Science.gov

Sample records for induced clustered dna

  1. Clustered DNA damage induced by heavy ion particles.

    PubMed

    Terato, Hiroaki; Ide, Hiroshi

    2004-12-01

    Clustered DNA damage (locally multiply damaged site) is thought to be a critical lesion caused by ionizing radiation, and high LET radiation such as heavy ion particles is believed to produce high yields of such damage. Since heavy ion particles are major components of ionizing radiation in a space environment, it is important to clarify the chemical nature and biological consequences of clustered DNA damage and its relationship to the health effects of exposure to high LET particles in humans. The concept of clustered DNA damage emerged around 1980, but only recently has become the subject of experimental studies. In this article, we review methods used to detect clustered DNA damage, and the current status of our understanding of the chemical nature and repair of clustered DNA damage. PMID:15858387

  2. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation

    NASA Technical Reports Server (NTRS)

    Sutherland, B. M.; Bennett, P. V.; Sidorkina, O.; Laval, J.; Lowenstein, D. I. (Principal Investigator)

    2000-01-01

    Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.

  3. Clustered DNA damages induced in human hematopoietic cells by low doses of ionizing radiation

    NASA Technical Reports Server (NTRS)

    Sutherland, Betsy M.; Bennett, Paula V.; Cintron-Torres, Nela; Hada, Megumi; Trunk, John; Monteleone, Denise; Sutherland, John C.; Laval, Jacques; Stanislaus, Marisha; Gewirtz, Alan

    2002-01-01

    Ionizing radiation induces clusters of DNA damages--oxidized bases, abasic sites and strand breaks--on opposing strands within a few helical turns. Such damages have been postulated to be difficult to repair, as are double strand breaks (one type of cluster). We have shown that low doses of low and high linear energy transfer (LET) radiation induce such damage clusters in human cells. In human cells, DSB are about 30% of the total of complex damages, and the levels of DSBs and oxidized pyrimidine clusters are similar. The dose responses for cluster induction in cells can be described by a linear relationship, implying that even low doses of ionizing radiation can produce clustered damages. Studies are in progress to determine whether clusters can be produced by mechanisms other than ionizing radiation, as well as the levels of various cluster types formed by low and high LET radiation.

  4. Compound Poisson Processes and Clustered Damage of Radiation Induced DNA Double Strand Breaks

    NASA Astrophysics Data System (ADS)

    Gudowska-Nowak, E.; Ritter, S.; Taucher-Scholz, G.; Kraft, G.

    2000-05-01

    Recent experimental data have demonstrated that DNA damage induced by densely ionizing radiation in mammalian cells is distributed along the DNA molecule in the form of clusters. The principal constituent of DNA damage are double-strand breaks (DSB) which are formed when the breaks occur in both DNA strands and are directly opposite or separated by only a few base pairs. DSBs are believed to be most important lesions produced in chromosomes by radiation; interaction between DSBs can lead to cell killing, mutation or carcinogenesis. The paper discusses a model of clustered DSB formation viewed in terms of compound Poisson process along with the predictive essay of the formalism in application to experimental data.

  5. Clusters of DNA damage induced by ionizing radiation: formation of short DNA fragments. II. Experimental detection

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    The basic 30-nm chromatin fiber in the mammalian cell consists of an unknown (possibly helical) arrangement of nucleosomes, with about 1.2 kb of DNA per 10-nm length of fiber. Track-structure considerations suggest that interactions of single delta rays or high-LET particles with the chromatin fiber might result in the formation of multiple lesions spread over a few kilobases of DNA (see the accompanying paper: W.R. Holley and A. Chatterjee, Radiat. Res. 145, 188-199, 1996). In particular, multiple DNA double-strand breaks and single-strand breaks may form. To test this experimentally, primary human fibroblasts were labeled with [3H]thymidine and exposed at 0 degrees C to X rays or accelerated nitrogen or iron ions in the LET range of 97-440 keV/microns. DNA was isolated inside agarose plugs and subjected to agarose gel electrophoresis under conditions that allowed good separation of 0.1-2 kb size DNA. The bulk of DNA remained in the well or migrated only a small distance into the gel. It was found that DNA fragments in the expected size range were formed linearly with dose with an efficiency that increased with LET. A comparison of the yield of such fragments with the yield of total DNA double-strand breaks suggests that for the high-LET ions a substantial proportion (20-90%) of DNA double-strand breaks are accompanied within 0.1-2 kb by at least one additional DNA double-strand break. It is shown that these results are in good agreement with theoretical calculations based on treating the 30-nm chromatin fiber as the target for ionizing particles. Theoretical considerations also predict that the clusters will contain numerous single-strand breaks and base damages. It is proposed that such clusters be designated "regionally multiply damaged sites." Postirradiation incubation at 37 degrees C resulted in a decline in the number of short DNA fragments, suggesting a repair activity. The biological significance of regionally multiply damaged sites is presently unknown.

  6. Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations

    PubMed Central

    Sharma, Vyom; Collins, Leonard B.; Chen, Ting-huei; Herr, Natalie; Takeda, Shunichi; Sun, Wei; Swenberg, James A.; Nakamura, Jun

    2016-01-01

    DNA damage and mutations induced by oxidative stress are associated with various different human pathologies including cancer. The facts that most human tumors are characterized by large genome rearrangements and glutathione depletion in mice results in deletions in DNA suggest that reactive oxygen species (ROS) may cause gene and chromosome mutations through DNA double strand breaks (DSBs). However, the generation of DSBs at low levels of ROS is still controversial. In the present study, we show that H2O2 at biologically-relevant levels causes a marked increase in oxidative clustered DNA lesions (OCDLs) with a significant elevation of replication-independent DSBs. Although it is frequently reported that OCDLs are fingerprint of high-energy IR, our results indicate for the first time that H2O2, even at low levels, can also cause OCDLs leading to DSBs specifically in G1 cells. Furthermore, a reverse genetic approach revealed a significant contribution of the non-homologous end joining (NHEJ) pathway in H2O2-induced DNA repair & mutagenesis. This genomic instability induced by low levels of ROS may be involved in spontaneous mutagenesis and the etiology of a wide variety of human diseases like chronic inflammation-related disorders, carcinogenesis, neuro-degeneration and aging. PMID:27015367

  7. Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations.

    PubMed

    Sharma, Vyom; Collins, Leonard B; Chen, Ting-Huei; Herr, Natalie; Takeda, Shunichi; Sun, Wei; Swenberg, James A; Nakamura, Jun

    2016-05-01

    DNA damage and mutations induced by oxidative stress are associated with various different human pathologies including cancer. The facts that most human tumors are characterized by large genome rearrangements and glutathione depletion in mice results in deletions in DNA suggest that reactive oxygen species (ROS) may cause gene and chromosome mutations through DNA double strand breaks (DSBs). However, the generation of DSBs at low levels of ROS is still controversial. In the present study, we show that H2O2 at biologically-relevant levels causes a marked increase in oxidative clustered DNA lesions (OCDLs) with a significant elevation of replication-independent DSBs. Although it is frequently reported that OCDLs are fingerprint of high-energy IR, our results indicate for the first time that H2O2, even at low levels, can also cause OCDLs leading to DSBs specifically in G1 cells. Furthermore, a reverse genetic approach revealed a significant contribution of the non-homologous end joining (NHEJ) pathway in H2O2-induced DNA repair & mutagenesis. This genomic instability induced by low levels of ROS may be involved in spontaneous mutagenesis and the etiology of a wide variety of human diseases like chronic inflammation-related disorders, carcinogenesis, neuro-degeneration and aging. PMID:27015367

  8. Clusters of DNA induced by ionizing radiation: formation of short DNA fragments. I. Theoretical modeling

    NASA Technical Reports Server (NTRS)

    Holley, W. R.; Chatterjee, A.

    1996-01-01

    We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber comprised of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and delta rays due to knock-on collisions involving energy transfers >100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of OH, H, eaq, etc.; (2) OH attack on sugar molecules leading to strand breaks: (3) OH attack on bases; (4) direct ionization of the sugar molecules leading to strand breaks; (5) direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 bp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. The shapes of the spectra of DNA fragment lengths depend on the symmetries or approximate symmetries of the chromatin structure. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper (B. Rydberg, Radiat, Res. 145, 200-209, 1996) after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the

  9. Clusters of DNA induced by ionizing radiation: formation of short DNA fragments. I. Theoretical modeling.

    PubMed

    Holley, W R; Chatterjee, A

    1996-02-01

    We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber comprised of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and delta rays due to knock-on collisions involving energy transfers >100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of OH, H, eaq, etc.; (2) OH attack on sugar molecules leading to strand breaks: (3) OH attack on bases; (4) direct ionization of the sugar molecules leading to strand breaks; (5) direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 bp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. The shapes of the spectra of DNA fragment lengths depend on the symmetries or approximate symmetries of the chromatin structure. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper (B. Rydberg, Radiat, Res. 145, 200-209, 1996) after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the

  10. Quantitative Analysis of Clustered DNA Damages Induced by Silicon Beams of Different Kinetic Energy

    SciTech Connect

    Keszenman D. J.; Keszenman, D.J.; Bennett, P.V.; Sutherland, B.M.; Wilson, P.F.

    2013-05-14

    Humans may b exposed to highly energetic charged particle radiation as a result of medical treatments, occupational activitie or accidental events. In recent years, our increasing presence and burgeoning interest in space exploration beyond low Earth orbit has led to a large increase in the research of the biological effects ofcharged particle radiation typical of that encountered in the space radiation environment. The study of the effects of these types of radiation qualities in terms ofDNA damage induction and repair is fundamental to understand mechanisms both underlying their greater biological effectiveness as we)) as the short and long term risks of health effects such as carcinogenesis, degen rative diseases and premature aging. Charged particle radiation induces a variety of DNA alterations, notably bistranded clustered damages, defined as two or more closely-opposed strand break , oxidized bases or abasic sites within a few helical turns. The induction of such highly complex DNA damage enhances the probability of incorrect or incomplete repair and thus constitutes greater potential for genomic instability, cell death and transformation.

  11. Melatonin Protects Human Cells from Clustered DNA Damages, Killing and Acquisition of Soft Agar Growth Induced by X-rays or 970 MeV/n Fe ions

    SciTech Connect

    Das, B.; Sutherland, B.; Bennett, P. V.; Cutter, N. C.; Sutherland, J. C.

    2011-06-01

    We tested the ability of melatonin (N-acetyl-5 methoxytryptamine), a highly effective radical scavenger and human hormone, to protect DNA in solution and in human cells against induction of complex DNA clusters and biological damage induced by low or high linear energy transfer radiation (100 kVp X-rays, 970 MeV/nucleon Fe ions). Plasmid DNA in solution was treated with increasing concentrations of melatonin (0.0-3.5 mM) and were irradiated with X-rays. Human cells (28SC monocytes) were also irradiated with X-rays and Fe ions with and without 2 mM melatonin. Agarose plugs containing genomic DNA were subjected to Contour Clamped Homogeneous Electrophoretic Field (CHEF) followed by imaging and clustered DNA damages were measured by using Number Average length analysis. Transformation experiments on human primary fibroblast cells using soft agar colony assay were carried out which were irradiated with Fe ions with or without 2 mM melatonin. In plasmid DNA in solution, melatonin reduced the induction of single- and double-strand breaks. Pretreatment of human 28SC cells for 24 h before irradiation with 2 mM melatonin reduced the level of X-ray induced double-strand breaks by {approx}50%, of abasic clustered damages about 40%, and of Fe ion-induced double-strand breaks (41% reduction) and abasic clusters (34% reduction). It decreased transformation to soft agar growth of human primary cells by a factor of 10, but reduced killing by Fe ions only by 20-40%. Melatonin's effective reduction of radiation-induced critical DNA damages, cell killing, and striking decrease of transformation suggest that it is an excellent candidate as a countermeasure against radiation exposure, including radiation exposure to astronaut crews in space travel.

  12. Method for assaying clustered DNA damages

    DOEpatents

    Sutherland, Betsy M.

    2004-09-07

    Disclosed is a method for detecting and quantifying clustered damages in DNA. In this method, a first aliquot of the DNA to be tested for clustered damages with one or more lesion-specific cleaving reagents under conditions appropriate for cleavage of the DNA to produce single-strand nicks in the DNA at sites of damage lesions. The number average molecular length (Ln) of double stranded DNA is then quantitatively determined for the treated DNA. The number average molecular length (Ln) of double stranded DNA is also quantitatively determined for a second, untreated aliquot of the DNA. The frequency of clustered damages (.PHI..sub.c) in the DNA is then calculated.

  13. Saccharomyces cerevisiae-based system for studying clustered DNA damages

    SciTech Connect

    Moscariello, M.M.; Sutherland, B.

    2010-08-01

    DNA-damaging agents can induce clustered lesions or multiply damaged sites (MDSs) on the same or opposing DNA strands. In the latter, attempts to repair MDS can generate closely opposed single-strand break intermediates that may convert non-lethal or mutagenic base damage into double-strand breaks (DSBs). We constructed a diploid S. cerevisiae yeast strain with a chromosomal context targeted by integrative DNA fragments carrying different damages to determine whether closely opposed base damages are converted to DSBs following the outcomes of the homologous recombination repair pathway. As a model of MDS, we studied clustered uracil DNA damages with a known location and a defined distance separating the lesions. The system we describe might well be extended to assessing the repair of MDSs with different compositions, and to most of the complex DNA lesions induced by physical and chemical agents.

  14. Clustered DNA damage on subcellular level: effect of scavengers.

    PubMed

    Pachnerová Brabcová, Kateřina; Sihver, Lembit; Yasuda, Nakahiro; Matuo, Youichirou; Stěpán, Václav; Davídková, Marie

    2014-11-01

    Clustered DNA damages are induced by ionizing radiation, particularly of high linear energy transfer (LET). Compared to isolated DNA damage sites, their biological effects can be more severe. We investigated a clustered DNA damage induced by high LET radiation (C 290 MeV u(-1) and Fe 500 MeV u(-1)) in pBR322 plasmid DNA. The plasmid is dissolved in pure water or in aqueous solution of one of the three scavengers (coumarin-3-carboxylic acid, dimethylsulfoxide, and glycylglycine). The yield of double strand breaks (DSB) induced in the DNA plasmid-scavenger system by heavy ion radiation was found to decrease with increasing scavenging capacity due to reaction with hydroxyl radical, linearly with high correlation coefficients. The yield of non-DSB clusters was found to occur twice as much as the DSB. Their decrease with increasing scavenging capacity had lower linear correlation coefficients. This indicates that the yield of non-DSB clusters depends on more factors, which are likely connected to the chemical properties of individual scavengers.

  15. Optical Sensing by Transforming Chromophoric Silver Clusters in DNA Nanoreactors

    PubMed Central

    Story, Sandra P.; Juarez, Selina; Votto, Samuel S.; Herbst, Austin G.; Degtyareva, Natalya N.; Sengupta, Bidisha

    2014-01-01

    Bifunctional DNA oligonucleotides serve as templates for chromophoric silver clusters and as recognition sites for target DNA strands, and communication between these two components is the basis of an oligonucleotide sensor. Few-atom silver clusters exhibit distinct electronic spectra spanning the visible and near-infrared region, and they are selectively synthesized by varying the base sequence of the DNA template. In these studies, a 16-base cluster template is adjoined with a 12-base sequence complementary to the target analyte, and hybridization induces structural changes in the composite sensor that direct the conversion between two spectrally and stoichiometrically distinct clusters. Without its complement, the sensor strand selectively harbors ~7 silver atoms that absorb at 400 nm and that fold the DNA host. Upon association of the target with its recognition site, the sensor strand opens to expose the cluster template that has the binding site for ~11 silver atoms, and absorption at 720 nm with relatively strong emission develops in lieu of the violet absorption. Variations in the length and composition of the recognition site and the cluster template indicate that these types of dual component sensors provide a general platform for near infrared-based detection of oligonucleotides in challenging biological environments. PMID:22098274

  16. Dynamic cluster-scaling in DNA

    NASA Astrophysics Data System (ADS)

    Bershadskii, A.

    2011-01-01

    It is shown that the nucleotide sequences in DNA molecules have cluster-scaling properties (discovered for the first time in turbulent processes [K.R. Sreenivasan, A. Bershadskii, J. Stat. Phys. 125 (2006) 1141]. These properties are relevant to both types of nucleotide pair-bases interactions: hydrogen bonds and stacking interactions. It is shown that taking into account the cluster-scaling properties can help to improve heterogeneous models of the DNA dynamics. Two human genes: BRCA2 and NRXN1, have been considered as examples.

  17. DNA templates silver clusters with magic sizes and colors for multi-cluster fluorescent assemblies

    NASA Astrophysics Data System (ADS)

    Copp, Stacy

    2015-03-01

    The natural inclusion of information in DNA, a vital part of life's rich complexity, can also be exploited to create diverse structures with multiple scales of complexity. Now emerging in novel photonic applications, DNA-stabilized silver clusters (AgN-DNA) are compelling examples of multi-scale DNA-directed assembly: individual fluorescent clusters, each templated by specific DNA base motifs, can then be arranged together in DNA-mediated multi-cluster assemblies with nanoscale precision. We discuss how DNA imbues AgN-DNA with unique features. Our optical data on pure AgN-DNA show that DNA base-cationic silver ligands impose rod-like shapes for neutral silver clusters, whose length primarily determines fluorescence color. This shape anisotropy leads to the aspherical AgN-DNA magic number cluster sizes and ``magic color'' groupings. We exploit DNA's sequence properties to extract multi-base motifs that select certain magic cluster sizes, using machine learning algorithms applied to large data sets. With these base motifs, we design DNA scaffolds to arrange multiple atomically precise AgN together in nanoscale proximity. We demonstrate that clusters are stable when held at separations below 10 nm, both in bicolor, dual cluster DNA clamp assemblies and in one-dimensional assemblies of atomically precise clusters arrayed on DNA nanotubes. Supported by NSF-CHE-1213895 and NSF-DMR-1309410. SMC acknowledges NSF-DGE-1144085, a NSF GRFP.

  18. Embryonic neural inducing factor churchill is not a DNA-binding zinc finger protein: solution structure reveals a solvent-exposed beta-sheet and zinc binuclear cluster.

    PubMed

    Lee, Brian M; Buck-Koehntop, Bethany A; Martinez-Yamout, Maria A; Dyson, H Jane; Wright, Peter E

    2007-08-31

    Churchill is a zinc-containing protein that is involved in neural induction during embryogenesis. At the time of its discovery, it was thought on the basis of sequence alignment to contain two zinc fingers of the C4 type. Further, binding of an N-terminal GST-Churchill fusion protein to a particular DNA sequence was demonstrated by immunoprecipitation selection assay, suggesting that Churchill may function as a transcriptional regulator by sequence-specific DNA binding. We show by NMR solution structure determination that, far from containing canonical C4 zinc fingers, the protein contains three bound zinc ions in novel coordination sites, including an unusual binuclear zinc cluster. The secondary structure of Churchill is also unusual, consisting of a highly solvent-exposed single-layer beta-sheet. Hydrogen-deuterium exchange and backbone relaxation measurements reveal that Churchill is unusually dynamic on a number of time scales, with the exception of regions surrounding the zinc coordinating sites, which serve to stabilize the otherwise unstructured N terminus and the single-layer beta-sheet. No binding of Churchill to the previously identified DNA sequence could be detected, and extensive searches using DNA sequence selection techniques could find no other DNA sequence that was bound by Churchill. Since the N-terminal amino acids of Churchill form part of the zinc-binding motif, the addition of a fusion protein at the N terminus causes loss of zinc and unfolding of Churchill. This observation most likely explains the published DNA-binding results, which would arise due to non-specific interaction of the unfolded protein in the immunoprecipitation selection assay. Since Churchill does not appear to bind DNA, we suggest that it may function in embryogenesis as a protein-interaction factor.

  19. Development of a radiation track structure clustering algorithm for the prediction of DNA DSB yields and radiation induced cell death in Eukaryotic cells

    NASA Astrophysics Data System (ADS)

    Douglass, Michael; Bezak, Eva; Penfold, Scott

    2015-04-01

    The preliminary framework of a combined radiobiological model is developed and calibrated in the current work. The model simulates the production of individual cells forming a tumour, the spatial distribution of individual ionization events (using Geant4-DNA) and the stochastic biochemical repair of DNA double strand breaks (DSBs) leading to the prediction of survival or death of individual cells. In the current work, we expand upon a previously developed tumour generation and irradiation model to include a stochastic ionization damage clustering and DNA lesion repair model. The Geant4 code enabled the positions of each ionization event in the cells to be simulated and recorded for analysis. An algorithm was developed to cluster the ionization events in each cell into simple and complex double strand breaks. The two lesion kinetic (TLK) model was then adapted to predict DSB repair kinetics and the resultant cell survival curve. The parameters in the cell survival model were then calibrated using experimental cell survival data of V79 cells after low energy proton irradiation. A monolayer of V79 cells was simulated using the tumour generation code developed previously. The cells were then irradiated by protons with mean energies of 0.76 MeV and 1.9 MeV using a customized version of Geant4. By replicating the experimental parameters of a low energy proton irradiation experiment and calibrating the model with two sets of data, the model is now capable of predicting V79 cell survival after low energy (<2 MeV) proton irradiation for a custom set of input parameters. The novelty of this model is the realistic cellular geometry which can be irradiated using Geant4-DNA and the method in which the double strand breaks are predicted from clustering the spatial distribution of ionisation events. Unlike the original TLK model which calculates a tumour average cell survival probability, the cell survival probability is calculated for each cell in the geometric tumour model

  20. Development of a radiation track structure clustering algorithm for the prediction of DNA DSB yields and radiation induced cell death in Eukaryotic cells.

    PubMed

    Douglass, Michael; Bezak, Eva; Penfold, Scott

    2015-04-21

    The preliminary framework of a combined radiobiological model is developed and calibrated in the current work. The model simulates the production of individual cells forming a tumour, the spatial distribution of individual ionization events (using Geant4-DNA) and the stochastic biochemical repair of DNA double strand breaks (DSBs) leading to the prediction of survival or death of individual cells. In the current work, we expand upon a previously developed tumour generation and irradiation model to include a stochastic ionization damage clustering and DNA lesion repair model. The Geant4 code enabled the positions of each ionization event in the cells to be simulated and recorded for analysis. An algorithm was developed to cluster the ionization events in each cell into simple and complex double strand breaks. The two lesion kinetic (TLK) model was then adapted to predict DSB repair kinetics and the resultant cell survival curve. The parameters in the cell survival model were then calibrated using experimental cell survival data of V79 cells after low energy proton irradiation. A monolayer of V79 cells was simulated using the tumour generation code developed previously. The cells were then irradiated by protons with mean energies of 0.76 MeV and 1.9 MeV using a customized version of Geant4. By replicating the experimental parameters of a low energy proton irradiation experiment and calibrating the model with two sets of data, the model is now capable of predicting V79 cell survival after low energy (<2 MeV) proton irradiation for a custom set of input parameters. The novelty of this model is the realistic cellular geometry which can be irradiated using Geant4-DNA and the method in which the double strand breaks are predicted from clustering the spatial distribution of ionisation events. Unlike the original TLK model which calculates a tumour average cell survival probability, the cell survival probability is calculated for each cell in the geometric tumour model

  1. Radiation-induced DNA damage and chromatin structure

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    DNA lesions induced by ionizing radiation in cells are clustered and not randomly distributed. For low linear energy transfer (LET) radiation this clustering occurs mainly on the small scales of DNA molecules and nucleosomes. For example, experimental evidence suggests that both strands of DNA on the nucleosomal surface can be damaged in single events and that this damage occurs with a 10-bp modulation because of protection by histones. For high LET radiation, clustering also occurs on a larger scale and depends on chromatin organization. A particularly significant clustering occurs when an ionizing particle traverses the 30 nm chromatin fiber with generation of heavily damaged DNA regions with an average size of about 2 kbp. On an even larger scale, high LET radiation can produce several DNA double-strand breaks in closer proximity than expected from randomness. It is suggested that this increases the probability of misrejoining of DNA ends and generation of lethal chromosome aberrations.

  2. Ten-atom silver cluster signaling and tempering DNA hybridization.

    PubMed

    Petty, Jeffrey T; Sergev, Orlin O; Kantor, Andrew G; Rankine, Ian J; Ganguly, Mainak; David, Frederic D; Wheeler, Sandra K; Wheeler, John F

    2015-05-19

    Silver clusters with ∼10 atoms are molecules, and specific species develop within DNA strands. These molecular metals have sparsely organized electronic states with distinctive visible and near-infrared spectra that vary with cluster size, oxidation, and shape. These small molecules also act as DNA adducts and coordinate with their DNA hosts. We investigated these characteristics using a specific cluster-DNA conjugate with the goal of developing a sensitive and selective biosensor. The silver cluster has a single violet absorption band (λ(max) = 400 nm), and its single-stranded DNA host has two domains that stabilize this cluster and hybridize with target oligonucleotides. These target analytes transform the weakly emissive violet cluster to a new chromophore with blue-green absorption (λ(max) = 490 nm) and strong green emission (λ(max) = 550 nm). Our studies consider the synthesis, cluster size, and DNA structure of the precursor violet cluster-DNA complex. This species preferentially forms with relatively low amounts of Ag(+), high concentrations of the oxidizing agent O2, and DNA strands with ≳20 nucleotides. The resulting aqueous and gaseous forms of this chromophore have 10 silvers that coalesce into a single cluster. This molecule is not only a chromophore but also an adduct that coordinates multiple nucleobases. Large-scale DNA conformational changes are manifested in a 20% smaller hydrodynamic radius and disrupted nucleobase stacking. Multidentate coordination also stabilizes the single-stranded DNA and thereby inhibits hybridization with target complements. These observations suggest that the silver cluster-DNA conjugate acts like a molecular beacon but is distinguished because the cluster chromophore not only sensitively signals target analytes but also stringently discriminates against analogous competing analytes.

  3. DNA damage in cells exhibiting radiation-induced genomic instability

    DOE PAGES

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore » that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less

  4. DNA damage in cells exhibiting radiation-induced genomic instability

    SciTech Connect

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesis that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.

  5. Crystal-Templated Colloidal Clusters Exhibit Directional DNA Interactions.

    PubMed

    McGinley, James T; Wang, Yifan; Jenkins, Ian C; Sinno, Talid; Crocker, John C

    2015-11-24

    Spherical colloids covered with grafted DNA have been used in the directed self-assembly of a number of distinct crystal and gel structures. Simulation suggests that the use of anisotropic building blocks greatly augments the variety of potential colloidal assemblies that can be formed. Here, we form five distinct symmetries of colloidal clusters from DNA-functionalized spheres using a single type of colloidal crystal as a template. The crystals are formed by simple sedimentation of a binary mixture containing a majority "host" species that forms close-packed crystals with the minority "impurity" species occupying substitutional or interstitial defect sites. After the DNA strands between the two species are hybridized and enzymatically ligated, the results are colloidal clusters, one for each impurity particle, with a symmetry determined by the nearest neighbors in the original crystal template. By adjusting the size ratio of the two spheres and the timing of the ligation, we are able to generate clusters having the symmetry of tetrahedra, octahedra, cuboctahedra, triangular orthobicupola, and icosahedra, which can be readily separated from defective clusters and leftover spheres by centrifugation. We further demonstrate that these clusters, which are uniformly covered in DNA strands, display directional binding with spheres bearing complementary DNA strands, acting in a manner similar to patchy particles or proteins having multiple binding sites. The scalable nature of the fabrication process, along with the reprogrammability and directional nature of their resulting DNA interactions, makes these clusters suitable building blocks for use in further rounds of directed self-assembly.

  6. Computational Study of Nanoparticle Clustering via DNA Hyperdyzation

    NASA Astrophysics Data System (ADS)

    Ma, Xu; Bowick, Mark J.; Sknepnek, Rastko

    We use molecular dynamics simulation to study the self-assembly of small clusters through DNA hybridization in a binary mixture of spherical nucleic acid gold nanoparticles(SNA-GNPs) system. The resultant structures are self-assembled clusters with a varying number of large SNA-GNPs clusters around the small ones, forming dimers, trimmers, tetramers etc. The outcome structures can be tuned by adjusting external factors including temperature, particle hydrodynamics size ratio. Soft Matter Program, Syracuse University.

  7. Structure of fluorescent metal clusters on a DNA template.

    NASA Astrophysics Data System (ADS)

    Vdovichev, A. A.; Sych, T. S.; Reveguk, Z. V.; Smirnova, A. A.; Maksimov, D. A.; Ramazanov, R. R.; Kononov, A. I.

    2016-08-01

    Luminescent metal clusters are a subject of growing interest in recent years due to their bright emission from visible to near infrared range. Detailed structure of the fluorescent complexes of Ag and other metal clusters with ligands still remains a challenging task. In this joint experimental and theoretical study we synthesized Ag-DNA complexes on a DNA oligonucleotide emitting in violet- green spectral range. The structure of DNA template was determined by means of various spectral measurements (CD, MS, XPS). Comparison of the experimental fluorescent excitation spectra and calculated absorption spectra for different QM/MM optimized structures allowed us to determine the detailed structure of the green cluster containing three silver atoms in the stem of the DNA hairpin structure stabilized by cytosine-Ag+-cytosine bonds.

  8. Repair of clustered DNA damage caused by high LET radiation in human fibroblasts

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Lobrich, M.; Cooper, P. K.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    It has recently been demonstrated experimentally that DNA damage induced by high LET radiation in mammalian cells is non-randomly distributed along the DNA molecule in the form of clusters of various sizes. The sizes of such clusters range from a few base-pairs to at least 200 kilobase-pairs. The high biological efficiency of high LET radiation for induction of relevant biological endpoints is probably a consequence of this clustering, although the exact mechanisms by which the clustering affects the biological outcome is not known. We discuss here results for induction and repair of base damage, single-strand breaks and double-strand breaks for low and high LET radiations. These results are discussed in the context of clustering. Of particular interest is to determine how clustering at different scales affects overall rejoining and fidelity of rejoining of DNA double-strand breaks. However, existing methods for measuring repair of DNA strand breaks are unable to resolve breaks that are close together in a cluster. This causes problems in interpretation of current results from high LET radiation and will require new methods to be developed.

  9. DNA fragmentation induced by ionizing radiation - Atomic Force Microscopy study .

    NASA Astrophysics Data System (ADS)

    Gudowska-Nowak, E.; Psonka, K.; Elsaesser, Th.; Brons, S.; Taucher-Scholz, G.

    DNA as a carrier of genetic information is considered to be the critical target for radiation induced damage Especially severe are DNA double-strand breaks DSBs formed when breaks occur in both strands of the molecule The DSBs production is determined by the spatial distribution of ionization events dependent on the physical properties of the energy deposition and the chemical environment of the DNA According to theoretical predictions high LET charged particle radiation induces lesions in close proximity forming so called clustered damage in the DNA Atomic Force Microscopy AFM was newly established as a technique allowing the direct visualization of DNA fragments resulting from DSBs induced in small DNA molecules plasmids by ionizing radiation We have used AFM to visualize the DNA fragmentation induced by heavy ions high LET radiation and to compare it to the fragmentation pattern obtained after X-rays low LET radiation Plasmid supercoiled DNA was irradiated in vitro with X-rays and 3 9 MeV u Ni ions within a dose range 0 -- 3000 Gy Afterwards the samples were analyzed using AFM which allowed the detection and length measurement of individual fragments with a nanometer resolution Recording of the length of the induced fragments allowed to distinguish between molecules broken by a single DSB or by multiple DSBs The fragment length distributions were derived for different doses and different radiation qualities The first results of the measurement of radiation-induced DNA fragmentation show an influence of radiation quality on

  10. Frequencies and relative levels of clustered damages in DNA exposed to gamma rays in radioquenching vs. nonradioquenching conditions.

    PubMed

    Sutherland, B M; Bennett, P V; Weinert, E; Sidorkina, O; Laval, J

    2001-01-01

    Clustered damage induced by ionizing radiation--two or more oxidized bases, abasic sites, or strand breaks within a few DNA helical turns--have been postulated to be major lethal and/or mutagenic sites. Although they have recently been shown to be induced in genomic DNAs by ionizing photons and particles, little is known of the factors that affect their yields or the relative levels of the classes of clusters. Toward this aim we have investigated the effect of DNA milieu, specifically, a nonradioquenching (phosphate) or radioquenching (Tris) solution, upon the generation of clustered lesions in a well-defined molecule, T7 bacteriophage DNA. Irradiation of DNA in Tris reduces the yields of all clustered damages to 1-3% of the levels formed in phosphate. Further, although the percentage of the total clusters in oxidized purine clusters is largely unchanged, and the level of abasic clusters decreases, the frequencies of double-strand breaks and oxidized pyrimidine clusters increase in the radioquenching solution. The ratio of the level of oxidized pyrimidine clusters to double-strand breaks in a DNA in radioquenching solution is similar to that obtained in DNA in human cells, also a radioquenching environment. PMID:11746750

  11. Chiral electronic transitions in fluorescent silver clusters stabilized by DNA.

    PubMed

    Swasey, Steven M; Karimova, Natalia; Aikens, Christine M; Schultz, Danielle E; Simon, Anna J; Gwinn, Elisabeth G

    2014-07-22

    Fluorescent, DNA-stabilized silver clusters are receiving much attention for sequence-selected colors and high quantum yields. However, limited knowledge of cluster structure is constraining further development of these "AgN-DNA" nanomaterials. We report the structurally sensitive, chiroptical activity of four pure AgN-DNA with wide ranging colors. Ubiquitous features in circular dichroism (CD) spectra include a positive dichroic peak overlying the lowest energy absorbance peak and highly anisotropic, negative dichroic peaks at energies well below DNA transitions. Quantum chemical calculations for bare chains of silver atoms with nonplanar curvature also exhibit these striking features, indicating electron flow along a chiral, filamentary metallic path as the origin for low-energy AgN-DNA transitions. Relative to the bare DNA, marked UV changes in CD spectra of AgN-DNA and silver cation-DNA solutions indicate that ionic silver content constrains nucleobase conformation. Changes in solvent composition alone can reorganize cluster structure, reconfiguring chiroptical properties and fluorescence.

  12. DNA damage response induced by HZE particles in human cells

    NASA Astrophysics Data System (ADS)

    Chen, David; Aroumougame, Asaithamby

    Convincing evidences indicate that high-linear energy transfer (LET) ionizing radiation (IR) induced complex DNA lesions are more difficult to repair than isolated DNA lesions induced by low-LET IR; this has been associated with the increased RBE for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in high energy charged-particle irradiated human cells. We have employed an in situ method to directly monitor induction and repair of clustered DNA lesions at the single-cell level. We showed, consistent with biophysical modeling, that the kinetics of loss of clustered DNA lesions was substantially compromised in human fibroblasts. The unique spatial distribution of different types of DNA lesions within the clustered damages determined the cellular ability to repair these damages. Importantly, examination of metaphase cells derived from HZE particle irradiated cells revealed that the extent of chromosome aberrations directly correlated with the levels of unrepaired clustered DNA lesions. In addition, we used a novel organotypic human lung three-dimensional (3D) model to investigate the biological significance of unrepaired DNA lesions in differentiated lung epithelial cells. We found that complex DNA lesions induced by HZE particles were even more difficult to be repaired in organotypic 3D culture, resulting enhanced cell killing and chromosome aberrations. Our data suggest that DNA repair capability in differentiated cells renders them vulnerable to DSBs, promoting genome instability that may lead to carcinogenesis. As the organotypic 3D model mimics human lung, it opens up new experimental approaches to explore the effect of radiation in vivo and will have important implications for evaluating radiation risk in human tissues.

  13. Formation of clustered DNA damage after high-LET irradiation: a review.

    PubMed

    Hada, Megumi; Georgakilas, Alexandros G

    2008-05-01

    Radiation can cause as well as cure cancer. The risk of developing radiation-induced cancer has traditionally been estimated from cancer incidence among survivors of the atomic bombs in Hiroshima and Nagasaki.(1)) These data provide the best estimate of human cancer risk over the dose range for low linear energy transfer (LET) radiations, such as X- or gamma-rays. The situation of estimating the real biological effects becomes even more difficult in the case of high LET particles encountered in space or as the result of domestic exposure to alpha-particles from radon gas emitters or other radioactive emitters like uranium-238. Complex DNA damage, i.e., the signature of high-LET radiations comprises of closely spaced DNA lesions forming a cluster of DNA damage. The two basic groups of complex DNA damage are double strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions (OCDL). Theoretical analysis and experimental evidence suggest an increased complexity and severity of complex DNA damage with increasing LET (linear energy transfer) and a high mutagenic or carcinogenic potential. Data available on the formation of clustered DNA damage (DSBs and OCDL) by high-LET radiations are often controversial suggesting a variable response to dose and type of radiation. The chemical nature and cellular repair mechanisms of complex DNA damage have been much less characterized than those of isolated DNA lesions like an oxidized base or a single strand break especially in the case of high-LET radiation. This review will focus on the induction of clustered DNA damage by high-LET radiations presenting the earlier and recent relative data. PMID:18413977

  14. Formation of Clustered DNA Damage after High-LET Irradiation: A Review

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Georgakilas, Alexandros G.

    2008-01-01

    Radiation can cause as well as cure cancer. The risk of developing radiation-induced cancer has traditionally been estimated from cancer incidence among survivors of the atomic bombs in Hiroshima and Nagasaki. These data provide the best estimate of human cancer risk over the dose range for low linear energy transfer (LET) radiations, such as X- or gamma-rays. The situation of estimating the real biological effects becomes even more difficult in the case of high LET particles encountered in space or as the result of domestic exposure to particles from radon gas emitters or other radioactive emitters like uranium-238. Complex DNA damage, i.e., the signature of high-LET radiations comprises by closely spaced DNA lesions forming a cluster of DNA damage. The two basic groups of complex DNA damage are double strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions (OCDL). Theoretical analysis and experimental evidence suggest there is increased complexity and severity of complex DNA damage with increasing LET (linear energy transfer) and a high mutagenic or carcinogenic potential. Data available on the formation of clustered DNA damage (DSBs and OCDL) by high-LET radiations are often controversial suggesting a variable response to dose and type of radiation. The chemical nature and cellular repair mechanisms of complex DNA damage have been much less characterized than those of isolated DNA lesions like an oxidized base or a single strand break especially in the case of high-LET radiation. This review will focus on the induction of clustered DNA damage by high-LET radiations presenting the earlier and recent relative data.

  15. Cluster Plasmonics: Dielectric and Shape Effects on DNA-Stabilized Silver Clusters.

    PubMed

    Copp, Stacy M; Schultz, Danielle; Swasey, Steven M; Faris, Alexis; Gwinn, Elisabeth G

    2016-06-01

    This work investigates the effects of dielectric environment and cluster shape on electronic excitations of fluorescent DNA-stabilized silver clusters, AgN-DNA. We first establish that the longitudinal plasmon wavelengths predicted by classical Mie-Gans (MG) theory agree with previous quantum calculations for excitation wavelengths of linear silver atom chains, even for clusters of just a few atoms. Application of MG theory to AgN-DNA with 400-850 nm cluster excitation wavelengths indicates that these clusters are characterized by a collective excitation process and suggests effective cluster thicknesses of ∼2 silver atoms and aspect ratios of 1.5 to 5. To investigate sensitivity to the surrounding medium, we measure the wavelength shifts produced by addition of glycerol. These are smaller than reported for much larger gold nanoparticles but easily detectable due to narrower line widths, suggesting that AgN-DNA may have potential for fluorescence-reported changes in dielectric environment at length scales of ∼1 nm.

  16. Spectrometer for cluster ion beam induced luminescence

    SciTech Connect

    Ryuto, H. Sakata, A.; Takeuchi, M.; Takaoka, G. H.; Musumeci, F.

    2015-02-15

    A spectrometer to detect the ultra-weak luminescence originated by the collision of cluster ions on the surfaces of solid materials was constructed. This spectrometer consists of 11 photomultipliers with band-pass interference filters that can detect the luminescence within the wavelength ranging from 300 to 700 nm and of a photomultiplier without filter. The calibration of the detection system was performed using the photons emitted from a strontium aluminate fluorescent tape and from a high temperature tungsten filament. Preliminary measurements show the ability of this spectrometer to detect the cluster ion beam induced luminescence.

  17. Tidally Induced Bars of Galaxies in Clusters

    NASA Astrophysics Data System (ADS)

    Łokas, Ewa L.; Ebrová, Ivana; del Pino, Andrés; Sybilska, Agnieszka; Athanassoula, E.; Semczuk, Marcin; Gajda, Grzegorz; Fouquet, Sylvain

    2016-08-01

    Using N-body simulations, we study the formation and evolution of tidally induced bars in disky galaxies in clusters. Our progenitor is a massive, late-type galaxy similar to the Milky Way, composed of an exponential disk and a Navarro-Frenk-White dark matter halo. We place the galaxy on four different orbits in a Virgo-like cluster and evolve it for 10 Gyr. As a reference case, we also evolve the same model in isolation. Tidally induced bars form on all orbits soon after the first pericenter passage and survive until the end of the evolution. They appear earlier, are stronger and longer, and have lower pattern speeds for tighter orbits. Only for the tightest orbit are the properties of the bar controlled by the orientation of the tidal torque from the cluster at pericenter. The mechanism behind the formation of the bars is the angular momentum transfer from the galaxy stellar component to its halo. All of the bars undergo extended periods of buckling instability that occur earlier and lead to more pronounced boxy/peanut shapes when the tidal forces are stronger. Using all simulation outputs of galaxies at different evolutionary stages, we construct a toy model of the galaxy population in the cluster and measure the average bar strength and bar fraction as a function of clustercentric radius. Both are found to be mildly decreasing functions of radius. We conclude that tidal forces can trigger bar formation in cluster cores, but not in the outskirts, and thus can cause larger concentrations of barred galaxies toward the cluster center.

  18. Counterintuitive DNA Sequence Dependence in Supercoiling-Induced DNA Melting

    PubMed Central

    Vlijm, Rifka; v.d. Torre, Jaco; Dekker, Cees

    2015-01-01

    The metabolism of DNA in cells relies on the balance between hybridized double-stranded DNA (dsDNA) and local de-hybridized regions of ssDNA that provide access to binding proteins. Traditional melting experiments, in which short pieces of dsDNA are heated up until the point of melting into ssDNA, have determined that AT-rich sequences have a lower binding energy than GC-rich sequences. In cells, however, the double-stranded backbone of DNA is destabilized by negative supercoiling, and not by temperature. To investigate what the effect of GC content is on DNA melting induced by negative supercoiling, we studied DNA molecules with a GC content ranging from 38% to 77%, using single-molecule magnetic tweezer measurements in which the length of a single DNA molecule is measured as a function of applied stretching force and supercoiling density. At low force (<0.5pN), supercoiling results into twisting of the dsDNA backbone and loop formation (plectonemes), without inducing any DNA melting. This process was not influenced by the DNA sequence. When negative supercoiling is introduced at increasing force, local melting of DNA is introduced. We measured for the different DNA molecules a characteristic force Fchar, at which negative supercoiling induces local melting of the dsDNA. Surprisingly, GC-rich sequences melt at lower forces than AT-rich sequences: Fchar = 0.56pN for 77% GC but 0.73pN for 38% GC. An explanation for this counterintuitive effect is provided by the realization that supercoiling densities of a few percent only induce melting of a few percent of the base pairs. As a consequence, denaturation bubbles occur in local AT-rich regions and the sequence-dependent effect arises from an increased DNA bending/torsional energy associated with the plectonemes. This new insight indicates that an increased GC-content adjacent to AT-rich DNA regions will enhance local opening of the double-stranded DNA helix. PMID:26513573

  19. Counterintuitive DNA Sequence Dependence in Supercoiling-Induced DNA Melting.

    PubMed

    Vlijm, Rifka; V D Torre, Jaco; Dekker, Cees

    2015-01-01

    The metabolism of DNA in cells relies on the balance between hybridized double-stranded DNA (dsDNA) and local de-hybridized regions of ssDNA that provide access to binding proteins. Traditional melting experiments, in which short pieces of dsDNA are heated up until the point of melting into ssDNA, have determined that AT-rich sequences have a lower binding energy than GC-rich sequences. In cells, however, the double-stranded backbone of DNA is destabilized by negative supercoiling, and not by temperature. To investigate what the effect of GC content is on DNA melting induced by negative supercoiling, we studied DNA molecules with a GC content ranging from 38% to 77%, using single-molecule magnetic tweezer measurements in which the length of a single DNA molecule is measured as a function of applied stretching force and supercoiling density. At low force (<0.5pN), supercoiling results into twisting of the dsDNA backbone and loop formation (plectonemes), without inducing any DNA melting. This process was not influenced by the DNA sequence. When negative supercoiling is introduced at increasing force, local melting of DNA is introduced. We measured for the different DNA molecules a characteristic force Fchar, at which negative supercoiling induces local melting of the dsDNA. Surprisingly, GC-rich sequences melt at lower forces than AT-rich sequences: Fchar = 0.56pN for 77% GC but 0.73pN for 38% GC. An explanation for this counterintuitive effect is provided by the realization that supercoiling densities of a few percent only induce melting of a few percent of the base pairs. As a consequence, denaturation bubbles occur in local AT-rich regions and the sequence-dependent effect arises from an increased DNA bending/torsional energy associated with the plectonemes. This new insight indicates that an increased GC-content adjacent to AT-rich DNA regions will enhance local opening of the double-stranded DNA helix.

  20. Processive DNA Demethylation via DNA Deaminase-Induced Lesion Resolution

    PubMed Central

    Morgan, Hugh; Incorvaia, Elisabetta; Rangam, Gopinath; Dean, Wendy; Santos, Fatima; Reik, Wolf; Petersen-Mahrt, Svend K.

    2014-01-01

    Base modifications of cytosine are an important aspect of chromatin biology, as they can directly regulate gene expression, while DNA repair ensures that those modifications retain genome integrity. Here we characterize how cytosine DNA deaminase AID can initiate DNA demethylation. In vitro, AID initiated targeted DNA demethylation of methyl CpGs when in combination with DNA repair competent extracts. Mechanistically, this is achieved by inducing base alterations at or near methyl-cytosine, with the lesion being resolved either via single base substitution or a more efficient processive polymerase dependent repair. The biochemical findings are recapitulated in an in vivo transgenic targeting assay, and provide the genetic support of the molecular insight into DNA demethylation. This targeting approach supports the hypothesis that mCpG DNA demethylation can proceed via various pathways and mCpGs do not have to be targeted to be demethylated. PMID:25025377

  1. Supercoiling induces denaturation bubbles in circular DNA.

    PubMed

    Jeon, Jae-Hyung; Adamcik, Jozef; Dietler, Giovanni; Metzler, Ralf

    2010-11-12

    We present a theoretical framework for the thermodynamic properties of supercoiling-induced denaturation bubbles in circular double-stranded DNA molecules. We explore how DNA supercoiling, ambient salt concentration, and sequence heterogeneity impact on the bubble occurrence. An analytical derivation of the probability distribution to find multiple bubbles is derived and the relevance for supercoiled DNA discussed. We show that in vivo sustained DNA bubbles are likely to occur due to partial twist release in regions rich in weaker AT base pairs. Single DNA plasmid imaging experiments clearly demonstrate the existence of bubbles in free solution.

  2. Correlation of bistranded clustered abasic DNA lesion processing with structural and dynamic DNA helix distortion

    PubMed Central

    Bignon, Emmanuelle; Gattuso, Hugo; Morell, Christophe; Dehez, François; Georgakilas, Alexandros G.; Monari, Antonio; Dumont, Elise

    2016-01-01

    Clustered apurinic/apyrimidinic (AP; abasic) DNA lesions produced by ionizing radiation are by far more cytotoxic than isolated AP lesion entities. The structure and dynamics of a series of seven 23-bp oligonucleotides featuring simple bistranded clustered damage sites, comprising of two AP sites, zero, one, three or five bases 3′ or 5′ apart from each other, were investigated through 400 ns explicit solvent molecular dynamics simulations. They provide representative structures of synthetically engineered multiply damage sites-containing oligonucleotides whose repair was investigated experimentally (Nucl. Acids Res. 2004, 32:5609-5620; Nucl. Acids Res. 2002, 30: 2800–2808). The inspection of extrahelical positioning of the AP sites, bulge and non Watson–Crick hydrogen bonding corroborates the experimental measurements of repair efficiencies by bacterial or human AP endonucleases Nfo and APE1, respectively. This study provides unprecedented knowledge into the structure and dynamics of clustered abasic DNA lesions, notably rationalizing the non-symmetry with respect to 3′ to 5′ position. In addition, it provides strong mechanistic insights and basis for future studies on the effects of clustered DNA damage on the recognition and processing of these lesions by bacterial or human DNA repair enzymes specialized in the processing of such lesions. PMID:27587587

  3. Atomically precise arrays of fluorescent silver clusters: a modular approach for metal cluster photonics on DNA nanostructures.

    PubMed

    Copp, Stacy M; Schultz, Danielle E; Swasey, Steven; Gwinn, Elisabeth G

    2015-03-24

    The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by <10 nm. Cluster attachment is mediated by designed DNA linkers that enable isolation of specific clusters prior to assembly on nanotubes and preserve cluster structure and spectral purity after assembly. The modularity of this approach generalizes to silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.

  4. Dynamic Expression of DNA Complexation with Self-assembled Biomolecular Clusters.

    PubMed

    Bartolami, Eline; Bessin, Yannick; Gervais, Virginie; Dumy, Pascal; Ulrich, Sébastien

    2015-08-24

    We report herein the implementation of a dynamic covalent chemistry approach to the generation of multivalent clusters for DNA recognition. We show that biomolecular clusters can be expressed in situ by a programmed self-assembly process using chemoselective ligations. The cationic clusters are shown, by fluorescence displacement assay, gel electrophoresis and isothermal titration calorimetry, to effectively complex DNA through multivalent interactions. The reversibility of the ligation was exploited to demonstrate that template effects occur, whereby DNA imposes component selection in order to favor the most active DNA-binding clusters. Furthermore, we show that a chemical effector can be used to trigger DNA release through component exchange reactions. PMID:26177835

  5. Saami mitochondrial DNA reveals deep maternal lineage clusters.

    PubMed

    Delghandi, M; Utsi, E; Krauss, S

    1998-01-01

    The mitochondrial DNA of 62 Saami from the north of Norway was analyzed in the D loop hypervariable region I and II and sequences were compared to other gene pools. Two major (lineage 1 and 2) and two minor (lineage 3 and 4) maternal lineage clusters were found. Lineage 1 (56.9% of all hitherto analyzed Saami samples) contains a substantial number of branching haplotypes which are unknown in European gene pools. Lineage 2 (31.5%) and lineage 4 (3.6%) have few branching points and are present at a low rate throughout European gene pools. Lineage 3 (4.7%) has polymorphisms characteristic of circumpolar lineages.

  6. Parvovirus infection-induced DNA damage response

    PubMed Central

    Luo, Yong; Qiu, Jianming

    2014-01-01

    Parvoviruses are a group of small DNA viruses with ssDNA genomes flanked by two inverted terminal structures. Due to a limited genetic resource they require host cellular factors and sometimes a helper virus for efficient viral replication. Recent studies have shown that parvoviruses interact with the DNA damage machinery, which has a significant impact on the life cycle of the virus as well as the fate of infected cells. In addition, due to special DNA structures of the viral genomes, parvoviruses are useful tools for the study of the molecular mechanisms underlying viral infection-induced DNA damage response (DDR). This review aims to summarize recent advances in parvovirus-induced DDR, with a focus on the diverse DDR pathways triggered by different parvoviruses and the consequences of DDR on the viral life cycle as well as the fate of infected cells. PMID:25429305

  7. Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9

    PubMed Central

    Li, Jinhuan; Shou, Jia; Guo, Ya; Tang, Yuanxiao; Wu, Yonghu; Jia, Zhilian; Zhai, Yanan; Chen, Zhifeng; Xu, Quan; Wu, Qiang

    2015-01-01

    The human genome contains millions of DNA regulatory elements and a large number of gene clusters, most of which have not been tested experimentally. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) programed with a synthetic single-guide RNA (sgRNA) emerges as a method for genome editing in virtually any organisms. Here we report that targeted DNA fragment inversions and duplications could easily be achieved in human and mouse genomes by CRISPR with two sgRNAs. Specifically, we found that, in cultured human cells and mice, efficient precise inversions of DNA fragments ranging in size from a few tens of bp to hundreds of kb could be generated. In addition, DNA fragment duplications and deletions could also be generated by CRISPR through trans-allelic recombination between the Cas9-induced double-strand breaks (DSBs) on two homologous chromosomes (chromatids). Moreover, junctions of combinatorial inversions and duplications of the protocadherin (Pcdh) gene clusters induced by Cas9 with four sgRNAs could be detected. In mice, we obtained founders with alleles of precise inversions, duplications, and deletions of DNA fragments of variable sizes by CRISPR. Interestingly, we found that very efficient inversions were mediated by microhomology-mediated end joining (MMEJ) through short inverted repeats. We showed for the first time that DNA fragment inversions could be transmitted through germlines in mice. Finally, we applied this CRISPR method to a regulatory element of the Pcdhα cluster and found a new role in the regulation of members of the Pcdhγ cluster. This simple and efficient method should be useful in manipulating mammalian genomes to study millions of regulatory DNA elements as well as vast numbers of gene clusters. PMID:25757625

  8. Persistent damage induces mitochondrial DNA degradation.

    PubMed

    Shokolenko, Inna N; Wilson, Glenn L; Alexeyev, Mikhail F

    2013-07-01

    Considerable progress has been made recently toward understanding the processes of mitochondrial DNA (mtDNA) damage and repair. However, a paucity of information still exists regarding the physiological effects of persistent mtDNA damage. This is due, in part, to experimental difficulties associated with targeting mtDNA for damage, while sparing nuclear DNA. Here, we characterize two systems designed for targeted mtDNA damage based on the inducible (Tet-ON) mitochondrial expression of the bacterial enzyme, exonuclease III, and the human enzyme, uracil-N-glyosylase containing the Y147A mutation. In both systems, damage was accompanied by degradation of mtDNA, which was detectable by 6h after induction of mutant uracil-N-glycosylase and by 12h after induction of exoIII. Unexpectedly, increases in the steady-state levels of single-strand lesions, which led to degradation, were small in absolute terms indicating that both abasic sites and single-strand gaps may be poorly tolerated in mtDNA. mtDNA degradation was accompanied by the loss of expression of mtDNA-encoded COX2. After withdrawal of the inducer, recovery from mtDNA depletion occurred faster in the system expressing exonuclease III, but in both systems reduced mtDNA levels persisted longer than 144h after doxycycline withdrawal. mtDNA degradation was followed by reduction and loss of respiration, decreased membrane potential, reduced cell viability, reduced intrinsic reactive oxygen species production, slowed proliferation, and changes in mitochondrial morphology (fragmentation of the mitochondrial network, rounding and "foaming" of the mitochondria). The mutagenic effects of abasic sites in mtDNA were low, which indicates that damaged mtDNA molecules may be degraded if not rapidly repaired. This study establishes, for the first time, that mtDNA degradation can be a direct and immediate consequence of persistent mtDNA damage and that increased ROS production is not an invariant consequence of mtDNA damage.

  9. Allostery through protein-induced DNA bubbles

    SciTech Connect

    Traverso, Joseph J.; Manoranjan, Valipuram S.; Bishop, A. R.; Rasmussen, Kim Ø.; Voulgarakis, Nikolaos K.

    2015-03-12

    Allostery through DNA is increasingly recognized as an important modulator of DNA functions. Here, we show that the coalescence of protein-induced DNA bubbles can mediate allosteric interactions that drive protein aggregation. We propose that such allostery may regulate DNA's flexibility and the assembly of the transcription machinery. Mitochondrial transcription factor A (TFAM), a dual-function protein involved in mitochondrial DNA (mtDNA) packaging and transcription initiation, is an ideal candidate to test such a hypothesis owing to its ability to locally unwind the double helix. Numerical simulations demonstrate that the coalescence of TFAM-induced bubbles can explain experimentally observed TFAM oligomerization. The resulting melted DNA segment, approximately 10 base pairs long, around the joints of the oligomers act as flexible hinges, which explains the efficiency of TFAM in compacting DNA. Since mitochondrial polymerase (mitoRNAP) is involved in melting the transcription bubble, TFAM may use the same allosteric interaction to both recruit mitoRNAP and initiate transcription.

  10. Allostery through protein-induced DNA bubbles

    DOE PAGES

    Traverso, Joseph J.; Manoranjan, Valipuram S.; Bishop, A. R.; Rasmussen, Kim Ø.; Voulgarakis, Nikolaos K.

    2015-03-12

    Allostery through DNA is increasingly recognized as an important modulator of DNA functions. Here, we show that the coalescence of protein-induced DNA bubbles can mediate allosteric interactions that drive protein aggregation. We propose that such allostery may regulate DNA's flexibility and the assembly of the transcription machinery. Mitochondrial transcription factor A (TFAM), a dual-function protein involved in mitochondrial DNA (mtDNA) packaging and transcription initiation, is an ideal candidate to test such a hypothesis owing to its ability to locally unwind the double helix. Numerical simulations demonstrate that the coalescence of TFAM-induced bubbles can explain experimentally observed TFAM oligomerization. The resultingmore » melted DNA segment, approximately 10 base pairs long, around the joints of the oligomers act as flexible hinges, which explains the efficiency of TFAM in compacting DNA. Since mitochondrial polymerase (mitoRNAP) is involved in melting the transcription bubble, TFAM may use the same allosteric interaction to both recruit mitoRNAP and initiate transcription.« less

  11. Allostery through protein-induced DNA bubbles.

    PubMed

    Traverso, Joseph J; Manoranjan, Valipuram S; Bishop, A R; Rasmussen, Kim Ø; Voulgarakis, Nikolaos K

    2015-01-01

    Allostery through DNA is increasingly recognized as an important modulator of DNA functions. Here, we show that the coalescence of protein-induced DNA bubbles can mediate allosteric interactions that drive protein aggregation. We propose that such allostery may regulate DNA's flexibility and the assembly of the transcription machinery. Mitochondrial transcription factor A (TFAM), a dual-function protein involved in mitochondrial DNA (mtDNA) packaging and transcription initiation, is an ideal candidate to test such a hypothesis owing to its ability to locally unwind the double helix. Numerical simulations demonstrate that the coalescence of TFAM-induced bubbles can explain experimentally observed TFAM oligomerization. The resulting melted DNA segment, approximately 10 base pairs long, around the joints of the oligomers act as flexible hinges, which explains the efficiency of TFAM in compacting DNA. Since mitochondrial polymerase (mitoRNAP) is involved in melting the transcription bubble, TFAM may use the same allosteric interaction to both recruit mitoRNAP and initiate transcription.

  12. Allostery through protein-induced DNA bubbles

    PubMed Central

    Traverso, Joseph J.; Manoranjan, Valipuram S.; Bishop, A. R.; Rasmussen, Kim Ø.; Voulgarakis, Nikolaos K.

    2015-01-01

    Allostery through DNA is increasingly recognized as an important modulator of DNA functions. Here, we show that the coalescence of protein-induced DNA bubbles can mediate allosteric interactions that drive protein aggregation. We propose that such allostery may regulate DNA's flexibility and the assembly of the transcription machinery. Mitochondrial transcription factor A (TFAM), a dual-function protein involved in mitochondrial DNA (mtDNA) packaging and transcription initiation, is an ideal candidate to test such a hypothesis owing to its ability to locally unwind the double helix. Numerical simulations demonstrate that the coalescence of TFAM-induced bubbles can explain experimentally observed TFAM oligomerization. The resulting melted DNA segment, approximately 10 base pairs long, around the joints of the oligomers act as flexible hinges, which explains the efficiency of TFAM in compacting DNA. Since mitochondrial polymerase (mitoRNAP) is involved in melting the transcription bubble, TFAM may use the same allosteric interaction to both recruit mitoRNAP and initiate transcription. PMID:25762409

  13. Allostery through protein-induced DNA bubbles

    NASA Astrophysics Data System (ADS)

    Traverso, Joseph J.; Manoranjan, Valipuram S.; Bishop, A. R.; Rasmussen, Kim Ø.; Voulgarakis, Nikolaos K.

    2015-03-01

    Allostery through DNA is increasingly recognized as an important modulator of DNA functions. Here, we show that the coalescence of protein-induced DNA bubbles can mediate allosteric interactions that drive protein aggregation. We propose that such allostery may regulate DNA's flexibility and the assembly of the transcription machinery. Mitochondrial transcription factor A (TFAM), a dual-function protein involved in mitochondrial DNA (mtDNA) packaging and transcription initiation, is an ideal candidate to test such a hypothesis owing to its ability to locally unwind the double helix. Numerical simulations demonstrate that the coalescence of TFAM-induced bubbles can explain experimentally observed TFAM oligomerization. The resulting melted DNA segment, approximately 10 base pairs long, around the joints of the oligomers act as flexible hinges, which explains the efficiency of TFAM in compacting DNA. Since mitochondrial polymerase (mitoRNAP) is involved in melting the transcription bubble, TFAM may use the same allosteric interaction to both recruit mitoRNAP and initiate transcription.

  14. Near-infrared silver cluster optically signaling oligonucleotide hybridization and assembling two DNA hosts.

    PubMed

    Petty, Jeffrey T; Nicholson, David A; Sergev, Orlin O; Graham, Stuart K

    2014-09-16

    Silver clusters with ~10 atoms form within DNA strands, and the conjugates are chemical sensors. The DNA host hybridizes with short oligonucleotides, and the cluster moieties optically respond to these analytes. Our studies focus on how the cluster adducts perturb the structure of their DNA hosts. Our sensor is comprised of an oligonucleotide with two components: a 5'-cluster domain that complexes silver clusters and a 3'-recognition site that hybridizes with a target oligonucleotide. The single-stranded sensor encapsulates an ~11 silver atom cluster with violet absorption at 400 nm and with minimal emission. The recognition site hybridizes with complementary oligonucleotides, and the violet cluster converts to an emissive near-infrared cluster with absorption at 730 nm. Our key finding is that the near-infrared cluster coordinates two of its hybridized hosts. The resulting tertiary structure was investigated using intermolecular and intramolecular variants of the same dimer. The intermolecular dimer assembles in concentrated (~5 μM) DNA solutions. Strand stoichiometries and orientations were chromatographically determined using thymine-modified complements that increase the overall conjugate size. The intramolecular dimer develops within a DNA scaffold that is founded on three linked duplexes. The high local cluster concentrations and relative strand arrangements again favor the antiparallel dimer for the near-infrared cluster. When the two monomeric DNA/violet cluster conjugates transform to one dimeric DNA/near-infrared conjugate, the DNA strands accumulate silver. We propose that these correlated changes in DNA structure and silver stoichiometry underlie the violet to near-infrared cluster transformation.

  15. Spectral Analysis of Cluster Induced Turbulence

    NASA Astrophysics Data System (ADS)

    Patel, Ravi; Ireland, Peter; Capecelatro, Jesse; Fox, Rodney; Desjardins, Olivier

    2015-11-01

    Particle laden turbulent flows are an important feature of many industrial processes such as fluidized bed reactors. The study of cluster-induced turbulence (CIT), wherein particles falling under gravity generate turbulence in the carrier gas via fluctuations in particle concentration, may lead to better models for these processes. We present a spectral analysis of a database of statistically stationary CIT simulations. These simulations were previously performed using a two way coupled Eulerian-Lagrangian approach for various mass loadings and particle-scale Reynolds numbers. The Lagrangian particle data is carefully filtered to obtain Eulerian fields for particle phase volume fraction, velocity, and granular temperature. We perform a spectral decomposition of the particle and fluid turbulent kinetic energy budget. We investigate the contributions to the particle and fluid turbulent kinetic energy by pressure strain, viscous dissipation, drag exchange, viscous exchange, and pressure exchange over the range of wavenumbers. Results from this study may help develop closure models for large eddy simulation of particle laden turbulent flows.

  16. Light-Induced Dielectrophoretic Manipulation of DNA

    PubMed Central

    Hoeb, Marco; Rädler, Joachim O.; Klein, Stefan; Stutzmann, Martin; Brandt, Martin S.

    2007-01-01

    Light-induced dielectrophoretic movement of polystyrene beads and λ-DNA is studied using thin films of amorphous hydrogenated silicon as local photoaddressable electrodes with a diameter of 4 μm. Positive (high-field seeking) dielectrophoretic movement is observed for both types of objects. The absence of strong negative (low-field seeking) dielectrophoresis of DNA at high frequencies is in agreement with the similarity of the dielectric constants of DNA and water, the real part of the dielectric function. The corresponding imaginary part of the dielectric function governed by the conductivity of DNA can be determined from a comparison of the frequency dependence of the dielectrophoretic drift velocity with the Clausius-Mossotti relation. PMID:17483160

  17. Phoresis-induced clustering of particles in turbulence

    NASA Astrophysics Data System (ADS)

    Schmidt, Lukas; Fouxon, Itzhak; Krug, Dominik; van Reeuwijk, Maarten; Holzner, Markus

    2015-11-01

    We demonstrate phoresis-induced clustering of non-inertial particles in turbulent flows. Phoretic mechanisms such as thermophoresis, chemotaxis or diffusiophroesis are known to create a particle drift with respect to the fluid. Theory, based on the framework of weakly compressible flow, predicts that particles in turbulence streaked by salinity gradients experience a diffusiophoretic drift and will thus form particle cluster. An inclined gravity current setup is used to analyse clustering due to the diffusiophoretic effect in turbulent flow experimentally. Simultaneous 3D particle tracking velocimetry and laser induced fluorescent measurements provide the full Lagrangian velocity field and the local salt concentration in the observed 3D domain. Two independent methods show consistent evidence of the theoretically predicted particle clustering in turbulence. This clustering mechanism can provide the key to the understanding of spontaneous clustering phenomena such as the formation of marine snow in the ocean.

  18. Cluster analysis for the probability of DSB site induced by electron tracks

    NASA Astrophysics Data System (ADS)

    Yoshii, Y.; Sasaki, K.; Matsuya, Y.; Date, H.

    2015-05-01

    To clarify the influence of bio-cells exposed to ionizing radiations, the densely populated pattern of the ionization in the cell nucleus is of importance because it governs the extent of DNA damage which may lead to cell lethality. In this study, we have conducted a cluster analysis of ionization and excitation events to estimate the number of double-strand breaks (DSBs) induced by electron tracks. A Monte Carlo simulation for electrons in liquid water was performed to determine the spatial location of the ionization and excitation events. The events were divided into clusters by using the density-based spatial clustering of applications with noise (DBSCAN) algorithm. The algorithm enables us to sort out the events into the groups (clusters) in which a minimum number of neighboring events are contained within a given radius. For evaluating the number of DSBs in the extracted clusters, we have introduced an aggregation index (AI). The computational results show that a sub-keV electron produces DSBs in a dense formation more effectively than higher energy electrons. The root-mean square radius (RMSR) of the cluster size is below 5 nm, which is smaller than the chromatin fiber thickness. It was found that this size of clustering events has a high possibility to cause lesions in DNA within the chromatin fiber site.

  19. The DNA Damage Response Induces Interferon

    PubMed Central

    Brzostek-Racine, Sabrina; Gordon, Chris; Van Scoy, Sarah; Reich, Nancy C.

    2011-01-01

    This study reveals a new complexity in the cellular response to DNA damage: activation of interferon (IFN) signaling. The DNA damage response involves the rapid recruitment of repair enzymes, and the activation of signal transducers that regulate cell cycle checkpoints and cell survival. To understand the link between DNA damage and innate cellular defense that occurs in response to many viral infections, we evaluated the effects of agents such as etoposide that promote double-stranded DNA breaks. Treatment of human cells with etoposide led to the induction of IFN-stimulated genes, and the IFN-α and IFN-λ genes. The nuclear factor-κB (NF-κB), known to be activated in response to DNA damage, was shown to be a key regulator of this IFN gene induction. Expression of an NF-κB subunit, p65/RelA was sufficient for induction of the human IFN-λ1 gene. In addition, NF-κB was required for the induction of the IFN regulatory factors-1 and -7 that are able to stimulate expression of the IFN-α and IFN-λ genes. Cells that lack the NF-κB essential modulator (NEMO), lack the ability to induce the IFN genes following DNA damage. Breaks in DNA are generated during normal physiological processes of replication, transcription, and recombination, as well as by external genotoxic agents or infectious agents. The significant finding of IFN production as a stress response to DNA damage provides a new perspective on the role of IFN signaling. PMID:22013119

  20. OGG1 is essential in oxidative stress induced DNA demethylation.

    PubMed

    Zhou, Xiaolong; Zhuang, Ziheng; Wang, Wentao; He, Lingfeng; Wu, Huan; Cao, Yan; Pan, Feiyan; Zhao, Jing; Hu, Zhigang; Sekhar, Chandra; Guo, Zhigang

    2016-09-01

    DNA demethylation is an essential cellular activity to regulate gene expression; however, the mechanism that triggers DNA demethylation remains unknown. Furthermore, DNA demethylation was recently demonstrated to be induced by oxidative stress without a clear molecular mechanism. In this manuscript, we demonstrated that 8-oxoguanine DNA glycosylase-1 (OGG1) is the essential protein involved in oxidative stress-induced DNA demethylation. Oxidative stress induced the formation of 8-oxoguanine (8-oxoG). We found that OGG1, the 8-oxoG binding protein, promotes DNA demethylation by interacting and recruiting TET1 to the 8-oxoG lesion. Downregulation of OGG1 makes cells resistant to oxidative stress-induced DNA demethylation, while over-expression of OGG1 renders cells susceptible to DNA demethylation by oxidative stress. These data not only illustrate the importance of base excision repair (BER) in DNA demethylation but also reveal how the DNA demethylation signal is transferred to downstream DNA demethylation enzymes.

  1. Chromosome thripsis by DNA double strand break clusters causes enhanced cell lethality, chromosomal translocations and 53BP1-recruitment

    PubMed Central

    Schipler, Agnes; Mladenova, Veronika; Soni, Aashish; Nikolov, Vladimir; Saha, Janapriya; Mladenov, Emil; Iliakis, George

    2016-01-01

    Chromosome translocations are hallmark of cancer and of radiation-induced cell killing, reflecting joining of incongruent DNA-ends that alter the genome. Translocation-formation requires DNA end-joining mechanisms and incompletely characterized, permissive chromatin conditions. We show that chromatin destabilization by clusters of DNA double-strand-breaks (DSBs) generated by the I-SceI meganuclease at multiple, appropriately engineered genomic sites, compromises c-NHEJ and markedly increases cell killing and translocation-formation compared to single-DSBs. Translocation-formation from DSB-clusters utilizes Parp1 activity, implicating alt-EJ in their formation. Immunofluorescence experiments show that single-DSBs and DSB-clusters uniformly provoke the formation of single γ-H2AX foci, suggesting similar activation of early DNA damage response (DDR). Live-cell imaging also shows similar single-focus recruitment of the early-response protein MDC1, to single-DSBs and DSB-clusters. Notably, the late DDR protein, 53BP1 shows in live-cell imaging strikingly stronger recruitment to DSB-clusters as compared to single-DSBs. This is the first report that chromatin thripsis, in the form of engineered DSB-clusters, compromises first-line DSB-repair pathways, allowing alt-EJ to function as rescuing-backup. DSB-cluster-formation is indirectly linked to the increased biological effectiveness of high ionization-density radiations, such as the alpha-particles emitted by radon gas or the heavy-ions utilized in cancer therapy. Our observations provide the first direct mechanistic explanation for this long-known effect. PMID:27257076

  2. Chromosome thripsis by DNA double strand break clusters causes enhanced cell lethality, chromosomal translocations and 53BP1-recruitment.

    PubMed

    Schipler, Agnes; Mladenova, Veronika; Soni, Aashish; Nikolov, Vladimir; Saha, Janapriya; Mladenov, Emil; Iliakis, George

    2016-09-19

    Chromosome translocations are hallmark of cancer and of radiation-induced cell killing, reflecting joining of incongruent DNA-ends that alter the genome. Translocation-formation requires DNA end-joining mechanisms and incompletely characterized, permissive chromatin conditions. We show that chromatin destabilization by clusters of DNA double-strand-breaks (DSBs) generated by the I-SceI meganuclease at multiple, appropriately engineered genomic sites, compromises c-NHEJ and markedly increases cell killing and translocation-formation compared to single-DSBs. Translocation-formation from DSB-clusters utilizes Parp1 activity, implicating alt-EJ in their formation. Immunofluorescence experiments show that single-DSBs and DSB-clusters uniformly provoke the formation of single γ-H2AX foci, suggesting similar activation of early DNA damage response (DDR). Live-cell imaging also shows similar single-focus recruitment of the early-response protein MDC1, to single-DSBs and DSB-clusters. Notably, the late DDR protein, 53BP1 shows in live-cell imaging strikingly stronger recruitment to DSB-clusters as compared to single-DSBs. This is the first report that chromatin thripsis, in the form of engineered DSB-clusters, compromises first-line DSB-repair pathways, allowing alt-EJ to function as rescuing-backup. DSB-cluster-formation is indirectly linked to the increased biological effectiveness of high ionization-density radiations, such as the alpha-particles emitted by radon gas or the heavy-ions utilized in cancer therapy. Our observations provide the first direct mechanistic explanation for this long-known effect. PMID:27257076

  3. Blackbody-induced radiative dissociation of cationic SF6 clusters

    NASA Astrophysics Data System (ADS)

    Toker, Y.; Rahinov, I.; Schwalm, D.; Even, U.; Heber, O.; Rappaport, M. L.; Strasser, D.; Zajfman, D.

    2012-08-01

    The stability of cationic SF5+(SF6)n-1 clusters was investigated by measuring their blackbody-induced radiative dissociation (BIRD) rates. The clusters were produced in a supersonic expansion ion source and stored in an electrostatic ion-beam trap at room temperature, where their abundances and lifetimes were measured. Using the “master equation” approach, relative binding energies of an SF6 unit in the clusters could be extracted from the storage-time dependence of the survival probabilities. The results allow for a deeper insight into the effect of a localized charge on the structure and stability of SF6-based clusters.

  4. [UV-induced DNA mutation of peach aphid].

    PubMed

    Du, Erxia; Guo, Jianwen; Zhao, Huiyan

    2006-07-01

    By using PCR technique and microsatellite marks, this paper studied the DNA polymorphism of peach aphid (Myzus persicae) under UV-radiation. The fragments of three primers were amplified, and the gene diversity and the rate of loci polymorphisms of their genomic DNA, which could reflect the damage degree of DNA after UV-radiation, were measured. The results revealed that after treated with different radiation intensity (15, 30, 45 W) and duration (2, 4, 6 h) , the UV-induced DNA mutations were genetic and could be delivered to F2 generation. The mutations depended on the interaction of radiation intensity and duration. Variance analysis on the gene diversity and the rate of loci polymorphisms showed that there existed a significant difference between UV-treated and control groups, except the rate of loci polymorphisms under 2 h radiation. The average value of the control was higher than that of 2 h radiation treatment. According to the cluster analysis of the genetic distance, the aphids were divided into three groups, i. e., control group, 2 h (15, 30 W) treatment group, and the other, which was consistent with the result of variance analysis.

  5. Are ribosomal DNA clusters rearrangement hotspots? A case study in the genus Mus (Rodentia, Muridae)

    PubMed Central

    2011-01-01

    Background Recent advances in comparative genomics have considerably improved our knowledge of the evolution of mammalian karyotype architecture. One of the breakthroughs was the preferential localization of evolutionary breakpoints in regions enriched in repetitive sequences (segmental duplications, telomeres and centromeres). In this context, we investigated the contribution of ribosomal genes to genome reshuffling since they are generally located in pericentromeric or subtelomeric regions, and form repeat clusters on different chromosomes. The target model was the genus Mus which exhibits a high rate of karyotypic change, a large fraction of which involves centromeres. Results The chromosomal distribution of rDNA clusters was determined by in situ hybridization of mouse probes in 19 species. Using a molecular-based reference tree, the phylogenetic distribution of clusters within the genus was reconstructed, and the temporal association between rDNA clusters, breakpoints and centromeres was tested by maximum likelihood analyses. Our results highlighted the following features of rDNA cluster dynamics in the genus Mus: i) rDNA clusters showed extensive diversity in number between species and an almost exclusive pericentromeric location, ii) a strong association between rDNA sites and centromeres was retrieved which may be related to their shared constraint of concerted evolution, iii) 24% of the observed breakpoints mapped near an rDNA cluster, and iv) a substantial rate of rDNA cluster change (insertion, deletion) also occurred in the absence of chromosomal rearrangements. Conclusions This study on the dynamics of rDNA clusters within the genus Mus has revealed a strong evolutionary relationship between rDNA clusters and centromeres. Both of these genomic structures coincide with breakpoints in the genus Mus, suggesting that the accumulation of a large number of repeats in the centromeric region may contribute to the high level of chromosome repatterning observed

  6. Heterogeneous Solvatochromism of Fluorescent DNA-Stabilized Silver Clusters Precludes Use of Simple Onsager-Based Stokes Shift Models.

    PubMed

    Copp, Stacy M; Faris, Alexis; Swasey, Steven M; Gwinn, Elisabeth G

    2016-02-18

    The diverse optical and chemical properties of DNA-stabilized silver clusters (AgN-DNAs) have challenged the development of a common model for these sequence-tunable fluorophores. Although correlations between cluster geometry and fluorescence color have begun to shed light on how the optical properties of AgN-DNAs are selected, the exact mechanisms responsible for fluorescence remain unknown. To explore these mechanisms, we study four distinct purified AgN-DNAs in ethanol-water and methanol-water mixtures and find that the solvatochromic behavior of AgN-DNAs varies widely among different cluster species and differs markedly from prior results on impure material. Placing AgN-DNAs within the context of standard Lippert-Mataga solvatochromism models based on the Onsager reaction field, we show that such nonspecific solvent models are not universally applicable to AgN-DNAs. Instead, alcohol-induced solvatochromism of AgN-DNAs may be governed by changes in hydration of the DNA template, with spectral shifts resulting from cluster shape changes and/or dielectric changes in the local vicinity of the cluster.

  7. Application of Subspace Clustering in DNA Sequence Analysis.

    PubMed

    Wallace, Tim; Sekmen, Ali; Wang, Xiaofei

    2015-10-01

    Identification and clustering of orthologous genes plays an important role in developing evolutionary models such as validating convergent and divergent phylogeny and predicting functional proteins in newly sequenced species of unverified nucleotide protein mappings. Here, we introduce an application of subspace clustering as applied to orthologous gene sequences and discuss the initial results. The working hypothesis is based upon the concept that genetic changes between nucleotide sequences coding for proteins among selected species and groups may lie within a union of subspaces for clusters of the orthologous groups. Estimates for the subspace dimensions were computed for a small population sample. A series of experiments was performed to cluster randomly selected sequences. The experimental design allows for both false positives and false negatives, and estimates for the statistical significance are provided. The clustering results are consistent with the main hypothesis. A simple random mutation binary tree model is used to simulate speciation events that show the interdependence of the subspace rank versus time and mutation rates. The simple mutation model is found to be largely consistent with the observed subspace clustering singular value results. Our study indicates that the subspace clustering method may be applied in orthology analysis. PMID:26162018

  8. High dynamics of rDNA cluster location in kissing bug holocentric chromosomes (Triatominae, Heteroptera).

    PubMed

    Panzera, Y; Pita, S; Ferreiro, M J; Ferrandis, I; Lages, C; Pérez, R; Silva, A E; Guerra, M; Panzera, F

    2012-01-01

    In this paper, we determine by fluorescent in situ hybridization the variability in the chromosomal location of 45S rDNA clusters in 38 species belonging to 7 genera of the Triatominae subfamily, using a triatomine-specific 18S rDNA probe. Our results show a striking variability at the inter- and intraspecific level, never reported so far in holocentric chromosomes, revealing the extraordinary genomic dynamics that occurred during the evolution in this group of insects. Our results also demonstrate that the chromosomal position of rDNA clusters is an important marker to disclose chromosomal differentiation in species karyotypically homogenous in their chromosome number.

  9. Ligand inducible assembly of a DNA tetrahedron.

    PubMed

    Dohno, Chikara; Atsumi, Hiroshi; Nakatani, Kazuhiko

    2011-03-28

    Here we show that a small synthetic ligand can be used as a key building component for DNA nanofabrication. Using naphthyridinecarbamate dimer (NCD) as a molecular glue for DNA hybridization, we demonstrate NCD-triggered formation of a DNA tetrahedron.

  10. Application of a clustering-based peak alignment algorithm to analyze various DNA fingerprinting data.

    PubMed

    Ishii, Satoshi; Kadota, Koji; Senoo, Keishi

    2009-09-01

    DNA fingerprinting analysis such as amplified ribosomal DNA restriction analysis (ARDRA), repetitive extragenic palindromic PCR (rep-PCR), ribosomal intergenic spacer analysis (RISA), and denaturing gradient gel electrophoresis (DGGE) are frequently used in various fields of microbiology. The major difficulty in DNA fingerprinting data analysis is the alignment of multiple peak sets. We report here an R program for a clustering-based peak alignment algorithm, and its application to analyze various DNA fingerprinting data, such as ARDRA, rep-PCR, RISA, and DGGE data. The results obtained by our clustering algorithm and by BioNumerics software showed high similarity. Since several R packages have been established to statistically analyze various biological data, the distance matrix obtained by our R program can be used for subsequent statistical analyses, some of which were not previously performed but are useful in DNA fingerprinting studies.

  11. DNA-PK is involved in repairing a transient surge of DNA breaks induced by deceleration of DNA replication

    PubMed Central

    Shimura, Tsutomu; Martin, Melvenia; Torres, Michael J.; Gu, Cory; Pluth, Janice M; DeBernardi, Maria; McDonald, Jeoffrey S.; Aladjem, Mirit I.

    2007-01-01

    Summary Cells that suffer substantial inhibition of DNA replication halt their cell cycle via a checkpoint response mediated by the PI3 kinases ATM and ATR. It is unclear how cells cope with milder replication insults, which are under the threshold for ATM and ATR activation. A third PI3 kinase, DNA-dependent protein kinase (DNA-PK), is also activated following replication inhibition, but the role DNA-PK might play in response to perturbed replication is unclear since this kinase does not activate the signaling cascades involved in the S-phase checkpoint. Here we report that mild, transient drug-induced perturbation of DNA replication rapidly induced DNA breaks that promptly disappeared in cells that contained a functional DNA-PK whereas such breaks persisted in cells that were deficient in DNA-PK activity. After the initial transient burst of DNA breaks, cells with a functional DNA-PK did not halt replication and continued to synthesize DNA at a slow pace in the presence of replication inhibitors. In contrast, DNA-PK deficient cells subject to low levels of replication inhibition halted cell cycle progression via an ATR-mediated S-phase checkpoint. The ATM kinase was dispensable for the induction of the initial DNA breaks. These observations suggest that DNA-PK is involved in setting a high threshold for the ATR-Chk1-mediated S-phase checkpoint by promptly repairing DNA breaks that appear immediately following inhibition of DNA replication. PMID:17280685

  12. Structural changes of linear DNA molecules induced by cisplatin

    SciTech Connect

    Liu, Zhiguo; Liu, Ruisi; Zhou, Zhen; Zu, Yuangang; Xu, Fengjie

    2015-02-20

    Interaction between long DNA molecules and activated cisplatin is believed to be crucial to anticancer activity. However, the exact structural changes of long DNA molecules induced by cisplatin are still not very clear. In this study, structural changes of long linear double-stranded DNA (dsDNA) and short single-stranded DNA (ssDNA) induced by activated cisplatin have been investigated by atomic force microscopy (AFM). The results indicated that long DNA molecules gradually formed network structures, beads-on-string structures and their large aggregates. Electrostatic and coordination interactions were considered as the main driving forces producing these novel structures. An interesting finding in this study is the beads-on-string structures. Moreover, it is worth noting that the beads-on-string structures were linked into the networks, which can be ascribed to the strong DNA–DNA interactions. This study expands our knowledge of the interactions between DNA molecules and cisplatin. - Highlights: • We investigate structural changes of dsDNA and ssDNA induced by cisplatin. • AFM results indicated long dsDNA formed network, beads-on-string and aggregates. • ssDNA can form very similar structures as those of long linear dsDNA. • A possible formation process of theses novel structure is proposed.

  13. Air pollution induces heritable DNA mutations

    PubMed Central

    Somers, Christopher M.; Yauk, Carole L.; White, Paul A.; Parfett, Craig L. J.; Quinn, James S.

    2002-01-01

    Hundreds of thousands of people worldwide live or work in close proximity to steel mills. Integrated steel production generates chemical pollution containing compounds that can induce genetic damage (1, 2). Previous investigations of herring gulls in the Great Lakes demonstrated elevated DNA mutation rates near steel mills (3, 4) but could not determine the importance of airborne or aquatic routes of contaminant exposure, or eliminate possible confounding factors such as nutritional status and disease burden. To address these issues experimentally, we exposed laboratory mice in situ to ambient air in a polluted industrial area near steel mills. Heritable mutation frequency at tandem-repeat DNA loci in mice exposed 1 km downwind from two integrated steel mills was 1.5- to 2.0-fold elevated compared with those at a reference site 30 km away. This statistically significant elevation was due primarily to an increase in mutations inherited through the paternal germline. Our results indicate that human and wildlife populations in proximity to integrated steel mills may be at risk of developing germline mutations more frequently because of the inhalation of airborne chemical mutagens. PMID:12473746

  14. Drug-induced DNA repair: X-ray structure of a DNA-ditercalinium complex.

    PubMed Central

    Gao, Q; Williams, L D; Egli, M; Rabinovich, D; Chen, S L; Quigley, G J; Rich, A

    1991-01-01

    Ditercalinium is a synthetic anticancer drug that binds to DNA by bis-intercalation and activates DNA repair processes. In prokaryotes, noncovalent DNA-ditercalinium complexes are incorrectly recognized by the uvrABC repair system as covalent lesions on DNA. In eukaryotes, mitochondrial DNA is degraded by excess and futile DNA repair. Using x-ray crystallography, we have determined, to 1.7 A resolution, the three-dimensional structure of a complex of ditercalinium bound to the double-stranded DNA fragment [d(CGCG)]2. The DNA in the complex with ditercalinium is kinked (by 15 degrees) and severely unwound (by 36 degrees) with exceptionally wide major and minor grooves. Recognition of the DNA-ditercalinium complex by uvrABC in prokaryotes, and by mitochondrial DNA repair systems in eukaryotes, might be related to drug-induced distortion of the DNA helix. Images PMID:2006181

  15. Radiation-induced degradation of DNA bases

    NASA Astrophysics Data System (ADS)

    Douki, T.; Delatour, T.; Martini, R.; Cadet, J.

    1999-01-01

    Radio-induced degradation of DNA involves radical processes. A series of lesions among the major bases degradation products has been measured in isolated DNA exposed to gamma radiation in aerated aqueous solution. Degradation can be accounted for by the formation of hydroxyl radicals upon radiolysis of water (indirect effect). The four bases are degraded in high yield. Direct effect has been mimicked by photo-induced electron abstraction from the bases producing their radical cation. Quantification of the modified bases showed that guanine is the preferential target. This can be explained by its lower oxidation potential and charge transfer phenomena. La décomposition radio-induite de l'ADN fait intervenir des processus radicalaires. Une série de lésions choisies parmi les produits majeurs de dégradation des bases a été mesurée dans de l'ADN isolé exposé au rayonnement en solution aqueuse aérée. Les modifications sont alors dues aux radicaux hydroxyles produits par la radiolyse de l'eau (effet indirect) et les quatre bases sont efficacement dégradées. L'arrachement d'électrons aux bases par photosensibilisation pour produire leur radical cation, a été utilisé comme modèle de l'effet direct. La quantification des bases modifiées montre que la guanine est préférentiellement dégradée. Cette observation peut s'expliquer par le plus faible potentiel d'oxydation de cette base ainsi que par les phénomènes de transfert de charge vers les guanines.

  16. Gene activation by induced DNA rearrangements

    SciTech Connect

    Schnipper, L.E.; Chan, V.; Sedivy, J.; Jat, P.; Sharp, P.A. )

    1989-12-01

    A murine cell line (EN/NIH) containing the retroviral vector ZIPNeoSV(x)1 that was modified by deletion of the enhancer elements in the viral long terminal repeats has been used as an assay system to detect induced DNA rearrangements that result in activation of a transcriptionally silent reporter gene encoded by the viral genome. The spontaneous frequency of G418 resistance is less than 10(-7), whereas exposure to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) or the combination of UV irradiation plus TPA resulted in the emergence of drug resistant cell lines at a frequency of 5 per 10(6) and 67 per 10(6) cells, respectively. In several of the cell lines that were analyzed a low level of amplification of one of the two parental retroviral integrants was observed, whereas in others no alteration in the region of the viral genome was detected. To determine the effect of the SV40 large T antigen on induced DNA rearrangements, EN/NIH cells were transfected with a temperature sensitive (ts) mutant of SV40 T. Transfectants were maintained at the permissive temperature (33 degrees C) for varying periods of time (1-5 days) in order to vary SV40 T antigen exposure, after which they were shifted to 39.5 degrees C for selection in G418. The frequency of emergence of drug resistant cell clones increased with duration of exposure to large T antigen (9-52 per 10(6) cells over 1-5 days, respectively), and all cell lines analyzed demonstrated DNA rearrangements in the region of the neo gene. A novel 18-kilobase pair XbaI fragment was cloned from one cell line which revealed the presence of a 2.0-kilobase pair EcoRI segment containing an inverted duplication which hybridized to neo sequences. It is likely that the observed rearrangement was initiated by the specific binding of large T antigen to the SV40 origin of replication encoded within the viral genome.

  17. Chemically induced magnetism in atomically precise gold clusters.

    PubMed

    Krishna, Katla Sai; Tarakeshwar, Pilarisetty; Mujica, Vladimiro; Kumar, Challa S S R

    2014-03-12

    Comparative theoretical and experimental investigations are reported into chemically induced magnetism in atomically-precise, ligand-stabilized gold clusters Au25 , Au38 and Au55 . The results indicate that [Au25 (PPh3 )10 (SC12 H25 )5 Cl2 ](2+) and Au38 (SC12 H25 )24 are diamagnetic, Au25 (SC2 H4 Ph)18 is paramagnetic, and Au55 (PPh3 )12 Cl6 , is ferromagnetic at room temperature. Understanding the magnetic properties resulting from quantum size effects in such atomically precise gold clusters could lead to new fundamental discoveries and applications.

  18. Collision induced fragmentation of small ionic argon clusters

    NASA Astrophysics Data System (ADS)

    Barat, M.; Brenot, J. C.; Fayeton, J. A.; Picard, Y. J.

    2002-07-01

    The mechanisms of collision induced fragmentation of small Arn+ (n=2-9) clusters are investigated in the 100 eV center-of-mass energy range. The velocity vectors of the fragments are measured in a multicoincidence experiment for two- and three-body fragmentation. The relative role of the two basic dynamics, electronic transitions, and momentum transfer in binary collisions is evaluated. The structure of the clusters deeply influences the type of mechanism. This is clearly the case of Ar3+ for which a specific impulsive process called "diatom" mechanism plays an important part in the fragmentation of one isomer.

  19. OGG1 is essential in oxidative stress induced DNA demethylation.

    PubMed

    Zhou, Xiaolong; Zhuang, Ziheng; Wang, Wentao; He, Lingfeng; Wu, Huan; Cao, Yan; Pan, Feiyan; Zhao, Jing; Hu, Zhigang; Sekhar, Chandra; Guo, Zhigang

    2016-09-01

    DNA demethylation is an essential cellular activity to regulate gene expression; however, the mechanism that triggers DNA demethylation remains unknown. Furthermore, DNA demethylation was recently demonstrated to be induced by oxidative stress without a clear molecular mechanism. In this manuscript, we demonstrated that 8-oxoguanine DNA glycosylase-1 (OGG1) is the essential protein involved in oxidative stress-induced DNA demethylation. Oxidative stress induced the formation of 8-oxoguanine (8-oxoG). We found that OGG1, the 8-oxoG binding protein, promotes DNA demethylation by interacting and recruiting TET1 to the 8-oxoG lesion. Downregulation of OGG1 makes cells resistant to oxidative stress-induced DNA demethylation, while over-expression of OGG1 renders cells susceptible to DNA demethylation by oxidative stress. These data not only illustrate the importance of base excision repair (BER) in DNA demethylation but also reveal how the DNA demethylation signal is transferred to downstream DNA demethylation enzymes. PMID:27251462

  20. Analysis of alcohol-induced DNA damage in Escherichia coli by visualizing single genomic DNA molecules.

    PubMed

    Kang, Yujin; Lee, Jinyong; Kim, Jisoo; Oh, Yeeun; Kim, Dogeun; Lee, Jungyun; Lim, Sangyong; Jo, Kyubong

    2016-07-21

    Consumption of alcohol injures DNA, and such damage is considered to be a primary cause for the development of cancer and many other diseases essentially due to reactive oxygen species generated from alcohol. To sensitively detect alcohol-induced DNA lesions in a biological system, we introduced a novel analytical platform for visualization of single genomic DNA molecules using E. coli. By fluorescently labelling the DNA lesions, our approach demonstrated, with the highest sensitivity, that we could count the number of DNA lesions induced by alcohol metabolism in a single bacterial cell. Moreover, our results showed a linear relationship between ethanol concentration and the number of DNA lesions: 0.88 lesions per 1% ethanol. Using this approach, we quantitatively analysed the DNA damage induced by exposure to alcoholic beverages such as beer (5% ethanol), rice wine (13%), soju (20%), and whisky (40%). PMID:27186604

  1. Mitochondrial DNA exhibits resistance to induced point and deletion mutations

    PubMed Central

    Valente, William J.; Ericson, Nolan G.; Long, Alexandra S.; White, Paul A.; Marchetti, Francesco; Bielas, Jason H.

    2016-01-01

    The accumulation of somatic mitochondrial DNA (mtDNA) mutations contributes to the pathogenesis of human disease. Currently, mitochondrial mutations are largely considered results of inaccurate processing of its heavily damaged genome. However, mainly from a lack of methods to monitor mtDNA mutations with sufficient sensitivity and accuracy, a link between mtDNA damage and mutation has not been established. To test the hypothesis that mtDNA-damaging agents induce mtDNA mutations, we exposed MutaTMMouse mice to benzo[a]pyrene (B[a]P) or N-ethyl-N-nitrosourea (ENU), daily for 28 consecutive days, and quantified mtDNA point and deletion mutations in bone marrow and liver using our newly developed Digital Random Mutation Capture (dRMC) and Digital Deletion Detection (3D) assays. Surprisingly, our results demonstrate mutagen treatment did not increase mitochondrial point or deletion mutation frequencies, despite evidence both compounds increase nuclear DNA mutations and demonstrated B[a]P adduct formation in mtDNA. These findings contradict models of mtDNA mutagenesis that assert the elevated rate of mtDNA mutation stems from damage sensitivity and abridged repair capacity. Rather, our results demonstrate induced mtDNA damage does not readily convert into mutation. These findings suggest robust mitochondrial damage responses repress induced mutations after mutagen exposure. PMID:27550180

  2. Inflammation-induced formation of fat-associated lymphoid clusters

    PubMed Central

    Bénézech, Cécile; Kruglov, Andrei A.; Loo, Yunhua; Nakamura, Kyoko; Zhang, Yang; Nayar, Saba; Jones, Lucy H.; Flores-Langarica, Adriana; McIntosh, Alistair; Marshall, Jennifer; Barone, Francesca; Besra, Gurdyal; Miles, Katherine; Allen, Judith E.; Gray, Mohini; Kollias, George; Cunningham, Adam F.; Withers, David R.; Toellner, Kai Michael; Jones, Nick D.; Veldhoen, Marc; Nedospasov, Sergei A.; McKenzie, Andrew N.J.; Caamaño, Jorge H.

    2015-01-01

    Fat-associated lymphoid clusters (FALCs) are a recently discovered type of lymphoid tissue associated with visceral fat. Here we show that distribution of FALCs was heterogeneous with the pericardium containing large numbers of these clusters. FALCs contributed to the retention of B-1 B cells in the peritoneal cavity through high expression of the chemokine CXCL13 and supported B cell proliferation and germinal center differentiation during peritoneal immune challenges. FALC formation was induced by inflammation, which triggered recruitment of myeloid cells that express tumor necrosis factor (TNF) necessary for TNF receptor-signaling in stromal cells. CD1d-restricted Natural killer T (NKT) cells were likewise required for inducible formation of FALCs. Thus, FALCs support and coordinate innate B and T cell activation during serosal immune responses. PMID:26147686

  3. DNA topoisomerase IIα controls replication origin cluster licensing and firing time in Xenopus egg extracts

    PubMed Central

    Gaggioli, Vincent; Le Viet, Barbara; Germe, Thomas; Hyrien, Olivier

    2013-01-01

    Sperm chromatin incubated in Xenopus egg extracts undergoes origin licensing and nuclear assembly before DNA replication. We found that depletion of DNA topoisomerase IIα (topo IIα), the sole topo II isozyme of eggs and its inhibition by ICRF-193, which clamps topo IIα around DNA have opposite effects on these processes. ICRF-193 slowed down replication origin cluster activation and fork progression in a checkpoint-independent manner, without altering replicon size. In contrast, topo IIα depletion accelerated origin cluster activation, and topo IIα add-back negated overinitiation. Therefore, topo IIα is not required for DNA replication, but topo IIα clamps slow replication, probably by forming roadblocks. ICRF-193 had no effect on DNA synthesis when added after nuclear assembly, confirming that topo IIα activity is dispensable for replication and revealing that topo IIα clamps formed on replicating DNA do not block replication, presumably because topo IIα acts behind and not in front of forks. Topo IIα depletion increased, and topo IIα addition reduced, chromatin loading of MCM2-7 replicative helicase, whereas ICRF-193 did not affect MCM2-7 loading. Therefore, topo IIα restrains MCM2-7 loading in an ICRF-193-resistant manner during origin licensing, suggesting a model for establishing the sequential firing of origin clusters. PMID:23757188

  4. DNA induced chirality and helical twist in achiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Garvey, Alfred; Basu, Rajratan; Kinnamon, Daniel

    A small quantity of DNA sample (Deoxyribonucleic acid -cellulose double-stranded from calf thymus DNA in lyophilized powder form) was doped in an achiral liquid crystal (LC), and the mixture was found to exhibit a weak degree of chirality. The induced chirality in the LC was probed by means of the electroclinic effect in the LC's smectic-A phase, which showed significant pretransitional behavior on approaching the smectic- A-smectic- C transition temperature from above. The same DNA was doped in an achiral nematic LC and the mixture was found to exhibit an average mechanical twist over macroscopic dimensions. The double-stranded DNA-induced chiral pitch length P was determined by measuring the radius of curvature of reverse twist disclination lines in 90o nematic twist cells. In the LC +DNA mixture, the LC's benzene rings interact with the nucleobases of the DNA through π - π stacking, which induces a molecular conformational deracemization in the LC.

  5. Globular clusters: DNA of early-type galaxies?

    NASA Astrophysics Data System (ADS)

    Forte, Juan C.; Vega, E. Irene; Faifer, Favio R.; Smith Castelli, Analía V.; Escudero, Carlos; González, Nélida M.; Sesto, Leandro

    2014-06-01

    This paper explores if the mean properties of early-type galaxies (ETGs) can be reconstructed from `genetic' information stored in their globular clusters (GCs; i.e. in their chemical abundances, spatial distributions and ages). This approach implies that the formation of each globular occurs in very massive stellar environments, as suggested by some models that aim at explaining the presence of multipopulations in these systems. The assumption that the relative number of GCs to diffuse stellar mass depends exponentially on chemical abundance, [Z/H], and the presence of two dominant GC subpopulations (blue and red), allows the mapping of low-metallicity haloes and of higher metallicity (and more heterogeneous) bulges. In particular, the masses of the low-metallicity haloes seem to scale up with dark matter mass through a constant. We also find a dependence of the GC formation efficiency with the mean projected stellar mass density of the galaxies within their effective radii. The analysis is based on a selected subsample of galaxies observed within the ACS Virgo Cluster Survey of the Hubble Space Telescope. These systems were grouped, according to their absolute magnitudes, in order to define composite fiducial galaxies and look for a quantitative connection with their (also composite) GCs systems. The results strengthen the idea that GCs are good quantitative tracers of both baryonic and dark matter in ETGs.

  6. Plasmid DNA damage induced by helium atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Han, Xu; Cantrell, William A.; Escobar, Erika E.; Ptasinska, Sylwia

    2014-03-01

    A helium atmospheric pressure plasma jet (APPJ) is applied to induce damage to aqueous plasmid DNA. The resulting fractions of the DNA conformers, which indicate intact molecules or DNA with single- or double-strand breaks, are determined using agarose gel electrophoresis. The DNA strand breaks increase with a decrease in the distance between the APPJ and DNA samples under two working conditions of the plasma source with different parameters of applied electric pulses. The damage level induced in the plasmid DNA is also enhanced with increased plasma irradiation time. The reactive species generated in the APPJ are characterized by optical emission spectra, and their roles in possible DNA damage processes occurring in an aqueous environment are also discussed.

  7. Induced DNA repair pathway in mammalian cells

    SciTech Connect

    Overberg, R.

    1985-01-01

    The survival of cultured rat kangaroo cells (PtK-2) and human xeroderma pigmentosum cells incubated with 5 ..mu..M cycloheximide subsequent to ultraviolet irradiation is lower than that of cells incubated without cycloheximide. The drop in survival is considerably larger than that produced by incubation of unirradiated cells with cycloheximide. The phenomenon was also observed when PtK-2 cells were incubated with emetine, another protein synthesis inhibitor, or with 5,6-dichloro-1-..beta..-D-ribofuranosylbenzimidazole, a RNA synthesis inhibitor. PtK cells which received a preliminary UV treatment followed by an incubation period without cycloheximide and then a second irradiation and 24 hour incubation with cycloheximide, survived the effects of the second irradiation better than cells which were incubated in the presence of cycloheximide after the first and second UV irradiation. The application of cycloheximide for 24 hours after UV irradiation of PtK cells resulted in one-half as many 6-thioguanine resistant cells as compared to the number of 6-thioguanine resistant cells found when cycloheximide was not used. These experiments indicate that a UV-inducible cycloheximide-sensitive DNA repair pathway is present in PtK and xeroderma pigmentosum cells, which is error-prone in PtK cells.

  8. Photo- and collision-induced dissociation of Ar cluster ions

    NASA Astrophysics Data System (ADS)

    Kondow, Tamotsu; Nagata, Takeshi; Nonose, Shinji

    1992-04-01

    Photo- and collision- induced dissociation of an argon cluster ion, Arn+, were investigated by use of mass spectrometry. The kinetic and angular distributions of the ionic and neutral photofragments revealed two reaction pathways; dissociation of the trimeric core ion and evaporation from its solvation shell. In the Kr and Ne collisions with Arn+, the size- and collision energy- dependences of the dissociation cross sections were explained in the scheme of the charge - induced dipole, and induced dipole - induced dipole scatterings. Conversion efficiency of the collision energy into the internal energy of Arn+ was found to be proportional to the internal degrees of freedom. The upper limit of the conversion efficiency was estimated to be about 60 % in the collision energy of 0.2 eV.

  9. DNA helicase and helicase-nuclease enzymes with a conserved iron-sulfur cluster.

    PubMed

    Wu, Yuliang; Brosh, Robert M

    2012-05-01

    Conserved Iron-Sulfur (Fe-S) clusters are found in a growing family of metalloproteins that are implicated in prokaryotic and eukaryotic DNA replication and repair. Among these are DNA helicase and helicase-nuclease enzymes that preserve chromosomal stability and are genetically linked to diseases characterized by DNA repair defects and/or a poor response to replication stress. Insight to the structural and functional importance of the conserved Fe-S domain in DNA helicases has been gleaned from structural studies of the purified proteins and characterization of Fe-S cluster site-directed mutants. In this review, we will provide a current perspective of what is known about the Fe-S cluster helicases, with an emphasis on how the conserved redox active domain may facilitate mechanistic aspects of helicase function. We will discuss testable models for how the conserved Fe-S cluster might operate in helicase and helicase-nuclease enzymes to conduct their specialized functions that help to preserve the integrity of the genome.

  10. Emerging critical roles of Fe-S clusters in DNA replication and repair

    PubMed Central

    Fuss, Jill O.; Tsai, Chi-Lin; Ishida, Justin P.; Tainer, John A.

    2015-01-01

    Fe-S clusters are partners in the origin of life that predate cells, acetyl-CoA metabolism, DNA, and the RNA world. The double helix solved the mystery of DNA replication by base pairing for accurate copying. Yet, for genome stability necessary to life, the double helix has equally important implications for damage repair. Here we examine striking advances that uncover Fe-S cluster roles both in copying the genetic sequence by DNA polymerases and in crucial repair processes for genome maintenance, as mutational defects cause cancer and degenerative disease. Moreover, we examine an exciting, controversial role for Fe-S clusters in a third element required for life – the long-range coordination and regulation of replication and repair events. By their ability to delocalize electrons over both Fe and S centers, Fe-S clusters have unbeatable features for protein conformational control and charge transfer via double-stranded DNA that may fundamentally transform our understanding of life, replication, and repair. PMID:25655665

  11. Pneumococcal Pneumolysin Induces DNA Damage and Cell Cycle Arrest

    PubMed Central

    Rai, Prashant; He, Fang; Kwang, Jimmy; Engelward, Bevin P.; Chow, Vincent T.K.

    2016-01-01

    Streptococcus pneumoniae produces pneumolysin toxin as a key virulence factor against host cells. Pneumolysin is a cholesterol-dependent cytolysin (CDC) toxin that forms lytic pores in host membranes and mediates pneumococcal disease pathogenesis by modulating inflammatory responses. Here, we show that pneumolysin, which is released during bacterial lysis, induces DNA double strand breaks (DSBs), as indicated by ataxia telangiectasia mutated (ATM)-mediated H2AX phosphorylation (γH2AX). Pneumolysin-induced γH2AX foci recruit mediator of DNA damage checkpoint 1 (MDC1) and p53 binding protein 1 (53BP1), to sites of DSBs. Importantly, results show that toxin-induced DNA damage precedes cell cycle arrest and causes apoptosis when DNA-dependent protein kinase (DNA-PK)-mediated non-homologous end joining is inhibited. Further, we observe that cells that were undergoing DNA replication harbored DSBs in greater frequency during pneumolysin treatment. This observation raises the possibility that DSBs might be arising as a result of replication fork breakdown. Additionally, neutralizing the oligomerization domain of pneumolysin with monoclonal antibody suppresses DNA damage and also cell cycle arrest, indicating that pneumolysin oligomerization is important for causing DNA damage. Taken together, this study reveals a previously unidentified ability of pneumolysin to induce cytotoxicity via DNA damage, with implications in the pathophysiology of S. pneumoniae infection. PMID:27026501

  12. Pneumococcal Pneumolysin Induces DNA Damage and Cell Cycle Arrest.

    PubMed

    Rai, Prashant; He, Fang; Kwang, Jimmy; Engelward, Bevin P; Chow, Vincent T K

    2016-01-01

    Streptococcus pneumoniae produces pneumolysin toxin as a key virulence factor against host cells. Pneumolysin is a cholesterol-dependent cytolysin (CDC) toxin that forms lytic pores in host membranes and mediates pneumococcal disease pathogenesis by modulating inflammatory responses. Here, we show that pneumolysin, which is released during bacterial lysis, induces DNA double strand breaks (DSBs), as indicated by ataxia telangiectasia mutated (ATM)-mediated H2AX phosphorylation (γH2AX). Pneumolysin-induced γH2AX foci recruit mediator of DNA damage checkpoint 1 (MDC1) and p53 binding protein 1 (53BP1), to sites of DSBs. Importantly, results show that toxin-induced DNA damage precedes cell cycle arrest and causes apoptosis when DNA-dependent protein kinase (DNA-PK)-mediated non-homologous end joining is inhibited. Further, we observe that cells that were undergoing DNA replication harbored DSBs in greater frequency during pneumolysin treatment. This observation raises the possibility that DSBs might be arising as a result of replication fork breakdown. Additionally, neutralizing the oligomerization domain of pneumolysin with monoclonal antibody suppresses DNA damage and also cell cycle arrest, indicating that pneumolysin oligomerization is important for causing DNA damage. Taken together, this study reveals a previously unidentified ability of pneumolysin to induce cytotoxicity via DNA damage, with implications in the pathophysiology of S. pneumoniae infection. PMID:27026501

  13. Weakly Charged Cationic Nanoparticles Induce DNA Bending and Strand Separation

    SciTech Connect

    Railsback, Justin; Singh, Abhishek; Pearce, Ryan; McKnight, Timothy E; Collazo, Ramon; Sitar, Zlatko; Yingling, Yaroslava; Melechko, Anatoli Vasilievich

    2012-01-01

    The understanding of interactions between double stranded (ds) DNA and charged nanoparticles will have a broad bearing on many important applications from drug delivery [ 1 4 ] to DNAtemplated metallization. [ 5 , 6 ] Cationic nanoparticles (NPs) can bind to DNA, a negatively charged molecule, through a combination of electrostatic attraction, groove binding, and intercalation. Such binding events induce changes in the conformation of a DNA strand. In nature, DNA wraps around a cylindrical protein assembly (diameter and height of 6 nm) [ 7 ] with an 220 positive charge, [ 8 ] creating the complex known as chromatin. Wrapping and bending of DNA has also been achieved in the laboratory through the binding of highly charged species such as molecular assemblies, [ 9 , 10 ] cationic dendrimers, [ 11 , 12 ] and nanoparticles. [ 13 15 ] The charge of a nanoparticle plays a crucial role in its ability to induce DNA structural changes. If a nanoparticle has a highly positive surface charge density, the DNA is likely to wrap and bend upon binding to the nanoparticle [ 13 ] (as in the case of chromatin). On the other hand, if a nanoparticle is weakly charged it will not induce dsDNA compaction. [ 9 , 10 , 15 ] Consequently, there is a transition zone from extended to compact DNA conformations which depends on the chemical nature of the nanoparticle and occurs for polycations with charges between 5 and 10. [ 9 ] While the interactions between highly charged NPs and DNA have been extensively studied, the processes that occur within the transition zone are less explored.

  14. Thermally induced polarizabilities and dipole moments of small tin clusters.

    PubMed

    Kast, Stefan M; Schäfer, Sascha; Schäfer, Rolf

    2012-04-01

    We study the influence of thermal excitation on the electric susceptibilities for Sn(6) and Sn(7) clusters by molecular beam electric deflection and Monte-Carlo simulations in conjunction with quantum-chemical calculations. At low temperatures (40 K), no field-induced broadening of the Sn(6) and Sn(7) cluster beams are observed, in agreement with vanishing permanent electric dipole moments due to their centro-symmetrical ground states. The electric polarizabilities of Sn(6) and Sn(7), as inferred from the field-induced molecular beam deflection, are in good agreement with the quantum-chemical predictions. At elevated temperatures of 50-100 K, increased polarizabilities of about 2-3 Å(3) are obtained. Also, we found indications of a field-induced beam broadening which points to the existence of permanent dipole moments of about 0.01-0.02 D per atom at higher temperatures. These results cannot be explained by thermal excitations within a harmonic oscillator model, which would yield a temperature-independent polarizability and fluxional, but not permanent, dipole moments. We analyze this behavior by Monte-Carlo simulations in order to compute average temperature-induced electric dipole moments. For that purpose, we developed a novel technique for predicting observables sampled on the quantum-chemical potential energy surface by an umbrella sampling correction of Monte-Carlo results obtained from simulations utilizing an empirical potential. The calculated, fluxional dipole moments are in tune with the observed beam broadenings. The cluster dynamics underlying the polarizability appear to be intermediate between rigid and floppy molecules which leads to the conclusion that the rotational, not the vibrational temperature seems to be the key parameter that determines the temperature dependence of the polarizability.

  15. Does rat fetal DNA induce preeclampsia in pregnant rats?

    PubMed

    Konečná, B; Borbélyová, V; Celec, P; Vlková, B

    2015-02-01

    Cell-free fetal DNA in maternal circulation is higher during preeclampsia. It is unclear whether it is the cause or the consequence of the disease. The aim of this study was to prove whether injected rat fetal DNA induces preeclampsia-like symptoms in pregnant Wistar rats. They received daily i.p. injections of water or rat fetal DNA (400 μg) from gestation day 14 to 18. Blood pressure, proteinuria, placental and fetal weight were measured at gestation day 19. Plasma DNase activity, proteinuria and creatinine clearance were assessed. There was no significant difference in any of the measured parameters. The results of this study do not confirm the hypothesis that fetal DNA might induce preeclampsia. This is in contrast to others using human fetal DNA in mice. Further studies should be focused on the effects of fetal DNA from the same species protected from DNase activity.

  16. Increased Sensitivity of DNA Damage Response-Deficient Cells to Stimulated Microgravity-Induced DNA Lesions

    PubMed Central

    Li, Nan; An, Lili; Hang, Haiying

    2015-01-01

    Microgravity is a major stress factor that astronauts have to face in space. In the past, the effects of microgravity on genomic DNA damage were studied, and it seems that the effect on genomic DNA depends on cell types and the length of exposure time to microgravity or simulated microgravity (SMG). In this study we used mouse embryonic stem (MES) and mouse embryonic fibroblast (MEF) cells to assess the effects of SMG on DNA lesions. To acquire the insight into potential mechanisms by which cells resist and/or adapt to SMG, we also included Rad9-deleted MES and Mdc1-deleted MEF cells in addition to wild type cells in this study. We observed significant SMG-induced DNA double strand breaks (DSBs) in Rad9-/- MES and Mdc1-/- MEF cells but not in their corresponding wild type cells. A similar pattern of DNA single strand break or modifications was also observed in Rad9-/- MES. As the exposure to SMG was prolonged, Rad9-/- MES cells adapted to the SMG disturbance by reducing the induced DNA lesions. The induced DNA lesions in Rad9-/- MES were due to SMG-induced reactive oxygen species (ROS). Interestingly, Mdc1-/- MEF cells were only partially adapted to the SMG disturbance. That is, the induced DNA lesions were reduced over time, but did not return to the control level while ROS returned to a control level. In addition, ROS was only partially responsible for the induced DNA lesions in Mdc1-/- MEF cells. Taken together, these data suggest that SMG is a weak genomic DNA stress and can aggravate genomic instability in cells with DNA damage response (DDR) defects. PMID:25915950

  17. Increased sensitivity of DNA damage response-deficient cells to stimulated microgravity-induced DNA lesions.

    PubMed

    Li, Nan; An, Lili; Hang, Haiying

    2015-01-01

    Microgravity is a major stress factor that astronauts have to face in space. In the past, the effects of microgravity on genomic DNA damage were studied, and it seems that the effect on genomic DNA depends on cell types and the length of exposure time to microgravity or simulated microgravity (SMG). In this study we used mouse embryonic stem (MES) and mouse embryonic fibroblast (MEF) cells to assess the effects of SMG on DNA lesions. To acquire the insight into potential mechanisms by which cells resist and/or adapt to SMG, we also included Rad9-deleted MES and Mdc1-deleted MEF cells in addition to wild type cells in this study. We observed significant SMG-induced DNA double strand breaks (DSBs) in Rad9-/- MES and Mdc1-/- MEF cells but not in their corresponding wild type cells. A similar pattern of DNA single strand break or modifications was also observed in Rad9-/- MES. As the exposure to SMG was prolonged, Rad9-/- MES cells adapted to the SMG disturbance by reducing the induced DNA lesions. The induced DNA lesions in Rad9-/- MES were due to SMG-induced reactive oxygen species (ROS). Interestingly, Mdc1-/- MEF cells were only partially adapted to the SMG disturbance. That is, the induced DNA lesions were reduced over time, but did not return to the control level while ROS returned to a control level. In addition, ROS was only partially responsible for the induced DNA lesions in Mdc1-/- MEF cells. Taken together, these data suggest that SMG is a weak genomic DNA stress and can aggravate genomic instability in cells with DNA damage response (DDR) defects.

  18. Clustered DNA Lesions Containing 5-Formyluracil and AP Site: Repair via the BER System

    PubMed Central

    Belousova, Ekaterina A.; Vasil'eva, Inna A.; Moor, Nina A.; Zatsepin, Timofey S.; Oretskaya, Tatiana S.; Lavrik, Olga I.

    2013-01-01

    Lesions in the DNA arise under ionizing irradiation conditions or various chemical oxidants as a single damage or as part of a multiply damaged site within 1–2 helical turns (clustered lesion). Here, we explored the repair opportunity of the apurinic/apyrimidinic site (AP site) composed of the clustered lesion with 5-formyluracil (5-foU) by the base excision repair (BER) proteins. We found, that if the AP site is shifted relative to the 5-foU of the opposite strand, it could be repaired primarily via the short-patch BER pathway. In this case, the cleavage efficiency of the AP site-containing DNA strand catalyzed by human apurinic/apyrimidinic endonuclease 1 (hAPE1) decreased under AP site excursion to the 3'-side relative to the lesion in the other DNA strand. DNA synthesis catalyzed by DNA polymerase lambda was more accurate in comparison to the one catalyzed by DNA polymerase beta. If the AP site was located exactly opposite 5-foU it was expected to switch the repair to the long-patch BER pathway. In this situation, human processivity factor hPCNA stimulates the process. PMID:23936307

  19. Nuclear Magnetic Resonance Solution Structure of DNA Featuring Clustered 2'-Deoxyribonolactone and 8-Oxoguanine Lesions.

    PubMed

    Zálešák, Jan; Constant, Jean-François; Jourdan, Muriel

    2016-07-19

    Ionizing radiation, free radicals, and reactive oxygen species produce hundreds of different DNA lesions. Clustered lesions are typical for ionizing radiation. They compromise the efficiency of the base excision repair (BER) pathway, and as a consequence, they are much more toxic and mutagenic than isolated lesions. Despite their biological relevance, e.g., in cancer radiotherapy and accidental exposure, they are not very well studied from a structural point of view, and while insights provided by structural studies contribute to the understanding of the repair process, only three nuclear magnetic resonance (NMR) studies of DNA containing clusters of lesions were reported. Herein, we report the first NMR solution structure of two DNAs containing a bistranded cluster with the 2'-deoxyribonolactone and 8-oxoguanine lesions. Both DNA duplexes feature a 2'-deoxyribonolactone site in the middle of the sequence of one strand and differ by the relative position of the 8-oxoguanine, staggered 3' or 5' side on the complementary strand at a three-nucleotide distance. Depending on its relative position, the repair of the 8-oxoguanine lesion by the base excision repair protein Fpg is either almost complete or inhibited. We found that the structures of the two DNAs containing a bistranded cluster of two lesions are similar and do not deviate very much from the standard B-form. As no obvious structural deformations were observed between the two duplexes, we concluded that the differences in Fpg activity are not due to differences in their global conformation. PMID:27322640

  20. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames.

    PubMed

    Tian, Ye; Wang, Tong; Liu, Wenyan; Xin, Huolin L; Li, Huilin; Ke, Yonggang; Shih, William M; Gang, Oleg

    2015-07-01

    Three-dimensional mesoscale clusters that are formed from nanoparticles spatially arranged in pre-determined positions can be thought of as mesoscale analogues of molecules. These nanoparticle architectures could offer tailored properties due to collective effects, but developing a general platform for fabricating such clusters is a significant challenge. Here, we report a strategy for assembling three-dimensional nanoparticle clusters that uses a molecular frame designed with encoded vertices for particle placement. The frame is a DNA origami octahedron and can be used to fabricate clusters with various symmetries and particle compositions. Cryo-electron microscopy is used to uncover the structure of the DNA frame and to reveal that the nanoparticles are spatially coordinated in the prescribed manner. We show that the DNA frame and one set of nanoparticles can be used to create nanoclusters with different chiroptical activities. We also show that the octahedra can serve as programmable interparticle linkers, allowing one- and two-dimensional arrays to be assembled with designed particle arrangements.

  1. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames

    SciTech Connect

    Tian, Ye; Wang, Tong; Liu, Wenyan; Xin, Huolin L.; Li, Huilin; Ke, Yonggang; Shih, William M.; Gang, Oleg

    2015-05-25

    Three-dimensional mesoscale clusters that are formed from nanoparticles spatially arranged in pre-determined positions can be thought of as mesoscale analogues of molecules. These nanoparticle architectures could offer tailored properties due to collective effects, but developing a general platform for fabricating such clusters is a significant challenge. Here, we report a strategy for assembling 3D nanoparticle clusters that uses a molecular frame designed with encoded vertices for particle placement. The frame is a DNA origami octahedron and can be used to fabricate clusters with various symmetries and particle compositions. Cryo-electron microscopy is used to uncover the structure of the DNA frame and to reveal that the nanoparticles are spatially coordinated in the prescribed manner. We show that the DNA frame and one set of nanoparticles can be used to create nanoclusters with different chiroptical activities. We also show that the octahedra can serve as programmable interparticle linkers, allowing one- and two-dimensional arrays to be assembled that have designed particle arrangements.

  2. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames

    DOE PAGES

    Tian, Ye; Wang, Tong; Liu, Wenyan; Xin, Huolin L.; Li, Huilin; Ke, Yonggang; Shih, William M.; Gang, Oleg

    2015-05-25

    Three-dimensional mesoscale clusters that are formed from nanoparticles spatially arranged in pre-determined positions can be thought of as mesoscale analogues of molecules. These nanoparticle architectures could offer tailored properties due to collective effects, but developing a general platform for fabricating such clusters is a significant challenge. Here, we report a strategy for assembling 3D nanoparticle clusters that uses a molecular frame designed with encoded vertices for particle placement. The frame is a DNA origami octahedron and can be used to fabricate clusters with various symmetries and particle compositions. Cryo-electron microscopy is used to uncover the structure of the DNA framemore » and to reveal that the nanoparticles are spatially coordinated in the prescribed manner. We show that the DNA frame and one set of nanoparticles can be used to create nanoclusters with different chiroptical activities. We also show that the octahedra can serve as programmable interparticle linkers, allowing one- and two-dimensional arrays to be assembled that have designed particle arrangements.« less

  3. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Wang, Tong; Liu, Wenyan; Xin, Huolin L.; Li, Huilin; Ke, Yonggang; Shih, William M.; Gang, Oleg

    2015-07-01

    Three-dimensional mesoscale clusters that are formed from nanoparticles spatially arranged in pre-determined positions can be thought of as mesoscale analogues of molecules. These nanoparticle architectures could offer tailored properties due to collective effects, but developing a general platform for fabricating such clusters is a significant challenge. Here, we report a strategy for assembling three-dimensional nanoparticle clusters that uses a molecular frame designed with encoded vertices for particle placement. The frame is a DNA origami octahedron and can be used to fabricate clusters with various symmetries and particle compositions. Cryo-electron microscopy is used to uncover the structure of the DNA frame and to reveal that the nanoparticles are spatially coordinated in the prescribed manner. We show that the DNA frame and one set of nanoparticles can be used to create nanoclusters with different chiroptical activities. We also show that the octahedra can serve as programmable interparticle linkers, allowing one- and two-dimensional arrays to be assembled with designed particle arrangements.

  4. Characterization of a novel DNA glycosylase from S. sahachiroi involved in the reduction and repair of azinomycin B induced DNA damage.

    PubMed

    Wang, Shan; Liu, Kai; Xiao, Le; Yang, LiYuan; Li, Hong; Zhang, FeiXue; Lei, Lei; Li, ShengQing; Feng, Xu; Li, AiYing; He, Jing

    2016-01-01

    Azinomycin B is a hybrid polyketide/nonribosomal peptide natural product and possesses antitumor activity by interacting covalently with duplex DNA and inducing interstrand crosslinks. In the biosynthetic study of azinomycin B, a gene (orf1) adjacent to the azinomycin B gene cluster was found to be essential for the survival of the producer, Streptomyces sahachiroi ATCC33158. Sequence analyses revealed that Orf1 belongs to the HTH_42 superfamily of conserved bacterial proteins which are widely distributed in pathogenic and antibiotic-producing bacteria with unknown functions. The protein exhibits a protective effect against azinomycin B when heterologously expressed in azinomycin-sensitive strains. EMSA assays showed its sequence nonspecific binding to DNA and structure-specific binding to azinomycin B-adducted sites, and ChIP assays revealed extensive association of Orf1 with chromatin in vivo. Interestingly, Orf1 not only protects target sites by protein-DNA interaction but is also capable of repairing azinomycin B-mediated DNA cross-linking. It possesses the DNA glycosylase-like activity and specifically repairs DNA damage induced by azinomycin B through removal of both adducted nitrogenous bases in the cross-link. This bifunctional protein massively binds to genomic DNA to reduce drug attack risk as a novel DNA binding protein and triggers the base excision repair system as a novel DNA glycosylase.

  5. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains.

    PubMed Central

    Vallee, B L; Coleman, J E; Auld, D S

    1991-01-01

    We now recognize three distinct motifs of DNA-binding zinc proteins: (i) zinc fingers, (ii) zinc clusters, and (iii) zinc twists. Until very recently, x-ray crystallographic or NMR three-dimensional structure analyses of DNA-binding zinc proteins have not been available to serve as standards of reference for the zinc binding sites of these families of proteins. Those of the DNA-binding domains of the fungal transcription factor GAL4 and the rat glucocorticoid receptor are the first to have been determined. Both proteins contain two zinc binding sites, and in both, cysteine residues are the sole zinc ligands. In GAL4, two zinc atoms are bound to six cysteine residues which form a "zinc cluster" akin to that of metallothionein; the distance between the two zinc atoms of GAL4 is approximately 3.5 A. In the glucocorticoid receptor, each zinc atom is bound to four cysteine residues; the interatomic zinc-zinc distance is approximately 13 A, and in this instance, a "zinc twist" is represented by a helical DNA recognition site located between the two zinc atoms. Zinc clusters and zinc twists are here recognized as two distinctive motifs in DNA-binding proteins containing multiple zinc atoms. For native "zinc fingers," structural data do not exist as yet; consequently, the interatomic distances between zinc atoms are not known. As further structural data become available, the structural and functional significance of these different motifs in their binding to DNA and other proteins participating in the transmission of the genetic message will become apparent. Images PMID:1846973

  6. Nitrous acid induced damage in T7 DNA and phage

    SciTech Connect

    Scearce, L.M.; Masker, W.E.

    1986-05-01

    The response of bacteriophage T7 to nitrous acid damage was investigated. The T7 system allows in vitro mimicry of most aspects of in vivo DNA metabolism. Nitrous acid is of special interest since it has been previously shown to induce deletions and point mutations as well as novel adducts in DNA. T7 phage was exposed to 56 mM nitrous acid at pH 4.6 in vivo, causing a time dependent 98% decrease in survival for each 10 min duration of exposure to nitrous acid. These studies were extended to include examination of pure T7 DNA exposed in vitro to nitrous acid conditions identical to those used in the in vivo survival studies. The treated DNA was dialyzed to remove the nitrous acid and the DNA was encapsulated into empty phage heads. These in vitro packaged phage showed a survival curve analogous to the in vivo system. There was no change in survival when either in vitro or in vivo exposed phage were grown on wild type E. coli or on E. coli strains deficient in DNA repair due to mutations in DNA polymerase I, exonuclease III or a uvrA mutation. Survival was not increased when nitrous acid treated T7 were grown on E. coli induced for SOS repair. In vitro replication of nitrous acid treated DNA showed a time dependent decrease in the total amount of DNA synthesized.

  7. A Green Solvent Induced DNA Package

    NASA Astrophysics Data System (ADS)

    Satpathi, Sagar; Sengupta, Abhigyan; Hridya, V. M.; Gavvala, Krishna; Koninti, Raj Kumar; Roy, Bibhisan; Hazra, Partha

    2015-03-01

    Mechanistic details of DNA compaction is essential blue print for gene regulation in living organisms. Many in vitro studies have been implemented using several compaction agents. However, these compacting agents may have some kinds of cytotoxic effects to the cells. To minimize this aspect, several research works had been performed, but people have never focused green solvent, i.e. room temperature ionic liquid as DNA compaction agent. To the best of our knowledge, this is the first ever report where we have shown that guanidinium tris(pentafluoroethyl)trifluorophosphate (Gua-IL) acts as a DNA compacting agent. The compaction ability of Gua-IL has been verified by different spectroscopic techniques, like steady state emission, circular dichroism, dynamic light scattering and UV melting. Notably, we have extensively probed this compaction by Gua-IL through field emission scanning electron microscopy (FE-SEM) and fluorescence microscopy images. We also have discussed the plausible compaction mechanism process of DNA by Gua-IL. Our results suggest that Gua-IL forms a micellar kind of self aggregation above a certain concentration (>=1 mM), which instigates this compaction process. This study divulges the specific details of DNA compaction mechanism by a new class of compaction agent, which is highly biodegradable and eco friendly in nature.

  8. Pea (Pisum sativum) cells arrested in G2 have nascent DNA with breaks between replicons and replication clusters

    SciTech Connect

    Van't Hof, J.

    1980-01-01

    DNA fiber autoradiography and alkaline sucrose sedimentation of DNA of cultured pea-root cells (Pisum sativum) arrested in G2 by carbohydrate starvation demonstrated that nascent DNA molecules of replicon (16 to 27 x 10/sup 6/D) and apparent cluster (approx. 330 x 10/sup 6/D) size were not joined. That the arrested cells were in G2 was confirmed by single-cell autoradiography and cytophotometry. In pea there are about 18 replicons per average cluster, 4.2 x 10/sup 3/ clusters, and 7.7 x 10/sup 4/ replicons per genome.

  9. In cellulo phosphorylation of XRCC4 Ser320 by DNA-PK induced by DNA damage.

    PubMed

    Sharma, Mukesh Kumar; Imamichi, Shoji; Fukuchi, Mikoto; Samarth, Ravindra Mahadeo; Tomita, Masanori; Matsumoto, Yoshihisa

    2016-03-01

    XRCC4 is a protein associated with DNA Ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end joining. In response to treatment with ionizing radiation or DNA damaging agents, XRCC4 undergoes DNA-PK-dependent phosphorylation. Furthermore, Ser260 and Ser320 (or Ser318 in alternatively spliced form) of XRCC4 were identified as the major phosphorylation sites by purified DNA-PK in vitro through mass spectrometry. However, it has not been clear whether these sites are phosphorylated in vivo in response to DNA damage. In the present study, we generated an antibody that reacts with XRCC4 phosphorylated at Ser320 and examined in cellulo phosphorylation status of XRCC4 Ser320. The phosphorylation of XRCC4 Ser320 was induced by γ-ray irradiation and treatment with Zeocin. The phosphorylation of XRCC4 Ser320 was detected even after 1 Gy irradiation and increased in a manner dependent on radiation dose. The phosphorylation was observed immediately after irradiation and remained mostly unchanged for up to 4 h. The phosphorylation was inhibited by DNA-PK inhibitor NU7441 and was undetectable in DNA-PKcs-deficient cells, indicating that the phosphorylation was mainly mediated by DNA-PK. These results suggested potential usefulness of the phosphorylation status of XRCC4 Ser320 as an indicator of DNA-PK functionality in living cells. PMID:26666690

  10. In cellulo phosphorylation of XRCC4 Ser320 by DNA-PK induced by DNA damage

    PubMed Central

    Sharma, Mukesh Kumar; Imamichi, Shoji; Fukuchi, Mikoto; Samarth, Ravindra Mahadeo; Tomita, Masanori; Matsumoto, Yoshihisa

    2016-01-01

    XRCC4 is a protein associated with DNA Ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end joining. In response to treatment with ionizing radiation or DNA damaging agents, XRCC4 undergoes DNA-PK-dependent phosphorylation. Furthermore, Ser260 and Ser320 (or Ser318 in alternatively spliced form) of XRCC4 were identified as the major phosphorylation sites by purified DNA-PK in vitro through mass spectrometry. However, it has not been clear whether these sites are phosphorylated in vivo in response to DNA damage. In the present study, we generated an antibody that reacts with XRCC4 phosphorylated at Ser320 and examined in cellulo phosphorylation status of XRCC4 Ser320. The phosphorylation of XRCC4 Ser320 was induced by γ-ray irradiation and treatment with Zeocin. The phosphorylation of XRCC4 Ser320 was detected even after 1 Gy irradiation and increased in a manner dependent on radiation dose. The phosphorylation was observed immediately after irradiation and remained mostly unchanged for up to 4 h. The phosphorylation was inhibited by DNA-PK inhibitor NU7441 and was undetectable in DNA-PKcs-deficient cells, indicating that the phosphorylation was mainly mediated by DNA-PK. These results suggested potential usefulness of the phosphorylation status of XRCC4 Ser320 as an indicator of DNA-PK functionality in living cells. PMID:26666690

  11. Amphiphilic oligoethyleneimine-β-cyclodextrin "click" clusters for enhanced DNA delivery.

    PubMed

    Martínez, Álvaro; Bienvenu, Céline; Jiménez Blanco, José L; Vierling, Pierre; Mellet, Carmen Ortiz; García Fernández, José M; Di Giorgio, Christophe

    2013-08-16

    Monodisperse amphiphilic oligoethyleneimine (OEI)-β-cyclodextrin (βCD) clusters have been prepared, and their potential as gene delivery systems has been evaluated in comparison with a nonamphiphilic congener. The general prototype incorporates tetraethyleneimine segments linked to the primary rim of βCD through either triazolyl or thioureidocysteaminyl connectors. Transfection efficiency data for the corresponding CD:pDNA nanocomplexes (CDplexes) in BNL-CL2 murine hepatocytes evidenced the strong beneficial effect of facial amphiphilicity. PMID:23859761

  12. U1 snDNA clusters in grasshoppers: chromosomal dynamics and genomic organization

    PubMed Central

    Anjos, A; Ruiz-Ruano, F J; Camacho, J P M; Loreto, V; Cabrero, J; de Souza, M J; Cabral-de-Mello, D C

    2015-01-01

    The spliceosome, constituted by a protein set associated with small nuclear RNA (snRNA), is responsible for mRNA maturation through intron removal. Among snRNA genes, U1 is generally a conserved repetitive sequence. To unveil the chromosomal/genomic dynamics of this multigene family in grasshoppers, we mapped U1 genes by fluorescence in situ hybridization in 70 species belonging to the families Proscopiidae, Pyrgomorphidae, Ommexechidae, Romaleidae and Acrididae. Evident clusters were observed in all species, indicating that, at least, some U1 repeats are tandemly arrayed. High conservation was observed in the first four families, with most species carrying a single U1 cluster, frequently located in the third or fourth longest autosome. By contrast, extensive variation was observed among Acrididae, from a single chromosome pair carrying U1 to all chromosome pairs carrying it, with occasional occurrence of two or more clusters in the same chromosome. DNA sequence analysis in Eyprepocnemis plorans (species carrying U1 clusters on seven different chromosome pairs) and Locusta migratoria (carrying U1 in a single chromosome pair) supported the coexistence of functional and pseudogenic lineages. One of these pseudogenic lineages was truncated in the same nucleotide position in both species, suggesting that it was present in a common ancestor to both species. At least in E. plorans, this U1 snDNA pseudogenic lineage was associated with 5S rDNA and short interspersed elements (SINE)-like mobile elements. Given that we conclude in grasshoppers that the U1 snDNA had evolved under the birth-and-death model and that its intragenomic spread might be related with mobile elements. PMID:25248465

  13. TreeParser-Aided Klee Diagrams Display Taxonomic Clusters in DNA Barcode and Nuclear Gene Datasets

    PubMed Central

    Stoeckle, Mark Y.; Coffran, Cameron

    2013-01-01

    Indicator vector analysis of a nucleotide sequence alignment generates a compact heat map, called a Klee diagram, with potential insight into clustering patterns in evolution. However, so far this approach has examined only mitochondrial cytochrome c oxidase I (COI) DNA barcode sequences. To further explore, we developed TreeParser, a freely-available web-based program that sorts a sequence alignment according to a phylogenetic tree generated from the dataset. We applied TreeParser to nuclear gene and COI barcode alignments from birds and butterflies. Distinct blocks in the resulting Klee diagrams corresponded to species and higher-level taxonomic divisions in both groups, and this enabled graphic comparison of phylogenetic information in nuclear and mitochondrial genes. Our results demonstrate TreeParser-aided Klee diagrams objectively display taxonomic clusters in nucleotide sequence alignments. This approach may help establish taxonomy in poorly studied groups and investigate higher-level clustering which appears widespread but not well understood. PMID:24022383

  14. TreeParser-aided Klee diagrams display taxonomic clusters in DNA barcode and nuclear gene datasets.

    PubMed

    Stoeckle, Mark Y; Coffran, Cameron

    2013-01-01

    Indicator vector analysis of a nucleotide sequence alignment generates a compact heat map, called a Klee diagram, with potential insight into clustering patterns in evolution. However, so far this approach has examined only mitochondrial cytochrome c oxidase I (COI) DNA barcode sequences. To further explore, we developed TreeParser, a freely-available web-based program that sorts a sequence alignment according to a phylogenetic tree generated from the dataset. We applied TreeParser to nuclear gene and COI barcode alignments from birds and butterflies. Distinct blocks in the resulting Klee diagrams corresponded to species and higher-level taxonomic divisions in both groups, and this enabled graphic comparison of phylogenetic information in nuclear and mitochondrial genes. Our results demonstrate TreeParser-aided Klee diagrams objectively display taxonomic clusters in nucleotide sequence alignments. This approach may help establish taxonomy in poorly studied groups and investigate higher-level clustering which appears widespread but not well understood.

  15. Substrate-induced DNA polymerase β activation.

    PubMed

    Beard, William A; Shock, David D; Batra, Vinod K; Prasad, Rajendra; Wilson, Samuel H

    2014-11-01

    DNA polymerases and substrates undergo conformational changes upon forming protein-ligand complexes. These conformational adjustments can hasten or deter DNA synthesis and influence substrate discrimination. From structural comparison of binary DNA and ternary DNA-dNTP complexes of DNA polymerase β, several side chains have been implicated in facilitating formation of an active ternary complex poised for chemistry. Site-directed mutagenesis of these highly conserved residues (Asp-192, Arg-258, Phe-272, Glu-295, and Tyr-296) and kinetic characterization provides insight into the role these residues play during correct and incorrect insertion as well as their role in conformational activation. The catalytic efficiencies for correct nucleotide insertion for alanine mutants were wild type ∼ R258A > F272A ∼ Y296A > E295A > D192A. Because the efficiencies for incorrect insertion were affected to about the same extent for each mutant, the effects on fidelity were modest (<5-fold). The R258A mutant exhibited an increase in the single-turnover rate of correct nucleotide insertion. This suggests that the wild-type Arg-258 side chain generates a population of non-productive ternary complexes. Structures of binary and ternary substrate complexes of the R258A mutant and a mutant associated with gastric carcinomas, E295K, provide molecular insight into intermediate structural conformations not appreciated previously. Although the R258A mutant crystal structures were similar to wild-type enzyme, the open ternary complex structure of E295K indicates that Arg-258 stabilizes a non-productive conformation of the primer terminus that would decrease catalysis. Significantly, the open E295K ternary complex binds two metal ions indicating that metal binding cannot overcome the modified interactions that have interrupted the closure of the N-subdomain. PMID:25261471

  16. DNA Photonics — Probing Light-Induced Dynamics in DNA on the Femtosecond Timescale

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Fiebig, Torsten

    In Chap. 10, Wang and Fiebig discuss about a new field, DNA photonics that is important to understand the role of DNA as a functional building block in molecular nanoscale devices, and is also expected to shed light on the complex interactions between structural and electronic properties of DNA. The latter is important for biomedical applications such as DNA-targeted drug design. In this chapter, the authors present experimental data from several different classes of functionalized DNA systems and illustrate the relationship between the structural dynamics and charge injection/migration using state-of-the art femtosecond broadband spectroscopy. They also highlight the importance of the initial electronic excitation for modelling electron transfer rates and point out that ultrafast electronic energy migration, dissipation, and (de)localization must be included into the theoretical description of light-induced dynamics in DNA.

  17. DNA containing CpG motifs induces angiogenesis

    NASA Astrophysics Data System (ADS)

    Zheng, Mei; Klinman, Dennis M.; Gierynska, Malgorzata; Rouse, Barry T.

    2002-06-01

    New blood vessel formation in the cornea is an essential step in the pathogenesis of a blinding immunoinflammatory reaction caused by ocular infection with herpes simplex virus (HSV). By using a murine corneal micropocket assay, we found that HSV DNA (which contains a significant excess of potentially bioactive "CpG" motifs when compared with mammalian DNA) induces angiogenesis. Moreover, synthetic oligodeoxynucleotides containing CpG motifs attract inflammatory cells and stimulate the release of vascular endothelial growth factor (VEGF), which in turn triggers new blood vessel formation. In vitro, CpG DNA induces the J774A.1 murine macrophage cell line to produce VEGF. In vivo CpG-induced angiogenesis was blocked by the administration of anti-mVEGF Ab or the inclusion of "neutralizing" oligodeoxynucleotides that specifically oppose the stimulatory activity of CpG DNA. These findings establish that DNA containing bioactive CpG motifs induces angiogenesis, and suggest that CpG motifs in HSV DNA may contribute to the blinding lesions of stromal keratitis.

  18. Harnessing DNA-induced immune responses for improving cancer vaccines.

    PubMed

    Herrada, Andrés A; Rojas-Colonelli, Nicole; González-Figueroa, Paula; Roco, Jonathan; Oyarce, César; Ligtenberg, Maarten A; Lladser, Alvaro

    2012-11-01

    DNA vaccines have emerged as an attractive strategy to promote protective cellular and humoral immunity against the encoded antigen. DNA vaccines are easy to generate, inexpensive to produce and purify at large-scale, highly stable and safe. In addition, plasmids used for DNA vaccines act as powerful "danger signals" by stimulating several DNA-sensing innate immune receptors that promote the induction of protective adaptive immunity. The induction of tumor-specific immune responses represents a major challenge for DNA vaccines because most of tumor-associated antigens are normal non-mutated self-antigens. As a consequence, induction of potentially self-reactive T cell responses against such poorly immunogenic antigens is controlled by mechanisms of central and peripheral tolerance as well as tumor-induced immunosuppression. Although several DNA vaccines against cancer have reached clinical testing, disappointing results have been observed. Therefore, the development of new adjuvants that strongly stimulate the induction of antitumor T cell immunity and counteract immune-suppressive regulation is an attractive approach to enhance the potency of DNA vaccines and overcome tumor-associated tolerance. Understanding the DNA-sensing signaling pathways of innate immunity that mediate the induction of T cell responses elicited by DNA vaccines represents a unique opportunity to develop novel adjuvants that enhance vaccine potency. The advance of DNA adjuvants needs to be complemented with the development of potent delivery systems, in order to step toward successful clinical application. Here, we briefly discuss recent evidence showing how to harness DNA-induced immune response to improve the potency of cancer vaccines and counteract tumor-associated tolerance.

  19. Harnessing DNA-induced immune responses for improving cancer vaccines

    PubMed Central

    Herrada, Andrés A.; Rojas-Colonelli, Nicole; González-Figueroa, Paula; Roco, Jonathan; Oyarce, César; Ligtenberg, Maarten A.; Lladser, Alvaro

    2012-01-01

    DNA vaccines have emerged as an attractive strategy to promote protective cellular and humoral immunity against the encoded antigen. DNA vaccines are easy to generate, inexpensive to produce and purify at large-scale, highly stable and safe. In addition, plasmids used for DNA vaccines act as powerful “danger signals” by stimulating several DNA-sensing innate immune receptors that promote the induction of protective adaptive immunity. The induction of tumor-specific immune responses represents a major challenge for DNA vaccines because most of tumor-associated antigens are normal non-mutated self-antigens. As a consequence, induction of potentially self-reactive T cell responses against such poorly immunogenic antigens is controlled by mechanisms of central and peripheral tolerance as well as tumor-induced immunosuppression. Although several DNA vaccines against cancer have reached clinical testing, disappointing results have been observed. Therefore, the development of new adjuvants that strongly stimulate the induction of antitumor T cell immunity and counteract immune-suppressive regulation is an attractive approach to enhance the potency of DNA vaccines and overcome tumor-associated tolerance. Understanding the DNA-sensing signaling pathways of innate immunity that mediate the induction of T cell responses elicited by DNA vaccines represents a unique opportunity to develop novel adjuvants that enhance vaccine potency. The advance of DNA adjuvants needs to be complemented with the development of potent delivery systems, in order to step toward successful clinical application. Here, we briefly discuss recent evidence showing how to harness DNA-induced immune response to improve the potency of cancer vaccines and counteract tumor-associated tolerance. PMID:23111166

  20. Mutational clusters generated by non-processive polymerases: A case study using DNA polymerase betain vitro.

    PubMed

    García-Villada, Libertad; Drake, John W

    2010-08-01

    Available DNA mutational spectra reveal that the number of mutants with multiple mutations ("multiples") is usually greater than expected from a random distribution of mutations among mutants. These overloads imply the occurrence of non-random clusters of mutations, probably generated during episodes of low-fidelity DNA synthesis. Excess multiples have been reported not only for viruses, bacteria, and eukaryotic cells but also for the DNA polymerases of phages T4 and RB69 in vitro. In the simplest case of a purified polymerase, non-random clusters may be generated by a subfraction of phenotypic variants able to introduce more errors per cycle of DNA synthesis than the normal enzyme. According to this hypothesis, excess multiples are not expected with non-processive polymerases even if they harbor rare mutator variants. DNA polymerase beta (Pol beta) is a mammalian DNA-repair polymerase with very low processivity. Although several Pol beta mutational spectra have been described, there is conflicting evidence on whether or not excess multiples occur, with spectra based on the HSV-tk system tending to show excess multiples. Excess multiples generated by Pol beta or any of its mutants might imply that the excesses of multiples observed in numerous other systems, especially those with processive polymerases, could be artifactual. Here, the distributions of mutations generated by native and recombinant rat Pol beta and by the Pol beta(Y265C) mutator were analyzed in the M13mp2 lacZalpha system. Our results present no evidence for a significant excess of multiples over the expected numbers with any of the Pol beta enzymes tested in this system. The reported excess of Pol beta-generated multiples in the HSV-tk system may reflect a reduced efficiency of detection of base substitutions that cause weak phenotypes, which in turn may artifactually increase the frequency of multiples. PMID:20627824

  1. Genomic DNA transposition induced by human PGBD5

    PubMed Central

    Henssen, Anton G; Henaff, Elizabeth; Jiang, Eileen; Eisenberg, Amy R; Carson, Julianne R; Villasante, Camila M; Ray, Mondira; Still, Eric; Burns, Melissa; Gandara, Jorge; Feschotte, Cedric; Mason, Christopher E; Kentsis, Alex

    2015-01-01

    Transposons are mobile genetic elements that are found in nearly all organisms, including humans. Mobilization of DNA transposons by transposase enzymes can cause genomic rearrangements, but our knowledge of human genes derived from transposases is limited. In this study, we find that the protein encoded by human PGBD5, the most evolutionarily conserved transposable element-derived gene in vertebrates, can induce stereotypical cut-and-paste DNA transposition in human cells. Genomic integration activity of PGBD5 requires distinct aspartic acid residues in its transposase domain, and specific DNA sequences containing inverted terminal repeats with similarity to piggyBac transposons. DNA transposition catalyzed by PGBD5 in human cells occurs genome-wide, with precise transposon excision and preference for insertion at TTAA sites. The apparent conservation of DNA transposition activity by PGBD5 suggests that genomic remodeling contributes to its biological function. DOI: http://dx.doi.org/10.7554/eLife.10565.001 PMID:26406119

  2. Photochromic switching of the DNA helicity induced by azobenzene derivatives.

    PubMed

    Deiana, Marco; Pokladek, Ziemowit; Olesiak-Banska, Joanna; Młynarz, Piotr; Samoc, Marek; Matczyszyn, Katarzyna

    2016-01-01

    The photochromic properties of azobenzene, involving conformational changes occurring upon interaction with light, provide an excellent tool to establish new ways of selective regulation applied to biosystems. We report here on the binding of two water-soluble 4-(phenylazo)benzoic acid derivatives (Azo-2N and Azo-3N) with double stranded DNA and demonstrate that the photoisomerization of Azo-3N leads to changes in DNA structure. In particular, we show that stabilization and destabilization of the B-DNA secondary structure can be photochemically induced in situ by light. This photo-triggered process is fully reversible and could be an alternative pathway to control a broad range of biological processes. Moreover, we found that the bicationic Azo-3N exhibited a higher DNA-binding constant than the monocationic Azo-2N pointing out that the number of positive charges along the photosensitive polyamines chain plays a pivotal role in stabilizing the photochrome-DNA complex. PMID:27339811

  3. Sequence-induced curvature of Tenebrio molitor satellite DNA.

    PubMed

    Plohl, M; Borstnik, B; Ugarković, D; Gamulin, V

    1990-09-01

    Single satellite DNA constitutes about 50% of the Tenebrio molitor genome. Electrophoresis of 142 base pair long satellite monomers on nondenaturating polyacrylamide gel shows retarded mobility, a characteristic of fragments with sequence-induced DNA curvature. Migrational analysis of circularly permuted satellite monomers revealed the existence of 2 bend centers in the monomer sequence. We calculated the trajectory of DNA helix axis according to the algorithm of De Santis et al. This model predicts that T molitor naked satellite DNA forms a solenoid structure with left-handed superhelix. One turn of the superhelix has approximately 310 base pairs and a 33 nm pitch. Point mutations found in the satellite DNA (1.8%) influence bending characteristics, but do not distort the general geometry of satellite superhelix.

  4. Photochromic switching of the DNA helicity induced by azobenzene derivatives

    NASA Astrophysics Data System (ADS)

    Deiana, Marco; Pokladek, Ziemowit; Olesiak-Banska, Joanna; Młynarz, Piotr; Samoc, Marek; Matczyszyn, Katarzyna

    2016-06-01

    The photochromic properties of azobenzene, involving conformational changes occurring upon interaction with light, provide an excellent tool to establish new ways of selective regulation applied to biosystems. We report here on the binding of two water-soluble 4-(phenylazo)benzoic acid derivatives (Azo-2N and Azo-3N) with double stranded DNA and demonstrate that the photoisomerization of Azo-3N leads to changes in DNA structure. In particular, we show that stabilization and destabilization of the B-DNA secondary structure can be photochemically induced in situ by light. This photo-triggered process is fully reversible and could be an alternative pathway to control a broad range of biological processes. Moreover, we found that the bicationic Azo-3N exhibited a higher DNA-binding constant than the monocationic Azo-2N pointing out that the number of positive charges along the photosensitive polyamines chain plays a pivotal role in stabilizing the photochrome-DNA complex.

  5. Photochromic switching of the DNA helicity induced by azobenzene derivatives

    PubMed Central

    Deiana, Marco; Pokladek, Ziemowit; Olesiak-Banska, Joanna; Młynarz, Piotr; Samoc, Marek; Matczyszyn, Katarzyna

    2016-01-01

    The photochromic properties of azobenzene, involving conformational changes occurring upon interaction with light, provide an excellent tool to establish new ways of selective regulation applied to biosystems. We report here on the binding of two water-soluble 4-(phenylazo)benzoic acid derivatives (Azo-2N and Azo-3N) with double stranded DNA and demonstrate that the photoisomerization of Azo-3N leads to changes in DNA structure. In particular, we show that stabilization and destabilization of the B-DNA secondary structure can be photochemically induced in situ by light. This photo-triggered process is fully reversible and could be an alternative pathway to control a broad range of biological processes. Moreover, we found that the bicationic Azo-3N exhibited a higher DNA-binding constant than the monocationic Azo-2N pointing out that the number of positive charges along the photosensitive polyamines chain plays a pivotal role in stabilizing the photochrome-DNA complex. PMID:27339811

  6. UV-induced DNA damage and repair: a review.

    PubMed

    Sinha, Rajeshwar P; Häder, Donat P

    2002-04-01

    Increases in ultraviolet radiation at the Earth's surface due to the depletion of the stratospheric ozone layer have recently fuelled interest in the mechanisms of various effects it might have on organisms. DNA is certainly one of the key targets for UV-induced damage in a variety of organisms ranging from bacteria to humans. UV radiation induces two of the most abundant mutagenic and cytotoxic DNA lesions such as cyclobutane-pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs) and their Dewar valence Isomers. However, cells have developed a number of repair or tolerance mechanism to counteract the DNA damage caused by UV or any other stressors. Photoreactivation with the help of the enzyme photolyase is one of the most important and frequently occurring repair mechanisms in a variety of organisms. Excision repair, which can be distinguished into base excision repair (BER) and nucleotide excision repair (NER), also plays an important role in DNA repair in several organisms with the help of a number of glycosylases and polymerases, respectively. In addition, mechanisms such as mutagenic repair or dimer bypass, recombinational repair, cell-cycle checkpoints, apoptosis and certain alternative repair pathways are also operative in various organisms. This review deals with UV-induced DNA damage and the associated repair mechanisms as well as methods of detecting DNA damage and its future perspectives.

  7. Polymerase η suppresses telomere defects induced by DNA damaging agents

    PubMed Central

    Pope-Varsalona, Hannah; Liu, Fu-Jun; Guzik, Lynda; Opresko, Patricia L.

    2014-01-01

    Telomeres at chromosome ends are normally masked from proteins that signal and repair DNA double strand breaks (DSBs). Bulky DNA lesions can cause DSBs if they block DNA replication, unless they are bypassed by translesion (TLS) DNA polymerases. Here, we investigated roles for TLS polymerase η, (polη) in preserving telomeres following acute physical UVC exposure and chronic chemical Cr(VI) exposure, which both induce blocking lesions. We report that polη protects against cytotoxicity and replication stress caused by Cr(VI), similar to results with ultraviolet C light (UVC). Both exposures induce ataxia telangiectasia and Rad3-related (ATR) kinase and polη accumulation into nuclear foci and localization to individual telomeres, consistent with replication fork stalling at DNA lesions. Polη-deficient cells exhibited greater numbers of telomeres that co-localized with DSB response proteins after exposures. Furthermore, the genotoxic exposures induced telomere aberrations associated with failures in telomere replication that were suppressed by polη. We propose that polη's ability to bypass bulky DNA lesions at telomeres is critical for proper telomere replication following genotoxic exposures. PMID:25355508

  8. Enantioselective DNA condensation induced by heptameric lanthanum helical supramolecular enantiomers.

    PubMed

    Bao, Fei-Fei; Xu, Xin-Xin; Zhou, Wen; Pang, Chun-Yan; Li, Zaijun; Gu, Zhi-Guo

    2014-09-01

    DNA condensation induced by a pair of heptameric La(III) helical enantiomers M-[La7(S-L)6(CO3)(NO3)6(OCH3)(CH3OH)7]·2CH3OH·5H2O and P-[La7(R-L)6(CO3)(NO3)6(OCH3)(CH3OH)5(H2O)2]·2CH3OH·4H2O (M-La and P-La, L=2-(2-hydroxybenzylamino)-3-carbamoylpropanoic acid) has been investigated by UV/vis spectroscopy, fluorescence spectroscopy, CD spectroscopy, EMSA, RALS, DLS, and SEM. The enantiomers M-La and P-La could induce CT-DNA condensation at a low concentration as observed in UV/vis spectroscopy. DNA condensates possessed globular nanoparticles with nearly homogeneous sizes in solid state determined by SEM (ca. 250 nm for M-La and ca. 200 nm for P-La). The enantiomers bound to DNA through electrostatic attraction and hydrogen bond interactions in a major groove, and rapidly condensed free DNA into its compact state. DNA decompaction has been acquired by using EDTA as disassembly agent, and analyzed by UV/vis spectroscopy, CD spectroscopy and EMSA. Moreover, the enantiomers M-La and P-La displayed discernible discrimination in DNA interaction and DNA condensation, as well as DNA decondensation. Our study suggested that lanthanum(III) enantiomers M-La and P-La were efficient DNA packaging agents with potential applications in gene delivery.

  9. Oxidative DNA damage induced by aminoacetone, an amino acid metabolite.

    PubMed

    Hiraku, Y; Sugimoto, J; Yamaguchi, T; Kawanishi, S

    1999-05-01

    We investigated DNA damage induced by aminoacetone, a metabolite of threonine and glycine. Pulsed-field gel electrophoresis revealed that aminoacetone caused cellular DNA cleavage. Aminoacetone increased the amount of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in human cultured cells in a dose-dependent manner. The formation of 8-oxodG in calf thymus DNA increased due to aminoacetone only in the presence of Cu(II). DNA ladder formation was observed at higher concentrations of aminoacetone than those causing DNA cleavage. Flow cytometry showed that aminoacetone enhanced the generation of hydrogen peroxide (H2O2) in cultured cells. Aminoacetone caused damage to 32P-5'-end-labeled DNA fragments, obtained from the human c-Ha-ras-1 and p53 genes, at cytosine and thymine residues in the presence of Cu(II). Catalase and bathocuproine inhibited DNA damage, suggesting that H2O2 and Cu(I) were involved. Analysis of the products generated from aminoacetone revealed that aminoacetone underwent Cu(II)-mediated autoxidation in two different pathways: the major pathway in which methylglyoxal and NH+4 are generated and the minor pathway in which 2,5-dimethylpyrazine is formed through condensation of two molecules of aminoacetone. These findings suggest that H2O2 generated by the autoxidation of aminoacetone reacts with Cu(I) to form reactive species capable of causing oxidative DNA damage.

  10. Mitochondrial DNA released by trauma induces neutrophil extracellular traps.

    PubMed

    Itagaki, Kiyoshi; Kaczmarek, Elzbieta; Lee, Yen Ting; Tang, I Tien; Isal, Burak; Adibnia, Yashar; Sandler, Nicola; Grimm, Melissa J; Segal, Brahm H; Otterbein, Leo E; Hauser, Carl J

    2015-01-01

    Neutrophil extracellular traps (NETs) are critical for anti-bacterial activity of the innate immune system. We have previously shown that mitochondrial damage-associated molecular patterns (mtDAMPs), including mitochondrial DNA (mtDNA), are released into the circulation after injury. We therefore questioned whether mtDNA is involved in trauma-induced NET formation. Treatment of human polymorphoneutrophils (PMN) with mtDNA induced robust NET formation, though in contrast to phorbol myristate acetate (PMA) stimulation, no NADPH-oxidase involvement was required. Moreover, formation of mtDNA-induced NETs was completely blocked by TLR9 antagonist, ODN-TTAGGG. Knowing that infective outcomes of trauma in elderly people are more severe than in young people, we measured plasma mtDNA and NET formation in elderly and young trauma patients and control subjects. MtDNA levels were significantly higher in the plasma of elderly trauma patients than young patients, despite lower injury severity scores in the elderly group. NETs were not visible in circulating PMN isolated from either young or old control subjects. NETs were however, detected in PMN isolated from young trauma patients and to a lesser extent from elderly patients. Stimulation by PMA induced widespread NET formation in PMN from both young volunteers and young trauma patients. NET response to PMA was much less pronounced in both elderly volunteers' PMN and in trauma patients' PMN. We conclude that mtDNA is a potent inducer of NETs that activates PMN via TLR9 without NADPH-oxidase involvement. We suggest that decreased NET formation in the elderly regardless of higher mtDNA levels in their plasma may result from decreased levels of TLR9 and/or other molecules, such as neutrophil elastase and myeloperoxidase that are involved in NET generation. Further study of the links between circulating mtDNA and NET formation may elucidate the mechanisms of trauma-related organ failure as well as the greater susceptibility to

  11. DNA interference: DNA-induced gene silencing in the appendicularian Oikopleura dioica.

    PubMed

    Omotezako, Tatsuya; Onuma, Takeshi A; Nishida, Hiroki

    2015-05-22

    RNA interference is widely employed as a gene-silencing system in eukaryotes for host defence against invading nucleic acids. In response to invading double-stranded RNA (dsRNA), mRNA is degraded in sequence-specific manner. So far, however, DNA interference (DNAi) has been reported only in plants, ciliates and archaea, and has not been explored in Metazoa. Here, we demonstrate that linear double-stranded DNA promotes both sequence-specific transcription blocking and mRNA degradation in developing embryos of the appendicularian Oikopleura dioica. Introduced polymerase chain reaction (PCR) products or linearized plasmids encoding Brachyury induced tail malformation and mRNA degradation. This malformation was also promoted by DNA fragments of the putative 5'-flanking region and intron without the coding region. PCR products encoding Zic-like1 and acetylcholine esterase also induced loss of sensory organ and muscle acetylcholinesterase activity, respectively. Co-injection of mRNA encoding EGFP and mCherry, and PCR products encoding these fluorescent proteins, induced sequence-specific decrease in the green or red fluorescence, respectively. These results suggest that O. dioica possesses a defence system against exogenous DNA and RNA, and that DNA fragment-induced gene silencing would be mediated through transcription blocking as well as mRNA degradation. This is the first report of DNAi in Metazoa.

  12. DNA interference: DNA-induced gene silencing in the appendicularian Oikopleura dioica

    PubMed Central

    Omotezako, Tatsuya; Onuma, Takeshi A.; Nishida, Hiroki

    2015-01-01

    RNA interference is widely employed as a gene-silencing system in eukaryotes for host defence against invading nucleic acids. In response to invading double-stranded RNA (dsRNA), mRNA is degraded in sequence-specific manner. So far, however, DNA interference (DNAi) has been reported only in plants, ciliates and archaea, and has not been explored in Metazoa. Here, we demonstrate that linear double-stranded DNA promotes both sequence-specific transcription blocking and mRNA degradation in developing embryos of the appendicularian Oikopleura dioica. Introduced polymerase chain reaction (PCR) products or linearized plasmids encoding Brachyury induced tail malformation and mRNA degradation. This malformation was also promoted by DNA fragments of the putative 5′-flanking region and intron without the coding region. PCR products encoding Zic-like1 and acetylcholine esterase also induced loss of sensory organ and muscle acetylcholinesterase activity, respectively. Co-injection of mRNA encoding EGFP and mCherry, and PCR products encoding these fluorescent proteins, induced sequence-specific decrease in the green or red fluorescence, respectively. These results suggest that O. dioica possesses a defence system against exogenous DNA and RNA, and that DNA fragment-induced gene silencing would be mediated through transcription blocking as well as mRNA degradation. This is the first report of DNAi in Metazoa. PMID:25904672

  13. DNA interference: DNA-induced gene silencing in the appendicularian Oikopleura dioica.

    PubMed

    Omotezako, Tatsuya; Onuma, Takeshi A; Nishida, Hiroki

    2015-05-22

    RNA interference is widely employed as a gene-silencing system in eukaryotes for host defence against invading nucleic acids. In response to invading double-stranded RNA (dsRNA), mRNA is degraded in sequence-specific manner. So far, however, DNA interference (DNAi) has been reported only in plants, ciliates and archaea, and has not been explored in Metazoa. Here, we demonstrate that linear double-stranded DNA promotes both sequence-specific transcription blocking and mRNA degradation in developing embryos of the appendicularian Oikopleura dioica. Introduced polymerase chain reaction (PCR) products or linearized plasmids encoding Brachyury induced tail malformation and mRNA degradation. This malformation was also promoted by DNA fragments of the putative 5'-flanking region and intron without the coding region. PCR products encoding Zic-like1 and acetylcholine esterase also induced loss of sensory organ and muscle acetylcholinesterase activity, respectively. Co-injection of mRNA encoding EGFP and mCherry, and PCR products encoding these fluorescent proteins, induced sequence-specific decrease in the green or red fluorescence, respectively. These results suggest that O. dioica possesses a defence system against exogenous DNA and RNA, and that DNA fragment-induced gene silencing would be mediated through transcription blocking as well as mRNA degradation. This is the first report of DNAi in Metazoa. PMID:25904672

  14. Accumulation of DNA damage-induced chromatin alterations in tissue-specific stem cells: the driving force of aging?

    PubMed

    Schuler, Nadine; Rübe, Claudia E

    2013-01-01

    Accumulation of DNA damage leading to stem cell exhaustion has been proposed to be a principal mechanism of aging. Using 53BP1-foci as a marker for DNA double-strand breaks (DSBs), hair follicle stem cells (HFSCs) in mouse epidermis were analyzed for age-related DNA damage response (DDR). We observed increasing amounts of 53BP1-foci during the natural aging process independent of telomere shortening and after protracted low-dose radiation, suggesting substantial accumulation of DSBs in HFSCs. Electron microscopy combined with immunogold-labeling showed multiple small 53BP1 clusters diffusely distributed throughout the highly compacted heterochromatin of aged HFSCs, but single large 53BP1 clusters in irradiated HFSCs. These remaining 53BP1 clusters did not colocalize with core components of non-homologous end-joining, but with heterochromatic histone modifications. Based on these results we hypothesize that these lesions were not persistently unrepaired DSBs, but may reflect chromatin rearrangements caused by the repair or misrepair of DSBs. Flow cytometry showed increased activation of repair proteins and damage-induced chromatin modifications, triggering apoptosis and cellular senescence in irradiated, but not in aged HFSCs. These results suggest that accumulation of DNA damage-induced chromatin alterations, whose structural dimensions reflect the complexity of the initial genotoxic insult, may lead to different DDR events, ultimately determining the biological outcome of HFSCs. Collectively, our findings support the hypothesis that aging might be largely the remit of structural changes to chromatin potentially leading to epigenetically induced transcriptional deregulation.

  15. Quantifying clustered DNA damage induction and repair by gel electrophoresis, electronic imaging and number average length analysis

    NASA Technical Reports Server (NTRS)

    Sutherland, Betsy M.; Georgakilas, Alexandros G.; Bennett, Paula V.; Laval, Jacques; Sutherland, John C.; Gewirtz, A. M. (Principal Investigator)

    2003-01-01

    Assessing DNA damage induction, repair and consequences of such damages requires measurement of specific DNA lesions by methods that are independent of biological responses to such lesions. Lesions affecting one DNA strand (altered bases, abasic sites, single strand breaks (SSB)) as well as damages affecting both strands (clustered damages, double strand breaks) can be quantified by direct measurement of DNA using gel electrophoresis, gel imaging and number average length analysis. Damage frequencies as low as a few sites per gigabase pair (10(9)bp) can be quantified by this approach in about 50ng of non-radioactive DNA, and single molecule methods may allow such measurements in DNA from single cells. This review presents the theoretical basis, biochemical requirements and practical aspects of this approach, and shows examples of their applications in identification and quantitation of complex clustered damages.

  16. Water induced weakly bound electrons in DNA.

    PubMed

    Berashevich, Julia; Chakraborty, Tapash

    2008-06-21

    We have studied the effect of humidity on the electronic properties of DNA base pairs. We found that the hydrogen links of the nucleobases with water molecules lead to a shift of the pi electron density from carbon atoms to nitrogen atoms and can change the symmetry of the wave function for some nucleobases. As a result, the orbital energies are shifted which leads to a decrease in the potential barrier for the hole transfer between the G-C and A-T pairs from 0.7 eV for the dehydrated case to 0.123 eV for the hydrated. More importantly, the pi electron density redistribution activated by hydration is enhanced by the intrastrand interactions. This leads to a modification of the nucleobase chemical structures from the covalent type to a resonance structure with separated charges, where some pi electrons are not locked up into the covalent bonds. Within the (G-C)(2) sequences, there is overlapping of the electronic clouds of such unlocked electrons belonging to the stacked guanines, that significantly increases the electron coupling between them to V(DA)=0.095 eV against the V(DA)=0.025 eV for the dehydrated case. Consequently, the charge transfer between two guanines within the (G-C)(2) sequences is increased by 250 times due to hydration. The presence of nonbonded electrons suppress the band gap up to approximately 3.0 eV, that allows us to consider DNA as a narrow band gap semiconductor.

  17. Bayesian clustering of DNA sequences using Markov chains and a stochastic partition model.

    PubMed

    Jääskinen, Väinö; Parkkinen, Ville; Cheng, Lu; Corander, Jukka

    2014-02-01

    In many biological applications it is necessary to cluster DNA sequences into groups that represent underlying organismal units, such as named species or genera. In metagenomics this grouping needs typically to be achieved on the basis of relatively short sequences which contain different types of errors, making the use of a statistical modeling approach desirable. Here we introduce a novel method for this purpose by developing a stochastic partition model that clusters Markov chains of a given order. The model is based on a Dirichlet process prior and we use conjugate priors for the Markov chain parameters which enables an analytical expression for comparing the marginal likelihoods of any two partitions. To find a good candidate for the posterior mode in the partition space, we use a hybrid computational approach which combines the EM-algorithm with a greedy search. This is demonstrated to be faster and yield highly accurate results compared to earlier suggested clustering methods for the metagenomics application. Our model is fairly generic and could also be used for clustering of other types of sequence data for which Markov chains provide a reasonable way to compress information, as illustrated by experiments on shotgun sequence type data from an Escherichia coli strain. PMID:24246289

  18. The N-terminal Domain of the Drosophila Mitochondrial Replicative DNA Helicase Contains an Iron-Sulfur Cluster and Binds DNA*

    PubMed Central

    Stiban, Johnny; Farnum, Gregory A.; Hovde, Stacy L.; Kaguni, Laurie S.

    2014-01-01

    The metazoan mitochondrial DNA helicase is an integral part of the minimal mitochondrial replisome. It exhibits strong sequence homology with the bacteriophage T7 gene 4 protein primase-helicase (T7 gp4). Both proteins contain distinct N- and C-terminal domains separated by a flexible linker. The C-terminal domain catalyzes its characteristic DNA-dependent NTPase activity, and can unwind duplex DNA substrates independently of the N-terminal domain. Whereas the N-terminal domain in T7 gp4 contains a DNA primase activity, this function is lost in metazoan mtDNA helicase. Thus, although the functions of the C-terminal domain and the linker are partially understood, the role of the N-terminal region in the metazoan replicative mtDNA helicase remains elusive. Here, we show that the N-terminal domain of Drosophila melanogaster mtDNA helicase coordinates iron in a 2Fe-2S cluster that enhances protein stability in vitro. The N-terminal domain binds the cluster through conserved cysteine residues (Cys68, Cys71, Cys102, and Cys105) that are responsible for coordinating zinc in T7 gp4. Moreover, we show that the N-terminal domain binds both single- and double-stranded DNA oligomers, with an apparent Kd of ∼120 nm. These findings suggest a possible role for the N-terminal domain of metazoan mtDNA helicase in recruiting and binding DNA at the replication fork. PMID:25023283

  19. The N-terminal domain of the Drosophila mitochondrial replicative DNA helicase contains an iron-sulfur cluster and binds DNA.

    PubMed

    Stiban, Johnny; Farnum, Gregory A; Hovde, Stacy L; Kaguni, Laurie S

    2014-08-29

    The metazoan mitochondrial DNA helicase is an integral part of the minimal mitochondrial replisome. It exhibits strong sequence homology with the bacteriophage T7 gene 4 protein primase-helicase (T7 gp4). Both proteins contain distinct N- and C-terminal domains separated by a flexible linker. The C-terminal domain catalyzes its characteristic DNA-dependent NTPase activity, and can unwind duplex DNA substrates independently of the N-terminal domain. Whereas the N-terminal domain in T7 gp4 contains a DNA primase activity, this function is lost in metazoan mtDNA helicase. Thus, although the functions of the C-terminal domain and the linker are partially understood, the role of the N-terminal region in the metazoan replicative mtDNA helicase remains elusive. Here, we show that the N-terminal domain of Drosophila melanogaster mtDNA helicase coordinates iron in a 2Fe-2S cluster that enhances protein stability in vitro. The N-terminal domain binds the cluster through conserved cysteine residues (Cys(68), Cys(71), Cys(102), and Cys(105)) that are responsible for coordinating zinc in T7 gp4. Moreover, we show that the N-terminal domain binds both single- and double-stranded DNA oligomers, with an apparent Kd of ∼120 nm. These findings suggest a possible role for the N-terminal domain of metazoan mtDNA helicase in recruiting and binding DNA at the replication fork.

  20. Enhancement of suicidal DNA vaccine potency by delaying suicidal DNA-induced cell death.

    PubMed

    Kim, T W; Hung, C-F; Juang, J; He, L; Hardwick, J M; Wu, T-C

    2004-02-01

    DNA-based alphaviral RNA replicon vectors, also called suicidal DNA vectors, alleviate the concerns of integration or transformation related to conventional DNA vectors since suicidal DNA vectors eventually cause apoptosis of transfected cells. However, the expression of inserted genes in these vectors is transient and the potency of suicidal DNA vaccines may be compromised because of apoptotic cell death. Therefore, to enhance the immune response to the human papillomavirus type 16 (HPV-16) E7 antigen, we generated a DNA-based Semliki Forest virus vector, pSCA1, encoding E7 fused with BCL-xL, an antiapoptotic member of the BCL-2 family. Our results indicated that pSCA1 encoding E7/BCL-xL fusion protein delayed cell death in the pSCA1-transfected dendritic cell line and generated significantly higher E7-specific CD8(+) T-cell-mediated immune responses and better antitumor effects than pSCA1 encoding wild-type E7 gene in vaccinated mice. The antiapoptotic function of BCL-xL is important for the enhancement of antigen-specific CD8(+) T-cell responses in vaccinated mice, because a point mutant of BCL-xL lacking antiapoptotic function was ineffective. These results suggest that strategies to delay suicidal DNA-induced cell death using antiapoptotic proteins may greatly enhance the potency of suicidal DNA.

  1. Low Dose Iron Treatments Induce a DNA Damage Response in Human Endothelial Cells within Minutes

    PubMed Central

    Mollet, Inês G.; Giess, Adam; Paschalaki, Koralia; Periyasamy, Manikandan; Lidington, Elaine C.; Mason, Justin C.; Jones, Michael D.; Game, Laurence; Ali, Simak; Shovlin, Claire L.

    2016-01-01

    Background Spontaneous reports from patients able to report vascular sequelae in real time, and recognition that serum non transferrin bound iron may reach or exceed 10μmol/L in the blood stream after iron tablets or infusions, led us to hypothesize that conventional iron treatments may provoke acute vascular injury. This prompted us to examine whether a phenotype could be observed in normal human endothelial cells treated with low dose iron. Methodology Confluent primary human endothelial cells (EC) were treated with filter-sterilized iron (II) citrate or fresh media for RNA sequencing and validation studies. RNA transcript profiles were evaluated using directional RNA sequencing with no pre-specification of target sequences. Alignments were counted for exons and junctions of the gene strand only, blinded to treatment types. Principal Findings Rapid changes in RNA transcript profiles were observed in endothelial cells treated with 10μmol/L iron (II) citrate, compared to media-treated cells. Clustering for Gene Ontology (GO) performed on all differentially expressed genes revealed significant differences in biological process terms between iron and media-treated EC, whereas 10 sets of an equivalent number of randomly selected genes from the respective EC gene datasets showed no significant differences in any GO terms. After 1 hour, differentially expressed genes clustered to vesicle mediated transport, protein catabolism, and cell cycle (Benjamini p = 0.0016, 0.0024 and 0.0032 respectively), and by 6 hours, to cellular response to DNA damage stimulus most significantly through DNA repair genes FANCG, BLM, and H2AFX. Comet assays demonstrated that 10μM iron treatment elicited DNA damage within 1 hour. This was accompanied by a brisk DNA damage response pulse, as ascertained by the development of DNA damage response (DDR) foci, and p53 stabilization. Significance These data suggest that low dose iron treatments are sufficient to modify the vascular endothelium

  2. Evolutionary Dynamics of rDNA Clusters in Chromosomes of Five Clam Species Belonging to the Family Veneridae (Mollusca, Bivalvia)

    PubMed Central

    Pérez-García, Concepción; Hurtado, Ninoska S.; Morán, Paloma; Pasantes, Juan J.

    2014-01-01

    The chromosomal changes accompanying bivalve evolution are an area about which few reports have been published. To improve our understanding on chromosome evolution in Veneridae, ribosomal RNA gene clusters were mapped by fluorescent in situ hybridization (FISH) to chromosomes of five species of venerid clams (Venerupis corrugata, Ruditapes philippinarum, Ruditapes decussatus, Dosinia exoleta, and Venus verrucosa). The results were anchored to the most comprehensive molecular phylogenetic tree currently available for Veneridae. While a single major rDNA cluster was found in each of the five species, the number of 5S rDNA clusters showed high interspecies variation. Major rDNA was either subterminal to the short arms or intercalary to the long arms of metacentric or submetacentric chromosomes, whereas minor rDNA signals showed higher variability. Major and minor rDNAs map to different chromosome pairs in all species, but in R. decussatus one of the minor rDNA gene clusters and the major rDNA cluster were located in the same position on a single chromosome pair. This interspersion of both sequences was confirmed by fiber FISH. Telomeric signals appeared at both ends of every chromosome in all species. FISH mapping data are discussed in relation to the molecular phylogenetic trees currently available for Veneridae. PMID:24967400

  3. Sequence Recognition of DNA by Protein-Induced Conformational Transitions

    SciTech Connect

    Watkins, Derrick; Mohan, Srividya; Koudelka, Gerald B.; Williams, Loren Dean

    2010-11-09

    The binding of proteins to specific sequences of DNA is an important feature of virtually all DNA transactions. Proteins recognize specific DNA sequences using both direct readout (sensing types and positions of DNA functional groups) and indirect readout (sensing DNA conformation and deformability). Previously we showed that the P22 c2 repressor N-terminal domain (P22R NTD) forces the central non-contacted 5{prime}-ATAT-3{prime} sequence of the DNA operator into the B{prime} state, a state known to affect DNA hydration, rigidity and bending. Usually the B{prime} state, with a narrow minor groove and a spine of hydration, is reserved for A-tract DNA (TpA steps disrupt A-tracts). Here, we have co-crystallized P22R NTD with an operator containing a central 5{prime}-ACGT-3{prime} sequence in the non-contacted region. C {center_dot} G base pairs have not previously been observed in the B{prime} state and are thought to prevent it. However, P22R NTD induces a narrow minor groove and a spine of hydration to 5{prime}-ACGT-3{prime}. We observe that C {center_dot} G base pairs have distinctive destabilizing and disordering effects on the spine of hydration. It appears that the reduced stability of the spine results in a higher energy cost for the B to B{prime} transition. The differential effect of DNA sequence on the barrier to this transition allows the protein to sense the non-contacted DNA sequence.

  4. DNA damage-induced replication arrest in Xenopus egg extracts

    PubMed Central

    Stokes, Matthew P.; Michael, W. Matthew

    2003-01-01

    Chromosomal replication is sensitive to the presence of DNA-damaging alkylating agents, such as methyl methanesulfonate (MMS). MMS is known to inhibit replication though activation of the DNA damage checkpoint and through checkpoint-independent slowing of replication fork progression. Using Xenopus egg extracts, we now report an additional pathway that is stimulated by MMS-induced damage. We show that, upon incubation in egg extracts, MMS-treated DNA activates a diffusible inhibitor that blocks, in trans, chromosomal replication. The downstream effect of the inhibitor is a failure to recruit proliferating cell nuclear antigen, but not DNA polymerase α, to the nascent replication fork. Thus, alkylation damage activates an inhibitor that intercepts the replication pathway at a point between the polymerase α and proliferating cell nuclear antigen execution steps. We also show that activation of the inhibitor does not require the DNA damage checkpoint; rather, stimulation of the pathway described here results in checkpoint activation. These data describe a novel replication arrest pathway, and they also provide an example of how subpathways within the DNA damage response network are integrated to promote efficient cell cycle arrest in response to damaged DNA. PMID:14581453

  5. DNA damage profiles induced by sunlight at different latitudes.

    PubMed

    Schuch, André Passaglia; Yagura, Teiti; Makita, Kazuo; Yamamoto, Hiromasa; Schuch, Nelson Jorge; Agnez-Lima, Lucymara Fassarella; MacMahon, Ricardo Monreal; Menck, Carlos Frederico Martins

    2012-04-01

    Despite growing knowledge on the biological effects of ultraviolet (UV) radiation on human health and ecosystems, it is still difficult to predict the negative impacts of the increasing incidence of solar UV radiation in a scenario of global warming and climate changes. Hence, the development and application of DNA-based biological sensors to monitor the solar UV radiation under different environmental conditions is of increasing importance. With a mind to rendering a molecular view-point of the genotoxic impact of sunlight, field experiments were undertaken with a DNA-dosimeter system in parallel with physical photometry of solar UVB/UVA radiation, at various latitudes in South America. On applying biochemical and immunological approaches based on specific DNA-repair enzymes and antibodies, for evaluating sunlight-induced DNA damage profiles, it became clear that the genotoxic potential of sunlight does indeed vary according to latitude. Notwithstanding, while induction of oxidized DNA bases is directly dependent on an increase in latitude, the generation of 6-4PPs is inversely so, whereby the latter can be regarded as a biomolecular marker of UVB incidence. This molecular DNA lesion-pattern largely reflects the relative incidence of UVA and UVB energy at any specific latitude. Hereby is demonstrated the applicability of this DNA-based biosensor for additional, continuous field experiments, as a means of registering variations in the genotoxic impact of solar UV radiation.

  6. Characterization of Homogeneous, Cooperative Protein-DNA Clusters by Sedimentation Equilibrium Analytical Ultracentrifugation and Atomic Force Microscopy.

    PubMed

    Tessmer, Ingrid; Fried, Michael G

    2015-01-01

    Strong, positively cooperative binding can lead to the clustering of proteins on DNA. Here, we describe one approach to the analysis of such clusters. Our example is based on recent studies of the interactions of O(6)-alkylguanine DNA alkyltransferase (AGT) with high-molecular-weight DNAs (Adams et al., 2009; Tessmer, Melikishvili, & Fried, 2012). Cooperative cluster size distributions are predicted using the simplest homogeneous binding and cooperativity (HBC) model, together with data obtained by sedimentation equilibrium analysis. These predictions are tested using atomic force microscopy imaging; for AGT, measured cluster sizes are found to be significantly smaller than those predicted by the HBC model. A mechanism that may account for cluster size limitation is briefly discussed.

  7. Characterization of Homogeneous, Cooperative Protein-DNA Clusters by Sedimentation Equilibrium Analytical Ultracentrifugation and Atomic Force Microscopy.

    PubMed

    Tessmer, Ingrid; Fried, Michael G

    2015-01-01

    Strong, positively cooperative binding can lead to the clustering of proteins on DNA. Here, we describe one approach to the analysis of such clusters. Our example is based on recent studies of the interactions of O(6)-alkylguanine DNA alkyltransferase (AGT) with high-molecular-weight DNAs (Adams et al., 2009; Tessmer, Melikishvili, & Fried, 2012). Cooperative cluster size distributions are predicted using the simplest homogeneous binding and cooperativity (HBC) model, together with data obtained by sedimentation equilibrium analysis. These predictions are tested using atomic force microscopy imaging; for AGT, measured cluster sizes are found to be significantly smaller than those predicted by the HBC model. A mechanism that may account for cluster size limitation is briefly discussed. PMID:26412659

  8. A Combinational Clustering Based Method for cDNA Microarray Image Segmentation.

    PubMed

    Shao, Guifang; Li, Tiejun; Zuo, Wangda; Wu, Shunxiang; Liu, Tundong

    2015-01-01

    Microarray technology plays an important role in drawing useful biological conclusions by analyzing thousands of gene expressions simultaneously. Especially, image analysis is a key step in microarray analysis and its accuracy strongly depends on segmentation. The pioneering works of clustering based segmentation have shown that k-means clustering algorithm and moving k-means clustering algorithm are two commonly used methods in microarray image processing. However, they usually face unsatisfactory results because the real microarray image contains noise, artifacts and spots that vary in size, shape and contrast. To improve the segmentation accuracy, in this article we present a combination clustering based segmentation approach that may be more reliable and able to segment spots automatically. First, this new method starts with a very simple but effective contrast enhancement operation to improve the image quality. Then, an automatic gridding based on the maximum between-class variance is applied to separate the spots into independent areas. Next, among each spot region, the moving k-means clustering is first conducted to separate the spot from background and then the k-means clustering algorithms are combined for those spots failing to obtain the entire boundary. Finally, a refinement step is used to replace the false segmentation and the inseparable ones of missing spots. In addition, quantitative comparisons between the improved method and the other four segmentation algorithms--edge detection, thresholding, k-means clustering and moving k-means clustering--are carried out on cDNA microarray images from six different data sets. Experiments on six different data sets, 1) Stanford Microarray Database (SMD), 2) Gene Expression Omnibus (GEO), 3) Baylor College of Medicine (BCM), 4) Swiss Institute of Bioinformatics (SIB), 5) Joe DeRisi's individual tiff files (DeRisi), and 6) University of California, San Francisco (UCSF), indicate that the improved approach is

  9. A Combinational Clustering Based Method for cDNA Microarray Image Segmentation

    PubMed Central

    Shao, Guifang; Li, Tiejun; Zuo, Wangda; Wu, Shunxiang; Liu, Tundong

    2015-01-01

    Microarray technology plays an important role in drawing useful biological conclusions by analyzing thousands of gene expressions simultaneously. Especially, image analysis is a key step in microarray analysis and its accuracy strongly depends on segmentation. The pioneering works of clustering based segmentation have shown that k-means clustering algorithm and moving k-means clustering algorithm are two commonly used methods in microarray image processing. However, they usually face unsatisfactory results because the real microarray image contains noise, artifacts and spots that vary in size, shape and contrast. To improve the segmentation accuracy, in this article we present a combination clustering based segmentation approach that may be more reliable and able to segment spots automatically. First, this new method starts with a very simple but effective contrast enhancement operation to improve the image quality. Then, an automatic gridding based on the maximum between-class variance is applied to separate the spots into independent areas. Next, among each spot region, the moving k-means clustering is first conducted to separate the spot from background and then the k-means clustering algorithms are combined for those spots failing to obtain the entire boundary. Finally, a refinement step is used to replace the false segmentation and the inseparable ones of missing spots. In addition, quantitative comparisons between the improved method and the other four segmentation algorithms--edge detection, thresholding, k-means clustering and moving k-means clustering--are carried out on cDNA microarray images from six different data sets. Experiments on six different data sets, 1) Stanford Microarray Database (SMD), 2) Gene Expression Omnibus (GEO), 3) Baylor College of Medicine (BCM), 4) Swiss Institute of Bioinformatics (SIB), 5) Joe DeRisi’s individual tiff files (DeRisi), and 6) University of California, San Francisco (UCSF), indicate that the improved approach is

  10. A Combinational Clustering Based Method for cDNA Microarray Image Segmentation.

    PubMed

    Shao, Guifang; Li, Tiejun; Zuo, Wangda; Wu, Shunxiang; Liu, Tundong

    2015-01-01

    Microarray technology plays an important role in drawing useful biological conclusions by analyzing thousands of gene expressions simultaneously. Especially, image analysis is a key step in microarray analysis and its accuracy strongly depends on segmentation. The pioneering works of clustering based segmentation have shown that k-means clustering algorithm and moving k-means clustering algorithm are two commonly used methods in microarray image processing. However, they usually face unsatisfactory results because the real microarray image contains noise, artifacts and spots that vary in size, shape and contrast. To improve the segmentation accuracy, in this article we present a combination clustering based segmentation approach that may be more reliable and able to segment spots automatically. First, this new method starts with a very simple but effective contrast enhancement operation to improve the image quality. Then, an automatic gridding based on the maximum between-class variance is applied to separate the spots into independent areas. Next, among each spot region, the moving k-means clustering is first conducted to separate the spot from background and then the k-means clustering algorithms are combined for those spots failing to obtain the entire boundary. Finally, a refinement step is used to replace the false segmentation and the inseparable ones of missing spots. In addition, quantitative comparisons between the improved method and the other four segmentation algorithms--edge detection, thresholding, k-means clustering and moving k-means clustering--are carried out on cDNA microarray images from six different data sets. Experiments on six different data sets, 1) Stanford Microarray Database (SMD), 2) Gene Expression Omnibus (GEO), 3) Baylor College of Medicine (BCM), 4) Swiss Institute of Bioinformatics (SIB), 5) Joe DeRisi's individual tiff files (DeRisi), and 6) University of California, San Francisco (UCSF), indicate that the improved approach is

  11. DNA melting and genotoxicity induced by silver nanoparticles and graphene.

    PubMed

    Ivask, Angela; Voelcker, Nicolas H; Seabrook, Shane A; Hor, Maryam; Kirby, Jason K; Fenech, Michael; Davis, Thomas P; Ke, Pu Chun

    2015-05-18

    We have revealed a connection between DNA-nanoparticle (NP) binding and in vitro DNA damage induced by citrate- and branched polyethylenimine-coated silver nanoparticles (c-AgNPs and b-AgNPs) as well as graphene oxide (GO) nanosheets. All three types of nanostructures triggered an early onset of DNA melting, where the extent of the melting point shift depends upon both the type and concentration of the NPs. Specifically, at a DNA/NP weight ratio of 1.1/1, the melting temperature of lambda DNA dropped from 94 °C down to 76 °C, 60 °C, and room temperature for GO, c-AgNPs and b-AgNPs, respectively. Consistently, dynamic light scattering revealed that the largest changes in DNA hydrodynamic size were also associated with the binding of b-AgNPs. Upon introduction to cells, b-AgNPs also exhibited the highest cytotoxicity, at the half-maximal inhibitory (IC50) concentrations of 3.2, 2.9, and 5.2 mg/L for B and T-lymphocyte cell lines and primary lymphocytes, compared to the values of 13.4, 12.2, and 12.5 mg/L for c-AgNPs and 331, 251, and 120 mg/L for GO nanosheets, respectively. At cytotoxic concentrations, all NPs elicited elevated genotoxicities via the increased number of micronuclei in the lymphocyte cells. However, b-AgNPs also induced micronuclei at subtoxic concentrations starting from 0.1 mg/L, likely due to their stronger cellular adhesion and internalization, as well as their subsequent interference with normal DNA synthesis or chromosome segregation during the cell cycle. This study facilitates our understanding of the effects of NP chemical composition, surface charge, and morphology on DNA stability and genotoxicity, with implications ranging from nanotoxicology to nanobiotechnology and nanomedicine. PMID:25781053

  12. DNA binding induces conformational transition within human DNA topoisomerase I in solution.

    PubMed

    Oleinikov, Vladimir; Sukhanova, Alyona; Mochalov, Konstantin; Ustinova, Olga; Kudelina, Irina; Bronstein, Igor; Nabiev, Igor

    2002-01-01

    We employed Raman and circular dichroism (CD) spectroscopy to probe the molecular structure of 68-kDa recombinant human DNA topoisomerase I (TopoI) in solution, in a complex with a 16-bp DNA fragment containing a camptothecin-enhanced TopoI cleavage site, and in a ternary complex with this oligonucleotide and topotecan. Raman spectroscopy reveals a TopoI secondary structure transition and significant changes in the hydrogen bonding of the tyrosine residues induced by the DNA binding. CD spectroscopy confirms the Raman data and identifies a DNA-induced (>7%) decrease of the TopoI alpha helix accompanied by at least a 6% increase of the beta structure. The Raman DNA molecular signatures demonstrated a bandshift that is expected for a net change in the environment of guanine C6 [double bond] O groups from pairing to solvent exposure. The formation of a ternary cleavage complex with TopoI, DNA, and topotecan as probed by CD spectroscopy reveals neither additional modifications of the TopoI secondary structure nor of the oligonucleotide structure, compared to the TopoI-oligonucleotide complex. PMID:12209444

  13. Laser-induced reconstruction of Ag clusters in helium droplets

    NASA Astrophysics Data System (ADS)

    Gomez, Luis F.; O'Connell, Sean M. O.; Jones, Curtis F.; Kwok, Justin; Vilesov, Andrey F.

    2016-09-01

    Silver clusters were assembled in helium droplets of different sizes ranging from 105 to 1010 atoms. The absorption of the clusters was studied upon laser irradiation at 355 nm and 532 nm, which is close to the plasmon resonance maximum in spherical Ag clusters and in the range of the absorption of the complex, branched Ag clusters, respectively. The absorption of the pulsed (7 ns) radiation at 532 nm shows some pronounced saturation effects, absent upon the continuous irradiation. This phenomenon has been discussed in terms of the melting of the complex Ag clusters at high laser fluence, resulting in a loss of the 532 nm absorption. Estimates of the heat transfer also indicate that a bubble may be formed around the hot cluster at high fluences, which may result in ejection of the cluster from the droplet, or disintegration of the droplet entirely.

  14. A novel bisindole-PBD conjugate causes DNA damage induced apoptosis via inhibition of DNA repair pathway

    PubMed Central

    Sarma, Pranjal; Ramaiah, M Janaki; Kamal, Ahmed; Bhadra, Utpal; Bhadra, Manika Pal

    2014-01-01

    DNA damage response (DDR) that includes cell cycle check points, DNA repair, apoptosis, and senescence is intimately linked with cancer. It shields an organism against cancer development when genomic integrity fails. DNA repair pathways protect the cells from tumor progression caused as a result of DNA damage induced by irradiation or due to chemotherapeutic treatment. Many promising anticancer agents have been identified that target specific DNA repair pathways in response to DNA damage thereby leading to apoptosis. Here we identified a novel bisindole-PBD conjugate that possess potent anticancer activity in breast cancer cells. Further studies aimed at understanding the mechanism of action of the molecule showed its role in DNA damage induced apoptosis via inhibition of DNA repair pathway. Trypan blue and BrdU assay exhibited a dose-dependent effect. Single-stranded DNA damage was observed by COMET assay. In addition DNA damage induced ROS generation with simultaneous activation of ATM and ATR upon compound treatment was observed. Further downregulation of Bcl-XL and activation of Bax showed DNA damage induced apoptosis in MCF-7 and MDAMB-231 cells. In conclusion, it can be summarized that bisindole-PBD conjugate induces DNA damage in a dose dependent (2, 4, and 8 μM) manner by inhibiting the DNA repair genes. PMID:25010292

  15. DNA structural alterations induced by bis-netropsins modulate human DNA topoisomerase I cleavage activity and poisoning by camptothecin.

    PubMed

    Sukhanova, Alyona; Grokhovsky, Sergei; Ermishov, Michael; Mochalov, Konstantin; Zhuze, Alexei; Oleinikov, Vladimir; Nabiev, Igor

    2002-07-01

    Bis-netropsins (bis-Nts) are efficient catalytic inhibitors of human DNA topoisomerase I (top I). These DNA minor groove binders are considered to serve as suppressors of top I-linked DNA breaks, which is generally believed to be related to their affinity to DNA. In this study, it was found that bis-Nts exhibit sequence-specificity of suppression of the strong top I-specific DNA cleavage sites and that this sequence-specificity is determined by differential ligand-induced structural alterations of DNA. Raman scattering analysis of bis-Nts interactions with double-stranded oligonucleotides, each containing the site of specific affinity to one of bis-Nts and a distinctly located top I degenerate consensus, demonstrated that bis-Nts induce not only structural changes in duplex DNA at their loading position, but also conformational changes in a distant top I-specific DNA cleavage site. The ability to alter the DNA structure correlates with the anti-top I inhibitory activities of the ligands. In addition, DNA structural alterations induced by bis-Nts were shown to be responsible for modulation of the camptothecin (CPT)-mediated DNA cleavage by top I. This effect is expressed in the bis-Nts-induced enhancement of some of the CPT-dependent DNA cleavage sites as well as in the CPT-induced enhancement of some of the top I-specific DNA cleavage sites suppressed by bis-Nts in the absence of CPT. PMID:12106608

  16. An Hα survey of eight Abell clusters: the dependence of tidally induced star formation on cluster density

    NASA Astrophysics Data System (ADS)

    Moss, C.; Whittle, M.

    2000-09-01

    We have undertaken a survey of Hα emission in a substantially complete sample of CGCG galaxies of types Sa and later within 1.5 Abell radii of the centres of eight low-redshift Abell clusters (Abell 262, 347, 400, 426, 569, 779, 1367 and 1656). Some 320 galaxies were surveyed, of which 116 were detected in emission (39 per cent of spirals, 75 per cent of peculiars). Here we present previously unpublished data for 243 galaxies in seven clusters. Detected emission is classified as `compact' or `diffuse'. From an analysis of the full survey sample, we confirm our previous identification of compact and diffuse emission with circumnuclear starburst and disc emission respectively. The circumnuclear emission is associated either with the presence of a bar, or with a disturbed galaxy morphology indicative of ongoing tidal interactions (whether galaxy-galaxy, galaxy-group, or galaxy-cluster). The frequency of such tidally induced (circumnuclear) starburst emission in spirals increases from regions of lower to higher local galaxy surface density, and from clusters with lower to higher central galaxy space density. The percentages of spirals classed as disturbed and of galaxies classified as peculiar show a similar trend. These results suggest that tidal interactions for spirals are more frequent in regions of higher local density and for clusters with higher central galaxy density. The prevalence of such tidal interactions in clusters is expected from recent theoretical modelling of clusters with a non-static potential undergoing collapse and infall. Furthermore, in accord with this picture, we suggest that peculiar galaxies are predominantly ongoing mergers. We conclude that tidal interactions are likely to be the main mechanism for the transformation of spirals to S0s in clusters. This mechanism operates more efficiently in higher density environments, as is required by the morphological type-local surface density (T-Σ) relation for galaxies in clusters. For regions of

  17. Inhibition of DNA Methyltransferases Blocks Mutant Huntingtin-Induced Neurotoxicity

    PubMed Central

    Pan, Yanchun; Daito, Takuji; Sasaki, Yo; Chung, Yong Hee; Xing, Xiaoyun; Pondugula, Santhi; Swamidass, S. Joshua; Wang, Ting; Kim, Albert H.; Yano, Hiroko

    2016-01-01

    Although epigenetic abnormalities have been described in Huntington’s disease (HD), the causal epigenetic mechanisms driving neurodegeneration in HD cortex and striatum remain undefined. Using an epigenetic pathway-targeted drug screen, we report that inhibitors of DNA methyltransferases (DNMTs), decitabine and FdCyd, block mutant huntingtin (Htt)-induced toxicity in primary cortical and striatal neurons. In addition, knockdown of DNMT3A or DNMT1 protected neurons against mutant Htt-induced toxicity, together demonstrating a requirement for DNMTs in mutant Htt-triggered neuronal death and suggesting a neurodegenerative mechanism based on DNA methylation-mediated transcriptional repression. Inhibition of DNMTs in HD model primary cortical or striatal neurons restored the expression of several key genes, including Bdnf, an important neurotrophic factor implicated in HD. Accordingly, the Bdnf promoter exhibited aberrant cytosine methylation in mutant Htt-expressing cortical neurons. In vivo, pharmacological inhibition of DNMTs in HD mouse brains restored the mRNA levels of key striatal genes known to be downregulated in HD. Thus, disturbances in DNA methylation play a critical role in mutant Htt-induced neuronal dysfunction and death, raising the possibility that epigenetic strategies targeting abnormal DNA methylation may have therapeutic utility in HD. PMID:27516062

  18. Cluster-Induced Fluctuations in the Microwave Background Radiation

    NASA Technical Reports Server (NTRS)

    Birkinshaw, Mark

    1997-01-01

    The research proposed was to detect, map and interpret the Sunyaev-Zel dovich (SZ) effects in two samples of distant clusters of galaxies with the OVRO 40-m telescope: an optically selected sample of 26 clusters at the North Ecliptic Pole, and an X-ray selected sample of clusters based on the Einstein Medium Sensitivity Survey, to make small maps of the strongest cluster SZ effects using the OVRO 40-m telescope, to combine the SZ and X-ray data for well-detected clusters to determine the value of the Hubble constant and set limits to the value of the deceleration parameter, and to study the properties of cluster atmospheres using the SZ effect.

  19. Protonation of water clusters induced by hydroperoxyl radical surface adsorption.

    PubMed

    Torrent-Sucarrat, Miquel; Ruiz-Lopez, Manuel F; Martins-Costa, Marilia; Francisco, Joseph S; Anglada, Josep M

    2011-04-26

    We have investigated the HO(2) adsorption and acid dissociation process on the surface of (H(2)O)(20) and (H(2)O)(21) clusters by using quantum-chemistry calculations. Our results show that the radical forms a stable hydrogen-bond complex on the cluster. The HO(2) acid dissociation is more favorable in the case of the (H(2)O)(21) cluster, for which the inner water molecule plays a crucial role. In fact, acid dissociation of HO(2) is found to occur in two steps. The first step involves H(2) O autoionization in the cluster, and the second one involves the proton transfer from the HO(2) radical to the hydroxide anion. The presence of the HO(2) radicals on the surface of the cluster facilitates water autoionization in the cluster. PMID:21433120

  20. Using DNA origami nanostructures to determine absolute cross sections for UV photon-induced DNA strand breakage.

    PubMed

    Vogel, Stefanie; Rackwitz, Jenny; Schürman, Robin; Prinz, Julia; Milosavljević, Aleksandar R; Réfrégiers, Matthieu; Giuliani, Alexandre; Bald, Ilko

    2015-11-19

    We have characterized ultraviolet (UV) photon-induced DNA strand break processes by determination of absolute cross sections for photoabsorption and for sequence-specific DNA single strand breakage induced by photons in an energy range from 6.50 to 8.94 eV. These represent the lowest-energy photons able to induce DNA strand breaks. Oligonucleotide targets are immobilized on a UV transparent substrate in controlled quantities through attachment to DNA origami templates. Photon-induced dissociation of single DNA strands is visualized and quantified using atomic force microscopy. The obtained quantum yields for strand breakage vary between 0.06 and 0.5, indicating highly efficient DNA strand breakage by UV photons, which is clearly dependent on the photon energy. Above the ionization threshold strand breakage becomes clearly the dominant form of DNA radiation damage, which is then also dependent on the nucleotide sequence.

  1. Radiation-induced DNA content variability in mouse sperm

    SciTech Connect

    Pinkel, D.; Gledhill, B.L.; van Dilla, M.A.; Lake, S.; Wyrobek, A.J.

    1983-09-01

    Mouse sperm collected from the cauda epididymidis 35 days after acute testicular x-ray exposure and fluorescently stained for DNA show dose-dependent increases in the coefficient of variation (CV) of flow cytometrically obtained fluorescence distributions. By comparing dose-response curves obtained with three protocols which overcome the optical and cytochemical difficulties of sperm measurement in different ways we conclude the response is due to x-ray-induced DNA content variability. Computer modeling of the shapes of the fluorescence distributions show that at 600 rad 30 to 40% of the sperm have abnormal DNA content. Some have errors as large as two whole chromosomes, but it is not clear whether they are due to whole chromosome nondisjunction or a finer fragmentation of the genome. Exposures to benzo(a)pyrene and mitomycin C cause no detectable DNA content variability. We conclude mouse sperm DNA content measurements are not sensitive to small amounts of aneuploidy and as such will only be useful in detecting agents that produce substantial DNA content variability. Another animal with a smaller number of chromosomes might be more favorable. These sperm measurement techniques may find additional application in other areas of reproductive biology, such as the determination of the relative numbers of X and Y chromosome-bearing sperm in semen that may be artifically enriched in one population.

  2. Electrically induced DNA uptake by cells is a fast process involving DNA electrophoresis.

    PubMed Central

    Klenchin, V A; Sukharev, S I; Serov, S M; Chernomordik, L V; Chizmadzhev YuA

    1991-01-01

    Simian Cos-1 cells were transfected electrically with the plasmid pCH110 carrying the beta-galactosidase gene. The efficiency of transfection was determined by a transient expression of this gene. When the plasmid was introduced into a cell suspension 2 s after pulse application, the transfection efficiency was shown to be less than 1% as compared with a prepulse addition of DNA. Addition of DNAase to suspension immediately after a pulse did not decrease transfection efficiency, thus the time of DNA translocation was estimated to be less than 3 s. The use of electric treatment medium, in which the postpulse colloid-osmotic cell swelling was prevented, did not affect the transfection efficiency. These results contradict both assumptions of free DNA diffusion into cell through the long-lived pores and of involvement of osmotic effects in DNA translocation. Transfection of cells in monolayer on a porous film allowed creation of the spatial asymmetry of cell-plasmid interaction along the direction of electric field applied. A pulse with a polarity inducing DNA electrophoresis toward the cells resulted in the 10-fold excess of transfection efficiency compared with a pulse with reverse polarity. Ficoll (10%) which increases medium viscosity or Mg2+ ions (10 mM) which decrease the effective charge of DNA, both reduced transfection efficiency 2-3-fold. These results prove a significant role of DNA electrophoresis in the phenomenon considered. The permeability of cell membranes for an indifferent dye was shown to increase noticeably if the cells were pulsed in the presence of DNA. This indicates a possible interaction of DNA translocated with the pores in an electric field, that results in pore expansion. Images FIGURE 4 PMID:1660315

  3. Compound hierarchical correlated beta mixture with an application to cluster mouse transcription factor DNA binding data.

    PubMed

    Dai, Hongying; Charnigo, Richard

    2015-10-01

    Modeling correlation structures is a challenge in bioinformatics, especially when dealing with high throughput genomic data. A compound hierarchical correlated beta mixture (CBM) with an exchangeable correlation structure is proposed to cluster genetic vectors into mixture components. The correlation coefficient, [Formula: see text], is homogenous within a mixture component and heterogeneous between mixture components. A random CBM with [Formula: see text] brings more flexibility in explaining correlation variations among genetic variables. Expectation-Maximization (EM) algorithm and Stochastic Expectation-Maximization (SEM) algorithm are used to estimate parameters of CBM. The number of mixture components can be determined using model selection criteria such as AIC, BIC and ICL-BIC. Extensive simulation studies were conducted to compare EM, SEM and model selection criteria. Simulation results suggest that CBM outperforms the traditional beta mixture model with lower estimation bias and higher classification accuracy. The proposed method is applied to cluster transcription factor-DNA binding probability in mouse genome data generated by Lahdesmaki and others (2008, Probabilistic inference of transcription factor binding from multiple data sources. PLoS One, 3: , e1820). The results reveal distinct clusters of transcription factors when binding to promoter regions of genes in JAK-STAT, MAPK and other two pathways.

  4. Cluster of DnaA Boxes Involved in Regulation of Streptomyces Chromosome Replication: from In Silico to In Vivo Studies†

    PubMed Central

    Smulczyk-Krawczyszyn, Aleksandra; Jakimowicz, Dagmara; Ruban-Ośmiałowska, Beata; Zawilak-Pawlik, Anna; Majka, Jerzy; Chater, Keith; Zakrzewska-Czerwińska, Jolanta

    2006-01-01

    In Streptomyces coelicolor, replication is initiated by the DnaA protein in the centrally located oriC region and proceeds bidirectionally until the replication forks reach the ends of the linear chromosome. We identified three clusters of DnaA boxes (H69, H24, and D78) which are in a relatively short segment of the chromosome centered on the oriC region. Of the clusters analyzed, D78 exhibited the highest affinity for the DnaA protein; the affinity of DnaA for the D78 cluster was about eightfold higher than the affinity for oriC. The high-affinity DnaA boxes appear to be involved in the control of chromosome replication. Deletion of D78 resulted in more frequent chromosome replication (an elevated ratio of origins to chromosome ends was observed) and activated aerial mycelium formation, leading to earlier colony maturation. In contrast, extra copies of D78 (delivered on a plasmid) caused slow colony growth, presumably because of a reduction in the frequency of initiation of chromosome replication. This suggests that the number of high-affinity DnaA boxes is relatively constant in hyphal compartments and that deletion of D78 therefore permits an increased copy number of either the chromosomal origin region or a plasmid harboring the D78 cluster. This system conceivably influences the timing of decisions to initiate aerial mycelial formation and sporulation. PMID:16923885

  5. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    SciTech Connect

    Ganesan, Shanthi Keating, Aileen F.

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6 μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.

  6. Influenza infection induces host DNA damage and dynamic DNA damage responses during tissue regeneration

    PubMed Central

    Li, Na; Parrish, Marcus; Chan, Tze Khee; Yin, Lu; Rai, Prashant; Yoshiyuki, Yamada; Abolhassani, Nona; Tan, Kong Bing; Kiraly, Orsolya; Chow, Vincent TK; Engelward, Bevin P.

    2016-01-01

    Influenza viruses account for significant morbidity worldwide. Inflammatory responses, including excessive generation of reactive oxygen and nitrogen species (RONS), mediate lung injury in severe Influenza infections. However, the molecular basis of inflammation-induced lung damage is not fully understood. Here, we studied influenza H1N1 infected cells in vitro, as well as H1N1 infected mice, and we monitored molecular and cellular responses over the course of two weeks in vivo. We show that influenza induces DNA damage both when cells are directly exposed to virus in vitro (measured using the comet assay) and also when cells are exposed to virus in vivo (estimated via γH2AX foci). We show that DNA damage, as well as responses to DNA damage, persist in vivo until long after virus has been cleared, at times when there are inflammation associated RONS (measured by xanthine oxidase activity and oxidative products). The frequency of lung epithelial and immune cells with increased γH2AX foci is elevated in vivo, especially for dividing cells (Ki-67 positive) exposed to oxidative stress during tissue regeneration. Additionally, we observed a significant increase in apoptotic cells as well as increased levels of DSB repair proteins Ku70, Ku86 and Rad51 during the regenerative phase. In conclusion, results show that influenza induces DNA both in vitro and in vivo, and that DNA damage responses are activated, raising the possibility that DNA repair capacity may be a determining factor for tissue recovery and disease outcome. PMID:25809161

  7. Contribution of indirect effects to clustered damage in DNA irradiated with protons.

    PubMed

    Pachnerová Brabcová, K; Štěpán, V; Karamitros, M; Karabín, M; Dostálek, P; Incerti, S; Davídková, M; Sihver, L

    2015-09-01

    Protons are the dominant particles both in galactic cosmic rays and in solar particle events and, furthermore, proton irradiation becomes increasingly used in tumour treatment. It is believed that complex DNA damage is the determining factor for the consequent cellular response to radiation. DNA plasmid pBR322 was irradiated at U120-M cyclotron with 30 MeV protons and treated with two Escherichia coli base excision repair enzymes. The yields of SSBs and DSBs were analysed using agarose gel electrophoresis. DNA has been irradiated in the presence of hydroxyl radical scavenger (coumarin-3-carboxylic acid) in order to distinguish between direct and indirect damage of the biological target. Pure scavenger solution was used as a probe for measurement of induced OH· radical yields. Experimental OH· radical yield kinetics was compared with predictions computed by two theoretical models-RADAMOL and Geant4-DNA. Both approaches use Geant4-DNA for description of physical stages of radiation action, and then each of them applies a distinct model for description of the pre-chemical and chemical stage.

  8. Photo-induced brightening and broadening effects of gold quantum clusters

    NASA Astrophysics Data System (ADS)

    Huang, Hsiu-Ying; Lin, Chia-Hui; Lin, Cheng-An J.

    2016-04-01

    We describe the use of UV light under different radiation time induces a variety of fluorescence wavelength of gold quantum clusters. First, we synthesize blue-emitted gold quantum clusters by dissolving the gold trichloride in pure toluene. To simplify the expression, we assume that the several featured PL peak (425, 450, 470 nm) is the signal for blue-emitted gold quantum clusters. Undergo UV irradiation can brighten and broaden the PL spectra of gold quantum clusters, which are observed by the evolutional spectra versus exposure time. After UV light exposure, the major population of gold quantum clusters @425nm decreased and turned to gold quantum clusters@450nm, followed by the growing population of gold quantum clusters@470nm clusters. Until 2 hour exposure, the spectra become broad with major peak shifted to 525 nm. The tunable spectra from blue to green attributes to the induced growth of gold quantum clusters by UV irradiation. The UV energy indeed tunes and broadens the emission covering the whole visible-spectra range. Finally, we also utilize via proper selection of organic surfactant (such as: trioctyl phosphine, TOP) can coordinate the quantum yield enhancement of blue-emitted gold quantum clusters under UV irradiation. The experiment method is easily for gold quantum clusters synthesis. Thus we expect this materials can be developed for fluorescence labeling application in the future.

  9. Low-energy plasma immersion ion implantation to induce DNA transfer into bacterial E. coli

    NASA Astrophysics Data System (ADS)

    Sangwijit, K.; Yu, L. D.; Sarapirom, S.; Pitakrattananukool, S.; Anuntalabhochai, S.

    2015-12-01

    Plasma immersion ion implantation (PIII) at low energy was for the first time applied as a novel biotechnology to induce DNA transfer into bacterial cells. Argon or nitrogen PIII at low bias voltages of 2.5, 5 and 10 kV and fluences ranging from 1 × 1012 to 1 × 1017 ions/cm2 treated cells of Escherichia coli (E. coli). Subsequently, DNA transfer was operated by mixing the PIII-treated cells with DNA. Successes in PIII-induced DNA transfer were demonstrated by marker gene expressions. The induction of DNA transfer was ion-energy, fluence and DNA-size dependent. The DNA transferred in the cells was confirmed functioning. Mechanisms of the PIII-induced DNA transfer were investigated and discussed in terms of the E. coli cell envelope anatomy. Compared with conventional ion-beam-induced DNA transfer, PIII-induced DNA transfer was simpler with lower cost but higher efficiency.

  10. Sildenafil can induce the onset of a cluster headache bout.

    PubMed

    Lin, Guan-Yu; Lee, Jiunn-Tay; Peng, Giia-Sheun; Yang, Fu-Chi

    2014-05-01

    About 25% of patients who are prescribed sildenafil, the phosphodiesterase type 5 (PDE-5) inhibitor, for erectile dysfunction (ED) experience headaches. These migraine effects are well-described, including cluster headaches. We report the case of a man who experienced a cluster headache attack following each of 2 sildenafil doses. His symptoms were resolved by adding naproxen to his treatment regimen and changing his ED treatment from 50 mg of sildenafil to 5 mg of vardenafil. To our knowledge, no study has reported cluster headaches triggered by the less commonly used PDE-5 inhibitors, namely vardenafil and tadalafil. Urologists should be cautious in prescribing sildenafil to patients with ED and with a history of cluster headaches. In these patients, they should consider prescribing low-dose vardenafil or tadalafil instead. Failure to recognize sildenafil risks could result in unnecessary headache bouts in patients with a history of cluster headaches. PMID:24940471

  11. Acoustically Induced Microparticle Orbiting and Clustering on a Solid Surface

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, A.; Tarimala, S.; Roberts, P. M.

    2008-12-01

    Behavior of colloidal particles in the bulk solution or at interfaces under the effect of high-frequency acoustics is critical to many seemingly different applications ranging from enhanced oil recovery to improved mixing in microfluidic channels and from accelerated contaminant extractions to surface cleaning, drug delivery and microelectronics. It can be detrimental or beneficial, depending on the application. In medical research, flow cytometry and microfluidics, for example, acoustically induced clustering of tracer particles and/or their sticking to the walls of channels, vessels, or tubes often becomes a problem. On the other hand, it can be tailored to enhance processes such as mixing in microfluidic devices, particle separation and sizing, and power generation microdevices. To better understand the underlying mechanisms, microscopic visualization experiments were performed in which polystyrene fluorescent (468/508 nm wavelength) microspheres with a mean diameter of 2.26-µm and density of 1.05 g/cm3, were suspended in either de-ionized water or a 0.1M NaCl solution. The freshly-prepared colloidal suspension was injected into a parallel-plate glass flow cell, which was subjected to high-frequency acoustics (200-500 kHz) through a piezoelectric transducer attached to one of the cell's outer walls. When the suspending medium is de-ionized water, acoustic stimulation of the cell at 313 kHz induced three distinct particle behaviors: 1) entrainment and bulk transport via wavelength-scale Rayleigh streaming, 2) transport via direct radiation forces to concentrate at nodal or anti-nodal planes, and 3) entrapment via boundary layer vorticular microstreaming resulting in mobile particles orbiting deposited particles. This latter phenomenon is intriguing. It occurs at specific frequencies and the shape of the orbits is determined by the applied frequency, whereas the rotation speed is proportional to the applied amplitude. At the higher ionic strength, on the other

  12. Radiation-induced segregation and precipitation behaviours around cascade clusters under electron irradiation.

    PubMed

    Sueishi, Yuichiro; Sakaguchi, Norihito; Shibayama, Tamaki; Kinoshita, Hiroshi; Takahashi, Heishichiro

    2003-01-01

    We have investigated the formation of cascade clusters and structural changes in them by means of electron irradiation following ion irradiation in an austenitic stainless steel. Almost all of the cascade clusters, which were introduced by the ion irradiation, grew to form interstitial-type dislocation loops or vacancy-type stacking fault tetrahedra after electron irradiation at 623 K, whereas a few of the dot-type clusters remained in the matrix. It was possible to recognize the concentration of Ni and Si by radiation-induced segregation around the dot-type clusters. After electron irradiation at 773 K, we found that some cascade clusters became precipitates (delta-Ni2Si) due to radiation-induced precipitation. This suggests that the cascade clusters could directly become precipitation sites during irradiation.

  13. Molecular Regulation of UV-Induced DNA Repair

    PubMed Central

    Shah, Palak; He, Yu-Ying

    2014-01-01

    Ultraviolet (UV) radiation from sunlight is a major etiologic factor for skin cancer, the most prevalent cancer in the U.S., as well as premature skin aging. In particular, UVB radiation causes formation of specific DNA damage photoproducts between pyrimidine bases. These DNA damage photoproducts are repaired by a process called nucleotide excision repair, also known as UV-induced DNA repair. When left unrepaired, UVB-induced DNA damage leads to accumulation of mutations, predisposing people to carcinogenesis as well as to premature aging. Genetic loss of nucleotide excision repair leads to severe disorders, namely, xeroderma pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS), which are associated with predisposition to skin carcinogenesis at a young age as well as developmental and neurological conditions. Regulation of nucleotide excision repair is an attractive avenue to preventing or reversing these detrimental consequences of impaired nucleotide excision repair. Here we review recent studies on molecular mechanisms regulating nucleotide excision repair by extracellular cues and intracellular signaling pathways, with a special focus on the molecular regulation of individual repair factors. PMID:25534312

  14. Disruption of Transcriptional Coactivator Sub1 Leads to Genome-Wide Re-distribution of Clustered Mutations Induced by APOBEC in Active Yeast Genes.

    PubMed

    Lada, Artem G; Kliver, Sergei F; Dhar, Alok; Polev, Dmitrii E; Masharsky, Alexey E; Rogozin, Igor B; Pavlov, Youri I

    2015-05-01

    Mutations in genomes of species are frequently distributed non-randomly, resulting in mutation clusters, including recently discovered kataegis in tumors. DNA editing deaminases play the prominent role in the etiology of these mutations. To gain insight into the enigmatic mechanisms of localized hypermutagenesis that lead to cluster formation, we analyzed the mutational single nucleotide variations (SNV) data obtained by whole-genome sequencing of drug-resistant mutants induced in yeast diploids by AID/APOBEC deaminase and base analog 6-HAP. Deaminase from sea lamprey, PmCDA1, induced robust clusters, while 6-HAP induced a few weak ones. We found that PmCDA1, AID, and APOBEC1 deaminases preferentially mutate the beginning of the actively transcribed genes. Inactivation of transcription initiation factor Sub1 strongly reduced deaminase-induced can1 mutation frequency, but, surprisingly, did not decrease the total SNV load in genomes. However, the SNVs in the genomes of the sub1 clones were re-distributed, and the effect of mutation clustering in the regions of transcription initiation was even more pronounced. At the same time, the mutation density in the protein-coding regions was reduced, resulting in the decrease of phenotypically detected mutants. We propose that the induction of clustered mutations by deaminases involves: a) the exposure of ssDNA strands during transcription and loss of protection of ssDNA due to the depletion of ssDNA-binding proteins, such as Sub1, and b) attainment of conditions favorable for APOBEC action in subpopulation of cells, leading to enzymatic deamination within the currently expressed genes. This model is applicable to both the initial and the later stages of oncogenic transformation and explains variations in the distribution of mutations and kataegis events in different tumor cells. PMID:25941824

  15. Disruption of Transcriptional Coactivator Sub1 Leads to Genome-Wide Re-distribution of Clustered Mutations Induced by APOBEC in Active Yeast Genes.

    PubMed

    Lada, Artem G; Kliver, Sergei F; Dhar, Alok; Polev, Dmitrii E; Masharsky, Alexey E; Rogozin, Igor B; Pavlov, Youri I

    2015-05-01

    Mutations in genomes of species are frequently distributed non-randomly, resulting in mutation clusters, including recently discovered kataegis in tumors. DNA editing deaminases play the prominent role in the etiology of these mutations. To gain insight into the enigmatic mechanisms of localized hypermutagenesis that lead to cluster formation, we analyzed the mutational single nucleotide variations (SNV) data obtained by whole-genome sequencing of drug-resistant mutants induced in yeast diploids by AID/APOBEC deaminase and base analog 6-HAP. Deaminase from sea lamprey, PmCDA1, induced robust clusters, while 6-HAP induced a few weak ones. We found that PmCDA1, AID, and APOBEC1 deaminases preferentially mutate the beginning of the actively transcribed genes. Inactivation of transcription initiation factor Sub1 strongly reduced deaminase-induced can1 mutation frequency, but, surprisingly, did not decrease the total SNV load in genomes. However, the SNVs in the genomes of the sub1 clones were re-distributed, and the effect of mutation clustering in the regions of transcription initiation was even more pronounced. At the same time, the mutation density in the protein-coding regions was reduced, resulting in the decrease of phenotypically detected mutants. We propose that the induction of clustered mutations by deaminases involves: a) the exposure of ssDNA strands during transcription and loss of protection of ssDNA due to the depletion of ssDNA-binding proteins, such as Sub1, and b) attainment of conditions favorable for APOBEC action in subpopulation of cells, leading to enzymatic deamination within the currently expressed genes. This model is applicable to both the initial and the later stages of oncogenic transformation and explains variations in the distribution of mutations and kataegis events in different tumor cells.

  16. Transcription induces gyration of the DNA template in Escherichia coli.

    PubMed Central

    Figueroa, N; Bossi, L

    1988-01-01

    We show that transcription modulation of a plasmid sequence in exponentially growing Escherichia coli cells leads to a rapid change in the linking number of plasmid DNA. Activation of transcription is accompanied by an increase in the plasmid's level of negative supercoiling. The added superhelical turns, whose number is proportional to the strength of the promoter and to the length of the transcript, are promptly removed when transcription is turned off. The transcription-induced increase of template supercoiling can still be detected in the presence of an inhibitor of ATP-dependent DNA gyrase [DNA topoisomerase (ATP-hydrolyzing), EC 5.99.1.3]. Altogether, our results indicate that, in addition to being under a general control, DNA superhelicity can be modulated locally in response to the topological perturbations associated with DNA tracking processes. We discuss a model in which supercoiling changes are produced by differential swiveling activities on the opposite sides of a transcriptional flow during transcriptional modulation. Images PMID:2849103

  17. Radiation-induced DNA content variability in mouse sperm

    SciTech Connect

    Pinkel, D.; Gledhill, B.L.; Van Dilla, M.A.; Lake, S.; Wyrobek, A.J.

    1983-09-01

    Mouse sperm collected from the cauda epididymidis 35 days after acute testicular X-ray exposure and fluorescently stained for DNA show dose-dependent increases in the coefficient of variation (CV) of flow cytometrically obtained fluorescence distributions. By comparing dose-response curves obtained with three protocols which overcome the optical and cytochemical difficulties of sperm measurement in different ways we conclude the response is due to X-ray-induced DNA content variability. In the range between 0 and 600 rad the dose dependence of the square of CV of the DNA content variability, delta CV2D, is described by delta CV2D . Bx + Cx2, with 0 less than or equal to B less than or equal to 0.23 X 10(-2) and C . (0.44 +/- 0.06) X 10(-4). The dose x is measured in rad and delta CVD is expressed in percent. Computer modeling of the shapes of the fluorescence distributions show that at 600 rad 30 to 40% of the sperm have abnormal DNA content. Some have errors as large as two whole chromosomes, but it is not clear whether they are due to whole chromosome nondisjunction or a finer fragmentation of the genome. Exposures to benzo(a)pyrene and mitomycin C cause no detectable DNA content variability. We conclude mouse sperm DNA content measurements are not sensitive to small amounts of aneuploidy and as such will only be useful in detecting agents that produce substantial DNA content variability. Another animal with a smaller number of chromosomes might be more favorable. These sperm measurement techniques may find additional application in other areas of reproductive biology, such as the determination of the relative numbers of X and Y chromosome-bearing sperm in semen that may be artificially enriched in one population.

  18. Chromosomal localization and molecular characterization of three different 5S ribosomal DNA clusters in the sea urchin Paracentrotus lividus.

    PubMed

    Caradonna, Fabio; Bellavia, Daniele; Clemente, Ann Maria; Sisino, Giorgia; Barbieri, Rainer

    2007-09-01

    In this paper the chromosomal localization and molecular cloning and characterization of three 5S rDNA clusters of 700 bp (base pairs), 900 bp, and 950 bp in the sea urchin Paracentrotus lividus are reported. Southern blot hybridization demonstrated the existence of three 5S rDNA repeats of differing length in the P. lividus genome. Fluorescence in situ hybridization analysis, performed in parallel on both haploid and diploid metaphases and interphase nuclei using different 5S rDNA units as probes, localized these 5S rDNA clusters in 3 different pairs of P. lividus chromosomes. This is the first complete gene mapping not only in a sea urchin but also in the phylum of echinoderms as a whole. PMID:17893727

  19. A novel method for discovering local spatial clusters of genomic regions with functional relationships from DNA contact maps

    PubMed Central

    Hu, Xihao; Shi, Christina Huan; Yip, Kevin Y.

    2016-01-01

    Motivation: The three-dimensional structure of genomes makes it possible for genomic regions not adjacent in the primary sequence to be spatially proximal. These DNA contacts have been found to be related to various molecular activities. Previous methods for analyzing DNA contact maps obtained from Hi-C experiments have largely focused on studying individual interactions, forming spatial clusters composed of contiguous blocks of genomic locations, or classifying these clusters into general categories based on some global properties of the contact maps. Results: Here, we describe a novel computational method that can flexibly identify small clusters of spatially proximal genomic regions based on their local contact patterns. Using simulated data that highly resemble Hi-C data obtained from real genome structures, we demonstrate that our method identifies spatial clusters that are more compact than methods previously used for clustering genomic regions based on DNA contact maps. The clusters identified by our method enable us to confirm functionally related genomic regions previously reported to be spatially proximal in different species. We further show that each genomic region can be assigned a numeric affinity value that indicates its degree of participation in each local cluster, and these affinity values correlate quantitatively with DNase I hypersensitivity, gene expression, super enhancer activities and replication timing in a cell type specific manner. We also show that these cluster affinity values can precisely define boundaries of reported topologically associating domains, and further define local sub-domains within each domain. Availability and implementation: The source code of BNMF and tutorials on how to use the software to extract local clusters from contact maps are available at http://yiplab.cse.cuhk.edu.hk/bnmf/. Contact: kevinyip@cse.cuhk.edu.hk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307607

  20. Microplitis demolitor Bracovirus Proviral Loci and Clustered Replication Genes Exhibit Distinct DNA Amplification Patterns during Replication

    PubMed Central

    Simmonds, Tyler J.; Thomas, Sarah A.; Strand, Michael R.

    2015-01-01

    ABSTRACT Polydnaviruses are large, double-stranded DNA viruses that are beneficial symbionts of parasitoid wasps. Polydnaviruses in the genus Bracovirus (BVs) persist in wasps as proviruses, and their genomes consist of two functional components referred to as proviral segments and nudivirus-like genes. Prior studies established that the DNA domains where proviral segments reside are amplified during replication and that segments within amplified loci are circularized before packaging into nucleocapsids. One DNA domain where nudivirus-like genes are located is also amplified but never packaged into virions. We recently sequenced the genome of the braconid Microplitis demolitor, which carries M. demolitor bracovirus (MdBV). Here, we took advantage of this resource to characterize the DNAs that are amplified during MdBV replication using a combination of Illumina and Pacific Biosciences sequencing approaches. The results showed that specific nucleotide sites identify the boundaries of amplification for proviral loci. Surprisingly, however, amplification of loci 3, 4, 6, and 8 produced head-to-tail concatemeric intermediates; loci 1, 2, and 5 produced head-to-head/tail-to-tail concatemers; and locus 7 yielded no identified concatemers. Sequence differences at amplification junctions correlated with the types of amplification intermediates the loci produced, while concatemer processing gave rise to the circularized DNAs that are packaged into nucleocapsids. The MdBV nudivirus-like gene cluster was also amplified, albeit more weakly than most proviral loci and with nondiscrete boundaries. Overall, the MdBV genome exhibited three patterns of DNA amplification during replication. Our data also suggest that PacBio sequencing could be useful in studying the replication intermediates produced by other DNA viruses. IMPORTANCE Polydnaviruses are of fundamental interest because they provide a novel example of viruses evolving into beneficial symbionts. All polydnaviruses are

  1. Self-assembly of molecule-like nanoparticle clusters directed by DNA nanocages.

    PubMed

    Li, Yulin; Liu, Zhiyu; Yu, Guimei; Jiang, Wen; Mao, Chengde

    2015-04-01

    Analogous to the atom-molecule relationship, nanoparticle (NP) clusters (or NP-molecules) with defined compositions and directional bonds could potentially integrate the properties of the component individual NPs, leading to emergent properties. Despite extensive efforts in this direction, no general approach is available for assembly of such NP-molecules. Here we report a general method for building this type of structures by encapsulating NPs into self-assembled DNA polyhedral wireframe nanocages, which serve as guiding agents for further assembly. As a demonstration, a series of NP-molecules have been assembled and validated. Such NP-molecules will, we believe, pave a way to explore new nanomaterials with emergent functions/properties that are related to, but do not belong to the individual component nanoparticles.

  2. Assembling the Streptococcus thermophilus clustered regularly interspaced short palindromic repeats (CRISPR) array for multiplex DNA targeting.

    PubMed

    Guo, Lijun; Xu, Kun; Liu, Zhiyuan; Zhang, Cunfang; Xin, Ying; Zhang, Zhiying

    2015-06-01

    In addition to the advantages of scalable, affordable, and easy to engineer, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) technology is superior for multiplex targeting, which is laborious and inconvenient when achieved by cloning multiple gRNA expressing cassettes. Here, we report a simple CRISPR array assembling method which will facilitate multiplex targeting usage. First, the Streptococcus thermophilus CRISPR3/Cas locus was cloned. Second, different CRISPR arrays were assembled with different crRNA spacers. Transformation assays using different Escherichia coli strains demonstrated efficient plasmid DNA targeting, and we achieved targeting efficiency up to 95% with an assembled CRISPR array with three crRNA spacers.

  3. PCA and clustering reveal alternate mtDNA phylogeny of N and M clades.

    PubMed

    Alexe, G; Satya, R Vijaya; Seiler, M; Platt, D; Bhanot, T; Hui, S; Tanaka, M; Levine, A J; Bhanot, G

    2008-11-01

    Phylogenetic trees based on mtDNA polymorphisms are often used to infer the history of recent human migrations. However, there is no consensus on which method to use. Most methods make strong assumptions which may bias the choice of polymorphisms and result in computational complexity which limits the analysis to a few samples/polymorphisms. For example, parsimony minimizes the number of mutations, which biases the results to minimizing homoplasy events. Such biases may miss the global structure of the polymorphisms altogether, with the risk of identifying a "common" polymorphism as ancient without an internal check on whether it either is homoplasic or is identified as ancient because of sampling bias (from oversampling the population with the polymorphism). A signature of this problem is that different methods applied to the same data or the same method applied to different datasets results in different tree topologies. When the results of such analyses are combined, the consensus trees have a low internal branch consensus. We determine human mtDNA phylogeny from 1737 complete sequences using a new, direct method based on principal component analysis (PCA) and unsupervised consensus ensemble clustering. PCA identifies polymorphisms representing robust variations in the data and consensus ensemble clustering creates stable haplogroup clusters. The tree is obtained from the bifurcating network obtained when the data are split into k = 2,3,4,...,kmax clusters, with equal sampling from each haplogroup. Our method assumes only that the data can be clustered into groups based on mutations, is fast, is stable to sample perturbation, uses all significant polymorphisms in the data, works for arbitrary sample sizes, and avoids sample choice and haplogroup size bias. The internal branches of our tree have a 90% consensus accuracy. In conclusion, our tree recreates the standard phylogeny of the N, M, L0/L1, L2, and L3 clades, confirming the African origin of modern humans

  4. Liposome clusters with shear stress-induced membrane permeability.

    PubMed

    Yoshimoto, Makoto; Tamura, Ryota; Natsume, Tomotaka

    2013-09-01

    Clusters of negatively charged liposomes were prepared by the addition of Ca(2+) and characterized in their structure and membrane permeability under shear stress. The liposomes mainly used were composed of zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 20 mol% negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) and 30 mol% cholesterol. The liposomes with mean diameter of 193 nm were aggregated into the clusters with a distribution peak at about 1.5 μm in the 50mM Tris buffer solution of pH 8.5 at the lipid and Ca(2+) concentrations of 1.0mM and 40 mM, respectively. More than 90% of liposomes were redispersed at the Ca(2+) concentration of 80 mM. POPG-rich liposomes (POPC/POPG/cholesterol=5:65:30 [lipid]=1.0mM) were irreversibly aggregated at [Ca(2+)]≥ 10 mM, indicating the significant contribution of POPC to the reversible clustering of liposomes. The membranes of liposome clusters were impermeable to 5(6)-carboxyfluorescein (CF) in the static liquid system at 25°C due to the decrease in specific surface area of the liposomal system. In the shear flow, in clear contrast, continuous membrane permeation of CF was observed at the shear rate of 1.5 × 10(3)s(-1), exhibiting comparable membrane permeability to the non-clustered liposomes. The theoretical analysis of modified DLVO potential indicated that liposome membranes were not in contact with each other within the clusters. Therefore, the liposome clusters are structurally flexible under the applied shear stress, providing sufficient lipid membrane-water interfacial area for the permeation of CF. The results obtained would be important to control the formation of liposome clusters and their permeabilization for biochemical and biomedical applications.

  5. Reconstruction of CMB temperature anisotropies with primordial CMB induced polarization in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Liu, Guo-Chin; Ichiki, Kiyotomo; Tashiro, Hiroyuki; Sugiyama, Naoshi

    2016-07-01

    Scattering of cosmic microwave background (CMB) radiation in galaxy clusters induces polarization signals determined by the quadrupole anisotropy in the photon distribution at the location of clusters. This `remote quadrupole' derived from the measurements of the induced polarization in galaxy clusters provides an opportunity to reconstruct local CMB temperature anisotropies. In this Letter, we develop an algorithm of the reconstruction through the estimation of the underlying primordial gravitational potential, which is the origin of the CMB temperature and polarization fluctuations and CMB induced polarization in galaxy clusters. We found a nice reconstruction for the quadrupole and octopole components of the CMB temperature anisotropies with the assistance of the CMB induced polarization signals. The reconstruction can be an important consistency test on the puzzles of CMB anomalies, especially for the low-quadrupole and axis-of-evil problems reported in Wilkinson Microwave Anisotropy Probe and Planck data.

  6. Insights into eukaryotic DNA priming from the structure and functional interactions of the 4Fe-4S cluster domain of human DNA primase

    SciTech Connect

    Vaithiyalingam, Sivaraja; Warren, Eric M.; Eichman, Brandt F.; Chazin, Walter J.

    2010-10-19

    DNA replication requires priming of DNA templates by enzymes known as primases. Although DNA primase structures are available from archaea and bacteria, the mechanism of DNA priming in higher eukaryotes remains poorly understood in large part due to the absence of the structure of the unique, highly conserved C-terminal regulatory domain of the large subunit (p58C). Here, we present the structure of this domain determined to 1.7-{angstrom} resolution by X-ray crystallography. The p58C structure reveals a novel arrangement of an evolutionarily conserved 4Fe-4S cluster buried deeply within the protein core and is not similar to any known protein structure. Analysis of the binding of DNA to p58C by fluorescence anisotropy measurements revealed a strong preference for ss/dsDNA junction substrates. This approach was combined with site-directed mutagenesis to confirm that the binding of DNA occurs to a distinctively basic surface on p58C. A specific interaction of p58C with the C-terminal domain of the intermediate subunit of replication protein A (RPA32C) was identified and characterized by isothermal titration calorimetry and NMR. Restraints from NMR experiments were used to drive computational docking of the two domains and generate a model of the p58C-RPA32C complex. Together, our results explain functional defects in human DNA primase mutants and provide insights into primosome loading on RPA-coated ssDNA and regulation of primase activity.

  7. Spi-1/PU.1 activates transcription through clustered DNA occupancy in erythroleukemia.

    PubMed

    Ridinger-Saison, Maya; Boeva, Valentina; Rimmelé, Pauline; Kulakovskiy, Ivan; Gallais, Isabelle; Levavasseur, Benjamin; Paccard, Caroline; Legoix-Né, Patricia; Morlé, François; Nicolas, Alain; Hupé, Philippe; Barillot, Emmanuel; Moreau-Gachelin, Françoise; Guillouf, Christel

    2012-10-01

    Acute leukemias are characterized by deregulation of transcriptional networks that control the lineage specificity of gene expression. The aberrant overexpression of the Spi-1/PU.1 transcription factor leads to erythroleukemia. To determine how Spi-1 mechanistically influences the transcriptional program, we combined a ChIP-seq analysis with transcriptional profiling in cells from an erythroleukemic mouse model. We show that Spi-1 displays a selective DNA-binding that does not often cause transcriptional modulation. We report that Spi-1 controls transcriptional activation and repression partially through distinct Spi-1 recruitment to chromatin. We revealed several parameters impacting on Spi-1-mediated transcriptional activation. Gene activation is facilitated by Spi-1 occupancy close to transcriptional starting site of genes devoid of CGIs. Moreover, in those regions Spi-1 acts by binding to multiple motifs tightly clustered and with similar orientation. Finally, in contrast to the myeloid and lymphoid B cells in which Spi-1 exerts a physiological activity, in the erythroleukemic cells, lineage-specific cooperating factors do not play a prevalent role in Spi-1-mediated transcriptional activation. Thus, our work describes a new mechanism of gene activation through clustered site occupancy of Spi-1 particularly relevant in regard to the strong expression of Spi-1 in the erythroleukemic cells.

  8. UV-inducible DNA repair in the cyanobacteria Anabaena spp

    SciTech Connect

    Levine, E.; Thiel, T.

    1987-09-01

    Strains of the filamentous cyanobacteria Anabaena spp. were capable of very efficient photoreactivation of UV irradiation-induced damage to DNA. Cells were resistant to several hundred joules of UV irradiation per square meter under conditions that allowed photoreactivation, and they also photoreactivated UV-damaged cyanophage efficiently. Reactivation of UV-irradiated cyanophage (Weigle reactivation) also occurred; UV irradiation of host cells greatly enhanced the plaque-forming ability of irradiated phage under nonphotoreactivating conditions. Postirradiation incubation of the host cells under conditions that allowed photoreactivation abolished the ability of the cells to perform Weigle reactivation of cyanophage N-1. Mitomycin C also induced Weigle reactivation of cyanophage N-1, but nalidixic acid did not. The inducible repair system (defined as the ability to perform Weigle reactivation of cyanophages) was relatively slow and inefficient compared with photoreactivation.

  9. Thermal stability of DNA adducts induced by cyanomorpholinoadriamycin in vitro.

    PubMed Central

    Cullinane, C; Phillips, D R

    1993-01-01

    The Adriamycin derivative, cyanomorpholinoadriamycin (CMA) was reacted with DNA in vitro to form apparent interstrand crosslinks. The extent of interstrand crosslink formation was monitored by a gel electrophoresis assay and maximal crosslinking of DNA was observed within 1 hr with 5 microM of drug. The interstrand crosslinks were heat labile, with a midpoint melting temperature of 70 degrees C (10 min exposure to heat) in 45% formamide. When CMA-induced adducts were detected as blockages of lambda-exonuclease, 12 blockage sites were observed with 8 being prior to 5'-GG sequences, one prior to 5'-CC, one prior to 5'-GC and 2 at unresolved combinations of these sequences. These exonuclease-detected blockages reveal the same sites of CMA-induced crosslinking as detected by in vitro transcription footprinting and primer-extension blockages on single strand DNA, where the blockages at 5'-GG and 5'-CC were identified as sites of intrastrand crosslinking and the 5'-GC blockage as a probable site of interstrand crosslinking. The thermal stability of both types of crosslink (10 min exposure to heat) ranged from 63-70 degrees C at individual sites. High levels of adduct were detected with poly (dG-dC) but not with poly (dI-dC). These results suggest adduct formation involving an aminal linkage between the 3 position of the morpholino moiety and N2 of guanine. Images PMID:8493102

  10. Nicotine induces DNA damage in human salivary glands.

    PubMed

    Ginzkey, Christian; Kampfinger, Katja; Friehs, Gudrun; Köhler, Christian; Hagen, Rudolf; Richter, Elmar; Kleinsasser, Norbert H

    2009-01-10

    The tobacco alkaloid nicotine is responsible for addiction to tobacco and supposed to contribute to tobacco carcinogensis, too. Recently, genotoxic effects of nicotine have been reported in human cells from blood and upper aerodigestive tract. Because of nicotine accumulation in saliva, the study of possible in vitro genotoxic effects of nicotine have been extended to human salivary gland cells. Specimens of parotid glands of 10 tumor patients were obtained from tumor-free tissue. Single cells were prepared by enzymatic digestion immediately after surgery and exposed for 1h to 0.125-4.0mM of nicotine. Possible genotoxic effects were determined by the Comet assay using the % DNA in tail (DT) as a reliable indicator of DNA damage. Nicotine induced a significant dose-dependent increase of DNA migration in parotid gland single-cells. The mean DT was 1.12-fold (0.125mM) to 2.24-fold (4.0mM) higher compared to control. The lowest concentration eliciting significant DNA damage within 1h, 0.25mM nicotine, is only 10-fold higher than maximal concentrations of nicotine reported in saliva after unrestricted smoking. Although conclusive evidence for a carcinogenic potential of nicotine is still lacking, the safety of long-term nicotine replacement therapy should be carefully monitored. PMID:18852035

  11. Contraction-induced cluster formation in cardiac cell culture

    NASA Astrophysics Data System (ADS)

    Harada, Takahiro; Isomura, Akihiro; Yoshikawa, Kenichi

    2008-11-01

    The evolution of the spatial arrangement of cells in a primary culture of cardiac tissue derived from newborn rats was studied experimentally over an extended period. It was found that cells attract each other spontaneously to form a clustered structure over the timescale of several days. These clusters exhibit spontaneous rhythmic contraction and have been confirmed to consist of cardiac muscle cells. The addition of a contraction inhibitor (2,3-butanedione-2-monoxime) to the culture medium resulted in the inhibition of both the spontaneous contractions exhibited by the cells as well as the formation of clusters. Furthermore, the formation of clusters is suppressed when high concentrations of collagen are used for coating the substratum to which the cells adhere. From these experimental observations, it was deduced that the cells are mechanically stressed by the tension associated with repeated contractions and that this results in the cells becoming compact and attracting each other, finally resulting in the formation of clusters. This process can be interpreted as modulation of a cellular network by the activity associated with contraction, which could be employed to control cellular networks by modifying the dynamics associated with the contractions in cardiac tissue culture.

  12. DNA-stabilized Ag-Au bimetallic clusters: the effects of alloying and embedding on optical properties.

    PubMed

    Palagin, Dennis; Doye, Jonathan P K

    2016-08-10

    Global geometry optimization and time-dependent density functional theory calculations have been used to study the structural evolution and optical properties of AgnAun (n = 2-6) nanoalloys both as individual clusters and as clusters stabilized with the fragments of DNA of different size. We show that alloying can be used to control and tune the level of interaction between the metal atoms of the cluster and the organic fragments of the DNA ligands. For instance, gold and silver atoms are shown to exhibit synergistic effects in the process of charge transfer from the nucleobase to the cluster, with the silver atoms directly connected to the nitrogen atoms of cytosine increasing their positive partial charge, while their more electronegative neighbouring gold atoms host the excess negative charge. This allows the geometrical structures and optical absorption spectra of small bimetallic clusters to retain many of their main features upon aggregation with relatively large DNA fragments, such as a cytosine-based 9-nucleotide hairpin loop, which suggests a potential synthetic route to such hybrid metal-organic compounds, and opens up the possibility of bringing the unique tunable properties of bimetallic nanoalloys to biological applications. PMID:27459508

  13. Boron Clusters as a Platform for New Materials: Synthesis of Functionalized o-Carborane (C2 B10 H12 ) Derivatives Incorporating DNA Fragments.

    PubMed

    Janczak, Slawomir; Olejniczak, Agnieszka; Balabańska, Sandra; Chmielewski, Marcin K; Lupu, Marius; Viñas, Clara; Lesnikowski, Zbigniew J

    2015-10-19

    A synthetic strategy for functionalization of the three vertices of o-carborane and the attachment of the obtained triped to the solid support was developed. Further functionalization of the triped with short DNA sequences by automated DNA synthesis was achieved. The proposed methodology is a first example of boron cluster chemistry on a solid support opening new perspectives in boron cluster functionalization.

  14. Quantitation of DNA Adducts Induced by 1,3-Butadiene

    NASA Astrophysics Data System (ADS)

    Sangaraju, Dewakar; Villalta, Peter W.; Wickramaratne, Susith; Swenberg, James; Tretyakova, Natalia

    2014-07-01

    Human exposure to 1,3-butadiene (BD) present in automobile exhaust, cigarette smoke, and forest fires is of great concern because of its potent carcinogenicity. The adverse health effects of BD are mediated by its epoxide metabolites such as 3,4-epoxy-1-butene (EB), which covalently modify genomic DNA to form promutagenic nucleobase adducts. Because of their direct role in cancer, BD-DNA adducts can be used as mechanism-based biomarkers of BD exposure. In the present work, a mass spectrometry-based methodology was developed for accurate, sensitive, and precise quantification of EB-induced N-7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) DNA adducts in vivo. In our approach, EB-GII adducts are selectively released from DNA backbone by neutral thermal hydrolysis, followed by ultrafiltration, offline HPLC purification, and isotope dilution nanoLC/ESI+-HRMS3 analysis on an Orbitrap Velos mass spectrometer. Following method validation, EB-GII lesions were quantified in human fibrosarcoma (HT1080) cells treated with micromolar concentrations of EB and in liver tissues of rats exposed to sub-ppm concentrations of BD (0.5-1.5 ppm). EB-GII concentrations increased linearly from 1.15 ± 0.23 to 10.11 ± 0.45 adducts per 106 nucleotides in HT1080 cells treated with 0.5-10 μM DEB. EB-GII concentrations in DNA of laboratory rats exposed to 0.5, 1.0, and 1.5 ppm BD were 0.17 ± 0.05, 0.33 ± 0.08, and 0.50 ± 0.04 adducts per 106 nucleotides, respectively. We also used the new method to determine the in vivo half-life of EB-GII adducts in rat liver DNA (2.20 ± 0.12 d) and to detect EB-GII in human blood DNA. To our knowledge, this is the first application of nanoLC/ESI+-HRMS3 Orbitrap methodology to quantitative analysis of DNA adducts in vivo.

  15. Dynamical DNA accessibility induced by chromatin remodeling and protein binding

    NASA Astrophysics Data System (ADS)

    Montel, F.; Faivre-Moskalenko, C.; Castelnovo, M.

    2014-11-01

    Chromatin remodeling factors are enzymes being able to alter locally chromatin structure at the nucleosomal level and they actively participate in the regulation of gene expression. Using simple rules for individual nucleosome motion induced by a remodeling factor, we designed simulations of the remodeling of oligomeric chromatin, in order to address quantitatively collective effects in DNA accessibility upon nucleosome mobilization. Our results suggest that accessibility profiles are inhomogeneous thanks to borders effects like protein binding. Remarkably, we show that the accessibility lifetime of DNA sequence is roughly doubled in the vicinity of borders as compared to its value in bulk regions far from the borders. These results are quantitatively interpreted as resulting from the confined diffusion of a large nucleosome depleted region.

  16. DNA Oligonucleotide Fragment Ion Rearrangements Upon Collision-Induced Dissociation

    NASA Astrophysics Data System (ADS)

    Harper, Brett; Neumann, Elizabeth K.; Solouki, Touradj

    2015-08-01

    Collision-induced dissociation (CID) of m/z-isolated w type fragment ions and an intact 5' phosphorylated DNA oligonucleotide generated rearranged product ions. Of the 21 studied w ions of various nucleotide sequences, fragment ion sizes, and charge states, 18 (~86%) generated rearranged product ions upon CID in a Synapt G2-S HDMS (Waters Corporation, Manchester, England, UK) ion mobility-mass spectrometer. Mass spectrometry (MS), ion mobility spectrometry (IMS), and theoretical modeling data suggest that purine bases can attack the free 5' phosphate group in w type ions and 5' phosphorylated DNA to generate sequence permuted [phosphopurine]- fragment ions. We propose and discuss a potential mechanism for generation of rearranged [phosphopurine]- and complementary y-B type product ions.

  17. Delay-induced cluster patterns in coupled Cayley tree networks

    NASA Astrophysics Data System (ADS)

    Singh, A.; Jalan, S.

    2013-07-01

    We study effects of delay in diffusively coupled logistic maps on the Cayley tree networks. We find that smaller coupling values exhibit sensitiveness to value of delay, and lead to different cluster patterns of self-organized and driven types. Whereas larger coupling strengths exhibit robustness against change in delay values, and lead to stable driven clusters comprising nodes from last generation of the Cayley tree. Furthermore, introduction of delay exhibits suppression as well as enhancement of synchronization depending upon coupling strength values. To the end we discuss the importance of results to understand conflicts and cooperations observed in family business.

  18. Hybrid magnetic nanoparticle/nanogold clusters and their distance-dependent metal-enhanced fluorescence effect via DNA hybridization

    NASA Astrophysics Data System (ADS)

    GuThese Authors Contributed Equally To This Study., Xuefan; Wu, Youshen; Zhang, Lingze; Liu, Yongchun; Li, Yan; Yan, Yongli; Wu, Daocheng

    2014-07-01

    To improve the metal-enhanced fluorescence (MEF) effect of nanogolds (AuNPs) and accurately detect specific DNA sequences via DNA hybridization, novel hybrid magnetic nanoparticles/nanogold clusters (HMNCs) were designed based on finite-difference time-domain simulation results and prepared by using Fe3O4 and nanogolds. The nanogolds outside the HMNC were then conjugated with thiol-terminated DNA molecules, thus DNA modified-HMNCs (DNA-HMNCs) were obtained. The size distributions of these nanostructures were measured by a Malvern size analyzer, and their morphology was observed via transmission electron microscopy (TEM). The ultraviolet (UV)-visible (vis) absorption spectra of the samples were recorded with a UV-2600 spectrophotometer. Fluorescence spectra and the MEF effect were recorded using a spectrophotofluorometer, and lifetimes were determined using a time-correlated single photon counting apparatus. The prepared HMNCs were stable in aqueous solutions and had an average diameter of 87 +/- 3.2 nm, with six to eight AuNPs around a single Fe3O4 nanoparticle. Fluorescein isothiocyanate (FITC) tagged DNA-HMNC conjugates exhibited a significant MEF effect and could accurately detect specific DNA sequences after DNA hybridization. This result indicates their various potential applications in sensors and biomedical fields.To improve the metal-enhanced fluorescence (MEF) effect of nanogolds (AuNPs) and accurately detect specific DNA sequences via DNA hybridization, novel hybrid magnetic nanoparticles/nanogold clusters (HMNCs) were designed based on finite-difference time-domain simulation results and prepared by using Fe3O4 and nanogolds. The nanogolds outside the HMNC were then conjugated with thiol-terminated DNA molecules, thus DNA modified-HMNCs (DNA-HMNCs) were obtained. The size distributions of these nanostructures were measured by a Malvern size analyzer, and their morphology was observed via transmission electron microscopy (TEM). The ultraviolet (UV

  19. Ribosomal DNA clusters and telomeric (TTAGG)n repeats in blue butterflies (Lepidoptera, Lycaenidae) with low and high chromosome numbers.

    PubMed

    Vershinina, Alisa O; Anokhin, Boris A; Lukhtanov, Vladimir A

    2015-01-01

    Ribosomal DNA clusters and telomeric repeats are important parts of eukaryotic genome. However, little is known about their organization and localization in karyotypes of organisms with holocentric chromosomes. Here we present first cytogenetic study of these molecular structures in seven blue butterflies of the genus Polyommatus Latreille, 1804 with low and high chromosome numbers (from n=10 to n=ca.108) using fluorescence in situ hybridization (FISH) with 18S rDNA and (TTAGG) n telomeric probes. FISH with the 18S rDNA probe showed the presence of two different variants of the location of major rDNA clusters in Polyommatus species: with one or two rDNA-carrying chromosomes in haploid karyotype. We discuss evolutionary trends and possible mechanisms of changes in the number of ribosomal clusters. We also demonstrate that Polyommatus species have the classical insect (TTAGG) n telomere organization. This chromosome end protection mechanism probably originated de novo in small chromosomes that evolved via fragmentations.

  20. Ribosomal DNA clusters and telomeric (TTAGG)n repeats in blue butterflies (Lepidoptera, Lycaenidae) with low and high chromosome numbers

    PubMed Central

    Vershinina, Alisa O.; Anokhin, Boris A.; Lukhtanov, Vladimir A.

    2015-01-01

    Abstract Ribosomal DNA clusters and telomeric repeats are important parts of eukaryotic genome. However, little is known about their organization and localization in karyotypes of organisms with holocentric chromosomes. Here we present first cytogenetic study of these molecular structures in seven blue butterflies of the genus Polyommatus Latreille, 1804 with low and high chromosome numbers (from n=10 to n=ca.108) using fluorescence in situ hybridization (FISH) with 18S rDNA and (TTAGG)n telomeric probes. FISH with the 18S rDNA probe showed the presence of two different variants of the location of major rDNA clusters in Polyommatus species: with one or two rDNA-carrying chromosomes in haploid karyotype. We discuss evolutionary trends and possible mechanisms of changes in the number of ribosomal clusters. We also demonstrate that Polyommatus species have the classical insect (TTAGG)n telomere organization. This chromosome end protection mechanism probably originated de novo in small chromosomes that evolved via fragmentations. PMID:26140159

  1. Models for chromosomal replication-independent non-B DNA structure-induced genetic instability

    PubMed Central

    Wang, Guliang; Vasquez, Karen M.

    2009-01-01

    Regions of genomic DNA containing repetitive nucleotide sequences can adopt a number of different structures in addition to the canonical B-DNA form: many of these non-B DNA structures are causative factors in genetic instability and human disease. Although chromosomal DNA replication through such repetitive sequences has been considered a major cause of non-B form DNA structure-induced genetic instability, it is also observed in non-proliferative tissues. In this review, we discuss putative mechanisms responsible for the mutagenesis induced by non-B DNA structures in the absence of chromosomal DNA replication. PMID:19123200

  2. Understanding the Molecular Mechanism(s) of Formaldehyde-induced DNA-protein Crosslink Repair

    EPA Science Inventory

    Although formaldehyde has been shown to induce many kinds of DNA damage both in in vitro and in vivo assay systems, initial DNA-protein crosslink (DPC) formation might play a major role in FA-induced mutagenesis and carcinogenesis. Several DNA repair pathways, such as base excisi...

  3. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENNTIAL FLUORESENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposures...

  4. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposur...

  5. Study on Cluster Analysis Used with Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Li'ao; Wang, Qianqian; Zhao, Yu; Liu, Li; Peng, Zhong

    2016-06-01

    Supervised learning methods (eg. PLS-DA, SVM, etc.) have been widely used with laser-induced breakdown spectroscopy (LIBS) to classify materials; however, it may induce a low correct classification rate if a test sample type is not included in the training dataset. Unsupervised cluster analysis methods (hierarchical clustering analysis, K-means clustering analysis, and iterative self-organizing data analysis technique) are investigated in plastics classification based on the line intensities of LIBS emission in this paper. The results of hierarchical clustering analysis using four different similarity measuring methods (single linkage, complete linkage, unweighted pair-group average, and weighted pair-group average) are compared. In K-means clustering analysis, four kinds of choosing initial centers methods are applied in our case and their results are compared. The classification results of hierarchical clustering analysis, K-means clustering analysis, and ISODATA are analyzed. The experiment results demonstrated cluster analysis methods can be applied to plastics discrimination with LIBS. supported by Beijing Natural Science Foundation of China (No. 4132063)

  6. Comet-FISH with rDNA probes for the analysis of mutagen-induced DNA damage in plant cells.

    PubMed

    Kwasniewska, Jolanta; Grabowska, Marta; Kwasniewski, Miroslaw; Kolano, Bozena

    2012-06-01

    We used comet-fluorescence in situ hybridization (FISH) in the model plant species Crepis capillaris following exposure of seedlings to maleic hydrazide (MH). FISH with 5S and 25S rDNA probes was applied to comets obtained under alkaline conditions to establish whether these DNA regions were preferentially involved in comet tail formation. MH treatment induced significant fragmentation of nuclear DNA and of rDNA loci. A 24-h post-treatment recovery period allowed a partial reversibility of MH-induced damage on nuclear and rDNA regions. Analyses of FISH signals demonstrated that rDNA sequences were always involved in tail formation and that 5S rDNA was more frequently present in the tail than 25S rDNA, regardless of treatment. The involvement of 25S rDNA in nucleolus formation and differences in chromatin structure between the two loci may explain the different susceptibility of the 25S and 5S rDNA regions to migrate into the tail. This work is the first report on the application of FISH to comet preparations from plants to analyze the distribution and repair of DNA damage within specific genomic regions after mutagenic treatment. Moreover, our work suggests that comet-FISH in plants may be a useful tool for environmental monitoring assessment. PMID:22556029

  7. Stimulus-induced transition of clustering firings in neuronal networks with information transmission delay

    NASA Astrophysics Data System (ADS)

    Wang, Qingyun; Zhang, Honghui; Chen, Guanrong

    2013-07-01

    We study the evolution of spatiotemporal dynamics and transition of clustering firing synchronization on spiking Hodgkin-Huxley neuronal networks as information transmission delay and the periodic stimulus are varied. In particular, it is shown that the tuned information transmission delay can induce a clustering anti-phase synchronization transition with the pacemaker, where two equal clusters can alternatively synchronize in anti-phase firing. More interestingly, we show that the periodic stimulus can drive the delay-induced clustering anti-phase firing synchronization bifurcate to the collective perfect synchronization, which is routed by the complex process including collective chaotic firings and clustering out-of-phase synchronization of the neuronal networks. In addition, the periodic stimulus induced clustering firings of the spiking neuronal networks are robust to the connectivity probability of small world networks. Furthermore, the different stimulus frequency induced complexity is also investigated. We hope that the results of this paper can provide insights that could facilitate the understanding of the joint impact of information transmission delays and periodic stimulus on controlling dynamical behaviors of realistic neuronal networks.

  8. Pili-Induced Clustering of N. gonorrhoeae Bacteria.

    PubMed

    Taktikos, Johannes; Lin, Yen Ting; Stark, Holger; Biais, Nicolas; Zaburdaev, Vasily

    2015-01-01

    Type IV pili (Tfp) are prokaryotic retractable appendages known to mediate surface attachment, motility, and subsequent clustering of cells. Tfp are the main means of motility for Neisseria gonorrhoeae, the causative agent of gonorrhea. Tfp are also involved in formation of the microcolonies, which play a crucial role in the progression of the disease. While motility of individual cells is relatively well understood, little is known about the dynamics of N. gonorrhoeae aggregation. We investigate how individual N. gonorrhoeae cells, initially uniformly dispersed on flat plastic or glass surfaces, agglomerate into spherical microcolonies within hours. We quantify the clustering process by measuring the area fraction covered by the cells, number of cell aggregates, and their average size as a function of time. We observe that the microcolonies are also able to move but their mobility rapidly vanishes as the size of the colony increases. After a certain critical size they become immobile. We propose a simple theoretical model which assumes a pili-pili interaction of cells as the main clustering mechanism. Numerical simulations of the model quantitatively reproduce the experimental data on clustering and thus suggest that the agglomeration process can be entirely explained by the Tfp-mediated interactions. In agreement with this hypothesis mutants lacking pili are not able to form colonies. Moreover, cells with deficient quorum sensing mechanism show similar aggregation as the wild-type bacteria. Therefore, our results demonstrate that pili provide an essential mechanism for colony formation, while additional chemical cues, for example quorum sensing, might be of secondary importance. PMID:26355966

  9. Hybrid magnetic nanoparticle/nanogold clusters and their distance-dependent metal-enhanced fluorescence effect via DNA hybridization.

    PubMed

    Gu, Xuefan; Wu, Youshen; Zhang, Lingze; Liu, Yongchun; Li, Yan; Yan, Yongli; Wu, Daocheng

    2014-08-01

    To improve the metal-enhanced fluorescence (MEF) effect of nanogolds (AuNPs) and accurately detect specific DNA sequences via DNA hybridization, novel hybrid magnetic nanoparticles/nanogold clusters (HMNCs) were designed based on finite-difference time-domain simulation results and prepared by using Fe3O4 and nanogolds. The nanogolds outside the HMNC were then conjugated with thiol-terminated DNA molecules, thus DNA modified-HMNCs (DNA-HMNCs) were obtained. The size distributions of these nanostructures were measured by a Malvern size analyzer, and their morphology was observed via transmission electron microscopy (TEM). The ultraviolet (UV)-visible (vis) absorption spectra of the samples were recorded with a UV-2600 spectrophotometer. Fluorescence spectra and the MEF effect were recorded using a spectrophotofluorometer, and lifetimes were determined using a time-correlated single photon counting apparatus. The prepared HMNCs were stable in aqueous solutions and had an average diameter of 87 ± 3.2 nm, with six to eight AuNPs around a single Fe3O4 nanoparticle. Fluorescein isothiocyanate (FITC) tagged DNA-HMNC conjugates exhibited a significant MEF effect and could accurately detect specific DNA sequences after DNA hybridization. This result indicates their various potential applications in sensors and biomedical fields.

  10. ThioFinder: A Web-Based Tool for the Identification of Thiopeptide Gene Clusters in DNA Sequences

    PubMed Central

    He, Xinyi; Duan, Lian; Wu, Guojun; Bi, Dexi; Deng, Zixin; Liu, Wen; Ou, Hong-Yu

    2012-01-01

    Thiopeptides are a growing class of sulfur-rich, highly modified heterocyclic peptides that are mainly active against Gram-positive bacteria including various drug-resistant pathogens. Recent studies also reveal that many thiopeptides inhibit the proliferation of human cancer cells, further expanding their application potentials for clinical use. Thiopeptide biosynthesis shares a common paradigm, featuring a ribosomally synthesized precursor peptide and conserved posttranslational modifications, to afford a characteristic core system, but differs in tailoring to furnish individual members. Identification of new thiopeptide gene clusters, by taking advantage of increasing information of DNA sequences from bacteria, may facilitate new thiopeptide discovery and enrichment of the unique biosynthetic elements to produce novel drug leads by applying the principle of combinatorial biosynthesis. In this study, we have developed a web-based tool ThioFinder to rapidly identify thiopeptide biosynthetic gene cluster from DNA sequence using a profile Hidden Markov Model approach. Fifty-four new putative thiopeptide biosynthetic gene clusters were found in the sequenced bacterial genomes of previously unknown producing microorganisms. ThioFinder is fully supported by an open-access database ThioBase, which contains the sufficient information of the 99 known thiopeptides regarding the chemical structure, biological activity, producing organism, and biosynthetic gene (cluster) along with the associated genome if available. The ThioFinder website offers researchers a unique resource and great flexibility for sequence analysis of thiopeptide biosynthetic gene clusters. ThioFinder is freely available at http://db-mml.sjtu.edu.cn/ThioFinder/. PMID:23029291

  11. A Zn(II)2Cys6 DNA binding protein regulates the sirodesmin PL biosynthetic gene cluster in Leptosphaeria maculans

    PubMed Central

    Fox, Ellen M.; Gardiner, Donald M.; Keller, Nancy P.; Howlett, Barbara J.

    2008-01-01

    A gene, sirZ, encoding a Zn(II)2Cys6 DNA binding protein is present in a cluster of genes responsible for the biosynthesis of the epipolythiodioxopiperazine (ETP) toxin, sirodesmin PL in the ascomycete plant pathogen, Leptosphaeria maculans. RNA-mediated silencing of sirZ gives rise to transformants that produce only residual amounts of sirodesmin PL and display a decrease in the transcription of several sirodesmin PL biosynthetic genes. This indicates that SirZ is a major regulator of this gene cluster. Proteins similar to SirZ are encoded in the gliotoxin biosynthetic gene cluster of Aspergillus fumigatus (gliZ) and in an ETP-like cluster in Penicillium lilacinoechinulatum (PlgliZ). Despite its high level of sequence similarity to gliZ, PlgliZ is unable to complement the gliotoxin-deficiency of a mutant of gliZ in A. fumigatus. Putative binding sites for these regulatory proteins in the promoters of genes in these clusters were predicted using bioinformatic analysis. These sites are similar to those commonly bound by other proteins with Zn(II)2Cys6 DNA binding domains. PMID:18023597

  12. Ultrafast spectroscopy of UV-induced DNA-lesions — on the search for strategies which keep DNA alive

    NASA Astrophysics Data System (ADS)

    Zinth, W.; Fingerhut, B. P.; Herzog, T. T.; Ryseck, G. R.; Haiser, K.; Graupner, F. F.; Heil, K.; Gilch, P.; Schreier, W. J.; Carell, T.; de Vivie-Riedle, R.

    2013-03-01

    UV-induced photolesions are studied in the visible and IR. While structural distortions of the DNA-backbone at the moment of light absorption are prerequisite for CPD-formation, strain from the backbone guides Dewar-formation.

  13. A kinetic analysis of strand breaks on large DNA induced by cigarette smoke extract

    NASA Astrophysics Data System (ADS)

    Kurita, Hirofumi; Takata, Tatsuya; Yasuda, Hachiro; Takashima, Kazunori; Mizuno, Akira

    2010-06-01

    We report a kinetic analysis of strand breakages on large DNA molecules induced by cigarette smoke extract (CSE), an extract of soluble cigarette smoke components. Previously, this DNA damage was analyzed by agarose gel electrophoresis, whereas we used fluorescence to kinetically analyze damage to individual DNA molecules. CSE caused a marked change in length of DNA molecules. The rate of CSE-induced double-strand breakage on large random-coiled DNA molecules was determined using a simple theoretical model, allowing the facile estimation of the rate of double-strand breaks on large DNA molecules.

  14. Lighting up left-handed Z-DNA: photoluminescent carbon dots induce DNA B to Z transition and perform DNA logic operations

    PubMed Central

    Feng, Lingyan; Zhao, Andong; Ren, Jinsong; Qu, Xiaogang

    2013-01-01

    Left-handed Z-DNA has been identified as a transient structure occurred during transcription. DNA B-Z transition has attracted much attention because of not only Z-DNA biological importance but also their relation to disease and DNA nanotechnology. Recently, photoluminescent carbon dots, especially highly luminescent nitrogen-doped carbon dots, have attracted much attention on their applications to bioimaging and gene/drug delivery because of carbon dots with low toxicity, highly stable photoluminescence and controllable surface function. However, it is still unknown whether carbon dots can influence DNA conformation or structural transition, such as B-Z transition. Herein, based on our previous series work on DNA interactions with carbon nanotubes, we report the first example that photoluminescent carbon dots can induce right-handed B-DNA to left-handed Z-DNA under physiological salt conditions with sequence and conformation selectivity. Further studies indicate that carbon dots would bind to DNA major groove with GC preference. Inspired by carbon dots lighting up Z-DNA and DNA nanotechnology, several types of DNA logic gates have been designed and constructed based on fluorescence resonance energy transfer between photoluminescent carbon dots and DNA intercalators. PMID:23814186

  15. Lighting up left-handed Z-DNA: photoluminescent carbon dots induce DNA B to Z transition and perform DNA logic operations.

    PubMed

    Feng, Lingyan; Zhao, Andong; Ren, Jinsong; Qu, Xiaogang

    2013-09-01

    Left-handed Z-DNA has been identified as a transient structure occurred during transcription. DNA B-Z transition has attracted much attention because of not only Z-DNA biological importance but also their relation to disease and DNA nanotechnology. Recently, photoluminescent carbon dots, especially highly luminescent nitrogen-doped carbon dots, have attracted much attention on their applications to bioimaging and gene/drug delivery because of carbon dots with low toxicity, highly stable photoluminescence and controllable surface function. However, it is still unknown whether carbon dots can influence DNA conformation or structural transition, such as B-Z transition. Herein, based on our previous series work on DNA interactions with carbon nanotubes, we report the first example that photoluminescent carbon dots can induce right-handed B-DNA to left-handed Z-DNA under physiological salt conditions with sequence and conformation selectivity. Further studies indicate that carbon dots would bind to DNA major groove with GC preference. Inspired by carbon dots lighting up Z-DNA and DNA nanotechnology, several types of DNA logic gates have been designed and constructed based on fluorescence resonance energy transfer between photoluminescent carbon dots and DNA intercalators.

  16. Analysis of radiation-induced small Cu particle cluster formation in aqueous CuCl2

    USGS Publications Warehouse

    Jayanetti, Sumedha; Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2001-01-01

    Radition-induced small Cu particle cluster formation in aqueous CuCl2 was analyzed. It was noticed that nearest neighbor distance increased with the increase in the time of irradiation. This showed that the clusters approached the lattice dimension of bulk copper. As the average cluster size approached its bulk dimensions, an increase in the nearest neighbor coordination number was found with the decrease in the surface to volume ratio. Radiolysis of water by incident x-ray beam led to the reduction of copper ions in the solution to themetallic state.

  17. Formation of globular clusters induced by external ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Hasegawa, Kenji; Umemura, Masayuki; Kitayama, Tetsu

    2009-08-01

    We present a novel scenario for globular cluster (GC) formation, where the ultraviolet (UV) background radiation effectively works so as to produce compact star clusters. Recent observations on the age distributions of GCs indicate that many GCs formed even after the cosmic reionization epoch. This implies that a significant fraction of GCs formed in UV background radiation fields. Also, the star formation in an early-generation of subgalactic objects may be affected by strong UV radiation from pre-formed massive stars, e.g. Population III stars. Here, we explore the formation of GCs in UV radiation fields. For this purpose, we calculate baryon and dark matter (DM) dynamics in spherical symmetry, incorporating the self-shielding effects by solving the radiative transfer of UV radiation. In addition, we prescribe the star formation in cooled gas components and pursue the dynamics of formed stars. As a result, we find that the evolution of subgalactic objects in UV background radiation is separated into three types: (i) prompt star formation, where less massive clouds (~105-8Msolar) are promptly self-shielded and undergo star formation, (ii) delayed star formation, where photoionized massive clouds (>~108Msolar) collapse despite high thermal pressure and are eventually self-shielded to form stars in a delayed fashion, and (iii) supersonic infall, where photoionized less massive clouds (~105-8Msolar) contract with supersonic infall velocity and are self-shielded when a compact core forms. In particular, the type (iii) is a novel type found in the present simulations, and eventually produces a very compact star cluster. The resultant mass-to-light ratios, half-mass radii and velocity dispersions for the three types are compared to the observations of GCs, dwarf spheroidals (dSphs) and ultracompact dwarfs (UCDs). It turns out that the properties of star clusters resulting from supersonic infall match well with those of observed GCs, whereas the other two types are

  18. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation

    PubMed Central

    Zhang, Xurui; Ye, Caiyong; Sun, Fang; Wei, Wenjun; Hu, Burong; Wang, Jufang

    2016-01-01

    Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92–1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research. PMID:27187621

  19. Effects of pH on nicotine-induced DNA damage and oxidative stress.

    PubMed

    Wu, Hui-Ju; Chi, Chin-Wen; Liu, Tsung-Yun

    2005-09-01

    Epidemiological evidence suggests that chewing betel quid and smoking have synergistic potential in the development of oral squamous-cell carcinoma in Taiwan. Chewing betel quid produces alkalization of saliva. This study investigated the response of human oral cancer OEC-M1 cells to nicotine in different pH environments (6.5 and 8) by examining its effects on DNA damage as evidenced by single-cell gel electrophoresis. Nicotine (1 and 10 muM) significantly induced DNA strand breakage when cultured at pH 8 for 6 h but did not induce DNA damage at pH 6.5. Nicotine-induced DNA damage was also time dependent. When cells were pretreated with catalase or N-acetylcysteine, a significant reduction in nicotine-induced DNA damage was observed. Flow cytometric analyses showed that the production of 8-oxoguanine was significantly increased following nicotine (10 muM) treatment. Posttreatment of nicotine-damaged DNA by endonuclease III and formamidopyrimidine-DNA glycosylase, recognizing oxidized DNA bases, increased the extent of DNA damage. These results suggest that nicotine-induced DNA strand breakage is pH dependent, and oxidative stress might be involved in nicotine-induced DNA damage. Finally, cigarette smoke condensate (equivalent to 8 muM nicotine) induced significant DNA strand breaks in OEC-M1 cells at pH 8 and correlated with the generation of oxidative DNA damage. Thus, alkaline saliva generated by chewing betel quid plays an important role in cigarette-related nicotine-induced DNA damage, and reactive oxygen species may be involved in generating this DNA damage. PMID:16076763

  20. Identification of column edges of DNA fragments by using K-means clustering and mean algorithm on lane histograms of DNA agarose gel electrophoresis images

    NASA Astrophysics Data System (ADS)

    Turan, Muhammed K.; Sehirli, Eftal; Elen, Abdullah; Karas, Ismail R.

    2015-07-01

    Gel electrophoresis (GE) is one of the most used method to separate DNA, RNA, protein molecules according to size, weight and quantity parameters in many areas such as genetics, molecular biology, biochemistry, microbiology. The main way to separate each molecule is to find borders of each molecule fragment. This paper presents a software application that show columns edges of DNA fragments in 3 steps. In the first step the application obtains lane histograms of agarose gel electrophoresis images by doing projection based on x-axis. In the second step, it utilizes k-means clustering algorithm to classify point values of lane histogram such as left side values, right side values and undesired values. In the third step, column edges of DNA fragments is shown by using mean algorithm and mathematical processes to separate DNA fragments from the background in a fully automated way. In addition to this, the application presents locations of DNA fragments and how many DNA fragments exist on images captured by a scientific camera.

  1. Radiation-induced mobility of small defect clusters in covalent materials

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; He, Li; Morgan, Dane; Voyles, Paul M.; Szlufarska, Izabela

    2016-07-01

    Although defect clusters are detrimental to the electronic and mechanical properties of semiconductor materials, annihilation of such clusters is limited by their lack of thermal mobility due to high migration barriers. Here, we find that small clusters in bulk SiC (a covalent material of importance for both electronic and nuclear applications) can become mobile at room temperature under the influence of electron radiation. So far, direct observation of radiation-induced diffusion of defect clusters in bulk materials has not yet been demonstrated. This finding was made possible by low-angle annular dark-field scanning transmission electron microscopy combined with a nonrigid registration technique to remove sample instability, which enables atomic resolution imaging of small migrating defect clusters. We show that the underlying mechanism of this athermal diffusion is a ballistic collision between incoming electrons and cluster atoms. Our findings suggest that defect clusters may be mobile under certain irradiation conditions, changing the current understanding of the cluster annealing process in irradiated covalent materials.

  2. Recycling of Acetylcholine Receptors at Ectopic Postsynaptic Clusters Induced by Exogenous Agrin in Living Rats

    PubMed Central

    Brenner, Hans Rudolf; Akaaboune, Mohammed

    2014-01-01

    During the development of the neuromuscular junction, motor axons induce the clustering of acetylcholine receptors (AChRs) and increase their metabolic stability in the muscle membrane. Here, we asked whether the synaptic organizer agrin might regulate the metabolic stability and density of AChRs by promoting the recycling of internalized AChRs, which would otherwise be destined for degradation, into synaptic sites. We show that at nerve-free AChR clusters induced by agrin in extrasynaptic membrane, internalized AChRs are driven back into the ectopic synaptic clusters where they intermingle with pre-existing and new receptors. The extent of AChR recycling depended on the strength of the agrin stimulus, but not on the development of junctional folds, another hallmark of mature postsynaptic membranes. In chronically denervated muscles, in which both AChR stability and recycling are significantly decreased by muscle inactivity, agrin maintained the amount of recycled AChRs at agrin-induced clusters at a level similar to that at denervated original endplates. In contrast, AChRs did not recycle at agrin-induced clusters in C2C12 or primary myotubes. Thus, in muscles in vivo, but not in cultured myotubes, neural agrin promotes the recycling of AChRs and thereby increases their metabolic stability. PMID:25093969

  3. Production of anti-double-stranded DNA antibodies in activated lymphocyte derived DNA induced lupus model was dependent on CD4+ T cells.

    PubMed

    Wen, Z; Xu, L; Xu, W; Xiong, S

    2012-04-01

    Our previous study demonstrated that activated lymphocyte derived DNA (ALD-DNA) could function as an autoantigen to induce production of anti-double-stranded DNA (anti-dsDNA) antibodies in syngeneic BALB/c mice. Here we carefully evaluated the potential role of T cells in the induction of anti-dsDNA antibody. We demonstrated that ALD-DNA could effectively induce production of anti-dsDNA antibodies in vivo and in vitro. In contrast, ALD-DNA could not induce the generation of anti-dsDNA antibodies in nude mice. We further showed that in vivo depletion of CD3(+) T cells blocked the induction of anti-dsDNA antibodies in BALB/c mice. Notably, we demonstrated that CD4(+) but not CD8(+) T cells conferred ALD-DNA to induce anti-dsDNA antibodies. Finally, we demonstrated that adoptive transfer of CD4(+) T cells could rescue ALD-DNA induced anti-dsDNA antibodies in nude mice. Our results suggested that T helper cells were required for ALD-DNA to induce anti-dsDNA antibodies. These findings could further our understanding about the immunogenic properties of DNA and throw new light on SLE pathogenesis.

  4. Characterization of three different clusters of 18S-26S ribosomal DNA genes in the sea urchin P. lividus: Genetic and epigenetic regulation synchronous to 5S rDNA.

    PubMed

    Bellavia, Daniele; Dimarco, Eufrosina; Caradonna, Fabio

    2016-04-15

    We previously reported the characterization 5S ribosomal DNA (rDNA) clusters in the common sea urchin Paracentrotus lividus and demonstrated the presence of DNA methylation-dependent silencing of embryo specific 5S rDNA cluster in adult tissue. In this work, we show genetic and epigenetic characterization of 18S-26S rDNA clusters in this specie. The results indicate the presence of three different 18S-26S rDNA clusters with different Non-Transcribed Spacer (NTS) regions that have different chromosomal localizations. Moreover, we show that the two largest clusters are hyper-methylated in the promoter-containing NTS regions in adult tissues, as in the 5S rDNA. These findings demonstrate an analogous epigenetic regulation in small and large rDNA clusters and support the logical synchronism in building ribosomes. In fact, all the ribosomal RNA genes must be synchronously and equally transcribed to perform their unique final product.

  5. Characterization of three different clusters of 18S-26S ribosomal DNA genes in the sea urchin P. lividus: Genetic and epigenetic regulation synchronous to 5S rDNA.

    PubMed

    Bellavia, Daniele; Dimarco, Eufrosina; Caradonna, Fabio

    2016-04-15

    We previously reported the characterization 5S ribosomal DNA (rDNA) clusters in the common sea urchin Paracentrotus lividus and demonstrated the presence of DNA methylation-dependent silencing of embryo specific 5S rDNA cluster in adult tissue. In this work, we show genetic and epigenetic characterization of 18S-26S rDNA clusters in this specie. The results indicate the presence of three different 18S-26S rDNA clusters with different Non-Transcribed Spacer (NTS) regions that have different chromosomal localizations. Moreover, we show that the two largest clusters are hyper-methylated in the promoter-containing NTS regions in adult tissues, as in the 5S rDNA. These findings demonstrate an analogous epigenetic regulation in small and large rDNA clusters and support the logical synchronism in building ribosomes. In fact, all the ribosomal RNA genes must be synchronously and equally transcribed to perform their unique final product. PMID:26789074

  6. DNA fragment sizing and sorting by laser-induced fluorescence

    DOEpatents

    Hammond, Mark L.; Jett, James H.; Keller, Richard A.; Marrone, Babetta L.; Martin, John C.

    1996-01-01

    A method is provided for sizing DNA fragments using high speed detection systems, such as flow cytometry to determine unique characteristics of DNA pieces from a sample. In one characterization the DNA piece is fragmented at preselected sites to produce a plurality of DNA fragments. The DNA piece or the resulting DNA fragments are treated with a dye effective to stain stoichiometrically the DNA piece or the DNA fragments. The fluorescence from the dye in the stained fragments is then examined to generate an output functionally related to the number of nucleotides in each one of the DNA fragments. In one embodiment, the intensity of the fluorescence emissions from each fragment is linearly related to the fragment length. The distribution of DNA fragment sizes forms a characterization of the DNA piece for use in forensic and research applications.

  7. The influence of reduced glutathione on chromosome damage induced by X-rays or heavy ion beams of different LETs and on the interaction of DNA lesions induced by radiations and bleomycin.

    PubMed

    Pujari, Geetanjali; Sarma, A; Chatterjee, A

    2010-02-01

    It is thought that high linear energy transfer (LET) radiation induces more complex DNA damage than low-LET particles, specifically clustered DNA damage that causes cells to repair DNA double strand breaks (DSB) more slowly and leads to severe biological consequences. The present study aimed to investigate the role of exogenously added glutathione (GSH) on (12)C-beam (287keV/mum) and (7)Li-beam (60keV/mum) induced chromosome aberration (CA) formation, particularly on exchange aberration formation. In order to characterize the role of GSH in the joining of DNA DSBs, we induced DNA lesions with bleomycin (Blem) in conjunction with either high- or low-LET radiation (X-rays) since the chemistry of the free DNA ends created by Blem and X-rays is similar. CHO cells were exposed to reduced GSH at a concentration of 2mM for 3h before radiation. Treatment with Blem (20mug/ml) was carried out for 2h before the cells were exposed to radiation. Our results show that the frequency of chromosomal aberration increases with increased LET. Heavy ion exposed cells show a higher frequency of CA over time than do X-irradiated cells. An analysis of the first post-irradiation mitosis of exposed CHO cells shows that high-LET radiation induces more breaks than exchange-type aberrations and exogenous GSH has no influence on high-LET radiation-induced DNA damage. The DNA lesions induced by low-LET radiation interact relatively strongly with Blem-induced lesions whereas interaction between Blem and high-LET radiations was poor. This could be attributed to differences in repair kinetics and qualitative differences in the DNA lesions induced by Blem and high-LET radiation.

  8. PREDICTING MERGER-INDUCED GAS MOTIONS IN ΛCDM GALAXY CLUSTERS

    SciTech Connect

    Nagai, Daisuke; Lau, Erwin T.; Avestruz, Camille; Rudd, Douglas H.; Nelson, Kaylea

    2013-11-10

    In the hierarchical structure formation model, clusters of galaxies form through a sequence of mergers and continuous mass accretion, which generate significant random gas motions especially in their outskirts where material is actively accreting. Non-thermal pressure provided by the internal gas motions affects the thermodynamic structure of the X-ray emitting intracluster plasma and introduces biases in the physical interpretation of X-ray and Sunyaev-Zeldovich effect observations. However, we know very little about the nature of gas motions in galaxy clusters. The ASTRO-H X-ray mission, scheduled to launch in 2015, will have a calorimeter capable of measuring gas motions in galaxy clusters at the level of ∼< 100 km s{sup –1}. In this work, we predict the level of merger-induced gas motions expected in the ΛCDM model using hydrodynamical simulations of galaxy cluster formation. We show that the gas velocity dispersion is larger in more massive clusters, but exhibits a large scatter. We show that systems with large gas motions are morphologically disturbed, while early forming, relaxed groups show a smaller level of gas motions. By analyzing mock ASTRO-H observations of simulated clusters, we show that such observations can accurately measure the gas velocity dispersion out to the outskirts of nearby relaxed galaxy clusters. ASTRO-H analysis of merging clusters, on the other hand, requires multi-component spectral fitting and enables unique studies of substructures in galaxy clusters by measuring both the peculiar velocities and the velocity dispersion of gas within individual sub-clusters.

  9. C-NAP1 and rootletin restrain DNA damage-induced centriole splitting and facilitate ciliogenesis.

    PubMed

    Conroy, Pauline C; Saladino, Chiara; Dantas, Tiago J; Lalor, Pierce; Dockery, Peter; Morrison, Ciaran G

    2012-10-15

    Cilia are found on most human cells and exist as motile cilia or non-motile primary cilia. Primary cilia play sensory roles in transducing various extracellular signals, and defective ciliary functions are involved in a wide range of human diseases. Centrosomes are the principal microtubule-organizing centers of animal cells and contain two centrioles. We observed that DNA damage causes centriole splitting in non-transformed human cells, with isolated centrioles carrying the mother centriole markers CEP170 and ninein but not kizuna or cenexin. Loss of centriole cohesion through siRNA depletion of C-NAP1 or rootletin increased radiation-induced centriole splitting, with C-NAP1-depleted isolated centrioles losing mother markers. As the mother centriole forms the basal body in primary cilia, we tested whether centriole splitting affected ciliogenesis. While irradiated cells formed apparently normal primary cilia, most cilia arose from centriolar clusters, not from isolated centrioles. Furthermore, C-NAP1 or rootletin knockdown reduced primary cilium formation. Therefore, the centriole cohesion apparatus at the proximal end of centrioles may provide a target that can affect primary cilium formation as part of the DNA damage response. PMID:23070519

  10. C-NAP1 and rootletin restrain DNA damage-induced centriole splitting and facilitate ciliogenesis.

    PubMed

    Conroy, Pauline C; Saladino, Chiara; Dantas, Tiago J; Lalor, Pierce; Dockery, Peter; Morrison, Ciaran G

    2012-10-15

    Cilia are found on most human cells and exist as motile cilia or non-motile primary cilia. Primary cilia play sensory roles in transducing various extracellular signals, and defective ciliary functions are involved in a wide range of human diseases. Centrosomes are the principal microtubule-organizing centers of animal cells and contain two centrioles. We observed that DNA damage causes centriole splitting in non-transformed human cells, with isolated centrioles carrying the mother centriole markers CEP170 and ninein but not kizuna or cenexin. Loss of centriole cohesion through siRNA depletion of C-NAP1 or rootletin increased radiation-induced centriole splitting, with C-NAP1-depleted isolated centrioles losing mother markers. As the mother centriole forms the basal body in primary cilia, we tested whether centriole splitting affected ciliogenesis. While irradiated cells formed apparently normal primary cilia, most cilia arose from centriolar clusters, not from isolated centrioles. Furthermore, C-NAP1 or rootletin knockdown reduced primary cilium formation. Therefore, the centriole cohesion apparatus at the proximal end of centrioles may provide a target that can affect primary cilium formation as part of the DNA damage response.

  11. DNA-methylation dependent regulation of embryo-specific 5S ribosomal DNA cluster transcription in adult tissues of sea urchin Paracentrotus lividus.

    PubMed

    Bellavia, Daniele; Dimarco, Eufrosina; Naselli, Flores; Caradonna, Fabio

    2013-10-01

    We have previously reported a molecular and cytogenetic characterization of three different 5S rDNA clusters in the sea urchin Paracentrotus lividus and recently, demonstrated the presence of high heterogeneity in functional 5S rRNA. In this paper, we show some important distinctive data on 5S rRNA transcription for this organism. Using single strand conformation polymorphism (SSCP) analysis, we demonstrate the existence of two classes of 5S rRNA, one which is embryo-specific and encoded by the smallest (700 bp) cluster and the other which is expressed at every stage and encoded by longer clusters (900 and 950 bp). We also demonstrate that the embryo-specific class of 5S rRNA is expressed in oocytes and embryonic stages and is silenced in adult tissue and that this phenomenon appears to be due exclusively to DNA methylation, as indicated by sensitivity to 5-azacytidine, unlike Xenopus where this mechanism is necessary but not sufficient to maintain the silenced status.

  12. DNA-methylation dependent regulation of embryo-specific 5S ribosomal DNA cluster transcription in adult tissues of sea urchin Paracentrotus lividus.

    PubMed

    Bellavia, Daniele; Dimarco, Eufrosina; Naselli, Flores; Caradonna, Fabio

    2013-10-01

    We have previously reported a molecular and cytogenetic characterization of three different 5S rDNA clusters in the sea urchin Paracentrotus lividus and recently, demonstrated the presence of high heterogeneity in functional 5S rRNA. In this paper, we show some important distinctive data on 5S rRNA transcription for this organism. Using single strand conformation polymorphism (SSCP) analysis, we demonstrate the existence of two classes of 5S rRNA, one which is embryo-specific and encoded by the smallest (700 bp) cluster and the other which is expressed at every stage and encoded by longer clusters (900 and 950 bp). We also demonstrate that the embryo-specific class of 5S rRNA is expressed in oocytes and embryonic stages and is silenced in adult tissue and that this phenomenon appears to be due exclusively to DNA methylation, as indicated by sensitivity to 5-azacytidine, unlike Xenopus where this mechanism is necessary but not sufficient to maintain the silenced status. PMID:23933480

  13. Mitochondrial DNA plasticity is an essential inducer of tumorigenesis

    PubMed Central

    Lee, W T Y; Cain, J E; Cuddihy, A; Johnson, J; Dickinson, A; Yeung, K-Y; Kumar, B; Johns, T G; Watkins, D N; Spencer, A; St John, J C

    2016-01-01

    Although mitochondrial DNA has been implicated in diseases such as cancer, its role remains to be defined. Using three models of tumorigenesis, namely glioblastoma multiforme, multiple myeloma and osteosarcoma, we show that mitochondrial DNA plays defining roles at early and late tumour progression. Specifically, tumour cells partially or completely depleted of mitochondrial DNA either restored their mitochondrial DNA content or actively recruited mitochondrial DNA, which affected the rate of tumorigenesis. Nevertheless, non-depleted tumour cells modulated mitochondrial DNA copy number at early and late progression in a mitochondrial DNA genotype-specific manner. In glioblastoma multiforme and osteosarcoma, this was coupled with loss and gain of mitochondrial DNA variants. Changes in mitochondrial DNA genotype affected tumour morphology and gene expression patterns at early and late progression. Importantly, this identified a subset of genes that are essential to early progression. Consequently, mitochondrial DNA and commonly expressed early tumour-specific genes provide novel targets against tumorigenesis. PMID:27551510

  14. Mitochondrial DNA plasticity is an essential inducer of tumorigenesis.

    PubMed

    Lee, W T Y; Cain, J E; Cuddihy, A; Johnson, J; Dickinson, A; Yeung, K-Y; Kumar, B; Johns, T G; Watkins, D N; Spencer, A; St John, J C

    2016-01-01

    Although mitochondrial DNA has been implicated in diseases such as cancer, its role remains to be defined. Using three models of tumorigenesis, namely glioblastoma multiforme, multiple myeloma and osteosarcoma, we show that mitochondrial DNA plays defining roles at early and late tumour progression. Specifically, tumour cells partially or completely depleted of mitochondrial DNA either restored their mitochondrial DNA content or actively recruited mitochondrial DNA, which affected the rate of tumorigenesis. Nevertheless, non-depleted tumour cells modulated mitochondrial DNA copy number at early and late progression in a mitochondrial DNA genotype-specific manner. In glioblastoma multiforme and osteosarcoma, this was coupled with loss and gain of mitochondrial DNA variants. Changes in mitochondrial DNA genotype affected tumour morphology and gene expression patterns at early and late progression. Importantly, this identified a subset of genes that are essential to early progression. Consequently, mitochondrial DNA and commonly expressed early tumour-specific genes provide novel targets against tumorigenesis. PMID:27551510

  15. Raft coalescence and FcγRIIA activation upon sphingomyelin clustering induced by lysenin.

    PubMed

    Kulma, Magdalena; Kwiatkowska, Katarzyna; Sobota, Andrzej

    2012-08-01

    Activation of immunoreceptor FcγRIIA by cross-linking with antibodies is accompanied by coalescence of sphingolipid/cholesterol-rich membrane rafts leading to the formation of signaling platforms of the receptor. In this report we examined whether clustering of the raft lipid sphingomyelin can reciprocally induce partition of FcγRIIA to rafts. To induce sphingomyelin clustering, cells were exposed to non-lytic concentrations of GST-lysenin which specifically recognizes sphingomyelin. The lysenin/sphingomyelin complexes formed microscale assemblies composed of GST-lysenin oligomers engaging sphingomyelin of rafts. Upon sphingomyelin clustering, non-cross-linked FcγRIIA associated with raft-derived detergent-resistant membrane fractions as revealed by density gradient centrifugation. Pretreatment of cells with GST-lysenin also increased the size of detergent-insoluble molecular complexes of activated FcγRIIA. Sphingomyelin clustering triggered tyrosine phosphorylation of the receptor and its accompanying proteins, Cbl and NTAL, in the absence of receptor ligands and enhanced phosphorylation of these proteins in the ligand presence. These data indicate that clustering of plasma membrane sphingomyelin induces coalescence of rafts and triggers signaling events analogous to those caused by FcγRIIA activation.

  16. WRNIP1 functions upstream of DNA polymerase η in the UV-induced DNA damage response.

    PubMed

    Yoshimura, Akari; Kobayashi, Yume; Tada, Shusuke; Seki, Masayuki; Enomoto, Takemi

    2014-09-12

    WRNIP1 (WRN-interacting protein 1) was first identified as a factor that interacts with WRN, the protein that is defective in Werner syndrome (WS). WRNIP1 associates with DNA polymerase η (Polη), but the biological significance of this interaction remains unknown. In this study, we analyzed the functional interaction between WRNIP1 and Polη by generating knockouts of both genes in DT40 chicken cells. Disruption of WRNIP1 in Polη-disrupted (POLH(-/-)) cells suppressed the phenotypes associated with the loss of Polη: sensitivity to ultraviolet light (UV), delayed repair of cyclobutane pyrimidine dimers (CPD), elevated frequency of mutation, elevated levels of UV-induced sister chromatid exchange (SCE), and reduced rate of fork progression after UV irradiation. These results suggest that WRNIP1 functions upstream of Polη in the response to UV irradiation.

  17. WRNIP1 functions upstream of DNA polymerase η in the UV-induced DNA damage response

    SciTech Connect

    Yoshimura, Akari; Kobayashi, Yume; Tada, Shusuke; Seki, Masayuki; Enomoto, Takemi

    2014-09-12

    Highlights: • The UV sensitivity of POLH{sup −/−} cells was suppressed by disruption of WRNIP1. • In WRNIP1{sup −/−/−}/POLH{sup −/−} cells, mutation frequencies and SCE after irradiation reduced. • WRNIP1 defect recovered rate of fork progression after irradiation in POLH{sup −/−} cells. • WRNIP1 functions upstream of Polη in the translesion DNA synthesis pathway. - Abstract: WRNIP1 (WRN-interacting protein 1) was first identified as a factor that interacts with WRN, the protein that is defective in Werner syndrome (WS). WRNIP1 associates with DNA polymerase η (Polη), but the biological significance of this interaction remains unknown. In this study, we analyzed the functional interaction between WRNIP1 and Polη by generating knockouts of both genes in DT40 chicken cells. Disruption of WRNIP1 in Polη-disrupted (POLH{sup −/−}) cells suppressed the phenotypes associated with the loss of Polη: sensitivity to ultraviolet light (UV), delayed repair of cyclobutane pyrimidine dimers (CPD), elevated frequency of mutation, elevated levels of UV-induced sister chromatid exchange (SCE), and reduced rate of fork progression after UV irradiation. These results suggest that WRNIP1 functions upstream of Polη in the response to UV irradiation.

  18. MET18 Connects the Cytosolic Iron-Sulfur Cluster Assembly Pathway to Active DNA Demethylation in Arabidopsis

    PubMed Central

    Tang, Kai; Zhang, Huiming; Mangrauthia, Satendra K.; Lei, Mingguang; Hsu, Chuan-Chih; Hou, Yueh-Ju; Wang, Chunguo; Li, Yan; Tao, W. Andy; Zhu, Jian-Kang

    2015-01-01

    DNA demethylation mediated by the DNA glycosylase ROS1 helps determine genomic DNA methylation patterns and protects active genes from being silenced. However, little is known about the mechanism of regulation of ROS1 enzymatic activity. Using a forward genetic screen, we identified an anti-silencing (ASI) factor, ASI3, the dysfunction of which causes transgene promoter hyper-methylation and silencing. Map-based cloning identified ASI3 as MET18, a component of the cytosolic iron-sulfur cluster assembly (CIA) pathway. Mutation in MET18 leads to hyper-methylation at thousands of genomic loci, the majority of which overlap with hypermethylated loci identified in ros1 and ros1dml2dml3 mutants. Affinity purification followed by mass spectrometry indicated that ROS1 physically associates with MET18 and other CIA components. Yeast two-hybrid and split luciferase assays showed that ROS1 can directly interact with MET18 and another CIA component, AE7. Site-directed mutagenesis of ROS1 indicated that the conserved iron-sulfur motif is indispensable for ROS1 enzymatic activity. Our results suggest that ROS1-mediated active DNA demethylation requires MET18-dependent transfer of the iron-sulfur cluster, highlighting an important role of the CIA pathway in epigenetic regulation. PMID:26492035

  19. MET18 Connects the Cytosolic Iron-Sulfur Cluster Assembly Pathway to Active DNA Demethylation in Arabidopsis.

    PubMed

    Duan, Cheng-Guo; Wang, Xingang; Tang, Kai; Zhang, Huiming; Mangrauthia, Satendra K; Lei, Mingguang; Hsu, Chuan-Chih; Hou, Yueh-Ju; Wang, Chunguo; Li, Yan; Tao, W Andy; Zhu, Jian-Kang

    2015-10-01

    DNA demethylation mediated by the DNA glycosylase ROS1 helps determine genomic DNA methylation patterns and protects active genes from being silenced. However, little is known about the mechanism of regulation of ROS1 enzymatic activity. Using a forward genetic screen, we identified an anti-silencing (ASI) factor, ASI3, the dysfunction of which causes transgene promoter hyper-methylation and silencing. Map-based cloning identified ASI3 as MET18, a component of the cytosolic iron-sulfur cluster assembly (CIA) pathway. Mutation in MET18 leads to hyper-methylation at thousands of genomic loci, the majority of which overlap with hypermethylated loci identified in ros1 and ros1dml2dml3 mutants. Affinity purification followed by mass spectrometry indicated that ROS1 physically associates with MET18 and other CIA components. Yeast two-hybrid and split luciferase assays showed that ROS1 can directly interact with MET18 and another CIA component, AE7. Site-directed mutagenesis of ROS1 indicated that the conserved iron-sulfur motif is indispensable for ROS1 enzymatic activity. Our results suggest that ROS1-mediated active DNA demethylation requires MET18-dependent transfer of the iron-sulfur cluster, highlighting an important role of the CIA pathway in epigenetic regulation.

  20. Noise-induced dispersion and breakup of clusters in cell cycle dynamics

    PubMed Central

    Gong, Xue; Moses, Gregory; Neiman, Alexander B.; Young, Todd

    2014-01-01

    We study the effects of random perturbations on collective dynamics of a large ensemble of interacting cells in a model of the cell division cycle. We consider a parameter region for which the unperturbed model possesses asymptotically stable two-cluster periodic solutions. Two biologically motivated forms of random perturbations are considered: bounded variations in growth rate and asymmetric division. We compare the effects of these two dispersive mechanisms with additive Gaussian white noise perturbations. We observe three distinct phases of the response to noise in the model. First, for weak noise there is a linear relationship between the applied noise strength and the dispersion of the clusters. Second, for moderate noise strengths the clusters begin to mix, i.e. individual cells move between clusters, yet the population distribution clearly continues to maintain a two-cluster structure. Third, for strong noise the clusters are destroyed and the population is characterized by a uniform distribution. The second and third phases are separated by an order - disorder phase transition that has the characteristics of a Hopf bifurcation. Furthermore, we show that for the cell cycle model studied, the effects of bounded random perturbations are virtually indistinguishable from those induced by additive Gaussian noise, after appropriate scaling of the variance of noise strength. We then use the model to predict the strength of coupling among the cells from experimental data. In particular, we show that coupling must be rather strong to account for the observed clustering of cells given experimentally estimated noise variance. PMID:24694583

  1. Fragmentation of clusters and recombination induced by intense and ultrashort x-ray laser pulses

    NASA Astrophysics Data System (ADS)

    Timneanu, N.; Iwan, B.; Andreasson, J.; Bergh, M.; Seibert, M.; Bostedt, C.; Schorb, S.; Thomas, H.; Rupp, D.; Gorkhover, T.; Adolph, M.; Möller, T.; Helal, A.; Hoffmann, K.; Kandadai, N.; Keto, J.; Ditmire, T.

    2013-05-01

    Understanding the ultrafast dynamics of matter under extreme conditions is relevant for structural studies and plasma physics with X-ray lasers. We used the pulses from free-electron lasers (FLASH in Hamburg and LCLS in Stanford) to trigger X-ray induced explosions in atomic atoms (Xe) and molecular clusters (CH4 and CD4). The explosion dynamics depends on cluster size and the intensity of the X-ray pulse, and a transition from Coulomb explosion to hydrodynamic expansion is expected with increasing size and increasing pulse intensity. In methane clusters experiments at FLASH, the time-of-flight spectrometry shows the appearance of molecular adducts which are the result of molecular recombination between ions and molecules. The recombination depends on the cluster size and the expansion mechanism and becomes significant in larger clusters. In Xenon cluster experiments at the LCLS, measurements of the ion charge states in clusters suggest a formation of Xe nanoplasma which expands hydrodynamically. The dominance of low charge states of Xe is due to three-body recombination processes involving electron and Xe ions, and it depends on the X-ray intensity and nanoplasma formation.

  2. Moiré induced organization of size-selected Pt clusters soft landed on epitaxial graphene

    PubMed Central

    Linas, Sébastien; Jean, Fabien; Zhou, Tao; Albin, Clément; Renaud, Gilles; Bardotti, Laurent; Tournus, Florent

    2015-01-01

    Two-dimensional hexagonal arrays of Pt nanoparticles (1.5 nm diameter) have been obtained by deposition of preformed and size selected Pt nanoparticles on graphene. This original self-organization is induced, at room temperature, by the 2D periodic undulation (the moiré pattern) of graphene epitaxially grown on the Ir(111) surface. By means of complementary techniques (scanning tunneling microscopy, grazing incidence X ray scattering), the Pt clusters shapes and organization are characterized and the structural evolution during annealing is investigated. The soft-landed clusters remain quasi-spherical and a large proportion appears to be pinned on specific moiré sites. The quantitative determination of the proportion of organized clusters reveals that the obtained hexagonal array of the almost spherical nanoparticles is stable up to 650 K, which is an indication of a strong cluster-surface interaction. PMID:26278787

  3. Ultraviolet induced DNA damage and hereditary skin cancer

    SciTech Connect

    Regan, J.D.; Carrier, W.L.; Francis, A.A.

    1984-01-01

    Clearly, cells from normal individuals possess the ability to repair a variety of damage to DNA. Numerous studies indicate that defects in DNA repair may increase an individual's susceptibility to cancer. It is hoped that continued studies of the exact structural changes produced in the DNA by environmental insults, and the correlation of specific DNA changes with particulr cellular events, such as DNA repair, will lead to a better understanding of cell-killing, mutagenesis and carbinogenesis. 1 figure, 2 tables.

  4. DNA Self-Assembling Nanostructures Induced by Trivalent Ions and Polycations

    NASA Astrophysics Data System (ADS)

    Kasyanenko, Nina; Afanasieva, Daria

    The purpose of this work is to compare DNA condensation induced by small multivalent ions and polycations. DNA complexes with trivalent ions Fe3+, La3+, [Co(NH3)6]3+, spermidine and cationic polymers in a solution were investigated. The influence of cations on the volume, persistent length, and secondary structure of DNA was studied. A comparison of DNA packaging induced by trivalent ions and polycations was made. DNA complexes with trivalent metal ions and polycations were characterized by means of low gradient viscometry, dynamic light scattering, circular dichroism, UV spectrometry, flow birefringence, and atomic force microscopy.

  5. A viral satellite DNA vector-induced transcriptional gene silencing via DNA methylation of gene promoter in Nicotiana benthamiana.

    PubMed

    Ju, Zheng; Wang, Lei; Cao, Dongyan; Zuo, Jinhua; Zhu, Hongliang; Fu, Daqi; Luo, Yunbo; Zhu, Benzhong

    2016-09-01

    Virus-induced gene silencing (VIGS) has been widely used for plant functional genomics study at the post-transcriptional level using various DNA or RNA viral vectors. However, while virus-induced transcriptional gene silencing (VITGS) via DNA methylation of gene promoter was achieved using several plant RNA viral vectors, it has not yet been done using a satellite DNA viral vector. In this study, a viral satellite DNA associated with tomato yellow leaf curl China virus (TYLCCNV), which has been modified as a VIGS vector in previous research, was developed as a VITGS vector. Firstly, the viral satellite DNA VIGS vector was further optimized to a more convenient p1.7A+2mβ vector with high silencing efficiency of the phytoene desaturase (PDS) gene in Nicotiana benthamiana plants. Secondly, the constructed VITGS vector (TYLCCNV:35S), which carried a portion of the cauliflower mosaic virus 35S promoter, could successfully induce heritable transcriptional gene silencing (TGS) of the green fluorescent protein (GFP) gene in the 35S-GFP transgenic N. benthamiana line 16c plants. Moreover, bisulfite sequencing results revealed higher methylated cytosine residues at CG, CHG and CHH sites of the 35S promoter sequence in TYLCCNV:35S-inoculated plants than in TYLCCNV-inoculated line 16c plants (control). Overall, these results demonstrated that the viral satellite DNA vector could be used as an effective VITGS vector to study DNA methylation in plant genomes. PMID:27422476

  6. Human Cytomegalovirus Induces JC Virus DNA Replication in Human Fibroblasts

    NASA Astrophysics Data System (ADS)

    Heilbronn, Regine; Albrecht, Ingrid; Stephan, Sonja; Burkle, Alexander; Zur Hausen, Harald

    1993-12-01

    JC virus, a human papovavirus, is the causative agent of the demyelinating brain disease progressive multifocal leucoencephalopathy (PML). PML is a rare but fatal disease which develops as a complication of severe immunosuppression. Latent JC virus is harbored by many asymptomatic carriers and is transiently reactivated from the latent state upon immunosuppression. JC virus has a very restricted host range, with human glial cells being the only tissue in which it can replicate at reasonable efficiency. Evidence that latent human cytomegalovirus is harbored in the kidney similar to latent JC virus led to the speculation that during episodes of impaired immunocompetence, cytomegalovirus might serve as helper virus for JC virus replication in otherwise nonpermissive cells. We show here that cytomegalovirus infection indeed leads to considerable JC virus DNA replication in cultured human fibroblasts that are nonpermissive for the replication of JC virus alone. Cytomegalovirus-mediated JC virus replication is dependent on the JC virus origin of replication and T antigen. Ganciclovir-induced inhibition of cytomegalovirus replication is associated with a concomitant inhibition of JC virus replication. These results suggest that reactivation of cytomegalovirus during episodes of immunosuppression might lead to activation of latent JC virus, which would enhance the probability of subsequent PML development. Ganciclovir-induced repression of both cytomegalovirus and JC virus replication may form the rational basis for the development of an approach toward treatment or prevention of PML.

  7. Beryllium chloride-induced oxidative DNA damage and alteration in the expression patterns of DNA repair-related genes.

    PubMed

    Attia, Sabry M; Harisa, Gamaleldin I; Hassan, Memy H; Bakheet, Saleh A

    2013-09-01

    Beryllium metal has physical properties that make its use essential for very specific applications, such as medical diagnostics, nuclear/fusion reactors and aerospace applications. Because of the widespread human exposure to beryllium metals and the discrepancy of the genotoxic results in the reported literature, detail assessments of the genetic damage of beryllium are warranted. Mice exposed to beryllium chloride at an oral dose of 23mg/kg for seven consecutive days exhibited a significant increase in the level of DNA-strand breaking and micronuclei formation as detected by a bone marrow standard comet assay and micronucleus test. Whereas slight beryllium chloride-induced oxidative DNA damage was detected following formamidopyrimidine DNA glycosylase digestion, digestion with endonuclease III resulted in considerable increases in oxidative DNA damage after the 11.5 and 23mg/kg/day treatment as detected by enzyme-modified comet assays. Increased 8-hydroxydeoxyguanosine was also directly correlated with increased bone marrow micronuclei formation and DNA strand breaks, which further confirm the involvement of oxidative stress in the induction of bone marrow genetic damage after exposure to beryllium chloride. Gene expression analysis on the bone marrow cells from beryllium chloride-exposed mice showed significant alterations in genes associated with DNA damage repair. Therefore, beryllium chloride may cause genetic damage to bone marrow cells due to the oxidative stress and the induced unrepaired DNA damage is probably due to the down-regulation in the expression of DNA repair genes, which may lead to genotoxicity and eventually cause carcinogenicity.

  8. Increase of the mean inner Coulomb potential in Au clusters induced by surface tension and its implication for electron scattering

    SciTech Connect

    Popescu, Radian; Mueller, Erich; Wanner, Matthias; Gerthsen, Dagmar; Schowalter, Marco; Rosenauer, Andreas; Boettcher, Artur; Loeffler, Daniel; Weis, Patrick

    2007-12-15

    Electron holography in a transmission electron microscope was applied to measure the phase shift {delta}{phi} induced by Au clusters as a function of the cluster size. Large {delta}{phi} observed for small Au clusters cannot be described by the well-known equation {delta}{phi}=C{sub E}V{sub 0}t (C{sub E}, interaction constant; V{sub 0}, mean inner Coulomb potential (MIP) of bulk gold; and t, cluster thickness). The rapid increase of the Au MIP with decreasing cluster size derived from {delta}{phi} can be explained by the compressive strain of surface atoms in the cluster.

  9. Topographic confinement of epithelial clusters induces epithelial-to-mesenchymal transition in compliant matrices

    NASA Astrophysics Data System (ADS)

    Nasrollahi, Samila; Pathak, Amit

    2016-01-01

    Epithelial cells disengage from their clusters and become motile by undergoing epithelial-to-mesenchymal transition (EMT), an essential process for both embryonic development and tumor metastasis. Growing evidence suggests that high extracellular matrix (ECM) stiffness induces EMT. In reality, epithelial clusters reside in a heterogeneous microenvironment whose mechanical properties vary not only in terms of stiffness, but also topography, dimensionality, and confinement. Yet, very little is known about how various geometrical parameters of the ECM might influence EMT. Here, we adapt a hydrogel-microchannels based matrix platform to culture mammary epithelial cell clusters in ECMs of tunable stiffness and confinement. We report a previously unidentified role of ECM confinement in EMT induction. Surprisingly, confinement induces EMT even in the cell clusters surrounded by a soft matrix, which otherwise protects against EMT in unconfined environments. Further, we demonstrate that stiffness-induced and confinement-induced EMT work through cell-matrix adhesions and cytoskeletal polarization, respectively. These findings highlight that both the structure and the stiffness of the ECM can independently regulate EMT, which brings a fresh perspective to the existing paradigm of matrix stiffness-dependent dissemination and invasion of tumor cells.

  10. The catalytic topoisomerase II inhibitor dexrazoxane induces DNA breaks, ATF3 and the DNA damage response in cancer cells

    PubMed Central

    Deng, Shiwei; Yan, Tiandong; Nikolova, Teodora; Fuhrmann, Dominik; Nemecek, Andrea; Gödtel-Armbrust, Ute; Kaina, Bernd; Wojnowski, Leszek

    2015-01-01

    Background and Purpose The catalytic topoisomerase II inhibitor dexrazoxane has been associated not only with improved cancer patient survival but also with secondary malignancies and reduced tumour response. Experimental Approach We investigated the DNA damage response and the role of the activating transcription factor 3 (ATF3) accumulation in tumour cells exposed to dexrazoxane. Key Results Dexrazoxane exposure induced topoisomerase IIα (TOP2A)-dependent cell death, γ-H2AX accumulation and increased tail moment in neutral comet assays. Dexrazoxane induced DNA damage responses, shown by enhanced levels of γ-H2AX/53BP1 foci, ATM (ataxia telangiectasia mutated), ATR (ATM and Rad3-related), Chk1 and Chk2 phosphorylation, and by p53 accumulation. Dexrazoxane-induced γ-H2AX accumulation was dependent on ATM. ATF3 protein was induced by dexrazoxane in a concentration- and time-dependent manner, which was abolished in TOP2A-depleted cells and in cells pre-incubated with ATM inhibitor. Knockdown of ATF3 gene expression by siRNA triggered apoptosis in control cells and diminished the p53 protein level in both control and dexrazoxane -treated cells. This was accompanied by increased γ-H2AX accumulation. ATF3 knockdown also delayed the repair of dexrazoxane -induced DNA double-strand breaks. Conclusions and Implications As with other TOP2A poisons, dexrazoxane induced DNA double-strand breaks followed by activation of the DNA damage response. The DNA damage-triggered ATF3 controlled p53 accumulation and generation of double-strand breaks and is proposed to serve as a switch between DNA damage and cell death following dexrazoxane treatment. These findings suggest a mechanistic explanation for the diverse clinical observations associated with dexrazoxane. PMID:25521189

  11. Effects of pH on Oxaliplatin-Induced Condensation of Single DNA Molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Yan; Ji, Chao; Liu, Yu-Ru; Li, Wei; Li, Hui; Dou, Shuo-Xing; Wang, Wei-Chi; Zhang, Ling-Yun; Xie, Ping; Wang, Peng-Ye

    2014-02-01

    By using magnetic tweezers, atomic force microscope and mass spectrometry, we study the effects of pH on oxaliplatin-induced DNA condensation, the DNA persistence length, the amounts of micro-loops and of oxaliplatin bound to DNA. It is found that the DNA condensation degree, the amounts of micro-loops and of oxaliplatin bound to DNA increase with the decrease in the pH value while the DNA persistence length has an opposite behavior. The observed effects may be related to the drug resistance of cancer cells.

  12. Antifolate-induced misincorporation of deoxyuridine monophosphate into DNA: inhibition of high molecular weight DNA synthesis in human lymphoblastoid cells.

    PubMed Central

    Sedwick, W D; Kutler, M; Brown, O E

    1981-01-01

    In vitro exposure of a human lymphoblastoid cell line (WIL-2) to the antifolate metoprine (DDMP), when followed by the addition of exogenous deoxyuridine, led to intracellular accumulation of deoxyuridine triphosphate (dUTP) and incorporation of deoxyuridine monophosphate (dUMP) into DNA. When newly synthesized DNA was extracted from DDMP-treated cells that had been labeled with deoxyuridine for up to 3 min, most of the DNA synthesized was no larger than 4 S on alkaline sucrose gradients. In contrast, the predominant form of newly synthesized alkali-stable DNA in cells not treated with drug was larger than 4 S. Abnormal progression of DNA synthesis, degradation of newly synthesized DNA, or both occurred as a delayed consequence of DDMP treatment in the absence of exogenous deoxyuridine when thymidine was used to label DNA of DDMP-treated stability of antifolate-induced misincorporation of dUMP into DNA was not elucidated, it was clear that antifolates can directly perturb the quality as well as the quantity of DNA synthesized by drug-treated cells. PMID:6940156

  13. Surface Sensitivity in Cluster-Ion-Induced Sputtering

    SciTech Connect

    Szakal, Christopher; Kozole, Joseph; Russo, Michael F. Jr.; Garrison, Barbara J.; Winograd, Nicholas

    2006-06-02

    The ion beam-induced removal of thin water ice films condensed onto Ag and bombarded by energetic Au, Au{sub 2}, Au{sub 3}, and C{sub 60} projectiles is examined both experimentally and with molecular dynamics computer simulations. For water overlayers of thicknesses greater than 10 A, the yields of sputtered Ag{sup +} secondary ions decay exponentially with increasing ice thickness, revealing characteristic decay lengths of 24, 20, 18, and 7.0 A ring , respectively. It is shown that these values manifest the characteristic depths of projectile energy loss, rather than escape depths of the sputtered Ag atoms through the water ice overlayer. Computer simulations show that the mechanism of ejection involves the sweeping away of overlayer water molecules, allowing for an unimpeded escape of ejected Ag atoms. The relevance of these data with respect to surface sensitivity in secondary ion mass spectrometry is discussed.

  14. 3' -> 5' Exonucleases of DNA Polymerases ε and δ Correct Base Analog Induced DNA Replication Errors on opposite DNA Strands in Saccharomyces Cerevisiae

    PubMed Central

    Shcherbakova, P. V.; Pavlov, Y. I.

    1996-01-01

    The base analog 6-N-hydroxylaminopurine (HAP) induces bidirectional GC -> AT and AT -> GC transitions that are enhanced in DNA polymerase ε and δ 3' -> 5' exonuclease-deficient yeast mutants, pol2-4 and pol3-01, respectively. We have constructed a set of isogenic strains to determine whether the DNA polymerases δ and ε contribute equally to proofreading of replication errors provoked by HAP during leading and lagging strand DNA synthesis. Site-specific GC -> AT and AT -> GC transitions in a Pol(+), pol2-4 or pol3-01 genetic background were scored as reversions of ura3 missense alleles. At each site, reversion was increased in only one proofreading-deficient mutant, either pol2-4 or pol3-01, depending on the DNA strand in which HAP incorporation presumably occurred. Measurement of the HAP-induced reversion frequency of the ura3 alleles placed into chromosome III near to the defined active replication origin ARS306 in two orientations indicated that DNA polymerases ε and δ correct HAP-induced DNA replication errors on opposite DNA strands. PMID:8849882

  15. Spectrum of Radiation-Induced Clustered Non-DSB Damage - A Monte Carlo Track Structure Modeling and Calculations.

    PubMed

    Watanabe, Ritsuko; Rahmanian, Shirin; Nikjoo, Hooshang

    2015-05-01

    The aim of this report is to present the spectrum of initial radiation-induced cellular DNA damage [with particular focus on non-double-strand break (DSB) damage] generated by computer simulations. The radiation types modeled in this study were monoenergetic electrons (100 eV-1.5 keV), ultrasoft X-ray photons Ck, AlK and TiK, as well as some selected ions including 3.2 MeV/u proton; 0.74 and 2.4 MeV/u helium ions; 29 MeV/u nitrogen ions and 950 MeV/u iron ions. Monte Carlo track structure methods were used to simulate damage induction by these radiation types in a cell-mimetic condition from a single-track action. The simulations took into account the action of direct energy deposition events and the reaction of hydroxyl radicals on atomistic linear B-DNA segments of a few helical turns including the water of hydration. Our results permitted the following conclusions: a. The absolute levels of different types of damage [base damage, simple and complex single-strand breaks (SSBs) and DSBs] vary depending on the radiation type; b. Within each damage class, the relative proportions of simple and complex damage vary with radiation type, the latter being higher with high-LET radiations; c. Overall, for both low- and high-LET radiations, the ratios of the yields of base damage to SSBs are similar, being about 3.0 ± 0.2; d. Base damage contributes more to the complexity of both SSBs and DSBs, than additional SSB damage and this is true for both low- and high-LET radiations; and e. The average SSB/DSB ratio for low-LET radiations is about 18, which is about 5 times higher than that for high-LET radiations. The hypothesis that clustered DNA damage is more difficult for cells to repair has gained currency among radiobiologists. However, as yet, there is no direct in vivo experimental method to validate the dependence of kinetics of DNA repair on DNA damage complexity (both DSB and non-DSB types). The data on the detailed spectrum of DNA damage presented here, in particular

  16. Cluster analysis and relative relocation of mining-induced seismicity using HAMNET data

    NASA Astrophysics Data System (ADS)

    Wehling-Benatelli, S.; Becker, D.; Bischoff, M.; Friederich, W.; Meier, T.

    2012-04-01

    Longwall mining activity in the Ruhr-coal mining district leads to mining-induced seismicity. For detailed studies seismicity of the single longwall panel S 109 beneath Hamm-Herringen in the eastern Ruhr area was monitored between June 2006 and July 2007. More than 7000 seismic events with magnitudes -1.7 ≤ ML ≤ 2.0 are localized in this period. 70% of the events occur in the vicinity of the moving longwall face. Moreover, the seismicity pattern shows spatial clustering of events in distances up to 500 m from the panel which is related to remnant pillars of old workings and tectonic features. Two sources with common location and rock failure mechanism are expected to show identical waveforms. Hence, similar waveforms suggest similarity of source properties. Waveform similarity can be quantified by cross-correlation. Similarity matrices have been established and build the basis of a cluster analysis presented here. We compare two approaches for cluster definition: a single-linkage approach and excerpting clusters by visual inspection of the sorted similarity matrices. Clusters are found as areas of high inter-event similarity in the depicted matrix. In contrast, the single-linkage approach assigns an event to the cluster if the similarity threshold v sl = 0.9 is exceeded to at least one other member. This method is more restrictive and, in general, leads to clusters with less members than visual inspection. Both methods exhibit clusters which show the same properties. The largest clusters are built by low-magnitude events (around ML ≈-0.6) directly at the longwall face at the mining level. Other clusters include events with magnitudes as large as ML,max = 1.8. Their locations tend to lie above or below the mining level in load-bearing sandstone layers. Mining accompanying events show face-parallel near vertical fault planes whereas more distant clusters have typical solutions of remnant pillar failure with a medium dip angle. Relative relocation of the events

  17. BRCA2 diffuses as oligomeric clusters with RAD51 and changes mobility after DNA damage in live cells.

    PubMed

    Reuter, Marcel; Zelensky, Alex; Smal, Ihor; Meijering, Erik; van Cappellen, Wiggert A; de Gruiter, H Martijn; van Belle, Gijsbert J; van Royen, Martin E; Houtsmuller, Adriaan B; Essers, Jeroen; Kanaar, Roland; Wyman, Claire

    2014-12-01

    Genome maintenance by homologous recombination depends on coordinating many proteins in time and space to assemble at DNA break sites. To understand this process, we followed the mobility of BRCA2, a critical recombination mediator, in live cells at the single-molecule level using both single-particle tracking and fluorescence correlation spectroscopy. BRCA2-GFP and -YFP were compared to distinguish diffusion from fluorophore behavior. Diffusive behavior of fluorescent RAD51 and RAD54 was determined for comparison. All fluorescent proteins were expressed from endogenous loci. We found that nuclear BRCA2 existed in oligomeric clusters, and exhibited heterogeneous mobility. DNA damage increased BRCA2 transient binding, presumably including binding to damaged sites. Despite its very different size, RAD51 displayed mobility similar to BRCA2, which indicates physical interaction between these proteins both before and after induction of DNA damage. We propose that BRCA2-mediated sequestration of nuclear RAD51 serves to prevent inappropriate DNA interactions and that all RAD51 is delivered to DNA damage sites in association with BRCA2.

  18. DNA fragment sizing and sorting by laser-induced fluorescence

    SciTech Connect

    Jett, J.H.; Hammond, M.L.; Keller, R.A.; Marrone, B.L.; Martin, J.C.

    1992-12-31

    A method is provided for obtaining DNA fingerprints using high speed detection systems, such as flow cytometry to determine unique characteristics of DNA pieces from a selected sample. In one characterization the DNA piece is fragmented at preselected sites to produce a plurality of DNA fragments. The DNA piece or the resulting DNA fragments are treated with a dye effective to stain stoichiometrically the DNA fragments. The fluorescence from the dye in the stained fragments is then examined to generate an output functionally related to the number of nucleotides in each one of the DNA fragments. In one embodiment, the intensity of the fluorescence emissions from each fragment is directly proportional to the fragment length. Additional dyes can be bound to the DNA piece and DNA fragments to provide information additional to length information. Oligonucleotide specific dyes and/or hybridization probes can be bound to the DNA fragments to provide information on oligonucleotide distribution or probe hybridization to DNA fragments of different sizes.

  19. Condensation and salt-induced decondensation of DNA upon incorporation of a V-shaped luminescent [Ru2(bpy)4(mbpibH2)](4+).

    PubMed

    Gan, Gui-Lian; Chao, Hui; Cai, Xue-Ping; Jiang, Zhen-Shen; Li, Hong

    2013-12-01

    This paper first reports on the condensation of DNA to a tightly packed state induced by a V-shaped di-ruthenium(II) complex [Ru2(bpy)4(mbpibH2)]Cl4 (bpy=2,2'-bipyridine and mbpibH2=1,3-bis([1,10]phenanthroline[5,6-d]imidazol-2-yl)benzene), which binds to the groove of herring sperm DNA (hsDNA) with the binding constant of 2.0×10(7)M(-1) (0.05M NaCl, pH7.2). The di-Ru(II) complex is found to induce the condensation of both hsDNA to long chain-like particle clusters and originally circular plasmid pBR322 DNA to particulate structure under neutral conditions. More interestingly, the presence of NaCl has a significant impact on the condensation and decondensation of DNA upon incorporation of [Ru2(bpy)4(mbpibH2)](4+), representing tunable luminescence characteristics by NaCl. High salt concentration facilitates the decondensation of DNA-[Ru2(bpy)4(mbpibH2)](4+) adducts. The results from this study offer an effective method to control the condensation and decondensation of DNA upon incorporation of luminescent concentrators.

  20. DNA damage induced by red food dyes orally administered to pregnant and male mice.

    PubMed

    Tsuda, S; Murakami, M; Matsusaka, N; Kano, K; Taniguchi, K; Sasaki, Y F

    2001-05-01

    We determined the genotoxicity of synthetic red tar dyes currently used as food color additives in many countries, including JAPAN: For the preliminary assessment, we treated groups of 4 pregnant mice (gestational day 11) once orally at the limit dose (2000 mg/kg) of amaranth (food red No. 2), allura red (food red No. 40), or acid red (food red No. 106), and we sampled brain, lung, liver, kidney, glandular stomach, colon, urinary bladder, and embryo 3, 6, and 24 h after treatment. We used the comet (alkaline single cell gel electrophoresis) assay to measure DNA damage. The assay was positive in the colon 3 h after the administration of amaranth and allura red and weakly positive in the lung 6 h after the administration of amaranth. Acid red did not induce DNA damage in any sample at any sampling time. None of the dyes damaged DNA in other organs or the embryo. We then tested male mice with amaranth, allura red, and a related color additive, new coccine (food red No. 18). The 3 dyes induced DNA damage in the colon starting at 10 mg/kg. Twenty ml/kg of soaking liquid from commercial red ginger pickles, which contained 6.5 mg/10 ml of new coccine, induced DNA damage in colon, glandular stomach, and bladder. The potencies were compared to those of other rodent carcinogens. The rodent hepatocarcinogen p-dimethylaminoazobenzene induced colon DNA damage at 1 mg/kg, whereas it damaged liver DNA only at 500 mg/kg. Although 1 mg/kg of N-nitrosodimethylamine induced DNA damage in liver and bladder, it did not induce colon DNA damage. N-nitrosodiethylamine at 14 mg/kg did not induce DNA damage in any organs examined. Because the 3 azo additives we examined induced colon DNA damage at a very low dose, more extensive assessment of azo additives is warranted.

  1. Dielectric-spectroscopy approach to ferrofluid nanoparticle clustering induced by an external electric field

    NASA Astrophysics Data System (ADS)

    Rajnak, Michal; Kurimsky, Juraj; Dolnik, Bystrik; Kopcansky, Peter; Tomasovicova, Natalia; Taculescu-Moaca, Elena Alina; Timko, Milan

    2014-09-01

    An experimental study of magnetic colloidal particles cluster formation induced by an external electric field in a ferrofluid based on transformer oil is presented. Using frequency domain isothermal dielectric spectroscopy, we study the influence of a test cell electrode separation distance on a low-frequency relaxation process. We consider the relaxation process to be associated with an electric double layer polarization taking place on the particle surface. It has been found that the relaxation maximum considerably shifts towards lower frequencies when conducting the measurements in the test cells with greater electrode separation distances. As the electric field intensity was always kept at a constant value, we propose that the particle cluster formation induced by the external ac electric field accounts for that phenomenon. The increase in the relaxation time is in accordance with the Schwarz theory of electric double layer polarization. In addition, we analyze the influence of a static electric field generated by dc bias voltage on a similar shift in the relaxation maximum position. The variation of the dc electric field for the hysteresis measurements purpose provides understanding of the development of the particle clusters and their decay. Following our results, we emphasize the utility of dielectric spectroscopy as a simple, complementary method for detection and study of clusters of colloidal particles induced by external electric field.

  2. Dielectric-spectroscopy approach to ferrofluid nanoparticle clustering induced by an external electric field.

    PubMed

    Rajnak, Michal; Kurimsky, Juraj; Dolnik, Bystrik; Kopcansky, Peter; Tomasovicova, Natalia; Taculescu-Moaca, Elena Alina; Timko, Milan

    2014-09-01

    An experimental study of magnetic colloidal particles cluster formation induced by an external electric field in a ferrofluid based on transformer oil is presented. Using frequency domain isothermal dielectric spectroscopy, we study the influence of a test cell electrode separation distance on a low-frequency relaxation process. We consider the relaxation process to be associated with an electric double layer polarization taking place on the particle surface. It has been found that the relaxation maximum considerably shifts towards lower frequencies when conducting the measurements in the test cells with greater electrode separation distances. As the electric field intensity was always kept at a constant value, we propose that the particle cluster formation induced by the external ac electric field accounts for that phenomenon. The increase in the relaxation time is in accordance with the Schwarz theory of electric double layer polarization. In addition, we analyze the influence of a static electric field generated by dc bias voltage on a similar shift in the relaxation maximum position. The variation of the dc electric field for the hysteresis measurements purpose provides understanding of the development of the particle clusters and their decay. Following our results, we emphasize the utility of dielectric spectroscopy as a simple, complementary method for detection and study of clusters of colloidal particles induced by external electric field. PMID:25314449

  3. Dielectric-spectroscopy approach to ferrofluid nanoparticle clustering induced by an external electric field.

    PubMed

    Rajnak, Michal; Kurimsky, Juraj; Dolnik, Bystrik; Kopcansky, Peter; Tomasovicova, Natalia; Taculescu-Moaca, Elena Alina; Timko, Milan

    2014-09-01

    An experimental study of magnetic colloidal particles cluster formation induced by an external electric field in a ferrofluid based on transformer oil is presented. Using frequency domain isothermal dielectric spectroscopy, we study the influence of a test cell electrode separation distance on a low-frequency relaxation process. We consider the relaxation process to be associated with an electric double layer polarization taking place on the particle surface. It has been found that the relaxation maximum considerably shifts towards lower frequencies when conducting the measurements in the test cells with greater electrode separation distances. As the electric field intensity was always kept at a constant value, we propose that the particle cluster formation induced by the external ac electric field accounts for that phenomenon. The increase in the relaxation time is in accordance with the Schwarz theory of electric double layer polarization. In addition, we analyze the influence of a static electric field generated by dc bias voltage on a similar shift in the relaxation maximum position. The variation of the dc electric field for the hysteresis measurements purpose provides understanding of the development of the particle clusters and their decay. Following our results, we emphasize the utility of dielectric spectroscopy as a simple, complementary method for detection and study of clusters of colloidal particles induced by external electric field.

  4. Depletion induced clustering in mixtures of colloidal spheres and fd-virus

    NASA Astrophysics Data System (ADS)

    Guu, D.; Dhont, J. K. G.; Vliegenthart, G. A.; Lettinga, M. P.

    2012-11-01

    We determined the phase boundary of an ideal rod-sphere mixture consisting of fd-virus, which is an established model system for mono-disperse colloidal rods, and density matched mono-disperse polystyrene beads employing diffuse wave spectroscopy. The low volume fraction of fd needed to induce a phase separation at relatively low ionic strength exemplifies the fact that slender rods are very effective depletion agents. Confocal microscopy showed that stable clusters are formed during phase separation. Relaxation after shear deformation of these clusters showed that the phase separation is gas-liquid-like and that the interfacial tension involved is very low as in colloid-polymer mixtures.

  5. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Kostyuk, Svetlana; Smirnova, Tatiana; Kameneva, Larisa; Porokhovnik, Lev; Speranskij, Anatolij; Ershova, Elizaveta; Stukalov, Sergey; Izevskaya, Vera; Veiko, Natalia

    2015-01-01

    Background. Cell free DNA (cfDNA) circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Principal Findings. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA) and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci). As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR), PCNA (FACS)) and antiapoptotic genes (BCL2 (RT-PCR and FACS), BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR)). Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs). Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR), in the level of fatty acid binding protein FABP4 (FACS analysis) and in the level of fat (Oil Red O). Conclusions. GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose—derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis. PMID:26273425

  6. Lycopene-induced hydroxyl radical causes oxidative DNA damage in Escherichia coli.

    PubMed

    Lee, Wonyoung; Lee, Dong Gun

    2014-09-01

    Lycopene, which is a well-known red carotenoid pigment, has been drawing scientific interest because of its potential biological functions. The current study reports that lycopene acts as a bactericidal agent by inducing reactive oxygen species (ROS)-mediated DNA damage in Escherichia coli. Lycopene treatment elevated the level of ROS-in particular, hydroxyl radicals ((•)OH) -which can damage DNA in E. coli. Lycopene-induced DNA damage in bacteria was confirmed and we also observed cell filamentation caused by cell division arrest, an indirect marker of the DNA damage repair system, in lycopene-treated E. coli. Increased RecA expression was observed, indicating activation of the DNA repair system (SOS response). To summarize, lycopene exerts its antibacterial effects by inducing (•)OH -mediated DNA damage that cannot be ameliorated by the SOS response. Lycopene may be a clinically useful adjuvant for current antimicrobial therapies.

  7. Importance of Endosomal Cathelicidin Degradation To Enhance DNA-Induced Chicken Macrophage Activation.

    PubMed

    Coorens, Maarten; van Dijk, Albert; Bikker, Floris; Veldhuizen, Edwin J A; Haagsman, Henk P

    2015-10-15

    Cathelicidins are essential in the protection against invading pathogens through both their direct antimicrobial activity and their immunomodulatory functions. Although cathelicidins are known to modulate activation by several TLR ligands, little is known about their influence on DNA-induced macrophage activation. In this study, we explored the effects of cathelicidins on DNA-induced activation of chicken macrophages and elucidated the intracellular processes underlying these effects. Our results show that chicken cathelicidin (CATH)-2 strongly enhances DNA-induced activation of both chicken and mammalian macrophages because of enhanced endocytosis of DNA-CATH-2 complexes. After endocytosis, DNA is liberated from the complex because of proteolytic breakdown of CATH-2, after which TLR21 is activated. This leads to increased cytokine expression and NO production. Through the interaction with DNA, CATH-2 can play an important role in modulating the immune response at sites of infection. These observations underline the importance of cathelicidins in sensing bacterial products and regulating immune responses.

  8. Effect of data normalization on fuzzy clustering of DNA microarray data

    PubMed Central

    Kim, Seo Young; Lee, Jae Won; Bae, Jong Sung

    2006-01-01

    Background Microarray technology has made it possible to simultaneously measure the expression levels of large numbers of genes in a short time. Gene expression data is information rich; however, extensive data mining is required to identify the patterns that characterize the underlying mechanisms of action. Clustering is an important tool for finding groups of genes with similar expression patterns in microarray data analysis. However, hard clustering methods, which assign each gene exactly to one cluster, are poorly suited to the analysis of microarray datasets because in such datasets the clusters of genes frequently overlap. Results In this study we applied the fuzzy partitional clustering method known as Fuzzy C-Means (FCM) to overcome the limitations of hard clustering. To identify the effect of data normalization, we used three normalization methods, the two common scale and location transformations and Lowess normalization methods, to normalize three microarray datasets and three simulated datasets. First we determined the optimal parameters for FCM clustering. We found that the optimal fuzzification parameter in the FCM analysis of a microarray dataset depended on the normalization method applied to the dataset during preprocessing. We additionally evaluated the effect of normalization of noisy datasets on the results obtained when hard clustering or FCM clustering was applied to those datasets. The effects of normalization were evaluated using both simulated datasets and microarray datasets. A comparative analysis showed that the clustering results depended on the normalization method used and the noisiness of the data. In particular, the selection of the fuzzification parameter value for the FCM method was sensitive to the normalization method used for datasets with large variations across samples. Conclusion Lowess normalization is more robust for clustering of genes from general microarray data than the two common scale and location adjustment methods

  9. Stress-induced DNA damage biomarkers: applications and limitations

    PubMed Central

    Nikitaki, Zacharenia; Hellweg, Christine E.; Georgakilas, Alexandros G.; Ravanat, Jean-Luc

    2015-01-01

    A variety of environmental stresses like chemicals, UV and ionizing radiation and organism's endogenous processes such as replication stress and metabolism can lead to the generation of reactive oxygen and nitrogen species (ROS/RNS) that can attack cellular vital components like DNA, proteins and lipid membranes. Among them, much attention has been focused on DNA since DNA damage plays a role in several biological disorders and aging processes. Thus, DNA damage can be used as a biomarker in a reliable and accurate way to quantify for example radiation exposure and can indicate its possible long term effects and cancer risk. Based on the type of DNA lesions detected one can hypothesize on the most probable mechanisms involved in the formation of these lesions for example in the case of UV and ionizing radiation (e.g., X- or α-, γ-rays, energetic ions, neutrons). In this review we describe the most accepted chemical pathways for DNA damage induction and the different types of DNA lesions, i.e., single, complex DNA lesions etc. that can be used as DNA damage biomarkers. We critically compare DNA damage detection methods and their limitations. In addition, we suggest the use of DNA repair gene products as biomarkes for identification of different types of stresses i.e., radiation, oxidative, or replication stress, based on bioinformatic approaches and meta-analysis of literature data. PMID:26082923

  10. Stress-induced DNA damage biomarkers: applications and limitations.

    PubMed

    Nikitaki, Zacharenia; Hellweg, Christine E; Georgakilas, Alexandros G; Ravanat, Jean-Luc

    2015-01-01

    A variety of environmental stresses like chemicals, UV and ionizing radiation and organism's endogenous processes such as replication stress and metabolism can lead to the generation of reactive oxygen and nitrogen species (ROS/RNS) that can attack cellular vital components like DNA, proteins and lipid membranes. Among them, much attention has been focused on DNA since DNA damage plays a role in several biological disorders and aging processes. Thus, DNA damage can be used as a biomarker in a reliable and accurate way to quantify for example radiation exposure and can indicate its possible long term effects and cancer risk. Based on the type of DNA lesions detected one can hypothesize on the most probable mechanisms involved in the formation of these lesions for example in the case of UV and ionizing radiation (e.g., X- or α-, γ-rays, energetic ions, neutrons). In this review we describe the most accepted chemical pathways for DNA damage induction and the different types of DNA lesions, i.e., single, complex DNA lesions etc. that can be used as DNA damage biomarkers. We critically compare DNA damage detection methods and their limitations. In addition, we suggest the use of DNA repair gene products as biomarkes for identification of different types of stresses i.e., radiation, oxidative, or replication stress, based on bioinformatic approaches and meta-analysis of literature data. PMID:26082923

  11. Photo-induced transformation process at gold clusters-semiconductor interface: Implications for the complexity of gold clusters-based photocatalysis.

    PubMed

    Liu, Siqi; Xu, Yi-Jun

    2016-01-01

    The recent thrust in utilizing atomically precise organic ligands protected gold clusters (Au clusters) as photosensitizer coupled with semiconductors for nano-catalysts has led to the claims of improved efficiency in photocatalysis. Nonetheless, the influence of photo-stability of organic ligands protected-Au clusters at the Au/semiconductor interface on the photocatalytic properties remains rather elusive. Taking Au clusters-TiO2 composites as a prototype, we for the first time demonstrate the photo-induced transformation of small molecular-like Au clusters to larger metallic Au nanoparticles under different illumination conditions, which leads to the diverse photocatalytic reaction mechanism. This transformation process undergoes a diffusion/aggregation mechanism accompanied with the onslaught of Au clusters by active oxygen species and holes resulting from photo-excited TiO2 and Au clusters. However, such Au clusters aggregation can be efficiently inhibited by tuning reaction conditions. This work would trigger rational structural design and fine condition control of organic ligands protected-metal clusters-semiconductor composites for diverse photocatalytic applications with long-term photo-stability.

  12. Oxidative DNA damage and apoptosis induced by metabolites of butylated hydroxytoluene.

    PubMed

    Oikawa, S; Nishino, K; Oikawa, S; Inoue, S; Mizutani, T; Kawanishi, S

    1998-08-01

    DNA damage by metabolites of a food additive, butylated hydroxytoluene (BHT), was investigated as a potential mechanism of carcinogenicity. The mechanism of DNA damage by 2,6-di-tert-butyl-p-benzoquinone (BHT-quinone), 2,6-di-tert-butyl-4-hydroperoxyl-4-methyl-2,5-cyclohexadienone (BHT-OOH), and 3,5-di-tert-butyl-4-hydroxybenzaldehyde (BHT-CHO) in the presence of metal ions was investigated by using 32P-labeled DNA fragments obtained from the c-Ha-ras-1 proto-oncogene and the p53 tumor suppressor gene. BHT-OOH caused DNA damage in the presence of Cu(II), whereas BHT-quinone and BHT-CHO did not. However, BHT-quinone did induce DNA damage in the presence of NADH and Cu(II). Bathocuproine inhibited Cu(II)-mediated DNA damage, indicating the participation of Cu(I) in the process. Catalase also inhibited DNA damage induced by BHT-quinone, but not that induced by BHT-OOH. The DNA cleavage pattern observed with BHT-quinone plus NADH was different from that seen with BHT-OOH. With BHT-quinone plus NADH, piperidine-labile sites could be generated at nucleotides other than adenine residue. BHT-OOH caused cleavage specifically at guanine residues. Pulsed field gel electrophoresis showed that BHT-OOH and BHT-quinone induced DNA strand breaks in cultured cells, whereas BHT-CHO did not. Both BHT-quinone and BHT-OOH induced internucleosomal DNA fragmentation, which is the characteristic of apoptosis. Furthermore, flow cytometry analysis revealed an increase of peroxides in cultured cells treated with BHT-OOH or BHT-quinone. These results suggest that BHT-OOH participates in oxidative DNA damage directly, whereas BHT-quinone causes DNA damage through H2O2 generation, which leads to internucleosomal DNA fragmentation. PMID:9744574

  13. Oxidative DNA damage and apoptosis induced by metabolites of butylated hydroxytoluene.

    PubMed

    Oikawa, S; Nishino, K; Oikawa, S; Inoue, S; Mizutani, T; Kawanishi, S

    1998-08-01

    DNA damage by metabolites of a food additive, butylated hydroxytoluene (BHT), was investigated as a potential mechanism of carcinogenicity. The mechanism of DNA damage by 2,6-di-tert-butyl-p-benzoquinone (BHT-quinone), 2,6-di-tert-butyl-4-hydroperoxyl-4-methyl-2,5-cyclohexadienone (BHT-OOH), and 3,5-di-tert-butyl-4-hydroxybenzaldehyde (BHT-CHO) in the presence of metal ions was investigated by using 32P-labeled DNA fragments obtained from the c-Ha-ras-1 proto-oncogene and the p53 tumor suppressor gene. BHT-OOH caused DNA damage in the presence of Cu(II), whereas BHT-quinone and BHT-CHO did not. However, BHT-quinone did induce DNA damage in the presence of NADH and Cu(II). Bathocuproine inhibited Cu(II)-mediated DNA damage, indicating the participation of Cu(I) in the process. Catalase also inhibited DNA damage induced by BHT-quinone, but not that induced by BHT-OOH. The DNA cleavage pattern observed with BHT-quinone plus NADH was different from that seen with BHT-OOH. With BHT-quinone plus NADH, piperidine-labile sites could be generated at nucleotides other than adenine residue. BHT-OOH caused cleavage specifically at guanine residues. Pulsed field gel electrophoresis showed that BHT-OOH and BHT-quinone induced DNA strand breaks in cultured cells, whereas BHT-CHO did not. Both BHT-quinone and BHT-OOH induced internucleosomal DNA fragmentation, which is the characteristic of apoptosis. Furthermore, flow cytometry analysis revealed an increase of peroxides in cultured cells treated with BHT-OOH or BHT-quinone. These results suggest that BHT-OOH participates in oxidative DNA damage directly, whereas BHT-quinone causes DNA damage through H2O2 generation, which leads to internucleosomal DNA fragmentation.

  14. DNA binding of Jun and Fos bZip domains: homodimers and heterodimers induce a DNA conformational change in solution.

    PubMed Central

    John, M; Leppik, R; Busch, S J; Granger-Schnarr, M; Schnarr, M

    1996-01-01

    We constructed plasmids encoding the sequences for the bZip modules of c-Jun and c-Fos which could then be expressed as soluble proteins in Escherichia coli. The purified bZip modules were tested for their binding capacities of synthetic oligonucleotides containing either TRE or CRE recognition sites in electrophoretic mobility shift assays and circular dichroism (CD). Electrophoretic mobility shift assays showed that bZip Jun homodimers and bZip Jun/Fos heterodimers bind a collagenase-like TRE (CTGACTCAT) with dissociation constants of respectively 1.4 x 10(-7) M and 5 x 10(-8) M. As reported earlier [Patel et al. (1990) Nature 347, 572-575], DNA binding induces a marked change of the protein structure. However, we found that the DNA also undergoes a conformational change. This is most clearly seen with small oligonucleotides of 13 or 14 bp harboring respectively a TRE (TGACTCA) or a CRE (TGACGTCA) sequence. In this case, the positive DNA CD signal at 280 nm increases almost two-fold with a concomitant blue-shift of 3-4 nm. Within experimental error the same spectral changes are observed for TRE and CRE containing DNA fragments. The spectral changes observed with a non-specific DNA fragment are weaker and the signal of free DNA is recovered upon addition of much smaller salt concentrations than required for a specific DNA fragment. Surprisingly the spectral changes induced by Jun/Jun homodimers are not identical to those induced by Jun/Fos heterodimers. However, in both cases the increase of the positive CD band and the concomitant blue shift would be compatible with a B to A-transition of part of the binding site or a DNA conformation intermediate between the canonical A and B structures. PMID:8948639

  15. Protection of cellular DNA from gamma-radiation-induced damages and enhancement in DNA repair by troxerutin.

    PubMed

    Maurya, Dharmendra Kumar; Balakrishnan, Sreedevi; Salvi, Veena Prakash; Nair, Cherupally Krishnan Krishnan

    2005-12-01

    The effect of troxerutin on gamma-radiation-induced DNA strand breaks in different tissues of mice in vivo and formations of the micronuclei were studied in human peripheral blood lymphocytes ex vivo and mice blood reticulocytes in vivo. Treatments with 1 mM troxerutin significantly inhibited the micronuclei induction in the human lymphocytes. Troxerutin protected the human peripheral blood leucocytes from radiation-induced DNA strand breaks in a concentration dependent manner under ex vivo condition of irradiation (2 Gy). Intraperitoneal administration of troxerutin (175 mg/kg body weight) to mice before and after whole body radiation exposure inhibited micronuclei formation in blood reticulocytes significantly. The administration of different doses (75, 125 and 175 mg/kg body weight) of troxerutin 1 h prior to 4 Gy gamma-radiation exposure showed dose-dependent decrease in the yield of DNA strand breaks in murine blood leucocytes and bone marrow cells. The dose-dependent protection was more pronounced in bone marrow cells than in blood leucocytes. Administration of 175 mg/kg body weight of the drug (i.p.) 1 h prior or immediately after whole body irradiation of mice showed that the decrease in strand breaks depended on the post-irradiation interval at which the analysis was done. The observed time-dependent decrease in the DNA strand breaks could be attributed to enhanced DNA repair in troxerutin administered animals. Thus in addition to anti-erythrocytic, anti-thrombic, fibrinolytic and oedema-protective rheological activity, troxerutin offers protection against gamma-radiation-induced micronuclei formation and DNA strand breaks and enhances repair of radiation-induced DNA strand breaks.

  16. DNA Compaction Induced by a Cationic Polymer or Surfactant Impact Gene Expression and DNA Degradation

    PubMed Central

    Ainalem, Marie-Louise; Bartles, Andrew; Muck, Joscha; Dias, Rita S.; Carnerup, Anna M.; Zink, Daniele; Nylander, Tommy

    2014-01-01

    There is an increasing interest in achieving gene regulation in biotechnological and biomedical applications by using synthetic DNA-binding agents. Most studies have so far focused on synthetic sequence-specific DNA-binding agents. Such approaches are relatively complicated and cost intensive and their level of sophistication is not always required, in particular for biotechnological application. Our study is inspired by in vivo data that suggest that DNA compaction might contribute to gene regulation. This study exploits the potential of using synthetic DNA compacting agents that are not sequence-specific to achieve gene regulation for in vitro systems. The semi-synthetic in vitro system we use include common cationic DNA-compacting agents, poly(amido amine) (PAMAM) dendrimers and the surfactant hexadecyltrimethylammonium bromide (CTAB), which we apply to linearized plasmid DNA encoding for the luciferase reporter gene. We show that complexing the DNA with either of the cationic agents leads to gene expression inhibition in a manner that depends on the extent of compaction. This is demonstrated by using a coupled in vitro transcription-translation system. We show that compaction can also protect DNA against degradation in a dose-dependent manner. Furthermore, our study shows that these effects are reversible and DNA can be released from the complexes. Release of DNA leads to restoration of gene expression and makes the DNA susceptible to degradation by Dnase. A highly charged polyelectrolyte, heparin, is needed to release DNA from dendrimers, while DNA complexed with CTAB dissociates with the non-ionic surfactant C12E5. Our results demonstrate the relation between DNA compaction by non-specific DNA-binding agents and gene expression and gene regulation can be achieved in vitro systems in a reliable dose-dependent and reversible manner. PMID:24671109

  17. Investigation of perfluorooctanoic acid induced DNA damage using electrogenerated chemiluminescence associated with charge transfer in DNA.

    PubMed

    Lu, Liping; Guo, Linqing; Li, Meng; Kang, Tianfang; Cheng, Shuiyuan; Miao, Wujian

    2016-10-01

    An electrogenerated chemiluminescence (ECL)-DNA sensor was designed and fabricated for the investigation of DNA damage by a potential environmental pollutant, perfluorooctanoic acid (PFOA). The ECL-DNA sensor consisted of a Au electrode that had a self-assembled monolayer of 15 base-pair double-stranded (ds) DNA oligonucleotides with covalently attached semiconductor CdSe quantum dots (QDs) at the distal end of the DNA. Characterization of the ECL-DNA sensor was conducted with X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), ECL, and cyclic voltammetry before and after the exposure of the sensor to PFOA. Consistent data revealed that the dsDNA on Au was severely damaged upon the incubation of the electrode in PFOA, causing significant increase in charge (or electron) transfer (CT) resistance within DNA strands. Consequently, the cathodic coreactant ECL responses of the Au/dsDNA-QDs electrode in the presence of K2S2O8 were markedly decreased. The strong interaction between DNA and PFOA via the hydrophobic interaction, especially the formation of F···H hydrogen bonds by insertion of the difluoro-methylene group of PFOA into the DNA base pairs, was believed to be responsible for the dissociation or loosening of dsDNA structure, which inhibited the CT through DNA. A linear relationship between the ECL signal of the sensor and the logarithmical concentration of PFOA displayed a dynamic range of 1.00 × 10(-14)-1.00 × 10(-4) M, with a limit of detection of 1.00 × 10(-15) M at a signal-to-noise ratio of 3. Graphical Abstract Illustration of ECL detection of PFOA on a Au/dsDNA-QDs ECL-DNA sensor.

  18. Investigation of perfluorooctanoic acid induced DNA damage using electrogenerated chemiluminescence associated with charge transfer in DNA.

    PubMed

    Lu, Liping; Guo, Linqing; Li, Meng; Kang, Tianfang; Cheng, Shuiyuan; Miao, Wujian

    2016-10-01

    An electrogenerated chemiluminescence (ECL)-DNA sensor was designed and fabricated for the investigation of DNA damage by a potential environmental pollutant, perfluorooctanoic acid (PFOA). The ECL-DNA sensor consisted of a Au electrode that had a self-assembled monolayer of 15 base-pair double-stranded (ds) DNA oligonucleotides with covalently attached semiconductor CdSe quantum dots (QDs) at the distal end of the DNA. Characterization of the ECL-DNA sensor was conducted with X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), ECL, and cyclic voltammetry before and after the exposure of the sensor to PFOA. Consistent data revealed that the dsDNA on Au was severely damaged upon the incubation of the electrode in PFOA, causing significant increase in charge (or electron) transfer (CT) resistance within DNA strands. Consequently, the cathodic coreactant ECL responses of the Au/dsDNA-QDs electrode in the presence of K2S2O8 were markedly decreased. The strong interaction between DNA and PFOA via the hydrophobic interaction, especially the formation of F···H hydrogen bonds by insertion of the difluoro-methylene group of PFOA into the DNA base pairs, was believed to be responsible for the dissociation or loosening of dsDNA structure, which inhibited the CT through DNA. A linear relationship between the ECL signal of the sensor and the logarithmical concentration of PFOA displayed a dynamic range of 1.00 × 10(-14)-1.00 × 10(-4) M, with a limit of detection of 1.00 × 10(-15) M at a signal-to-noise ratio of 3. Graphical Abstract Illustration of ECL detection of PFOA on a Au/dsDNA-QDs ECL-DNA sensor. PMID:27108285

  19. Analysis of Mitochondrial DNA in Induced Pluripotent and Embryonic Stem Cells.

    PubMed

    Lee, William; Kelly, Richard D W; Yeung, Ka Yu; Cagnone, Gael; McKenzie, Matthew; St John, Justin C

    2015-01-01

    The mitochondrial genome has a major role to play in establishing and maintaining pluripotency. Furthermore, mitochondrial DNA (mtDNA) copy is strictly regulated during differentiation. Undifferentiated, pluripotent cells possess fewer than 300 copies of mtDNA, which establishes the mtDNA set point and promotes cell proliferation and, as a result, these cells rely on glycolysis with some support from oxidative phosphorylation (OXPHOS) for the generation of ATP. The mtDNA set point provides the starting point from which cells increase their mtDNA copy number as they differentiate into mature functional cells. Dependent on cell types, mtDNA copy number ranges from ~10 copies in sperm to several thousand in cardiomyocytes. Consequently, differentiating cell types can acquire the appropriate numbers of mtDNA copy to meet their specific requirements for ATP generated through OXPHOS. However, as reprogrammed somatic cells do not always achieve this, it is essential to analyze them for their OXPHOS potential and ability to regulate mtDNA copy number. Here, we describe how to assess mtDNA copy number in pluripotent and differentiating cells using real-time PCR protocols; assess expression of the mtDNA specific replication factors through real-time RT-PCR; identify mtDNA variants in embryonic and induced pluripotent stem cells; determine DNA methylation patterns of the mtDNA-specific replication factors; and assess mitochondrial OXPHOS capacity. PMID:26621601

  20. Linearity and additivity in cluster-induced sputtering: A molecular-dynamics study of van der Waals bonded systems

    SciTech Connect

    Anders, Christian; Urbassek, Herbert M.; Johnson, Robert E.

    2004-10-15

    Using molecular-dynamics simulation, we study sputtering of a condensed-gas solid induced by the impact of atomic clusters with sizes 1{<=}n{<=}10{sup 4}. Above a nonlinear onset regime, we find a linear increase of the sputter yield Y with the total energy E of the bombarding cluster. The fitting coefficients in the linear regime depend only on the cluster size n such that for fixed bombardment energy, sputtering decreases with increasing cluster size n. We find that to a good approximation the sputter yield in this regime obeys an additivity rule in cluster size n such that doubling the cluster size at the same cluster velocity amounts to doubling the sputter yield. The sputter-limiting energy {epsilon}{sub s} is introduced which separates erosion ({epsilon}>{epsilon}{sub s}) from growth ({epsilon}<{epsilon}{sub s}) under cluster impact.

  1. Stress-induced DNA Damage biomarkers: Applications and limitations

    NASA Astrophysics Data System (ADS)

    Nikitaki, Zacharenia; Hellweg, Christine; Georgakilas, Alexandros; Ravanat, Jean-Luc

    2015-06-01

    A variety of environmental stresses like chemicals, UV and ionizing radiation and organism’s endogenous processes like replication stress and metabolism can lead to the generation of reactive oxygen and nitrogen species (ROS/RNS) that can attack cellular vital components like DNA, proteins and lipid membranes. Among them, much attention has been focused on DNA since DNA damages play a role in several biological disorders and aging processes. Thus, DNA damage can be used as a biomarker in a reliable and accurate way to quantify for example radiation exposure and can indicate its possible long term effects and cancer risk. Based on the type of DNA lesions detected one can hypothesize on the most probable mechanisms involved in the formation of these lesions for example in the case of UV and ionizing radiation (e.g. X- or α-, γ-rays, energetic ions, neutrons). In this review we describe the most accepted chemical pathways for DNA damage induction and the different types of DNA lesions, i.e. single, complex DNA lesions etc. that can be used as biomarkers. We critically compare DNA damage detection methods and their limitations. In addition to such DNA damage products, we suggest possible gene inductions that can be used to characterize responses to different types of stresses i.e. radiation, oxidative and replication stress, based on bioinformatic approaches and stringent meta-analysis of literature data.

  2. Prevention of UV radiation-induced immunosuppression by IL-12 is dependent on DNA repair.

    PubMed

    Schwarz, Agatha; Maeda, Akira; Kernebeck, Kerstin; van Steeg, Harry; Beissert, Stefan; Schwarz, Thomas

    2005-01-17

    The immunostimulatory cytokine IL-12 is able to antagonize immunosuppression induced by solar/ultraviolet (UV) radiation via yet unknown mechanisms. IL-12 was recently found to induce deoxyribonucleic acid (DNA) repair. UV-induced DNA damage is an important molecular trigger for UV-mediated immunosuppression. Thus, we initiated studies into immune restoration by IL-12 to discern whether its effects are linked to DNA repair. IL-12 prevented both UV-induced suppression of the induction of contact hypersensitivity and the depletion of Langerhans cells, the primary APC of the skin, in wild-type but not in DNA repair-deficient mice. IL-12 did not prevent the development of UV-induced regulatory T cells in DNA repair-deficient mice. In contrast, IL-12 was able to break established UV-induced tolerance and inhibited the activity of regulatory T cells independent of DNA repair. These data identify a new mechanism by which IL-12 can restore immune responses and also demonstrate a link between DNA repair and the prevention of UV-induced immunosuppression by IL-12.

  3. The peptide antibiotic microcin B17 induces double-strand cleavage of DNA mediated by E. coli DNA gyrase.

    PubMed

    Vizán, J L; Hernández-Chico, C; del Castillo, I; Moreno, F

    1991-02-01

    Microcin B17 (MccB17) is a bactericidal peptide antibiotic which inhibits DNA replication. Two Escherichia coli MccB17 resistant mutants were isolated and the mutations were shown to map to 83 min of the genetic map. Cloning of the mutations and Tn5 insertional analysis demonstrated that they were located inside gyrB. The approximate location of the mutations within gyrB was determined by constructing hybrid genes, as a previous step to sequencing. Both mutations were shown to consist of a single AT----GC transition at position 2251 of the gene, which produces a Trp751----Arg substitution in the amino acid sequence of the GyrB polypeptide. The inhibitory effect of MccB17 on replicative cell-free extracts was assayed. In this in vitro system, interaction of MccB17 with a component of the extracts induced double-strand cleavage of plasmid DNA. In vivo treatment with MccB17 also induced a well-defined cleavage pattern on chromosomal DNA. These effects were not observed with a MccB17-resistant, gyrB mutant. Altogether, our results indicate that MccB17 blocks DNA gyrase by trapping an enzyme-DNA cleavable complex. Thus, the mode of action of this peptide antibiotic resembles that of quinolones and a variety of antitumour drugs currently used in cancer chemotherapy. MccB17 is the first peptide shown to inhibit a type II DNA topoisomerase.

  4. Atrazine Triggers DNA Damage Response and Induces DNA Double-Strand Breaks in MCF-10A Cells.

    PubMed

    Huang, Peixin; Yang, John; Ning, Jie; Wang, Michael; Song, Qisheng

    2015-06-24

    Atrazine, a pre-emergent herbicide in the chloro-s-triazine family, has been widely used in crop lands and often detected in agriculture watersheds, which is considered as a potential threat to human health. Although atrazine and its metabolites showed an elevated incidence of mammary tumors in female Sprague-Dawley (SD) rats, no molecular evidence was found relevant to its carcinogenesis in humans. This study aims to determine whether atrazine could induce the expression of DNA damage response-related proteins in normal human breast epithelial cells (MCF-10A) and to examine the cytotoxicity of atrazine at a molecular level. Our results indicate that a short-term exposure of MCF-10A to an environmentally-detectable concentration of atrazine (0.1 µg/mL) significantly increased the expression of tumor necrosis factor receptor-1 (TNFR1) and phosphorylated Rad17 in the cells. Atrazine treatment increased H2AX phosphorylation (γH2AX) and the formation of γH2AX foci in the nuclei of MCF-10A cells. Atrazine also sequentially elevated DNA damage checkpoint proteins of ATM- and RAD3-related (ATR), ATRIP and phospho-Chk1, suggesting that atrazine could induce DNA double-strand breaks and trigger the DNA damage response ATR-Chk1 pathway in MCF-10A cells. Further investigations are needed to determine whether atrazine-triggered DNA double-strand breaks and DNA damage response ATR-Chk1 pathway occur in vivo.

  5. RCC1-dependent activation of Ran accelerates cell cycle and DNA repair, inhibiting DNA damage–induced cell senescence

    PubMed Central

    Cekan, Pavol; Hasegawa, Keisuke; Pan, Yu; Tubman, Emily; Odde, David; Chen, Jin-Qiu; Herrmann, Michelle A.; Kumar, Sheetal; Kalab, Petr

    2016-01-01

    The coordination of cell cycle progression with the repair of DNA damage supports the genomic integrity of dividing cells. The function of many factors involved in DNA damage response (DDR) and the cell cycle depends on their Ran GTPase–regulated nuclear–cytoplasmic transport (NCT). The loading of Ran with GTP, which is mediated by RCC1, the guanine nucleotide exchange factor for Ran, is critical for NCT activity. However, the role of RCC1 or Ran⋅GTP in promoting cell proliferation or DDR is not clear. We show that RCC1 overexpression in normal cells increased cellular Ran⋅GTP levels and accelerated the cell cycle and DNA damage repair. As a result, normal cells overexpressing RCC1 evaded DNA damage–induced cell cycle arrest and senescence, mimicking colorectal carcinoma cells with high endogenous RCC1 levels. The RCC1-induced inhibition of senescence required Ran and exportin 1 and involved the activation of importin β–dependent nuclear import of 53BP1, a large NCT cargo. Our results indicate that changes in the activity of the Ran⋅GTP–regulated NCT modulate the rate of the cell cycle and the efficiency of DNA repair. Through the essential role of RCC1 in regulation of cellular Ran⋅GTP levels and NCT, RCC1 expression enables the proliferation of cells that sustain DNA damage. PMID:26864624

  6. Extracellular Self-DNA (esDNA), but Not Heterologous Plant or Insect DNA (etDNA), Induces Plasma Membrane Depolarization and Calcium Signaling in Lima Bean (Phaseolus lunatus) and Maize (Zea mays)

    PubMed Central

    Barbero, Francesca; Guglielmotto, Michela; Capuzzo, Andrea; Maffei, Massimo E.

    2016-01-01

    Extracellular self-DNA (esDNA) is produced during cell and tissue damage or degradation and has been shown to induce significant responses in several organisms, including plants. While the inhibitory effects of esDNA have been shown in conspecific individuals, little is known on the early events involved upon plant esDNA perception. We used electrophysiology and confocal laser scanning microscopy calcium localization to evaluate the plasma membrane potential (Vm) variations and the intracellular calcium fluxes, respectively, in Lima bean (Phaseolus lunatus) and maize (Zea mays) plants exposed to esDNA and extracellular heterologous DNA (etDNA) and to etDNA from Spodoptera littoralis larvae and oral secretions. In both species, esDNA induced a significant Vm depolarization and an increased flux of calcium, whereas etDNA was unable to exert any of these early signaling events. These findings confirm the specificity of esDNA to induce plant cell responses and to trigger early signaling events that eventually lead to plant response to damage. PMID:27690017

  7. The cytosolic Fe-S cluster assembly component MET18 is required for the full enzymatic activity of ROS1 in active DNA demethylation

    PubMed Central

    Wang, Xiaokang; Li, Qi; Yuan, Wei; Cao, Zhendong; Qi, Bei; Kumar, Suresh; Li, Yan; Qian, Weiqiang

    2016-01-01

    DNA methylation patterns in plants are dynamically regulated by DNA methylation and active DNA demethylation in response to both environmental changes and development of plant. Beginning with the removal of methylated cytosine by ROS1/DME family of 5-methylcytosine DNA glycosylases, active DNA demethylation in plants occurs through base excision repair. So far, many components involved in active DNA demethylation remain undiscovered. Through a forward genetic screening of Arabidopsis mutants showing DNA hypermethylation at the EPF2 promoter region, we identified the conserved iron-sulfur cluster assembly protein MET18. MET18 dysfunction caused DNA hypermethylation at more than 1000 loci as well as the silencing of reporter genes and some endogenous genes. MET18 can directly interact with ROS1 in vitro and in vivo. ROS1 activity was reduced in the met18 mutant plants and point mutation in the conserved Fe-S cluster binding motif of ROS1 disrupted its biological function. Interestingly, a large number of DNA hypomethylated loci, especially in the CHH context, were identified from the met18 mutants and most of the hypo-DMRs were from TE regions. Our results suggest that MET18 can regulate both active DNA demethylation and DNA methylation pathways in Arabidopsis. PMID:27193999

  8. Essential role of the iron-sulfur cluster binding domain of the primase regulatory subunit Pri2 in DNA replication initiation.

    PubMed

    Liu, Lili; Huang, Mingxia

    2015-03-01

    DNA primase catalyzes de novo synthesis of a short RNA primer that is further extended by replicative DNA polymerases during initiation of DNA replication. The eukaryotic primase is a heterodimeric enzyme comprising a catalytic subunit Pri1 and a regulatory subunit Pri2. Pri2 is responsible for facilitating optimal RNA primer synthesis by Pri1 and mediating interaction between Pri1 and DNA polymerase α for transition from RNA synthesis to DNA elongation. All eukaryotic Pri2 proteins contain a conserved C-terminal iron-sulfur (Fe-S) cluster-binding domain that is critical for primase catalytic activity in vitro. Here we show that mutations at conserved cysteine ligands for the Pri2 Fe-S cluster markedly decrease the protein stability, thereby causing S phase arrest at the restrictive temperature. Furthermore, Pri2 cysteine mutants are defective in loading of the entire DNA pol α-primase complex onto early replication origins resulting in defective initiation. Importantly, assembly of the Fe-S cluster in Pri2 is impaired not only by mutations at the conserved cysteine ligands but also by increased oxidative stress in the sod1Δ mutant lacking the Cu/Zn superoxide dismutase. Together these findings highlight the critical role of Pri2's Fe-S cluster domain in replication initiation in vivo and suggest a molecular basis for how DNA replication can be influenced by changes in cellular redox state.

  9. Low concentration of arsenite exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity

    SciTech Connect

    Qin Xujun; Hudson, Laurie G.; Liu Wenlan; Timmins, Graham S.; Liu Kejian

    2008-10-01

    Epidemiological studies have associated arsenic exposure with many types of human cancers. Arsenic has also been shown to act as a co-carcinogen even at low concentrations. However, the precise mechanism of its co-carcinogenic action is unknown. Recent studies indicate that arsenic can interfere with DNA-repair processes. Poly(ADP-ribose) polymerase (PARP)-1 is a zinc-finger DNA-repair protein, which can promptly sense DNA strand breaks and initiate DNA-repair pathways. In the present study, we tested the hypothesis that low concentrations of arsenic could inhibit PAPR-1 activity and so exacerbate levels of ultraviolet radiation (UVR)-induced DNA strand breaks. HaCat cells were treated with arsenite and/or UVR, and then DNA strand breaks were assessed by comet assay. Low concentrations of arsenite ({<=} 2 {mu}M) alone did not induce significant DNA strand breaks, but greatly enhanced the DNA strand breaks induced by UVR. Further studies showed that 2 {mu}M arsenite effectively inhibited PARP-1 activity. Zinc supplementation of arsenite-treated cells restored PARP-1 activity and significantly diminished the exacerbating effect of arsenite on UVR-induced DNA strand breaks. Importantly, neither arsenite treatment, nor zinc supplementation changed UVR-triggered reactive oxygen species (ROS) formation, suggesting that their effects upon UVR-induced DNA strand breaks are not through a direct free radical mechanism. Combination treatments of arsenite with PARP-1 inhibitor 3-aminobenzamide or PARP-1 siRNA demonstrate that PARP-1 is the target of arsenite. Together, these findings show that arsenite at low concentration exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity, which may represent an important mechanism underlying the co-carcinogenicity of arsenic.

  10. Fis-protein induces rod-like DNA bending

    NASA Astrophysics Data System (ADS)

    Fu, Chi-Cheng; Lin, Ching-Fong; Gao, Quan-Ze; Yang, Wei-Zen; Lim, Tsong-Shin; Yang, Li-Ling; Yen, Chi-Fu; Chang, Wei-Hau; Yuan, Hanna S.; Sheu, Sheh-Yi; Yang, Dah-Yen; Fann, Wunshain

    2010-11-01

    Fis protein can bend DNA chain with length much shorter than its persistence length. We applied single-molecule fluorescence resonance energy transfer method to probe these conformational changes. A broad distribution of end-to-end distances correlates well with the molecular dynamics simulation. The flexibility of DNA upon Fis binding is attributed to the breakages of hydrogen bonds between base pairs. DNA kinks at specific sites, instead of continuous bending. The loosening of DNA structures might have biological implications for the functions of Fis-proteins as transcription cofactors.

  11. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells.

    PubMed

    Song, Eun Ah; Kim, Hyeyoung

    2016-01-01

    The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells' molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies. PMID:27527148

  12. Persistent and heritable structural damage induced in heterochromatic DNA from rat liver by N-nitrosodimethylamine

    SciTech Connect

    Ward, E.J.; Stewart, B.W.

    1987-03-24

    Analysis, by benzoylated DEAE-cellulose chromatography, has been made of structural change in eu- and heterochromatic DNA from rat liver following administration of the carcinogen N-nitrosodimethylamine. Either hepatic DNA was prelabeled with (/sup 3/H)thymidine administered 2-3 weeks before injection of the carcinogen or the labeled precursor was given during regenerative hyperplasia in rats treated earlier with N-nitrosodimethylamine. Following phenol extraction of either whole liver homogenate or nuclease-fractionated eu- and heterochromatin, carcinogen-modified DNA was examined by stepwise or caffeine gradient elution from benzoylated DEAE-cellulose. In whole DNA, nitrosamine-induced single-stranded character was maximal 4-24 h after treatment, declining rapidly thereafter; gradient elution of these DNA preparations also provided short-term evidence of structural change. Caffeine gradient chromatography suggested short-term nitrosamine-induced structural change in euchromatic DNA, while increased binding of heterochromatic DNA was evident for up to 3 months after carcinogen treatment. Preparations of newly synthesized heterochromatic DNA from animals subjected to hepatectomy up to 2 months after carcinogen treatment provided evidence of heritable structural damage. Carcinogen-induced binding of heterochromatic DNA to benzoylated DEAE-cellulose was indicative of specific structural lesions whose affinity equalled that of single-stranded DNA up to 1.0 kilobase in length. The data suggest that structural lesions in heterochromatin, which may be a consequence of incomplete repair, are preferentially degraded by endogenous nuclease(s).

  13. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells

    PubMed Central

    Song, Eun Ah; Kim, Hyeyoung

    2016-01-01

    The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells’ molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies. PMID:27527148

  14. Methods to detect replication-dependent and replication-independent DNA structure-induced genetic instability.

    PubMed

    Wang, Guliang; Gaddis, Sally; Vasquez, Karen M

    2013-11-01

    DNA can adopt a variety of alternative secondary (i.e., non-B DNA) conformations that play important roles in cellular metabolism, including genetic instability, disease etiology and evolution. While we still have much to learn, research in this field has expanded dramatically in the past decade. We have summarized in our previous Methods review (Wang et al., Methods, 2009) some commonly used techniques to determine non-B DNA structural conformations and non-B DNA-induced genetic instability in prokaryotes and eukaryotes. Since that time, we and others have further characterized mechanisms involved in DNA structure-induced mutagenesis and have proposed both replication-dependent and replication-independent models. Thus, in this review, we highlight some current methodologies to identify DNA replication-related and replication-independent mutations occurring at non-B DNA regions to allow for a better understanding of the mechanisms underlying DNA structure-induced genetic instability. We also describe a new web-based search engine to identify potential intramolecular triplex (H-DNA) and left-handed Z-DNA-forming motifs in entire genomes or at selected sequences of interest.

  15. Neurotoxin-induced DNA damage is persistentin SH-SY5Y cells and LC neurons

    PubMed Central

    Wang, Yan; Musich, Phillip R.; Cui, Kui; Zou, Yue; Zhu, Meng-Yang

    2015-01-01

    Degeneration of the noradrenergic neurons has been reported in the brain of patients suffering from neurodegenerative diseases. However, their pathologic characteristics during the neurodegenerative course and underlying mechanisms remain to be elucidated. In the present study, we used the neurotoxincamptothecin (CPT)to induce the DNA damage response in neuroblastoma SH-SY5Y cells, normal fibroblast cells, and primarily cultured LC and raphe neurons to examine cellular responses and repair capabilities after neurotoxin exposure. To our knowledge, the present study is the first to show that noradrenergic SH-SY5Y cells are more sensitive to CPT-induced DNA damage and deficientin DNA repair, as compared to fibroblast cells. Furthermore, similar to SH-SY5Y cells, primarily cultured LC neurons are more sensitive to CPT-induced DNA damage and show a deficiency in repairing this damage. Moreover, while N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) exposure also results in DNA damage in cultured LC neurons, neither CPT nor DSP4 induce DNA damage in neuronal cultures from the raphe nuclei. Taken together, noradrenergic SH-SY5Y cells and LC neurons are sensitive to CPT-induced DNA damage and exhibit a repair deficiency, providing a mechanistic explanation for the pathologic characteristics of LC degeneration when facing endogenous and environmental DNA-damaging insultsin vivo. PMID:25724887

  16. Neutron stars and millisecond pulsars from accretion-induced collapse in globular clusters

    NASA Technical Reports Server (NTRS)

    Bailyn, Charles D.; Grindlay, Jonathan E.

    1990-01-01

    This paper examines the limits on the number of millisecond pulsars which could be formed in globular clusters by the generally accepted scenario (in which a neutron star is created by the supernova of an initially massive star and subsequently captures a companion to form a low-mass X-ray binary which eventually becomes a millisecond pulsar). It is found that, while the number of observed low-mass X-ray binaries can be adequately explained in this way, the reasonable assumption that the pulsar luminosity function in clusters extends below the current observational limits down to the luminosity of the faintest millisecond pulsars in the field suggests a cluster population of millisecond pulsars which is substantially larger than the standard model can produce. Alleviating this problem by postulating much shorter lifetimes for the X-ray binaries requires massive star populations sufficiently large that the mass loss resulting from their evolution would be likely to unbind the cluster. It is argued that neutron star formation in globular clusters by accretion-induced collapse of white dwarfs may resolve the discrepancy in birthrates.

  17. Plasma protein induced clustering of red blood cells in micro capillaries

    NASA Astrophysics Data System (ADS)

    Wagner, Christian; Brust, Mathias; Aouane, Othmane; Flormann, Daniel; Thiebaud, Marine; Verdier, Claude; Coupier, Gwennou; Podgorski, Thomas; Misbah, Chaouqi; Selmi, Hassib

    2013-11-01

    The plasma molecule fibrinogen induces aggregation of RBCs to clusters, the so called rouleaux. Higher shear rates in bulk flow can break them up which results in the pronounced shear thinning of blood. This led to the assumption that rouleaux formation does not take place in the microcapillaries of the vascular network where high shear rates are present. However, the question is of high medical relevance. Cardio vascular disorders are still the main cause of death in the western world and cardiac patients have often higher fibrinogen level. We performed AFM based single cell force spectroscopy to determine the work of separation. Measurements at low hematocrit in a microfluidic channel show that the number of size of clusters is determined by the adhesion strength and we found that cluster formation is strongly enhanced by fibrinogen at physiological concentrations, even at shear rate as high as 1000 1/s. Numerical simulations based on a boundary integral method confirm our findings and the clustering transition takes place both in the experiments and in the simulations at the same interaction energies. In vivo measurements with intravital fluorescence microscopy in a dorsal skin fold chamber in a mouse reveal that RBCs indeed form clusters in the micrcapillary flow. This work was supported by the German Science Foundation research imitative SFB1027.

  18. Basic Mechanics of DNA Methylation and the Unique Landscape of the DNA Methylome in Metal-Induced Carcinogenesis

    PubMed Central

    Brocato, Jason; Costa, Max

    2013-01-01

    DNA methylation plays an intricate role in the regulation of gene expression and events that compromise the integrity of the methylome may potentially contribute to disease development. DNA methylation is a reversible and regulatory modification that elicits a cascade of events leading to chromatin condensation and gene silencing. In general, normal cells are characterized by gene-specific hypomethylation and global hypermethylation, while cancer cells portray a reverse profile to this norm. The unique methylome displayed in cancer cells is induced after exposure to carcinogenic metals such as nickel, arsenic, cadmium, and chromium (VI). These metals alter the DNA methylation profile by provoking both hyper- and hypomethylation events. The metal-stimulated deviations to the methylome are possible mechanisms for metal-induced carcinogenesis and may provide potential biomarkers for cancer detection. Development of therapies based on the cancer methylome requires further research including human studies that supply results with larger impact and higher human relevance. PMID:23844698

  19. Homologous recombination contributes to the repair of DNA double-strand breaks induced by high-energy iron ions

    SciTech Connect

    Zafar, Faria; Seidler, Sara B.; Kronenberg, Amy; Schild, David; Wiese, Claudia

    2010-06-29

    To test the contribution of homologous recombinational repair (HRR) in repairing DNA damaged sites induced by high-energy iron ions, we used: (1) HRR-deficient rodent cells carrying a deletion in the RAD51D gene and (2) syngeneic human cells impaired for HRR by RAD51D or RAD51 knockdown using RNA interference. We show that in response to iron ions, HRR contributes to cell survival in rodent cells, and that HRR-deficiency abrogates RAD51 foci formation. Complementation of the HRR defect by human RAD51D rescues both enhanced cytotoxicity and RAD51 foci formation. For human cells irradiated with iron ions, cell survival is decreased, and, in p53 mutant cells, the levels of mutagenesis are increased when HRR is impaired. Human cells synchronized in S phase exhibit more pronounced resistance to iron ions as compared with cells in G1 phase, and this increase in radioresistance is diminished by RAD51 knockdown. These results implicate a role for RAD51-mediated DNA repair (i.e. HRR) in removing a fraction of clustered lesions induced by charged particle irradiation. Our results are the first to directly show the requirement for an intact HRR pathway in human cells in ensuring DNA repair and cell survival in response to high-energy high LET radiation.

  20. Immunofluorescence detection of clustered gamma-H2AX foci induced by HZE-particle radiation.

    PubMed

    Desai, N; Davis, E; O'Neill, P; Durante, M; Cucinotta, F A; Wu, H

    2005-10-01

    We studied the spatial and temporal distributions of foci of the phosphorylated form of the histone protein H2AX (gamma-H2AX), which is known to be activated by double-strand breaks after irradiation of human fibroblast cells with high-energy silicon (54 keV/microm) and iron (176 keV/microm) ions. Here we present data obtained with the ion path parallel to a monolayer of human fibroblast cells that leads to gamma-H2AX aggregates in the shape of streaks stretching over several micrometers in an x/y plane, thus enabling the analysis of the fluorescence distributions along the ion trajectories. Qualitative analyses of these distributions provide insights into DNA damage processing kinetics for high charge and energy (HZE) ions, including evidence of increased clustering of DNA damage and slower processing with increasing LET. PMID:16187760

  1. Metastasis suppressor NM23-H1 promotes repair of UV-induced DNA damage and suppresses UV-induced melanomagenesis.

    PubMed

    Jarrett, Stuart G; Novak, Marian; Dabernat, Sandrine; Daniel, Jean-Yves; Mellon, Isabel; Zhang, Qingbei; Harris, Nathan; Ciesielski, Michael J; Fenstermaker, Robert A; Kovacic, Diane; Slominski, Andrzej; Kaetzel, David M

    2012-01-01

    Reduced expression of the metastasis suppressor NM23-H1 is associated with aggressive forms of multiple cancers. Here, we establish that NM23-H1 (termed H1 isoform in human, M1 in mouse) and two of its attendant enzymatic activities, the 3'-5' exonuclease and nucleoside diphosphate kinase, are novel participants in the cellular response to UV radiation (UVR)-induced DNA damage. NM23-H1 deficiency compromised the kinetics of repair for total DNA polymerase-blocking lesions and nucleotide excision repair of (6-4) photoproducts in vitro. Kinase activity of NM23-H1 was critical for rapid repair of both polychromatic UVB/UVA-induced (290-400 nm) and UVC-induced (254 nm) DNA damage, whereas its 3'-5' exonuclease activity was dominant in the suppression of UVR-induced mutagenesis. Consistent with its role in DNA repair, NM23-H1 rapidly translocated to sites of UVR-induced (6-4) photoproduct DNA damage in the nucleus. In addition, transgenic mice hemizygous-null for nm23-m1 and nm23-m2 exhibited UVR-induced melanoma and follicular infundibular cyst formation, and tumor-associated melanocytes displayed invasion into adjacent dermis, consistent with loss of invasion-suppressing activity of NM23 in vivo. Taken together, our data show a critical role for NM23 isoforms in limiting mutagenesis and suppressing UVR-induced melanomagenesis.

  2. Clustering-Induced Attraction in Granular Mixtures of Rods and Spheres

    PubMed Central

    2016-01-01

    Depletion-induced aggregation of rods enhanced by clustering is observed to produce a novel model of attractive pairs of rods separated by a line of spheres in a quasi-2D, vertically-shaken, granular gas of rods and spheres. We show that the stability of these peculiar granular aggregates increases as a function of shaking intensity. Velocity distributions of spheres inside and outside of a pair of rods trapping a line of spheres show a clear suppression of the momentum acquired by the trapped spheres. The condensed phase formed between the rods is caused by a clustering instability of the trapped spheres, enhanced by a vertical guidance produced by the confining rods. The liberated area corresponding to direct excluded-volume pairs and indirect depletion-aggregated pairs is measured as a function of time. The stability of rod pairs mediated by spheres reveals an attraction comparable in strength to the one purely induced by depletion forces. PMID:27218804

  3. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    SciTech Connect

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G.

    2013-06-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. - Highlights: • Low levels of arsenite enhance UV-induced DNA damage in human keratinocytes. • UV-initiated HPRT mutation frequency is enhanced by arsenite. • Zinc supplementation offsets DNA damage and mutation frequency enhanced by arsenite. • Zinc-dependent reduction of arsenite enhanced DNA damage is confirmed in vivo.

  4. Photo-induced transformation process at gold clusters-semiconductor interface: Implications for the complexity of gold clusters-based photocatalysis

    PubMed Central

    Liu, Siqi; Xu, Yi-Jun

    2016-01-01

    The recent thrust in utilizing atomically precise organic ligands protected gold clusters (Au clusters) as photosensitizer coupled with semiconductors for nano-catalysts has led to the claims of improved efficiency in photocatalysis. Nonetheless, the influence of photo-stability of organic ligands protected-Au clusters at the Au/semiconductor interface on the photocatalytic properties remains rather elusive. Taking Au clusters–TiO2 composites as a prototype, we for the first time demonstrate the photo-induced transformation of small molecular-like Au clusters to larger metallic Au nanoparticles under different illumination conditions, which leads to the diverse photocatalytic reaction mechanism. This transformation process undergoes a diffusion/aggregation mechanism accompanied with the onslaught of Au clusters by active oxygen species and holes resulting from photo-excited TiO2 and Au clusters. However, such Au clusters aggregation can be efficiently inhibited by tuning reaction conditions. This work would trigger rational structural design and fine condition control of organic ligands protected-metal clusters-semiconductor composites for diverse photocatalytic applications with long-term photo-stability. PMID:26947754

  5. Dietary spices protect against hydrogen peroxide-induced DNA damage and inhibit nicotine-induced cancer cell migration.

    PubMed

    Jayakumar, R; Kanthimathi, M S

    2012-10-01

    Spices are rich sources of antioxidants due to the presence of phenols and flavonoids. In this study, the DNA protecting activity and inhibition of nicotine-induced cancer cell migration of 9 spices were analysed. Murine fibroblasts (3T3-L1) and human breast cancer (MCF-7) cells were pre-treated with spice extracts and then exposed to H₂O₂ and nicotine. The comet assay was used to analyse the DNA damage. Among the 9 spices, ginger, at 50 μg/ml protected against 68% of DNA damage in 3T3-L1 cells. Caraway, cumin and fennel showed statistically significant (p<0.05) DNA protecting activity. Treatment of MCF-7 cells with nicotine induced cell migration, whereas pre-treatment with spices reduced this migration. Pepper, long pepper and ginger exhibited a high rate of inhibition of cell migration. The results of this study prove that spices protect DNA and inhibit cancer cell migration. PMID:25005983

  6. Extracellular DNA Chelates Cations and Induces Antibiotic Resistance in Pseudomonas aeruginosa Biofilms

    PubMed Central

    Mulcahy, Heidi; Charron-Mazenod, Laetitia; Lewenza, Shawn

    2008-01-01

    Biofilms are surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, bacterial polysaccharides and proteins, which are up to 1000-fold more antibiotic resistant than planktonic cultures. To date, extracellular DNA has been shown to function as a structural support to maintain Pseudomonas aeruginosa biofilm architecture. Here we show that DNA is a multifaceted component of P. aeruginosa biofilms. At physiologically relevant concentrations, extracellular DNA has antimicrobial activity, causing cell lysis by chelating cations that stabilize lipopolysaccharide (LPS) and the outer membrane (OM). DNA-mediated killing occurred within minutes, as a result of perturbation of both the outer and inner membrane (IM) and the release of cytoplasmic contents, including genomic DNA. Sub-inhibitory concentrations of DNA created a cation-limited environment that resulted in induction of the PhoPQ- and PmrAB-regulated cationic antimicrobial peptide resistance operon PA3552–PA3559 in P. aeruginosa. Furthermore, DNA-induced expression of this operon resulted in up to 2560-fold increased resistance to cationic antimicrobial peptides and 640-fold increased resistance to aminoglycosides, but had no effect on β-lactam and fluoroquinolone resistance. Thus, the presence of extracellular DNA in the biofilm matrix contributes to cation gradients, genomic DNA release and inducible antibiotic resistance. DNA-rich environments, including biofilms and other infection sites like the CF lung, are likely the in vivo environments where extracellular pathogens such as P. aeruginosa encounter cation limitation. PMID:19023416

  7. The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor.

    PubMed

    Huang, M; Zhou, Z; Elledge, S J

    1998-09-01

    We have identified the yeast CRT1 gene as an effector of the DNA damage and replication checkpoint pathway. CRT1 encodes a DNA-binding protein that recruits the general repressors Ssn6 and Tup1 to the promoters of damage-inducible genes. Derepression of the Crt1 regulon suppresses the lethality of mec1 and rad53 null alleles and is essential for cell viability during replicative stress. In response to DNA damage and replication blocks, Crt1 becomes hyperphosphorylated and no longer binds DNA, resulting in transcriptional induction. CRT1 is autoregulated and is itself induced by DNA damage, indicating the existence of a negative feedback pathway that facilitates return to the repressed state after elimination of damage. The inhibition of an autoregulatory repressor in response to DNA damage is a strategy conserved throughout prokaryotic and eukaryotic evolution.

  8. Nicotinamide enhances repair of ultraviolet radiation-induced DNA damage in primary melanocytes.

    PubMed

    Thompson, Benjamin C; Surjana, Devita; Halliday, Gary M; Damian, Diona L

    2014-07-01

    Cutaneous melanoma is a significant cause of morbidity and mortality. Nicotinamide is a safe, widely available vitamin that reduces the immune suppressive effects of UV, enhances DNA repair in keratinocytes and has shown promise in the chemoprevention of non-melanoma skin cancer. Here, we report the effect of nicotinamide on DNA damage and repair in primary human melanocytes. Nicotinamide significantly enhanced the repair of oxidative DNA damage (8-oxo-7,8-dihydro-2'-deoxyguanosine) and cyclobutane pyrimidine dimers induced by UV exposure. It also enhanced the repair of 8-oxo-7,8-dihydro-2'-deoxyguanosine induced by the culture conditions in unirradiated melanocytes. A significant increase in the percentage of melanocytes undergoing unscheduled but not scheduled DNA synthesis was observed, confirming that nicotinamide enhances DNA repair in human melanocytes. In summary, nicotinamide, by enhancing DNA repair in melanocytes, is a potential agent for the chemoprevention of cutaneous melanoma.

  9. Nicotinamide enhances repair of ultraviolet radiation-induced DNA damage in primary melanocytes.

    PubMed

    Thompson, Benjamin C; Surjana, Devita; Halliday, Gary M; Damian, Diona L

    2014-07-01

    Cutaneous melanoma is a significant cause of morbidity and mortality. Nicotinamide is a safe, widely available vitamin that reduces the immune suppressive effects of UV, enhances DNA repair in keratinocytes and has shown promise in the chemoprevention of non-melanoma skin cancer. Here, we report the effect of nicotinamide on DNA damage and repair in primary human melanocytes. Nicotinamide significantly enhanced the repair of oxidative DNA damage (8-oxo-7,8-dihydro-2'-deoxyguanosine) and cyclobutane pyrimidine dimers induced by UV exposure. It also enhanced the repair of 8-oxo-7,8-dihydro-2'-deoxyguanosine induced by the culture conditions in unirradiated melanocytes. A significant increase in the percentage of melanocytes undergoing unscheduled but not scheduled DNA synthesis was observed, confirming that nicotinamide enhances DNA repair in human melanocytes. In summary, nicotinamide, by enhancing DNA repair in melanocytes, is a potential agent for the chemoprevention of cutaneous melanoma. PMID:24798949

  10. Study on DNA Damage Induced by Neon Beam Irradiation in Saccharomyces Cerevisiae

    NASA Astrophysics Data System (ADS)

    Lu, Dong; Li, Wenjian; Wu, Xin; Wang, Jufang; Ma, Shuang; Liu, Qingfang; He, Jinyu; Jing, Xigang; Ding, Nan; Dai, Zhongying; Zhou, Jianping

    2010-12-01

    Yeast strain Saccharomyces cerevisiae was irradiated with different doses of 85 MeV/u 20Ne10+ to investigate DNA damage induced by heavy ion beam in eukaryotic microorganism. The survival rate, DNA double strand breaks (DSBs) and DNA polymorphic were tested after irradiation. The results showed that there were substantial differences in DNA between the control and irradiated samples. At the dose of 40 Gy, the yeast cell survival rate approached 50%, DNA double-strand breaks were barely detectable, and significant DNA polymorphism was observed. The alcohol dehydrogenase II gene was amplified and sequenced. It was observed that base changes in the mutant were mainly transversions of T→G and T→C. It can be concluded that heavy ion beam irradiation can lead to change in single gene and may be an effective way to induce mutation.

  11. Neurotensin enhances estradiol induced DNA synthesis in immature rat uterus

    SciTech Connect

    Mistry, A.; Vijayan, E.

    1985-05-27

    Systemic administration of Neurotensin, a tridecapeptide, in immature rats treated with estradiol benzoate significantly enhances uterine DNA synthesis as reflected by the incorporation of /sup 3/H-thymidine. The peptide may have a direct action on the uterus. Substance P, a related peptide, had no effect on uterine DNA synthesis. 18 references, 4 tables.

  12. Replication-induced supercoiling: a neglected DNA transaction regulator?

    PubMed

    Yu, Haojie; Dröge, Peter

    2014-05-01

    Dynamic (-) DNA supercoiling generated in the wake of translocating protein complexes is known to occur during transcription. Recent studies indicate that (-) superhelical tension also builds up specifically in the leading duplex during replication. Here, we argue that this unrecognized supercoiling is causally involved in the regulation of key DNA transactions and deserves further consideration. PMID:24637041

  13. Herpes Simplex Virus and Interferon Signaling Induce Novel Autophagic Clusters in Sensory Neurons

    PubMed Central

    Katzenell, Sarah

    2016-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) establishes lifelong infection in the neurons of trigeminal ganglia (TG), cycling between productive infection and latency. Neuronal antiviral responses are driven by type I interferon (IFN) and are crucial to controlling HSV-1 virulence. Autophagy also plays a role in this neuronal antiviral response, but the mechanism remains obscure. In this study, HSV-1 infection of murine TG neurons triggered unusual clusters of autophagosomes, predominantly in neurons lacking detectable HSV-1 antigen. Treatment of neurons with IFN-β induced a similar response, and cluster formation by infection or IFN treatment was dependent upon an intact IFN-signaling pathway. The autophagic clusters were decorated with both ISG15, an essential effecter of the antiviral response, and p62, a selective autophagy receptor. The autophagic clusters were not induced by rapamycin or starvation, consistent with a process of selective autophagy. While clusters were triggered by other neurotropic herpesviruses, infection with unrelated viruses failed to induce this response. Following ocular infection in vivo, clusters formed exclusively in the infected ophthalmic branch of the TG. Taken together, our results show that infection with HSV and antiviral signaling in TG neurons produce an unorthodox autophagic response. This autophagic clustering is associated with antiviral signaling, the presence of viral genome, and the absence of HSV protein expression and may therefore represent an important neuronal response to HSV infection and the establishment of latency. IMPORTANCE Herpes simplex virus type 1 (HSV-1) is a ubiquitous virus and a significant cause of morbidity and some mortality. It is the causative agent of benign cold sores, but it can also cause blindness and life-threatening encephalitis. The success of HSV-1 is largely due to its ability to establish lifelong latent infections in neurons and to occasionally reactivate. The exact mechanisms by which

  14. DNase I hypersensitive sites within the inducible qa gene cluster of Neurospora crassa.

    PubMed Central

    Baum, J A; Giles, N H

    1986-01-01

    DNase I hypersensitive regions were mapped within the 17.3-kilobase qa (quinic acid) gene cluster of Neurospora crassa. The 5'-flanking regions of the five qa structural genes and the two qa regulatory genes each contain DNase I hypersensitive sites under noninducing conditions and generally exhibit increases in DNase I cleavage upon induction of transcription with quinic acid. The two large intergenic regions of the qa gene cluster appear to be similarly organized with respect to the positions of constitutive and inducible DNase I hypersensitive sites. Inducible hypersensitive sites on the 5' side of one qa gene, qa-x, appear to be differentially regulated. Employing these and previously published data, we have identified a conserved sequence element that may mediate the activator function of the qa-1F regulatory gene. Variants of the 16-base-pair consensus sequence are consistently found within DNase I-protected regions adjacent to inducible DNase I hypersensitive sites within the gene cluster. Images PMID:2944110

  15. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation

    PubMed Central

    Davalos, Dimitrios; Kyu Ryu, Jae; Merlini, Mario; Baeten, Kim M.; Le Moan, Natacha; Petersen, Mark A.; Deerinck, Thomas J.; Smirnoff, Dimitri S.; Bedard, Catherine; Hakozaki, Hiroyuki; Gonias Murray, Sara; Ling, Jennie B.; Lassmann, Hans; Degen, Jay L.; Ellisman, Mark H.; Akassoglou, Katerina

    2012-01-01

    Blood-brain barrier disruption, microglial activation and neurodegeneration are hallmarks of multiple sclerosis. However, the initial triggers that activate innate immune responses and their role in axonal damage remain unknown. Here we show that the blood protein fibrinogen induces rapid microglial responses toward the vasculature and is required for axonal damage in neuroinflammation. Using in vivo two-photon microscopy, we demonstrate that microglia form perivascular clusters before myelin loss or paralysis onset and that, of the plasma proteins, fibrinogen specifically induces rapid and sustained microglial responses in vivo. Fibrinogen leakage correlates with areas of axonal damage and induces reactive oxygen species release in microglia. Blocking fibrin formation with anticoagulant treatment or genetically eliminating the fibrinogen binding motif recognized by the microglial integrin receptor CD11b/CD18 inhibits perivascular microglial clustering and axonal damage. Thus, early and progressive perivascular microglial clustering triggered by fibrinogen leakage upon blood-brain barrier disruption contributes to axonal damage in neuroinflammatory disease. PMID:23187627

  16. Editing Transgenic DNA Components by Inducible Gene Replacement in Drosophila melanogaster.

    PubMed

    Lin, Chun-Chieh; Potter, Christopher J

    2016-08-01

    Gene conversions occur when genomic double-strand DNA breaks (DSBs) trigger unidirectional transfer of genetic material from a homologous template sequence. Exogenous or mutated sequence can be introduced through this homology-directed repair (HDR). We leveraged gene conversion to develop a method for genomic editing of existing transgenic insertions in Drosophila melanogaster The clustered regularly-interspaced palindromic repeats (CRISPR)/Cas9 system is used in the H: omology A: ssisted C: RISPR K: nock-in (HACK) method to induce DSBs in a GAL4 transgene, which is repaired by a single-genomic transgenic construct containing GAL4 homologous sequences flanking a T2A-QF2 cassette. With two crosses, this technique converts existing GAL4 lines, including enhancer traps, into functional QF2 expressing lines. We used HACK to convert the most commonly-used GAL4 lines (labeling tissues such as neurons, fat, glia, muscle, and hemocytes) to QF2 lines. We also identified regions of the genome that exhibited differential efficiencies of HDR. The HACK technique is robust and readily adaptable for targeting and replacement of other genomic sequences, and could be a useful approach to repurpose existing transgenes as new genetic reagents become available.

  17. Editing Transgenic DNA Components by Inducible Gene Replacement in Drosophila melanogaster.

    PubMed

    Lin, Chun-Chieh; Potter, Christopher J

    2016-08-01

    Gene conversions occur when genomic double-strand DNA breaks (DSBs) trigger unidirectional transfer of genetic material from a homologous template sequence. Exogenous or mutated sequence can be introduced through this homology-directed repair (HDR). We leveraged gene conversion to develop a method for genomic editing of existing transgenic insertions in Drosophila melanogaster The clustered regularly-interspaced palindromic repeats (CRISPR)/Cas9 system is used in the H: omology A: ssisted C: RISPR K: nock-in (HACK) method to induce DSBs in a GAL4 transgene, which is repaired by a single-genomic transgenic construct containing GAL4 homologous sequences flanking a T2A-QF2 cassette. With two crosses, this technique converts existing GAL4 lines, including enhancer traps, into functional QF2 expressing lines. We used HACK to convert the most commonly-used GAL4 lines (labeling tissues such as neurons, fat, glia, muscle, and hemocytes) to QF2 lines. We also identified regions of the genome that exhibited differential efficiencies of HDR. The HACK technique is robust and readily adaptable for targeting and replacement of other genomic sequences, and could be a useful approach to repurpose existing transgenes as new genetic reagents become available. PMID:27334272

  18. Epigenetic clustering of lung adenocarcinomas based on DNA methylation profiles in adjacent lung tissue: Its correlation with smoking history and chronic obstructive pulmonary disease.

    PubMed

    Sato, Takashi; Arai, Eri; Kohno, Takashi; Takahashi, Yoriko; Miyata, Sayaka; Tsuta, Koji; Watanabe, Shun-ichi; Soejima, Kenzo; Betsuyaku, Tomoko; Kanai, Yae

    2014-07-15

    The aim of this study was to clarify the significance of DNA methylation alterations during lung carcinogenesis. Infinium assay was performed using 139 paired samples of non-cancerous lung tissue (N) and tumorous tissue (T) from a learning cohort of patients with lung adenocarcinomas (LADCs). Fifty paired N and T samples from a validation cohort were also analyzed. DNA methylation alterations on 1,928 probes occurred in N samples relative to normal lung tissue from patients without primary lung tumors, and were inherited by, or strengthened in, T samples. Unsupervised hierarchical clustering using DNA methylation levels in N samples on all 26,447 probes subclustered patients into Cluster I (n = 32), Cluster II (n = 35) and Cluster III (n = 72). LADCs in Cluster I developed from the inflammatory background in chronic obstructive pulmonary disease (COPD) in heavy smokers and were locally invasive. Most patients in Cluster II were non-smokers and had a favorable outcome. LADCs in Cluster III developed in light smokers were most aggressive (frequently showing lymphatic and blood vessel invasion, lymph node metastasis and an advanced pathological stage), and had a poor outcome. DNA methylation levels of hallmark genes for each cluster, such as IRX2, HOXD8, SPARCL1, RGS5 and EI24, were again correlated with clinicopathological characteristics in the validation cohort. DNA methylation profiles reflecting carcinogenetic factors such as smoking and COPD appear to be established in non-cancerous lung tissue from patients with LADCs and may determine the aggressiveness of tumors developing in individual patients, and thus patient outcome.

  19. Stacking of Short DNA Induces the Gyroid Cubic-to-Inverted Hexagonal Phase Transition in Lipid–DNA Complexes

    PubMed Central

    Leal, Cecília; Ewert, Kai K.; Bouxsein, Nathan F.; Shirazi, Rahau S.; Li, Youli; Safinya, Cyrus R.

    2012-01-01

    Lyotropic phases of amphiphiles are a prototypical example of self-assemblies. Their structure is generally determined by amphiphile shape and their phase transitions are primarily governed by composition. In this paper, we demonstrate a new paradigm for membrane shape control where the electrostatic coupling of charged membranes to short DNA (sDNA), with tunable temperature-dependent end-to-end stacking interactions, enables switching between the inverted gyroid cubic structure (QIIG) and the inverted hexagonal phase (HIIC). We investigated the structural shape transitions induced in the QIIG phase upon complexation with a series of sDNAs (5, 11, 24, and 48 bp) with three types of end structure (“sticky” adenine (A)–thymine (T) (dAdT) overhangs, no overhang (blunt), and “nonsticky” dTdT overhangs) using synchrotron small-angle X-ray scattering. Very short 5 bp sDNA with dAdT overhangs and blunt ends induce coexistence of the QIIG and the HIIC phase, with the fraction of QIIG increasing with temperature. Phase coexistence for blunt 5 bp sDNA is observed from 27 °C to about 65 °C, where the HIIC phase disappears and the temperature dependence of the lattice spacing of the QIIG phase indicates that the sDNA duplexes melt into single strands. The only other sDNA for which melting is observed is 5 bp sDNA with dTdT overhangs, which forms the QIIG phase throughout the studied range of temperature (27 °C to 85.2 °C). The longer 11 bp sDNA forms coexisting QIIG and HIIC phases (with the fraction of QIIG again increasing with temperature) only for “nonsticky” dTdT overhangs, while dAdT overhangs and blunt ends exclusively template the HIIC phase. For 24 and 48 bp sDNAs the HIIC phase replaces the QIIG phase at all investigated temperatures, independent of sDNA end structure. Our work demonstrates how the combined effects of sDNA length and end structure (which determine the temperature-dependent stacking length) tune the phase behavior of the complexes

  20. Understanding the molecular mechanism of formaldehyde-induced DNA-protein crosslink repair

    EPA Science Inventory

    Formaldehyde induces DNA-protein crosslinks (DPCs) in several experimental in vitro and in vivo test systems, as well as in exposed human workers. DPCs are repaired by several DNA repair pathways in different species, but the molecular understanding of DPC repair in human tissues...

  1. Chromatin structure following UV-induced DNA damage-repair or death?

    PubMed

    Farrell, Andrew W; Halliday, Gary M; Lyons, James Guy

    2011-01-01

    In eukaryotes, DNA is compacted into a complex structure known as chromatin. The unravelling of DNA is a crucial step in DNA repair, replication, transcription and recombination as this allows access to DNA for these processes. Failure to package DNA into the nucleosome, the individual unit of chromatin, can lead to genomic instability, driving a cell into apoptosis, senescence, or cellular proliferation. Ultraviolet (UV) radiation damage causes destabilisation of chromatin integrity. UV irradiation induces DNA damage such as photolesions and subjects the chromatin to substantial rearrangements, causing the arrest of transcription forks and cell cycle arrest. Highly conserved processes known as nucleotide and base excision repair (NER and BER) then begin to repair these lesions. However, if DNA repair fails, the cell may be forced into apoptosis. The modification of various histones as well as nucleosome remodelling via ATP-dependent chromatin remodelling complexes are required not only to repair these UV-induced DNA lesions, but also for apoptosis signalling. Histone modifications and nucleosome remodelling in response to UV also lead to the recruitment of various repair and pro-apoptotic proteins. Thus, the way in which a cell responds to UV irradiation via these modifications is important in determining its fate. Failure of these DNA damage response steps can lead to cellular proliferation and oncogenic development, causing skin cancer, hence these chromatin changes are critical for a proper response to UV-induced injury.

  2. Electric-field-induced assembly and propulsion of chiral colloidal clusters.

    PubMed

    Ma, Fuduo; Wang, Sijia; Wu, David T; Wu, Ning

    2015-05-19

    Chiral molecules with opposite handedness exhibit distinct physical, chemical, or biological properties. They pose challenges as well as opportunities in understanding the phase behavior of soft matter, designing enantioselective catalysts, and manufacturing single-handed pharmaceuticals. Microscopic particles, arranged in a chiral configuration, could also exhibit unusual optical, electric, or magnetic responses. Here we report a simple method to assemble achiral building blocks, i.e., the asymmetric colloidal dimers, into a family of chiral clusters. Under alternating current electric fields, two to four lying dimers associate closely with a central standing dimer and form both right- and left-handed clusters on a conducting substrate. The cluster configuration is primarily determined by the induced dipolar interactions between constituent dimers. Our theoretical model reveals that in-plane dipolar repulsion between petals in the cluster favors the achiral configuration, whereas out-of-plane attraction between the central dimer and surrounding petals favors a chiral arrangement. It is the competition between these two interactions that dictates the final configuration. The theoretical chirality phase diagram is found to be in excellent agreement with experimental observations. We further demonstrate that the broken symmetry in chiral clusters induces an unbalanced electrohydrodynamic flow surrounding them. As a result, they rotate in opposite directions according to their handedness. Both the assembly and propulsion mechanisms revealed here can be potentially applied to other types of asymmetric particles. Such kinds of chiral colloids will be useful for fabricating metamaterials, making model systems for both chiral molecules and active matter, or building propellers for microscale transport.

  3. Electric-field–induced assembly and propulsion of chiral colloidal clusters

    PubMed Central

    Ma, Fuduo; Wang, Sijia; Wu, David T.; Wu, Ning

    2015-01-01

    Chiral molecules with opposite handedness exhibit distinct physical, chemical, or biological properties. They pose challenges as well as opportunities in understanding the phase behavior of soft matter, designing enantioselective catalysts, and manufacturing single-handed pharmaceuticals. Microscopic particles, arranged in a chiral configuration, could also exhibit unusual optical, electric, or magnetic responses. Here we report a simple method to assemble achiral building blocks, i.e., the asymmetric colloidal dimers, into a family of chiral clusters. Under alternating current electric fields, two to four lying dimers associate closely with a central standing dimer and form both right- and left-handed clusters on a conducting substrate. The cluster configuration is primarily determined by the induced dipolar interactions between constituent dimers. Our theoretical model reveals that in-plane dipolar repulsion between petals in the cluster favors the achiral configuration, whereas out-of-plane attraction between the central dimer and surrounding petals favors a chiral arrangement. It is the competition between these two interactions that dictates the final configuration. The theoretical chirality phase diagram is found to be in excellent agreement with experimental observations. We further demonstrate that the broken symmetry in chiral clusters induces an unbalanced electrohydrodynamic flow surrounding them. As a result, they rotate in opposite directions according to their handedness. Both the assembly and propulsion mechanisms revealed here can be potentially applied to other types of asymmetric particles. Such kinds of chiral colloids will be useful for fabricating metamaterials, making model systems for both chiral molecules and active matter, or building propellers for microscale transport. PMID:25941383

  4. Electric-field-induced assembly and propulsion of chiral colloidal clusters.

    PubMed

    Ma, Fuduo; Wang, Sijia; Wu, David T; Wu, Ning

    2015-05-19

    Chiral molecules with opposite handedness exhibit distinct physical, chemical, or biological properties. They pose challenges as well as opportunities in understanding the phase behavior of soft matter, designing enantioselective catalysts, and manufacturing single-handed pharmaceuticals. Microscopic particles, arranged in a chiral configuration, could also exhibit unusual optical, electric, or magnetic responses. Here we report a simple method to assemble achiral building blocks, i.e., the asymmetric colloidal dimers, into a family of chiral clusters. Under alternating current electric fields, two to four lying dimers associate closely with a central standing dimer and form both right- and left-handed clusters on a conducting substrate. The cluster configuration is primarily determined by the induced dipolar interactions between constituent dimers. Our theoretical model reveals that in-plane dipolar repulsion between petals in the cluster favors the achiral configuration, whereas out-of-plane attraction between the central dimer and surrounding petals favors a chiral arrangement. It is the competition between these two interactions that dictates the final configuration. The theoretical chirality phase diagram is found to be in excellent agreement with experimental observations. We further demonstrate that the broken symmetry in chiral clusters induces an unbalanced electrohydrodynamic flow surrounding them. As a result, they rotate in opposite directions according to their handedness. Both the assembly and propulsion mechanisms revealed here can be potentially applied to other types of asymmetric particles. Such kinds of chiral colloids will be useful for fabricating metamaterials, making model systems for both chiral molecules and active matter, or building propellers for microscale transport. PMID:25941383

  5. Variable requirements for DNA-binding proteins at polycomb-dependent repressive regions in human HOX clusters.

    PubMed

    Woo, Caroline J; Kharchenko, Peter V; Daheron, Laurence; Park, Peter J; Kingston, Robert E

    2013-08-01

    Polycomb group (PcG)-mediated repression is an evolutionarily conserved process critical for cell fate determination and maintenance of gene expression during embryonic development. However, the mechanisms underlying PcG recruitment in mammals remain unclear since few regulatory sites have been identified. We report two novel prospective PcG-dependent regulatory elements within the human HOXB and HOXC clusters and compare their repressive activities to a previously identified element in the HOXD cluster. These regions recruited the PcG proteins BMI1 and SUZ12 to a reporter construct in mesenchymal stem cells and conferred repression that was dependent upon PcG expression. Furthermore, we examined the potential of two DNA-binding proteins, JARID2 and YY1, to regulate PcG activity at these three elements. JARID2 has differential requirements, whereas YY1 appears to be required for repressive activity at all 3 sites. We conclude that distinct elements of the mammalian HOX clusters can recruit components of the PcG complexes and confer repression, similar to what has been seen in Drosophila. These elements, however, have diverse requirements for binding factors, which, combined with previous data on other loci, speaks to the complexity of PcG targeting in mammals.

  6. Microwave-induced inactivation of DNA-based hybrid catalyst in asymmetric catalysis.

    PubMed

    Zhao, Hua; Shen, Kai

    2016-03-01

    DNA-based hybrid catalysts have gained strong interests in asymmetric reactions. However, to maintain the high enantioselectivity, these reactions are usually conducted at relatively low temperatures (e.g. <5 °C) for 2-3 days. Aiming to improve the reaction's turnover rate, we evaluated microwave irradiation with simultaneous cooling as potential energy source since this method has been widely used to accelerate various chemical and enzymatic reactions. However, our data indicated that microwave irradiation induced an inactivation of DNA-based hybrid catalyst even at low temperatures (such as 5 °C). Circular dichroism (CD) spectra and gel electrophoresis of DNA suggest that microwave exposure degrades DNA molecules and disrupts DNA double-stranded structures, causing changes of DNA-metal ligand binding properties and thus poor DNA catalytic performance.

  7. Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells.

    PubMed Central

    Wu, J; Issa, J P; Herman, J; Bassett, D E; Nelkin, B D; Baylin, S B

    1993-01-01

    Abnormal regional increases in DNA methylation, which have potential for causing gene inactivation and chromosomal instability, are consistently found in immortalized and tumorigenic cells. Increased DNA methyltransferase activity, which is also a characteristic of such cells, is a candidate to mediate these abnormal DNA methylation patterns. We now show that, in NIH 3T3 mouse fibroblasts, constitutive overexpression of an exogenous mouse DNA methyltransferase gene results in a marked increase in overall DNA methylation which is accompanied by tumorigenic transformation. These transformation changes can also be elicited by dexamethasone-inducible expression of an exogenous DNA methyltransferase gene. Our findings provide strong evidence that the increase in DNA methyltransferase activity associated with tumor progression could be a key step in carcinogenesis and provide a model system that can be used to further study this possibility. Images Fig. 1 Fig. 2 PMID:8415627

  8. Repair of radiation-induced heat-labile sites is independent of DNA-PKcs, XRCC1 or PARP

    SciTech Connect

    Stenerlöw, Bo; Karlsson, Karin H.; Radulescu, Irina; Rydberg, Bjorn; Stenerlow, Bo

    2008-04-29

    Ionizing radiation induces a variety of different DNA lesions: in addition to the most critical DNA damage, the DSB, numerous base alterations, SSBs and other modifications of the DNA double-helix are formed. When several non-DSB lesions are clustered within a short distance along DNA, or close to a DSB, they may interfere with the repair of DSBs and affect the measurement of DSB induction and repair. We have previously shown that a substantial fraction of DSBs measured by pulsed-field gel electrophoresis (PFGE) are in fact due to heat-labile sites (HLS) within clustered lesions, thus reflecting an artifact of preparation of genomic DNA at elevated temperature. To further characterize the influence of HLS on DSB induction and repair, four human cell lines (GM5758, GM7166, M059K, U-1810) with apparently normal DSB rejoining were tested for bi-phasic rejoining after gamma irradiation. When heat-released DSBs were excluded from the measurements the fraction of fast rejoining decreased to less than 50% of the total. However, neither the half-times of the fast (t{sub 1/2} = 7-8 min) or slow (t{sub 1/2} = 2.5 h) DSB rejoining were changed significantly. At t=0 the heat-released DSBs accounted for almost 40% of the DSBs, corresponding to 10 extra DSB/cell/Gy in the initial DSB yield. These heat-released DSBs were repaired within 60-90 min in all tested cells, including M059K cells treated with wortmannin or DNA-PKcs defect M059J cells. Furthermore, cells lacking XRCC1 or Poly(ADP-ribose) polymerase-1 (PARP-1) rejoined both total DSBs and heat-released DSBs similar to normal cells. In summary, the presence of heat-labile sites have a substantial impact on DSB induction yields and DSB rejoining rates measured by pulsed-field gel electrophoresis, and HLS repair is independent of DNA-PKcs, XRCC1 and PARP.

  9. The Cytosolic Iron-Sulfur Cluster Assembly Protein MMS19 Regulates Transcriptional Gene Silencing, DNA Repair, and Flowering Time in Arabidopsis.

    PubMed

    Han, Yong-Feng; Huang, Huan-Wei; Li, Lin; Cai, Tao; Chen, She; He, Xin-Jian

    2015-01-01

    MMS19 is an essential component of the cytoplasmic iron-sulfur (Fe-S) cluster assembly complex in fungi and mammals; the mms19 null mutant alleles are lethal. Our study demonstrates that MMS19/MET18 in Arabidopsis thaliana interacts with the cytoplasmic Fe-S cluster assembly complex but is not an essential component of the complex. We find that MMS19 also interacts with the catalytic subunits of DNA polymerases, which have been demonstrated to be involved in transcriptional gene silencing (TGS), DNA repair, and flowering time regulation. Our results indicate that MMS19 has a similar biological function, suggesting a functional link between MMS19 and DNA polymerases. In the mms19 null mutant, the assembly of Fe-S clusters on the catalytic subunit of DNA polymerase α is reduced but not blocked, which is consistent with the viability of the mutant. Our study suggests that MMS19 assists the assembly of Fe-S clusters on DNA polymerases in the cytosol, thereby facilitating transcriptional gene silencing, DNA repair, and flowering time control.

  10. Zingerone protects against stannous chloride-induced and hydrogen peroxide-induced oxidative DNA damage in vitro.

    PubMed

    Rajan, Iyappan; Narayanan, Nithya; Rabindran, Remitha; Jayasree, P R; Manish Kumar, P R

    2013-12-01

    In this paper, we report the dose-dependent antioxidant activity and DNA protective effects of zingerone. At 500 μg/mL, the DPPH radical scavenging activity of zingerone and ascorbic acid as a standard was found to be 86.7 and 94.2 % respectively. At the same concentration, zingerone also showed significant reducing power (absorbance 0.471) compared to that of ascorbic acid (absorbance 0.394). The in vitro toxicity of stannous chloride (SnCl2) was evaluated using genomic and plasmid DNA. SnCl2-induced degradation of genomic DNA was found to occur at a concentration of 0.8 mM onwards with complete degradation at 1.02 mM and above. In the case of plasmid DNA, conversion of supercoiled DNA into the open circular form indicative of DNA nicking activity was observed at a concentration of 0.2 mM onwards; complete conversion was observed at a concentration of 1.02 mM and above. Zingerone was found to confer protection against SnCl2-induced oxidative damage to genomic and plasmid DNA at concentrations of 500 and 750 μg/mL onwards, respectively. This protective effect was further confirmed in the presence of UV/H2O2-a known reactive oxygen species (ROS) generating system-wherein protection by zingerone against ROS-mediated DNA damage was observed at a concentration of 250 μg/mL onwards in a dose-dependent manner. This study clearly indicated the in vitro DNA protective property of zingerone against SnCl2-induced, ROS-mediated DNA damage.

  11. p38γ regulates UV-induced checkpoint signaling and repair of UV-induced DNA damage.

    PubMed

    Wu, Chia-Cheng; Wu, Xiaohua; Han, Jiahuai; Sun, Peiqing

    2010-06-01

    In eukaryotic cells, DNA damage triggers activation of checkpoint signaling pathways that coordinate cell cycle arrest and repair of damaged DNA. These DNA damage responses serve to maintain genome stability and prevent accumulation of genetic mutations and development of cancer. The p38 MAPK was previously implicated in cellular responses to several types of DNA damage. However, the role of each of the four p38 isoforms and the mechanism for their involvement in DNA damage responses remained poorly understood. In this study, we demonstrate that p38γ, but not the other p38 isoforms, contributes to the survival of UV-treated cells. Deletion of p38γ sensitizes cells to UV exposure, accompanied by prolonged S phase cell cycle arrest and increased rate of apoptosis. Further investigation reveal that p38γ is essential for the optimal activation of the checkpoint signaling caused by UV, and for the efficient repair of UV-induced DNA damage. These findings have established a novel role of p38γ in UV-induced DNA damage responses, and suggested that p38γ contributes to the ability of cells to cope with UV exposure by regulating the checkpoint signaling pathways and the repair of damaged DNA.

  12. Protection of DNA From Ionizing Radiation-Induced Lesions by Asiaticoside.

    PubMed

    Joy, Jisha; Alarifi, Saud; Alsuhaibani, Entissar; Nair, Cherupally K Krishnan

    2015-01-01

    This study aims to investigate whether asiaticoside, a triterpene glycoside, can afford protection to DNA from alterations induced by gamma radiation under in vitro, ex vivo, and in vivo conditions. In vitro studies were done on plasmid pBR322 DNA, ex vivo studies were done on cellular DNA of human peripheral blood leukocytes, and in vivo investigations were conducted on cellular DNA of spleen and bone marrow cells of mice exposed to whole-body gamma radiation. The supercoiled form of the plasmid pBR322 DNA upon exposure to the radiation was converted into relaxed open circular form due to induction of strand breaks. Presence of asiaticoside along with the DNA during irradiation prevented the relaxation of the supercoiled form to the open circular form. When human peripheral blood leukocytes were exposed to gamma radiation, the cellular DNA suffered strand breaks as evidenced by the increased comet parameters in an alkaline comet assay. Asiaticoside, when present along with blood during irradiation ex vivo, prevented the strand breaks and the comet parameters were closer to that of the controls. Whole-body exposure of mice to gamma radiation resulted in a significant increase in comet parameters of DNA of bone marrow and spleen cells of mice as a result of radiation-induced strand breaks in DNA. Administration of asiaticoside prior to whole-body radiation exposure of the mice prevented this increase in radiation-induced increase in comet parameters, which could be the result of protection to DNA under in vivo conditions of radiation exposure. Thus, it can be concluded from the results that asiaticoside can offer protection to DNA from radiation-induced alterations under in vitro, ex vivo, and in vivo conditions.

  13. Protection of DNA From Ionizing Radiation-Induced Lesions by Asiaticoside.

    PubMed

    Joy, Jisha; Alarifi, Saud; Alsuhaibani, Entissar; Nair, Cherupally K Krishnan

    2015-01-01

    This study aims to investigate whether asiaticoside, a triterpene glycoside, can afford protection to DNA from alterations induced by gamma radiation under in vitro, ex vivo, and in vivo conditions. In vitro studies were done on plasmid pBR322 DNA, ex vivo studies were done on cellular DNA of human peripheral blood leukocytes, and in vivo investigations were conducted on cellular DNA of spleen and bone marrow cells of mice exposed to whole-body gamma radiation. The supercoiled form of the plasmid pBR322 DNA upon exposure to the radiation was converted into relaxed open circular form due to induction of strand breaks. Presence of asiaticoside along with the DNA during irradiation prevented the relaxation of the supercoiled form to the open circular form. When human peripheral blood leukocytes were exposed to gamma radiation, the cellular DNA suffered strand breaks as evidenced by the increased comet parameters in an alkaline comet assay. Asiaticoside, when present along with blood during irradiation ex vivo, prevented the strand breaks and the comet parameters were closer to that of the controls. Whole-body exposure of mice to gamma radiation resulted in a significant increase in comet parameters of DNA of bone marrow and spleen cells of mice as a result of radiation-induced strand breaks in DNA. Administration of asiaticoside prior to whole-body radiation exposure of the mice prevented this increase in radiation-induced increase in comet parameters, which could be the result of protection to DNA under in vivo conditions of radiation exposure. Thus, it can be concluded from the results that asiaticoside can offer protection to DNA from radiation-induced alterations under in vitro, ex vivo, and in vivo conditions. PMID:26756427

  14. Scaling of shear-induced diffusion and clustering in a blood-like suspension

    NASA Astrophysics Data System (ADS)

    Mountrakis, L.; Lorenz, E.; Hoekstra, A. G.

    2016-04-01

    The transport of cells and substances in dense suspensions like blood heavily depends on the microstructure and the dynamics arising from their interactions with red blood cells (RBCs). Computer simulations are used to probe into the detailed transport-related characteristics of a blood-like suspension, for a wide range of volume fractions and shear rates. The shear-induced diffusion of RBCs does not follow the established linear scaling with shear rate for higher volume fractions. The properties directly related to RBC deformability —stretching and flow orientation— are not sufficient to explain this departure according to the model of Breedveld, pointing to the dominance of collective effects in the suspension. A cluster size analysis confirms that collective effects dominate high volume fractions, as the mean cluster size is above 2 and the number of “free RBCs” is significantly decreased in denser suspensions. The mean duration of RBC contacts in clusters is increased in the high volume fraction and shear rate cases, showing that these clusters live longer.

  15. Dynamics of photoprocesses induced by femtosecond infrared radiation in free molecules and clusters of iron pentacarbonyl

    NASA Astrophysics Data System (ADS)

    Kompanets, V. O.; Lokhman, V. N.; Poydashev, D. G.; Chekalin, S. V.; Ryabov, E. A.

    2016-04-01

    The dynamics of photoprocesses induced by femtosecond infrared radiation in free Fe(CO)5 molecules and their clusters owing to the resonant excitation of vibrations of CO bonds in the 5-μm range has been studied. The technique of infrared excitation and photoionization probing (λ = 400 nm) by femtosecond pulses has been used in combination with time-of-flight mass spectrometry. It has been found that an infrared pulse selectively excites vibrations of CO bonds in free molecules, which results in a decrease in the yield of the Fe(CO)5 + molecular ion. Subsequent relaxation processes have been analyzed and the results have been interpreted. The time of the energy transfer from excited vibrations to other vibrations of the molecule owing to intramolecular relaxation has been measured. The dynamics of dissociation of [Fe(CO)5] n clusters irradiated by femtosecond infrared radiation has been studied. The time dependence of the yield of free molecules has been measured under different infrared laser excitation conditions. We have proposed a model that well describes the results of the experiment and makes it possible, in particular, to calculate the profile of variation of the temperature of clusters within the "evaporation ensemble" concept. The intramolecular and intracluster vibrational relaxation rates in [Fe(CO)5] n clusters have been estimated.

  16. The role of prenucleation clusters in surface-induced calcium phosphate crystallization

    NASA Astrophysics Data System (ADS)

    Dey, Archan; Bomans, Paul H. H.; Müller, Frank A.; Will, Julia; Frederik, Peter M.; de With, Gijsbertus; Sommerdijk, Nico A. J. M.

    2010-12-01

    Unravelling the processes of calcium phosphate formation is important in our understanding of both bone and tooth formation, and also of pathological mineralization, for example in cardiovascular disease. Serum is a metastable solution from which calcium phosphate precipitates in the presence of calcifiable templates such as collagen, elastin and cell debris. A pathological deficiency of inhibitors leads to the uncontrolled deposition of calcium phosphate. In bone and teeth the formation of apatite crystals is preceded by an amorphous calcium phosphate (ACP) precursor phase. ACP formation is thought to proceed through prenucleation clusters-stable clusters that are present in solution already before nucleation-as was recently demonstrated for CaCO3 (refs 15,16). However, the role of such nanometre-sized clusters as building blocks for ACP has been debated for many years. Here we demonstrate that the surface-induced formation of apatite from simulated body fluid starts with the aggregation of prenucleation clusters leading to the nucleation of ACP before the development of oriented apatite crystals.

  17. Correlation-induced DNA adsorption on like-charged membranes

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin; Blossey, Ralf

    2016-10-01

    The adsorption of DNA or other polyelectrolyte molecules on charged membranes is a recurrent motif in soft matter and bionanotechnological systems. Two typical situations encountered are the deposition of single DNA chains onto substrates for further analysis, e.g., by force microscopy, or the pulling of polyelectrolytes into membrane nanopores, as in sequencing applications. In this paper, we present a theoretical analysis of such scenarios based on the self-consistent field theory approach, which allows us to address the important effect of charge correlations. We calculate the grand potential of a stiff polyelectrolyte immersed in an electrolyte in contact with a negatively charged dielectric membrane. For the sake of conciseness, we neglect conformational polymer fluctuations and model the molecule as a rigid charged line. At strongly charged membranes, the adsorbed counterions enhance the screening ability of the interfacial region. In the presence of highly charged polymers such as double-stranded DNA molecules close to the membrane, this enhanced interfacial screening dominates the mean-field level DNA-membrane repulsion and results in the adsorption of the DNA molecule to the surface. This picture provides a simple explanation for the recently observed DNA binding onto similarly charged substrates [G. L.-Caballero et al., Soft Matter 10, 2805 (2014), 10.1039/c3sm52428k] and points out charge correlations as a non-negligible ingredient of polymer-surface interactions.

  18. Induced Clustered Nanoconfinement of Superparamagnetic Iron Oxide in Biodegradable Nanoparticles Enhances Transverse Relaxivity for Targeted Theranostics

    PubMed Central

    Ragheb, Ragy R. T.; Kim, Dongin; Bandyopadhyay, Arunima; Chahboune, Halima; Bulutoglu, Beyza; Ezaldein, Harib; Criscione, Jason M.; Fahmy, Tarek M.

    2013-01-01

    Purpose Combined therapeutic and diagnostic agents, “theranostics” are emerging valuable tools for noninvasive imaging and drug delivery. Here, we report on a solid biodegradable multifunctional nanoparticle that combines both features. Methods Poly(lactide-co-glycolide) nanoparticles were engineered to confine superparamagnetic iron oxide contrast for magnetic resonance imaging while enabling controlled drug delivery and targeting to specific cells. To achieve this dual modality, fatty acids were used as anchors for surface ligands and for encapsulated iron oxide in the polymer matrix. Results We demonstrate that fatty acid modified iron oxide prolonged retention of the contrast agent in the polymer matrix during degradative release of drug. Antibody-fatty acid surface modification facilitated cellular targeting and subsequent internalization in cells while inducing clustering of encapsulated fatty-acid modified superparamagnetic iron oxide during particle formulation. This induced clustered confinement led to an aggregation within the nanoparticle and, hence, higher transverse relaxivity, r2, (294 mM−1 s−1) compared with nanoparticles without fatty-acid ligands (160 mM−1 s−1) and higher than commercially available superparamagnetic iron oxide nanoparticles (89 mM−1 s−1). Conclusion Clustering of superparamagnetic iron oxide in poly(lactide-co-glycolide) did not affect the controlled release of encapsulated drugs such as methotrexate or clodronate and their subsequent pharmacological activity, thus highlighting the full theranostic capability of our system. PMID:23401099

  19. Ultrasound-induced DNA damage and signal transductions indicated by gammaH2AX

    NASA Astrophysics Data System (ADS)

    Furusawa, Yukihiro; Fujiwara, Yoshisada; Zhao, Qing-Li; Hassan, Mariame Ali; Ogawa, Ryohei; Tabuchi, Yoshiaki; Takasaki, Ichiro; Takahashi, Akihisa; Ohnishi, Takeo; Kondo, Takashi

    2011-09-01

    Ultrasound (US) has been shown to induce cancer cell death via different forms including apoptosis. Here, we report the potential of low-intensity pulsed US (LIPUS) to induce genomic DNA damage and subsequent DNA damage response. Using the ionizing radiation-induced DNA double-strand breaks (DSBs) as the positive control, we were able to observe the induction of DSBs (as neutral comet tails) and the subsequent formation of gammaH2AX-positive foci (by immunofluorescence detection) in human leukemia cells following exposure to LIPUS. The LIPUS-induced DNA damage arose most likely from the mechanical, but not sonochemical, effect of cavitation, based on our observation that the suppression of inertial cavitation abrogated the gammH2AX foci formation, whereas scavenging of free radical formation (e.g., hydroxyl radical) had no protective effect on it. Treatment with the specific kinase inhibitor of ATM or DNA-PKcs, which can phosphorylate H2AX Ser139, revealed that US-induced gammaH2AX was inhibited more effectively by the DNA-PK inhibitor than ATM kinase inhibitor. Notably, these inhibitor effects were opposite to those with radiation-induced gammH2AX. In conclusion, we report, for the first time that US can induce DNA damage and the DNA damage response as indicated by gammaH2AX was triggered by the cavitational mechanical effects. Thus, it is expected that the data shown here may provide a better understanding of the cellular responses to US.

  20. A subset of herpes simplex virus replication genes induces DNA amplification within the host cell genome

    SciTech Connect

    Heilbronn, R.; zur Hausen, H. )

    1989-09-01

    Herpes simplex virus (HSV) induces DNA amplification of target genes within the host cell chromosome. To characterize the HSV genes that mediate the amplification effect, combinations of cloned DNA fragments covering the entire HSV genome were transiently transfected into simian virus 40 (SV40)-transformed hamster cells. This led to amplification of the integrated SV40 DNA sequences to a degree comparable to that observed after transfection of intact virion DNA. Transfection of combinations of subclones and of human cytomegalovirus immediate-early promoter-driven expression constructs for individual open reading frames led to the identification of sic HSV genes which together were necessary and sufficient for the induction of DNA amplification: UL30 (DNA polymerase), UL29 (major DNA-binding protein), UL5, UL8, UL42, and UL52. All of these genes encode proteins necessary for HSV DNA replication. However, an additional gene coding for an HSV origin-binding protein (UL9) was required for origin-dependent HSV DNA replication but was dispensable for SV40 DNA amplification. The results show that a subset of HSV replication genes is sufficient for the induction of DNA amplification. This opens the possibility that HSV expresses functions sufficient for DNA amplification but separate from those responsible for lytic viral growth. HSV infection may thereby induce DNA amplification within the host cell genome without killing the host by lytic viral growth. This may lead to persistence of a cell with a new genetic phenotype, which would have implications for the pathogenicity of the virus in vivo.

  1. Analysis of cytogenetic effects and DNA adduct formation induced by safrole in Chinese hamster lung cells.

    PubMed

    Daimon, H; Sawada, S; Asakura, S; Sagami, F

    1997-01-01

    Safrole (1-allyl-3,4-methylenedioxybenzene) was tested for its ability to induce sister chromatid exchanges (SCEs) and chromosomal aberrations (CAs) and to form DNA adducts in Chinese hamster lung (CHL) cells, in order to investigate the relationship between cytogenetic effects and DNA adduct formation under the same treatment conditions. The cells were treated with 0.025-0.2 mg/ml safrole in the presence or absence of rat liver postmitochondrial supernatant fraction (S9). Safrole induced significant SCEs and CAs dose-dependently in the presence of S9. SCEs ranged in number from 15.6 to 21.1 SCEs/cell and CAs were observed in 4-37% of cells. Using the 32P-postlabeling assay, two major and two minor safrole-DNA adducts were detected in DNA digests obtained from CHL cells in the presence of S9. The levels of total DNA adducts ranged from 1.3 to 22.8 adducts/10(7) nucleotides. The two major adducts were shown to be guanine derivatives since these adducts comigrated on polyethylenimine plates with the adducts produced by the reaction of safrole with 2'-deoxyguanosine 3'-monophosphate. A correlation was seen between DNA adducts and SCEs or CAs. Neither induction of SCEs and CAs nor formation of DNA adducts was observed in the absence of S9. These findings suggest that SCEs and CAs induced by safrole result from covalent DNA modification metabolically activated by S9 in cultured cells.

  2. Molecular beacon probes for the detection of cisplatin-induced DNA damage.

    PubMed

    Shire, Zahra J; Loppnow, Glen R

    2012-04-01

    Cisplatin (cis-diamminedichloroplatinum(II)) causes crosslinking of DNA at AG and GG sites in cellular DNA, inhibiting replication, and making it a useful anti-cancer drug. Several techniques have been used previously to detect nucleic acid damage but most of these tools are labour-intensive, time-consuming, and/or expensive. Here, we describe a sensitive, robust, and quantitative tool for detecting cisplatin-induced DNA damage by using fluorescent molecular beacon probes (MB). Our results show a decrease of fluorescence in the presence of cisplatin-induced DNA damage, confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The decrease in fluorescence upon damage scales with the number of AG and GG sites, indicating the ability of MB to quantitatively detect DNA damage by cisplatin.

  3. Inducing human parthenogenetic embryonic stem cells into islet-like clusters

    PubMed Central

    LI, JIN; HE, JINGJING; LIN, GE; LU, GUANGXIU

    2014-01-01

    In order to determine whether human parthenogenetic embryonic stem (hpES) cells have the potential to differentiate into functional cells, a modified four-step protocol was used to induce the hpES cells into islet-like clusters (ILCs) in vitro. Growth factors activin A, retinoic acid, nicotinamide, Exendin-4 and betacellulin were added sequentially to the hpES cells at each step. The terminally differentiated cells were shown to gather into ILCs. Immunohistochemistry and semi quantitative polymerase chain reaction analyses demonstrated that the ILCs expressed islet specific hormones and functional markers. Furthermore, an insulin release test indicated that the clusters had the same physiological function as islets. The ILCs derived from hpES cells shared similar characteristics with islets. These results indicate that hpES cell-derived ILCs may be used as reliable material for the treatment of type I diabetes mellitus. PMID:25241773

  4. Controlling the Adsorption of Carbon Monoxide on Platinum Clusters by Dopant-Induced Electronic Structure Modification.

    PubMed

    Ferrari, Piero; Molina, Luis M; Kaydashev, Vladimir E; Alonso, Julio A; Lievens, Peter; Janssens, Ewald

    2016-09-01

    A major drawback of state-of-the-art proton exchange membrane fuel cells is the CO poisoning of platinum catalysts. It is known that CO poisoning is reduced if platinum alloys are used, but the underlying mechanism therefore is still under debate. We study the influence of dopant atoms on the CO adsorption on small platinum clusters using mass spectrometry experiments and density functional calculations. A significant reduction in the reactivity for Nb- and Mo-doped clusters is attributed to electron transfer from those highly coordinated dopants to the Pt atoms and the concomitant lower CO binding energies. On the other hand Sn and Ag dopants have a lower Pt coordination and have a limited effect on the CO adsorption. Analysis of the density of states demonstrates a correlation of dopant-induced changes in the electronic structure with the enhanced tolerance to CO poisoning. PMID:27464653

  5. A splice variant of RILP induces lysosomal clustering independent of dynein recruitment

    SciTech Connect

    Marsman, Marije; Jordens, Ingrid; Rocha, Nuno; Kuijl, Coenraad; Janssen, Lennert; Neefjes, Jacques . E-mail: j.neefjes@nki.nl

    2006-06-09

    The small GTPase Rab7 controls fusion and transport of late endocytic compartments. A critical mediator is the Rab7 effector RILP that recruits the minus-end dynein-dynactin motor complex to these compartments. We identified a natural occurring splice variant of RILP (RILPsv) lacking only 27 amino acids encoded by exon VII. Both variants bind Rab7, prolong its GTP-bound state, and induce clustering of late endocytic compartments. However, RILPsv does not recruit the dynein-dynactin complex, implicating exon VII in motor recruitment. Clustering might still occur via dimerization, since both RILP and RILPsv are able to form hetero- and homo-dimers. Moreover, both effectors compete for Rab7 binding but with different outcome for dynein-dynactin recruitment and transport. Hence, RILPsv provides an extra dimension to the control of vesicle fusion and transport by the small GTPase Rab7.

  6. Bacteria clustering by polymers induces the expression of quorum-sensing-controlled phenotypes

    NASA Astrophysics Data System (ADS)

    Lui, Leong T.; Xue, Xuan; Sui, Cheng; Brown, Alan; Pritchard, David I.; Halliday, Nigel; Winzer, Klaus; Howdle, Steven M.; Fernandez-Trillo, Francisco; Krasnogor, Natalio; Alexander, Cameron

    2013-12-01

    Bacteria deploy a range of chemistries to regulate their behaviour and respond to their environment. Quorum sensing is one method by which bacteria use chemical reactions to modulate pre-infection behaviour such as surface attachment. Polymers that can interfere with bacterial adhesion or the chemical reactions used for quorum sensing are therefore a potential means to control bacterial population responses. Here, we report how polymeric ‘bacteria sequestrants’, designed to bind to bacteria through electrostatic interactions and therefore inhibit bacterial adhesion to surfaces, induce the expression of quorum-sensing-controlled phenotypes as a consequence of cell clustering. A combination of polymer and analytical chemistry, biological assays and computational modelling has been used to characterize the feedback between bacteria clustering and quorum sensing signalling. We have also derived design principles and chemical strategies for controlling bacterial behaviour at the population level.

  7. HTLV-1 Tax protein sensitizes cells to apoptotic cell death induced by DNA damaging agents.

    PubMed

    Kao, S Y; Lemoine, F J; Mariott, S J

    2000-04-27

    Transient HTLV-1 Tax expression suppresses cellular nucleotide excision repair, and this effect correlates with Tax transactivation of the proliferating cell nuclear antigen promoter. The inability to repair DNA damage typically induces apoptotic cell death. Therefore, we investigated the effect of Tax-mediated suppression of DNA repair on apoptosis in stable Tax-expressing cells. Constitutive Tax expression reduced cellular nucleotide excision repair activity compared with parental and control cells. Tax-expressing cells were also more sensitive to apoptosis induced by DNA damaging agents than control cells. Even though Tax-expressing cells displayed reduced DNA repair, they showed increased DNA replication following UV damage. These results suggest that Tax suppresses the cell's ability to repair DNA damage and stimulates DNA replication even in the presence of damage. The inability to repair DNA damage is likely to stimulate apoptotic cell death in the majority of Tax-expressing cells while the ability to promote DNA replication may also allow the survival of a small population of cells. We propose that together these effects contribute to the monoclonal nature and low efficiency of HTLV-1 transformation.

  8. DNA damage-induced phosphorylation of the human telomere-associated protein TRF2

    PubMed Central

    Tanaka, Hiromi; Mendonca, Marc S.; Bradshaw, Paul S.; Hoelz, Derek J.; Malkas, Linda H.; Meyn, M. Stephen; Gilley, David

    2005-01-01

    Several protein kinases from diverse eukaryotes known to perform important roles in DNA repair have also been shown to play critical roles in telomere maintenance. Here, we report that the human telomere-associated protein TRF2 is rapidly phosphorylated in response to DNA damage. We find that the phosphorylated form of TRF2 is not bound to telomeric DNA, as is the ground form of TRF2, and is rapidly localized to damage sites. Our results suggest that the ataxia-telangiectasia-mutated (ATM) protein kinase signal-transduction pathway is primarily responsible for the DNA damage-induced phosphorylation of TRF2. Unlike DNA damage-induced phosphorylation of other ATM targets, the phosphorylated form of TRF2 is transient, being detected rapidly at DNA damage sites postirradiation, but largely dissipated by 2 hours. In addition, we report that the phosphorylated form of TRF2 is present at telomeres in cell types undergoing telomere-based crisis and a recombination-driven, telomerase-independent, alternative lengthening of telomeres (ALT) pathway, likely as a consequence of a telomere-based DNA damage response. Our results link the induction of TRF2 phosphorylation to the DNA damage-response system, providing an example of direct cross-talk via a signaling pathway between these two major cellular processes essential for genomic stability, telomere maintenance, and DNA repair. PMID:16223874

  9. Detection of DNA damage induced by heavy ion irradiation in the individual cells with comet assay

    NASA Astrophysics Data System (ADS)

    Wada, S.; Natsuhori, M.; Ito, N.; Funayama, T.; Kobayashi, Y.

    2003-05-01

    Investigating the biological effects of high-LET heavy ion irradiation at low fluence is important to evaluate the risk of charged particles. Especially it is important to detect radiation damage induced by the precise number of heavy ions in the individual cells. Thus we studied the relationship between the number of ions traversing the cell and DNA damage produced by the ion irradiation. We applied comet assay to measure the DNA damage in the individual cells. Cells attached on the ion track detector CR-39 were irradiated with ion beams at TIARA, JAERI-Takasaki. After irradiation, the cells were stained with ethidium bromide and the opposite side of the CR-39 was etched. We observed that the heavy ions with higher LET values induced the heavier DNA damage. The result indicated that the amount of DNA damage induced by one particle increased with the LET values of the heavy ions.

  10. Biological relevance and consequences of chemical- or metal-induced DNA cross-linking

    SciTech Connect

    Paustenbach, D.J.; Finley, B.L.

    1996-03-01

    A vast number of chemicals are known to induce mutagenesis and/or carcinogenesis in mammals. Although disruption of cellular nuclear material resulting ultimately in mutagenesis/carcinogenesis can be accomplished by various mechanisms, the search for biomarkers of chemical-induced toxicity continues. This review focuses on the ability of certain metals or chemicals to bind to DNA in a cross-link fashion in whole animal as well as under in vitro conditions. The methodologies currently used to determine DNA cross-linking are described. The biological relevance of the presence of chemical- or metal-induced DNA cross-linking as a measure of carcinogenesis in humans is still under debate, as there is no clear correlation between the disease and the DNA cross-link reaction. 62 refs., 3 tabs.

  11. DNase I induced DNA degradation is inhibited by neomycin.

    PubMed

    Woegerbauer, M; Burgmann, H; Davies, J; Graninger, W

    2000-03-01

    Preparations of antimicrobials from biotechnological sources containing nucleic acids may serve as vector for the dissemination of resistance genes. An essential prerequisite for the acquisition of a new resistance phenotype in a transformational scenario is the availability of physically intact DNA molecules capable of transforming competent microorganisms. DNA is thought to be an easy target for catabolic processes when present in the natural habitat of bacteria (e.g. gastrointestinal tract, soil) due to the overall presence of nucleolytic enzymes. Aminoglycoside antibiotics are known to display a strong affinity to nucleic acids rendering these compounds to be primary candidates for exerting DNA protective functions in the gastrointestinal tract when applied orally during antibiotic chemotherapy. Using a DNase I protection assay it could be demonstrated that neomycin B at a concentration of 2 mM completely inhibited degradation of plasmid DNA in vitro. No inhibition of degradation was observed with streptomycin and kanamycin and the non-aminoglycoside antibiotics oxytetracycline and ampicillin under identical assay conditions. Thus, neomycin preparations may be able to promote structural integrity of contaminating DNA-fragments in DNase-rich environments. PMID:10819299

  12. Atrazine Triggers DNA Damage Response and Induces DNA Double-Strand Breaks in MCF-10A Cells.

    PubMed

    Huang, Peixin; Yang, John; Ning, Jie; Wang, Michael; Song, Qisheng

    2015-01-01

    Atrazine, a pre-emergent herbicide in the chloro-s-triazine family, has been widely used in crop lands and often detected in agriculture watersheds, which is considered as a potential threat to human health. Although atrazine and its metabolites showed an elevated incidence of mammary tumors in female Sprague-Dawley (SD) rats, no molecular evidence was found relevant to its carcinogenesis in humans. This study aims to determine whether atrazine could induce the expression of DNA damage response-related proteins in normal human breast epithelial cells (MCF-10A) and to examine the cytotoxicity of atrazine at a molecular level. Our results indicate that a short-term exposure of MCF-10A to an environmentally-detectable concentration of atrazine (0.1 µg/mL) significantly increased the expression of tumor necrosis factor receptor-1 (TNFR1) and phosphorylated Rad17 in the cells. Atrazine treatment increased H2AX phosphorylation (γH2AX) and the formation of γH2AX foci in the nuclei of MCF-10A cells. Atrazine also sequentially elevated DNA damage checkpoint proteins of ATM- and RAD3-related (ATR), ATRIP and phospho-Chk1, suggesting that atrazine could induce DNA double-strand breaks and trigger the DNA damage response ATR-Chk1 pathway in MCF-10A cells. Further investigations are needed to determine whether atrazine-triggered DNA double-strand breaks and DNA damage response ATR-Chk1 pathway occur in vivo. PMID:26114388

  13. Atrazine Triggers DNA Damage Response and Induces DNA Double-Strand Breaks in MCF-10A Cells

    PubMed Central

    Huang, Peixin; Yang, John; Ning, Jie; Wang, Michael; Song, Qisheng

    2015-01-01

    Atrazine, a pre-emergent herbicide in the chloro-s-triazine family, has been widely used in crop lands and often detected in agriculture watersheds, which is considered as a potential threat to human health. Although atrazine and its metabolites showed an elevated incidence of mammary tumors in female Sprague–Dawley (SD) rats, no molecular evidence was found relevant to its carcinogenesis in humans. This study aims to determine whether atrazine could induce the expression of DNA damage response-related proteins in normal human breast epithelial cells (MCF-10A) and to examine the cytotoxicity of atrazine at a molecular level. Our results indicate that a short-term exposure of MCF-10A to an environmentally-detectable concentration of atrazine (0.1 µg/mL) significantly increased the expression of tumor necrosis factor receptor-1 (TNFR1) and phosphorylated Rad17 in the cells. Atrazine treatment increased H2AX phosphorylation (γH2AX) and the formation of γH2AX foci in the nuclei of MCF-10A cells. Atrazine also sequentially elevated DNA damage checkpoint proteins of ATM- and RAD3-related (ATR), ATRIP and phospho-Chk1, suggesting that atrazine could induce DNA double-strand breaks and trigger the DNA damage response ATR-Chk1 pathway in MCF-10A cells. Further investigations are needed to determine whether atrazine-triggered DNA double-strand breaks and DNA damage response ATR-Chk1 pathway occur in vivo. PMID:26114388

  14. Autophosphorylation and Pin1 binding coordinate DNA damage-induced HIPK2 activation and cell death

    PubMed Central

    Bitomsky, Nadja; Conrad, Elisa; Moritz, Christian; Polonio-Vallon, Tilman; Sombroek, Dirk; Schultheiss, Kathrin; Glas, Carolina; Greiner, Vera; Herbel, Christoph; Mantovani, Fiamma; del Sal, Giannino; Peri, Francesca; Hofmann, Thomas G.

    2013-01-01

    Excessive genome damage activates the apoptosis response. Protein kinase HIPK2 is a key regulator of DNA damage-induced apoptosis. Here, we deciphered the molecular mechanism of HIPK2 activation and show its relevance for DNA damage-induced apoptosis in cellulo and in vivo. HIPK2 autointeracts and site-specifically autophosphorylates upon DNA damage at Thr880/Ser882. Autophosphorylation regulates HIPK2 activity and mutation of the phosphorylation-acceptor sites deregulates p53 Ser46 phosphorylation and apoptosis in cellulo. Moreover, HIPK2 autophosphorylation is conserved between human and zebrafish and is important for DNA damage-induced apoptosis in vivo. Mechanistically, autophosphorylation creates a binding signal for the phospho-specific isomerase Pin1. Pin1 links HIPK2 activation to its stabilization by inhibiting HIPK2 polyubiquitination and modulating Siah-1–HIPK2 interaction. Concordantly, Pin1 is required for DNA damage-induced HIPK2 stabilization and p53 Ser46 phosphorylation and is essential for induction of apotosis both in cellulo and in zebrafish. Our results identify an evolutionary conserved mechanism regulating DNA damage-induced apoptosis. PMID:24145406

  15. Inhibition of sulfotransferase affecting in vivo genotoxicity and DNA adducts induced by safrole in rat liver.

    PubMed

    Daimon, H; Sawada, S; Asakura, S; Sagami, F

    The effect of pretreatment with pentachlorophenol (PCP), a known inhibitor of sulfotransferases, on the induction of chromosomal aberrations, sister chromatid exchanges (SCEs), replicative DNA synthesis (RDS), and the formation of DNA adducts was studied in the liver of rats treated with safrole (1-allyl-3,4-methylenedioxy-benzene). Rats were given a single oral dose (1,000 mg/kg body weight) or 5 repeated doses (500 mg/kg body weight) of safrole, with or without intraperitoneal pretreatment with PCP (10 mg/kg body weight). Hepatocytes were isolated 24 hr after administration of safrole and allowed to proliferate in Williams' medium E supplemented with epidermal growth factor to test for chromosomal aberrations and SCEs. For examination of RDS, hepatocytes were incubated in Williams' medium E containing 5-bromo-2'-deoxyuridine. Safrole-DNA adducts were detected by a nuclease P1-enhanced 32P-postlabeling assay. A single dose of safrole induced significant SCEs and RDS, while chromosomal aberrations were induced by 5 repeated doses. Two major and 2 minor DNA adducts were detected by both a single dose and 5 repeated doses. PCP significantly decreased safrole-induced cytogenetic effects and RDS, and caused a decrease in DNA adducts formed by safrole. These results suggest that safrole is capable of inducing SCEs, chromosomal aberrations, and RDS in the rat liver in vivo and that these effects may be induced by the sulfuric acid ester metabolite that can bind DNA.

  16. Repair of ultraviolet B and singlet oxygen-induced DNA damage in xeroderma pigmentosum cells.

    PubMed

    Rünger, T M; Epe, B; Möller, K

    1995-01-01

    Ultraviolet B (UVB) (290-320 nm) is capable of damaging the DNA molecule directly by generating predominantly pyrimidine dimers. UVA (320-400 nm) does not alter the DNA molecule directly. However, when it is absorbed by cellular photosensitizers, it can damage the DNA molecule indirectly, e.g., by mediation of singlet oxygen, generating predominantly 8-hydroxyguanine. These indirect effects have been implicated in the mutagenic, genotoxic, and carcinogenic effects of UVA. To study the processing of directly and indirectly UV-induced DNA damage in intact, DNA-repair-proficient and -deficient human cells, we used the replicating plasmid pRSVcat, either irradiated with up to 10 kJ/m2 UVB or treated with the photosensitizer methylene blue plus visible light (which generates singlet oxygen). These treated plasmids were introduced into lymphoblast lines from normal donors or from patients with xeroderma pigmentosum (XP) complementation groups A, C, D, E, and variant. DNA repair was assessed by measuring activity of reactivated chloramphenicol-acetyl-transferase enzyme, encoded by the plasmid's cat gene, in cell extracts after 3 d. As expected, the repair of UVB-induced DNA damage was reduced in all XP cell lines, and the degree varied with the complementation group. XP-A, -D, -E, and -variant cells were normally efficient in the repair of singlet oxygen-induced DNA damage. Only three of four XP-C cell lines showed a markedly reduced repair of these lesions. This indicates differential DNA-repair pathways for directly and indirectly UV-induced DNA damage in human cells and suggests that both may be affected in XP-C. PMID:7798643

  17. DNA damage and estrogenic activity induced by the environmental pollutant 2-nitrotoluene and its metabolite

    PubMed Central

    Watanabe, Chigusa; Egami, Takashi; Midorikawa, Kaoru; Hiraku, Yusuke; Oikawa, Shinji; Kawanishi, Shosuke

    2010-01-01

    Objectives The environmental pollutant 2-nitrotoluene (2-NO2-T) is carcinogenic and reproductively toxic in animals. In this study, we elucidated the mechanisms of its carcinogenicity and reproductive toxicity. Methods We examined DNA damage induced by 2-NO2-T and its metabolite, 2-nitrosotoluene (2-NO-T), using 32P-5′-end-labeled DNA. We measured 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), an indicator of oxidative DNA damage, in calf thymus DNA and cellular DNA in cultured human leukemia (HL-60) cells treated with 2-NO2-T and 2-NO-T. 8-Oxoguanine DNA glycosylase (OGG1) gene expression in HL-60 cells was measured by real-time polymerase chain reaction (PCR). We examined estrogenic activity using an E-screen assay and a surface plasmon resonance (SPR) sensor. Results In experiments with isolated DNA fragments, 2-NO-T induced oxidative DNA damage in the presence of Cu (II) and β-nicotinamide adenine dinucleotide disodium salt (reduced form) (NADH), while 2-NO2-T did not. 2-NO-T significantly increased levels of 8-oxodG in HL-60 cells. Real-time polymerase chain reaction (PCR) analysis revealed upregulation of OGG1 gene expression induced by 2-NO-T. An E-screen assay using the human breast cancer cell line MCF-7 revealed that 2-NO2-T induced estrogen-dependent cell proliferation. In contrast, 2-NO-T decreased the cell number and suppressed 17β-estradiol-induced cell proliferation. The data obtained with the SPR sensor using estrogen receptor α and the estrogen response element supported the results of the E-screen assay. Conclusions Oxidative DNA damage caused by 2-NO-T and estrogen-disrupting effects caused by 2-NO2-T and 2-NO-T may play a role in the reproductive toxicity and carcinogenicity of these entities. PMID:21432561

  18. Photothermolysis by laser-induced microbubbles generated around gold nanorod clusters selectively formed in leukemia cells

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Lukianova-Hleb, Ekaterina; Zhdanok, Sergei; Rostro, Betty; Simonette, Rebecca; Hafner, Jason; Konopleva, Marina; Andreeff, Michael; Conjusteau, Andre; Oraevsky, Alexander

    2008-02-01

    In an effort of developing clinical LANTCET (laser-activated nano-thermolysis as cell elimination technology) we achieved selective destruction of individual tumor cells through laser generation of vapor microbubbles around clusters of light absorbing gold nanorods (GNR) selectively formed in target tumor cells. Among all gold nanoparticles, nanorods offer the highest optical absorption in the near-infrared. We applied covalent conjugates of gold nanorods with targeting vectors such as monoclonal antibodies CD33 (specific for Acute Myeloid Leukemia), while GNR conjugates with polyethylene-glycol (PEG) were used as nonspecific targeting control. GNR clusters were formed inside the tumor cells at 37 °C due to endocytosis of large concentration of nanorods accumulated on the surface of tumor cells targeted at 4 °C. Formation of GNR clusters significantly reduces the threshold of tumor cell damage making LANTCET safe for normal cells. Appearance of GNR clusters was verified directly with optical resonance scattering microscopy. LANTCET was performed in vitro with living cells of (1) model myeloid K562 cells (CD33 positive), (2) primary human bone marrow CD33-positive blast cells from patients diagnosed with acute myeloid leukemia. Laser-induced microbubbles were generated and detected with a photothermal microscope equipped with a tunable Ti-Sa pulsed laser. GNT cluster formation caused a 100-fold decrease in the threshold optical fluence for laser microbubble generation in tumor cells compared with that in normal cells under the same targeting and irradiation conditions. Combining imaging based on resonance optical scattering with photothermal imaging of microbubbles, we developed a method for detection, image-guided treatment and monitoring of LANTCET. Pilot experiments were performed in flow mode bringing LANTCET closer to reality of clinical procedure of purging tumor cells from bone marrow grafts.

  19. Prevention of Helicobacter pylori-induced gastric cancers in gerbils by a DNA demethylating agent.

    PubMed

    Niwa, Tohru; Toyoda, Takeshi; Tsukamoto, Tetsuya; Mori, Akiko; Tatematsu, Masae; Ushijima, Toshikazu

    2013-04-01

    Suppression of aberrant DNA methylation is a novel approach to cancer prevention, but, so far, the efficacy of the strategy has not been evaluated in cancers associated with chronic inflammation. Gastric cancers induced by Helicobacter pylori infection are known to involve aberrant DNA methylation and associated with severe chronic inflammation in their early stages. Here, we aimed to clarify whether suppression of aberrant DNA methylation can prevent H. pylori-induced gastric cancers using a Mongolian gerbil model. Administration of a DNA demethylating agent, 5-aza-2'-deoxycytidine (5-aza-dC), to gerbils (0.125 mg/kg for 50-55 weeks) decreased the incidence of gastric cancers induced by H. pylori infection and N-methyl-N-nitrosourea (MNU) treatment from 55.2% to 23.3% (P < 0.05). In gastric epithelial cells, DNA methylation levels of six CpG islands (HE6, HG2, SB1, SB5, SF12, and SH6) decreased to 46% to 68% (P < 0.05) of gerbils without 5-aza-dC treatment. Also, the global DNA methylation level decreased from 83.0% ± 4.5% to 80.3% ± 4.4% (mean ± SD) by 5-aza-dC treatment (P < 0.05). By 5-aza-dC treatment, Il1b and Nos2 were downregulated (42% and 58% of gerbils without, respectively) but Tnf was upregulated (187%), suggesting that 5-aza-dC treatment induced dysregulation of inflammatory responses. No obvious adverse effect of 5-aza-dC treatment was observed, besides testicular atrophy. These results showed that 5-aza-dC treatment can prevent H. pylori-induced gastric cancers and suggested that removal of induced DNA methylation and/or suppression of DNA methylation induction can become a target for prevention of chronic inflammation-associated cancers. PMID:23559452

  20. DNA damage induces a meiotic arrest in mouse oocytes mediated by the spindle assembly checkpoint

    PubMed Central

    Collins, Josie K.; Lane, Simon I. R.; Merriman, Julie A.; Jones, Keith T.

    2015-01-01

    Extensive damage to maternal DNA during meiosis causes infertility, birth defects and abortions. However, it is unknown if fully grown oocytes have a mechanism to prevent the creation of DNA-damaged embryos. Here we show that DNA damage activates a pathway involving the spindle assembly checkpoint (SAC) in response to chemically induced double strand breaks, UVB and ionizing radiation. DNA damage can occur either before or after nuclear envelope breakdown, and provides an effective block to anaphase-promoting complex activity, and consequently the formation of mature eggs. This contrasts with somatic cells, where DNA damage fails to affect mitotic progression. However, it uncovers a second function for the meiotic SAC, which in the context of detecting microtubule–kinetochore errors has hitherto been labelled as weak or ineffectual in mammalian oocytes. We propose that its essential role in the detection of DNA damage sheds new light on its biological purpose in mammalian female meiosis. PMID:26522232

  1. G4-Tetra DNA Duplex Induce Lung Cancer Cell Apoptosis in A549 Cells

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobo; Zhao, YiZhuo; Lu, Hu; Fu, Cuiping; Li, Xiao; Jiang, Liyan; Li, Shanqun

    2016-10-01

    The specific DNA is typically impermeable to the plasma membrane due to its natural characters, but DNA tetra structures (DTNs) can be readily uptake by cells in the absence of transfection agents, providing a new strategy to deliver DNA drugs. In this research, the delivery efficiency of tetrahedral DNA nanostructures was measured on adenocarcinomic human alveolar basal epithelial (A549) cells via delivering AS1411 (G4). The DNA tetra-AS1411 complex was rapidly and abundantly uptake by A549 cells, and the induced apoptosis was enhanced. Furthermore, biodistribution in mouse proved the rapid clearance from non-targeted organs in vivo. This study improved the understanding of potential function in DNA-based drug delivery and proved that DTNs-AS1411 could be potentially useful for the treatment of lung cancer.

  2. Kinetics and localization of wound-induced DNA biosynthesis in potato tuber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tuber wounding induces a cascade of biological responses that are involved in processes required to heal and protect surviving plant tissues. Little is known about the coordination of these processes, including essential wound-induced DNA synthesis, yet they play critical roles in maintaining marke...

  3. Diethyl pyrocarbonate reaction with the lactose repressor protein affects both inducer and DNA binding

    SciTech Connect

    Sams, C.F.; Matthews, K.S.

    1988-04-05

    Modification of the lactose repressor protein of Escherichia coli with diethyl pyrocarbonate (DPC) results in decreased inducer binding as well as operator and nonspecific DNA binding. Spectrophotometric measurements indicated a maximum of three histidines per subunit was modified, and quantitation of lysine residues with trinitrobenzenesulfonate revealed the modification of one lysine residue. The loss of DNA binding, both operator and nonspecific, was correlated with histidine modification; removal of the carbethoxy groups from the histidines by hydroxylamine was accompanied by significant recovery of DNA binding function. The presence of inducing sugars during the DPC reaction had no effect on histidine modification or the loss of DNA binding activity. In contrast, inducer binding was not recovered upon reversal of the histidine modification. However, the presence of inducer during reaction protected lysine from reaction and also prevented the decrease in inducer binding; these results indicate that reaction of the lysine residue(s) may correlate to the loss of sugar binding activity. Since no difference in incorporation of radiolabeled carbethoxy was observed following reaction with diethyl pyrocarbonate in the presence or absence of inducer, the reagent appears to function as a catalyst in the modification of the lysine. The formation of an amide bond between the affected lysine and a nearby carboxylic acid moiety provides a possible mechanism for the activity loss. Reaction of the isolated NH2-terminal domain resulted in loss of DNA binding with modification of the single histidine at position 29. Results from the modification of core domain paralleled observations with intact repressor.

  4. Vitamin D/Vitamin D Receptor Axis Regulates DNA Repair During Oncogene-Induced Senescence

    PubMed Central

    Graziano, Simona; Johnston, Rachel; Deng, Ou; Zhang, Junran; Gonzalo, Susana

    2016-01-01

    Oncogenic Ras expression is associated with activation of the DNA damage response (DDR) pathway, as evidenced by elevated DNA damage, primarily DNA double-strand breaks (DSBs), and activation of DNA damage checkpoints, which in primary human cells leads to entry into senescence. DDR activation is viewed as a physiological barrier against uncontrolled proliferation in oncogenic Ras-expressing cells, and arises in response to genotoxic stress due to the production of reactive oxygen species (ROS) that damage DNA, and to hyper-replication stress. Although oncogene-induced senescence (OIS) is considered a tumor suppressor mechanism, the accumulation of DNA damage in senescent cells is thought to cause genomic instability, eventually allowing secondary hits in the genome that promote tumorigenesis. To date, the molecular mechanisms behind DNA repair defects during OIS remain poorly understood. Here, we show that oncogenic Ras expression in human primary cells results in down-regulation of BRCA1 and 53BP1, two key factors in DNA DSBs repair by homologous recombination (HR) and non-homologous end joining (NHEJ), respectively. As a consequence, Ras-induced senescent cells are hindered in their ability to recruit BRCA1 and 53BP1 to DNA damage sites. While BRCA1 is down-regulated at transcripts levels, 53BP1 loss is caused by activation of cathepsin L (CTSL)-mediated degradation of 53BP1 protein. Moreover, we discovered a marked down-regulation of vitamin D receptor (VDR) during OIS, and a role for the vitamin D/VDR axis regulating the levels of these DNA repair factors during OIS. This study reveals a new functional relationship between the oncogene Ras, the vitamin D/VDR axis, and the expression of DNA repair factors, in the context of OIS. The observed deficiencies in DNA repair factors in senescent cells could contribute to the genomic instability that allows senescence bypass and tumorigenesis. PMID:27041576

  5. Contributions of the TEL-patch amino acid cluster on TPP1 to telomeric DNA synthesis by human telomerase.

    PubMed

    Dalby, Andrew B; Hofr, Ctirad; Cech, Thomas R

    2015-03-27

    Telomere maintenance is a highly coordinated process, and its misregulation is linked to cancer and telomere-shortening syndromes. Recent studies have shown that the TEL-patch--a cluster of amino acids on the surface of the shelterin component TPP1--is necessary for the recruitment of telomerase to the telomere in human cells. However, there has been only basic biochemical analysis of the role of TPP1 in the telomerase recruitment process. Here we develop an in vitro assay to quantitatively measure the contribution of the TEL-patch to telomerase recruitment--binding and extension of the first telomeric repeat. We also demonstrate that the TEL-patch contributes to the translocation step of the telomerase reaction. Finally, our quantitative observations indicate that the TEL-patch stabilizes the association between telomerase and telomeric DNA substrates, providing a molecular explanation for its contributions to telomerase recruitment and action.

  6. Resection is a major repair pathway of heavy ion-induced DNA lesions

    NASA Astrophysics Data System (ADS)

    Durante, Marco; Averbeck, Nicole; Taucher-Scholz, Gisela

    Space radiation include densely ionizing heavy ions, which can produce clustered DNA damage with high frequency in human cells. Repair of these complex lesions is generally assumed to be more difficult than for simple double-strand breaks. We show here that human cells use break resection with increasing frequency after exposure to heavy ions. Resection can lead to misrepair of the DNA lesion, via microhomology mediated end-joining. Resection can therefore be responsible for the increased effectiveness of heavy ions in the induction of mutations and genetic late effects.

  7. Conformational selection and induced fit for RNA polymerase and RNA/DNA hybrid backtracked recognition

    PubMed Central

    Wu, Jian; Ye, Wei; Yang, Jingxu; Chen, Hai-Feng

    2015-01-01

    RNA polymerase catalyzes transcription with a high fidelity. If DNA/RNA mismatch or DNA damage occurs downstream, a backtracked RNA polymerase can proofread this situation. However, the backtracked mechanism is still poorly understood. Here we have performed multiple explicit-solvent molecular dynamics (MD) simulations on bound and apo DNA/RNA hybrid to study backtracked recognition. MD simulations at room temperature suggest that specific electrostatic interactions play key roles in the backtracked recognition between the polymerase and DNA/RNA hybrid. Kinetics analysis at high temperature shows that bound and apo DNA/RNA hybrid unfold via a two-state process. Both kinetics and free energy landscape analyses indicate that bound DNA/RNA hybrid folds in the order of DNA/RNA contracting, the tertiary folding and polymerase binding. The predicted Φ-values suggest that C7, G9, dC12, dC15, and dT16 are key bases for the backtracked recognition of DNA/RNA hybrid. The average RMSD values between the bound structures and the corresponding apo ones and Kolmogorov-Smirnov (KS) P-test analyses indicate that the recognition between DNA/RNA hybrid and polymerase might follow an induced fit mechanism for DNA/RNA hybrid and conformation selection for polymerase. Furthermore, this method could be used to relative studies of specific recognition between nucleic acid and protein. PMID:26594643

  8. The protective effect of clay minerals against damage to adsorbed DNA induced by cadmium and mercury.

    PubMed

    Hou, Yakun; Wu, Pingxiao; Zhu, Nengwu

    2014-01-01

    The adsorption of Salmon Sperm DNA on three kinds of raw clay (rectorite, montmorillonite and sericite) was investigated as a function of pH, ionic strength and the concentrations of DNA and phosphate ions in solution. The DNA adsorption was reduced in the following order: rectorite>montmorillonite>sericite. Based on these findings, there is a strong evidence that the mechanisms for DNA adsorption on clay involve electrostatic forces, cation bridging and ligand exchange. Cyclic voltammetry (CV) and UV-vis absorption and fluorescence spectroscopy were used to compare the properties of unbound DNA and the absorbed DNA on rectorite, both in the absence and presence of Cd(2+) and Hg(2+) inaqueous solutions. The interaction of heavy metals with the unbound DNA was evidenced by the disappearance of reduction peaks in CV, a small bathochromic shift in UV-vis spectroscopy and an incomplete quenching in the emission spectra. Such changes were not observed in the DNA-rectorite hybrids, which is evidence that adsorption on the clay can reduce the extent of the DNA damage caused by heavy metals. Therefore, in these experience the rectorite played an important role in protecting DNA against Cd(2+) and Hg(2+) induced damage.

  9. Single-cell analysis challenges the connection between autophagy and senescence induced by DNA damage.

    PubMed

    Filippi-Chiela, Eduardo Cremonese; Bueno e Silva, Mardja Manssur; Thomé, Marcos Paulo; Lenz, Guido

    2015-01-01

    Autophagy and senescence have been described as central features of cell biology, but the interplay between these mechanisms remains obscure. Using a therapeutically relevant model of DNA damage-induced senescence in human glioma cells, we demonstrated that acute treatment with temozolomide induces DNA damage, a transitory activation of PRKAA/AMPK-ULK1 and MAPK14/p38 and the sustained inhibition of AKT-MTOR. This produced a transient induction of autophagy, which was followed by senescence. However, at the single cell level, this coordinated transition was not observed, and autophagy and senescence were triggered in a very heterogeneous manner. Indeed, at a population level, autophagy was highly negatively correlated with senescence markers, while in single cells this correlation did not exist. The inhibition of autophagy triggered apoptosis and decreased senescence, while its activation increased temozolomide-induced senescence, showing that DNA damage-induced autophagy acts by suppressing apoptosis.

  10. Characterization of the excited states of DNA building blocks: a coupled cluster computational study.

    PubMed

    Benda, Zsuzsanna; Szalay, Péter G

    2016-09-14

    DNA building blocks consisting of up to four nucleobases are investigated using the EOM-CCSD and CC2-LR methods in two B-DNA-like arrangements of a poly-adenine:poly-thymine (poly-A:poly-T) system. Excitation energies and oscillator strengths are presented and the characteristics of the excited states are discussed. Excited states of single-stranded poly-A systems are highly delocalized, especially the spectroscopically bright states, where delocalization over up to four fragments can be observed. In the case of poly-T systems, the states are somewhat less delocalized, extending to maximally about three fragments. A single A:T Watson-Crick pair has highly localized states, while delocalization over base pairs can be observed for some excited states of the (A)2:(T)2 system, but intrastrand delocalization is more pronounced in this case, as well. As for the characteristics of the simulated UV absorption spectra, a significant decrease of intensity can be observed in the case of single strands with increasing chain length; this is due to the stacking interactions and is in accordance with previous results. On the other hand, the breaking of H-bonds between the two strands does not alter the spectral intensity considerably, it only causes a redshift of the absorption band, thus it is unable to explain the experimentally observed DNA hyperchromism on its own, and stacking interactions need to be considered for the description of this effect as well. PMID:27506397

  11. Cytometric analysis of DNA changes induced by sulfur mustard

    SciTech Connect

    Smith, W.J.; Sanders, K.M.; Ruddle, S.E.; Gross, C.L.

    1993-05-13

    Sulfur mustard is an alkylating agent which causes severe, potentially debilitating blisters following cutaneous exposure. Its mechanism of pathogenesis is unknown and no antidote exists to prevent its pathology. The biochemical basis of sulfur mustard's vesicating activity has been hypothesized to be a cascade of events beginning with alkylation of DNA. Using human cells in culture, we have assessed the effects of sulfur mustard on cell cycle activity using flow cytometry with propidium iodide. Two distinct patterns emerged, a Gl/S interface block at concentrations equivalent to vesicating doses (>50-micronM) and a G2 block at 10-fold lower concentrations. In addition, noticeable increases in amount of dye uptake were observed at 4 and 24 hours after sulfur mustard exposure. These increases are believed to be related to DNA repair activities and can be prevented by treatment of the cells with niacinamide, which inhibits DNA repair. Other drugs which provide alternate alkylating sites or inhibit cell cycle progression were shown to lower the cytotoxicity of sulfur mustard and to protect against its direct DNA damaging effects.

  12. Crowding-Induced Hybridization of Single DNA Hairpins.

    PubMed

    Baltierra-Jasso, Laura E; Morten, Michael J; Laflör, Linda; Quinn, Steven D; Magennis, Steven W

    2015-12-30

    It is clear that a crowded environment influences the structure, dynamics, and interactions of biological molecules, but the complexity of this phenomenon demands the development of new experimental and theoretical approaches. Here we use two complementary single-molecule FRET techniques to show that the kinetics of DNA base pairing and unpairing, which are fundamental to both the biological role of DNA and its technological applications, are strongly modulated by a crowded environment. We directly observed single DNA hairpins, which are excellent model systems for studying hybridization, either freely diffusing in solution or immobilized on a surface under crowding conditions. The hairpins followed two-state folding dynamics with a closing rate increasing by 4-fold and the opening rate decreasing 2-fold, for only modest concentrations of crowder [10% (w/w) polyethylene glycol (PEG)]. These experiments serve both to unambiguously highlight the impact of a crowded environment on a fundamental biological process, DNA base pairing, and to illustrate the benefits of single-molecule approaches to probing the structure and dynamics of complex biomolecular systems. PMID:26654490

  13. DNA Methylation in the Medial Prefrontal Cortex Regulates Alcohol-Induced Behavior and Plasticity

    PubMed Central

    Tapocik, Jenica D.; Juergens, Nathan; Pitcairn, Caleb; Borich, Abbey; Schank, Jesse R.; Sun, Hui; Schuebel, Kornel; Zhou, Zhifeng; Yuan, Qiaoping; Vendruscolo, Leandro F.; Goldman, David; Heilig, Markus

    2015-01-01

    Recent studies have suggested an association between alcoholism and DNA methylation, a mechanism that can mediate long-lasting changes in gene transcription. Here, we examined the contribution of DNA methylation to the long-term behavioral and molecular changes induced by a history of alcohol dependence. In search of mechanisms underlying persistent rather than acute dependence-induced neuroadaptations, we studied the role of DNA methylation regulating medial prefrontal cortex (mPFC) gene expression and alcohol-related behaviors in rats 3 weeks into abstinence following alcohol dependence. Postdependent rats showed escalated alcohol intake, which was associated with increased DNA methylation as well as decreased expression of genes encoding synaptic proteins involved in neurotransmitter release in the mPFC. Infusion of the DNA methyltransferase inhibitor RG108 prevented both escalation of alcohol consumption and dependence-induced downregulation of 4 of the 7 transcripts modified in postdependent rats. Specifically, RG108 treatment directly reversed both downregulation of synaptotagmin 2 (Syt2) gene expression and hypermethylation on CpG#5 of its first exon. Lentiviral inhibition of Syt2 expression in the mPFC increased aversion-resistant alcohol drinking, supporting a mechanistic role of Syt2 in compulsive-like behavior. Our findings identified a functional role of DNA methylation in alcohol dependence-like behavioral phenotypes and a candidate gene network that may mediate its effects. Together, these data provide novel evidence for DNA methyltransferases as potential therapeutic targets in alcoholism. PMID:25878287

  14. DNA damage induced by m-phenylenediamine and its derivative in the presence of copper ion.

    PubMed

    Chen, F; Murata, M; Hiraku, Y; Yamashita, N; Oikawa, S; Kawanishi, S

    1998-09-01

    To clarify the mechanism of carcinogenesis by hair dyes, we compared the extent of DNA damage induced by mutagenic m-phenylenediamine and 4-methoxy-m-phenylenediamine, using 32P-5'-end-labeled DNA fragments obtained from the human c-Ha-ras-1 protooncogene and the p53 tumor suppressor gene. Carcinogenic 4-methoxy-m-phenylenediamine caused DNA damage at thymine and cytosine residues in the presence of Cu(II). Catalase and bathocuproine, a Cu(I)-specific chelator, inhibited 4-methoxy-m-phenylenediamine-induced DNA damage, suggesting the involvement of H2O2 and Cu(I). Superoxide dismutase (SOD) enhanced the DNA damage. Formation of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) was induced by 4-methoxy-m-phenylenediamine in the presence of Cu(II). UV-visible spectroscopic studies have shown that Cu(II) mediated autoxidation of 4-methoxy-m-phenylenediamine and SOD accelerated the autoxidation. On the other hand, non-carcinogenic m-phenylenediamine did not cause clear DNA damage and significant autoxidation even in the presence of Cu(II). These results suggest that carcinogenicity of m-phenylenediamines is associated with ability to cause oxidative DNA damage rather than bacterial mutagenicity. PMID:9802551

  15. DNA methylation in the medial prefrontal cortex regulates alcohol-induced behavior and plasticity.

    PubMed

    Barbier, Estelle; Tapocik, Jenica D; Juergens, Nathan; Pitcairn, Caleb; Borich, Abbey; Schank, Jesse R; Sun, Hui; Schuebel, Kornel; Zhou, Zhifeng; Yuan, Qiaoping; Vendruscolo, Leandro F; Goldman, David; Heilig, Markus

    2015-04-15

    Recent studies have suggested an association between alcoholism and DNA methylation, a mechanism that can mediate long-lasting changes in gene transcription. Here, we examined the contribution of DNA methylation to the long-term behavioral and molecular changes induced by a history of alcohol dependence. In search of mechanisms underlying persistent rather than acute dependence-induced neuroadaptations, we studied the role of DNA methylation regulating medial prefrontal cortex (mPFC) gene expression and alcohol-related behaviors in rats 3 weeks into abstinence following alcohol dependence. Postdependent rats showed escalated alcohol intake, which was associated with increased DNA methylation as well as decreased expression of genes encoding synaptic proteins involved in neurotransmitter release in the mPFC. Infusion of the DNA methyltransferase inhibitor RG108 prevented both escalation of alcohol consumption and dependence-induced downregulation of 4 of the 7 transcripts modified in postdependent rats. Specifically, RG108 treatment directly reversed both downregulation of synaptotagmin 2 (Syt2) gene expression and hypermethylation on CpG#5 of its first exon. Lentiviral inhibition of Syt2 expression in the mPFC increased aversion-resistant alcohol drinking, supporting a mechanistic role of Syt2 in compulsive-like behavior. Our findings identified a functional role of DNA methylation in alcohol dependence-like behavioral phenotypes and a candidate gene network that may mediate its effects. Together, these data provide novel evidence for DNA methyltransferases as potential therapeutic targets in alcoholism.

  16. Rofecoxib prevents ctdsDNA against damage induced by copper sulfate and ultraviolet B radiation in vitro study

    PubMed Central

    Al-Nimer, Marwan S. M.; Al-Deen, Suad M.; Abdul Lateef, Zainab W.

    2010-01-01

    Rofecoxib is a selective cyclooxygenase COX-2 enzyme inhibitor with chemoprotective effect against cancer in experimental models. This study aimed to investigate the effect of rofecoxib against ctds DNA damage induced by copper ions or ultraviolet (UV)B radiation. Aliquot ctdsDNA samples were incubated with copper sulfate solution (50 nmol) and rofecoxib (0.8 mol) was added either before or after the admixing the ctdsDNA with copper sulfate. In another experimental series, aliquot of ctdsDNA were exposed to UVB radiation for 30 min in absence or presence of rofecoxib. Rofecoxib significantly attenuated the separation of double strands of DNA (detected by increase the absorbance of DNA at 260 nm) induced by Cu ions. Rofecoxib significantly offered protection against UVB-induced DNA damage. It is concluded that rofecoxib offered protection against copper ions or UVB induced-DNA damage via different mechanisms not related to the inhibition COX-2. PMID:24825998

  17. Solar UVB-induced DNA damage and photoenzymatic DNA repair in antarctic zooplankton

    SciTech Connect

    Malloy, K.D.; Holman, M.A.; Mitchell, D.

    1997-02-18

    The detrimental effects of elevated intensities of mid-UV radiation (UVB), a result of stratospheric ozone depletion during the austral spring, on the primary producers of the Antarctic marine ecosystem have been well documented. Here we report that natural populations of Antarctic zooplankton also sustain significant DNA damage [measured as cyclobutane pyrimidine dimers (CPDs)] during periods of increased UVB flux. This is the first direct evidence that increased solar UVB may result in damage to marine organisms other than primary producers in Antarctica. The extent of DNA damage in pelagic icefish eggs correlated with daily incident UVB irradiance, reflecting the difference between acquisition and repair of CPDs. Patterns of DNA damage in fish larvae did not correlated with daily UVB flux, possibly due to different depth distributions and/or different capacities for DNA repair. Clearance of CPDs by Antarctic fish and krill was mediated primarily by the photoenzymatic repair system. Although repair rates were large for all species evaluated, they were apparently inadequate to prevent the transient accumulation of substantial CPD burdens. The capacity for DNA repair in Antarctic organisms was highest in those species whose early life history stages occupy the water column during periods of ozone depletion (austral spring) and lowest in fish species whose eggs and larvae are abundant during winter. Although the potential reduction in fitness of Antarctic zooplankton resulting from DNA damage is unknown, we suggest that increased solar UV may reduce recruitment and adversely affect trophic transfer of productivity by affecting heterotrophic species as well as primary producers. 54 refs., 4 figs., 2 tabs.

  18. Solar UVB-induced DNA damage and photoenzymatic DNA repair in antarctic zooplankton.

    PubMed

    Malloy, K D; Holman, M A; Mitchell, D; Detrich, H W

    1997-02-18

    The detrimental effects of elevated intensities of mid-UV radiation (UVB), a result of stratospheric ozone depletion during the austral spring, on the primary producers of the Antarctic marine ecosystem have been well documented. Here we report that natural populations of Antarctic zooplankton also sustain significant DNA damage [measured as cyclobutane pyrimidine dimers (CPDs)] during periods of increased UVB flux. This is the first direct evidence that increased solar UVB may result in damage to marine organisms other than primary producers in Antarctica. The extent of DNA damage in pelagic icefish eggs correlated with daily incident UVB irradiance, reflecting the difference between acquisition and repair of CPDs. Patterns of DNA damage in fish larvae did not correlate with daily UVB flux, possibly due to different depth distributions and/or different capacities for DNA repair. Clearance of CPDs by Antarctic fish and krill was mediated primarily by the photoenzymatic repair system. Although repair rates were large for all species evaluated, they were apparently inadequate to prevent the transient accumulation of substantial CPD burdens. The capacity for DNA repair in Antarctic organisms was highest in those species whose early life history stages occupy the water column during periods of ozone depletion (austral spring) and lowest in fish species whose eggs and larvae are abundant during winter. Although the potential reduction in fitness of Antarctic zooplankton resulting from DNA damage is unknown, we suggest that increased solar UV may reduce recruitment and adversely affect trophic transfer of productivity by affecting heterotrophic species as well as primary producers. PMID:9037040

  19. Protection from radiation-induced mitochondrial and genomic DNA damage by an extract of Hippophae rhamnoides.

    PubMed

    Shukla, Sandeep Kumar; Chaudhary, Pankaj; Kumar, Indracanti Prem; Samanta, Namita; Afrin, Farhat; Gupta, Manju Lata; Sharma, Upendra Kumar; Sinha, Arun Kumar; Sharma, Yogendra Kumar; Sharma, Rakesh Kumar

    2006-12-01

    Hippophae rhamnoides or seabuckthorn is used extensively in Indian and Tibetan traditional medicine for the treatment of circulatory disorders, ischemic heart disease, hepatic injury, and neoplasia. In the present study, we have evaluated the radioprotective potential of REC-1001, a fraction isolated from the berries of H. rhamnoides. Chemical analysis of the extract indicated that REC-1001 was approximately 68% by weight polyphenols, and contained kaempferol, isorhamnetin, and quercetin. The effect of REC-1001 on modulating radiation-induced DNA damage was determined in murine thymocytes by measuring nonspecific nuclear DNA damage at the whole genome level using the alkaline halo assay and by measuring sequence/gene-specific DNA damage both in nuclear DNA (beta-globin gene) and in mitochondrial DNA using a quantitative polymerase chain reaction. Treatment with 10 Gy resulted in a significant amount of DNA damage in the halo assay and reductions in the amplification of both the beta-globin gene and mitochondrial DNA. REC-1001 dose-dependently reduced the amount of damage detected in each assay, with the maximum protective effects observed at the highest REC-1001 dose evaluated (250 micro g/ml). Studies measuring the nicking of naked plasmid DNA further established the radioprotective effect of REC-1001. To elucidate possible mechanisms of action, the antioxidant properties and the free-radical scavenging activities of REC-1001 were evaluated. REC-1001 dose-dependently scavenged radiation-induced hydroxyl radicals, chemically-generated superoxide anions, stabilized DPPH radicals, and reduced Fe(3+) to Fe(2+). The results of the study indicate that the REC-1001 extract of H. rhamnoides protects mitochondrial and genomic DNA from radiation-induced damage. The polyphenols/flavonoids present in the extract might be responsible for the free radical scavenging and DNA protection afforded by REC-1001. PMID:16948057

  20. Listeria monocytogenes induces host DNA damage and delays the host cell cycle to promote infection

    PubMed Central

    Leitão, Elsa; Costa, Ana Catarina; Brito, Cláudia; Costa, Lionel; Pombinho, Rita; Cabanes, Didier; Sousa, Sandra

    2014-01-01

    Listeria monocytogenes (Lm) is a human intracellular pathogen widely used to uncover the mechanisms evolved by pathogens to establish infection. However, its capacity to perturb the host cell cycle was never reported. We show that Lm infection affects the host cell cycle progression, increasing its overall duration but allowing consecutive rounds of division. A complete Lm infectious cycle induces a S-phase delay accompanied by a slower rate of DNA synthesis and increased levels of host DNA strand breaks. Additionally, DNA damage/replication checkpoint responses are triggered in an Lm dose-dependent manner through the phosphorylation of DNA-PK, H2A.X, and CDC25A and independently from ATM/ATR. While host DNA damage induced exogenously favors Lm dissemination, the override of checkpoint pathways limits infection. We propose that host DNA replication disturbed by Lm infection culminates in DNA strand breaks, triggering DNA damage/replication responses, and ensuring a cell cycle delay that favors Lm propagation. PMID:24552813

  1. Extracellular DNA Acidifies Biofilms and Induces Aminoglycoside Resistance in Pseudomonas aeruginosa

    PubMed Central

    Wilton, Mike; Charron-Mazenod, Laetitia; Moore, Richard

    2015-01-01

    Biofilms consist of surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, exopolysaccharides, and proteins. Extracellular DNA (eDNA) has a structural role in the formation of biofilms, can bind and shield biofilms from aminoglycosides, and induces antimicrobial peptide resistance mechanisms. Here, we provide evidence that eDNA is responsible for the acidification of Pseudomonas aeruginosa planktonic cultures and biofilms. Further, we show that acidic pH and acidification via eDNA constitute a signal that is perceived by P. aeruginosa to induce the expression of genes regulated by the PhoPQ and PmrAB two-component regulatory systems. Planktonic P. aeruginosa cultured in exogenous 0.2% DNA or under acidic conditions demonstrates a 2- to 8-fold increase in aminoglycoside resistance. This resistance phenotype requires the aminoarabinose modification of lipid A and the production of spermidine on the bacterial outer membrane, which likely reduce the entry of aminoglycosides. Interestingly, the additions of the basic amino acid l-arginine and sodium bicarbonate neutralize the pH and restore P. aeruginosa susceptibility to aminoglycosides, even in the presence of eDNA. These data illustrate that the accumulation of eDNA in biofilms and infection sites can acidify the local environment and that acidic pH promotes the P. aeruginosa antibiotic resistance phenotype. PMID:26552982

  2. DNA Damage-induced Reactive Oxygen Species (ROS) Stress Response in Saccharomyces cerevisiae

    PubMed Central

    Rowe, Lori A.; Degtyareva, Natalya; Doetsch, Paul W.

    2008-01-01

    Cells are exposed to both endogenous and exogenous sources of reactive oxygen species (ROS). At high levels, ROS can lead to impaired physiological function through cellular damage of DNA, proteins, lipids, and other macromolecules, which can lead to certain human pathologies including cancers, neurodegenerative disorders, and cardiovascular disease, as well as aging. We have employed Saccharomyces cerevisiae as a model system to examine the levels and types of ROS that are produced in response to DNA damage in isogenic strains with different DNA repair capacities. We find that when DNA damage is introduced into cells from exogenous or endogenous sources there is an increase in the amount of intracellular ROS which is not directly related to cell death. We have examined the spectrum of ROS in order to elucidate its role in the cellular response to DNA damage. As an independent verification of the DNA damage-induced ROS response, we show that a major activator of the oxidative stress response, Yap1, relocalizes to the nucleus following exposure to the DNA alkylating agent methyl methanesulfonate. Our results indicate that the DNA damage-induced increase in intracellular ROS levels is a generalized stress response that is likely to function in various signaling pathways. PMID:18708137

  3. Ochratoxin A induces oxidative DNA damage in liver and kidney after oral dosing to rats.

    PubMed

    Kamp, Hennicke G; Eisenbrand, Gerhard; Janzowski, Christine; Kiossev, Jetchko; Latendresse, John R; Schlatter, Josef; Turesky, Robert J

    2005-12-01

    The nephrotoxic/carcinogenic mycotoxin ochratoxin A (OTA) occurs as a contaminant in food and feed and may be linked to human endemic Balkan nephropathy. The mechanism of OTA-derived carcinogenicity is still under debate, since reactive metabolites of OTA and DNA adducts have not been unambiguously identified. Oxidative DNA damage, however, has been observed in vitro after incubation of mammalian cells with OTA. In this study, we investigated whether OTA induces oxidative DNA damage in vivo as well. Male F344 rats were dosed with 0, 0.03, 0.1, 0.3 mg/kg bw per day OTA for 4 wk (gavage, 7 days/wk, five animals per dose group). Subsequently, oxidative DNA damage was determined in liver and kidney by the comet assay (single cell gel electrophoresis) with/without use of the repair enzyme formamido-pyrimidine-DNA-glycosylase (FPG). The administration of OTA had no effect on basic DNA damage (determined without FPG); however, OTA-mediated oxidative damage was detected with FPG treatment in kidney and liver DNA of all dose groups. Since the doses were in a range that had caused kidney tumors in a 2-year carcinogenicity study with rats, the oxidative DNA damage induced by OTA may help to explain its mechanism of carcinogenicity. For the selective induction of tumors in the kidney, increased oxidative stress in connection with severe cytotoxicity and increased cell proliferation might represent driving factors.

  4. Assessing the mechanism of DNA damage induced by lead through direct and indirect interactions.

    PubMed

    Zhang, Hao; Wei, Kai; Zhang, Mengyu; Liu, Rutao; Chen, Yadong

    2014-07-01

    Lead still possesses great threats to human health owing to its widespread distribution in the environment caused by human activities, although various actions have been taken to cut down the use and distribution of lead. In this work, mechanisms of DNA damage caused by lead through indirect and direct interactions were investigated. Results from comet assay showed lead at 1-10 μM induced DNA strand breaks in mice liver cells according to olive tail moment analysis. Signals of DNA-protein crosslinks (DPC) were not significantly detected until exposed at 100 μM Pb(2+). Further more, direct interactions between Pb(2+) and DNA were explored to determine the binding mode between them using spectra analysis, isothermal titration calorimetry studies and molecular docking investigations, which indicated that Pb(2+) could bind to DNA with four binding sites to form Pb(2)(+)-DNA complex by minor groove binding effects and electrostatic forces, resulting in damage to the structure of DNA double helix. Combined studies of lead genotoxicity in indirect (comet assay and DPC assay) and direct (binding mode investigations) interactions can be applied to study the potential damages to DNA induced by heavy metal pollutants.

  5. Extracellular DNA Acidifies Biofilms and Induces Aminoglycoside Resistance in Pseudomonas aeruginosa.

    PubMed

    Wilton, Mike; Charron-Mazenod, Laetitia; Moore, Richard; Lewenza, Shawn

    2016-01-01

    Biofilms consist of surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, exopolysaccharides, and proteins. Extracellular DNA (eDNA) has a structural role in the formation of biofilms, can bind and shield biofilms from aminoglycosides, and induces antimicrobial peptide resistance mechanisms. Here, we provide evidence that eDNA is responsible for the acidification of Pseudomonas aeruginosa planktonic cultures and biofilms. Further, we show that acidic pH and acidification via eDNA constitute a signal that is perceived by P. aeruginosa to induce the expression of genes regulated by the PhoPQ and PmrAB two-component regulatory systems. Planktonic P. aeruginosa cultured in exogenous 0.2% DNA or under acidic conditions demonstrates a 2- to 8-fold increase in aminoglycoside resistance. This resistance phenotype requires the aminoarabinose modification of lipid A and the production of spermidine on the bacterial outer membrane, which likely reduce the entry of aminoglycosides. Interestingly, the additions of the basic amino acid L-arginine and sodium bicarbonate neutralize the pH and restore P. aeruginosa susceptibility to aminoglycosides, even in the presence of eDNA. These data illustrate that the accumulation of eDNA in biofilms and infection sites can acidify the local environment and that acidic pH promotes the P. aeruginosa antibiotic resistance phenotype. PMID:26552982

  6. Extracellular DNA Acidifies Biofilms and Induces Aminoglycoside Resistance in Pseudomonas aeruginosa.

    PubMed

    Wilton, Mike; Charron-Mazenod, Laetitia; Moore, Richard; Lewenza, Shawn

    2015-11-09

    Biofilms consist of surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, exopolysaccharides, and proteins. Extracellular DNA (eDNA) has a structural role in the formation of biofilms, can bind and shield biofilms from aminoglycosides, and induces antimicrobial peptide resistance mechanisms. Here, we provide evidence that eDNA is responsible for the acidification of Pseudomonas aeruginosa planktonic cultures and biofilms. Further, we show that acidic pH and acidification via eDNA constitute a signal that is perceived by P. aeruginosa to induce the expression of genes regulated by the PhoPQ and PmrAB two-component regulatory systems. Planktonic P. aeruginosa cultured in exogenous 0.2% DNA or under acidic conditions demonstrates a 2- to 8-fold increase in aminoglycoside resistance. This resistance phenotype requires the aminoarabinose modification of lipid A and the production of spermidine on the bacterial outer membrane, which likely reduce the entry of aminoglycosides. Interestingly, the additions of the basic amino acid L-arginine and sodium bicarbonate neutralize the pH and restore P. aeruginosa susceptibility to aminoglycosides, even in the presence of eDNA. These data illustrate that the accumulation of eDNA in biofilms and infection sites can acidify the local environment and that acidic pH promotes the P. aeruginosa antibiotic resistance phenotype.

  7. Complete Spectrum of CRISPR/Cas9-induced Mutations on HBV cccDNA.

    PubMed

    Seeger, Christoph; Sohn, Ji A

    2016-08-01

    Hepatitis B virus (HBV) causes chronic infections that cannot yet be cured. The virus persists in infected hepatocytes, because covalently closed circular DNA (cccDNA), the template for the transcription of viral RNAs, is stable in nondividing cells. Antiviral therapies with nucleoside analogues inhibit HBV DNA synthesis in capsids in the cytoplasm of infected hepatocytes, but do not destroy nuclear cccDNA. Because over 200 million people are still infected, a cure for chronic hepatitis B (CHB) has become one of the major challenges in antiviral therapy. As a first step toward the development of curative therapies, we previously demonstrated that the CRISPR/Cas9 system can be used to functionally inactivate cccDNA derived from infectious HBV. Moreover, some evidence suggests that certain cytokines might induce an APOBEC-mediated cascade leading to the destruction of cccDNA. In this report we investigated whether a combination of the two mechanisms could act synergistically to inactivate cccDNA. Using next generation sequencing (NGS), we determined the complete spectrum of mutations in cccDNA following Cas9 cleavage and repair by nonhomologous end joining (NHEJ). We found that over 90% of HBV DNA was cleaved by Cas9. In addition our results showed that editing of HBV DNA after Cas9 cleavage is at least 15,000 times more efficient that APOBEC-mediated cytosine deamination following treatment of infected cells with interferon alpha (IFNα). We also found that a previously used method to detect cytosine deaminated DNA, termed 3D-PCR, overestimates the amount and frequency of edited HBV DNA. Taken together, our results demonstrated that the CRISPR/Cas9 system is so far the best method to functionally inactivate HBV cccDNA and provide a cure for CHB. PMID:27203444

  8. Complete Spectrum of CRISPR/Cas9-induced Mutations on HBV cccDNA

    PubMed Central

    Seeger, Christoph; Sohn, Ji A

    2016-01-01

    Hepatitis B virus (HBV) causes chronic infections that cannot yet be cured. The virus persists in infected hepatocytes, because covalently closed circular DNA (cccDNA), the template for the transcription of viral RNAs, is stable in nondividing cells. Antiviral therapies with nucleoside analogues inhibit HBV DNA synthesis in capsids in the cytoplasm of infected hepatocytes, but do not destroy nuclear cccDNA. Because over 200 million people are still infected, a cure for chronic hepatitis B (CHB) has become one of the major challenges in antiviral therapy. As a first step toward the development of curative therapies, we previously demonstrated that the CRISPR/Cas9 system can be used to functionally inactivate cccDNA derived from infectious HBV. Moreover, some evidence suggests that certain cytokines might induce an APOBEC-mediated cascade leading to the destruction of cccDNA. In this report we investigated whether a combination of the two mechanisms could act synergistically to inactivate cccDNA. Using next generation sequencing (NGS), we determined the complete spectrum of mutations in cccDNA following Cas9 cleavage and repair by nonhomologous end joining (NHEJ). We found that over 90% of HBV DNA was cleaved by Cas9. In addition our results showed that editing of HBV DNA after Cas9 cleavage is at least 15,000 times more efficient that APOBEC-mediated cytosine deamination following treatment of infected cells with interferon alpha (IFNα). We also found that a previously used method to detect cytosine deaminated DNA, termed 3D-PCR, overestimates the amount and frequency of edited HBV DNA. Taken together, our results demonstrated that the CRISPR/Cas9 system is so far the best method to functionally inactivate HBV cccDNA and provide a cure for CHB. PMID:27203444

  9. Blast induced neurotrauma causes overpressure dependent changes to the DNA methylation equilibrium.

    PubMed

    Bailey, Zachary S; Grinter, Michael B; De La Torre Campos, Diego; VandeVord, Pamela J

    2015-09-14

    Traumatic brain injury (TBI) has a high prevalence in our society and often leads to morbidity and mortality. TBI also occurs frequently in a military setting where exposure to blast waves is common. Abnormal gene expression involved with oxidative stress, inflammation and neuronal apoptosis has been well documented following blast induced neurotrauma (BINT). Altered epigenetic transcriptional regulation through DNA methylation has been implicated in the pathology of the injury. Imbalance between DNA methylation and DNA demethylation may lead to altered methylation patterns and subsequent changes in gene transcription. DNA methyltransferase enzymes (DNMT1, DNMT3a, and DNMT3b) are responsible for the addition of methyl groups to DNA, DNA methylation. Whereas the combined function of ten-eleven translocation enzymes (TET1, TET2, and TET3) and thymine-DNA glycosylase (TDG) result in the removal of methyl groups from DNA, DNA demethylation. We used an established rodent model of BINT to assess changes in DNA methylation and demethylation enzymes following injury. Three different blast overpressures were investigated (10, 17 and 23psi). Gene expression was investigated in the prefrontal cortex and hippocampus two weeks following injury. We observed DNMT, TET and TDG expression changes between pressure groups and brain regions. The hippocampus was more vulnerable to enzyme expression changes than the prefrontal cortex, which correlated with aberrant DNA methylation. A significant negative correlation was found between global DNA methylation and the magnitude of blast overpressure exposure. Through transcriptional regulation, altered DNA methylation patterns may offer insight into the characteristic outcomes associated with the injury pathology including inflammation, oxidative stress and apoptosis. As such, these enzymes may be important targets to future therapeutic intervention strategies. PMID:26232681

  10. Toll-like Receptor 9 Can be Activated by Endogenous Mitochondrial DNA to Induce Podocyte Apoptosis

    PubMed Central

    Bao, Wenduona; Xia, Hong; Liang, Yaojun; Ye, Yuting; Lu, Yuqiu; Xu, Xiaodong; Duan, Aiping; He, Jing; Chen, Zhaohong; Wu, Yan; Wang, Xia; Zheng, Chunxia; Liu, Zhihong; Shi, Shaolin

    2016-01-01

    Toll-like receptor 9 (TLR9) senses bacterial DNA characteristic of unmethylated CpG motifs to induce innate immune response. TLR9 is de novo expressed in podocytes of some patients with glomerular diseases, but its role in podocyte injury remains undetermined. Since TLR9 activates p38 MAPK and NFkB that are known to mediate podocyte apoptosis, we hypothesized that TLR9 induces podocyte apoptosis in glomerular diseases. We treated immortalized podocytes with puromycin aminonucleosides (PAN) and observed podocyte apoptosis, accompanied by TLR9 upregulation. Prevention of TLR9 upregulation by siRNA significantly attenuated NFκB p65 or p38 activity and apoptosis, demonstrating that TLR9 mediates podocyte apoptosis. We next showed that endogenous mitochondrial DNA (mtDNA), whose CpG motifs are also unmethylated, is the ligand for TLR9, because PAN induced mtDNA accumulation in endolysosomes where TLR9 is localized, overexpression of endolysosomal DNase 2 attenuated PAN-induced p38 or p65 activity and podocyte apoptosis, and DNase 2 silencing was sufficient to activate p38 or p65 and induce apoptosis. In PAN-treated rats, TLR9 was upregulated in the podocytes, accompanied by increase of apoptosis markers. Thus, de novo expressed TLR9 may utilize endogenous mtDNA as the ligand to facilitate podocyte apoptosis, a novel mechanism underlying podocyte injury in glomerular diseases. PMID:26934958

  11. Biochemical behaviour of norbixin during in vitro DNA damage induced by reactive oxygen species.

    PubMed

    Kovary, K; Louvain, T S; Costa e Silva, M C; Albano, F; Pires, B B; Laranja, G A; Lage, C L; Felzenszwalb, I

    2001-04-01

    Naturally occurring antioxidants such as carotenoids are extensively studied for their potential in reducing the risk for cancer and other chronic diseases. In the present study, the radical-scavenger activity of the food additive norbixin, a water-soluble carotenoid extracted from Bixa orellana seeds and commercialized as annatto, was evaluated under conditions of DNA damage induced by reactive oxygen species, particularly by hydroxyl radicals. The cell-free scavenger activity of norbixin was evaluated using plasmid DNA as target molecule and Sn2+ or Fe2+ as oxidant. The addition of H2O2 enhanced DNA breakage induced by metal ions, particularly Fe2+. Under these conditions, norbixin started to protect plasmid DNA against single- and double-strand breakage at a metal:norbixin ratio of 1:1 (Sn2+) and 1:10 (Fe2+). However, at lower ratios to Sn2+, norbixin enhanced Sn2+-induced DNA breakage (P < 0.05). The ability of norbixin to protect genomic DNA against oxidative damage was assessed in murine fibroblasts submitted to H2O2-induced oxidative stress and the results were evaluated by the comet assay. Under low serum conditions (2 % fetal bovine serum (FBS)), a protective effect of norbixin against H2O2-induced DNA breakage was inversely related to its concentration, a protection ranging from 41 % (10 microm) to 21 % (50 microm). At higher concentrations of norbixin, however, oxidative DNA breakage was still enhanced, even in the presence of a high serum concentration (10 % FBS). Under normal conditions, norbixin per se has no detectable genotoxic or cytotoxic effects on murine fibroblasts. The antimutagenic potential of norbixin against oxidative mutagens was also evaluated by the Salmonella typhimurium assay, with a maximum inhibition of 87 % against the mutagenicity induced by H2O2. Although plasmid DNA and Ames data indicated that norbixin can protect DNA against oxidative damage, it seems to be a risky guardian of genomic DNA as it can also increase the extent of

  12. UV-Induced Proton Transfer between DNA Strands.

    PubMed

    Zhang, Yuyuan; de La Harpe, Kimberly; Beckstead, Ashley A; Improta, Roberto; Kohler, Bern

    2015-06-10

    UV radiation creates excited states in DNA that lead to mutagenic photoproducts. Photoexcitation of single-stranded DNA can transfer an electron between stacked bases, but the fate of excited states in the double helix has been intensely debated. Here, photoinduced interstrand proton transfer (PT) triggered by intrastrand electron transfer (ET) is detected for the first time by time-resolved vibrational spectroscopy and quantum mechanical calculations. Long-lived excited states are shown to be oppositely charged base pair radical ions. In two of the duplexes, the base pair radical anions are present as tautomers formed by interstrand PT. Charge recombination occurs on the picosecond time scale preventing the accumulation of damaging radicals or mutagenic tautomers. PMID:26005794

  13. Crystal Structure of the Lactose Operon Repressor and Its Complexes with DNA and Inducer

    NASA Astrophysics Data System (ADS)

    Lewis, Mitchell; Chang, Geoffrey; Horton, Nancy C.; Kercher, Michele A.; Pace, Helen C.; Schumacher, Maria A.; Brennan, Richard G.; Lu, Ponzy

    1996-03-01

    The lac operon of Escherichia coli is the paradigm for gene regulation. Its key component is the lac repressor, a product of the lacI gene. The three-dimensional structures of the intact lac repressor, the lac repressor bound to the gratuitous inducer isopropyl-β-D-1-thiogalactoside (IPTG) and the lac repressor complexed with a 21-base pair symmetric operator DNA have been determined. These three structures show the conformation of the molecule in both the induced and repressed states and provide a framework for understanding a wealth of biochemical and genetic information. The DNA sequence of the lac operon has three lac repressor recognition sites in a stretch of 500 base pairs. The crystallographic structure of the complex with DNA suggests that the tetrameric repressor functions synergistically with catabolite gene activator protein (CAP) and participates in the quaternary formation of repression loops in which one tetrameric repressor interacts simultaneously with two sites on the genomic DNA.

  14. The antiviral defense mechanisms in mandarin fish induced by DNA vaccination against a rhabdovirus.

    PubMed

    Chen, Zhong-Yuan; Lei, Xiao-Ying; Zhang, Qi-Ya

    2012-06-15

    Plasmid DNAs containing Siniperca chuatsi rhabdovirus (SCRV) glycoprotein gene (pcDNA-G) and nucleoprotein gene (pcDNA-N) were constructed, and used to determine the antiviral immune response elicited by DNA vaccination in mandarin fish. In vitro and in vivo expression of the plasmid constructs was confirmed in transfected cells and muscle tissues of vaccinated fish by Western blot, indirect immunofluorescence or RT-PCR analysis. Fish injected with pcDNA-G exhibited protective effect against SCRV challenge with a relative percent survival (RPS) of 77.5%, but no significant protection (RPS of 2.5%) was observed in fish vaccinated with pcDNA-N. Immunohistochemical analysis showed that vaccination with pcDNA-G decreased histological lesions and suppressed the virus replication in fish target organs, e.g. kidney, liver, spleen, gill and heart. Transcriptional analysis further revealed that the expression levels of type I IFN system genes including interferon regulation factor-7 (IRF-7) gene, myxovirus resistance (Mx) gene and virus inhibitory protein (Viperin) gene were strongly up-regulated after injection with pcDNA-G, whereas the level of transcription of immunoglobulin M (IgM) gene did not show a statistically significant change. These results reveal that type I IFN antiviral immune response is rapidly triggered by the plasmid DNA containing rhabdovirus glycoprotein gene in fish, which offers an explanation of molecular mechanisms for DNA vaccination inducing mandarin fish resist to SCRV disease.

  15. Random Monoallelic Expression of Three Genes Clustered within 60 kb of Mouse t Complex Genomic DNA

    PubMed Central

    Sano, Yuri; Shimada, Tokihiko; Nakashima, Hiroshi; Nicholson, Rhonda H.; Eliason, James F.; Kocarek, Thomas A.; Ko, Minoru S.H.

    2001-01-01

    Mammals achieve gene dosage control by (1) random X-chromosome inactivation in females, (2) parental origin-specific imprinting of selected autosomal genes, and (3) random autosomal inactivation. Genes belonging to the third category of epigenetic phenomenon are just now emerging, with only six identified so far. Here we report three additional genes, Nubp2, Igfals, and Jsap1, that show 50%-methylated CpG sites by Southern blot analyses and primarily monoallelic expression in single-cell allele-specific RT-PCR analysis of bone marrow stromal cells and hepatocytes. Furthermore, we show that, in contrast to X inactivation, alleles can switch between active and inactive states during the formation of daughter cells. These three genes are the first in their category to exist as a tight cluster, in the proximal region of mouse chromosome 17, providing a thus far unique example of a region of autosomal random monoallelic expression. PMID:11691847

  16. Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries

    PubMed Central

    McWhirter, J. Liam; Noguchi, Hiroshi; Gompper, Gerhard

    2009-01-01

    The recent development of microfluidic devices allows the investigation and manipulation of individual liquid microdroplets, capsules, and cells. The collective behavior of several red blood cells (RBCs) or microcapsules in narrow capillaries determines their flow-induced morphology, arrangement, and effective viscosity. Of fundamental interest here is the relation between the flow behavior and the elasticity and deformability of these objects, their long-range hydrodynamic interactions in microchannels, and thermal membrane undulations. We study these mechanisms in an in silico model, which combines a particle-based mesoscale simulation technique for the fluid hydrodynamics with a triangulated-membrane model. The 2 essential control parameters are the volume fraction of RBCs (the tube hematocrit, HT), and the flow velocity. Our simulations show that already at very low HT, the deformability of RBCs implies a flow-induced cluster formation above a threshold flow velocity. At higher HT values, we predict 3 distinct phases: one consisting of disordered biconcave-disk-shaped RBCs, another with parachute-shaped RBCs aligned in a single file, and a third with slipper-shaped RBCs arranged as 2 parallel interdigitated rows. The deformation-mediated clustering and the arrangements of RBCs and microcapsules are relevant for many potential applications in physics, biology, and medicine, such as blood diagnosis and cell sorting in microfluidic devices. PMID:19369212

  17. The Potential Role of 8-Oxoguanine DNA Glycosylase-Driven DNA Base Excision Repair in Exercise-Induced Asthma

    PubMed Central

    Belanger, KarryAnne K.; Ameredes, Bill T.; Boldogh, Istvan

    2016-01-01

    Asthma is characterized by reversible airway narrowing, shortness of breath, wheezing, coughing, and other symptoms driven by chronic inflammatory processes, commonly triggered by allergens. In 90% of asthmatics, most of these symptoms can also be triggered by intense physical activities and severely exacerbated by environmental factors. This condition is known as exercise-induced asthma (EIA). Current theories explaining EIA pathogenesis involve osmotic and/or thermal alterations in the airways caused by changes in respiratory airflow during exercise. These changes, along with existing airway inflammatory conditions, are associated with increased cellular levels of reactive oxygen species (ROS) affecting important biomolecules including DNA, although the underlying molecular mechanisms have not been completely elucidated. One of the most abundant oxidative DNA lesions is 8-oxoguanine (8-oxoG), which is repaired by 8-oxoguanine DNA glycosylase 1 (OGG1) during the base excision repair (BER) pathway. Whole-genome expression analyses suggest a cellular response to OGG1-BER, involving genes that may have a role in the pathophysiology of EIA leading to mast cell degranulation, airway hyperresponsiveness, and bronchoconstriction. Accordingly, this review discusses a potential new hypothesis in which OGG1-BER-induced gene expression is associated with EIA symptoms. PMID:27524866

  18. Staphylococcus aureus Sepsis Induces Early Renal Mitochondrial DNA Repair and Mitochondrial Biogenesis in Mice

    PubMed Central

    Bartz, Raquel R.; Fu, Ping; Suliman, Hagir B.; Crowley, Stephen D.; MacGarvey, Nancy Chou; Welty-Wolf, Karen; Piantadosi, Claude A.

    2014-01-01

    Acute kidney injury (AKI) contributes to the high morbidity and mortality of multi-system organ failure in sepsis. However, recovery of renal function after sepsis-induced AKI suggests active repair of energy-producing pathways. Here, we tested the hypothesis in mice that Staphyloccocus aureus sepsis damages mitochondrial DNA (mtDNA) in the kidney and activates mtDNA repair and mitochondrial biogenesis. Sepsis was induced in wild-type C57Bl/6J and Cox-8 Gfp-tagged mitochondrial-reporter mice via intraperitoneal fibrin clots embedded with S. aureus. Kidneys from surviving mice were harvested at time zero (control), 24, or 48 hours after infection and evaluated for renal inflammation, oxidative stress markers, mtDNA content, and mitochondrial biogenesis markers, and OGG1 and UDG mitochondrial DNA repair enzymes. We examined the kidneys of the mitochondrial reporter mice for changes in staining density and distribution. S. aureus sepsis induced sharp amplification of renal Tnf, Il-10, and Ngal mRNAs with decreased renal mtDNA content and increased tubular and glomerular cell death and accumulation of protein carbonyls and 8-OHdG. Subsequently, mtDNA repair and mitochondrial biogenesis was evidenced by elevated OGG1 levels and significant increases in NRF-1, NRF-2, and mtTFA expression. Overall, renal mitochondrial mass, tracked by citrate synthase mRNA and protein, increased in parallel with changes in mitochondrial GFP-fluorescence especially in proximal tubules in the renal cortex and medulla. Sub-lethal S. aureus sepsis thus induces widespread renal mitochondrial damage that triggers the induction of the renal mtDNA repair protein, OGG1, and mitochondrial biogenesis as a conspicuous resolution mechanism after systemic bacterial infection. PMID:24988481

  19. DNA demethylation caused by 5-Aza-2′-deoxycytidine induces mitotic alterations and aneuploidy

    PubMed Central

    Lentini, Laura; Cilluffo, Danilo; Di Leonardo, Aldo

    2016-01-01

    Aneuploidy, the unbalanced number of chromosomes in a cell, is considered a prevalent form of genetic instability and is largely acknowledged as a condition implicated in tumorigenesis. Epigenetic alterations like DNA hypomethylation have been correlated with cancer initiation/progression. Furthermore, a growing body of evidence suggests the involvement of epigenome-wide disruption as a cause of global DNA hypomethylation in aneuploidy generation. Here, we report that the DNA hypomethylating drug 5-aza-2′-deoxycytidine (DAC), affects the correct ploidy of nearly diploid HCT-116 human cells by altering the methylation pattern of the chromosomes. Specifically, we show that a DAC-induced reduction of 5-Methyl Cytosine at the pericentromeric region of chromosomes correlates with aneuploidy and mitotic defects. Our results suggest that DNA hypomethylation leads to aneuploidy by altering the DNA methylation landscape at the centromere that is necessary to ensure proper chromosomes segregation by recruiting the proteins necessary to build up a functional kinetochore. PMID:26771138

  20. Polyethylene glycol and divalent salt-induced DNA reentrant condensation revealed by single molecule measurements.

    PubMed

    Cheng, Chao; Jia, Jun-Li; Ran, Shi-Yong

    2015-05-21

    In this study, we investigated the DNA condensation induced by polyethylene glycol (PEG) with different molecular weights (PEG 600 and PEG 6000) in the presence of NaCl or MgCl2 by using magnetic tweezers (MT) and atomic force microscopy (AFM). The MT measurements show that with increasing NaCl concentration, the critical condensation force in the PEG 600-DNA or PEG 6000-DNA system increased approximately linearly. PEG 6000 solution has a larger critical force than PEG 600 solution at a given NaCl concentration. In comparison, a parabolic trend of the critical condensation force was observed with increasing MgCl2 concentration, indicating that DNA undergoes a reentrant condensation. The AFM results show that the morphologies of the compacted DNA-PEG complexes depended on the salt concentration and were consistent with the MT results.

  1. Condensations of single DNA molecules induced by heptaplatin and its chiral isomer

    SciTech Connect

    Zhang, Hong-Yan; Liu, Yu-Ru; Li, Wei; Li, Hui; Dou, Shuo-Xing; Xie, Ping; Wang, Wei-Chi; Wang, Peng-Ye

    2014-08-15

    Heptaplatin is a third-generation platinum antitumor drug. It has a chiral isomer. We studied the interactions between the two isomers and DNA by using magnetic tweezers and atomic force microscopy (AFM) to investigate the effect of chiralities of the isomers on the interactions. We found that the extension curves and average condensation rates of DNA molecules incubated with heptaplatin were nearly the same as those incubated with its chiral isomer. In addition, the structures of DNA molecules incubated with heptaplatin were also similar to those incubated with its chiral isomer. These results indicate the difference in chirality of the two isomers does not induce different interactions of the isomers with DNA. Our study may facilitate the understanding of interactions of platinum complexes with DNA and the design of new antitumor platinum complexes.

  2. Human papillomavirus type 16 DNA-induced malignant transformation of NIH 3T3 cells

    SciTech Connect

    Yasumoto, S.; Burkhardt, A.L.; Doniger, J.; DiPaolo, J.A.

    1986-02-01

    A biological function for human papillomavirus 16 (HPV 16) DNA was demonstrated by transformation of NIH 3T3 cells. HPV 16 DNA has been found frequently in genital cancer and has been classified as a papillomavirus on the basis of DNA homology. A recombinant HPV 16 DNA (pSHPV16d), which contains a head-to-tail dimer of the full-length HPV 16 genome, induced morphologic transformation; the transformed cells were tumorigenic in nude mice. Expression of transforming activity was unique because of the long latency period (more than 4 weeks) required for induction of morphologic transformation and because the transfected DNA existed primarily in a multimeric form with some rearrangement. Furthermore, virus-specific RNAs were expressed in the transformants. The transformation of NIH 3T3 cells provides a model for analyzing the functions of HPV 16, which is associated with cervical carcinomas.

  3. TDAB-induced DNA plasmid condensation on the surface of a reconstructed boron doped silicon substrate

    NASA Astrophysics Data System (ADS)

    Mougin, Antoine; Babak, Valéry G.; Palmino, Frank; Bêche, Eric; Baros, Francis; Hunting, Darel J.; Sanche, Léon; Fromm, Michel

    Our study aims at a better control and understanding of the transfer of a complex [DNA supercoiled plasmid - dodecyltrimethylammonium surfactant] layer from a liquid-vapour water interface onto a silicon surface without any additional cross-linker. The production of the complexed layer and its transfer from the aqueous subphase to the substrate is achieved with a Langmuir-Blodgett device. The substrate consists of a reconstructed boron doped silicon substrate with a nanometer-scale roughness. Using X-ray photoelectron spectroscopy and atomic force microscopy measurements, it is shown that the DNA complexes are stretched in a disorderly manner throughout a 2-4 nm high net-like structure. This architecture is composed of tilted cationic surfactant molecules bound electrostatically to DNA, which exhibits a characteristic network arrangement with a measured average fiber diameter of about 45 ± 15 nm covering the entire surface. The mechanism of transfer of this layer onto the planar surface of the semi-conductor and the parameters of the process are analysed and illustrated by atomic force microscopy snapshots. The molecular layer exhibits the typical characteristics of a spinodal decomposition pattern or dewetting features. Plasmid molecules appear like long flattened fibers covering the surface, forming holes of various shapes and areas. The cluster-cluster aggregation of the complex structure gets very much denser on the substrate edge. The supercoiled DNA plasmids undergo conformational changes and a high degree of condensation and aggregation is observed. Perspectives and potential applications are considered.

  4. Molecular-based rapid inventories of sympatric diversity: a comparison of DNA barcode clustering methods applied to geography-based vs clade-based sampling of amphibians.

    PubMed

    Paz, Andrea; Crawford, Andrew J

    2012-11-01

    Molecular markers offer a universal source of data for quantifying biodiversity. DNA barcoding uses a standardized genetic marker and a curated reference database to identify known species and to reveal cryptic diversity within wellsampled clades. Rapid biological inventories, e.g. rapid assessment programs (RAPs), unlike most barcoding campaigns, are focused on particular geographic localities rather than on clades. Because of the potentially sparse phylogenetic sampling, the addition of DNA barcoding to RAPs may present a greater challenge for the identification of named species or for revealing cryptic diversity. In this article we evaluate the use of DNA barcoding for quantifying lineage diversity within a single sampling site as compared to clade-based sampling, and present examples from amphibians. We compared algorithms for identifying DNA barcode clusters (e.g. species, cryptic species or Evolutionary Significant Units) using previously published DNA barcode data obtained from geography-based sampling at a site in Central Panama, and from clade-based sampling in Madagascar. We found that clustering algorithms based on genetic distance performed similarly on sympatric as well as clade-based barcode data, while a promising coalescent-based method performed poorly on sympatric data. The various clustering algorithms were also compared in terms of speed and software implementation. Although each method has its shortcomings in certain contexts, we recommend the use of the ABGD method, which not only performs fairly well under either sampling method, but does so in a few seconds and with a user-friendly Web interface.

  5. Ultraviolet-induced cell death is independent of DNA replication in rat kangaroo cells.

    PubMed

    Miyaji, E N; Menck, C F

    1995-05-01

    Rat kangaroo (Potorous tridactylus) cells have an efficient repair system for photoreactivation of lethal lesions induced by 254 nm UV. However, this ability is lost with increasing time after UV, being completely ineffective after 24 h. Critical events leading to UV-induced cell death must occur within this period of time. DNA synthesis was inhibited by the DNA polymerase inhibitor aphidicolin and the loss of the capability to photorepair lethal lesions was maintained as for replicating cells. Similar data were obtained in synchronized cells UV irradiated immediately before S phase. Under the same conditions, the ability to remove cyclobutane pyrimidine dimers by photoreactivation in these cells remained unchanged 24 h after irradiation. These data indicate that the critical events responsible for UV-induced cell death occur in the absence of DNA replication.

  6. Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells.

    PubMed

    Hirsch, Matthew L; Fagan, B Matthew; Dumitru, Raluca; Bower, Jacquelyn J; Yadav, Swati; Porteus, Matthew H; Pevny, Larysa H; Samulski, R Jude

    2011-01-01

    Human embryonic stem cells (hESCs) are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV) single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication.

  7. Mcl-1 protects prostate cancer cells from cell death mediated by chemotherapy-induced DNA damage

    PubMed Central

    Reiner, Teresita; de las Pozas, Alicia; Parrondo, Ricardo; Palenzuela, Deanna; Cayuso, William; Rai, Priyamvada; Perez-Stable, Carlos

    2015-01-01

    The anti-apoptotic protein Mcl-1 is highly expressed in castration-resistant prostate cancer (CRPC), resulting in resistance to apoptosis and association with poor prognosis. Although predominantly localized in the cytoplasm, there is evidence that Mcl-1 exhibits nuclear localization where it is thought to protect against DNA damage-induced cell death. The role of Mcl-1 in mediating resistance to chemotherapy-induced DNA damage in prostate cancer (PCa) is not known. We show in human PCa cell lines and in TRAMP, a transgenic mouse model of PCa, that the combination of the antimitotic agent ENMD-1198 (analog of 2-methoxyestradiol) with betulinic acid (BA, increases proteotoxic stress) targets Mcl-1 by increasing its proteasomal degradation, resulting in increased γH2AX (DNA damage) and apoptotic/necrotic cell death. Knockdown of Mcl-1 in CRPC cells leads to elevated γH2AX, DNA strand breaks, and cell death after treatment with 1198 + BA- or doxorubicin. Additional knockdowns in PC3 cells suggests that cytoplasmic Mcl-1 protects against DNA damage by blocking the mitochondrial release of apoptosis-inducing factor and thereby preventing its nuclear translocation and subsequent interaction with the cyclophilin A endonuclease. Overall, our results suggest that chemotherapeutic agents that target Mcl-1 will promote cell death in response to DNA damage, particularly in CRPC. PMID:26425662

  8. [Mammalian DNA methylation and its roles during the induced re-programming of somatic cells].

    PubMed

    Hongwei, Song; Tiezhu, An; Shanhua, Piao; Chunsheng, Wang

    2014-05-01

    The technology of induced pluripotent stem cell (iPS) provides the possibility to reverse the terminal differentiated cells to pluripotent stem cells, and is therefore of great importance in both the theoretical research of stem cells and regenerative medicine. However, the efficiency of current induced reprogramming methods is extremely low, and the incomplete reprogramming often happens. It has been reported that some epigenetic memory of the somatic cells exists in these incomplete reprogrammed iPS cells, and DNA methylation, as a relative long-term and stable epigenetic modification, is one of the important factors that influence the efficiency of reprogramming and differentiative capacity of iPS cells. Mammalian DNA methylation, which normally appears on the CpG sites, occurs on the fifth carbon atom of the cytosine ring. DNA methylation can modulate the expression of somatic cell specific genes, and pluripotent genes; hence, it plays important roles in the processes of mammalian gene regulation, embryonic development and cell reprogramming. In addition, it has also been found that abnormal DNA methylation may lead to the disorder of genetic imprinting and the inactivation of X chromosome in iPS cells. Therefore, in order to provide a concise guidance of DNA methylation studies in iPS, we mainly review the mechanism, the distribution features of DNA methylation, and its roles in induced reprogramming of somatic cells. PMID:24846992

  9. UV-induced DNA damage in Cyclops abyssorum tatricus populations from clear and turbid alpine lakes

    PubMed Central

    Tartarotti, Barbara; Saul, Nadine; Chakrabarti, Shumon; Trattner, Florian; Steinberg, Christian E. W.; Sommaruga, Ruben

    2014-01-01

    Zooplankton from clear alpine lakes thrive under high levels of solar UV radiation (UVR), but in glacially turbid ones they are more protected from this damaging radiation. Here, we present results from experiments done with Cyclops abyssorum tatricus to assess UV-induced DNA damage and repair processes using the comet assay. Copepods were collected from three alpine lakes of differing UV transparency ranging from clear to glacially turbid, and exposed to artificial UVR. In addition, photoprotection levels [mycosporine-like amino acids (MAAs) and lipophilic antioxidant capacity] were estimated in the test populations. Similar UV-induced DNA damage levels were observed among the copepods from all lakes, but background DNA damage (time zero and dark controls) was lowest in the copepods from the glacially turbid lake, resulting in a higher relative DNA damage accumulation. Most DNA strand breaks were repaired after recovery in the dark. Low MAA concentrations were found in the copepods from the glacially turbid lake, while the highest levels were observed in the population from the most UV transparent lake. However, the highest lipophilic antioxidant capacities were measured in the copepods from the lake with intermediate UV transparency. Photoprotection and the ability to repair DNA damage, and consequently reducing UV-induced damage, are part of the response mechanisms in zooplankton to changes in water transparency caused by glacier retreat. PMID:24616551

  10. Viral Single-Strand DNA Induces p53-Dependent Apoptosis in Human Embryonic Stem Cells

    PubMed Central

    Hirsch, Matthew L.; Fagan, B. Matthew; Dumitru, Raluca; Bower, Jacquelyn J.; Yadav, Swati; Porteus, Matthew H.; Pevny, Larysa H.; Samulski, R. Jude

    2011-01-01

    Human embryonic stem cells (hESCs) are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV) single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication. PMID:22114676

  11. Cytogenetic evidence that DNA topoisomerase II is not involved in radiation induced chromsome-type aberrations.

    PubMed

    Mosesso, P; Pepe, G; Ottavianelli, A; Schinoppi, A; Cinelli, S

    2015-11-01

    ICRF-187 (Cardioxane™, Chiron) is a catalytic inhibitor of DNA topoisomerase II (Topo II), proposed to act by blocking Topo II-mediated DNA cleavage without stabilizing DNA-Topo II-"cleavable complexes". In this study ICRF-187 was used to evaluate the potential involvement of DNA topoisomerase II in the formation of the radiation-induced chromosome-type aberrations in the G0 phase of the cell cycle in human lymphocytes from three healthy male donors. This is based on many evidences that DNA topoisomerases are involved in DNA recombination, mainly of illegitimate type (non-homologous) both in vitro and in vivo. The results obtained clearly indicated that ICRF-187 did not induce per se any chromosomal damage. When challenged with the non-catalytic Topo II poison VP-16 (etoposide), which acts by stabilizing the "cleavable complex" generating "protein concealed" DSB's and thus chromosomal aberrations, it completely abolished the significant induction of chromosome-type aberrations and formation of dicentric chromosomes. This indicates that ICRF-187 acts effectively as catalytic inhibitor of Topo II. On the other hand, when X-ray treatments were challenged with ICRF-187 using experimental conditions as for VP-16 treatments, no modification of the incidence of chromosome-type aberrations and dicentric chromosomes was observed. On this basis, we conclude that Topo II is not involved in the formation of X-ray-induced chromosome-type aberrations and dicentric chromosomes in human lymphocytes in the G0 phase of the cell cycle. PMID:26520368

  12. DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma

    SciTech Connect

    Kim, G. J.; Lee, J. K.; Kim, W.; Kim, K. T.

    2010-01-11

    Nonthermal plasma is known to induce animal cell death but the mechanism is not yet clear. Here, cellular and biochemical regulation of cell apoptosis is demonstrated for plasma treated cells. Surface type nonthermal air plasma triggered apoptosis of B16F10 mouse melanoma cancer cells causing DNA damage and mitochondria dysfunction. Plasma treatment activated caspase-3, apoptosis executioner. The plasma treated cells also accumulated gamma-H2A.X, marker for DNA double strand breaks, and p53 tumor suppressor gene as a response to DNA damage. Interestingly, cytochrome C was released from mitochondria and its membrane potential was changed significantly.

  13. DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma

    NASA Astrophysics Data System (ADS)

    Kim, G. J.; Kim, W.; Kim, K. T.; Lee, J. K.

    2010-01-01

    Nonthermal plasma is known to induce animal cell death but the mechanism is not yet clear. Here, cellular and biochemical regulation of cell apoptosis is demonstrated for plasma treated cells. Surface type nonthermal air plasma triggered apoptosis of B16F10 mouse melanoma cancer cells causing DNA damage and mitochondria dysfunction. Plasma treatment activated caspase-3, apoptosis executioner. The plasma treated cells also accumulated gamma-H2A.X, marker for DNA double strand breaks, and p53 tumor suppressor gene as a response to DNA damage. Interestingly, cytochrome C was released from mitochondria and its membrane potential was changed significantly.

  14. Methylglyoxal-induced DNA-protein cross-links and cytotoxicity in Chinese hamster ovary cells.

    PubMed

    Brambilla, G; Sciabà, L; Faggin, P; Finollo, R; Bassi, A M; Ferro, M; Marinari, U M

    1985-05-01

    The technique of alkaline elution was applied to study the capacity of methylglyoxal to induce DNA damage and repair in Chinese hamster ovary cells. DNA cross-linking was observed after a 90-min exposure to a subtoxic dose (1.5 mM), and the cross-links were fully repaired by 24 h. The cross-linking appeared to be DNA-protein in nature, since proteinase treatment removed the effect. When the same cells were exposed to methylglyoxal in the presence of a rat liver metabolic system, both cytotoxicity and cross-linking frequency were significantly reduced.

  15. Target-Induced and Equipment-Free DNA Amplification with a Simple Paper Device.

    PubMed

    Liu, Meng; Hui, Christy Y; Zhang, Qiang; Gu, Jimmy; Kannan, Balamurali; Jahanshahi-Anbuhi, Sana; Filipe, Carlos D M; Brennan, John D; Li, Yingfu

    2016-02-18

    We report on a paper device capable of carrying out target-induced rolling circle amplification (RCA) to produce massive DNA amplicons that can be easily visualized. Interestingly, we observed that RCA was more proficient on paper than in solution, which we attribute to a significantly higher localized concentration of immobilized DNA. Furthermore, we have successfully engineered a fully functional paper device for sensitive DNA or microRNA detection via printing of all RCA-enabling molecules within a polymeric sugar film formed from pullulan, which was integrated with the paper device. This encapsulation not only stabilizes the entrapped reagents at room temperature but also enables colorimetric bioassays with minimal steps.

  16. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    SciTech Connect

    Han, Xu; Ptasinska, Sylwia; Klas, Matej; Liu, Yueying; Sharon Stack, M.

    2013-06-10

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  17. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Klas, Matej; Liu, Yueying; Sharon Stack, M.; Ptasinska, Sylwia

    2013-06-01

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  18. DNA Damage Responses Are Induced by tRNA Anticodon Nucleases and Hygromycin B

    PubMed Central

    Beetz, Anja; Meinhardt, Friedhelm

    2016-01-01

    Previous studies revealed DNA damage to occur during the toxic action of PaT, a fungal anticodon ribonuclease (ACNase) targeting the translation machinery via tRNA cleavage. Here, we demonstrate that other translational stressors induce DNA damage-like responses in yeast as well: not only zymocin, another ACNase from the dairy yeast Kluyveromyces lactis, but also translational antibiotics, most pronouncedly hygromycin B (HygB). Specifically, DNA repair mechanisms BER (base excision repair), HR (homologous recombination) and PRR (post replication repair) provided protection, whereas NHEJ (non-homologous end-joining) aggravated toxicity of all translational inhibitors. Analysis of specific BER mutants disclosed a strong HygB, zymocin and PaT protective effect of the endonucleases acting on apurinic sites. In cells defective in AP endonucleases, inactivation of the DNA glycosylase Ung1 increased tolerance to ACNases and HygB. In addition, Mag1 specifically contributes to the repair of DNA lesions caused by HygB. Consistent with DNA damage provoked by translation inhibitors, mutation frequencies were elevated upon exposure to both fungal ACNases and HygB. Since polymerase ζ contributed to toxicity in all instances, error-prone lesion-bypass probably accounts for the mutagenic effects. The finding that differently acting inhibitors of protein biosynthesis induce alike cellular responses in DNA repair mutants is novel and suggests the dependency of genome stability on translational fidelity. PMID:27472060

  19. Spatiotemporal kinetics of γ-H2AX protein on charged particles induced DNA damage

    NASA Astrophysics Data System (ADS)

    Niu, H.; Chang, H. C.; Cho, I. C.; Chen, C. H.; Liu, C. S.; Chou, W. T.

    2014-08-01

    In several researches, it has been demonstrated that charged particles can induce more complex DNA damages. These complex damages have higher ability to cause the cell death or cell carcinogenesis. For this reason, clarifying the DNA repair mechanism after charged particle irradiation plays an important role in the development of charged particle therapy and space exploration. Unfortunately, the detail spatiotemporal kinetic of DNA damage repair is still unclear. In this study, we used γ-H2AX protein to investigate the spatiotemporal kinetics of DNA double strand breaks in alpha-particle irradiated HeLa cells. The result shows that the intensity of γ-H2AX foci increased gradually, and reached to its maximum at 30 min after irradiation. A good linear relationship can be observed between foci intensity and radiation dose. After 30 min, the γ-H2AX foci intensity was decreased with time passed, but remained a large portion (∼50%) at 48 h passed. The data show that the dissolution rate of γ-H2AX foci agreed with two components DNA repairing model. These results suggest that charged particles can induce more complex DNA damages and causing the retardation of DNA repair.

  20. DNA Damage Responses Are Induced by tRNA Anticodon Nucleases and Hygromycin B.

    PubMed

    Wemhoff, Sabrina; Klassen, Roland; Beetz, Anja; Meinhardt, Friedhelm

    2016-01-01

    Previous studies revealed DNA damage to occur during the toxic action of PaT, a fungal anticodon ribonuclease (ACNase) targeting the translation machinery via tRNA cleavage. Here, we demonstrate that other translational stressors induce DNA damage-like responses in yeast as well: not only zymocin, another ACNase from the dairy yeast Kluyveromyces lactis, but also translational antibiotics, most pronouncedly hygromycin B (HygB). Specifically, DNA repair mechanisms BER (base excision repair), HR (homologous recombination) and PRR (post replication repair) provided protection, whereas NHEJ (non-homologous end-joining) aggravated toxicity of all translational inhibitors. Analysis of specific BER mutants disclosed a strong HygB, zymocin and PaT protective effect of the endonucleases acting on apurinic sites. In cells defective in AP endonucleases, inactivation of the DNA glycosylase Ung1 increased tolerance to ACNases and HygB. In addition, Mag1 specifically contributes to the repair of DNA lesions caused by HygB. Consistent with DNA damage provoked by translation inhibitors, mutation frequencies were elevated upon exposure to both fungal ACNases and HygB. Since polymerase ζ contributed to toxicity in all instances, error-prone lesion-bypass probably accounts for the mutagenic effects. The finding that differently acting inhibitors of protein biosynthesis induce alike cellular responses in DNA repair mutants is novel and suggests the dependency of genome stability on translational fidelity. PMID:27472060

  1. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation

    PubMed Central

    McDonald, James I.; Celik, Hamza; Rois, Lisa E.; Fishberger, Gregory; Fowler, Tolison; Rees, Ryan; Kramer, Ashley; Martens, Andrew; Edwards, John R.

    2016-01-01

    ABSTRACT Advances in sequencing technology allow researchers to map genome-wide changes in DNA methylation in development and disease. However, there is a lack of experimental tools to site-specifically manipulate DNA methylation to discern the functional consequences. We developed a CRISPR/Cas9 DNA methyltransferase 3A (DNMT3A) fusion to induce DNA methylation at specific loci in the genome. We induced DNA methylation at up to 50% of alleles for targeted CpG dinucleotides. DNA methylation levels peaked within 50 bp of the short guide RNA (sgRNA) binding site and between pairs of sgRNAs. We used our approach to target methylation across the entire CpG island at the CDKN2A promoter, three CpG dinucleotides at the ARF promoter, and the CpG island within the Cdkn1a promoter to decrease expression of the target gene. These tools permit mechanistic studies of DNA methylation and its role in guiding molecular processes that determine cellular fate. PMID:27170255

  2. Cadmium-induced DNA damage and mutations in Arabidopsis plantlet shoots identified by DNA fingerprinting.

    PubMed

    Liu, Wan; Sun, Lizong; Zhong, Ming; Zhou, Qixing; Gong, Zongqiang; Li, Peijun; Tai, Peidong; Li, Xiaojun

    2012-11-01

    Random amplified polymorphic DNA (RAPD) test is a feasible method to evaluate the toxicity of environmental pollutants on vegetal organisms. Herein, Arabidopsis thaliana (Arabidopsis) plantlets following Cadmium (Cd) treatment for 26 d were screened for DNA genetic alterations by DNA fingerprinting. Four primers amplified 20-23 mutated RAPD fragments in 0.125-3.0 mg L(-1) Cd-treated Arabidopsis plantlets, respectively. Cloning and sequencing analysis of eight randomly selected mutated fragments revealed 99-100% homology with the genes of VARICOSE-Related, SLEEPY1 F-box, 40S ribosomal protein S3, phosphoglucomutase, and noncoding regions in Arabidopsis genome correspondingly. The results show the ability of RAPD analysis to detect significant genetic alterations in Cd-exposed seedlings. Although the exact functional importance of the other mutated bands is unknown, the presence of mutated loci in Cd-treated seedlings, prior to the onset of significant physiological effects, suggests that these altered loci are the early events in Cd-treated Arabidopsis seedlings and would greatly improve environmental risk assessment.

  3. Comparative studies on field-induced stretching behavior of single-walled and multiwalled carbon nanotube clusters.

    PubMed

    Tie, Weiwei; Bhattacharyya, Surjya Sarathi; Park, Hye Ryung; Lee, Joong Hee; Lee, Sang Won; Lee, Tae Hoon; Lee, Young Hee; Lee, Seung Hee

    2014-07-01

    We demonstrate distinct entanglement of single-walled carbon nanotube (SWCNT) and multiwalled carbon nanotube (MWCNT) clusters in nematic liquid crystal medium using scanning electron microscopy technique and the entanglement influence on electric field-induced stretching phenomena of the said clusters in the same medium under optical microscopy investigation. The observed stretching threshold field for MWCNT clusters is found to be higher than the SWCNT counterpart caused by the interplay between attractive field-induced dipolar interaction of intercarbon nanotube (CNT) bundles and the distinct degree of entanglement of neighboring CNT bundles. Subsequently observed different tensile elasticity modulus results for different CNT kinds also confirm different CNT bundle entanglement and attractive dipolar interaction between adjacent CNT bundles in CNT clusters are responsible for distinct stretching threshold field behavior.

  4. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles

    SciTech Connect

    Rezvanfar, Mohammad Amin; Rezvanfar, Mohammad Ali; Shahverdi, Ahmad Reza; Ahmadi, Abbas; Baeeri, Maryam; Mohammadirad, Azadeh; Abdollahi, Mohammad

    2013-02-01

    Cisplatin (CIS), an anticancer alkylating agent, induces DNA adducts and effectively cross links the DNA strands and so affects spermatozoa as a male reproductive toxicant. The present study investigated the cellular/biochemical mechanisms underlying possible protective effect of selenium nano-particles (Nano-Se) as an established strong antioxidant with more bioavailability and less toxicity, on reproductive toxicity of CIS by assessment of sperm characteristics, sperm DNA integrity, chromatin quality and spermatogenic disorders. To determine the role of oxidative stress (OS) in the pathogenesis of CIS gonadotoxicity, the level of lipid peroxidation (LPO), antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) and peroxynitrite (ONOO) as a marker of nitrosative stress (NS) and testosterone (T) concentration as a biomarker of testicular function were measured in the blood and testes. Thirty-two male Wistar rats were equally divided into four groups. A single IP dose of CIS (7 mg/kg) and protective dose of Nano-Se (2 mg/kg/day) were administered alone or in combination. The CIS-exposed rats showed a significant increase in testicular and serum LPO and ONOO level, along with a significant decrease in enzymatic antioxidants levels, diminished serum T concentration and abnormal histologic findings with impaired sperm quality associated with increased DNA damage and decreased chromatin quality. Coadministration of Nano-Se significantly improved the serum T, sperm quality, and spermatogenesis and reduced CIS-induced free radical toxic stress and spermatic DNA damage. In conclusion, the current study demonstrated that Nano-Se may be useful to prevent CIS-induced gonadotoxicity through its antioxidant potential. Highlights: ► Cisplatin (CIS) affects spermatozoa as a male reproductive toxicant. ► Effect of Nano-Se on CIS-induced spermatotoxicity was investigated. ► CIS-exposure induces oxidative sperm DNA damage

  5. p53-dependent SIRT6 expression protects Aβ42-induced DNA damage

    PubMed Central

    Jung, Eun Sun; Choi, Hyunjung; Song, Hyundong; Hwang, Yu Jin; Kim, Ahbin; Ryu, Hoon; Mook-Jung, Inhee

    2016-01-01

    Alzheimer’s disease (AD) is the most common type of dementia and age-related neurodegenerative disease. Elucidating the cellular changes that occur during ageing is an important step towards understanding the pathogenesis and progression of neurodegenerative disorders. SIRT6 is a member of the mammalian sirtuin family of anti-aging genes. However, the relationship between SIRT6 and AD has not yet been elucidated. Here, we report that SIRT6 protein expression levels are reduced in the brains of both the 5XFAD AD mouse model and AD patients. Aβ42, a major component of senile plaques, decreases SIRT6 expression, and Aβ42-induced DNA damage is prevented by the overexpression of SIRT6 in HT22 mouse hippocampal neurons. Also, there is a strong negative correlation between Aβ42-induced DNA damage and p53 levels, a protein involved in DNA repair and apoptosis. In addition, upregulation of p53 protein by Nutlin-3 prevents SIRT6 reduction and DNA damage induced by Aβ42. Taken together, this study reveals that p53-dependent SIRT6 expression protects cells from Aβ42-induced DNA damage, making SIRT6 a promising new therapeutic target for the treatment of AD. PMID:27156849

  6. Positive feedback regulation of p53 transactivity by DNA damage-induced ISG15 modification

    PubMed Central

    Park, Jong Ho; Yang, Seung Wook; Park, Jung Mi; Ka, Seung Hyeun; Kim, Ji-Hoon; Kong, Young-Yun; Jeon, Young Joo; Seol, Jae Hong; Chung, Chin Ha

    2016-01-01

    p53 plays a pivotal role in tumour suppression under stresses, such as DNA damage. ISG15 has been implicated in the control of tumorigenesis. Intriguingly, the expression of ISG15, UBE1L and UBCH8 is induced by DNA-damaging agents, such as ultraviolet and doxorubicin, which are known to induce p53. Here, we show that the genes encoding ISG15, UBE1L, UBCH8 and EFP, have the p53-responsive elements and their expression is induced in a p53-dependent fashion under DNA damage conditions. Furthermore, DNA damage induces ISG15 conjugation to p53 and this modification markedly enhances the binding of p53 to the promoters of its target genes (for example, CDKN1 and BAX) as well as of its own gene by promoting phosphorylation and acetylation, leading to suppression of cell growth and tumorigenesis. These findings establish a novel feedback circuit between p53 and ISG15-conjugating system for positive regulation of the tumour suppressive function of p53 under DNA damage conditions. PMID:27545325

  7. Low energy electron induced damage to plasmid DNA pQE30

    SciTech Connect

    Kumar, S. V. K.; Pota, Tasneem; Peri, Dinakar; Dongre, Anushka D.; Rao, Basuthkar J.

    2012-07-28

    Low energy electrons (LEEs) are produced in copious amounts by the primary radiation used in radiation therapy. The damage caused to the DNA by these secondary electrons in the energy range 5-22 eV has been studied to understand their possible role in radiation induced damage. Electrons are irradiated on dried films of plasmid DNA (pQE30) and analysed using agarose gel electrophoresis. Single strand breaks (SSBs) induced by LEE to supercoiled plasmid DNA show resonance structures at 7, 12, and 15 eV for low doses and 6, 10, and {approx}18 eV at saturation doses. The present measurements have an overall agreement with the literature that LEEs resonantly induce SSBs in DNA. Resonant peaks in the SSBs induced by LEEs at 7, 12, and 15 eV with the lowest employed dose in the current study are somewhat different from those reported earlier by two groups. The observed differences are perhaps related to the irradiation dose, conditions and the nature of DNA employed, which is further elaborated.

  8. Oxidative Stress and Replication-Independent DNA Breakage Induced by Arsenic in Saccharomyces cerevisiae

    PubMed Central

    Litwin, Ireneusz; Bocer, Tomasz; Dziadkowiec, Dorota; Wysocki, Robert

    2013-01-01

    Arsenic is a well-established human carcinogen of poorly understood mechanism of genotoxicity. It is generally accepted that arsenic acts indirectly by generating oxidative DNA damage that can be converted to replication-dependent DNA double-strand breaks (DSBs), as well as by interfering with DNA repair pathways and DNA methylation. Here we show that in budding yeast arsenic also causes replication and transcription-independent DSBs in all phases of the cell cycle, suggesting a direct genotoxic mode of arsenic action. This is accompanied by DNA damage checkpoint activation resulting in cell cycle delays in S and G2/M phases in wild type cells. In G1 phase, arsenic activates DNA damage response only in the absence of the Yku70–Yku80 complex which normally binds to DNA ends and inhibits resection of DSBs. This strongly indicates that DSBs are produced by arsenic in G1 but DNA ends are protected by Yku70–Yku80 and thus invisible for the checkpoint response. Arsenic-induced DSBs are processed by homologous recombination (HR), as shown by Rfa1 and Rad52 nuclear foci formation and requirement of HR proteins for cell survival during arsenic exposure. We show further that arsenic greatly sensitizes yeast to phleomycin as simultaneous treatment results in profound accumulation of DSBs. Importantly, we observed a similar response in fission yeast Schizosaccharomyces pombe, suggesting that the mechanisms of As(III) genotoxicity may be conserved in other organisms. PMID:23935510

  9. Ultrafast DNA analysis by capillary electrophoresis/laser-induced fluorescence detection.

    PubMed

    Müller, O; Minarik, M; Foret, F

    1998-06-01

    The limits of ultrafast DNA analysis by CE were determined by investigating the influence of the effective capillary length and the electric field strength on the analysis time for a given peak resolution (10 bp). In accordance with theory, the use of a fast ramp power supply for narrow plug electrokinetic injection was found to be essential to minimize the extra column effects on peak dispersion. Two major column dispersion factors, longitudinal diffusion and thermal dispersion, were determined experimentally, as well as the influence of the electric field strength on the electrophoretic mobilities and diffusion coefficients of DNA. It was found that higher field strengths can be applied with lower thermal dispersion than predicted by classical CE models. This was attributed to the faster mass transport in the radial direction due to field-induced DNA orientation. Short capillaries (approximately 3-7 cm effective length) and moderate to high electric field strengths (approximately 600-800 V/cm) were used to perform a series of fast DNA separations. The dsDNA fragment standards phiX174/HaeIII and pBR322/HaeIII were separated within 30 s. The possibility for fast mutation detection was demonstrated using constant denaturant capillary electrophoresis (CDCE) for the analysis of a single base mutation in mitochondrial DNA in 72 s. The potential for fast DNA sequencing was illustrated by separating 300 ssDNA fragments within 180 s.

  10. Alpha interferon-induced antiviral response noncytolytically reduces replication defective adenovirus DNA in MDBK cells.

    PubMed

    Guo, Ju-Tao; Zhou, Tianlun; Guo, Haitao; Block, Timothy M

    2007-12-01

    Although alpha interferon (IFN-alpha) is of benefit in the treatment of viral hepatitis B, HBV replication has been refractory to the cytokine in commonly used hepatocyte-derived cell lines. In search for a cell culture system to study the mechanism by which IFN-alpha inhibits HBV replication, we infected a variety of cell lines with an adenoviral vector containing a replication competent 1.3-fold genome length HBV DNA (AdHBV) and followed by incubation with IFN-alpha. We found that IFN-alpha efficiently decreased the level of HBV DNA replicative intermediates in AdHBV infected Madin-Darby bovine kidney (MDBK) cells. Further analysis revealed, surprisingly, that IFN-alpha did not directly inhibit HBV replication, rather the amount of adenovirus DNA in the nuclei of MDBK cells was reduced. As a consequence, HBV RNA transcription and DNA replication were inhibited. Experiments with adenoviral vector expressing a green fluorescent protein (GFP) further supported the notion that IFN-alpha treatment noncytolytically eliminated adenovirus DNA, but did not kill the vector infected MDBK cells. Our data suggest that IFN-alpha-induced antiviral program is able to discriminate host cellular DNA from episomal viral DNA and might represent a novel pathway of interferon mediate innate defense against DNA virus infections.

  11. Nitroglycerin induces DNA damage and vascular cell death in the setting of nitrate tolerance.

    PubMed

    Mikhed, Yuliya; Fahrer, Jörg; Oelze, Matthias; Kröller-Schön, Swenja; Steven, Sebastian; Welschof, Philipp; Zinßius, Elena; Stamm, Paul; Kashani, Fatemeh; Roohani, Siyer; Kress, Joana Melanie; Ullmann, Elisabeth; Tran, Lan P; Schulz, Eberhard; Epe, Bernd; Kaina, Bernd; Münzel, Thomas; Daiber, Andreas

    2016-07-01

    Nitroglycerin (GTN) and other organic nitrates are widely used vasodilators. Their side effects are development of nitrate tolerance and endothelial dysfunction. Given the potential of GTN to induce nitro-oxidative stress, we investigated the interaction between nitro-oxidative DNA damage and vascular dysfunction in experimental nitrate tolerance. Cultured endothelial hybridoma cells (EA.hy 926) and Wistar rats were treated with GTN (ex vivo: 10-1000 µM; in vivo: 10, 20 and 50 mg/kg/day for 3 days, s.c.). The level of DNA strand breaks, 8-oxoguanine and O (6)-methylguanine DNA adducts was determined by Comet assay, dot blot and immunohistochemistry. Vascular function was determined by isometric tension recording. DNA adducts and strand breaks were induced by GTN in cells in vitro in a concentration-dependent manner. GTN in vivo administration leads to endothelial dysfunction, nitrate tolerance, aortic and cardiac oxidative stress, formation of DNA adducts, stabilization of p53 and apoptotic death of vascular cells in a dose-dependent fashion. Mice lacking O (6)-methylguanine-DNA methyltransferase displayed more vascular O (6)-methylguanine adducts and oxidative stress under GTN therapy than wild-type mice. Although we were not able to prove a causal role of DNA damage in the etiology of nitrate tolerance, the finding of GTN-induced DNA damage such as the mutagenic and toxic adduct O (6)-methylguanine, and cell death supports the notion that GTN based therapy may provoke adverse side effects, including endothelial function. Further studies are warranted to clarify whether GTN pro-apoptotic effects are related to an impaired recovery of patients upon myocardial infarction.

  12. The neuroprotectant ebselen inhibits oxidative DNA damage induced by dopamine in the presence of copper ions.

    PubMed

    Li, Yunbo; Cao, Zhuoxiao

    2002-09-13

    Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one), a seleno-organic compound with glutathione peroxidase-like activity, has been shown to be protective against brain ischemic injury and Parkinson's disease. This study was undertaken to investigate the protective effects of ebselen on oxidative DNA damage induced by dopamine in the presence of copper ions. Incubation of phiX-174 plasmid DNA with micromolar dopamine in the presence of Cu(II) resulted in a concentration-dependent induction of DNA strand breaks. Both a Cu(II)/Cu(I) redox cycle and H(2)O(2) formation were critically involved in the induction of DNA strand breaks by the dopamine/Cu(II) system. The presence of ebselen at micromolar concentrations led to a marked concentration-dependent inhibition of DNA strand breaks induced by the dopamine/Cu(II) system. Further studies showed that ebselen did not affect either the Cu(II)-mediated oxidation of dopamine to dopamine quinone or the reduction of Cu(II) to Cu(I) by dopamine. Instead, the presence of ebselen resulted in a marked decrease in the levels of H(2)O(2) derived from the Cu(II)-mediated oxidation of dopamine. Taken together, our results demonstrate for the first time that ebselen is able to inhibit the dopamine/Cu(II)-induced oxidative DNA damage, which appears to be attributable to the ability of ebselen to decrease the levels of H(2)O(2) derived from the dopamine/Cu(II) system. Since oxidative DNA damage has been implicated in the pathogenesis of various neurodegenerative diseases, the inhibition of oxidative DNA damage by ebselen may be responsible, at least partially, for its neuroprotective activities observed in both humans and experimental animals.

  13. DNA breakage induced by piceatannol and copper(II): Mechanism and anticancer properties

    PubMed Central

    LI, ZHENSHENG; YANG, XIAOZHAN; DONG, SHIWU; LI, XIAOHUI

    2012-01-01

    Piceatannol (3,3′,4,5′-tetrahydroxy-trans-stilbene; Pice), found in a variety of plant sources including grapes, red wine, peanuts and rhubarb, is known as a metabolite and analog of Resveratrol (3,5,4′-trihydroxy-trans-stilbene; Res) and has higher bioactivity than Res. To explore the mechanism of DNA damage induced by Pice in the presence of copper (Cu)(II), gel electrophoresis, UV-visible spectroscopy, fluorescence spectroscopy and Fourier transform infrared spectroscopy were used. The results of gel electrophoresis demonstrated that the hydroxyl radical played a critical role in DNA cleavage. Spectroscopy confirmed that the mechanism of DNA cleavage induced by Pice-Cu(II) involves the Haber Weiss and Fenton reactions. Pice chelates with Cu(II) as a bidentate ligand, and the Pice-Cu(II) complex undergoes intramolecular electron transfer to form the semiquinone radical anion and Cu(I), which may be reoxidated by O2 to form Cu(II) with hydroxyl radical generation. In brief, the formation of the hydroxyl radical and the Cu(II)/Cu(I) redox cycle play a key role in inducing DNA damage. In this process, Pice demonstrated pro-oxidant properties. Oxidative product(s) of Pice, semiquinone, was formed and Cu(I) was reoxidized to Cu(II). The redox cycling of copper generated reactive oxygen species, which induced DNA cleavage, the hallmark of cell apoptosis. The mechanism of DNA breakage induced by Pice-Cu(II) may be a significant pathway through which cancer cells are killed. PMID:22783397

  14. Mechanistic Modelling of DNA Repair and Cellular Survival Following Radiation-Induced DNA Damage

    PubMed Central

    McMahon, Stephen J.; Schuemann, Jan; Paganetti, Harald; Prise, Kevin M.

    2016-01-01

    Characterising and predicting the effects of ionising radiation on cells remains challenging, with the lack of robust models of the underlying mechanism of radiation responses providing a significant limitation to the development of personalised radiotherapy. In this paper we present a mechanistic model of cellular response to radiation that incorporates the kinetics of different DNA repair processes, the spatial distribution of double strand breaks and the resulting probability and severity of misrepair. This model enables predictions to be made of a range of key biological endpoints (DNA repair kinetics, chromosome aberration and mutation formation, survival) across a range of cell types based on a set of 11 mechanistic fitting parameters that are common across all cells. Applying this model to cellular survival showed its capacity to stratify the radiosensitivity of cells based on aspects of their phenotype and experimental conditions such as cell cycle phase and plating delay (correlation between modelled and observed Mean Inactivation Doses R2 > 0.9). By explicitly incorporating underlying mechanistic factors, this model can integrate knowledge from a wide range of biological studies to provide robust predictions and may act as a foundation for future calculations of individualised radiosensitivity. PMID:27624453

  15. Mechanistic Modelling of DNA Repair and Cellular Survival Following Radiation-Induced DNA Damage.

    PubMed

    McMahon, Stephen J; Schuemann, Jan; Paganetti, Harald; Prise, Kevin M

    2016-01-01

    Characterising and predicting the effects of ionising radiation on cells remains challenging, with the lack of robust models of the underlying mechanism of radiation responses providing a significant limitation to the development of personalised radiotherapy. In this paper we present a mechanistic model of cellular response to radiation that incorporates the kinetics of different DNA repair processes, the spatial distribution of double strand breaks and the resulting probability and severity of misrepair. This model enables predictions to be made of a range of key biological endpoints (DNA repair kinetics, chromosome aberration and mutation formation, survival) across a range of cell types based on a set of 11 mechanistic fitting parameters that are common across all cells. Applying this model to cellular survival showed its capacity to stratify the radiosensitivity of cells based on aspects of their phenotype and experimental conditions such as cell cycle phase and plating delay (correlation between modelled and observed Mean Inactivation Doses R(2) > 0.9). By explicitly incorporating underlying mechanistic factors, this model can integrate knowledge from a wide range of biological studies to provide robust predictions and may act as a foundation for future calculations of individualised radiosensitivity. PMID:27624453

  16. DNA Damage Signals and Space Radiation Risk

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.

  17. Role of platinum DNA damage-induced transcriptional inhibition in chemotherapy-induced neuronal atrophy and peripheral neurotoxicity.

    PubMed

    Yan, Fang; Liu, Johnson J; Ip, Virginia; Jamieson, Stephen M F; McKeage, Mark J

    2015-12-01

    Platinum-based anticancer drugs cause peripheral neurotoxicity by damaging sensory neurons within the dorsal root ganglia (DRG), but the mechanisms are incompletely understood. The roles of platinum DNA binding, transcription inhibition and altered cell size were investigated in primary cultures of rat DRG cells. Click chemistry quantitative fluorescence imaging of RNA-incorporated 5-ethynyluridine showed high, but wide ranging, global levels of transcription in individual neurons that correlated with their cell body size. Treatment with platinum drugs reduced neuronal transcription and cell body size to an extent that corresponded to the amount of preceding platinum DNA binding, but without any loss of neuronal cells. The effects of platinum drugs on neuronal transcription and cell body size were inhibited by blocking platinum DNA binding with sodium thiosulfate, and mimicked by treatment with a model transcriptional inhibitor, actinomycin D. In vivo oxaliplatin treatment depleted the total RNA content of DRG tissue concurrently with altering DRG neuronal size. These findings point to a mechanism of chemotherapy-induced peripheral neurotoxicity, whereby platinum DNA damage induces global transcriptional arrest leading in turn to neuronal atrophy. DRG neurons may be particularly vulnerable to this mechanism of toxicity because of their requirements for high basal levels of global transcriptional activity. Findings point to a new stepwise mechanism of chemotherapy-induced peripheral neurotoxicity, whereby platinum DNA damage induces global transcriptional arrest leading in turn to neuronal atrophy. Dorsal root ganglion neurons may be particularly vulnerable to this neurotoxicity because of their high global transcriptional outputs, demonstrated in this study by click chemistry quantitative fluorescence imaging.

  18. Long-Range HIV Genotyping Using Viral RNA and Proviral DNA for Analysis of HIV Drug Resistance and HIV Clustering

    PubMed Central

    Novitsky, Vlad; Zahralban-Steele, Melissa; McLane, Mary Fran; Moyo, Sikhulile; van Widenfelt, Erik; Gaseitsiwe, Simani; Makhema, Joseph

    2015-01-01

    The goal of the study was to improve the methodology of HIV genotyping for analysis of HIV drug resistance and HIV clustering. Using the protocol of Gall et al. (A. Gall, B. Ferns, C. Morris, S. Watson, M. Cotten, M. Robinson, N. Berry, D. Pillay, and P. Kellam, J Clin Microbiol 50:3838–3844, 2012, doi:10.1128/JCM.01516-12), we developed a robust methodology for amplification of two large fragments of viral genome covering about 80% of the unique HIV-1 genome sequence. Importantly, this method can be applied to both viral RNA and proviral DNA amplification templates, allowing genotyping in HIV-infected subjects with suppressed viral loads (e.g., subjects on antiretroviral therapy [ART]). The two amplicons cover critical regions across the HIV-1 genome (including pol and env), allowing analysis of mutations associated with resistance to protease inhibitors, reverse transcriptase inhibitors (nucleoside reverse transcriptase inhibitors [NRTIs] and nonnucleoside reverse transcriptase inhibitors [NNRTIs]), integrase strand transfer inhibitors, and virus entry inhibitors. The two amplicons generated span 7,124 bp, providing substantial sequence length and numbers of informative sites for comprehensive phylogenic analysis and greater refinement of viral linkage analyses in HIV prevention studies. The long-range HIV genotyping from proviral DNA was successful in about 90% of 212 targeted blood specimens collected in a cohort where the majority of patients had suppressed viral loads, including 65% of patients with undetectable levels of HIV-1 RNA loads. The generated amplicons could be sequenced by different methods, such as population Sanger sequencing, single-genome sequencing, or next-generation ultradeep sequencing. The developed method is cost-effective—the cost of the long-range HIV genotyping is under $140 per subject (by Sanger sequencing)—and has the potential to enable the scale up of public health HIV prevention interventions. PMID:26041893

  19. Long-Range HIV Genotyping Using Viral RNA and Proviral DNA for Analysis of HIV Drug Resistance and HIV Clustering.

    PubMed

    Novitsky, Vlad; Zahralban-Steele, Melissa; McLane, Mary Fran; Moyo, Sikhulile; van Widenfelt, Erik; Gaseitsiwe, Simani; Makhema, Joseph; Essex, M

    2015-08-01

    The goal of the study was to improve the methodology of HIV genotyping for analysis of HIV drug resistance and HIV clustering. Using the protocol of Gall et al. (A. Gall, B. Ferns, C. Morris, S. Watson, M. Cotten, M. Robinson, N. Berry, D. Pillay, and P. Kellam, J Clin Microbiol 50:3838-3844, 2012, doi:10.1128/JCM.01516-12), we developed a robust methodology for amplification of two large fragments of viral genome covering about 80% of the unique HIV-1 genome sequence. Importantly, this method can be applied to both viral RNA and proviral DNA amplification templates, allowing genotyping in HIV-infected subjects with suppressed viral loads (e.g., subjects on antiretroviral therapy [ART]). The two amplicons cover critical regions across the HIV-1 genome (including pol and env), allowing analysis of mutations associated with resistance to protease inhibitors, reverse transcriptase inhibitors (nucleoside reverse transcriptase inhibitors [NRTIs] and nonnucleoside reverse transcriptase inhibitors [NNRTIs]), integrase strand transfer inhibitors, and virus entry inhibitors. The two amplicons generated span 7,124 bp, providing substantial sequence length and numbers of informative sites for comprehensive phylogenic analysis and greater refinement of viral linkage analyses in HIV prevention studies. The long-range HIV genotyping from proviral DNA was successful in about 90% of 212 targeted blood specimens collected in a cohort where the majority of patients had suppressed viral loads, including 65% of patients with undetectable levels of HIV-1 RNA loads. The generated amplicons could be sequenced by different methods, such as population Sanger sequencing, single-genome sequencing, or next-generation ultradeep sequencing. The developed method is cost-effective-the cost of the long-range HIV genotyping is under $140 per subject (by Sanger sequencing)-and has the potential to enable the scale up of public health HIV prevention interventions. PMID:26041893

  20. A DNA damage-induced, SOS-independent checkpoint regulates cell division in Caulobacter crescentus.

    PubMed

    Modell, Joshua W; Kambara, Tracy K; Perchuk, Barrett S; Laub, Michael T

    2014-10-01

    Cells must coordinate DNA replication with cell division, especially during episodes of DNA damage. The paradigm for cell division control following DNA damage in bacteria involves the SOS response where cleavage of the transcriptional repressor LexA induces a division inhibitor. However, in Caulobacter crescentus, cells lacking the primary SOS-regulated inhibitor, sidA, can often still delay division post-damage. Here we identify didA, a second cell division inhibitor that is induced by DNA damage, but in an SOS-independent manner. Together, DidA and SidA inhibit division, such that cells lacking both inhibitors divide prematurely following DNA damage, with lethal consequences. We show that DidA does not disrupt assembly of the division machinery and instead binds the essential division protein FtsN to block cytokinesis. Intriguingly, mutations in FtsW and FtsI, which drive the synthesis of septal cell wall material, can suppress the activity of both SidA and DidA, likely by causing the FtsW/I/N complex to hyperactively initiate cell division. Finally, we identify a transcription factor, DriD, that drives the SOS-independent transcription of didA following DNA damage.

  1. A DNA Damage-Induced, SOS-Independent Checkpoint Regulates Cell Division in Caulobacter crescentus

    PubMed Central

    Modell, Joshua W.; Kambara, Tracy K.; Perchuk, Barrett S.; Laub, Michael T.

    2014-01-01

    Cells must coordinate DNA replication with cell division, especially during episodes of DNA damage. The paradigm for cell division control following DNA damage in bacteria involves the SOS response where cleavage of the transcriptional repressor LexA induces a division inhibitor. However, in Caulobacter crescentus, cells lacking the primary SOS-regulated inhibitor, sidA, can often still delay division post-damage. Here we identify didA, a second cell division inhibitor that is induced by DNA damage, but in an SOS-independent manner. Together, DidA and SidA inhibit division, such that cells lacking both inhibitors divide prematurely following DNA damage, with lethal consequences. We show that DidA does not disrupt assembly of the division machinery and instead binds the essential division protein FtsN to block cytokinesis. Intriguingly, mutations in FtsW and FtsI, which drive the synthesis of septal cell wall material, can suppress the activity of both SidA and DidA, likely by causing the FtsW/I/N complex to hyperactively initiate cell division. Finally, we identify a transcription factor, DriD, that drives the SOS-independent transcription of didA following DNA damage. PMID:25350732

  2. Quercetin ameliorates polychlorinated biphenyls-induced testicular DNA damage in rats.

    PubMed

    Lovato, F L; de Oliveira, C R; Adedara, I A; Barbisan, F; Moreira, K L S; Dalberto, M; da Rocha, M I U M; Marroni, N P; da Cruz, I B; Costabeber, I B

    2016-02-01

    Polychlorinated biphenyls (PCBs) are a group of environmental contaminants widely reported to cause gonadal toxicity in both humans and animals. This study investigated the amelioratory role of quercetin in PCBs-induced DNA damage in male Wistar rats. Polychlorinated biphenyls were administered intraperitoneally at a dose of 2 mg kg(-1) alone or in combination with quercetin (orally) at 50 mg kg(-1) for 25 days. Quercetin modulation of PCBs-induced gonadal toxicity was evaluated using selected oxidative stress indices, comet assay, measurement of DNA concentration and histology of the testes. Administration of PCBs alone caused a significant (P < 0.05) depletion in the total thiol level in testes of treated rats. Conversely, the levels of reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) production were markedly elevated in testes of PCBs-treated rats compared with control. Further, PCBs exposure produced statistically significant increases in DNA tail migration, degraded double-stranded DNA (dsDNA) concentration and histological alterations of testes of the treated rats compared to control. Quercetin cotreatment significantly improved the testicular antioxidant status, decreased DNA fragmentation and restored the testicular histology, thus demonstrating the protective effect of quercetin in PCBs-treated rats.

  3. DNA-Binding Kinetics Determines the Mechanism of Noise-Induced Switching in Gene Networks.

    PubMed

    Tse, Margaret J; Chu, Brian K; Roy, Mahua; Read, Elizabeth L

    2015-10-20

    Gene regulatory networks are multistable dynamical systems in which attractor states represent cell phenotypes. Spontaneous, noise-induced transitions between these states are thought to underlie critical cellular processes, including cell developmental fate decisions, phenotypic plasticity in fluctuating environments, and carcinogenesis. As such, there is increasing interest in the development of theoretical and computational approaches that can shed light on the dynamics of these stochastic state transitions in multistable gene networks. We applied a numerical rare-event sampling algorithm to study transition paths of spontaneous noise-induced switching for a ubiquitous gene regulatory network motif, the bistable toggle switch, in which two mutually repressive genes compete for dominant expression. We find that the method can efficiently uncover detailed switching mechanisms that involve fluctuations both in occupancies of DNA regulatory sites and copy numbers of protein products. In addition, we show that the rate parameters governing binding and unbinding of regulatory proteins to DNA strongly influence the switching mechanism. In a regime of slow DNA-binding/unbinding kinetics, spontaneous switching occurs relatively frequently and is driven primarily by fluctuations in DNA-site occupancies. In contrast, in a regime of fast DNA-binding/unbinding kinetics, switching occurs rarely and is driven by fluctuations in levels of expressed protein. Our results demonstrate how spontaneous cell phenotype transitions involve collective behavior of both regulatory proteins and DNA. Computational approaches capable of simulating dynamics over many system variables are thus well suited to exploring dynamic mechanisms in gene networks.

  4. PNA-induced assembly of fluorescent proteins using DNA as a framework.

    PubMed

    Gholami, Zahra; Brunsveld, Luc; Hanley, Quentin

    2013-08-21

    Controlled alignment of proteins on molecular frameworks requires the development of facile and orthogonal chemical approaches and molecular scaffolds. In this work, protein-PNA conjugates are brought forward as new chemical components allowing efficient assembly and alignment on DNA scaffolds. Site-selective monomeric teal fluorescent protein (mTFP)-peptide nucleic acid (PNA) (mTFP-PNA) conjugation was achieved by covalent linkage of the PNA to the protein through expressed protein ligation (EPL). A DNA beacon, with 6-Fam and Dabcyl at its ends, acts as a framework to create an assembled hetero-FRET system with the mTFP-PNA conjugate. Using fluorescence intensity, frequency domain lifetime measurements, and anisotropy measurements, the system was shown to produce FRET as indicated by decreased donor intensity, decreased donor lifetime, and increased donor anisotropy. Extension of the DNA scaffold allowed for the assembly of multiple mTFP-PNA constructs. Efficient formation of protein dimers and oligomers on the DNA-PNA frameworks could be shown, as visualized via size exclusion chromatography (SEC) and electrophoresis (SDS-PAGE). Assembly of multiple proteins in a row induced homo-FRET for the mTFP-PNA's assembled on the DNA scaffolds. The oligonucleotide framework allows an induced and controllable assembly of proteins by fusing them to PNAs directed to align on DNA scaffolds.

  5. DNA damage-induced centrosome amplification occurs via excessive formation of centriolar satellites.

    PubMed

    Löffler, H; Fechter, A; Liu, F Y; Poppelreuther, S; Krämer, A

    2013-06-13

    Centrosome amplification is a frequent phenomenon in malignancies and may facilitate tumorigenesis by promoting chromosomal instability. On the other hand, a centrosome inactivation checkpoint comprising centrosome amplification leading to elimination of cells by mitotic catastrophe has been described in response to DNA damage by ionizing radiation or cytostatic drugs. So far, the exact nature of DNA damage-induced centrosome amplification, which might be overduplication or fragmentation of existing centrosomes, has been controversial. To solve this controversy, we have established a method to distinguish between these two possibilities using A549 cells expressing photoconvertible CETN2-Dendra2. In response to various DNA-damaging treatments, centrosome amplification but not fragmentation was observed. Moreover, centrosome amplification was preceded by excessive formation of centrin-containing centriolar satellites, which were identified as de novo-generated atypical centrin dots staining positive for centriolar satellite markers but negative or only weakly positive for other established centrosomal markers, and which could be verified as centriolar satellites using immunogold electron microscopy. In line with this notion, disruption of dynein-mediated recruitment of centrosomal proteins via centriolar satellites suppressed centrosome amplification after DNA damage, and excessive formation of centriolar satellites could be inhibited by interference with Chk1, a known mediator of centrosome amplification in response to DNA damage. In conclusion, we provide a model in which a Chk1-mediated DNA damage checkpoint induces excessive formation of centriolar satellites constituting assembly platforms for centrosomal proteins, which subsequently leads to centrosome amplification. PMID:22824794

  6. The basic chemistry of exercise-induced DNA oxidation: oxidative damage, redox signaling, and their interplay

    PubMed Central

    Cobley, James N.; Margaritelis, Nikos V.; Morton, James P.; Close, Graeme L.; Nikolaidis, Michalis G.; Malone, John K.

    2015-01-01

    Acute exercise increases reactive oxygen and nitrogen species generation. This phenomenon is associated with two major outcomes: (1) redox signaling and (2) macromolecule damage. Mechanistic knowledge of how exercise-induced redox signaling and macromolecule damage are interlinked is limited. This review focuses on the interplay between exercise-induced redox signaling and DNA damage, using hydroxyl radical (·OH) and hydrogen peroxide (H2O2) as exemplars. It is postulated that the biological fate of H2O2 links the two processes and thus represents a bifurcation point between redox signaling and damage. Indeed, H2O2 can participate in two electron signaling reactions but its diffusion and chemical properties permit DNA oxidation following reaction with transition metals and ·OH generation. It is also considered that the sensing of DNA oxidation by repair proteins constitutes a non-canonical redox signaling mechanism. Further layers of interaction are provided by the redox regulation of DNA repair proteins and their capacity to modulate intracellular H2O2 levels. Overall, exercise-induced redox signaling and DNA damage may be interlinked to a greater extent than was previously thought but this requires further investigation. PMID:26136689

  7. Artesunate derived from traditional Chinese medicine induces DNA damage and repair.

    PubMed

    Li, Paul C H; Lam, Elena; Roos, Wynand P; Zdzienicka, Malgorzata Z; Kaina, Bernd; Efferth, Thomas

    2008-06-01

    Artesunate is a semisynthetic derivative from artemisinin, a natural product from the Chinese herb Artemisia annua L. It exerts antimalarial activity, and, additionally, artemisinin and its derivatives are active against cancer cells. The active moiety is an endoperoxide bridge. Its cleavage leads to the formation of reactive oxygen species and carbon-centered radicals. These highly reactive molecules target several proteins in Plasmodia, which is thought to result in killing of the microorganism. DNA damage induced by artemisinins has not yet been described. Here, we show that artesunate induces apoptosis and necrosis. It also induces DNA breakage in a dose-dependent manner as shown by single-cell gel electrophoresis. This genotoxic effect was confirmed by measuring the level of gamma-H2AX, which is considered to be an indication of DNA double-strand breaks (DSB). Polymerase beta-deficient cells were more sensitive than the wild-type to artesunate, indicating that the drug induces DNA damage that is repaired by base excision repair. irs1 and VC8 cells defective in homologous recombination (HR) due to inactivation of XRCC2 and BRCA2, respectively, were more sensitive to artesunate than the corresponding wild-type. This was also true for XR-V15B cells defective in nonhomologous end-joining (NHEJ) due to inactivation of Ku80. The data indicate that DSBs induced by artesunate are repaired by the HR and NHEJ pathways. They suggest that DNA damage induced by artesunate contributes to its therapeutic effect against cancer cells. PMID:18519695

  8. Antagonistic role of tea against sodium arsenite-induced oxidative DNA damage and inhibition of DNA repair in Swiss albino mice.

    PubMed

    Sinha, Dona; Roy, Madhumita

    2011-01-01

    Arsenic (As) contamination in groundwater is of increasing health concern in West Bengal, India. Arsenic has been associated with various human cancers, but the precise mechanism of its co-carcinogenic action is not clearly elucidated. Oxidative stress and defective repair mechanisms may promote accumulation of mutations and may be a stepping stone for carcinogenesis. Prevention of arsenic-induced oxidative stress and repair inhibition may reduce the chances of initiation of cancer. Tea polyphenols are reported to have excellent chemopreventive properties against cancer. This study aimed to elucidate the role of tea against arsenic-induced formation of 8-hydroxy-2'-deoxyguanosine (8OHdG) and arsenic-suppressed DNA repair in Swiss albino mice. Both green and black tea gave fruitful results in the reduction of 8OHdG and 8-oxoguanine DNA glycosylase (OGG1) in Swiss albino mice administered sodium arsenite (As III). DNA repair enzymes--such as PARP1, DNA β-polymerase, XRCC1, DNA ligase III, DNA protein kinase (catalytic subunit), XRCC 4, DNA ligase IV, and DNA topoisomerase IIβ--were induced by the phytochemicals at both the protein and genetic levels. Thus, tea polyphenols may prove effective in treating arsenic-induced carcinogenesis.

  9. Identification and characterization of the biosynthetic gene cluster of polyoxypeptin A, a potent apoptosis inducer

    PubMed Central

    2014-01-01

    Background Polyoxypeptin A was isolated from a culture broth of Streptomyces sp. MK498-98 F14, which has a potent apoptosis-inducing activity towards human pancreatic carcinoma AsPC-1 cells. Structurally, polyoxypeptin A is composed of a C15 acyl side chain and a nineteen-membered cyclodepsipeptide core that consists of six unusual nonproteinogenic amino acid residues (N-hydroxyvaline, 3-hydroxy-3-methylproline, 5-hydroxypiperazic acid, N-hydroxyalanine, piperazic acid, and 3-hydroxyleucine) at high oxidation states. Results A gene cluster containing 37 open reading frames (ORFs) has been sequenced and analyzed for the biosynthesis of polyoxypeptin A. We constructed 12 specific gene inactivation mutants, most of which abolished the production of polyoxypeptin A and only ΔplyM mutant accumulated a dehydroxylated analogue polyoxypeptin B. Based on bioinformatics analysis and genetic data, we proposed the biosynthetic pathway of polyoxypeptin A and biosynthetic models of six unusual amino acid building blocks and a PKS extender unit. Conclusions The identified gene cluster and proposed pathway for the biosynthesis of polyoxypeptin A will pave a way to understand the biosynthetic mechanism of the azinothricin family natural products and provide opportunities to apply combinatorial biosynthesis strategy to create more useful compounds. PMID:24506891

  10. An increase in negative supercoiling in bacteria reveals topology-reacting gene clusters and a homeostatic response mediated by the DNA topoisomerase I gene

    PubMed Central

    Ferrándiz, María-José; Martín-Galiano, Antonio J.; Arnanz, Cristina; Camacho-Soguero, Isabel; Tirado-Vélez, José-Manuel; de la Campa, Adela G.

    2016-01-01

    We studied the transcriptional response to an increase in DNA supercoiling in Streptococcus pneumoniae by using seconeolitsine, a new topoisomerase I inhibitor. A homeostatic response allowing recovery of supercoiling was observed in cells treated with subinhibitory seconeolitsine concentrations. Supercoiling increases of 40.7% (6 μM) and 72.9% (8 μM) were lowered to 8.5% and 44.1%, respectively. Likewise, drug removal facilitated the recovery of cell viability and DNA-supercoiling. Transcription of topoisomerase I depended on the supercoiling level. Also specific binding of topoisomerase I to the gyrase A gene promoter was detected by chromatin-immunoprecipitation. The transcriptomic response to 8 μM seconeolitsine had two stages. An early stage, associated to an increase in supercoiling, affected 10% of the genome. A late stage, manifested by supercoiling recovery, affected 2% of the genome. Nearly 25% of the early responsive genes formed 12 clusters with a coordinated transcription. Clusters were 6.7–31.4 kb in length and included 9–22 responsive genes. These clusters partially overlapped with those observed under DNA relaxation, suggesting that bacteria manage supercoiling stress using pathways with common components. This is the first report of a coordinated global transcriptomic response that is triggered by an increase in DNA supercoiling in bacteria. PMID:27378778

  11. Accelerated Repair and Reduced Mutagenicity of DNA Damage Induced by Cigarette Smoke in Human Bronchial Cells Transfected with E.coli Formamidopyrimidine DNA Glycosylase

    PubMed Central

    Foresta, Mara; Izzotti, Alberto; La Maestra, Sebastiano; Micale, Rosanna; Poggi, Alessandro; Vecchio, Donatella; Frosina, Guido

    2014-01-01

    Cigarette smoke (CS) is associated to a number of pathologies including lung cancer. Its mutagenic and carcinogenic effects are partially linked to the presence of reactive oxygen species and polycyclic aromatic hydrocarbons (PAH) inducing DNA damage. The bacterial DNA repair enzyme formamidopyrimidine DNA glycosylase (FPG) repairs both oxidized bases and different types of bulky DNA adducts. We investigated in vitro whether FPG expression may enhance DNA repair of CS-damaged DNA and counteract the mutagenic effects of CS in human lung cells. NCI-H727 non small cell lung carcinoma cells were transfected with a plasmid vector expressing FPG fused to the Enhanced Green Fluorescent Protein (EGFP). Cells expressing the fusion protein EGFP-FPG displayed accelerated repair of adducts and DNA breaks induced by CS condensate. The mutant frequencies induced by low concentrations of CS condensate to the Na+K+-ATPase locus (ouar) were significantly reduced in cells expressing EGFP-FPG. Hence, expression of the bacterial DNA repair protein FPG stably protects human lung cells from the mutagenic effects of CS by improving cells’ capacity to repair damaged DNA. PMID:24498234

  12. The eucalyptus oil ingredient 1,8-cineol induces oxidative DNA damage.

    PubMed

    Dörsam, Bastian; Wu, Ching-Fen; Efferth, Thomas; Kaina, Bernd; Fahrer, Jörg

    2015-05-01

    The natural compound 1,8-cineol, also known as eucalyptol, is a major constituent of eucalyptus oil. This epoxy-monoterpene is used as flavor and fragrance in consumer goods as well as medical therapies. Due to its anti-inflammatory properties, 1,8-cineol is also applied to treat upper and lower airway diseases. Despite its widespread use, only little is known about the genotoxicity of 1,8-cineol in mammalian cells. This study investigates the genotoxicity and cytotoxicity of 1,8-cineol in human and hamster cells. First, we observed a significant and concentration-dependent increase in oxidative DNA damage in human colon cancer cells, as detected by the Formamidopyrimidine-DNA glycosylase (Fpg)-modified alkaline comet assay. Pre-treatment of cells with the antioxidant N-acetylcysteine prevented the formation of Fpg-sensitive sites after 1,8-cineol treatment, supporting the notion that 1,8-cineol induces oxidative DNA damage. In the dose range of DNA damage induction, 1,8-cineol did neither reduce the viability of colon cancer cells nor affected their cell cycle distribution, suggesting that cells tolerate 1,8-cineol-induced oxidative DNA damage by engaging DNA repair. To test this hypothesis, hamster cell lines with defects in BRCA2 and Rad51, which are essentials players of homologous recombination (HR)-mediated repair, were treated with 1,8-cineol. The monoterpene induced oxidative DNA damage and subsequent DNA double-strand breaks in the hamster cell lines tested. Intriguingly, we detected a significant concentration-dependent decrease in viability of the HR-defective cells, whereas the corresponding wild-type cell lines with functional HR were not affected. Based on these findings, we conclude that 1,8-cineol is weakly genotoxic, inducing primarily oxidative DNA damage, which is most likely tolerated in DNA repair proficient cells without resulting in cell cycle arrest and cell death. However, cells with deficiency in HR were compromised after 1,8-cineol

  13. The eucalyptus oil ingredient 1,8-cineol induces oxidative DNA damage.

    PubMed

    Dörsam, Bastian; Wu, Ching-Fen; Efferth, Thomas; Kaina, Bernd; Fahrer, Jörg

    2015-05-01

    The natural compound 1,8-cineol, also known as eucalyptol, is a major constituent of eucalyptus oil. This epoxy-monoterpene is used as flavor and fragrance in consumer goods as well as medical therapies. Due to its anti-inflammatory properties, 1,8-cineol is also applied to treat upper and lower airway diseases. Despite its widespread use, only little is known about the genotoxicity of 1,8-cineol in mammalian cells. This study investigates the genotoxicity and cytotoxicity of 1,8-cineol in human and hamster cells. First, we observed a significant and concentration-dependent increase in oxidative DNA damage in human colon cancer cells, as detected by the Formamidopyrimidine-DNA glycosylase (Fpg)-modified alkaline comet assay. Pre-treatment of cells with the antioxidant N-acetylcysteine prevented the formation of Fpg-sensitive sites after 1,8-cineol treatment, supporting the notion that 1,8-cineol induces oxidative DNA damage. In the dose range of DNA damage induction, 1,8-cineol did neither reduce the viability of colon cancer cells nor affected their cell cycle distribution, suggesting that cells tolerate 1,8-cineol-induced oxidative DNA damage by engaging DNA repair. To test this hypothesis, hamster cell lines with defects in BRCA2 and Rad51, which are essentials players of homologous recombination (HR)-mediated repair, were treated with 1,8-cineol. The monoterpene induced oxidative DNA damage and subsequent DNA double-strand breaks in the hamster cell lines tested. Intriguingly, we detected a significant concentration-dependent decrease in viability of the HR-defective cells, whereas the corresponding wild-type cell lines with functional HR were not affected. Based on these findings, we conclude that 1,8-cineol is weakly genotoxic, inducing primarily oxidative DNA damage, which is most likely tolerated in DNA repair proficient cells without resulting in cell cycle arrest and cell death. However, cells with deficiency in HR were compromised after 1,8-cineol

  14. Electrochemical and spectroscopic studies of ssDNA damage induced by hydrogen peroxide using graphene based nanomaterials.

    PubMed

    Berghian-Grosan, Camelia; Biris, Alexandru Radu; Coros, Maria; Pogacean, Florina; Pruneanu, Stela

    2015-06-01

    The oxidative damage of deoxyribonucleic acid (DNA) has been intensively studied due to its role in the occurrence of some diseases. The hydrogen peroxide (H2O2) is one of the reactive oxygen species (ROS). It can induce oxidation of DNA bases, sugar lesions or DNA strand breaks. The Pt/Gr-Au-3 modified electrode was employed for the analysis of four ssDNA samples: single-stranded DNA (ssDNA), ssDNA pre-treated with hydrogen peroxide (ssDNA-H2O2), ssDNA pre-treated with graphene-gold nanoparticles (ssDNA-Gr-Au) and ssDNA-Gr-Au complex pre-treated with hydrogen peroxide (ssDNA-Gr-Au-H2O2). By monitoring the changes of the purine oxidation peaks currents, we obtained valuable information about the damage induced by the hydrogen peroxide onto the un-treated or graphene pre-treated ssDNA and also about the interaction between ssDNA and graphene-based nanomaterial. The FTIR analysis has been also used to obtain information about the ssDNA damage. These findings allowed us to prove the utility of graphene-based nanomaterials (mainly Gr-Au-3) not only for the investigation of the oxidative damage induced by a non-radical oxidant, but also for the determination of the type of interaction between ssDNA and graphene surface. The stability of the ssDNA-Gr-Au-3 complex against the damage induced by H2O2, in the absence of reduced transition metals, was also established.

  15. Growth arrest and DNA-damage-inducible, beta (GADD45b)-mediated DNA demethylation in major psychosis.

    PubMed

    Gavin, David P; Sharma, Rajiv P; Chase, Kayla A; Matrisciano, Francesco; Dong, Erbo; Guidotti, Alessandro

    2012-01-01

    Aberrant neocortical DNA methylation has been suggested to be a pathophysiological contributor to psychotic disorders. Recently, a growth arrest and DNA-damage-inducible, beta (GADD45b) protein-coordinated DNA demethylation pathway, utilizing cytidine deaminases and thymidine glycosylases, has been identified in the brain. We measured expression of several members of this pathway in parietal cortical samples from the Stanley Foundation Neuropathology Consortium (SFNC) cohort. We find an increase in GADD45b mRNA and protein in patients with psychosis. In immunohistochemistry experiments using samples from the Harvard Brain Tissue Resource Center, we report an increased number of GADD45b-stained cells in prefrontal cortical layers II, III, and V in psychotic patients. Brain-derived neurotrophic factor IX (BDNF IXabcd) was selected as a readout gene to determine the effects of GADD45b expression and promoter binding. We find that there is less GADD45b binding to the BDNF IXabcd promoter in psychotic subjects. Further, there is reduced BDNF IXabcd mRNA expression, and an increase in 5-methylcytosine and 5-hydroxymethylcytosine at its promoter. On the basis of these results, we conclude that GADD45b may be increased in psychosis compensatory to its inability to access gene promoter regions.

  16. Growth-induced perpendicular magnetic anisotropy and clustering in Ni xPt 1- x alloys

    NASA Astrophysics Data System (ADS)

    Vasumathi, D.; Shapiro, A. L.; Maranville, B. B.; Hellman, F.

    2001-02-01

    Polycrystalline and epitaxial (1 0 0), (1 1 0), and (1 1 1)-oriented Ni 3Pt, NiPt, and NiPt 3 films were deposited over a range of growth temperatures from 80°C to 700°C. Films grown at moderate temperatures (200-400°C) exhibit growth-induced properties similar to Co-Pt alloys: enhanced and broadened Curie temperature, perpendicular magnetic anisotropy and large coercivity. As in Co-Pt, the magnetic properties suggest a clustering of Ni into platelets on the growth surface, as the films are being grown. Unlike Co-Pt, however, NiPt films exhibit a strong orientational dependence of anisotropy and enhanced Curie temperature, possibly resulting from different types of surface reconstructions which affect the growth surface.

  17. Modelization of DNA fragmentation induced in human fibroblasts by Fe-56 ions

    NASA Astrophysics Data System (ADS)

    Ballarini, F.; Belli, M.; Campa, A.; Esposito, G.; Friedland, W.; Ottolenghi, A.; Paretzke, H.

    DNA double-strand breaks DSB are widely recognized as cellular critical lesions in the pathways leading from initial energy deposition by radiation to the formation of relevant biological endpoints such as gene mutations chromosome aberrations and cell death Chromatin conformation and radiation track structure are expected to have a strong influence on the spatial modulation of DSB induction at the scale of the nucleosome i e 100 base pairs bp and of the low-level chromatin fiber organization i e 1 kbp At larger scales the DNA fragmentation pattern induced by sparsely ionizing radiation approaches a scenario resulting from a random distribution of DSB However the pattern induced by high-LET irradiation can lead to deviation from randomness also at these scales This feature can have important biological consequences since spatial correlation of DSB is thought to affect their reparability Therefore studies on fragment size distributions induced by radiations of various qualities can help to link the physical characteristics of radiation with the cellular endpoints This is an important issue for understanding the main mechanisms of cell damage induced by HZE particles In this work we have compared the pattern of DNA fragmentation in the range 1-5700 kbp induced in human fibroblasts by gamma -rays with that induced by high-energy Fe-ions which have biological significance for radiation protection issues during long term astronauts travels The study has taken into account the comparison of the experimental fragmentation spectra

  18. DNA sequence analysis of X-ray induced Adh null mutations in Drosophila melanogaster

    SciTech Connect

    Mahmoud, J.; Fossett, N.G.; Arbour-Reily, P.; McDaniel, M.; Tucker, A.; Chang, S.H.; Lee, W.R. )

    1991-01-01

    The mutational spectrum for 28 X-ray induced mutations and 2 spontaneous mutations, previously determined by genetic and cytogenetic methods, consisted of 20 multilocus deficiencies (19 induced and 1 spontaneous) and 10 intragenic mutations (9 induced and 1 spontaneous). One of the X-ray induced intragenic mutations was lost, and another was determined to be a recombinant with the allele used in the recovery scheme. The DNA sequence of two X-ray induced intragenic mutations has been published. This paper reports the results of DNA sequence analysis of the remaining intragenic mutations and a summary of the X-ray induced mutational spectrum. The combination of DNA sequence analysis with genetic complementation analysis shows a continuous distribution in size of deletions rather than two different types of mutations consisting of deletions and point mutations'. Sequencing is shown to be essential for detecting intragenic deletions. Of particular importance for future studies is the observation that all of the intragenic deletions consist of a direct repeat adjacent to the breakpoint with one of the repeats deleted.

  19. Green tea constituents (-)-epigallocatechin-3-gallate (EGCG) and gallic acid induce topoisomerase I- and topoisomerase II-DNA complexes in cells mediated by pyrogallol-induced hydrogen peroxide.

    PubMed

    López-Lázaro, Miguel; Calderón-Montaño, José Manuel; Burgos-Morón, Estefanía; Austin, Caroline A

    2011-07-01

    Green tea and its major active constituent, (-)-epigallocatechin-3-gallate (EGCG), are in clinical trials for the prevention and treatment of several diseases such as cancer. DNA topoisomerase (topo) poisons are commonly prescribed anticancer drugs that kill cancer cells by inducing topo-DNA complexes. Using purified topoisomerases, previous in vitro studies have shown that EGCG induces the formation of topo-DNA complexes. Because the activity of a drug on purified topoisomerases does not always represent the activity in a cell, we have used an immunofluorescence technique that allows the visualisation of topo I- and topo II-DNA complexes produced in individual cells to evaluate the activity of EGCG on both enzymes. High levels of topo I- and topo II-DNA complexes were observed in K562 leukaemia cells exposed to EGCG. Similar levels of topo I- and topo II-DNA complexes were visualised in cells treated with gallic acid (GA) (the acid part of the EGCG ester). Pyrogallol (PG) also induced topo-DNA complexes with both enzymes, therefore suggesting that the activity of EGCG and GA is mediated by their PG moieties. Catalase prevented both the cytotoxicity and the formation of topo I- and topo II-DNA complexes induced by EGCG, GA, PG and myricetin (a PG-containing flavonoid recently shown to induce topo I- and topo II-DNA complexes in cells), indicating that hydrogen peroxide mediates these activities. Hydrogen peroxide induced topo I- and topo II (α and β)-DNA complexes in a time- and dose-dependent manner. The formation of topo I- and topo II-DNA complexes in cells exposed to hydrogen peroxide correlated well with the induction of apoptosis, suggesting that the topo-DNA complexes induced at long exposure times by the compounds tested in our study may be apoptotic topo-DNA complexes. Finally, we report results suggesting that PG-containing drugs may selectively kill tumour cells by generating hydrogen peroxide.

  20. Exercise-induced oxidatively damaged DNA in humans: evaluation in plasma or urine?

    PubMed

    Karpouzi, Christina; Nikolaidis, Stefanos; Kabasakalis, Athanasios; Tsalis, George; Mougios, Vassilis

    2016-01-01

    Physical exercise can induce oxidative damage in humans. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) is a widely known biomarker of DNA oxidation, which can be determined in blood and urine. The aim of the present study was to compare these two biological fluids in terms of which is more suitable for the estimation of the oxidative d