcellular acitretin transport measured by HPLC, the activity of the ADAM10-promoter reporter gene was significantly increased in co-cultured neuronal cells as compared to vehicle-treated controls. In the present study, we provide a new bio-assay system relevant for the study of drug targeting of AD. This bio-assay can easily be adapted to analyze other Alzheimer- or CNS disease-relevant targets in neuronal cells, as their therapeutical potential also depends on the ability to penetrate the BBB.
NASA Technical Reports Server (NTRS)
Gvishiani, G. S.; Kobakhidze, N. G.
1980-01-01
Shifts in lipid, catecholamine, and blood coagulation systems following various periods (1, 2, 3, and 4 months) of experimentally induced atherosclerosis were studied. The same indices were studied in the tissues of the myocardium, liver, and brain stem-reticular formation after decapitation of the animals at the end of the experiment. Periodic motion restriction caused an increase in blood beta-lipoproteins in the rabbits at the beginning of the experiment. An increase in general cholesterol content and a decrease in the lecithincholesterol index were established at the end of the experiment. Myocardial beta-lipoprotein and brain stem reticular formation general cholesterol contents were elevated; catecholamine content was increased at the end of the experiment. In the initial months, free adrenaline basically increased, while in later months blood adrenaline decreased and blood noradrenaline increased.
Aging exacerbates intracerebral hemorrhage-induced brain injury.
Lee, Jae-Chul; Cho, Geum-Sil; Choi, Byung-Ok; Kim, Hyoung Chun; Kim, Won-Ki
2009-09-01
Aging may be an important factor affecting brain injury by intracerebral hemorrhage (ICH). In the present study, we investigated the responses of glial cells and monocytes to intracerebral hemorrhage in normal and aged rats. ICH was induced by microinjecting autologous whole blood (15 microL) into the striatum of young (4 month old) and aged (24 month old) Sprague-Dawley rats. Age-dependent relations of brain tissue damage with glial and macrophageal responses were evaluated. Three days after ICH, activated microglia/macrophages with OX42-positive processes and swollen cytoplasm were more abundantly distributed around and inside the hemorrhagic lesions. These were more dramatic in aged versus the young rats. Western blot and immunohistochemistry analyses showed that the expression of interleukin-1beta protein after ICH was greater in aged rats, whereas the expression of GFAP and ciliary neurotrophic factor protein after ICH was significantly lower in aged rats. These results suggest that ICH causes more severe brain injury in aged rats most likely due to overactivation of microglia/macrophages and concomitant repression of reactive astrocytes.
Henz, Diana; Schöllhorn, Wolfgang I; Poeggeler, Burkhard
2018-01-01
Recent neurophysiological studies indicate that exposure to electromagnetic fields (EMFs) generated by mobile phone radiation can exert effects on brain activity. One technical solution to reduce effects of EMFs in mobile phone use is provided in mobile phone chips that are applied to mobile phones or attached to their surfaces. To date, there are no systematical studies on the effects of mobile phone chip application on brain activity and the underlying neural mechanisms. The present study investigated whether mobile phone chips that are applied to mobile phones reduce effects of EMFs emitted by mobile phone radiation on electroencephalographic (EEG) brain activity in a laboratory study. Thirty participants volunteered in the present study. Experimental conditions (mobile phone chip, placebo chip, no chip) were set up in a randomized within-subjects design. Spontaneous EEG was recorded before and after mobile phone exposure for two 2-min sequences at resting conditions. During mobile phone exposure, spontaneous EEG was recorded for 30 min during resting conditions, and 5 min during performance of an attention test (d2-R). Results showed increased activity in the theta, alpha, beta and gamma bands during EMF exposure in the placebo and no chip conditions. Application of the mobile phone chip reduced effects of EMFs on EEG brain activity and attentional performance significantly. Attentional performance level was maintained regarding number of edited characters. Further, a dipole analysis revealed different underlying activation patterns in the chip condition compared to the placebo chip and no chip conditions. Finally, a correlational analysis for the EEG frequency bands and electromagnetic high-frequency (HF) emission showed significant correlations in the placebo chip and no chip condition for the theta, alpha, beta, and gamma bands. In the chip condition, a significant correlation of HF with the theta and alpha bands, but not with the beta and gamma bands was shown. We hypothesize that a reduction of EEG beta and gamma activation constitutes the key neural mechanism in mobile phone chip use that supports the brain to a degree in maintaining its natural activity and performance level during mobile phone use.
Henz, Diana; Schöllhorn, Wolfgang I.; Poeggeler, Burkhard
2018-01-01
Recent neurophysiological studies indicate that exposure to electromagnetic fields (EMFs) generated by mobile phone radiation can exert effects on brain activity. One technical solution to reduce effects of EMFs in mobile phone use is provided in mobile phone chips that are applied to mobile phones or attached to their surfaces. To date, there are no systematical studies on the effects of mobile phone chip application on brain activity and the underlying neural mechanisms. The present study investigated whether mobile phone chips that are applied to mobile phones reduce effects of EMFs emitted by mobile phone radiation on electroencephalographic (EEG) brain activity in a laboratory study. Thirty participants volunteered in the present study. Experimental conditions (mobile phone chip, placebo chip, no chip) were set up in a randomized within-subjects design. Spontaneous EEG was recorded before and after mobile phone exposure for two 2-min sequences at resting conditions. During mobile phone exposure, spontaneous EEG was recorded for 30 min during resting conditions, and 5 min during performance of an attention test (d2-R). Results showed increased activity in the theta, alpha, beta and gamma bands during EMF exposure in the placebo and no chip conditions. Application of the mobile phone chip reduced effects of EMFs on EEG brain activity and attentional performance significantly. Attentional performance level was maintained regarding number of edited characters. Further, a dipole analysis revealed different underlying activation patterns in the chip condition compared to the placebo chip and no chip conditions. Finally, a correlational analysis for the EEG frequency bands and electromagnetic high-frequency (HF) emission showed significant correlations in the placebo chip and no chip condition for the theta, alpha, beta, and gamma bands. In the chip condition, a significant correlation of HF with the theta and alpha bands, but not with the beta and gamma bands was shown. We hypothesize that a reduction of EEG beta and gamma activation constitutes the key neural mechanism in mobile phone chip use that supports the brain to a degree in maintaining its natural activity and performance level during mobile phone use. PMID:29670503
Zeev-Wolf, Maor; Goldstein, Abraham; Bonne, Omer; Abramowitz, Eitan G
2016-07-01
Whereas numerous studies have investigated hypnotic analgesia, few have investigated hypnotic anaesthesia. Using magnetoencephalography (MEG) we investigated and localized brain responses (event-related fields and oscillatory activity) during sensory processing under hypnotic anaesthesia. Nineteen right handed neurotypical individuals with moderate-to-high hypnotizability received 100 vibrotactile stimuli to right and left index fingers in a random sequence. Thereafter a hypnotic state was induced, in which anaesthetic suggestion was applied to the left hand only. Once anaesthetic suggestion was achieved, a second, identical, session of vibrotactile stimuli was commenced. We found greater brain activity in response to the stimuli delivered to the left (attenuated) hand before hypnotic anaesthesia, than under hypnotic anaesthesia, in both the beta and alpha bands. In the beta band, the reduction of activity under hypnotic anaesthesia was found around 214-413ms post-stimuli and was located mainly in the right insula. In the alpha band, it was found around 253-500ms post-stimuli and was located mainly in the left inferior frontal gyrus. In a second experiment, attention modulation per se was ruled out as the underlying cause of the effects found. These findings may suggest that the brain mechanism underlying hypnotic anaesthesia involves top-down somatosensory inhibition and, therefore, a reduction of somatosensory awareness. The result of this mechanism is a mental state in which individuals lose bodily sensation. Copyright © 2016 Elsevier Ltd. All rights reserved.
EEG resolutions in detecting and decoding finger movements from spectral analysis
Xiao, Ran; Ding, Lei
2015-01-01
Mu/beta rhythms are well-studied brain activities that originate from sensorimotor cortices. These rhythms reveal spectral changes in alpha and beta bands induced by movements of different body parts, e.g., hands and limbs, in electroencephalography (EEG) signals. However, less can be revealed in them about movements of different fine body parts that activate adjacent brain regions, such as individual fingers from one hand. Several studies have reported spatial and temporal couplings of rhythmic activities at different frequency bands, suggesting the existence of well-defined spectral structures across multiple frequency bands. In the present study, spectral principal component analysis (PCA) was applied on EEG data, obtained from a finger movement task, to identify cross-frequency spectral structures. Features from identified spectral structures were examined in their spatial patterns, cross-condition pattern changes, detection capability of finger movements from resting, and decoding performance of individual finger movements in comparison to classic mu/beta rhythms. These new features reveal some similar, but more different spatial and spectral patterns as compared with classic mu/beta rhythms. Decoding results further indicate that these new features (91%) can detect finger movements much better than classic mu/beta rhythms (75.6%). More importantly, these new features reveal discriminative information about movements of different fingers (fine body-part movements), which is not available in classic mu/beta rhythms. The capability in decoding fingers (and hand gestures in the future) from EEG will contribute significantly to the development of non-invasive BCI and neuroprosthesis with intuitive and flexible controls. PMID:26388720
Ahmed, M T; Ismail, S M
1991-01-01
Residues of organochlorine pesticides were monitored in the muscles of Bolti fish Tilapia zillii, the crab Lupa pelagicus and sediment samples collected from El Temsah lake around Ismailia using gas liquid chromatography. The beta isomer of hexachlorocyclohexane (beta.HCH) was the most dominant compound detected in all samples, followed by P, P-DDE and P, P-DDT. Results showed the crab to contain higher concentrations of organochlorine in comparison to concentrations detected in fish muscles. The In-vitro effect of the residues extracted from fish, and crab on the mitochondrial brain and liver ATPase of the New Zealand white rabbit Orcytolagus cuniculus was also studied. Residues of organochlorine pesticides have induced activation in the ATPase enzyme system of both brain and liver. The mixtures of organochlorine residues of both fish and crab were able to activate liver ATPase more than brain ATPase. The present study was conducted to extrapolate possible effects incurred on man if consumed such food.
Schmidt, R; Shashoua, V E
1981-04-01
A radioimmunoassay (RIA) using 125I-labeled antigen was developed for the quantitative determination of two goldfish brain proteins (ependymins beta and gamma). The proteins were isolated from the cerebrospinal fluid (CSF) and cells of the ependymal zone surrounding goldfish brain ventricles. The turnover rates of beta and gamma were previously shown to be specifically enhanced after the animals successfully acquired a new pattern of swimming behavior. Femtomole quantities of ependymin beta were measurable by the RIA. In applications of the assay, beta and gamma ependymins were found to have common immunological properties, since 125I-beta-antigen bound to antibody could be displaced by unlabeled ependymin gamma as well as ependymin beta but not by a variety of other proteins including several purified glycoproteins isolated from goldfish brain. The ependymins were shown to constitute 14% of the total protein content of the brain extracellular fluid and also to be present as a minor component of the serum proteins (0.3%). Ependymins beta and gamma have an immunological reactivity in these fractions that can be increased by a factor of 30 on heating. The data suggest that the antigenicity of the molecules is highly masked, and that it may require some unraveling of the quaternary structure of the proteins before maximal interaction with the antisera becomes possible.
Prenatal stress decreases glycogen synthase kinase-3 phosphorylation in the rat frontal cortex.
Szymańska, Magdalena; Suska, Anna; Budziszewska, Bogusława; Jaworska-Feil, Lucylla; Basta-Kaim, Agnieszka; Leśkiewicz, Monika; Kubera, Marta; Gergont, Aleksandra; Kroczka, Sławomir; Kaciński, Marek; Lasoń, Władysław
2009-01-01
It has been postulated that hyperactive glycogen synthase kinase-3 (GSK-3) is an important factor in the pathogenesis of depression, and that this enzyme also contributes to the mechanism of antidepressant drug action. In the present study, we investigated the effect of prenatal stress (an animal model of depression) and long-term treatment with antidepressant drugs on the concentration of GSK-3beta and its main regulating protein kinase B (PKB, Akt). The concentration of GSK-3beta, its inactive form (phospho-Ser9-GSK-3beta), and the amounts of active (phospho-Akt) and total Akt were determined in the hippocampus and frontal cortex in rats. In order to verify our animal model of depression, immobility time in the forced swim test (Porsolt test) was also determined.We found that prenatally stressed rats display a high level of immobility in the Porsolt test and chronic treatment with imipramine, fluoxetine, mirtazapine and tianeptine normalize this change. Western blot analysis demonstrated that GSK-3beta levels were significantly elevated in the frontal cortex, but not in the hippocampus, of prenatally stressed rats. The concentration of its non-active form (phospho-Ser9-GSK-3beta) was decreased only in the former brain structure. No changes were found in the amounts of active (phospho-Akt) and total Akt in both studied brain structures. Chronic treatment with antidepressant drugs diminished stress-induced alterations in GSK-3beta and phospho-GSK-3beta the frontal cortex, but had no effect on the concentration of these enzymes in the hippocampus. Moreover, levels of Akt and phospho-Akt in all experimental groups remained unchanged. Since our animal model of depression is connected with hyperactivity of the HPA axis, our results suggest that GSK-3beta is an important intracellular target for maladaptive glucocorticoid action on frontal cortex neurons and in antidepressant drug effects. Furthermore, the influence of stress and antidepressant drugs on GSK-3beta does not appear to impact the kinase activity of Akt.
Entrainment of prefrontal beta oscillations induces an endogenous echo and impairs memory formation.
Hanslmayr, Simon; Matuschek, Jonas; Fellner, Marie-Christin
2014-04-14
Brain oscillations across all frequency bands play a key role for memory formation. Specifically, desynchronization of local neuronal assemblies in the left inferior prefrontal cortex (PFC) in the beta frequency (∼18 Hz) has been shown to be central for encoding of verbal memories. However, it remains elusive whether prefrontal beta desynchronization is causally relevant for memory formation and whether these endogenous beta oscillations can be entrained by external stimulation. By using combined EEG-TMS (transcranial magnetic stimulation), we here address these fundamental questions in human participants performing a word-list learning task. Confirming our predictions, memory encoding was selectively impaired when the left inferior frontal gyrus (IFG) was driven at beta (18.7 Hz) compared to stimulation at other frequencies (6.8 Hz and 10.7 Hz) and to ineffective sham stimulation (18.7 Hz). Furthermore, a sustained oscillatory "echo" in the left IFG, which outlasted the stimulation period by approximately 1.5 s, was observed solely after beta stimulation. The strength of this beta echo was related to memory impairment on a between-subjects level. These results show endogenous oscillatory entrainment effects and behavioral impairment selectively in beta frequency for stimulation of the left IFG, demonstrating an intimate causal relationship between prefrontal beta desynchronization and memory formation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tian, Fangyun; Liu, Tiecheng; Xu, Gang; Li, Duan; Ghazi, Talha; Shick, Trevor; Sajjad, Azeem; Wang, Michael M.; Farrehi, Peter; Borjigin, Jimo
2018-01-01
Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO2-mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG) and electroencephalogram (EEG) signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients. PMID:29487541
Tian, Fangyun; Liu, Tiecheng; Xu, Gang; Li, Duan; Ghazi, Talha; Shick, Trevor; Sajjad, Azeem; Wang, Michael M; Farrehi, Peter; Borjigin, Jimo
2018-01-01
Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO 2 -mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG) and electroencephalogram (EEG) signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients.
Polar, Christian A; Gupta, Rahul; Lehmkuhle, Mark J; Dorval, Alan D
2018-05-30
The motor cortex and subthalamic nucleus (STN) of patients with Parkinson's disease (PD) exhibit abnormally high levels of electrophysiological oscillations in the ~12-35 Hz beta-frequency range. Recent studies have shown that beta is partly carried forward to regulate future motor states in the healthy condition, suggesting that steady state beta power is lower when a sequence of movements occurs in a short period of time, such as during fast gait. However, whether this relationship between beta power and motor states persists upon parkinsonian onset or in response to effective therapy is unclear. Using a 6-hydroxy dopamine (6-OHDA) rat model of PD and a custom-built behavioral and neurophysiological recording system, we aimed to elucidate a better understanding of the mechanisms underlying cortical beta power and PD symptoms. In addition to elevated levels of beta oscillations, we show that parkinsonian onset was accompanied by a decoupling of movement intensity - quantified as gait speed - from cortical beta power. Although subthalamic deep brain stimulation (DBS) reduced general levels of beta oscillations in the cortex of all PD animals, the brain's capacity to regulate steady state levels of beta power as a function of movement intensity was only restored in animals with therapeutic DBS. We propose that, in addition to lowering general levels of cortical beta power, restoring the brain's ability to maintain this inverse relationship is critical for effective symptom suppression. Copyright © 2017. Published by Elsevier Inc.
Khallaf, Waleed A I; Messiha, Basim A S; Abo-Youssef, Amira M H; El-Sayed, Nesrine S
2017-07-01
Angiotensin II has pro-inflammatory and pro-oxidant potentials. We investigated the possible protective effects of the Angiotensin II receptor blocker telmisartan, compared with the superoxide scavenger tempol, on lipopolysaccharide (LPS)-induced cognitive decline and amyloidogenesis. Briefly, mice were allocated into a normal control group, an LPS control group, a tempol treatment group, and 2 telmisartan treatment groups. A behavioral study was conducted followed by a biochemical study via assessment of brain levels of beta amyloid (Aβ) and brain-derived neurotropic factor (BDNF) as amyloidogenesis and neuroplasticity markers, tumor necrosis factor alpha (TNF-α), nitric oxide end products (NOx), neuronal and inducible nitric oxide synthase (nNOS and iNOS) as inflammatory markers, and superoxide dismutase (SOD), malondialdehyde (MDA), glutathione reduced (GSH), and nitrotyrosine (NT) as oxido-nitrosative stress markers. Finally, histopathological examination of cerebral cortex, hippocampus, and cerebellum sections was performed using routine and special Congo red stains. Tempol and telmisartan improved cognition, decreased brain Aβ deposition and BDNF depletion, decreased TNF-α, NOx, nNOS, iNOS, MDA, and NT brain levels, and increased brain SOD and GSH contents, parallel to confirmatory histopathological evidences. In conclusion, tempol and telmisartan are promising drugs in managing cognitive impairment and amyloidogenesis, at least via upregulation of BDNF with inhibition of neuroinflammation and oxido-nitrosative stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashimoto, Koshi, E-mail: khashi@med.gunma-u.ac.jp; Ishida, Emi; Matsumoto, Shunichi
2009-12-25
We report the isolation and functional characterization of a novel transcriptional co-activator, termed LXRBSV. LXRBSV is an alternative splicing variant of liver X receptor (LXR)-{beta} LXRBSV has an intronic sequence between exons 2 and 3 in the mouse LXR-{beta} gene. The LXRBSV gene is expressed in various tissues including the liver and brain. We sub-cloned LXRBSV into pSG5, a mammalian expression vector, and LXRBSV in pSG5 augmented human Sterol Response Element Binding Protein (SREBP)-1c promoter activity in HepG2 cells in a ligand (TO901317) dependent manner. The transactivation mediated by LXRBSV is selective for LXR-{beta}. The LXRBSV protein was deduced tomore » be 64 amino acids in length; however, a GAL4-LXRBSV fusion protein was not able to induce transactivation. Serial deletion constructs of LXRBSV demonstrated that the intronic sequence inserted in LXRBSV is required for its transactivation activity. An ATG mutant of LXRBSV was able to induce transactivation as wild type. Furthermore, LXRBSV functions in the presence of cycloheximide. Taken together, we have concluded that LXRBSV acts as an RNA transcript not as a protein. In the current study, we have demonstrated for the first time that an alternative splicing variant of a nuclear receptor acts as an RNA co-activator.« less
Regazzi, R; Wollheim, C B; Lang, J; Theler, J M; Rossetto, O; Montecucco, C; Sadoul, K; Weller, U; Palmer, M; Thorens, B
1995-01-01
VAMP proteins are important components of the machinery controlling docking and/or fusion of secretory vesicles with their target membrane. We investigated the expression of VAMP proteins in pancreatic beta-cells and their implication in the exocytosis of insulin. cDNA cloning revealed that VAMP-2 and cellubrevin, but not VAMP-1, are expressed in rat pancreatic islets and that their sequence is identical to that isolated from rat brain. Pancreatic beta-cells contain secretory granules that store and secrete insulin as well as synaptic-like microvesicles carrying gamma-aminobutyric acid. After subcellular fractionation on continuous sucrose gradients, VAMP-2 and cellubrevin were found to be associated with both types of secretory vesicle. The association of VAMP-2 with insulin-containing granules was confirmed by confocal microscopy of primary cultures of rat pancreatic beta-cells. Pretreatment of streptolysin-O permeabilized insulin-secreting cells with tetanus and botulinum B neurotoxins selectively cleaved VAMP-2 and cellubrevin and abolished Ca(2+)-induced insulin release (IC50 approximately 15 nM). By contrast, the pretreatment with tetanus and botulinum B neurotoxins did not prevent GTP gamma S-stimulated insulin secretion. Taken together, our results show that pancreatic beta-cells express VAMP-2 and cellubrevin and that one or both of these proteins selectively control Ca(2+)-mediated insulin secretion. Images PMID:7796801
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothman, R.B.; Jacobson, A.E.; Rice, K.C.
1987-11-01
Previous studies demonstrated that pretreatment of brain membranes with the irreversible mu antagonist, beta-funaltrexamine (beta-FNA), partially eliminated mu binding sites (25,35), consistent with the existence of two mu binding sites distinguished by beta-FNA. This paper tests the hypothesis that the FNA-sensitive and FNA-insensitive mu binding sites have different anatomical distributions in rat brain. Prior to autoradiographic visualization of mu binding sites, (/sup 3/H)oxymorphone, (/sup 3/H)D-ala2-MePhe4, Gly-ol5-enkephalin (DAGO), and (/sup 125/I)D-ala2-Me-Phe4-met(o)-ol)enkephalin (FK33824) were shown to selectively label mu binding sites using slide mounted sections of molded minced rat brain. As found using membranes, beta-FNA eliminated only a portion of mu bindingmore » sites. Autoradiographic visualization of mu binding sites using the mu-selective ligand (/sup 125/I)FK33824 in control and FNA-treated sections of rat brain demonstrated that the proportion of mu binding sites sensitive to beta-FNA varied across regions of the brain, particularly the dorsal thalamus, ventrobasal complex and the hypothalamus, providing anatomical data supporting the existence of two classes of mu binding sites in rat brain.« less
O'Byrne, M B; Tipton, K F
2000-05-01
Taurine is a sulphur-containing beta-amino acid found in high (millimolar) concentrations in excitable tissues such as brain and heart. Its suggested roles include osmoregulator, thermoregulator, neuromodulator, and potential neurotransmitter. This amino acid has also been shown to be released in large concentrations during ischaemia and excitotoxin-induced neuronal damage. Here we report a protective effect of taurine against MPP(+)-induced neurotoxicity in coronal slices from rat brain. Significant protective effects were observed at taurine concentrations of 20 and 1 mM, suggesting a potential role for taurine in cases of neuronal insult. Studies with the synthetic taurine analogues taurine phosphonate, guanidinoethane sulphonate, and trimethyltaurine suggested the observed effect to be mediated via an extracellular mechanism. The use of GABA receptor ligands muscimol and bicuculline indicated the effect to be mediated through activation of GABA(A) receptors.
Medulloblastoma genotype dictates blood brain barrier phenotype
Phoenix, Timothy N.; Patmore, Deanna M.; Boop, Scott; Boulos, Nidal; Jacus, Megan O.; Patel, Yogesh T.; Roussel, Martine F; Finkelstein, David; Goumnerova, Lilian; Perreault, Sebastien; Wadhwa, Elizabeth; Cho, Yoon-Jae; Stewart, Clinton F.; Gilbertson, Richard J.
2016-01-01
SUMMARY The childhood brain tumour medulloblastoma includes four subtypes with very different prognoses. Here, we show that paracrine signals driven by mutant Beta-Catenin in WNT-medulloblastoma – an essentially curable form of the disease – induce an aberrant fenestrated vasculature that permits the accumulation of high levels of intra-tumoural chemotherapy and a robust therapeutic response. In contrast, SHH-medulloblastoma – a less curable disease subtype – contains an intact blood brain barrier, rendering this tumour impermeable and resistant to chemotherapy. The medulloblastoma-endothelial cell paracrine axis can be manipulated in vivo, altering chemotherapy permeability and clinical response. Thus, medulloblastoma genotype dictates tumour vessel phenotype, explaining in part the disparate prognoses among medulloblastoma subtypes and suggesting an approach to enhance the chemoresponsiveness of other brain tumours. PMID:27050100
Oscillatory power decreases and long-term memory: the information via desynchronization hypothesis
Hanslmayr, Simon; Staudigl, Tobias; Fellner, Marie-Christin
2012-01-01
The traditional belief is that brain oscillations are important for human long-term memory, because they induce synchronized firing between cell assemblies which shapes synaptic plasticity. Therefore, most prior studies focused on the role of synchronization for episodic memory, as reflected in theta (∼5 Hz) and gamma (>40 Hz) power increases. These studies, however, neglect the role that is played by neural desynchronization, which is usually reflected in power decreases in the alpha and beta frequency band (8–30 Hz). In this paper we present a first idea, derived from information theory that gives a mechanistic explanation of how neural desynchronization aids human memory encoding and retrieval. Thereby we will review current studies investigating the role of alpha and beta power decreases during long-term memory tasks and show that alpha and beta power decreases play an important and active role for human memory. Applying mathematical models of information theory, we demonstrate that neural desynchronization is positively related to the richness of information represented in the brain, thereby enabling encoding and retrieval of long-term memories. This information via desynchronization hypothesis makes several predictions, which can be tested in future experiments. PMID:22514527
Oscillatory power decreases and long-term memory: the information via desynchronization hypothesis.
Hanslmayr, Simon; Staudigl, Tobias; Fellner, Marie-Christin
2012-01-01
The traditional belief is that brain oscillations are important for human long-term memory, because they induce synchronized firing between cell assemblies which shapes synaptic plasticity. Therefore, most prior studies focused on the role of synchronization for episodic memory, as reflected in theta (∼5 Hz) and gamma (>40 Hz) power increases. These studies, however, neglect the role that is played by neural desynchronization, which is usually reflected in power decreases in the alpha and beta frequency band (8-30 Hz). In this paper we present a first idea, derived from information theory that gives a mechanistic explanation of how neural desynchronization aids human memory encoding and retrieval. Thereby we will review current studies investigating the role of alpha and beta power decreases during long-term memory tasks and show that alpha and beta power decreases play an important and active role for human memory. Applying mathematical models of information theory, we demonstrate that neural desynchronization is positively related to the richness of information represented in the brain, thereby enabling encoding and retrieval of long-term memories. This information via desynchronization hypothesis makes several predictions, which can be tested in future experiments.
Zielinski, Mark R; Dunbrasky, Danielle L; Taishi, Ping; Souza, Gianne; Krueger, James M
2013-08-01
Systemic tumor necrosis factor-α (TNF-α) is linked to sleep and sleep altering pathologies in humans. Evidence from animals indicates that systemic and brain TNF-α have a role in regulating sleep. In animals, TNF-α or lipopolysaccharide (LPS) enhance brain pro-inflammatory cytokine expression and sleep after central or peripheral administration. Vagotomy blocks enhanced sleep induced by systemic TNF-α and LPS in rats, suggesting that vagal afferent stimulation by TNF-α enhances pro-inflammatory cytokines in sleep-related brain areas. However, the effects of systemic TNF-α on brain cytokine expression and mouse sleep remain unknown. We investigated the role of vagal afferents on brain cytokines and sleep after systemically applied TNF-α or LPS in mice. Spontaneous sleep was similar in vagotomized and sham-operated controls. Vagotomy attenuated TNF-α- and LPS-enhanced non-rapid eye movement sleep (NREMS); these effects were more evident after lower doses of these substances. Vagotomy did not affect rapid eye movement sleep responses to these substances. NREMS electroencephalogram delta power (0.5-4 Hz range) was suppressed after peripheral TNF-α or LPS injections, although vagotomy did not affect these responses. Compared to sham-operated controls, vagotomy did not affect liver cytokines. However, vagotomy attenuated interleukin-1 beta (IL-1β) and TNF-α mRNA brain levels after TNF-α, but not after LPS, compared to the sham-operated controls. We conclude that vagal afferents mediate peripheral TNF-α-induced brain TNF-α and IL-1β mRNA expressions to affect sleep. We also conclude that vagal afferents alter sleep induced by peripheral pro-inflammatory stimuli in mice similar to those occurring in other species.
Cholinergic enhancement of visual attention and neural oscillations in the human brain.
Bauer, Markus; Kluge, Christian; Bach, Dominik; Bradbury, David; Heinze, Hans Jochen; Dolan, Raymond J; Driver, Jon
2012-03-06
Cognitive processes such as visual perception and selective attention induce specific patterns of brain oscillations. The neurochemical bases of these spectral changes in neural activity are largely unknown, but neuromodulators are thought to regulate processing. The cholinergic system is linked to attentional function in vivo, whereas separate in vitro studies show that cholinergic agonists induce high-frequency oscillations in slice preparations. This has led to theoretical proposals that cholinergic enhancement of visual attention might operate via gamma oscillations in visual cortex, although low-frequency alpha/beta modulation may also play a key role. Here we used MEG to record cortical oscillations in the context of administration of a cholinergic agonist (physostigmine) during a spatial visual attention task in humans. This cholinergic agonist enhanced spatial attention effects on low-frequency alpha/beta oscillations in visual cortex, an effect correlating with a drug-induced speeding of performance. By contrast, the cholinergic agonist did not alter high-frequency gamma oscillations in visual cortex. Thus, our findings show that cholinergic neuromodulation enhances attentional selection via an impact on oscillatory synchrony in visual cortex, for low rather than high frequencies. We discuss this dissociation between high- and low-frequency oscillations in relation to proposals that lower-frequency oscillations are generated by feedback pathways within visual cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pluta, R
2003-01-01
This study examined the late microvascular consequences of brain ischemia due to cardiac arrest in rats. In reacted vibratome sections scattered foci of extravasated horseradish peroxidase were noted throughout the brain and did not appear to be restricted to any specific area of brain. Ultrastructural investigation of leaky sites frequently presented platelets adhering to the endothelium of venules and capillaries. Endothelial cells demonstrated pathological changes with evidence of perivascular astrocytic swelling. At the same time, we noted C-terminal of amyloid precursor protein/beta-amyloid peptide (CAPP/betaA) deposits in cerebral blood vessels, with a halo of CAPP/betaA immunoreactivity in the surrounding parenchyma suggested diffusion of CAPP/betaA out of the vascular compartment. Changes predominated in the hippocampus, cerebral and entorhinal cortex, corpus callosum, thalamus, basal ganglia and around the lateral ventricles. These data implicate delayed abnormal endothelial function of vessels following ischemia-reperfusion brain injury as a primary event in the pathogenesis of the recurrent cerebral infarction.
Buckwalter, Marion S; Coleman, Bronwen S; Buttini, Manuel; Barbour, Robin; Schenk, Dale; Games, Dora; Seubert, Peter; Wyss-Coray, Tony
2006-11-01
Immunotherapy targeting the amyloid beta (Abeta) peptide is a novel therapy under investigation for the treatment of Alzheimer's disease (AD). A clinical trial using Abeta(1-42) (AN1792) as the immunogen was halted as a result of development of meningoencephalitis in a small number of patients. The cytokine TGF-beta1 is a key modulator of immune responses that is increased in the brain in AD. We show here that local overexpression of TGF-beta1 in the brain increases both meningeal and parenchymal T lymphocyte number. Furthermore, TGF-beta1 overexpression in a mouse model for AD [amyloid precursor protein (APP) mice] leads to development of additional T cell infiltrates when mice were immunized at a young but not old age with AN1792. Notably, only mice overproducing both Abeta (APP mice) and TGF-beta1 experienced a rise in T lymphocyte number after immunization. One-third of infiltrating T cells were CD4 positive. We did not observe significant differences in B lymphocyte numbers in any of the genotypes or treatment groups. These results demonstrate that TGF-beta1 overproduction in the brain can promote T cell infiltration, in particular after Abeta(1-42) immunization. Likewise, levels of TGF-beta1 or other immune factors in brains of AD patients may influence the response to Abeta(1-42) immunization.
Multiscale neural connectivity during human sensory processing in the brain
NASA Astrophysics Data System (ADS)
Maksimenko, Vladimir A.; Runnova, Anastasia E.; Frolov, Nikita S.; Makarov, Vladimir V.; Nedaivozov, Vladimir; Koronovskii, Alexey A.; Pisarchik, Alexander; Hramov, Alexander E.
2018-05-01
Stimulus-related brain activity is considered using wavelet-based analysis of neural interactions between occipital and parietal brain areas in alpha (8-12 Hz) and beta (15-30 Hz) frequency bands. We show that human sensory processing related to the visual stimuli perception induces brain response resulted in different ways of parieto-occipital interactions in these bands. In the alpha frequency band the parieto-occipital neuronal network is characterized by homogeneous increase of the interaction between all interconnected areas both within occipital and parietal lobes and between them. In the beta frequency band the occipital lobe starts to play a leading role in the dynamics of the occipital-parietal network: The perception of visual stimuli excites the visual center in the occipital area and then, due to the increase of parieto-occipital interactions, such excitation is transferred to the parietal area, where the attentional center takes place. In the case when stimuli are characterized by a high degree of ambiguity, we find greater increase of the interaction between interconnected areas in the parietal lobe due to the increase of human attention. Based on revealed mechanisms, we describe the complex response of the parieto-occipital brain neuronal network during the perception and primary processing of the visual stimuli. The results can serve as an essential complement to the existing theory of neural aspects of visual stimuli processing.
Yano, Akira; Ito, Kaori; Miwa, Yoshikatsu; Kanazawa, Yoshito; Chiba, Akiko; Iigo, Yutaka; Kashimoto, Yoshinori; Kanda, Akira; Murata, Shinji; Makino, Mitsuhiro
2015-01-01
The reduction of brain amyloid beta (Aβ) peptides by anti-Aβ antibodies is one of the possible therapies for Alzheimer's disease. We previously reported that the Aβ peptide vaccine including the T-cell epitope of diphtheria-tetanus combined toxoid (DT) induced anti-Aβ antibodies, and the prior immunization with conventional DT vaccine enhanced the immunogenicity of the peptide. Cynomolgus monkeys were given the peptide vaccine subcutaneously in combination with the prior DT vaccination. Vaccination with a similar regimen was also performed on guinea pigs. The peptide vaccine induced anti-Aβ antibodies in cynomolgus monkeys and guinea pigs without chemical adjuvants, and excessive immune responses were not observed. Those antibodies could preferentially recognize Aβ 40, and Aβ 42 compared to Aβ fibrils. The levels of serum anti-Aβ antibodies and plasma Aβ peptides increased in both animals and decreased the brain Aβ 40 level of guinea pigs. The peptide vaccine could induce a similar binding profile of anti-Aβ antibodies in cynomolgus monkeys and guinea pigs. The peptide vaccination could be expected to reduce the brain Aβ peptides and their toxic effects via clearance of Aβ peptides by generated antibodies.
Diwakar, Latha; Ravindranath, Vijayalakshmi
2007-01-01
Oxidative stress has been implicated in the pathogenesis and progression of neurodegenerative disorders and antioxidants potentially have a major role in neuroprotection. Optimum levels of glutathione (gamma-glutamylcysteinyl glycine), an endogenous thiol antioxidant are required for the maintenance of the redox status of cells. Cystathionine gamma-lyase is the rate-limiting enzyme for the synthesis of cysteine from methionine and availability of cysteine is a critical factor in glutathione synthesis. In the present study, we have examined the role of cystathionine gamma-lyase in maintaining the redox homeostasis in brain, particularly with reference to mitochondrial function since the complex I of the electron transport chain is sensitive to redox perturbation. Inhibition of cystathionine gamma-lyase by l-propargylglycine caused loss of glutathione and decrease in complex I activity in the brain although the enzyme activity in mouse brain was 1% of the corresponding hepatic activity. We then examined the effect of this inhibition on the neurotoxicity mediated by the excitatory amino acid, l-beta-oxalyl amino-l-alanine, which is the causative factor of a type of motor neuron disease, neurolathyrism. l-beta-Oxalyl amino-l-alanine toxicity was exacerbated by l-propargylglycine measured as loss of complex I activity indicating the importance of cystathionine gamma-lyase in maintaining glutathione levels and in turn the mitochondrial function during excitotoxicity. Oxidative stress generated by l-beta-oxalyl amino-l-alanine itself inhibited cystathionine gamma-lyase, which could be prevented by prior treatment with thiol antioxidant. Thus, cystathionine gamma-lyase itself is susceptible to inactivation by oxidative stress and this can potentially exacerbate oxidant-induced damage. Cystathionine gamma-lyase is present in neuronal cells in human brain and its activity is several-fold higher compared to mouse brain. It could potentially play an important role in maintaining glutathione and protein thiol homeostasis in brain and hence afford neuroprotection.
Interpersonal synchrony enhanced through 20 Hz phase-coupled dual brain stimulation
Knoblich, Günther; Dunne, Laura; Keller, Peter E.
2017-01-01
Abstract Synchronous movement is a key component of social behavior in several species including humans. Recent theories have suggested a link between interpersonal synchrony of brain oscillations and interpersonal movement synchrony. The present study investigated this link. Using transcranial alternating current stimulation (tACS) applied over the left motor cortex, we induced beta band (20 Hz) oscillations in pairs of individuals who both performed a finger-tapping task with the right hand. In-phase or anti-phase oscillations were delivered during a preparatory period prior to movement and while the tapping task was performed. In-phase 20 Hz stimulation enhanced interpersonal movement synchrony, compared with anti-phase or sham stimulation, particularly for the initial taps following the preparatory period. This was confirmed in an analysis comparing real vs pseudo pair surrogate data. No enhancement was observed for stimulation frequencies of 2 Hz (matching the target movement frequency) or 10 Hz (alpha band). Thus, phase-coupling of beta band neural oscillations across two individuals’ (resting) motor cortices supports the interpersonal alignment of sensorimotor processes that regulate rhythmic action initiation, thereby facilitating the establishment of synchronous movement. Phase-locked dual brain stimulation provides a promising method to study causal effects of interpersonal brain synchrony on social, sensorimotor and cognitive processes. PMID:28119510
Interpersonal synchrony enhanced through 20 Hz phase-coupled dual brain stimulation.
Novembre, Giacomo; Knoblich, Günther; Dunne, Laura; Keller, Peter E
2017-01-24
Synchronous movement is a key component of social behaviour in several species including humans. Recent theories have suggested a link between interpersonal synchrony of brain oscillations and interpersonal movement synchrony. The present study investigated this link. Using transcranial alternating current stimulation (tACS) applied over the left motor cortex, we induced beta band (20 Hz) oscillations in pairs of individuals who both performed a finger-tapping task with the right hand. In-phase or anti-phase oscillations were delivered during a preparatory period prior to movement and while the tapping task was performed. In-phase 20 Hz stimulation enhanced interpersonal movement synchrony, compared to anti-phase or sham stimulation, particularly for the initial taps following the preparatory period. This was confirmed in an analysis comparing real vs. pseudo pair surrogate data. No enhancement was observed for stimulation frequencies of 2 Hz (matching the target movement frequency) or 10 Hz (alpha band). Thus, phase-coupling of beta band neural oscillations across two individuals' (resting) motor cortices supports the interpersonal alignment of sensorimotor processes that regulate rhythmic action initiation, thereby facilitating the establishment of synchronous movement. Phase-locked dual brain stimulation provides a promising method to study causal effects of interpersonal brain synchrony on social, sensorimotor and cognitive processes. © The Author (2017). Published by Oxford University Press.
Williamson, Cait M; Klein, Inbal S; Lee, Won; Curley, James P
2018-05-31
Social competence is dependent on successful processing of social context information. The social opportunity paradigm is a methodology in which dynamic shifts in social context are induced through removal of the alpha male in a dominance hierarchy, leading to rapid ascent in the hierarchy of the beta male and of other subordinate males in the social group. In the current study, we use the social opportunity paradigm to determine what brain regions respond to this dynamic change in social context, allowing an individual to recognize the absence of the alpha male and subsequently perform status-appropriate social behaviors. Replicating our previous work, we show that following removal of the alpha male, beta males rapidly ascend the social hierarchy and attain dominant status by increasing aggression towards more subordinate individuals. Analysis of patterns of Fos immunoreactivity throughout the brain indicates that in individuals undergoing social ascent, there is increased activity in regions of the social behavior network, as well as the infralimbic and prelimbic regions of the prefrontal cortex and areas of the hippocampus. Our findings demonstrate that male mice are able to respond to changes in social context and provide insight into the how the brain processes these complex behavioral changes.
AbdAlla, Said; Langer, Andreas; Fu, Xuebin; Quitterer, Ursula
2013-08-16
Increased generation of reactive oxygen species (ROS) is a significant pathological feature in the brains of patients with Alzheimer's disease (AD). Experimental evidence indicates that inhibition of brain ROS could be beneficial in slowing the neurodegenerative process triggered by amyloid-beta (Abeta) aggregates. The angiotensin II AT1 receptor is a significant source of brain ROS, and AD patients have an increased brain angiotensin-converting enzyme (ACE) level, which could account for an excessive angiotensin-dependent AT1-induced ROS generation. Therefore, we analyzed the impact of ACE inhibition on signs of neurodegeneration of aged Tg2576 mice as a transgenic animal model of AD. Whole genome microarray gene expression profiling and biochemical analyses demonstrated that the centrally active ACE inhibitor captopril normalized the excessive hippocampal ACE activity of AD mice. Concomitantly, the development of signs of neurodegeneration was retarded by six months of captopril treatment. The neuroprotective profile triggered by captopril was accompanied by reduced amyloidogenic processing of the amyloid precursor protein (APP), and decreased hippocampal ROS, which is known to enhance Abeta generation by increased activation of beta- and gamma-secretases. Taken together, our data present strong evidence that ACE inhibition with a widely used cardiovascular drug could interfere with Abeta-dependent neurodegeneration.
AbdAlla, Said; Langer, Andreas; Fu, Xuebin; Quitterer, Ursula
2013-01-01
Increased generation of reactive oxygen species (ROS) is a significant pathological feature in the brains of patients with Alzheimer’s disease (AD). Experimental evidence indicates that inhibition of brain ROS could be beneficial in slowing the neurodegenerative process triggered by amyloid-beta (Abeta) aggregates. The angiotensin II AT1 receptor is a significant source of brain ROS, and AD patients have an increased brain angiotensin-converting enzyme (ACE) level, which could account for an excessive angiotensin-dependent AT1-induced ROS generation. Therefore, we analyzed the impact of ACE inhibition on signs of neurodegeneration of aged Tg2576 mice as a transgenic animal model of AD. Whole genome microarray gene expression profiling and biochemical analyses demonstrated that the centrally active ACE inhibitor captopril normalized the excessive hippocampal ACE activity of AD mice. Concomitantly, the development of signs of neurodegeneration was retarded by six months of captopril treatment. The neuroprotective profile triggered by captopril was accompanied by reduced amyloidogenic processing of the amyloid precursor protein (APP), and decreased hippocampal ROS, which is known to enhance Abeta generation by increased activation of beta- and gamma-secretases. Taken together, our data present strong evidence that ACE inhibition with a widely used cardiovascular drug could interfere with Abeta-dependent neurodegeneration. PMID:23959119
Yamazaki, Shunji; Mochizuki, Yoshitaka; Terai, Takao; Sugimoto, Masahiro; Uchida, Ichiro; Matsuoka, Nobuya; Mutoh, Seitaro
2002-12-01
A majority of beta-lactam antibiotics (e.g., cephalosporins and penicillins) have convulsive activity to a greater or lesser extent. (6R,7R)-3-[[3-Amino-2-(2-hydroxyethyl)-2H-pyrazol-1-ium-1-yl]methyl]-7-[(Z)-2-(2-aminothiazol-4-yl)-2-methoxyiminoacetylamino]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate monosulfate (cefoselis), a newly developed injectable beta-lactam antibiotic with activity against methicillin-resistant Staphylococcus aureus (MRSA), might induce convulsions if cerebral concentrations become highly elevated. In the present study, we examined whether or not cefoselis had convulsive activity after direct brain administration, and we attempted to clarify the pharmacological mechanism of action. When cefoselis was injected into the lateral ventricle of the mouse brain at doses higher than 20 microg/animal, it produced convulsions dose-dependently. Cefoselis (50 microg/animal)-induced convulsions were prevented by pretreatment with 5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), diazepam and phenobarbital (ED(50) values (mg/kg) of 0.78, 1.59 and 33.0, respectively), but not by carbamazepine or phenytoin. When the effects of these anticonvulsants on the convulsions induced by intracerebral injection of bicuculline methiodide (BMI) or N-methyl-D-aspartate (NMDA) were investigated, the inhibitory profile of anticonvulsants on cefoselis-induced convulsions was similar to those induced by BMI (125 ng/animal) but differed markedly in their inhibitory activity on NMDA (100 ng/animal)-induced convulsions, which were not inhibited by diazepam. These results suggest that cefoselis may be convulsive at higher concentrations through a mechanism involving inhibition of gamma-aminobutyric acid (GABA)(A) receptors.
Park, Seon Kyeong; Ha, Jeong Su; Kim, Jong Min; Kang, Jin Yong; Lee, Du Sang; Guo, Tian Jiao; Lee, Uk; Kim, Dae-Ok; Heo, Ho Jin
2016-05-04
To examine the antiamnesic effects of broccoli (Brassica oleracea var. italica) leaves, we performed in vitro and in vivo tests on amyloid beta (Aβ)-induced neurotoxicity. The chloroform fraction from broccoli leaves (CBL) showed a remarkable neuronal cell-protective effect and an inhibition against acetylcholinesterase (AChE). The ameliorating effect of CBL on Aβ1-42-induced learning and memory impairment was evaluated by Y-maze, passive avoidance, and Morris water maze tests. The results indicated improving cognitive function in the CBL group. After the behavioral tests, antioxidant effects were detected by superoxide dismutase (SOD), oxidized glutathione (GSH)/total GSH, and malondialdehyde (MDA) assays, and inhibition against AChE was also presented in the brain. Finally, oxo-dihydroxy-octadecenoic acid (oxo-DHODE) and trihydroxy-octadecenoic acid (THODE) as main compounds were identified by quadrupole time-of-flight ultraperformance liquid chromatography (Q-TOF UPLC-MS) analysis. Therefore, our studies suggest that CBL could be used as a natural resource for ameliorating Aβ1-42-induced learning and memory impairment.
Kwon, O Y; Kam, S C; Choi, J H; Do, J M; Hyun, J S
2011-01-01
To identify the effects of sertraline, a selective serotonin reuptake inhibitor, for the treatment of premature ejaculation (PE), changes in brain current-source density (CSD) of the high beta frequency band (22-30 Hz) induced by sertraline administration were investigated during audiovisual erotic stimulation. Eleven patients with PE (36.9±7.8 yrs) and 11 male volunteers (24.2±1.9 years) were enrolled. Scalp electroencephalography (EEG) was conducted twice: once before sertraline administration and then again 4 h after the administration of 50 mg sertraline. Statistical non-parametric maps were obtained using the EEG segments to detect the current-density differences in the high beta frequency bands (beta-3, 22-30 Hz) between the EEGs before and after sertraline administration in the patient group and between the patient group and controls after the administration of sertraline during the erotic video sessions. Comparing between before and after sertraline administration in the patients with PE, the CSD of the high beta frequency band at 4 h after sertraline administration increased significantly in both superior frontal gyri and the right medial frontal gyrus (P<0.01). The CSD of the beta-3 band of the patients with PE were less activated significantly in the middle and superior temporal gyrus, lingual and fusiform gyrus, inferior occipital gyrus and cuneus of the right cerebral hemisphere compared with the normal volunteers 4 h after sertraline administration (P<0.01). In conclusion, sertraline administration increased the CSD in both the superior frontal and right middle temporal gyrus in patients with PE. The results suggest that the increased neural activity in these particular cerebral regions after sertraline administration may be associated with inhibitory effects on ejaculation in patients with PE.
Guevara-Guzmán, R; Arriaga, V; Kendrick, K M; Bernal, C; Vega, X; Mercado-Gómez, O F; Rivas-Arancibia, S
2009-03-31
There is increasing concern about the neurodegenerative and behavioral consequences of ozone pollution in industrialized urban centers throughout the world and that women may be more susceptible to brain neurodegenerative disorders. In the present study we have investigated the effects of chronic (30 or 60 days) exposure to ozone on olfactory perception and memory and on levels of lipid peroxidation, alpha and beta estrogen receptors and dopamine beta-hydroxylase in the olfactory bulb in ovariectomized female rats. The ability of 17beta-estradiol to prevent these effects was then assessed. Results showed that ozone exposure for 30 or 60 days impaired formation/retention of a selective olfactory recognition memory 120 min after exposure to a juvenile stimulus animal with the effect at 60 days being significantly greater than at 30 days. They also showed impaired speed in locating a buried chocolate reward after 60 days of ozone exposure indicating some loss of olfactory perception. These functional impairments could all be prevented by coincident estradiol treatment. In the olfactory bulb, levels of lipid peroxidation were increased at both 30- and 60-day time-points and numbers of cells with immunohistochemical staining for alpha and beta estrogen receptors, and dopamine beta-hydroxylase were reduced as were alpha and beta estrogen receptor protein levels. These effects were prevented by estradiol treatment. Oxidative stress damage caused by chronic exposure to ozone does therefore impair olfactory perception and social recognition memory and may do so by reducing noradrenergic and estrogen receptor activity in the olfactory bulb. That these effects can be prevented by estradiol treatment suggests increased susceptibility to neurodegenerative disorders in aging women may be contributed to by reduced estrogen levels post-menopause.
Quentin, Romain; Elkin Frankston, Seth; Vernet, Marine; Toba, Monica N.; Bartolomeo, Paolo; Chanes, Lorena; Valero-Cabré, Antoni
2016-01-01
Behavioral and electrophysiological studies in humans and non-human primates have correlated frontal high-beta activity with the orienting of endogenous attention and shown the ability of the latter function to modulate visual performance. We here combined rhythmic transcranial magnetic stimulation (TMS) and diffusion imaging to study the relation between frontal oscillatory activity and visual performance, and we associated these phenomena to a specific set of white matter pathways that in humans subtend attentional processes. High-beta rhythmic activity on the right frontal eye field (FEF) was induced with TMS and its causal effects on a contrast sensitivity function were recorded to explore its ability to improve visual detection performance across different stimulus contrast levels. Our results show that frequency-specific activity patterns engaged in the right FEF have the ability to induce a leftward shift of the psychometric function. This increase in visual performance across different levels of stimulus contrast is likely mediated by a contrast gain mechanism. Interestingly, microstructural measures of white matter connectivity suggest a strong implication of right fronto-parietal connectivity linking the FEF and the intraparietal sulcus in propagating high-beta rhythmic signals across brain networks and subtending top-down frontal influences on visual performance. PMID:25899709
Yi, Bitna; Jahangir, Alam; Evans, Andrew K.; Briggs, Denise; Ravina, Kristine; Ernest, Jacqueline; Farimani, Amir B.; Sun, Wenchao; Rajadas, Jayakumar; Green, Michael; Feinberg, Evan N.; Pande, Vijay S.
2017-01-01
The beta-1 adrenergic receptor (ADRB1) is a promising therapeutic target intrinsically involved in the cognitive deficits and pathological features associated with Alzheimer’s disease (AD). Evidence indicates that ADRB1 plays an important role in regulating neuroinflammatory processes, and activation of ADRB1 may produce neuroprotective effects in neuroinflammatory diseases. Novel small molecule modulators of ADRB1, engineered to be highly brain permeable and functionally selective for the G protein with partial agonistic activity, could have tremendous value both as pharmacological tools and potential lead molecules for further preclinical development. The present study describes our ongoing efforts toward the discovery of functionally selective partial agonists of ADRB1 that have potential therapeutic value for AD and neuroinflammatory disorders, which has led to the identification of the molecule STD-101-D1. As a functionally selective agonist of ADRB1, STD-101-D1 produces partial agonistic activity on G protein signaling with an EC50 value in the low nanomolar range, but engages very little beta-arrestin recruitment compared to the unbiased agonist isoproterenol. STD-101-D1 also inhibits the tumor necrosis factor α (TNFα) response induced by lipopolysaccharide (LPS) both in vitro and in vivo, and shows high brain penetration. Other than the therapeutic role, this newly identified, functionally selective, partial agonist of ADRB1 is an invaluable research tool to study mechanisms of G protein-coupled receptor signal transduction. PMID:28746336
Li, P; Akk, G
2008-11-01
Fipronil is the active ingredient in a number of widely used insecticides. Human exposure to fipronil leads to symptoms (headache, nausea and seizures) typically associated with the antagonism of GABA(A) receptors in the brain. In this study, we have examined the modulation of the common brain GABA(A) receptor subtype by fipronil and its major metabolite, fipronil sulphone. Whole-cell and single-channel recordings were made from HEK 293 cells transiently expressing rat alpha1beta2gamma2L GABA(A) receptors. The major effect of fipronil was to increase the rate of current decay in macroscopic recordings. In single-channel recordings, the presence of fipronil resulted in shorter cluster durations without affecting the intracluster open and closed time distributions or the single-channel conductance. The alpha1V256S mutation, previously shown alleviate channel inhibition by inhibitory steroids and several insecticides, had a relatively small effect on channel block by fipronil. The mode of action of fipronil sulphone was similar to that of its parent compound but the metabolite was less potent at inhibiting the alpha1beta2gamma2L receptor. We conclude that exposure to fipronil induces accumulation of receptors in a novel, long-lived blocked state. This process proceeds in parallel with and independently of, channel desensitization. The lower potency of fipronil sulphone indicates that the conversion serves as a detoxifying process in mammalian brain.
Yi, Bitna; Jahangir, Alam; Evans, Andrew K; Briggs, Denise; Ravina, Kristine; Ernest, Jacqueline; Farimani, Amir B; Sun, Wenchao; Rajadas, Jayakumar; Green, Michael; Feinberg, Evan N; Pande, Vijay S; Shamloo, Mehrdad
2017-01-01
The beta-1 adrenergic receptor (ADRB1) is a promising therapeutic target intrinsically involved in the cognitive deficits and pathological features associated with Alzheimer's disease (AD). Evidence indicates that ADRB1 plays an important role in regulating neuroinflammatory processes, and activation of ADRB1 may produce neuroprotective effects in neuroinflammatory diseases. Novel small molecule modulators of ADRB1, engineered to be highly brain permeable and functionally selective for the G protein with partial agonistic activity, could have tremendous value both as pharmacological tools and potential lead molecules for further preclinical development. The present study describes our ongoing efforts toward the discovery of functionally selective partial agonists of ADRB1 that have potential therapeutic value for AD and neuroinflammatory disorders, which has led to the identification of the molecule STD-101-D1. As a functionally selective agonist of ADRB1, STD-101-D1 produces partial agonistic activity on G protein signaling with an EC50 value in the low nanomolar range, but engages very little beta-arrestin recruitment compared to the unbiased agonist isoproterenol. STD-101-D1 also inhibits the tumor necrosis factor α (TNFα) response induced by lipopolysaccharide (LPS) both in vitro and in vivo, and shows high brain penetration. Other than the therapeutic role, this newly identified, functionally selective, partial agonist of ADRB1 is an invaluable research tool to study mechanisms of G protein-coupled receptor signal transduction.
Development and characterization of a TAPIR-like mouse monoclonal antibody to amyloid-beta.
Wang, Jun; Hara, Hideo; Makifuchi, Takao; Tabira, Takeshi
2008-06-01
Tissue amyloid plaque immuno-reactive (TAPIR) antibody was better related to the effect of immunotherapy in Alzheimer's disease (AD) than ELISA antibody. Here we used a hybridoma technique to develop a TAPIR-like anti-human amyloid-beta (Abeta) mouse monoclonal antibody. The obtained monoclonal antibody, 3.4A10, was an IgG2b isotype and recognized N-terminal portion of Abeta1-42 without binding denatured or native amyloid-beta protein precursor. It had higher affinity to Abeta1-42 than to Abeta1-40 by Biacore affinity analysis and stained preferably the peripheral part of senile plaques and recognized the plaque core less than 4G8. It inhibited the Abeta1-42 fibril formation as well as degraded pre-aggregated Abeta1-42 peptide in a thioflavin T fluorescence spectrophotometry assay. The in vivo studies showed that 3.4A10 treatment decreased amyloid burden compared to the control group and significantly reduced Abeta42 levels rather than Abeta40 levels in brain lysates as well as the Abeta*56 oligomer (12mer) in TBS fraction of the brain lysates. 3.4A10 entered brain and decorated some plaques, which is surrounded by more Iba1-positive microglia. 3.4A10 therapy did not induce lymphocytic infiltration and obvious increase in microhemorrhage. We conclude that 3.4A10 is a TAPIR-like anti-human amyloid monoclonal antibody, and has a potential of therapeutic application for AD.
Ayoub, Shereen; Melzig, Matthias F
2006-04-01
Deposition of amyloid beta-peptide as senile plaques in the brain is one of the neuropathological hallmarks of Alzheimer's disease, which is the most prevalent progressive neurodegenerative disease leading to dementia. Neutral endopeptidase is one of the major beta-amyloid-degrading enzymes in the brain. To examine the influence of different polyphenols and other natural products from green tea extract (from Camellia sinensis, Theaceae), we used the neuroblastoma cell line SK-N-SH and studied the changes in the specific cellular neutral endopeptidase activity after long-term treatment with these substances. We have shown that caffeine leads to an increase in specific cellular neutral endopeptidase activity more than theophylline, theobromine or theanine. We have also shown that the combination of epicatechin, epigallocatechin and epigallocatechingallate with caffeine, theobromine or theophylline induced cellular neutral endopeptidase activity. It is suggested that the enhancement of cellular neutral endopeptidase activity by green tea extract and its natural products might be correlated with an elevated level of intracellular cyclic adenosine monophosphate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, D.R.; Palmer, K.J.; Johnson, A.M.
The effects of prolonged oral administration of the antidepressants paroxetine and amitriptyline on rat brain cortical {beta}{sub 1}- and {beta}{sub 2}-adrenoceptor numbers and affinities were investigated using ({sup 3}H)-CGP 12177. Although amitriptyline, 27 mg/kg, caused a significant 20% reduction in the number of {beta}{sub 1}-adrenoceptors, paroxetine, at does up to 8.9 mg/kg p.o., did not influence binding of ({sup 3}H)-CGP 12177 to cortical {beta}{sub 1}- or {beta}{sub 2}-adrenoceptors. This study with paroxetine provides further evidence that the down-regulation of central {beta}{sub 1}-adrenoceptors in rat brain after repeated administration is not a property of all antidepressant drugs.
Nicolas, Fadia; Wu, Changgong; Bukhari, Salwa; de Toledo, Sonia M.; Li, Hong; Shibata, Masayuki; Azzam, Edouard I.
2015-01-01
The covalent addition of nitric oxide (NO•) onto cysteine thiols, or S-nitrosylation, modulates the activity of key signaling proteins. The dysregulation of normal S-nitrosylation contributes to degenerative conditions and to cancer. To gain insight into the biochemical changes induced by low-dose ionizing radiation, we determined global S-nitrosylation by the “biotin switch” assay coupled with mass spectrometry analyses in organs of C57BL/6J mice exposed to acute 0.1 Gy of 137Cs γ-rays. The dose of radiation was delivered to the whole body in the presence or absence of iopamidol, an iodinated contrast agent used during radiological examinations. To investigate whether similar or distinct nitrosylation patterns are induced following high-dose irradiation, mice were exposed in parallel to acute 4 Gy of 137Cs γ rays. Analysis of modulated S-nitrosothiols (SNO-proteins) in freshly-harvested organs of animals sacrificed 13 days after irradiation revealed radiation dose- and contrast agent-dependent changes. The major results were as follows: (i) iopamidol alone had significant effects on S-nitrosylation in brain, lung and liver; (ii) relative to the control, exposure to 0.1 Gy without iopamidol resulted in statistically-significant SNO changes in proteins that differ in molecular weight in liver, lung, brain and blood plasma; (iii) iopamidol enhanced the decrease in S-nitrosylation induced by 0.1 Gy in brain; (iv) whereas a decrease in S-nitrosylation occurred at 0.1 Gy for proteins of ~50 kDa in brain and for proteins of ~37 kDa in liver, an increase was detected at 4 Gy in both organs; (v) mass spectrometry analyses of nitrosylated proteins in brain revealed differential modulation of SNO proteins (e.g., sodium/potassium-transporting ATPase subunit beta-1; beta tubulins; ADP-ribosylation factor 5) by low- and high-dose irradiation; and (vi) ingenuity pathway analysis identified major signaling networks to be modulated, in particular the neuronal nitric oxide synthase signaling pathway was differentially modulated by low- and high-dose γ-irradiation. PMID:26317069
Nicolas, Fadia; Wu, Changgong; Bukhari, Salwa; de Toledo, Sonia M; Li, Hong; Shibata, Masayuki; Azzam, Edouard I
2015-04-28
The covalent addition of nitric oxide (NO • ) onto cysteine thiols, or S -nitrosylation, modulates the activity of key signaling proteins. The dysregulation of normal S -nitrosylation contributes to degenerative conditions and to cancer. To gain insight into the biochemical changes induced by low-dose ionizing radiation, we determined global S -nitrosylation by the "biotin switch" assay coupled with mass spectrometry analyses in organs of C57BL/6J mice exposed to acute 0.1 Gy of 137 Cs γ-rays. The dose of radiation was delivered to the whole body in the presence or absence of iopamidol, an iodinated contrast agent used during radiological examinations. To investigate whether similar or distinct nitrosylation patterns are induced following high-dose irradiation, mice were exposed in parallel to acute 4 Gy of 137 Cs γ rays. Analysis of modulated S -nitrosothiols (SNO-proteins) in freshly-harvested organs of animals sacrificed 13 days after irradiation revealed radiation dose- and contrast agent-dependent changes. The major results were as follows: (i) iopamidol alone had significant effects on S -nitrosylation in brain, lung and liver; (ii) relative to the control, exposure to 0.1 Gy without iopamidol resulted in statistically-significant SNO changes in proteins that differ in molecular weight in liver, lung, brain and blood plasma; (iii) iopamidol enhanced the decrease in S -nitrosylation induced by 0.1 Gy in brain; (iv) whereas a decrease in S -nitrosylation occurred at 0.1 Gy for proteins of ~50 kDa in brain and for proteins of ~37 kDa in liver, an increase was detected at 4 Gy in both organs; (v) mass spectrometry analyses of nitrosylated proteins in brain revealed differential modulation of SNO proteins (e.g., sodium/potassium-transporting ATPase subunit beta-1; beta tubulins; ADP-ribosylation factor 5) by low- and high-dose irradiation; and (vi) ingenuity pathway analysis identified major signaling networks to be modulated, in particular the neuronal nitric oxide synthase signaling pathway was differentially modulated by low- and high-dose γ-irradiation.
NASA Astrophysics Data System (ADS)
Lin, Wei-Ting; Chen, Ran-Chou; Lu, Wen-Wei; Liu, Shing-Hwa; Yang, Feng-Yi
2015-04-01
The protein expressions of neurotrophic factors can be enhanced by low-intensity pulsed ultrasound (LIPUS) stimulation in the brain. The purpose of this study was to demonstrate the protective effect of LIPUS stimulation against aluminum-induced cerebral damage in Alzheimer's disease rat model. LIPUS was administered 7 days before each aluminum chloride (AlCl3) administration, and concomitantly given with AlCl3 daily for a period of 6 weeks. Neurotrophic factors in hippocampus were measured by western blot analysis. Behavioral changes in the Morris water maze and elevated plus maze were examined in rats after administration of AlCl3. Various biochemical analyses were performed to evaluate the extent of brain damages. LIPUS is capable of prompting levels of brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and vascular endothelial growth factor (VEGF) in rat brain. AlCl3 administration resulted in a significant increase in the aluminum concentration, acetylcholinesterase activity and beta-amyloid (Aβ) deposition in AlCl3 treated rats. LIPUS stimulation significantly attenuated aluminum concentration, acetylcholinesterase activity, Aβ deposition and karyopyknosis in AlCl3 treated rats. Furthermore, LIPUS significantly improved memory retention in AlCl3-induced memory impairment. These experimental results indicate that LIPUS has neuroprotective effects against AlCl3-induced cerebral damages and cognitive dysfunction.
Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir; Brown, Peter
2016-05-01
Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus-cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the possibility that cortical connectivity with the subthalamic nucleus in the high and low beta bands may reflect coupling mediated predominantly by the hyperdirect and indirect pathways to subthalamic nucleus, respectively, and that subthalamic nucleus deep brain stimulation predominantly suppresses the former. Yet only the change in strength of local subthalamic nucleus oscillations correlates with the degree of improvement during deep brain stimulation, compatible with the current view that a strengthened hyperdirect pathway is a prerequisite for locally generated beta activity but that it is the severity of the latter that may determine or index motor impairment. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.
Lee, Seung Hyun; Hyun, Jae Seog; Kwon, Oh-Young
2010-08-01
The purpose of this study was to examine the cerebral changes in high beta frequency oscillations (22-30 Hz) induced by sertraline and by audiovisual erotic stimuli in healthy adult males. Scalp electroencephalographies (EEGs) were conducted twice in 11 healthy, right-handed males, once before sertraline intake and again 4 hours thereafter. The EEGs included four sessions recorded sequentially while the subjects were resting, watching a music video, resting, and watching an erotic video for 3 minutes, 5 minutes, 3 minutes, and 5 minutes, respectively. We performed frequency-domain analysis using the EEGs with a distributed model of current-source analysis. The statistical nonparametric maps were obtained from the sessions of watching erotic and music videos (p<0.05). The erotic stimuli decreased the current-source density of the high beta frequency band in the middle frontal gyrus, the precentral gyrus, the postcentral gyrus, and the supramarginal gyrus of the left cerebral hemisphere in the baseline EEGs taken before sertraline intake (p<0.05). The erotic stimuli did not induce any changes in current-source distribution of the brain 4 hours after sertraline intake. It is speculated that erotic stimuli may decrease the function of the middle frontal gyrus, the precentral gyrus, the postcentral gyrus, and the supramarginal gyrus of the left cerebral hemisphere in healthy adult males. This change may debase the inhibitory control of the brain against erotic stimuli. Sertraline may reduce the decrement in inhibitory control.
Lee, Seung Hyun; Hyun, Jae Seog
2010-01-01
Purpose The purpose of this study was to examine the cerebral changes in high beta frequency oscillations (22-30 Hz) induced by sertraline and by audiovisual erotic stimuli in healthy adult males. Materials and Methods Scalp electroencephalographies (EEGs) were conducted twice in 11 healthy, right-handed males, once before sertraline intake and again 4 hours thereafter. The EEGs included four sessions recorded sequentially while the subjects were resting, watching a music video, resting, and watching an erotic video for 3 minutes, 5 minutes, 3 minutes, and 5 minutes, respectively. We performed frequency-domain analysis using the EEGs with a distributed model of current-source analysis. The statistical nonparametric maps were obtained from the sessions of watching erotic and music videos (p<0.05). Results The erotic stimuli decreased the current-source density of the high beta frequency band in the middle frontal gyrus, the precentral gyrus, the postcentral gyrus, and the supramarginal gyrus of the left cerebral hemisphere in the baseline EEGs taken before sertraline intake (p<0.05). The erotic stimuli did not induce any changes in current-source distribution of the brain 4 hours after sertraline intake. Conclusions It is speculated that erotic stimuli may decrease the function of the middle frontal gyrus, the precentral gyrus, the postcentral gyrus, and the supramarginal gyrus of the left cerebral hemisphere in healthy adult males. This change may debase the inhibitory control of the brain against erotic stimuli. Sertraline may reduce the decrement in inhibitory control. PMID:20733961
Christov, Mario; Dushanova, Juliana
2016-01-01
The brain as a system with gradually declined resources by age maximizes its performance by neural network reorganization for greater efficiency of neuronal oscillations in a given frequency band. Whether event-related high-frequency band responses are related to plasticity in neural recruitment contributed to the stability of sensory/cognitive mechanisms accompanying aging or are underlined pathological changes seen in aging brain remains unknown. Aged effect on brain electrical activity was studied in auditory discrimination task (low-frequency and high-frequency tone) at particular cortical locations in beta (β1: 12.5-20; β2: 20.5-30 Hz) and gamma frequency bands (γ1: 30.5-49; γ2: 52-69 Hz) during sensory (post-stimulus interval 0-250 ms) and cognitive processing (250-600 ms). Beta1 activity less affected by age during sensory processing. Reduced beta1 activity was more widespread during cognitive processing. This difference increased in fronto-parietal direction more expressed after high-frequency tone stimulation. Beta2 and gamma activity were more pronounced with progressive age during sensory processing. Reducing regional-process specificity with progressing age characterized age-related and tone-dependent beta2 changes during sensory, but not during cognitive processing. Beta2 and gamma activity diminished with age on cognitive processes, except the higher frontal tone-dependent gamma activity during cognitive processing. With increasing age, larger gamma2 activity was more expressed over the frontal brain areas to high tone discrimination and hand reaction choice. These gamma2 differences were shifted from posterior to anterior brain regions with advancing age. The aged influence was higher on cognitive processes than on perceptual ones.
Kaushal, V; Dye, R; Pakavathkumar, P; Foveau, B; Flores, J; Hyman, B; Ghetti, B; Koller, B H; LeBlanc, A C
2015-01-01
Neuronal active Caspase-6 (Casp6) is associated with Alzheimer disease (AD), cognitive impairment, and axonal degeneration. Caspase-1 (Casp1) can activate Casp6 but the expression and functionality of Casp1-activating inflammasomes has not been well-defined in human neurons. Here, we show that primary cultures of human CNS neurons expressed functional Nod-like receptor protein 1 (NLRP1), absent in melanoma 2, and ICE protease activating factor, but not the NLRP3, inflammasome receptor components. NLRP1 neutralizing antibodies in a cell-free system, and NLRP1 siRNAs in neurons hampered stress-induced Casp1 activation. NLRP1 and Casp1 siRNAs also abolished stress-induced Casp6 activation in neurons. The functionality of the NLRP1 inflammasome in serum-deprived neurons was also demonstrated by NLRP1 siRNA-mediated inhibition of speck formation of the apoptosis-associated speck-like protein containing a caspase recruitment domain conjugated to green fluorescent protein. These results indicated a novel stress-induced intraneuronal NLRP1/Casp1/Casp6 pathway. Lipopolysaccharide induced Casp1 and Casp6 activation in wild-type mice brain cortex, but not in that of Nlrp1−/− and Casp1−/− mice. NLRP1 immunopositive neurons were increased 25- to 30-fold in AD brains compared with non-AD brains. NLRP1 immunoreactivity in these neurons co-localized with Casp6 activity. Furthermore, the NLRP1/Casp1/Casp6 pathway increased amyloid beta peptide 42 ratio in serum-deprived neurons. Therefore, CNS human neurons express functional NLRP1 inflammasomes, which activate Casp1 and subsequently Casp6, thus revealing a fundamental mechanism linking intraneuronal inflammasome activation to Casp1-generated interleukin-1-β-mediated neuroinflammation and Casp6-mediated axonal degeneration. PMID:25744023
Rudoy, C A; Van Bockstaele, E J
2007-06-30
Anxiety has been indicated as one of the main symptoms of the cocaine withdrawal syndrome in human addicts and severe anxiety during withdrawal may potentially contribute to relapse. As alterations in noradrenergic transmission in limbic areas underlie withdrawal symptomatology for many drugs of abuse, the present study sought to determine the effect of cocaine withdrawal on beta-adrenergic receptor (beta(1) and beta(2)) expression in the amygdala. Male Sprague Dawley rats were administered intraperitoneal (i.p.) injections of cocaine (20 mg/kg) once daily for 14 days. Two days following the last cocaine injection, amygdala brain regions were micro-dissected and processed for Western blot analysis. Results showed that beta(1)-adrenergic receptor, but not beta(2)-adrenergic receptor expression was significantly increased in amygdala extracts of cocaine-withdrawn animals as compared to controls. This finding motivated further studies aimed at determining whether treatment with betaxolol, a highly selective beta(1)-adrenergic receptor antagonist, could ameliorate cocaine withdrawal-induced anxiety. In these studies, betaxolol (5 mg/kg via i.p. injection) was administered at 24 and then 44 h following the final chronic cocaine administration. Anxiety-like behavior was evaluated using the elevated plus maze test approximately 2 h following the last betaxolol injection. Following behavioral testing, betaxolol effects on beta(1)-adrenergic receptor protein expression were examined by Western blotting in amygdala extracts from rats undergoing cocaine withdrawal. Animals treated with betaxolol during cocaine withdrawal exhibited a significant attenuation of anxiety-like behavior characterized by increased time spent in the open arms and increased entries into the open arms compared to animals treated with only saline during cocaine withdrawal. In contrast, betaxolol did not produce anxiolytic-like effects in control animals treated chronically with saline. Furthermore, treatment with betaxolol during early cocaine withdrawal significantly decreased beta(1)-adrenergic receptor protein expression in the amygdala to levels comparable to those of control animals. The present findings suggest that the anxiolytic-like effect of betaxolol on cocaine-induced anxiety may be related to its effect on amygdalar beta(1)-adrenergic receptors that are up-regulated during early phases of drug withdrawal. These data support the efficacy of betaxolol as a potential effective pharmacotherapy in treating cocaine withdrawal-induced anxiety during early phases of abstinence.
Sharma, Sheetal; Verma, Sonia; Kapoor, Monika; Saini, Avneet; Nehru, Bimla
2016-09-01
Amyloid-beta (Aβ) peptide deposition into insoluble plaques is a pathological hallmark of Alzheimer's disease (AD), but soluble oligomeric Aβ is considered to be more potent and has been hypothesized to directly impair learning and memory. Also, evidences from some clinical studies indicated that Aβ oligomer formation is the major cause for early AD onset. However, the biochemical mechanism involved in the oligomer-induced toxicity is not very well addressed. So, thise present study was undertaken to study the effects of single intracerebroventricular (icv) injection of protofibrillar Aβ 1-42 on the behavioral and biochemical profile in rats. Rats were divided into two groups (n = 8 per group): (1) sham control group and (2) Aβ 1-42 injected group. A single dose of protofibrillar Aβ 1-42 (5 ul) through icv injection was bilaterally administered into the dorsal hippocampus, while sham control animals were administered with 5 µl of vehicle. The results demonstrated that the protofibrillar Aβ significantly inhibited long-term memory retention and increased anxiety levels as shown by the behavioral studies. The amyloid deposits were present inside the brain even six weeks after injection as confirmed by thioflavin-T staining and the neurodegeneration induced by these deposits was confirmed by Nissl's staining in hippocampal and cortical regions. The amyloid aggregates induced reactive oxygen species (ROS) production, acetylcholinesterase activity, nitrite levels, lipid peroxidation, and inhibited antioxidant enzyme activity in hippocampus, cortex, and striatum regions of rat brain after six weeks. The present study indicated that protofibrillar Aβ 1-42 injection altered long term memory, induced anxiety-like behavior and also developed Alzheimer's disease like pathology in rats.
Wieczorek, Marek; Dunn, Adrian J
2006-09-01
Peripheral administration of interleukin-1 (IL-1) is known to activate the hypothalamo-pituitary-adrenal axis (HPA axis) and brain noradrenergic systems. We studied the relationship between these responses using in vivo microdialysis to assess the release of hypothalamic norepinephrine (NE), while simultaneously sampling blood for ACTH and corticosterone, and monitoring body temperature and behavior in freely moving rats. Rats were implanted with microdialysis probes in the medial hypothalamus, with intravenous catheters, and with telethermometers in the abdomen. Each rat was injected with saline and IL-1beta (1 microg ip) in random order, monitoring microdialysate NE, body temperature and plasma ACTH and corticosterone for 2-4 h after injection. Saline injections were followed by transient increases in microdialysate NE and in plasma ACTH and corticosterone. IL-1beta injections resulted in prolonged elevations of microdialysate NE, as well as plasma ACTH and corticosterone, and body temperature. IL-1beta also induced shivering and a prolonged depression of locomotor activity. Pretreatment with indomethacin (10 mg/kg sc) prevented the IL-1beta-induced increases in body temperature and the apparent increase in hypothalamic NE release, but only attenuated the IL-1beta-induced shivering and the increase in plasma ACTH. The results indicate a close temporal relationship between the release of NE and HPA axis activation. Such a relationship is also supported by the similar effects of indomethacin pretreatment on NE and ACTH. The shivering is likely involved in the increase in body temperature, but indomethacin only attenuated the shivering while it blocked the fever. However, the effects of indomethacin clearly indicate that neither the increase in body temperature nor the increase in hypothalamic NE release was essential for HPA axis activation. These results suggest that hypothalamic NE is involved in the IL-1-induced HPA axis activation, but that this is not the only mechanism by which the HPA axis is activated by intraperitoneally injected IL-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connor, D.M.; Miller, L.; Benveniste, H.
Our understanding of early development in Alzheimer's disease (AD) is clouded by the scale at which the disease progresses; amyloid beta (A{beta}) plaques, a hallmark feature of AD, are small ({approx} 50 {micro}m) and low contrast in diagnostic clinical imaging techniques. Diffraction enhanced imaging (DEI), a phase contrast x-ray imaging technique, has greater soft tissue contrast than conventional radiography and generates higher resolution images than magnetic resonance microimaging. Thus, in this proof of principle study, DEI in micro-CT mode was performed on the brains of AD-model mice to determine if DEI can visualize A{beta} plaques. Results revealed small nodules inmore » the cortex and hippocampus of the brain. Histology confirmed that the features seen in the DEI images of the brain were A{beta} plaques. Several anatomical structures, including hippocampal subregions and white matter tracks, were also observed. Thus, DEI has strong promise in early diagnosis of AD, as well as general studies of the mouse brain.« less
75 FR 75681 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-06
... of [beta]-amyloid (beta-amyloid) aggregates in the brain to help rule out Alzheimer's disease. On... children (2 years of age and older) to detect and visualize areas with disrupted blood brain barrier (BBB... bloodstream into the brain. FDA intends to make background material available to the public no later than 2...
Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir
2016-01-01
Abstract Chronic dopamine depletion in Parkinson’s disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson’s disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus–cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the possibility that cortical connectivity with the subthalamic nucleus in the high and low beta bands may reflect coupling mediated predominantly by the hyperdirect and indirect pathways to subthalamic nucleus, respectively, and that subthalamic nucleus deep brain stimulation predominantly suppresses the former. Yet only the change in strength of local subthalamic nucleus oscillations correlates with the degree of improvement during deep brain stimulation, compatible with the current view that a strengthened hyperdirect pathway is a prerequisite for locally generated beta activity but that it is the severity of the latter that may determine or index motor impairment. PMID:27017189
Taga, C; Tsuji, M; Nakajima, T
1989-05-01
A reversed phase HPLC method with fluorometric detection for the analysis of beta-phenylethylamine has been developed using p-methoxyphenylethylamine as an internal standard. Two columns, containing 200 microL of Dowex 50-X8 and Amberlite CG-50 respectively, were used to prepare a fraction containing beta-phenylethylamine. The recoveries of beta-phenylethylamine and p-methoxyphenylethylamine were 53.9 +/- 9.4% and 68.1 +/- 12.4%, respectively, and elution profile of p-methoxyphenylethylamine was sufficiently well correlated with that of beta-phenylethylamine. Regional distributions of beta-phenylethylamine in rat and mouse brains were determined. The highest concentrations were found in hypothalamus and hippocampus in both animals.
Guerra, Andrea; Suppa, Antonio; Bologna, Matteo; D'Onofrio, Valentina; Bianchini, Edoardo; Brown, Peter; Di Lazzaro, Vincenzo; Berardelli, Alfredo
2018-03-24
Transcranial Alternating Current Stimulation (tACS) consists in delivering electric current to the brain using an oscillatory pattern that may entrain the rhythmic activity of cortical neurons. When delivered at gamma frequency, tACS modulates motor performance and GABA-A-ergic interneuron activity. Since interneuronal discharges play a crucial role in brain plasticity phenomena, here we co-stimulated the primary motor cortex (M1) in healthy subjects by means of tACS during intermittent theta-burst stimulation (iTBS), a transcranial magnetic stimulation paradigm known to induce long-term potentiation (LTP)-like plasticity. We measured and compared motor evoked potentials before and after gamma, beta and sham tACS-iTBS. While we delivered gamma-tACS, we also measured short-interval intracortical inhibition (SICI) to detect any changes in GABA-A-ergic neurotransmission. Gamma, but not beta and sham tACS, significantly boosted and prolonged the iTBS-induced after-effects. Interestingly, the extent of the gamma tACS-iTBS after-effects correlated directly with SICI changes. Overall, our findings point to a link between gamma oscillations, interneuronal GABA-A-ergic activity and LTP-like plasticity in the human M1. Gamma tACS-iTBS co-stimulation might represent a new strategy to enhance and prolong responses to plasticity-inducing protocols, thereby lending itself to future applications in the neurorehabilitation setting. Copyright © 2018 Elsevier Inc. All rights reserved.
Tribouillard-Tanvier, Déborah; Striebel, James F; Peterson, Karin E; Chesebro, Bruce
2009-11-01
Activation of microglia and astroglia is seen in many neurodegenerative diseases including prion diseases. Activated glial cells produce cytokines as a protective response against certain pathogens and as part of the host inflammatory response to brain damage. In addition, cytokines might also exacerbate tissue damage initiated by other processes. In the present work using multiplex assays to analyze protein levels of 24 cytokines in scrapie agent-infected C57BL/10 mouse brains, we observed elevation of CCL2, CCL5, CXCL1, CXCL10, granulocyte-macrophage colony-stimulating factor (GM-CSF), gamma interferon (IFN-gamma), interleukin 1alpha (IL-1alpha), IL-1beta, IL-6, and IL-12p40. Scrapie agent-infected wild-type mice and transgenic mice expressing anchorless prion protein (PrP) had similar cytokine responses in spite of extensive differences in neuropathology. Therefore, these responses may be primarily a reaction to brain damage induced by prion infection rather than specific inducers of a particular type of pathology. To study the roles of astroglia and microglia in these cytokine responses, primary glial cultures were exposed to scrapie agent-infected brain homogenates. Microglia produced only IL-12p40 and CXCL10, whereas astroglia produced these cytokines plus CCL2, CCL3, CCL5, CXCL1, G-CSF, IL-1beta, IL-6, IL-12p70, and IL-13. Glial cytokine responses from wild-type mice and transgenic mice expressing anchorless PrP differed only slightly, but glia from PrP-null mice produced only IL-12p40, indicating that PrP expression was required for scrapie agent induction of other cytokines detected. The difference in cytokine response between microglia and astroglia correlated with 20-fold-higher levels of PrP expression in astroglia versus microglia, suggesting that high-level PrP expression on astroglia might be important for induction of certain cytokines.
Yang, Shaobin; Pascual-Guiral, Sònia; Ponce, Rebeca; Giménez-Llort, Lydia; Baltrons, María A; Arancio, Ottavio; Palacio, Jose R; Clos, Victoria M; Yuste, Victor J; Bayascas, Jose R
2017-01-01
The Akt kinase has been widely assumed for years as a key downstream effector of the PI3K signaling pathway in promoting neuronal survival. This notion was however challenged by the finding that neuronal survival responses were still preserved in mice with reduced Akt activity. Moreover, here we show that the Akt signaling is elevated in the aged brain of two different mice models of Alzheimer Disease. We manipulate the rate of Akt stimulation by employing knock-in mice expressing a mutant form of PDK1 (phosphoinositide-dependent protein kinase 1) with reduced, but not abolished, ability to activate Akt. We found increased membrane localization and activity of the TACE/ADAM17 α-secretase in the brain of the PDK1 mutant mice with concomitant TNFR1 processing, which provided neurons with resistance against TNFα-induced neurotoxicity. Opposite to the Alzheimer Disease transgenic mice, the PDK1 knock-in mice exhibited an age-dependent attenuation of the unfolding protein response, which protected the mutant neurons against endoplasmic reticulum stressors. Moreover, these two mechanisms cooperatively provide the mutant neurons with resistance against amyloid-beta oligomers, and might singularly also contribute to protect these mice against amyloid-beta pathology.
Markova, Nataliia; Shevtsova, Elena; Bakhmet, Anastassia; Steinbusch, Harry M.
2016-01-01
While deficient brain plasticity is a well-established pathophysiologic feature of depression, little is known about disorder-associated enhanced cognitive processing. Here, we studied a novel mouse paradigm that potentially models augmented learning of adverse memories during development of a depressive-like state. We used a modification of the classic two-day protocol of a mouse Porsolt test with an additional session occurring on Day 5 following the initial exposure. Unexpectedly, floating behaviour and brain glycogen synthase kinase-3 beta (GSK-3beta) mRNA levels, a factor of synaptic plasticity as well as a marker of distress and depression, were increased during the additional swimming session that was prevented by imipramine. Observed increases of GSK-3beta mRNA in prefrontal cortex during delayed testing session correlated with individual parameters of behavioural despair that was not found in the classic Porsolt test. Repeated swim exposure was accompanied by a lower pGSK-3beta/GSK-3beta ratio. A replacement of the second or the final swim sessions with exposure to the context of testing resulted in increased GSK-3beta mRNA level similar to the effects of swimming, while exclusion of the second testing prevented these changes. Together, our findings implicate the activation of brain GSK-3beta expression in enhanced contextual conditioning of adverse memories, which is associated with an individual susceptibility to a depressive syndrome. PMID:27478647
Strekalova, Tatyana; Markova, Nataliia; Shevtsova, Elena; Zubareva, Olga; Bakhmet, Anastassia; Steinbusch, Harry M; Bachurin, Sergey; Lesch, Klaus-Peter
2016-01-01
While deficient brain plasticity is a well-established pathophysiologic feature of depression, little is known about disorder-associated enhanced cognitive processing. Here, we studied a novel mouse paradigm that potentially models augmented learning of adverse memories during development of a depressive-like state. We used a modification of the classic two-day protocol of a mouse Porsolt test with an additional session occurring on Day 5 following the initial exposure. Unexpectedly, floating behaviour and brain glycogen synthase kinase-3 beta (GSK-3beta) mRNA levels, a factor of synaptic plasticity as well as a marker of distress and depression, were increased during the additional swimming session that was prevented by imipramine. Observed increases of GSK-3beta mRNA in prefrontal cortex during delayed testing session correlated with individual parameters of behavioural despair that was not found in the classic Porsolt test. Repeated swim exposure was accompanied by a lower pGSK-3beta/GSK-3beta ratio. A replacement of the second or the final swim sessions with exposure to the context of testing resulted in increased GSK-3beta mRNA level similar to the effects of swimming, while exclusion of the second testing prevented these changes. Together, our findings implicate the activation of brain GSK-3beta expression in enhanced contextual conditioning of adverse memories, which is associated with an individual susceptibility to a depressive syndrome.
Sarkaki, Alireza; Farbood, Yaghoub; Gharib-Naseri, Mohammad Kazem; Badavi, Mohammad; Mansouri, Mohammad Taghi; Haghparast, Abbas; Mirshekar, Mohammad Ali
2015-08-01
Traumatic brain injury (TBI) is one of the main causes of intellectual and cognitive disabilities. In the clinic it is essential to limit the development of cognitive impairment after TBI. In this study, the effects of gallic acid (GA; 100 mg/kg, per oral, from 7 days before to 2 days after TBI induction) on neurological score, passive avoidance memory, long-term potentiation (LTP) deficits, and levels of proinflammatory cytokines including interleukin-1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) in the brain have been evaluated. Brain injury was induced following Marmarou's method. Data were analyzed by one-way and repeated measures ANOVA followed by Tukey's post-hoc test. The results indicated that memory was significantly impaired (p < 0.001) in the group treated with TBI + vehicle, together with deterioration of the hippocampal LTP and increased brain tissue levels of IL-1β, IL-6, and TNF-α. GA treatment significantly improved memory and LTP in the TBI rats. The brain tissue levels of IL-1β, IL-6, and TNF-α were significantly reduced (p < 0.001) in the group treated with GA. The results suggest that GA has neuroprotective properties against TBI-induced behavioral, electrophysiological, and inflammatory disorders, probably via the decrease of cerebral proinflammatory cytokines.
Cerebral protein kinase C and its mRNA level in apolipoprotein E-deficient mice.
Hung, M C; Hayase, K; Yoshida, R; Sato, M; Imaizumi, K
2001-08-10
It is known that protein kinase C (PKC) activity may be one of the fundamental cellular changes associated with memory function. Apolipoprotein E (apoE) deficiency causes cholinergic deficits and memory impairment. ApoE-deficient mouse has been employed as a serviceable model for studying the relation between apoE and the memory deficit induced by cholinergic impairment. Brain-fatty acid binding protein (b-FABP) might be functional during development of the nervous system. Peroxisome proliferator-activated receptor (PPAR) is involved in the early change in lipid metabolism. We investigated the alterations not only in cerebral PKC activity, but also in the gene expressions of PKC-beta, brain-FABP and PPAR-alpha in apoE-deficient mice. The results showed that there was a lower cerebral membrane-bound PKC activity in the apoE-deficient mice than in its wild type strain (C57BL/6). But there were no significant differences in cytosolic PKC activity. PKC-beta, b-FABP and PPAR-alpha mRNA expressions in cerebrum were lowered in apoE-deficient mice. These findings may be involved in the dysfunction of the brain neurotransmission system in apoE-deficient mouse. Alternatively, these results also suggest that cerebral apoE plays an important role in brain PKC activation by maintaining an appropriate expression of b-FABP and PPAR-alpha mRNAs.
Yano, Akira; Ito, Kaori; Miwa, Yoshikatsu; Kanazawa, Yoshito; Chiba, Akiko; Iigo, Yutaka; Kashimoto, Yoshinori; Kanda, Akira; Murata, Shinji; Makino, Mitsuhiro
2015-01-01
The reduction of brain amyloid beta (Aβ) peptides by anti-Aβ antibodies is one of the possible therapies for Alzheimer's disease. We previously reported that the Aβ peptide vaccine including the T-cell epitope of diphtheria-tetanus combined toxoid (DT) induced anti-Aβ antibodies, and the prior immunization with conventional DT vaccine enhanced the immunogenicity of the peptide. Cynomolgus monkeys were given the peptide vaccine subcutaneously in combination with the prior DT vaccination. Vaccination with a similar regimen was also performed on guinea pigs. The peptide vaccine induced anti-Aβ antibodies in cynomolgus monkeys and guinea pigs without chemical adjuvants, and excessive immune responses were not observed. Those antibodies could preferentially recognize Aβ 40, and Aβ 42 compared to Aβ fibrils. The levels of serum anti-Aβ antibodies and plasma Aβ peptides increased in both animals and decreased the brain Aβ 40 level of guinea pigs. The peptide vaccine could induce a similar binding profile of anti-Aβ antibodies in cynomolgus monkeys and guinea pigs. The peptide vaccination could be expected to reduce the brain Aβ peptides and their toxic effects via clearance of Aβ peptides by generated antibodies. PMID:26539559
Zwart, R; Abraham, D; Oortgiesen, M; Vijverberg, H P
1994-08-22
Pharmacological characteristics of native neuronal nicotinic acetylcholine receptor-mediated ion currents in mouse N1E-115 neuroblastoma cells have been investigated by superfusion of voltage clamped cells with known concentrations of the agonists acetylcholine, nicotine and cytisine, and the antagonists alpha-bungarotoxin and neuronal bungarotoxin. The sensitivity of the nicotinic acetylcholine receptor for agonists followed the agonist potency rank-order: nicotine approximately acetylcholine > cytisine. The EC50 values of acetylcholine and nicotine are 78 microM and 76 microM, respectively. Equal concentrations of acetylcholine and nicotine induce inward currents with approximately the same peak amplitude whereas cytisine induces much smaller inward currents. Acetylcholine-induced currents are unaffected by high concentrations of alpha-bungarotoxin. Conversely, at 10 and 90 nM neuronal bungarotoxin reduces the amplitude of the 1 mM acetylcholine-induced inward current to 47% and 11% of control values, respectively. Both the agonist potency rank-order and the differential sensitivity to snake toxins of nicotinic receptors in N1E-115 cells are consistent with the known pharmacological profile of alpha 4 beta 2 nicotinic receptors expressed in Xenopus oocytes and distinct from those of all other nicotinic acetylcholine receptors of known functional subunit compositions. All data indicate that the native nicotinic acetylcholine receptor in N1E-115 cells is an assembly of alpha 4 and beta 2 subunits, the putative major subtype of nicotinic acetylcholine receptor in the brain.
Carbachol-induced phosphoinositide turnover in NCB-20 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, D.M.; Dillon-Carter, O.
NCB-20 cells (fetal Chinese hamster brain cell x neuroblastoma hybrids) have been shown to contain a variety of neurotransmitter receptors. The authors now report that this cloned cell line also contains acetylcholne receptors which are linked to phospholipase C. Confluent cell cultures were preincubated with /sup 3/H-myo-inositol to label endogenous phosphoinositide (PI) and the accumulation of a PI metabolite, inositol monophosphate (IP/sub 1/), was measured in the presence of LiCl. Carbachol increased IP/sub 1/), accumulation be more than 400% with a EC/sub 50/ of about 50 ..mu..M. Acetylcholine and muscarine were also effective, whereas oxotremorine and McN-A-343 were weak inmore » both potency and efficacy. The carbachol-induced IP/sub 1/ accumulation was completely blocked by atropine (Ki approx. 0.6 nM) and pirenzepine (Ki approx. 15 nM). The presence of KCl was not required for the carbachol-induced effect. The formation of inositol bis- and triphosphate was also increased carbachol; these increases occurred earlier but were of much smaller magnitude. Pretreatment of cells with 4 ..beta..-phorbol dibutyrate or 4 ..beta..-phorbol myristate acetate was found to attenuate the carbachol-induced formation of IP/sub 1/ (IC/sub 50/ in the low nanomolar concentration ranges), however 4 ..beta..-phorbol, the biologically inactive phorbol ester, was ineffective in causing this attenuation. These results suggest a feedback inhibition of PI turnover in NCB-20 cells through the action of protein kinase C.« less
Chapouly, Candice; Tadesse Argaw, Azeb; Horng, Sam; Castro, Kamilah; Zhang, Jingya; Asp, Linnea; Loo, Hannah; Laitman, Benjamin M.; Mariani, John N.; Straus Farber, Rebecca; Zaslavsky, Elena; Nudelman, German; Raine, Cedric S.
2015-01-01
In inflammatory central nervous system conditions such as multiple sclerosis, breakdown of the blood–brain barrier is a key event in lesion pathogenesis, predisposing to oedema, excitotoxicity, and ingress of plasma proteins and inflammatory cells. Recently, we showed that reactive astrocytes drive blood–brain barrier opening, via production of vascular endothelial growth factor A (VEGFA). Here, we now identify thymidine phosphorylase (TYMP; previously known as endothelial cell growth factor 1, ECGF1) as a second key astrocyte-derived permeability factor, which interacts with VEGFA to induce blood–brain barrier disruption. The two are co-induced NFκB1-dependently in human astrocytes by the cytokine interleukin 1 beta (IL1B), and inactivation of Vegfa in vivo potentiates TYMP induction. In human central nervous system microvascular endothelial cells, VEGFA and the TYMP product 2-deoxy-d-ribose cooperatively repress tight junction proteins, driving permeability. Notably, this response represents part of a wider pattern of endothelial plasticity: 2-deoxy-d-ribose and VEGFA produce transcriptional programs encompassing angiogenic and permeability genes, and together regulate a third unique cohort. Functionally, each promotes proliferation and viability, and they cooperatively drive motility and angiogenesis. Importantly, introduction of either into mouse cortex promotes blood–brain barrier breakdown, and together they induce severe barrier disruption. In the multiple sclerosis model experimental autoimmune encephalitis, TYMP and VEGFA co-localize to reactive astrocytes, and correlate with blood–brain barrier permeability. Critically, blockade of either reduces neurologic deficit, blood–brain barrier disruption and pathology, and inhibiting both in combination enhances tissue preservation. Suggesting importance in human disease, TYMP and VEGFA both localize to reactive astrocytes in multiple sclerosis lesion samples. Collectively, these data identify TYMP as an astrocyte-derived permeability factor, and suggest TYMP and VEGFA together promote blood–brain barrier breakdown. PMID:25805644
Banks, William A; Farr, Susan A; Morley, John E; Wolf, Kathy M; Geylis, Valeria; Steinitz, Michael
2007-08-01
Amyloid beta protein (Abeta) levels are elevated in the brain of Alzheimer's disease patients. Anti-Abeta antibodies can reverse the histologic and cognitive impairments in mice which overexpress Abeta. Passive immunization appears safer than vaccination and treatment of patients will likely require human rather than xenogenic antibodies. Effective treatment will likely require antibody to cross the blood-brain barrier (BBB). Unfortunately, antibodies typically cross the BBB very poorly and accumulate less well in brain than even albumin, a substance nearly totally excluded from the brain. We compared the ability of two anti-Abeta human monoclonal IgM antibodies, L11.3 and HyL5, to cross the BBB of young CD-1 mice to that of young and aged SAMP8 mice. The SAMP8 mouse has a spontaneous mutation that induces an age-related, Abeta-dependent cognitive deficit. There was preferential uptake of intravenously administered L11.3 in comparison to HyL5, albumin, and a control human monoclonal IgM (RF), especially by hippocampus and olfactory bulb in aged SAMP8 mice. Injection of L11.3 into the brains of aged SAMP8 mice reversed both learning and memory impairments in aged SAMP8 mice, whereas IgG and IgM controls were ineffective. Pharmacokinetic analysis predicted that an intravenous dose 1000 times higher than the brain injection dose would reverse cognitive impairments. This predicted intravenous dose reversed the impairment in learning, but not memory, in aged SAMP8 mice. In conclusion, an IgM antibody was produced that crosses the BBB to reverse cognitive impairment in a murine model of Alzheimer's disease.
Brain responses to 40-Hz binaural beat and effects on emotion and memory.
Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan
2017-10-01
Gamma oscillation plays a role in binding process or sensory integration, a process by which several brain areas beside primary cortex are activated for higher perception of the received stimulus. Beta oscillation is also involved in interpreting received stimulus and occurs following gamma oscillation, and this process is known as gamma-to-beta transition, a process for neglecting unnecessary stimuli in surrounding environment. Gamma oscillation also associates with cognitive functions, memory and emotion. Therefore, modulation of the brain activity can lead to manipulation of cognitive functions. The stimulus used in this study was 40-Hz binaural beat because binaural beat induces frequency following response. This study aimed to investigate the neural oscillation responding to the 40-Hz binaural beat and to evaluate working memory function and emotional states after listening to that stimulus. Two experiments were developed based on the study aims. In the first experiment, electroencephalograms were recorded while participants listened to the stimulus for 30min. The results suggested that frontal, temporal, and central regions were activated within 15min. In the second experiment, word list recall task was conducted before and after listening to the stimulus for 20min. The results showed that, after listening, the recalled words were increase in the working memory portion of the list. Brunel Mood Scale, a questionnaire to evaluate emotional states, revealed changes in emotional states after listening to the stimulus. The emotional results suggested that these changes were consistent with the induced neural oscillations. Copyright © 2017 Elsevier B.V. All rights reserved.
Role of APOE Isforms in the Pathogenesis of TBI Induced Alzheimer’s Disease
2014-10-01
the inheritance of APOe4 is the only proven genetic risk factor for sporadic Alzheimer disease (AD). Importantly, TBI is a risk factor for the...mice on human APOE genetic background were exceptionally difficult to generate. We are considering changes in the genotype of those particular groups...mediated through ABCA1. 2 Keywords Traumatic brain injury, APOE isoforms, ABCA1, Alzheimer disease, APPmice, amyloid beta, axonal injury, inflamma
Zazen meditation and no-task resting EEG compared with LORETA intracortical source localization.
Faber, Pascal L; Lehmann, Dietrich; Gianotti, Lorena R R; Milz, Patricia; Pascual-Marqui, Roberto D; Held, Marlene; Kochi, Kieko
2015-02-01
Meditation is a self-induced and willfully initiated practice that alters the state of consciousness. The meditation practice of Zazen, like many other meditation practices, aims at disregarding intrusive thoughts while controlling body posture. It is an open monitoring meditation characterized by detached moment-to-moment awareness and reduced conceptual thinking and self-reference. Which brain areas differ in electric activity during Zazen compared to task-free resting? Since scalp electroencephalography (EEG) waveforms are reference-dependent, conclusions about the localization of active brain areas are ambiguous. Computing intracerebral source models from the scalp EEG data solves this problem. In the present study, we applied source modeling using low resolution brain electromagnetic tomography (LORETA) to 58-channel scalp EEG data recorded from 15 experienced Zen meditators during Zazen and no-task resting. Zazen compared to no-task resting showed increased alpha-1 and alpha-2 frequency activity in an exclusively right-lateralized cluster extending from prefrontal areas including the insula to parts of the somatosensory and motor cortices and temporal areas. Zazen also showed decreased alpha and beta-2 activity in the left angular gyrus and decreased beta-1 and beta-2 activity in a large bilateral posterior cluster comprising the visual cortex, the posterior cingulate cortex and the parietal cortex. The results include parts of the default mode network and suggest enhanced automatic memory and emotion processing, reduced conceptual thinking and self-reference on a less judgmental, i.e., more detached moment-to-moment basis during Zazen compared to no-task resting.
NASA Astrophysics Data System (ADS)
Türker-Kaya, Sevgi; Mutlu, Oğuz; Çelikyurt, İpek K.; Akar, Furuzan; Ulak, Güner
2016-05-01
Chronic stress which can cause a variety of disorders and illness ranging from metabolic and cardiovascular to mental leads to alterations in content, structure and dynamics of biomolecules in brain. The determination of stress-induced changes along with the effects of antidepressant treatment on these parameters might bring about more effective therapeutic strategies. In the present study, we investigated unpredictable chronic mild stress (UCMS)-induced changes in biomolecules in mouse brain and the restoring effects of tianeptine (TIA), olanzapine (OLZ) and fluoxetine (FLX) on these variations, by Fourier transform infrared (FT-IR) spectroscopy. The results revealed that chronic stress causes different membrane packing and an increase in lipid peroxidation, membrane fluidity. A significant increment for lipid/protein, Cdbnd O/lipid, CH3/lipid, CH2/lipid, PO-2/lipid, COO-/lipid and RNA/protein ratios but a significant decrease for lipid/protein ratios were also obtained. Additionally, altered protein secondary structure components were estimated, such as increment in random coils and beta structures. The administration of TIA, OLZ and FLX drugs restored these stress-induced variations except for alterations in protein structure and RNA/protein ratio. This may suggest that these drugs have similar restoring effects on the consequences of stress activity in brain, in spite of the differences in their action mechanisms. All findings might have importance in understanding molecular mechanisms underlying chronic stress and contribute to studies aimed for drug development.
Hobson, Ruth M; Artioli, Guilherme G.; Otaduy, Maria C.; Roschel, Hamilton; Robertson, Jacques; Martin, Daniel; S. Painelli, Vitor; Harris, Roger C.; Gualano, Bruno
2015-01-01
Objectives Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d-1 on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1) and on cognitive function before and after exercise in trained cyclists (Study 2). Methods In Study 1, seven healthy vegetarians (3 women and 4 men) and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation), with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task) being performed before and after exercise on each occasion. Results In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99) or omnivores (p = 0.27); nor was there any effect when data from both groups were pooled (p = 0.19). Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27). In study 2, exercise improved cognitive function across all tests (P<0.05), although there was no effect (P>0.05) of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise. Conclusion 28 d of beta-alanine supplementation at 6.4g d-1 appeared not to influence brain homocarnosine/carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists. PMID:25875297
Solis, Marina Yazigi; Cooper, Simon; Hobson, Ruth M; Artioli, Guilherme G; Otaduy, Maria C; Roschel, Hamilton; Robertson, Jacques; Martin, Daniel; S Painelli, Vitor; Harris, Roger C; Gualano, Bruno; Sale, Craig
2015-01-01
Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d(-1) on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1) and on cognitive function before and after exercise in trained cyclists (Study 2). In Study 1, seven healthy vegetarians (3 women and 4 men) and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation), with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task) being performed before and after exercise on each occasion. In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99) or omnivores (p = 0.27); nor was there any effect when data from both groups were pooled (p = 0.19). Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27). In study 2, exercise improved cognitive function across all tests (P < 0.05), although there was no effect (P>0.05) of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise. 28 d of beta-alanine supplementation at 6.4 g d(-1) appeared not to influence brain homocarnosine/carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists.
Avramovich-Tirosh, Y; Bar-Am, O; Amit, T; Youdim, M B H; Weinreb, O
2010-06-01
Based on a multimodal drug design paradigm, we have synthesized a multifunctional non-toxic, brain permeable iron chelator, M30, possessing the neuroprotective propargylamine moiety of the anti-Parkinsonian drug, rasagiline (Azilect) and antioxidant-iron chelator moiety of an 8-hydroxyquinoline derivative of our iron chelator, VK28. M30 was recently found to confer potential neuroprotective effects in vitro and in various preclinical neurodegenerative models and regulate the levels and processing of the Alzheimer's amyloid precursor protein and its toxic amyloidogenic derivative, Abeta. Here, we show that M30 activates the hypoxia-inducible factor (HIF)-1alpha signaling pathway, thus promoting HIF-1alpha mRNA and protein expression levels, as well as increasing transcription of HIF-1alpha-dependent genes, including vascular endothelial growth factor, erythropoietin, enolase-1, p21 and tyrosine hydroxylase in rat primary cortical cells. In addition, M30 also increased the expression levels of the transcripts of brain derived neurotrophic factor (BDNF) and growth-associated protein-43 (GAP-43). Regarding aspects of relevance to Alzheimer's disease (AD), western blotting analysis of glycogen synthase kinase- 3beta (GSK-3beta) signaling pathway revealed that M30 enhanced the levels of phospho-AKT (Ser473) and phospho- GSK-3beta (Ser9) and attenuated Tau phosphorylation. M30 was also shown to protect cultured cortical neurons against Abeta(25-35) toxicity. All these multimodal pharmacological activities of M30 might be beneficial for its potent efficacy in the prevention and treatment of neurodegenerative conditions, such as Parkinson's disease and AD in which oxidative stress and iron-mediated toxicity are involved.
Massieu, L; Haces, M L; Montiel, T; Hernández-Fonseca, K
2003-01-01
Glucose is the main substrate that fulfills energy brain demands. However, in some circumstances, such as diabetes, starvation, during the suckling period and the ketogenic diet, brain uses the ketone bodies, acetoacetate and beta-hydroxybutyrate, as energy sources. Ketone body utilization in brain depends directly on its blood concentration, which is normally very low, but increases substantially during the conditions mentioned above. Glutamate neurotoxicity has been implicated in neurodegeneration associated with brain ischemia, hypoglycemia and cerebral trauma, conditions related to energy failure, and to elevation of glutamate extracellular levels in brain. In recent years substantial evidence favoring a close relation between glutamate neurotoxic potentiality and cellular energy levels, has been compiled. We have previously demonstrated that accumulation of extracellular glutamate after inhibition of its transporters, induces neuronal death in vivo during energy impairment induced by glycolysis inhibition. In the present study we have assessed the protective potentiality of the ketone body, acetoacetate, against glutamate-mediated neuronal damage in the hippocampus of rats chronically treated with the glycolysis inhibitor, iodoacetate, and in hippocampal cultured neurons exposed to a toxic concentration of iodoacetate. Results show that acetoacetate efficiently protects against glutamate neurotoxicity both in vivo and in vitro probably by a mechanism involving its role as an energy substrate.
Cu(II) potentiation of Alzheimer Abeta1-40 cytotoxicity and transition on its secondary structure.
Dai, Xue-Ling; Sun, Ya-Xuan; Jiang, Zhao-Feng
2006-11-01
Mounting evidence has shown that dyshomeostasis of the redox-active biometals such as Cu and Fe can lead to oxidative stress, which plays a key role in the neuropathology of Alzheimer' disease (AD). Here we demonstrate that with the formation of Cu(II).beta1-40 complexes, copper markedly potentiates the neurotoxicity exhibited by beta-amyloid peptide (Ab). A greater amount of hydrogen peroxide was released when Cu(II).beta1-40 complexes was added to the xanthine oxidase/xanthine system detected by potassium iodide spectrophotometry. Copper bound to Abeta1-40 was observed by electron paramagnetic resonance (EPR) spectroscopy. Circular dichroism (CD) studies indicated that copper chelation could cause a structural transition of Abeta. The addition of copper to Ab introduced an increase on beta-sheet as well as alpha-helix, which may be responsible for the aggregation of Abeta. We hypothesized that Abeta aggregation induced by copper may be responsible for local injury in AD. The interaction between Cu(2+) and Ab also provides a possible mechanism for the enrichment of metal ions in amyloid plaques in the AD brain.
Hritcu, Lucian; Noumedem, Jaurès A; Cioanca, Oana; Hancianu, Monica; Kuete, Victor; Mihasan, Marius
2014-04-01
The present study analyzed the possible memory-enhancing and antioxidant proprieties of the methanolic extract of Piper nigrum L. fruits (50 and 100 mg/kg, orally, for 21 days) in amyloid beta(1-42) rat model of Alzheimer's disease. The memory-enhancing effects of the plant extract were studied by means of in vivo (Y-maze and radial arm-maze tasks) approaches. Also, the antioxidant activity in the hippocampus was assessed using superoxide dismutase-, catalase-, glutathione peroxidase-specific activities and the total content of reduced glutathione, malondialdehyde, and protein carbonyl levels. The amyloid beta(1-42)-treated rats exhibited the following: decrease of spontaneous alternations percentage within Y-maze task and increase of working memory and reference memory errors within radial arm-maze task. Administration of the plant extract significantly improved memory performance and exhibited antioxidant potential. Our results suggest that the plant extract ameliorates amyloid beta(1-42)-induced spatial memory impairment by attenuation of the oxidative stress in the rat hippocampus.
Dose-dependent lipopolysaccharide-induced fetal brain injury in the guinea pig.
Harnett, Erica L; Dickinson, Michelle A; Smith, Graeme N
2007-08-01
This study determined whether a lipopolysaccharide (LPS) dose-dependent increase in fetal brain injury occurs to further characterize the relationship between maternal inflammation and fetal brain injury. Pregnant guinea pigs (n = 59) at 70% gestation were injected intraperitoneally with 1, 5, 25, 50, 100, 200, or 300 microg LPS per kilogram of maternal body weight or an equivalent volume of vehicle. Animals were killed 7 days later. Maternal serum and amniotic fluid samples were assayed for proinflammatory cytokines tumor necrosis factor-alpha, interleukin-1beta, and interleukin-6 using enzyme-linked immunosorbent assay kits. Fetal brains (n = 72) were stained for evidence of cell death with NeuroTACS stain. Seven days after LPS injections, cytokine concentrations in maternal serum and amniotic fluid were not different (P > .05) from controls. Levels of cell death in all brain regions examined were highest following the maternal administration of 300 mug/kg LPS (P < .05). The dose effect was brain region-dependent (P < .05). A threshold of maternal infection/inflammation exists, beyond which demonstrable fetal brain injury may result.
Interleukin-1 may link helplessness-hopelessness with cancer progression: a proposed model.
Argaman, Miriam; Gidron, Yori; Ariad, Shmuel
2005-01-01
A model of the relations between psychological factors and cancer progression should include brain and systemic components and their link with critical cellular stages in cancer progression. We present a psychoneuroimmunological (PNI) model that links helplessness-hopelessness (HH) with cancer progression via interleukin-1beta (IL-1beta). IL-1beta was elevated in the brain following exposure to inescapable shock, and HH was minimized by antagonizing cerebral IL-1beta. Elevated cerebral IL-1beta increased cancer metastasis in animals. Inescapable shock was associated with systemic elevations of IL-1beta and peripheral IL-1beta was associated with escape from apoptosis, angiogenesis, and metastasis. Involvement of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis are discussed. Future studies need to identify the role of additional factors in this PNI pathway.
Huperzine A protects isolated rat brain mitochondria against beta-amyloid peptide.
Gao, Xin; Zheng, Chun Yan; Yang, Ling; Tang, Xi Can; Zhang, Hai Yan
2009-06-01
Our previous work in cells and animals showed that mitochondria are involved in the neuroprotective effect of huperzine A (HupA). In this study, the effects of HupA on isolated rat brain mitochondria were investigated. In addition to inhibiting the Abeta(25-35) (40 microM)-induced decrease in mitochondrial respiration, adenosine 5'-triphosphate (ATP) synthesis, enzyme activity, and transmembrane potential, HupA (0.01 or 0.1 microM) effectively prevented Abeta-induced mitochondrial swelling, reactive oxygen species increase, and cytochrome c release. More interestingly, administration of HupA to isolated mitochondria promoted the rate of ATP production and blocked mitochondrial swelling caused by normal osmosis. These results indicate that HupA protects mitochondria against Abeta at least in part by preserving membrane integrity and improving energy metabolism. These direct effects on mitochondria further extend the noncholinergic functions of HupA.
Lipopolysaccharide endotoxemia induces amyloid-β and p-tau formation in the rat brain.
Wang, Li-Ming; Wu, Qi; Kirk, Ryan A; Horn, Kevin P; Ebada Salem, Ahmed H; Hoffman, John M; Yap, Jeffrey T; Sonnen, Joshua A; Towner, Rheal A; Bozza, Fernando A; Rodrigues, Rosana S; Morton, Kathryn A
2018-01-01
Amyloid beta (Aβ) plaques are not specific to Alzheimer's disease and occur with aging and neurodegenerative disorders. Soluble brain Aβ may be neuroprotective and increases in response to neuroinflammation. Sepsis is associated with neurocognitive compromise. The objective was to determine, in a rat endotoxemia model of sepsis, whether neuroinflammation and soluble Aβ production are associated with Aβ plaque and hyperphosphorylated tau deposition in the brain. Male Sprague Dawley rats received a single intraperitoneal injection of 10 mg/kg of lipopolysaccharide endotoxin (LPS). Brain and blood levels of IL-1β, IL-6, and TNFα and cortical microglial density were measured in LPS-injected and control animals. Soluble brain Aβ and p-tau were compared and Aβ plaques were quantified and characterized. Brain uptake of [ 18 F]flutemetamol was measured by phosphor imaging. LPS endotoxemia resulted in elevations of cytokines in blood and brain. Microglial density was increased in LPS-treated rats relative to controls. LPS resulted in increased soluble Aβ and in p-tau levels in whole brain. Progressive increases in morphologically-diffuse Aβ plaques occurred throughout the interval of observation (to 7-9 days post LPS). LPS endotoxemia resulted in increased [ 18 F]flutemetamol in the cortex and increased cortex: white matter ratios of activity. In conclusion, LPS endotoxemia causes neuroinflammation, increased soluble Aβ and Aβ diffuse plaques in the brain. Aβ PET tracers may inform this neuropathology. Increased p-tau in the brain of LPS treated animals suggests that downstream consequences of Aβ plaque formation may occur. Further mechanistic and neurocognitive studies to understand the causes and consequences of LPS-induced neuropathology are warranted.
Summers, J A; Pullan, P T; Kril, J J; Harper, C G
1991-01-01
beta-endorphin, adrenocorticotrophin, and alpha-melanocyte stimulating hormone were measured by radioimmunoassay in three areas of human brain at necropsy in seven subjects with Wernicke-Korsakoff syndrome and in 52 controls. Thiamin concentration in six brain areas was also measured. Mamillary body beta-endorphin concentrations were significantly increased in those with the syndrome compared with controls, and those controls with high alcohol intake showed increased mamillary body beta-endorphin compared with controls with low alcohol intake. Brain thiamin concentration was similar in both groups, with the exception of the brainstem, where it was reduced in subjects with Wernicke-Korsakoff syndrome. Thalamic beta-endorphin in controls was inversely correlated with thiamin in frontal white matter, frontal cortex, parietal white matter and parietal cortex, while beta-endorphin in the hypothalamus of patients was inversely correlated with thiamin in frontal cortex, parietal white matter, thalamus and brainstem. These results suggest that there is a disturbance of the endorphinergic system in Wernicke-Korsakoff syndrome which may be related to alcohol intake. PMID:1650797
Tucsek, Zsuzsanna; Toth, Peter; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Warrington, Junie P.; Giles, Cory B.; Wren, Jonathan D.; Koller, Akos; Ballabh, Praveen; Sonntag, William E.; Csiszar, Anna
2014-01-01
Epidemiological studies show that obesity has deleterious effects on the brain and cognitive function in the elderly population. However, the specific mechanisms through which aging and obesity interact to promote cognitive decline remain unclear. To test the hypothesis that aging exacerbates obesity-induced cerebromicrovascular impairment, we compared young (7 months) and aged (24 months) high-fat diet–fed obese C57BL/6 mice. We found that aging exacerbates the obesity-induced decline in microvascular density both in the hippocampus and in the cortex. The extent of hippocampal microvascular rarefaction and the extent of impairment of hippocampal-dependent cognitive function positively correlate. Aging exacerbates obesity-induced loss of pericyte coverage on cerebral microvessels and alters hippocampal angiogenic gene expression signature, which likely contributes to microvascular rarefaction. Aging also exacerbates obesity-induced oxidative stress and induction of NADPH oxidase and impairs cerebral blood flow responses to whisker stimulation. Collectively, obesity exerts deleterious cerebrovascular effects in aged mice, promoting cerebromicrovascular rarefaction and neurovascular uncoupling. The morphological and functional impairment of the cerebral microvasculature in association with increased blood–brain barrier disruption and neuroinflammation (Tucsek Z, Toth P, Sosnowsk D, et al. Obesity in aging exacerbates blood–brain barrier disruption, neuroinflammation and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer’s disease. J Gerontol Biol Med Sci. 2013. In press, PMID: 24269929) likely contribute to obesity-induced cognitive decline in aging. PMID:24895269
Cohen, Mark; Appleby, Brian; Safar, Jiri G
2016-01-01
Vast evidence on human prions demonstrates that variable disease phenotypes, rates of propagation, and targeting of distinct brain structures are determined by unique conformers (strains) of pathogenic prion protein (PrP(Sc)). Recent progress in the development of advanced biophysical tools that inventory structural characteristics of amyloid beta (Aβ) in the brain cortex of phenotypically diverse Alzheimer's disease (AD) patients, revealed unique spectrum of oligomeric particles in the cortex of rapidly progressive cases, implicating these structures in variable rates of propagation in the brain, and in distict disease manifestation. Since only ∼30% of phenotypic diversity of AD can be explained by polymorphisms in risk genes, these and transgenic bioassay data argue that structurally distinct Aβ particles play a major role in the diverse pathogenesis of AD, and may behave as distinct prion-like strains encoding diverse phenotypes. From these observations and our growing understanding of prions, there is a critical need for new strain-specific diagnostic strategies for misfolded proteins causing these elusive disorders. Since targeted drug therapy can induce mutation and evolution of prions into new strains, effective treatments of AD will require drugs that enhance clearance of pathogenic conformers, reduce the precursor protein, or inhibit the conversion of precursors into prion-like states.
Geylis, Valeria; Steinitz, Michael
2006-01-01
The deposition of amyloid beta (Abeta) protein is a key pathological feature in Alzheimer's disease (AD). In murine models of AD, both active and passive immunization against Abeta induce a marked reduction in amyloid brain burden and an improvement in cognitive functions. Preliminary results of a prematurely terminated clinical trial where AD patients were actively vaccinated with aggregated Abeta bear resemblance to those documented in murine models. Passive immunization of AD patients with anti-Abeta antibodies, in particular human antibodies, is a strategy that provides a more cautious management and control of any undesired side effects. Sera of all healthy adults contain anti-Abeta IgG autoimmune antibodies. Hence antigen-committed human B-cells are easily immortalized by Epstein-Barr virus (EBV) into anti-Abeta secreting cell lines. Two anti-Abeta human monoclonal antibodies which we recently prepared bind to the N-terminus of Abeta peptide and were shown to stain amyloid plaques in non-fixed brain sections from an AD patient. It is anticipated that specifically selected anti-Abeta human monoclonal antibodies could reduce and inhibit deposits of amyloid in brain while avoiding the cognitive decline that characterizes AD. In the future, this type of antibody may prove to be a promising immune therapy for the disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niidome, Tetsuhiro, E-mail: tniidome@pharm.kyoto-u.ac.jp; Goto, Yasuaki; Kato, Masaru
2009-09-04
Amyloid-{beta} peptide (A{beta}) is thought to be linked to the pathogenesis of Alzheimer's disease. Recent studies suggest that A{beta} has important physiological roles in addition to its pathological roles. We recently demonstrated that A{beta}42 protects hippocampal neurons from glutamate-induced neurotoxicity, but the relationship between A{beta}42 assemblies and their neuroprotective effects remains largely unknown. In this study, we prepared non-fibrillar and fibrillar A{beta}42 based on the results of the thioflavin T assay, Western blot analysis, and atomic force microscopy, and examined the effects of non-fibrillar and fibrillar A{beta}42 on glutamate-induced neurotoxicity. Non-fibrillar A{beta}42, but not fibrillar A{beta}42, protected hippocampal neurons frommore » glutamate-induced neurotoxicity. Furthermore, non-fibrillar A{beta}42 decreased both neurotoxicity and increases in the intracellular Ca{sup 2+} concentration induced by N-methyl-D-aspartate (NMDA), but not by {alpha}-amino-3-hydrozy-5-methyl-4-isoxazole propionic acid (AMPA). Our results suggest that non-fibrillar A{beta}42 protects hippocampal neurons from glutamate-induced neurotoxicity through regulation of the NMDA receptor.« less
Daschil, Nina; Kniewallner, Kathrin M; Obermair, Gerald J; Hutter-Paier, Birgit; Windisch, Manfred; Marksteiner, Josef; Humpel, Christian
2015-03-01
It is well established that L-type calcium channels (LTCCs) are expressed in astroglia. However, their functional role is still speculative, especially under pathologic conditions. We recently showed that the α1 subunit-like immunoreactivity of the CaV1.2 channel is strongly expressed in reactive astrocytes around beta-amyloid plaques in 11-month-old Alzheimer transgenic (tg) mice with the amyloid precursor protein London and Swedish mutations. The aim of the present study was to examine the cellular expression of all LTCC subunits around beta-amyloid plaques by in situ hybridization using (35)S-labeled oligonucleotides. Our data show that messenger RNAs (mRNAs) of the LTCC CaV1.2 α1 subunit as well as all auxiliary β and α2δ subunits, except α2δ-4, were expressed in the hippocampus of age-matched wild-type mice. It was unexpected to see, that cells directly located in the plaque core in the cortex expressed mRNAs for CaV1.2 α1, β2, β4, and α2δ-1, whereas no expression was detected in the halo. Furthermore, cells in the plaque core also expressed preprotachykinin-A mRNA, the precursor for substance P. By means of confocal microscopy, we demonstrated that collagen-IV-stained brain vessels in the cortex were associated with the plaque core and were immunoreactive for substance P. In cortical organotypic brain slices of adult Alzheimer mice, we could demonstrate that LTCC blockers increased angiogenesis, which was further potentiated by substance P. In conclusion, our data show that brain vessels associated with beta-amyloid plaques express substance P and an LTCC and may play a role in angiogenesis. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Stefano Filho, Carlos A; Attux, Romis; Castellano, Gabriela
2017-01-01
Hands motor imagery (MI) has been reported to alter synchronization patterns amongst neurons, yielding variations in the mu and beta bands' power spectral density (PSD) of the electroencephalography (EEG) signal. These alterations have been used in the field of brain-computer interfaces (BCI), in an attempt to assign distinct MI tasks to commands of such a system. Recent studies have highlighted that information may be missing if knowledge about brain functional connectivity is not considered. In this work, we modeled the brain as a graph in which each EEG electrode represents a node. Our goal was to understand if there exists any linear correlation between variations in the synchronization patterns-that is, variations in the PSD of mu and beta bands-induced by MI and alterations in the corresponding functional networks. Moreover, we (1) explored the feasibility of using functional connectivity parameters as features for a classifier in the context of an MI-BCI; (2) investigated three different types of feature selection (FS) techniques; and (3) compared our approach to a more traditional method using the signal PSD as classifier inputs. Ten healthy subjects participated in this study. We observed significant correlations ( p < 0.05) with values ranging from 0.4 to 0.9 between PSD variations and functional network alterations for some electrodes, prominently in the beta band. The PSD method performed better for data classification, with mean accuracies of (90 ± 8)% and (87 ± 7)% for the mu and beta band, respectively, versus (83 ± 8)% and (83 ± 7)% for the same bands for the graph method. Moreover, the number of features for the graph method was considerably larger. However, results for both methods were relatively close, and even overlapped when the uncertainties of the accuracy rates were considered. Further investigation regarding a careful exploration of other graph metrics may provide better alternatives.
Maslova, M V; Graf, A V; Sokolova, N A; Goncharenko, E N; Shestakova, S V; Kudryashova, N Yu; Andreeva, L A
2003-08-01
We studied the effect of exposure to acute hypobaric hypoxia in the progestational period on the content of biogenic amines in the brainstem and cerebral cortex in rat pups of different age. The possibility of correcting hypoxia-induced changes with regulatory peptides was evaluated. We found that early antenatal hypoxia disturbs maturation of catecholaminergic systems in the brain. It should be emphasized that the differences from the control varied depending on the age of rat pups. Single intranasal administration of Semax heptapeptides and beta-casomorphine-7 to pregnant females prevented changes in the content of biogenic amines in CNS of the offspring during postnatal ontogeny.
Blood-brain barrier transport of the alpha-keto acid analogs of amino acids.
Steele, R D
1986-06-01
A number of alpha-keto acid analogs of amino acids have been found to penetrate the blood-brain barrier (BBB). Pyruvate, alpha-ketobutyrate, alpha-ketoisocaproate, and alpha-keto-gamma-methiolbutyrate all cross the BBB by a carrier-mediated process and by simple diffusion. Under normal physiological conditions, diffusion accounts for roughly 15% or less of total transport. Aromatic alpha-keto acids, phenylpyruvate, and p-hydroxyphenylpyruvate do not penetrate the BBB, nor do they inhibit the transport of other alpha-keto acids. Evidence based primarily on inhibition studies indicates that the carrier-mediated transport of alpha-keto acids occurs via the same carrier demonstrated previously for propionate, acetoacetate, and beta-hydroxybutyrate transport, commonly referred to as the monocarboxylate carrier. As a group, the alpha-keto acid analogs of the amino acids have the highest affinity for the carrier, followed by propionate and beta-hydroxybutyrate. Starvation for 4 days induces transport of alpha-keto acids, but transport is suppressed in rats fed commercial laboratory rations and subjected to portacaval shunts. The mitochondrial pyruvate translocator inhibitor alpha-cyanocinnamate has no effect on the BBB transport of alpha-keto acids.
Low levels of citrin (SLC25A13) expression in adult mouse brain restricted to neuronal clusters.
Contreras, Laura; Urbieta, Almudena; Kobayashi, Keiko; Saheki, Takeyori; Satrústegui, Jorgina
2010-04-01
The mitochondrial aspartate-glutamate carriers (AGC) aralar (SLC25A12) and citrin (SLC25A13) are components of the malate aspartate shuttle (MAS), a major intracellular pathway to transfer reducing equivalents from NADH to the mitochondrial matrix. Aralar is the main AGC isoform present in the adult brain, and it is expressed mainly in neurons. To search for the other AGC isoform, citrin, in brain glial cells, we used a citrin knockout mouse in which the lacZ gene was inserted into the citrin locus as reporter gene. In agreement with the low citrin levels known to be present in the adult mouse brain, beta-galactosidase expression was very low. Surprisingly, unlike the case with astroglial cultures that express citrin, no beta-galactosidase was found in brain glial cells. It was confined to neuronal cells within discrete neuronal clusters. Double-immunolabelling experiments showed that beta-galactosidase colocalized not with glial cell markers but with the pan-neuronal marker NeuN. The deep cerebellar nuclei and a few midbrain nuclei (reticular tegmental pontine nuclei; magnocellular red nuclei) were the regions where beta-galactosidase expression was highest, and it was up-regulated in fasted mice, as was also the case for liver beta-galactosidase. The results support the notion that glial cells have much lower AGC levels and MAS activity than neurons. (c) 2009 Wiley-Liss, Inc.
Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Torres-Jardón, Ricardo; Henriquez-Roldán, Carlos; Barragán-Mejía, Gerardo; Valencia-Salazar, Gildardo; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderón, Rafael; Reed, William
2007-01-01
Exposures to particulate matter and gaseous air pollutants have been associated with respiratory tract inflammation, disruption of the nasal respiratory and olfactory barriers, systemic inflammation, production of mediators of inflammation capable of reaching the brain and systemic circulation of particulate matter. Mexico City (MC) residents are exposed to significant amounts of ozone, particulate matter and associated lipopolysaccharides. MC dogs exhibit brain inflammation and an acceleration of Alzheimer's-like pathology, suggesting that the brain is adversely affected by air pollutants. MC children, adolescents and adults have a significant upregulation of cyclooxygenase-2 (COX2) and interleukin-1beta (IL-1beta) in olfactory bulb and frontal cortex, as well as neuronal and astrocytic accumulation of the 42 amino acid form of beta -amyloid peptide (Abeta 42), including diffuse amyloid plaques in frontal cortex. The pathogenesis of Alzheimer's disease (AD) is characterized by brain inflammation and the accumulation of Abeta 42, which precede the appearance of neuritic plaques and neurofibrillary tangles, the pathological hallmarks of AD. Our findings of nasal barrier disruption, systemic inflammation, and the upregulation of COX2 and IL-1beta expression and Abeta 42 accumulation in brain suggests that sustained exposures to significant concentrations of air pollutants such as particulate matter could be a risk factor for AD and other neurodegenerative diseases.
Electroencephalogram Signatures of Ketamine-Induced Unconsciousness
Akeju, Oluwaseun; Song, Andrew H.; Hamilos, Allison E.; Pavone, Kara J.; Flores, Francisco J.; Brown, Emery N.; Purdon, Patrick L.
2016-01-01
Objectives Ketamine is an N-methyl-D-aspartate receptor antagonist commonly administered as a general anesthetic. However, circuit level mechanisms to explain ketamine-induced unconsciousness in humans are yet to be clearly defined. Disruption of frontal-parietal network connectivity has been proposed as a mechanism to explain this brain state. However, this mechanism was recently demonstrated at subanesthetic doses of ketamine in awake-patients. Therefore we investigated whether there is an electroencephalogram (EEG) marker for ketamine-induced unconsciousness. Methods We retrospectively studied the EEG in 12 patients who received ketamine for the induction of general anesthesia. We analyzed the EEG dynamics using power spectral and coherence methods. Results Following the administration of a bolus dose of ketamine to induce unconsciousness, we observed a “gamma burst” EEG pattern that consisted of alternating slow-delta (0.1-4 Hz) and gamma (~27-40 Hz) oscillations. This pattern was also associated with increased theta oscillations (~4-8 Hz) and decreased alpha/beta oscillations (~10-24 Hz). Conclusions Ketamine-induced unconsciousness is associated with a gamma burst EEG pattern. Significance We postulate that the gamma burst pattern is a thalamocortical rhythm based on insights previously obtained from cat neurophysiological experiments. This EEG signature of ketamine-induced unconsciousness may offer new insights into general anesthesia induced brain states. PMID:27178861
Sukumaran, Sunil K; Prasadarao, Nemani V
2003-11-01
We investigated the permeability changes that occur in the human brain microvascular endothelial cell (HBMEC) monolayer, an in vitro model of the blood-brain barrier, during Escherichia coli K1 infection. An increase in permeability of HBMECs and a decrease in transendothelial electrical resistance were observed. These permeability changes occurred only when HBMECs were infected with E. coli expressing outer membrane protein A (OmpA) and preceded the traversal of bacteria across the monolayer. Activated protein kinase C (PKC)-alpha interacts with vascular-endothelial cadherins (VECs) at the tight junctions of HBMECs, resulting in the dissociation of beta-catenins from VECs and leading to the increased permeability of the HBMEC monolayer. Overexpression of a dominant negative form of PKC-alpha in HBMECs blocked the E. coli-induced increase in permeability of HBMECs. Anti-OmpA and anti-OmpA receptor antibodies exerted inhibition of E. coli-induced permeability of HBMEC monolayers. This inhibition was the result of the absence of PKC-alpha activation in HBMECs treated with the antibodies.
Thaut, Michael H.; Peterson, David A.; McIntosh, Gerald C.; Hoemberg, Volker
2014-01-01
Recent research on music and brain function has suggested that the temporal pattern structure in music and rhythm can enhance cognitive functions. To further elucidate this question specifically for memory, we investigated if a musical template can enhance verbal learning in patients with multiple sclerosis (MS) and if music-assisted learning will also influence short-term, system-level brain plasticity. We measured systems-level brain activity with oscillatory network synchronization during music-assisted learning. Specifically, we measured the spectral power of 128-channel electroencephalogram (EEG) in alpha and beta frequency bands in 54 patients with MS. The study sample was randomly divided into two groups, either hearing a spoken or a musical (sung) presentation of Rey’s auditory verbal learning test. We defined the “learning-related synchronization” (LRS) as the percent change in EEG spectral power from the first time the word was presented to the average of the subsequent word encoding trials. LRS differed significantly between the music and the spoken conditions in low alpha and upper beta bands. Patients in the music condition showed overall better word memory and better word order memory and stronger bilateral frontal alpha LRS than patients in the spoken condition. The evidence suggests that a musical mnemonic recruits stronger oscillatory network synchronization in prefrontal areas in MS patients during word learning. It is suggested that the temporal structure implicit in musical stimuli enhances “deep encoding” during verbal learning and sharpens the timing of neural dynamics in brain networks degraded by demyelination in MS. PMID:24982626
Klados, Manousos A.; Styliadis, Charis; Frantzidis, Christos A.; Paraskevopoulos, Evangelos; Bamidis, Panagiotis D.
2016-01-01
Physical and cognitive idleness constitute significant risk factors for the clinical manifestation of age-related neurodegenerative diseases. In contrast, a physically and cognitively active lifestyle may restructure age-declined neuronal networks enhancing neuroplasticity. The present study, investigated the changes of brain's functional network in a group of elderly individuals at risk for dementia that were induced by a combined cognitive and physical intervention scheme. Fifty seniors meeting Petersen's criteria of Mild Cognitive Impairment were equally divided into an experimental (LLM), and an active control (AC) group. Resting state electroencephalogram (EEG) was measured before and after the intervention. Functional networks were estimated by computing the magnitude square coherence between the time series of all available cortical sources as computed by standardized low resolution brain electromagnetic tomography (sLORETA). A statistical model was used to form groups' characteristic weighted graphs. The introduced modulation was assessed by networks' density and nodes' strength. Results focused on the beta band (12–30 Hz) in which the difference of the two networks' density is maximum, indicating that the structure of the LLM cortical network changes significantly due to the intervention, in contrast to the network of AC. The node strength of LLM participants in the beta band presents a higher number of bilateral connections in the occipital, parietal, temporal and prefrontal regions after the intervention. Our results show that the combined training scheme reorganizes the beta-band functional connectivity of MCI patients. ClinicalTrials.gov Identifier: NCT02313935 https://clinicaltrials.gov/ct2/show/NCT02313935. PMID:26973445
Cortical Reorganization after Hand Immobilization: The beta qEEG Spectral Coherence Evidences
Fortuna, Marina; Teixeira, Silmar; Machado, Sérgio; Velasques, Bruna; Bittencourt, Juliana; Peressutti, Caroline; Budde, Henning; Cagy, Mauricio; Nardi, Antonio E.; Piedade, Roberto; Ribeiro, Pedro; Arias-Carrión, Oscar
2013-01-01
There is increasing evidence that hand immobilization is associated with various changes in the brain. Indeed, beta band coherence is strongly related to motor act and sensitive stimuli. In this study we investigate the electrophysiological and cortical changes that occur when subjects are submitted to hand immobilization. We hypothesized that beta coherence oscillations act as a mechanism underlying inter- and intra-hemispheric changes. As a methodology for our study fifteen healthy individuals between the ages of 20 and 30 years were subjected to a right index finger task before and after hand immobilization while their brain activity pattern was recorded using quantitative electroencephalography. This analysis revealed that hand immobilization caused changes in frontal, central and parietal areas of the brain. The main findings showed a lower beta-2 band in frontal regions and greater cortical activity in central and parietal areas. In summary, the coherence increased in the frontal, central and parietal cortex, due to hand immobilization and it adjusted the brains functioning, which had been disrupted by the procedure. Moreover, the brain adaptation upon hand immobilization of the subjects involved inter- and intra-hemispheric changes. PMID:24278213
Hydrogen peroxide toxicity induces Ras signaling in human neuroblastoma SH-SY5Y cultured cells.
Chetsawang, Jirapa; Govitrapong, Piyarat; Chetsawang, Banthit
2010-01-01
It has been reported that overproduction of reactive oxygen species occurs after brain injury and mediates neuronal cells degeneration. In the present study, we examined the role of Ras signaling on hydrogen peroxide-induced neuronal cells degeneration in dopaminergic neuroblastoma SH-SY5Y cells. Hydrogen peroxide significantly reduced cell viability in SH-SY5Y cultured cells. An inhibitor of the enzyme that catalyzes the farnesylation of Ras proteins, FTI-277, and a competitive inhibitor of GTP-binding proteins, GDP-beta-S significantly decreased hydrogen peroxide-induced reduction in cell viability in SH-SY5Y cultured cells. The results of this study might indicate that a Ras-dependent signaling pathway plays a role in hydrogen peroxide-induced toxicity in neuronal cells.
Izzo, Nicholas J.; Staniszewski, Agnes; To, Lillian; Fa, Mauro; Teich, Andrew F.; Saeed, Faisal; Wostein, Harrison; Walko, Thomas; Vaswani, Anisha; Wardius, Meghan; Syed, Zanobia; Ravenscroft, Jessica; Mozzoni, Kelsie; Silky, Colleen; Rehak, Courtney; Yurko, Raymond; Finn, Patricia; Look, Gary; Rishton, Gilbert; Safferstein, Hank; Miller, Miles; Johanson, Conrad; Stopa, Edward; Windisch, Manfred; Hutter-Paier, Birgit; Shamloo, Mehrdad; Arancio, Ottavio; LeVine, Harry; Catalano, Susan M.
2014-01-01
Synaptic dysfunction and loss caused by age-dependent accumulation of synaptotoxic beta amyloid (Abeta) 1–42 oligomers is proposed to underlie cognitive decline in Alzheimer's disease (AD). Alterations in membrane trafficking induced by Abeta oligomers mediates reduction in neuronal surface receptor expression that is the basis for inhibition of electrophysiological measures of synaptic plasticity and thus learning and memory. We have utilized phenotypic screens in mature, in vitro cultures of rat brain cells to identify small molecules which block or prevent the binding and effects of Abeta oligomers. Synthetic Abeta oligomers bind saturably to a single site on neuronal synapses and induce deficits in membrane trafficking in neuronal cultures with an EC50 that corresponds to its binding affinity. The therapeutic lead compounds we have found are pharmacological antagonists of Abeta oligomers, reducing the binding of Abeta oligomers to neurons in vitro, preventing spine loss in neurons and preventing and treating oligomer-induced deficits in membrane trafficking. These molecules are highly brain penetrant and prevent and restore cognitive deficits in mouse models of Alzheimer's disease. Counter-screening these compounds against a broad panel of potential CNS targets revealed they are highly potent and specific ligands of the sigma-2/PGRMC1 receptor. Brain concentrations of the compounds corresponding to greater than 80% receptor occupancy at the sigma-2/PGRMC1 receptor restore cognitive function in transgenic hAPP Swe/Ldn mice. These studies demonstrate that synthetic and human-derived Abeta oligomers act as pharmacologically-behaved ligands at neuronal receptors - i.e. they exhibit saturable binding to a target, they exert a functional effect related to their binding and their displacement by small molecule antagonists blocks their functional effect. The first-in-class small molecule receptor antagonists described here restore memory to normal in multiple AD models and sustain improvement long-term, representing a novel mechanism of action for disease-modifying Alzheimer's therapeutics. PMID:25390368
Izzo, Nicholas J; Staniszewski, Agnes; To, Lillian; Fa, Mauro; Teich, Andrew F; Saeed, Faisal; Wostein, Harrison; Walko, Thomas; Vaswani, Anisha; Wardius, Meghan; Syed, Zanobia; Ravenscroft, Jessica; Mozzoni, Kelsie; Silky, Colleen; Rehak, Courtney; Yurko, Raymond; Finn, Patricia; Look, Gary; Rishton, Gilbert; Safferstein, Hank; Miller, Miles; Johanson, Conrad; Stopa, Edward; Windisch, Manfred; Hutter-Paier, Birgit; Shamloo, Mehrdad; Arancio, Ottavio; LeVine, Harry; Catalano, Susan M
2014-01-01
Synaptic dysfunction and loss caused by age-dependent accumulation of synaptotoxic beta amyloid (Abeta) 1-42 oligomers is proposed to underlie cognitive decline in Alzheimer's disease (AD). Alterations in membrane trafficking induced by Abeta oligomers mediates reduction in neuronal surface receptor expression that is the basis for inhibition of electrophysiological measures of synaptic plasticity and thus learning and memory. We have utilized phenotypic screens in mature, in vitro cultures of rat brain cells to identify small molecules which block or prevent the binding and effects of Abeta oligomers. Synthetic Abeta oligomers bind saturably to a single site on neuronal synapses and induce deficits in membrane trafficking in neuronal cultures with an EC50 that corresponds to its binding affinity. The therapeutic lead compounds we have found are pharmacological antagonists of Abeta oligomers, reducing the binding of Abeta oligomers to neurons in vitro, preventing spine loss in neurons and preventing and treating oligomer-induced deficits in membrane trafficking. These molecules are highly brain penetrant and prevent and restore cognitive deficits in mouse models of Alzheimer's disease. Counter-screening these compounds against a broad panel of potential CNS targets revealed they are highly potent and specific ligands of the sigma-2/PGRMC1 receptor. Brain concentrations of the compounds corresponding to greater than 80% receptor occupancy at the sigma-2/PGRMC1 receptor restore cognitive function in transgenic hAPP Swe/Ldn mice. These studies demonstrate that synthetic and human-derived Abeta oligomers act as pharmacologically-behaved ligands at neuronal receptors--i.e. they exhibit saturable binding to a target, they exert a functional effect related to their binding and their displacement by small molecule antagonists blocks their functional effect. The first-in-class small molecule receptor antagonists described here restore memory to normal in multiple AD models and sustain improvement long-term, representing a novel mechanism of action for disease-modifying Alzheimer's therapeutics.
Smad7 induces tumorigenicity by blocking TGF-beta-induced growth inhibition and apoptosis.
Halder, Sunil K; Beauchamp, R Daniel; Datta, Pran K
2005-07-01
Smad proteins play a key role in the intracellular signaling of the transforming growth factor beta (TGF-beta) superfamily of extracellular polypeptides that initiate signaling to regulate a wide variety of biological processes. The inhibitory Smad, Smad7, has been shown to function as intracellular antagonists of TGF-beta family signaling and is upregulated in several cancers. To determine the effect of Smad7-mediated blockade of TGF-beta signaling, we have stably expressed Smad7 in a TGF-beta-sensitive, well-differentiated, and non-tumorigenic cell line, FET, that was derived from human colon adenocarcinoma. Smad7 inhibits TGF-beta-induced transcriptional responses by blocking complex formation between Smad 2/3 and Smad4. While Smad7 has no effect on TGF-beta-induced activation of p38 MAPK and ERK, it blocks the phosphorylation of Akt by TGF-beta and enhances TGF-beta-induced phosphorylation of c-Jun. FET cells expressing Smad7 show anchorage-independent growth and enhance tumorigenicity in athymic nude mice. Smad7 blocks TGF-beta-induced growth inhibition by preventing TGF-beta-induced G1 arrest. Smad7 inhibits TGF-beta-mediated downregulation of c-Myc, CDK4, and Cyclin D1, and suppresses the expression of p21(Cip1). As a result, Smad7 inhibits TGF-beta-mediated downregulation of Rb phosphorylation. Furthermore, Smad7 inhibits the apoptosis of these cells. Together, Smad7 may increase the tumorigenicity of FET cells by blocking TGF-beta-induced growth inhibition and by inhibiting apoptosis. Thus, this study provides a mechanism by which a portion of human colorectal tumors may become refractory to tumor-suppressive actions of TGF-beta that might result in increased tumorigenicity.
A yeast-based genetic screening to identify human proteins that increase homologous recombination.
Collavoli, Anita; Comelli, Laura; Rainaldi, Giuseppe; Galli, Alvaro
2008-05-01
To identify new human proteins implicated in homologous recombination (HR), we set up 'a papillae assay' to screen a human cDNA library using the RS112 strain of Saccharomyces cerevisiae containing an intrachromosomal recombination substrate. We isolated 23 cDNAs, 11 coding for complete proteins and 12 for partially deleted proteins that increased HR when overexpressed in yeast. We characterized the effect induced by the overexpression of the complete human proteasome subunit beta 2, the partially deleted proteasome subunits alpha 3 and beta 8, the ribosomal protein L12, the brain abundant membrane signal protein (BASP1) and the human homologue to v-Ha-RAS (HRAS), which elevated HR by 2-6.5-fold over the control. We found that deletion of the RAD52 gene, which has a key role in most HR events, abolished the increase of HR induced by the proteasome subunits and HRAS; by contrast, the RAD52 deletion did not affect the high level of HR due to BASP1 and RPL12. This suggests that the proteins stimulated yeast HR via different mechanisms. Overexpression of the complete beta 2 human proteasome subunit or the partially deleted alpha 3 and beta 8 subunits increased methyl methanesulphonate (MMS) resistance much more in the rad52 Delta mutant than in the wild-type. Overexpression of RPL12 and BASP1 did not affect MMS resistance in both the wild-type and the rad52 Delta mutant, whereas HRAS decreased MMS resistance in the rad52 Delta mutant. The results indicate that these proteins may interfere with the pathway(s) involved in the repair of MMS-induced DNA damage. Finally, we provide further evidence that yeast is a helpful tool to identify human proteins that may have a regulatory role in HR.
Nagasawa, Kunihiko; Chiba, Hideki; Fujita, Hiroki; Kojima, Takashi; Saito, Tsuyoshi; Endo, Toshiaki; Sawada, Norimasa
2006-07-01
Gap-junction plaques are often observed with tight-junction strands of vascular endothelial cells but the molecular interaction and functional relationships between these two junctions remain obscure. We herein show that gap-junction proteins connexin40 (Cx40) and Cx43 are colocalized and coprecipitated with tight-junction molecules occludin, claudin-5, and ZO-1 in porcine blood-brain barrier (BBB) endothelial cells. Gap junction blockers 18beta-glycyrrhetinic acid (18beta-GA) and oleamide (OA) did not influence expression of Cx40, Cx43, occludin, claudin-5, junctional adhesion molecule (JAM)-A, JAM-B, JAM-C, or ZO-1, or their subcellular localization in the porcine BBB endothelial cells. In contrast, these gap-junction blocking agents inhibited the barrier function of tight junctions in cells, determined by measurement of transendothelial electrical resistance and paracellular flux of mannitol and inulin. 18beta-GA also significantly reduced the barrier property in rat lung endothelial (RLE) cells expressing doxycycline-induced claudin-1, but did not change the interaction between Cx43 and either claudin-1 or ZO-1, nor their expression levels or subcellular distribution. These findings suggest that Cx40- and/or Cx43-based gap junctions might be required to maintain the endothelial barrier function without altering the expression and localization of the tight-junction components analyzed. Copyright 2006 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Vatansever, Fatma; Kawakubo, Masayoshi; Chung, Hoon; Hamblin, Michael R.
2013-02-01
We have previously shown that photodynamic therapy mediated by a vascular regimen of benzoporphyrin derivative and 690nm light is capable of inducing a robust immune response in the mouse CT26.CL25 tumor model that contains a tumor-rejection antigen, beta-galactosidase (β-gal). For the first time we show that PDT can stimulate the production of serum IgG antibodies against the β-gal antigen. It is known that a common cause of death from cancer, particularly lung cancer, is brain metastases; especially the inoperable ones that do not respond to traditional cytotoxic therapies either. We asked whether PDT of a primary tumor could stimulate immune response that could attack the distant brain metastases. We have developed a mouse model of generating brain metastases by injecting CT26.CL25 tumor cells into the brain as well as injecting the same cancer cells under the skin at the same time. When the subcutaneous tumor was treated with PDT, we observed a survival advantage compared to mice that had untreated brain metastases alone.
Nichols, Michael R; Moss, Melissa A; Reed, Dana Kim; Cratic-McDaniel, Stephanie; Hoh, Jan H; Rosenberry, Terrone L
2005-01-28
The brains of Alzheimer's disease (AD) patients contain large numbers of amyloid plaques that are rich in fibrils composed of 40- and 42-residue amyloid-beta (Abeta) peptides. Several lines of evidence indicate that fibrillar Abeta and especially soluble Abeta aggregates are important in the etiology of AD. Recent reports also stress that amyloid aggregates are polymorphic and that a single polypeptide can fold into multiple amyloid conformations. Here we demonstrate that Abeta-(1-40) can form soluble aggregates with predominant beta-structures that differ in stability and morphology. One class of aggregates involved soluble Abeta protofibrils, prepared by vigorous overnight agitation of monomeric Abeta-(1-40) at low ionic strength. Dilution of these aggregation reactions induced disaggregation to monomers as measured by size exclusion chromatography. Protofibril concentrations monitored by thioflavin T fluorescence decreased in at least two kinetic phases, with initial disaggregation (rate constant approximately 1 h(-1)) followed by a much slower secondary phase. Incubation of the reactions without agitation resulted in less disaggregation at slower rates, indicating that the protofibrils became progressively more stable over time. In fact, protofibrils isolated by size exclusion chromatography were completely stable and gave no disaggregation. A second class of soluble Abeta aggregates was generated rapidly (<10 min) in buffered 2% hexafluoroisopropanol (HFIP). These aggregates showed increased thioflavin T fluorescence and were rich in beta-structure by circular dichroism. Electron microscopy and atomic force microscopy revealed initial globular clusters that progressed over several days to soluble fibrous aggregates. When diluted out of HFIP, these aggregates initially were very unstable and disaggregated completely within 2 min. However, their stability increased as they progressed to fibers. Relative to Abeta protofibrils, the HFIP-induced aggregates seeded elongation by Abeta monomer deposition very poorly. The techniques used to distinguish these two classes of soluble Abeta aggregates may be useful in characterizing Abeta aggregates formed in vivo.
The role of APOE-ɛ4 and beta amyloid in the differential rate of recovery from ECT: a review
Sutton, T A; Sohrabi, H R; Rainey-Smith, S R; Bird, S M; Weinborn, M; Martins, R N
2015-01-01
Individual biological differences may contribute to the variability of outcomes, including cognitive effects, observed following electroconvulsive treatment (ECT). A narrative review of the research literature on carriage of the apolipoprotein E ɛ4 allele (APOE-ɛ4) and the protein biomarker beta amyloid (Aβ) with ECT cognitive outcome was undertaken. ECT induces repeated brain seizures and there is debate as to whether this causes brain injury and long-term cognitive disruption. The majority of ECT is administered to the elderly (over age 65 years) with drug-resistant depression. Depression in the elderly may be a symptom of the prodromal stage of Alzheimer's disease (AD). Carriage of the APOE-ɛ4 allele and raised cerebral Aβ are consistently implicated in AD, but inconsistently implicated in brain injury (and related syndromes) recovery rates. A paucity of brain-related recovery, genetic and biomarker research in ECT responses in the elderly was found: three studies have examined the effect of APOE-ɛ4 allele carriage on cognition in the depressed elderly receiving ECT, and two have examined Aβ changes after ECT, with contradictory findings. Cognitive changes in all studies of ECT effects were measured by a variety of psychological tests, making comparisons of such changes between studies problematic. Further, psychological test data-validity measures were not routinely administered, counter to current testing recommendations. The methodological issues of the currently available literature as well as the need for well-designed, hypothesis driven, longitudinal studies are discussed. PMID:25826114
The role of APOE-ɛ4 and beta amyloid in the differential rate of recovery from ECT: a review.
Sutton, T A; Sohrabi, H R; Rainey-Smith, S R; Bird, S M; Weinborn, M; Martins, R N
2015-03-31
Individual biological differences may contribute to the variability of outcomes, including cognitive effects, observed following electroconvulsive treatment (ECT). A narrative review of the research literature on carriage of the apolipoprotein E ɛ4 allele (APOE-ɛ4) and the protein biomarker beta amyloid (Aβ) with ECT cognitive outcome was undertaken. ECT induces repeated brain seizures and there is debate as to whether this causes brain injury and long-term cognitive disruption. The majority of ECT is administered to the elderly (over age 65 years) with drug-resistant depression. Depression in the elderly may be a symptom of the prodromal stage of Alzheimer's disease (AD). Carriage of the APOE-ɛ4 allele and raised cerebral Aβ are consistently implicated in AD, but inconsistently implicated in brain injury (and related syndromes) recovery rates. A paucity of brain-related recovery, genetic and biomarker research in ECT responses in the elderly was found: three studies have examined the effect of APOE-ɛ4 allele carriage on cognition in the depressed elderly receiving ECT, and two have examined Aβ changes after ECT, with contradictory findings. Cognitive changes in all studies of ECT effects were measured by a variety of psychological tests, making comparisons of such changes between studies problematic. Further, psychological test data-validity measures were not routinely administered, counter to current testing recommendations. The methodological issues of the currently available literature as well as the need for well-designed, hypothesis driven, longitudinal studies are discussed.
Etiology of sporadic Alzheimer's disease: somatostatin, neprilysin, and amyloid beta peptide.
Hama, E; Saido, T C
2005-01-01
We recently demonstrated that amyloid beta peptide (Abeta) is catabolized primarily by a neutral endopeptidase, neprilysin, in the brain and that a neuropeptide, somatostatin (SST), regulates brain Abeta level via modulation of neprilysin activity. Because SST expression in the brain declines upon aging in various mammals including rodents, apes and humans, we hypothesize that the aging-dependent reduction of SST triggers accumulation of Abeta in the brain by suppressing neprilysin action. This hypothesis accounts for the fact that aging is the predominant risk factor for Sporadic Alzheimer's disease.
NASA Astrophysics Data System (ADS)
Murariu, Manuela; Mihai, Marcela; Zaharia, Marius; Drochioiu, Gabi
2014-10-01
Amyloid-beta (known also as Aβ or A-beta or beta-amyloid) is a peptide of 36-43 amino acids that appears to be the main constituent of amyloid plaques in the brains of Alzheimer's disease (AD) patients. The transformation process from α-helix to β-sheet structures appears to be one of the major factors in the genesis and evolution of a variety of neurodegenerative diseases such as AD, Parkinson's disease (PD), and several prion diseases [1,2]. Metal-based reactions of some polypeptides and proteins are considered as a common denominator for neurodegenerative diseases (Figure 1) [3,4]. Amyloid-β (Aβ) aggregates are associated with Alzheimer's disease (AD), and may be promoted by the trace amounts of metal ions like aluminium, iron, zinc or copper [5-11]. For example, copper ions cause the peptide aggregation to a great extent and highly increase the neurotoxicity exhibited by Aβ1-40 in cell culture [11].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okle, Oliver, E-mail: oliver.okle@uni-konstanz.de; Rath, Lisa; Galizia, C. Giovanni
The cyanobacterially produced neurotoxin beta-N-methylamino-L-alanine (BMAA) is thought to induce amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC)-like symptoms. However, its mechanism of action and its pathway of intoxication are yet unknown. In vivo animal models suitable for investigating the neurotoxic effect of BMAA with applicability to the human are scarce. Hence, we used the honeybee (Apis mellifera) since its nervous system is relatively simple, yet having cognitive capabilities. Bees fed with BMAA-spiked sugar water had an increased mortality rate and a reduced ability to learn odors in a classical conditioning paradigm. Using {sup 14}C-BMAA we demonstrated that BMAA is biologically availablemore » to the bee, and is found in the head, thorax and abdomen with little to no excretion. BMAA is also transferred from one bee to the next via trophallaxis resulting in an exposure of the whole beehive. BMAA bath application directly onto the brain leads to an altered Ca{sup 2+} homeostasis and to generation of reactive oxygen species. These behavioral and physiological observations suggest that BMAA may have effects on bee brains similar to those assumed to occur in humans. Therefore the bee could serve as a surrogate model system for investigating the neurological effects of BMAA. - Highlights: • Investigating of neurotoxic effects of BMAA in honeybees • BMAA impairs ALS markers (ROS, Ca{sup 2+}, learning, memory, odor) in bees. • A method for the observation of ROS development in living bees brain was established. • Honeybees are a suitable model to explore neurodegenerative processes. • Neurotoxic BMAA can be spread in bee populations by trophallaxis.« less
Di Loreto, Silvia; Caracciolo, Valentina; Colafarina, Sabrina; Sebastiani, Pierluigi; Gasbarri, Antonella; Amicarelli, Fernanda
2004-05-01
Methylglyoxal (MG) is one of the most powerful glycating agents of proteins and other important cellular components and has been shown to be toxic to cultured cells. Under hyperglycaemic conditions, an increase in the concentration of MG has been observed in human body fluids and tissues that seems to be responsible for diabetic complications. Recent data suggest that diabetes may cause impairment of cognitive processes, according to a mechanism involving both oxidative stress and advanced glycation end product (AGE) formation. In this work, we explored the molecular mechanism underlying MG toxicity in neural cells, by investigating the effect of MG on both the interleukin-1beta (IL-1beta), as the major inducer of the acute phase response, and the nervous growth factor (NGF) expression. Experiments were performed on cultured neural cells from rat hippocampus, being this brain region mostly involved in cognitive processes and, therefore, possible target of diabetes-mediated impairment of cognitive abilities. Results show that MG treatment causes in hippocampal neural cells extensive, oxidative stress-mediated cell death, in consequence of a strong catalase enzymatic activity and protein inhibition. MG also causes a very significant increase in both transcript and protein expression of the NGF as well as of the pro-inflammatory cytokine IL-1beta. MG co-treatment with the antioxidant N-acetylcysteine (NAC) completely abrogates the observed effects. Taken together, these data demonstrate that hippocampal neurons are strongly susceptible to MG-mediated oxidative stress.
Chapouly, Candice; Tadesse Argaw, Azeb; Horng, Sam; Castro, Kamilah; Zhang, Jingya; Asp, Linnea; Loo, Hannah; Laitman, Benjamin M; Mariani, John N; Straus Farber, Rebecca; Zaslavsky, Elena; Nudelman, German; Raine, Cedric S; John, Gareth R
2015-06-01
In inflammatory central nervous system conditions such as multiple sclerosis, breakdown of the blood-brain barrier is a key event in lesion pathogenesis, predisposing to oedema, excitotoxicity, and ingress of plasma proteins and inflammatory cells. Recently, we showed that reactive astrocytes drive blood-brain barrier opening, via production of vascular endothelial growth factor A (VEGFA). Here, we now identify thymidine phosphorylase (TYMP; previously known as endothelial cell growth factor 1, ECGF1) as a second key astrocyte-derived permeability factor, which interacts with VEGFA to induce blood-brain barrier disruption. The two are co-induced NFκB1-dependently in human astrocytes by the cytokine interleukin 1 beta (IL1B), and inactivation of Vegfa in vivo potentiates TYMP induction. In human central nervous system microvascular endothelial cells, VEGFA and the TYMP product 2-deoxy-d-ribose cooperatively repress tight junction proteins, driving permeability. Notably, this response represents part of a wider pattern of endothelial plasticity: 2-deoxy-d-ribose and VEGFA produce transcriptional programs encompassing angiogenic and permeability genes, and together regulate a third unique cohort. Functionally, each promotes proliferation and viability, and they cooperatively drive motility and angiogenesis. Importantly, introduction of either into mouse cortex promotes blood-brain barrier breakdown, and together they induce severe barrier disruption. In the multiple sclerosis model experimental autoimmune encephalitis, TYMP and VEGFA co-localize to reactive astrocytes, and correlate with blood-brain barrier permeability. Critically, blockade of either reduces neurologic deficit, blood-brain barrier disruption and pathology, and inhibiting both in combination enhances tissue preservation. Suggesting importance in human disease, TYMP and VEGFA both localize to reactive astrocytes in multiple sclerosis lesion samples. Collectively, these data identify TYMP as an astrocyte-derived permeability factor, and suggest TYMP and VEGFA together promote blood-brain barrier breakdown. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Tsai, Shin-Han; Sheu, Ming-Thau; Liang, Yu-Chih; Cheng, Hsiu-Tan; Fang, Sheng-Shiung; Chen, Chien-Ho
2009-10-23
To investigate the mechanism how Transforming growth factor-beta(TGF-beta) represses Interleukin-1beta (IL-1beta)-induced Proteinase-Activated Receptor-2 (PAR-2) expression in human primary synovial cells (hPSCs). Human chondrocytes and hPSCs isolated from cartilages and synovium of Osteoarthritis (OA) patients were cultured with 10% fetal bovine serum media or serum free media before treatment with IL-1beta, TGF-beta1, or Connective tissue growth factor (CTGF). The expression of PAR-2 was detected using reverse transcriptase-polymerase chain reaction (RT-PCR) and western blotting. Collagen zymography was performed to assess the activity of Matrix metalloproteinases-13 (MMP-13). It was demonstrated that IL-1beta induces PAR-2 expression via p38 pathway in hPSCs. This induction can be repressed by TGF-beta and was observed to persist for at least 48 hrs, suggesting that TGF-beta inhibits PAR-2 expression through multiple pathways. First of all, TGF-beta was able to inhibit PAR-2 activity by inhibiting IL-1beta-induced p38 signal transduction and secondly the inhibition was also indirectly due to MMP-13 inactivation. Finally, TGF-beta was able to induce CTGF, and in turn CTGF represses PAR-2 expression by inhibiting IL-1beta-induced phospho-p38 level. TGF-beta could prevent OA from progression with the anabolic ability to induce CTGF production to maintain extracellular matrix (ECM) integrity and to down regulate PAR-2 expression, and the anti-catabolic ability to induce Tissue inhibitors of metalloproteinase-3 (TIMP-3) production to inhibit MMPs leading to avoid PAR-2 over-expression. Because IL-1beta-induced PAR-2 expressed in hPSCs might play a significantly important role in early phase of OA, PAR-2 repression by exogenous TGF-beta or other agents might be an ideal therapeutic target to prevent OA from progression.
Interleukin-1 receptor 1 deletion in focal and diffuse experimental traumatic brain injury in mice.
Chung, Joon Yong; Krapp, Nicolas; Wu, Limin; Lule, Sevda; McAllister, Lauren; Edmiston Iii, William; Martin, Samantha; Levy, Emily; Songtachalert, Tanya; Sherwood, John; Buckley, Erin; Sanders, Bharat; Izzy, Saef; Hickman, Suzanne; Guo, Shuzhen; Lok, Josephine; El Khoury, Joseph; Lo, Eng; Kaplan, David; Whalen, Michael
2018-05-17
Important differences in the biology of focal and diffuse traumatic brain injury (TBI) subtypes may result in unique pathophysiological responses to shared molecular mechanisms. Interleukin-1 (IL-1) signaling has been tested as a potential therapeutic target in preclinical models of cerebral contusion and diffuse TBI, and in a phase II clinical trial, but no published studies have examined IL-1 signaling in an impact/acceleration closed head injury (CHI) model. We hypothesized that genetic deletion of IL-1 receptor-1 (IL-1R1 KO) would be beneficial in focal (contusion) and CHI in mice. Wild type and IL-1R1 KO mice were subjected to controlled cortical impact (CCI), or to CHI. CCI produced brain leukocyte infiltration, HMGB1 translocation and release, edema, cell death, and cognitive deficits. CHI induced peak rotational acceleration of 9.7 x 105 + 8.1 x 104 rad/s2, delayed time to righting reflex, and robust Morris water maze deficits without deficits in tests of anxiety, locomotion, sensorimotor function, or depression. CHI produced no discernable acute plasmalemma damage or cell death, blood-brain barrier permeability to IgG, or brain edema and only a modest increase in brain leukocyte infiltration at 72 h. In both models, mature (17 kDa) interleukin-1 beta (IL-1β) was induced by 24 h in CD31+ endothelial cells isolated from injured brain but was not induced in CD11b+ cells in either model. High mobility group box protein-1 was released from injured brain cells in CCI but not CHI. Surprisingly, cognitive outcome in mice with global deletion of IL-1R1 was improved in CHI, but worse after CCI without affecting lesion size, edema, or infiltration of CD11b+/CD45+ leukocytes in CCI. IL-1R1 may induce unique biological responses, beneficial or detrimental to cognitive outcome, after TBI depending on the pathoanatomical subtype. Brain endothelium is a hitherto unrecognized source of mature IL-1β in both models.
Biosynthesis of ependymins from goldfish brain.
Königstorfer, A; Sterrer, S; Hoffmann, W
1989-08-15
Ependymins beta and gamma constitute a novel family of secretory proteins in the extracellular fluid of goldfish brain. Here we demonstrate that at least two different transcripts exist in goldfish brain differing mainly in the length of their 3' noncoding regions but encoding very similar precursors for ependymins. Both precursors consist of 216 amino acid residues including two potential N-glycosylation sites. Prepro-ependymin-I is the main but not the only precursor of ependymin beta, whereas prepro-ependymin-II is preferentially processed to ependymin gamma. This is in line with our results showing that both ependymins beta and gamma represent different glycoforms with very similar protein backbones. Additionally, we show that both ependymins share the same C-terminal ends indicating that ependymin gamma is not a proteolysis product of ependymin beta. We also demonstrate that processing at three internal pairs of basic residues does not occur in either ependymin.
Riba, Jordi; Anderer, Peter; Jané, Francesc; Saletu, Bernd; Barbanoj, Manel J
2004-01-01
Ayahuasca, a South American psychotropic plant tea obtained from Banisteriopsis caapi and Psychotria viridis, combines monoamine oxidase-inhibiting beta-carboline alkaloids with N,N-dimethyltryptamine (DMT), a psychedelic agent showing 5-HT(2A) agonist activity. In a clinical research setting, ayahuasca has demonstrated a combined stimulatory and psychedelic effect profile, as measured by subjective effect self-assessment instruments and dose-dependent changes in spontaneous brain electrical activity, which parallel the time course of subjective effects. In the present study, the spatial distribution of ayahuasca-induced changes in brain electrical activity was investigated by means of low-resolution electromagnetic tomography (LORETA). Electroencephalography recordings were obtained from 18 volunteers after the administration of a dose of encapsulated freeze-dried ayahuasca containing 0.85 mg DMT/kg body weight and placebo. The intracerebral power density distribution was computed with LORETA from spectrally analyzed data, and subjective effects were measured by means of the Hallucinogen Rating Scale (HRS). Statistically significant differences compared to placebo were observed for LORETA power 60 and 90 min after dosing, together with increases in all six scales of the HRS. Ayahuasca decreased power density in the alpha-2, delta, theta and beta-1 frequency bands. Power decreases in the delta, alpha-2 and beta-1 bands were found predominantly over the temporo-parieto-occipital junction, whereas theta power was reduced in the temporomedial cortex and in frontomedial regions. The present results suggest the involvement of unimodal and heteromodal association cortex and limbic structures in the psychological effects elicited by ayahuasca. Copyright 2004 S. Karger AG, Basel
“Too Many betas do not Spoil the Broth”: The Role of Beta Brain Oscillations in Language Processing
Weiss, Sabine; Mueller, Horst M.
2012-01-01
Over the past 20 years, brain oscillations have proven to be a gateway to the understanding of cognitive processes. It has been shown that different neurocognitive aspects of language processing are associated with brain oscillations at various frequencies. Frequencies in the beta range (13–30 Hz) turned out to be particularly important with respect to cognitive and linguistic manipulations during language processing. Beta activity has been involved in higher-order linguistic functions such as the discrimination of word categories and the retrieval of action semantics as well as semantic memory, and syntactic binding processes, which support meaning construction during sentence processing. From a neurophysiological point of view, the important role of the beta frequencies for such a complex cognitive task as language processing seems reasonable. Experimental evidence suggests that frequencies in the beta range are ideal for maintaining and preserving the activity of neuronal assemblies over time. In particular, recent computational and experimental evidence suggest that beta frequencies are important for linking past and present input and the detection of novelty of stimuli, which are essential processes for language perception as well as production. In addition, the beta frequency’s role in the formation of cell assemblies underlying short-term memory seems indispensable for language analysis. Probably the most important point is the well-known relation of beta oscillations with motor processes. It can be speculated that beta activities reflect the close relationship between language comprehension and motor functions, which is one of the core claims of current theories on embodied cognition. In this article, the importance of beta oscillations for language processing is reviewed based both on findings in psychophysiological and neurophysiological literature. PMID:22737138
Sankaranarayanan, Sethu; Holahan, Marie A; Colussi, Dennis; Crouthamel, Ming-Chih; Devanarayan, Viswanath; Ellis, Joan; Espeseth, Amy; Gates, Adam T; Graham, Samuel L; Gregro, Allison R; Hazuda, Daria; Hochman, Jerome H; Holloway, Katharine; Jin, Lixia; Kahana, Jason; Lai, Ming-tain; Lineberger, Janet; McGaughey, Georgia; Moore, Keith P; Nantermet, Philippe; Pietrak, Beth; Price, Eric A; Rajapakse, Hemaka; Stauffer, Shaun; Steinbeiser, Melissa A; Seabrook, Guy; Selnick, Harold G; Shi, Xiao-Ping; Stanton, Matthew G; Swestock, John; Tugusheva, Katherine; Tyler, Keala X; Vacca, Joseph P; Wong, Jacky; Wu, Guoxin; Xu, Min; Cook, Jacquelynn J; Simon, Adam J
2009-01-01
beta-Site amyloid precursor protein (APP)-cleaving enzyme (BACE) 1 cleavage of amyloid precursor protein is an essential step in the generation of the potentially neurotoxic and amyloidogenic A beta 42 peptides in Alzheimer's disease. Although previous mouse studies have shown brain A beta lowering after BACE1 inhibition, extension of such studies to nonhuman primates or man was precluded by poor potency, brain penetration, and pharmacokinetics of available inhibitors. In this study, a novel tertiary carbinamine BACE1 inhibitor, tertiary carbinamine (TC)-1, was assessed in a unique cisterna magna ported rhesus monkey model, where the temporal dynamics of A beta in cerebrospinal fluid (CSF) and plasma could be evaluated. TC-1, a potent inhibitor (IC(50) approximately 0.4 nM), has excellent passive membrane permeability, low susceptibility to P-glycoprotein transport, and lowered brain A beta levels in a mouse model. Intravenous infusion of TC-1 led to a significant but transient lowering of CSF and plasma A beta levels in conscious rhesus monkeys because it underwent CYP3A4-mediated metabolism. Oral codosing of TC-1 with ritonavir, a potent CYP3A4 inhibitor, twice daily over 3.5 days in rhesus monkeys led to sustained plasma TC-1 exposure and a significant and sustained reduction in CSF sAPP beta, A beta 40, A beta 42, and plasma A beta 40 levels. CSF A beta 42 lowering showed an EC(50) of approximately 20 nM with respect to the CSF [TC-1] levels, demonstrating excellent concordance with its potency in a cell-based assay. These results demonstrate the first in vivo proof of concept of CSF A beta lowering after oral administration of a BACE1 inhibitor in a nonhuman primate.
te Woerd, Erik S.; Oostenveld, Robert; Bloem, Bastiaan R.; de Lange, Floris P.; Praamstra, Peter
2015-01-01
The basal ganglia play an important role in beat perception and patients with Parkinson’s disease (PD) are impaired in perception of beat-based rhythms. Rhythmic cues are nonetheless beneficial in gait rehabilitation, raising the question how rhythm improves movement in PD. We addressed this question with magnetoencephalography recordings during a choice response task with rhythmic and non-rhythmic modes of stimulus presentation. Analyses focused on (i) entrainment of slow oscillations, (ii) the depth of beta power modulation, and (iii) whether a gain in modulation depth of beta power, due to rhythmicity, is of predictive or reactive nature. The results show weaker phase synchronisation of slow oscillations and a relative shift from predictive to reactive movement-related beta suppression in PD. Nonetheless, rhythmic stimulus presentation increased beta modulation depth to the same extent in patients and controls. Critically, this gain selectively increased the predictive and not reactive movement-related beta power suppression. Operation of a predictive mechanism, induced by rhythmic stimulation, was corroborated by a sensory gating effect in the sensorimotor cortex. The predictive mode of cue utilisation points to facilitation of basal ganglia-premotor interactions, contrasting with the popular view that rhythmic stimulation confers a special advantage in PD, based on recruitment of alternative pathways. PMID:26509117
Horai, R; Asano, M; Sudo, K; Kanuka, H; Suzuki, M; Nishihara, M; Takahashi, M; Iwakura, Y
1998-05-04
Interleukin (IL)-1 is a major mediator of inflammation and exerts pleiotropic effects on the neuro-immuno-endocrine system. To elucidate pathophysiological roles of IL-1, we have first produced IL-1alpha/beta doubly deficient (KO) mice together with mice deficient in either the IL-1alpha, IL-1beta, or IL-1 receptor antagonist (IL-1ra) genes. These mice were born healthy, and their growth was normal except for IL-1ra KO mice, which showed growth retardation after weaning. Fever development upon injection with turpentine was suppressed in IL-1beta as well as IL-1alpha/beta KO mice, but not in IL-1alpha KO mice, whereas IL-1ra KO mice showed an elevated response. At this time, expression of IL-1beta mRNA in the diencephalon decreased 1.5-fold in IL-1alpha KO mice, whereas expression of IL-1alpha mRNA decreased >30-fold in IL-1beta KO mice, suggesting mutual induction between IL-1alpha and IL-1beta. This mutual induction was also suggested in peritoneal macrophages stimulated with lipopolysaccharide in vitro. In IL-1beta KO mice treated with turpentine, the induction of cyclooxygenase-2 (EC 1.14.99.1) in the diencephalon was suppressed, whereas it was enhanced in IL-1ra KO mice. We also found that glucocorticoid induction 8 h after turpentine treatment was suppressed in IL-1beta but not IL-1alpha KO mice. These observations suggest that IL-1beta but not IL-1alpha is crucial in febrile and neuro-immuno-endocrine responses, and that this is because IL-1alpha expression in the brain is dependent on IL-1beta. The importance of IL-1ra both in normal physiology and under stress is also suggested.
Bleau, Christian; Filliol, Aveline; Samson, Michel
2015-01-01
ABSTRACT Coronaviruses (CoVs) have shown neuroinvasive properties in humans and animals secondary to replication in peripheral organs, but the mechanism of neuroinvasion is unknown. The major aim of our work was to evaluate the ability of CoVs to enter the central nervous system (CNS) through the blood-brain barrier (BBB). Using the highly hepatotropic mouse hepatitis virus type 3 (MHV3), its attenuated variant, 51.6-MHV3, which shows low tropism for endothelial cells, and the weakly hepatotropic MHV-A59 strain from the murine coronavirus group, we investigated the virus-induced dysfunctions of BBB in vivo and in brain microvascular endothelial cells (BMECs) in vitro. We report here a MHV strain-specific ability to cross the BBB during acute infection according to their virulence for liver. Brain invasion was observed only in MHV3-infected mice and correlated with enhanced BBB permeability associated with decreased expression of zona occludens protein 1 (ZO-1), VE-cadherin, and occludin, but not claudin-5, in the brain or in cultured BMECs. BBB breakdown in MHV3 infection was not related to production of barrier-dysregulating inflammatory cytokines or chemokines by infected BMECs but rather to a downregulation of barrier protective beta interferon (IFN-β) production. Our findings highlight the importance of IFN-β production by infected BMECs in preserving BBB function and preventing access of blood-borne infectious viruses to the brain. IMPORTANCE Coronaviruses (CoVs) infect several mammals, including humans, and are associated with respiratory, gastrointestinal, and/or neurological diseases. There is some evidence that suggest that human respiratory CoVs may show neuroinvasive properties. Indeed, the severe acute respiratory syndrome coronavirus (SARS-CoV), causing severe acute respiratory syndrome, and the CoVs OC43 and 229E were found in the brains of SARS patients and multiple sclerosis patients, respectively. These findings suggest that hematogenously spread CoVs may gain access to the CNS at the BBB level. Herein we report for the first time that CoVs exhibit the ability to cross the BBB according to strain virulence. BBB invasion by CoVs correlates with virus-induced disruption of tight junctions on BMECs, leading to BBB dysfunction and enhanced permeability. We provide evidence that production of IFN-β by BMECs during CoV infection may prevent BBB breakdown and brain viral invasion. PMID:26202229
Bleau, Christian; Filliol, Aveline; Samson, Michel; Lamontagne, Lucie
2015-10-01
Coronaviruses (CoVs) have shown neuroinvasive properties in humans and animals secondary to replication in peripheral organs, but the mechanism of neuroinvasion is unknown. The major aim of our work was to evaluate the ability of CoVs to enter the central nervous system (CNS) through the blood-brain barrier (BBB). Using the highly hepatotropic mouse hepatitis virus type 3 (MHV3), its attenuated variant, 51.6-MHV3, which shows low tropism for endothelial cells, and the weakly hepatotropic MHV-A59 strain from the murine coronavirus group, we investigated the virus-induced dysfunctions of BBB in vivo and in brain microvascular endothelial cells (BMECs) in vitro. We report here a MHV strain-specific ability to cross the BBB during acute infection according to their virulence for liver. Brain invasion was observed only in MHV3-infected mice and correlated with enhanced BBB permeability associated with decreased expression of zona occludens protein 1 (ZO-1), VE-cadherin, and occludin, but not claudin-5, in the brain or in cultured BMECs. BBB breakdown in MHV3 infection was not related to production of barrier-dysregulating inflammatory cytokines or chemokines by infected BMECs but rather to a downregulation of barrier protective beta interferon (IFN-β) production. Our findings highlight the importance of IFN-β production by infected BMECs in preserving BBB function and preventing access of blood-borne infectious viruses to the brain. Coronaviruses (CoVs) infect several mammals, including humans, and are associated with respiratory, gastrointestinal, and/or neurological diseases. There is some evidence that suggest that human respiratory CoVs may show neuroinvasive properties. Indeed, the severe acute respiratory syndrome coronavirus (SARS-CoV), causing severe acute respiratory syndrome, and the CoVs OC43 and 229E were found in the brains of SARS patients and multiple sclerosis patients, respectively. These findings suggest that hematogenously spread CoVs may gain access to the CNS at the BBB level. Herein we report for the first time that CoVs exhibit the ability to cross the BBB according to strain virulence. BBB invasion by CoVs correlates with virus-induced disruption of tight junctions on BMECs, leading to BBB dysfunction and enhanced permeability. We provide evidence that production of IFN-β by BMECs during CoV infection may prevent BBB breakdown and brain viral invasion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Abnormal salience signaling in schizophrenia: The role of integrative beta oscillations.
Liddle, Elizabeth B; Price, Darren; Palaniyappan, Lena; Brookes, Matthew J; Robson, Siân E; Hall, Emma L; Morris, Peter G; Liddle, Peter F
2016-04-01
Aberrant salience attribution and cerebral dysconnectivity both have strong evidential support as core dysfunctions in schizophrenia. Aberrant salience arising from an excess of dopamine activity has been implicated in delusions and hallucinations, exaggerating the significance of everyday occurrences and thus leading to perceptual distortions and delusional causal inferences. Meanwhile, abnormalities in key nodes of a salience brain network have been implicated in other characteristic symptoms, including the disorganization and impoverishment of mental activity. A substantial body of literature reports disruption to brain network connectivity in schizophrenia. Electrical oscillations likely play a key role in the coordination of brain activity at spatially remote sites, and evidence implicates beta band oscillations in long-range integrative processes. We used magnetoencephalography and a task designed to disambiguate responses to relevant from irrelevant stimuli to investigate beta oscillations in nodes of a network implicated in salience detection and previously shown to be structurally and functionally abnormal in schizophrenia. Healthy participants, as expected, produced an enhanced beta synchronization to behaviorally relevant, as compared to irrelevant, stimuli, while patients with schizophrenia showed the reverse pattern: a greater beta synchronization in response to irrelevant than to relevant stimuli. These findings not only support both the aberrant salience and disconnectivity hypotheses, but indicate a common mechanism that allows us to integrate them into a single framework for understanding schizophrenia in terms of disrupted recruitment of contextually appropriate brain networks. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Abnormal salience signaling in schizophrenia: The role of integrative beta oscillations
Liddle, Elizabeth B.; Price, Darren; Palaniyappan, Lena; Brookes, Matthew J.; Robson, Siân E.; Hall, Emma L.; Morris, Peter G.
2016-01-01
Abstract Aberrant salience attribution and cerebral dysconnectivity both have strong evidential support as core dysfunctions in schizophrenia. Aberrant salience arising from an excess of dopamine activity has been implicated in delusions and hallucinations, exaggerating the significance of everyday occurrences and thus leading to perceptual distortions and delusional causal inferences. Meanwhile, abnormalities in key nodes of a salience brain network have been implicated in other characteristic symptoms, including the disorganization and impoverishment of mental activity. A substantial body of literature reports disruption to brain network connectivity in schizophrenia. Electrical oscillations likely play a key role in the coordination of brain activity at spatially remote sites, and evidence implicates beta band oscillations in long‐range integrative processes. We used magnetoencephalography and a task designed to disambiguate responses to relevant from irrelevant stimuli to investigate beta oscillations in nodes of a network implicated in salience detection and previously shown to be structurally and functionally abnormal in schizophrenia. Healthy participants, as expected, produced an enhanced beta synchronization to behaviorally relevant, as compared to irrelevant, stimuli, while patients with schizophrenia showed the reverse pattern: a greater beta synchronization in response to irrelevant than to relevant stimuli. These findings not only support both the aberrant salience and disconnectivity hypotheses, but indicate a common mechanism that allows us to integrate them into a single framework for understanding schizophrenia in terms of disrupted recruitment of contextually appropriate brain networks. Hum Brain Mapp 37:1361‐1374, 2016. © 2016 Wiley Periodicals, Inc. PMID:26853904
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nhamburo, P.T.; Hoffman, P.L.; Tabakoff, B.
1988-01-01
The acute in vitro effects of ethanol on cerebral cortical adenylate cyclase activity and beta-adrenergic receptor characteristics suggested a site of action of ethanol at Gs, the stimulatory guanine nucleotide binding protein. After chronic ethanol ingestion, the beta-adrenergic receptor appeared to be uncoupled (i.e., the form of the receptor with high affinity for agonist was undetectable), and stimulation of adenylate cyclase activity by isoproterenol or guanine nucleotides was reduced, suggesting an alteration in the properties of Gs. To further characterize this change, cholera and pertussis toxin-mediated /sup 32/P-ADP-ribosylation of mouse cortical membranes was assessed in mice that had chronically ingestedmore » ethanol in a liquid diet. /sup 32/P-labeled proteins were separated by SDS-PAGE and quantitated by autoradiography. There was a selective 30-50% decrease in cholera toxin-induced labeling of 46 kDa protein band in membranes of ethanol-fed mice, with no apparent change in pertussis toxin-induced labeling. The 46 kDa protein has a molecular weight similar to that of the alpha subunit of Gs, suggesting a reduced amount of this protein or a change in its characteristics as a substrate for cholera toxin-induced ADP-ribosylation in cortical membranes of ethanol-fed mice.« less
Khan, Muhammad Sohail; Ali, Tahir; Abid, Muhammad Noman; Jo, Myeung Hoon; Khan, Amjad; Kim, Min Woo; Yoon, Gwang Ho; Cheon, Eun Woo; Rehman, Shafiq Ur; Kim, Myeong Ok
2017-09-01
Lithium an effective mood stabilizer, primary used in the treatment of bipolar disorders, has been reported as a protective agent in various neurological disorders. In this study, we examined the neuroprotective role of lithium chloride (LiCl) against lipopolysaccharide (LPS) in the cortex and hippocampus of the adult rat brain. We determined that LiCl -attenuated LPS-induced activated toll-like receptor 4 (TLR4) signalling and significantly reduced the nuclear factor- k B (NF- K B) translation factor and various other inflammatory mediators such as interleukin-1 beta (IL-1β) and tumour necrosis factor alpha (TNF-α). We also analyzed that LiCl significantly abrogated activated gliosis via attenuation of specific markers for activated microglia, ionized calcium-binding adaptor molecule (Iba-1) and astrocytes, glial fibrillary acidic protein (GFAP) in both the cortex and hippocampus of the adult rat brain. Furthermore, we also observed that LiCl treatment significantly ameliorated the increase expression level of apoptotic neurodegeneration protein markers Bax/Bcl2, activated caspase-3 and poly (ADP-ribose) polymerase-1 (PARP-1) in the cortex and hippocampus regions of the LPS-treated adult rat brain. In addition, the morphological results of the fluoro-jade B (FJB) and Nissl staining showed that LiCl attenuated the neuronal degeneration in the cortex and hippocampus regions of the LPS-treated adult rat brain. Taken together, our Western blot and morphological results indicated that LiCl significantly prevents the LPS-induced neurotoxicity via attenuation of neuroinflammation and apoptotic neurodegeneration in the cortex and hippocampus of the adult rat brain. Copyright © 2017 Elsevier Ltd. All rights reserved.
Low-power laser irradiation inhibits amyloid beta-induced cell apoptosis
NASA Astrophysics Data System (ADS)
Zhang, Heng; Wu, Shengnan
2011-03-01
The deposition and accumulation of amyloid-β-peptide (Aβ) in the brain are considered a pathological hallmark of Alzheimer's disease(AD). Apoptosis is a contributing pathophysiological mechanism of AD. Low-power laser irradiation (LPLI), a non-damage physical therapy, which has been used clinically for decades of years, is shown to promote cell proliferation and prevent apoptosis. Recently, low-power laser irradiation (LPLI) has been applied to moderate AD. In this study, Rat pheochromocytoma (PC12) cells were treated with amyloid beta 25-35 (Aβ25-35) for induction of apoptosis before LPLI treatment. We measured cell viability with CCK-8 according to the manufacture's protocol, the cell viability assays show that low fluence of LPLI (2 J/cm2 ) could inhibit the cells apoptosis. Then using statistical analysis of proportion of apoptotic cells by flow cytometry based on Annexin V-FITC/PI, the assays also reveal that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis. Taken together, we demonstrated that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis, these results directly point to a therapeutic strategy for the treatment of AD through LPLI.
Fluid Mechanics of the Vascular Basement Membrane in the Brain
NASA Astrophysics Data System (ADS)
Coloma, Mikhail; Hui, Jonathan; Chiarot, Paul; Huang, Peter; Carare, Roxana; McLeod, Kenneth; Schaffer, David
2013-11-01
Beta-amyloid is a normal product of brain metabolic function and is found within the interstitial fluid of the brain. Failure of the clearance of beta-amyloid from the aging brain leads to its accumulation within the walls of arteries and to Alzheimer's disease. The vascular basement membrane (VBM) within the walls of cerebral arteries surrounds the spirally arranged smooth muscle cells and represents an essential pathway for removal of beta-amyloid from the brain. This process fails with the stiffening of arterial walls associated with aging. In this study we hypothesize that the deformation of the VBM associated with arterial pulsations drives the interstitial fluid to drain in the direction opposite of the arterial blood flow. This hypothesis is theoretically investigated by modeling the VBM as a thin, coaxial, fluid-filled porous medium surrounding a periodically deforming cylindrical tube. Flow and boundary conditions required to achieve such a backward clearance are derived through a control volume analysis of mass, momentum, and energy.
Prospective Study of Brain Wave Changes Associated With Cranial Electrotherapy Stimulation.
Lande, R Gregory; Gragnani, Cynthia T
2018-01-18
To explore brain wave changes associated with cranial electrotherapy stimulation (CES) among subjects receiving psychiatric care. Quantitative electroencephalogram data were obtained before and after a 20-minute session of CES. The investigators recruited active-duty military subjects from Walter Reed National Military Medical Center's Psychiatry Continuity Service, Bethesda, Maryland. Fifty subjects participated in this prospective, convenience sample study from August 2016 through March 2017. The main outcome measures were changes in brain wave activity and the Subjective Units of Distress Scale. The typical subject was mildly depressed and had severe trauma-related symptoms and sleep problems. There was a significant increase (P = .000) in the higher beta frequencies (18-21 Hz, 21-33 Hz, and 33-48 Hz) and a strong effect (with the Cohen d around 1.5) immediately following the 20-minute CES. Ten minutes after CES, slower wave activity (4-8 Hz and 8-12 Hz) significantly decreased (P < .05), while higher beta wave activity (13-15 Hz, 18-21 Hz, and 21-33 Hz) increased. A strong effect (with the Cohen d around 1.5) persisted in the beta brain wave bands 18-21 Hz and 21-33 Hz. Brain wave measurements taken immediately after the 20-minute CES session showed a significant and strong effect in the beta region, suggesting an increase in mental alertness, focus, and concentration. Ten minutes after the CES session, an even more marked change in brain wave activity occurred. The significant and strong effect in the beta region persisted but was joined by a reduction in slower wave activity, indicating an increase in mental alertness. ClinicalTrials.gov identifier NCT03298308. © Copyright 2018 Physicians Postgraduate Press, Inc.
Hamada-Kanazawa, Michiko; Kouda, Makiko; Odani, Akira; Matsuyama, Kaori; Kanazawa, Kiyoka; Hasegawa, Tatsuya; Narahara, Masanori; Miyake, Masaharu
2010-01-01
The compound beta-citryl-L-glutamate (beta-CG) was initially isolated from developing brains, while it has also been found in high concentrations in testes and eyes. However, its functional roles are unclear. To evaluate its coordination with metal ions, we performed pH titration experiments. The stability constant, logbeta(pqr) for M(p)(beta-CG)(q)H(r) was calculated from pH titration data, which showed that beta-CG forms relatively strong complexes with Fe(III), Cu(II), Fe(II) and Zn(II). beta-CG was also found able to solubilize Fe more effectively from Fe(OH)(2) than from Fe(OH)(3). Therefore, we examined the effects of beta-CG on Fe-dependent reactive oxygen species (ROS)-generating systems, as well as the potential ROS-scavenging activities of beta-CG and metal ion-(beta-CG) complexes. beta-CG inhibited the Fe-dependent degradation of deoxyribose and Fe-dependent damage to DNA or plasmid DNA in a dose-dependent manner, whereas it had no effect on Cu-mediated DNA damage. In addition, thermodynamic data showed that beta-CG in a physiological pH solution is an Fe(II) chelator rather than an Fe(III) chelator. Taken together, these findings suggest that beta-CG is an endogenous low molecular weight Fe chelator.
Ginkgolide B preconditioning protects neurons against ischaemia-induced apoptosis.
Wu, Xiaomei; Qian, Zhongming; Ke, Ya; Du, Fang; Zhu, Li
2009-01-01
Ischaemic preconditioning (IP) has been reported to protect the brain against subsequent lethal ischaemia, but it has not been used clinically to prevent ischaemic injury because of safety concerns. The aim of the present study was to see whether Ginkgolide B (GB) is capable of preconditioning as IP to protect neurons against ischaemic injury; if so, which mechanism is involved. Cultured mouse cortical neurons at day 8 were pre-treated with GB (120 micromol/l) for 24 hrs or exposed to short-term ischaemia (1 hr) followed by 24-hr normal culture to induce IP before being treated with severe ischaemia (5 hrs). GB and IP significantly increased cell viability, expression of hypoxia-inducible factor-1 alpha (HIF-1alpha), erythropoietin (EPO), phosphorylated Bad at serine 136 (136p-Bad) and phosphorylated glycogen synthase kinase- 3beta at serine 9 (p-GSK-3beta), and decreased the percentage of apoptotic cells and the level of active caspase-3 in severely ischaemic neurons. Moreover, LY294002 that is a specific inhibitor of phosphatidylinositol 3-kinase (PI3K) significantly reduced the enhanced expression of HIF-1alpha, EPO and 136p-Bad induced by GB and IP. These results suggest that GB, like IP in neurons, is capable of preconditioning against ischaemia-induced apoptosis, the mechanism of which may involve the PI3K signalling pathway.
Somatostatin, tau, and beta-amyloid within the anterior olfactory nucleus in Alzheimer disease.
Saiz-Sanchez, D; Ubeda-Bañon, I; de la Rosa-Prieto, C; Argandoña-Palacios, L; Garcia-Muñozguren, S; Insausti, R; Martinez-Marcos, A
2010-06-01
Impaired olfaction is an early symptom of Alzheimer disease (AD). This likely to reflect neurodegenerative processes taking place in basal telencephalic structures that mediate olfactory processing, including the anterior olfactory nucleus. Betaeta-amyloid (Abeta) accumulation in AD brain may relate to decline in somatostatin levels: somatostatin induces the expression of the Abeta-degrading enzyme neprilysin and somatostatin deficiency in AD may therefore reduce Abeta clearance. We have investigated the expression of somatostatin in the anterior olfactory nucleus of AD and control brain. We report that somatostatin levels were reduced by approximately 50% in AD brain. Furthermore, triple-immunofluorescence revealed co-localization of somatostatin expression with Abeta (65.43%) with Abeta and tau (19.75%) and with tau (2.47%). These data indicate that somatostatin decreases in AD and its expression may be linked with Abeta deposition. Copyright (c) 2009 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Xiaohong, E-mail: xuxh63@zjnu.cn; Ye Yinping; Li Tao
Bisphenol-A (BPA) is known to be a potent endocrine disrupter. Evidence is emerging that estrogen exerts a rapid influence on hippocampal synaptic plasticity and the dendritic spine density, which requires activation of NMDA receptors. In the present study, we investigated the effects of BPA (ranging from 1 to 1000 nM), focusing on the rapid dynamic changes in dendritic filopodia and the expressions of estrogen receptor (ER) {beta} and NMDA receptor, as well as the phosphorylation of NMDA receptor subunit NR2B in the cultured hippocampal neurons. A specific ER antagonist ICI 182,780 was used to examine the potential involvement of ERs.more » The results demonstrated that exposure to BPA (ranging from 10 to 1000 nM) for 30 min rapidly enhanced the motility and the density of dendritic filopodia in the cultured hippocampal neurons, as well as the phosphorylation of NR2B (pNR2B), though the expressions of NMDA receptor subunits NR1, NR2B, and ER{beta} were not changed. The antagonist of ERs completely inhibited the BPA-induced increases in the filopodial motility and the number of filopodia extending from dendrites. The increased pNR2B induced by BPA (100 nM) was also completely eliminated. Furthermore, BPA attenuated the effects of 17{beta}-estradiol (17{beta}-E{sub 2}) on the dendritic filopodia outgrowth and the expression of pNR2B when BPA was co-treated with 17{beta}-E{sub 2}. The present results suggest that BPA, like 17{beta}-E{sub 2}, rapidly results in the enhanced motility and density of dendritic filopodia in the cultured hippocampal neurons with the concomitant activation of NMDA receptor subunit NR2B via an ER-mediated signaling pathway. Meanwhile, BPA suppressed the enhancement effects of 17{beta}-E{sub 2} when it coexists with 17{beta}-E{sub 2}. These results provided important evidence suggesting the neurotoxicity of the low levels of BPA during the early postnatal development of the brain.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ordway, G.A.; Gambarana, C.; Tejani-Butt, S.M.
1991-05-01
This study utilized quantitative receptor autoradiography to examine the effects of repeated administration of antidepressants to rats on the binding of the beta adrenoceptor antagonist, {sup 125}I-iodopindolol ({sup 125}I-IPIN) to either beta-1 or beta-2 adrenoceptors in various regions of brain. Antidepressants were selected to represent various chemical and pharmacological classes including tricyclic compounds (desipramine and protriptyline), monoamine oxidase inhibitors (clorgyline, phenelzine and tranylcypromine), atypical antidepressants (mianserin and trazodone) and selective inhibitors of the uptake of serotonin (citalopram and sertraline). Additionally, rats were treated with various psychotropic drugs that lack antidepressant efficacy (cocaine, deprenyl, diazepam and haloperidol). Repeated treatment of ratsmore » with desipramine, protriptyline, clorgyline, phenelzine, tranylcypromine or mianserin reduced the binding of {sup 125}I-IPIN to beta-1 adrenoceptors in many brain areas. Only in the basolateral and lateral nuclei of the amygdala did all six of these antidepressants significantly reduce {sup 125}I-IPIN binding to beta-1 adrenoceptors. In these amygdaloid nuclei, the magnitude of the reduction in the binding of {sup 125}I-IPIN caused by each of these drugs was comparable to or greater than the reduction in binding produced in any other region of brain. Reductions of binding of {sup 125}I-IPIN after antidepressant treatments were not consistently observed in the cortex, the area of brain examined most often in homogenate binding studies. Only the monoamine oxidase inhibitors caused reductions in the binding of {sup 125}I-IPIN to beta-2 adrenoceptors, and this effect was generally localized to the amygdala and hypothalamus.« less
Adrenergic receptors in frontal cortex in human brain.
Cash, R; Raisman, R; Ruberg, M; Agid, Y
1985-02-05
The binding of three adrenergic ligands ([3H]prazosin, [3H]clonidine, [3H]dihydroalprenolol) was studied in the frontal cortex of human brain. alpha 1-Receptors, labeled by [3H]prazosin, predominated. [3H]Clonidine bound to two classes of sites, one of high affinity and one of low affinity. Guanosine triphosphate appeared to lower the affinity of [3H]clonidine for its receptor. [3H]Dihydroalprenolol bound to three classes of sites: the beta 1-receptor, the beta 2-receptor and a receptor with low affinity which represented about 40% of the total binding, but which was probably a non-specific site; the beta 1/beta 2 ratio was 1/2.
Peripheral Precocious Puberty Caused by Human Chorionic Gonadotropin Producing Pineal Gland Tumor.
Hammadur Rahaman, S K; Khandelwal, Deepak; Khadgawat, Rajesh; Kandasamy, Devasenathipathy; Bakhshi, Sameer
2018-03-15
Pineal gland lesions usually present with central precocious puberty. A 3½-yr-old boy presented with precocious puberty. Clinically and biochemically, it was gonadotropin releasing hormone (GnRH) independent. Serum and CSF beta-hCG levels were increased. Thin section magnetic resonance imaging of brain revealed a pineal gland tumor. He received chemotherapy followed by radiotherapy and responded well. CSF beta-hCG should be measured in all cases of peripheral precocity, and if CSF beta-hCG is elevated, thin section magnetic resonance imaging of brain should be considered.
Rigor, Robert R; Hawkins, Brian T; Miller, David S
2010-07-01
P-glycoprotein is an ATP (adenosine triphosphate)-driven drug efflux transporter that is highly expressed at the blood-brain barrier (BBB) and is a major obstacle to the pharmacotherapy of central nervous system diseases, including brain tumors, neuro-AIDS, and epilepsy. Previous studies have shown that P-glycoprotein transport activity in rat brain capillaries is rapidly reduced by the proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha) acting through protein kinase C (PKC)-dependent signaling. In this study, we used isolated rat brain capillaries to show that the TNF-alpha-induced reduction of P-glycoprotein activity was prevented by a PKCbeta(I/II) inhibitor, LY333531, and mimicked by a PKCbeta(I/II) activator, 12-deoxyphorbol-13-phenylacetate-20-acetate (dPPA). Western blotting of brain capillary extracts with phospho-specific antibodies showed that dPPA activated PKCbeta(I), but not PKCbeta(II). Moreover, in intact rats, intracarotid infusion of dPPA potently increased brain accumulation of the P-glycoprotein substrate, [(3)H]-verapamil without compromising tight junction integrity. Thus, PKCbeta(I) activation selectively reduced P-glycoprotein activity both in vitro and in vivo. Targeting PKCbeta(I) at the BBB may prove to be an effective strategy for enhancing the delivery of small molecule therapeutics to the brain.
Liu, Jun-Wei; Ren, Ye-Long; Liu, Xu-Ling; Xia, Hong-Lian; Zhang, Hui-Ling; Jin, Shen-Hui; Dai, Qin-Xue; Wang, Jun-Lu
2013-12-01
To investigate the effect of ginsenoside Rb1 on cerebral infarction volume as well as IL-1 beta in the brain tissue and sera of focal cerebral ischemia/reperfusion (I/R) injury model rats. The I/R rat model was established by using thread according to Zea-Longa. SD rats were randomly divided into five groups, i.e., the sham-operation group, the model group, the low dose ginsenoside Rb1 (20 mg/kg) group, the medium dose ginsenoside Rb1 group (40 mg/kg), and the high dose ginsenoside Rb1 group (80 mg/kg), 12 in each group. Rats in the sham-operation group only received middle cerebral artery occlusion (MCAO) but without thread insertion. The MCAO model was prepared in the rest 4 groups, followed by MCAO2 h later. Ginsenoside Rb1 at each dose was peritoneally administrated to rats in corresponding groups immediately after cerebral ischemia. Equal volume of normal saline was administered to rats in the sham-operation group. Rats' cerebral infarction volume, integrals of neurologic defect degree, expression of IL-1 beta content in the brain tissue and sera were observed 24 h after 2-h cerebral I/R. In the model group, integrals of neurologic defect degree were improved (P < 0.01), IL-1 beta positive cells in the brain tissue increased and serum IL-1 beta content elevated (P < 0.05), when compared with the sham-operation group. In comparison of the model group, integrals of neurologic defect degree were lowered in the medium dose and high dose ginsenoside Rb1 groups (P < 0.05, P < 0.01). The cerebral infarction volume was all shrunken in each ginsenoside Rb1 group, IL-1 beta positive cells in the brain tissue decreased, and IL-1 beta content in serum reduced (P < 0.01, P < 0.05). Compared with the low dose ginsenoside Rb1 group, integrals of neurologic defect degree decreased, the cerebral infarction volume shrunken, and IL-1 beta content in serum reduced in the high dose ginsenoside Rb1 group (P < 0.01, P < 0.05). Ginsenoside Rb1 (20, 40, 80 mg/kg) might effectively release local cerebral ischemia by down-regulating the IL-1 beta expression.
McConalogue, K; Déry, O; Lovett, M; Wong, H; Walsh, J H; Grady, E F; Bunnett, N W
1999-06-04
Agonist-induced redistribution of G-protein-coupled receptors (GPCRs) and beta-arrestins determines the subsequent cellular responsiveness to agonists and is important for signal transduction. We examined substance P (SP)-induced trafficking of beta-arrestin1 and the neurokinin-1 receptor (NK1R) in KNRK cells in real time using green fluorescent protein. Green fluorescent protein did not alter function or localization of the NK1R or beta-arrestin1. SP induced (a) striking and rapid (<1 min) translocation of beta-arrestin1 from the cytosol to the plasma membrane, which preceded NK1R endocytosis; (b) redistribution of the NK1R and beta-arrestin1 into the same endosomes containing SP and the transferrin receptor (2-10 min); (c) prolonged colocalization of the NK1R and beta-arrestin1 in endosomes (>60 min); (d) gradual resumption of the steady state distribution of the NK1R at the plasma membrane and beta-arrestin1 in the cytosol (4-6 h). SP stimulated a similar redistribution of immunoreactive beta-arrestin1 and beta-arrestin2. In contrast, SP did not affect Galphaq/11 distribution, which remained at the plasma membrane. Expression of the dominant negative beta-arrestin319-418 inhibited SP-induced endocytosis of the NK1R. Thus, SP induces rapid translocation of beta-arrestins to the plasma membrane, where they participate in NK1R endocytosis. beta-Arrestins colocalize with the NK1R in endosomes until the NK1R recycles and beta-arrestins return to the cytosol.
Yueh, Wen-Shiun; Thomas, Peter; Chang, Ching-Fong
2005-02-01
The identity of the maturation-inducing steroid (MIS) in black porgy, Acanthopagrus schlegeli, a marine protandrous teleost, is unknown. Previous studies demonstrated that two teleost MISs, the progestins 17,20beta,21-trihydroxy-4-pregnen-3-one (20beta-S) and 17,20beta-dihydroxy-4-pregnen-3-one (DHP) can induce maturation of black porgy oocytes in vitro. The purpose of the present study was to identify the major progestin produced during oocyte maturation (OM) in black porgy and investigate whether its secretion increases during this process. Females were injected twice with a LHRH analog to induce OM. Ovarian follicles undergoing OM were incubated in vitro with tritiated [3H]pregnenolone precursor and the tritiated products were extracted, purified, and identified by HPLC, TLC, acetylation, and recrystallization. Significant amounts of tritiated products were biosynthesized from [3H]pregnenolone that co-migrated with 20beta-S but not with DHP on HPLC and TLC. Similar TLC profiles were obtained with the tritiated products isolated from the HPLC/TLC 20beta-S fraction and standard 20beta-S after the acetylation reaction. The identity of the tritiated products as 20beta-S was confirmed by recrystallization. 20beta-S had a slightly higher potency than DHP in the inducing in vitro final oocyte maturation. Plasma 20beta-S concentrations increased significantly during the oocyte maturation after injection with a LHRH analog. The present data suggest that 20beta-S is the MIS in black porgy.
Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis.
Conery, Andrew R; Cao, Yanna; Thompson, E Aubrey; Townsend, Courtney M; Ko, Tien C; Luo, Kunxin
2004-04-01
Transforming growth factor beta (TGF-beta) induces both apoptosis and cell-cycle arrest in some cell lines, but only growth arrest in others. It is not clear how this differential response to TGF-beta is specified. Smad proteins are critical mediators of TGF-beta signalling. After stimulation by TGF-beta, Smad2 and Smad3 become phosphorylated by the activated TGF-beta receptor kinases, oligomerize with Smad4, translocate to the nucleus and regulate the expression of TGF-beta target genes. Here we report that the sensitivity to TGF-beta induced apoptosis is regulated by crosstalk between the Akt/PKB serine/threonine kinase and Smad3 through a mechanism that is independent of Akt kinase activity. Akt interacts directly with unphosphorylated Smad3 to sequester it outside the nucleus, preventing its phosphorylation and nuclear translocation. This results in inhibition of Smad3-mediated transcription and apoptosis. Furthermore, the ratio of Smad3 to Akt correlates with the sensitivity of cells to TGF-beta induced apoptosis. Alteration of this ratio changes the apoptotic, but not the growth-inhibitory, responses of cells to TGF-beta. These findings identify an important determinant of sensitivity to TGF-beta-induced apoptosis that involves crosstalk between the TGF-beta and phosphatidylinositol-3-OH kinase (PI(3)K) pathways.
Inhibition of glycogen synthase kinase 3beta during heart failure is protective.
Hirotani, Shinichi; Zhai, Peiyong; Tomita, Hideharu; Galeotti, Jonathan; Marquez, Juan Pablo; Gao, Shumin; Hong, Chull; Yatani, Atsuko; Avila, Jesús; Sadoshima, Junichi
2007-11-26
Glycogen synthase kinase (GSK)-3, a negative regulator of cardiac hypertrophy, is inactivated in failing hearts. To examine the histopathological and functional consequence of the persistent inhibition of GSK-3beta in the heart in vivo, we generated transgenic mice with cardiac-specific overexpression of dominant negative GSK-3beta (Tg-GSK-3beta-DN) and tetracycline-regulatable wild-type GSK-3beta. GSK-3beta-DN significantly reduced the kinase activity of endogenous GSK-3beta, inhibited phosphorylation of eukaryotic translation initiation factor 2B epsilon, and induced accumulation of beta-catenin and myeloid cell leukemia-1, confirming that GSK-3beta-DN acts as a dominant negative in vivo. Tg-GSK-3beta-DN exhibited concentric hypertrophy at baseline, accompanied by upregulation of the alpha-myosin heavy chain gene and increases in cardiac function, as evidenced by a significantly greater Emax after dobutamine infusion and percentage of contraction in isolated cardiac myocytes, indicating that inhibition of GSK-3beta induces well-compensated hypertrophy. Although transverse aortic constriction induced a similar increase in hypertrophy in both Tg-GSK-3beta-DN and nontransgenic mice, Tg-GSK-3beta-DN exhibited better left ventricular function and less fibrosis and apoptosis than nontransgenic mice. Induction of the GSK-3beta transgene in tetracycline-regulatable wild-type GSK-3beta mice induced left ventricular dysfunction and premature death, accompanied by increases in apoptosis and fibrosis. Overexpression of GSK-3beta-DN in cardiac myocytes inhibited tumor necrosis factor-alpha-induced apoptosis, and the antiapoptotic effect of GSK-3beta-DN was abrogated in the absence of myeloid cell leukemia-1. These results suggest that persistent inhibition of GSK-3beta induces compensatory hypertrophy, inhibits apoptosis and fibrosis, and increases cardiac contractility and that the antiapoptotic effect of GSK-3beta inhibition is mediated by myeloid cell leukemia-1. Thus, downregulation of GSK-3beta during heart failure could be compensatory.
Control channels in the brain and their influence on brain executive functions
NASA Astrophysics Data System (ADS)
Meng, Qinglei; Choa, Fow-Sen; Hong, Elliot; Wang, Zhiguang; Islam, Mohammad
2014-05-01
In a computer network there are distinct data channels and control channels where massive amount of visual information are transported through data channels but the information streams are routed and controlled by intelligent algorithm through "control channels". Recent studies on cognition and consciousness have shown that the brain control channels are closely related to the brainwave beta (14-40 Hz) and alpha (7-13 Hz) oscillations. The high-beta wave is used by brain to synchronize local neural activities and the alpha oscillation is for desynchronization. When two sensory inputs are simultaneously presented to a person, the high-beta is used to select one of the inputs and the alpha is used to deselect the other so that only one input will get the attention. In this work we demonstrated that we can scan a person's brain using binaural beats technique and identify the individual's preferred control channels. The identified control channels can then be used to influence the subject's brain executive functions. In the experiment, an EEG measurement system was used to record and identify a subject's control channels. After these channels were identified, the subject was asked to do Stroop tests. Binaural beats was again used to produce these control-channel frequencies on the subject's brain when we recorded the completion time of each test. We found that the high-beta signal indeed speeded up the subject's executive function performance and reduced the time to complete incongruent tests, while the alpha signal didn't seem to be able to slow down the executive function performance.
Plaschke, Konstanze; Kopitz, Jürgen
2015-04-01
There is accumulating evidence for a pathogenetic link between sporadic Alzheimer's disease (AD) and diabetes mellitus (DM). At subdiabetogenic doses, the cerebral administration of the diabetogenic substance streptozotocin (STZ) induces an insulin-resistant brain state (IRBS). The aim of the present pilot study was to investigate the effect of STZ on Alzheimer-like characteristics such as amyloid precursor protein (APP) cleavage secretases, betaA4 fragment, and glycogen synthase kinase (GSK) in vitro. Different STZ concentrations (0-5 mM) and incubation intervals (0-48 h) were tested to find appropriate cell culture conditions for further biochemical analyses in human neuroblastoma cells (SK-N-MC). Lactate dehydrogenase (LDH) was measured spectrophotometrically. Intracellular ATP was determined using bioluminescent luciferase assay. Secretase activity (alpha, beta, and gamma) was measured by employing commercial fluorometric secretase activity assay kits, betaA4 fragment by immunoprecipitation. Glycogen synthase kinase-3alpha/beta (total and phospho-GSK) content was assayed by ELISA technique. In vitro STZ administration (1 mM) induced a significant reduction in intracellular ATP concentration without pronounced cell death after 24 and 48 h as measured by LDH. Under these experimental conditions, a significant increase in beta-secretase and a significant drop in alpha-secretase were obtained, whereas gamma-secretase was not changed significantly. Simultaneously, the betaA4 concentration was increased by about threefold. Furthermore, STZ significantly increased total GSK and markedly decreased phospho-GSK. A direct link between STZ, intracellular ATP deficit, and Alzheimer-related enzymes was shown in this in vitro pilot study. Thus, these results support the hypothesis that sporadic AD is being recognized as an IRBS, which can be modulated by in vitro STZ model. Continuing investigations relating pathogenetic mechanisms and AD-like hallmarks are necessary to modulate different cascades of the IRBS using in vitro models.
Okada, Kazumasa; Yamashita, Uki; Tsuji, Sadatoshi
2006-09-01
Recent studies have shown that cytokines and cyclooxygenase (COX)-2 are up-regulated in the brain of human epilepsy patients and animal models of epilepsy. We investigated the effect of inflammatory responses induced by intramuscular injection of turpentine on the epileptic phenomenon in genetically epileptic El mice. As parameters of epileptic seizure, seizure threshold (number of toss-ups to induce convulsion), duration of actual convulsion and duration of post actual convulsive period (period from the offset of convulsion to full recovery) were evaluated. The post actual convulsive period was prolonged without any change of seizure threshold or duration of actual convulsion 24 h after turpentine injection. Although pretreatment with indomethacin for one week did not change the seizure parameters, indomethacin suppressed the prolongation of the post actual convulsive period induced by turpentine. The mRNA expression of IL-1beta, IL-6 and COX-2 in the cerebral cortex was detected by RT-PCR. There was no difference in the mRNA expression in the cerebral cortex before and 24 h after seizure. The mRNA levels of IL-1beta, IL-6 and COX-2 in the cerebral cortex were up-regulated 24 h after turpentine injection. On the other hand, the up-regulated mRNA levels of IL-1beta, IL-6 and COX-2 in the cerebral cortex after turpentine treatment were not suppressed by indomethacin. These results suggest that prostaglandins induced with COX-2 in the cerebral cortex seem to play an important role in the maintenance of the post convulsive period, but not in induction and maintenance of the actual convulsive state.
Ochiai, Nagahiro; Masumoto, Shuji; Sakagami, Hiroyuki; Yoshimura, Yoshiyuki; Yamauchi, Takashi
2007-05-01
We previously found the neuronal cell-type specific promoter and binding partner of the beta isoform of Ca(2+)/calmodulin-dependent protein kinase II (beta CaM kinase II) in rat brain [Donai, H., Morinaga, H., Yamauchi, T., 2001. Genomic organization and neuronal cell type specific promoter activity of beta isoform of Ca(2+)/calmodulin-dependent protein kinase II of rat brain. Mol. Brain Res. 94, 35-47]. In the present study, we purified a protein that binds specifically a promoter region of beta CaM kinase II gene from a nuclear extract of the rat cerebellum using DEAE-cellulose column chromatography, ammonium sulfate fractionation, gel filtration and polyacrylamide gel electrophoresis. The purified protein was identified as rat leucine-rich protein 157 (rLRP157) using tandem mass spectrometry. Then, we prepared its cDNA by reverse transcriptase-polymerase chain reaction (RT-PCR) from poly(A)(+)RNA of rat cerebellum. The rLRP157 cDNA was introduced into mouse neuroblastomaxrat glioma hybrid NG108-15 cells, and cells stably expressing rLRP157 (NG/LRP cells) were isolated. Binding of rLRP157 with the promoter sequence was confirmed by electrophoretic mobility shift assay using nuclear extract of NG/LRP cells. A luciferase reporter gene containing a promoter of beta CaM kinase II was transiently expressed in NG/LRP cells. Under the conditions, the promoter activity was enhanced about 2.6-fold in NG/LRP cells as compared with wild-type cells. The expression of rLRP157 mRNA was paralleled with that of beta CaM kinase II in the adult and embryo rat brain detected by in situ hybridization. Nuclear localization of rLRP157 was confirmed using GFP-rLRP157 fusion protein investigated under a confocal microscope. These results indicate that rLRP157 is one of the proteins binding to, and regulating the activity of, the promoter of beta CaM kinase II.
Oligodendrocytes in brain and optic nerve express the beta3 subunit isoform of Na,K-ATPase.
Martín-Vasallo, P; Wetzel, R K; García-Segura, L M; Molina-Holgado, E; Arystarkhova, E; Sweadner, K J
2000-09-01
The Na,K-ATPase, which catalyzes the active transport of Na(+) and K(+), has two principal subunits (alpha and beta) that have several genetically distinct isoforms. Most of these isoforms are expressed in the nervous system, but certain ones are preferentially expressed in glia and others in neurons. Of the beta isoforms, beta1 predominates in neurons and beta2 in astrocytes, although there are some exceptions. Here we demonstrate that beta3 is expressed in rat and mouse white matter oligodendrocytes. Immunofluorescence microscopy identified beta3 in oligodendrocytes of rat brain white matter in typical linear arrays of cell bodies between fascicles of axons. The intensity of stain peaked at 20 postnatal days. beta3 was identified in cortical oligodendrocytes grown in culture, where it was expressed in processes and colocalized with antibody to galactocerebroside. In the mouse and rat optic nerve, beta3 stain was seen in oligodendrocytes, where it colocalized with carbonic anhydrase II. For comparison, optic nerve was stained for the beta1 and beta2 subunits, showing distinct patterns of labelling of axons (beta1) and astrocytes (beta2). The C6 glioma cell line was also found to express the beta3 isoform preferentially. Since beta3 was not found at detectable levels in astrocytes, this suggests that C6 is closer to oligodendrocytes than astrocytes in the glial cell lineage. Copyright 2000 Wiley-Liss, Inc.
Honda, S; Campbell, J J; Andrew, D P; Engelhardt, B; Butcher, B A; Warnock, R A; Ye, R D; Butcher, E C
1994-04-15
Binding of FMLP to the neutrophil N-formyl peptide receptor (FPR) transmits signals through pertussis toxin-sensitive G proteins triggering Ca2+ flux, superoxide production, granule exocytosis, and neutrophil aggregation and adhesion involving the beta 2 (CD18) integrins. Expression of the FPR in mouse fibroblasts or human kidney cells has been shown to confer an N-formyl peptide-inducible Ca2+ flux in transfectants. Here we demonstrate that the transfected receptor can also support ligand-induced alterations in cellular adhesion. We established stable transfectants of mouse L1-2 pre-B cells with cDNA for human FPR (L1-2 FPR cells). The transfectants bind N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys-fluorescein with 1.4 x 10(5) sites per cell and a dissociation constant of 3.3 nM. Stimulation with FMLP induces a transient Ca2+ flux. FMLP also triggers adhesion of L1-2 FPR cells to TNF-alpha- or LPS-activated bEnd3 cells (mouse brain-derived endothelial cells) and to purified mouse VCAM-1. Binding is inhibited by Abs to VCAM-1 and to the alpha-chain of its lymphocyte receptor (the alpha 4 beta 1 integrin, VLA-4). Stimulation with FMLP does not induce a change in cell surface expression of alpha 4. Induced adhesion to VCAM-1 is rapid, detectable at the earliest times measurable (30 to 60 s after FMLP addition), and is inhibited by pertussis toxin. We conclude that FPR can mediate integrin activation not only in neutrophils but also in lymphocytes, and can trigger rapid adhesion via lymphocyte alpha 4 beta 1. The adhesion of lymphocytes is critical to their migration and targeting; our results suggest the possibility of manipulating adhesive responses through expression of chemoattractant receptors in lymphoid cells engineered for cellular therapy, allowing targeted adhesion and potentially migration in response to locally administered ligands.
Maher, F O; Nolan, Yvonne; Lynch, Marina A
2005-05-01
Ageing is characterized by deficits in learning and memory and by a deficit in long-term potentiation (LTP) in hippocampus. Several age-related changes, including dysfunction of calcium homeostatic mechanisms and upregulation of inflammatory processes are likely to contribute to these deficits. Here we exploited the fact that aged rats fall into a subgroup which fail to sustain LTP in perforant path granule cell synapses as a result of tetanic stimulation, and a subgroup which sustains LTP in a manner indistinguishable from young rats, in an effort to identify differential changes in the two subgroups. The age-related increase in IL-1beta concentration and IL-1beta-induced signalling was more profound in aged rats which failed to sustain LTP. We demonstrate that functional IL-4 receptors are expressed in rat hippocampus and that age is associated with a decrease in IL-4 concentration accompanied by a decrease in phosphorylation of JAK-1 and STAT-6. We propose that the imbalance between pro-inflammatory and anti-inflammatory cytokines in the aged brain significantly contributes to age-related deficits in synaptic function.
Shi, J; Yang, S H; Stubley, L; Day, A L; Simpkins, J W
2000-01-17
Silent stroke is one of the risk factors of dementia. In the present study, we used a novel focal ischemic animal model to investigate the effects of comparatively small changes of cerebral blood flow (CBF) on the expression of beta-amyloid precursor protein (APP) mRNA. Focal ischemia was achieved by introducing a 4-0 monofilament to the bifurcation of anterior and middle cerebral arteries. Brain samples were harvested from ischemic core and penumbra of cortices at 1, 4 and 7 days following ischemia. The expression of APP mRNA was assessed by RT-PCR. The CBF was decreased to 50% for 1 day after stroke and recovered to 90% at the fourth day after stroke. The changes of CBF were accompanied by an increase in the expression of APP mRNA. APP mRNA increased to 208% and 152% in the penumbra and core ischemic regions, respectively, on the fourth day after MCAO and remained high through the seventh day of ischemia. This study suggests brain hypoperfusion enhances APP mRNA expression and may contribute to the progression of cognitive impairment after silent stroke.
Bémeur, Chantal; Qu, Hong; Desjardins, Paul; Butterworth, Roger F
2010-01-01
Previous reports suggested that brain-derived proinflammatory cytokines are involved in the pathogenesis of hepatic encephalopathy (HE) and brain edema in acute liver failure (ALF). To further address this issue, expression of interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) mRNAs were measured in the brains of mice with acute liver failure resulting from exposure to azoxymethane. In addition, time to severe encephalopathy (coma) was assessed in mice lacking genes coding for interferon-gamma, the tumor necrosis factor receptor-1 or the interleukin-1 type 1 receptor. Interleukin-1beta, tumor necrosis factor-alpha and interferon-gamma expression were quantified using RT-PCR. Significant increases in interleukin-1beta and tumor necrosis factor-alpha mRNA were observed in the frontal cortex of azoxymethane-treated wild-type mice at coma stages of encephalopathy. Interferon-gamma, however, could not be detected in the brains of these animals. Onset of severe encephalopathy (coma) and brain edema in ALF mice were significantly delayed in interleukin-1 type 1 receptor or tumor necrosis factor receptor-1 knockout mice. Deletion of the interferon-gamma gene, on the other hand, had no significative effect on the neurological status or brain water content of acute liver failure mice. These results demonstrate that toxic liver injury resulting from exposure to azoxymethane is associated with selective induction of proinflammatory cytokines in the brain and that deletion of tumor necrosis factor receptor-1 or interlukin-1 type 1 receptor delays the onset of coma and brain edema in this model of acute liver failure. These findings further support a role for selective brain-derived cytokines in the pathogenesis of the cerebral complications in acute liver failure and suggest that anti-inflammatory strategies could be beneficial in their prevention. Copyright 2009 Elsevier Ltd. All rights reserved.
Varley, C L; Royds, J A; Brown, B L; Dobson, P R
2001-01-01
We present evidence here that the proinflammatory cytokine, interleukin-1 beta (IL-1 beta) stimulates a significant increase in protein kinase C (PKC)-epsilon and PKC-delta protein levels and increases PKC-epsilon, but not PKC-delta, transcripts in EL4 thymoma cells. Incubation of EL4 cells with IL-1 beta induced protein synthesis of PKC-epsilon (6-fold increase) by 7 h and had a biphasic effect on PKC-delta levels with peaks at 4 h (2-fold increase) and 24 h (4-fold increase). At the level of mRNA, PKC-epsilon, but not PKC-delta levels, were induced after incubation of EL4 cells with IL-1 beta. The signalling mechanisms utilized by IL-1 beta to induce the synthesis of these PKC isoforms were investigated. Two phosphatidylinositol (PI) 3-kinase-specific inhibitors, wortmannin and LY294002, inhibited IL-1 beta-induced synthesis of PKC-epsilon. However, the PI 3-kinase inhibitors had little effect on the IL-1 beta-induced synthesis of PKC-delta in these cells. Our results indicate that IL-1 beta induced both PKC-delta and PKC-epsilon expression over different time periods. Furthermore, our evidence suggests that IL-1 beta induction of PKC-epsilon, but not PKC-delta, may occur via the PI 3-kinase pathway. Copyright 2001 S. Karger AG, Basel
Spatial-temporal patterns of electrocorticographic spectral changes during midazolam sedation
Nishida, Masaaki; Zestos, Maria M.; Asano, Eishi
2015-01-01
Objective To better understand ‘when’ and ‘where’ wideband electrophysiological signals are altered by sedation. Methods We generated animation movies showing electrocorticography (ECoG) amplitudes at eight spectral frequency bands across 1.0 to 116 Hz, every 0.1 second, on three-dimensional surface images of 10 children who underwent epilepsy surgery. We measured the onset, intensity, and variance of each band amplitude change at given nonepileptic regions separately from those at affected regions. We also determined the presence of differential ECoG changes depending on the brain anatomy. Results Within 20 seconds following injection of midazolam, beta (16–31.5 Hz) and sigma (12–15.5 Hz) activities began to be multifocally augmented with increased variance in amplitude at each site. Beta-sigma augmentation was most prominent within the association neocortex. Augmentation of low-delta activity (1.0–1.5 Hz) was relatively modest and confined to the somatosensory-motor region. Conversely, injection of midazolam induced attenuation of theta (4.0–7.5 Hz) and high-gamma (64–116 Hz) activities. Conclusions Our observations support the notion that augmentation beta-sigma and delta activities reflects cortical deactivation or inactivation, whereas theta and high-gamma activities contribute to maintenance of consciousness. The effects of midazolam on the dynamics of cortical oscillations differed across regions. Significance Sedation, at least partially, reflects a multi-local phenomenon at the cortical level rather than global brain alteration homogeneously driven by the common central control structure. PMID:26613652
A synergistic role for IL-1beta and TNFalpha in monocyte-derived IFNgamma inducing activity.
Raices, Raquel M; Kannan, Yashaswini; Sarkar, Anasuya; Bellamkonda-Athmaram, Vedavathi; Wewers, Mark D
2008-11-01
Although much is known about classic IFNgamma inducers, little is known about the IFNgamma inducing capability of inflammasome-activated monocytes. In this study, supernatants from LPS/ATP-stimulated human monocytes were analyzed for their ability to induce IFNgamma production by KG-1 cells. Unexpectedly, monocyte-derived IFN inducing activity was detected, but it was completely inhibited by IL-1beta, not IL-18 blockade. Moreover, size-fractionation of the monocyte conditioned media dramatically reduced the IFNgamma inducing activity of IL-1beta, suggesting that IL-1beta requires a cofactor to induce IFNgamma production in KG-1 cells. Because TNFalpha is known to synergize with IL-1beta for various gene products, it was studied as the putative IL-1beta synergizing factor. Although recombinant TNFalpha (rTNFalpha) alone had no IFNgamma inducing activity, neutralization of TNFalpha in the monocyte conditioned media inhibited the IFNgamma inducing activity. Furthermore, rTNFalpha restored the IFNgamma inducing activity of the size-fractionated IL-1beta. Finally, rTNFalpha synergized with rIL-1beta, as well as with rIL-1alpha and rIL-18, for KG-1 IFNgamma release. These studies demonstrate a synergistic role between TNFalpha and IL-1 family members in the induction of IFNgamma production and give caution to interpretations of KG-1 functional assays designed to detect functional IL-18.
Discovery of isonicotinamide derived beta-secretase inhibitors: in vivo reduction of beta-amyloid.
Stanton, Matthew G; Stauffer, Shaun R; Gregro, Alison R; Steinbeiser, Melissa; Nantermet, Philippe; Sankaranarayanan, Sethu; Price, Eric A; Wu, Guoxin; Crouthamel, Ming-Chih; Ellis, Joan; Lai, Ming-Tain; Espeseth, Amy S; Shi, Xiao-Ping; Jin, Lixia; Colussi, Dennis; Pietrak, Beth; Huang, Qian; Xu, Min; Simon, Adam J; Graham, Samuel L; Vacca, Joseph P; Selnick, Harold
2007-07-26
beta-Secretase inhibition offers an exciting opportunity for therapeutic intervention in the progression of Alzheimer's disease. A series of isonicotinamides derived from traditional aspartyl protease transition state isostere inhibitors has been optimized to yield low nanomolar inhibitors with sufficient penetration across the blood-brain barrier to demonstrate beta-amyloid lowering in a murine model.
NASA Astrophysics Data System (ADS)
Märk, J.; Benoit, D.; Balasse, L.; Benoit, M.; Clémens, J. C.; Fieux, S.; Fougeron, D.; Graber-Bolis, J.; Janvier, B.; Jevaud, M.; Genoux, A.; Gisquet-Verrier, P.; Menouni, M.; Pain, F.; Pinot, L.; Tourvielle, C.; Zimmer, L.; Morel, C.; Laniece, P.
2013-07-01
The investigation of neurophysiological mechanisms underlying the functional specificity of brain regions requires the development of technologies that are well adjusted to in vivo studies in small animals. An exciting challenge remains the combination of brain imaging and behavioural studies, which associates molecular processes of neuronal communications to their related actions. A pixelated intracerebral probe (PIXSIC) presents a novel strategy using a submillimetric probe for beta+ radiotracer detection based on a pixelated silicon diode that can be stereotaxically implanted in the brain region of interest. This fully autonomous detection system permits time-resolved high sensitivity measurements of radiotracers with additional imaging features in freely moving rats. An application-specific integrated circuit (ASIC) allows for parallel signal processing of each pixel and enables the wireless operation. All components of the detector were tested and characterized. The beta+ sensitivity of the system was determined with the probe dipped into radiotracer solutions. Monte Carlo simulations served to validate the experimental values and assess the contribution of gamma noise. Preliminary implantation tests on anaesthetized rats proved PIXSIC's functionality in brain tissue. High spatial resolution allows for the visualization of radiotracer concentration in different brain regions with high temporal resolution.
Yen, Chi-Hua; Wang, Cheng-Hsin; Wu, Wen-Tzu; Chen, Hsiao-Ling
2017-05-01
Long-term d-galactose injection induces accelerated aging in experimental rodent models. The aim of this study was to determine the effects of dietary fructo-oligosaccharide (FO) on the brain β-amyloid (Aβ), amyloid-associated enzymes, cognitive function, and plasma antioxidant levels in d-galactose-treated Balb/c mice. The subcutaneous (s.c.) injection and the dietary treatment were conducted simultaneously for 49 days. Mice (12 weeks of age) were divided into five groups (n = 14/group): control (s.c. saline, control diet) serving as a young control, DG (s.c. 1.2 g d-galactose/kg body weight, control diet), DG + LFO (2.5% w/w FO, low-dose FO diet), DG + HFO (5% w/w FO, high-dose FO diet), and DG + E (α-tocopherol 0.2% w/w, vitamin E diet) as an antioxidant reference group. Another group of older mice (64 weeks of age) without any injection served as a natural aging (NA) group. The DG and NA groups had greater Aβ levels in the cortex, hippocampus, and the whole brain. High-dose FO, similar to α-tocopherol, attenuated the d-galactose-induced Aβ density in the cortex and hippocampus. In addition, FO attenuated the d-galactose-induced protein expression of Aβ and beta-site amyloid precursor cleaving enzyme of the whole brain in a dose-response manner. Either dose of FO supplementation, similar to α-tocopherol, attenuated the d-galactose-induced cognitive dysfunction. In addition, FO improved the plasma ascorbic acid level in a dose-response manner. Dietary FO (2.5-5% w/w diet) could attenuate the development of Alzheimer's disease, which was likely to be associated with its systematic antioxidant effects.
Kim, Tae-Woo; Lee, Byoung-Hee
2016-09-01
[Purpose] Evaluating the effect of brain-computer interface (BCI)-based functional electrical stimulation (FES) training on brain activity in children with spastic cerebral palsy (CP) was the aim of this study. [Subjects and Methods] Subjects were randomized into a BCI-FES group (n=9) and a functional electrical stimulation (FES) control group (n=9). Subjects in the BCI-FES group received wrist and hand extension training with FES for 30 minutes per day, 5 times per week for 6 weeks under the BCI-based program. The FES group received wrist and hand extension training with FES for the same amount of time. Sensorimotor rhythms (SMR) and middle beta waves (M-beta) were measured in frontopolar regions 1 and 2 (Fp1, Fp2) to determine the effects of BCI-FES training. [Results] Significant improvements in the SMR and M-beta of Fp1 and Fp2 were seen in the BCI-FES group. In contrast, significant improvement was only seen in the SMR and M-beta of Fp2 in the control group. [Conclusion] The results of the present study suggest that BCI-controlled FES training may be helpful in improving brain activity in patients with cerebral palsy and may be applied as effectively as traditional FES training.
Jamali, Shahab; Fujioka, Takako; Ross, Bernhard
2014-06-01
Extensive rehabilitation training can lead to functional improvement even years after a stroke. Although neuronal plasticity is considered as a main origin of such ameliorations, specific subtending mechanisms need further investigation. Our aim was to obtain objective neuromagnetic measures sensitive to brain reorganizations induced by a music-supported training. We applied 20-Hz vibrotactile stimuli to the index finger and the ring finger, recorded somatosensory steady-state responses with magnetoencephalography, and analyzed the cortical sources displaying oscillations synchronized with the external stimuli in two groups of healthy older adults before and after musical training or without training. In addition, we applied the same analysis for an anecdotic report of a single chronic stroke patient with hemiparetic arm and hand problems, who received music-supported therapy (MST). Healthy older adults showed significant finger separation within the primary somatotopic map. Beta dipole sources were more anterior located compared to gamma sources. An anterior shift of sources and increases in synchrony between the stimuli and beta and gamma oscillations were observed selectively after music training. In the stroke patient a normalization of somatotopic organization was observed after MST, with digit separation recovered after training and stimulus induced gamma synchrony increased. The proposed stimulation paradigm captures the integrity of primary somatosensory hand representation. Source position and synchronization between the stimuli and gamma activity are indices, sensitive to music-supported training. Responsiveness was also observed in a chronic stroke patient, encouraging for the music-supported therapy. Notably, changes in somatosensory responses were observed, even though the therapy did not involve specific sensory discrimination training. The proposed protocol can be used for monitoring changes in neuronal organization during training and will improve the understanding of the brain mechanisms underlying rehabilitation. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Joly, Sandrine; Samardzija, Marijana; Wenzel, Andreas; Thiersch, Markus; Grimm, Christian
2009-03-01
During light-induced photoreceptor degeneration, large amounts of cellular debris are formed that must be cleared from the subretinal space. The integrins alphavbeta5 and alphavbeta3 are involved in the normal physiological process of phagocytosis in the retina. This study was conducted to investigate the question of whether the lack of beta5 and/or beta3 integrin subunits might influence the course of retinal degeneration and/or clearance of photoreceptor debris induced by acute exposure to light. Wild-type, beta5(-/-) and beta3(-/-) single-knockout, and beta3(-/-)/beta5(-/-) Ccl2(-/-)/beta5(-/-) double-knockout mice were exposed to 13,000 lux of white light for 2 hours to induce severe photoreceptor degeneration. Real-time PCR and Western blot analysis were used to analyze gene and protein expression, light- and electron microscopy to judge retinal morphology, and immunofluorescence to study retinal distribution of proteins. Individual or combined deletion of beta3 and beta5 integrin subunits did not affect the pattern of photoreceptor cell loss or the clearance of photoreceptor debris in mice compared with that in wild-type mice. Invading macrophages may contribute to efficient phagocytosis. However, ablation of the MCP-1 gene did not prevent macrophage recruitment. Several chemokines in addition to MCP-1 were induced after light-induced damage that may have compensated for the deletion of MCP-1. Acute clearance of a large amount of cellular debris from the subretinal space involves invading macrophages and does not depend on beta3 and beta5 integrins.
Transforming growth factor-{beta}-inducible phosphorylation of Smad3.
Wang, Guannan; Matsuura, Isao; He, Dongming; Liu, Fang
2009-04-10
Smad proteins transduce the transforming growth factor-beta (TGF-beta) signal at the cell surface into gene regulation in the nucleus. Upon TGF-beta treatment, the highly homologous Smad2 and Smad3 are phosphorylated by the TGF-beta receptor at the SSXS motif in the C-terminal tail. Here we show that in addition to the C-tail, three (S/T)-P sites in the Smad3 linker region, Ser(208), Ser(204), and Thr(179) are phosphorylated in response to TGF-beta. The linker phosphorylation peaks at 1 h after TGF-beta treatment, behind the peak of the C-tail phosphorylation. We provide evidence suggesting that the C-tail phosphorylation by the TGF-beta receptor is necessary for the TGF-beta-induced linker phosphorylation. Although the TGF-beta receptor is necessary for the linker phosphorylation, the receptor itself does not phosphorylate these sites. We further show that ERK is not responsible for TGF-beta-dependent phosphorylation of these three sites. We show that GSK3 accounts for TGF-beta-inducible Ser(204) phosphorylation. Flavopiridol, a pan-CDK inhibitor, abolishes TGF-beta-induced phosphorylation of Thr(179) and Ser(208), suggesting that the CDK family is responsible for phosphorylation of Thr(179) and Ser(208) in response to TGF-beta. Mutation of the linker phosphorylation sites to nonphosphorylatable residues increases the ability of Smad3 to activate a TGF-beta/Smad-target gene as well as the growth-inhibitory function of Smad3. Thus, these observations suggest that TGF-beta-induced phosphorylation of Smad3 linker sites inhibits its antiproliferative activity.
Beta-thalassemia intermedia associated with moyamoya syndrome.
Göksel, Basak Karakurum; Ozdogu, Hakan; Yildirim, Tulin; Oğuzkurt, Levent; Asma, Suheyl
2010-07-01
Moyamoya syndrome (MMS) is a progressive disorder. We report a 19-year-old boy with beta-thalassemia who presented with a left hemiparesis. Brain MRI showed old middle cerebral artery and left frontal subcortical white matter infarcts. Brain magnetic resonance angiography and digital subtraction angiography revealed occlusion of the bilateral internal carotid arteries with a rich network of basal collateral vessels. To our knowledge this is the third report of beta-thalassemia intermedia and MMS, and the first report of a patient in Turkey. It emphasizes the potential for cerebral infarct due to anemia, protein S and thrombocytosis.
Disentangling Depression and Distress Networks in the Tinnitus Brain
Joos, Kathleen; Vanneste, Sven; De Ridder, Dirk
2012-01-01
Tinnitus is the continuous perception of an internal auditory stimulus. This permanent sound often affects a person's emotional state inducing distress and depressive feelings changes in 6–25% of the affected population. Distress and depression are two distinct emotional states. Whereas distress describes a transient aversive state, interfering with a person's ability to adequately adapt to stressors, depressive feelings should rather be considered as a more constant emotional state. Based on previous observations in chronic pain, posttraumatic stress disorder and depression, we assume that both states are related to separate neural circuits. We used the Dutch version of the Tinnitus Questionnaire to assess the global index of distress together with the Beck Depression Inventory to evaluate the depressive symptoms accompanying tinnitus. Furthermore sLORETA analysis was performed to correlate current density distribution with distress and depression scores, revealing a lateralization effect of depression versus distress. Distress is mainly correlated with alpha 2, beta 1 and beta 2 activity of the right frontopolar cortex and orbitofrontal cortex in combination with beta 2 activation of the anterior cingulate cortex. In contrast, the more permanent depressive alterations induced by tinnitus are associated with activity of alpha 2 activity in the left frontopolar and orbitofrontal cortex. These specific neural circuits are embedded in a greater neural network, with the parahippocampal region functioning as a crucial linkage between both tinnitus related pathways. PMID:22808188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Pengfei; Jiang Bimei; Yang Xinghua
2008-10-15
Epidermal growth factor (EGF) has been shown to be a potent mitogen for epidermal cells both in vitro and in vivo, thus contributing to the development of an organism. It has recently become clear that peroxisome proliferator-activated receptor-{beta}/{delta} (PPAR{beta}/{delta}) expression and activation is involved in the cell proliferation. However, little is known about the role of PPAR{beta}/{delta} in EGF-induced proliferation of HaCaT keratinocytes. In this study, HaCaT cells were cultured in the presence and absence of EGF and we identified that EGF induced an increase of PPAR{beta}/{delta} mRNA and protein level expression in time-dependent and dose-dependent manner, and AG1487, anmore » EGF receptor (EGFR) special inhibitor, caused attenuation of PPAR{beta}/{delta} protein expression. Electrophoretic mobility shift assay (EMSA) revealed that EGF significantly increased PPAR{beta}/{delta} binding activity in HaCaT keratinocytes. Antisense phosphorothioate oligonucleotides (asODNs) against PPAR{beta}/{delta} caused selectively inhibition of PPAR{beta}/{delta} protein content induced by EGF and significantly attenuated EGF-mediated cell proliferation. Treatment of the cells with L165041, a specific synthetic ligand for PPAR{beta}/{delta}, significantly enhanced EGF-mediated cell proliferation. Finally, c-Jun ablation inhibited PPAR{beta}/{delta} up-regulation induced by EGF, and chromatin immunoprecipitation (ChIP) showed that c-Jun bound to the PPAR{beta}/{delta} promoter and the binding increased in EGF-stimulated cells. These results demonstrate that EGF induces PPAR{beta}/{delta} expression in a c-Jun-dependent manner and PPAR{beta}/{delta} plays a vital role in EGF-stimulated proliferation of HaCaT cells.« less
Bathina, Siresha; Srinivas, Nanduri; Das, Undurti N
2017-04-29
Neurodegenerative disorders, such as deficits in learning, memory and cognition and Alzheimer's disease are associated with diabetes mellitus. Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor and is known to possess anti-obesity, anti-diabetic actions and is believed to have a role in memory and Alzheimer's disease. To investigate whether STZ can reduce BDNF production by rat insulinoma (RIN5F) cells in vitro and decrease BDNF levels in the pancreas, liver and brain in vivo. Streptozotocin (STZ)-induced cytotoxicity to RIN5F cells in vitro and type 2 DM in Wistar rats was employed in the present study. Cell viability, activities of various anti-oxidants and secretion of BDNF by RIN5F cells in vitro were measured using MTT assay, biochemical methods and ELISA respectively. In STZ-induced type 2 DM rats: plasma glucose, interleukin-6 and tumor necrosis factor-α levels and BDNF protein expression in the pancreas, liver and brain tissues were measured. In addition, neuronal count and morphology in the hippocampus and hypothalamus areas was assessed. STZ-induced suppression of RIN5F cell viability was abrogated by BDNF. STZ suppressed BDNF secretion by RIN5F cells in vitro. STZ-induced type 2 DM rats showed hyperglycemia, enhanced plasma IL-6 and TNF-αlevels and reduced plasma and pancreas, liver and brain tissues (P < 0.001) and increased oxidative stress compared to untreated control. Hypothalamic and hippocampal neuron in STZ-treated animals showed a decrease in the number of neurons and morphological changes suggesting of STZ cytotoxicity. The results of the present study suggest that STZ is not only cytotoxic to pancreatic beta cells but also to hypothalamic and hippocampal neurons by inducing oxidative stress. STZ ability to suppress BDNF production by pancreas, liver and brain tissues suggests that impaired memory, learning, and cognitive dysfunction seen in diabetes mellitus could be due to BDNF deficiency. Copyright © 2017 Elsevier Inc. All rights reserved.
Isorhynchophylline improves learning and memory impairments induced by D-galactose in mice.
Xian, Yan-Fang; Su, Zi-Ren; Chen, Jian-Nan; Lai, Xiao-Ping; Mao, Qing-Qiu; Cheng, Christopher H K; Ip, Siu-Po; Lin, Zhi-Xiu
2014-10-01
Isorhynchophylline (IRN), an alkaloid isolated from Uncaria rhynchophylla, has been reported to improve cognitive impairment induced by beta-amyloid in rats. However, whether IRN could also ameliorate the D-galactose (D-gal)-induced mouse memory deficits is still not clear. In the present study, we aimed to investigate whether IRN had potential protective effect against the D-gal-induced cognitive deficits in mice. Mice were given a subcutaneous injection of D-gal (100mg/kg) and orally administered IRN (20 or 40mg/kg) daily for 8weeks, followed by assessing spatial learning and memory function by the Morris water maze test. The results showed that IRN significantly improved spatial learning and memory function in the D-gal-treated mice. In the mechanistic studies, IRN significantly increased the level of glutathione (GSH) and the activities of superoxide dismutase (SOD) and catalase (CAT), while decreased the level of malondialdehyde (MDA) in the brain tissues of the D-gal-treated mice. Moreover, IRN (20 or 40mg/kg) significantly inhibited the production of prostaglandin E 2 (PGE2) and nitric oxide (NO), and the mRNA expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), as well as the activation of nuclear factor kappa B (NF-κB) in the brain tissues of D-gal-treated mice. Our results amply demonstrated that IRN was able to ameliorate cognitive deficits induced by D-gal in mice, and the observed cognition-improving action may be mediated, at least in part, through enhancing the antioxidant status and anti-inflammatory effect of brain tissues via NFκB signaling. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hashimoto, H; Nakajima, T; Nishimura, T; Kudo, Y; Takeda, Y; Nakao, M; Kanaya, H; Horiguchi, Y
1983-01-01
The effect of D-phenylalanine on the concentrations of brain catecholamines, serotonin, beta-phenylethylamine and amino acids was examined using rats injected intraperitoneally with 200 mg/kg of D-phenylalanine. The contents of these monoamines in the rat brain were not affected by the administration of D-phenylalanine. No spectacular change was observed in the concentrations of brain amino acids except phenylalanine, which increased about four times during 30-60 minutes after the injection. This increase was attributed to the administered D-phenylalanine. To confirm the finding that D-phenylalanine did not affect the content of beta-phenylethylamine, the metabolism of D-phenylalanine was examined using D-[14C]-phenylalanine. It was proven that D-phenylalanine did not convert to beta-phenylethylamine. On the basis of these findings the antidepressant effect of D-phenylalanine was critically discussed.
Tchantchou, Flaubert
2013-01-01
Abstract 2-arachidonylglycerol (2-AG) is the most abundant endocannabinoid in the central nervous system and is elevated after brain injury. Because of its rapid hydrolysis, however, the compensatory and neuroprotective effect of 2-AG is short-lived. Although inhibition of monoacylglycerol lipase, a principal enzyme for 2-AG degradation, causes a robust increase of brain levels of 2-AG, it also leads to cannabinoid receptor desensitization and behavioral tolerance. Alpha/beta hydrolase domain 6 (ABHD6) is a novel 2-AG hydrolytic enzyme that accounts for a small portion of 2-AG hydrolysis, but its inhibition is believed to elevate the levels of 2-AG within the therapeutic window without causing side effect. Using a mouse model of traumatic brain injury (TBI), we found that post-insult chronic treatment with a selective ABHD6 inhibitor WWL70 improved motor coordination and working memory performance. WWL70 treatment reduced lesion volume in the cortex and neurodegeneration in the dendate gyrus. It also suppressed the expression of inducible nitric oxide synthase and cyclooxygenase-2 and enhanced the expression of arginase-1 in the ipsilateral cortex at 3 and 7 days post-TBI, suggesting microglia/macrophages shifted from M1 to M2 phenotypes after treatment. The blood-brain barrier dysfunction at 3 and 7 days post-TBI was dramatically reduced. Furthermore, the beneficial effects of WWL70 involved up-regulation and activation of cannabinoid type 1 and type 2 receptors and were attributable to the phosphorylation of the extracellular signal regulated kinase and the serine/threonine protein kinase AKT. This study indicates that the fine-tuning of 2-AG signaling by modulating ABHD6 activity can exert anti-inflammatory and neuroprotective effects in TBI. PMID:23151067
Insulin Resistance as a Link between Amyloid-Beta and Tau Pathologies in Alzheimer’s Disease
Mullins, Roger J.; Diehl, Thomas C.; Chia, Chee W.; Kapogiannis, Dimitrios
2017-01-01
Current hypotheses and theories regarding the pathogenesis of Alzheimer’s disease (AD) heavily implicate brain insulin resistance (IR) as a key factor. Despite the many well-validated metrics for systemic IR, the absence of biomarkers for brain-specific IR represents a translational gap that has hindered its study in living humans. In our lab, we have been working to develop biomarkers that reflect the common mechanisms of brain IR and AD that may be used to follow their engagement by experimental treatments. We present two promising biomarkers for brain IR in AD: insulin cascade mediators probed in extracellular vesicles (EVs) enriched for neuronal origin, and two-dimensional magnetic resonance spectroscopy (MRS) measures of brain glucose. As further evidence for a fundamental link between brain IR and AD, we provide a novel analysis demonstrating the close spatial correlation between brain expression of genes implicated in IR (using Allen Human Brain Atlas data) and tau and beta-amyloid pathologies. We proceed to propose the bold hypotheses that baseline differences in the metabolic reliance on glycolysis, and the expression of glucose transporters (GLUT) and insulin signaling genes determine the vulnerability of different brain regions to Tau and/or Amyloid beta (Aβ) pathology, and that IR is a critical link between these two pathologies that define AD. Lastly, we provide an overview of ongoing clinical trials that target IR as an angle to treat AD, and suggest how biomarkers may be used to evaluate treatment efficacy and target engagement. PMID:28515688
Kang, Somang; Kim, Chul-Hoon; Jung, Hosung; Kim, Eosu; Song, Ho-Taek; Lee, Jong Eun
2017-02-01
The risk of Alzheimer's disease (AD) is higher in patients with type 2 diabetes mellitus (T2DM). Previous studies in high-fat diet-induced AD animal models have shown that brain insulin resistance in these animals leads to the accumulation of amyloid beta (Aβ) and the reduction in GSK-3β phosphorylation, which promotes tau phosphorylation to cause AD. No therapeutic treatments that target AD in T2DM patients have yet been discovered. Agmatine, a primary amine derived from l-arginine, has exhibited anti-diabetic effects in diabetic animals. The aim of this study was to investigate the ability of agmatine to treat AD induced by brain insulin resistance. ICR mice were fed a 60% high-fat diet for 12 weeks and received one injection of streptozotocin (100 mg/kg/ip) 4 weeks into the diet. After the 12-week diet, the mice were treated with agmatine (100 mg/kg/ip) for 2 weeks. Behaviour tests were conducted prior to sacrifice. Brain expression levels of the insulin signal molecules p-IRS-1, p-Akt, and p-GSK-3β and the accumulation of Aβ and p-tau were evaluated. Agmatine administration rescued the reduction in insulin signalling, which in turn reduced the accumulation of Aβ and p-tau in the brain. Furthermore, agmatine treatment also reduced cognitive decline. Agmatine attenuated the occurrence of AD in T2DM mice via the activation of the blunted insulin signal. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Modulation of experimental arthritis by vagal sensory and central brain stimulation.
Bassi, Gabriel Shimizu; Dias, Daniel Penteado Martins; Franchin, Marcelo; Talbot, Jhimmy; Reis, Daniel Gustavo; Menezes, Gustavo Batista; Castania, Jaci Airton; Garcia-Cairasco, Norberto; Resstel, Leonardo Barbosa Moraes; Salgado, Helio Cesar; Cunha, Fernando Queiróz; Cunha, Thiago Mattar; Ulloa, Luis; Kanashiro, Alexandre
2017-08-01
Articular inflammation is a major clinical burden in multiple inflammatory diseases, especially in rheumatoid arthritis. Biological anti-rheumatic drug therapies are expensive and increase the risk of systemic immunosuppression, infections, and malignancies. Here, we report that vagus nerve stimulation controls arthritic joint inflammation by inducing local regulation of innate immune response. Most of the previous studies of neuromodulation focused on vagal regulation of inflammation via the efferent peripheral pathway toward the viscera. Here, we report that vagal stimulation modulates arthritic joint inflammation through a novel "afferent" pathway mediated by the locus coeruleus (LC) of the central nervous system. Afferent vagal stimulation activates two sympatho-excitatory brain areas: the paraventricular hypothalamic nucleus (PVN) and the LC. The integrity of the LC, but not that of the PVN, is critical for vagal control of arthritic joint inflammation. Afferent vagal stimulation suppresses articular inflammation in the ipsilateral, but not in the contralateral knee to the hemispheric LC lesion. Central stimulation is followed by subsequent activation of joint sympathetic nerve terminals inducing articular norepinephrine release. Selective adrenergic beta-blockers prevent the effects of articular norepinephrine and thereby abrogate vagal control of arthritic joint inflammation. These results reveals a novel neuro-immune brain map with afferent vagal signals controlling side-specific articular inflammation through specific inflammatory-processing brain centers and joint sympathetic innervations. Copyright © 2017 Elsevier Inc. All rights reserved.
Brain-computer interface for alertness estimation and improving
NASA Astrophysics Data System (ADS)
Hramov, Alexander; Maksimenko, Vladimir; Hramova, Marina
2018-02-01
Using wavelet analysis of the signals of electrical brain activity (EEG), we study the processes of neural activity, associated with perception of visual stimuli. We demonstrate that the brain can process visual stimuli in two scenarios: (i) perception is characterized by destruction of the alpha-waves and increase in the high-frequency (beta) activity, (ii) the beta-rhythm is not well pronounced, while the alpha-wave energy remains unchanged. The special experiments show that the motivation factor initiates the first scenario, explained by the increasing alertness. Based on the obtained results we build the brain-computer interface and demonstrate how the degree of the alertness can be estimated and controlled in real experiment.
Chou, Yu-Cheng; Chang, Meng-Ya; Wang, Mei-Jen; Liu, Hsin-Chung; Chang, Shu-Jen; Harnod, Tomor; Hung, Chih-Huang; Lee, Hsu-Tung; Shen, Chiung-Chyi; Chung, Jing-Gung
2017-01-01
Glioblastoma is the most common and aggressive primary brain malignancy. Phenethyl isothiocyanate (PEITC), a member of the isothiocyanate family, can induce apoptosis in many human cancer cells. Our previous study disclosed that PEITC induces apoptosis through the extrinsic pathway, dysfunction of mitochondria, reactive oxygen species (ROS)-induced endoplasmic reticulum (ER) stress, and intrinsic (mitochondrial) pathway in human brain glioblastoma multiforme (GBM) 8401 cells. To the best of our knowledge, we first investigated the effects of PEITC on the genetic levels of GBM 8401 cells in vitro. PEITC may induce G0/G1 cell-cycle arrest through affecting the proteins such as cdk2, cyclin E, and p21 in GBM 8401 cells. Many genes associated with cell-cycle regulation of GBM 8401 cells were changed after PEITC treatment: 48 genes were upregulated and 118 were downregulated. The cell-division cycle protein 20 (CDC20), Budding uninhibited by benzimidazole 1 homolog beta (BUB1B), and cyclin B1 were downregulated, and clusterin was upregulated in GBM 8401 cells treated with PEITC. These changes of gene expression can provide the effects of PEITC on the genetic levels and potential biomarkers for glioblastoma. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 176-187, 2017. © 2015 Wiley Periodicals, Inc.
Mansouri, Mohammad Taghi; Naghizadeh, Bahareh; Ghorbanzadeh, Behnam; Alboghobeish, Soheila; Amirgholami, Neda; Houshmand, Gholamreza; Cauli, Omar
2018-05-01
Opioid-induced neuroinflammation and the nitric oxide (NO) signal-transduction pathway are involved in the development of opioid analgesic tolerance. The antidepressant venlafaxine (VLF) modulates NO in nervous tissues, and so we investigated its effect on induced tolerance to morphine, neuroinflammation, and oxidative stress in mice. Tolerance to the analgesic effects of morphine were induced by injecting mice with morphine (50 mg/kg) once a day for three consecutive days; the effect of co-administration of VLF (5 or 40 mg/kg) with morphine was similarly tested in a separate group. To determine if the NO precursor l-arginine hydrochloride (l-arg) or NO are involved in the effects rendered by VLF, animals were pre-treated with l-arg (200 mg/kg), or the NO synthesis inhibitors N(ω)-nitro-l-arginine methyl ester (L-NAME; 30 mg/kg) or aminoguanidine hydrochloride (AG; 100 mg/kg), along with VLF (40 mg/kg) for three days before receiving morphine for another three days. Nociception was assessed with a hot-plate test on the fourth day, and the concentration of tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β), interleukin-6 (IL-6), interleukin-10, brain-derived neurotrophic factor, NO, and oxidative stress factors such as total thiol, malondialdehyde content, and glutathione peroxidase (GPx) activity in the brain was also determined. Co-administration of VLF with morphine attenuated morphine-induced analgesic tolerance and prevented the upregulation of proinflammatory cytokines (TNF-α, IL-1β, and IL-6), NO, and malondialdehyde in brains of mice with induced morphine tolerance; chronic VLF administration inhibited this decrease in brain-derived neurotrophic factor, total thiol, and GPx levels. Moreover, repeated administration of l-arg before receipt of VLF antagonized the effects induced by VLF, while L-NAME and AG potentiated these effects. VLF attenuates morphine-induced analgesic tolerance, at least partly because of its anti-inflammatory and antioxidative properties. VLF also appears to suppress the development of morphine-induced analgesic tolerance through an l-arg-NO-mediated mechanism. Copyright © 2018 Elsevier Inc. All rights reserved.
Sherlin, Leslie; Congedo, Marco
2005-10-21
Electroencephalographic mapping techniques have been used to show differences between normal subjects and those diagnosed with various mental disorders. To date, there is no other research using the techniques of low-resolution brain electromagnetic tomography (LORETA) with the obsessive-compulsive disorder (OCD) population. The current investigation compares current source density measures of persons with OCD symptoms to an age-matched control group. The main finding is excess current source density in the Beta frequencies in the cingulate gyrus. This Beta activity is primarily located in the middle cingulate gyrus as well as adjacent frontal parieto-occipital regions. Lower frequency Beta is prominent more anteriorly in the cingulate gyrus whereas higher frequency Beta is seen more posteriorly. These preliminary findings indicate the utility of LORETA as a clinical and diagnostic tool.
Pacheco, Thaiana Barbosa Ferreira; Oliveira Rego, Isabelle Ananda; Campos, Tania Fernandes; Cavalcanti, Fabrícia Azevedo da Costa
2017-01-01
Virtual Reality (VR) has been contributing to Neurological Rehabilitation because of its interactive and multisensory nature, providing the potential of brain reorganization. Given the use of mobile EEG devices, there is the possibility of investigating how the virtual therapeutic environment can influence brain activity. To compare theta, alpha, beta and gamma power in healthy young adults during a lower limb motor task in a virtual and real environment. Ten healthy adults were submitted to an EEG assessment while performing a one-minute task consisted of going up and down a step in a virtual environment - Nintendo Wii virtual game "Basic step" - and in a real environment. Real environment caused an increase in theta and alpha power, with small to large size effects mainly in the frontal region. VR caused a greater increase in beta and gamma power, however, with small or negligible effects on a variety of regions regarding beta frequency, and medium to very large effects on the frontal and the occipital regions considering gamma frequency. Theta, alpha, beta and gamma activity during the execution of a motor task differs according to the environment that the individual is exposed - real or virtual - and may have varying size effects if brain area activation and frequency spectrum in each environment are taken into consideration.
Kunz, Alexander; Abe, Takato; Hochrainer, Karin; Shimamura, Munehisa; Anrather, Josef; Racchumi, Gianfranco; Zhou, Ping; Iadecola, Costantino
2008-02-13
CD36, a class-B scavenger receptor involved in multiple functions, including inflammatory signaling, may also contribute to ischemic brain injury through yet unidentified mechanisms. We investigated whether CD36 participates in the molecular events underlying the inflammatory reaction that accompanies cerebral ischemia and may contribute to the tissue damage. We found that activation of nuclear factor-kappaB, a transcription factor that coordinates postischemic gene expression, is attenuated in CD36-null mice subjected to middle cerebral artery occlusion. The infiltration of neutrophils and the glial reaction induced by cerebral ischemia were suppressed. Treatment with an inhibitor of inducible nitric oxide synthase, an enzyme that contributes to the tissue damage, reduced ischemic brain injury in wild-type mice, but not in CD36 nulls. In contrast to cerebral ischemia, the molecular and cellular inflammatory changes induced by intracerebroventricular injection of interleukin-1beta were not attenuated in CD36-null mice. The findings unveil a novel role of CD36 in early molecular events leading to nuclear factor-kappaB activation and postischemic inflammation. Inhibition of CD36 signaling may be a valuable therapeutic approach to counteract the deleterious effects of postischemic inflammation.
Pressure-induced subunit dissociation and unfolding of dimeric beta-lactoglobulin.
Valente-Mesquita, V L; Botelho, M M; Ferreira, S T
1998-01-01
Effects of hydrostatic pressure on dimeric beta-lactoglobulin A (beta-Lg) were investigated. Application of pressures of up to 3.5 kbar induced a significant red shift ( approximately 11 nm) and a 60% increase in intrinsic fluorescence emission of beta-Lg. These changes were very similar to those induced by guanidine hydrochloride, which caused subunit dissociation and unfolding of beta-Lg. A large hysteresis in the recovery of fluorescence parameters was observed upon decompression of beta-Lg. Pressure-induced dissociation and unfolding were not fully reversible, because of the formation of a nonnative intersubunit disulfide bond that hampered correct refolding of the dimer. Comparison between pressure dissociation/unfolding at 3 degrees C and 23 degrees C revealed a marked destabilization of beta-Lg at low temperature. The stability of beta-Lg toward pressure was significantly enhanced by 1 M NaCl, but not by glycerol (up to 20% v/v). These observations suggest that salt stabilization was not related to a general cosolvent effect, but may reflect charge screening. Interestingly, pressure-induced dissociation/unfolding was completely independent of beta-Lg concentration, in apparent violation of the law of mass action. Possible causes for this anomalous behavior are discussed. PMID:9649408
Pessoa, Daniella Tavares; da Silva, Eva Luana Almeida; Costa, Edbhergue Ventura Lola; Nogueira, Romildo Albuquerque
2017-11-01
Western diets are high in saturated fat and low in omega-3. Certain animals cannot produce omega-3 from their own lipids, making it necessary for it to be acquired from the diet. However, omega-3s are important components of the plasma membrane, and altering their proportions can promote physical and chemical alterations in the membranes, which may modify neuronal excitability. These alterations occur in healthy individuals, as well as in patients with epilepsy who are more sensitive to changes in brain electrical activity. This study evaluated the effect of a diet supplemented with omega-3 on the basal brain electrical activity both before and during status epilepticus in rats. To evaluate the brain electrical activity, we recorded electrocorticograms (ECoG) of animals both with and without omega-3 supplementation before and during status epilepticus induced by pilocarpine. Calculation of the average brain wave power by a power spectrum revealed that omega-3 supplementation reduced the average power of the delta wave by 20% and increased the average power of the beta wave by 45%. These effects were exacerbated when status epilepticus was induced in the animals supplemented with omega-3. The animals with and without omega-3 supplementation exhibited increases in basal brain electrical activities during status epilepticus. The two groups showed hyperactivity, but no significant difference between them was noted. Even though the brain activity levels observed during status epilepticus were similar between the two groups, neuron damage to the animals supplemented with omega-3 was more slight, revealing the neuroprotective effect of the omega-3. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Woo-Ram; Park, Ji-Hyun; Kim, Kyung-Hyun
Melittin is a cationic, hemolytic peptide that is the main toxic component in the venom of the honey bee (Apis mellifera). Melittin has multiple effects, including anti-bacterial, anti-viral and anti-inflammatory, in various cell types. However, the anti-apoptotic mechanisms of melittin have not been fully elucidated in hepatocytes. Apoptosis contributes to liver inflammation and fibrosis. Knowledge of the apoptotic mechanisms is important to develop new and effective therapies for treatment of cirrhosis, portal hypertension, liver cancer, and other liver diseases. In the present study, we investigated the anti-apoptotic effect of melittin on transforming growth factor (TGF)-{beta}1-induced apoptosis in hepatocytes. TGF-{beta}1-treated hepatocytesmore » were exposed to low doses (0.5 and 1 {mu}g/mL) and high dose (2 {mu}g/mL) of melittin. The low doses significantly protected these cells from DNA damage in TGF-{beta}1-induced apoptosis compared to the high dose. Also, melittin suppressed TGF-{beta}1-induced apoptotic activation of the Bcl-2 family and caspase family of proteins, which resulted in the inhibition of poly-ADP-ribose polymerase (PARP) cleavage. These results demonstrate that TGF-{beta}1 induces hepatocyte apoptosis and that an optimal dose of melittin exerts anti-apoptotic effects against TGF-{beta}1-induced injury to hepatocytes via the mitochondrial pathway. These results suggest that an optimal dose of melittin can serve to protect cells against TGF-{beta}1-mediated injury. - Highlights: > We investigated the anti-apoptotic effect of melittin on TGF-{beta}1-induced hepatocyte. > TGF-{beta}1 induces hepatocyte apoptosis. > TGF-{beta}1-treated hepatocytes were exposed to low doses and high dose of melittin. > Optimal dose of melittin exerts anti-apoptotic effects to hepatocytes.« less
Role of IL-1 beta and COX2 in silica-induced IL-6 release and loss of pneumocytes in co-cultures.
Herseth, Jan I; Refsnes, Magne; Låg, Marit; Schwarze, Per E
2009-10-01
The pro-inflammatory cytokines IL-1 beta, TNF-alpha and IL-6 are of great importance in the development of silica-induced lung damage and repair. In this study we investigated the role of IL-1 beta, TNF-alpha and COX2 in silica-induced regulation of IL-6 release and pneumocyte loss in various mono- and co-cultures of monocytes, pneumocytes and endothelial cells. All co-cultures with monocytes, and especially cultures including endothelial cells, showed an increase of silica-induced release of IL-6 compared to the respective monocultures. Treatment with the antagonist IL-1 ra strongly decreased IL-1 beta and IL-6 release in contact co-cultures of monocytes and pneumocytes. COX2 up-regulation by silica and IL-1 beta was eliminated by IL-1 ra. Inhibition of COX2 markedly reduced both IL-1 beta and IL-6 release. IL-1 ra was more effective than COX2-inhibition in reduction of IL-6, but not of IL-1 beta. Silica-induced pneumocyte loss was reduced by IL-1 beta, but this effect was not counteracted by the IL-1 receptor antagonist. Our findings suggest that silica-induced IL-6 release from pneumocytes is mainly mediated via IL-1 beta release from the monocytes, via both COX2-dependent and -independent pathways. Notably, COX2-derived mediators seem crucial for a positive feed-back regulation of IL-1 beta release from the monocytes. In contrast to silica-induced IL-6, the reduction in pneumocyte loss by IL-1 beta does not seem to be regulated through an IL-1R1-dependent mechanism.
Quinn, Emma J; Blumenfeld, Zack; Velisar, Anca; Koop, Mandy Miller; Shreve, Lauren A; Trager, Megan H; Hill, Bruce C; Kilbane, Camilla; Henderson, Jaimie M; Brontë-Stewart, Helen
2015-11-01
Investigations into the effect of deep brain stimulation (DBS) on subthalamic (STN) beta (13-30 Hz) oscillations have been performed in the perioperative period with the subject tethered to equipment. Using an embedded sensing neurostimulator, this study investigated whether beta power was similar in different resting postures and during forward walking in freely moving subjects with Parkinson's disease (PD) and whether STN DBS attenuated beta power in a voltage-dependent manner. Subthalamic local field potentials were recorded from the DBS lead, using a sensing neurostimulator (Activa(®) PC+S, Medtronic, Inc., Food and Drug Administration- Investigational Device Exemption (IDE)-, institutional review board-approved) from 15 PD subjects (30 STNs) off medication during lying, sitting, and standing, during forward walking, and during randomized periods of 140 Hz DBS at 0 V, 1 V, and 2.5/3 V. Continuous video, limb angular velocity, and forearm electromyography recordings were synchronized with neural recordings. Data were parsed to avoid any movement or electrical artifact during resting states. Beta power was similar during lying, sitting, and standing (P = 0.077, n = 28) and during forward walking compared with the averaged resting state (P = 0.466, n = 24), although akinetic rigid PD subjects tended to exhibit decreased beta power when walking. Deep brain stimulation at 3 V and at 1 V attenuated beta power compared with 0 V (P < 0.003, n = 14), and this was voltage dependent (P < 0.001). Beta power was conserved during resting and forward walking states and was attenuated in a voltage-dependent manner during 140-Hz DBS. Phenotype may be an important consideration if this is used for closed-loop DBS. © 2015 International Parkinson and Movement Disorder Society.
Controlling amyloid-beta peptide(1-42) oligomerization and toxicity by fluorinated nanoparticles.
Saraiva, Ana M; Cardoso, Isabel; Pereira, M Carmo; Coelho, Manuel A N; Saraiva, Maria João; Möhwald, Helmuth; Brezesinski, Gerald
2010-09-03
The amyloid-beta peptide (Abeta) is a major fibrillar component of neuritic plaques in Alzheimer's disease brains and is related to the pathogenesis of the disease. Soluble oligomers that precede fibril formation have been proposed as the main neurotoxic species that contributes to neurodegeneration and dementia. We hypothesize that oligomerization and cytotoxicity can be repressed by nanoparticles (NPs) that induce conformational changes in Abeta42. We show here that fluorinated and hydrogenated NPs with different abilities to change Abeta42 conformation influence oligomerization as assessed by atomic force microscopy, immunoblot and SDS-PAGE. Fluorinated NPs, which promote an increase in alpha-helical content, exert an antioligomeric effect, whereas hydrogenated analogues do not and lead to aggregation. Cytotoxicity assays confirmed our hypothesis by indicating that the conformational conversion of Abeta42 into an alpha-helical-enriched secondary structure also has antiapoptotic activity, thereby increasing the viability of cells treated with oligomeric species.
Reduced local field potential power in the medial prefrontal cortex by noxious stimuli.
Li, Ai-Ling; Yang, Xiaofei; Chiao, Jung-Chih; Peng, Yuan Bo
2016-10-01
Nociceptive signals produced by noxious stimuli at the periphery reach the brain through ascending pathways. These signals are processed by various brain areas and lead to activity changes in those areas. The medial prefrontal cortex (mPFC) is involved in higher cognitive functions and emotional processing. It receives projections from brain areas involved in nociception. In this study, we investigated how nociceptive input from the periphery changes the local field potential (LFP) activity in the mPFC. Three different types of noxious stimuli were applied to the hind paw contralateral to the LFP recording site. They were transcutaneous electrical stimulations, mechanical stimuli and a chemical stimulus (formalin injection). High intensity transcutaneous stimulations (10V to 50V) and noxious mechanical stimulus (pinch) significantly reduced the LFP power during the stimulating period (p<0.05), but not the low intensity subcutaneous stimulations (0.1V to 5V) and other innocuous mechanical stimuli (brush and pressure). More frequency bands were inhibited with increased intensity of transcutaneous electrical stimulation, and almost all frequency bands were inhibited by stimulations at or higher than 30v. Pinch significantly reduced the power for beta band and formalin injection significantly reduced the power of alpha and beta band. Our data demonstrated the noxious stimuli-induced reduction of LFP power in the mPFC, which indicates the active processing of nociceptive information by the mPFC. Copyright © 2016 Elsevier Inc. All rights reserved.
Characterization and inhibition of beta-adrenergic receptor kinase in intact myocytes.
Laugwitz, K L; Kronsbein, K; Schmitt, M; Hoffmann, K; Seyfarth, M; Schömig, A; Ungerer, M
1997-08-01
beta-Adrenergic receptor kinase (beta ARK) phosphorylates and thereby inactivates agonist-occupied beta-adrenergic receptors (beta AR). beta ARK is thought to play an important role in the regulation of cardiac function. Therefore, we studied beta ARK activation and its inhibition in intact smooth muscle cells and in cardiomyoblasts. beta AR agonist-stimulated translocation of beta ARK was monitored by immunofluorescence labelling with specific antibodies and confocal laser scanning microscopy in DDT-MF 2 hamster smooth muscle cells and in H9c2 rat cardiomyoblasts. In unstimulated cells. beta ARK was mainly located in the cytosol. After beta AR agonist stimulation, the beta ARK signal was partially translocated to the membranes. Liposomal gene transfer of the COOH-terminus of beta ARK ('beta ARKmini') as a beta ARK inhibitor led to functional expression of this protein in both cell lines with high efficiency. Western blots with beta ARK antibodies showed a gene concentration-dependent immunoreactivity of the 'beta ARKmini' protein. 'beta ARKmini'-transfected myocytes demonstrated reduced membrane targeting of the beta ARK immuno-fluorescence signal. Additionally, the effect of 'beta ARKmini' on beta AR-induced desensitization of myocytic cAMP accumulation was investigated. In control cells, desensitization with isoproterenol led to a subsequent reduction of beta AR-induced cAMP accumulation. In 'beta ARKmini'-transfected myocytes, this beta AR-induced desensitization was significantly diminished, whereas normal beta AR-induced cAMP accumulation was unaffected. A gene concentration of 2 micrograms 'beta ARKmini' DNA/100,000 cardiomyoblasts, and of 0.7 microgram 'beta ARKmini' DNA/100,000 DDT-MF2 smooth muscle cells led to approximately 5.9- and approximately 5.6-fold overexpressions of 'beta ARKmini' vs. native beta ARK, respectively. These gene doses proved sufficient to attenuate beta-adrenergic desensitization significantly. (1) beta ARK translocation was evidenced in DDT-MF2 smooth muscle cells and in cardiomyoblasts by confocal laser scanning microscopy. (2) Feasibility of 'beta ARKmini' gene transfer to myocytes was demonstrated, and necessary gene doses for beta ARK inhibition were titered. (3) Overexpression of 'beta ARKmini' functionally interacted with endogenous beta-adrenergic signal transduction, leading to sustained cAMP accumulation after prolonged beta-adrenergic stimulation.
Angiotensin II increases CTGF expression via MAPKs/TGF-{beta}1/TRAF6 pathway in atrial fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Jun; Liu, Xu, E-mail: xkliuxu@yahoo.cn; Wang, Quan-xing, E-mail: shmywqx@126.com
2012-10-01
The activation of transforming growth factor-{beta}1(TGF-{beta}1)/Smad signaling pathway and increased expression of connective tissue growth factor (CTGF) induced by angiotensin II (AngII) have been proposed as a mechanism for atrial fibrosis. However, whether TGF{beta}1/non-Smad signaling pathways involved in AngII-induced fibrogenetic factor expression remained unknown. Recently tumor necrosis factor receptor associated factor 6 (TRAF6)/TGF{beta}-associated kinase 1 (TAK1) has been shown to be crucial for the activation of TGF-{beta}1/non-Smad signaling pathways. In the present study, we explored the role of TGF-{beta}1/TRAF6 pathway in AngII-induced CTGF expression in cultured adult atrial fibroblasts. AngII (1 {mu}M) provoked the activation of P38 mitogen activated proteinmore » kinase (P38 MAPK), extracellular signal-regulated kinase 1/2(ERK1/2) and c-Jun NH(2)-terminal kinase (JNK). AngII (1 {mu}M) also promoted TGF{beta}1, TRAF6, CTGF expression and TAK1 phosphorylation, which were suppressed by angiotensin type I receptor antagonist (Losartan) as well as p38 MAPK inhibitor (SB202190), ERK1/2 inhibitor (PD98059) and JNK inhibitor (SP600125). Meanwhile, both TGF{beta}1 antibody and TRAF6 siRNA decreased the stimulatory effect of AngII on TRAF6, CTGF expression and TAK1 phosphorylation, which also attenuated AngII-induced atrial fibroblasts proliferation. In summary, the MAPKs/TGF{beta}1/TRAF6 pathway is an important signaling pathway in AngII-induced CTGF expression, and inhibition of TRAF6 may therefore represent a new target for reversing Ang II-induced atrial fibrosis. -- Highlights: Black-Right-Pointing-Pointer MAPKs/TGF{beta}1/TRAF6 participates in AngII-induced CTGF expression in atrial fibroblasts. Black-Right-Pointing-Pointer TGF{beta}1/TRAF6 participates in AngII-induced atrial fibroblasts proliferation. Black-Right-Pointing-Pointer TRAF6 may represent a new target for reversing Ang II-induced atrial fibrosis.« less
Shiina, T; Kawasaki, A; Nagao, T; Kurose, H
2000-09-15
The beta(1)-adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. As beta-arrestin is important for internalization, we examine the interaction of beta-arrestin with beta(1)AR with three different methods: intracellular trafficking of beta-arrestin, binding of in vitro translated beta-arrestin to intracellular domains of beta(1)- and beta(2)ARs, and inhibition of betaAR-stimulated adenylyl cyclase activities by beta-arrestin. The green fluorescent protein-tagged beta-arrestin 2 translocates to and stays at the plasma membrane by beta(2)AR stimulation. Although green fluorescent protein-tagged beta-arrestin 2 also translocates to the plasma membrane, it returns to the cytoplasm 10-30 min after beta(1)AR stimulation. The binding of in vitro translated beta-arrestin 1 and beta-arrestin 2 to the third intracellular loop and the carboxyl tail of beta(1)AR is lower than that of beta(2)AR. The fusion protein of beta-arrestin 1 with glutathione S-transferase inhibits the beta(1)- and beta(2)AR-stimulated adenylyl cyclase activities, although inhibition of the beta(1)AR-stimulated activity requires a higher concentration of the fusion protein than that of the beta(2)AR-stimulated activity. These results suggest that weak interaction of beta(1)AR with beta-arrestins explains the resistance to agonist-induced internalization. This is further supported by the finding that beta-arrestin can induce internalization of beta(1)AR when beta-arrestin 1 does not dissociate from beta(1)AR by fusing to the carboxyl tail of beta(1)AR.
Neural dynamics during repetitive visual stimulation
NASA Astrophysics Data System (ADS)
Tsoneva, Tsvetomira; Garcia-Molina, Gary; Desain, Peter
2015-12-01
Objective. Steady-state visual evoked potentials (SSVEPs), the brain responses to repetitive visual stimulation (RVS), are widely utilized in neuroscience. Their high signal-to-noise ratio and ability to entrain oscillatory brain activity are beneficial for their applications in brain-computer interfaces, investigation of neural processes underlying brain rhythmic activity (steady-state topography) and probing the causal role of brain rhythms in cognition and emotion. This paper aims at analyzing the space and time EEG dynamics in response to RVS at the frequency of stimulation and ongoing rhythms in the delta, theta, alpha, beta, and gamma bands. Approach.We used electroencephalography (EEG) to study the oscillatory brain dynamics during RVS at 10 frequencies in the gamma band (40-60 Hz). We collected an extensive EEG data set from 32 participants and analyzed the RVS evoked and induced responses in the time-frequency domain. Main results. Stable SSVEP over parieto-occipital sites was observed at each of the fundamental frequencies and their harmonics and sub-harmonics. Both the strength and the spatial propagation of the SSVEP response seem sensitive to stimulus frequency. The SSVEP was more localized around the parieto-occipital sites for higher frequencies (>54 Hz) and spread to fronto-central locations for lower frequencies. We observed a strong negative correlation between stimulation frequency and relative power change at that frequency, the first harmonic and the sub-harmonic components over occipital sites. Interestingly, over parietal sites for sub-harmonics a positive correlation of relative power change and stimulation frequency was found. A number of distinct patterns in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (15-30 Hz) bands were also observed. The transient response, from 0 to about 300 ms after stimulation onset, was accompanied by increase in delta and theta power over fronto-central and occipital sites, which returned to baseline after approx. 500 ms. During the steady-state response, we observed alpha band desynchronization over occipital sites and after 500 ms also over frontal sites, while neighboring areas synchronized. The power in beta band over occipital sites increased during the stimulation period, possibly caused by increase in power at sub-harmonic frequencies of stimulation. Gamma power was also enhanced by the stimulation. Significance. These findings have direct implications on the use of RVS and SSVEPs for neural process investigation through steady-state topography, controlled entrainment of brain oscillations and BCIs. A deep understanding of SSVEP propagation in time and space and the link with ongoing brain rhythms is crucial for optimizing the typical SSVEP applications for studying, assisting, or augmenting human cognitive and sensorimotor function.
Suo, Zhiming; Wu, Min; Citron, Bruce A; Wong, Gwendolyn T; Festoff, Barry W
2004-03-31
Overwhelming evidence indicates that the effects of beta-amyloid (Abeta) are dose dependent both in vitro and in vivo, which implies that Abeta is not directly detrimental to brain cells until it reaches a threshold concentration. In an effort to understand early Alzheimer's disease (AD) pathogenesis, this study focused on the effects of subthreshold soluble Abeta and the underlying molecular mechanisms in murine microglial cells and an AD transgenic mouse model. We found that there were two phases of dose-dependent Abeta effects on microglial cells: at the threshold of 5 microm and above, Abeta directly induced tumor necrosis factor-alpha (TNF-alpha) release, and at subthreshold doses, Abeta indirectly potentiated TNF-alpha release induced by certain G-protein-coupled receptor (GPCR) activators. Mechanistic studies revealed that subthreshold Abeta pretreatment in vitro reduced membrane GPCR kinase-2/5 (GRK2/5), which led to retarded GPCR desensitization, prolonged GPCR signaling, and cellular hyperactivity to GPCR agonists. Temporal analysis in an early-onset AD transgenic model, CRND8 mice, revealed that the membrane (functional) GRK2/5 in brain cortices were significantly reduced. More importantly, such a GRK abnormality took place before cognitive decline and changed in a manner corresponding with the mild to moderate soluble Abeta accumulation in these transgenic mice. Together, this study not only discovered a novel link between subthreshold Abeta and GRK dysfunction, it also demonstrated that the GRK abnormality in vivo occurs at prodromal and early stages of AD.
Liu, Haiyan; Javaheri, Ali; Godar, Rebecca J; Murphy, John; Ma, Xiucui; Rohatgi, Nidhi; Mahadevan, Jana; Hyrc, Krzysztof; Saftig, Paul; Marshall, Connie; McDaniel, Michael L; Remedi, Maria S; Razani, Babak; Urano, Fumihiko; Diwan, Abhinav
2017-01-01
Obesity-induced diabetes is characterized by hyperglycemia, insulin resistance, and progressive beta cell failure. In islets of mice with obesity-induced diabetes, we observe increased beta cell death and impaired autophagic flux. We hypothesized that intermittent fasting, a clinically sustainable therapeutic strategy, stimulates autophagic flux to ameliorate obesity-induced diabetes. Our data show that despite continued high-fat intake, intermittent fasting restores autophagic flux in islets and improves glucose tolerance by enhancing glucose-stimulated insulin secretion, beta cell survival, and nuclear expression of NEUROG3, a marker of pancreatic regeneration. In contrast, intermittent fasting does not rescue beta-cell death or induce NEUROG3 expression in obese mice with lysosomal dysfunction secondary to deficiency of the lysosomal membrane protein, LAMP2 or haplo-insufficiency of BECN1/Beclin 1, a protein critical for autophagosome formation. Moreover, intermittent fasting is sufficient to provoke beta cell death in nonobese lamp2 null mice, attesting to a critical role for lysosome function in beta cell homeostasis under fasting conditions. Beta cells in intermittently-fasted LAMP2- or BECN1-deficient mice exhibit markers of autophagic failure with accumulation of damaged mitochondria and upregulation of oxidative stress. Thus, intermittent fasting preserves organelle quality via the autophagy-lysosome pathway to enhance beta cell survival and stimulates markers of regeneration in obesity-induced diabetes.
Aid, Saba; Parikh, Nishant; Palumbo, Sara; Bosetti, Francesca
2010-07-12
Neuroinflammation is a critical component in the progression of several neurological and neurodegenerative diseases and cyclooxygenases (COX)-1 and -2 are key regulators of innate immune responses. We recently demonstrated that COX-1 deletion attenuates, whereas COX-2 deletion enhances, the neuroinflammatory response, blood-brain barrier permeability and leukocyte recruitment during lipopolysaccharide (LPS)-induced innate immune activation. Here, we used transgenic mice, which overexpressed human COX-2 via neuron-specific Thy-1 promoter (TgCOX-2), causing elevated prostaglandins (PGs) levels. We tested whether neuronal COX-2 overexpression affects the glial response to a single intracerebroventricular injection of LPS, which produces a robust neuroinflammatory reaction. Relative to non-transgenic controls (NTg), 7 month-old TgCOX-2 did not show any basal neuroinflammation, as assessed by gene expression of markers of inflammation and oxidative stress, neuronal damage, as assessed by Fluoro-JadeB staining, or systemic inflammation, as assessed by plasma levels of IL-1beta and corticosterone. Twenty-four hours after LPS injection, all mice showed increased microglial activation, as indicated by Iba1 immunostaining, neuronal damage, mRNA expression of cytokines (TNF-alpha, IL-6), reactive oxygen expressing enzymes (iNOS and NADPH oxidase subunits), endogenous COX-2, cPLA(2) and mPGES-1, and hippocampal and cortical IL-1beta levels. However, the increases were similar in TgCOX-2 and NTg. In NTg, LPS increased brain PGE(2) to the levels observed in TgCOX-2. These results suggest that PGs derived from neuronal COX-2 do not play a role in the neuroinflammatory response to acute activation of brain innate immunity. This is likely due to the direct effect of LPS on glial rather than neuronal cells. Published by Elsevier Ireland Ltd.
Botsakis, Konstantinos; Mourtzi, Theodora; Panagiotakopoulou, Vasiliki; Vreka, Malamati; Stathopoulos, Georgios T; Pediaditakis, Iosif; Charalampopoulos, Ioannis; Gravanis, Achilleas; Delis, Foteini; Antoniou, Katerina; Zisimopoulos, Dimitrios; Georgiou, Christos D; Panagopoulos, Nikolaos T; Matsokis, Nikolaos; Angelatou, Fevronia
2017-07-15
Neurotrophic factors are among the most promising treatments aiming at slowing or stopping and even reversing Parkinson's disease (PD). However, in most cases, they cannot readily cross the human blood-brain-barrier (BBB). Herein, we propose as a therapeutic for PD the small molecule 17-beta-spiro-[5-androsten-17,2'-oxiran]-3beta-ol (BNN-20), a synthetic analogue of DHEA, which crosses the BBB and is deprived of endocrine side-effects. Using the "weaver" mouse, a genetic model of PD, which exhibits progressive dopaminergic neurodegeneration in the Substantia Nigra (SN), we have shown that long-term administration (P1-P21) of BNN-20 almost fully protected the dopaminergic neurons and their terminals, via i) a strong anti-apoptotic effect, probably mediated through the Tropomyosin receptor kinase B (TrkB) neurotrophin receptor's PI3K-Akt-NF-κB signaling pathway, ii) by exerting an efficient antioxidant effect, iii) by inducing significant anti-inflammatory activity and iv) by restoring Brain-Derived Neurotrophic Factor (BDNF) levels. By intercrossing "weaver" with NGL mice (dual GFP/luciferase-NF-κΒ reporter mice, NF-κΒ.GFP.Luc), we obtained Weaver/NGL mice that express the NF-κB reporter in all somatic cells. Acute BNN-20 administration to Weaver/NGL mice induced a strong NF-κB-dependent transcriptional response in the brain as detected by bioluminescence imaging, which was abolished by co-administration of the TrkB inhibitor ANA-12. This indicates that BNN-20 exerts its beneficial action (at least in part) through the TrkB-PI3K-Akt-NF-κB signaling pathway. These results could be of clinical relevance, as they suggest BNN-20 as an important neuroprotective agent acting through the TrkB neurotrophin receptor pathway, mimicking the action of the endogenous neurotrophin BDNF. Thus BNN-20 could be proposed for treatment of PD. Copyright © 2017. Published by Elsevier Ltd.
Huang, Dengfeng; Ren, Aifeng; Shang, Jing; Lei, Qiao; Zhang, Yun; Yin, Zhongliang; Li, Jun; von Deneen, Karen M; Huang, Liyu
2016-01-01
The aim of this study is to qualify the network properties of the brain networks between two different mental tasks (play task or rest task) in a healthy population. EEG signals were recorded from 19 healthy subjects when performing different mental tasks. Partial directed coherence (PDC) analysis, based on Granger causality (GC), was used to assess the effective brain networks during the different mental tasks. Moreover, the network measures, including degree, degree distribution, local and global efficiency in delta, theta, alpha, and beta rhythms were calculated and analyzed. The local efficiency is higher in the beta frequency and lower in the theta frequency during play task whereas the global efficiency is higher in the theta frequency and lower in the beta frequency in the rest task. This study reveals the network measures during different mental states and efficiency measures may be used as characteristic quantities for improvement in attentional performance.
The role of high-frequency oscillatory activity in reward processing and learning.
Marco-Pallarés, Josep; Münte, Thomas F; Rodríguez-Fornells, Antoni
2015-02-01
Oscillatory activity has been proposed as a key mechanism in the integration of brain activity of distant structures. Particularly, high frequency brain oscillatory activity in the beta and gamma range has received increasing interest in the domains of attention and memory. In addition, a number of recent studies have revealed an increase of beta-gamma activity (20-35 Hz) after unexpected or relevant positive reward outcomes. In the present manuscript we review the literature on this phenomenon and we propose that this activity is a brain signature elicited by unexpected positive outcomes in order to transmit a fast motivational value signal to the reward network. In addition, we hypothesize that beta-gamma oscillatory activity indexes the interaction between attentional and emotional systems, and that it directly reflects the appearance of unexpected positive rewards in learning-related contexts. Copyright © 2014 Elsevier Ltd. All rights reserved.
Task relevance modulates the behavioural and neural effects of sensory predictions
Friston, Karl J.; Nobre, Anna C.
2017-01-01
The brain is thought to generate internal predictions to optimize behaviour. However, it is unclear whether predictions signalling is an automatic brain function or depends on task demands. Here, we manipulated the spatial/temporal predictability of visual targets, and the relevance of spatial/temporal information provided by auditory cues. We used magnetoencephalography (MEG) to measure participants’ brain activity during task performance. Task relevance modulated the influence of predictions on behaviour: spatial/temporal predictability improved spatial/temporal discrimination accuracy, but not vice versa. To explain these effects, we used behavioural responses to estimate subjective predictions under an ideal-observer model. Model-based time-series of predictions and prediction errors (PEs) were associated with dissociable neural responses: predictions correlated with cue-induced beta-band activity in auditory regions and alpha-band activity in visual regions, while stimulus-bound PEs correlated with gamma-band activity in posterior regions. Crucially, task relevance modulated these spectral correlates, suggesting that current goals influence PE and prediction signalling. PMID:29206225
Guidotti, A; Forchetti, C M; Corda, M G; Konkel, D; Bennett, C D; Costa, E
1983-01-01
A brain polypeptide termed diazepam-binding inhibitor (DBI) and thought to be chemically and functionally related to the endogenous effector of the benzodiazepine recognition site was purified to homogeneity. This peptide gives a single band of protein on NaDodSO4 and acidic urea gel electrophoresis. A single UV-absorbing peak was obtained by HPLC using three different columns and solvent systems. DBI has a molecular mass of approximately equal to 11,000 daltons. Carboxyl-terminus analysis shows that tyrosine is the only residue while the amino-terminus was blocked. Cyanogen bromide treatment of DBI yields three polypeptide fragments, and the sequences of two of them have been determined for a total of 45 amino acids. DBI is a competitive inhibitor for the binding of [3H]diazepam, [3H]flunitrazepam, beta-[3H]carboline propyl esters, and 3H-labeled Ro 15-1788. The Ki for [3H]-diazepam and beta-[3H]carboline binding were 4 and 1 microM, respectively. Doses of DBI that inhibited [3H]diazepam binding by greater than 50% fail to change [3H]etorphine, gamma-amino[3H]butyric acid, [3H]-quinuclidinyl benzilate, [3H]dihydroalprenolol, [3H]adenosine, and [3H]imipramine binding tested at their respective Kd values. DBI injected intraventricularly at doses of 5-10 nmol completely reversed the anticonflict action of diazepam on unpunished drinking and, similar to the anxiety-inducing beta-carboline derivative FG 7142 (beta-carboline-3-carboxylic acid methyl ester), facilitated the shock-induced suppression of drinking by lowering the threshold for this response. Images PMID:6304714
Aging reduces experience-induced sensorimotor plasticity. A magnetoencephalographic study.
Mary, Alison; Bourguignon, Mathieu; Wens, Vincent; Op de Beeck, Marc; Leproult, Rachel; De Tiège, Xavier; Peigneux, Philippe
2015-01-01
Modulation of the mu-alpha and mu-beta spontaneous rhythms reflects plastic neural changes within the primary sensorimotor cortex (SM1). Using magnetoencephalography (MEG), we investigated how aging modifies experience-induced plasticity after learning a motor sequence, looking at post- vs. pre-learning changes in the modulation of mu rhythms during the execution of simple hand movements. Fifteen young (18-30 years) and fourteen older (65-75 years) right-handed healthy participants performed auditory-cued key presses using all four left fingers simultaneously (Simple Movement task - SMT) during two separate sessions. Following both SMT sessions, they repeatedly practiced a 5-elements sequential finger-tapping task (FTT). Mu power calculated during SMT was averaged across 18 gradiometers covering the right sensorimotor region and compared before vs. after sequence learning in the alpha (9/10/11Hz) and the beta (18/20/22Hz) bands separately. Source power maps in the mu-alpha and mu-beta bands were localized using Dynamic Statistical Parametric Mapping (dSPM). The FTT sequence was performed faster at retest than at the end of the learning session, indicating an offline boost in performance. Analyses conducted on SMT sessions revealed enhanced rebound after learning in the right SM1, 3000-3500ms after the initiation of movement, in young as compared to older participants. Source reconstruction indicated that mu-beta is located in the precentral gyrus (motor processes) and mu-alpha is located in the postcentral gyrus (somatosensory processes) in both groups. The enhanced post-movement rebound in young subjects potentially reflects post-training plastic changes in SM1. Age-related decreases in post-training modulatory effects suggest reduced experience-dependent plasticity in the aging brain. Copyright © 2014 Elsevier Inc. All rights reserved.
Toledo, E M; Inestrosa, N C
2010-03-01
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive deterioration of cognitive abilities, accumulation of the amyloid-beta-peptide (Abeta) and synaptic alterations. Treatment with lithium has been shown to provide neuroprotection against several insults, including protection against Abeta neurotoxicity in vitro. Rosiglitazone, a peroxisome proliferator activated receptor-gamma agonist, has been shown to attenuate Abeta-peptide neurotoxic effects, including the inflammatory response of microglia and astrocytes. Both types of drugs activate Wnt signaling, a pathway that has been shown to be related to AD. In this study, a double transgenic mouse model, which coexpresses APPswe and the exon 9 deletion of the presenilin 1 (PSEN1) gene, was used to examine, in vivo, the effect of lithium and rosiglitazone on Abeta neurotoxicity. Mice were tested for spatial memory, and their brain samples were used for histochemical and biochemical analysis. In this study, we report that both drugs significantly reduced (1) spatial memory impairment induced by amyloid burden; (2) Abeta aggregates and Abeta oligomers; and (3) astrocytic and microglia activation. They also prevented changes in presynaptic and postsynaptic marker proteins. Finally, both drugs activate Wnt signaling shown by the increase in beta-catenin and by the inhibition of the glycogen synthase kinase-3beta. We conclude that lithium and rosiglitazone, possibly by the activation of the Wnt signaling pathway, reduce various AD neuropathological markers and may be considered as potential therapeutic agents against the disease.
Xu, Yiran; Cheng, Xiaorui; Cui, Xiuliang; Wang, Tongxing; Liu, Gang; Yang, Ruishang; Wang, Jianhui; Bo, Xiaochen; Wang, Shengqi; Zhou, Wenxia; Zhang, Yongxiang
2015-09-01
Stress induces cognitive impairments, which are likely related to the damaged dendritic morphology in the brain. Treatments for stress-induced impairments remain limited because the molecules and pathways underlying these impairments are unknown. Therefore, the aim of this study was to find the potential molecules and pathways related to damage of the dendritic morphology induced by stress. To do this, we detected gene expression, constructed a protein-protein interaction (PPI) network, and analyzed the molecular pathways in the brains of mice exposed to 5-h multimodal stress. The results showed that stress increased plasma corticosterone concentration, decreased cognitive function, damaged dendritic morphologies, and altered APBB1, CLSTN1, KCNA4, NOTCH3, PLAU, RPS6KA1, SYP, TGFB1, KCNA1, NTRK3, and SNCA expression in the brains of mice. Further analyses found that the abnormal expressions of CLSTN1, PLAU, NOTCH3, and TGFB1 induced by stress were related to alterations in the dendritic morphology. These four genes demonstrated interactions with 55 other genes, and configured a closed PPI network. Molecular pathway analysis use the Database for Annotation, Visualization, and Integrated Discovery (DAVID), specifically the gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG), each identified three pathways that were significantly enriched in the gene list of the PPI network, with genes belonging to the Notch and transforming growth factor-beta (TGF-B) signaling pathways being the most enriched. Our results suggest that TGFB1, PLAU, NOTCH3, and CLSTN1 may be related to the alterations in dendritic morphology induced by stress, and imply that the Notch and TGF-B signaling pathways may be involved. Copyright © 2015 Elsevier Inc. All rights reserved.
Effects of oxidative stress on hyperglycaemia-induced brain malformations in a diabetes mouse model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Ya; Wang, Guang; Han, Sha-Sha
Pregestational diabetes mellitus (PGDM) enhances the risk of fetal neurodevelopmental defects. However, the mechanism of hyperglycaemia-induced neurodevelopmental defects is not fully understood. In this study, several typical neurodevelopmental defects were identified in the streptozotocin-induced diabetes mouse model. The neuron-specific class III beta-tubulin/forkhead box P1-labelled neuronal differentiation was suppressed and glial fibrillary acidic protein-labelled glial cell lineage differentiation was slightly promoted in pregestational diabetes mellitus (PGDM) mice. Various concentrations of glucose did not change the U87 cell viability, but glial cell line-derived neurotrophic factor expression was altered with varying glucose concentrations. Mouse maternal hyperglycaemia significantly increased Tunel{sup +} apoptosis but didmore » not dramatically affect PCNA{sup +} cell proliferation in the process. To determine the cause of increased apoptosis, we determined the SOD activity, the expression of Nrf2 as well as its downstream anti-oxidative factors NQO1 and HO1, and found that all of them significantly increased in PGDM fetal brains compared with controls. However, Nrf2 expression in U87 cells was not significantly changed by different glucose concentrations. In mouse telencephalon, we observed the co-localization of Tuj-1 and Nrf2 expression in neurons, and down-regulating of Nrf2 in SH-SY5Y cells altered the viability of SH-SY5Y cells exposed to high glucose concentrations. Taken together, the data suggest that Nrf2-modulated antioxidant stress plays a crucial role in maternal hyperglycaemia-induced neurodevelopmental defects. - Highlights: • Typical neurodevelopmental defects could be observed in STZ-treated mouse fetuses. • Nrf2 played a crucial role in hyperglycaemia-induced brain malformations. • The effects of hyperglycaemia on neurons and glia cells were not same.« less
EEGgui: a program used to detect electroencephalogram anomalies after traumatic brain injury.
Sick, Justin; Bray, Eric; Bregy, Amade; Dietrich, W Dalton; Bramlett, Helen M; Sick, Thomas
2013-05-21
Identifying and quantifying pathological changes in brain electrical activity is important for investigations of brain injury and neurological disease. An example is the development of epilepsy, a secondary consequence of traumatic brain injury. While certain epileptiform events can be identified visually from electroencephalographic (EEG) or electrocorticographic (ECoG) records, quantification of these pathological events has proved to be more difficult. In this study we developed MATLAB-based software that would assist detection of pathological brain electrical activity following traumatic brain injury (TBI) and present our MATLAB code used for the analysis of the ECoG. Software was developed using MATLAB(™) and features of the open access EEGLAB. EEGgui is a graphical user interface in the MATLAB programming platform that allows scientists who are not proficient in computer programming to perform a number of elaborate analyses on ECoG signals. The different analyses include Power Spectral Density (PSD), Short Time Fourier analysis and Spectral Entropy (SE). ECoG records used for demonstration of this software were derived from rats that had undergone traumatic brain injury one year earlier. The software provided in this report provides a graphical user interface for displaying ECoG activity and calculating normalized power density using fast fourier transform of the major brain wave frequencies (Delta, Theta, Alpha, Beta1, Beta2 and Gamma). The software further detects events in which power density for these frequency bands exceeds normal ECoG by more than 4 standard deviations. We found that epileptic events could be identified and distinguished from a variety of ECoG phenomena associated with normal changes in behavior. We further found that analysis of spectral entropy was less effective in distinguishing epileptic from normal changes in ECoG activity. The software presented here was a successful modification of EEGLAB in the Matlab environment that allows detection of epileptiform ECoG signals in animals after TBI. The code allows import of large EEG or ECoG data records as standard text files and uses fast fourier transform as a basis for detection of abnormal events. The software can also be used to monitor injury-induced changes in spectral entropy if required. We hope that the software will be useful for other investigators in the field of traumatic brain injury and will stimulate future advances of quantitative analysis of brain electrical activity after neurological injury or disease.
Pleiotrophin prevents cocaine-induced toxicity in vitro.
Gramage, Esther; Alguacil, Luis F; Herradon, Gonzalo
2008-10-24
Pleiotrophin is a cytokine involved in differentiation, survival and repair processes in the central nervous system. Pleiotrophin is upregulated in the brain after administration of different drugs of abuse, thus suggesting a protective role of this cytokine on drug-induced toxicity. We have tested this hypothesis in vitro using NG108-15 cells, a line widely used for neurotoxicity studies. It was found that pleiotrophin (3 and 6 microM) significantly prevents cocaine (5 mM)-induced cytotoxicity as measured by the neutral red test. Similar results were obtained in PC12 cells, which were found to endogenously express both pleiotrophin and its main target, receptor protein tyrosine phosphatase (RPTP) beta/zeta. Blockade of pleiotrophin signaling using anti-pleiotrophin antibodies (2 microg/ml) did not potentiate cocaine-induced toxicity; interestingly, incubation of PC12 cells only with anti-pleiotrophin antibodies significantly reduced cellular viability, thus suggesting an important role of endogenous pleiotrophin signaling in cell survival. The data suggest that pleiotrophin overexpression in response to drugs of abuse may be relevant to prevent drug-induced toxicity.
Andrews, Rachel N; Metheny-Barlow, Linda J; Peiffer, Ann M; Hanbury, David B; Tooze, Janet A; Bourland, J Daniel; Hampson, Robert E; Deadwyler, Samuel A; Cline, J Mark
2017-05-01
Fractionated whole-brain irradiation (fWBI) is a mainstay of treatment for patients with intracranial neoplasia; however late-delayed radiation-induced normal tissue injury remains a major adverse consequence of treatment, with deleterious effects on quality of life for affected patients. We hypothesize that cerebrovascular injury and remodeling after fWBI results in ischemic injury to dependent white matter, which contributes to the observed cognitive dysfunction. To evaluate molecular effectors of radiation-induced brain injury (RIBI), real-time quantitative polymerase chain reaction (RT-qPCR) was performed on the dorsolateral prefrontal cortex (DLPFC, Brodmann area 46), hippocampus and temporal white matter of 4 male Rhesus macaques (age 6-11 years), which had received 40 Gray (Gy) fWBI (8 fractions of 5 Gy each, twice per week), and 3 control comparators. All fWBI animals developed neurologic impairment; humane euthanasia was elected at a median of 6 months. Radiation-induced brain injury was confirmed histopathologically in all animals, characterized by white matter degeneration and necrosis, and multifocal cerebrovascular injury consisting of perivascular edema, abnormal angiogenesis and perivascular extracellular matrix deposition. Herein we demonstrate that RIBI is associated with white matter-specific up-regulation of hypoxia-associated lactate dehydrogenase A (LDHA) and that increased gene expression of fibronectin 1 (FN1), SERPINE1 and matrix metalloprotease 2 (MMP2) may contribute to cerebrovascular remodeling in late-delayed RIBI. Additionally, vascular stability and maturation associated tumor necrosis super family member 15 (TNFSF15) and vascular endothelial growth factor beta (VEGFB) mRNAs were increased within temporal white matter. We also demonstrate that radiation-induced brain injury is associated with decreases in white matter-specific expression of neurotransmitter receptors SYP, GRIN2A and GRIA4. We additionally provide evidence that macrophage/microglial mediated neuroinflammation may contribute to RIBI through increased gene expression of the macrophage chemoattractant CCL2 and macrophage/microglia associated CD68. Global patterns in cerebral gene expression varied significantly between regions examined (P < 0.0001, Friedman's test), with effects most prominent within cerebral white matter.
Liao, Chien-Wei; Fan, Chia-Kwung; Kao, Ting-Chang; Ji, Dar-Der; Su, Kua-Eyre; Lin, Yun-Ho; Cho, Wen-Long
2008-06-24
Because the outcomes and sequelae after different types of brain injury (BI) are variable and difficult to predict, investigations on whether enhanced expressions of BI-associated biomarkers (BIABs), including transforming growth factor beta1 (TGF-beta1), S100B, glial fibrillary acidic protein (GFAP), neurofilament light chain (NF-L), tissue transglutaminases (tTGs), beta-amyloid precursor proteins (AbetaPP), and tau are present as well as whether impairment of the ubiquitin-proteasome system (UPS) is present have been widely used to help delineate pathophysiological mechanisms in various BIs. Larvae of Toxocara canis can invade the brain and cause BI in humans and mice, leading to cerebral toxocariasis (CT). Because the parasitic burden is light in CT, it may be too cryptic to be detected in humans, making it difficult to clearly understand the pathogenesis of subtle BI in CT. Since the pathogenesis of murine toxocariasis is very similar to that in humans, it appears appropriate to use a murine model to investigate the pathogenesis of CT. BIAB expressions and UPS function in the brains of mice inoculated with a single dose of 250 T. canis embryonated eggs was investigated from 3 days (dpi) to 8 weeks post-infection (wpi) by Western blotting and RT-PCR. Results revealed that at 4 and 8 wpi, T. canis larvae were found to have invaded areas around the choroid plexus but without eliciting leukocyte infiltration in brains of infected mice; nevertheless, astrogliosis, an indicator of BI, with 78.9~142.0-fold increases in GFAP expression was present. Meanwhile, markedly increased levels of other BIAB proteins including TGF-beta1, S100B, NF-L, tTG, AbetaPP, and tau, with increases ranging 2.0~12.0-fold were found, although their corresponding mRNA expressions were not found to be present at 8 wpi. Concomitantly, UPS impairment was evidenced by the overexpression of conjugated ubiquitin and ubiquitin in the brain. Further studies are needed to determine whether there is an increased risk of CT progression into neurodegenerative disease because neurodegeneration-associated AbetaPP and phosphorylated tau emerged in the brain.
Yi, Lei; Huang, Xiaoqin; Guo, Feng; Zhou, Zengding; Chang, Mengling; Huan, Jingning
2017-01-01
The bacterial endotoxin or lipopolysaccharide (LPS) leads to the extensive vascular endothelial cells (EC) injury under septic conditions. Guanine nucleotide exchange factor-H1 (GEF-H1)/ROCK signaling not only involved in LPS-induced overexpression of pro-inflammatory mediator in ECs but also implicated in LPS-induced endothelial hyper-permeability. However, the mechanisms behind LPS-induced GEF-H1/ROCK signaling activation in the progress of EC injury remain incompletely understood. GEF-H1 localized on microtubules (MT) and is suppressed in its MT-bound state. MT disassembly promotes GEF-H1 release from MT and stimulates downstream ROCK-specific GEF activity. Since glycogen synthase kinase (GSK-3beta) participates in regulating MT dynamics under pathologic conditions, we examined the pivotal roles for GSK-3beta in modulating LPS-induced activation of GEF-H1/ROCK, increase of vascular endothelial permeability and severity of acute lung injury (ALI). In this study, we found that LPS induced human pulmonary endothelial cell (HPMEC) monolayers disruption accompanied by increase in GSK-3beta activity, activation of GEF-H1/ROCK signaling and decrease in beta-catenin and ZO-1 expression. Inhibition of GSK-3beta reduced HPMEC monolayers hyper-permeability and GEF-H1/ROCK activity in response to LPS. GSK-3beta/GEF-H1/ROCK signaling is implicated in regulating the expression of beta-catenin and ZO-1. In vivo , GSK-3beta inhibition attenuated LPS-induced activation of GEF-H1/ROCK pathway, lung edema and subsequent ALI. These findings present a new mechanism of GSK-3beta-dependent exacerbation of lung micro-vascular hyper-permeability and escalation of ALI via activation of GEF-H1/ROCK signaling and disruption of intracellular junctional proteins under septic condition.
1992-01-01
Candidate superantigens were screened for their ability to induce lysis of human histocompatibility leukocyte antigen class II-positive targets by human CD8+ influenza-specific cytotoxic T cell (CTL) lines. Clostridium perfringens enterotoxin (CPET) induced major histocompatibility complex unrestricted killing by some but not all CTL lines. Using "anchored" polymerase chain reactions, CPET was shown to selectively stimulate peripheral blood lymphocytes bearing T cell receptor V beta 6.9 and V beta 22 in five healthy donors. V beta 24, V beta 21, V beta 18, V beta 5, and V beta 6.1-5 appeared to be weakly stimulated. Antigen processing was not required for CPET to induce proliferation. Like the staphylococcal enterotoxins, CPET is a major cause of food poisoning. These data suggest that superantigenic and enterotoxigenic properties may be closely linked. PMID:1512551
Swann, Nicole; Poizner, Howard; Houser, Melissa; Gould, Sherrie; Greenhouse, Ian; Cai, Weidong; Strunk, Jon; George, Jobi; Aron, Adam R
2011-01-01
Stopping an initiated response could be implemented by a fronto-basal-ganglia circuit, including the right inferior frontal cortex (rIFC) and the subthalamic nucleus (STN). Intracranial recording studies in humans reveal an increase in beta-band power (~16-20 Hz) within the rIFC and STN when a response is stopped. This suggests that the beta-band could be important for communication in this network. If this is the case, then altering one region should affect the electrophysiological response at the other. We addressed this hypothesis by recording scalp EEG during a stop task while modulating STN activity with deep brain stimulation. We studied 15 human patients with Parkinson's Disease and 15 matched healthy control subjects. Behaviorally, patients OFF stimulation were slower than controls to stop their response. Moreover, stopping speed was improved for ON compared to OFF stimulation. For scalp EEG, there was greater beta power, around the time of stopping, for patients ON compared to OFF stimulation. This effect was stronger over the right compared to left frontal cortex, consistent with the putative right-lateralization of the stopping network. Thus, deep brain stimulation of the STN improved behavioral stopping performance and increased the beta-band response over the right frontal cortex. These results complement other evidence for a structurally-connected, functional, circuit between right frontal cortex and the basal ganglia. The results also suggest that deep brain stimulation of the STN may improve task performance by increasing the fidelity of information transfer within a fronto-basal ganglia circuit. PMID:21490213
Bobkova, Natalia; Vorobyov, Vasily; Medvinskaya, Natalia; Aleksandrova, Irina; Nesterova, Inna
2008-09-26
Alterations in electroencephalogram (EEG) asymmetry and deficits in interhemispheric integration of information have been shown in patients with Alzheimer's disease (AD). However, no direct evidence of an association between EEG asymmetry, morphological markers in the brain, and cognition was found either in AD patients or in AD models. In this study we used rats with bilateral olfactory bulbectomy (OBX) as one of the AD models and measured their learning/memory abilities, brain beta-amyloid levels and EEG spectra in symmetrical frontal and occipital cortices. One year after OBX or sham-surgery, the rats were tested with the Morris water paradigm and assigned to three groups: sham-operated rats, SO, and OBX rats with virtually normal, OBX(+), or abnormal, OBX(-), learning (memory) abilities. In OBX vs. SO, the theta EEG activity was enhanced to a higher extent in the right frontal cortex and in the left occipital cortex. This produced significant interhemispheric differences in the frontal cortex of the OBX(-) rats and in the occipital cortex of both OBX groups. The beta1 EEG asymmetry in SO was attenuated in OBX(+) and completely eliminated in OBX(-). OBX produced highly significant beta2 EEG decline in the right frontal cortex, with OBX(-)>OBX(+) rank order of strength. The beta-amyloid level, examined by post-mortem immunological DOT-analysis in the cortex-hippocampus samples, was about six-fold higher in OBX(-) than in SO, but significantly less (enhanced by 82% vs. SO) in OBX(+) than in OBX(-). The involvement of the brain mediatory systems in the observed EEG asymmetry differences is discussed.
Nishimoto, Takaaki; Kihara, Takeshi; Akaike, Akinori; Niidome, Tetsuhiro; Sugimoto, Hachiro
2008-04-01
Preconditioning of sublethal ischemia exhibits neuroprotection against subsequent ischemia-induced neuronal death. It has been indicated that glutamate, an excitatory amino acid, is involved in the pathogenesis of ischemia-induced neuronal death or neurodegeneration. To elucidate whether prestimulation of glutamate receptor could counter ischemia-induced neuronal death or neurodegeneration, we examined the effect of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), an ionotropic subtype of glutamate receptor, on excess glutamate-induced excitotoxicity using primary cortical neuronal cultures. We found that AMPA exerted a neuroprotective effect in a time- and concentration-dependent manner. A blocker of phosphatidylinositol-3 kinase (PI3K), LY294002 (10 microM), significantly attenuated AMPA-induced protection. In addition, Ser473 of Akt/PKB, a downstream target of PI3K, was phosphorylated by AMPA administration (10 microM). Glycogen synthase kinase 3beta (GSK3beta), which has been reported to be inactivated by Akt, was phosphorylated at Ser9 by AMPA. Ser9-phosphorylated GSK3beta or inactivated form would be a key molecule for neuroprotection, insofar as lithium chloride (100 microM) and SB216763 (10 microM), inhibitors of GSK3beta, also induced phosphorylation of GSK3beta at Ser9 and exerted neuroprotection, respectively. Glutamate (100 microM) increased cleaved caspase-3, an apoptosis-related cysteine protease, and caspase-3 inhibitor (Ac-DEVD-CHO; 1 microM) blocked glutamate-induced excitotoxicity in our culture. AMPA (10 microM, 24 hr) and SB216763 (10 microM) prominently decreased glutamate-induced caspase-3 cleavage. These findings suggest that AMPA activates PI3K-Akt and subsequently inhibits GSK3beta and that inactivated GSK3beta attenuates glutamate-induced caspase-3 cleavage and neurotoxicity.
Kuzumaki, Naoko; Ikegami, Daigo; Imai, Satoshi; Narita, Michiko; Tamura, Rie; Yajima, Marie; Suzuki, Atsuo; Miyashita, Kazuhiko; Niikura, Keiichi; Takeshima, Hideyuki; Ando, Takayuki; Ushijima, Toshikazu; Suzuki, Tsutomu; Narita, Minoru
2010-09-01
A variety of mechanisms that contribute to the accumulation of age-related damage and the resulting brain dysfunction have been identified. Recently, decreased neurogenesis in the hippocampus has been recognized as one of the mechanisms of age-related brain dysfunction. However, the molecular mechanism of decreased neurogenesis with aging is still unclear. In the present study, we investigated whether aging decreases neurogenesis accompanied by the activation of microglia and astrocytes, which increases the expression of IL-1beta in the hippocampus, and whether in vitro treatment with IL-1beta in neural stem cells directly impairs neurogenesis. Ionized calcium-binding adaptor molecule 1 (Iba1)-positive microglia and glial fibrillary acidic protein (GFAP)-positive astrocytes were increased in the dentate gyrus of the hippocampus of 28-month-old mice. Furthermore, the mRNA level of IL-1beta was significantly increased without related histone modifications. Moreover, a significant increase in lysine 9 on histone H3 (H3K9) trimethylation at the promoter of NeuroD (a neural progenitor cell marker) was observed in the hippocampus of aged mice. In vitro treatment with IL-1beta in neural stem cells prepared from whole brain of E14.5 mice significantly increased H3K9 trimethylation at the NeuroD promoter. These findings suggest that aging may decrease hippocampal neurogenesis via epigenetic modifications accompanied by the activation of microglia and astrocytes with the increased expression of IL-1beta in the hippocampus.
Association of GSK3beta polymorphisms with brain structural changes in major depressive disorder.
Inkster, Becky; Nichols, Thomas E; Saemann, Philipp G; Auer, Dorothee P; Holsboer, Florian; Muglia, Pierandrea; Matthews, Paul M
2009-07-01
Indirect evidence suggests that the glycogen synthase kinase-3beta (GSK3beta) gene might be implicated in major depressive disorder (MDD). We evaluated 15 GSK3beta single-nucleotide polymorphisms (SNPs) to test for associations with regional gray matter (GM) volume differences in patients with recurrent MDD. We then used the defined regions of interest based on significant associations to test for MDD x genotype interactions by including a matched control group without any psychiatric disorder, including MDD. General linear model with nonstationary cluster-based inference. Munich, Germany. Patients with recurrent MDD (n = 134) and age-, sex-, and ethnicity-matched healthy controls (n = 143). Associations between GSK3beta polymorphisms and regional GM volume differences. Variation in GM volume was associated with GSK3beta polymorphisms; the most significant associations were found for rs6438552, a putative functional intronic SNP that showed 3 significant GM clusters in the right and left superior temporal gyri and the right hippocampus (P < .001, P = .02, and P = .02, respectively, corrected for multiple comparisons across the whole brain). Similar results were obtained with rs12630592, an SNP in high linkage disequilibrium. A significant SNP x MDD status interaction was observed for the effect on GM volumes in the right hippocampus and superior temporal gyri (P < .001 and P = .01, corrected, respectively). The GSK3beta gene may have a role in determining regional GM volume differences of the right hippocampus and bilateral superior temporal gyri. The association between genotype and brain structure was specific to the patients with MDD, suggesting that GSK3beta genotypes might interact with MDD status. We speculate that this is a consequence of regional neocortical, glial, or neuronal growth or survival. In considering core cognitive features of MDD, the association of GSK3beta polymorphisms with structural variation in the temporal lobe and hippocampus is of particular interest in the context of other evidence for structural and functional abnormalities in the hippocampi of patients with MDD.
Yoto, A; Murao, S; Motoki, M; Yokoyama, Y; Horie, N; Takeshima, K; Masuda, K; Kim, M; Yokogoshi, H
2012-09-01
γ-Aminobutyric acid (GABA) is a kind of amino acid contained in green tea leaves and other foods. Several reports have shown that GABA might affect brain protein synthesis, improve many brain functions such as memory and study capability, lower the blood pressure of spontaneously hypertensive rats, and may also have a relaxation effect in humans. However, the evidence for its mood-improving function is still not sufficient. In this study, we investigated how the oral intake of GABA influences human adults psychologically and physiologically under a condition of mental stress. Sixty-three adults (28 males, 35 females) participated in a randomized, single blind, placebo-controlled, crossover-designed study over two experiment days. Capsules containing 100 mg of GABA or dextrin as a placebo were used as test samples. The results showed that EEG activities including alpha band and beta band brain waves decreased depending on the mental stress task loads, and the condition of 30 min after GABA intake diminished this decrease compared with the placebo condition. That is to say, GABA might have alleviated the stress induced by the mental tasks. This effect also corresponded with the results of the POMS scores.
Pre-stimulus EEG oscillations correlate with perceptual alternation of speech forms.
Barraza, Paulo; Jaume-Guazzini, Francisco; Rodríguez, Eugenio
2016-05-27
Speech perception is often seen as a passive process guided by physical stimulus properties. However, ongoing brain dynamics could influence the subsequent perceptual organization of the speech, to an as yet unknown extent. To elucidate this issue, we analyzed EEG oscillatory activity before and immediately after the repetitive auditory presentation of words inducing the so-called verbal transformation effect (VTE), or spontaneous alternation of meanings due to its rapid repetition. Subjects indicated whether the meaning of the bistable word changed or not. For the Reversal more than for the Stable condition, results show a pre-stimulus local alpha desynchronization (300-50ms), followed by an early post-stimulus increase of local beta synchrony (0-80ms), and then a late increase and decrease of local alpha (200-340ms) and beta (360-440ms) synchrony respectively. Additionally, the ERPs showed that reversal positivity (RP) and reversal negativity components (RN), along with a late positivity complex (LPC) correlate with switching between verbal forms. Our results show how the ongoing dynamics brain is actively involved in the perceptual organization of the speech, destabilizing verbal perceptual states, and facilitating the perceptual regrouping of the elements composing the linguistic auditory stimulus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Thomas, Peedikayil E; Peters-Golden, Marc; White, Eric S; Thannickal, Victor J; Moore, Bethany B
2007-08-01
Myofibroblasts are pathogenic in pulmonary fibrotic disease due to their exuberant production of matrix rich in collagen that interferes with gas exchange and the ability of these cells to contract and distort the alveolar space. Transforming growth factor-beta1 (TGF-beta1) is a well-known inducer of myofibroblast differentiation. TGF-beta1-induced transformation of fibroblasts to apoptosis-resistant myofibroblasts is adhesion-dependent and focal adhesion kinase (FAK)-mediated. Prostaglandin E(2) (PGE(2)) inhibits this differentiation via E prostanoid receptor 2 (EP2) signaling and cAMP elevation, but whether PGE(2) does so by interfering with TGF-beta1 signaling is unknown. Thus we examined the effects of PGE(2) in the presence and absence of TGF-beta1 stimulation on candidate signaling pathways in human lung fibroblasts. We now demonstrate that PGE(2) does not interfere with TGF-beta1-induced Smad phosphorylation or its translocation to the nucleus. Rather, PGE(2) has dramatic effects on cell shape and cytoskeletal architecture and disrupts the formation of appropriate focal adhesions. PGE(2) treatment diminishes TGF-beta1-induced phosphorylation of paxillin, STAT-3, and FAK and, in turn, limits activation of the protein kinase B (PKB/Akt) pathway. These alterations do not, however, result in increased apoptosis within the first 24 h of treatment. Interestingly, the effects of PGE(2) stimulation alone do not always mirror the effects of PGE(2) in the presence of TGF-beta1, indicating that the context for EP2 signaling is different in the presence of TGF-beta1. Taken together, our results demonstrate that PGE(2) has the potential to limit TGF-beta1-induced myofibroblast differentiation via adhesion-dependent, but Smad-independent, pathways.
Jiao, S-S; Shen, L-L; Zhu, C; Bu, X-L; Liu, Y-H; Liu, C-H; Yao, X-Q; Zhang, L-L; Zhou, H-D; Walker, D G; Tan, J; Götz, J; Zhou, X-F; Wang, Y-J
2016-01-01
Reduced expression of brain-derived neurotrophic factor (BDNF) has a crucial role in the pathogenesis of Alzheimer's disease (AD), which is characterized with the formation of neuritic plaques consisting of amyloid-beta (Aβ) and neurofibrillary tangles composed of hyperphosphorylated tau protein. A growing body of evidence indicates a potential protective effect of BDNF against Aβ-induced neurotoxicity in AD mouse models. However, the direct therapeutic effect of BDNF supplement on tauopathy in AD remains to be established. Here, we found that the BDNF level was reduced in the serum and brain of AD patients and P301L transgenic mice (a mouse model of tauopathy). Intralateral ventricle injection of adeno-associated virus carrying the gene encoding human BDNF (AAV-BDNF) achieved stable expression of BDNF gene and restored the BDNF level in the brains of P301L mice. Restoration of the BDNF level attenuated behavioral deficits, prevented neuron loss, alleviated synaptic degeneration and reduced neuronal abnormality, but did not affect tau hyperphosphorylation level in the brains of P301L mice. Long-term expression of AAV-BDNF in the brain was well tolerated by the mice. These findings suggest that the gene delivery of BDNF is a promising treatment for tau-related neurodegeneration for AD and other neurodegenerative disorders with tauopathy. PMID:27701410
Pathological changes in Alzheimer"s brain evaluated with fluorescence emission analysis (FEA)
NASA Astrophysics Data System (ADS)
Christov, Alexander; Ottman, Todd; Grammas, Paula
2004-07-01
Development of AD is associated with cerebrovascular deposition of amyloid beta (Aβ) as well as a progressive increase in vasular collagen content. Both AΒ and collagen are naturally fluorescent compounds when exposed to UV light. We analyzed autofluorescence emitted from brain tissue samples and isolated brain resistance vessels harvested postmortem from patients with Alzheimer's disease (AD) and age-matched controls. Fluorescence emission, excited at 355 nm with an Nd:YAG laser, was measured using a fiber-optic based fluorescence spectroscopic system for tissue analysis. Significantly higher values of fluorescence emission intensity (P<0.001) in the spectral region from 465 to 490 nm were detected in brain resistance vessel samples from AD patients compared to the normal individuals. Results from western blot analysis showed elevated levels of type I and type III collagen, and reduced levels of type IV collagen in resistance vessels from AD patients, compared to control samples. In addition, using direct scanning of the cortical suface for fluoresxcence emission by the laser-induced fluorescence spectroscopy system we detected a significantly (P<0.05) higher level of apoptosis in AD brain tissue compared to age-matched controls. Fluorescence emission analysis (FEA) appears to be a sensitive technique for detecting structural changes in AD brain tissue.
Portilho, Débora M; Martins, Eliane R; Costa, Manoel L; Mermelstein, Cláudia S
2007-12-22
Cholesterol is one of the major lipids of plasma membranes. Recently, we have shown that cholesterol depletion by methyl-beta-cyclodextrin (M beta CD) induces the activation of the Wnt/beta-catenin pathway and enhances myogenic differentiation. Here, we show that M beta CD-conditioned media accelerates myogenesis in a similar way as M beta CD does, suggesting that the effects induced by M beta CD could be caused by soluble factors present in the culture medium. Soluble Wnt-3 protein is significantly enhanced in M beta CD-conditioned medium. Wnt-3a-enriched media induces myogenesis as much as M beta CD does, whereas Wnt-5a-enriched media inhibits. We suggest that Wnt-3a is involved in the myogenic induction observed after cholesterol depletion.
High LET Radiation Can Enhance TGF(Beta) Induced EMT and Cross-Talk with ATM Pathways
NASA Technical Reports Server (NTRS)
Wang, Minli; Hada, Megumi; Huff, Janice; Pluth, Janice M.; Anderson, Janniffer; ONeill, Peter; Cucinotta, Francis A.
2010-01-01
The TGF(Beta) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation in mammary epithelial cells. We investigated possible interactions between the TGF(Beta) and ATM pathways following simulated space radiation using hTERT immortalized human esophageal epithelial cells (EPC-hTERT), mink lung epithelial cells (Mv1lu), and several human fibroblast cell lines. TGF(Beta) is a key modulator of the Epithelial-Mesenchymal Transition (EMT), important in cancer progression and metastasis. The implication of EMT by radiation also has several lines of developing evidence, however is poorly understood. The identification of TGF(Beta) induced EMT can be shown in changes to morphology, related gene over expression or down regulation, which can be detected by RT-PCR, and immunostaining and western blotting. In this study, we have observed morphologic and molecular alternations consistent with EMT after Mv1lu cells were treated with TGF(Beta) High LET radiation enhanced TGF(Beta) mediated EMT with a dose as low as 0.1Gy. In order to consider the TGF(Beta) interaction with ATM we used a potent ATM inhibitor Ku55933 and investigated gene expression changes and Smad signaling kinetics. Ku559933 was observed to reverse TGF(Beta) induced EMT, while this was not observed in dual treated cells (radiation+TGF(Beta)). In EPC-hTERT cells, TGF(Beta) alone was not able to induce EMT after 3 days of application. A combined treatment with high LET, however, significantly caused the alteration of EMT markers. To study the function of p53 in the process of EMT, we knocked down P53 through RNA interference. Morphology changes associated with EMT were observed in epithelial cells with silenced p53. Our study indicates: high LET radiation can enhance TGF(Beta) induced EMT; while ATM is triggering the process of TGF(Beta)-induced EMT, p53 might be an essential repressor for EMT phenotypes.
Capone, F; Aloisi, A M; Carli, G; Sacerdote, P; Pavone, F
1999-06-05
In the present investigation, the antinociceptive effects of the muscarinic cholinergic agonist, oxotremorine, were evaluated in rats using the formalin test. In Expt. 1, two oxotremorine concentrations (0.1 and 0.2 mg/kg) and two administration times (15 and 1 min before formalin injection) were chosen. All spontaneous and formalin-evoked behavioral responses were considered. In Expt. 2, only the higher concentration of oxotremorine (0.2 mg/kg) was administered 15 or 1 min before the formalin test. The animals were killed 15, 30 or 60 min after formalin treatment. Blood was collected from the trunk to determine corticosterone plasma levels. Some brain areas (hypothalamus, septum and periaqueductal gray matter) were dissected for determination of the beta-endorphin content. Oxotremorine induced a dose- and time-dependent reduction of all formalin-evoked responses: licking was decreased during both the first and second phases of the formalin test, flexing was decreased during the second phase by the higher concentration only and paw-jerk was decreased during the first phase by both concentrations. Rearing and line-crossing were significantly decreased by oxotremorine while exploratory activity was only partially reduced; self-grooming was increased. These effects on exploratory activity and self-grooming were abolished by formalin treatment. beta-endorphin content in the septum was increased by oxotremorine administered 15 min, but not 1 min, before formalin-treatment. beta-endorphin in the hypothalamus increased in all formalin-treated groups independently of oxotremorine administration. These results confirm, and extend to tonic pain, the analgesic effect exerted by oxotremorine on phasic responses. Because of the different effects on each formalin-induced response, they also indicate both spinal and supraspinal CNS sites of action. Copyright 1999 Elsevier Science B.V.
Gharavi, E E; Chaimovich, H; Cucurull, E; Celli, C M; Tang, H; Wilson, W A; Gharavi, A E
1999-01-01
We previously induced pathogenic antibodies against anionic phospholipids (PL) in experimental animals by immunization with lipid-free purified human beta2glycoprotein I (beta2GPI). We hypothesized that antiphospholipid antibodies (aPL) are induced by in vivo binding of foreign beta2GPI to self-PL, thus forming an immunogenic complex against which aPL antibodies are produced. If this hypothesis is true, other PL-binding proteins that are products of ubiquitous viral/bacterial agents may also induce aPL. To test this hypothesis, groups of NIH/Swiss mice were immunized with synthetic peptides of viral and bacterial origin that share structural similarity with the putative PL-binding region of beta2GPI. Compared with the control groups, animals immunized with the peptides produced significantly higher levels of aPL and anti-beta2GPI antibodies. These findings demonstrate that some PL-binding viral and bacterial proteins function like beta2GPI in inducing aPL and anti-beta2GPI production, and are consistent with a role for such viral and bacterial proteins in inducing aPL antibody production in humans.
Jaeger, Laura B; Dohgu, Shinya; Hwang, Mark C; Farr, Susan A; Murphy, M Paul; Fleegal-DeMotta, Melissa A; Lynch, Jessica L; Robinson, Sandra M; Niehoff, Michael L; Johnson, Steven N; Kumar, Vijaya B; Banks, William A
2009-01-01
Decreased clearance is the main reason amyloid-beta protein (Abeta) is increased in the brains of patients with Alzheimer's disease (AD). The neurovascular hypothesis states that this decreased clearance is caused by impairment of low density lipoprotein receptor related protein-1 (LRP-1), the major brain-to-blood transporter of Abeta at the blood-brain barrier (BBB). As deletion of the LRP-1 gene is a lethal mutation, we tested the neurovascular hypothesis by developing a cocktail of phosphorothioate antisenses directed against LRP-1 mRNA. We found these antisenses in comparison to random antisense selectively decreased LRP-1 expression, reduced BBB clearance of Abeta42, increased brain levels of Abeta42, and impaired learning ability and recognition memory in mice. These results support dysfunction of LRP-1 at the BBB as a mechanism by which brain levels of Abeta could increase and AD would be promoted.
Ullner, Paivi M; Di Nardo, Alessia; Goldman, James E; Schobel, Scott; Yang, Hong; Engelstad, Kristin; Wang, Dong; Sahin, Mustafa; De Vivo, Darryl C
2009-10-01
Glucose transporter type 1 (Glut-1) facilitates glucose flux across the blood-brain-barrier. In humans, Glut-1 deficiency causes acquired microcephaly, seizures and ataxia, which are recapitulated in our Glut-1 haploinsufficient mouse model. Postnatal brain weight deceleration and development of reactive astrogliosis were significant by P21 in Glut-1(+/-) mice. The brain weight differences remained constant after P21 whereas the reactive astrocytosis continued to increase and peaked at P90. Brain immunoblots showed increased phospho-mTOR and decreased phospho-GSK3-beta by P14. After fasting, the mature Glut-1(+/-) females showed a trend towards elevated phospho-GSK3-beta, a possible neuroprotective response. Lithium chloride treatment of human skin fibroblasts from control and Glut-1 DS patients produced a 45% increase in glucose uptake. Brain imaging of mature Glut-1(+/-) mice revealed a significantly decreased hippocampal volume. These subtle immunochemical changes reflect chronic nutrient deficiency during brain development and represent the experimental correlates to the human neurological phenotype associated with Glut-1 DS.
Cheneval, D; Ramage, P; Kastelic, T; Szelestenyi, T; Niggli, H; Hemmig, R; Bachmann, M; MacKenzie, A
1998-07-10
Perregaux and Gabel (Perregaux, D., and Gabel, C. A. (1994) J. Biol. Chem. 269, 15195-15203) reported that potassium depletion of lipopolysaccharide-stimulated mouse macrophages induced by the potassium ionophore, nigericin, leads to the rapid release of mature interleukin-1beta (IL-1beta). We have now shown a similar phenomenon in lipopolysaccharide-stimulated human monocytic leukemia THP-1 cells. Rapid secretion of mature, 17-kDa IL-1beta occurred, in the presence of nigericin (4-16 microM). No effects on the release of tumor necrosis factor-alpha, IL-6, or proIL-1beta were seen. Addition of the irreversible interleukin-1beta-converting enzyme (ICE) inhibitor, Z-Val-Ala-Asp-dichlorobenzoate, or a radicicol analog, inhibited nigericin-induced mature IL-1beta release and activation of p45 ICE precursor. The radicicol analog itself did not inhibit ICE, but markedly, and very rapidly depleted intracellular levels of 31-kDa proIL-1beta. By contrast, dexamethasone, cycloheximide, and the Na+/H+ antiporter inhibitor, 5-(N-ethyl-N-isopropyl)amiloride, had no effect on nigericin-induced release of IL-1beta. We have therefore shown conclusively, for the first time, that nigericin-induced release of IL-1beta is dependent upon activation of p45 ICE processing. So far, the mechanism by which reduced intracellular potassium ion concentration triggers p45 ICE processing is not known, but further investigation in this area could lead to the discovery of novel molecular targets whereby control of IL-1beta production might be effected.
Krause, Daniela; Folkerts, Malte; Karch, Susanne; Keeser, Daniel; Chrobok, Agnieszka I; Zaudig, Michael; Hegerl, Ulrich; Juckel, Georg; Pogarell, Oliver
2015-01-01
The issue of predicting treatment response and identifying, in advance, which patient will profit from treating obsessive-compulsive disorder (OCD) seems to be an elusive goal. This prospective study investigated brain electric activity [using Low-Resolution Brain Electromagnetic Tomography (LORETA)] for the purpose of predicting response to treatment. Forty-one unmedicated patients with a DSM-IV diagnosis of OCD were included. A resting 32-channel EEG was obtained from each participant before and after 10 weeks of standardized treatment with sertraline and behavioral therapy. LORETA was used to localize the sources of brain electrical activity. At week 10, patients were divided into responders and non-responders (according to a reduction of symptom severity >50% on the Y-BOCS). LORETA analysis revealed that at baseline responders showed compared to non-responders a significantly lower brain electric activity within the beta 1 (t = 2.86, p < 0.05), 2 (t = 2.81, p < 0.05), and 3 (t = 2.76, p < 0.05) frequency bands and ROI analysis confirmed a reduced activity in alpha 2 (t = 2.06, p < 0.05) in the anterior cingulate cortex (ACC). When baseline LORETA data were compared to follow-up data, the analysis showed in the responder group a significantly lower brain electrical resting activity in the beta 1 (t = 3.17. p < 0.05) and beta 3 (t = 3.11. p < 0.05) frequency bands and equally for the ROI analysis of the orbitofrontal cortex (OFC) in the alpha 2 (t = 2.15. p < 0.05) frequency band. In the group of non-responders the opposite results were found. In addition, a positive correlation between frequency alpha 2 (rho = 0.40, p = 0.010), beta 3 (rho = 0.42, p = 0.006), delta (rho = 0.33, p = 0.038), theta (rho = 0.34, p = 0.031), alpha 1 (rho = 0.38, p = 0.015), and beta1 (rho = 0.34, p = 0.028) of the OFC and the bands delta (rho = 0.33, p = 0.035), alpha 1 (rho = 0.36, p = 0.019), alpha 2 (rho = 0.34, p = 0.031), and beta 3 (rho = 0.38, p = 0.015) of the ACC with a reduction of the Y-BOCS scores was identified. Our results suggest that measuring brain activity with LORETA could be an efficient and applicable technique to prospectively identify treatment responders in OCD.
Krause, Daniela; Folkerts, Malte; Karch, Susanne; Keeser, Daniel; Chrobok, Agnieszka I.; Zaudig, Michael; Hegerl, Ulrich; Juckel, Georg; Pogarell, Oliver
2016-01-01
The issue of predicting treatment response and identifying, in advance, which patient will profit from treating obsessive-compulsive disorder (OCD) seems to be an elusive goal. This prospective study investigated brain electric activity [using Low-Resolution Brain Electromagnetic Tomography (LORETA)] for the purpose of predicting response to treatment. Forty-one unmedicated patients with a DSM-IV diagnosis of OCD were included. A resting 32-channel EEG was obtained from each participant before and after 10 weeks of standardized treatment with sertraline and behavioral therapy. LORETA was used to localize the sources of brain electrical activity. At week 10, patients were divided into responders and non-responders (according to a reduction of symptom severity >50% on the Y-BOCS). LORETA analysis revealed that at baseline responders showed compared to non-responders a significantly lower brain electric activity within the beta 1 (t = 2.86, p < 0.05), 2 (t = 2.81, p < 0.05), and 3 (t = 2.76, p < 0.05) frequency bands and ROI analysis confirmed a reduced activity in alpha 2 (t = 2.06, p < 0.05) in the anterior cingulate cortex (ACC). When baseline LORETA data were compared to follow-up data, the analysis showed in the responder group a significantly lower brain electrical resting activity in the beta 1 (t = 3.17. p < 0.05) and beta 3 (t = 3.11. p < 0.05) frequency bands and equally for the ROI analysis of the orbitofrontal cortex (OFC) in the alpha 2 (t = 2.15. p < 0.05) frequency band. In the group of non-responders the opposite results were found. In addition, a positive correlation between frequency alpha 2 (rho = 0.40, p = 0.010), beta 3 (rho = 0.42, p = 0.006), delta (rho = 0.33, p = 0.038), theta (rho = 0.34, p = 0.031), alpha 1 (rho = 0.38, p = 0.015), and beta1 (rho = 0.34, p = 0.028) of the OFC and the bands delta (rho = 0.33, p = 0.035), alpha 1 (rho = 0.36, p = 0.019), alpha 2 (rho = 0.34, p = 0.031), and beta 3 (rho = 0.38, p = 0.015) of the ACC with a reduction of the Y-BOCS scores was identified. Our results suggest that measuring brain activity with LORETA could be an efficient and applicable technique to prospectively identify treatment responders in OCD. PMID:26834658
GSK-3beta inhibition enhances sorafenib-induced apoptosis in melanoma cell lines.
Panka, David J; Cho, Daniel C; Atkins, Michael B; Mier, James W
2008-01-11
Glycogen synthase kinase-3beta (GSK-3beta) can participate in the induction of apoptosis or, alternatively, provide a survival signal that minimizes cellular injury. We previously demonstrated that the multikinase inhibitor sorafenib induces apoptosis in melanoma cell lines. In this report, we show that sorafenib activates GSK-3beta in multiple subcellular compartments and that this activation undermines the lethality of the drug. Pharmacologic inhibition and/or down-modulation of the kinase enhances sorafenib-induced apoptosis as determined by propidium iodide staining and by assessing the mitochondrial release of apoptosis-inducing factor and Smac/DIABLO. Conversely, the forced expression of a constitutively active form of the enzyme (GSK-3beta(S9A)) protects the cells from the apoptotic effects of the drug. This protective effect is associated with a marked increase in basal levels of Bcl-2, Bcl-x(L), and survivin and a diminution in the degree to which these anti-apoptotic proteins are down-modulated by sorafenib exposure. Sorafenib down-modulates the pro-apoptotic Bcl-2 family member Noxa in cells with high constitutive GSK-3beta activity. Pharmacologic inhibition of GSK-3beta prevents the disappearance of Noxa induced by sorafenib and enhances the down-modulation of Mcl-1. Down-modulation of Noxa largely eliminates the enhancing effect of GSK-3 inhibition on sorafenib-induced apoptosis. These data provide a strong rationale for the use of GSK-3beta inhibitors as adjuncts to sorafenib treatment and suggest that preservation of Noxa may contribute to their efficacy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasuri, Francesco; Capizzi, Elisa; Bellavista, Elena
Despite the central role of proteasomes in relevant physiological pathways and pathological processes, this topic is unexpectedly largely unexplored in human liver. Here we present data on the presence of proteasome and immunoproteasome in human livers from normal adults, fetuses and patients affected by major hepatic diseases such as cirrhosis and chronic active hepatitis. Immunohistochemistry for constitutive ({alpha}4 and {beta}1) and inducible (LMP2 and LMP7) proteasome subunits, and for the PA28{alpha}{beta} regulator, was performed in liver samples from 38 normal subjects, 6 fetuses, 2 pediatric cases, and 19 pathological cases (10 chronic active hepatitis and 9 cirrhosis). The immunohistochemical datamore » have been validated and quantified by Western blotting analysis. The most striking result we found was the concomitant presence in hepatocyte cytoplasm of all healthy subjects, including the pediatric cases, of constitutive proteasome and immunoproteasome subunits, as well as PA28{alpha}{beta}. At variance, immunoproteasome was not present in hepatocytes from fetuses, while a strong cytoplasmic and nuclear positivity for LMP2 and LMP7 was found in pathological samples, directly correlated to the histopathological grade of inflammation. At variance from other organs such as the brain, immunoproteasome is present in livers from normal adult and pediatric cases, in apparent absence of pathological processes, suggesting the presence of a peculiar regulation of the proteasome/immunoproteasome system, likely related to the physiological stimuli derived from the gut microbiota after birth. Other inflammatory stimuli contribute in inducing high levels of immunoproteasome in pathological conditions, where its role deserve further attention.« less
Escherichia coli K1 induces IL-8 expression in human brain microvascular endothelial cells.
Galanakis, Emmanouil; Di Cello, Francescopaolo; Paul-Satyaseela, Maneesh; Kim, Kwang Sik
2006-12-01
Microbial penetration of the blood-brain barrier (BBB) into the central nervous system is essential for the development of meningitis. Considerable progress has been achieved in understanding the pathophysiology of meningitis, however, relatively little is known about the early inflammatory events occurring at the time of bacterial crossing of the BBB. We investigated, using real-time quantitative PCR, the expression of the neutrophil chemoattractants alpha-chemokines CXCL1 (Groalpha) and CXCL8 (IL-8), and of the monocyte chemoattractant beta-chemokine CCL2 (MCP-1) by human brain microvascular endothelial cells (HBMEC) in response to the meningitis-causing E. coli K1 strain RS218 or its isogenic mutants lacking the ability to bind to and invade HBMEC. A nonpathogenic, laboratory E. coli strain HB101 was used as a negative control. CXCL8 was shown to be significantly expressed in HBMEC 4 hours after infection with E. coli K1, while no significant alterations were noted for CXCL1 and CCL2 expression. This upregulation of CXCL8 was induced by E. coli K1 strain RS218 and its derivatives lacking the ability to bind and invade HBMEC, but was not induced by the laboratory strain HB101. In contrast, no upregulation of CXCL8 was observed in human umbilical vein endothelial cells (HUVEC) after stimulation with E. coli RS218. These findings indicate that the CXCL8 expression is the result of the specific response of HBMEC to meningitis-causing E. coli K1.
Chen, R H; Su, Y H; Chuang, R L; Chang, T Y
1998-10-15
Insulin and insulin receptor substrate 1 (IRS-1) are capable of protecting liver cells from apoptosis induced by transforming growth factor-beta1 (TGF-beta). The Ras/mitogen-activated protein kinase (MAP kinase) and the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathways are both activated upon insulin stimulation and can protect against apoptosis under certain circumstances. We investigated which of these pathways is responsible for the protective effect of insulin on TGF-beta-induced apoptosis. An activated Ras, although elicited a strong mitogenic effect, could not protect Hep3B cells from TGF-beta-induced apoptosis. Furthermore, PD98059, a selective inhibitor of MEK, did not suppress the antiapoptotic effect of insulin. In contrast, the PI 3-kinase inhibitor, LY294002, efficiently blocked the effect of insulin. Protection against TGF-beta-induced apoptosis conferred by PI 3-kinase was further verified by stable transfection of an activated PI 3-kinase. Downstream targets of PI 3-kinase involved in this protection was further investigated. An activated Akt mimicked the antiapoptotic effect of insulin, whereas a dominant-negative Akt inhibited such effect. However, rapamycin, the p70S6 kinase inhibitor, had no effect on the protectivity of insulin against TGF-beta-induced apoptosis, suggesting that the antiapoptotic target of PI 3-kinase/Akt pathway is independent or lies upstream of the p70S6 kinase. The mechanism by which PI 3-kinase/Akt pathway interferes with the apoptotic signaling of TGF-beta was explored. Activation of PI 3-kinase did not lead to a suppression of Smad hetero-oligomerization or nuclear translocation but blocked TGF-beta-induced caspase-3-like activity. In summary, the PI 3-kinase/Akt pathway, but not the Ras/MAP kinase pathway, protects against TGF-beta-induced apoptosis by inhibiting a step downstream of Smad but upstream of caspase-3.
Selective intraarterial gene delivery into a canine meningioma.
Chauvet, A E; Kesava, P P; Goh, C S; Badie, B
1998-05-01
The goal of this study was to evaluate gene delivery to a benign brain tumor. A recombinant adenovirus vector bearing the Escherichia coli beta-galactosidase reporter gene was selectively injected into the vascular supply of a spontaneously occurring canine olfactory groove meningioma. The tumor and a small amount of peritumoral brain tissue were removed 5 days after viral injection and stained with X-Gal to assess gene delivery. The authors noted significant beta-galactosidase gene expression by the tumor, but not by surrounding brain tissue. No obvious viral-related cytotoxicity was noted. The authors found that meningiomas can be successfully transduced by adenovirus vectors by using endovascular techniques.
beta-Endorphin-induced analgesia is inhibited by synthetic analogs of beta-endorphin.
Nicolas, P; Hammonds, R G; Li, C H
1984-05-01
Competitive antagonism of human beta-endorphin (beta h-EP)-induced analgesia by synthetic beta h-EP analogs with high in vitro opiate receptor binding to in vivo analgesic potency ratio has been demonstrated. A parallel shift of the dose-response curve for analgesia to the right was observed when either beta h-EP or [ Trp27 ] -beta h-EP was coinjected with various doses of [Gln8, Gly31 ]-beta h-EP-Gly-Gly-NH2, [Arg9,19,24,28,29]-beta h-EP, or [ Cys11 ,26, Phe27 , Gly31 ]-beta h-EP. It was estimated that the most potent antagonist, [Gln8, Gly31 ]-beta h-EP-Gly-NH2, is at least 200 times more potent than naloxone.
Alcohol Affects the Brain's Resting-State Network in Social Drinkers
Lithari, Chrysa; Klados, Manousos A.; Pappas, Costas; Albani, Maria; Kapoukranidou, Dorothea; Kovatsi, Leda
2012-01-01
Acute alcohol intake is known to enhance inhibition through facilitation of GABAA receptors, which are present in 40% of the synapses all over the brain. Evidence suggests that enhanced GABAergic transmission leads to increased large-scale brain connectivity. Our hypothesis is that acute alcohol intake would increase the functional connectivity of the human brain resting-state network (RSN). To test our hypothesis, electroencephalographic (EEG) measurements were recorded from healthy social drinkers at rest, during eyes-open and eyes-closed sessions, after administering to them an alcoholic beverage or placebo respectively. Salivary alcohol and cortisol served to measure the inebriation and stress levels. By calculating Magnitude Square Coherence (MSC) on standardized Low Resolution Electromagnetic Tomography (sLORETA) solutions, we formed cortical networks over several frequency bands, which were then analyzed in the context of functional connectivity and graph theory. MSC was increased (p<0.05, corrected with False Discovery Rate, FDR corrected) in alpha, beta (eyes-open) and theta bands (eyes-closed) following acute alcohol intake. Graph parameters were accordingly altered in these bands quantifying the effect of alcohol on the structure of brain networks; global efficiency and density were higher and path length was lower during alcohol (vs. placebo, p<0.05). Salivary alcohol concentration was positively correlated with the density of the network in beta band. The degree of specific nodes was elevated following alcohol (vs. placebo). Our findings support the hypothesis that short-term inebriation considerably increases large-scale connectivity in the RSN. The increased baseline functional connectivity can -at least partially- be attributed to the alcohol-induced disruption of the delicate balance between inhibitory and excitatory neurotransmission in favor of inhibitory influences. Thus, it is suggested that short-term inebriation is associated, as expected, to increased GABA transmission and functional connectivity, while long-term alcohol consumption may be linked to exactly the opposite effect. PMID:23119078
Expression of Notch pathway genes in mammalian epidermis and modulation by beta-catenin.
Ambler, Carrie A; Watt, Fiona M
2007-06-01
The Notch pathway is required for hair follicle maintenance and is activated through beta-catenin induced transcription of the Notch ligand Jagged1. We show that hair follicles in the resting phase express low levels of Jagged1 and Hes1, and other Notch target genes are undetectable. In growing (anagen) follicles, Jagged1 and Hes1 expression increases, Hes5 and HeyL are expressed in distinct cell layers, and Hey2 is expressed in the dermal papilla. When beta-catenin is activated by means of an inducible transgene, Jagged1, Hes1, Hes5, HeyL, and Hey2 are up-regulated, the sites of expression being the same in beta-catenin induced ectopic follicles as in anagen follicles. beta-Catenin also induces Hey1 in dermal papilla cells. beta-Catenin-induced up-regulation of Jagged1 precedes induction of other Notch target genes. The different sites of expression of Hes and Hey genes suggest input from additional signaling pathways. Copyright 2007 Wiley-Liss, Inc.
Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit.
Rettig, J; Heinemann, S H; Wunder, F; Lorra, C; Parcej, D N; Dolly, J O; Pongs, O
1994-05-26
Structural and functional diversity of voltage-gated Kv1-type potassium channels in rat brain is enhanced by the association of two different types of subunits, the membrane-bound, poreforming alpha-subunits and a peripheral beta-subunit. We have cloned a beta-subunit (Kv beta 1) that is specifically expressed in the rat nervous system. Association of Kv beta 1 with alpha-subunits confers rapid A-type inactivation on non-inactivating Kv1 channels (delayed rectifiers) in expression systems in vitro. This effect is mediated by an inactivating ball domain in the Kv beta 1 amino terminus.
Murata, T; Takizawa, T; Funaba, M; Fujimura, H; Murata, E; Takahashi, M; Torii, K
1997-02-01
Inhibins (alpha-beta(A) and alpha-beta(B)) and activins (beta(A)-beta(A), beta(A)-beta(B) and beta(B)-beta(B)) were originally isolated from ovarian follicular fluids as FSH secretion modifiers. Inhibin/activin subunits, alpha, beta(A) and beta(B), are widely distributed in several tissues, including gonads and brain, and inhibins and activins have been reported to be involved in ovarian or hypothalamic functions. In this study, we established and employed a competitive RT-PCR assay system for rat inhibin/activin subunits by capillary electrophoresis to determine rat hypothalamic and ovarian inhibin/activin subunit mRNA levels during the estrous cycle. Linearity of standards for alpha, beta(A), and beta(B) subunit assays were between 0.01-0.3 amol, 0.003-0.09 amol and 0.002-0.02 amol of each fragment DNA as a standard, respectively. Hypothalamic beta(A) subunit mRNA during the estrous morning (1000 h) tended to be increased compared with that of the proestrous evening (1700 h), although they were not significantly different. Ovarian alpha subunit mRNA levels tended to be increased during the proestrous morning (1000 h) and were significantly increased in the proestrous evening (1700 h), compared with diestrus and estrus (P < 0.05). Ovarian beta(A) subunit mRNA was also significantly higher in the proestrous evening, compared with diestrus and estrus (P < 0.05), but in the case of beta(B) subunit mRNA there was no difference among diestrus, proestrus and estrus. We thus established a sensitive competitive RT-PCR system for the measurement of inhibin/activin alpha, beta(A) and beta(B) subunits, and this assay system would be helpful for the study of inhibin/activin action in brain and other tissues where these factors are expressed at low levels.
Expression of beta-expansins is correlated with internodal elongation in deepwater rice.
Lee, Y; Kende, H
2001-10-01
Fourteen putative rice (Oryza sativa) beta-expansin genes, Os-EXPB1 through Os-EXPB14, were identified in the expressed sequence tag and genomic databases. The DNA and deduced amino acid sequences are highly conserved in all 14 beta-expansins. They have a series of conserved C (cysteine) residues in the N-terminal half of the protein, an HFD (histidine-phenylalanine-aspartate) motif in the central region, and a series of W (tryptophan) residues near the carboxyl terminus. Five beta-expansin genes are expressed in deepwater rice internodes, with especially high transcript levels in the growing region. Expression of four beta-expansin genes in the internode was induced by treatment with gibberellin and by wounding. The wound response resulted from excising stem sections or from piercing pinholes into the stem of intact plants. The level of wound-induced beta-expansin transcripts declined rapidly 5 h after cutting of stem sections. We conclude that the expression of beta-expansin genes is correlated with rapid elongation of deepwater rice internodes, it is induced by gibberellin and wounding, and wound-induced beta-expansin mRNA appears to turn over rapidly.
Dasdag, Suleyman; Akdag, Mehmet Zulkuf; Kizil, Goksel; Kizil, Murat; Cakir, Dilek Ulker; Yokus, Beran
2012-03-01
Recently, many studies have been carried out in relation to 900 MHz radiofrequency radiation (RF) emitted from a mobile phone on the brain. However, there is little data concerning possible mechanisms between long-term exposure of RF radiation and biomolecules in brain. Therefore, we aimed to investigate long-term effects of 900 MHz radiofrequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the rat brain. The study was carried out on 17 Wistar Albino adult male rats. The rat heads in a carousel were exposed to 900 MHz radiofrequency radiation emitted from a generator, simulating mobile phones. For the study group (n: 10), rats were exposed to the radiation 2 h per day (7 days a week) for 10 months. For the sham group (n: 7), rats were placed into the carousel and the same procedure was applied except that the generator was turned off. In this study, rats were euthanized after 10 months of exposure and their brains were removed. Beta amyloid protein, protein carbonyl, and malondialdehyde levels were found to be higher in the brain of rats exposed to 900 MHz radiofrequency radiation. However, only the increase of protein carbonyl in the brain of rats exposed to 900 MHz radiofrequency radiation was found to be statistically significant (p<0.001). In conclusion, 900 MHz radiation emitted from mobile/cellular phones can be an agent to alter some biomolecules such as protein. However, further studies are necessary.
Abila, B; Wilson, J F; Marshall, R W; Richens, A
1985-10-01
The effects of intravenous propranolol 100 micrograms kg-1, sotalol 500 micrograms kg-1, timolol 7.8 micrograms kg-1, atenolol 125 micrograms kg-1 and placebo on essential, physiological and isoprenaline-induced tremor were studied. These beta-adrenoceptor blocker doses produced equal reduction of standing-induced tachycardia in essential tremor patients. Atenolol produced significantly less reduction of essential and isoprenaline-induced tremor than the non-selective drugs, confirming the importance of beta 2-adrenoceptor blockade in these effects. Propranolol and sotalol produced equal maximal inhibition of isoprenaline-induced tremor but propranolol was significantly more effective in reducing essential tremor. The rate of development of the tremorolytic effect was similar in essential, physiological and isoprenaline-induced tremors but all tremor responses developed significantly more slowly than the heart rate responses. It is proposed that these results indicate that the tremorolytic activity of beta-adrenoceptor blockers in essential, physiological and isoprenaline-induced tremor is exerted via the same beta 2-adrenoceptors located in a deep peripheral compartment which is thought to be in the muscle spindles.
Abila, B; Wilson, J F; Marshall, R W; Richens, A
1985-01-01
The effects of intravenous propranolol 100 micrograms kg-1, sotalol 500 micrograms kg-1, timolol 7.8 micrograms kg-1, atenolol 125 micrograms kg-1 and placebo on essential, physiological and isoprenaline-induced tremor were studied. These beta-adrenoceptor blocker doses produced equal reduction of standing-induced tachycardia in essential tremor patients. Atenolol produced significantly less reduction of essential and isoprenaline-induced tremor than the non-selective drugs, confirming the importance of beta 2-adrenoceptor blockade in these effects. Propranolol and sotalol produced equal maximal inhibition of isoprenaline-induced tremor but propranolol was significantly more effective in reducing essential tremor. The rate of development of the tremorolytic effect was similar in essential, physiological and isoprenaline-induced tremors but all tremor responses developed significantly more slowly than the heart rate responses. It is proposed that these results indicate that the tremorolytic activity of beta-adrenoceptor blockers in essential, physiological and isoprenaline-induced tremor is exerted via the same beta 2-adrenoceptors located in a deep peripheral compartment which is thought to be in the muscle spindles. PMID:2866785
Synthesis and P-glycoprotein induction activity of colupulone analogs.
Bharate, Jaideep B; Batarseh, Yazan S; Wani, Abubakar; Sharma, Sadhana; Vishwakarma, Ram A; Kaddoumi, Amal; Kumar, Ajay; Bharate, Sandip B
2015-05-21
Brain amyloid-beta (Aβ) plaques are one of the primary hallmarks associated with Alzheimer's disease (AD) pathology. Efflux pump proteins located at the blood-brain barrier (BBB) have been reported to play an important role in the clearance of brain Aβ, among which the P-glycoprotein (P-gp) efflux transporter pump has been shown to play a crucial role. Thus, P-gp has been considered as a potential therapeutic target for treatment of AD. Colupulone, a prenylated phloroglucinol isolated from Humulus lupulus, is known to activate pregnane-X-receptor (PXR), which is a nuclear receptor controlling P-gp expression. In the present work, we aimed to synthesize and identify analogs of colupulone that are potent P-gp inducer(s) with an ability to enhance Aβ transport across the BBB. A series of colupulone analogs were synthesized by modifications at both prenyl as well as acyl domains. All compounds were screened for P-gp induction activity using a rhodamine 123 based efflux assay in the P-gp overexpressing human adenocarcinoma LS-180 cells, wherein all compounds showed significant P-gp induction activity at 5 μM. In the western blot studies in LS-180 cells, compounds 3k and 5f were able to induce P-gp as well as LRP1 at 1 μM. The effect of compounds on the Aβ uptake and transport was then evaluated. Among all tested compounds, diprenylated acyl phloroglucinol displayed a significant increase (29%) in Aβ transport across bEnd3 cells grown on inserts as a BBB model. The results presented here suggest the potential of this scaffold to enhance clearance of brain Aβ across the BBB and thus its promise for development as a potential anti-Alzheimer agent.
Gambaro, Sabrina E; Robert, Maria C; Tiribelli, Claudio; Gazzin, Silvia
2016-02-01
In the Crigler-Najjar type I syndrome, the genetic absence of efficient hepatic glucuronidation of unconjugated bilirubin (UCB) by the uridine 5'-diphospho-glucuronosyltransferase1A1 (UGT1A1) enzyme produces the rise of UCB level in blood. Its entry to central nervous system could generate toxicity and neurological damage, and even death. In the past years, a compensatory mechanism to liver glucuronidation has been indicated in the hepatic cytochromes P450 enzymes (Cyps) which are able to oxidize bilirubin. Cyps are expressed also in the central nervous system, the target of bilirubin toxicity, thus making them theoretically important to confer a protective activity toward bilirubin accumulation and neurotoxicity. We therefore investigated the functional induction (mRNA, EROD/MROD) and the ability to oxidize bilirubin of Cyp1A1, 1A2, and 2A3 in primary astrocytes cultures obtained from two rat brain region (cortex: Cx and cerebellum: Cll). We observed that Cyp1A1 was the Cyp isoform more easily induced by beta-naphtoflavone (βNF) in both Cx and Cll astrocytes, but oxidized bilirubin only after uncoupling by 3, 4,3',4'-tetrachlorobiphenyl (TCB). On the contrary, Cyp1A2 was the most active Cyp in bilirubin clearance without uncoupling, but its induction was confined only in Cx cells. Brain Cyp2A3 was not inducible. In conclusion, the exposure of astrocytes to βNF plus TCB significantly enhanced Cyp1A1 mediating bilirubin clearance, improving cell viability in both regions. These results may be a relevant groundwork for the manipulation of brain Cyps as a therapeutic approach in reducing bilirubin-induced neurological damage.
Pin1 promotes transforming growth factor-beta-induced migration and invasion.
Matsuura, Isao; Chiang, Keng-Nan; Lai, Chen-Yu; He, Dongming; Wang, Guannan; Ramkumar, Romila; Uchida, Takafumi; Ryo, Akihide; Lu, Kunping; Liu, Fang
2010-01-15
Transforming growth factor-beta (TGF-beta) regulates a wide variety of biological activities. It induces potent growth-inhibitory responses in normal cells but promotes migration and invasion of cancer cells. Smads mediate the TGF-beta responses. TGF-beta binding to the cell surface receptors leads to the phosphorylation of Smad2/3 in their C terminus as well as in the proline-rich linker region. The serine/threonine phosphorylation sites in the linker region are followed by the proline residue. Pin1, a peptidyl-prolyl cis/trans isomerase, recognizes phosphorylated serine/threonine-proline motifs. Here we show that Smad2/3 interacts with Pin1 in a TGF-beta-dependent manner. We further show that the phosphorylated threonine 179-proline motif in the Smad3 linker region is the major binding site for Pin1. Although epidermal growth factor also induces phosphorylation of threonine 179 and other residues in the Smad3 linker region the same as TGF-beta, Pin1 is unable to bind to the epidermal growth factor-stimulated Smad3. Further analysis suggests that phosphorylation of Smad3 in the C terminus is necessary for the interaction with Pin1. Depletion of Pin1 by small hairpin RNA does not significantly affect TGF-beta-induced growth-inhibitory responses and a number of TGF-beta/Smad target genes analyzed. In contrast, knockdown of Pin1 in human PC3 prostate cancer cells strongly inhibited TGF-beta-mediated migration and invasion. Accordingly, TGF-beta induction of N-cadherin, which plays an important role in migration and invasion, is markedly reduced when Pin1 is depleted in PC3 cells. Because Pin1 is overexpressed in many cancers, our findings highlight the importance of Pin1 in TGF-beta-induced migration and invasion of cancer cells.
2011-01-01
Background The aim of this study was to investigate the in vitro effects of the Fusarium fungus-derived mycotoxin, zearalenone and its derivatives alpha-zearalenol and beta-zearalenol on motility parameters and the acrosome reaction of stallion sperm. Since the toxic effects of zearalenone and its derivatives are thought to result from their structural similarity to 17beta-estradiol, 17beta-estradiol was used as a positive control for 'estrogen-like' effects. Methods Stallion spermatozoa were exposed in vitro to zearalenone, alpha-zearalenol, beta-zearalenol or 17beta-estradiol at concentrations ranging from 1 pM - 0.1 mM. After 2 hours exposure, motility parameters were evaluated by computer-assisted analysis, and acrosome integrity was examined by flow cytometry after staining with fluoroscein-conjugated peanut agglutinin. Results Mycotoxins affected sperm parameters only at the highest concentration tested (0.1 mM) after 2 hours exposure. In this respect, all of the compounds reduced the average path velocity, but only alpha-zearalenol reduced percentages of motile and progressively motile sperm. Induction of motility patterns consistent with hyperactivation was stimulated according to the following rank of potency: alpha-zearalenol >17beta-estradiol > zearalenone = beta-zearalenol. The hyperactivity-associated changes observed included reductions in straight-line velocity and linearity of movement, and an increase in the amplitude of lateral head displacement, while curvilinear velocity was unchanged. In addition, whereas alpha- and beta- zearalenol increased the percentages of live acrosome-reacted sperm, zearalenone and 17beta-estradiol had no apparent effect on acrosome status. In short, alpha-zearalenol inhibited normal sperm motility, but stimulated hyperactive motility in the remaining motile cells and simultaneously induced the acrosome reaction. Beta-zearalenol induced the acrosome reaction without altering motility. Conversely, zearalenone and 17beta-estradiol did not induce the acrosome reaction but induced hyperactive motility albeit to a different extent. Conclusions Apparently, the mycotoxin zearalenone has 17beta-estradiol-like estrogenic activity that enables it to induce hyperactivated motility of equine sperm cells, whereas the zearalenol derivatives induce premature completion of the acrosome reaction and thereby adversely affect stallion sperm physiology. The alpha form of zearalenol still possessed the estrogenic ability to induce hyperactivated motility, whereas its beta stereo-isomere had lost this property. PMID:21970729
The road to LOAD: late-onset Alzheimer's disease and a possible way to block it.
Whitfield, James F
2007-10-01
The ageing brain becomes increasingly less able to destroy or eject toxic amyloid (A) beta42 peptide byproducts of normal neuronal activity that consequently accumulate to induce Alzheimer's disease (AD). Therefore, the various components of the Abeta-clearing machinery are prime targets for AD therapeutics. In this connection, there are reports that taking statins to lower circulating cholesterol to prevent cardiovascular disease can also prevent late-onset AD (LOAD) the most common form of the disease. However, it seems unlikely that statins would prevent LOAD by lowering the very long-lived brain cholesterol that is controlled independently from the very much shorter-lived circulating cholesterol. In fact, reducing the ability of the brain astrocytes to make cholesterol for their closely associated neuron clients' synaptogenesis could damage the brain rather than protect it. However, a plausible way statins might prevent LOAD is to target a main component of the clearance machinery, low-density lipoprotein receptor-related protein 1 (LRP1), the brain's powerful Abeta-efflux driver. This is indicated by a reported ability of micromolar concentrations of lovastatin and simvastatin to strongly stimulate brain vascular endothelial cells to make this Abeta ejector. Therefore, if this holds up, taking a statin over the years would prevent the normal decline of LRP1 in the ageing brain and a LOAD-driving accumulation of Abeta.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, C. David; Farhood, Anwar; Jaeschke, Hartmut, E-mail: hjaeschke@kumc.ed
2010-09-15
Acetaminophen (APAP) overdose can result in serious liver injury and potentially death. Toxicity is dependent on metabolism of APAP to a reactive metabolite initiating a cascade of intracellular events resulting in hepatocellular necrosis. This early injury triggers a sterile inflammatory response with formation of cytokines and innate immune cell infiltration in the liver. Recently, IL-1{beta} signaling has been implicated in the potentiation of APAP-induced liver injury. To test if IL-1{beta} formation through caspase-1 is critical for the pathophysiology, C57Bl/6 mice were treated with the pan-caspase inhibitor Z-VD-fmk to block the inflammasome-mediated maturation of IL-1{beta} during APAP overdose (300 mg/kg APAP).more » This intervention did not affect IL-1{beta} gene transcription but prevented the increase in IL-1{beta} plasma levels. However, APAP-induced liver injury and neutrophil infiltration were not affected. Similarly, liver injury and the hepatic neutrophilic inflammation were not attenuated in IL-1-receptor-1 deficient mice compared to wild-type animals. To evaluate the potential of IL-1{beta} to increase injury, mice were given pharmacological doses of IL-1{beta} after APAP overdose. Despite increased systemic activation of neutrophils and recruitment into the liver, there was no alteration in injury. We conclude that endogenous IL-1{beta} formation after APAP overdose is insufficient to activate and recruit neutrophils into the liver or cause liver injury. Even high pharmacological doses of IL-1{beta}, which induce hepatic neutrophil accumulation and activation, do not enhance APAP-induced liver injury. Thus, IL-1 signaling is irrelevant for APAP hepatotoxicity. The inflammatory cascade is a less important therapeutic target than intracellular signaling pathways to attenuate APAP-induced liver injury.« less
Celli, C M; Gharavi, A E; Chaimovich, H
1999-01-12
The aim of this study was to investigate the interaction of antiphospholipid antibodies (aPL) from two different populations (patients with autoimmune or infectious disorders) with cardiolipin (CL) arranged in a defined bilayer. beta2-Glycoprotein I (beta2GPI), an apolipoprotein that plays a critical role in the aPL binding to phospholipids, was quantified by dot blot in purified IgG-aPL samples, further classified according to apparent avidity to CL. In solid-phase assays, beta2GPI increased, preferentially, the binding of low-avidity autoimmune aPL to CL but inhibited the binding of low-avidity syphilitic aPL. In the absence of beta2GPI, both autoimmune and infectious aPL induced the leakage of the entrapped fluorescent probe, carboxyfluorescein (CF), from small unilamellar vesicles containing CL. aPL-induced probe leakage was protein concentration-dependent and characterized by a lag-phase onset of 100-120 min. beta2GPI increased the leakage rate induced by low-avidity autoimmune aPL only and inhibited the leakage induced by all syphilitic aPL. The following conclusions were provided: (1) in the absence of beta2GPI, autoimmune and infectious aPL bind to CL in a bilayer, inducing liposome leakage; (2) the leakage mechanism induced by aPL is suggested to be intravesicular; (3) beta2GPI requirement for phospholipid binding in both solid and fluid phase is associated to aPL avidity; (4) CL alone or the CL-beta2GPI complex are the most likely epitopes for autoimmune aPL; (5) aPL from syphilis patients can only form the CL-aPL complex, supporting that beta2GPI is not (part of) the target epitope.
Harada, Kazuki; Maekawa, Tsuyoshi; Tsuruta, Ryosuke; Kaneko, Tadashi; Sadamitsu, Daikai; Yamashima, Tetsumori; Yoshida Ki, Ken-ichi
2002-03-01
To clarify the involvement of intracellular signaling pathway and calpain in the brain injury and its protection by mild hypothermia, immunoblotting analyses were performed in the rat brain after global forebrain ischemia and reperfusion. After 30 min of ischemia followed by 60 min of reperfusion, Ca2+/calmodulin-dependent kinase II (CaM kinase II) and protein kinase C (PKC)-alpha, beta, gamma isoforms translocated to the synaptosomal fraction, while mild hypothermia (32 degrees C) inhibited the translocation. The hypothermia also inhibited fodrin proteolysis caused by ischemia-reperfusion, indicating the inhibition of calpain. These effects of hypothermia may explain the mechanism of the protection against brain ischemia-reperfusion injury through modulating synaptosomal function.
Cross-frequency coupling of brain oscillations in studying motivation and emotion.
Schutter, Dennis J L G; Knyazev, Gennady G
2012-03-01
Research has shown that brain functions are realized by simultaneous oscillations in various frequency bands. In addition to examining oscillations in pre-specified bands, interactions and relations between the different frequency bandwidths is another important aspect that needs to be considered in unraveling the workings of the human brain and its functions. In this review we provide evidence that studying interdependencies between brain oscillations may be a valuable approach to study the electrophysiological processes associated with motivation and emotional states. Studies will be presented showing that amplitude-amplitude coupling between delta-alpha and delta-beta oscillations varies as a function of state anxiety and approach-avoidance-related motivation, and that changes in the association between delta-beta oscillations can be observed following successful psychotherapy. Together these studies suggest that cross-frequency coupling of brain oscillations may contribute to expanding our understanding of the neural processes underlying motivation and emotion.
Siese, A; Jaros, P P; Willig, A
1999-02-01
In the present study we investigated the interleukin (IL)-1beta and transforming growth factor-beta1 (TGF-beta1)-mediated proliferation, and production of IL-2 and TGF-beta, in the murine T-cell line, EL4.NOB-1. This cell line is resistant to TGF-beta concerning growth arrest but not autoinduction or suppression of IL-1-induced IL-2 production. When cocultured with IL-1beta, TGF-beta showed growth-promoting activity that could be antagonized by adding the phosphatidyl choline-dependent phospholipase C (PC-PLC) inhibitor, D609. Using specific enzyme inhibitors of protein kinases (PK) C and A, mitogen-activated protein kinase (MAPK), phospholipase A2 (PLA2), phosphatidylinositol-dependent (PI)-PLC and PC-PLC, we showed that IL-1beta-induced IL-2 synthesis was dependent on all investigated kinases and phospholipases, except PC-PLC. TGF-beta1 was able to inhibit IL-2 synthesis by the activation of PKA and MAPK. The same kinases are involved in TGF-beta autoinduction that is accompanied by a secretion of the active but not the latent growth factor and is antagonized by IL-1beta. Addition of the PI-PLC inhibitor, ET 18OCH3, or the PLA2 inhibitor (quinacrine) alone, resulted in secretion of latent TGF-beta and, in the case of ET 18OCH3, active TGF-beta. These data implicate a role for PI-PLC and PLA2 in the control of latency and secretion. Analysis of specific tyrosine activity and c-Fos expression showed synergistic but no antagonistic effects. These events are therefore not involved in IL- and TGF-beta-regulated IL-2 and TGF-beta production, but might participate in IL-1/TGF-beta-induced growth promotion.
Heurteaux, C; Bertaina, V; Widmann, C; Lazdunski, M
1993-01-01
Transient global forebrain ischemia induces in rat brain a large increase of expression of the immediate early genes c-fos and c-jun and of the mRNAs for the 70-kDa heat-shock protein and for the form of the amyloid beta-protein precursor including the Kunitz-type protease-inhibitor domain. At 24 hr after ischemia, this increased expression is particularly observed in regions that are vulnerable to the deleterious effects of ischemia, such as pyramidal cells of the CA1 field in the hippocampus. In an attempt to find conditions which prevent the deleterious effects of ischemia, representatives of three different classes of K+ channel openers, (-)-cromakalim, nicorandil, and pinacidil, were administered both before ischemia and during the reperfusion period. This treatment totally blocked the ischemia-induced expression of the different genes. In addition it markedly protected neuronal cells against degeneration. The mechanism of the neuroprotective effects involves the opening of ATP-sensitive K+ channels since glipizide, a specific blocker of that type of channel, abolished the beneficial effects of K+ channel openers. The various classes of K+ channel openers seem to deserve attention as potential drugs for cerebral ischemia. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8415718
Neuroprotection by baicalein in ischemic brain injury involves PTEN/AKT pathway.
Liu, Chao; Wu, Jiliang; Xu, Kui; Cai, Fei; Gu, Jun; Ma, Liqun; Chen, Jianguo
2010-03-01
Recently more evidences support baicalein (Bai) is neuroprotective in models of ischemic stroke. This study was conducted to determine the molecular mechanisms involved in this effect. Either permanent or transient (2 h) middle cerebral artery occlusion (MCAO) was induced in rats in this study. Permanent MCAO led to larger infarct volumes in contrast to transient MCAO. Only in transient MCAO, Bai administration significantly reduced infarct size. Baicalein also markedly reduced apoptosis in the penumbra of transient MCAO rats. Additionally, oxygen and glucose deprivation (OGD) was used to mimic ischemic insult in primary cultured cortical neurons. A rapid increase in the intracellular reactive oxygen species level and nitrotyrosine formation induced by OGD was counteracted by Bai, which is parallel with attenuated cell injury. The reduction of phosphorylation Akt and glycogen synthase kinase-3beta (GSK3beta) induced by OGD was restored by Bai, which was associated with preserved levels of phosphorylation of PTEN, the phophatase that negatively regulates Akt. As a consequence, Bcl-2/Bcl-xL-associated death protein phosphorylation was increased and the protein level of Bcl-2 in motochondria was maintained, which subsequently antagonize cytochrome c released in cytosol. LY294002 blocked the increase in phospho-AKT evoked by Bai and abolished the associated protective effect. Together, these findings provide evidence that Bai protects neurons against ischemia injury and this neuroprotective effect involves PI3K/Akt and PTEN pathway.
beta-Endorphin-induced analgesia is inhibited by synthetic analogs of beta-endorphin.
Nicolas, P; Hammonds, R G; Li, C H
1984-01-01
Competitive antagonism of human beta-endorphin (beta h-EP)-induced analgesia by synthetic beta h-EP analogs with high in vitro opiate receptor binding to in vivo analgesic potency ratio has been demonstrated. A parallel shift of the dose-response curve for analgesia to the right was observed when either beta h-EP or [ Trp27 ] -beta h-EP was coinjected with various doses of [Gln8, Gly31 ]-beta h-EP-Gly-Gly-NH2, [Arg9,19,24,28,29]-beta h-EP, or [ Cys11 ,26, Phe27 , Gly31 ]-beta h-EP. It was estimated that the most potent antagonist, [Gln8, Gly31 ]-beta h-EP-Gly-NH2, is at least 200 times more potent than naloxone. PMID:6328494
beta-Arrestin 2: a Negative Regulator of Inflammatory Responses in Polymorphonuclear Leukocytes.
Basher, Fahmin; Fan, Hongkuan; Zingarelli, Basilia; Borg, Keith T; Luttrell, Lou M; Tempel, George E; Halushka, Perry V; Cook, James A
2008-01-01
Heterotrimeric Gi proteins have been previously implicated in signaling leading to inflammatory mediator production induced by bacterial lipopolysaccharide (LPS). beta-arrestins are ubiquitously expressed proteins that alter G-protein-coupled receptors signaling. beta-arrestin 2 plays a multifaceted role as a scaffold protein in regulating cellular inflammatory responses. Polymorphonuclear leukocytes (PMNs) activated by LPS induce inflammatory responses resulting in organ injury during sepsis. We hypothesized that beta-arrestin 2 is a critical modulator of inflammatory responses in PMNs. To examine the potential role of beta-arrestin 2 in LPS-induced cellular activation, we studied homozygous beta-arrestin 2 (-/-), heterozygous (+/-), and wildtype (+/+) mice. PMNs were stimulated with LPS for 16h. There was increased basal TNFalpha and IL-6 production in the beta-arrestin 2 (-/-) compared to both beta-arrestin 2 (+/-) and (+/+) cells. LPS failed to stimulate TNFalpha production in the beta-arrestin 2 (-/-) PMNs. However, LPS stimulated IL-6 production was increased in the beta-arrestin 2 (-/-) cells compared to (+/+) cells. In subsequent studies, peritoneal PMN recruitment was increased 81% in the beta-arrestin 2 (-/-) mice compared to (+/+) mice (p<0.05). beta-arrestin 2 deficiency resulted in an augmented expression of CD18 and CD62L (p<0.05). In subsequent studies, beta-arrestin 2 (-/-) and (+/+) mice were subjected to cecal ligation and puncture (CLP) and lung was collected and analyzed for myeloperoxidase activity (MPO) as index of PMNs infiltrate. CLP-induced MPO activity was significantly increased (p<0.05) in the beta-arrestin 2 (-/-) compared to (+/+) mice. These studies demonstrate that beta-arrestin 2 is a negative regulator of PMN activation and pulmomary leukosequestration in response to polymicrobial sepsis.
Politei, J; Schenone, A B; Cabrera, G; Heguilen, R; Szlago, M
2016-01-01
We describe the results of the multidisciplinary evaluation in patients with Fabry disease and the same genetic mutation and their outcomes using different approved enzyme replacement therapy (ERT). We measured baseline data and serial results of neuropathic pain assessment and renal, cardiac and cerebrovascular functioning. Pain scale showed improvement in all male cases treated with agalsidasa beta. A mild improvement was detected in agalsidasa alfa-treated patients after 1 year with posterior increase. During the agalsidase beta shortage, two male patients were switched to agalsidasa alfa, after 1 year both cases presented an increase in scale values. Renal evolution showed a tendency toward a decrease in proteinuria in patients using agalsidase beta and worsening with agalsidase alfa. We found improvement in two females using agalsidase beta and no changes in the other cases regarding cardiac functioning. Brain magnetic resonance imaging (MRI) showed increase of white matter lesions in four patients. Improvement and stabilization in neuropathic pain, renal and cardiac functioning and brain MRI were found mainly in patients treated with agalsidase beta. Following the reported recommendations on reintroduction of agalsidase beta after the enzyme shortage, we decided to switch all patients to agalsidase beta. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma Lijun, E-mail: lijunma@radonc.ucsf.ed; Sahgal, Arjun; Descovich, Martina
2010-03-01
Purpose: To investigate whether dose fall-off characteristics would be significantly different among intracranial radiosurgery modalities and the influence of these characteristics on fractionation schemes in terms of normal tissue sparing. Methods and Materials: An analytic model was developed to measure dose fall-off characteristics near the target independent of treatment modalities. Variations in the peripheral dose fall-off characteristics were then examined and compared for intracranial tumors treated with Gamma Knife, Cyberknife, or Novalis LINAC-based system. Equivalent uniform biologic effective dose (EUBED) for the normal brain tissue was calculated. Functional dependence of the normal brain EUBED on varying numbers of fractions (1more » to 30) was studied for the three modalities. Results: The derived model fitted remarkably well for all the cases (R{sup 2} > 0.99). No statistically significant differences in the dose fall-off relationships were found between the three modalities. Based on the extent of variations in the dose fall-off curves, normal brain EUBED was found to decrease with increasing number of fractions for the targets, with alpha/beta ranging from 10 to 20. This decrease was most pronounced for hypofractionated treatments with fewer than 10 fractions. Additionally, EUBED was found to increase slightly with increasing number of fractions for targets with alpha/beta ranging from 2 to 5. Conclusion: Nearly identical dose fall-off characteristics were found for the Gamma Knife, Cyberknife, and Novalis systems. Based on EUBED calculations, normal brain sparing was found to favor hypofractionated treatments for fast-growing tumors with alpha/beta ranging from 10 to 20 and single fraction treatment for abnormal tissues with low alpha/beta values such as alpha/beta = 2.« less
Gait-Related Brain Activity in People with Parkinson Disease with Freezing of Gait
Peterson, Daniel S.; Pickett, Kristen A.; Duncan, Ryan; Perlmutter, Joel; Earhart, Gammon M.
2014-01-01
Approximately 50% of people with Parkinson disease experience freezing of gait, described as a transient inability to produce effective stepping. Complex gait tasks such as turning typically elicit freezing more commonly than simple gait tasks, such as forward walking. Despite the frequency of this debilitating and dangerous symptom, the brain mechanisms underlying freezing remain unclear. Gait imagery during functional magnetic resonance imaging permits investigation of brain activity associated with locomotion. We used this approach to better understand neural function during gait-like tasks in people with Parkinson disease who experience freezing- “FoG+” and people who do not experience freezing- ”FoG−“. Nine FoG+ and nine FoG− imagined complex gait tasks (turning, backward walking), simple gait tasks (forward walking), and quiet standing during measurements of blood oxygen level dependent (BOLD) signal. Changes in BOLD signal (i.e. beta weights) during imagined walking and imagined standing were analyzed across FoG+ and FoG− groups in locomotor brain regions including supplementary motor area, globus pallidus, putamen, mesencephalic locomotor region, and cerebellar locomotor region. Beta weights in locomotor regions did not differ for complex tasks compared to simple tasks in either group. Across imagined gait tasks, FoG+ demonstrated significantly lower beta weights in the right globus pallidus with respect to FoG−. FoG+ also showed trends toward lower beta weights in other right-hemisphere locomotor regions (supplementary motor area, mesencephalic locomotor region). Finally, during imagined stand, FoG+ exhibited lower beta weights in the cerebellar locomotor region with respect to FoG−. These data support previous results suggesting FoG+ exhibit dysfunction in a number of cortical and subcortical regions, possibly with asymmetric dysfunction towards the right hemisphere. PMID:24595265
Regulation of calcium-permeable TRPV2 channel by insulin in pancreatic beta-cells.
Hisanaga, Etsuko; Nagasawa, Masahiro; Ueki, Kohjiro; Kulkarni, Rohit N; Mori, Masatomo; Kojima, Itaru
2009-01-01
Calcium-permeable cation channel TRPV2 is expressed in pancreatic beta-cells. We investigated regulation and function of TRPV2 in beta-cells. Translocation of TRPV2 was assessed in MIN6 cells and cultured mouse beta-cells by transfecting TRPV2 fused to green fluorescent protein or TRPV2 containing c-Myc tag in the extracellular domain. Calcium entry was assessed by monitoring fura-2 fluorescence. In MIN6 cells, TRPV2 was observed mainly in cytoplasm in an unstimulated condition. Addition of exogenous insulin induced translocation and insertion of TRPV2 to the plasma membrane. Consistent with these observations, insulin increased calcium entry, which was inhibited by tranilast, an inhibitor of TRPV2, or by knockdown of TRPV2 using shRNA. A high concentration of glucose also induced translocation of TRPV2, which was blocked by nefedipine, diazoxide, and somatostatin, agents blocking glucose-induced insulin secretion. Knockdown of the insulin receptor attenuated insulin-induced translocation of TRPV2. Similarly, the effect of insulin on TRPV2 translocation was not observed in a beta-cell line derived from islets obtained from a beta-cell-specific insulin receptor knockout mouse. Knockdown of TRPV2 or addition of tranilast significantly inhibited insulin secretion induced by a high concentration of glucose. Likewise, cell growth induced by serum and glucose was inhibited by tranilast or by knockdown of TRPV2. Finally, insulin-induced translocation of TRPV2 was observed in cultured mouse beta-cells, and knockdown of TRPV2 reduced insulin secretion induced by glucose. TRPV2 is regulated by insulin and is involved in the autocrine action of this hormone on beta-cells.
Barhl1 is directly regulated by thyroid hormone in the developing cerebellum of mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Hongyan, E-mail: hongyan_dong@hc-sc.gc.ca; Yauk, Carole L.; Wade, Michael G.
Highlights: Black-Right-Pointing-Pointer Thyroid hormone receptor binds to the promoter region of Barhl1. Black-Right-Pointing-Pointer Barhl1 expression in cerebellum is negatively regulated by thyroid hormone. Black-Right-Pointing-Pointer Negative regulation of Barhl1 by thyroid hormone was confirmed in vitro. Black-Right-Pointing-Pointer Thyroid hormone may play a role in normal brain development through transcriptional control of Barhl1. -- Abstract: Thyroid hormones (THs) are essential for the brain development. Despite considerable effort, few genes directly regulated by THs have been identified. In this study, we investigate the effects of THs on the regulation of Barhl1, a transcription factor that regulates sensorineural development. Using DNA microarray combined withmore » chromatin immunoprecipitation (ChIP-chip), we identified a TR{beta} binding site in the promoter of Barhl1. The binding was further confirmed by ChIP-PCR. The site is located approximately 755 bp upstream of the transcription start site. Reporter vectors containing the binding site or mutated fragments were transfected into GH3 cells. T3 treatment decreased the transcriptional activity of the wild fragment but not the mutant. Two 28 bp oligonucleotides containing sequences that resemble known TH response elements (TREs) were derived from this binding site and DNA-protein interaction was performed using electrophoretic mobility shift assays (EMSA). Binding analysis in a nuclear extract containing TR{beta} revealed that one of these fragments bound TR{beta}. This complex was shifted with the addition of anti-TR{beta} antibody. We investigated Barhl1 expression in animal models and TH-treated cultured cells. Both long term treatment with 6-propyl-2-thiouracil and short-term treatment with 0.05% methimazole/1% sodium perchlorate (both treatments render mice hypothyroid) resulted in up-regulation of Barhl1. TH supplementation of hypothyroid mice caused a decrease in the expression of Barhl1 compared to control animals. Similarly, the expression of Barhl1 in cultured GH3 decreased with the addition of T3. Given the important role of Barhl1 in brain development, we propose that perturbations of TH-mediated transcriptional control of Barhl1 may play a role in the impaired neurodevelopment induced by hypothyroidism.« less
Choi, Ji Yeon; Cho, Eun Ju; Lee, Hae Song; Lee, Jeong Min; Yoon, Young-Ho; Lee, Sanghyun
2013-03-01
Protective effects of Tartary buckwheat (TB) and common buckwheat (CB) on amyloid beta (Aβ)-induced impairment of cognition and memory function were investigated in vivo in order to identify potential therapeutic agents against Alzheimer's disease (AD) and its associated progressive memory deficits, cognitive impairment, and personality changes. An in vivo mouse model of AD was created by injecting the brains of ICR mice with Aβ(25-35), a fragment of the full-length Aβ protein. Damage of mice recognition ability through following Aβ(25-35) brain injections was confirmed using the T-maze test, the object recognition test, and the Morris water maze test. Results of behavior tests in AD model showed that oral administration of the methanol (MeOH) extracts of TB and CB improved cognition and memory function following Aβ(25-35) injections. Furthermore, in groups receiving the MeOH extracts of TB and CB, lipid peroxidation was significantly inhibited, and nitric oxide levels in tissue, which are elevated by injection of Aβ(25-35), were also decrease. In particular, the MeOH extract of TB exerted a stronger protective activity than CB against Aβ(25-35)-induced memory and cognition impairment. The results indicate that TB may play a promising role in preventing or reversing memory and cognition loss associated with Aβ(25-35)-induced AD. Copyright © 2012 Elsevier Ltd. All rights reserved.
CAS role in the brain apoptosis of Bufo arenarum induced by cypermethrin.
Izaguirre, M F; Vergara, M N; Casco, V H
2006-08-01
CAS might have a key role in the apoptosis induced by toxins, acting as anti-apoptotic factor, stimulating the cellular proliferation and the cell contact stabilization. To start to elucidate their role in the brain apoptosis of Bufo arenarum induced by cypermethrin (CY), the expression patterns of CAS and several cell adhesion molecules (CAMs) were established. Bufo arenarum tadpoles of the control and acute bioassay survival at different doses (39, 156, 625 and 2,500 microg CY/L) and times (24, 48, 72 and 96 h) of CY treatment were fixed in Carnoy, embedded in paraffin and sectioned. CAS and CAMs expression was determined by immunofluorescence and immunohistochemistry, respectively. When the bioassay starts, CAS increases suggesting a proliferative or regenerative effect, but decreases when the doses and/or the biocide exposure time increases, suggesting compromise of the cellular cycle control and trigger of an apoptotic wave. However, these neurotoxic mechanisms should not involve degradation of N-cadherin and alpha-catenin, in contrast of beta-catenin and axonal N-CAM180, at least in the initial apoptotic phase. Additionally, an adhesion compensatory mechanism by N-CAM180 is observed in the neuron cell body. These results suggest a dual role of CAS in the cellular cycle control during the CY-induced apoptosis: induction of cell proliferation and stabilization of the cell-cell junctions by modulating CAMs expression.
Exercise- and cold-induced changes in plasma beta-endorphin and beta-lipotropin in men and women.
Viswanathan, M; Van Dijk, J P; Graham, T E; Bonen, A; George, J C
1987-02-01
The plasma beta-endorphin (beta-EP) and beta-lipotropin (beta-LPH) response of men, eumenorrheic women, and amenorrheic women (n = 6) to 1 h of rest or to a bicycle ergometer test [20 min at 30% maximum O2 uptake (VO2max), 20 min at 60% VO2max, and at 90% VO2max to exhaustion] was studied in both normal (22 degrees C) and cold (5 degrees C) environments. beta-EP and beta-LPH was measured by radioimmunoassay in venous samples collected every 20 min during rest or after each exercise bout. Exhaustive exercise at ambient temperature (Ta) 22 degrees C induced significant increases in plasma beta-EP and beta-LPH in all subjects as did work at 60% VO2max in amenorrheic and eumenorrheic women. During work at Ta 5 degrees C, the relative increase in beta-EP and beta-LPH was suppressed in eumenorrheic women and completely prevented in amenorrheic women. Although significant lowering of beta-EP and beta-LPH was observed in men and eumenorrheic women during rest at 5 degrees C, amenorrheic women maintained precold exposure levels. These findings suggest that plasma beta-EP and beta-LPH may reflect a thermoregulatory response to heat load. There appears to be a sexual dimorphism in exercise- and cold-induced release of beta-EP and beta-LPH and amenorrhea may be accompanied by alterations in these responses.
Gengo, F M; Gabos, C
1988-07-01
The most common mild side effects occurring with use of beta-blockers, thiazide diuretics, and angiotensin-converting enzyme inhibitors for blood pressure control are central nervous system symptoms, specifically lethargy, sedation, and fatigue. These symptoms affect 5% to 10% of patients taking these drugs. The mechanism by which beta-blockers may induce central nervous system effects is uncertain. Relative lipophilicity as a factor affecting penetrance of the blood-brain barrier has not proved to be a reliable predictor of whether the drug will cause such disturbances. Comparisons of atenolol (hydrophilic) and metoprolol (lipophilic) have shown no differences between these drugs with respect to side effects of the central nervous system. The incidence of central nervous system effects with angiotensin-converting enzyme inhibitors is similar to that for most beta-blockers. The precise role of the angiotensin-converting enzyme in the central nervous system is not well defined. Most thiazide diuretics are not associated with major complications of the central nervous system, although electrolyte imbalance may occasionally lead to complaints of neurologic symptoms. Because the incidence of central nervous system effects with these three classes of drugs is so low, concern for the side effects of the central nervous system is not a prime consideration in the choice of an initial antihypertensive agent.
Banis, Stella; Geerligs, Linda; Lorist, Monicque M.
2014-01-01
Sex-specific prevalence rates in mental and physical disorders may be partly explained by sex differences in physiological stress responses. Neural networks that might be involved are those underlying feedback processing. Aim of the present EEG study was to investigate whether acute stress alters feedback processing, and whether stress effects differ between men and women. Male and female participants performed a gambling task, in a control and a stress condition. Stress was induced by exposing participants to a noise stressor. Brain activity was analyzed using both event-related potential and time-frequency analyses, measuring the feedback-related negativity (FRN) and feedback-related changes in theta and beta oscillatory power, respectively. While the FRN and feedback-related theta power were similarly affected by stress induction in both sexes, feedback-related beta power depended on the combination of stress induction condition and sex. FRN amplitude and theta power increases were smaller in the stress relative to the control condition in both sexes, demonstrating that acute noise stress impairs performance monitoring irrespective of sex. However, in the stress but not in the control condition, early lower beta-band power increases were larger for men than women, indicating that stress effects on feedback processing are partly sex-dependent. Our findings suggest that sex-specific effects on feedback processing may comprise a factor underlying sex-specific stress responses. PMID:24755943
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebi, Masahide; Kataoka, Hiromi, E-mail: hkataoka@med.nagoya-cu.ac.jp; Shimura, Takaya
2010-11-19
Research highlights: {yields} TGF{beta} induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. {yields} TGF{beta} induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. {yields} TGF{beta} enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. {yields} Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGF{beta}. {yields} ADAM17 may play a crucial role in this TGF{beta}-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGF{beta}) is known to potently inhibit cell growth. Loss of responsiveness to TGF{beta} inhibition on cellmore » growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGF{beta} and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGF{beta}. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGF{beta} was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGF{beta} was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGF{beta}-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGF{beta} induced shedding of proHB-EGF allowing HB-EGF-CTF to translocate to the nucleus. ADAM inhibitors blocked this nuclear translocation. TGF{beta} enhanced gastric cancer cell growth and ADAM inhibitors suppressed this effect. EGFR phosphorylation, HB-EGF-CTF nuclear translocation, and cell growth were suppressed in ADAM17 knockdown cells. Conclusion: HB-EGF-CTF nuclear translocation and EGFR transactivation from proHB-EGF shedding mediated by ADAM17 activated by TGF{beta} might be an important pathway of gastric cancer cell proliferation by TGF{beta}.« less
Bjelik, Annamária; Bereczki, Erika; Gonda, Szilvia; Juhász, Anna; Rimanóczy, Agnes; Zana, Marianna; Csont, Tamás; Pákáski, Magdolna; Boda, Krisztina; Ferdinandy, Péter; Dux, László; Janka, Zoltán; Sántha, Miklós; Kálmán, János
2006-09-01
Epidemiological and biochemical data suggest a link between the cholesterol metabolism, the amyloid precursor protein (APP) processing and the increased cerebral beta-amyloid (Abeta) deposition in Alzheimer's disease (AD). The individual and combined effects of a high-cholesterol (HC) diet and the overexpression of the human apoB-100 gene were therefore examined on the cerebral expression and processing of APP in homozygous apoB-100 transgenic mice [Tg (apoB(+/+))], a validated model of atherosclerosis. When fed with 2% cholesterol for 17 weeks, only the wild-type mice exhibited significantly increased APP695 (123%) and APP770 (138%) mRNA levels in the cortex. The HC diet-induced hypercholesterolemia significantly increased the APP isoform levels in the membrane-bound fraction, not only in the wild-type animals (114%), but also in the Tg apoB(+/+) group (171%). The overexpression of human apoB-100 gene by the liver alone reduced the brain APP isoform levels in the membrane-bound fraction (78%), whereas the levels were increased by the combined effect of HC and the overexpression of the human apoB-100 gene (134%). The protein kinase C and beta-secretase protein levels were not altered by the individual or combined effects of these two factors. Our data indicate that the two atherogenic factors, the HC diet and the overexpression of the human apoB-100 gene by the liver, could exert different effects on the processing and expression of APP in the mice brain.
Bacci, B.; Cochran, E.; Nunzi, M. G.; Izeki, E.; Mizutani, T.; Patton, A.; Hite, S.; Sayre, L. M.; Autilio-Gambetti, L.; Gambetti, P.
1994-01-01
Dystrophic axons (DA) represent a major pathological feature of several neurodegenerative disorders, including infantile neuroaxonal dystrophy (INAD) and Alzheimer disease. We have previously presented evidence that amyloid beta precursor protein (BPP) and ubiquitin (Ub) are present in DA of different origin. We have now characterized the immunoreactivity of DA experimentally induced in rat by the administration of parabromophenylacetylurea (BPAU) and examined the subcellular localization of Ub and BPP in BPAU-induced DA and in DA present in subjects affected by INAD. BPAU-induced DA strongly immunoreacted with antisera to Ub and to COOH- and NH2-terminal regions of BPP. Immunoblots of DA-enriched brain regions were consistent with an increase in the amount of Ub and BPP in DA. Moreover, BPAU-induced DA immunoreacted with antibodies to PGP 9.5, a neuronal-specific Ub COOH-terminal hydrolase, and to the inducible heat shock protein 70. Antigenic characterization also indicated that the tubulovesicular membranes within DA derived largely from the smooth endoplasmic reticulum rather than from the Golgi system or the synaptic vesicles. Subcellular immunolocalization of Ub and BPP in both INAD- and BPAU-induced DA revealed that Ub and BPP colocalize in granulovesicular material in both conditions. In INAD DA intense Ub immunoreactivity was also detected in nonmembranous electron dense structures that were present only in these DA, probably because of the chronic course of INAD. Although BPP immunostaining may be related to accumulation of BPP-containing membranes in DA, Ub immunostaining is likely to result from activation of the Ub system by the neuron in the attempt to remove excessive and possibly abnormal proteins. A similar pathogenesis can be postulated for DA of Alzheimer disease. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7512790
Soodi, Maliheh; Saeidnia, Soodabeh; Sharifzadeh, Mohammad; Hajimehdipoor, Homa; Dashti, Abolfazl; Sepand, Mohammad Reza; Moradi, Shahla
2016-04-01
Extracellular deposition of Beta-amyloid peptide (Aβ) is the main finding in the pathophysiology of Alzheimer's disease (AD), which damages cholinergic neurons through oxidative stress and reduces the cholinergic neurotransmission. Satureja bachtiarica is a medicinal plant from the Lamiaceae family which was widely used in Iranian traditional medicine. The aim of the present study was to investigate possible protective effects of S. bachtiarica methanolic extract on Aβ induced spatial memory impairment in Morris Water Maze (MWM), oxidative stress and cholinergic neuron degeneration. Pre- aggregated Aβ was injected into the hippocampus of each rat bilaterally (10 μg/rat) and MWM task was performed 14 days later to evaluate learning and memory function. Methanolic extract of S.bachtiarica (10, 50 and 100 mg/Kg) was injected intraperitoneally for 19 consecutive days, after Aβ injection. After the probe test the brain tissue were collected and lipid peroxidation, Acetylcholinesterase (AChE) activity and Cholin Acetyl Transferees (ChAT) immunorectivity were measured in the hippocampus. Intrahipocampal injection of Aβ impaired learning and memory in MWM in training days and probe trail. Methanolic extract of S. bachtiarica (50 and 100 mg/Kg) could attenuate Aβ-induced memory deficit. ChAT immunostaining revealed that cholinergic neurons were loss in Aβ- injected group and S. bachtiarica (100 mg/Kg) could ameliorate Aβ- induced ChAT reduction in the hippocampus. Also S. bachtiarica could ameliorate Aβ-induced lipid peroxidation and AChE activity increase in the hippocampus. In conclusion our study represent that S.bachtiarica methanolic extract can improve Aβ-induced memory impairment and cholinergic loss then we recommended this extract as a candidate for further investigation in treatment of AD.
Lee, Jong-Sun; Kim, Jeong-Yub; Kim, Hee-Jin; Kim, Jeong Cheol; Lee, Jae-Seon; Kim, Nam; Park, Myung-Jin
2016-01-01
Alzheimer's disease (AD) is the most common progressive and irreversible neurodegenerative disease and it is caused by neuronal death in the brain. Recent studies have shown that non-ionizing radiofrequency (RF) radiation has some beneficial cognitive effects in animal models of AD. In this study, we examined the effect of combined RF radiation on amyloid-beta (Aβ)–induced cytotoxicity in HT22 rat hippocampal neurons. Treatment with Aβ suppressed HT22 cell proliferation in a concentration-dependent manner. RF exposure did not affect cell proliferation, and also had a marginal effect on Aβ-induced suppression of growth in HT22 cells. Cell cycle analysis showed that Aβ decreased the G1 fraction and increased the subG1 fraction, indicating increased apoptosis. Accordingly, Aβ increased the annexin V/propidium iodide (PI)–positive cell fraction and the degradation of poly (ADP ribose) polymerase and caspase-3 in HT22 cells. However, RF alone and the combination of Aβ and RF did not affect these events significantly. Aβ increased reactive oxygen species (ROS) generation, thereby suppressing cell proliferation. This was abrogated by N-acetylcysteine (NAC) treatment, indicating that Aβ-induced ROS generation is the main cause of suppression of proliferation. NAC also restored Aβ-induced annexin V/PI–positive cell populations. However, RF did not have a significant impact on these events. Finally, Aβ stimulated the ataxia telangiectasia and Rad3-related protein/checkpoint kinase 1 DNA single-strand breakage pathway, and enhanced beta-site amyloid precursor protein expression; RF had no effect on them. Taken together, our results demonstrate that RF exposure did not significantly affect the Aβ-induced decrease of cell proliferation, increase of ROS production, or induction of cell death in these cells. PMID:27325640
Age-dependent postoperative cognitive impairment and Alzheimer-related neuropathology in mice
NASA Astrophysics Data System (ADS)
Xu, Zhipeng; Dong, Yuanlin; Wang, Hui; Culley, Deborah J.; Marcantonio, Edward R.; Crosby, Gregory; Tanzi, Rudolph E.; Zhang, Yiying; Xie, Zhongcong
2014-01-01
Post-operative cognitive dysfunction (POCD) is associated with increased cost of care, morbidity, and mortality. However, its pathogenesis remains largely to be determined. Specifically, it is unknown why elderly patients are more likely to develop POCD and whether POCD is dependent on general anesthesia. We therefore set out to investigate the effects of peripheral surgery on the cognition and Alzheimer-related neuropathology in mice with different ages. Abdominal surgery under local anesthesia was established in the mice. The surgery induced post-operative elevation in brain β-amyloid (Aβ) levels and cognitive impairment in the 18 month-old wild-type and 9 month-old Alzheimer's disease transgenic mice, but not the 9 month-old wild-type mice. The Aβ accumulation likely resulted from elevation of beta-site amyloid precursor protein cleaving enzyme and phosphorylated eukaryotic translation initiation factor 2α. γ-Secretase inhibitor compound E ameliorated the surgery-induced brain Aβ accumulation and cognitive impairment in the 18 month-old mice. These data suggested that the peripheral surgery was able to induce cognitive impairment independent of general anesthesia, and that the combination of peripheral surgery with aging- or Alzheimer gene mutation-associated Aβ accumulation was needed for the POCD to occur. These findings would likely promote more research to investigate the pathogenesis of POCD.
Fibronectin regulates the activation of THP-1 cells by TGF-beta1.
Wang, A C; Fu, L
2001-03-01
To determine how fibronectin regulates the immunomodulatory effects of transforming growth factor (TGF)-beta on THP-1 cells. THP-1 monocytic cell line. THP-1 cells were primed for 48 h in the presence or absence of 250 pM TGF-beta1. Assays or assessments carried out, together with statistical test applied. We found that adherence to fibronectin dramatically modulates the effects of TGF-beta1 on the human monocytic cell line THP-1. TGF-beta did not significantly affect constitutive interleukin (IL)-8 secretion or IL-1beta-induced IL-8 secretion from suspended cells. In contrast, TGF-beta stimulated IL-8 secretion as well as augmented IL-1beta-induced IL-8 secretion from adherent cells. The differential effects of TGF-beta1 on IL-8 secretion from suspended and adherent cells could not be explained by differences in IL-1 receptor antagonist production. The effects of fibronectin on TGF-beta1 induced IL-8 secretion from THP-1 cells were mimicked by adhesion to immobilized anti-a4beta1 integrin antibody and to a fibronectin fragment containing the CS-1 domain. These results indicate that alpha4beta1-mediated adhesion to fibronectin may play a key role during inflammation by profoundly influencing the effects of TGF-beta1 on monocytes.
Andrews, Rachel N.; Metheny-Barlow, Linda J.; Peiffer, Ann M.; Hanbury, David B.; Tooze, Janet A.; Bourland, J. Daniel; Hampson, Robert E.; Deadwyler, Samuel A.; Cline, J. Mark
2017-01-01
Andrews, R. N., Metheny-Barlow, L. J., Peiffer, A. M., Hanbury, D. B., Tooze, J. A., Bourland, J. D., Hampson, R. E., Deadwyler, S. A. and Cline, J. M. Cerebrovascular Remodeling and Neuroinflammation is a Late Effect of Radiation-Induced Brain Injury in Non-Human Primates. Radiat. Res. 187, 599–611 (2017). Fractionated whole-brain irradiation (fWBI) is a mainstay of treatment for patients with intracranial neoplasia; however late-delayed radiation-induced normal tissue injury remains a major adverse consequence of treatment, with deleterious effects on quality of life for affected patients. We hypothesize that cerebrovascular injury and remodeling after fWBI results in ischemic injury to dependent white matter, which contributes to the observed cognitive dysfunction. To evaluate molecular effectors of radiation-induced brain injury (RIBI), real-time quantitative polymerase chain reaction (RT-qPCR) was performed on the dorsolateral prefrontal cortex (DLPFC, Brodmann area 46), hippocampus and temporal white matter of 4 male Rhesus macaques (age 6–11 years), which had received 40 Gray (Gy) fWBI (8 fractions of 5 Gy each, twice per week), and 3 control comparators. All fWBI animals developed neurologic impairment; humane euthanasia was elected at a median of 6 months. Radiation-induced brain injury was confirmed histopathologically in all animals, characterized by white matter degeneration and necrosis, and multifocal cerebrovascular injury consisting of perivascular edema, abnormal angiogenesis and perivascular extracellular matrix deposition. Herein we demonstrate that RIBI is associated with white matter-specific up-regulation of hypoxia-associated lactate dehydrogenase A (LDHA) and that increased gene expression of fibronectin 1 (FN1), SERPINE1 and matrix metalloprotease 2 (MMP2) may contribute to cerebrovascular remodeling in late-delayed RIBI. Additionally, vascular stability and maturation associated tumor necrosis super family member 15 (TNFSF15) and vascular endothelial growth factor beta (VEGFB) mRNAs were increased within temporal white matter. We also demonstrate that radiation-induced brain injury is associated with decreases in white matter-specific expression of neurotransmitter receptors SYP, GRIN2A and GRIA4. We additionally provide evidence that macrophage/microglial mediated neuroinflammation may contribute to RIBI through increased gene expression of the macrophage chemoattractant CCL2 and macrophage/ microglia associated CD68. Global patterns in cerebral gene expression varied significantly between regions examined (P < 0.0001, Friedman’s test), with effects most prominent within cerebral white matter. PMID:28398880
Neural mechanisms of mental schema: a triplet of delta, low beta/spindle and ripple oscillations.
Ohki, Takefumi; Takei, Yuichi
2018-02-06
Schemas are higher-level knowledge structures that integrate and organise lower-level representations. As internal templates, schemas are formed according to how events are perceived, interpreted and remembered. Although these higher-level units are assumed to play a fundamental role in our daily life from an early age, the neuronal basis and mechanisms of schema formation and use remain largely unknown. It is important to elucidate how the brain constructs and maintains these higher-level units. In order to examine the possible neural underpinnings of schema, we recapitulate previous work and discuss their findings related to schemas as the brain template. We specifically focused on low beta/spindle oscillations, which are assumed to be the key components of schemas, and propose that the brain template is implemented with a triplet of neural oscillations, that is delta, low beta/spindle and ripple oscillations. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Sajadi, Ahmadali; Provost, Chloé; Pham, Brendon; Brouillette, Jonathan
2016-01-01
Decline in hippocampal-dependent explicit memory (memory for facts and events) is one of the earliest clinical symptom of Alzheimer's disease (AD). It is well established that synapse loss and ensuing neurodegeneration are the best predictors for memory impairments in AD. Latest studies have emphasized the neurotoxic role of soluble amyloid-beta oligomers (Aβo) that begin to accumulate in the human brain approximately 10 to 15 yr before the clinical symptoms become apparent. Many reports indicate that soluble Aβo correlate with memory deficits in AD models and humans. The Aβo-induced neurodegeneration observed in neuronal and brain slice cultures has been more challenging to reproduce in many animal models. The model of repeated Aβo infusions shown here overcome this issue and allow addressing two key domains for developing new disease modifying therapies: identify biological markers to diagnose early AD, and determine the molecular mechanisms underpinning Aβo-induced memory deficits at the onset of AD. Since soluble Aβo aggregate relatively fast into insoluble Aβ fibrils that correlate poorly with the clinical state of patients, soluble Aβo are prepared freshly and injected once per day during six days to produce marked cell death in the hippocampus. We used cannula specially design for simultaneous infusions of Aβo and continuous infusion of Aβo antibody (6E10) in the hippocampus using osmotic pumps. This innovative in vivo method can now be used in preclinical studies to validate the efficiency of new AD therapies that might prevent the deposition and neurotoxicity of Aβo in pre-dementia patients. PMID:27585306
Dimpfel, Wilfried
2013-09-16
Herbal extracts targeting at the brain remain a continuous challenge to pharmacology. Usually, a number of different animal tests have to be performed in order to find a potential clinical use. Due to manifold possibly active ingredients biochemical approaches are difficult. A more holistic approach using a neurophysiological technique has been developed earlier in order to characterise synthetic drugs. Stereotactic implantation of four semi-microelectrodes into frontal cortex, hippocampus, striatum and reticular formation of rats allowed continuous wireless monitoring of field potentials (EEG) before and after drug intake. After frequency analysis (Fast Fourier Transformation) electric power was calculated for 6 ranges (delta, theta, alpha1, alpha2, beta1 and beta2). Data from 14 synthetic drugs - tested earlier and representative for different clinical indications - were taken for construction of discriminant functions showing the projection of the frequency patterns in a six-dimensional graph. Quantitative analysis of the EEG frequency pattern from the depth of the brain succeeded in discrimination of drug effects according to their known clinical indication (Dimpfel and Schober, 2003). Extracts from Valerian root, Ginkgo leaves, Paullinia seed, Hop strobile, Rhodiola rosea root and Sideritis scardica herb were tested now under identical conditions. Classification of these extracts based on the matrix from synthetic drugs revealed that Valerian root and hop induced a pattern reminiscent of physiological sleep. Ginkgo and Paullinia appeared in close neighbourhood of stimulatory drugs like caffeine or to an analgesic profile (tramadol). Rhodiola and Sideritis developed similar frequency patterns comparable to a psychostimulant drug (methylphenidate) as well to an antidepressive drug (paroxetine). © 2013 The Author. Published by Elsevier Ireland Ltd. All rights reserved.
Pyrrolidine dithiocarbamate activates the Nrf2 pathway in astrocytes.
Liddell, Jeffrey R; Lehtonen, Sarka; Duncan, Clare; Keksa-Goldsteine, Velta; Levonen, Anna-Liisa; Goldsteins, Gundars; Malm, Tarja; White, Anthony R; Koistinaho, Jari; Kanninen, Katja M
2016-02-26
Endogenous defense against oxidative stress is controlled by nuclear factor erythroid 2-related factor 2 (Nrf2). The normal compensatory mechanisms to combat oxidative stress appear to be insufficient to protect against the prolonged exposure to reactive oxygen species during disease. Counterbalancing the effects of oxidative stress by up-regulation of Nrf2 signaling has been shown to be effective in various disease models where oxidative stress is implicated, including Alzheimer's disease. Stimulation of Nrf2 signaling by small-molecule activators is an appealing strategy to up-regulate the endogenous defense mechanisms of cells. Here, we investigate Nrf2 induction by the metal chelator and known nuclear factor-κB inhibitor pyrrolidine dithiocarbamate (PDTC) in cultured astrocytes and neurons, and mouse brain. Nrf2 induction is further examined in cultures co-treated with PDTC and kinase inhibitors or amyloid-beta, and in Nrf2-deficient cultures. We show that PDTC is a potent inducer of Nrf2 signaling specifically in astrocytes and demonstrate the critical role of Nrf2 in PDTC-mediated protection against oxidative stress. This induction appears to be regulated by both Keap1 and glycogen synthase kinase 3β. Furthermore, the presence of amyloid-beta magnifies PDTC-mediated induction of endogenous protective mechanisms, therefore suggesting that PDTC may be an effective Nrf2 inducer in the context of Alzheimer's disease. Finally, we show that PDTC increases brain copper content and glial expression of heme oxygenase-1, and decreases lipid peroxidation in vivo, promoting a more antioxidative environment. PDTC activates Nrf2 and its antioxidative targets in astrocytes but not neurons. These effects may contribute to the neuroprotection observed for PDTC in models of Alzheimer's disease.
Harnessing neuroplasticity: modern approaches and clinical future.
Sasmita, Andrew Octavian; Kuruvilla, Joshua; Ling, Anna Pick Kiong
2018-05-04
Neurological diseases and injuries to the nervous system may cause inadvertent damage to neuronal and synaptic structures. Such phenomenon would lead to the development of neurological and neurodegenerative disorders which might affect memory, cognition and motoric functions. The body has various negative feedback systems which can induce beneficial neuroplastic changes in mediating some neuronal damage; however, such efforts are often not enough to ameliorate the derogatory changes. Articles discussing studies to induce beneficial neuroplastic changes were retrieved from the databases, National Center for Biotechnology Information (NCBI) and MEDLINE, and reviewed. This review highlights the significance of neuroplasticity in restoring neuronal functions and current advances in research to employ this positive cellular event by inducing synaptogenesis, neurogenesis, clearance of toxic amyloid beta (Aβ) and tau protein aggregates, or by providing neuroprotection. Compounds ranging from natural products (e.g. bilobalides, curcumin) to novel vaccines (e.g. AADvac1, RG7345) have been reported to induce long-lasting neuroplasticity in vitro and in vitro. Activity-dependent neuroplasticity is also inducible by regimens of exercises and therapies with instances in human studies proving major successes. Lastly, mechanical stimulation of brain regions through therapeutic hypothermia or deep brain stimulation has given insight on the larger scale of neuroplasticity within the nervous system. Harnessing neuroplasticity may not only offer an arm in the vast arsenal of approaches being taken to tackle neurological disorders, such as neurodegenerative diseases, but from ample evidence, it also has major implications in neuropsychological disorders.
Lokar, Marusa; Urbanija, Jasna; Frank, Mojca; Hägerstrand, Henry; Rozman, Blaz; Bobrowska-Hägerstrand, Malgorzata; Iglic, Ales; Kralj-Iglic, Veronika
2008-08-01
Plasma protein-mediated attractive interaction between membranes of red blood cells (RBCs) and phospholipid vesicles was studied. It is shown that beta(2)-glycoprotein I (beta(2)-GPI) may induce RBC discocyte-echinocyte-spherocyte shape transformation and subsequent agglutination of RBCs. Based on the observed beta(2)-GPI-induced RBC cell shape transformation it is proposed that the hydrophobic portion of beta(2)-GPI molecule protrudes into the outer lipid layer of the RBC membrane and increases the area of this layer. It is also suggested that the observed agglutination of RBCs is at least partially driven by an attractive force which is of electrostatic origin and depends on the specific molecular shape and internal charge distribution of membrane-bound beta(2)-GPI molecules. The suggested beta(2)-GPI-induced attractive electrostatic interaction between like-charged RBC membrane surfaces is qualitatively explained by using a simple mathematical model within the functional density theory of the electric double layer, where the electrostatic attraction between the positively charged part of the first domains of bound beta(2)-GPI molecules and negatively charged glycocalyx of the adjacent RBC membrane is taken into account.
Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo
2002-01-01
Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta. PMID:12234252
Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo
2002-12-01
Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta.
Tacheau, Charlotte; Fontaine, Juliette; Loy, Jennifer; Mauviel, Alain; Verrecchia, Franck
2008-12-01
One of the shared physiological roles between TGF-beta and connexin family members is to inhibit epithelial cell cycle progression and consequently, to provide protection against malignant transformation. Herein, we demonstrated that TGF-beta1 induces the expression of connexin43 (Cx43) in normal murine mammary gland (NMuMG) cell lines at the protein and mRNA levels, and transcriptionally. Using overexpression of a truncated dominant-negative form of Cx43, we determined that the modulation of gap junctional communication by TGF-beta1 plays a key role in the control of NMuMG cells proliferation by TGF-beta1. In addition, using overexpression of truncated dominant-negative forms of either Smad2 or Smad3, and MDA-MB-468 human breast carcinoma cells deficient for Smad4, we determined that the Smad cascade is not implicated in TGF-beta1 effect on Cx43 expression. Using specific pharmacologic inhibitors for JNK, ERK, p38, and PI3K/AKT signaling pathways, we demonstrated the cooperative role of p38 and PI3K/AKT signaling in TGF-beta1-induced Cx43 expression and gap junctional communication. Furthermore, transfection of a c-jun antisense expression vector significantly prevented TGF-beta1-induced Cx43 gene expression demonstrating the involvement of c-Jun/AP-1 pathway together with p38 and PI3K/AKT pathways in mediating TGF-beta1-induced Cx43 gene expression.
Prakash, Dharmalingam; Sudhandiran, Ganapasam
2015-12-01
Dietary flavonoids have been suggested to promote brain health by protecting brain parenchymal cells. Recently, understanding the possible mechanism underlying neuroprotective efficacy of flavonoids is of great interest. Given that fisetin exerts neuroprotection, we have examined the mechanisms underlying fisetin in regulating Aβ aggregation and neuronal apoptosis induced by aluminium chloride (AlCl3) administration in vivo. Male Swiss albino mice were induced orally with AlCl3 (200 mg/kg. b.wt./day/8 weeks). Fisetin (15 mg/Kg. b.wt. orally) was administered for 4 weeks before AlCl3-induction and administered simultaneously for 8 weeks during AlCl3-induction. We found aggregation of Amyloid beta (Aβ 40-42), elevated expressions of Apoptosis stimulating kinase (ASK-1), p-JNK (c-Jun N-terminal Kinase), p53, cytochrome c, caspases-9 and 3, with altered Bax/Bcl-2 ratio in favour of apoptosis in cortex and hippocampus of AlCl3-administered mice. Furthermore, TUNEL and fluoro-jade C staining demonstrate neurodegeneration in cortex and hippocampus. Notably, treatment with fisetin significantly (P<0.05) reduced Aβ aggregation, ASK-1, p-JNK, p53, cytochrome c, caspase-9 and 3 protein expressions and modulated Bax/Bcl-2 ratio. TUNEL-positive and fluoro-jade C stained cells were also significantly reduced upon fisetin treatment. We have identified the involvement of fisetin in regulating ASK-1 and p-JNK as possible mediator of Aβ aggregation and subsequent neuronal apoptosis during AlCl3-induced neurodegeneration. These findings define the possibility that fisetin may slow or prevent neurodegneration and can be utilised as neuroprotective agent against Alzheimer's and Parkinson's disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Mathieu, C; Jozan, S; Mazars, P; Côme, M G; Moisand, A; Valette, A
1995-01-01
Transforming growth factor-beta 1 inhibited proliferation of a human ovarian carcinoma cell line (NIH-OVCAR-3). The inhibition of NIH-OVCAR-3 cell proliferation was accompanied by a decrease in clonogenic potential, evidenced by the reduced ability of TGF-beta 1-treated NIH-OVCAR-3 cells to form colonies on a plastic substratum. This rapid decrease of clonogenic potential, which was detected 6 h after addition of TGF-beta 1 was dose-dependent (IC50 = 4 pM). Fluorescence microscopy of DAPI-stained cells supported by electron-microscopic examination showed that TGF-beta 1 induced chromatin condensation and nuclear fragmentation. In addition, oligonucleosomal-sized fragments were detected in the TGF-beta 1-treated cells. These features indicated that TGF-beta 1 induced NIH-OVCAR-3 cell death by an apoptosis-like mechanism. This TGF-beta 1 apoptotic effect was subject to modulation by cell density. It was observed that an increase in cell density (up to 20 x 10(3) cells/cm2) protected NIH-OVCAR-3 cells against apoptosis induced by TGF-beta 1. Conditioned medium from high-density cultures of NIH-OVCAR-3 cells did not inhibit apoptosis induced by TGF-beta 1 on NIH-OVCAR-3 cells cultured at low density, suggesting that the protective effect of cell density was not related to the cell secretion of a soluble survival factor.
Krumins, S A; Kim, D C; Seybold, V S; Larson, A A
1989-01-01
Binding of [3H]DAGO to fresh, frozen or beta-funaltrexamine (beta-FNA) pretreated membranes of mouse brain and spinal cord was extensively studied using substance P (SP) or SP fragments as potential competitors and/or modulators. The objective was to determine whether SP exerts its analgesic effect by interacting with mu opioid receptors. The affinity of DAGO was reduced and binding capacity was increased in the presence of SP or the N-terminal SP fragments SP(1-9) and SP(1-4) but not the C-terminal SP fragment SP(5-11). Because sub-nanomolar concentrations of SP or N-terminal SP fragments displaced [3H] DAGO binding to a minor but detectable degree, it is suggested that SP interacts with mu 1 sites through its N-terminus portion. The effect of SP on DAGO binding was less in the spinal cord compared to the rest of the brain. Modulation of DAGO binding by SP was enhanced in the brain after pretreatment of membranes with the narcotic antagonist beta-FNA. These results suggest a novel mechanism for the analgesic action of SP.
Cholinergic modulation of event-related oscillations (ERO)
Sanchez-Alavez, Manuel; Robledo, Patricia; Wills, Derek N.; Havstad, James; Ehlers, Cindy L.
2014-01-01
The cholinergic system in the brain modulates patterns of activity involved in general arousal, attention processing, memory and consciousness. In the present study we determined the effects of selective cholinergic lesions of the medial septum area (MS) or nucleus basalis magnocellularis (NBM) on amplitude and phase characteristics of event related oscillations (EROs). A time–frequency based representation was used to determine ERO energy, phase synchronization across trials, recorded within a structure (phase lock index, PLI), and phase synchronization across trials, recorded between brain structures (phase difference lock index, PDLI), in the frontal cortex (Fctx), dorsal hippocampus (DHPC) and central amygdala (Amyg). Lesions in MS produced: (1) decreases in ERO energy in delta, theta, alpha, beta and gamma frequencies in Amyg, (2) reductions in gamma ERO energy and PLI in Fctx, (3) decreases in PDLI between the Fctx–Amyg in the theta, alpha, beta and gamma frequencies, and (4) decreases in PDLI between the DHPC–Amyg and Fctx–DHPC in the theta frequency bands. Lesions in NBM resulted in: (1) increased ERO energy in delta and theta frequency bands in Fctx, (2) reduced gamma ERO energy in Fctx and Amyg, (3) reductions in PLI in the theta, beta and gamma frequency ranges in Fctx, (4) reductions in gamma PLI in DHPC and (5) reduced beta PLI in Amyg. These studies suggest that the MS cholinergic system can alter phase synchronization between brain areas whereas the NBM cholinergic system modifies phase synchronization/phase resetting within a brain area. PMID:24594019
Polymorphisms of the IL-1beta and IL-1beta-inducible genes in ulcerative colitis.
Nohara, Hiroaki; Saito, Yuki; Higaki, Singo; Okayama, Naoko; Hamanaka, Yuichiro; Okita, Kiwamu; Hinoda, Yuji
2002-11-01
Ulcerative colitis (UC) is a chronic disorder of undetermined etiology, but a genetic predisposition to UC is well recognized. Among cytokines induced in UC, interleukin 1 (IL-1) appears to have a central role because of its immunological upregulatory and proinflammatory activities. The aim of this study was to assess whether UC is associated with polymorphisms of the IL-1beta gene and three additional genes inducible with IL-1beta in Japanese subjects. A total of 96 patients with UC and 106 ethnically matched controls were genotyped at polymorphic sites in IL-1beta, matrix metalloproteinase 1 (MMP-1), matrix metalloproteinase 3 (MMP-3), and inducible nitric oxide synthase (iNOS) genes, using polymerase chain reaction (PCR)-based methods. There was no significant difference in genotype distributions of IL-1beta, MMP-1, MMP-3, and iNOS genes between controls and UC patients in a Japanese population. Also, no significant association of those polymorphisms with various clinical parameters of the patients was found. However, concerning association of age at onset with clinical factors in UC, the frequency of pancolitis was significantly higher in UC patients with age at onset being less than 30 years than in those more than 30 years of age (P = 0.049). No association of the IL-1beta and three IL-1beta-inducible gene polymorphisms with UC was observed in a Japanese population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Jiawei; Division of Molecular Medicine, Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California Los Angeles, Torrance, CA 90502; Lu Zhenyu
The corneal endothelial cells form a boundary layer between anterior chamber and cornea. This single cell layer is important to maintain cornea transparency by eliciting net fluid transport into the anterior chamber. Injuries of the corneal endothelial layer in humans lead to corneal swelling and translucence. This hindrance is thought to be due to limited proliferative capacity of the endothelial layer. Fibroblast growth factor 2 (FGF-2) and transforming growth factor-beta 2 (TGF-{beta}2) are both found in aqueous humor, and these two cytokines promote and inhibit cell growth, respectively. The intracellular signaling mechanisms by which TGF-{beta}2 suppresses the mitogenic response tomore » FGF-2, however, remain unclear. We have addressed this question by investigating potential crosstalk between FGF-2-induced and TGF-{beta}2-regulated intracellular signaling events in cultured bovine corneal endothelial (BCE) cells. We found that TGF-{beta}2 and FGF-2 oppositely affect BCE cell proliferation and TGF-{beta}2 can override the stimulating effects of FGF-2 by increasing COX-2 expression in these cells. Consistent with these findings, overexpression of COX-2 significantly reduced FGF-2-induced cell proliferation whereas a COX-2 specific inhibitor NS398 reversed the effect of TGF-{beta}2 on FGF-2-induced cell proliferation. The COX-2 product prostaglandin E2 (PGE-2) blocks FGF-2-induced cell proliferation. Whereas FGF-2 stimulates cell proliferation by activating the AKT pathway, TGF-{beta}2 and PGE-2 both inhibit this pathway. In accordance with the effect of PGE-2, cAMP also inhibits FGF-2-induced AKT activation. These findings suggest that the mitogenic response to FGF-2 in vivo in the corneal endothelial layer may be inhibited by TGF-{beta}2-induced suppression of the PI3-kinase/AKT signaling pathway.« less
L-threo-dihydroxyphenylserine corrects neurochemical abnormalities in a Menkes disease mouse model.
Donsante, Anthony; Sullivan, Patricia; Goldstein, David S; Brinster, Lauren R; Kaler, Stephen G
2013-02-01
Menkes disease is a lethal neurodegenerative disorder of infancy caused by mutations in a copper-transporting adenosine triphosphatase gene, ATP7A. Among its multiple cellular tasks, ATP7A transfers copper to dopamine beta hydroxylase (DBH) within the lumen of the Golgi network or secretory granules, catalyzing the conversion of dopamine to norepinephrine. In a well-established mouse model of Menkes disease, mottled-brindled (mo-br), we tested whether systemic administration of L-threo-dihydroxyphenylserine (L-DOPS), a drug used successfully to treat autosomal recessive norepinephrine deficiency, would improve brain neurochemical abnormalities and neuropathology. At 8, 10, and 12 days of age, wild-type and mo-br mice received intraperitoneal injections of 200μg/g body weight of L-DOPS, or mock solution. Five hours after the final injection, the mice were euthanized, and brains were removed. We measured catecholamine metabolites affected by DBH via high-performance liquid chromatography with electrochemical detection, and assessed brain histopathology. Compared to mock-treated controls, mo-br mice that received intraperitoneal L-DOPS showed significant increases in brain norepinephrine (p < 0.001) and its deaminated metabolite, dihydroxyphenylglycol (p < 0.05). The ratio of a non-beta-hydroxylated metabolite in the catecholamine biosynthetic pathway, dihydroxyphenylacetic acid, to the beta-hydroxylated metabolite, dihydroxyphenylglycol, improved equivalently to results obtained previously with brain-directed ATP7A gene therapy (p < 0.01). However, L-DOPS treatment did not arrest global brain pathology or improve somatic growth, as gene therapy had. We conclude that (1) L-DOPS crosses the blood-brain barrier in mo-br mice and corrects brain neurochemical abnormalities, (2) norepinephrine deficiency is not the cause of neurodegeneration in mo-br mice, and (3) L-DOPS treatment may ameliorate noradrenergic hypofunction in Menkes disease. Copyright © 2012 American Neurological Association.
L-DOPS corrects neurochemical abnormalities in a Menkes disease mouse model
Donsante, Anthony; Sullivan, Patricia; Goldstein, David S.; Brinster, Lauren R.; Kaler, Stephen G.
2012-01-01
Objective Menkes disease is a lethal neurodegenerative disorder of infancy caused by mutations in a copper-transporting ATPase gene, ATP7A. Among its multiple cellular tasks, ATP7A transfers copper to dopamine-beta-hydroxylase (DBH) within the lumen of the Golgi network or secretory granules, catalyzing the conversion of dopamine to norepinephrine. In a well-established mouse model of Menkes disease, mottled-brindled, we tested whether systemic administration of L-threo-dihydroxyphenylserine (L-DOPS), a drug used successfully to treat autosomal recessive norepinephrine deficiency, would improve brain neurochemical abnormalities and neuropathology. Methods At 8, 10, and 12 days of age, wild type and mo-br mice received intraperi-toneal injections of 200μg/g body weight of L-DOPS, or mock solution. Five hours after the final injection, the mice were euthanized and brains removed. We measured catecholamine metabolites affected by DBH via high-performance liquid chromatography with electrochemical detection, and assessed brain histopathology. Results Compared to mock-treated controls, mo-br mice that received intraperitoneal L-DOPS showed significant increases in brain norepinephrine (P<0.001) and its deaminated metabolite, dihydroxyphenylglycol (DHPG, P<0.05). The ratio of a non-beta-hydroxylated metabolite in the catecholamine biosynthetic pathway, dihydroxyphenylacetic acid, to the beta-hydroxylated metabolite, dihydroxyphenylglycol, improved equivalently to results obtained previously with brain-directed ATP7A gene therapy (P<0.01). However, L-DOPS treatment did not arrest global brain pathology or improve somatic growth, as gene therapy had. Interpretation We conclude that 1) L-DOPS crosses the blood-brain barrier in mo-br mice and corrects brain neurochemical abnormalities, 2) norepinephrine deficiency is not the cause of neurodegeneration in mo-br mice, and 3) L-DOPS treatment may ameliorate noradrenergic hypofunction in Menkes disease. PMID:23224983
Shin, Jae-Min; Park, Joo-Hoo; Kang, Byungjin; Lee, Seoung-Ae; Park, Il-Ho; Lee, Heung-Man
2016-11-01
It is well known that doxycycline has antibacterial and anti-inflammatory effects. In this study, we aimed to investigate the effects of doxycycline on the transforming growth factor (TGF) beta 1-induced matrix metalloproteinase (MMP) 2 expression, migration, and collagen contraction, and to determine its molecular mechanism on nasal polyp-derived fibroblasts (NPDF). NPDFs were isolated from the nasal polyps of six patients. Doxycycline was used to pretreat TGF-beta-1-induced NPDFs and ex vivo organ cultures of nasal polyps. Cytotoxicity was evaluated by using a 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay. Smad2/3 is one of the major transcription factors of TGF-beta signaling. The expression levels of MMP2 and Smad2/3 were measured by using Western blotting, reverse transcription-polymerase chain reaction, and immunofluorescence staining. The enzymic activity of MMP2 was analyzed by using gelatin zymography. Fibroblast migration was evaluated by using transwell migration assays. Contractile activity was measured by a collagen gel contraction assay. The expression level of MMP2 in nasal polyp tissues increased in comparison with inferior turbinate tissues. TGF-beta-1-induced NPDFs were not affected by doxycycline (0-40 μg/mL). The expression levels of MMP2 and activation of Smad2/3 in TGF-beta-1-induced NPDFs and in organ cultures of nasal polyps were significantly downregulated with doxycycline pretreatment. Doxycycline also reduced TGF-beta-1-induced fibroblast migration and collagen contraction in NPDFs. Doxycycline inhibited TGF-beta-1-induced MMP2 expression, migration, and collagen contraction via the Smad2/3 signal pathways in NPDFs.
Yamada, S; Harano, M; Tanaka, M
1998-02-19
To assess the role of beta-phenylethylamine in aspects of dopamine release, we measured the level of beta-phenylethylamine in the rat striatum after killing the rats by microwave irradiation. We then investigated the effect of beta-phenylethylamine on electrically evoked dopamine release from rat striatal slices in vitro. The striatal beta-phenylethylamine level was 46.5 +/- 3.5 ng/g wet tissue, equivalent to 0.3 micromol/l. Superfusion with low concentrations of beta-phenylethylamine up to 1 micromol/l had no effect on spontaneous or electrically evoked dopamine release from striatal slices. Quinpirole reduced the evoked dopamine release from slices in a concentration-dependent manner. The quinpirole-induced reduction of evoked dopamine release was attenuated 30% by superfusion with 0.3 micromol/l beta-phenylethylamine. Moreover, the (-)-sulpiride (0.1 micromol/l)-induced increase in evoked dopamine release was also attenuated by superfusion with 0.3 micromol/l beta-phenylethylamine. These data indicate that submicromolar levels of beta-phenylethylamine could modify the dopamine autoreceptor mediated changes in evoked dopamine release from rat striatal slices.
Bicycling suppresses abnormal beta synchrony in the Parkinsonian basal ganglia.
Storzer, Lena; Butz, Markus; Hirschmann, Jan; Abbasi, Omid; Gratkowski, Maciej; Saupe, Dietmar; Vesper, Jan; Dalal, Sarang S; Schnitzler, Alfons
2017-10-01
Freezing of gait is a poorly understood symptom of Parkinson disease, and can severely disrupt the locomotion of affected patients. However, bicycling ability remains surprisingly unaffected in most patients suffering from freezing, suggesting functional differences in the motor network. The purpose of this study was to characterize and contrast the oscillatory dynamics underlying bicycling and walking in the basal ganglia. We present the first local field potential recordings directly comparing bicycling and walking in Parkinson disease patients with electrodes implanted in the subthalamic nuclei for deep brain stimulation. Low (13-22Hz) and high (23-35Hz) beta power changes were analyzed in 22 subthalamic nuclei from 13 Parkinson disease patients (57.5 ± 5.9 years old, 4 female). The study group consisted of 5 patients with and 8 patients without freezing of gait. In patients without freezing of gait, both bicycling and walking led to a suppression of subthalamic beta power (13-35Hz), and this suppression was stronger for bicycling. Freezers showed a similar pattern in general. Superimposed on this pattern, however, we observed a movement-induced, narrowband power increase around 18Hz, which was evident even in the absence of freezing. These results indicate that bicycling facilitates overall suppression of beta power. Furthermore, movement leads to exaggerated synchronization in the low beta band specifically within the basal ganglia of patients susceptible to freezing. Abnormal ∼18Hz oscillations are implicated in the pathophysiology of freezing of gait, and suppressing them may form a key strategy in developing potential therapies. Ann Neurol 2017;82:592-601. © 2017 American Neurological Association.
Chen, Rong-fu; Zhang, Ting; Sun, Yin-yi; Sun, Ya-meng; Chen, Wen-qi; Shi, Nan; Shen, Fang; Zhang, Yan; Liu, Kang-yong; Sun, Xiao-jiang
2015-01-01
Our previous findings have demonstrated that autophagy regulation can alleviate the decline of learning and memory by eliminating deposition of extracellular beta-amyloid peptide (Aβ) in the brain after stroke, but the exact mechanism is unclear. It is presumed that the regulation of beta-site APP-cleaving enzyme 1 (BACE1), the rate-limiting enzyme in metabolism of Aβ, would be a key site. Neuro-2a/amyloid precursor protein 695 (APP695) cell models of cerebral ischemia were established by oxygen-glucose deprivation to investigate the effects of Rapamycin (an autophagy inducer) or 3-methyladenine (an autophagy inhibitor) on the expression of BACE1. Either oxygen-glucose deprivation or Rapamycin down-regulated the expression of BACE1 while 3-methyladenine up-regulated BACE1 expression. These results confirm that oxygen-glucose deprivation down-regulates BACE1 expression in Neuro-2a/APP695 cells through the introduction of autophagy. PMID:26604904
This project evaluates whether TGF beta inhibition during radiation therapy (RT) to breast cancer brain metastases (BCBM) provides greater...TNBC) brain metastasis. We provided image guided radiotherapy (IGRT) to murine BCBM using the small animal radiation research platform (SARRP) and
SOCS3 promotes TLR4 response in macrophages by feedback inhibiting TGF-beta1/Smad3 signaling.
Liu, Xia; Zhang, Yongliang; Yu, Yizhi; Yang, Xiao; Cao, Xuetao
2008-03-01
Endogenous transforming growth factor-beta1 (TGF-beta1) plays an important role in the negative regulation of toll-like receptor (TLR) signaling in a feedback manner. Suppressors of cytokine signaling 3 (SOCS3) has been shown to be induced by TGF-beta1 in osteoclast/macrophage, while the reports on the role of SOCS3 in regulating TLR4 signaling were controversial. The functional relationship between SOCS3 and TGF-beta1/Smad3 pathway in TLR4 response also remains unclear. In this study, we demonstrate that LPS-induced endogenous TGF-beta1 contributes to the inducible SOCS3 expression in macrophages. SOCS3 silencing could markedly decrease the LPS-induced production of TNF-alpha and IL-6 in macrophages. Interestingly, less decrease of LPS-induced TNF-alpha, IL-6 by SOCS3 silencing was observed in Smad3 null macrophages. Furthermore, we found SOCS3 could interact with Smad3, and inhibit Smad3 nuclear translocation and transcriptional activity. Therefore, our data demonstrate that SOCS3 is a positive regulator of TLR4 response by feedback inhibiting endogenous TGF-beta1/Smad3 signaling, thus outlining a new feedback regulatory manner for TLR4 response in macrophages.
Lin, Kun-Ju; Hsu, Wen-Chuin; Hsiao, Ing-Tsung; Wey, Shiaw-Pyng; Jin, Lee-Way; Skovronsky, Daniel; Wai, Yau-Yau; Chang, Hsiu-Ping; Lo, Chuan-Wei; Yao, Cheng Hsiang; Yen, Tzu-Chen; Kung, Mei-Ping
2010-05-01
The compound (E)-4-(2-(6-(2-(2-(2-(18)F-fluoroethoxy)ethoxy)ethoxy) pyridin-3-yl)vinyl)-N-methylbenzenamine ([(18)F]AV-45) is a novel radiopharmaceutical capable of selectively binding to beta-amyloid (A beta) plaques. This pilot study reports the safety, biodistribution, and radiation dosimetry of [(18)F]AV-45 in human subjects. In vitro autoradiography and fluorescent staining of postmortem brain tissue from patients with Alzheimer's disease (AD) and cognitively healthy subjects were performed to assess the specificity of the tracer. Biodistribution was assessed in three healthy elderly subjects (mean age: 60.0+/-5.2 years) who underwent 3-h whole-body positron emission tomography (PET)/computed tomographic (CT) scans after a bolus injection of 381.9+/-13.9 MBq of [(18)F]AV-45. Another six subjects (three AD patients and three healthy controls, mean age: 67.7+/-13.6 years) underwent brain PET studies. Source organs were delineated on PET/CT. All subjects underwent magnetic resonance imaging (MRI) for obtaining structural information. In vitro autoradiography revealed exquisitely high specific binding of [(18)F]AV-45 to postmortem AD brain sections, but not to the control sections. There were no serious adverse events throughout the study period. The peak uptake of the tracer in the brain was 5.12+/-0.41% of the injected dose. The highest absorbed organ dose was to the gallbladder wall (184.7+/-78.6 microGy/MBq, 4.8 h voiding interval). The effective dose equivalent and effective dose values for [(18)F]AV-45 were 33.8+/-3.4 microSv/MBq and 19.3+/-1.3 microSv/MBq, respectively. [(18)F]AV-45 binds specifically to A beta in vitro, and is a safe PET tracer for studying A beta distribution in human brain. The dosimetry is suitable for clinical and research application. (c) 2010 Elsevier Inc. All rights reserved.
Bravo, Susana B; Pampín, Sandra; Cameselle-Teijeiro, José; Carneiro, Carmen; Domínguez, Fernando; Barreiro, Francisco; Alvarez, Clara V
2003-10-30
Millions of people worldwide suffer goiter, a proliferative disease of the follicular cells of the thyroid that may become neoplastic. Thyroid neoplasms have low proliferative index, low apoptotic index and a high incidence of metastasis. TGF-beta is overexpressed in thyroid follicular tumor cells. To investigate the role of TGF-beta in thyroid tumor progression, we established cultures of human thyrocytes from different proliferative pathologies (Grave's disease, multinodular goiter, follicular adenoma, papillary carcinoma), lymph node metastasis, and a normal thyroid sample. All cultures maintained the thyrocyte phenotype. TGF-beta induced cell-cycle arrest in all cultures, in contrast with results reported for other epithelial tumors. In deprived medium, TGF-beta induced apoptosis in normal thyrocyte cultures and all neoplastic cultures except the metastatic cultures. This apoptosis was mediated by a reduction in p27kip1 levels, inducing cell-cycle initiation. Antisense p27 expression induced apoptosis in the absence of TGF-beta. By contrast, in cells in which p27 was overexpressed, TGF-beta had a survival effect. In growth medium, a net survival effect occurs in neoplastic thyrocytes only, not normal thyrocytes, due to activation of the NF-kappaB survival program. Together, these findings suggest that (a) thyroid neoplasms are due to reduced apoptosis, not increased division, in line with the low proliferative index of these pathologies, and (b) TGF-beta induces apoptosis in normal thyrocytes via p27 reduction, but that in neoplastic thyrocytes this effect is overridden by activation of the NF-kappaB program.
[Regulation of IL-1beta and IL-8 production by mu-, delta-opiate receptors agonists in vitro].
Geĭn, S V; Gorshkova, K G; Tendriakova, S P
2008-07-01
The beta-endorphin 10(-7-)-10(-11) M in LPS (lypopolisaccharide) presence and in spontaneous cultures promoted the IL-1beta production in mixed leukocyte fraction. LPS-induced IL-8 production in leukocyte fraction was inhibited by beta-endorphin 10(-7), 10(-11) M. The enchasing effect of beta-endorphin on IL-1beta production was not blocked by naloxone and naltrindole. The inhibitory effect of beta-endorphin on IL-8 production was blocked by naloxone and naltrindole. In mononuclear and neutrophile fractions beta-endorphin and delta-agonist DADLE enchased IL-1beta production in spontaneous and LPS-stimulating cultures, when IL-8 production inhibited beta-endorphin and delta-agonist DADLE only in LPS presence. No effect of mu-agonist DAGO were observed on IL-1beta production, whereas LPS-induced IL-8 secretion in neutrophile fraction inhibited by DAGO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Wei; Huang Youhua; Zhao Zhe
2006-12-08
The 3{beta}-hydroxysteroid dehydrogenase (3{beta}-HSD) isoenzymes play a key role in cellular steroid hormone synthesis. Here, a 3{beta}-HSD gene homolog was cloned from Rana grylio virus (RGV), a member of family Iridoviridae. RGV 3{beta}-HSD gene has 1068 bp, encoding a 355 aa predicted protein. Transcription analyses showed that RGV 3{beta}-HSD gene was transcribed immediate-early during infection from an initiation site 19 nucleotides upstream of the translation start site. Confocal microscopy revealed that the 3{beta}-HSD-EGFP fusion protein was exclusively colocalized with the mitochondria marker (pDsRed2-Mito) in EPC cells. Upon morphological observation and MTT assay, it was revealed that overexpression of RGV 3{beta}-HSDmore » in EPC cells could apparently suppress RGV-induced cytopathic effect (CPE). The present studies indicate that the RGV immediate-early 3{beta}-HSD gene encodes a mitochondria-localized protein, which has a novel role in suppressing virus-induced CPE. All these suggest that RGV 3{beta}-HSD might be a protein involved in host-virus interaction.« less
[S632A3 promotes LPS-induced IFN-beta production through inhibiting the activation of GSK-3beta].
Zhang, Na; Yang, Xin; Xu, Rong; Wang, Zhen; Song, Dan-Qing; Li, Dian-Dong; Deng, Hong-Bin
2013-07-01
LPS stimulation of macrophages production of IFN-beta plays a key role in innate immunity defending the microbial invasion. In this study, the effect of S632A3 promoting LPS-induced IFN-beta production and the underlying mechanism were investigated, mRNA level was measured by real-time PCR, cytokine production was determined by ELISA, GSK-3beta activity was investigated by kinase assay, protein phosphorylation and expression were evaluated by Western blotting. The results revealed that S632A3 significantly augmented IFN-beta production by LPS-stimulated macrophages. S632A3 inhibition of the activation of GSK-3beta, reduced the threonine 239 phosphorylation of transcription factor c-Jun but increased the total level of c-Jun in LPS-stimulated macrophages. Moreover, small interfering RNA-mediated knockdown of c-Jun level abrogated the ability of S632A3 to augment IFN-beta. The study thus demonstrates S632A3 being a new anti-inflammation lead compound and provides a molecular mechanism by which S632A3 promoted LPS-induced IFN-beta production in macrophages through inhibiting the activation of GSK-3beta.
Leptin actions on food intake and body temperature are mediated by IL-1.
Luheshi, G N; Gardner, J D; Rushforth, D A; Loudon, A S; Rothwell, N J
1999-06-08
Leptin regulates energy balance through its actions in the brain on appetite and energy expenditure and also shares properties with cytokines such as IL-1. We report here that leptin, injected into rats intracerebroventricularly or peripherally, induces significant dose-dependent increases in core body temperature as well as suppression of appetite. Leptin failed to affect food intake or body temperature in obese (fa/fa) Zucker rats, which posses a defective leptin receptor. Furthermore, injection of leptin increased levels of the proinflammatory cytokine IL-1beta in the hypothalamus of normal Sprague-Dawley rats. Central injection of IL-1 receptor antagonist (IL-1ra) inhibited the suppression of food intake caused by central or peripheral injection of leptin (60 and 84%, respectively) and abolished the leptin-induced increase in body temperature in both cases. Mice lacking (gene knockout) the main IL-1 receptor (80 kDa, R1) responsible for IL-1 actions showed no reduction in food intake in response to leptin. These data indicate that leptin actions in the brain depend on IL-1, and we show further that the effect of leptin on fever, but not food intake, is abolished by a cyclooxygenase inhibitor. Thus, we propose that in addition to its role in body weight regulation, leptin may mediate neuroimmune responses via actions in the brain dependent on release of IL-1 and prostaglandins.
Bertram, Sebastian; Brixius, Klara; Brinkmann, Christian
2016-08-01
Epidemiological studies indicate that patients with type 2 diabetes mellitus (T2DM) are at increased risk of developing dementia/Alzheimer's disease (AD). This review, which is based on recent studies, presents a molecular framework that links the two diseases and explains how physical training could help counteract neurodegeneration in T2DM patients. Inflammatory, oxidative, and metabolic changes in T2DM patients cause cerebrovascular complications and can lead to blood-brain-barrier (BBB) breakdown. Peripherally increased pro-inflammatory molecules can then pass the BBB more easily and activate stress-activated pathways, thereby promoting key pathological features of dementia/AD such as brain insulin resistance, mitochondrial dysfunction, and accumulation of neurotoxic beta-amyloid (Aβ) oligomers, leading to synaptic loss, neuronal dysfunction, and cell death. Ceramides can also pass the BBB, induce pro-inflammatory reactions, and disturb brain insulin signaling. In a vicious circle, oxidative stress and the pro-inflammatory environment intensify, leading to further cognitive decline. Low testosterone levels might be a common risk factor in T2DM and AD. Regular physical exercise reinforces antioxidative capacity, reduces oxidative stress, and has anti-inflammatory effects. It improves endothelial function and might increase brain capillarization. Physical training can further counteract dyslipidemia and reduce increased ceramide levels. It might also improve Aβ clearance by up-regulating Aβ transporters and, in some cases, increase basal testosterone levels. In addition, regular physical activity can induce neurogenesis. Physical training should therefore be emphasized as a part of prevention programs developed for diabetic patients to minimize the risk of the onset of neurodegenerative diseases among this specific patient group.
Analysis of EEG activity in response to binaural beats with different frequencies.
Gao, Xiang; Cao, Hongbao; Ming, Dong; Qi, Hongzhi; Wang, Xuemin; Wang, Xiaolu; Chen, Runge; Zhou, Peng
2014-12-01
When two coherent sounds with nearly similar frequencies are presented to each ear respectively with stereo headphones, the brain integrates the two signals and produces a sensation of a third sound called binaural beat (BB). Although earlier studies showed that BB could influence behavior and cognition, common agreement on the mechanism of BB has not been reached yet. In this work, we employed Relative Power (RP), Phase Locking Value (PLV) and Cross-Mutual Information (CMI) to track EEG changes during BB stimulations. EEG signals were acquired from 13 healthy subjects. Five-minute BBs with four different frequencies were tested: delta band (1 Hz), theta band (5 Hz), alpha band (10 Hz) and beta band (20 Hz). We observed RP increase in theta and alpha bands and decrease in beta band during delta and alpha BB stimulations. RP decreased in beta band during theta BB, while RP decreased in theta band during beta BB. However, no clear brainwave entrainment effect was identified. Connectivity changes were detected following the variation of RP during BB stimulations. Our observation supports the hypothesis that BBs could affect functional brain connectivity, suggesting that the mechanism of BB-brain interaction is worth further study. Copyright © 2014. Published by Elsevier B.V.
The properties of B-form monoamine oxidase in mitochondria from monkey platelet.
Obata, Toshio; Aomine, Masahiro
The present study was examined the effect of the properties of monkey platelet monoamine oxidase (MAO) based on inhibitor sensitivity. Monkey platelet showed a high MAO activity with beta-phenylethylamine (beta-PEA) as substrate and a very low A-form MAO activity with 5 hydroxytryptamine (5-HT) as substrate. Moreover, monkey platelet MAO was sensitive to the drugs deprenyl as B-form MAO inhibitor and less sensitive to clorgyline and harmaline as A form MAO inhibitor with beta-PEA as the B-form MAO substrate. B-form MAO from monkey platelet was more stable against heat treatment at 55 degrees C than B-form MAO in brain. After digestion with trypsin at 37 degrees C for 4 hrs, it was found that MAO from platelet was inhibited about 70% with beta-PEA as substrate with brain. The tricyclic antidepressant imipramine and nortriptyline inhibited B-form MAO activity more potency than B-form MAO in brain. However, when the noncyclic antidepressant nomifensine was used, monkey platelet B-form MAO activities were less potently inhibited. All these reagents were noncompetitive inhibitors of B form MAO in monkey platelet. The present studies demonstrated that monkey platelet MAO is a single of B-form MAO and sensitive to tricyclic antidepressants.
Aberrant prefrontal beta oscillations predict episodic memory encoding deficits in schizophrenia.
Meconi, Federica; Anderl-Straub, Sarah; Raum, Heidelore; Landgrebe, Michael; Langguth, Berthold; Bäuml, Karl-Heinz T; Hanslmayr, Simon
Verbal episodic memory is one of the core cognitive functions affected in patients with schizophrenia (SZ). Although this verbal memory impairment in SZ is a well-known finding, our understanding about its underlying neurophysiological mechanisms is rather scarce. Here we address this issue by recording brain oscillations during a memory task in a sample of healthy controls and patients with SZ. Brain oscillations represent spectral fingerprints of specific neurocognitive operations and are therefore a promising tool to identify neurocognitive mechanisms that are affected by SZ. Healthy controls showed a prominent suppression of left prefrontal beta oscillatory activity during successful memory formation, which replicates several previous oscillatory memory studies. In contrast, patients failed to exhibit such a left prefrontal beta power suppression. Utilizing a new topographical pattern similarity approach, we further demonstrate that the degree of similarity between a patient's beta power decrease to that of the controls reliably predicted memory performance. This relationship between beta power decreases and memory was such that the patients' memory performance improved as they showed a more similar topographical beta desynchronization pattern compared to that of healthy controls. Together, these findings support left prefrontal beta desynchronization as the spectral fingerprint of verbal episodic memory formation, likely indicating deep semantic processing of verbal material. These findings also demonstrate that left prefrontal beta power suppression (or lack thereof) during memory encoding are a reliable biomarker for the observed encoding impairments in SZ in verbal memory.
Rotllant, David; Ons, Sheila; Carrasco, Javier; Armario, Antonio
2002-08-01
Metyrapone, a 11-beta steroid hydroxylase inhibitor that blocks stress-induced glucocorticoid release, is extensively used to study the physiological and behavioural roles of glucocorticoids. However, there is circumstantial evidence suggesting that metyrapone could act as a pharmacological stressor. Thus, the effects of various doses of metyrapone on two well-characterized stress markers (ACTH and glucose) were studied in male rats. Metyrapone administration, while exerting a modest effect on plasma corticosterone levels, dose-dependently increased plasma ACTH and glucose levels. Using the highest doses previously tested (200 mg/kg) we further observed, as evaluated by fos-like immunoreactivity (FLI), a strong activation of a wide range of brain areas, including the parvocellular region of the hypothalamic paraventricular nucleus (PVNp), the origin of the main ACTH secretagogues. Metyrapone-induced FLI was observed in neocortical and allocortical areas, in several limbic, thalamic and hypothalamic nuclei and, to a lesser extent, in the brainstem. In a final experiment, a dose-response study of metyrapone-induced FLI was carried out focusing on selected brain areas. The study revealed that the paraventricular thalamic nucleus and central amygdala were the areas most sensitive to metyrapone as they responded even to the lowest dose of the drug. Most areas, among them the PVNp, only showed enhanced FLI with the two highest doses, i.e. when it was associated with ACTH and glucose responses. These data suggest that some of the effects of metyrapone could be due to its stressful properties rather than its ability to inhibit glucocorticoid synthesis. The exact mechanisms involved remain to be established.
PDGF-beta receptor expression and ventilatory acclimatization to hypoxia in the rat.
Alea, O A; Czapla, M A; Lasky, J A; Simakajornboon, N; Gozal, E; Gozal, D
2000-11-01
Activation of platelet-derived growth factor-beta (PDGF-beta) receptors in the nucleus of the solitary tract (nTS) modulates the late phase of the acute hypoxic ventilatory response (HVR) in the rat. We hypothesized that temporal changes in PDGF-beta receptor expression could underlie the ventilatory acclimatization to hypoxia (VAH). Normoxic ventilation was examined in adult Sprague-Dawley rats chronically exposed to 10% O(2), and at 0, 1, 2, 7, and 14 days, Northern and Western blots of the dorsocaudal brain stem were performed for assessment of PDGF-beta receptor expression. Although no significant changes in PDGF-beta receptor mRNA occurred over time, marked attenuation of PDGF-beta receptor protein became apparent after day 7 of hypoxic exposure. Such changes were significantly correlated with concomitant increases in normoxic ventilation, i.e., with VAH (r: -0.56, P < 0.005). In addition, long-term administration of PDGF-BB in the nTS via osmotic pumps loaded with either PDGF-BB (n = 8) or vehicle (Veh; n = 8) showed that although no significant changes in the magnitude of acute HVR occurred in Veh over time, the typical attenuation of HVR by PDGF-BB decreased over time. Furthermore, PDGF-BB microinjections did not attenuate HVR in acclimatized rats at 7 and 14 days of hypoxia (n = 10). We conclude that decreased expression of PDGF-beta receptors in the dorsocaudal brain stem correlates with the magnitude of VAH. We speculate that the decreased expression of PDGF-beta receptors is mediated via internalization and degradation of the receptor rather than by transcriptional regulation.
Koedel, Uwe; Frankenberg, Tobias; Kirschnek, Susanne; Obermaier, Bianca; Häcker, Hans; Paul, Robert; Häcker, Georg
2009-05-01
During acute bacterial infections such as meningitis, neutrophils enter the tissue where they combat the infection before they undergo apoptosis and are taken up by macrophages. Neutrophils show pro-inflammatory activity and may contribute to tissue damage. In pneumococcal meningitis, neuronal damage despite adequate chemotherapy is a frequent clinical finding. This damage may be due to excessive neutrophil activity. We here show that transgenic expression of Bcl-2 in haematopoietic cells blocks the resolution of inflammation following antibiotic therapy in a mouse model of pneumococcal meningitis. The persistence of neutrophil brain infiltrates was accompanied by high levels of IL-1beta and G-CSF as well as reduced levels of anti-inflammatory TGF-beta. Significantly, Bcl-2-transgenic mice developed more severe disease that was dependent on neutrophils, characterized by pronounced vasogenic edema, vasculitis, brain haemorrhages and higher clinical scores. In vitro analysis of neutrophils demonstrated that apoptosis inhibition completely preserves neutrophil effector function and prevents internalization by macrophages. The inhibitor of cyclin-dependent kinases, roscovitine induced apoptosis in neutrophils in vitro and in vivo. In wild type mice treated with antibiotics, roscovitine significantly improved the resolution of the inflammation after pneumococcal infection and accelerated recovery. These results indicate that apoptosis is essential to turn off activated neutrophils and show that inflammatory activity and disease severity in a pyogenic infection can be modulated by targeting the apoptotic pathway in neutrophils.
Verdurand, Mathieu; Chauveau, Fabien; Daoust, Alexia; Morel, Anne-Laure; Bonnefoi, Frédéric; Liger, François; Bérod, Anne; Zimmer, Luc
2016-04-01
Evidence accumulates suggesting a complex interplay between neurodegenerative processes and serotonergic neurotransmission. We have previously reported an overexpression of serotonin 5-HT1A receptors (5-HT(1A)R) after intrahippocampal injections of amyloid-beta 1-40 (Aβ40) fibrils in rats. This serotonergic reactivity paralleled results from clinical positron emission tomography studies with [(18)F]MPPF revealing an overexpression of 5-HT(1A)R in the hippocampus of patients with mild cognitive impairment. Because Aβ40 and Aβ42 isoforms are found in amyloid plaques, we tested in this study the hypothesis of a peptide- and region-specific 5-HT(1A)R reactivity by injecting them, separately, into the hippocampus or striatum of rats. [(18)F]MPPF in vitro autoradiography revealed that Aβ40 fibrils, but not Aβ42, were triggering an overexpression of 5-HT(1A)R in the hippocampus and striatum of rat brains after 7 days. Immunohistochemical approaches targeting neuronal precursor cells, mature neurons, and astrocytes showed that Aβ42 fibrils caused more pathophysiological damages than Aβ40 fibrils. The mechanisms of Aβ40 fibrils-induced 5-HT(1A)R expression remains unknown, but hypotheses including neurogenesis, glial expression, and axonal sprouting are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Topologically heterogeneous beta cell adaptation in response to high-fat diet in mice.
Ellenbroek, Johanne H; Töns, Hendrica A; de Graaf, Natascha; Loomans, Cindy J; Engelse, Marten A; Vrolijk, Hans; Voshol, Peter J; Rabelink, Ton J; Carlotti, Françoise; de Koning, Eelco J
2013-01-01
Beta cells adapt to an increased insulin demand by enhancing insulin secretion via increased beta cell function and/or increased beta cell number. While morphological and functional heterogeneity between individual islets exists, it is unknown whether regional differences in beta cell adaptation occur. Therefore we investigated beta cell adaptation throughout the pancreas in a model of high-fat diet (HFD)-induced insulin resistance in mice. C57BL/6J mice were fed a HFD to induce insulin resistance, or control diet for 6 weeks. The pancreas was divided in a duodenal (DR), gastric (GR) and splenic (SR) region and taken for either histology or islet isolation. The capacity of untreated islets from the three regions to adapt in an extrapancreatic location was assessed by transplantation under the kidney capsule of streptozotocin-treated mice. SR islets showed 70% increased beta cell proliferation after HFD, whereas no significant increase was found in DR and GR islets. Furthermore, isolated SR islets showed twofold enhanced glucose-induced insulin secretion after HFD, as compared with DR and GR islets. In contrast, transplantation of islets isolated from the three regions to an extrapancreatic location in diabetic mice led to a similar decrease in hyperglycemia and no difference in beta cell proliferation. HFD-induced insulin resistance leads to topologically heterogeneous beta cell adaptation and is most prominent in the splenic region of the pancreas. This topological heterogeneity in beta cell adaptation appears to result from extrinsic factors present in the islet microenvironment.
Wu, Z-X; Satterfield, B E; Fedan, J S; Dey, R D
2002-11-01
Interleukin (IL)-1beta causes airway inflammation, enhances airway smooth muscle responsiveness, and alters neurotransmitter expression in sensory, sympathetic, and myenteric neurons. This study examines the role of intrinsic airway neurons in airway hyperresponsiveness (AHR) induced by IL-1beta. Ferrets were instilled intratracheally with IL-1beta (0.3 microg/0.3 ml) or saline (0.3 ml) once daily for 5 days. Tracheal smooth muscle contractility in vitro and substance P (SP) expression in tracheal neurons were assessed. Tracheal smooth muscle reactivity to acetylcholine (ACh) and methacholine (MCh) and smooth muscle contractions to electric field stimulation (EFS) both increased after IL-1beta. The IL-1beta-induced AHR was maintained in tracheal segments cultured for 24 h, a procedure that depletes SP from sensory nerves while maintaining viability of intrinsic airway neurons. Pretreatment with CP-99994, an antagonist of neurokinin 1 receptor, attenuated the IL-1beta-induced hyperreactivity to ACh and MCh and to EFS in cultured tracheal segments. SP-containing neurons in longitudinal trunk, SP innervation of superficial muscular plexus neurons, and SP nerve fiber density in tracheal smooth muscle all increased after treatment with IL-1beta. These results show that IL-1beta-enhanced cholinergic airway smooth muscle contractile responses are mediated by the actions of SP released from intrinsic airway neurons.
1-Methyl-beta-carboline (harmane), a potent endogenous inhibitor of benzodiazepine receptor binding.
Rommelspacher, H; Nanz, C; Borbe, H O; Fehske, K J; Müller, W E; Wollert, U
1980-10-01
The interaction of several beta-carbolines with specific [3H]-flunitrazepam binding to benzodiazepine receptors in rat brain membranes was investigated. Out of the investigated compounds, harmane and norharmane were the most potent inhibitors of specific [3H]-flunitrazepam binding, with IC50-values in the micromolar range. All other derivatives, including harmine, harmaline, and several tetrahydroderivatives were at least ten times less potent. Harmane has been previously found in rat brain and human urine, so it is the most potent endogenous inhibitor of specific [3H]-flunitrazepam binding known so far, with a several fold higher affinity for the benzodiazepine receptor than inosine and hypoxanthine. Thus, we suggest that harmane or other related beta-carbolines could be potential candidates as endogenous ligands of the benzodiazepine receptor.
[The noncoherent components of evoked brain activity].
Kovalev, V P; Novototskiĭ-Vlasov, V Iu
1998-01-01
Poststimulus spectral EEG changes and their correlation with evoked potential (EP) were analyzed. The non-stationary components of the brain evoked activity were revealed in 32 volunteers during simple motor reaction and choice reaction to visual stimuli. This nonstationary activity was manifested in poststimulus changes in the mean wave half-period duration (MWHPD) and mean wave half-period power of the delta- and beta-frequency oscillations computed in the EEG realizations after the EP subtraction. The latencies of high-frequency EP components fell into the intervals of the MWHPD decrease and increase in the power of beta-oscillations, and the latencies of low-frequency EP components coincided with the intervals of the MWHPD increase and decrease in the power of delta and beta-oscillations, which pointed to correlation of these changes with the EP.
Shear-Induced Amyloid Formation in the Brain: I. Potential Vascular and Parenchymal Processes.
Trumbore, Conrad N
2016-09-06
Shear distortion of amyloid-beta (Aβ) solutions accelerates amyloid cascade reactions that may yield different toxic oligomers than those formed in quiescent solutions. Recent experiments indicate that cerebrospinal fluid (CSF) and interstitial fluid (ISF) containing Aβ flow through narrow brain perivascular pathways and brain parenchyma. This paper suggests that such flow causes shear distortion of Aβ molecules involving conformation changes that may be one of the initiating events in the etiology of Alzheimer's disease. Aβ shearing can occur in or around brain arteries and arterioles and is suggested as the origin of cerebral amyloid angiopathy deposits in cerebrovascular walls. Comparatively low flow rates of ISF within the narrow extracellular spaces (ECS) of the brain parenchyma are suggested as a possible initiating factor in both the formation of neurotoxic Aβ42 oligomers and amyloid fibrils. Aβ42 in slow-flowing ISF can gain significant shear energy at or near the walls of tortuous brain ECS flow paths, promoting the formation of a shear-distorted, excited state hydrophobic Aβ42* conformation. This Aβ42* molecule could possibly be involved in one of two paths, one involving rapid adsorption to a brain membrane surface, ultimately forming neurotoxic oligomers on membranes, and the other ultimately forming plaque within the ECS flow pathways. Rising Aβ concentrations combined with shear at or near critical brain membranes are proposed as contributing factors to Alzheimer's disease neurotoxicity. These hypotheses may be applicable in other neurodegenerative diseases, including tauopathies and alpha-synucleinopathies, in which shear-distorted proteins also may form in the brain ECS.
Bossi, E; Kohler, E; Herschkowitz, N
1989-11-01
In dissociated whole brain cell cultures from newborn mice, we have previously shown that during glucose deprivation under normoxia, D-beta-hydroxybutyrate and oleic acid are increasingly used for energy production. We now asked whether this glucose dependency of the utilization of D-beta-hydroxybutyrate and oleic acid as alternate energy fuels is also present after a hypoxic phase. 3-Hydroxy[3-14C]butyrate or [U-14C]oleic acid were added to 7- and 14-d-old cultures and 14CO2-production compared after hypoxia in normal and glucose-deprived conditions. After hypoxia, the ability of the cells 7 d in culture to increase D-beta-hydroxybutyrate consumption in response to glucose deprivation is diminished, 14-d-old cells lose this ability. In contrast, after hypoxia, both 7- and 14-d-old cultures maintain or even improve the ability to increase oleate consumption, when glucose is lacking.
Mori, Shigeo; Matsuzaki, Koichi; Yoshida, Katsunori; Furukawa, Fukiko; Tahashi, Yoshiya; Yamagata, Hideo; Sekimoto, Go; Seki, Toshihito; Matsui, Hirofumi; Nishizawa, Mikio; Fujisawa, Jun-ichi; Okazaki, Kazuichi
2004-09-23
Although hepatocyte growth factor (HGF) can act synergistically or antagonistically with transforming growth factor-beta (TGF-beta) signaling, molecular mechanism of their crosstalk remains unknown. Using antibodies which selectively distinguished receptor-regulated Smads (R-Smads) phosphorylated at linker regions from those at C-terminal regions, we herein showed that either HGF or TGF-beta treatment of normal stomach-origin cells activated the JNK pathway, thereafter inducing endogenous R-Smads phosphorylation at linker regions. However, the phosphorylation at their C-terminal regions was not induced by HGF treatment. The activated JNK could directly phosphorylate R-Smads in vitro at the same sites that were phosphorylated in response to TGF-beta or HGF in vivo. Thus, the linker regions of R-Smads were the common phosphorylation sites for HGF and TGF-beta signaling pathways. The phosphorylation induced by simultaneous treatment with HGF and TGF-beta allowed R-Smads to associate with Smad4 and to translocate into the nucleus. JNK pathway involved HGF and TGF-beta-mediated infiltration potency since a JNK inhibitor SP600125 caused the reduction of invasive capacity induced by HGF and TGF-beta signals. Moreover, a combined treatment with HGF and TGF-beta led to a potent increase in plasminogen activator inhibitor type 1 transcriptional activity through Smad3 phosphorylation at the linker region. In contrast, HGF treatment reduced TGF-beta-dependent activation of p15INK4B promoter, in which Smad3 phosphorylation at the C-terminal region was involved. In conclusion, HGF and TGF-beta transmit the signals through JNK-mediated R-Smads phosphorylation at linker regions.
Acorus tatarinowii Schott extract protects PC12 cells from amyloid-beta induced neurotoxicity.
An, Hong-Mei; Li, Guo-Wen; Lin, Chen; Gu, Chao; Jin, Miao; Sun, Wen-Xian; Qiu, Ming-Feng; Hu, Bing
2014-05-01
Amyloid-beta induced neurotoxicity has been identified as a major cause of Alzheimer's disease. Acorus tatarinowii Schott is one of the most frequently used Chinese herbs for Alzheimer's disease treatment. However, the effects of Acorus tatarinowii Schott on amyloid-beta mediated nerve cell damage remains unknown. In the present study, neuronal differentiated PC12 cells were used as a model to evaluate the effects of A. tatarinowii Schott extract (ATSE) against Abeta25-35 induced neurotoxicity. The results showed pretreatment with ATSE significantly protected PC12 cells from Abeta25-35 induced cell death, lactate dehydrogenase release, DNA damage, mitochondrial dysfunction and cytochrome c release from mitochondria. In addition, pretreatment with ATSE also significantly inhibited Abeta25-35 induced caspase-3 activation and reactive oxygen species generation in PC12 cells. These observations suggested that ATSE protects PC12 cells from amyloid-beta induced neurotoxicity.
Alao, John P; Stavropoulou, Alexandra V; Lam, Eric W-F; Coombes, R Charles
2006-10-03
Histone deacetylase inhibitors (HDACIs) have been shown to induce apoptotic and autophagic cell death in vitro and in vivo. The molecular mechanisms that underlie these cytotoxic effects are not yet clearly understood. Recently, HDACIs were shown to induce Akt dephosphorylation by disrupting HDAC-protein phosphatase 1 (PP1) complexes. This disruption results in the increased association of PP1 with Akt, resulting in the dephosphorylation and consequent inactivation of the kinase. Akt enhances cellular survival through the phosphorylation-dependent inhibition of several pro-apoptotic proteins. Akt is an important negative regulator of GSK3beta, a kinase that has been shown to regulate apoptosis in response to various stimuli. In the present study, we investigated the role of GSK3beta in mediating the cytotoxic effects in MCF-7 breast cancer cells treated with trichostatin A (TSA), a prototype HDACI. We show that TSA induces Akt dephosphorylation in a PP1-dependent manner, resulting in activation of GSK3beta in MCF-7 cells. Similarly, knockdown of HDAC1 and-2 by small interfering RNA (siRNA) resulted in the dephosphorylation of Akt and GSK3beta. Selective inhibition of GSK3beta attenuated TSA induced cytotoxicity and resulted in enhanced proliferation following drug removal. Our findings identify GSK3beta as an important mediator of TSA-induced cytotoxicity in MCF-7 breast cancer cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Eun Jee; Chun, Ji Na; Jung, Sun-Ah
2011-11-18
Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology inmore » pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information towards understanding the pathogenesis of proliferative vitreoretinal diseases.« less
Sharma, Aruna; Menon, Preeti K; Patnaik, Ranjana; Muresanu, Dafin F; Lafuente, José V; Tian, Z Ryan; Ozkizilcik, Asya; Castellani, Rudy J; Mössler, Herbert; Sharma, Hari S
2017-01-01
More than 5.5 million Americans of all ages are suffering from Alzheimer's disease (AD) till today for which no suitable therapy has been developed so far. Thus, there is an urgent need to explore novel therapeutic measures to contain brain pathology in AD. The hallmark of AD includes amyloid-beta peptide (AβP) deposition and phosphorylation of tau in AD brain. Recent evidences also suggest a marked decrease in neurotrophic factors in AD. Thus, exogenous supplement of neurotrophic factors could be one of the possible ways for AD therapy. Human postmortem brain in AD shows alterations in histamine receptors as well, indicating an involvement of the amine in AD-induced brain pathology. In this review, we focused on role of histamine 3 and 4 receptor-modulating drugs in the pathophysiology of AD. Moreover, antibodies to histamine and tau appear to be also beneficial in reducing brain pathology, blood-brain barrier breakdown, and edema formation in AD. Interestingly, TiO 2 -nanowired delivery of cerebrolysin-a balanced composition of several neurotrophic factors attenuated AβP deposition and reduced tau phosphorylation in AD brain leading to neuroprotection. Coadministration of cerebrolysin with histamine antibodies or tau antibodies has further enhanced neuroprotection in AD. These novel observations strongly suggest a role of nanomedicine in AD that requires further investigation. © 2017 Elsevier Inc. All rights reserved.
Lee, Hong J; Kim, Kwang S; Kim, Eun J; Choi, Hyun B; Lee, Kwang H; Park, In H; Ko, Yong; Jeong, Sang W; Kim, Seung U
2007-05-01
We have generated stable, immortalized cell lines of human NSCs from primary human fetal telencephalon cultures via a retroviral vector encoding v-myc. HB1.F3, one of the human NSC lines, expresses a normal human karyotype of 46, XX, and nestin, a cell type-specific marker for NSCs. F3 has the ability to proliferate continuously and differentiate into cells of neuronal and glial lineage. The HB1.F3 human NSC line was used for cell therapy in a mouse model of intracerebral hemorrhage (ICH) stroke. Experimental ICH was induced in adult mice by intrastriatal administration of bacterial collagenase; 1 week after surgery, the rats were randomly divided into two groups so as to receive intracerebrally either human NSCs labeled with beta-galactosidase (n = 31) or phosphate-buffered saline (PBS) (n = 30). Transplanted NSCs were detected by 5-bromo-4-chloro-3-indolyl-beta-d-galactoside histochemistry or double labeling with beta-galactosidase (beta-gal) and mitogen-activated protein (MAP)2, neurofilaments (both for neurons), or glial fibrillary acidic protein (GFAP) (for astrocytes). Behavior of the animals was evaluated for period up to 8 weeks using modified Rotarod tests and a limb placing test. Transplanted human NSCs were identified in the perihematomal areas and differentiated into neurons (beta-gal/MAP2(+) and beta-gal/NF(+)) or astrocytes (beta-gal/GFAP(+)). The NSC-transplanted group showed markedly improved functional performance on the Rotarod test and limb placing after 2-8 weeks compared with the control PBS group (p < .001). These results indicate that the stable immortalized human NSCs are a valuable source of cells for cell replacement and gene transfer for the treatment of ICH and other human neurological disorders. Disclosure of potential conflicts of interest is found at the end of this article.
Du, X; Iacovitti, L
1995-07-01
The phenotypically plastic neurons of the embryonic mouse striatum were used to explore mechanisms of catecholamine differentiation in culture. De novo transcription and translation of the CA biosynthetic enzyme, tyrosine hydroxylase (TH), was induced in striatal neurons exposed, simultaneously or sequentially, to the growth factor, acidic fibroblast growth factor (aFGF) and a catecholamine. Although dopamine was the most potent aFGF partner (ED50 = 4 microM), a number of substances, including dopamine (D1) receptor agonists, beta-adrenoceptor agonists, and dopamine uptake inhibitors also trigger TH induction when accompanied by aFGF. However, since none of the receptor antagonists nor transport blockers tested could inhibit dopamine's action, the mechanism remains obscure. Structure-activity analysis suggests that effective aFGF partners all contain an amine group separated from a catechol nucleus by two carbons. Thus, TH expression can be novelly induced by the synergistic interaction of aFGF, and to a lesser extent basic FGF, and a variety of CA-containing partner molecules. We speculate that a similar association between growth factor and transmitter may be required in development for the differentiation of a CA phenotype in brain neurons.
Death receptors DR6 and TROY regulate brain vascular development.
Tam, Stephen J; Richmond, David L; Kaminker, Joshua S; Modrusan, Zora; Martin-McNulty, Baby; Cao, Tim C; Weimer, Robby M; Carano, Richard A D; van Bruggen, Nick; Watts, Ryan J
2012-02-14
Signaling events that regulate central nervous system (CNS) angiogenesis and blood-brain barrier (BBB) formation are only beginning to be elucidated. By evaluating the gene expression profile of mouse vasculature, we identified DR6/TNFRSF21 and TROY/TNFRSF19 as regulators of CNS-specific angiogenesis in both zebrafish and mice. Furthermore, these two death receptors interact both genetically and physically and are required for vascular endothelial growth factor (VEGF)-mediated JNK activation and subsequent human brain endothelial sprouting in vitro. Increasing beta-catenin levels in brain endothelium upregulate DR6 and TROY, indicating that these death receptors are downstream target genes of Wnt/beta-catenin signaling, which has been shown to be required for BBB development. These findings define a role for death receptors DR6 and TROY in CNS-specific vascular development. Copyright © 2012 Elsevier Inc. All rights reserved.
Hulsurkar, M; Li, Z; Zhang, Y; Li, X; Zheng, D; Li, W
2017-03-01
Chronic behavioral stress and beta-adrenergic signaling have been shown to promote cancer progression, whose underlying mechanisms are largely unclear, especially the involvement of epigenetic regulation. Histone deacetylase-2 (HDAC2), an epigenetic regulator, is critical for stress-induced cardiac hypertrophy. It is unknown whether it is necessary for beta-adrenergic signaling-promoted cancer progression. Using xenograft models, we showed that chronic behavioral stress and beta-adrenergic signaling promote angiogenesis and prostate cancer progression. HDAC2 was induced by beta-adrenergic signaling in vitro and in mouse xenografts. We next uncovered that HDAC2 is a direct target of cAMP response element-binding protein (CREB) that is activated by beta-adrenergic signaling. Notably, HDAC2 is necessary for beta-adrenergic signaling to induce angiogenesis. We further demonstrated that, upon CREB activation, HDAC2 represses thrombospondin-1 (TSP1), a potent angiogenesis inhibitor, through epigenetic regulation. Together, these data establish a novel pathway that HDAC2 and TSP1 act downstream of CREB activation in beta-adrenergic signaling to promote cancer progression.
Santra, Manoranjan; Chopp, Michael; Santra, Sutapa; Nallani, Ankita; Vyas, Shivam; Zhang, Zheng Gang; Morris, Daniel C
2016-01-01
Thymosin beta 4 (Tβ4), a secreted 43 amino acid peptide, promotes oligodendrogenesis, and improves neurological outcome in rat models of neurologic injury. We demonstrated that exogenous Tβ4 treatment up-regulated the expression of the miR-200a in vitro in rat brain progenitor cells and in vivo in the peri-infarct area of rats subjected to middle cerebral artery occlusion (MCAO). The up-regulation of miR-200a down-regulated the expression of the following targets in vitro and in vivo models: (i) growth factor receptor-bound protein 2 (Grb2), an adaptor protein involved in epidermal growth factor receptor (EGFR)/Grb2/Ras/MEK/ERK1/c-Jun signaling pathway, which negatively regulates the expression of myelin basic protein (MBP), a marker of mature oligodendrocyte; (ii) ERRFI-1/Mig-6, an endogenous potent kinase inhibitor of EGFR, which resulted in activation/phosphorylation of EGFR; (iii) friend of GATA 2, and phosphatase and tensin homolog deleted in chromosome 10 (PTEN), which are potent inhibitors of the phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway, and resulted in marked activation of AKT; and (iv) transcription factor, p53, which induces pro-apoptotic genes, and possibly reduced apoptosis of the progenitor cells subjected to oxygen glucose deprivation (OGD). Anti-miR-200a transfection reversed all the effects of Tβ4 treatment in vitro. Thus, Tβ4 up-regulated MBP synthesis, and inhibited OGD-induced apoptosis in a novel miR-200a dependent EGFR signaling pathway. Our findings of miR-200a-mediated protection of progenitor cells may provide a new therapeutic importance for the treatment of neurologic injury. Tβ4-induced micro-RNA-200a (miR-200a) regulates EGFR signaling pathways for MBP synthesis and apoptosis: up-regulation of miR-200a after Tβ4 treatment, increases MBP synthesis after targeting Grb2 and thereby inactivating c-Jun from inhibition of MBP synthesis; and also inhibits OGD-mediated apoptosis after targeting EGFR inhibitor (Mig-6), PI3K inhibitors (FOG2 and Pten) and an inducer (p53) of pro-apoptotic genes, for AKT activation and down-regulation of p53. These findings may contribute the therapeutic benefits for stroke and other neuronal diseases associated with demyelination disorders. © 2015 International Society for Neurochemistry.
Jablonska, Ewa; Markart, Philipp; Zakrzewicz, Dariusz; Preissner, Klaus T; Wygrecka, Malgorzata
2010-04-09
Coagulation factor XII (FXII) is a liver-derived serine protease involved in fibrinolysis, coagulation, and inflammation. The regulation of FXII expression is largely unknown. Transforming growth factor-beta1 (TGF-beta1) is a multifunctional cytokine that has been linked to several pathological processes, including tissue fibrosis by modulating procoagulant and fibrinolytic activities. This study investigated whether TGF-beta1 may regulate FXII expression in human lung fibroblasts. Treatment of human lung fibroblasts with TGF-beta1 resulted in a time-dependent increase in FXII production, activation of p44/42, p38, JNK, and Akt, and phosphorylation and translocation into the nucleus of Smad3. However, TGF-beta1-induced FXII expression was repressed only by the JNK inhibitor and JNK and Smad3 antisense oligonucleotides but not by MEK, p38, or phosphoinositide 3-kinase blockers. JNK inhibition had no effect on TGF-beta1-induced Smad3 phosphorylation, association with Smad4, and its translocation into the nucleus but strongly suppressed Smad3-DNA complex formation. FXII promoter analysis revealed that the -299/+1 region was sufficient for TGF-beta1 to induce FXII expression. Sequence analysis of this region detected a potential Smad-binding element at position -272/-269 (SBE-(-272/-269)). Chromatin immunoprecipitation and streptavidin pulldown assays demonstrated TGF-beta1-dependent Smad3 binding to SBE-(-272/-269). Mutation or deletion of SBE-(-272/-269) substantially reduced TGF-beta1-mediated activation of the FXII promoter. Clinical relevance was demonstrated by elevated FXII levels and its co-localization with fibroblasts in the lungs of patients with acute respiratory distress syndrome. Our results show that JNK/Smad3 pathway plays a critical role in TGF-beta1-induced FXII expression in human lung fibroblasts and implicate its possible involvement in pathological conditions characterized by elevated TGF-beta1 levels.
Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon
2006-10-01
Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagge, Annika; Clausen, Trine R.; Larsen, Sylvester
Highlights: Black-Right-Pointing-Pointer MicroRNA-29a (miR-29a) levels are increased by glucose in human and rat islets and INS-1E cells. Black-Right-Pointing-Pointer miR-29a increases proliferation of INS-1E beta-cells. Black-Right-Pointing-Pointer Forced expression of miR-29a decreases glucose-stimulated insulin secretion (GSIS). Black-Right-Pointing-Pointer Depletion of beta-cell miR-29a improves GSIS. Black-Right-Pointing-Pointer miR-29a may be a mediator of glucose toxicity in beta-cells. -- Abstract: Chronically elevated levels of glucose impair pancreatic beta-cell function while inducing beta-cell proliferation. MicroRNA-29a (miR-29a) levels are increased in several tissues in diabetic animals and mediate decreased insulin-stimulated glucose-transport of adipocytes. The aim was to investigate the impact of glucose on miR-29a levels in INS-1E beta-cellsmore » and in human islets of Langerhans and furthermore to evaluate the impact of miR-29a on beta-cell function and proliferation. Increased glucose levels up-regulated miR-29a in beta-cells and human and rat islets of Langerhans. Glucose-stimulated insulin-secretion (GSIS) of INS-1E beta-cells was decreased by forced expression of miR-29a, while depletion of endogenous miR-29a improved GSIS. Over-expression of miR-29a increased INS-1E proliferation. Thus, miR-29a up-regulation is involved in glucose-induced proliferation of beta-cells. Furthermore, as depletion of miR-29a improves beta-cell function, miR-29a is a mediator of glucose-induced beta-cell dysfunction. Glucose-induced up-regulation of miR-29a in beta-cells could be implicated in progression from impaired glucose tolerance to type 2 diabetes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, S.-F.; Lin, C.-C.; Chen, H.-C.
2008-11-01
Cytosolic phospholipase A{sub 2} (cPLA{sub 2}) plays a pivotal role in mediating agonist-induced arachidonic acid release for prostaglandin (PG) synthesis during stimulation with interleukin-1{beta} (IL-1{beta}). However, the mechanisms underlying IL-1{beta}-induced cPLA{sub 2} expression and PGE{sub 2} synthesis by canine tracheal smooth muscle cells (CTSMCs) have not been defined. IL-1{beta} induced cPLA{sub 2} protein and mRNA expression, PGE{sub 2} production, and phosphorylation of p42/p44 MAPK, p38 MAPK (ATF{sub 2}), and JNK (c-Jun) in a time- and concentration-dependent manner, determined by Western blotting, RT-PCR, and ELISA, which was attenuated by the inhibitors of MEK1/2 (U0126), p38 MAPK (SB202190), and JNK (SP600125), ormore » transfection with dominant negative mutants of MEK1/2, p38, and JNK, respectively. Furthermore, IL-1{beta}-induced cPLA{sub 2} expression and PGE{sub 2} synthesis was inhibited by a selective NF-{kappa}B inhibitor (helenalin) or transfection with dominant negative mutants of NF-{kappa}B inducing kinase (NIK), I{kappa}B kinase (IKK)-{alpha}, and IKK-{beta}. Consistently, IL-1{beta} stimulated both I{kappa}B-{alpha} degradation and NF-{kappa}B translocation into nucleus in these cells. NF-{kappa}B translocation was blocked by helenalin, but not by U0126, SB202190, and SP600125. MAPKs together with NF-{kappa}B-activated p300 recruited to cPLA{sub 2} promoter thus facilitating the binding of NF-{kappa}B to cPLA{sub 2} promoter region and expression of cPLA{sub 2} mRNA. IL-1{beta}-induced cPLA{sub 2} expression and PGE{sub 2} production was inhibited by actinomycin D and cycloheximide, indicating the involvement of transcriptional and translational events in these responses. These results suggest that in CTSMCs, IL-1{beta}-induced cPLA{sub 2} expression and PGE{sub 2} synthesis was independently mediated through activation of MAPKs and NF-{kappa}B pathways and was connected to p300 recruitment and activation.« less
Barchasz, E; Naline, E; Molimard, M; Moreau, J; Georges, O; Emonds-Alt, X; Advenier, C
1999-08-20
Interleukin-1beta has been reported to induce airway hyperresponsiveness in several animal models. In this study, we have investigated whether interleukin-1beta was able to potentiate the contractions of human isolated small bronchi (internal diameter < or = 1 mm) provoked by a specific tachykinin NK1 receptor agonist, [Sar9,Met(O2)11]substance P. Pre-incubation of human isolated small bronchi with interleukin-1beta (10 ng/ml, in Krebs-Henseleit solution, at 21 degrees C for 15 h) potentiated the contractile response to [Sar9,Met(O2)11]substance P. It also increased the [Sar9,Met(O2)11]substance P-induced release of thromboxane B2, the stable metabolite of thromboxane A2. Indomethacin (10(-6) M), a non-specific cyclooxygenase inhibitor, or GR 32191 ((1R-(1alpha(Z)),2beta,3beta,5alpha))-(+)-7-(5-(((1,1' -biphenyl)-4-yl)-methoxy)-3-hydroxy-2-(1-piperidinyl)cyclopentyl)-4-hept enoic acid, hydrochloride) (10(-6) M), a prostanoid TP-receptor antagonist, blocked the contractions induced by [Sar9,Met(O2)11]substance P both in control experiments and after interleukin-1beta pre-treatment, indicating that prostanoids and thromboxane receptors are directly implicated in the [Sar9,Met(O2)11]substance P-induced contractile response. The thromboxane mimetic U-46619 (10(-8)-10(-6) M) (9,11-dideoxy-11alpha,9alpha-epoxymethano-prostaglandin F2alpha)-induced contractions of human isolated small bronchi were not enhanced by interleukin-1beta pre-treatment, suggesting that no up-regulation of thromboxane receptors occurred. Furthermore, the cyclooxygenase-2 inhibitor CGP 28238 (6-(2,4-difluorophenoxy)-5-methyl-sulfonylamino-1-indanon e) (10(-6) M) had no direct effect on [Sar9,Met(O2)11]substance P-provoked contractions, but inhibited the interleukin-1beta-induced potentiation of [Sar9,Met(O2)11]substance P response. In conclusion, our results show that interleukin-1beta pre-treatment is able to potentiate the contractions of isolated human small bronchi provoked by [Sar9,Met(O2)11]substance P both by increasing prostanoid synthesis and by inducing a cyclooxygenase-2 pathway.
Calderón-Garcidueñas, Lilian; Solt, Anna C; Henríquez-Roldán, Carlos; Torres-Jardón, Ricardo; Nuse, Bryan; Herritt, Lou; Villarreal-Calderón, Rafael; Osnaya, Norma; Stone, Ida; García, Raquel; Brooks, Diane M; González-Maciel, Angelica; Reynoso-Robles, Rafael; Delgado-Chávez, Ricardo; Reed, William
2008-02-01
Air pollution is a serious environmental problem. We investigated whether residency in cities with high air pollution is associated with neuroinflammation/neurodegeneration in healthy children and young adults who died suddenly. We measured mRNA cyclooxygenase-2, interleukin-1beta, and CD14 in target brain regions from low (n = 12) or highly exposed residents (n = 35) aged 25.1 +/- 1.5 years. Upregulation of cyclooxygenase-2, interleukin-1beta, and CD14 in olfactory bulb, frontal cortex, substantia nigrae and vagus nerves; disruption of the blood-brain barrier; endothelial activation, oxidative stress, and inflammatory cell trafficking were seen in highly exposed subjects. Amyloid beta42 (Abeta42) immunoreactivity was observed in 58.8% of apolipoprotein E (APOE) 3/3 < 25 y, and 100% of the APOE 4 subjects, whereas alpha-synuclein was seen in 23.5% of < 25 y subjects. Particulate material (PM) was seen in olfactory bulb neurons, and PM < 100 nm were observed in intraluminal erythrocytes from lung, frontal, and trigeminal ganglia capillaries. Exposure to air pollution causes neuroinflammation, an altered brain innate immune response, and accumulation of Abeta42 and alpha-synuclein starting in childhood. Exposure to air pollution should be considered a risk factor for Alzheimer's and Parkinson's diseases, and carriers of the APOE 4 allele could have a higher risk of developing Alzheimer's disease if they reside in a polluted environment.
Suárez, M M; Rivarola, M A; Molina, S M; Levin, G M; Enders, J; Paglini, P
2004-09-01
Maternal separation can interfere with growth and development of the brain and represents a significant risk factor for adult psychopathology. In rodents, prolonged separation from the mother affects the behavioral and endocrine responses to stress for the lifetime of the animal. Limbic structures such as the anterodorsal thalamic nuclei (ADTN) play an important role in the control of neuroendocrine and sympathetic-adrenal function. In view of these findings we hypothesized that the function of the ADTN may be affected in an animal model of maternal deprivation. To test this hypothesis female rats were isolated 4.5 h daily, during the first 3 weeks of life and tested as adults. We evaluated plasma epinephrine (E) and norepinephrine (NE), cardiac adrenoreceptors and anxiety responses after maternal deprivation and variable chronic stress (VCS) in ADTN-lesioned rats. Thirty days after ADTN lesion, in non-maternally deprived rats basal plasma NE concentration was greater and cardiac beta-adrenoreceptor density was lower than that in the sham-lesioned group. Maternal deprivation induced a significant increase in basal plasma NE concentration, which was greater in lesioned rats, and cardiac beta-adrenoreceptor density was decreased in lesioned rats. After VCS plasma catecholamine concentration was much greater in non-maternally deprived rats than in maternally-deprived rats; cardiac beta-adrenoreceptor density was decreased by VCS in both maternally-deprived and non-deprived rats, but more so in non-deprived rats, and further decreased by the ADTN lesion. In the plus maze test, the number of open arm entries was greater in the maternally deprived and in the stressed rats. Thus, sympathetic-adrenal medullary activation produced by VCS was much greater in non-deprived rats, and was linked to a down regulation of myocardial beta-adrenoceptors. The ADTN are not responsible for the reduced catecholamine responses to stress in maternally-deprived rats. Maternal deprivation or chronic stress also induced a long term anxiolytic effect, which was also not affected by ADTN lesion.
Brugnoli, Federica; Bovolenta, Matteo; Benedusi, Mascia; Miscia, Sebastianó; Capitani, Silvano; Bertagnolo, Valeria
2006-05-01
The differentiation therapy in treatment of acute promyelocytic leukemia (APL), based on the administration of all-trans retinoic acid (ATRA), is currently flanked with the use of As2O3, a safe and effective agent for patients showing a resistance to ATRA treatment. A synergy between ATRA and As3O3 was also reported in inducing granulocytic differentiation of APL-derived cells. We have demonstrated that phospholipase C-beta2 (PLC-beta2), highly expressed in neutrophils and nearly absent in tumoral promyelocytes, largely increases during ATRA treatment of APL-derived cells and strongly correlates with the responsiveness of APL patients to ATRA-based differentiating therapies. Here we report that, in APL-derived cells, low doses of As3O3 induce a slight increase of PLC-beta2 together with a moderate maturation, and cooperate with ATRA to provoke a significant increase of PLC-beta2 expression. Remarkably, the amounts of PLC-beta2 draw a parallel with the differentiation levels reached by both ATRA-responsive and -resistant cells treated with ATRA/As2O3 combinations. PLC-beta2 is not necessary for the progression of tumoral promyelocytes along the granulocytic lineage and is unable to overcome the differentiation block or to potentiate the agonist-induced maturation. On the other hand, since its expression closely correlates with the differentiation level reached by APL-derived cells induced to maturate by drugs presently employed in APL therapies, PLC-beta2 represents indeed a specific marker to test the ability of differentiation agents to induce the release of the maturation blockade of tumoral myeloid precursors.
Smit, Dirk J A; Wright, Margaret J; Meyers, Jacquelyn L; Martin, Nicholas G; Ho, Yvonne Y W; Malone, Stephen M; Zhang, Jian; Burwell, Scott J; Chorlian, David B; de Geus, Eco J C; Denys, Damiaan; Hansell, Narelle K; Hottenga, Jouke-Jan; McGue, Matt; van Beijsterveldt, Catharina E M; Jahanshad, Neda; Thompson, Paul M; Whelan, Christopher D; Medland, Sarah E; Porjesz, Bernice; Lacono, William G; Boomsma, Dorret I
2018-06-26
Oscillatory activity is crucial for information processing in the brain, and has a long history as a biomarker for psychopathology. Variation in oscillatory activity is highly heritable, but current understanding of specific genetic influences remains limited. We performed the largest genome-wide association study to date of oscillatory power during eyes-closed resting electroencephalogram (EEG) across a range of frequencies (delta 1-3.75 Hz, theta 4-7.75 Hz, alpha 8-12.75 Hz, and beta 13-30 Hz) in 8,425 subjects. Additionally, we performed KGG positional gene-based analysis and brain-expression analyses. GABRA2-a known genetic marker for alcohol use disorder and epilepsy-significantly affected beta power, consistent with the known relation between GABA A interneuron activity and beta oscillations. Tissue-specific SNP-based imputation of gene-expression levels based on the GTEx database revealed that hippocampal GABRA2 expression may mediate this effect. Twenty-four genes at 3p21.1 were significant for alpha power (FDR q < .05). SNPs in this region were linked to expression of GLYCTK in hippocampal tissue, and GNL3 and ITIH4 in the frontal cortex-genes that were previously implicated in schizophrenia and bipolar disorder. In sum, we identified several novel genetic variants associated with oscillatory brain activity; furthermore, we replicated and advanced understanding of previously known genes associated with psychopathology (i.e., schizophrenia and alcohol use disorders). Importantly, these psychopathological liability genes affect brain functioning, linking the genes' expression to specific cortical/subcortical brain regions. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Ferretti, M T; Merlini, M; Späni, C; Gericke, C; Schweizer, N; Enzmann, G; Engelhardt, B; Kulic, L; Suter, T; Nitsch, R M
2016-05-01
Cerebral beta-amyloidosis, one of the pathological hallmarks of Alzheimer's disease (AD), elicits a well-characterised, microglia-mediated local innate immune response. In contrast, it is not clear whether cells of the adaptive immune system, in particular T-cells, react to cerebral amyloidosis in AD. Even though parenchymal T-cells have been described in post-mortem brains of AD patients, it is not known whether infiltrating T-cells are specifically recruited to the extracellular deposits of beta-amyloid, and whether they are locally activated into proliferating, effector cells upon interaction with antigen-presenting cells (APCs). To address these issues we have analysed by confocal microscopy and flow-cytometry the localisation and activation status of both T-cells and APCs in transgenic (tg) mice models of AD-like cerebral amyloidosis. Increased numbers of infiltrating T-cells were found in amyloid-burdened brain regions of tg mice, with concomitant up-regulation of endothelial adhesion molecules ICAM-1 and VCAM-1, compared to non-tg littermates. The infiltrating T-cells in tg brains did not co-localise with amyloid plaques, produced less interferon-gamma than those in controls and did not proliferate locally. Bona-fide dendritic cells were virtually absent from the brain parenchyma of both non-tg and tg mice, and APCs from tg brains showed an immature phenotype, with accumulation of MHC-II in intracellular compartments. These results indicate that cerebral amyloidosis promotes T-cell infiltration but interferes with local antigen presentation and T-cell activation. The inability of the brain immune surveillance to orchestrate a protective immune response to amyloid-beta peptide might contribute to the accumulation of amyloid in the progression of the disease. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Ishida, Kota; Murata, Mikio; Katagiri, Nobuyuki; Ishikawa, Masago; Abe, Kenji; Kato, Masatoshi; Utsunomiya, Iku; Taguchi, Kyoji
2005-08-01
The effects of systemic administration of beta-phenylethylamine (beta-PEA) and microiontophoretically applied beta-PEA on the spontaneous discharge of dopamine (DA) neurons in the ventral tegmental area (VTA) of the anesthetized rat were examined. Intravenous administration of beta-PEA (1.0, 2.5, and 5.0 mg/kg) and microiontophoretic applications of beta-PEA caused inhibitory responses in DA neurons. Systemic administration and microiontophoretic applications of beta-PEA induced dose- or current-dependent responses. The systemic beta-PEA-induced inhibitory responses were reversed by pretreatment with the DA D(2) receptor antagonists haloperidol (0.5 mg/kg i.p.) and sulpiride (10 mg/kg i.p). Pretreatment with reserpine (5 mg/kg i.p. 24 h earlier) did not completely block the systemic administration of beta-PEA (2.5 mg/kg) inhibition. A microdialysis study of freely moving rats demonstrated that the extracellular DA level increased significantly in response to local application of beta-PEA (100 muM) in the VTA via a microdialysis probe, and local application of beta-PEA-stimulated somatodendritic DA release in the VTA. The beta-PEA-induced release of DA was calcium ion-independent and was enhanced by pretreatment with pertussis toxin. These findings indicate that beta-phenylethylamine inhibits DA neuron activity via DA D(2) autoreceptors in the rat VTA and that this inhibitory effect is mediated by the somatodendritic DA release.
Saletu, Bernd; Anderer, Peter; Wolzt, Michael; Nosiska, Dorothea; Assandri, Alessandro; Noseda, Emanuele; Nannipieri, Fabrizio; Saletu-Zyhlarz, Gerda M
2009-01-01
Effects of ABIO-08/01, a new potentially anxiolytic isoxazoline, on regional electrical brain generators were investigated by 3-dimensional EEG tomography. In a double- blind, placebo-controlled, multiple-ascending-dose study, 16 healthy males (30.2 +/- 5.7 years) received 3 oral drug doses (10, 20, 40 mg) and placebo for 7 days (8-day wash-out) in a randomized non-balanced design for phase-1 studies. A 3-min vigilance-controlled (V) EEG, a 4-min resting (R) EEG with eyes closed, a 1-min eyes-open (EO) EEG and psychometric tests were performed 0, 1 and 6 h after taking the drug on days 1 and 5. Low-resolution brain electromagnetic tomography (LORETA) was computed from the spectrally analyzed EEG data, and differences between drug and placebo were displayed as statistical parametric maps. Data were registered to the Talairach-Tournoux Human Brain Atlas available as a digitized MRI. An overall omnibus significance test followed by a voxel-by-voxel t test demonstrated significant regional EEG changes after ABIO-08/01 versus placebo, dependent on recording condition, dose and time. While in the EO-EEG specifically the lowest dose of ABIO-08/01 induced pronounced sedative effects (delta/theta and beta increase) 1 h after acute and slightly less so after superimposed administration, in the 6th hour a decrease in alpha and beta activity signaled less sedative and more relaxant action. In the V-EEG these changes were less pronounced, in the R-EEG partly opposite. Hemisphere-specific changes were observed, suggesting increases in LORETA power over the left temporal, parietal, superior frontal regions and decreases over the right prefrontal, temporal pole and occipital regions. These LORETA changes are discussed in the light of neuroimaging findings on anxiety and anxiolytics. 2009 S. Karger AG, Basel.
Izzo, Nicholas J.; Xu, Jinbin; Zeng, Chenbo; Kirk, Molly J.; Mozzoni, Kelsie; Silky, Colleen; Rehak, Courtney; Yurko, Raymond; Look, Gary; Rishton, Gilbert; Safferstein, Hank; Cruchaga, Carlos; Goate, Alison; Cahill, Michael A.; Arancio, Ottavio; Mach, Robert H.; Craven, Rolf; Head, Elizabeth; LeVine, Harry; Spires-Jones, Tara L.; Catalano, Susan M.
2014-01-01
Amyloid beta (Abeta) 1–42 oligomers accumulate in brains of patients with Mild Cognitive Impairment (MCI) and disrupt synaptic plasticity processes that underlie memory formation. Synaptic binding of Abeta oligomers to several putative receptor proteins is reported to inhibit long-term potentiation, affect membrane trafficking and induce reversible spine loss in neurons, leading to impaired cognitive performance and ultimately to anterograde amnesia in the early stages of Alzheimer's disease (AD). We have identified a receptor not previously associated with AD that mediates the binding of Abeta oligomers to neurons, and describe novel therapeutic antagonists of this receptor capable of blocking Abeta toxic effects on synapses in vitro and cognitive deficits in vivo. Knockdown of sigma-2/PGRMC1 (progesterone receptor membrane component 1) protein expression in vitro using siRNA results in a highly correlated reduction in binding of exogenous Abeta oligomers to neurons of more than 90%. Expression of sigma-2/PGRMC1 is upregulated in vitro by treatment with Abeta oligomers, and is dysregulated in Alzheimer's disease patients' brain compared to age-matched, normal individuals. Specific, high affinity small molecule receptor antagonists and antibodies raised against specific regions on this receptor can displace synthetic Abeta oligomer binding to synaptic puncta in vitro and displace endogenous human AD patient oligomers from brain tissue sections in a dose-dependent manner. These receptor antagonists prevent and reverse the effects of Abeta oligomers on membrane trafficking and synapse loss in vitro and cognitive deficits in AD mouse models. These findings suggest sigma-2/PGRMC1 receptors mediate saturable oligomer binding to synaptic puncta on neurons and that brain penetrant, small molecules can displace endogenous and synthetic oligomers and improve cognitive deficits in AD models. We propose that sigma-2/PGRMC1 is a key mediator of the pathological effects of Abeta oligomers in AD and is a tractable target for small molecule disease-modifying therapeutics. PMID:25390692
USDA-ARS?s Scientific Manuscript database
In epidemiologic studies, high intake of beta-cryptoxanthin has been associated with a decreased risk of lung cancer, particularly among current smokers. However, data are not available from well-controlled animal studies to examine the effects of beta-cryptoxanthin on cigarette smoke-induced lung ...
Hajihosseini, Shadieh; Setorki, Mahbubeh; Hooshmandi, Zahra
2017-01-01
Medicinal plants have attracted global attention due to their safety as well as their considerable antioxidant content that helps to prevent or ameliorate various disorders including memory impairments. This study was conducted to investigate the effect of beet root ( Beta vulgaris ) leaf extract on scopolamine-induced spatial memory impairments in male Wistar rats. Male Wistar rats were randomly divided into 5 groups (n=10): Control (C), scopolamine 1 mg/kg/day (S), scopolamine+50 mg/kg B. vulgaris leaf extract (S+B 50), scopolamine+100 mg/kg B. vulgaris leaf extract (S+B 100) and scopolamine+200 mg/kg B. vulgaris leaf extract (S+B 200). Morris water maze task was used to assess spatial memory. Serum antioxidant capacity and malondialdehyde (MDA) level were also measured. Group S spent significantly less time in the target quadrant compared to the control group, and the administration of B. vulgaris leaf extract (100 and 200 mg/kg) significantly increased this time (p<0.05). Scopolamine decreased serum antioxidant capacity and increased serum MDA level yet insignificantly. B. vulgaris extract (200 mg/kg) significantly increased the antioxidant capacity and decreased serum MDA level in scopolamine-treated rats (p<0.05). Our results suggested that B. vulgaris leaf extract could ameliorate the memory impairments and exhibited protective effects against scopolamine-induced oxidation. Further investigation is needed to isolate specific antioxidant compounds from B. vulgaris leaf extract with protective effect against brain and memory impairments.
Effects of Rifaximin on Central Responses to Social Stress-a Pilot Experiment.
Wang, Huiying; Braun, Christoph; Enck, Paul
2018-04-30
Probiotics that promote the gut microbiota have been reported to reduce stress responses, and improve memory and mood. Whether and how antibiotics that eliminate or inhibit pathogenic and commensal gut bacteria also affect central nervous system functions in humans is so far unknown. In a double-blinded randomized study, 16 healthy volunteers (27.00 ± 1.60 years; 9 males) received either rifaximin (600 mg/day) (a poorly absorbable antibiotic) or placebo for 7 days. Before and after the drug intervention, brain activities during rest and during a social stressor inducing feelings of exclusion (Cyberball game) were measured using magnetoencephalography. Social exclusion significantly affected (p < 0.001) mood and increased exclusion perception. Magnetoencephalography showed brain regions with higher activations during exclusion as compared to inclusion, in different frequency bands. Seven days of rifaximin increased prefrontal and right cingulate alpha power during resting state. Low beta power showed an interaction of intervention (rifaximin, placebo) × condition (inclusion, exclusion) during the Cyberball game in the bilateral prefrontal and left anterior cingulate cortex. Only in the rifaximin group, a decrease (p = 0.004) in power was seen comparing exclusion to inclusion; the reduced beta-1 power was negatively correlated with a change in the subjective exclusion perception score. Social stress affecting brain functioning in a specific manner is modulated by rifaximin. Contrary to our hypothesis that antibiotics have advert effects on mood, the antibiotic exhibited stress-reducing effects similar to reported effects of probiotics (supported by NeuroGUT, a EU 7th Framework Programme ITN no. 607652; ClinicalTrials.gov identifier number NCT02793193).
Golukhova, Elena Z.; Polunina, Anna G.; Lefterova, Natalia P.; Begachev, Alexey V.
2011-01-01
Cardiac surgery is commonly associated with brain ischemia. Few studies addressed brain electric activity changes after on-pump operations. Eyes closed EEG was performed in 22 patients (mean age: 45.2 ± 11.2) before and two weeks after valve replacement. Spouses of patients were invited to participate as controls. Generalized increase of beta power most prominent in beta-1 band was an unambiguous pathological sign of postoperative cortex dysfunction, probably, manifesting due to gamma-activity slowing (“beta buzz” symptom). Generalized postoperative increase of delta-1 mean frequency along with increase of slow-wave activity in right posterior region may be hypothesized to be a consequence of intraoperative ischemia as well. At the same time, significant changes of alpha activity were observed in both patient and control groups, and, therefore, may be considered as physiological. Unexpectedly, controls showed prominent increase of electric activity in left temporal region whereas patients were deficient in left hemisphere activity in comparison with controls at postoperative followup. Further research is needed in order to determine the true neurological meaning of the EEG findings after on-pump operations. PMID:21776370
Effect of beta and gamma neurofeedback on memory and intelligence in the elderly.
Staufenbiel, S M; Brouwer, A-M; Keizer, A W; van Wouwe, N C
2014-01-01
Recent research showed a correlation between cognitive decline and a decrease of EEG gamma activity. In the present double-blind randomized control study, we investigated whether gamma and beta neurofeedback protocols, that have been shown to modulate performance on cognitive control and memory in young adults, also leads to increased brain activity and cognitive performance in elderly. Twenty older adults either performed eight 30-min gamma neurofeedback session or beta neurofeedback session within a period of 21 days. Cognitive performance was determined before and after the training through an IQ and memory task and we added a subjective well-being questionnaire. Both neurofeedback training protocols resulted in a significant increase of the brain activity within each training session, suggesting that the aging brain is still trainable. However, we found no effects on cognitive performance or transfer of the feedback beyond the trainings. We discuss several possible reasons for the lack of training on rest measurements and cognition and ways to improve the feedback protocols for future studies. Copyright © 2013 Elsevier B.V. All rights reserved.
Meng, Lu; Xiang, Jing
2016-11-01
The present study investigated frequency dependent developmental patterns of the brain resting-state networks from childhood to adolescence. Magnetoencephalography (MEG) data were recorded from 20 healthy subjects at resting-state with eyes-open. The resting-state networks (RSNs) was analyzed at source-level. Brain network organization was characterized by mean clustering coefficient and average path length. The correlations between brain network measures and subjects' age during development from childhood to adolescence were statistically analyzed in delta (1-4Hz), theta (4-8Hz), alpha (8-12Hz), and beta (12-30Hz) frequency bands. A significant positive correlation between functional connectivity with age was found in alpha and beta frequency bands. A significant negative correlation between average path lengths with age was found in beta frequency band. The results suggest that there are significant developmental changes of resting-state networks from childhood to adolescence, which matures from a lattice network to a small-world network. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toyoda, Takao; Thanseem, Ismail; Kawai, Masayoshi
Autism is a pervasive neurodevelopmental disorder diagnosed in early childhood. Growth factors have been found to play a key role in the cellular differentiation and proliferation of the central and peripheral nervous systems. Epidermal growth factor (EGF) is detected in several regions of the developing and adult brain, where, it enhances the differentiation, maturation, and survival of a variety of neurons. Transforming growth factor-{beta} (TGF{beta}) isoforms play an important role in neuronal survival, and the hepatocyte growth factor (HGF) has been shown to exhibit neurotrophic activity. We examined the association of EGF, TGF{beta}1, and HGF genes with autism, in amore » trio association study, using DNA samples from families recruited to the Autism Genetic Resource Exchange; 252 trios with a male offspring scored for autism were selected for the study. Transmission disequilibrium test revealed significant haplotypic association of EGF with autism. No significant SNP or haplotypic associations were observed for TGF{beta}1 or HGF. Given the role of EGF in brain and neuronal development, we suggest a possible role of EGF in the pathogenesis of autism.« less
Chronic sympathetic activation: consequence and cause of age-associated obesity?
Seals, Douglas R; Bell, Christopher
2004-02-01
Primary aging in adult humans is associated with a progressive, tonic activation of the peripheral sympathetic nervous system (SNS). The purpose of this SNS activation and its physiological impact are, however, unknown. We hypothesize that the chronic stimulation of the SNS with aging is driven in part by a progressive accumulation of body fat. This "error" is sensed by the central nervous system via increases in adiposity-sensitive humoral signals (e.g., leptin, insulin) that cross the blood-brain barrier, activate subcortical areas involved in the regulation of energy balance (e.g., ventromedial hypothalamus), and stimulate SNS outflow to peripheral tissues. The SNS activation is intended to increase beta-adrenergic thermogenesis in order to expend excess energy as heat rather than by storage of fat. Recent evidence, however, indicates that these adjustments are not effective in augmenting energy expenditure with aging. Indeed, older sedentary adults demonstrate reduced, not increased, beta-adrenergic stimulation of metabolic rate because of reduced tissue responsiveness, presumably mediated by SNS-induced impairment of beta-adrenergic signaling. As a result, age-associated SNS activation, initiated as a consequence of accumulating adiposity with the intent of preventing further fat storage, ironically, may in time evolve into a potential mechanism contributing to the development of obesity with aging.
Gad, Enas S; Zaitone, Sawsan A; Moustafa, Yasser M
2016-08-01
Insulin resistance is known to be a risk factor for cognitive impairment, most likely linked to insulin signaling, microglia overactivation, and beta amyloid (Aβ) deposition in the brain. Exenatide, a long lasting glucagon-like peptide-1 (GLP-1) analogue, enhances insulin signaling and shows neuroprotective properties. Pioglitazone, a peroxisome proliferated-activated receptor-γ (PPAR-γ) agonist, was previously reported to enhance cognition through its effect on Aβ accumulation and clearance. In the present study, insulin resistance was induced in male rats by drinking fructose for 12 weeks. The effect of monotherapy with pioglitazone (10 mg·kg(-1)) and exenatide or their combination on memory dysfunction was determined and some of the probable underlying mechanisms were studied. The current results confirmed that (1) feeding male rats with fructose syrup for 12 weeks resulted in a decline of learning and memory registered in eight-arm radial maze test; (2) treatment with pioglitazone or exenatide enhanced cognition, reduced hippocampal neurodegeneration, and reduced hippocampal microglia expression and beta amyloid oligomer deposition in a manner that is equal to monotherapies. These results may give promise for the use of pioglitazone or exenatide for ameliorating the learning and memory deficits associated with insulin resistance in clinical setting.
Izdebska-Straszak, Grazyna; Gubala, Elzbieta; Jedrzejowska-Szypulka, Halina; Klencki, Mariusz; Wiczkowski, Andrzej; Jarzab, Barbara
2006-01-01
beta-adrenergic ligands have been shown to influence sexual differentiation of the brain. In the present study we document that short postnatal treatment with beta-adrenergic agonists or antagonists may permanently reverse the morphological sex of the brain, as judged by the volume of sexually dimorphic nucleus of the preoptic area (SDN-POA). Female rats treated by beta(2)-adrenergic stimulating ligands exhibit an increased, male type SDN-POA volume while male rats treated by beta1-adrenergic antagonists show a decreased, female type of SDN-POA volume. To analyze the volume of SDN-POA of adult rats after postnatal administration of betaadrenergic ligands. From the second day of life, over 5 consecutive days, all the neonates were injected subcutaneously with the following drugs: isoproterenol, salbutamol, metoprolol alprenolol or saline. SDN-POA volumes were estimated planimetrically on serial brain slides. In male rats the mean volume of SDN-POA was 9.97 +/- 1.66 x 10(-3) mm(3), in female rats the respective volume reached 4.02 +/- 1.26 x 10(-3) mm(3) only and was 2.5 times lower, the difference being highly statistically significant. Postnatal administration of isoproterenol remained without effect in male rats but diminished the SDN-POA volume in female rats, thus increasing the sexual dimorphism. The disappearance of sexual dimorphism was noted in rats treated postnatally with salbutamol. This effect was due to the increase in SDN-POA volumes in female rats, up to 9.81 +/- 2.64 x 10(-3) mm(3), the levels approaching the male type of POA differentiation. Postnatal alprenolol treatment influenced the sexual dimorphism of the brain by decreasing the SDN-POA volume reached by adult males. In fact, in rats treated postnatally with alprenolol, the volume of the nucleus reached only 4,44 +/- 1,61 x 10(-3) mm(3), being not statistically different from female nuclei. The effect of metoprolol pretreatment was similar to alprenolol. Male volumes of SDN-POA were restored both by isoproterenol and salbutamol in metoprolol pretreated rats and by isoproterenol only in alprenolol treated rats. It appears that inhibition of beta(1)-adrenergic pathway is able to shut off the physiologic mechanisms of male differentiation of SDN-POA, and the subsequent beta(2)-adrenergic stimulation activates an alternative mechanism of masculinization. beta(2)-adrenergic signal is able to masculinize rat preoptic area in females as well. From the presented data it may be concluded that beta adrenoreceptors participate in sexual differentiation of preoptic area in rats and the modulation of their activity in postnatal period permanently influences the morphology of the sexually differentiated nucleus of the preoptic area.
Kato, M; Ishida, K; Chuma, T; Abe, K; Shigenaga, T; Taguchi, K; Miyatake, T
2001-04-20
We examined the effects of beta-phenylethylamine on striatal acetylcholine release in freely moving rats using in vivo microdialysis. beta-Phenylethylamine at 12.5 mg/kg, i.p. did not affect acetylcholine release in the striatum, whereas 25 and 50 mg/kg, i.p. immediately induced an increase in acetylcholine release in the striatum at 15-45 min. This increase following intraperitoneal administration of beta-phenylethylamine (25 mg/kg) was not affected by locally applied SCH-23390 (R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine, 10 microM), a dopamine D(1) receptor antagonist, nor by raclopride (10 microM), a dopamine D(2) receptor antagonist. The increased release of acetylcholine induced by beta-phenylethylamine was suppressed by local infusion of tetrodotoxin (1 microM). In contrast, the extracellular acetylcholine level in the striatum was significantly decreased by local application of beta-phenylethylamine (10 and 100 microM) in the striatum via a microdialysis probe. The decrease was completely blocked by local co-application of raclopride (10 microM). The beta-phenylethylamine-induced decrease in striatal acetylcholine release was not affected by co-perfusion with SCH-23390 (10 microM). These results indicate that systemic administration of beta-phenylethylamine increases acetylcholine release, whereas locally applied beta-phenylethylamine decreases striatal acetylcholine release in freely moving rats. Furthermore, the dopaminergic system, through the dopamine D(2) receptor, is involved in the locally applied beta-phenylethylamine-induced decrease in acetylcholine in the striatum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Shukun; Wu Mei; Zhang Zunzhen, E-mail: zhangzunzhen@163.co
2010-08-01
Adriamycin (ADM) is a widely used antineoplastic drug. However, the increasing cellular resistance has become a serious limitation to ADM clinical application. The most important mechanism related to ADM-induced cell death is oxidative DNA damage mediated by reactive oxygen species (ROS). Base excision repair (BER) is a major pathway in the repair of DNA single strand break (SSB) and oxidized base. In this study, we firstly applied the murine embryo fibroblasts wild-type (pol {beta} +/+) and homozygous pol {beta} null cell (pol {beta} -/-) as a model to investigate ADM DNA-damaging effects and the molecular basis underlying these effects. Here,more » cellular sensitivity to ADM was examined using colorimetric assay and colony forming assay. ADM-induced cellular ROS level and the alteration of superoxide dismutase (SOD) activity were measured by commercial kits. Further, DNA strand break, chromosomal damage and gene mutation were assessed by comet assay, micronucleus test and hprt gene mutation assay, respectively. The results showed that pol {beta} -/- cells were more sensitive to ADM compared with pol {beta} +/+ cells and more severe SSB and chromosomal damage as well as higher hprt gene mutation frequency were observed in pol {beta} -/- cells. ROS level in pol {beta} -/- cells increased along with decreased activity of SOD. These results demonstrated that pol {beta} deficiency could enable ROS accumulation with SOD activity decrease, further elevate oxidative DNA damage, and subsequently result in SSB, chromosome cleavage as well as gene mutation, which may be partly responsible for the cytotoxicity of ADM and the hypersensitivity of pol {beta} -/- cells to ADM. These findings suggested that pol {beta} is vital for repairing oxidative damage induced by ADM.« less
{beta}-Catenin regulates airway smooth muscle contraction.
Jansen, Sepp R; Van Ziel, Anna M; Baarsma, Hoeke A; Gosens, Reinoud
2010-08-01
beta-Catenin is an 88-kDa member of the armadillo family of proteins that is associated with the cadherin-catenin complex in the plasma membrane. This complex interacts dynamically with the actin cytoskeleton to stabilize adherens junctions, which play a central role in force transmission by smooth muscle cells. Therefore, in the present study, we hypothesized a role for beta-catenin in the regulation of smooth muscle force production. beta-Catenin colocalized with smooth muscle alpha-actin (sm-alpha-actin) and N-cadherin in plasma membrane fractions and coimmunoprecipitated with sm-alpha-actin and N-cadherin in lysates of bovine tracheal smooth muscle (BTSM) strips. Moreover, immunocytochemistry of cultured BTSM cells revealed clear and specific colocalization of sm-alpha-actin and beta-catenin at the sites of cell-cell contact. Treatment of BTSM strips with the pharmacological beta-catenin/T cell factor-4 (TCF4) inhibitor PKF115-584 (100 nM) reduced beta-catenin expression in BTSM whole tissue lysates and in plasma membrane fractions and reduced maximal KCl- and methacholine-induced force production. These changes in force production were not accompanied by changes in the expression of sm-alpha-actin or sm-myosin heavy chain (MHC). Likewise, small interfering RNA (siRNA) knockdown of beta-catenin in BTSM strips reduced beta-catenin expression and attenuated maximal KCl- and methacholine-induced contractions without affecting sm-alpha-actin or sm-MHC expression. Conversely, pharmacological (SB-216763, LiCl) or insulin-induced inhibition of glycogen synthase kinase-3 (GSK-3) enhanced the expression of beta-catenin and augmented maximal KCl- and methacholine-induced contractions. We conclude that beta-catenin is a plasma membrane-associated protein in airway smooth muscle that regulates active tension development, presumably by stabilizing cell-cell contacts and thereby supporting force transmission between neighboring cells.
ERIC Educational Resources Information Center
Ewers, Michael; Zhong, Zhenyu; Burger, Katharina; Wallin, Anders; Blennow, Kaj; Teipel, Stefan J.; Shen, Yong; Hampel, Harald
2008-01-01
The Apolipoprotein (ApoE) [epsilon]4 allele is a major genetic risk factor of Alzheimer's disease, and may affect the production of amyloid beta (A[beta][subscript 1-42]). Recently, we have shown that [beta]-secretase (BACE 1) activity can be reliably detected within the brain and human CSF. Here, we have examined an association between the ApoE…
Canolty, Ryan T.; Ganguly, Karunesh; Carmena, Jose M.
2012-01-01
Understanding the principles governing the dynamic coordination of functional brain networks remains an important unmet goal within neuroscience. How do distributed ensembles of neurons transiently coordinate their activity across a variety of spatial and temporal scales? While a complete mechanistic account of this process remains elusive, evidence suggests that neuronal oscillations may play a key role in this process, with different rhythms influencing both local computation and long-range communication. To investigate this question, we recorded multiple single unit and local field potential (LFP) activity from microelectrode arrays implanted bilaterally in macaque motor areas. Monkeys performed a delayed center-out reach task either manually using their natural arm (Manual Control, MC) or under direct neural control through a brain-machine interface (Brain Control, BC). In accord with prior work, we found that the spiking activity of individual neurons is coupled to multiple aspects of the ongoing motor beta rhythm (10–45 Hz) during both MC and BC, with neurons exhibiting a diversity of coupling preferences. However, here we show that for identified single neurons, this beta-to-rate mapping can change in a reversible and task-dependent way. For example, as beta power increases, a given neuron may increase spiking during MC but decrease spiking during BC, or exhibit a reversible shift in the preferred phase of firing. The within-task stability of coupling, combined with the reversible cross-task changes in coupling, suggest that task-dependent changes in the beta-to-rate mapping play a role in the transient functional reorganization of neural ensembles. We characterize the range of task-dependent changes in the mapping from beta amplitude, phase, and inter-hemispheric phase differences to the spike rates of an ensemble of simultaneously-recorded neurons, and discuss the potential implications that dynamic remapping from oscillatory activity to spike rate and timing may hold for models of computation and communication in distributed functional brain networks. PMID:23284276
Patisaul, H B; Whitten, P L; Young, L J
1999-04-06
Estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta) are differentially distributed in the brain and likely mediate different estrogen-dependent processes. ERbeta is abundant in the bed nucleus of the stria terminalis, medial preoptic nucleus, paraventricular nucleus of the hypothalamus and the amygdala of the rat. In the paraventricular nucleus, which is devoid of ERalpha, ERbeta is colocalized with the neuropeptides, oxytocin and vasopressin, suggesting a potential functional role for ERbeta in the regulation of these peptides. We examined the regulation of ERbeta mRNA expression in the rat brain by 17beta-estradiol and the phytoestrogen, coumestrol. 17beta-Estradiol treatment decreased ERbeta mRNA in situ hybridization signal by 44.5% in the paraventricular nucleus of the hypothalamus (PVN), but had no effect in the bed nucleus of the stria terminalis (BnST) or the medial preoptic nucleus (MPA). In contrast, dietary exposure to coumestrol increased ERbeta mRNA signal by 47.5% in the PVN but had no effect in the BnST or the MPA. These data demonstrate that like ERalpha, ERbeta is down regulated by estrogen in a region specific manner in the rat brain. Furthermore, exposure to coumestrol may modulate ERbeta-dependent processes by acting as an anti-estrogen at ERbeta. This data contradicts results from cell transfection assays which suggest an estrogenic activity of coumestrol on ERbeta, indicating that the mode of action may be tissue specific, or that metabolism of dietary coumestrol may alter its effects. Because the highest concentrations of phytoestrogens are found in legumes, vegetables and grains, they are most prevalent in vegetarian and traditional Asian diets. Understanding the neuroendocrine effects of phytoestrogens is particularly important now that they are being marketed as a natural alternative to estrogen replacement therapy and sold in highly concentrated pills and powders. Copyright 1999 Elsevier Science B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mori, Yasuji; Hinchcliff, Monique; Wu, Minghua
2008-03-10
Background: The matricellular protein connective tissue growth factor (CCN2) has been implicated in pathological fibrosis, but its physiologic role remains elusive. In vitro, transforming growth factor-{beta} (TGF-{beta}) induces CCN2 expression in mesenchymal cells. Because CCN2 can enhance profibrotic responses elicited by TGF-{beta}, it has been proposed that CCN2 functions as an essential downstream signaling mediator for TGF-{beta}. To explore this notion, we characterized TGF-{beta}-induced activation of fibroblasts from CCN2-null (CCN2{sup -/-}) mouse embryos. Methods: The regulation of CCN2 expression was examined in vivo in a model of fibrosis induced by bleomycin. Cellular TGF-{beta} signal transduction and regulation of collagen genemore » expression were examined in CCN2{sup -/-} MEFs by immunohistochemistry, Northern, Western and RT-PCR analysis, immunocytochemistry and transient transfection assays. Results: Bleomycin-induced skin fibrosis in the mouse was associated with substantial CCN2 up-regulation in lesional fibroblasts. Whereas in vitro proliferation rate of CCN2{sup -/-} MEFs was markedly reduced compared to wild type MEFs, TGF-{beta}-induced activation of the Smad pathways, including Smad2 phosphorylation, Smad2/3 and Smad4 nuclear accumulation and Smad-dependent transcriptional responses, were unaffected by loss of CCN2. The stimulation of COL1A2 and fibronectin mRNA expression and promoter activity, and of corresponding protein levels, showed comparable time and dose-response in wild type and CCN2{sup -/-} MEFs, whereas stimulation of alpha smooth muscle actin and myofibroblast transdifferentiation showed subtle impairment in MEFs lacking CCN2. Conclusion: Whereas endogenous CCN2 plays a role in regulation of proliferation and TGF-{beta}-induced myofibroblast transdifferentiation, it appears to be dispensable for Smad-dependent stimulation of collagen and extracellular matrix synthesis in murine embryonic fibroblasts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laouar, A.; Glesne, D.; Huberman, E.
The role of protein kinase C-{beta} (PKC-{beta}) in apoptosis induced by tumor necrosis factor (TNF)-{alpha} and anti-Fas monoclonal antibody (mAb) in the human myeloid HL-60 leukemia cell line was studied by using its variant HL-525, which is deficient in PKC-{beta}. In contrast to the parental HL-60 cells, HL-525 is resistant to TNF-{alpha}-induced apoptosis but sensitive to anti-Fas mAb-induced apoptosis. Both cell types expressed similar levels of the TNF-receptor I, whereas the Fas receptor was detected only in HL-525 cells. Transfecting the HL-525 cells with an expression vector containing PKC-{beta} reestablished their susceptibility to TNF-{alpha}-induced apoptosis. The apoptotic effect of TNF-{alpha}more » in HL-60 and the transfectants was abrogated by fumonisin, an inhibitor of ceramide generation, and by the peptide Ac-YVAD-BoMK, an inhibitor of caspase-1 and -4. Supplementing HL-525 cells with exogenous ceramides bypassed the PKC-{beta} deficiency and induced apoptosis, which was also restrained by the caspase-1 and -4 inhibitor. The apoptotic effect of anti-Fas mAb in HL-525 cells was abrogated by the antioxidants N-acetylcysteine and glutathione and by the peptide z-DEVD-FMK, an inhibitor of caspase-3 and -7. We suggest that TNF-{alpha}-induced apoptosis involves PKC-{beta} and then ceramide and, in turn, caspase-1 and/or -4, whereas anti-Fas mAb-induced apoptosis utilizes reactive oxygen intermediates and, in turn, caspase-3 and/or -7.« less
Tachibana, A; Kato, M; Kimura, H; Fujiu, T; Suzuki, M; Morikawa, A
2002-12-01
Agonists at beta2 adrenoceptors are used widely as bronchodilators in treating bronchial asthma. These agents also may have important anti-inflammatory effects on eosinophils in asthma. We examined whether widely prescribed beta2-adrenoceptor agonists differ in ability to suppress stimulus-induced eosinophil effector functions such as superoxide anion (O2-) generation and degranulation. To examine involvement of cellular adhesion in such responses, we also investigated effects of beta2 agonists on cellular adhesion and on CD11b expression by human eosinophils. O2- was measured using chemiluminescence. Eosinophil degranulation and adhesion were assessed by a radioimmunoassay for eosinophil protein X (EPX). CD11b expression was measured by flow cytometry. Fenoterol inhibited platelet-activating factor (PAF)-induced O2- generation by eosinophils significantly more than salbutamol or procaterol. Fenoterol partially inhibited PAF-induced degranulation by eosinophils similarly to salbutamol or procaterol. Fenoterol inhibited phorbol myristate acetate (PMA)-induced O2- generation and degranulation by eosinophils, while salbutamol or procaterol did not. Fenoterol inhibition of PMA-induced O2- generation was not reversed by ICI-118551, a selective beta2-adrenoceptor antagonist. Fenoterol, but not salbutamol or procaterol, significantly inhibited PAF-induced eosinophil adhesion. Fenoterol inhibited O2- generation and degranulation more effectively than salbutamol or procaterol; these effects may include a component involving cellular adhesion. Inhibition also might include a component not mediated via beta2 adrenoceptors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahdjoudj, S.; Kaabeche, K.; Holy, X.
2005-02-01
The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2more » administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.« less
Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis.
Mahabeleshwar, Ganapati H; Feng, Weiyi; Reddy, Kumar; Plow, Edward F; Byzova, Tatiana V
2007-09-14
The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.
Localization of beta and high-frequency oscillations within the subthalamic nucleus region.
van Wijk, B C M; Pogosyan, A; Hariz, M I; Akram, H; Foltynie, T; Limousin, P; Horn, A; Ewert, S; Brown, P; Litvak, V
2017-01-01
Parkinsonian bradykinesia and rigidity are typically associated with excessive beta band oscillations in the subthalamic nucleus. Recently another spectral peak has been identified that might be implicated in the pathophysiology of the disease: high-frequency oscillations (HFO) within the 150-400 Hz range. Beta-HFO phase-amplitude coupling (PAC) has been found to correlate with severity of motor impairment. However, the neuronal origin of HFO and its usefulness as a potential target for deep brain stimulation remain to be established. For example, it is unclear whether HFO arise from the same neural populations as beta oscillations. We intraoperatively recorded local field potentials from the subthalamic nucleus while advancing DBS electrodes in 2 mm steps from 4 mm above the surgical target point until 2 mm below, resulting in 4 recording sites. Data from 26 nuclei from 14 patients were analysed. For each trajectory, we identified the recording site with the largest spectral peak in the beta range (13-30 Hz), and the largest peak in the HFO range separately. In addition, we identified the recording site with the largest beta-HFO PAC. Recording sites with largest beta power and largest HFO power coincided in 50% of cases. In the other 50%, HFO was more likely to be detected at a more superior recording site in the target area. PAC followed more closely the site with largest HFO (45%) than beta power (27%). HFO are likely to arise from spatially close, but slightly more superior neural populations than beta oscillations. Further work is necessary to determine whether the different activities can help fine-tune deep brain stimulation targeting.
Karuri, A R; Agarwal, R K; Engelking, L R; Kumar, M S
1998-03-15
Effects of acute exposure (2 hr) to either 1.5% halothane or 0.5% methoxyflurane were investigated in the Sprague Dawley rat. Pituitary (PIT) and central nervous system (CNS) substance P (SP)-like and beta-endorphin (beta-end)-like immunoreactivities were evaluated immediately after anesthetic exposure (2 h), after righting reflex (4 h) or 24 hr postexposure (24 h). Only halothane significantly reduced SP-like immunoreactivity in olfactory bulbs in both the 2-h and 4-h groups. Halothane elevated SP-like immunoreactivity of hippocampus at all three time periods, and in the hypothalamus at 2 h. Both anesthetics significantly depleted thalamic concentrations of SP-like immunoreactivity. Methoxyflurane anesthesia resulted in a drastic decrease in SP-like immunoreactivity in PIT at all three time periods periods, while halothane elevated PIT concentrations of this peptide at 4 h. Both anesthetics significantly decreased beta-end-like immunoreactivity in the olfactory bulbs and thalami at 2, 4, and 24 h. However, halothane alone significantly elevated beta-end-like immunoreactivity in the spinal cord at 24 h. Halothane significantly elevated PIT beta-end-like immunoreactivity at 2 and 24 h, while methoxyflurane significantly lowered it in the 4-h group, but elevated the levels of the same in the 24-h group. Brain stem beta-end immunoreactivity were significantly reduced at 2 h by both anesthetics, and at 4 h by methoxyflurane. Results indicate that halothane and methoxyflurane may differ significantly in their actions on SP and beta-end secreting neurons in the CNS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin Li; Division of Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001; Yang Yunbo
Proliferation of vascular smooth muscle cells (VSMCs) contributes to the development of various cardiovascular diseases. Curcumin, extracted from Curcumae longae, has been shown a variety of beneficial effects on human health, including anti-atherosclerosis by mechanisms poorly understood. In the present study, we attempted to investigate whether curcumin has any effect on VSMCs proliferation and the potential mechanisms involved. Our data showed curcumin concentration-dependently abrogated the proliferation of primary rat VSMCs induced by Chol:M{beta}CD. To explore the underlying cellular and molecular mechanisms, we found that curcumin was capable of restoring caveolin-1 expression which was reduced by Chol:M{beta}CD treatment. Moreover, curcumin abrogatedmore » the increment of phospho-ERK1/2 and nuclear accumulation of ERK1/2 in primary rat VSMCs induced by Chol:M{beta}CD, which led to a suppression of AP-1 promoter activity stimulated by Chol:M{beta}CD. In addition, curcumin was able to reverse cell cycle progression induced by Chol:M{beta}CD, which was further supported by its down-regulation of cyclinD1 and E2F promoter activities in the presence of Chol:M{beta}CD. Taking together, our data suggest curcumin inhibits Chol:M{beta}CD-induced VSMCs proliferation via restoring caveolin-1 expression that leads to the suppression of over-activated ERK signaling and causes cell cycle arrest at G1/S phase. These novel findings support the beneficial potential of curcumin in cardiovascular disease.« less
Electrophysiological Correlates of Long-Term Soto Zen Meditation
Pasquini, Henrique Adam; Tanaka, Guaraci Ken; Basile, Luis Fernando Hindi; Velasques, Bruna; Lozano, Mirna Delposo
2015-01-01
This study aimed to verify the electrophysiological correlates of the changes in long-term regular meditators. We use modern techniques of high-resolution electroencephalography applied to slow potentials, power spectra, and potencies related to the events. To obtain encephalographic records, we use an assembly of 128 channels in 31 subjects (17 Soto Zen Buddhist meditators). The motivation of this study was to determine whether the induced beta power would present an increase in meditators as well as a decrease in induced theta/beta ratio in absolute and relative values. However, opposite to what we expected, no significant change was found in the beta frequency. In contrast, the main findings of the study were correlations between the frequency of weekly meditation practice and the increased theta induced relative power, increase of induced power ratio (ratio theta/beta), and increase of the ratio of induced relative powers (theta/beta ratio) during our task that featured an “adapted meditation,” suggesting that the meditative state of “mindfulness” is much more related to the permittivity of “distractions” by the meditators, with a deliberate reduction of attention. PMID:25632397
Treatment of lithium induced tremor with atenolol.
Davé, M
1989-03-01
This is the first report on the successful treatment of one patient with lithium induced tremor with hydrophilic atenolol, which is a relatively selective beta 1 adrenergic receptor blocker. Atenolol's advantages over lipophilic beta blockers in the treatment of lithium induced tremor are discussed.
Dynamics of Propofol-Induced Loss of Consciousness Across Primate Neocortex.
Ishizawa, Yumiko; Ahmed, Omar J; Patel, Shaun R; Gale, John T; Sierra-Mercado, Demetrio; Brown, Emery N; Eskandar, Emad N
2016-07-20
The precise neural mechanisms underlying transitions between consciousness and anesthetic-induced unconsciousness remain unclear. Here, we studied intracortical neuronal dynamics leading to propofol-induced unconsciousness by recording single-neuron activity and local field potentials directly in the functionally interconnecting somatosensory (S1) and frontal ventral premotor (PMv) network during a gradual behavioral transition from full alertness to loss of consciousness (LOC) and on through a deeper anesthetic level. Macaque monkeys were trained for a behavioral task designed to determine the trial-by-trial alertness and neuronal response to tactile and auditory stimulation. We show that disruption of coherent beta oscillations between S1 and PMv preceded, but did not coincide with, the LOC. LOC appeared to correspond to pronounced but brief gamma-/high-beta-band oscillations (lasting ∼3 min) in PMv, followed by a gamma peak in S1. We also demonstrate that the slow oscillations appeared after LOC in S1 and then in PMv after a delay, together suggesting that neuronal dynamics are very different across S1 versus PMv during LOC. Finally, neurons in both S1 and PMv transition from responding to bimodal (tactile and auditory) stimulation before LOC to only tactile modality during unconsciousness, consistent with an inhibition of multisensory integration in this network. Our results show that propofol-induced LOC is accompanied by spatiotemporally distinct oscillatory neuronal dynamics across the somatosensory and premotor network and suggest that a transitional state from wakefulness to unconsciousness is not a continuous process, but rather a series of discrete neural changes. How information is processed by the brain during awake and anesthetized states and, crucially, during the transition is not clearly understood. We demonstrate that neuronal dynamics are very different within an interconnecting cortical network (primary somatosensory and frontal premotor area) during the loss of consciousness (LOC) induced by propofol in nonhuman primates. Coherent beta oscillations between these regions are disrupted before LOC. Pronounced but brief gamma-band oscillations appear to correspond to LOC. In addition, neurons in both of these cortices transition from responding to both tactile and auditory stimulation before LOC to only tactile modality during unconsciousness. We demonstrate that propofol-induced LOC is accompanied by spatiotemporally distinctive neuronal dynamics in this network with concurrent changes in multisensory processing. Copyright © 2016 the authors 0270-6474/16/367718-09$15.00/0.
Beta burst dynamics in Parkinson's disease OFF and ON dopaminergic medication.
Tinkhauser, Gerd; Pogosyan, Alek; Tan, Huiling; Herz, Damian M; Kühn, Andrea A; Brown, Peter
2017-11-01
Exaggerated basal ganglia beta activity (13-35 Hz) is commonly found in patients with Parkinson's disease and can be suppressed by dopaminergic medication, with the degree of suppression being correlated with the improvement in motor symptoms. Importantly, beta activity is not continuously elevated, but fluctuates to give beta bursts. The percentage number of longer beta bursts in a given interval is positively correlated with clinical impairment in Parkinson's disease patients. Here we determine whether the characteristics of beta bursts are dependent on dopaminergic state. Local field potentials were recorded from the subthalamic nucleus of eight Parkinson's disease patients during temporary lead externalization during surgery for deep brain stimulation. The recordings took place with the patient quietly seated following overnight withdrawal of levodopa and after administration of levodopa. Beta bursts were defined by applying a common amplitude threshold and burst characteristics were compared between the two drug conditions. The amplitude of beta bursts, indicative of the degree of local neural synchronization, progressively increased with burst duration. Treatment with levodopa limited this evolution leading to a relative increase of shorter, lower amplitude bursts. Synchronization, however, was not limited to local neural populations during bursts, but also, when such bursts were cotemporaneous across the hemispheres, was evidenced by bilateral phase synchronization. The probability of beta bursts and the proportion of cotemporaneous bursts were reduced by levodopa. The percentage number of longer beta bursts in a given interval was positively related to motor impairment, while the opposite was true for the percentage number of short duration beta bursts. Importantly, the decrease in burst duration was also correlated with the motor improvement. In conclusion, we demonstrate that long duration beta bursts are associated with an increase in local and interhemispheric synchronization. This may compromise information coding capacity and thereby motor processing. Dopaminergic activity limits this uncontrolled beta synchronization by terminating long duration beta bursts, with positive consequences on network state and motor symptoms. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.
[Research of anti-aging mechanism of ginsenoside Rg1 on brain].
Li, Cheng-peng; Zhang, Meng-si; Liu, Jun; Geng, Shan; Li, Jing; Zhu, Jia-hong; Zhang, Yan-yan; Jia, Yan-yan; Wang, Lu; Wang, Shun-he; Wang, Ya-ping
2014-11-01
Neurodegenerative disease is common and frequently occurs in elderly patients. Previous studies have shown that ginsenoside Rg1 was able to inhibit senescent of brain, but the mechanism on the brain during the treatment remains elucidated. To study the mechanism of ginsenoside Rg1 in the process of anti-aging of brain, forty male SD rats were randomly divided into normal group, Rg1 normal group, brain aging model group and Rg1 brain aging model group, each group with 10 rats (brain aging model group: subcutaneous injection of D-galactose (120 mg kg(-1)), qd for 42 consecutive days; Rg1 brain aging model group: while copying the same test as that of brain aging model group, begin intraperitoneal injection of ginsenosides Rg1 (20 mg x kg(-1)) qd for 27 d from 16 d. Rg1 normal group: subcutaneous injection of the same amount of saline; begin intraperitoneal injection of ginsenosides Rg1 (20 mg x kg(-1)) qd for 27 d from 16 d. Normal: injected with an equal volume of saline within the same time. Perform the related experiment on the second day after finishing copying the model or the completion of the first two days of drug injections). Learning and memory abilities were measured by Morris water maze. The number of senescent cells was detected by SA-beta-Gal staining while the level of IL-1 and IL-6 proinflammatory cytokines in hippocampus were detected by ELISA. The activities of SOD, contents of GSH in hippo- campus were quantified by chromatometry. The change of telomerase activities and telomerase length were performed by TRAP-PCR and southern blotting assay, respectively. It is pointed that, in brain aging model group, the spatial learning and memory capacities were weaken, SA-beta-Gal positive granules increased in section of brain tissue, the activity of antioxidant enzyme SOD and the contents of GSH decreased in hippocampus, the level of IL-1 and IL-6 increased in hippocampus, while the length of telomere and the activity of telomerase decreased in hippocampus. Rats of Rg1 brain aging group had their spatial learning and memory capacities enhanced, SA-beta-Gal positive granules in section of brain tissue decreased, the activity of antioxidant enzyme SOD and the contents of GSH increased in hippocampus, the level of IL-1 and IL-6 in hippocampus decreased, the length contraction of telomere suppressed while the change of telomerase activity increased in hippocampus. Compared with that of normal group, the spatial learning and memory capacities were enhanced in Rg1 normal group, SA-beta-Gal positive granules in section of brain tissue decreased in Rg1 normal group, the level of IL-1 and IL-6 in hippocampus decreased in Rg1 normal group. The results indicated that improvement of antioxidant ability, regulating the level of proinflammatory cytokines and regulation of telomerase system may be the underlying anti-aging mechanism of Ginsenoside Rg1.
Sridharan, Kousik Sarathy; Højlund, Andreas; Johnsen, Erik Lisbjerg; Sunde, Niels Aagaard; Johansen, Lars Gottfried; Beniczky, Sándor; Østergaard, Karen
2017-07-01
Deep brain stimulation (DBS) and dopaminergic medication effectively alleviate the motor symptoms in Parkinson's disease (PD) patients, but their effects on the sensory symptoms of PD are still not well understood. To explore early somatosensory processing in PD, we recorded magnetoencephalography (MEG) from thirteen DBS-treated PD patients and ten healthy controls during median nerve stimulation. PD patients were measured during DBS-treated, untreated and dopaminergic-medicated states. We focused on early cortical somatosensory processing as indexed by N20m, induced gamma augmentation (31-45Hz and 55-100Hz) and induced beta suppression (13-30Hz). PD patients' motor symptoms were assessed by UPDRS-III. Using Bayesian statistics, we found positive evidence for differentiated effects of treatments on the induced gamma augmentation (31-45Hz) with highest gamma in the dopaminergic-medicated state and lowest in the DBS-treated and untreated states. In contrast, UPDRS-III scores showed beneficial effects of both DBS and dopaminergic medication on the patients' motor symptoms. Furthermore, treatments did not affect the amplitude of N20m. Our results suggest differentiated effects of DBS and dopaminergic medication on cortical somatosensory processing in PD patients despite consistent ameliorating effects of both treatments on PD motor symptoms. The differentiated effect suggests differences in the effect mechanisms of the two treatments. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Harrewijn, A; Van der Molen, M J W; Westenberg, P M
2016-12-01
The goal of the present study was to examine whether frontal alpha asymmetry and delta-beta cross-frequency correlation during resting state, anticipation, and recovery are electroencephalographic (EEG) measures of social anxiety. For the first time, we jointly examined frontal alpha asymmetry and delta-beta correlation during resting state and during a social performance task in high (HSA) versus low (LSA) socially anxious females. Participants performed a social performance task in which they first watched and evaluated a video of a peer, and then prepared their own speech. They believed that their speech would be videotaped and evaluated by a peer. We found that HSA participants showed significant negative delta-beta correlation as compared to LSA participants during both anticipation of and recovery from the stressful social situation. This negative delta-beta correlation might reflect increased activity in subcortical brain regions and decreased activity in cortical brain regions. As we hypothesized, no group differences in delta-beta correlation were found during the resting state. This could indicate that a certain level of stress is needed to find EEG measures of social anxiety. As for frontal alpha asymmetry, we did not find any group differences. The present frontal alpha asymmetry results are discussed in relation to the evident inconsistencies in the frontal alpha asymmetry literature. Together, our results suggest that delta-beta correlation is a putative EEG measure of social anxiety.
Neuroimmune response to endogenous and exogenous pyrogens is differently modulated by sex steroids.
Mouihate, A; Pittman, Q J
2003-06-01
The objective of this study was to explore whether and how ovarian hormones interact with the febrile response to pyrogens. Estrogen and progesterone treatment of ovariectomized rats was associated with a reduction in lipopolysaccharide (LPS)-induced fever, compared with ovariectomized controls. LPS-fever reduction was accompanied by reduced levels of the inducible cyclooxygenase-2 (COX-2) protein expression in the hypothalamus as well as reduced plasma levels of IL-1beta. The amount of LPS-induced IL-6 in the plasma was not affected by ovarian hormone replacement. In contrast, hypothalamic COX-2 expression in response to intraperitoneal injection of IL-1beta was potentiated by the ovarian hormone replacement. IL-1beta induced a moderate increase in plasma levels of IL-6 that was suppressed by ovarian hormone replacement. These data suggest that ovarian hormone replacement attenuated the proinflammatory response to LPS by suppressing the LPS-induced IL-1beta production and COX-2 expression in the hypothalamus. The markedly different action of ovarian hormones on IL-1beta and LPS effects suggests that this sex hormone modulation of the immune response is a function of the nature of infection and provides further evidence that LPS actions are different from those of IL-1beta.
[Peculiarities of cerebral structures functioning in adolescents with achondroplasia].
Skripnikov, A A; Dolganova, T I; Aranovich, A M
2013-01-01
Complex neurophysiological examination (rheoencephalography, electroencephalography) was carried out in 12 adolescents 12 to 18 years old in order to reveal the peculiarities of cerebral structures functioning in adolescents with achondroplasia. Some deviations from the normal values were found out: reduced blood filling of the brain vessels in the pools of a. carotis interna and a. vertebralis, rheoencephalographic signs of intracranial hypertension of mild degree and brain cycling characterized by moderate and significant amplitude increase, presence of pathological types (delta-, theta-) of the rhythmics and the reduction of the physiological ones (alpha-, beta-). At the same time the peculiarities of rheoencephalographic indices were observed while functional testings (hypercapnia, hyperoxia). Brain cycling differed from normal values by weaker response to the weight-bearing, mainly in alpha- and beta-ranges.
Pancreas and gallbladder agenesis in a newborn with semilobar holoprosencephaly, a case report.
Hilbrands, Robert; Keymolen, Kathelijn; Michotte, Alex; Marichal, Miriam; Cools, Filip; Goossens, Anieta; Veld, Peter In't; De Schepper, Jean; Hattersley, Andrew; Heimberg, Harry
2017-05-19
Pancreatic agenesis is an extremely rare cause of neonatal diabetes mellitus and has enabled the discovery of several key transcription factors essential for normal pancreas and beta cell development. We report a case of a Caucasian female with complete pancreatic agenesis occurring together with semilobar holoprosencephaly (HPE), a more common brain developmental disorder. Clinical findings were later confirmed by autopsy, which also identified agenesis of the gallbladder. Although the sequences of a selected set of genes related to pancreas agenesis or HPE were wild-type, the patient's phenotype suggests a genetic defect that emerges early in embryonic development of brain, gallbladder and pancreas. Developmental defects of the pancreas and brain can occur together. Identifying the genetic defect may identify a novel key regulator in beta cell development.
Identification of a novel CoA synthase isoform, which is primarily expressed in Brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemazanyy, Ivan; Panasyuk, Ganna; Breus, Oksana
2006-03-24
CoA and its derivatives Acetyl-CoA and Acyl-CoA are important players in cellular metabolism and signal transduction. CoA synthase is a bifunctional enzyme which mediates the final stages of CoA biosynthesis. In previous studies, we have reported molecular cloning, biochemical characterization, and subcellular localization of CoA synthase (CoASy). Here, we describe the existence of a novel CoA synthase isoform, which is the product of alternative splicing and possesses a 29aa extension at the N-terminus. We termed it CoASy {beta} and originally identified CoA synthase, CoASy {alpha}. The transcript specific for CoASy {beta} was identified by electronic screening and by RT-PCR analysismore » of various rat tissues. The existence of this novel isoform was further confirmed by immunoblot analysis with antibodies directed to the N-terminal peptide of CoASy {beta}. In contrast to CoASy {alpha}, which shows ubiquitous expression, CoASy {beta} is primarily expressed in Brain. Using confocal microscopy, we demonstrated that both isoforms are localized on mitochondria. The N-terminal extension does not affect the activity of CoA synthase, but possesses a proline-rich sequence which can bring the enzyme into complexes with signalling proteins containing SH3 or WW domains. The role of this novel isoform in CoA biosynthesis, especially in Brain, requires further elucidation.« less
Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kover, Karen, E-mail: kkover@cmh.edu; University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108; Yan, Yun
Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up tomore » 72 h. Oxidative stress and viability/mitochondrial function were measured by H{sub 2}O{sub 2} assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H{sub 2}O{sub 2} levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose-induced TXNIP expression in beta cells.« less
Glycation induces formation of amyloid cross-beta structure in albumin.
Bouma, Barend; Kroon-Batenburg, Loes M J; Wu, Ya-Ping; Brünjes, Bettina; Posthuma, George; Kranenburg, Onno; de Groot, Philip G; Voest, Emile E; Gebbink, Martijn F B G
2003-10-24
Amyloid fibrils are components of proteinaceous plaques that are associated with conformational diseases such as Alzheimer's disease, transmissible spongiform encephalopathies, and familial amyloidosis. Amyloid polypeptides share a specific quarternary structure element known as cross-beta structure. Commonly, fibrillar aggregates are modified by advanced glycation end products (AGE). In addition, AGE formation itself induces protein aggregation. Both amyloid proteins and protein-AGE adducts bind multiligand receptors, such as receptor for AGE, CD36, and scavenger receptors A and B type I, and the serine protease tissue-type plasminogen activator (tPA). Based on these observations, we hypothesized that glycation induces refolding of globular proteins, accompanied by formation of cross-beta structure. Using transmission electron microscopy, we demonstrate here that glycated albumin condensates into fibrous or amorphous aggregates. These aggregates bind to amyloid-specific dyes Congo red and thioflavin T and to tPA. In contrast to globular albumin, glycated albumin contains amino acid residues in beta-sheet conformation, as measured with circular dichroism spectropolarimetry. Moreover, it displays cross-beta structure, as determined with x-ray fiber diffraction. We conclude that glycation induces refolding of initially globular albumin into amyloid fibrils comprising cross-beta structure. This would explain how glycated ligands and amyloid ligands can bind to the same multiligand "cross-beta structure" receptors and to tPA.
Nonsinusoidal Beta Oscillations Reflect Cortical Pathophysiology in Parkinson's Disease.
Cole, Scott R; van der Meij, Roemer; Peterson, Erik J; de Hemptinne, Coralie; Starr, Philip A; Voytek, Bradley
2017-05-03
Oscillations in neural activity play a critical role in neural computation and communication. There is intriguing new evidence that the nonsinusoidal features of the oscillatory waveforms may inform underlying physiological and pathophysiological characteristics. Time-domain waveform analysis approaches stand in contrast to traditional Fourier-based methods, which alter or destroy subtle waveform features. Recently, it has been shown that the waveform features of oscillatory beta (13-30 Hz) events, a prominent motor cortical oscillation, may reflect near-synchronous excitatory synaptic inputs onto cortical pyramidal neurons. Here we analyze data from invasive human primary motor cortex (M1) recordings from patients with Parkinson's disease (PD) implanted with a deep brain stimulator (DBS) to test the hypothesis that the beta waveform becomes less sharp with DBS, suggesting that M1 input synchrony may be decreased. We find that, in PD, M1 beta oscillations have sharp, asymmetric, nonsinusoidal features, specifically asymmetries in the ratio between the sharpness of the beta peaks compared with the troughs. This waveform feature is nearly perfectly correlated with beta-high gamma phase-amplitude coupling ( r = 0.94), a neural index previously shown to track PD-related motor deficit. Our results suggest that the pathophysiological beta generator is altered by DBS, smoothing out the beta waveform. This has implications not only for the interpretation of the physiological mechanism by which DBS reduces PD-related motor symptoms, but more broadly for our analytic toolkit in general. That is, the often-overlooked time-domain features of oscillatory waveforms may carry critical physiological information about neural processes and dynamics. SIGNIFICANCE STATEMENT To better understand the neural basis of cognition and disease, we need to understand how groups of neurons interact to communicate with one another. For example, there is evidence that parkinsonian bradykinesia and rigidity may arise from an oversynchronization of afferents to the motor cortex, and that these symptoms are treatable using deep brain stimulation. Here we show that the waveform shape of beta (13-30 Hz) oscillations, which may reflect input synchrony onto the cortex, is altered by deep brain stimulation. This suggests that mechanistic inferences regarding physiological and pathophysiological neural communication may be made from the temporal dynamics of oscillatory waveform shape. Copyright © 2017 the authors 0270-6474/17/374830-11$15.00/0.
Kitamura, Noriaki; Ikekita, Masahiko; Hayakawa, Satoru; Funahashi, Hisayuki; Furukawa, Kiyoshi
2004-02-01
Glycoproteins from mammalian brain tissues contain unique N-linked oligosaccharides terminating with beta-N-acetylglucosamine residues. Lectin blot analysis of membrane glycoprotein samples from human neuroblastoma SH-SY5Y cells showed that several protein bands bind to Psathylera velutina lectin (PVL), which interacts with beta-N-acetylglucosamine-terminating oligosaccharides. No lectin positive bands were detected by digestion with jack bean beta-N-acetyl-hexosaminidase or N-glycanase before incubation with the lectin, indicating that the cells contain beta-N-acetylglucosamine-terminating N-linked oligosaccharides. When cells were cultured in dishes with different concentrations of PVL, the cell proliferation was inhibited in a dose-dependent manner. Similarly, the neurite extension, which was stimulated with nerve growth factor, was also inhibited in a manner dependent on the lectin dose. Cell proliferation and neurite extension were recovered by the addition of 10 mM N-acetylglucosamine into the medium. Immunoblot analysis of the activation of mitogen-activated protein (MAP) kinases and protein kinase C revealed that phosphorylation of 42-kDa and 44-kDa MAP kinases and 80-kDa protein kinase C are inhibited when SH-SY5Y cells are cultured in PVL-coated dishes, but are restored by the addition of the haptenic sugar into the medium, indicating that MAP kinase and protein kinase C pathways are inhibited by interaction with immobilized PVL. These results indicate that beta-N-acetylglucosamine-terminating N-linked oligosaccharides expressed on neural cells can induce intracellular signals upon binding to extracellular receptors, and are important for growth regulation of neural cells. Copyright 2003 Wiley-Liss, Inc.
Cagnan, Hayriye; Duff, Eugene Paul; Brown, Peter
2015-06-01
Optimal phase alignment between oscillatory neural circuits is hypothesized to optimize information flow and enhance system performance. This theory is known as communication-through-coherence. The basal ganglia motor circuit exhibits exaggerated oscillatory and coherent activity patterns in Parkinson's disease. Such activity patterns are linked to compromised motor system performance as evinced by bradykinesia, rigidity and tremor, suggesting that network function might actually deteriorate once a certain level of net synchrony is exceeded in the motor circuit. Here, we characterize the processes underscoring excessive synchronization and its termination. To this end, we analysed local field potential recordings from the subthalamic nucleus and globus pallidus of five patients with Parkinson's disease (four male and one female, aged 37-64 years). We observed that certain phase alignments between subthalamic nucleus and globus pallidus amplified local neural synchrony in the beta frequency band while others either suppressed it or did not induce any significant change with respect to surrogates. The increase in local beta synchrony directly correlated with how long the two nuclei locked to beta-amplifying phase alignments. Crucially, administration of the dopamine prodrug, levodopa, reduced the frequency and duration of periods during which subthalamic and pallidal populations were phase-locked to beta-amplifying alignments. Conversely ON dopamine, the total duration over which subthalamic and pallidal populations were aligned to phases that left beta-amplitude unchanged with respect to surrogates increased. Thus dopaminergic input shifted circuit dynamics from persistent periods of locking to amplifying phase alignments, associated with compromised motoric function, to more dynamic phase alignment and improved motoric function. This effect of dopamine on local circuit resonance suggests means by which novel electrical interventions might prevent resonance-related pathological circuit interactions. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.
Seitz, Roswitha; Hackl, Simon; Seibuchner, Thomas; Tamm, Ernst R; Ohlmann, Andreas
2010-04-28
Norrin is a secreted protein that binds to frizzled 4 and controls development of capillaries in retina and inner ear. We provide evidence that Norrin has distinct neuroprotective properties that are independent from its effects on vascular development. The function of Norrin was investigated in a mouse model of excitotoxic retinal ganglion cell (RGC) damage after intravitreal injection of NMDA, and in cultured Müller glia or immortalized RGC-5 cells. Intravitreal injection of Norrin significantly increased the number of surviving RGC axons in the optic nerve and decreased apoptotic death of retinal neurons following NMDA-mediated damage. This effect could be blocked by adding dickkopf (DKK)-1, an inhibitor of the Wnt/beta-catenin signaling pathway. Treatment of eyes with combined Norrin/NMDA activated Wnt/beta-catenin signaling and increased the retinal expression of leukemia inhibitory factor and endothelin-2, as well as that of neurotrophic growth factors such as fibroblast growth factor-2, brain-derived neurotrophic factor, lens epithelium-derived growth factor, and ciliary neurotrophic factor. A similar activation of Wnt/beta-catenin signaling and an increased expression of neurotrophic factors was observed in cultured Müller cells after treatment with Norrin, effects that again could be blocked by adding DKK-1. In addition, conditioned cell culture medium of Norrin-treated Müller cells increased survival of differentiated RGC-5 cells. We conclude that Norrin has pronounced neuroprotective properties on retinal neurons with the distinct potential to decrease the damaging effects of NMDA-induced RGC loss. The effects of Norrin involve activation of Wnt/beta-catenin signaling and subsequent induction of neurotrophic growth factors in Müller cells.
Ellagic acid promotes A{beta}42 fibrillization and inhibits A{beta}42-induced neurotoxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Ying; Tsinghua University School of Medicine, Haidian District, Beijing 100084; Yang, Shi-gao
Smaller, soluble oligomers of {beta}-amyloid (A{beta}) play a critical role in the pathogenesis of Alzheimer's disease (AD). Selective inhibition of A{beta} oligomer formation provides an optimum target for AD therapy. Some polyphenols have potent anti-amyloidogenic activities and protect against A{beta} neurotoxicity. Here, we tested the effects of ellagic acid (EA), a polyphenolic compound, on A{beta}42 aggregation and neurotoxicity in vitro. EA promoted A{beta} fibril formation and significant oligomer loss, contrary to previous results that polyphenols inhibited A{beta} aggregation. The results of transmission electron microscopy (TEM) and Western blot displayed more fibrils in A{beta}42 samples co-incubated with EA in earlier phasesmore » of aggregation. Consistent with the hypothesis that plaque formation may represent a protective mechanism in which the body sequesters toxic A{beta} aggregates to render them harmless, our MTT results showed that EA could significantly reduce A{beta}42-induced neurotoxicity toward SH-SY5Y cells. Taken together, our results suggest that EA, an active ingredient in many fruits and nuts, may have therapeutic potential in AD.« less
Electrophysiological CNS-processes related to associative learning in humans.
Christoffersen, Gert R J; Schachtman, Todd R
2016-01-01
The neurophysiology of human associative memory has been studied with electroencephalographic techniques since the 1930s. This research has revealed that different types of electrophysiological processes in the human brain can be modified by conditioning: sensory evoked potentials, sensory induced gamma-band activity, periods of frequency-specific waves (alpha and beta waves, the sensorimotor rhythm and the mu-rhythm) and slow cortical potentials. Conditioning of these processes has been studied in experiments that either use operant conditioning or repeated contingent pairings of conditioned and unconditioned stimuli (classical conditioning). In operant conditioning, the appearance of a specific brain process is paired with an external stimulus (neurofeedback) and the feedback enables subjects to obtain varying degrees of control of the CNS-process. Such acquired self-regulation of brain activity has found practical uses for instance in the amelioration of epileptic seizures, Autism Spectrum Disorders (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). It has also provided communicative means of assistance for tetraplegic patients through the use of brain computer interfaces. Both extra and intracortically recorded signals have been coupled with contingent external feedback. It is the aim for this review to summarize essential results on all types of electromagnetic brain processes that have been modified by classical or operant conditioning. The results are organized according to type of conditioned EEG-process, type of conditioning, and sensory modalities of the conditioning stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.
Beta-catenin is required for memory consolidation.
Maguschak, Kimberly A; Ressler, Kerry J
2008-11-01
beta-catenin has been implicated in neuronal synapse regulation and remodeling. Here we have examined beta-catenin expression in the adult mouse brain and its role in amygdala-dependent learning and memory. We found alterations in beta-catenin mRNA and protein phosphorylation during fear-memory consolidation. Such alterations correlated with a change in the association of beta-catenin with cadherin. Pharmacologically, this consolidation was enhanced by lithium-mediated facilitation of beta-catenin. Genetically, the role of beta-catenin was confirmed with site-specific deletions of loxP-flanked Ctnnb1 (encoding beta-catenin) in the amygdala. Baseline locomotion, anxiety-related behaviors and acquisition or expression of conditioned fear were normal. However, amygdala-specific deletion of Ctnnb1 prevented the normal transfer of newly formed fear learning into long-term memory. Thus, beta-catenin may be required in the amygdala for the normal consolidation, but not acquisition, of fear memory. This suggests a general role for beta-catenin in the synaptic remodeling and stabilization underlying long-term memory in adults.
Curzon, G; Fernando, J C
1976-12-01
1 Aminophylline and other methylxanthines increase brain tryptophan and hence 5-hydroxytryptamine turnover. The mechanism of this effect of aminophylline was investigated. 2 At lower doses (greater than 100 mg/kg i.p.) the brain tryptophan increase could be explained by the lipolytic action of the drug, i.e. increased plasma unesterified fatty acid freeing plasma tryptophan from protein binding so that it became available to the brain. 3 Plasma unesterified fatty acid did not increase when aminophylline (109 mg/kg i.p.) was given to nicotinamide-treated rats but as both plasma total and free tryptophan rose, a tryptophan increase in the brain still occurred. 4 The rise in brain tryptophan concentration following the injection of a higher dose of the drug (150 mg/kg i.p.) could no longer be explained by a rise of plasma free tryptophan as the ratio of brain tryptophan to plasma free tryptophan rose considerably. Plasma total tryptophan fell and the plasma insulin concentration rose. 5 The increase of brain tryptophan concentration after injection of 150 mg/kg aminophylline appeared specific for this amino acid as brain tyrosine and phenyllanine did not increase. However as their plasma concentrations fell the brain/plasma ratio for all three amino acids rose. 6 The higher dose of aminophylline increased the muscle concentration of tryptophan but that of tyrosine fell and that of phenylalanine remained unaltered. The liver concentrations were not affected. 7 The aminophylline-induced increase of the ratio of brain tryptophan of plasma free tryptophan no longer occurred when the drug was given to animals injected with the beta-adrenoreceptor blocking agent propranolol or the diabetogenic agent streptozotocin. 8 The changes in brain tryptophan upon aminophylline injection may be explained by (a) increased availability of plasma tryptophan to the brain due to increased lipolysis and (b) increased effectiveness of uptake of tryptophan by the brain due to increased insulin secretion.
Noh, A Long Sae Mi; Yim, Mijung
2011-03-01
Despite numerous reports of the synergistic effects of beta-glycerophosphate and ascorbic acid in inducing the differentiation of osteoblasts, little is known about their roles in osteoclastic differentiation. Therefore, we investigated the effect of beta-glycerophosphate on osteoclastogenesis in the presence of ascorbic acid using primary mouse bone marrow cultures treated with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappaB ligand (RANKL). Beta-Glycerophosphate dose-dependently increased RANKL-induced osteoclast formation in the presence of ascorbic acid. This stimulatory effect was apparent when beta-glycerophosphate and ascorbic acid were only added during the late stages of the culture period, indicating that they influence later events in osteoclastic differentiation. While the combination of beta-glycerophosphate and ascorbic acid inhibited RANKL-stimulated activation of ERK and p38, and degradation of IkappaB, it increased the induction of c-Fos and NFATc1. In addition, beta-glycerophosphate and ascorbic acid together enhanced the induction of COX-2 following RANKL stimulation. Taken together, our data suggest that beta-glycerophosphate and ascorbic acid have synergistic effects on osteoclast formation, increasing RANKL-mediated induction of c-Fos, NFATc1 and COX-2 in osteoclast precursors.
Observations on the deformation-induced beta internal friction peak in bcc metals
NASA Technical Reports Server (NTRS)
Dicarlo, J. A.
1974-01-01
During a study of the effects of electron irradiation on the tungsten alpha mechanism, internal friction data were obtained. The data indicate that the mechanism underlying the beta peak does not possess the relaxation parameters generally associated with a simple dislocation process. The significance of the experimental results in the light of beta observations in other metals is discussed. It is suggested that the beta peaks in deformed bcc metals are the anelastic result of the thermally-activated relaxation of deformation-induced imperfections.
Baldwin, Rae Lynn; Tran, Hang; Karlan, Beth Y
2003-03-15
Many epithelial carcinomas, including ovarian, are refractory to the antiproliferative effects of transforming growth factor (TGF) beta. In some cancers, TGF-beta resistance has been linked to TGF-beta receptor II (TbetaR-II) and Smad4 mutations; however, in ovarian cancer, the mechanism of resistance remains unclear. Primary ovarian epithelial cell cultures were used as a model system to determine the mechanisms of TGF-beta resistance. To simulate in vivo responses to TGF-beta, primary cultures derived from normal human ovarian surface epithelium (HOSE) and from ovarian carcinomas (CSOC) were grown on collagen I gel, the predominant matrix molecule in the ovarian tumor milieu. When treated with 5 ng/ml TGF-beta for 72 h, HOSE (n = 11) proliferation was inhibited by 20 +/- 21% on average. In contrast, CSOC (n = 10) proliferation was stimulated 5 +/- 10% in response to TGF-beta (a statistically significant difference in response when compared with HOSE; P = 0.001). To dissect the TGF-beta/Smad signaling pathway we used a quantitative RNase protection assay (RPA) for measuring mRNA levels of TGF-beta pathway components in 20 HOSE and 20 CSOC cultures. Basal mRNA levels of TGF-beta receptors I and II, downstream signaling components Smad2, 3, 4, 6, 7, and the transcriptional corepressors Ski and SnoN did not show a statistically significant difference between HOSE and CSOC, and cannot explain their differential susceptibility to TGF-beta-induced cell cycle arrest. To assess functional differences of the TGF-beta pathway in TGF-beta-sensitive HOSE and TGF-beta-resistant CSOC, we measured Smad2/4 and 3/4 complex induction after TGF-beta treatment. HOSE and CSOC showed equivalent Smad2/4 and 3/4 complex induction after TGF-beta exposure for 0, 0.5, 2, and 4 h. It has been proposed that SnoN and Ski are corepressors of the TGF-beta/Smad pathway and undergo TGF-beta-induced degradation followed by reinduction of SnoN mRNA. However, our data show equivalent SnoN degradation in HOSE and CSOC, and equivalent SnoN mRNA induction after TGF-beta treatment. Surprising, TGF-beta-induced Ski degradation was not observed in HOSE or CSOC, suggesting that Ski may not function as a TGF-beta/Smad corepressor in ovarian epithelial cells. These data implied that the TGF-beta/Smad pathway remains functional in CSOC, although CSOC cells are resistant to antimitogenic TGF-beta effects. CSOC resistance to TGF-beta coincided with the loss of c-myc down-regulation. These data suggest that TGF-beta/Smad signaling is blocked downstream of Smad complex formation or that an alternate signaling pathway other than TGF-beta/Smad may transmit TGF-beta-induced cell cycle arrest in the ovarian epithelium.
Brain Cell Swelling During Hypocapnia Increases with Hyperglycemia or Ketosis
Glaser, Nicole; Bundros, Angeliki; Anderson, Steve; Tancredi, Daniel; Lo, Weei; Orgain, Myra; O'Donnell, Martha
2014-01-01
Severe hypocapnia increases the risk of DKA-related cerebral injury in children, but the reason for this association is unclear. To determine whether the effects of hypocapnia on the brain are altered during hyperglycemia or ketosis, we induced hypocapnia (pCO2 20 ± 3 mmHg) via mechanical ventilation in three groups of juvenile rats: 25 controls, 22 hyperglycemic rats (serum glucose 451± 78 mg/dL) and 15 ketotic rats (beta-hydroxy butyrate 3.0 ± 1.0 mmol/L). We used magnetic resonance imaging to measure cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) values in these groups and in 17 ventilated rats with normal pCO2 (40±3 mmHg). In a subset (n=35), after 2 hrs of hypocapnia, pCO2 levels were normalized (40±3 mmHg) and ADC and CBF measurements repeated. Declines in CBF with hypocapnia occurred in all groups. Normalization of pCO2 after hypocapnia resulted in striatal hyperemia. These effects were not substantially altered by hyperglycemia or ketosis, however, declines in ADC during hypocapnia were greater during both hyperglycemia and ketosis. We conclude that brain cell swelling associated with hypocapnia is increased by both hyperglycemia and ketosis, suggesting that these metabolic conditions may make the brain more vulnerable to injury during hypocapnia. PMID:24443981
Boasen, Jared; Takeshita, Yuya; Kuriki, Shinya; Yokosawa, Koichi
2018-01-01
Group musical improvisation is thought to be akin to conversation, and therapeutically has been shown to be effective at improving communicativeness, sociability, creative expression, and overall psychological health. To understand these therapeutic effects, clarifying the nature of brain activity during improvisational cognition is important. Some insight regarding brain activity during improvisational music cognition has been gained via functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). However, we have found no reports based on magnetoencephalography (MEG). With the present study, we aimed to demonstrate the feasibility of improvisational music performance experimentation in MEG. We designed a novel MEG-compatible keyboard, and used it with experienced musicians ( N = 13) in a music performance paradigm to spectral-spatially differentiate spontaneous brain activity during mental imagery of improvisational music performance. Analyses of source activity revealed that mental imagery of improvisational music performance induced greater theta (5-7 Hz) activity in left temporal areas associated with rhythm production and communication, greater alpha (8-12 Hz) activity in left premotor and parietal areas associated with sensorimotor integration, and less beta (15-29 Hz) activity in right frontal areas associated with inhibition control. These findings support the notion that musical improvisation is conversational, and suggest that creation of novel auditory content is facilitated by a more internally-directed, disinhibited cognitive state.
Lund, Trine M; Risa, Oystein; Sonnewald, Ursula; Schousboe, Arne; Waagepetersen, Helle S
2009-07-01
Ketone bodies serve as alternative energy substrates for the brain in cases of low glucose availability such as during starvation or in patients treated with a ketogenic diet. The ketone bodies are metabolized via a distinct pathway confined to the mitochondria. We have compared metabolism of [2,4-(13)C]beta-hydroxybutyrate to that of [1,6-(13)C]glucose in cultured glutamatergic neurons and investigated the effect of neuronal activity focusing on the aspartate-glutamate homeostasis, an essential component of the excitatory activity in the brain. The amount of (13)C incorporation and cellular content was lower for glutamate and higher for aspartate in the presence of [2,4-(13)C]beta-hydroxybutyrate as opposed to [1,6-(13)C]glucose. Our results suggest that the change in aspartate-glutamate homeostasis is due to a decreased availability of NADH for cytosolic malate dehydrogenase and thus reduced malate-aspartate shuttle activity in neurons using beta-hydroxybutyrate. In the presence of glucose, the glutamate content decreased significantly upon activation of neurotransmitter release, whereas in the presence of only beta-hydroxybutyrate, no decrease in the glutamate content was observed. Thus, the fraction of the glutamate pool available for transmitter release was diminished when metabolizing beta-hydroxybutyrate, which is in line with the hypothesis of formation of transmitter glutamate via an obligatory involvement of the malate-aspartate shuttle.
Shear, Deborah A.; Deng-Bryant, Ying; Leung, Lai Yee; Wei, Guo; Chen, Zhiyong; Tortella, Frank C.
2016-01-01
Brain hypothermia has been considered as a promising alternative to whole-body hypothermia in treating acute neurological disease, for example, traumatic brain injury. Previously, we demonstrated that 2-hours selective brain cooling (SBC) effectively mitigated acute (≤24 hours postinjury) neurophysiological dysfunction induced by a penetrating ballistic-like brain injury (PBBI) in rats. This study evaluated neuroprotective effects of extended SBC (4 or 8 hours in duration) on sub-acute secondary injuries between 3 and 21 days postinjury (DPI). SBC (34°C) was achieved via extraluminal cooling of rats' bilateral common carotid arteries (CCA). Depending on the experimental design, SBC was introduced either immediately or with a 2- or 4-hour delay after PBBI and maintained for 4 or 8 hours. Neuroprotective effects of SBC were evaluated by measuring brain lesion volume, axonal injury, neuroinflammation, motor and cognitive functions, and post-traumatic seizures. Compared to untreated PBBI animals, 4 or 8 hours SBC treatment initiated immediately following PBBI produced comparable neuroprotective benefits against PBBI-induced early histopathology at 3 DPI as evidenced by significant reductions in brain lesion volume, axonal pathology (beta-amyloid precursor protein staining), neuroinflammation (glial fibrillary acetic protein stained-activated astrocytes and rat major histocompatibility complex class I stained activated microglial cell), and post-traumatic nonconvulsive seizures. In the later phase of the injury (7–21 DPI), significant improvement on motor function (rotarod test) was observed under most SBC protocols, including the 2-hour delay in SBC initiation. However, SBC treatment failed to improve cognitive performance (Morris water maze test) measured 13–17 DPI. The protective effects of SBC on delayed axonal injury (silver staining) were evident out to 14 DPI. In conclusion, the CCA cooling method of SBC produced neuroprotection measured across multiple domains that were evident days/weeks beyond the cooling duration and in the absence of overt adverse effects. These “proof-of-concept” results suggest that SBC may provide an attractive neuroprotective approach for clinical considerations. PMID:26684246
Rose, K; Allan, A; Gauldie, S; Stapleton, G; Dobbie, L; Dott, K; Martin, C; Wang, L; Hedlund, E; Seckl, J R; Gustafsson, J A; Lathe, R
2001-06-29
The major adrenal steroid dehydroepiandrosterone (DHEA) enhances memory and immune function but has no known dedicated receptor; local metabolism may govern its activity. We described a cytochrome P450 expressed in brain and other tissues, CYP7B, that catalyzes the 7alpha-hydroxylation of oxysterols and 3beta-hydroxysteroids including DHEA. We report here that CYP7B mRNA and 7alpha-hydroxylation activity are widespread in rat tissues. However, steroids related to DHEA are reported to be modified at positions other than 7alpha, exemplified by prominent 6alpha-hydroxylation of 5alpha-androstane-3beta,17beta-diol (A/anediol) in some rodent tissues including brain. To determine whether CYP7B is responsible for these and other activities we disrupted the mouse Cyp7b gene by targeted insertion of an IRES-lacZ reporter cassette, placing reporter enzyme activity (beta-galactosidase) under Cyp7b promoter control. In heterozygous mouse brain, chromogenic detection of reporter activity was strikingly restricted to the dentate gyrus. Staining did not exactly reproduce the in situ hybridization expression pattern; post-transcriptional control is inferred. Lower level staining was detected in cerebellum, liver, and kidney, and which largely paralleled mRNA distribution. Liver and kidney expression was sexually dimorphic. Mice homozygous for the insertion are viable and superficially normal, but ex vivo metabolism of DHEA to 7alpha-hydroxy-DHEA was abolished in brain, spleen, thymus, heart, lung, prostate, uterus, and mammary gland; lower abundance metabolites were also eliminated. 7alpha-Hydroxylation of 25-hydroxycholesterol and related substrates was also abolished, as was presumed 6alpha-hydroxylation of A/anediol. These different enzyme activities therefore derive from the Cyp7b gene. CYP7B is thus a major extrahepatic steroid and oxysterol hydroxylase and provides the predominant route for local metabolism of DHEA and related molecules in brain and other tissues.
Ling, Daijun; Salvaterra, Paul M
2011-02-01
Aging is known to be the most prominent risk factor for Alzheimer's disease (AD); however, the underlying mechanism linking brain aging with AD pathogenesis remains unknown. The expression of human amyloid beta 42 peptide (Aβ₁₋₄₂), but not Aβ₁₋₄₀ in Drosophila brain induces an early onset and progressive autophagy-lysosomal neuropathology. Here we show that the natural process of brain aging also accompanies a chronic and late-onset deterioration of neuronal autophagy-lysosomal system. This process is characterized by accumulation of dysfunctional autophagy-lysosomal vesicles, a compromise of these vesicles leading to damage of intracellular membranes and organelles, necrotic-like intraneuronal destruction and neurodegeneration. In addition, conditional activation of neuronal autophagy in young animals is protective while late activation is deleterious for survival. Intriguingly, conditional Aβ₁₋₄₂ expression limited to young animals exacerbates the aging process to a greater extent than Aβ₁₋₄₂ expression in old animals. These data suggest that the neuronal autophagy-lysosomal system may shift from a functional and protective state to a pathological and deleterious state either during brain aging or via Aβ₁₋₄₂ neurotoxicity. A chronic deterioration of the neuronal autophagy-lysosomal system is likely to be a key event in transitioning from normal brain aging to pathological aging leading to Alzheimer's neurodegeneration.
NASA Astrophysics Data System (ADS)
Pichiorri, F.; De Vico Fallani, F.; Cincotti, F.; Babiloni, F.; Molinari, M.; Kleih, S. C.; Neuper, C.; Kübler, A.; Mattia, D.
2011-04-01
The main purpose of electroencephalography (EEG)-based brain-computer interface (BCI) technology is to provide an alternative channel to support communication and control when motor pathways are interrupted. Despite the considerable amount of research focused on the improvement of EEG signal detection and translation into output commands, little is known about how learning to operate a BCI device may affect brain plasticity. This study investigated if and how sensorimotor rhythm-based BCI training would induce persistent functional changes in motor cortex, as assessed with transcranial magnetic stimulation (TMS) and high-density EEG. Motor imagery (MI)-based BCI training in naïve participants led to a significant increase in motor cortical excitability, as revealed by post-training TMS mapping of the hand muscle's cortical representation; peak amplitude and volume of the motor evoked potentials recorded from the opponens pollicis muscle were significantly higher only in those subjects who develop a MI strategy based on imagination of hand grasping to successfully control a computer cursor. Furthermore, analysis of the functional brain networks constructed using a connectivity matrix between scalp electrodes revealed a significant decrease in the global efficiency index for the higher-beta frequency range (22-29 Hz), indicating that the brain network changes its topology with practice of hand grasping MI. Our findings build the neurophysiological basis for the use of non-invasive BCI technology for monitoring and guidance of motor imagery-dependent brain plasticity and thus may render BCI a viable tool for post-stroke rehabilitation.
Marian, A J; Yu, Q T; Mann, D L; Graham, F L; Roberts, R
1995-07-01
Mutations in the beta-myosin heavy chain (beta MyHC) induce hypertrophic cardiomyopathy (HCM), cardiac hypertrophy, and sarcomere disarray, with the latter being the characteristic hallmark. Thus, we sought to determine whether expression of mutant beta MyHC in adult feline cardiac myocytes, a species known to develop HCM with a phenotype identical to that in humans, induces sarcomere disarray. A full-length beta MyHC cDNA was cloned from a human heart cDNA library, and an HCM-causing mutation (Arg403Gln) was induced in the beta MyHC cDNA by site-directed mutagenesis using polymerase chain reaction (PCR). The normal and mutant beta MyHC cDNAs were cloned into p delta E1spIB shuttle vector, downstream from a cytomegalovirus (CMV) promoter. Replication-deficient recombinant adenoviral constructs (Ad5/CMV/beta MyHC-N and Ad5/CMV/beta MyHC-403) were generated through homologous recombination of p delta E1spIB/CMV/beta MyHC-N or Ad5/CMV/beta MyHC-403 and pBHG10 after cotransfection in 293 host cells. Infection of COS-1 cells with the beta MyHC construct resulted in the expression of a full-length myosin protein. Efficiency of infection of isolated adult cardiac myocytes was > 95%. Expression of the beta MyHC constructs into mRNA at 48 hours after infection of feline cardiac myocytes was confirmed by reverse transcription-PCR. The net total protein and beta-myosin synthesis were determined by using the amount of incorporation of [3H]phenylalanine into total protein and beta-myosin, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
Chen, Lizhi; Ou, Shanshan; Zhou, Lingqi; Tang, Hai; Xu, Jie; Guo, Kaihua
2017-02-03
Amyloid beta (Aβ) is the main component of the amyloid plaques that accumulate in the brains of Alzheimer patients. Here, we reported the protective role of Formononetin (Form) against Aβ 25-35 -induced neurotoxicity in HT22 cells. We found that Form significantly increased the viability of HT22 cells but decreased the cell apoptosis when challenging with Aβ 25-35. The inhibitory effects of Form were associated with PI3K/Akt signaling pathway as PI3K inhibitor (LY294002) or ERα specific inhibitor (MPP) blocked the effects. Form also accelerated the non-amyloidogenic process of amyloid precursor protein (APP) by enhancing α-secretase activity and sAPPα release. Altogether, our findings may provide a novel therapeutic target to treat AD sufferers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Mizuno, Tetsuya; Kuno, Reiko; Nitta, Atsumi; Nabeshima, Toshitaka; Zhang, Guiqin; Kawanokuchi, Jun; Wang, Jinyan; Jin, Shijie; Takeuchi, Hideyuki; Suzumura, Akio
2005-12-20
We examined the neuroprotective role of nicergoline in neuron-microglia or neuron-astrocytes co-cultures. Nicergoline, an ergoline derivative, significantly suppressed the neuronal cell death induced by co-culture with activated microglia or astrocytes stimulated with lipopolysaccharide (LPS) and interferon (IFN)-gamma. To elucidate the mechanism by which nicergoline exerts a neuroprotective effect, we examined the production of inflammatory mediators and neurotrophic factors in activated microglia and astrocytes following nicergoline treatment. In microglia stimulated with LPS and IFN-gamma, nicergoline suppressed the production of superoxide anions, interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha in a dose-dependent manner. In astrocytes, nicergoline also suppressed the production of proinflammatory cytokines and enhanced brain-derived neurotrophic factor (BDNF). Thus, nicergoline-mediated neuroprotection resulted primarily from the inhibition of inflammatory mediators and the upregulation of neurotrophic factors by glial cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan Xinjuan; Dai Yujie; Li Xing
2011-08-01
Chronic arsenic exposure induces oxidative damage to liver leading to liver fibrosis. We aimed to define the effect of grape seed extract (GSE), an antioxidant dietary supplement, on arsenic-induced liver injury. First, Male Sprague-Dawley rats were exposed to a low level of arsenic in drinking water (30 ppm) with or without GSE (100 mg/kg, every other day by oral gavage) for 12 months and the effect of GSE on arsenic-induced hepatotoxicity was examined. The results from this study revealed that GSE co-treatment significantly attenuated arsenic-induced low antioxidant defense, oxidative damage, proinflammatory cytokines and fibrogenic genes. Moreover, GSE reduced arsenic-stimulated Smad2/3more » phosphorylation and protein levels of NADPH oxidase subunits (Nox2, Nox4 and p47phox). Next, we explored the molecular mechanisms underlying GSE inhibition of arsenic toxicity using cultured rat hepatic stellate cells (HSCs). From the in vitro study, we found that GSE dose-dependently reduced arsenic-stimulated ROS production and NADPH oxidase activities. Both NADPH oxidases flavoprotein inhibitor DPI and Nox4 siRNA blocked arsenic-induced ROS production, whereas Nox4 overexpression suppressed the inhibitory effects of GSE on arsenic-induced ROS production and NADPH oxidase activities, as well as expression of TGF-{beta}1, type I procollagen (Coll-I) and {alpha}-smooth muscle actin ({alpha}-SMA) mRNA. We also observed that GSE dose-dependently inhibited TGF-{beta}1-induced transactivation of the TGF-{beta}-induced smad response element p3TP-Lux, and that forced expression of Smad3 attenuated the inhibitory effects of GSE on TGF-{beta}1-induced mRNA expression of Coll-I and {alpha}-SMA. Collectively, GSE could be a potential dietary therapeutic agent for arsenic-induced liver injury through suppression of NADPH oxidase and TGF-{beta}/Smad activation. - Research Highlights: > GSE attenuated arsenic-induced low antioxidant defense, oxidative damage, proinflammatory cytokines and fibrogenic genes. > GSE reduced arsenic-mediated Smad2/3 phosphorylation and NADPH oxidase subunits (Nox2, Nox4 and p47phox). > Beneficial effects of GSE on As-induced liver injury was via inhibition of NADPH oxidase and TGF-{beta}/Smad activation.« less
Chen, Gang; Bower, Kimberly A; Xu, Mei; Ding, Min; Shi, Xianglin; Ke, Zun-Ji; Luo, Jia
2009-05-01
Ethanol is a potent teratogen for the developing central nervous system (CNS), and fetal alcohol syndrome (FAS) is the most common nonhereditary cause of mental retardation. Ethanol disrupts neuronal differentiation and maturation. It is important to identify agents that provide neuroprotection against ethanol neurotoxicity. Using an in vitro neuronal model, mouse Neuro2a (N2a) neuroblastoma cells, we demonstrated that ethanol inhibited neurite outgrowth and the expression of neurofilament (NF) proteins. Glycogen synthase kinase 3beta (GSK3beta), a multifunctional serine/threonine kinase negatively regulated neurite outgrowth of N2a cells; inhibiting GSK3beta activity by retinoic acid (RA) and lithium induced neurite outgrowth, while over-expression of a constitutively active S9A GSK3beta mutant prevented neurite outgrowth. Ethanol inhibited neurite outgrowth by activating GSK3beta through the dephosphorylation of GSK3beta at serine 9. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family rich in many edible berries and other pigmented fruits, enhanced neurite outgrowth by promoting p-GSK3beta(Ser9). More importantly, C3G reversed ethanol-mediated activation of GSK3beta and inhibition of neurite outgrowth as well as the expression of NF proteins. C3G also blocked ethanol-induced intracellular accumulation of reactive oxygen species (ROS). However, the antioxidant effect of C3G appeared minimally involved in its protection. Our study provides a potential avenue for preventing or ameliorating ethanol-induced damage to the developing CNS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Christopher C.; Bloodworth, Jeffrey C.; Mythreye, Karthikeyan
2012-08-03
Highlights: Black-Right-Pointing-Pointer Endoglin inhibits ERK activation in endothelial cells. Black-Right-Pointing-Pointer Endoglin is a regulator of c-Myc and cyclin D1 expression. Black-Right-Pointing-Pointer {beta}-arrestin2 interaction with endoglin is required for ERK/c-Myc repression. Black-Right-Pointing-Pointer Endoglin impedes cellular proliferation by targeting ERK-induced mitogenic signaling. -- Abstract: Endoglin is an endothelial-specific transforming growth factor beta (TGF-{beta}) co-receptor essential for angiogenesis and vascular remodeling. Endoglin regulates a wide range of cellular processes, including cell adhesion, migration, and proliferation, through TGF-{beta} signaling to canonical Smad and Smad-independent pathways. Despite its overall pro-angiogenic role in the vasculature, the underlying mechanism of endoglin action is poorly characterized. We previouslymore » identified {beta}-arrestin2 as a binding partner that causes endoglin internalization from the plasma membrane and inhibits ERK signaling towards endothelial migration. In the present study, we examined the mechanistic role of endoglin and {beta}-arrestin2 in endothelial cell proliferation. We show that endoglin impedes cell growth through sustained inhibition of ERK-induced c-Myc and cyclin D1 expression in a TGF-{beta}-independent manner. The down-regulation of c-Myc and cyclin D1, along with growth-inhibition, are reversed when the endoglin/{beta}-arrestin2 interaction is disrupted. Given that TGF-{beta}-induced Smad signaling potently represses c-Myc in most cell types, our findings here show a novel mechanism by which endoglin augments growth-inhibition by targeting ERK and key downstream mitogenic substrates.« less
Mehindate, K; al-Daccak, R; Rink, L; Mecheri, S; Hébert, J; Mourad, W
1994-11-01
Activation of human monocytes or monocytic cell lines with all known stimuli coordinately induces the gene expression of various cytokines, including tumor necrosis factor alpha (TNF-alpha), interleukin-1 beta (IL-1 beta), and the IL-1 receptor antagonist (IL-1Ra). In contrast, superantigens induce TNF-alpha and IL-1 beta but fail to affect IL-1Ra gene expression, suggesting that activation of monocytes via major histocompatibility complex class II is distinct from other signal transduction pathways. In the present study, we analyzed the regulation of the Mycoplasma arthritidis-derived superantigen (MAM)-induced IL-1 beta and TNF-alpha gene expression by studying the effects of two different anti-inflammatory agents: dexamethasone (DEX) and the T-cell-derived cytokine IL-4. Both agents contributed to the downregulation of MAM-induced IL-1 beta and TNF-alpha gene expression. They accelerated the normal decline of the gene expression of both MAM-induced cytokines by decreasing the stability of mRNAs via the induction or enhanced synthesis of one or more regulatory proteins. In addition, IL-4, but not DEX, induced a strong and rapid expression of IL-1Ra mRNA in MAM-stimulated and unstimulated THP-1 cells in a de novo protein synthesis-independent manner. The capacity of IL-4 to induce IL-1Ra gene expression reinforces its anti-inflammatory activity. This study illustrates some of the mechanisms by which MAM-induced proinflammatory monokine gene expression can be downregulated by IL-4 and DEX.
Electroencephalograph (EEG) study on self-contemplating image formation
NASA Astrophysics Data System (ADS)
Meng, Qinglei; Hong, Elliot; Choa, Fow-Sen
2016-05-01
Electroencephalography (EEG) is one of the most widely used electrophysiological monitoring methods and plays a significant role in studies of human brain electrical activities. Default mode network (DMN), is a functional connection of brain regions that are activated while subjects are not in task positive state or not focused on the outside world. In this study, EEG was used for human brain signals recording while all subjects were asked to sit down quietly on a chair with eyes closed and thinking about some parts of their own body, such as left and right hands, left and right ears, lips, nose, and the images of faces that they were familiar with as well as doing some simple mathematical calculation. The time is marker when the image is formed in the subject's mind. By analyzing brain activity maps 300ms right before the time marked instant for each of the 4 wave bands, Delta, Theta, Alpha and Beta waves. We found that for most EEG datasets during this 300ms, Delta wave activity would mostly locate at the frontal lobe or the visual cortex, and the change and movement of activities are slow. Theta wave activity tended to rotate along the edge of cortex either clockwise or counterclockwise. Beta wave behaved like inquiry types of oscillations between any two regions spread over the cortex. Alpha wave activity looks like a mix of the Theta and Beta activities but more close to Theta activity. From the observation we feel that Beta and high Alpha are playing utility role for information inquiry. Theta and low Alpha are likely playing the role of binding and imagination formation in DMN operations.
Bang, Myun-Ho; Han, Min-Woo; Song, Myoung-Chong; Cho, Jin-Gyeong; Chung, Hae-Gon; Jeong, Tae-Sook; Lee, Kyung-Tae; Choi, Myung-Sook; Kim, Se-Young; Baek, Nam-In
2008-08-01
Repeated silica gel and octadecyl silica gel (ODS) column chromatography of the aerial parts of Artemisia princeps PAMPANINI (Sajabalssuk) led to the isolation of a new sesquiterpenoid, 3-((S)-2-methylbutyryloxy)-costu-1(10),4(5)-dien-12,6 alpha-olide (2), along with two previously reported sesquiterpenoids: 8 alpha-angeloyloxy-3beta,4 beta-epoxy-6 beta H,7 alpha H,8 beta H-guaia-1(10),11(13)-dien-12,6 alpha-olide (1, carlaolide B) and 3beta,4 beta-epoxy-8 alpha-isobutyryloxy-6 beta H,7 alpha H,8 beta H-guaia-1(10),11(13)-dien-12,6 alpha-olide (3, carlaolide A). The structure of compound 2 was elucidated by spectroscopic data analysis, including one dimensional (1D) and two dimensional (2D) nuclear magnetic resonance (NMR) experiments. Of the isolates, compound 2 exhibited potent cytotoxicity against human cervix adenocarcinoma cells and induced apoptosis.