Sample records for induced differential expression

  1. Down-regulated RPS3a/nbl expression during retinoid-induced differentiation of HL-60 cells: a close association with diminished susceptibility to actinomycin D-stimulated apoptosis.

    PubMed

    Russell, L; Naora, H; Naora, H

    2000-04-01

    The efficacy of anticancer agents significantly depends on the differential susceptibility of undifferentiated cancer cells and differentiated normal cells to undergo apoptosis. We previously found that enhanced expression of RPS3a/nbl, which apparently encodes a ribosomal protein, seems to prime cells for apoptosis, while suppressing such enhanced expression triggers cell death. The present study found that HL-60 cells induced to differentiate by all-trans retinoic acid did not undergo apoptosis following treatment with actinomycin D whereas undifferentiated HL-60 cells were highly apoptosis-susceptible, confirming earlier suggestions that differentiated cells have diminished apoptosis-susceptibility. Undifferentiated HL-60 cells highly expressed RPS3a/nbl whereas all-trans retinoic acid -induced differentiated cells exhibited markedly reduced levels, suggesting that apoptosis-resistance of differentiated cells could be due to low RPS3a/nbl expression. Down-regulation of enhanced RPS3a/nbl expression was also observed in cells induced to differentiate with the retinoid 4-[(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-napthalenyl)-1- propenyl]benzoic acid without any significant induction of cell death. While down-regulation of RPS3a/nbl expression during differentiation did not apparently induce apoptosis, RPS3a/nbl antisense oligomers triggered death of undifferentiated HL-60 cells, but not of retinoid-induced differentiated cells. It therefore seems that while down-regulation of enhanced RPS3a/nbl expression can induce apoptosis in undifferentiated cells, down-regulation of enhanced RPS3a/nbl expression during differentiation occurs independently of apoptosis, and could be regarded as reverting the primed condition to the unprimed (low RPS3a/nbl) state.

  2. Retinoic acid induces expression of SLP-76: expression with c-FMS enhances ERK activation and retinoic acid-induced differentiation/G0 arrest of HL-60 cells.

    PubMed

    Yen, Andrew; Varvayanis, Susi; Smith, James L; Lamkin, Thomas J

    2006-02-01

    Retinoic acid (RA) is known to cause MAPK signaling which propels G0 arrest and myeloid differentiation of HL-60 human myeloblastic leukemia cells. The present studies show that RA up-regulated expression of SLP-76 (Src-homology 2 domain-containing leukocyte-specific phospho-protein of 76 kDa), which became a prominent tyrosine-phosphorylated protein in RA-treated cells. SLP-76 is a known adaptor molecule associated with T-cell receptor and MAPK signaling. To characterize functional effects of SLP-76 expression in RA-induced differentiation and G0 arrest, HL-60 cells were stably transfected with SLP-76. Expression of SLP-76 had no discernable effect on RA-induced ERK activation, subsequent functional differentiation, or the rate of RA-induced G0 arrest. To determine the effects of SLP-76 in the presence of a RA-regulated receptor, SLP-76 was stably transfected into HL-60 cells already overexpressing the colony stimulating factor-1 (CSF-1) receptor, c-FMS, from a previous stable transfection. SLP-76 now enhanced RA-induced ERK activation, compared to parental c-FMS transfectants. It also enhanced RA-induced differentiation, evidenced by enhanced paxillin expression, inducible oxidative metabolism and superoxide production. RA-induced RB tumor suppressor protein hypophosphorylation was also enhanced, as was RA-induced G0 cell cycle arrest. A triple Y to F mutant SLP-76 known to be a dominant negative in T-cell receptor signaling failed to enhance RA-induced paxillin expression, but enhanced RA-induced ERK activation, differentiation and G0 arrest essentially as well as wild-type SLP-76. Thus, SLP-76 overexpression in the presence of c-FMS, a RA-induced receptor, had the effect of enhancing RA-induced cell differentiation. This is the first indication to our knowledge that RA induces the expression of an adapter molecule to facilitate induced differentiation via co-operation between c-FMS and SLP-76.

  3. Effect of Wnt-1 inducible signaling pathway protein-2 (WISP-2/CCN5), a downstream protein of Wnt signaling, on adipocyte differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inadera, Hidekuni; Shimomura, Akiko; Tachibana, Shinjiro

    2009-02-20

    Wnt signaling negatively regulates adipocyte differentiation, and ectopic expression of Wnt-1 in 3T3-L1 cells induces several downstream molecules of Wnt signaling, including Wnt-1 inducible signaling pathway protein (WISP)-2. In this study, we examined the role of WISP-2 in the process of adipocyte differentiation using an in vitro cell culture system. In the differentiation of 3T3-L1 cells, WISP-2 expression was observed in growing cells and declined thereafter. In the mitotic clonal expansion phase of adipocyte differentiation, WISP-2 expression was transiently down-regulated concurrently with up-regulation of CCAAT/enhancer-binding protein {delta} expression. Treatment of 3T3-L1 cells in the differentiation medium with lithium, an activatormore » of Wnt signaling, inhibited the differentiation process with concomitant induction of WISP-2. Treatment of differentiated cells with lithium induced de-differentiation as evidenced by profound reduction of peroxisome proliferator-activator receptor {gamma} expression and concomitant induction of WISP-2. However, de-differentiation of differentiated cells induced by tumor necrosis factor-{alpha} did not induce WISP-2 expression. To directly examine the effect of WISP-2 on adipocyte differentiation, 3T3-L1 cells were infected with a retrovirus carrying WISP-2. Although forced expression of WISP-2 inhibited preadipocyte proliferation, it had no effect on adipocyte differentiation. Thus, although WISP-2 is a downstream protein of Wnt signaling, the role of WISP-2 on adipocyte differentiation may be marginal, at least in this in vitro culture model.« less

  4. Am80 induces neuronal differentiation via increased tropomyosin-related kinase B expression in a human neuroblastoma SH-SY5Y cell line.

    PubMed

    Shiohira, Hideo; Kitaoka, Akira; Enjoji, Munechika; Uno, Tsukasa; Nakashima, Manabu

    2012-01-01

    Am80, a synthetic retinoid, has been used in differentiation therapy for acute promyelocytic leukemia (APL). All-trans retinoic acid (ATRA) as one of natural retinoid has been also used to treat APL. ATRA treatment causes neuronal differentiation by inducing tropomyosin-related kinase B (TrkB) expression and increasing the sensitivity to brain-derived neurotrophic factor (BDNF), a TrkB ligand. In the present study, we investigated the effects of Am80 on neuronal differentiation, BDNF sensitivity and TrkB expression in human neuroblastoma SH-SY5Y cells. Treatment with Am80 induced morphological differentiation of neurite outgrowth and increased the expression of GAP43 mRNA, a neuronal differentiation marker. Additionally, TrkB protein was also increased, and exogenous BDNF stimulation after treatment with Am80 induced greater neurite outgrowth than without BDNF treatment. These results suggest that Am80 induced neuronal differentiation by increasing TrkB expression and BDNF sensitivity.

  5. Macrophage differentiation induced by PMA is mediated by activation of RhoA/ROCK signaling.

    PubMed

    Yang, Lifeng; Dai, Fan; Tang, Lian; Le, Yulan; Yao, Wenjuan

    2017-01-01

    In order to investigate the effects of RhoA/ROCK signaling in macrophage differentiation, we used 100 ng/mL PMA to induce macrophage differentiation from U937 cells in vitro. The observation of cell morphology and the expression of CD68 and SR-A were performed to confirm the differentiation induced by PMA. Western blot analysis showed that the expression of ROCK1 and ROCK2 and the phosphorylation of MYPT1 were significantly increased after PMA treatment. Pulldown assay showed that the activation of RhoA was obviously enhanced when U937 cells were treated with PMA. In order to further demonstrate whether RhoA/ROCK signaling could mediate the macrophage differentiation induced by PMA, we successfully suppressed the expression of RhoA, ROCK1 and ROCK2 by performing siRNA technology in U937 cells, respectively. The macrophage differentiation and the expression of CD68 and SR-A were significantly inhibited by the suppression of RhoA, ROCK1 or ROCK2 in PMA-induced U937 cells, indicating that the macrophage differentiation induced by PMA is associated with RhoA/ROCK signaling pathway. In addition, we pretreated U937 cells with Y27632 (ROCK inhibitor, 20 μM) for 30 min and then observed the macrophage differentiation induced by PMA. The result illustrated that Y27632 pretreatment obviously inhibited PMA-induced differentiation and the expression of CD68 and SR-A. In conclusion, the activation of RhoA/ROCK signaling is responsible for the macrophage differentiation induced by PMA.

  6. Interferon regulatory factor-1 binds c-Cbl, enhances mitogen activated protein kinase signaling and promotes retinoic acid-induced differentiation of HL-60 human myelo-monoblastic leukemia cells.

    PubMed

    Shen, Miaoqing; Bunaciu, Rodica P; Congleton, Johanna; Jensen, Holly A; Sayam, Lavanya G; Varner, Jeffrey D; Yen, Andrew

    2011-12-01

    All-trans retinoic acid (RA) and interferons (IFNs) have efficacy in treating certain leukemias and lymphomas, respectively, motivating interest in their mechanism of action to improve therapy. Both RA and IFNs induce interferon regulatory factor-1 (IRF-1). We find that in HL-60 myeloblastic leukemia cells which undergo mitogen activated protien kinase (MAPK)-dependent myeloid differentiation in response to RA, IRF-1 propels differentiation. RA induces MAPK-dependent expression of IRF-1. IRF-1 binds c-Cbl, a MAPK related adaptor. Ectopic IRF-1 expression causes CD38 expression and activation of the Raf/MEK/ERK axis, and enhances RA-induced differentiation by augmenting CD38, CD11b, respiratory burst and G0 arrest. Ectopic IRF-1 expression also decreases the activity of aldehyde dehydrogenase 1, a stem cell marker, and enhances RA-induced ALDH1 down-regulation. Interestingly, expression of aryl hydrocarbon receptor (AhR), which is RA-induced and known to down-regulate Oct4 and drive RA-induced differentiation, also enhances IRF-1 expression. The data are consistent with a model whereby IRF-1 acts downstream of RA and AhR to enhance Raf/MEK/ERK activation and propel differentiation.

  7. Orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) protein negatively regulates bone morphogenetic protein 2-induced osteoblast differentiation through suppressing runt-related gene 2 (Runx2) activity.

    PubMed

    Lee, Kkot-Nim; Jang, Won-Gu; Kim, Eun-Jung; Oh, Sin-Hye; Son, Hye-Ju; Kim, Sun-Hun; Franceschi, Renny; Zhang, Xiao-Kun; Lee, Shee-Eun; Koh, Jeong-Tae

    2012-06-01

    Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) is an orphan nuclear receptor of the steroid-thyroid hormone receptor superfamily. COUP-TFII is widely expressed in multiple tissues and organs throughout embryonic development and has been shown to regulate cellular growth, differentiation, and organ development. However, the role of COUP-TFII in osteoblast differentiation has not been systematically evaluated. In the present study, COUP-TFII was strongly expressed in multipotential mesenchymal cells, and the endogenous expression level decreased during osteoblast differentiation. Overexpression of COUP-TFII inhibited bone morphogenetic protein 2 (BMP2)-induced osteoblastic gene expression. The results of alkaline phosphatase, Alizarin Red staining, and osteocalcin production assay showed that COUP-TFII overexpression blocks BMP2-induced osteoblast differentiation. In contrast, the down-regulation of COUP-TFII synergistically induced the expression of BMP2-induced osteoblastic genes and osteoblast differentiation. Furthermore, the immunoprecipitation assay showed that COUP-TFII and Runx2 physically interacted and COUP-TFII significantly impaired the Runx2-dependent activation of the osteocalcin promoter. From the ChIP assay, we found that COUP-TFII repressed DNA binding of Runx2 to the osteocalcin gene, whereas Runx2 inhibited COUP-TFII expression via direct binding to the COUP-TFII promoter. Taken together, these findings demonstrate that COUP-TFII negatively regulates osteoblast differentiation via interaction with Runx2, and during the differentiation state, BMP2-induced Runx2 represses COUP-TFII expression and promotes osteoblast differentiation.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Long; Shi, Songting; Zhang, Juan

    Highlights: Black-Right-Pointing-Pointer Expression of Id3 but not Id1 is induced by Wnt3a stimulation in C2C12 cells. Black-Right-Pointing-Pointer Wnt3a induces Id3 expression via canonical Wnt/{beta}-catenin pathway. Black-Right-Pointing-Pointer Wnt3a-induced Id3 expression does not depend on BMP signaling activation. Black-Right-Pointing-Pointer Induction of Id3 expression is critical determinant in Wnt3a-induced cell proliferation and differentiation. -- Abstract: Canonical Wnt signaling plays important roles in regulating cell proliferation and differentiation. In this study, we report that inhibitor of differentiation (Id)3 is a Wnt-inducible gene in mouse C2C12 myoblasts. Wnt3a induced Id3 expression in a {beta}-catenin-dependent manner. Bone morphogenetic protein (BMP) also potently induced Id3 expression. However,more » Wnt-induced Id3 expression occurred independent of the BMP/Smad pathway. Functional studies showed that Id3 depletion in C2C12 cells impaired Wnt3a-induced cell proliferation and alkaline phosphatase activity, an early marker of osteoblast cells. Id3 depletion elevated myogenin induction during myogenic differentiation and partially impaired Wnt3a suppressed myogenin expression in C2C12 cells. These results suggest that Id3 is an important Wnt/{beta}-catenin induced gene in myoblast cell fate determination.« less

  9. Microarray expression profiling and co-expression network analysis of circulating LncRNAs and mRNAs associated with neurotoxicity induced by BPA.

    PubMed

    Pang, Wei; Lian, Fu-Zhi; Leng, Xue; Wang, Shu-Min; Li, Yi-Bo; Wang, Zi-Yu; Li, Kai-Ren; Gao, Zhi-Xian; Jiang, Yu-Gang

    2018-05-01

    A growing body of evidence has shown bisphenol A (BPA), an estrogen-like industrial chemical, has adverse effects on the nervous system. In this study, we investigated the transcriptional behavior of long non-coding RNAs (lncRNAs) and mRNAs to provide the information to explore neurotoxic effects induced by BPA. By microarray expression profiling, we discovered 151 differentially expressed lncRNAs and 794 differentially expressed mRNAs in the BPA intervention group compared with the control group. Gene ontology analysis indicated the differentially expressed mRNAs were mainly involved in fundamental metabolic processes and physiological and pathological conditions, such as development, synaptic transmission, homeostasis, injury, and neuroinflammation responses. In the expression network of the BPA-induced group, a great number of nodes and connections were found in comparison to the control-derived network. We identified lncRNAs that were aberrantly expressed in the BPA group, among which, growth arrest specific 5 (GAS5) might participate in the BPA-induced neurotoxicity by regulating Jun, RAS, and other pathways indirectly through these differentially expressed genes. This study provides the first investigation of genome-wide lncRNA expression and correlation between lncRNA and mRNA expression in the BPA-induced neurotoxicity. Our results suggest that the elevated expression of lncRNAs is a major biomarker in the neurotoxicity induced by BPA.

  10. Inactivation of EGFR/AKT signaling enhances TSA-induced ovarian cancer cell differentiation.

    PubMed

    Shao, Genbao; Lai, Wensheng; Wan, Xiaolei; Xue, Jing; Wei, Ye; Jin, Jie; Zhang, Liuping; Lin, Qiong; Shao, Qixiang; Zou, Shengqiang

    2017-05-01

    Ovarian tumor is one of the most lethal gynecologic cancers, but differentiation therapy for this cancer is poorly characterized. Here, we show that thrichostatin A (TSA), the well known inhibitor of histone deacetylases (HDACs), can induce cell differentiation in HO8910 ovarian cancer cells. TSA-induced cell differentiation is characterized by typical morphological change, increased expression of the differentiation marker FOXA2, decreased expression of the pluripotency markers SOX2 and OCT4, suppressing cell proliferation, and cell cycle arrest in the G1 phase. TSA also induces an elevated expression of cell cycle inhibitory protein p21Cip1 along with a decrease in cell cycle regulatory protein cyclin D1. Significantly, blockage of epidermal growth factor receptor (EGFR) signaling pathway with specific inhibitors of this signaling cascade promotes the TSA-induced differentiation of HO8910 cells. These results imply that the EGFR cascade inhibitors in combination with TSA may represent a promising differentiation therapy strategy for ovarian cancer.

  11. A combined gene expression and functional study reveals the crosstalk between N-Myc and differentiation-inducing microRNAs in neuroblastoma cells

    PubMed Central

    Zhao, Zhenze; Ma, Xiuye; Shelton, Spencer D.; Sung, Derek C.; Li, Monica; Hernandez, Daniel; Zhang, Maggie; Losiewicz, Michael D.; Chen, Yidong; Pertsemlidis, Alexander; Yu, Xiaojie; Liu, Yuanhang; Du, Liqin

    2016-01-01

    MYCN amplification is the most common genetic alteration in neuroblastoma and plays a critical role in neuroblastoma tumorigenesis. MYCN regulates neuroblastoma cell differentiation, which is one of the mechanisms underlying its oncogenic function. We recently identified a group of differentiation-inducing microRNAs. Given the demonstrated inter-regulation between MYCN and microRNAs, we speculated that MYCN and the differentiation-inducing microRNAs might form an interaction network to control the differentiation of neuroblastoma cells. In this study, we found that eight of the thirteen differentiation-inducing microRNAs, miR-506-3p, miR-124-3p, miR-449a, miR-34a-5p, miR-449b-5p, miR-103a-3p, miR-2110 and miR-34b-5p, inhibit N-Myc expression by either directly targeting the MYCN 3′UTR or through indirect regulations. Further investigation showed that both MYCN-dependent and MYCN-independent pathways play roles in mediating the differentiation-inducing function of miR-506-3p and miR-449a, two microRNAs that dramatically down-regulate MYCN expression. On the other hand, we found that N-Myc inhibits the expression of multiple differentiation-inducing microRNAs, suggesting that these miRNAs play a role in mediating the function of MYCN. In examining the published dataset collected from clinical neuroblastoma specimens, we found that expressions of two miRNAs, miR-137 and miR-2110, were significantly anti-correlated with MYCN mRNA levels, suggesting their interactions with MYCN play a clinically-relevant role in maintaining the MYCN and miRNA expression levels in neuroblastoma. Our findings altogether suggest that MYCN and differentiation-inducing miRNAs form an interaction network that play an important role in neuroblastoma tumorigenesis through regulating cell differentiation. PMID:27764804

  12. A combined gene expression and functional study reveals the crosstalk between N-Myc and differentiation-inducing microRNAs in neuroblastoma cells.

    PubMed

    Zhao, Zhenze; Ma, Xiuye; Shelton, Spencer D; Sung, Derek C; Li, Monica; Hernandez, Daniel; Zhang, Maggie; Losiewicz, Michael D; Chen, Yidong; Pertsemlidis, Alexander; Yu, Xiaojie; Liu, Yuanhang; Du, Liqin

    2016-11-29

    MYCN amplification is the most common genetic alteration in neuroblastoma and plays a critical role in neuroblastoma tumorigenesis. MYCN regulates neuroblastoma cell differentiation, which is one of the mechanisms underlying its oncogenic function. We recently identified a group of differentiation-inducing microRNAs. Given the demonstrated inter-regulation between MYCN and microRNAs, we speculated that MYCN and the differentiation-inducing microRNAs might form an interaction network to control the differentiation of neuroblastoma cells. In this study, we found that eight of the thirteen differentiation-inducing microRNAs, miR-506-3p, miR-124-3p, miR-449a, miR-34a-5p, miR-449b-5p, miR-103a-3p, miR-2110 and miR-34b-5p, inhibit N-Myc expression by either directly targeting the MYCN 3'UTR or through indirect regulations. Further investigation showed that both MYCN-dependent and MYCN-independent pathways play roles in mediating the differentiation-inducing function of miR-506-3p and miR-449a, two microRNAs that dramatically down-regulate MYCN expression. On the other hand, we found that N-Myc inhibits the expression of multiple differentiation-inducing microRNAs, suggesting that these miRNAs play a role in mediating the function of MYCN. In examining the published dataset collected from clinical neuroblastoma specimens, we found that expressions of two miRNAs, miR-137 and miR-2110, were significantly anti-correlated with MYCN mRNA levels, suggesting their interactions with MYCN play a clinically-relevant role in maintaining the MYCN and miRNA expression levels in neuroblastoma. Our findings altogether suggest that MYCN and differentiation-inducing miRNAs form an interaction network that play an important role in neuroblastoma tumorigenesis through regulating cell differentiation.

  13. Mangiferin corrects the imbalance of Th17/Treg cells in mice with TNBS-induced colitis.

    PubMed

    Lim, Su-Min; Jeong, Jin-Ju; Choi, Hyun Sik; Chang, Hwan Bong; Kim, Dong-Hyun

    2016-05-01

    In the previous study, 80% ethanol extract of the rhizome mixture of Anemarrhena asphodeloides and Coptidis chinensis (AC) and its main constituent mangiferin improved TNBS-induced colitis in mice by inhibiting macrophage activation related to the innate immunity. In the preliminary study, we found that AC could inhibit Th17 cell differentiation in mice with TNBS-induced colitis. Therefore, we investigated whether AC and it main constituent mangiferin are capable of inhibiting inflammation by regulating T cell differentiation related to the adaptive immunity in vitro and in vivo. AC and mangiferin potently suppressed colon shortening and myeloperoxidase activity in mice with TNBS-induced colitis. They also suppressed TNBS-induced Th17 cell differentiation and IL-17 expression, but increased TNBS-suppressed Treg cell differentiation and IL-10 expression. Moreover, AC and mangiferin strongly inhibited the expression of TNF-α and IL-17, as well as the activation of NF-κB. Furthermore, mangiferin potently inhibited the differentiation of splenocytes into Th7 cells and increased the differentiation into Treg cells in vitro. Mangiferin also inhibited RORγt and IL-17 expression and STAT3 activation in splenocytes and induced Foxp3 and IL-10 expression and STAT5 activation. Based on these findings, mangiferin may ameliorate colitis by the restoration of disturbed Th17/Treg cells and inhibition of macrophage activation. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Decline in c-myc mRNA expression but not the induction of c-fos mRNA expression is associated with differentiation of SH-SY5Y human neuroblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalava, A.M.; Heikkilae, J.E.; Akerman, K.E.O.

    1988-11-01

    The induction of differentiation in SH-SY5Y human neuroblastoma cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is accompanied by a rapid and a transient expression of c-fos mRNA and a down-regulation of c-myc RNA. The TPA-induced expression of c-fos mRNA was inhibited by H-7, a specific inhibitor of protein kinase C (PK-C). Dioctanoylglycerol (DiC{sub 8}) failed to induce differentiation of SH-SY5Y cells or to down-regulate c-myc mRNA but it did induce the expression of c-fos mRNA. Treatment of IMR-32 human neuroblastoma cells with TPA did not cause differentiation although c-fos mRNA was induced. Since PK-C in SH-SY5Y cells was activated by both TPA andmore » DiC{sub 8} it is suggested that the activation of PK-C alone is not sufficient to induce differentiation in SH-SY5Y cells. The down-regulation of c-myc mRNA rather than the induction of c-fos mRNA seems to be associated with differentiation process in SH-SY5Y cells.« less

  15. Retinoic acid-induced CHD5 upregulation and neuronal differentiation of neuroblastoma.

    PubMed

    Higashi, Mayumi; Kolla, Venkatadri; Iyer, Radhika; Naraparaju, Koumudi; Zhuang, Tiangang; Kolla, Sriharsha; Brodeur, Garrett M

    2015-08-07

    Chromodomain-helicase DNA binding protein 5 (CHD5) is an important tumor suppressor gene deleted from 1p36.31 in neuroblastomas (NBs). High CHD5 expression is associated with a favorable prognosis, but deletion or low expression is frequent in high-risk tumors. We explored the role of CHD5 expression in the neuronal differentiation of NB cell lines. NB cell lines SH-SY5Y (SY5Y), NGP, SK-N-DZ, IMR5, LAN5, SK-N-FI, NB69 and SH-EP were treated with 1-10 μM 13-cis-retinoic acid (13cRA) for 3-12 days. qRT-PCR and Western blot analyses were performed to measure mRNA and protein expression levels, respectively. Morphological differences were examined by both phase contrast and immunofluorescence studies. Treatment of SY5Y cells with 13cRA caused upregulation of CHD5 expression in a time- and dose-dependent manner (1, 5, or 10 μM for 7 or 12 days) and also induced neuronal differentiation. Furthermore, both NGP and SK-N-DZ cells showed CHD5 upregulation and neuronal differentiation after 13cRA treatment. In contrast, 13cRA treatment of IMR5, LAN5, or SK-N-FI induced neither CHD5 expression nor neuronal differentiation. NB69 cells showed two different morphologies (neuronal and substrate adherent) after 12 days treatment with 10 μM of 13cRA. CHD5 expression was high in the neuronal cells, but low/absent in the flat, substrate adherent cells. Finally, NGF treatment caused upregulation of CHD5 expression and neuronal differentiation in SY5Y cells transfected to express TrkA (SY5Y-TrkA) but not in TrkA-null parental SY5Y cells, and both changes were blocked by a pan-TRK inhibitor. Treatment with 13cRA induces neuronal differentiation only in NB cells that upregulate CHD5. In addition, NGF induced CHD5 upregulation and neuronal differentiation only in TrkA expressing cells. Together, these results suggest that CHD5 is downstream of TrkA, and CHD5 expression may be crucial for neuronal differentiation induced by either 13cRA or TrkA/NGF signaling.

  16. Constitutive Uncoupling of Pathways of Gene Expression That Control Growth and Differentiation in Myeloid Leukemia: A Model for the Origin and Progression of Malignancy

    NASA Astrophysics Data System (ADS)

    Sachs, Leo

    1980-10-01

    Chemical carcinogens and tumor promoters have pleiotropic effects. Tumor initiators can produce a variety of mutations and tumor promoters can regulate a variety of physiological molecules that control growth and differentiation. The appropriate mutation and the regulation of the appropriate molecules to induce cell growth can initiate and promote the sequence of changes required for transformation of normal cells into malignant cells. After this sequence of changes, some tumors can still be induced to revert with a high frequency from a malignant phenotype to a nonmalignant phenotype. Results obtained from analysis of regulation of growth and differentiation in normal and leukemic myeloid cells, the phenotypic reversion of malignancy by induction of normal differentiation in myeloid leukemia, and the blocks in differentiation-defective leukemic cell mutants have been used to propose a general model for the origin and progression of malignancy. The model states that malignancy originates by changing specific pathways of gene expression required for growth from inducible to constitutive in cells that can still be induced to differentiate normally by the physiological inducer of differentiation. The malignant cells, unlike the normal cells, then no longer require the physiological inducer for growth. This changes the requirements for growth and uncouples growth from differentiation. Constitutive expression of other specific pathways can uncouple other controls, which then causes blocks in differentiation and the further progression of malignancy. The existence of specific constitutive pathways of gene expression that uncouple controls in malignant cells can also explain the expression of fetal proteins, hormones, and some other specialized products of normal development in various types of tumors.

  17. Reversible differentiation of human monoblastic leukemia U937 cells by ML-9, an inhibitor of myosin light chain kinase.

    PubMed

    Yamamoto-Yamaguchi, Y; Makishima, M; Kanatani, Y; Kasukabe, T; Honma, Y

    1996-05-01

    Human monoblastic leukemia U937 cells are induced to differentiate into monocytes and macrophages by various agents. We have shown that 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride (ML-9), an inhibitor of myosin light chain kinase, induces differentiation of monocytoid leukemia cell lines U937 and THP-1 but not of myeloblastic leukemic ML-1 cell or erythroleukemia K562 cells. In the present study, we further analyzed the effect of ML-9 in comparison with that of 1 alpha, 25-dihydroxyvitamin D3 (VD3) a typical inducer of monocytic differentiation. ML-9 induced nitroblue tetrazolium (NBT)-reducing activity of U937 cell more rapidly than VD3: This differentiation marker was induced significantly after incubation with ML-9 and VD3 for 4 hours and 1 day, respectively. ML-9 also induced alpha-naphthyl acetate esterase (ANAE) activity, another monocytic differentiation marker, more rapidly than VD3. The maximum levels of these markers induced by ML-9 were comparable to those induced by VD3, but after removal of ML-9 from the medium by washing the cells, the expressions of theses markers decreased within 4 hours and reached basal levels in 1 day, indicating that ML-9's induction of expression of differentiation-associated phenotypes was reversible. The growth inhibition of U937 cells by ML-9 was also reversible. Similar effects were observed in another line of human monoblastic cells, THP-1. ML-9 had little or no effect on the morphology of U937 cells but increased the expression of monocyte-macrophage lineage-associated surface antigen, CD14, to some extent. Irreversible terminal differentiation induced by VD3 is associated with down regulation of the expression of c-myc and upregulation of the expression of c-fos and c-jun, but ML-9 did not affect the expression of these oncogenes appreciably. ML-9-induced differentiation was also reversible when the cells were cultured with cultured with ML-9 plus an anti-cancer drug such as 1-beta-D-arabino-furanosylcytosine or daunomycin. it became irreversible, however, upon simultaneous treatment with dexamethasone and transforming growth factor-beta 1 (TGF-beta 1), which did not induce differentiation of U937 cells but caused growth arrest of the cells in the G0/G1 phase of the cell cycle. These results suggest that ML-9 should be useful for studying the mechanisms of monocytic differentiation.

  18. Macrophage differentiation increases expression of the ascorbate transporter (SVCT2)

    PubMed Central

    Qiao, Huan; May, James M.

    2013-01-01

    To determine whether macrophage differentiation involves increased uptake of vitamin C, or ascorbic acid, we assessed the expression and function of its transporter SVCT2 during phorbol ester-induced differentiation of human-derived THP-1 monocytes. Induction of THP-1 monocyte differentiation by phorbol 12-myristate 13-acetate (PMA) markedly increased SVCT2 mRNA, protein, and function. When ascorbate was present during PMA-induced differentiation, the increase in SVCT2 protein expression was inhibited, but differentiation was enhanced. PMA-induced SVCT2 protein expression was blocked by inhibitors of protein kinase C (PKC), with most of the affect due to the PKCβI and βII isoforms. Activation of MEK/ERK was sustained up to 48 h after PMA treatment, and the inhibitors completely blocked PMA-stimulated SVCT2 protein expression, indicating an exclusive role for the classical MAP kinase pathway. However, inhibitors of NF-κB activation, NADPH oxidase inhibitors, and several antioxidants also partially prevented SVCT2 induction, suggesting diverse distal routes for control of SVCT2 transcription. Both known promoters for the SVCT2 were involved in these effects. In conclusion, PMA-induced monocyte-macrophage differentiation is enhanced by ascorbate and associated with increased expression and function of the SVCT2 protein through a pathway involving sustained activation of PKCβI/II, MAP kinase, NADPH oxidase, and NF-κB. PMID:19232538

  19. Regulation of c- and N-myc expression during induced differentiation of murine neuroblastoma cells.

    PubMed

    Larcher, J C; Vayssière, J L; Lossouarn, L; Gros, F; Croizat, B

    1991-04-01

    Using clones N1E-115 and N1A-103 from mouse neuroblastoma C1300, a comparative analysis of c- and N-myc gene expression was undertaken both in proliferating cells and in cultures exposed to conditions which induce differentiation. Under the latter conditions, while N1E-115 cells extend abundant neurites and express many biochemical features of mature neurons, clone N1A-103 stops dividing and expresses certain neurospecific markers but is unable to differentiate morphologically. In both clones, chemical agents, i.e. 1-methyl cyclohexane carboxylic acid (CCA) or dimethyl sulfoxide (DMSO), induce a decrease in c-myc expression. Similar results were found for N-myc gene in N1E-115 cells, but in contrast, in clone N1A-103, N-myc expression is increased with CCA and not modified with DMSO. Globally, this study favours the hypothesis that changes in c-myc expression would correspond to cell division blockade and differentiation, while modulations in N-myc are more closely related to an early phase of terminal differentiation.

  20. Coordinated activation of AMP-activated protein kinase, extracellular signal-regulated kinase, and autophagy regulates phorbol myristate acetate-induced differentiation of SH-SY5Y neuroblastoma cells.

    PubMed

    Zogovic, Nevena; Tovilovic-Kovacevic, Gordana; Misirkic-Marjanovic, Maja; Vucicevic, Ljubica; Janjetovic, Kristina; Harhaji-Trajkovic, Ljubica; Trajkovic, Vladimir

    2015-04-01

    We explored the interplay between the intracellular energy sensor AMP-activated protein kinase (AMPK), extracellular signal-regulated kinase (ERK), and autophagy in phorbol myristate acetate (PMA)-induced neuronal differentiation of SH-SY5Y human neuroblastoma cells. PMA-triggered expression of neuronal markers (dopamine transporter, microtubule-associated protein 2, β-tubulin) was associated with an autophagic response, measured by the conversion of microtubule-associated protein light chain 3 (LC3)-I to autophagosome-bound LC3-II, increase in autophagic flux, and expression of autophagy-related (Atg) proteins Atg7 and beclin-1. This coincided with the transient activation of AMPK and sustained activation of ERK. Pharmacological inhibition or RNA interference-mediated silencing of AMPK suppressed PMA-induced expression of neuronal markers, as well as ERK activation and autophagy. A selective pharmacological blockade of ERK prevented PMA-induced neuronal differentiation and autophagy induction without affecting AMPK phosphorylation. Conversely, the inhibition of autophagy downstream of AMPK/ERK, either by pharmacological agents or LC3 knockdown, promoted the expression of neuronal markers, thus indicating a role of autophagy in the suppression of PMA-induced differentiation of SH-SY5Y cells. Therefore, PMA-induced neuronal differentiation of SH-SY5Y cells depends on a complex interplay between AMPK, ERK, and autophagy, in which the stimulatory effects of AMPK/ERK signaling are counteracted by the coinciding autophagic response. Phorbol myristate acetate (PMA) induces the expression of dopamine transporter, microtubule-associated protein 2, and β-tubulin, and subsequent neuronal differentiation of SH-SY5Y neuroblastoma cells through AMP-activated protein kinase (AMPK)-dependent activation of extracellular signal-regulated kinase (ERK). The activation of AMPK/ERK axis also induces the expression of beclin-1 and Atg7, and increases LC3 conversion, thereby triggering the autophagic response that counteracts differentiation process. © 2014 International Society for Neurochemistry.

  1. Decreased expression of the stress protein HSP70 is an early event in murine erythroleukemic cell differentiation.

    PubMed Central

    Hensold, J O; Housman, D E

    1988-01-01

    Two-dimensional protein gels were used to systematically assess changes in gene expression in Friend erythroleukemia cells after exposure to inducers of differentiation. A rapid decrease in expression of the stress protein HSP70 was observed after exposure to inducers. The kinetics of this change suggest that it may be related to the cellular events that regulate the onset of differentiation. Images PMID:3164440

  2. Enforced expression of KDR receptor promotes proliferation, survival and megakaryocytic differentiation of TF1 progenitor cell line.

    PubMed

    Coppola, S; Narciso, L; Feccia, T; Bonci, D; Calabrò, L; Morsilli, O; Gabbianelli, M; De Maria, R; Testa, U; Peschle, C

    2006-01-01

    Vascular endothelial growth factor (VEGF) receptor-2/kinase insert domain-containing receptor (KDR) is expressed in primitive hematopoietic cells, in megakaryocytes and platelets. In primitive hematopoiesis KDR mediates cell survival via autocrine VEGF, while its effect on cell growth and differentiation has not been elucidated. We induced enforced KDR expression in the granulocyte macrophage-colony-stimulating factor (GM-CSF)-dependent TF1 progenitor cell line (TF1-KDR), treated the cells with VEGF and analyzed their response. In GM-CSF-deprived cells, VEGF induces cell proliferation and protection against apoptosis, followed by enhanced expression of megakaryocytic (MK) markers. Combined with GM-CSF, VEGF induces a mild proliferative stimulus, followed by cell adherence, accumulation in G0/G1, massive MK differentiation and Fas-mediated apoptosis. Accordingly, we observed that MK-differentiating cells, derived from hematopoietic progenitors, produce VEGF, express KDR, inhibition of which reduces MK differentiation, indicating a key role of KDR in megakaryopoiesis. In conclusion, TF1-KDR cells provide a reliable model to investigate the biochemical and molecular mechanisms underlying hematopoietic progenitor proliferation, survival and MK differentiation.

  3. CTCF-Mediated and Pax6-Associated Gene Expression in Corneal Epithelial Cell-Specific Differentiation

    PubMed Central

    Tsui, Shanli; Wang, Jie; Wang, Ling; Dai, Wei; Lu, Luo

    2016-01-01

    Background The purpose of the study is to elicit the epigenetic mechanism involving CCCTC binding factor (CTCF)-mediated chromatin remodeling that regulates PAX6 gene interaction with differentiation-associated genes to control corneal epithelial differentiation. Methods Cell cycle progression and specific keratin expressions were measured to monitor changes of differentiation-induced primary human limbal stem/progenitor (HLS/P), human corneal epithelial (HCE) and human telomerase-immortalized corneal epithelial (HTCE) cells. PAX6-interactive and differentiation-associated genes in chromatin remodeling mediated by the epigenetic factor CTCF were detected by circular chromosome conformation capture (4C) and ChIP (Chromatin immunoprecipitation)-on-chip approaches, and verified by FISH (Fluorescent in situ hybridization). Furthermore, CTCF activities were altered by CTCF-shRNA to study the effect of CTCF on mediating interaction of Pax6 and differentiation-associated genes in corneal epithelial cell fate. Results Our results demonstrated that differentiation-induced human corneal epithelial cells expressed typical corneal epithelial characteristics including morphological changes, increased keratin12 expression and G0/G1 accumulations. Expressions of CTCF and PAX6 were suppressed and elevated following the process of differentiation, respectively. During corneal epithelial cell differentiation, differentiation-induced RCN1 and ADAM17 were found interacting with PAX6 in the process of CTCF-mediated chromatin remodeling detected by 4C and verified by ChIP-on-chip and FISH. Diminished CTCF mRNA with CTCF-shRNA in HTCE cells weakened the interaction of PAX6 gene in controlling RCN1/ADAM17 and enhanced early onset of the genes in cell differentiation. Conclusion Our results explain how epigenetic factor CTCF-mediated chromatin remodeling regulates interactions between eye-specific PAX6 and those genes that are induced/associated with cell differentiation to modulate corneal epithelial cell-specific differentiation. PMID:27583466

  4. Potential Role of S100A8 in Cutaneous Squamous Cell Carcinoma Differentiation.

    PubMed

    Shin, Jung-Min; Chang, In-Kyu; Lee, Young-Ho; Yeo, Min-Kyung; Kim, Jin-Man; Sohn, Kyung-Cheol; Im, Myung; Seo, Young-Joon; Kim, Chang-Deok; Lee, Jeung-Hoon; Lee, Young

    2016-04-01

    S100A8 is differentially expressed in various cell types and is associated with a number of malignant disorders. S100A8 may affect tumor biology. However, its role in cutaneous squamous cell carcinoma (SCC) is not well established. This study aims to investigate the relationship between S100A8 and cutaneous SCC development. We performed immunohistochemical staining to detect S100A8 expression in facial skin specimens of premalignant actinic keratosis (AK), malignant SCC, and normal tissues. In addition, we utilized postconfluence and high calcium-induced differentiation in a culture system model. Furthermore, we constructed a recombinant adenovirus expressing GFP-tagged S100A8 to investigate the role of S100A8 in SCC cell differentiation. S100A8 was significantly overexpressed in human cutaneous SCC compared to that in normal and AK tissues. S100A8 was gradually upregulated in SCC cells in a post-confluence-induced differentiation model. Overexpression of S100A8 in SCC cells induced by adenoviral transduction led to increased expression levels of differentiation markers, such as loricrin, involucrin, and filaggrin. S100A8 overexpression also increased loricrin and involucrin luciferase activity. S100A8 regulates cutaneous SCC differentiation and induces well-differentiated SCC formation in skin.

  5. Induction of hepatocyte-like cells from mouse embryonic stem cells by lentivirus-mediated constitutive expression of Foxa2/Hnf4a.

    PubMed

    Liu, Tao; Zhang, Shichang; Xiang, Dedong; Wang, Yingjie

    2013-11-01

    Hepatocytes can be generated from embryonic stem cells (ESCs) using inducers such as chemical compounds and cytokines, but issues related to low differentiation efficiencies remain to be resolved. Recent work has shown that overexpression of lineage-specific transcription factors can directly cause cells phenotypic changes, including differentiation, trans-differentiation, and de-differentiation. We hypothesized that lentivirus-mediated constitutive expression of forkhead box A2 (Foxa2) and hepatocyte nuclear factor 4 alpha (Hnf4a) could promote inducing mouse ESCs to hepatocyte-likes cells. First, ESC lines that stably expressed Foxa2, Hnf4a, or Foxa2/Hnf4a were constructed via lentiviral expression vectors. Second, observations of cell morphology changes were made during the cell culture process, followed by experiments examining teratoma formation. Then, the effects of constitutive expression of Foxa2 and Hnf4a on hepatic differentiation and maturation were determined by measuring the marker gene expression levels of Albumin, α-fetoprotein, Cytokeratin18, and α1-antitrypsin. The results indicate that constitutive expression of Foxa2 and Hnf4a does not affect ESCs culture, teratoma formation, or the expression levels of the specific hepatocyte genes under autonomous differentiation. However, with some assistance from inducing factors, Foxa2 significantly increased the hepatic differentiation of ESCs, whereas the expression of Hnf4a alone or Foxa2/Hnf4a could not. Differentiated CCE-Foxa2 cells were more superior in expressing several liver-specific markers and protein, storing glycogen than differentiated CCE cells. Therefore, our method employing the transduction of Foxa2 would be a valuable tool for the efficient generation of functional hepatocytes derived from ESCs. © 2013 Wiley Periodicals, Inc.

  6. Ectopic expression of necdin induces differentiation of mouse neuroblastoma cells.

    PubMed

    Kobayashi, Masakatsu; Taniura, Hideo; Yoshikawa, Kazuaki

    2002-11-01

    Necdin is expressed predominantly in postmitotic neurons, and ectopic expression of this protein strongly suppresses cell growth. Necdin has been implicated in the pathogenesis of Prader-Willi syndrome, a human neurodevelopmental disorder associated with genomic imprinting. Here we demonstrate that ectopic expression of necdin induces a neuronal phenotype in neuroblastoma cells. Necdin was undetectable in mouse neuroblastoma N1E-115 cells under undifferentiated and differentiated conditions. N1E-115 cells transfected with necdin cDNA showed morphological differentiation such as neurite outgrowth and expression of the synaptic marker proteins synaptotagmin and synaptophysin. In addition, Western blot analysis of the retinoblastoma protein (Rb) family members Rb, p130, and p107 revealed that necdin cDNA transfectants contained an increased level of p130 and a reduced level of p107, a pattern seen in differentiated G(0) cells. The transcription factors E2F1 and E2F4 physically interacted with necdin via their carboxyl-terminal transactivation domains, but only E2F1 abrogated necdin-induced growth arrest and neurite outgrowth of neuroblastoma cells. Overexpression of E2F1 in differentiated N1E-115 cells induced apoptosis, which was antagonized by co-expression of necdin. These results suggest that necdin promotes the differentiation and survival of neurons through its antagonistic interactions with E2F1.

  7. Microgravity Induction of TRAIL Expression in Preosteoclast Cells Enhances Osteoclast Differentiation

    NASA Astrophysics Data System (ADS)

    Sambandam, Yuvaraj; Baird, Kelsey L.; Stroebel, Maxwell; Kowal, Emily; Balasubramanian, Sundaravadivel; Reddy, Sakamuri V.

    2016-05-01

    Evidence indicates that astronauts experience significant bone loss in space. We previously showed that simulated microgravity (μXg) using the NASA developed rotary cell culture system (RCCS) enhanced bone resorbing osteoclast (OCL) differentiation. However, the mechanism by which μXg increases OCL formation is unclear. RANK/RANKL signaling pathway is critical for OCL differentiation. Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) has been shown to increase osteoclastogenesis. We hypothesize that TRAIL may play an important role in μXg enhanced OCL differentiation. In this study, we identified by RT profiler PCR array screening that μXg induces high levels of TRAIL expression in murine preosteoclast cells in the absence of RANKL stimulation compared to ground based (Xg) cultures. We further identified that μXg elevated the adaptor protein TRAF-6 and fusion genes OC-STAMP and DC-STAMP expression in preosteoclast cells. Interestingly, neutralizing antibody against TRAIL significantly reduced μXg induced OCL formation. We further identified that over-expression of pTRAIL in RAW 264.7 cells enhanced OCL differentiation. These results indicate that TRAIL signaling plays an important role in the μXg increased OCL differentiation. Therefore, inhibition of TRAIL expression could be an effective countermeasure for μXg induced bone loss.

  8. Differentiation of Odontoblast-Like Cells From Mouse Induced Pluripotent Stem Cells by Pax9 and Bmp4 Transfection.

    PubMed

    Seki, Daisuke; Takeshita, Nobuo; Oyanagi, Toshihito; Sasaki, Shutaro; Takano, Ikuko; Hasegawa, Masakazu; Takano-Yamamoto, Teruko

    2015-09-01

    The field of tooth regeneration has progressed in recent years, and human tooth regeneration could become viable in the future. Because induced pluripotent stem (iPS) cells can differentiate into odontogenic cells given appropriate conditions, iPS cells are a potential cell source for tooth regeneration. However, a definitive method to induce iPS cell-derived odontogenic cells has not been established. We describe a novel method of odontoblast differentiation from iPS cells using gene transfection. We generated mouse iPS cell-derived neural crest-like cells (iNCLCs), which exhibited neural crest markers. Next, we differentiated iNCLCs into odontoblast-like cells by transfection of Pax9 and Bmp4 expression plasmids. Exogenous Pax9 upregulated expression of Msx1 and dentin matrix protein 1 (Dmp1) in iNCLCs but not bone morphogenetic protein 4 (Bmp4) or dentin sialophosphoprotein (Dspp). Exogenous Bmp4 upregulated expression of Msx1, Dmp1, and Dspp in iNCLCs, but not Pax9. Moreover, cotransfection of Pax9 and Bmp4 plasmids in iNCLCs revealed a higher expression of Pax9 than when Pax9 plasmid was used alone. In contrast, exogenous Pax9 downregulated Bmp4 overexpression. Cotransfection of Pax9 and Bmp4 synergistically upregulated Dmp1 expression; however, Pax9 overexpression downregulated exogenous Bmp4-induced Dspp expression. Together, these findings suggest that an interaction between exogenous Pax9- and Bmp4-induced signaling modulated Dmp1 and Dspp expression. In conclusion, transfection of Pax9 and Bmp4 expression plasmids in iNCLCs induced gene expression associated with odontoblast differentiation, suggesting that iNCLCs differentiated into odontoblast-like cells. The iPS cell-derived odontoblast-like cells could be a useful cell source for tooth regeneration. It has been reported that induced pluripotent stem (iPS) cells differentiate into odontogenic cells by administration of recombinant growth factors and coculture with odontogenic cells. Therefore, they can be potential cell sources for tooth regeneration. However, these previous methods still have problems, such as usage of other cell types, heterogeneity of differentiated cells, and tumorigenicity. In the present study, a novel method to differentiate iPS cells into odontoblast-like cells without tumorigenicity using gene transfection was established. It is an important advance in the establishment of efficient methods to generate homogeneous functional odontogenic cells derived from iPS cells. ©AlphaMed Press.

  9. MicroRNA-432 contributes to dopamine cocktail and retinoic acid induced differentiation of human neuroblastoma cells by targeting NESTIN and RCOR1 genes.

    PubMed

    Das, Eashita; Bhattacharyya, Nitai Pada

    2014-05-02

    MicroRNA (miRNA) regulates expression of protein coding genes and has been implicated in diverse cellular processes including neuronal differentiation, cell growth and death. To identify the role of miRNA in neuronal differentiation, SH-SY5Y and IMR-32 cells were treated with dopamine cocktail and retinoic acid to induce differentiation. Detection of miRNAs in differentiated cells revealed that expression of many miRNAs was altered significantly. Among the altered miRNAs, human brain expressed miR-432 induced neurite projections, arrested cells in G0-G1, reduced cell proliferation and could significantly repress NESTIN/NES, RCOR1/COREST and MECP2. Our results reveal that miR-432 regulate neuronal differentiation of human neuroblastoma cells. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-{alpha}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukasaki, Masayuki; Yamada, Atsushi, E-mail: yamadaa@dent.showa-u.ac.jp; Suzuki, Dai

    2011-07-15

    Highlights: {yields} TNF-{alpha} inhibits POEM gene expression. {yields} Inhibition of POEM gene expression is caused by NF-{kappa}B activation by TNF-{alpha}. {yields} Over-expression of POEM recovers inhibition of osteoblast differentiation by TNF-{alpha}. -- Abstract: POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-{alpha} (TNF-{alpha}), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-{alpha}-induced down-regulation of POEM gene expression occurred in both time- andmore » dose-dependent manners through the nuclear factor kappa B (NF-{kappa}B) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-{alpha} in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-{alpha}-induced inhibition of osteoblast differentiation. These results suggest that TNF-{alpha} inhibits POEM expression through the NF-{kappa}B signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-{alpha}.« less

  11. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suriguga,; Li, Xiao-Fei; Li, Yang

    2013-12-15

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependentmore » increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. - Highlights: • Catechol enhanced hemin-induced hemoglobin accumulation. • COMT-catalyzed methylation acted as detoxication of catechol. • COMT involved in catechol-enhanced erythroid differentiation.« less

  12. Silver Nanoparticles: Two-Faced Neuronal Differentiation-Inducing Material in Neuroblastoma (SH-SY5Y) Cells.

    PubMed

    Abdal Dayem, Ahmed; Lee, Soo Bin; Choi, Hye Yeon; Cho, Ssang-Goo

    2018-05-15

    We have previously demonstrated the potential of biologically synthesized silver nanoparticles (AgNP) in the induction of neuronal differentiation of human neuroblastoma, SH-SY5Y cells; we aimed herein to unveil its molecular mechanism in comparison to the well-known neuronal differentiation-inducing agent, all-trans-retinoic acid (RA). AgNP-treated SH-SY5Y cells showed significantly higher reactive oxygen species (ROS) generation, stronger mitochondrial membrane depolarization, lower dual-specificity phosphatase expression, higher extracellular-signal-regulated kinase (ERK) phosphorylation, lower AKT phosphorylation, and lower expression of the genes encoding the antioxidant enzymes than RA-treated cells. Notably, pretreatment with N -acetyl-l-cysteine significantly abolished AgNP-induced neuronal differentiation, but not in that induced by RA. ERK inhibition, but not AKT inhibition, suppresses neurite growth that is induced by AgNP. Taken together, our results uncover the pivotal contribution of ROS in the AgNP-induced neuronal differentiation mechanism, which is different from that of RA. However, the negative consequence of AgNP-induced neurite growth may be high ROS generation and the downregulation of the expression of the genes encoding the antioxidant enzymes, which prompts the future consideration and an in-depth study of the application of AgNP-differentiated cells in neurodegenerative disease therapy.

  13. Lactate induces osteoblast differentiation by stabilization of HIF1α.

    PubMed

    Wu, Yu; Wang, Miaomiao; Feng, Haihua; Peng, Ying; Sun, Jieyun; Qu, Xiuxia; Li, Chunping

    2017-09-05

    Aerobic glycolysis is involved in osteoblast differentiation induced by Wnt signaling or PTH treatment. However, it is still unclear whether lactate, the end product of aerobic glycolysis, plays any role in osteoblast differentiation. Herein we report that in cultures of osteoblast-lineage cells, lactate promoted alkaline phosphatase-positive cell formation, increased the activity of alkaline phosphatase, and induced the expression of osteocalcin. This osteoblast differentiation-inducing effect of lactate can be inhibited by blocking its entry into cells with MCT1 siRNA or inhibitors, and by interfering with its metabolism by using specific siRNAs for LDHB and PDH. Moreover, lactate stabilized HIF1α expression and inhibited HIF1α activity, with BAY87-2243 lowering the osteoblast differentiation-inducing effect of lactate. Thus, these findings reveal an unrecognized role for aerobic glycolysis in osteoblast differentiation via its end product, lactate. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. 1,25-dihydroxyvitamin D3 induces CCR10 expression in terminally differentiating human B cells.

    PubMed

    Shirakawa, Aiko-Konno; Nagakubo, Daisuke; Hieshima, Kunio; Nakayama, Takashi; Jin, Zhe; Yoshie, Osamu

    2008-03-01

    In the B cell lineage, CCR10 is known to be selectively expressed by plasma cells, especially those secreting IgA. In this study, we examined the regulation of CCR10 expression in terminally differentiating human B cells. As reported previously, IL-21 efficiently induced the differentiation of activated human CD19+ B cells into IgD-CD38+ plasma cells in vitro. A minor proportion of the resulting CD19+IgD-CD38+ cells expressed CCR10 at low levels. 1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3), the active metabolite of vitamine D3, dramatically increased the proportion of CD19+IgD-CD38+ cells expressing high levels of CCR10. The 1,25-(OH)2D3 also increased the number of CCR10+ cells expressing surface IgA, although the majority of CCR10+ cells remained negative for surface IgA. Thus, 1,25-(OH)2D3 alone may not be sufficient for the induction of IgA expression in terminally differentiating human B cells. To further determine whether 1,25-(OH)2D3 directly induces CCR10 expression in terminally differentiating B cells, we next performed the analysis on the human CCR10 promoter. We identified a proximal Ets-1 site and an upstream potential vitamin D response element to be critical for the inducible expression of CCR10 by 1,25-(OH)2D3. We confirmed the specific binding of Ets-1 and 1,25-(OH)2D3-activated vitamin D receptor to the respective sites. In conclusion, 1,25-(OH)2D3 efficiently induces CCR10 expression in terminally differentiating human B cells in vitro. Furthermore, the human CCR10 promoter is cooperatively activated by Ets-1 and vitamin D receptor in the presence of 1,25-(OH)2D3.

  15. Differentiation of human foreskin fibroblast-derived induced pluripotent stem cells into hepatocyte-like cells.

    PubMed

    Wang, Jianjun; Zhao, Ping; Wan, Zhihong; Jin, Xueyuan; Cheng, Yongqian; Yan, Tao; Qing, Song; Ding, Ning; Xin, Shaojie

    2016-10-01

    The aim of this study was to investigate the differentiation potential of induced pluripotent stem cells (iPSCs) derived from human foreskin fibroblasts (HFFs) into hepatocyte-like cells (HLCs). The iPSCs were firstly induced by transduction of OCT4, SOX2, KLF4, and c-MYC into HFFs using retrovirus. Afterwards, expressions of pluripotency factors were identified by semiquantitative reverse transcription-polymerase chain reaction and immunofluorescence staining, and karyotype, embryoid, and teratoma were observed by microscope. Then, iPSCs were gradually differentiated into endoderm cells, hepatic progenitor cells, and mature HLCs by special culture medium. During this process, differentiation efficiency into each kind of cells was evaluated by detecting SOX17, HNF4a, and ALB using flow cytometry, respectively. Besides, enzyme-linked immunosorbent assay was conducted to detect the secretion of ALB in iPSC-induced HLCs and quantitative reverse transcription-polymerase chain reaction was performed to detect the expression levels of hepatocyte-specific genes. The iPSCs were successfully induced by HFFs, which exhibited typical embryonic stem cells morphology, positive alkaline phosphatase staining, normal diploid karyotype, and positive expression of various pluripotency factors. Meanwhile, spherical embryoid and teratoma with 3 germ layers were formed by iPSCs. The iPSCs were consecutively induced into endoderm cells, hepatic progenitor cells and mature HLCs, and the differentiation efficiency was 55.7 ± 2.9%, 45.7 ± 4.8%, and 35.0 ± 3.9%, respectively. Besides, the secretion of ALB and expression of various hepatocyte-specific genes was highly detected in iPSC-induced HLCs. The iPSCs were successfully derived from HFFs and then differentiated into HLCs, which proved a new source for hepatocyte transplantation. HFFs were successfully induced into iPSCs by transduction of OCT4, SOX2, KLF4, and c-MYC. Positive expressions of various pluripotency factors were exhibited in HFFs-induced iPSCs. The iPSCs were consecutively induced into endoderm cells, hepatic progenitor cells, and mature HLCs. Various hepatocyte-specific genes were highly expressed in iPSC-induced HLCs. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Bone morphogenic protein-2 regulates the myogenic differentiation of PMVECs in CBDL rat serum-induced pulmonary microvascular remodeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chang; Chen, Lin; Zeng, Jing

    Hepatopulmonary syndrome (HPS) is characterized by an arterial oxygenation defect induced by intrapulmonary vasodilation (IPVD) that increases morbidity and mortality. In our previous study, it was determined that both the proliferation and the myogenic differentiation of pulmonary microvascular endothelial cells (PMVECs) play a key role in the development of IPVD. However, the molecular mechanism underlying the relationship between IPVD and the myogenic differentiation of PMVECs remains unknown. Additionally, it has been shown that bone morphogenic protein-2 (BMP2), via the control of protein expression, may regulate cell differentiation including cardiomyocyte differentiation, neuronal differentiation and odontoblastic differentiation. In this study, we observedmore » that common bile duct ligation (CBDL)-rat serum induced the upregulation of the expression of several myogenic proteins (SM-α-actin, calponin, SM-MHC) and enhanced the expression levels of BMP2 mRNA and protein in PMVECs. We also observed that both the expression levels of Smad1/5 and the activation of phosphorylated Smad1/5 were significantly elevated in PMVECs following exposure to CBDL-rat serum, which was accompanied by the down-regulation of Smurf1. The blockage of the BMP2/Smad signaling pathway with Noggin inhibited the myogenic differentiation of PMVECs, a process that was associated with relatively low expression levels of both SM-α-actin and calponin in the setting of CBDL-rat serum exposure, although SM-MHC expression was not affected. These findings suggested that the BMP2/Smad signaling pathway is involved in the myogenic differentiation of the PMVECs. In conclusion, our data highlight the pivotal role of BMP2 in the CBDL-rat serum-induced myogenic differentiation of PMVECs via the activation of both Smad1 and Smad5 and the down-regulation of Smurf1, which may represent a potential therapy for HPS-induced pulmonary vascular remodeling. - Highlights: • CBDL-rat serum promotes the myogenic differentiaton and expression of BMP2 in PMVECs. • CBDL-rat serum activates the BMP2/smad signaling pathway. • The downregulation of Smurf1 stimulates the accumulation of Smad1/5 in PMVECs. • Noggin reverses partially the myogenic differentiaton in PMVECs.« less

  17. Enhancement of ATRA-induced differentiation of neuroblastoma cells with LOX/COX inhibitors: an expression profiling study.

    PubMed

    Chlapek, Petr; Redova, Martina; Zitterbart, Karel; Hermanova, Marketa; Sterba, Jaroslav; Veselska, Renata

    2010-05-11

    We performed expression profiling of two neuroblastoma cell lines, SK-N-BE(2) and SH-SY5Y, after combined treatment with all-trans retinoic acid (ATRA) and inhibitors of lipoxygenases (LOX) and cyclooxygenases (COX). This study is a continuation of our previous work confirming the possibility of enhancing ATRA-induced cell differentiation in these cell lines by the application of LOX/COX inhibitors and brings more detailed information concerning the mechanisms of the enhancement of ATRA-induced differentiation of neuroblastoma cells. Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor on cyclooxygenase-2, were used in this study. Expression profiling was performed using Human Cancer Oligo GEArray membranes that cover 440 cancer-related genes. Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton remodeling. These changes were detected in both cell lines, and they were independent of the type of specific inhibitors, suggesting a common mechanism of ATRA-induced differentiation enhancement. Furthermore, we also found overexpression of some genes in the same cell line (SK-N-BE(2) or SH-SY5Y) after combined treatment with both ATRA and CA, or ATRA and CX. Finally, we also detected that gene expression was changed after treatment with the same inhibitor (CA or CX) in combination with ATRA in both cell lines. Obtained results confirmed our initial hypothesis of the common mechanism of enhancement in ATRA-induced cell differentiation via inhibition of arachidonic acid metabolic pathway.

  18. Induction of neural differentiation by electrically stimulated gene expression of NeuroD2.

    PubMed

    Mie, Masayasu; Endoh, Tamaki; Yanagida, Yasuko; Kobatake, Eiry; Aizawa, Masuo

    2003-02-13

    Regulation of cell differentiation is an important assignment for cellular engineering. One of the techniques for regulation is gene transfection into undifferentiated cells. Transient expression of NeuroD2, one of neural bHLH transcription factors, converted mouse N1E-115 neuroblastoma cells into differentiated neurons. The regulation of neural bHLH expression should be a novel strategy for cell differentiation. In this study, we tried to regulate neural differentiation by NeuroD2 gene inserted under the control of heat shock protein-70 (HSP) promoter, which can be activated by electrical stimulation. Mouse neuroblastoma cell line, N1E-115, was stably transfected with expression vector containing mouse NeuroD2 cDNA under HSP promoter. Transfected cells were cultured on the electrode surface and applied electrical stimulation. After stimulation, NeuroD2 expression was induced, and transfected cells adopt a neuronal morphology at 3 days after stimulation. These results suggest that neural differentiation can be induced by electrically stimulated gene expression of NeuroD2.

  19. Differentiation Affects the Release of Exosomes from Colon Cancer Cells and Their Ability to Modulate the Behavior of Recipient Cells.

    PubMed

    Lucchetti, Donatella; Calapà, Federica; Palmieri, Valentina; Fanali, Caterina; Carbone, Federica; Papa, Alfredo; De Maria, Ruggero; De Spirito, Marco; Sgambato, Alessandro

    2017-07-01

    Exosomes are involved in intercellular communication. We previously reported that sodium butyrate-induced differentiation of HT29 colon cancer cells is associated with a reduced CD133 expression. Herein, we analyzed the role of exosomes in the differentiation of HT29 cells. Exosomes were prepared using ultracentrifugation. Gene expression levels were evaluated by real-time PCR. The cell proliferation rate was assessed by MTT assay and with the electric cell-substrate impedance sensing system, whereas cell motility was assessed using the scratch test and confocal microscopy. Sodium butyrate-induced differentiation of HT29 and Caco-2 cells increased the levels of released exosomes and their expression of CD133. Cell differentiation and the decrease of cellular CD133 expression levels were prevented by blocking multivesicular body maturation. Exosomes released by HT29 differentiating cells carried increased levels of miRNAs, induced an increased proliferation and motility of both colon cancer cells and normal fibroblasts, increased the colony-forming efficiency of cancer cells, and reduced the sodium butyrate-induced differentiation of HT29 cells. Such effects were associated with an increased phosphorylation level of both Src and extracellular signal regulated kinase proteins and with an increased expression of epithelial-to-mesenchymal transition-related genes. Release of exosomes is affected by differentiation of colon cancer cells; exosomes might be used by differentiating cells to get rid of components that are no longer necessary but might continue to exert their effects on recipient cells. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  20. Protective effects of L-selenomethionine on space radiation induced changes in gene expression.

    PubMed

    Stewart, J; Ko, Y-H; Kennedy, A R

    2007-06-01

    Ionizing radiation can produce adverse biological effects in astronauts during space travel. Of particular concern are the types of radiation from highly energetic, heavy, charged particles known as HZE particles. The aims of our studies are to characterize HZE particle radiation induced biological effects and evaluate the effects of L-selenomethionine (SeM) on these adverse biological effects. In this study, microarray technology was used to measure HZE radiation induced changes in gene expression, as well as to evaluate modulation of these changes by SeM. Human thyroid epithelial cells (HTori-3) were irradiated (1 GeV/n iron ions) in the presence or in the absence of 5 microM SeM. At 6 h post-irradiation, all cells were harvested for RNA isolation. Gene Chip U133Av2 from Affymetrix was used for the analysis of gene expression, and ANOVA and EASE were used for a determination of the genes and biological processes whose differential expression is statistically significant. Results of this microarray study indicate that exposure to small doses of radiation from HZE particles, 10 and 20 cGy from iron ions, induces statistically significant differential expression of 196 and 610 genes, respectively. In the presence of SeM, differential expression of 77 out of 196 genes (exposure to 10 cGy) and 336 out of 610 genes (exposure to 20 cGy) is abolished. In the presence or in the absence of SeM, radiation from HZE particles induces differential expression of genes whose products have roles in the induction of G1/S arrest during the mitotic cell cycle, as well as heat shock proteins. Some of the genes, whose expressions were affected by radiation from HZE particles and were unchanged in irradiated cells treated with SeM, have been shown to have altered expression levels in cancer cells. The conclusions of this report are that radiation from HZE particles can induce differential expression of many genes, some of which are known to play roles in the same processes that have been shown to be activated in cells exposed to radiation from photons (like cell cycle arrest in G1/S), and that supplementation with SeM abolishes HZE particle-induced differential expression of many genes. Understanding the roles that these genes play in the radiation-induced transformation of cells may help to decipher the origins of radiation-induced cancer.

  1. Expression of transcription factors during sodium phenylacetate induced erythroid differentiation in K562 cells.

    PubMed

    Rath, A V; Schmahl, G E; Niemeyer, C M

    1997-01-01

    During 15 days of treatment of K562 cells with sodium phenylacetate, we observed an increase in the cellular hemoglobin concentration with a similar increase in the expression of gamma-globin mRNA. Morphological studies demonstrated characteristic features of erythroid differentiation and maturation. At the same time there was no change in the level of expression of the cell surface antigenes CD33, CD34, CD45, CD71 and glycophorin A. Likewise, the level of expression of the erythroid transcription factors GATA-1, GATA-2, NF-E2, SCL and RBTN2, all expressed in untreated K562 cells, did not increase during sodium phenylacetate induced erythroid differentiation. The expression of the nuclear factors Evi-1 and c-myb, known to inhibit erythroid differentiation, did not decrease. We conclude that sodium phenylacetate treatment of K562 cells increases gamma-globin mRNA and induces cell maturation as judged by morphology without affecting the expression of the erythroid transcription factors, some of which are known to be involved in the regulation of beta-like globin genes.

  2. Selecting antagonistic antibodies that control differentiation through inducible expression in embryonic stem cells

    PubMed Central

    Melidoni, Anna N.; Dyson, Michael R.; Wormald, Sam; McCafferty, John

    2013-01-01

    Antibodies that modulate receptor function have great untapped potential in the control of stem cell differentiation. In contrast to many natural ligands, antibodies are stable, exquisitely specific, and are unaffected by the regulatory mechanisms that act on natural ligands. Here we describe an innovative system for identifying such antibodies by introducing and expressing antibody gene populations in ES cells. Following induced antibody expression and secretion, changes in differentiation outcomes of individual antibody-expressing ES clones are monitored using lineage-specific gene expression to identify clones that encode and express signal-modifying antibodies. This in-cell expression and reporting system was exemplified by generating blocking antibodies to FGF4 and its receptor FGFR1β, identified through delayed onset of ES cell differentiation. Functionality of the selected antibodies was confirmed by addition of exogenous antibodies to three different ES reporter cell lines, where retained expression of pluripotency markers Oct4, Nanog, and Rex1 was observed. This work demonstrates the potential for discovery and utility of functional antibodies in stem cell differentiation. This work is also unique in constituting an example of ES cells carrying an inducible antibody that causes a functional protein “knock-down” and allows temporal control of stable signaling components at the protein level. PMID:24082130

  3. Potential Role of S100A8 in Cutaneous Squamous Cell Carcinoma Differentiation

    PubMed Central

    Shin, Jung-Min; Chang, In-Kyu; Lee, Young-Ho; Yeo, Min-Kyung; Kim, Jin-Man; Sohn, Kyung-Cheol; Im, Myung; Seo, Young-Joon; Kim, Chang-Deok; Lee, Jeung-Hoon

    2016-01-01

    Background S100A8 is differentially expressed in various cell types and is associated with a number of malignant disorders. S100A8 may affect tumor biology. However, its role in cutaneous squamous cell carcinoma (SCC) is not well established. Objective This study aims to investigate the relationship between S100A8 and cutaneous SCC development. Methods We performed immunohistochemical staining to detect S100A8 expression in facial skin specimens of premalignant actinic keratosis (AK), malignant SCC, and normal tissues. In addition, we utilized postconfluence and high calcium-induced differentiation in a culture system model. Furthermore, we constructed a recombinant adenovirus expressing GFP-tagged S100A8 to investigate the role of S100A8 in SCC cell differentiation. Results S100A8 was significantly overexpressed in human cutaneous SCC compared to that in normal and AK tissues. S100A8 was gradually upregulated in SCC cells in a post-confluence-induced differentiation model. Overexpression of S100A8 in SCC cells induced by adenoviral transduction led to increased expression levels of differentiation markers, such as loricrin, involucrin, and filaggrin. S100A8 overexpression also increased loricrin and involucrin luciferase activity. Conclusion S100A8 regulates cutaneous SCC differentiation and induces well-differentiated SCC formation in skin. PMID:27081264

  4. Voltage-gated sodium channel expression and action potential generation in differentiated NG108-15 cells.

    PubMed

    Liu, Jinxu; Tu, Huiyin; Zhang, Dongze; Zheng, Hong; Li, Yu-Long

    2012-10-25

    The generation of action potential is required for stimulus-evoked neurotransmitter release in most neurons. Although various voltage-gated ion channels are involved in action potential production, the initiation of the action potential is mainly mediated by voltage-gated Na+ channels. In the present study, differentiation-induced changes of mRNA and protein expression of Na+ channels, Na+ currents, and cell membrane excitability were investigated in NG108-15 cells. Whole-cell patch-clamp results showed that differentiation (9 days) didn't change cell membrane excitability, compared to undifferentiated state. But differentiation (21 days) induced the action potential generation in 45.5% of NG108-15 cells (25/55 cells). In 9-day-differentiated cells, Na+ currents were mildly increased, which was also found in 21-day differentiated cells without action potential. In 21-day differentiated cells with action potential, Na+ currents were significantly enhanced. Western blot data showed that the expression of Na+ channels was increased with differentiated-time dependent manner. Single-cell real-time PCR data demonstrated that the expression of Na+ channel mRNA was increased by 21 days of differentiation in NG108-15 cells. More importantly, the mRNA level of Na+ channels in cells with action potential was higher than that in cells without action potential. Differentiation induces expression of voltage-gated Na+ channels and action potential generation in NG108-15 cells. A high level of the Na+ channel density is required for differentiation-triggered action potential generation.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeadin, Melec G.; Butcher, Martin K.; Shaughnessy, Stephen G.

    Highlights: Black-Right-Pointing-Pointer Leptin promotes osteoblast differentiation of primary smooth muscle cells. Black-Right-Pointing-Pointer Leptin regulates the expression of genes involved in osteoblast differentiation. Black-Right-Pointing-Pointer Constitutively active GSK-3{beta} attenuates leptin-induced osteoblast differentiation. Black-Right-Pointing-Pointer This suggests that leptin signals through GSK-3{beta} to promote osteoblast differentiation. -- Abstract: In this study, we begin to investigate the underlying mechanism of leptin-induced vascular calcification. We found that treatment of cultured bovine aortic smooth muscle cells (BASMCs) with leptin (0.5-4 {mu}g/ml) induced osteoblast differentiation in a dose-dependent manner. Furthermore, we found that leptin significantly increased the mRNA expression of osteopontin and bone sialoprotein, while down-regulating matrix glamore » protein (MGP) expression in BASMCs. Key factors implicated in osteoblast differentiation, including members of the Wnt signaling pathway, were examined. Exposure to leptin enhanced phosphorylation of GSK-3{beta} on serine-9 thereby inhibiting activity and promoting the nuclear accumulation of {beta}-catenin. Transfection of BASMCs with an adenovirus that expressed constitutively active GSK-3{beta} (Ad-GSK-3{beta} S9A) resulted in a >2-fold increase in GSK-3{beta} activity and a significant decrease in leptin-induced alkaline phosphatase (ALP) activity. In addition, qRT-PCR analysis showed that GSK-3{beta} activation resulted in a significant decrease in the expression of osteopontin and bone sialoprotein, but a marked increase in MGP mRNA expression. When taken together, our results suggest a mechanism by which leptin promotes osteoblast differentiation and vascular calcification in vivo.« less

  6. Cannabidiol stimulates Aml-1a-dependent glial differentiation and inhibits glioma stem-like cells proliferation by inducing autophagy in a TRPV2-dependent manner.

    PubMed

    Nabissi, Massimo; Morelli, Maria Beatrice; Amantini, Consuelo; Liberati, Sonia; Santoni, Matteo; Ricci-Vitiani, Lucia; Pallini, Roberto; Santoni, Giorgio

    2015-10-15

    Glioma stem-like cells (GSCs) correspond to a tumor cell subpopulation, involved in glioblastoma multiforme (GBM) tumor initiation and acquired chemoresistance. Currently, drug-induced differentiation is considered as a promising approach to eradicate this tumor-driving cell population. Recently, the effect of cannabinoids (CBs) in promoting glial differentiation and inhibiting gliomagenesis has been evidenced. Herein, we demonstrated that cannabidiol (CBD) by activating transient receptor potential vanilloid-2 (TRPV2) triggers GSCs differentiation activating the autophagic process and inhibits GSCs proliferation and clonogenic capability. Above all, CBD and carmustine (BCNU) in combination overcome the high resistance of GSCs to BCNU treatment, by inducing apoptotic cell death. Acute myeloid leukemia (Aml-1) transcription factors play a pivotal role in GBM proliferation and differentiation and it is known that Aml-1 control the expression of several nociceptive receptors. So, we evaluated the expression levels of Aml-1 spliced variants (Aml-1a, b and c) in GSCs and during their differentiation. We found that Aml-1a is upregulated during GSCs differentiation, and its downregulation restores a stem cell phenotype in differentiated GSCs. Since it was demonstrated that CBD induces also TRPV2 expression and that TRPV2 is involved in GSCs differentiation, we evaluated if Aml-1a interacted directly with TRPV2 promoters. Herein, we found that Aml-1a binds TRPV2 promoters and that Aml-1a expression is upregulated by CBD treatment, in a TRPV2 and PI3K/AKT dependent manner. Altogether, these results support a novel mechanism by which CBD inducing TRPV2-dependent autophagic process stimulates Aml-1a-dependent GSCs differentiation, abrogating the BCNU chemoresistance in GSCs. © 2015 UICC.

  7. Crosstalk between HIF-1 and ROCK pathways in neuronal differentiation of mesenchymal stem cells, neurospheres and in PC12 neurite outgrowth.

    PubMed

    Pacary, Emilie; Tixier, Emmanuelle; Coulet, Florence; Roussel, Simon; Petit, Edwige; Bernaudin, Myriam

    2007-07-01

    This study demonstrates that the Rho-kinase (ROCK) inhibitor, Y-27632, potentiates not only the effect of cobalt chloride (CoCl(2)) but also that of deferoxamine, another HIF-1 inducer, on mesenchymal stem cell (MSC) neuronal differentiation. HIF-1 is essential for CoCl(2)+/-Y-27632-induced MSC neuronal differentiation, since agents inhibiting HIF-1 abolish the changes of morphology and cell cycle arrest-related gene or protein expressions (p21, cyclin D1) and the increase of neuronal marker expressions (Tuj1, NSE). Y-27632 potentiates the CoCl(2)-induced decrease of cyclin D1 and nestin expressions, the increase of HIF-1 activation and EPO expression, and decreases pVHL expression. Interestingly, CoCl(2) decreases RhoA expression, an effect potentiated by Y-27632, revealing crosstalk between HIF-1 and RhoA/ROCK pathways. Moreover, we demonstrate a synergistic effect of CoCl(2) and Y-27632 on neurosphere differentiation into neurons and PC12 neurite outgrowth underlining that a co-treatment targeting both HIF-1 and ROCK pathways might be relevant to differentiate stem cells into neurons.

  8. Induction of differentiation in human promyelocytic HL-60 leukemia cells activates p21, WAF1/CIP1, expression in the absence of p53.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, H.; Lin, J.; Su, Z.-Z.

    The melanoma differentiation associated gene, mda-6, which is identical to the P53-inducible gene WAF1/CIP1, encodes an M(r) 21,000 protein (p21) that can directly inhibit cell growth by repressing cyclin dependent kinases. mda-6 was identified using subtraction hybridization by virtue of its enhanced expression in human melanoma cells induced to terminally differentiate by treatment with human fibroblast interferon and the anti-leukemic compound mezerein (Jiang and Fisher, 1993). In the present study, we demonstrate that mda-6 (WAF1/CIP1) is an immediate early response gene induced during differentiation of the promyelocytic HL-60 leukemia cell line along the granulocytic or macrophage/monocyte pathway. mda-6 gene expressionmore » in HL-60 cells is induced within 1 to 3 h during differentiation along the macrophage/monocyte pathway evoked by 12-0-tetradecanoyl phorbol-13-acetate (TPA) or 1,25-dihydroxyvitamin D3 (Vit D3) or the granulocytic pathway produced by retinoic acid (RA) or dimethylsulfoxide (DMSO). Immunoprecipitation analyses using an anti-p21 antibody indicate a temporal induction of p21 protein following treatment with TPA, DMSO or RA. A relationship between rapid induction of mda-6 gene expression and differentiation is indicated by a delay in this expression in an HL-60 cell variant resistant to TPA-induced growth arrest and differentiation. A similar delay in mda-6 gene expression is not observed in Vit D3 treated TPA-resistant variant cells that are also sensitive to induction of monocytic differentiation. Since HL-60 cells have a null-p53 phenotype, these results demonstrate that p21 induction occurs during initiation of terminal differentiation in a p53-independent manner. In this context, p21 may play a more global role in growth control and differentiation than originally envisioned.« less

  9. Forced expression of Hnf4a induces hepatic gene activation through directed differentiation.

    PubMed

    Yahoo, Neda; Pournasr, Behshad; Rostamzadeh, Jalal; Fathi, Fardin

    2016-08-05

    Embryonic stem (ES) cells are capable of unlimited self-renewal and have a diverse differentiation potential. These unique features make ES cells as an attractive source for developmental biology studies. Having the mature hepatocyte in the lab with functional activities is valuable in drug discovery studies. Overexpression of hepatocyte lineage-specific transcription factors (TFs) becomes a promising approach in pluripotent cell differentiation toward liver cells. Many studies generate transgenic ES cell lines to examine the effects of specific TFs overexpression in cell differentiation. In the present report, we have addressed whether a suspension or adherent model of differentiation is an appropriate way to study the role of Hnf4a overexpression. We generated ES cells that carried a doxycycline (Dox)-inducible Hnf4a using lentiviral vectors. The transduced cells were subjected to induced Hnf4a overexpression through both spontaneous and directed differentiation methods. Gene expression analysis showed substantially increased expression of hepatic gene markers, particularly Ttr and endogenous Hnf4a, in transduced cells differentiated by the directed approach. These results demonstrated that forced expression of TFs during directed differentiation would be an appropriate way to study relevant gene activation and the effects of overexpression in the context of hepatic differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice

    PubMed Central

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-01-01

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice. PMID:27070576

  11. Tributyltin differentially promotes development of a phenotypically distinct adipocyte.

    PubMed

    Regnier, Shane M; El-Hashani, Essam; Kamau, Wakanene; Zhang, Xiaojie; Massad, Nicole L; Sargis, Robert M

    2015-09-01

    Environmental endocrine disrupting chemicals (EDCs) are increasingly implicated in the pathogenesis of obesity. Evidence implicates various EDCs as being proadipogenic, including tributyltin (TBT), which activates the peroxisome proliferator activated receptor-γ (PPARγ). However, the conditions required for TBT-induced adipogenesis and its functional consequences are incompletely known. The costimulatory conditions necessary for preadipocyte-to-adipocyte differentiation were compared between TBT and the pharmacological PPARγ agonist troglitazone (Trog) in the 3T3-L1 cell line; basal and insulin-stimulated glucose uptake were assessed using radiolabeled 2-deoxyglucose. TBT enhanced expression of the adipocyte marker C/EBPα with coexposure to either isobutylmethylxanthine or insulin in the absence of other adipogenic stimuli. Examination of several adipocyte-specific proteins revealed that TBT and Trog differentially affected protein expression despite comparable PPARγ stimulation. In particular, TBT reduced adiponectin expression upon maximal adipogenic stimulation. Under submaximal stimulation, TBT and Trog differentially promoted adipocyte-specific gene expression despite similar lipid accumulation. Moreover, TBT attenuated Trog-induced adipocyte gene expression under conditions of cotreatment. Finally, TBT-induced adipocytes exhibited altered glucose metabolism, with increased basal glucose uptake. TBT-induced adipocytes are functionally distinct from those generated by a pharmacological PPARγ agonist, suggesting that obesogen-induced adipogenesis may generate dysfunctional adipocytes with the capacity to deleteriously affect global energy homeostasis. © 2015 The Obesity Society.

  12. Heparin-binding EGF-like growth factor and miR-1192 exert opposite effect on Runx2-induced osteogenic differentiation.

    PubMed

    Yu, S; Geng, Q; Ma, J; Sun, F; Yu, Y; Pan, Q; Hong, A

    2013-10-17

    Osteoblast differentiation is a pivotal event in bone formation. Runt-related transcription factor-2 (Runx2) is an essential factor required for osteoblast differentiation and bone formation. However, the underlying mechanism of Runx2-regulated osteogenic differentiation is still unclear. Here, we explored the corresponding mechanism using the C2C12/Runx2(Dox) subline, which expresses Runx2 in response to doxycycline (Dox). We found that Runx2-induced osteogenic differentiation of C2C12 cells results in a sustained decrease in the expression of heparin-binding EGF-like growth factor (HB-EGF), a member of the epidermal growth factor (EGF) family. Forced expression of HB-EGF or treatment with HB-EGF is capable of reducing the expression of alkaline phosphatase (ALP), a defined marker of early osteoblast differentiation. HB-EGF-mediated inhibition of ALP depends upon activation of the EGFR and the downstream extracellular signal-regulated kinase, c-Jun N-terminal kinase mitogen-activated protein kinase pathways as well as phosphatidylinositol 3-kinase/Akt pathway. Runx2 specifically binds to the Hbegf promoter, suggesting that Hbegf transcription is directly inhibited by Runx2. Runx2 can upregulate miR-1192, which enhances Runx2-induced osteogenic differentiation. Moreover, miR-1192 directly targets Hbegf through translational inhibition, suggesting enhancement of Runx2-induced osteogenic differentiation by miR-1192 through the downregulation of HB-EGF. Taken together, our results suggest that Runx2 induces osteogenic differentiation of C2C12 cells by inactivating HB-EGF-EGFR signaling through the downregulation of HB-EGF via both transcriptional and post-transcriptional mechanisms.

  13. Heparin-binding EGF-like growth factor and miR-1192 exert opposite effect on Runx2-induced osteogenic differentiation

    PubMed Central

    Yu, S; Geng, Q; Ma, J; Sun, F; Yu, Y; Pan, Q; Hong, A

    2013-01-01

    Osteoblast differentiation is a pivotal event in bone formation. Runt-related transcription factor-2 (Runx2) is an essential factor required for osteoblast differentiation and bone formation. However, the underlying mechanism of Runx2-regulated osteogenic differentiation is still unclear. Here, we explored the corresponding mechanism using the C2C12/Runx2Dox subline, which expresses Runx2 in response to doxycycline (Dox). We found that Runx2-induced osteogenic differentiation of C2C12 cells results in a sustained decrease in the expression of heparin-binding EGF-like growth factor (HB-EGF), a member of the epidermal growth factor (EGF) family. Forced expression of HB-EGF or treatment with HB-EGF is capable of reducing the expression of alkaline phosphatase (ALP), a defined marker of early osteoblast differentiation. HB-EGF-mediated inhibition of ALP depends upon activation of the EGFR and the downstream extracellular signal-regulated kinase, c-Jun N-terminal kinase mitogen-activated protein kinase pathways as well as phosphatidylinositol 3-kinase/Akt pathway. Runx2 specifically binds to the Hbegf promoter, suggesting that Hbegf transcription is directly inhibited by Runx2. Runx2 can upregulate miR-1192, which enhances Runx2-induced osteogenic differentiation. Moreover, miR-1192 directly targets Hbegf through translational inhibition, suggesting enhancement of Runx2-induced osteogenic differentiation by miR-1192 through the downregulation of HB-EGF. Taken together, our results suggest that Runx2 induces osteogenic differentiation of C2C12 cells by inactivating HB-EGF-EGFR signaling through the downregulation of HB-EGF via both transcriptional and post-transcriptional mechanisms. PMID:24136232

  14. Dexamethasone Suppresses Oxysterol-Induced Differentiation of Monocytic Cells

    PubMed Central

    Son, Yonghae; Kim, Bo-Young; Eo, Seong-Kug; Park, Young Chul; Kim, Koanhoi

    2016-01-01

    Oxysterol like 27-hydroxycholesterol (27OHChol) has been reported to induce differentiation of monocytic cells into a mature dendritic cell phenotype. We examined whether dexamethasone (Dx) affects 27OHChol-induced differentiation using THP-1 cells. Treatment of monocytic cells with Dx resulted in almost complete inhibition of transcription and surface expression of CD80, CD83, and CD88 induced by 27OHChol. Elevated surface levels of MHC class I and II molecules induced by 27OHChol were reduced to basal levels by treatment with Dx. A decreased endocytosis ability caused by 27OHChol was recovered by Dx. We also examined effects of Dx on expression of CD molecules involved in atherosclerosis. Increased levels of surface protein and transcription of CD105, CD137, and CD166 by treatment with 27OHChol were significantly inhibited by cotreatment with Dx. These results indicate that Dx inhibits 27OHChol-induced differentiation of monocytic cells into a mature dendritic cell phenotype and expression of CD molecules whose levels are associated with atherosclerosis. In addition, we examined phosphorylation of AKT induced by 27OHChol and effect of Dx, where cotreatment with Dx inhibited the phosphorylation of AKT. The current study reports that Dx regulates oxysterol-mediated dendritic cell differentiation of monocytic cells. PMID:27340507

  15. Dexamethasone Suppresses Oxysterol-Induced Differentiation of Monocytic Cells.

    PubMed

    Son, Yonghae; Kim, Bo-Young; Eo, Seong-Kug; Park, Young Chul; Kim, Koanhoi

    2016-01-01

    Oxysterol like 27-hydroxycholesterol (27OHChol) has been reported to induce differentiation of monocytic cells into a mature dendritic cell phenotype. We examined whether dexamethasone (Dx) affects 27OHChol-induced differentiation using THP-1 cells. Treatment of monocytic cells with Dx resulted in almost complete inhibition of transcription and surface expression of CD80, CD83, and CD88 induced by 27OHChol. Elevated surface levels of MHC class I and II molecules induced by 27OHChol were reduced to basal levels by treatment with Dx. A decreased endocytosis ability caused by 27OHChol was recovered by Dx. We also examined effects of Dx on expression of CD molecules involved in atherosclerosis. Increased levels of surface protein and transcription of CD105, CD137, and CD166 by treatment with 27OHChol were significantly inhibited by cotreatment with Dx. These results indicate that Dx inhibits 27OHChol-induced differentiation of monocytic cells into a mature dendritic cell phenotype and expression of CD molecules whose levels are associated with atherosclerosis. In addition, we examined phosphorylation of AKT induced by 27OHChol and effect of Dx, where cotreatment with Dx inhibited the phosphorylation of AKT. The current study reports that Dx regulates oxysterol-mediated dendritic cell differentiation of monocytic cells.

  16. Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy.

    PubMed

    Han, Jae Woong; Gurunathan, Sangiliyandi; Choi, Yun-Jung; Kim, Jin-Hoi

    2017-01-01

    Silver nanoparticles (AgNPs) exhibit strong antibacterial and anticancer activity owing to their large surface-to-volume ratios and crystallographic surface structure. Owing to their various applications, understanding the mechanisms of action, biological interactions, potential toxicity, and beneficial effects of AgNPs is important. Here, we investigated the toxicity and differentiation-inducing effects of AgNPs in teratocarcinoma stem cells. AgNPs were synthesized and characterized using various analytical techniques such as UV-visible spectroscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. The cellular responses of AgNPs were analyzed by a series of cellular and biochemical assays. Gene and protein expressions were analyzed by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. The AgNPs showed typical crystalline structures and spherical shapes (average size =20 nm). High concentration of AgNPs induced cytotoxicity in a dose-dependent manner by increasing lactate dehydrogenase leakage and reactive oxygen species. Furthermore, AgNPs caused mitochondrial dysfunction, DNA fragmentation, increased expression of apoptotic genes, and decreased expression of antiapoptotic genes. Lower concentrations of AgNPs induced neuronal differentiation by increasing the expression of differentiation markers and decreasing the expression of stem cell markers. Cisplatin reduced the viability of F9 cells that underwent AgNPs-induced differentiation. The results showed that AgNPs caused differentially regulated cytotoxicity and induced neuronal differentiation of F9 cells in a concentration-dependent manner. Therefore, AgNPs can be used for differentiation therapy, along with chemotherapeutic agents, for improving cancer treatment by targeting specific chemotherapy-resistant cells within a tumor. Furthermore, understanding the molecular mechanisms of apoptosis and differentiation in stem cells could also help in developing new strategies for cancer stem cell (CSC) therapies. The findings of this study could significantly contribute to the nanomedicine because this study is the first of its kind, and our results will lead to new strategies for cancer and CSC therapies.

  17. DEHP (DI-N-ETHYLHEXYL PHTHALATE), WHEN ADMINISTERED DURING SEXUAL DIFFERENTIATION, INDUCES DOSE DEPENDENT DECREASES IN FETAL TESTIS GENE EXPRESSION AND STEROID HORMONE SYNTHESIS

    EPA Science Inventory

    DEHP (di-n-ethylhexyl phthalate), when administered during sexual differentiation, induces dose dependent decreases in fetal testis gene expression and steroid hormone synthesis.
    Vickie S. Wilson, Christy Lambright, Johnathan Furr, Kathy Bobseine, Carmen Wood, Gary Held, and ...

  18. Restoration of C/EBPα in dedifferentiated liposarcoma induces G2/M cell cycle arrest and apoptosis

    PubMed Central

    Wu, Yuhsin V.; Okada, Tomoyo; DeCarolis, Penelope; Socci, Nicholas; O’Connor, Rachael; Geha, Rula C.; Somberg, C. Joy; Antonescu, Cristina; Singer, Samuel

    2012-01-01

    Well differentiated liposarcoma (WDLS) and dedifferentiated liposarcoma (DDLS) represent the most common biological group of liposarcoma, and there is a pressing need to develop targeted therapies for patients with advanced disease. To identify potential therapeutic targets, we sought to identify differences in the adipogenic pathways between DDLS, WDLS, and normal adipose tissue. In a microarray analysis of DDLS (n=84), WDLS (n=79), and normal fat (n=23), C/EBPα, a transcription factor involved in cell cycle regulation and differentiation, was underexpressed in DDLS compared to both WDLS and normal fat (15.2 fold and 27.8 fold, respectively). In normal adipose-derived stem cells, C/EBPα expression was strongly induced when cells were cultured in differentiation media, but in three DDLS cell lines, this induction was nearly absent. We restored C/EBPα expression in one of the cell lines (DDLS8817) by transfection of an inducible C/EBα expression vector. Inducing C/EBPα expression reduced proliferation and caused cells to accumulate in G2/M. Under differentiation conditions, the cell proliferation was reduced further, and 66% of the DDLS cells containing the inducible C/EBPα expression vector underwent apoptosis as demonstrated by annexin V staining. These cells in differentiation conditions expressed early adipocyte-specific mRNAs such as LPL and FABP4, but they failed to accumulate intracellular lipid droplets, a characteristic of mature adipocytes. These results demonstrate that loss of C/EBPα is an important factor in suppressing apoptosis and maintaining the dedifferentiated state in DDLS. Restoring C/EBPα may be a useful therapeutic approach for dedifferentiated liposarcomas. PMID:22170698

  19. Perhexiline maleate enhances antitumor efficacy of cisplatin in neuroblastoma by inducing over-expression of NDM29 ncRNA

    PubMed Central

    Vella, Serena; Penna, Ilaria; Longo, Luca; Pioggia, Giulia; Garbati, Patrizia; Florio, Tullio; Rossi, Fabio; Pagano, Aldo

    2015-01-01

    High Risk Neuroblastoma (HR-NB) is a pediatric cancer characterized by high malignancy and remarkable cell heterogeneity within the tumour nodules. In a recent study, we demonstrated that in vitro and in vivo over-expression of the non-coding RNA NDM29 (neuroblastoma differentiation marker 29) induces NB cell differentiation, dramatically reducing their malignancy. Among gene expression changes, differentiated phenotype induced by NDM29 is characterized by decrease of the expression of ABC transporters responsible for anticancer drug resistance. Thus, the pharmacological induction of NDM29, in principle, might represent a possible novel strategy to increase cytotoxic drug responses. In this work, we identify a small molecule able to induce the expression of NDM29 in NB cells, conferring to malignant cells increased susceptibility to cisplatin cytotoxic effects. We demonstrate that the pharmacological induction of NDM29 expression in vivo enhances the antitumoral effects of chemotherapy specifically on tumour initiating/cancer stem cells sub-population, usually refractory to therapies and responsible for tumour relapse. In summary, we suggest a novel therapeutical approach possibly useful to treat very aggressive NB cases with poor prognosis. This novel pharmacological strategy aims to promote differentiation of “stem-like” cells to render them more susceptible to the killing action of cytotoxic anticancer drugs. PMID:26674674

  20. Perhexiline maleate enhances antitumor efficacy of cisplatin in neuroblastoma by inducing over-expression of NDM29 ncRNA.

    PubMed

    Vella, Serena; Penna, Ilaria; Longo, Luca; Pioggia, Giulia; Garbati, Patrizia; Florio, Tullio; Rossi, Fabio; Pagano, Aldo

    2015-12-17

    High Risk Neuroblastoma (HR-NB) is a pediatric cancer characterized by high malignancy and remarkable cell heterogeneity within the tumour nodules. In a recent study, we demonstrated that in vitro and in vivo over-expression of the non-coding RNA NDM29 (neuroblastoma differentiation marker 29) induces NB cell differentiation, dramatically reducing their malignancy. Among gene expression changes, differentiated phenotype induced by NDM29 is characterized by decrease of the expression of ABC transporters responsible for anticancer drug resistance. Thus, the pharmacological induction of NDM29, in principle, might represent a possible novel strategy to increase cytotoxic drug responses. In this work, we identify a small molecule able to induce the expression of NDM29 in NB cells, conferring to malignant cells increased susceptibility to cisplatin cytotoxic effects. We demonstrate that the pharmacological induction of NDM29 expression in vivo enhances the antitumoral effects of chemotherapy specifically on tumour initiating/cancer stem cells sub-population, usually refractory to therapies and responsible for tumour relapse. In summary, we suggest a novel therapeutical approach possibly useful to treat very aggressive NB cases with poor prognosis. This novel pharmacological strategy aims to promote differentiation of "stem-like" cells to render them more susceptible to the killing action of cytotoxic anticancer drugs.

  1. Differential expression analysis of genes involved in high-temperature induced sex differentiation in Nile tilapia.

    PubMed

    Li, Chun Ge; Wang, Hui; Chen, Hong Ju; Zhao, Yan; Fu, Pei Sheng; Ji, Xiang Shan

    2014-01-01

    Nowadays, high temperature effects on the molecular pathways during sex differentiation in teleosts need to be deciphered. In this study, a systematic differential expression analysis of genes involved in high temperature-induced sex differentiation was done in the Nile tilapia gonad and brain. Our results showed that high temperature caused significant down-regulation of CYP19A1A in the gonad of both sexes in induction group, and FOXL2 in the ovary of the induction group. The expressions of GTHα, LHβ and ERα were also significantly down-regulated in the brain of both sexes in the induction and recovery groups. On the contrary, the expression of CYP11B2 was significantly up-regulated in the ovary, but not in the testis in both groups. Spearman rank correlation analysis showed that there are significant correlations between the expressions of CYP19A1A, FOXL2, or DMRT1 in the gonads and the expression of some genes in the brain. Another result in this study showed that high temperature up-regulated the expression level of DNMT1 in the testis of the induction group, and DNMT1 and DNMT3A in the female brain of both groups. The expression and correlation analysis of HSPs showed that high temperature action on tilapia HSPs might indirectly induce the expression changes of sex differentiation genes in the gonads. These findings provide new insights on TSD and suggest that sex differentiation related genes, heat shock proteins, and DNA methylation genes are new candidates for studying TSD in fish species. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Single Low-Dose Radiation Induced Regulation of Keratinocyte Differentiation in Calcium-Induced HaCaT Cells.

    PubMed

    Hahn, Hyung Jin; Youn, Hae Jeong; Cha, Hwa Jun; Kim, Karam; An, Sungkwan; Ahn, Kyu Joong

    2016-08-01

    We are continually exposed to low-dose radiation (LDR) in the range 0.1 Gy from natural sources, medical devices, nuclear energy plants, and other industrial sources of ionizing radiation. There are three models for the biological mechanism of LDR: the linear no-threshold model, the hormetic model, and the threshold model. We used keratinocytes as a model system to investigate the molecular genetic effects of LDR on epidermal cell differentiation. To identify keratinocyte differentiation, we performed western blots using a specific antibody for involucrin, which is a precursor protein of the keratinocyte cornified envelope and a marker for keratinocyte terminal differentiation. We also performed quantitative polymerase chain reaction. We examined whether LDR induces changes in involucrin messenger RNA (mRNA) and protein levels in calcium-induced keratinocyte differentiation. Exposure of HaCaT cells to LDR (0.1 Gy) induced p21 expression. p21 is a key regulator that induces growth arrest and represses stemness, which accelerates keratinocyte differentiation. We correlated involucrin expression with keratinocyte differentiation, and examined the effects of LDR on involucrin levels and keratinocyte development. LDR significantly increased involucrin mRNA and protein levels during calcium-induced keratinocyte differentiation. These studies provide new evidence for the biological role of LDR, and identify the potential to utilize LDR to regulate or induce keratinocyte differentiation.

  3. Single Low-Dose Radiation Induced Regulation of Keratinocyte Differentiation in Calcium-Induced HaCaT Cells

    PubMed Central

    Hahn, Hyung Jin; Youn, Hae Jeong; Cha, Hwa Jun; Kim, Karam; An, Sungkwan

    2016-01-01

    Background We are continually exposed to low-dose radiation (LDR) in the range 0.1 Gy from natural sources, medical devices, nuclear energy plants, and other industrial sources of ionizing radiation. There are three models for the biological mechanism of LDR: the linear no-threshold model, the hormetic model, and the threshold model. Objective We used keratinocytes as a model system to investigate the molecular genetic effects of LDR on epidermal cell differentiation. Methods To identify keratinocyte differentiation, we performed western blots using a specific antibody for involucrin, which is a precursor protein of the keratinocyte cornified envelope and a marker for keratinocyte terminal differentiation. We also performed quantitative polymerase chain reaction. We examined whether LDR induces changes in involucrin messenger RNA (mRNA) and protein levels in calcium-induced keratinocyte differentiation. Results Exposure of HaCaT cells to LDR (0.1 Gy) induced p21 expression. p21 is a key regulator that induces growth arrest and represses stemness, which accelerates keratinocyte differentiation. We correlated involucrin expression with keratinocyte differentiation, and examined the effects of LDR on involucrin levels and keratinocyte development. LDR significantly increased involucrin mRNA and protein levels during calcium-induced keratinocyte differentiation. Conclusion These studies provide new evidence for the biological role of LDR, and identify the potential to utilize LDR to regulate or induce keratinocyte differentiation. PMID:27489424

  4. CD147 promotes the formation of functional osteoclasts through NFATc1 signalling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishioku, Tsuyoshi, E-mail: nishiokut@niu.ac.jp; Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180; Terasawa, Mariko

    CD147, a membrane glycoprotein of the immunoglobulin superfamily, is highly upregulated during dynamic cellular events including tissue remodelling. Elevated CD147 expression is present in the joint of rheumatoid arthritis patients. However, the role of CD147 in bone destruction remains unclear. To determine whether CD147 is involved in osteoclastogenesis, we studied its expression in mouse osteoclasts and its role in osteoclast differentiation and function. CD147 expression was markedly upregulated during osteoclast differentiation. To investigate the role of CD147 in receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption activity, osteoclast precursor cells were transfected with CD147 siRNA. Decreasedmore » CD147 expression inhibited osteoclast formation and bone resorption, inhibited RANKL-induced nuclear translocation of the nuclear factor of activated T cells (NFAT) c1 and decreased the expression of the d2 isoform of vacuolar ATPase Vo domain and cathepsin K. Therefore, CD147 plays a critical role in the differentiation and function of osteoclasts by upregulating NFATc1 through the autoamplification of its expression in osteoclastogenesis. - Highlights: • CD147 expression was markedly upregulated during osteoclast differentiation. • Downregulation of CD147 expression inhibited osteoclastgenesis and bone resorption. • Decreased CD147 expression inhibited RANKL-induced nuclear translocation of NFATc1.« less

  5. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells.

    PubMed

    Suriguga; Li, Xiao-Fei; Li, Yang; Yu, Chun-Hong; Li, Yi-Ran; Yi, Zong-Chun

    2013-12-15

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependent increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. © 2013.

  6. Comparative analysis of TCDD-induced AhR-mediated gene expression in human, mouse and rat primary B cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalova, Natalia, E-mail: kovalova@msu.edu

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental pollutant that activates the aryl hydrocarbon receptor (AhR) resulting in altered gene expression. In vivo, in vitro, and ex vivo studies have demonstrated that B cells are directly impaired by TCDD, and are a sensitive target as evidenced by suppression of antibody responses. The window of sensitivity to TCDD-induced suppression of IgM secretion among mouse, rat and human B cells is similar. Specifically, TCDD must be present within the initial 12 h post B cell stimulation, indicating that TCDD disrupts early signaling network(s) necessary for B lymphocyte activation and differentiation. Therefore, we hypothesized thatmore » TCDD treatment across three different species (mouse, rat and human) triggers a conserved, B cell-specific mechanism that is involved in TCDD-induced immunosuppression. RNA sequencing (RNA-Seq) was used to identify B cell-specific orthologous genes that are differentially expressed in response to TCDD in primary mouse, rat and human B cells. Time course studies identified TCDD-elicited differential expression of 515 human, 2371 mouse and 712 rat orthologous genes over the 24-h period. 28 orthologs were differentially expressed in response to TCDD in all three species. Overrepresented pathways enriched in all three species included cytokine-cytokine receptor interaction, ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton and pathways in cancer. Differentially expressed genes functionally associated with cell-cell signaling in humans, immune response in mice, and oxidation reduction in rats. Overall, these results suggest that despite the conservation of the AhR and its signaling mechanism, TCDD elicits species-specific gene expression changes. - Highlights: • Kovalova TAAP Highlights Nov. 2016 • RNA-Seq identified TCDD-induced gene expression in PWM-activated primary B cells. • TCDD elicited differential expression of 515 human, 2371 mouse and 712 rat orthologs. • 28 orthologs were differentially expressed in response to TCDD in all three species. • TCDD elicits mostly species-specific gene expression changes in activated B cells.« less

  7. The expression and activity of thioredoxin reductase 1 splice variants v1 and v2 regulate the expression of genes associated with differentiation and adhesion

    PubMed Central

    Nalvarte, Ivan; Damdimopoulos, Anastasios E.; Rüegg, Joëlle; Spyrou, Giannis

    2015-01-01

    The mammalian redox-active selenoprotein thioredoxin reductase (TrxR1) is a main player in redox homoeostasis. It transfers electrons from NADPH to a large variety of substrates, particularly to those containing redox-active cysteines. Previously, we reported that the classical form of cytosolic TrxR1 (TXNRD1_v1), when overexpressed in human embryonic kidney cells (HEK-293), prompted the cells to undergo differentiation [Nalvarte et al. (2004) J. Biol. Chem. 279, 54510–54517]. In the present study, we show that several genes associated with differentiation and adhesion are differentially expressed in HEK-293 cells stably overexpressing TXNRD1_v1 compared with cells expressing its splice variant TXNRD1_v2. Overexpression of these two splice forms resulted in distinctive effects on various aspects of cellular functions including gene regulation patterns, alteration of growth rate, migration and morphology and susceptibility to selenium-induced toxicity. Furthermore, differentiation of the neuroblastoma cell line SH-SY5Y induced by all-trans retinoic acid (ATRA) increased both TXNRD1_v1 and TXNRD1_v2 expressions along with several of the identified genes associated with differentiation and adhesion. Selenium supplementation in the SH-SY5Y cells also induced a differentiated morphology and changed expression of the adhesion protein fibronectin 1 and the differentiation marker cadherin 11, as well as different temporal expression of the studied TXNRD1 variants. These data suggest that both TXNRD1_v1 and TXNRD1_v2 have distinct roles in differentiation, possibly by altering the expression of the genes associated with differentiation, and further emphasize the importance in distinguishing each unique action of different TrxR1 splice forms, especially when studying the gene silencing or knockout of TrxR1. PMID:26464515

  8. Differential Expression of microRNAs in the Ovaries from Letrozole-Induced Rat Model of Polycystic Ovary Syndrome.

    PubMed

    Li, Dandan; Li, Chunjin; Xu, Ying; Xu, Duo; Li, Hongjiao; Gao, Liwei; Chen, Shuxiong; Fu, Lulu; Xu, Xin; Liu, Yongzheng; Zhang, Xueying; Zhang, Jingshun; Ming, Hao; Zheng, Lianwen

    2016-04-01

    Polycystic ovary syndrome (PCOS) is a complex and heterogeneous endocrine disorder. To understand the pathogenesis of PCOS, we established rat models of PCOS induced by letrozole and employed deep sequencing to screen the differential expression of microRNAs (miRNAs) in PCOS rats and control rats. We observed vaginal smear and detected ovarian pathological alteration and hormone level changes in PCOS rats. Deep sequencing showed that a total of 129 miRNAs were differentially expressed in the ovaries from letrozole-induced rat model compared with the control, including 49 miRNAs upregulated and 80 miRNAs downregulated. Furthermore, the differential expression of miR-201-5p, miR-34b-5p, miR-141-3p, and miR-200a-3p were confirmed by real-time polymerase chain reaction. Bioinformatic analysis revealed that these four miRNAs were predicted to target a large set of genes with different functions. Pathway analysis supported that the miRNAs regulate oocyte meiosis, mitogen-activated protein kinase (MAPK) signaling, phosphoinositide 3-kinase/Akt (PI3K-Akt) signaling, Rap1 signaling, and Notch signaling. These data indicate that miRNAs are differentially expressed in rat PCOS model and the differentially expressed miRNA are involved in the etiology and pathophysiology of PCOS. Our findings will help identify miRNAs as novel diagnostic markers and therapeutic targets for PCOS.

  9. Cloning of Trametes versicolar genes induced by nitrogen starvation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trudel, P.; Courchesne, D.; Roy, C.

    1988-06-01

    We have screened a genomic library of Trametes versicolar for genes whose expression is associated with nitrogen starvation, which has been shown to induce ligninolytic activity. Using two different approaches based on differential expression, we isolated 29 clones. These were shown by restriction mapping and cross-hybridization to code for 11 distinct differentially expressed genes. Northern analysis of the kinetics of expression of these genes revealed that at least four of them have kinetics of induction that parallel kinetics of induction of ligninolytic activity.

  10. Role of C/EBPβ-LAP and C/EBPβ-LIP in early adipogenic differentiation of human white adipose-derived progenitors and at later stages in immature adipocytes.

    PubMed

    Lechner, Stefan; Mitterberger, Maria C; Mattesich, Monika; Zwerschke, Werner

    2013-01-01

    We investigated the role of the major isoforms of CCAAT enhancer binding protein β (C/EBPβ), C/EBPβ-LAP and C/EBPβ-LIP, in adipogenesis of human white adipose-derived stromal/progenitor cells (ASC). C/EBPβ gene expression was transiently induced early in adipogenesis. At later stages, in immature adipocytes, the C/EBPβ mRNA and protein levels declined. The C/EBPβ-LIP protein steady-state level decreased considerably stronger than the C/EBPβ-LAP level and the C/EBPβ-LIP half-life was significantly shorter than the C/EBPβ-LAP half-life. The turn-over of both C/EBPβ-isoforms was regulated by ubiquitin/proteasome-dependent degradation. These data suggest that the protein stability of the C/EBPβ-isoforms is differentially regulated in the course of adipogenesis and in immature adipocytes. Constitutive overexpression of C/EBPβ-LIP had antiadipogenic activity in human ASC. C/EBPβ-LAP, which promotes adipogenesis in mouse 3T3-L1 preadipocytes by directly activating expression of the adipogenic keyregulator PPARγ2, induced the expression of PPARγ2 and of the adipocyte differentiation gene product FABP4 in confluent ASC in the absence of adipogenic hormones. At later stages after hormone cocktail-induced adipogenesis, in immature adipocytes, constitutive overexpression of C/EBPβ-LAP led to reduced expression of PPARγ2 and FABP4, C/EBPα expression was downregulated and the expression of the adipocyte differentiation gene products adiponectin and leptin was impaired. These findings suggest that constitutive overexpression of C/EBPβ-LAP induces adipogenesis in human ASC and negatively regulates the expression of adipogenic regulators and certain adipocyte differentiation gene products in immature adipocytes. We conclude the regulation of both C/EBPβ gene expression and C/EBPβ-LIP and C/EBPβ-LAP protein turn-over plays an important role for the expression of adipogenic regulators and/or adipocyte differentiation genes in early adipogenic differentiation of human ASC and at later stages in human immature adipocytes. Copyright © 2012 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  11. Miz1, a Novel Target of ING4, Can Drive Prostate Luminal Epithelial Cell Differentiation.

    PubMed

    Berger, Penny L; Winn, Mary E; Miranti, Cindy K

    2017-01-01

    How prostate epithelial cells differentiate and how dysregulation of this process contributes to prostate tumorigenesis remain unclear. We recently identified a Myc target and chromatin reader protein, ING4, as a necessary component of human prostate luminal epithelial cell differentiation, which is often lost in primary prostate tumors. Furthermore, loss of ING4 in the context of oncogenic mutations is required for prostate tumorigenesis. Identifying the gene targets of ING4 can provide insight into how its loss disrupts differentiation and leads to prostate cancer. Using a combination of RNA-Seq, a best candidate approach, and chromatin immunoprecipitation (ChIP), we identified Miz1 as a new ING4 target. ING4 or Miz1 overexpression, shRNA knock-down, and a Myc-binding mutant were used in a human in vitro differentiation assay to assess the role of Miz1 in luminal cell differentiation. ING4 directly binds the Miz1 promoter and is required to induce Miz1 mRNA and protein expression during luminal cell differentiation. Miz1 mRNA was not induced in shING4 expressing cells or tumorigenic cells in which ING4 is not expressed. Miz1 dependency on ING4 was unique to differentiating luminal cells; Miz1 mRNA expression was not induced in basal cells. Although Miz1 is a direct target of ING4, and its overexpression can drive luminal cell differentiation, Miz1 was not required for differentiation. Miz1 is a newly identified ING4-induced target gene which can drive prostate luminal epithelial cell differentiation although it is not absolutely required. Prostate 77:49-59, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Fibronectin-mediation cell adhesion is required for induction of 92-kDa type IV collagenase/gelatinase (MMP-9) gene expression during macrophage differentiation : the signaling role of protein kinase C-{beta}.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, B.; Laouar, A.; Huberman, E.

    1998-05-08

    Induction of the 92-kDa gelatinase (MMP-9) gene expression is associated with macrophage differentiation. In this study, we explored the regulatory mechanisms underlying this differentiation-associated MMP-9 gene expression in human HL-60 myeloid leukemia cells and human peripheral blood monocytes. Phorbol 12-myristate 13-acetate (PMA) markedly induced MMP-9 gene expression in HL-60 cells; the induction closely paralleled the timing and extent of PMA-induced cell adhesion and spreading, a hallmark of macrophage differentiation. Similarly, treatment with PMA or macrophage-colony stimulating factor stimulated adherence and spreading of blood monocytes with a concurrent 7- or 5-fold increase in MMP-9 production, respectively. In protein kinase C (PKC)-betamore » -deficient HL-60 variant cells (HL-525), PMA failed to induce cell adhesion and MMP-9 gene expression. Transfecting HL-525 cells with a PKC-beta expression plasmid restored PKC-beta levels and PMA inducibility of cell adhesion and spreading as well as MMP-9 gene expression. Induction of cell adhesion and MMP-9 gene expression in HL-60 cells and blood monocytes was strongly inhibited by neutralizing monoclonal antibodies to fibronectin (FN) and its receptor {alpha}5{beta}1 integrin. HL-525 cells, which constitutively display high levels of surface {alpha}5{beta}1 integrin, adhered and spread on immobilized FN with concomitant induction of MMP-9 gene expression. Cytochalasins B and D were each a potent inhibitor of MMP-9 production. Our results suggest that {alpha}5{beta}1 integrin-mediated interaction of immature hematopoietic cells with FN plays a critical role in modulating matrix-degrading activities during macrophage differentiation.« less

  13. Glycogen synthase kinase-3 (GSK-3) regulates TGF-β1-induced differentiation of pulmonary fibroblasts

    PubMed Central

    Baarsma, Hoeke A; Engelbertink, Lilian HJM; van Hees, Lonneke J; Menzen, Mark H; Meurs, Herman; Timens, Wim; Postma, Dirkje S; Kerstjens, Huib AM; Gosens, Reinoud

    2013-01-01

    Background Chronic lung diseases such as asthma, COPD and pulmonary fibrosis are characterized by abnormal extracellular matrix (ECM) turnover. TGF-β is a key mediator stimulating ECM production by recruiting and activating lung fibroblasts and initiating their differentiation process into more active myofibroblasts. Glycogen synthase kinase-3 (GSK-3) regulates various intracellular signalling pathways; its role in TGF-β1-induced myofibroblast differentiation is currently largely unknown. Purpose To determine the contribution of GSK-3 signalling in TGF-β1-induced myofibroblast differentiation. Experimental Approach We used MRC5 human lung fibroblasts and primary pulmonary fibroblasts of individuals with and without COPD. Protein and mRNA expression were determined by immunoblotting and RT-PCR analysis respectively. Results Stimulation of MRC5 and primary human lung fibroblasts with TGF-β1 resulted in time- and dose-dependent increases of α-sm-actin and fibronectin expression, indicative of myofibroblast differentiation. Pharmacological inhibition of GSK-3 by SB216763 dose-dependently attenuated TGF-β1-induced expression of these myofibroblasts markers. Moreover, silencing of GSK-3 by siRNA or pharmacological inhibition by CT/CHIR99021 fully inhibited the TGF-β1-induced expression of α-sm-actin and fibronectin. The effect of GSK-3 inhibition on α-sm-actin expression was similar in fibroblasts from individuals with and without COPD. Neither smad, NF-κB nor ERK1/2 were involved in the inhibitory actions of GSK-3 inhibition by SB126763 on myofibroblast differentiation. Rather, SB216763 increased the phosphorylation of CREB, which in its phosphorylated form acts as a functional antagonist of TGF-β/smad signalling. Conclusion and Implication We demonstrate that GSK-3 signalling regulates TGF-β1-induced myofibroblast differentiation by regulating CREB phosphorylation. GSK-3 may constitute a useful target for treatment of chronic lung diseases. PMID:23297769

  14. Induced miR-99a expression represses Mtor cooperatively with miR-150 to promote regulatory T-cell differentiation

    PubMed Central

    Warth, Sebastian C; Hoefig, Kai P; Hiekel, Anian; Schallenberg, Sonja; Jovanovic, Ksenija; Klein, Ludger; Kretschmer, Karsten; Ansel, K Mark; Heissmeyer, Vigo

    2015-01-01

    Peripheral induction of regulatory T (Treg) cells provides essential protection from inappropriate immune responses. CD4+ T cells that lack endogenous miRNAs are impaired to differentiate into Treg cells, but the relevant miRNAs are unknown. We performed an overexpression screen with T-cell-expressed miRNAs in naive mouse CD4+ T cells undergoing Treg differentiation. Among 130 candidates, the screen identified 29 miRNAs with a negative and 10 miRNAs with a positive effect. Testing reciprocal Th17 differentiation revealed specific functions for miR-100, miR-99a and miR-10b, since all of these promoted the Treg and inhibited the Th17 program without impacting on viability, proliferation and activation. miR-99a cooperated with miR-150 to repress the expression of the Th17-promoting factor mTOR. The comparably low expression of miR-99a was strongly increased by the Treg cell inducer “retinoic acid”, and the abundantly expressed miR-150 could only repress Mtor in the presence of miR-99a. Our data suggest that induction of Treg cell differentiation is regulated by a miRNA network, which involves cooperation of constitutively expressed as well as inducible miRNAs. PMID:25712478

  15. 1,25-DIHYDROXYVITAMIN D3 INDUCES MONOCYTIC DIFFERENTIATION OF HUMAN MYELOID LEUKEMIA CELLS BY REGULATING C/EBPβ EXPRESSION THROUGH MEF2C

    PubMed Central

    Zheng, Ruifang; Wang, Xuening; Studzinski, George P.

    2015-01-01

    Myogenic enhancer factor2 (Mef2) consists of a family of transcription factors involved in morphogenesis of skeletal, cardiac and smooth muscle cells. Among the four isoforms (Mef2A, 2B, 2C, and 2D), Mef2C was also found to play important roles in hematopoiesis. At myeloid progenitor level, Mef2C expression favors monocytic differentiation. Previous studies from our laboratory demonstrated that ERK5 was activated in 1,25-dihydroxyvitamin D3 (1,25D)-induced monocytic differentiation in AML cells and ERK5 activation was accompanied by increased Mef2C phosphorylation. We therefore examined the role of Mef2C in 1,25D-induced monocytic differentiation in AML cell lines (HL60, U937 and THP1) and found that knockdown of Mef2C with small interfering RNA (siRNA) significantly decreases the expression of the monocytic marker, CD14, without affecting the expression of the general myeloid marker, CD11b. CCAAT/Enhancer-binding protein (C/EBP) β, which can bind to CD14 promoter and increase its transcription, has been shown to be the downstream effector of 1,25D-induced monocytic differentiation in AML cells. When Mef2C was knocked down, expression of C/EBPβ was reduced at both mRNA and protein levels. The protein expression levels of cell cycle regulators, p27Kip1 and cyclin D1, were not affected by Mef2C knockdown, nor the monopoiesis related transcription factor, ATF2 (Activating Transcription Factor 2). Thus, we conclude that 1,25D-induced monocytic differentiation, and CD14 expression in particular, is mediated through activation of ERK5-Mef2C-C/EBPβ signaling pathway, and that Mef2C does not seem to modulate cell cycle progression. PMID:25448741

  16. A high-content morphological screen identifies novel microRNAs that regulate neuroblastoma cell differentiation

    PubMed Central

    Zhao, Zhenze; Ma, Xiuye; Hsiao, Tzu-Hung; Lin, Gregory; Kosti, Adam; Yu, Xiaojie; Suresh, Uthra; Chen, Yidong; Tomlinson, Gail E.; Pertsemlidis, Alexander; Du, Liqin

    2014-01-01

    Neuroblastoma, the most common extracranial solid tumor of childhood, arises from neural crest cell precursors that fail to differentiate. Inducing cell differentiation is an important therapeutic strategy for neuroblastoma. We developed a direct functional high-content screen to identify differentiation-inducing microRNAs, in order to develop microRNA-based differentiation therapy for neuroblastoma. We discovered novel microRNAs, and more strikingly, three microRNA seed families that induce neuroblastoma cell differentiation. In addition, we showed that microRNA seed families were overrepresented in the identified group of fourteen differentiation-inducing microRNAs, suggesting that microRNA seed families are functionally more important in neuroblastoma differentiation than microRNAs with unique sequences. We further investigated the differentiation-inducing function of the microRNA-506-3p/microRNA-124-3p seed family, which was the most potent inducer of differentiation. We showed that the differentiation-inducing function of microRNA-506-3p/microRNA-124-3p is mediated, at least partially, by down-regulating expression of their targets CDK4 and STAT3. We further showed that expression of miR-506-3p, but not miR-124-3p, is dramatically upregulated in differentiated neuroblastoma cells, suggesting the important role of endogenous miR-506-3p in differentiation and tumorigenesis. Overall, our functional screen on microRNAs provided the first comprehensive analysis on the involvements of microRNA species in neuroblastoma cell differentiation and identified novel differentiation-inducing microRNAs. Further investigations are certainly warranted to fully characterize the function of the identified microRNAs in order to eventually benefit neuroblastoma therapy. PMID:24811707

  17. Glucocorticoid-induced Leucine Zipper (GILZ) and Long GILZ Inhibit Myogenic Differentiation and Mediate Anti-myogenic Effects of Glucocorticoids*

    PubMed Central

    Bruscoli, Stefano; Donato, Valerio; Velardi, Enrico; Di Sante, Moises; Migliorati, Graziella; Donato, Rosario; Riccardi, Carlo

    2010-01-01

    Myogenesis is a process whereby myoblasts differentiate and fuse into multinucleated myotubes, the precursors of myofibers. Various signals and factors modulate this process, and glucocorticoids (GCs) are important regulators of skeletal muscle metabolism. We show that glucocorticoid-induced leucine zipper (GILZ), a GC-induced gene, and the newly identified isoform long GILZ (L-GILZ) are expressed in skeletal muscle tissue and in C2C12 myoblasts where GILZ/L-GILZ maximum expression occurs during the first few days in differentiation medium. Moreover, we observed that GC treatment of myoblasts, which increased GILZ/L-GILZ expression, resulted in reduced myotube formation, whereas GILZ and L-GILZ silencing dampened GC effects. Inhibition of differentiation caused by GILZ/L-GILZ overexpression correlated with inhibition of MyoD function and reduced expression of myogenin. Notably, results indicate that GILZ and L-GILZ bind and regulate MyoD/HDAC1 transcriptional activity, thus mediating the anti-myogenic effect of GCs. PMID:20124407

  18. Pluripotency, Differentiation, and Reprogramming: A Gene Expression Dynamics Model with Epigenetic Feedback Regulation

    PubMed Central

    Miyamoto, Tadashi; Furusawa, Chikara; Kaneko, Kunihiko

    2015-01-01

    Embryonic stem cells exhibit pluripotency: they can differentiate into all types of somatic cells. Pluripotent genes such as Oct4 and Nanog are activated in the pluripotent state, and their expression decreases during cell differentiation. Inversely, expression of differentiation genes such as Gata6 and Gata4 is promoted during differentiation. The gene regulatory network controlling the expression of these genes has been described, and slower-scale epigenetic modifications have been uncovered. Although the differentiation of pluripotent stem cells is normally irreversible, reprogramming of cells can be experimentally manipulated to regain pluripotency via overexpression of certain genes. Despite these experimental advances, the dynamics and mechanisms of differentiation and reprogramming are not yet fully understood. Based on recent experimental findings, we constructed a simple gene regulatory network including pluripotent and differentiation genes, and we demonstrated the existence of pluripotent and differentiated states from the resultant dynamical-systems model. Two differentiation mechanisms, interaction-induced switching from an expression oscillatory state and noise-assisted transition between bistable stationary states, were tested in the model. The former was found to be relevant to the differentiation process. We also introduced variables representing epigenetic modifications, which controlled the threshold for gene expression. By assuming positive feedback between expression levels and the epigenetic variables, we observed differentiation in expression dynamics. Additionally, with numerical reprogramming experiments for differentiated cells, we showed that pluripotency was recovered in cells by imposing overexpression of two pluripotent genes and external factors to control expression of differentiation genes. Interestingly, these factors were consistent with the four Yamanaka factors, Oct4, Sox2, Klf4, and Myc, which were necessary for the establishment of induced pluripotent stem cells. These results, based on a gene regulatory network and expression dynamics, contribute to our wider understanding of pluripotency, differentiation, and reprogramming of cells, and they provide a fresh viewpoint on robustness and control during development. PMID:26308610

  19. PHTHALATE ESTER-INDUCED MALFORMATIONS ARE ASSOCIATED WITH CHANGES IN GENE EXPRESSION AND STEROID HORMONE PRODUCTION IN THE FETAL RAT TESTIS DURING SEXUAL DIFFERENTIATION

    EPA Science Inventory

    Phthalate ester-induced gubernacular ligament lesions are associated with reduced Insl3 gene expression in the fetal rat testis during sexual differentiation.
    Vickie S Wilson, Christy Lambright, Johnathan Furr, Joseph Ostby, Carmen Wood, Gary Held, L.Earl Gray Jr.
    U.S. EPA,...

  20. PHTHALATE ESTER-INDUCED GUBERNACULAR LIGAMENT LESIONS ARE ASSOCIATED WITH REDUCED INSL3 GENE EXPRESSION IN THE FETAL RAT TESTIS DURING SEXUAL DIFFERENTIATION

    EPA Science Inventory

    Phthalate ester-induced gubernacular ligament lesions are associated with reduced Insl3 gene expression in the fetal rat testis during sexual differentiation.
    Vickie S Wilson, Christy Lambright, Johnathan Furr, Joseph Ostby, Carmen Wood, Gary Held, L.Earl Gray Jr.
    U.S. EPA,...

  1. Function of Hevea brasiliensis NAC1 in dehydration-induced laticifer differentiation and latex biosynthesis.

    PubMed

    Cao, Yuxin; Zhai, Jinling; Wang, Qichao; Yuan, Hongmei; Huang, Xi

    2017-01-01

    HbNAC1 is a transcription factor in rubber plants whose expression is induced by dehydration, leading to latex biosynthesis. Laticifer is a special tissue in Hevea brasiliensis where natural rubber is biosynthesized and accumulated. In young stems of epicormic shoots, the differentiation of secondary laticifers can be induced by wounding, which can be prevented when the wounding site is wrapped. Using this system, differentially expressed genes were screened by suppression subtractive hybridization (SSH) and macroarray analyses. This led to the identification of several dehydration-related genes that could be involved in laticifer differentiation and/or latex biosynthesis, including a NAC transcription factor (termed as HbNAC1). Tissue sections confirmed that local tissue dehydration was a key signal for laticifer differentiation. HbNAC1 was localized at the nucleus and showed strong transcriptional activity in yeast, suggesting that HbNAC1 is a transcription factor. Furthermore, HbNAC1 was found to bind to the cis-element CACG in the promoter region of the gene encoding the small rubber particle protein (SRPP). Transgenic experiments also confirmed that HbNAC1 interacted with the SRPP promoter when co-expressed, and enhanced expression of the reporter gene β-glucuronidase occurred in planta. In addition, overexpression of HbNAC1 in tobacco plants conferred drought tolerance. Together, the data suggest that HbNAC1 might be involved in dehydration-induced laticifer differentiation and latex biosynthesis.

  2. DNA–PKcs–SIN1 complexation mediates low-dose X-ray irradiation (LDI)-induced Akt activation and osteoblast differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yong; Fang, Shi-ji; Zhu, Li-juan

    Highlights: • LDI increases ALP activity, promotes type I collagen (Col I)/Runx2 mRNA expression. • LDI induces DNA–PKcs activation, which is required for osteoblast differentiation. • Akt activation mediates LDI-induced ALP activity and Col I/Runx2 mRNA increase. • DNA–PKcs–SIN1 complexation mediates LDI-induced Akt Ser-473 phosphorylation. • DNA–PKcs–SIN1 complexation is important for osteoblast differentiation. - Abstract: Low-dose irradiation (LDI) induces osteoblast differentiation, however the underlying mechanisms are not fully understood. In this study, we explored the potential role of DNA-dependent protein kinase catalytic subunit (DNA–PKcs)–Akt signaling in LDI-induced osteoblast differentiation. We confirmed that LDI promoted mouse calvarial osteoblast differentiation, which wasmore » detected by increased alkaline phosphatase (ALP) activity as well as mRNA expression of type I collagen (Col I) and runt-related transcription factor 2 (Runx2). In mouse osteoblasts, LDI (1 Gy) induced phosphorylation of DNA–PKcs and Akt (mainly at Ser-473). The kinase inhibitors against DNA–PKcs (NU-7026 and NU-7441) or Akt (LY294002, perifosine and MK-2206), as well as partial depletion of DNA–PKcs or Akt1 by targeted-shRNA, dramatically inhibited LDI-induced Akt activation and mouse osteoblast differentiation. Further, siRNA-knockdown of SIN1, a key component of mTOR complex 2 (mTORC2), also inhibited LDI-induced Akt Ser-473 phosphorylation as well as ALP activity increase and Col I/Runx2 expression in mouse osteoblasts. Co-immunoprecipitation (Co-IP) assay results demonstrated that LDI-induced DNA–PKcs–SIN1 complexation, which was inhibited by NU-7441 or SIN1 siRNA-knockdown in mouse osteoblasts. In summary, our data suggest that DNA–PKcs–SIN1 complexation-mediated Akt activation (Ser-473 phosphorylation) is required for mouse osteoblast differentiation.« less

  3. Estrogen alters gonadal soma-derived factor (Gsdf)/Foxl2 expression levels in the testes associated with testis-ova differentiation in adult medaka, Oryzias latipes.

    PubMed

    Kobayashi, Tohru; Chiba, Ayaka; Sato, Tadashi; Myosho, Taijun; Yamamoto, Jun; Okamura, Tetsuro; Onishi, Yuta; Sakaizumi, Mitsuru; Hamaguchi, Satoshi; Iguchi, Taisen; Horie, Yoshifumi

    2017-10-01

    Testis-ova differentiation in sexually mature male medaka (Oryzias latipes) is easily induced by estrogenic chemicals, indicating that spermatogonia persist in sexual bipotentiality, even in mature testes in medaka. By contrast, the effects of estrogen on testicular somatic cells associated with testis-ova differentiation in medaka remain unclear. In this study, we focused on the dynamics of sex-related genes (Gsdf, Dmrt1, and Foxl2) expressed in Sertoli cells in the mature testes of adult medaka during estrogen-induced testis-ova differentiation. When mature male medaka were exposed to estradiol benzoate (EB; 800ng/L), testis-ova first appeared after EB treatment for 14days (observed as the first oocytes of the leptotene-zygotene stage). However, the testis remained structurally unchanged, even after EB treatment for 28days. Although Foxl2 is a female-specific sex gene, EB treatment for 7days induced Foxl2/FOXL2 expression in all Sertoli cell-enclosed spermatogonia before testis-ova first appeared; however, Foxl2 was not detected in somatic cells in control testes. Conversely, Sertoli-cell-specific Gsdf mRNA expression levels significantly decreased after EB treatment for 14days, and no changes were observed in DMRT1 localization following EB treatment, whereas Dmrt1 mRNA levels increased significantly. Furthermore, after EB exposure, FOXl2 and DMRT1 were co-localized in Sertoli cells during testis-ova differentiation, although FOXL2 localization was undetectable in Sertoli-cell-enclosed apoptotic testis-ova, whereas DMRT1 remained localized in Sertoli cells. These results indicated for the first time that based on the expression of female-specific sex genes, feminization of Sertoli cells precedes testis-ova differentiation induced by estrogen in mature testes in medaka; however, complete feminization of Sertoli cells was not induced in this study. Additionally, it is suggested strongly that Foxl2 and Gsdf expression constitute potential molecular markers for evaluating the effects of estrogenic chemicals on testicular somatic cells associated with estrogen-induced testis-ova differentiation in mature male medaka. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Differential gene expression during early embryonic development in diapause and non-diapause eggs of multivoltine silkworm Bombyx mori.

    PubMed

    Ponnuvel, Kangayam M; Murthy, Geetha N; Awasthi, Arvind K; Rao, Guruprasad; Vijayaprakash, Nanjappa B

    2010-11-01

    Quantification of the differential expression of metabolic enzyme and heat-shock protein genes (Hsp) during early embryogenesis in diapause and non-diapause eggs of the silkworm B. mori was carried out by semi-quantitative RT-PCR. Data analysis revealed that, the phosphofructokinase (PFK) expression started at a higher level in the early stage (6 h after oviposition) in non-diapause eggs, while in diapause induced eggs, it started at a lower level. However, the PFK gene expression in diapause eggs was comparatively higher than in non-diapause eggs. PFK facilitates use of carbohydrate reserves. The lower level of PFK gene expression in the early stage of diapause induced eggs but comparatively higher level of expression than in non-diapause eggs is due to enzyme inactivation via protein phosphorylation during early embryogenesis followed by de-phosphorylation in later stage. The sorbitol dehydrogenase-2 (SDH-2) gene was down regulated in diapause induced eggs up to 24 h and its expression levels in diapause induced eggs coincided with that of PFK gene at 48h in non-diapause eggs. During carbohydrate metabolism, there is an initial temporary accumulation of sorbitol which acts as protectant. The down regulation of SDH-2 gene during the first 24 hours in diapause induced eggs was due to the requirement of sorbitol as protectant. However, since the diapause process culminates by 48 h, the SDH-2 gene expression increased and coincided with that of PFK gene expression. The trehalase (Tre) gene expression was at a lower level in diapause induced eggs compared to non-diapausing eggs. The induction of Tre activity is to regulate uptake and use of sugar by the tissues. The non-diapause eggs revealed maximum expression of GPase gene with major fluctuations as well as an overall higher expression compared to diapause induced eggs. The diapause process requires less energy source which reflects lower activity of the gene. Heat shock protein (Hsp) genes (Hsp20.4, 40, 70, and 90) revealed differential levels of expression in both the eggs at all stages of embryonic development. The present study thus provides an overview of the differential expression levels of metabolic enzyme and Hsp genes in non-diapause and diapause induced eggs of multivoltine silkworm B. mori within 48 h after oviposition, confirming the major role of in early embryogenesis.

  5. Divalent Metal Ions Induced Osteogenic Differentiation of MC3T3E1

    NASA Astrophysics Data System (ADS)

    Wang, Guoshou; Su, Wenta; Chen, Pohung; Huang, Teyang

    2017-12-01

    Biomaterial scaffolds blended with biochemical signal molecules with adequate osteoinductive and osteoconductive properties have attracted significant interest in bone tissue engineering regeneration. The divalent metal ions can gradually release from the scaffold into the culture medium and then induced osteoblastic differentiation of MC3T3E1. These MC3T3E1 cells expressed high activity of alkaline phosphatase, bone-related gene expression of collagen type I, Runx2, osteopontin, osteocalcin, and significantly enhanced deposited minerals on scaffold after 21 days of culture. This experiment provided a useful inducer for osteogenic differentiation in bone repair.

  6. Tributyltin Differentially Promotes Development of a Phenotypically Distinct Adipocyte

    PubMed Central

    Regnier, Shane M.; El-Hashani, Essam; Kamau, Wakanene; Zhang, Xiaojie; Massad, Nicole L.; Sargis, Robert M.

    2015-01-01

    Objective Environmental endocrine disrupting chemicals (EDCs) are increasingly implicated in the pathogenesis of obesity. Evidence implicates various EDCs as being pro-adipogenic, including tributyltin (TBT), which activates the peroxisome proliferator activated receptor-γ (PPARγ). However, the conditions required for TBT-induced adipogenesis and its functional consequences are incompletely known. Methods The co-stimulatory conditions necessary for preadipocyte-to-adipocyte differentiation were compared between TBT and the pharmacological PPARγ agonist troglitazone (Trog) in the 3T3-L1 cell line; basal and insulin-stimulated glucose uptake were assessed using radiolabeled 2-deoxyglucose. Results TBT enhanced expression of the adipocyte marker C/EBPα with co-exposure to either isobutylmethylxanthine or insulin in the absence of other adipogenic stimuli. Examination of several adipocyte-specific proteins revealed that TBT and Trog differentially affected protein expression despite comparable PPARγ stimulation. In particular, TBT reduced adiponectin expression upon maximal adipogenic stimulation. Under submaximal stimulation, TBT and Trog differentially promoted adipocyte-specific gene expression despite similar lipid accumulation. Moreover, TBT attenuated Trog-induced adipocyte gene expression under conditions of co-treatment. Finally, TBT-induced adipocytes exhibited altered glucose metabolism, with increased basal glucose uptake. Conclusions TBT-induced adipocytes are functionally distinct from those generated by a pharmacological PPARγ agonist, suggesting that obesogen-induced adipogenesis may generate dysfunctional adipocytes with the capacity to deleteriously affect global energy homeostasis. PMID:26243053

  7. Persistent organic pollutants alter DNA methylation during human adipocyte differentiation.

    PubMed

    van den Dungen, Myrthe W; Murk, Albertinka J; Kok, Dieuwertje E; Steegenga, Wilma T

    2017-04-01

    Ubiquitous persistent organic pollutants (POPs) can accumulate in humans where they might influence differentiation of adipocytes. The aim of this study was to investigate whether DNA methylation is one of the underlying mechanisms by which POPs affect adipocyte differentiation, and to what extent DNA methylation can be related to gene transcription. Adipocyte differentiation was induced in two human cell models with continuous exposure to different POPs throughout differentiation. From the seven tested POPs, perfluorooctanesulfonic acid (PFOS) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) decreased lipid accumulation, while tributyltin (TBT) increased lipid accumulation. In human mesenchymal stem cells (hMSCs), TCDD and TBT induced opposite gene expression profiles, whereas after PFOS exposure gene expression remained relatively stable. Genome-wide DNA methylation analysis showed that all three POPs affected DNA methylation patterns in adipogenic and other genes, possibly related to the phenotypic outcome, but without concomitant gene expression changes. Differential methylation was predominantly detected in intergenic regions, where the biological relevance of alterations in DNA methylation is unclear. This study demonstrates that POPs, at environmentally relevant levels, are able to induce differential DNA methylation in human differentiating adipocytes. Copyright © 2017 Wageningen University. Published by Elsevier Ltd.. All rights reserved.

  8. Organotins Are Potent Activators of PPARγ and Adipocyte Differentiation in Bone Marrow Multipotent Mesenchymal Stromal Cells

    PubMed Central

    Yanik, Susan C.; Baker, Amelia H.; Mann, Koren K.; Schlezinger, Jennifer J.

    2011-01-01

    Adipocyte differentiation in bone marrow is potentially deleterious to both bone integrity and lymphopoiesis. Here, we examine the hypothesis that organotins, common environmental contaminants that are dual ligands for peroxisome proliferator–activated receptor (PPAR) γ and its heterodimerization partner retinoid X receptor (RXR), are potent activators of bone marrow adipogenesis. A C57Bl/6-derived bone marrow multipotent mesenchymal stromal cell (MSC) line, BMS2, was treated with rosiglitazone, a PPARγ agonist, bexarotene, an RXR agonist, or a series of organotins. Rosiglitazone and bexarotene potently activated adipocyte differentiation; however, bexarotene had a maximal efficacy of only 20% of that induced by rosiglitazone. Organotins (tributyltin [TBT], triphenyltin, and dibutyltin) also stimulated adipocyte differentiation (EC50 of 10–20nM) but with submaximal, structure-dependent efficacy. In coexposures, both bexarotene and TBT enhanced rosiglitazone-induced adipogenesis. To investigate the contribution of PPARγ to TBT-induced adipogenesis, we examined expression of PPARγ2, as well as its transcriptional target FABP4. TBT-induced PPARγ2 and FABP4 protein expression with an efficacy intermediate between rosiglitazone and bexarotene, similar to lipid accumulation. A PPARγ antagonist and PPARγ-specific small hairpin RNA suppressed TBT-induced differentiation, although to a lesser extent than rosiglitazone-induced differentiation, suggesting that TBT may engage alternate pathways. TBT and bexarotene, but not rosiglitazone, also induced the expression of TGM2 (an RXR target) and ABCA1 (a liver X receptor target). The results show that an environmental contaminant, acting with the same potency as a therapeutic drug, induces PPARγ-dependent adipocyte differentiation in bone marrow MSCs. Activation of multiple nuclear receptor pathways by organotins may have significant implications for bone physiology. PMID:21622945

  9. The role of ROS in hydroquinone-induced inhibition of K562 cell erythroid differentiation.

    PubMed

    Yu, Chun Hong; Suriguga; Li, Yang; Li, Yi Ran; Tang, Ke Ya; Jiang, Liang; Yi, Zong Chun

    2014-03-01

    The role of ROS in hydroquinone-induced inhibition of K562 cell erythroid differentiation was investigated. After K562 cells were treated with hydroquinone for 24 h, and hemin was later added to induce erythroid differentiation for 48 h, hydroquinone inhibited hemin-induced hemoglobin synthesis and mRNA expression of γ-globin in K562 cells in a concentration-dependent manner. The 24-h exposure to hydroquinone also caused a concentration-dependent increase at an intracellular ROS level, while the presence of N- acetyl-L-cysteine prevented hydroquinone- induced ROS production in K562 cells. The presence of N-acetyl-L-cysteine also prevented hydroquinone inhibiting hemin-induced hemoglobin synthesis and mRNA expression of γ-globin in K562 cells. These evidences indicated that ROS production played a role in hydroquinone-induced inhibition of erythroid differentiation. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  10. Restoration of C/EBPα in dedifferentiated liposarcoma induces G2/M cell cycle arrest and apoptosis.

    PubMed

    Wu, Yuhsin V; Okada, Tomoyo; DeCarolis, Penelope; Socci, Nicholas; O'Connor, Rachael; Geha, Rula C; Joy Somberg, C; Antonescu, Cristina; Singer, Samuel

    2012-04-01

    Well-differentiated liposarcoma (WDLS) and dedifferentiated liposarcoma (DDLS) represent the most common biological group of liposarcoma, and there is a pressing need to develop targeted therapies for patients with advanced disease. To identify potential therapeutic targets, we sought to identify differences in the adipogenic pathways between DDLS, WDLS, and normal adipose tissue. In a microarray analysis of DDLS (n = 84), WDLS (n = 79), and normal fat (n = 23), C/EBPα, a transcription factor involved in cell cycle regulation and differentiation, was underexpressed in DDLS when compared to both WDLS and normal fat (15.2- and 27.8-fold, respectively). In normal adipose-derived stem cells, C/EBPα expression was strongly induced when cells were cultured in differentiation media, but in three DDLS cell lines, this induction was nearly absent. We restored C/EBPα expression in one of the cell lines (DDLS8817) by transfection of an inducible C/EBPα expression vector. Inducing C/EBPα expression reduced proliferation and caused cells to accumulate in G2/M. Under differentiation conditions, the cell proliferation was reduced further, and 66% of the DDLS cells containing the inducible C/EBPα expression vector underwent apoptosis as demonstrated by annexin V staining. These cells in differentiation conditions expressed early adipocyte-specific mRNAs such as LPL and FABP4, but they failed to accumulate intracellular lipid droplets, a characteristic of mature adipocytes. These results demonstrate that loss of C/EBPα is an important factor in suppressing apoptosis and maintaining the dedifferentiated state in DDLS. Restoring C/EBPα may be a useful therapeutic approach for DDLS. Copyright © 2011 Wiley Periodicals, Inc.

  11. An Effective Model of the Retinoic Acid Induced HL-60 Differentiation Program.

    PubMed

    Tasseff, Ryan; Jensen, Holly A; Congleton, Johanna; Dai, David; Rogers, Katharine V; Sagar, Adithya; Bunaciu, Rodica P; Yen, Andrew; Varner, Jeffrey D

    2017-10-30

    In this study, we present an effective model All-Trans Retinoic Acid (ATRA)-induced differentiation of HL-60 cells. The model describes reinforcing feedback between an ATRA-inducible signalsome complex involving many proteins including Vav1, a guanine nucleotide exchange factor, and the activation of the mitogen activated protein kinase (MAPK) cascade. We decomposed the effective model into three modules; a signal initiation module that sensed and transformed an ATRA signal into program activation signals; a signal integration module that controlled the expression of upstream transcription factors; and a phenotype module which encoded the expression of functional differentiation markers from the ATRA-inducible transcription factors. We identified an ensemble of effective model parameters using measurements taken from ATRA-induced HL-60 cells. Using these parameters, model analysis predicted that MAPK activation was bistable as a function of ATRA exposure. Conformational experiments supported ATRA-induced bistability. Additionally, the model captured intermediate and phenotypic gene expression data. Knockout analysis suggested Gfi-1 and PPARg were critical to the ATRAinduced differentiation program. These findings, combined with other literature evidence, suggested that reinforcing feedback is central to hyperactive signaling in a diversity of cell fate programs.

  12. Alendronate promotes osteoblast differentiation and bone formation in ovariectomy-induced osteoporosis through interferon-β/signal transducer and activator of transcription 1 pathway

    PubMed Central

    Ma, Xiaoqing; Xu, Zhongyang; Ding, Shaofeng; Yi, Guangkun; Wang, Qian

    2018-01-01

    Alendronate is commonly used for the treatment of postmenopausal osteoporosis; however, the underlying pathological molecular mechanisms of its action remain unclear. In the present study, the alendronate-treated signaling pathway in bone metabolism in rats with ovariectomy induced by osteoporosis was investigated. Rats with osteoporosis were orally administered alendronate or phosphate-buffered saline (control). In addition, the interferon-β (IFN-β)/signal transducer and activator of transcription 1 (STAT1) signaling pathway was investigated in osteoblasts following treatment with alendronate in vitro and in vivo. During the differentiation period, IFN-β (100 ng/ml) was used to treat the osteoblast cells, and the activity, viability and bone metabolism-associated gene expression levels (STAT1, p-STAT1, Fra1, TRAF6 and SOCS1) were analyzed in osteoblast cells. Histopathological changes were used to evaluate osteoblasts, osteoclasts, inflammatory phase of bone healing and osteonecrotic areas. The results demonstrated that alendronate significantly inhibited the activity of osteoporotic osteoclasts by stimulating expression of IFN-β, as well as markedly improved the viability and activity of osteoblasts compared with the control group. In addition, alendronate increased the expression and phosphorylation levels of STAT1 in osteoclasts, enhanced osteoblast differentiation, upregulated the expression levels of alkaline phosphatase and osteocalcin, and increased the expression of osteoblast differentiation-associated genes (osteocalcin, osterix and Runx2). Inhibition of IFN-β expression canceled the benefits of alendronate-mediated osteoblast differentiation. Notably, alendronate enhanced bone formation in rats with osteoporosis induced by ovariectomy. In conclusion, these findings suggest that alendronate can regulate osteoblast differentiation and bone formation in rats with osteoporosis induced by ovariectomy through upregulation of IFN-β/STAT1 signaling pathway. PMID:29375681

  13. Wnt3a induces the expression of acetylcholinesterase during osteoblast differentiation via the Runx2 transcription factor.

    PubMed

    Xu, Miranda L; Bi, Cathy W C; Liu, Etta Y L; Dong, Tina T X; Tsim, Karl W K

    2017-07-28

    Acetylcholinesterase (AChE) hydrolyzes acetylcholine to terminate cholinergic transmission in neurons. Apart from this AChE activity, emerging evidence suggests that AChE could also function in other, non-neuronal cells. For instance, in bone, AChE exists as a proline-rich membrane anchor (PRiMA)-linked globular form in osteoblasts, in which it is proposed to play a noncholinergic role in differentiation. However, this hypothesis is untested. Here, we found that in cultured rat osteoblasts, AChE expression was increased in parallel with osteoblastic differentiation. Because several lines of evidence indicate that AChE activity in osteoblast could be triggered by Wnt/β-catenin signaling, we added recombinant human Wnt3a to cultured osteoblasts and found that this addition induced expression of the ACHE gene and protein product. This Wnt3a-induced AChE expression was blocked by the Wnt-signaling inhibitor Dickkopf protein-1 (DKK-1). We hypothesized that the Runt-related transcription factor 2 (Runx2), a downstream transcription factor in Wnt/β-catenin signaling, is involved in AChE regulation in osteoblasts, confirmed by the identification of a Runx2-binding site in the ACHE gene promoter, further corroborated by ChIP. Of note, Runx2 overexpression in osteoblasts induced AChE expression and activity of the ACHE promoter tagged with the luciferase gene. Moreover, deletion of the Runx2-binding site in the ACHE promoter reduced its activity during osteoblastic differentiation, and addition of 5-azacytidine and trichostatin A to differentiating osteoblasts affected AChE expression, suggesting epigenetic regulation of the ACHE gene. We conclude that AChE plays a role in osteoblastic differentiation and is regulated by both Wnt3a and Runx2. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Inducible Transgenic Models of BRCA1 Function

    DTIC Science & Technology

    1998-10-01

    development, and for signs of hyperplasia, dysplasia and neoplasia. Specific Aim 3. Inducibly abolish Brcal expression in the mammary epithelium of...abnormalities in mammary epithelial proliferation, differentiation and development, and for signs of hyperplasia, dysplasia and neoplasia. 6...Lyu MS, Kozak CA and Leder P. Expression of Brcal is associated with terminal differentiation of ectodermally and mesodermally derived tissues in mice

  15. Proteomic analysis of Herbaspirillum seropedicae cultivated in the presence of sugar cane extract.

    PubMed

    Cordeiro, Fabio Aparecido; Tadra-Sfeir, Michelle Zibetti; Huergo, Luciano Fernandes; de Oliveira Pedrosa, Fábio; Monteiro, Rose Adele; de Souza, Emanuel Maltempi

    2013-03-01

    Bacterial endophytes of the genus Herbaspirillum colonize sugar cane and can promote plant growth. The molecular mechanisms that mediate plant- H. seropedicae interaction are poorly understood. In this work, we used 2D-PAGE electrophoresis to identify H. seropedicae proteins differentially expressed at the log growth phase in the presence of sugar cane extract. The differentially expressed proteins were validated by RT qPCR. A total of 16 differential spots (1 exclusively expressed, 7 absent, 5 up- and 3 down-regulated) in the presence of 5% sugar cane extract were identified; thus the host extract is able to induce and repress specific genes of H. seropedicae. The differentially expressed proteins suggest that exposure to sugar cane extract induced metabolic changes and adaptations in H. seropedicae presumably in preparation to establish interaction with the plant.

  16. JAK2 and MPL protein levels determine TPO-induced megakaryocyte proliferation vs differentiation

    PubMed Central

    Besancenot, Rodolphe; Roos-Weil, Damien; Tonetti, Carole; Abdelouahab, Hadjer; Lacout, Catherine; Pasquier, Florence; Willekens, Christophe; Rameau, Philippe; Lecluse, Yann; Micol, Jean-Baptiste; Constantinescu, Stefan N.; Vainchenker, William; Solary, Eric

    2014-01-01

    Megakaryopoiesis is a 2-step differentiation process, regulated by thrombopoietin (TPO), on binding to its cognate receptor myeloproliferative leukemia (MPL). This receptor associates with intracytoplasmic tyrosine kinases, essentially janus kinase 2 (JAK2), which regulates MPL stability and cell-surface expression, and mediates TPO-induced signal transduction. We demonstrate that JAK2 and MPL mediate TPO-induced proliferation arrest and megakaryocytic differentiation of the human megakaryoblastic leukemia cell line UT7-MPL. A decrease in JAK2 or MPL protein expression, and JAK2 chemical inhibition, suppress this antiproliferative action of TPO. The expression of JAK2 and MPL, which progressively increases along normal human megakaryopoiesis, is decreased in platelets of patients diagnosed with JAK2- or MPL-mutated essential thrombocytemia and primary myelofibrosis, 2 myeloproliferative neoplasms in which megakaryocytes (MKs) proliferate excessively. Finally, low doses of JAK2 chemical inhibitors are shown to induce a paradoxical increase in MK production, both in vitro and in vivo. We propose that JAK2 and MPL expression levels regulate megakaryocytic proliferation vs differentiation in both normal and pathological conditions, and that JAK2 chemical inhibitors could promote a paradoxical thrombocytosis when used at suboptimal doses. PMID:25143485

  17. JAK2 and MPL protein levels determine TPO-induced megakaryocyte proliferation vs differentiation.

    PubMed

    Besancenot, Rodolphe; Roos-Weil, Damien; Tonetti, Carole; Abdelouahab, Hadjer; Lacout, Catherine; Pasquier, Florence; Willekens, Christophe; Rameau, Philippe; Lecluse, Yann; Micol, Jean-Baptiste; Constantinescu, Stefan N; Vainchenker, William; Solary, Eric; Giraudier, Stéphane

    2014-09-25

    Megakaryopoiesis is a 2-step differentiation process, regulated by thrombopoietin (TPO), on binding to its cognate receptor myeloproliferative leukemia (MPL). This receptor associates with intracytoplasmic tyrosine kinases, essentially janus kinase 2 (JAK2), which regulates MPL stability and cell-surface expression, and mediates TPO-induced signal transduction. We demonstrate that JAK2 and MPL mediate TPO-induced proliferation arrest and megakaryocytic differentiation of the human megakaryoblastic leukemia cell line UT7-MPL. A decrease in JAK2 or MPL protein expression, and JAK2 chemical inhibition, suppress this antiproliferative action of TPO. The expression of JAK2 and MPL, which progressively increases along normal human megakaryopoiesis, is decreased in platelets of patients diagnosed with JAK2- or MPL-mutated essential thrombocytemia and primary myelofibrosis, 2 myeloproliferative neoplasms in which megakaryocytes (MKs) proliferate excessively. Finally, low doses of JAK2 chemical inhibitors are shown to induce a paradoxical increase in MK production, both in vitro and in vivo. We propose that JAK2 and MPL expression levels regulate megakaryocytic proliferation vs differentiation in both normal and pathological conditions, and that JAK2 chemical inhibitors could promote a paradoxical thrombocytosis when used at suboptimal doses. © 2014 by The American Society of Hematology.

  18. Long noncoding RNA H19 mediates LCoR to impact the osteogenic and adipogenic differentiation of mBMSCs in mice through sponging miR-188.

    PubMed

    Wang, Yijun; Liu, Wentao; Liu, Yadong; Cui, Jianli; Zhao, Zhiwei; Cao, Hui; Fu, Zhuo; Liu, Bin

    2018-04-16

    The research aimed to examine the expression of lncRNA H19, miR-188, and LCoR in mouse bone marrow stromal stem cells (mBMSCs), and to investigate the regulatory mechanism of lncRNA H19/miR-188/LCoR in osteogenic and adipogenic differentiation of mBMSCs. The expression of miR-188 in mBMSCs and osteogenesis induced mBMSCs was detected by stem-loop RT-PCR, while the expression of H19 and LCoR in mBMSCs and adipogenesis induced mBMSCs was examined by qRT-PCR. Luciferase reporter assay verified the targeted relationship between miR-188 and H19 or LCoR. Cell proliferation ability was determined by MTT assay, while cell surface markers of mBMSCs were analyzed via flow cytometry. Alkaline phosphatase staining and Alizarin red staining was utilized to detect the osteogenic differentiation capability of mBMSCs, whereas Oil red O staining was applied to examine the ability of adipogenic differentiation of mBMSCs. The expression of miR-188 was lower in osteogenesis induced mBMSCs compared with normal mBMSCs, while H19 and LCoR were downregulated in adipogenic induced mBMSCs. Si-H19 could significantly increase the mRNA level of miR-188. Meanwhile, miR-188 directly regulated LCoR in mBMSCs. Overexpression of miR-188 and knockdown of LCoR suppressed osteogenic differentiation and induced adipogenic differentiation in mBMSCs. Long noncoding RNA H19 mediates LCoR to regulate the balance between osteogenic and adipogenic differentiation of mBMSCs in mice through sponging miR-188. © 2018 Wiley Periodicals, Inc.

  19. Improved differentiation of umbilical cord blood-derived mesenchymal stem cells into insulin-producing cells by PDX-1 mRNA transfection.

    PubMed

    Van Pham, Phuc; Thi-My Nguyen, Phuoc; Thai-Quynh Nguyen, Anh; Minh Pham, Vuong; Nguyen-Tu Bui, Anh; Thi-Tung Dang, Loan; Gia Nguyen, Khue; Kim Phan, Ngoc

    2014-06-01

    Numerous studies have sought to identify diabetes mellitus treatment strategies with fewer side effects. Mesenchymal stem cell (MSC) therapy was previously considered as a promising therapy; however, it requires the cells to be trans-differentiated into cells of the pancreatic-endocrine lineage before transplantation. Previous studies have shown that PDX-1 expression can facilitate MSC differentiation into insulin-producing cells (IPCs), but the methods employed to date use viral or DNA-based tools to express PDX-1, with the associated risks of insertional mutation and immunogenicity. Thus, this study aimed to establish a new method to induce PDX-1 expression in MSCs by mRNA transfection. MSCs were isolated from human umbilical cord blood and expanded in vitro, with stemness confirmed by surface markers and multipotentiality. MSCs were transfected with PDX-1 mRNA by nucleofection and chemically induced to differentiate into IPCs (combinatorial group). This IPC differentiation was then compared with that of untransfected chemically induced cells (inducer group) and uninduced cells (control group). We found that PDX-1 mRNA transfection significantly improved the differentiation of MSCs into IPCs, with 8.3±2.5% IPCs in the combinatorial group, 3.21±2.11% in the inducer group and 0% in the control. Cells in the combinatorial group also strongly expressed several genes related to beta cells (Pdx-1, Ngn3, Nkx6.1 and insulin) and could produce C-peptide in the cytoplasm and insulin in the supernatant, which was dependent on the extracellular glucose concentration. These results indicate that PDX-1 mRNA may offer a promising approach to produce safe IPCs for clinical diabetes mellitus treatment. Copyright © 2014 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  20. Peroxisome proliferator-activated receptor-β/δ inhibits human neuroblastoma cell tumorigenesis by inducing p53- and SOX2-mediated cell differentiation.

    PubMed

    Yao, Pei-Li; Chen, Liping; Dobrzański, Tomasz P; Zhu, Bokai; Kang, Boo-Hyon; Müller, Rolf; Gonzalez, Frank J; Peters, Jeffrey M

    2017-05-01

    Neuroblastoma is a common childhood cancer typically treated by inducing differentiation with retinoic acid (RA). Peroxisome proliferator-activated receptor-β/δ, (PPARβ/δ) is known to promote terminal differentiation of many cell types. In the present study, PPARβ/δ was over-expressed in three human neuroblastoma cell lines, NGP, SK-N-BE(2), and IMR-32, that exhibit high, medium, and low sensitivity, respectively, to retinoic acid-induced differentiation to determine if PPARβ/δ and retinoic acid receptors (RARs) could be jointly targeted to increase the efficacy of treatment. All-trans-RA (atRA) decreased expression of SRY (sex determining region Y)-box 2 (SOX2), a stem cell regulator and marker of de-differentiation, in NGP and SK-N-BE(2) cells with inactive or mutant tumor suppressor p53, respectively. However, atRA did not suppress SOX2 expression in IMR-32 cells carrying wild-type p53. Over-expression and/or ligand activation of PPARβ/δ reduced the average volume and weight of ectopic tumor xenografts from NGP, SK-N-BE(2), or IMR-32 cells compared to controls. Compared with that found with atRA, PPARβ/δ suppressed SOX2 expression in NGP and SK-N-BE(2) cells and ectopic xenografts, and was also effective in suppressing SOX2 expression in IMR-32 cells that exhibit higher p53 expression compared to the former cell lines. Combined, these observations demonstrate that activating or over-expressing PPARβ/δ induces cell differentiation through p53- and SOX2-dependent signaling pathways in neuroblastoma cells and tumors. This suggests that combinatorial activation of both RARα and PPARβ/δ may be suitable as an alternative therapeutic approach for RA-resistant neuroblastoma patients. Published [2016]. This article is a U.S. Government work and is in the public domain in the USA.

  1. Microarray‑based screening of differentially expressed genes in glucocorticoid‑induced avascular necrosis.

    PubMed

    Huang, Gangyong; Wei, Yibing; Zhao, Guanglei; Xia, Jun; Wang, Siqun; Wu, Jianguo; Chen, Feiyan; Chen, Jie; Shi, Jingshen

    2017-06-01

    The underlying mechanisms of glucocorticoid (GC)‑induced avascular necrosis of the femoral head (ANFH) have yet to be fully understood, in particular the mechanisms associated with the change of gene expression pattern. The present study aimed to identify key genes with a differential expression pattern in GC‑induced ANFH. E‑MEXP‑2751 microarray data were downloaded from the ArrayExpress database. Differentially expressed genes (DEGs) were identified in 5 femoral head samples of steroid‑induced ANFH rats compared with 5 placebo‑treated rat samples. Gene Ontology (GO) and pathway enrichment analyses were performed upon these DEGs. A total 93 DEGs (46 upregulated and 47 downregulated genes) were identified in GC‑induced ANFH samples. These DEGs were enriched in different GO terms and pathways, including chondrocyte differentiation and detection of chemical stimuli. The enrichment map revealed that skeletal system development was interconnected with several other GO terms by gene overlap. The literature mined network analysis revealed that 5 upregulated genes were associated with femoral necrosis, including parathyroid hormone receptor 1 (PTHR1), vitamin D (1,25‑Dihydroxyvitamin D3) receptor (VDR), collagen, type II, α1, proprotein convertase subtilisin/kexin type 6 and zinc finger protein 354C (ZFP354C). In addition, ZFP354C and VDR were identified to transcription factors. Furthermore, PTHR1 was revealed to interact with VDR, and α‑2‑macroglobulin (A2M) interacted with fibronectin 1 (FN1) in the PPI network. PTHR1 may be involved in GC‑induced ANFH via interacting with VDR. A2M may also be involved in the development of GC‑induced ANFH through interacting with FN1. An improved understanding of the molecular mechanisms underlying GC‑induced ANFH may provide novel targets for diagnostics and therapeutic treatment.

  2. Microarray-based screening of differentially expressed genes in glucocorticoid-induced avascular necrosis

    PubMed Central

    Huang, Gangyong; Wei, Yibing; Zhao, Guanglei; Xia, Jun; Wang, Siqun; Wu, Jianguo; Chen, Feiyan; Chen, Jie; Shi, Jingshen

    2017-01-01

    The underlying mechanisms of glucocorticoid (GC)-induced avascular necrosis of the femoral head (ANFH) have yet to be fully understood, in particular the mechanisms associated with the change of gene expression pattern. The present study aimed to identify key genes with a differential expression pattern in GC-induced ANFH. E-MEXP-2751 microarray data were downloaded from the ArrayExpress database. Differentially expressed genes (DEGs) were identified in 5 femoral head samples of steroid-induced ANFH rats compared with 5 placebo-treated rat samples. Gene Ontology (GO) and pathway enrichment analyses were performed upon these DEGs. A total 93 DEGs (46 upregulated and 47 downregulated genes) were identified in GC-induced ANFH samples. These DEGs were enriched in different GO terms and pathways, including chondrocyte differentiation and detection of chemical stimuli. The enrichment map revealed that skeletal system development was interconnected with several other GO terms by gene overlap. The literature mined network analysis revealed that 5 upregulated genes were associated with femoral necrosis, including parathyroid hormone receptor 1 (PTHR1), vitamin D (1,25-Dihydroxyvitamin D3) receptor (VDR), collagen, type II, α1, proprotein convertase subtilisin/kexin type 6 and zinc finger protein 354C (ZFP354C). In addition, ZFP354C and VDR were identified to transcription factors. Furthermore, PTHR1 was revealed to interact with VDR, and α-2-macroglobulin (A2M) interacted with fibronectin 1 (FN1) in the PPI network. PTHR1 may be involved in GC-induced ANFH via interacting with VDR. A2M may also be involved in the development of GC-induced ANFH through interacting with FN1. An improved understanding of the molecular mechanisms underlying GC-induced ANFH may provide novel targets for diagnostics and therapeutic treatment. PMID:28393228

  3. Inhibitory effect of leptin on rosiglitazone-induced differentiation of primary adipocytes prepared from TallyHO/Jng mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ki Young; Kim, Joo Young; Sung, Yoon-Young

    2011-03-25

    Research highlights: {yields} In this study, we investigated the effects of leptin on adipocyte differentiation prepared from subcutaneous fat of TallyHo mice. {yields} Leptin inhibited the adipocytes differentiation at physiological concentration via inhibition of PPAR{gamma} expression. {yields} Inhibitors of ERK and STAT1 restored the leptin's inhibitory activity both in vitro and in vivo. -- Abstract: The effects of leptin on rosiglitazone-induced adipocyte differentiation were investigated in the primary adipocytes prepared from subcutaneous fat of TallyHO/Jng (TallyHO) mouse, a recently developed model animal for type 2 diabetes mellitus (T2DM). The treatment of leptin inhibited the rosiglitazone-induced adipocyte differentiation with a decreasedmore » expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) a key adipogenic transcription factor, both in mRNA and protein levels. Leptin (10 nM) was sufficient to inhibit the adipocyte differentiation, which seemed to come from increased expression of leptin receptor genes in the fat of TallyHO mice. The inhibition of adipogenesis by leptin was restored by the treatment of inhibitors for extracellular-signal-regulated kinase (ERK) (PD98059) and signal transducer and activator of transcription-1 (STAT1) (fludarabine). Furthermore, in vivo intraperitoneal administration of PD98059 and fludarabine increased the PPAR{gamma} expression in the subcutaneous fat of TallyHO mice. These data suggest that leptin could inhibit the PPAR{gamma} expression and adipocyte differentiation in its physiological concentration in TallyHO mice.« less

  4. Knock down of GCN5 histone acetyltransferase by siRNA decreases ethanol-induced histone acetylation and affects differential expression of genes in human hepatoma cells.

    PubMed

    Choudhury, Mahua; Pandey, Ravi S; Clemens, Dahn L; Davis, Justin Wade; Lim, Robert W; Shukla, Shivendra D

    2011-06-01

    We have investigated whether Gcn5, a histone acetyltransferase (HAT), is involved in ethanol-induced acetylation of histone H3 at lysine 9 (H3AcK9) and has any effect on the gene expression. Human hepatoma HepG2 cells transfected with ethanol-metabolizing enzyme alcohol dehydrogenase 1 (VA 13 cells) were used. Knock down of Gcn5 by siRNA silencing decreased mRNA and protein levels of general control nondepressible 5 (GCN5), HAT activity, and also attenuated ethanol-induced H3AcK9 in VA13 cells. Illumina gene microarray analysis using total RNA showed 940 transcripts affected by GCN5 silencing or ethanol. Silencing caused differential expression of 891 transcripts (≥1.5-fold upregulated or downregulated). Among these, 492 transcripts were upregulated and 399 were downregulated compared with their respective controls. Using a more stringent threshold (≥2.5-fold), the array data from GCN5-silenced samples showed 57 genes differentially expressed (39 upregulated and 18 downregulated). Likewise, ethanol caused differential regulation of 57 transcripts with ≥1.5-fold change (35 gene upregulated and 22 downregulated). Further analysis showed that eight genes were differentially regulated that were common for both ethanol treatment and GCN5 silencing. Among these, SLC44A2 (a putative choline transporter) was strikingly upregulated by ethanol (three fold), and GCN5 silencing downregulated it (1.5-fold). The quantitative real-time polymerase chain reaction profile corroborated the array findings. This report demonstrates for the first time that (1) GCN5 differentially affects expression of multiple genes, (2) ethanol-induced histone H3-lysine 9 acetylation is mediated via GCN5, and (3) GCN5 is involved in ethanol-induced expression of the putative choline transporter SLC44A2. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. In vitro differentiation of HT-29 M6 mucus-secreting colon cancer cells involves a trychostatin A and p27(KIP1)-inducible transcriptional program of gene expression.

    PubMed

    Mayo, Clara; Lloreta, Josep; Real, Francisco X; Mayol, Xavier

    2007-07-01

    Tumor cell dedifferentiation-such as the loss of cell-to-cell adhesion in epithelial tumors-is associated with tumor progression. To better understand the mechanisms that maintain carcinoma cells in a differentiated state, we have dissected in vitro differentiation pathways in the mucus-secretor HT-29 M6 colon cancer cell line, which spontaneously differentiates in postconfluent cultures. By lowering the extracellular calcium concentration to levels that prevent intercellular adhesion and epithelial polarization, our results reveal that differentiation is calcium-dependent and involves: (i) a process of cell cycle exit to G(0) and (ii) the induction of a transcriptional program of differentiation gene expression (i.e., mucins MUC1 and MUC5AC, and the apical membrane peptidase DPPIV). In calcium-deprived, non-differentiated postconfluent cultures, differentiation gene promoters are repressed by a trichostatin A (TSA)-sensitive mechanism, indicating that loss of gene expression by dedifferentiation is driven by histone deacetylases (HDAC). Since TSA treatment or extracellular calcium restoration allow gene promoter activation to similar levels, we suggest that induction of differentiation is one mechanism of HDAC inhibitor antitumor action. Moreover, transcriptional de-repression can also be induced in non-differentiating culture conditions by overexpressing the cyclin-dependent kinase inhibitor p27(KIP1), which is normally induced during spontaneous differentiation. Since p27(KIP1) downregulation in colon cancer is associated with poor prognosis independently of tumor cell division rates, we propose that p27 (KIP1) may prevent tumor progression by, at least in part, enhancing the expression of some differentiation genes. Therefore, the HT-29 M6 model allows the identification of some basic mechanisms of cancer cell differentiation control, so far revealing HDAC and p27(KIP1) as key regulatory factors of differentiation gene expression.

  6. Smurf1 plays a role in EGF inhibition of BMP2-induced osteogenic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hye-Lim; Park, Hyun-Jung; Kwon, Arang

    2014-05-01

    It has been demonstrated that epidermal growth factor (EGF) plays a role in supporting the proliferation of bone marrow stromal cells in bone but inhibits their osteogenic differentiation. However, the mechanism underlying EGF inhibition of osteoblast differentiation remains unclear. Smurf1 is an E3 ubiquitin ligase that targets Smad1/5 and Runx2, which are critical transcription factors for bone morphogenetic protein 2 (BMP2)-induced osteoblast differentiation. In this study, we investigated the effect of EGF on the expression of Smurf1, and the role of Smurf1 in EGF inhibition of osteogenic differentiation using C2C12 cells, a murine myoblast cell line. EGF increased Smurf1 expression,more » which was blocked by inhibiting the activity of either JNK or ERK. Chromatin immunoprecipitation and Smurf1 promoter assays demonstrated that c-Jun and Runx2 play roles in the EGF induction of Smurf1 transcription. EGF suppressed BMP2-induced expression of osteogenic marker genes, which were rescued by Smurf1 knockdown. EGF downregulated the protein levels of Runx2 and Smad1 in a proteasome-dependent manner. EGF decreased the transcriptional activity of Runx2 and Smurf1, which was partially rescued by Smurf1 silencing. Taken together, these results suggest that EGF increases Smurf1 expression via the activation of JNK and ERK and the subsequent binding of c-Jun and Runx2 to the Smurf1 promoter and that Smurf1 mediates the inhibitory effect of EGF on BMP2-induced osteoblast differentiation. - Highlights: • EGF increases the expression level of Smurf1 in mesenchymal precursor cells. • EGF reduces the protein levels and transcriptional activity of Runx2 and Smad1. • EGF suppresses BMP2-induced osteogenic differentiation, which is rescued by Smurf1 knockdown.« less

  7. Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy

    PubMed Central

    Han, Jae Woong; Gurunathan, Sangiliyandi; Choi, Yun-Jung; Kim, Jin-Hoi

    2017-01-01

    Background Silver nanoparticles (AgNPs) exhibit strong antibacterial and anticancer activity owing to their large surface-to-volume ratios and crystallographic surface structure. Owing to their various applications, understanding the mechanisms of action, biological interactions, potential toxicity, and beneficial effects of AgNPs is important. Here, we investigated the toxicity and differentiation-inducing effects of AgNPs in teratocarcinoma stem cells. Materials and methods AgNPs were synthesized and characterized using various analytical techniques such as UV–visible spectroscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. The cellular responses of AgNPs were analyzed by a series of cellular and biochemical assays. Gene and protein expressions were analyzed by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. Results The AgNPs showed typical crystalline structures and spherical shapes (average size =20 nm). High concentration of AgNPs induced cytotoxicity in a dose-dependent manner by increasing lactate dehydrogenase leakage and reactive oxygen species. Furthermore, AgNPs caused mitochondrial dysfunction, DNA fragmentation, increased expression of apoptotic genes, and decreased expression of antiapoptotic genes. Lower concentrations of AgNPs induced neuronal differentiation by increasing the expression of differentiation markers and decreasing the expression of stem cell markers. Cisplatin reduced the viability of F9 cells that underwent AgNPs-induced differentiation. Conclusion The results showed that AgNPs caused differentially regulated cytotoxicity and induced neuronal differentiation of F9 cells in a concentration-dependent manner. Therefore, AgNPs can be used for differentiation therapy, along with chemotherapeutic agents, for improving cancer treatment by targeting specific chemotherapy-resistant cells within a tumor. Furthermore, understanding the molecular mechanisms of apoptosis and differentiation in stem cells could also help in developing new strategies for cancer stem cell (CSC) therapies. The findings of this study could significantly contribute to the nanomedicine because this study is the first of its kind, and our results will lead to new strategies for cancer and CSC therapies. PMID:29066898

  8. Analysis of Differentially Expressed Genes Associated with Coronatine-Induced Laticifer Differentiation in the Rubber Tree by Subtractive Hybridization Suppression

    PubMed Central

    Zhang, Shi-Xin; Wu, Shao-Hua; Chen, Yue-Yi; Tian, Wei-Min

    2015-01-01

    The secondary laticifer in the secondary phloem is differentiated from the vascular cambia of the rubber tree (Hevea brasiliensis Muell. Arg.). The number of secondary laticifers is closely related to the rubber yield potential of Hevea. Pharmacological data show that jasmonic acid and its precursor linolenic acid are effective in inducing secondary laticifer differentiation in epicormic shoots of the rubber tree. In the present study, an experimental system of coronatine-induced laticifer differentiation was developed to perform SSH identification of genes with differential expression. A total of 528 positive clones were obtained by blue-white screening, of which 248 clones came from the forward SSH library while 280 clones came from the reverse SSH library. Approximately 215 of the 248 clones and 171 of the 280 clones contained cDNA inserts by colony PCR screening. A total of 286 of the 386 ESTs were detected to be differentially expressed by reverse northern blot and sequenced. Approximately 147 unigenes with an average length of 497 bp from the forward and 109 unigenes with an average length of 514 bp from the reverse SSH libraries were assembled and annotated. The unigenes were associated with the stress/defense response, plant hormone signal transduction and structure development. It is suggested that Ca2+ signal transduction and redox seem to be involved in differentiation, while PGA and EIF are associated with the division of cambium initials for COR-induced secondary laticifer differentiation in the rubber tree. PMID:26147807

  9. A role for Hippo/YAP-signaling in FGF-induced lens epithelial cell proliferation and fibre differentiation.

    PubMed

    Dawes, L J; Shelley, E J; McAvoy, J W; Lovicu, F J

    2018-04-01

    Recent studies indicate an important role for the transcriptional co-activator Yes-associated protein (YAP), and its regulatory pathway Hippo, in controlling cell growth and fate during lens development; however, the exogenous factors that promote this pathway are yet to be identified. Given that fibroblast growth factor (FGF)-signaling is an established regulator of lens cell behavior, the current study investigates the relationship between this pathway and Hippo/YAP-signaling during lens cell proliferation and fibre differentiation. Rat lens epithelial explants were cultured with FGF2 to induce epithelial cell proliferation or fibre differentiation. Immunolabeling methods were used to detect the expression of Hippo-signaling components, Total and Phosphorylated YAP, as well as fibre cell markers, Prox-1 and β-crystallin. FGF-induced lens cell proliferation was associated with a strong nuclear localisation of Total-YAP and low-level immuno-staining for phosphorylated-YAP. FGF-induced lens fibre differentiation was associated with a significant increase in cytoplasmic phosphorylated YAP (inactive state) and enhanced expression of core Hippo-signaling components. Inhibition of YAP with Verteporfin suppressed FGF-induced lens cell proliferation and ablated cell elongation during lens fibre differentiation. Inhibition of either FGFR- or MEK/ERK-signaling suppressed FGF-promoted YAP nuclear translocation. Here we propose that FGF promotes Hippo/YAP-signaling during lens cell proliferation and differentiation, with FGF-induced nuclear-YAP expression playing an essential role in promoting the proliferation of lens epithelial cells. An FGF-induced switch from proliferation to differentiation, hence regulation of lens growth, may play a key role in mediating Hippo suppression of YAP transcriptional activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. PLC-beta2 monitors the drug-induced release of differentiation blockade in tumoral myeloid precursors.

    PubMed

    Brugnoli, Federica; Bovolenta, Matteo; Benedusi, Mascia; Miscia, Sebastianó; Capitani, Silvano; Bertagnolo, Valeria

    2006-05-01

    The differentiation therapy in treatment of acute promyelocytic leukemia (APL), based on the administration of all-trans retinoic acid (ATRA), is currently flanked with the use of As2O3, a safe and effective agent for patients showing a resistance to ATRA treatment. A synergy between ATRA and As3O3 was also reported in inducing granulocytic differentiation of APL-derived cells. We have demonstrated that phospholipase C-beta2 (PLC-beta2), highly expressed in neutrophils and nearly absent in tumoral promyelocytes, largely increases during ATRA treatment of APL-derived cells and strongly correlates with the responsiveness of APL patients to ATRA-based differentiating therapies. Here we report that, in APL-derived cells, low doses of As3O3 induce a slight increase of PLC-beta2 together with a moderate maturation, and cooperate with ATRA to provoke a significant increase of PLC-beta2 expression. Remarkably, the amounts of PLC-beta2 draw a parallel with the differentiation levels reached by both ATRA-responsive and -resistant cells treated with ATRA/As2O3 combinations. PLC-beta2 is not necessary for the progression of tumoral promyelocytes along the granulocytic lineage and is unable to overcome the differentiation block or to potentiate the agonist-induced maturation. On the other hand, since its expression closely correlates with the differentiation level reached by APL-derived cells induced to maturate by drugs presently employed in APL therapies, PLC-beta2 represents indeed a specific marker to test the ability of differentiation agents to induce the release of the maturation blockade of tumoral myeloid precursors.

  11. Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes

    PubMed Central

    Tohidnezhad, Mersedeh; Lammel, Justus; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Jahr, Holger; Cremer, Jochen; Rademacher, Franziska; Gläser, Regine; Harder, Jürgen

    2017-01-01

    Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs) or their clinically related formulations (e.g., Vivostat PRF®) came recently into the physicians' focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10) and late (transglutaminase-1 and involucrin) differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR-) dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo. PMID:28808357

  12. The cAMP Response Element Binding protein (CREB) is activated by Insulin-like Growth Factor-1 (IGF-1) and regulates myostatin gene expression in skeletal myoblast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuloaga, R.; Fuentes, E.N.; Molina, A.

    2013-10-18

    Highlights: •IGF-1 induces the activation of CREB via IGF-1R/PI3K/PLC signaling pathway. •Calcium dependent signaling pathways regulate myostatin gene expression. •IGF-1 regulates myostatin gene expression via CREB transcription in skeletal myoblast. -- Abstract: Myostatin, a member of the Transforming Growth Factor beta (TGF-β) superfamily, plays an important role as a negative regulator of skeletal muscle growth and differentiation. We have previously reported that IGF-1 induces a transient myostatin mRNA expression, through the activation of the Nuclear Factor of Activated T cells (NFAT) in an IP{sub 3}/calcium-dependent manner. Here we examined the activation of CREB transcription factor as downstream targets of IGF-1more » during myoblast differentiation and its role as a regulator of myostatin gene expression. In cultured skeletal myoblast, IGF-1 induced the phosphorylation and transcriptional activation of CREB via IGF-1 Receptor/Phosphatidylinositol 3-Kinase (PI3K)/Phospholipase C gamma (PLC γ), signaling pathways. Also, IGF-1 induced calcium-dependent molecules such as Calmodulin Kinase II (CaMK II), Extracellular signal-regulated Kinases (ERK), Protein Kinase C (PKC). Additionally, we examined myostatin mRNA levels and myostatin promoter activity in differentiated myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents of myostatin and its reporter activity after treatment with IGF-1. The expression of myostatin in differentiated myoblast was downregulated by the transfection of siRNA–CREB and by pharmacological inhibitors of the signaling pathways involved in CREB activation. By using pharmacological and genetic approaches together these data demonstrate that IGF-1 regulates the myostatin gene expression via CREB transcription factor during muscle cell differentiation.« less

  13. CD36 is required for myoblast fusion during myogenic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Seung-Yoon; Yun, Youngeun; Kim, In-San, E-mail: iskim@knu.ac.kr

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer CD36 expression was induced during myogenic differentiation. Black-Right-Pointing-Pointer CD36 expression was localized in multinucleated myotubes. Black-Right-Pointing-Pointer The expression of myogenic markers is attenuated in CD36 knockdown C2C12 cells. Black-Right-Pointing-Pointer Knockdown of CD36 significantly inhibited myotube formation during differentiation. -- Abstract: Recently, CD36 has been found to be involved in the cytokine-induced fusion of macrophage. Myoblast fusion to form multinucleated myotubes is required for myogenesis and muscle regeneration. Because a search of gene expression database revealed the attenuation of CD36 expression in the muscles of muscular dystrophy patients, the possibility that CD36 could be required for myoblast fusion wasmore » investigated. CD36 expression was markedly up-regulated during myoblast differentiation and localized in multinucleated myotubes. Knockdown of endogenous CD36 significantly decreased the expression of myogenic markers as well as myotube formation. These results support the notion that CD36 plays an important role in cell fusion during myogenic differentiation. Our finding will aid the elucidation of the common mechanism governing cell-to-cell fusion in various fusion models.« less

  14. PKC delta and NADPH oxidase in retinoic acid-induced neuroblastoma cell differentiation.

    PubMed

    Nitti, Mariapaola; Furfaro, Anna Lisa; Cevasco, Claudia; Traverso, Nicola; Marinari, Umberto Maria; Pronzato, Maria Adelaide; Domenicotti, Cinzia

    2010-05-01

    The role of reactive oxygen species (ROS) in the regulation of signal transduction processes has been well established in many cell types and recently the fine tuning of redox signalling in neurons received increasing attention. With regard to this, the involvement of NADPH oxidase (NOX) in neuronal pathophysiology has been proposed but deserves more investigation. In the present study, we used SH-SY5Y neuroblastoma cells to analyse the role of NADPH oxidase in retinoic acid (RA)-induced differentiation, pointing out the involvement of protein kinase C (PKC) delta in the activation of NOX. Retinoic acid induces neuronal differentiation as revealed by the increased expression of MAP2, the decreased cell doubling rate, and the gain in neuronal morphological features and these events are accompanied by the increased expression level of PKC delta and p67(phox), one of the components of NADPH oxidase. Using DPI to inhibit NOX activity we show that retinoic acid acts through this enzyme to induce morphological changes linked to the differentiation. Moreover, using rottlerin to inhibit PKC delta or transfection experiments to overexpress it, we show that retinoic acid acts through this enzyme to induce MAP2 expression and to increase p67(phox) membrane translocation leading to NADPH oxidase activation. These findings identify the activation of PKC delta and NADPH oxidase as crucial steps in RA-induced neuroblastoma cell differentiation. 2010 Elsevier Inc. All rights reserved.

  15. Temporal regulation of Stat5 activity in determination of cell differentiation program

    PubMed Central

    Hoshino, Akemi; Fujii, Hodaka

    2007-01-01

    Although Stat5 is activated by various cytokines, only ethrytopoietin (Epo) and a small number of cytokines induce Stat5-dependent erythroid differentiation. Here, by using a reporter gene system to monitor transcriptional activity of Stat5, we showed that Epo but not interleukin (IL)-3 supports sustained activation of Stat5, which induces globin gene expression. IL-3 or IL-2 stimulation inhibits Epo-induced globin gene expression. The acidic region of the IL-2 receptor β chain was essential for this inhibition. These results underscore the importance of temporal regulation of Stat activity for regulation of cytokine-specific cell differentiation. PMID:17511959

  16. Blood-stage malaria of Plasmodium chabaudi induces differential Tlr expression in the liver of susceptible and vaccination-protected Balb/c mice.

    PubMed

    Al-Quraishy, Saleh; Dkhil, Mohamed A; Alomar, Suliman; Abdel-Baki, Abdel Azeem S; Delic, Denis; Wunderlich, Frank; Araúzo-Bravo, Marcos J

    2016-05-01

    Protective vaccination induces self-healing of otherwise lethal blood-stage infections of Plasmodium chabaudi malaria. Here, we investigate mRNA expression patterns of all 12 members of the Toll-like receptor (Tlr) gene family in the liver, a major effector organ against blood-stage malaria, during lethal and vaccination-induced self-healing infections of P. chabaudi in female Balb/c mice. Gene expression microarrays reveal that all 12 Tlr genes are constitutively expressed, though at varying levels, and specifically respond to infection. Protective vaccination does not affect constitutive expression of any of the 12 Tlr genes but leads to differential expression (p < 0.05) of seven Tlrs (1, 2, 4, 7, 8, 12, and 13) in response to malaria. Quantitative PCR substantiates differential expression at p < 0.01. There is an increased expression of Tlr2 by approximately five-fold on day 1 post-infection (p.i.) and Tlr1 by approximately threefold on day 4 p.i.. At peak parasitemia on day 8 p.i., none of the 12 Tlrs display any differential expression. After peak parasitemia, towards the end of the crisis phase on day 11 p.i., expression of Tlrs 1, 4, and 12 is increased by approximately four-, two-, and three-fold, respectively, and that of Tlr7 is decreased by approximately two-fold. Collectively, our data suggest that though all 12 members of the Tlr gene family are specifically responsive to malaria in the liver, not only Tlr2 at the early stage of infection but also the Tlrs 1, 4, 7, and 12 towards the end of crisis phase are critical for vaccination-induced resolution and survival of otherwise lethal blood-stage malaria.

  17. [Expression of ICAT and Wnt signaling-related proteins in the monocytic differentiation of HL-60 cells induced by a new steroidal drug NSC67657].

    PubMed

    Wang, J S; Wang, W J; Wang, T; Zhang, Y

    2016-04-01

    To investigate the expression of mRNA and proteins of β-catenin, TCF-4 (ICAT) and Wnt signaling pathway-related genes in the monocytic differentiation of acute myeloid leukemia HL-60 cells induced by a new steroidal drug NSC67657. Wright's staining and α-NBE staining were used to observe the differentiation of HL-60 cells after 5 days of 10 μmol/L NSC67657 treatment. Flow cytometry (FCM) was used to detect the differentiation and cell cycles. The expressions of mRNA and proteins of ICAT and Wnt signaling pathway-related factors, including β-catenin, TCF-4, c-myc, cyclin D1 and TCF-1 before and after differentiation, were detected by RT-PCR and Western blot. Morphological observation showed that NSC67657 induced monocytic differentiation of HL-60 cells. At 5 days after 10 μmol/L NSC67657 treatment, the number of CD14(+) HL-60 cells was (94.37±2.84)%, significantly higher than the (1.31±0.09)% in control group (P<0.01). The flow cytometry assay revealed that NSC67657 induced (76.46±2.83)% of G1/G0 phase arrest, significantly higher than that of (59.40±5.42)% in the control group (P<0.05), while the S phase cells were of (18.76±0.98)%, significantly lower than that of (34.38±2.61) % in the control group (P<0.05). The NSC67657 treatment also up-regulated the expression of ICAT mRNA and protein, and down-regulated the expression of β-catenin mRNA and protin (P<0.01 for all). However, the nuclear expression of β-catenin was down-regulated (P<0.01). The NSC67657 treatment induced nonsignificant alterations of TCF-4 mRNA, total protein and nuclear protein in the HL-60 cells (P>0.05 for all). The target genes of Wnt signaling pathway, including c-myc, cyclinD1 and TCF-1 mRNA and proteins in the HL-60 cells were significantly down-regulated after NSC67657 treatment (P<0.05). The new steroidal drug NSC67657 induces monocytic differentiation of HL-60 cells, and down-regulates the expression of β-catenin and target genes of Wnt signaling pathway. These results indicate that Wnt signaling pathway may be directly or indirectly involved in the monocytic differentiation process of HL-60 cells.

  18. Dibutyryl cyclic AMP induces differentiation of human neuroblastoma SH-SY5Y cells into a noradrenergic phenotype.

    PubMed

    Kume, Toshiaki; Kawato, Yuka; Osakada, Fumitaka; Izumi, Yasuhiko; Katsuki, Hiroshi; Nakagawa, Takayuki; Kaneko, Shuji; Niidome, Tetsuhiro; Takada-Takatori, Yuki; Akaike, Akinori

    2008-10-10

    Dibutyryl cyclic AMP (dbcAMP) and retinoic acid (RA) have been demonstrated to be the inducers of morphological differentiation in SH-SY5Y cells, a human catecholaminergic neuroblastoma cell line. However, it remains unclear whether morphologically differentiated SH-SY5Y cells by these compounds acquire catecholaminergic properties. We focused on the alteration of tyrosine hydroxylase (TH) expression and intracellular content of noradrenaline (NA) as the indicators of functional differentiation. Three days treatment with dbcAMP (1mM) and RA (10microM) induced morphological changes and an increase of TH-positive cells using immunocytochemical analysis in SH-SY5Y cells. The percentage of TH-expressing cells in dbcAMP (1mM) treatment was larger than that in RA (10microM) treatment. In addition, dbcAMP increased intracellular NA content, whereas RA did not. The dbcAMP-induced increase in TH-expressing cells is partially inhibited by KT5720, a protein kinase A (PKA) inhibitor. We also investigated the effect of butyrate on SH-SY5Y cells, because dbcAMP is enzymatically degraded by intracellular esterase, thereby resulting in the formation of butyrate. Butyrate induced the increase of NA content at lower concentrations than dbcAMP, although the increase in TH-expressing cells by butyrate was smaller than that by dbcAMP. The dbcAMP (1mM)- and butyrate (0.3mM)-induced increase in NA content was completely suppressed by alpha-methyl-p-tyrosine (1mM), an inhibitor of TH. These results suggest that dbcAMP induces differentiation into the noradrenergic phenotype through both PKA activation and butyrate.

  19. Differentiation Induces Dramatic Changes in miRNA Profile, Where Loss of Dicer Diverts Differentiating SH-SY5Y Cells Toward Senescence.

    PubMed

    Jauhari, Abhishek; Singh, Tanisha; Pandey, Ankita; Singh, Parul; Singh, Nishant; Srivastava, Ankur Kumar; Pant, Aditya Bhushan; Parmar, Devendra; Yadav, Sanjay

    2017-09-01

    MicroRNAs (miRNAs) are generated by endonuclease activity of Dicer, which also helps in loading of miRNAs to their target sequences. SH-SY5Y, a human neuroblastoma and a cellular model of neurodevelopment, consistently expresses genes related to neurodegenerative disorders at different biological levels (DNA, RNA, and proteins). Using SH-SY5Y cells, we have studied the role of Dicer and miRNAs in neuronal differentiation and explored involvement of P53, a master regulator of gene expression in differentiation-induced induction of miRNAs. Knocking down Dicer gene induced senescence in differentiating SH-SY5Y cells, which indicate the essential role of Dicer in brain development. Differentiation of SH-SY5Y cells by retinoic acid (RA) or RA + brain-derived neurotrophic factor (BDNF) induced dramatic changes in global miRNA expression. Fully differentiated SH-SY5Y cells (5-day RA followed by 3-day BDNF) significantly (p < 0.05 and atleast >3-fold change) upregulated and downregulated the expression of 77 and 17 miRNAs, respectively. Maximum increase was observed in the expression of miR-193-5p, miR-199a-5p, miR-192, miR-145, miR-28-5p, miR-29b, and miR-222 after RA exposure and miR-193-5p, miR-146a, miR-21, miR-199a-5p, miR-153, miR-29b, and miR-222 after RA + BDNF exposure in SH-SY5Y cells. Exploring the role of P53 in differentiating SH-SY5Y cells, we have observed that induction of miR-222, miR-192, and miR-145 is P53 dependent and expression of miR-193a-5p, miR-199a-5p, miR-146a, miR-21, miR-153, and miR-29b is P53 independent. In conclusion, decreased Dicer level enforces differentiating cells to senescence, and differentiating SH-SY5Y cells needs increased expression of P53 to cope up with changes in protein levels of mature neurons.

  20. Differentiation of umbilical cord derived mesenchymal stem cells to hepatocyte cells by transfection of miR-106a, miR-574-3p, and miR-451.

    PubMed

    Khosravi, Maryam; Azarpira, Negar; Shamdani, Sara; Hojjat-Assari, Suzzan; Naserian, Sina; Karimi, Mohammad Hossein

    2018-08-15

    Studying the profile of micro RNAs (miRs) elucidated the highest expressed miRs in hepatic differentiation. In this study, we investigated to clarify the role of three embryonic overexpressed miRs (miR-106a, miR-574-3p and miR-451) during hepatic differentiation of human umbilical cord derived mesenchymal stem cells (UC-MSCs). We furthermore, aimed to explore whether overexpression of any of these miRs alone is sufficient to induce the differentiation of the UC-MSCs into hepatocyte-like cells. UC-MSCs were transfected either alone or together with miR-106a, miR-574-3p and miR-451 and their potential hepatic differentiation and alteration in gene expression profile, morphological changes and albumin secretion ability were investigated. We found that up-regulation of any of these three miRs alone cannot induce expression of all hepatic specific genes. Transfection of each miR alone, led to Sox17, FoxA2 expression that are related to initiation step of hepatic differentiation. However, concurrent ectopic overexpression of three miRs together can induce UC-MSCs differentiation into functionally mature hepatocytes. These results show that miRs have the capability to directly convert UC-MSCs to a hepatocyte phenotype in vitro. Copyright © 2018. Published by Elsevier B.V.

  1. Factor for adipocyte differentiation 158 gene disruption prevents the body weight gain and insulin resistance induced by a high-fat diet.

    PubMed

    Hayashi, Takahiro; Nozaki, Yuriko; Nishizuka, Makoto; Ikawa, Masahito; Osada, Shigehiro; Imagawa, Masayoshi

    2011-01-01

    To clarify the molecular mechanism of adipocyte differentiation, we previously isolated a novel gene, factor for adipocyte differentiation (fad) 158, whose expression was induced during the earliest stages of adipogenesis, and its product was localized to the endoplasmic reticulum. We found that the knockdown of fad158 expression prevented the differentiation of 3T3-L1 cells into adipocytes. In addition, over-expression of fad158 promoted the differentiation of NIH-3T3 cells, which do not usually differentiate into adipocytes. Although these findings strongly suggest that fad158 has a crucial role in regulating adipocyte differentiation, the physiological role of the gene is still unclear. In this study, we generated mice in which fad158 expression was deleted. The fad158-deficient mice did not show remarkable changes in body weight or the weight of white adipose tissue on a chow diet, but had significantly lower body weights and fat mass than wild-type mice when fed a high-fat diet. Furthermore, although the disruption of fad158 did not influence insulin sensitivity on the chow diet, it improved insulin resistance induced by the high-fat diet. These results indicate that fad158 is a key factor in the development of obesity and insulin resistance caused by a high-fat diet.

  2. Mangiferin positively regulates osteoblast differentiation and suppresses osteoclast differentiation

    PubMed Central

    Sekiguchi, Yuusuke; Mano, Hiroshi; Nakatani, Sachie; Shimizu, Jun; Kataoka, Aya; Ogura, Kana; Kimira, Yoshifumi; Ebata, Midori; Wada, Masahiro

    2017-01-01

    Mangiferin is a polyphenolic compound present in Salacia reticulata. It has been reported to reduce bone destruction and inhibit osteoclastic differentiation. This study aimed to determine whether mangiferin directly affects osteoblast and osteoclast proliferation and differentiation, and gene expression in MC3T3-E1 osteoblastic cells and osteoclast-like cells derived from primary mouse bone marrow macrophage cells. Mangiferin induced significantly greater WST-1 activity, indicating increased cell proliferation. Mangiferin induced significantly increased alkaline phosphatase staining, indicating greater cell differentiation. Reverse transcription-polymerase chain reaction (RT-PCR) demonstrated that mangiferin significantly increased the mRNA level of runt-related transcription factor 2 (RunX2), but did not affect RunX1 mRNA expression. Mangiferin significantly reduced the formation of tartrate-resistant acid phosphatase-positive multinuclear cells. RT-PCR demonstrated that mangiferin significantly increased the mRNA level of estrogen receptor β (ERβ), but did not affect the expression of other osteoclast-associated genes. Mangiferin may inhibit osteoclastic bone resorption by suppressing differentiation of osteoclasts and promoting expression of ERβ mRNA in mouse bone marrow macrophage cells. It also has potential to promote osteoblastic bone formation by promoting cell proliferation and inducing cell differentiation in preosteoblast MC3T3-E1 cells via RunX2. Mangiferin may therefore be useful in improving bone disease outcomes. PMID:28627701

  3. Mangiferin positively regulates osteoblast differentiation and suppresses osteoclast differentiation.

    PubMed

    Sekiguchi, Yuusuke; Mano, Hiroshi; Nakatani, Sachie; Shimizu, Jun; Kataoka, Aya; Ogura, Kana; Kimira, Yoshifumi; Ebata, Midori; Wada, Masahiro

    2017-08-01

    Mangiferin is a polyphenolic compound present in Salacia reticulata. It has been reported to reduce bone destruction and inhibit osteoclastic differentiation. This study aimed to determine whether mangiferin directly affects osteoblast and osteoclast proliferation and differentiation, and gene expression in MC3T3‑E1 osteoblastic cells and osteoclast‑like cells derived from primary mouse bone marrow macrophage cells. Mangiferin induced significantly greater WST‑1 activity, indicating increased cell proliferation. Mangiferin induced significantly increased alkaline phosphatase staining, indicating greater cell differentiation. Reverse transcription‑polymerase chain reaction (RT‑PCR) demonstrated that mangiferin significantly increased the mRNA level of runt‑related transcription factor 2 (RunX2), but did not affect RunX1 mRNA expression. Mangiferin significantly reduced the formation of tartrate‑resistant acid phosphatase‑positive multinuclear cells. RT‑PCR demonstrated that mangiferin significantly increased the mRNA level of estrogen receptor β (ERβ), but did not affect the expression of other osteoclast‑associated genes. Mangiferin may inhibit osteoclastic bone resorption by suppressing differentiation of osteoclasts and promoting expression of ERβ mRNA in mouse bone marrow macrophage cells. It also has potential to promote osteoblastic bone formation by promoting cell proliferation and inducing cell differentiation in preosteoblast MC3T3‑E1 cells via RunX2. Mangiferin may therefore be useful in improving bone disease outcomes.

  4. Changes of neural markers expression during late neurogenic differentiation of human adipose-derived stem cells

    PubMed Central

    Razavi, Shahnaz; Khosravizadeh, Zahra; Bahramian, Hamid; Kazemi, Mohammad

    2015-01-01

    Background: Different studies have been done to obtain sufficient number of neural cells for treatment of neurodegenerative diseases, spinal cord, and traumatic brain injury because neural stem cells are limited in central nerves system. Recently, several studies have shown that adipose-derived stem cells (ADSCs) are the appropriate source of multipotent stem cells. Furthermore, these cells are found in large quantities. The aim of this study was an assessment of proliferation and potential of neurogenic differentiation of ADSCs with passing time. Materials and Methods: Neurosphere formation was used for neural induction in isolated human ADSCs (hADSCs). The rate of proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and potential of neural differentiation of induced hADSCs was evaluated by immunocytochemical and real-time reverse transcription polymerase chain reaction analysis after 10 and 14 days post-induction. Results: The rate of proliferation of induced hADSCs increased after 14 days while the expression of nestin, glial fibrillary acidic protein, and microtubule-associated protein 2 was decreased with passing time during neurogenic differentiation. Conclusion: These findings showed that the proliferation of induced cells increased with passing time, but in early neurogenic differentiation of hADSCs, neural expression was higher than late of differentiation. Thus, using of induced cells in early differentiation may be suggested for in vivo application. PMID:26605238

  5. Calcium: A novel and efficient inducer of differentiation of adipose-derived stem cells into neuron-like cells.

    PubMed

    Goudarzi, Farjam; Tayebinia, Heidar; Karimi, Jamshid; Habibitabar, Elahe; Khodadadi, Iraj

    2018-06-05

    This study comparatively investigated the effectiveness of calcium and other well-known inducers such as isobutylmethylxanthine (IBMX) and insulin in differentiating human adipose-derived stem cells (ADSCs) into neuronal-like cells. ADSCs were immunophenotyped and differentiated into neuron-like cells with different combinations of calcium, IBMX, and insulin. Calcium mobilization across the membrane was determined. Differentiated cells were characterized by cell cycle profiling, staining of Nissl bodies, detecting the gene expression level of markers such as neuronal nuclear antigen (NeuN), microtubule associated protein 2 (MAP2), neuron-specific enolase (NSE), doublecortin, synapsin I, glial fibrillary acidic protein (GFAP), and myelin basic protein (MBP) by quantitative real-time polymerase chain reaction (quantitative real-time polymerase chain reaction (qRT-PCR) and protein level by the immunofluorescence technique. Treatment with Ca + IBMX + Ins induced neuronal appearance and projection of neurite-like processes in the cells, accompanied with inhibition of proliferation and halt in the cell cycle. A significantly higher expression of MBP, GFAP, NeuN, NSE, synapsin 1, doublecortin, and MAP2 was detected in differentiated cells, confirming the advantages of Ca + IBMX + Ins to the other combinations of inducers. Here, we showed an efficient protocol for neuronal differentiation of ADSCs, and calcium fostered differentiation by augmenting the number of neuron-like cells and instantaneous increase in the expression of neuronal markers. © 2018 Wiley Periodicals, Inc.

  6. Comparative transcriptomics of Pleurotus eryngii reveals blue-light regulation of carbohydrate-active enzymes (CAZymes) expression at primordium differentiated into fruiting body stage.

    PubMed

    Xie, Chunliang; Gong, Wenbing; Zhu, Zuohua; Yan, Li; Hu, Zhenxiu; Peng, Yuande

    2018-05-01

    Blue light is an important environmental factor which could induce mushroom primordium differentiation and fruiting body development. However, the mechanisms of Pleurotus eryngii primordium differentiation and development induced by blue light are still unclear. The CAZymes (carbohydrate-active enzymes) play important roles in degradation of renewable lignocelluloses to provide carbohydrates for fungal growth, development and reproduction. In the present research, the expression profiles of genes were measured by comparison between the Pleurotus eryngii at primordium differentiated into fruiting body stage after blue light stimulation and dark using high-throughput sequencing approach. After assembly and compared to the Pleurotus eryngii reference genome, 11,343 unigenes were identified. 539 differentially expressed genes including white collar 2 type of transcription factor gene, A mating type protein gene, MAP kinase gene, oxidative phosphorylation associated genes, CAZymes genes and other metabolism related genes were identified during primordium differentiated into fruiting body stage after blue light stimulation. KEGG results showed that carbon metabolism, glycolysis/gluconeogenesis and biosynthesis of amino acids pathways were affected during blue light inducing primordia formation. Most importantly, 319 differentially expressed CAZymes participated in carbon metabolism were identified. The expression patterns of six representative CAZymes and laccase genes were further confirmed by qRT-PCR. Enzyme activity results indicated that the activities of CAZymes and laccase were affected in primordium differentiated into fruiting body under blue light stimulation. In conclusion, the comprehensive transcriptome and CAZymes of Pleurotus eryngii at primordium differentiated into fruiting body stage after blue light stimulation were obtained. The biological insights gained from this integrative system represent a valuable resource for future genomic studies on this commercially important mushroom. Copyright © 2017. Published by Elsevier Inc.

  7. The differential expression of alternatively polyadenylated transcripts is a common stress-induced response mechanism that modulates mammalian mRNA expression in a quantitative and qualitative fashion.

    PubMed

    Hollerer, Ina; Curk, Tomaz; Haase, Bettina; Benes, Vladimir; Hauer, Christian; Neu-Yilik, Gabriele; Bhuvanagiri, Madhuri; Hentze, Matthias W; Kulozik, Andreas E

    2016-09-01

    Stress adaptation plays a pivotal role in biological processes and requires tight regulation of gene expression. In this study, we explored the effect of cellular stress on mRNA polyadenylation and investigated the implications of regulated polyadenylation site usage on mammalian gene expression. High-confidence polyadenylation site mapping combined with global pre-mRNA and mRNA expression profiling revealed that stress induces an accumulation of genes with differentially expressed polyadenylated mRNA isoforms in human cells. Specifically, stress provokes a global trend in polyadenylation site usage toward decreased utilization of promoter-proximal poly(A) sites in introns or ORFs and increased utilization of promoter-distal polyadenylation sites in intergenic regions. This extensively affects gene expression beyond regulating mRNA abundance by changing mRNA length and by altering the configuration of open reading frames. Our study highlights the impact of post-transcriptional mechanisms on stress-dependent gene regulation and reveals the differential expression of alternatively polyadenylated transcripts as a common stress-induced mechanism in mammalian cells. © 2016 Hollerer et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  8. Monocyte-lymphocyte fusion induced by the HIV-1 envelope generates functional heterokaryons with an activated monocyte-like phenotype.

    PubMed

    Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique; Licona-Limón, Ileana; Huerta, Leonor

    2017-03-01

    Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4 + T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependent phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Differential modulatory effects of morphine on acute and chronic stress induced neurobehavioral and cellular markers in rats.

    PubMed

    Joshi, Jagdish C; Ray, Arunabha; Gulati, Kavita

    2014-04-15

    The present study evaluated the effects of morphine treatments on elevated plus maze test parameters, oxidative stress markers and Hsp70 expression in normal and stressed rats. Acute and chronic stress caused neurobehavioral suppression, altered prooxidant-antioxidant balance and increased Hsp70 expression in brain homogenates in a differential manner. Morphine (1 and 5mg/kg) attenuated RS induced anxiogenesis, changes in MDA and GSH but further enhanced Hsp70 expression. Similar anxiolytic and Hsp70 enhancing effects were seen after morphine in normal rats (no RS). Exposure to chronic RS did not elicit any appreciable neurobehavioral response in EPM but enhanced MDA, lowered GSH and exaggerated the Hsp70 expression. Pretreatment with morphine did not affect the neurobehavioral response to chronic RS, but reverted the GSH and Hsp70 expression. The results suggest that morphine differentially influences acute and chronic stress induced changes in anxiety behavior and complex interactions between oxidative stress markers and Hsp70 expression which may contribute to these effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Tumor necrosis factor-{alpha} enhances IL-15-induced natural killer cell differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jiwon; Lee, Suk Hyung; Korea University of Science and Technology, Yusong, Daejeon 305-333

    2009-09-04

    The differentiation of natural killer (NK) cells is regulated by various factors including soluble growth factors and transcription factors. Here, we have demonstrated that tumor necrosis factor-{alpha} (TNF-{alpha}) is a positive regulator of NK cell differentiation. TNF-{alpha} augmented the IL-15-induced expression of NK1.1 and CD122 in mature NK cells, and TNF-{alpha} alone also induced NK cell maturation as well as IL-15. TNF-{alpha} also increased IFN-{gamma} production in NK cells in the presence of IL-15. Meanwhile, mRNA expression of several transcription factors, including T-bet and GATA-3, was increased by the addition of TNF-{alpha} and IL-15. In addition, TNF-{alpha} increased nuclear factor-kappamore » B (NF-{kappa}B) activity in NK cells and inhibition of NF-{kappa}B impeded TNF-{alpha}-enhanced NK cell maturation. Overall, these data suggest that TNF-{alpha} significantly increased IL-15-driven NK cell differentiation by increasing the expression of transcription factors that play crucial roles in NK cell maturation and inducing the NF-{kappa}B activity.« less

  11. In vivo differentiation of induced pluripotent stem cells into neural stem cells by chimera formation.

    PubMed

    Choi, Hyun Woo; Hong, Yean Ju; Kim, Jong Soo; Song, Hyuk; Cho, Ssang Gu; Bae, Hojae; Kim, Changsung; Byun, Sung June; Do, Jeong Tae

    2017-01-01

    Like embryonic stem cells, induced pluripotent stem cells (iPSCs) can differentiate into all three germ layers in an in vitro system. Here, we developed a new technology for obtaining neural stem cells (NSCs) from iPSCs through chimera formation, in an in vivo environment. iPSCs contributed to the neural lineage in the chimera, which could be efficiently purified and directly cultured as NSCs in vitro. The iPSC-derived, in vivo-differentiated NSCs expressed NSC markers, and their gene-expression pattern more closely resembled that of fetal brain-derived NSCs than in vitro-differentiated NSCs. This system could be applied for differentiating pluripotent stem cells into specialized cell types whose differentiation protocols are not well established.

  12. Molecular mechanism of G1 arrest and cellular senescence induced by LEE011, a novel CDK4/CDK6 inhibitor, in leukemia cells.

    PubMed

    Tao, Yan-Fang; Wang, Na-Na; Xu, Li-Xiao; Li, Zhi-Heng; Li, Xiao-Lu; Xu, Yun-Yun; Fang, Fang; Li, Mei; Qian, Guang-Hui; Li, Yan-Hong; Li, Yi-Ping; Wu, Yi; Ren, Jun-Li; Du, Wei-Wei; Lu, Jun; Feng, Xing; Wang, Jian; He, Wei-Qi; Hu, Shao-Yan; Pan, Jian

    2017-01-01

    Overexpression of cyclin D1 dependent kinases 4 and 6 (CDK4/6) is a common feature of many human cancers including leukemia. LEE011 is a novel inhibitor of both CDK4 and 6. To date, the molecular function of LEE011 in leukemia remains unclear. Leukemia cell growth and apoptosis following LEE011 treatment was assessed through CCK-8 and annexin V/propidium iodide staining assays. Cell senescence was assessed by β-galactosidase staining and p16 INK4a expression analysis. Gene expression profiles of LEE011 treated HL-60 cells were investigated using an Arraystar Human LncRNA array. Gene ontology and KEGG pathway analysis were then used to analyze the differentially expressed genes from the cluster analysis. Our studies demonstrated that LEE011 inhibited proliferation of leukemia cells and could induce apoptosis. Hoechst 33,342 staining analysis showed DNA fragmentation and distortion of nuclear structures following LEE011 treatment. Cell cycle analysis showed LEE011 significantly induced cell cycle G 1 arrest in seven of eight acute leukemia cells lines, the exception being THP-1 cells. β-Galactosidase staining analysis and p16 INK4a expression analysis showed that LEE011 treatment can induce cell senescence of leukemia cells. LncRNA microarray analysis showed 2083 differentially expressed mRNAs and 3224 differentially expressed lncRNAs in LEE011-treated HL-60 cells compared with controls. Molecular function analysis showed that LEE011 induced senescence in leukemia cells partially through downregulation of the transcriptional expression of MYBL2. We demonstrate for the first time that LEE011 treatment results in inhibition of cell proliferation and induction of G 1 arrest and cellular senescence in leukemia cells. LncRNA microarray analysis showed differentially expressed mRNAs and lncRNAs in LEE011-treated HL-60 cells and we demonstrated that LEE011 induces cellular senescence partially through downregulation of the expression of MYBL2. These results may open new lines of investigation regarding the molecular mechanism of LEE011 induced cellular senescence.

  13. Differential roles of HIC-5 isoforms in the regulation of cell death and myotube formation during myogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Zhengliang; Deblis, Ryan; Glenn, Honor

    2007-11-15

    Hic-5 is a LIM-Only member of the paxillin superfamily of focal adhesion proteins. It has been shown to regulate a range of biological processes including: senescence, tumorigenesis, steroid hormone action, integrin signaling, differentiation, and apoptosis. To better understand the roles of Hic-5 during development, we initiated a detailed analysis of Hic-5 expression and function in C{sub 2}C{sub 12} myoblasts, a well-established model for myogenesis. We have found that: (1) myoblasts express at least 6 distinct Hic-5 isoforms; (2) the two predominant isoforms, Hic-5{alpha} and Hic-5{beta}, are differentially expressed during myogenesis; (3) any experimentally induced change in Hic-5 expression results inmore » a substantial increase in apoptosis during differentiation; (4) ectopic expression of Hic-5{alpha} is permissive to differentiation while expression of either Hic-5{beta} or antisense Hic-5 blocks myoblast fusion but not chemodifferentiation; (5) Hic-5 localizes to focal adhesions in C{sub 2}C{sub 12} myoblasts and perturbation of Hic-5 leads to defects in cell spreading; (6) alterations in Hic-5 expression interfere with the normal dynamics of laminin expression; and (7) ectopic laminin, but not fibronectin, can rescue the Hic-5-induced blockade of myoblast survival and differentiation. Our data demonstrate differential roles for individual Hic-5 isoforms during myogenesis and support the hypothesis that Hic-5 mediates these effects via integrin signaling.« less

  14. p21WAF1 expression induced by MEK/ERK pathway activation or inhibition correlates with growth arrest, myogenic differentiation and onco-phenotype reversal in rhabdomyosarcoma cells

    PubMed Central

    Ciccarelli, Carmela; Marampon, Francesco; Scoglio, Arianna; Mauro, Annunziata; Giacinti, Cristina; De Cesaris, Paola; Zani, Bianca M

    2005-01-01

    Background p21WAF1, implicated in the cell cycle control of both normal and malignant cells, can be induced by p53-dependent and independent mechanisms. In some cells, MEKs/ERKs regulate p21WAF1 transcriptionally, while in others they also affect the post-transcriptional processes. In myogenic differentiation, p21WAF1 expression is also controlled by the myogenic transcription factor MyoD. We have previously demonstrated that the embryonal rhabdomyosarcoma cell line undergoes growth arrest and myogenic differentiation following treatments with TPA and the MEK inhibitor U0126, which respectively activate and inhibit the ERK pathway. In this paper we attempt to clarify the mechanism of ERK-mediated and ERK-independent growth arrest and myogenic differentiation of embryonal and alveolar rhabdomyosarcoma cell lines, particularly as regards the expression of the cell cycle inhibitor p21WAF1. Results p21WAF1 expression and growth arrest are induced in both embryonal (RD) and alveolar (RH30) rhabdomyosarcoma cell lines following TPA or MEK/ERK inhibitor (U0126) treatments, whereas myogenic differentiation is induced in RD cells alone. Furthermore, the TPA-mediated post-transcriptional mechanism of p21WAF1-enhanced expression in RD cells is due to activation of the MEK/ERK pathway, as shown by transfections with constitutively active MEK1 or MEK2, which induces p21WAF1 expression, and with ERK1 and ERK2 siRNA, which prevents p21WAF1 expression. By contrast, U0126-mediated p21WAF1 expression is controlled transcriptionally by the p38 pathway. Similarly, myogenin and MyoD expression is induced both by U0126 and TPA and is prevented by p38 inhibition. Although MyoD and myogenin depletion by siRNA prevents U0126-mediated p21WAF1 expression, the over-expression of these two transcription factors is insufficient to induce p21WAF1. These data suggest that the transcriptional mechanism of p21WAF1 expression in RD cells is rescued when MEK/ERK inhibition relieves the functions of myogenic transcription factors. Notably, the forced expression of p21WAF1 in RD cells causes growth arrest and the reversion of anchorage-independent growth. Conclusion Our data provide evidence of the key role played by the MEK/ERK pathway in the growth arrest of Rhabdomyosarcoma cells. The results of this study suggest that the targeting of MEK/ERKs to rescue p21WAF1 expression and myogenic transcription factor functions leads to the reversal of the Rhabdomyosarcoma phenotype. PMID:16351709

  15. p21WAF1 expression induced by MEK/ERK pathway activation or inhibition correlates with growth arrest, myogenic differentiation and onco-phenotype reversal in rhabdomyosarcoma cells.

    PubMed

    Ciccarelli, Carmela; Marampon, Francesco; Scoglio, Arianna; Mauro, Annunziata; Giacinti, Cristina; De Cesaris, Paola; Zani, Bianca M

    2005-12-13

    p21WAF1, implicated in the cell cycle control of both normal and malignant cells, can be induced by p53-dependent and independent mechanisms. In some cells, MEKs/ERKs regulate p21WAF1 transcriptionally, while in others they also affect the post-transcriptional processes. In myogenic differentiation, p21WAF1 expression is also controlled by the myogenic transcription factor MyoD. We have previously demonstrated that the embryonal rhabdomyosarcoma cell line undergoes growth arrest and myogenic differentiation following treatments with TPA and the MEK inhibitor U0126, which respectively activate and inhibit the ERK pathway. In this paper we attempt to clarify the mechanism of ERK-mediated and ERK-independent growth arrest and myogenic differentiation of embryonal and alveolar rhabdomyosarcoma cell lines, particularly as regards the expression of the cell cycle inhibitor p21WAF1. p21WAF1 expression and growth arrest are induced in both embryonal (RD) and alveolar (RH30) rhabdomyosarcoma cell lines following TPA or MEK/ERK inhibitor (U0126) treatments, whereas myogenic differentiation is induced in RD cells alone. Furthermore, the TPA-mediated post-transcriptional mechanism of p21WAF1-enhanced expression in RD cells is due to activation of the MEK/ERK pathway, as shown by transfections with constitutively active MEK1 or MEK2, which induces p21WAF1 expression, and with ERK1 and ERK2 siRNA, which prevents p21WAF1 expression. By contrast, U0126-mediated p21WAF1 expression is controlled transcriptionally by the p38 pathway. Similarly, myogenin and MyoD expression is induced both by U0126 and TPA and is prevented by p38 inhibition. Although MyoD and myogenin depletion by siRNA prevents U0126-mediated p21WAF1 expression, the over-expression of these two transcription factors is insufficient to induce p21WAF1. These data suggest that the transcriptional mechanism of p21WAF1 expression in RD cells is rescued when MEK/ERK inhibition relieves the functions of myogenic transcription factors. Notably, the forced expression of p21WAF1 in RD cells causes growth arrest and the reversion of anchorage-independent growth. Our data provide evidence of the key role played by the MEK/ERK pathway in the growth arrest of Rhabdomyosarcoma cells. The results of this study suggest that the targeting of MEK/ERKs to rescue p21WAF1 expression and myogenic transcription factor functions leads to the reversal of the Rhabdomyosarcoma phenotype.

  16. Expression of NLRR3 orphan receptor gene is negatively regulated by MYCN and Miz-1, and its downregulation is associated with unfavorable outcome in neuroblastoma.

    PubMed

    Akter, Jesmin; Takatori, Atsushi; Hossain, Md Shamim; Ozaki, Toshinori; Nakazawa, Atsuko; Ohira, Miki; Suenaga, Yusuke; Nakagawara, Akira

    2011-11-01

    Our previous study showed that expression of NLRR3 is significantly high in favorable neuroblastomas (NBL), whereas that of NLRR1 is significantly high in unfavorable NBLs. However, the molecular mechanism of transcriptional regulation of NLRR3 remains elusive. This study was undertaken to clarify the transcriptional regulation of NLRR3 and its association with the prognosis of NBL. NLRR3 and MYCN expressions in NBL cell lines were analyzed after induction of cell differentiation, MYCN knockdown, and overexpression. The transcriptional regulation of NLRR3 was analyzed by luciferase reporter and chromatin immunoprecipitation assays. Quantitative PCR was used for examining the expression of NLRR3, Miz-1, or MYCN in 87 primary NBLs. The expression of NLRR3 mRNA was upregulated during differentiation of NBL cells induced by retinoic acid, accompanied with reduced expression of MYCN, suggesting that NLRR3 expression was inversely correlated with MYCN in differentiation. Indeed, knockdown of MYCN induced NLRR3 expression, whereas exogenously expressed MYCN reduced cellular NLRR3 expression. We found that Miz-1 was highly expressed in favorable NBLs and NLRR3 was induced by Miz-1 expression in NBL cells. MYCN and Miz-1 complexes bound to NLRR3 promoter and showed a negative regulation of NLRR3 expression. In addition, a combination of low expression of NLRR3 and high expression of MYCN was highly associated with poor prognosis. NLRR3 is a direct target of MYCN, which associates with Miz-1 and negatively regulates NLRR3 expression. NLRR3 may play a role in NBL differentiation and the survival of NBL patients by inversely correlating with MYCN amplification. ©2011 AACR

  17. Normal neutrophil differentiation and secondary granule gene expression in the EML and MPRO cell lines.

    PubMed

    Lawson, N D; Krause, D S; Berliner, N

    1998-11-01

    The EML and MPRO cell lines express a dominant negative retinoic acid receptor alpha that causes a block at specific stages of myelopoiesis. The EML cell line is multipotent and gives rise to erythroid, lymphoid, and myeloid lineages depending on the presence of appropriate cytokines. The MPRO cell line is promyelocytic and undergoes neutrophilic differentiation when induced with all-trans retinoic acid in the presence of granulocyte/macrophage colony-stimulating factor. Previous studies have shown that both of these cell lines undergo morphological differentiation into neutrophils. In this study, we show that unlike other models of neutrophil differentiation such as NB4 and HL60, both EML and MPRO cell lines undergo complete, normal granulocytic differentiation programs. Similar to HL60, MPRO and EML induce expression of CD11b/CD18 and also exhibit downregulation of CD34 on differentiation. In contrast to HL60 and NB4, EML and MPRO cell lines coordinately upregulate secondary granule transcripts for lactoferrin and neutrophil gelatinase. Furthermore, we have confirmed previous observations that serum can induce a low level of differentiation in MPRO cells and that it is possible to grow these cells in serum-free medium, thereby eliminating this effect. Based on these studies, it appears that these lines can serve as a model for normal retinoic acid-induced neutrophil differentiation and provide insight into the role of the retinoic acid-responsive pathway in normal and leukemic myelopoiesis.

  18. BMP4 Cooperates with Retinoic Acid to Induce the Expression of Differentiation Markers in Cultured Mouse Spermatogonia

    PubMed Central

    Feng, Yanmin; Feng, Xue; Wang, Xiuxia; Gan, Haiyun; Wang, Lixian; Lin, Xiwen

    2016-01-01

    Spermatogenesis is sustained by the proliferation and differentiation of spermatogonial stem cells (SSCs). However, the molecules controlling these processes remain largely unknown. Here, we developed a simplified high concentration serum-containing system for the culture of mouse SSCs. Analysis of SSCs markers and transplantation results revealed that the cultured spermatogonia retained stem cell characteristics after long-term in vitro propagation. Using this culture system, the expression and function of bone morphogenetic protein 4 (BMP4) were explored. Immunostaining showed that BMP4 was predominantly expressed in germ cells and that its level increased as spermatogenesis progresses. BMP4 receptors BMPR1A and BMPRII were present in spermatogonia, spermatocytes, and round spermatids. Moreover, despite the mRNAs of these two genes being present in mouse Sertoli cells, only BMPRII was detected by using Western blotting assays. While exogenous BMP4 by itself did not induce the expression of Stra8 and c-Kit, two marker genes of differentiating spermatogonia, a significant cooperative effect of BMP4 and retinoic acid (RA) was observed. Moreover, pretreatment of cultured spermatogonia with the BMP4 antagonist Noggin could inhibit RA-induced expression of these two marker genes. In conclusion, BMP4 may exert autocrine effects and act cooperatively with RA to induce the differentiation of spermatogonia in vivo. PMID:27795714

  19. Differential expression of three T lymphocyte-activating CXC chemokines by human atheroma-associated cells

    PubMed Central

    Mach, François; Sauty, Alain; Iarossi, Albert S.; Sukhova, Galina K.; Neote, Kuldeep; Libby, Peter; Luster, Andrew D.

    1999-01-01

    Activated T lymphocytes accumulate early in atheroma formation and persist at sites of lesion growth and rupture, suggesting that they may play an important role in the pathogenesis of atherosclerosis. Moreover, atherosclerotic lesions contain the Th1-type cytokine IFN-γ, a potentiator of atherosclerosis. The present study demonstrates the differential expression of the 3 IFN-γ–inducible CXC chemokines — IFN-inducible protein 10 (IP-10), monokine induced by IFN-γ (Mig), and IFN-inducible T-cell α chemoattractant (I-TAC) — by atheroma-associated cells, as well as the expression of their receptor, CXCR3, by all T lymphocytes within human atherosclerotic lesions in situ. Atheroma-associated endothelial cells (ECs), smooth muscle cells (SMCs), and macrophages (MØ) all expressed IP-10, whereas Mig and I-TAC were mainly expressed in ECs and MØ, as detected by double immunofluorescence staining. ECs of microvessels within lesions also expressed abundant I-TAC. In vitro experiments supported these results and showed that IL-1β, TNF-α, and CD40 ligand potentiated IP-10 expression from IFN-γ–stimulated ECs. In addition, nitric oxide (NO) treatment decreased IFN-γ induction of IP-10. Our findings suggest that the differential expression of IP-10, Mig, and I-TAC by atheroma-associated cells plays a role in the recruitment and retention of activated T lymphocytes observed within vascular wall lesions during atherogenesis. PMID:10525042

  20. Residual Expression of the Reprogramming Factors Prevents Differentiation of iPSC Generated from Human Fibroblasts and Cord Blood CD34+ Progenitors

    PubMed Central

    Ramos-Mejía, Verónica; Montes, Rosa; Bueno, Clara; Ayllón, Verónica; Real, Pedro J.; Rodríguez, René; Menendez, Pablo

    2012-01-01

    Human induced pluripotent stem cells (hiPSC) have been generated from different tissues, with the age of the donor, tissue source and specific cell type influencing the reprogramming process. Reprogramming hematopoietic progenitors to hiPSC may provide a very useful cellular system for modelling blood diseases. We report the generation and complete characterization of hiPSCs from human neonatal fibroblasts and cord blood (CB)-derived CD34+ hematopoietic progenitors using a single polycistronic lentiviral vector containing an excisable cassette encoding the four reprogramming factors Oct4, Klf4, Sox2 and c-myc (OKSM). The ectopic expression of OKSM was fully silenced upon reprogramming in some hiPSC clones and was not reactivated upon differentiation, whereas other hiPSC clones failed to silence the transgene expression, independently of the cell type/tissue origin. When hiPSC were induced to differentiate towards hematopoietic and neural lineages those hiPSC which had silenced OKSM ectopic expression displayed good hematopoietic and early neuroectoderm differentiation potential. In contrast, those hiPSC which failed to switch off OKSM expression were unable to differentiate towards either lineage, suggesting that the residual expression of the reprogramming factors functions as a developmental brake impairing hiPSC differentiation. Successful adenovirus-based Cre-mediated excision of the provirus OKSM cassette in CB-derived CD34+ hiPSC with residual transgene expression resulted in transgene-free hiPSC clones with significantly improved differentiation capacity. Overall, our findings confirm that residual expression of reprogramming factors impairs hiPSC differentiation. PMID:22545141

  1. Ret function in muscle stem cells points to tyrosine kinase inhibitor therapy for facioscapulohumeral muscular dystrophy.

    PubMed

    Moyle, Louise A; Blanc, Eric; Jaka, Oihane; Prueller, Johanna; Banerji, Christopher Rs; Tedesco, Francesco Saverio; Harridge, Stephen Dr; Knight, Robert D; Zammit, Peter S

    2016-11-14

    Facioscapulohumeral muscular dystrophy (FSHD) involves sporadic expression of DUX4, which inhibits myogenesis and is pro-apoptotic. To identify target genes, we over-expressed DUX4 in myoblasts and found that the receptor tyrosine kinase Ret was significantly up-regulated, suggesting a role in FSHD. RET is dynamically expressed during myogenic progression in mouse and human myoblasts. Constitutive expression of either RET9 or RET51 increased myoblast proliferation, whereas siRNA-mediated knockdown of Ret induced myogenic differentiation. Suppressing RET activity using Sunitinib, a clinically-approved tyrosine kinase inhibitor, rescued differentiation in both DUX4-expressing murine myoblasts and in FSHD patient-derived myoblasts. Importantly, Sunitinib also increased engraftment and differentiation of FSHD myoblasts in regenerating mouse muscle. Thus, DUX4-mediated activation of Ret prevents myogenic differentiation and could contribute to FSHD pathology by preventing satellite cell-mediated repair. Rescue of DUX4-induced pathology by Sunitinib highlights the therapeutic potential of tyrosine kinase inhibitors for treatment of FSHD.

  2. Sexual dimorphic expression of DMRT1 and Sox9a during gonadal differentiation and hormone-induced sex reversal in the teleost fish Nile tilapia (Oreochromis niloticus).

    PubMed

    Kobayashi, Tohru; Kajiura-Kobayashi, Hiroko; Guan, Guijun; Nagahama, Yoshitaka

    2008-01-01

    We examined the expression profiles of tDMRT1 and Sox9a during gonadal sex differentiation and hormone-induced sex reversal. tDMRT1 was detected in the gonial germ-cell-surrounding cells in XY fry specifically before the appearance of any signs of morphological sex differentiation, that is, sex differences in germ cell number and histogenesis, such as differentiation into intratesticular efferent duct or ovarian cavity. The signals became localized in the Sertoli and epithelial cells comprising the efferent duct during gonadal differentiation. After the induction of XY sex reversal with estrogen, tDMRT1 decreased and then disappeared completely. In contrast, tDMRT1 was expressed in the germ-cell-surrounding cells in XX sex reversal with androgen. On the other hand, Sox9a did not show sexual dimorphism before the appearance of sex differences in histogenesis and was not expressed in the efferent duct in the testis. These results suggest that tDMRT1 is a superior testicular differentiation marker in tilapia.

  3. The Activity of Differentiation Factors Induces Apoptosis in Polyomavirus Large T-Expressing Myoblasts

    PubMed Central

    Fimia, Gian Maria; Gottifredi, Vanesa; Bellei, Barbara; Ricciardi, Maria Rosaria; Tafuri, Agostino; Amati, Paolo; Maione, Rossella

    1998-01-01

    It is commonly accepted that pathways that regulate proliferation/differentiation processes, if altered in their normal interplay, can lead to the induction of programmed cell death. In a previous work we reported that Polyoma virus Large Tumor antigen (PyLT) interferes with in vitro terminal differentiation of skeletal myoblasts by binding and inactivating the retinoblastoma antioncogene product. This inhibition occurs after the activation of some early steps of the myogenic program. In the present work we report that myoblasts expressing wild-type PyLT, when subjected to differentiation stimuli, undergo cell death and that this cell death can be defined as apoptosis. Apoptosis in PyLT-expressing myoblasts starts after growth factors removal, is promoted by cell confluence, and is temporally correlated with the expression of early markers of myogenic differentiation. The block of the initial events of myogenesis by transforming growth factor β or basic fibroblast growth factor prevents PyLT-induced apoptosis, while the acceleration of this process by the overexpression of the muscle-regulatory factor MyoD further increases cell death in this system. MyoD can induce PyLT-expressing myoblasts to accumulate RB, p21, and muscle- specific genes but is unable to induce G00 arrest. Several markers of different phases of the cell cycle, such as cyclin A, cdk-2, and cdc-2, fail to be down-regulated, indicating the occurrence of cell cycle progression. It has been frequently suggested that apoptosis can result from an unbalanced cell cycle progression in the presence of a contrasting signal, such as growth factor deprivation. Our data involve differentiation pathways, as a further contrasting signal, in the generation of this conflict during myoblast cell apoptosis. PMID:9614186

  4. An all-in-one, Tet-On 3G inducible PiggyBac system for human pluripotent stem cells and derivatives.

    PubMed

    Randolph, Lauren N; Bao, Xiaoping; Zhou, Chikai; Lian, Xiaojun

    2017-05-08

    Human pluripotent stem cells (hPSCs) offer tremendous promise in tissue engineering and cell-based therapies due to their unique combination of two properties: pluripotency and unlimited proliferative capacity. However, directed differentiation of hPSCs to clinically relevant cell lineages is needed to achieve the goal of hPSC-based therapies. This requires a deep understanding of how cell signaling pathways converge on the nucleus to control differentiation and the ability to dissect gene function in a temporal manner. Here, we report the use of the PiggyBac transposon and a Tet-On 3G drug-inducible gene expression system to achieve versatile inducible gene expression in hPSC lines. Our new system, XLone, offers improvement over previous Tet-On systems with significantly reduced background expression and increased sensitivity to doxycycline. Transgene expression in hPSCs is tightly regulated in response to doxycycline treatment. In addition, the PiggyBac elements in our XLone construct provide a rapid and efficient strategy for generating stable transgenic hPSCs. Our inducible gene expression PiggyBac transposon system should facilitate the study of gene function and directed differentiation in human stem cells.

  5. Tissue transglutaminase contributes to the all-trans-retinoic acid-induced differentiation syndrome phenotype in the NB4 model of acute promyelocytic leukemia.

    PubMed

    Csomós, Krisztián; Német, István; Fésüs, László; Balajthy, Zoltán

    2010-11-11

    Treatment of acute promyelocytic leukemia (APL) with all-trans-retinoic acid (ATRA) results in terminal differentiation of leukemic cells toward neutrophil granulocytes. Administration of ATRA leads to massive changes in gene expression, including down-regulation of cell proliferation-related genes and induction of genes involved in immune function. One of the most induced genes in APL NB4 cells is transglutaminase 2 (TG2). RNA interference-mediated stable silencing of TG2 in NB4 cells (TG2-KD NB4) coupled with whole genome microarray analysis revealed that TG2 is involved in the expression of a large number of ATRA-regulated genes. The affected genes participate in granulocyte functions, and their silencing lead to reduced adhesive, migratory, and phagocytic capacity of neutrophils and less superoxide production. The expression of genes related to cell-cycle control also changed, suggesting that TG2 regulates myeloid cell differentiation. CC chemokines CCL2, CCL3, CCL22, CCL24, and cytokines IL1B and IL8 involved in the development of differentiation syndrome are expressed at significantly lower level in TG2-KD NB4 than in wild-type NB4 cells upon ATRA treatment. Based on our results, we propose that reduced expression of TG2 in differentiating APL cells may suppress effector functions of neutrophil granulocytes and attenuate the ATRA-induced inflammatory phenotype of differentiation syndrome.

  6. The calcineurin pathway links hyperpolarization (Kir2.1)-induced Ca2+ signals to human myoblast differentiation and fusion.

    PubMed

    Konig, Stéphane; Béguet, Anne; Bader, Charles R; Bernheim, Laurent

    2006-08-01

    In human myoblasts triggered to differentiate, a hyperpolarization, resulting from K+ channel (Kir2.1) activation, allows the generation of an intracellular Ca2+ signal. This signal induces an increase in expression/activity of two key transcription factors of the differentiation process, myogenin and MEF2. Blocking hyperpolarization inhibits myoblast differentiation. The link between hyperpolarization-induced Ca2+ signals and the four main regulatory pathways involved in myoblast differentiation was the object of this study. Of the calcineurin, p38-MAPK, PI3K and CaMK pathways, only the calcineurin pathway was inhibited when Kir2.1-linked hyperpolarization was blocked. The CaMK pathway, although Ca2+ dependent, is unaffected by changes in membrane potential or block of Kir2.1 channels. Concerning the p38-MAPK and PI3K pathways, their activity is present already in proliferating myoblasts and they are unaffected by hyperpolarization or Kir2.1 channel block. We conclude that the Kir2.1-induced hyperpolarization triggers human myoblast differentiation via the activation of the calcineurin pathway, which, in turn, induces expression/activity of myogenin and MEF2.

  7. Gravity, an Regulation Factor in BMSCs Differentiation to osteoblasts

    NASA Astrophysics Data System (ADS)

    Yan, Huang; Yinghui, Li; Fen, Yang; Zhongquan, Dai

    PURPOSE Most studies of regulatory mechanisms of adult stem cell differentiation are concentrated in chemical factors but few efforts are put into physical factors Recent space life science studies indicate mechanical factors participate in the differentiation of cells The aim of this study is to investigate the effects of simulated microgravity or hypergravity on the osteogenic differentiation of rat bone marrow mesenchymal stem cells BMSCs METHODOLOGY The BMSCs at day 7 were added osteogenic inducer 10nM dexamethasone 10mM beta -glycerophosphate and 50 mu M asorbic acid-2-phosphate for 7 days and cultured under simulated microgravity or hypergravity 2g for 1 day 3 days 5 days or 7 days RESULTS After treating BMSCs with osteogenic inducer and hypergravity the cells expressed more ColIA1 Cbfa1 and ALP than in single steogenic inducer treatment Reversely the cells treated with osteogenic inducer and simulated microgravity expressed less ColIA1 Cbfa1 and ALP CONCLUSIONS Our study suggests that hypergravity promotes the osteogenic differentiation of BMSCs and simulated microgravity inhibits this process Gravity is an important regulation factor in BMSCs differentiation to osteoblasts

  8. 6-Formylindolo(3,2-b)Carbazole (FICZ) Modulates the Signalsome Responsible for RA-Induced Differentiation of HL-60 Myeloblastic Leukemia Cells

    PubMed Central

    Bunaciu, Rodica P.; LaTocha, Dorian H.; Varner, Jeffrey D.; Yen, Andrew

    2015-01-01

    6-Formylindolo(3,2-b)carbazole (FICZ) is a photoproduct of tryptophan and an endogenous high affinity ligand for aryl hydrocarbon receptor (AhR). It was previously reported that, in patient-derived HL-60 myeloblastic leukemia cells, retinoic acid (RA)-induced differentiation is driven by a signalsome containing c-Cbl and AhR. FICZ enhances RA-induced differentiation, assessed by expression of the membrane differentiation markers CD38 and CD11b, cell cycle arrest and the functional differentiation marker, inducible oxidative metabolism. Moreover, FICZ augments the expression of a number of the members of the RA-induced signalsome, such as c-Cbl, Vav1, Slp76, PI3K, and the Src family kinases Fgr and Lyn. Pursuing the molecular signaling responsible for RA-induced differentiation, we characterized, using FRET and clustering analysis, associations of key molecules thought to drive differentiation. Here we report that, assayed by FRET, AhR interacts with c-Cbl upon FICZ plus RA-induced differentiation, whereas AhR constitutively interacts with Cbl-b. Moreover, correlation analysis based on the flow cytometric assessment of differentiation markers and western blot detection of signaling factors reveal that Cbl-b, p-p38α and pT390-GSK3β, are not correlated with other known RA-induced signaling components or with a phenotypic outcome. We note that FICZ plus RA elicited signaling responses that were not typical of RA alone, but may represent alternative differentiation-driving pathways. In clusters of signaling molecules seminal to cell differentiation, FICZ co-administered with RA augments type and intensity of the dynamic changes induced by RA. Our data suggest relevance for FICZ in differentiation-induction therapy. The mechanism of action includes modulation of a SFK and MAPK centered signalsome and c-Cbl-AhR association. PMID:26287494

  9. Cell Aggregation-induced FGF8 Elevation Is Essential for P19 Cell Neural Differentiation

    PubMed Central

    Wang, Chen; Xia, Caihong; Bian, Wei; Liu, Li; Lin, Wei; Chen, Ye-Guang; Ang, Siew-Lan

    2006-01-01

    FGF8, a member of the fibroblast growth factor (FGF) family, has been shown to play important roles in different developing systems. Mouse embryonic carcinoma P19 cells could be induced by retinoic acid (RA) to differentiate into neuroectodermal cell lineages, and this process is cell aggregation dependent. In this report, we show that FGF8 expression is transiently up-regulated upon P19 cell aggregation, and the aggregation-dependent FGF8 elevation is pluripotent stem cell related. Overexpressing FGF8 promotes RA-induced monolayer P19 cell neural differentiation. Inhibition of FGF8 expression by RNA interference or blocking FGF signaling by the FGF receptor inhibitor, SU5402, attenuates neural differentiation of the P19 cell. Blocking the bone morphogenetic protein (BMP) pathway by overexpressing Smad6 in P19 cells, we also show that FGF signaling plays a BMP inhibition–independent role in P19 cell neural differentiation. PMID:16641368

  10. Oxidized low-density lipoprotein acts synergistically with beta-glycerophosphate to induce osteoblast differentiation in primary cultures of vascular smooth muscle cells.

    PubMed

    Bear, Mackenzie; Butcher, Martin; Shaughnessy, Stephen G

    2008-09-01

    Previous studies have localized osteoblast specific markers to sites of calcified atherosclerotic lesions. We therefore decided to use an established in vitro model of vascular calcification in order to confirm earlier reports of oxidized low-density lipoprotein (oxLDL) promoting the osteogenic differentiation of vascular smooth muscle cells. Treatment of primary bovine aortic smooth muscle cells (BASMCs) with beta-glycerophosphate was found to induce a time-dependent increase in osteoblast differentiation. In contrast, no effect was seen when BASMCs were cultured in the presence of oxLDL alone. However, when the BASMCs were cultured in the presence of both beta-glycerophosphate and oxLDL, beta-glycerophosphate's ability to induce osteoblast differentiation was significantly enhanced. In an attempt to resolve the mechanism by which this effect was occurring, we examined the effect of beta-glycerophosphate and oxLDL on several pathways known to be critical to the differentiation of osteoblasts. Surprisingly, beta-glycerophosphate alone was found to enhance Osterix (Osx) expression by inducing both Smad 1/5/8 activation and Runx2 expression. In contrast, oxLDL did not affect either Smad 1/5/8 activation or Runx2 activation but rather, it enhanced both beta-glycerophosphate-induced Osx expression and osteoblast differentiation in an extracellular signal-regulated kinase 1 and 2 (Erk 1 and 2) -dependent manner. When taken together, these findings suggest a plausible mechanism by which oxLDL may promote osteogenic differentiation and vascular calcification in vivo. J. Cell. Biochem. 105: 185-193, 2008. (c) 2008 Wiley-Liss, Inc. (c) 2008 Wiley-Liss, Inc.

  11. Taurine suppresses osteoblastic differentiation of aortic valve interstitial cells induced by beta-glycerophosphate disodium, dexamethasone and ascorbic acid via the ERK pathway.

    PubMed

    Feng, Xiang; Li, Jian-ming; Liao, Xiao-bo; Hu, Ye-rong; Shang, Bao-peng; Zhang, Zhi-yuan; Yuan, Ling-qing; Xie, Hui; Sheng, Zhi-feng; Tang, Hao; Zhang, Wei; Gu, Lu; Zhou, Xin-min

    2012-10-01

    Aortic valve calcification (AVC) is an active process characterized by osteoblastic differentiation of the aortic valve interstitial cells (AVICs). Taurine is a free β-amino acid and plays important physiological roles including protective effect of cardiovascular events. To evaluate the possible role of taurine in AVC, we isolated human AVICs from patients with type A dissection without leaflet disease. We demonstrated that the cultured AVICs express SM α-actin, vimentin and taurine transporter (TAUT), but not CD31, SM-myosin or desmin. We also established the osteoblastic differentiation model of the AVICs induced by pro-calcific medium (PCM) containing β-glycerophosphate disodium, dexamethasone and ascorbic acid in vitro. The results showed that taurine attenuated the PCM-induced osteoblastic differentiation of AVICs by decreasing the alkaline phosphate (ALP) activity/expression and the expression of the core binding factor α1 (Cbfα1) in a dose-dependent manner (reaching the maximum protective effect at 10 mM), and taurine (10 mM) inhibited the mineralization level of AVICs in the form of calcium content significantly. Furthermore, taurine activated the extracellular signal-regulated protein kinase (ERK) pathway via TAUT, and the inhibitor of ERK (PD98059) abolished the effect of taurine on both ALP activity/expression and Cbfα1 expression. These results suggested that taurine could inhibit osteoblastic differentiation of AVIC via the ERK pathway.

  12. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Xinhua; Wang, Xiaoyuan; Hu, Xiongke

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expressionmore » were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression.« less

  13. TGF-β1/FGF-2 signaling mediates the 15-HETE-induced differentiation of adventitial fibroblasts into myofibroblasts.

    PubMed

    Zhang, Li; Chen, Yan; Li, Guixia; Chen, Minggang; Huang, Wei; Liu, Yanrui; Li, Yumei

    2016-01-05

    Pulmonary adventitial fibroblasts (PAFs) are activated under stress stimuli leading to their differentiation into myofibroblasts, which is involved in vessel remodeling. 15-HETE is known as an important factor in vessel remodeling under hypoxia; however, the role of 15-HETE in PAF phenotypic alteration is not clear. The effect of 15-HETE on PAF phenotypic alterations was investigated in the present study. PAFs were treated with 15-HETE (0.5 μM) for 24 h, and the myofibroblast marker α-smooth muscle actin (α-SMA) was analyzed. The 15-HETE induced α-SMA expression and cell morphology. 15-HETE upregulated FGF-2 levels in PAFs, and knockdown FGF-2 by siRNAs blocked the enhanced α-SMA expression induced by 15-HETE. p38 kinase was activated, and blocked depressed 15-HETE-induced FGF-2 expression. The downstream of p38 pathway, Egr-1 activation, was also raised by 15-HETE treatment, and silenced Egr-1 suppressed the 15-HETE-induced upregulation of FGF-2. TGF-β1 was upregulated with FGF-2 treatment, and α-SMA expression induced by FGF-2 was inhibited after the cell was transferred with TGF-β1 siRNA. Meanwhile, FGF-2 increased α-SMA expression and improved proliferation, which was associated with p27(kip1) and cyclin E variation. The above results suggest that p38/Egr-1 pathway-mediated FGF-2 is involved in 15-HETE-induced differentiation of PAFs into myofibroblasts and cell proliferation.

  14. MiR-29-mediated elastin down-regulation contributes to inorganic phosphorus-induced osteoblastic differentiation in vascular smooth muscle cells.

    PubMed

    Sudo, Ryo; Sato, Fumiaki; Azechi, Takuya; Wachi, Hiroshi

    2015-12-01

    Vascular calcification increases the risk of cardiovascular mortality. We previously reported that expression of elastin decreases with progression of inorganic phosphorus (Pi)-induced vascular smooth muscle cell (VSMC) calcification. However, the regulatory mechanisms of elastin mRNA expression during vascular calcification remain unclear. MicroRNA-29 family members (miR-29a, b and c) are reported to mediate elastin mRNA expression. Therefore, we aimed to determine the effect of miR-29 on elastin expression and Pi-induced vascular calcification. Calcification of human VSMCs was induced by Pi and evaluated measuring calcium deposition. Pi stimulation promoted Ca deposition and suppressed elastin expression in VSMCs. Knockdown of elastin expression by shRNA also promoted Pi-induced VSMC calcification. Elastin pre-mRNA measurements indicated that Pi stimulation suppressed elastin expression without changing transcriptional activity. Conversely, Pi stimulation increased miR-29a and miR-29b expression. Inhibition of miR-29 recovered elastin expression and suppressed calcification in Pi-treated VSMCs. Furthermore, over-expression of miR-29b promoted Pi-induced VSMC calcification. RT-qPCR analysis showed knockdown of elastin expression in VSMCs induced expression of osteoblast-related genes, similar to Pi stimulation, and recovery of elastin expression by miR-29 inhibition reduced their expression. Our study shows that miR-29-mediated suppression of elastin expression in VSMCs plays a pivotal role in osteoblastic differentiation leading to vascular calcification. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  15. Small GTPase Tc10 and its homologue RhoT induce N-WASP-mediated long process formation and neurite outgrowth.

    PubMed

    Abe, Tomoyuki; Kato, Masayoshi; Miki, Hiroaki; Takenawa, Tadaomi; Endo, Takeshi

    2003-01-01

    Rho family small GTPases regulate multiple cellular functions through reorganization of the actin cytoskeleton. Among them, Cdc42 and Tc10 induce filopodia or peripheral processes in cultured cells. We have identified a member of the family, designated as RhoT, which is closely related to Tc10. Tc10 was highly expressed in muscular tissues and brain and remarkably induced during differentiation of C2 skeletal muscle cells and neuronal differentiation of PC12 and N1E-115 cells. On the other hand, RhoT was predominantly expressed in heart and uterus and induced during neuronal differentiation of N1E-115 cells. Tc10 exogenously expressed in fibroblasts generated actin-filament-containing peripheral processes longer than the Cdc42-formed filopodia, whereas RhoT produced much longer and thicker processes containing actin filaments. Furthermore, both Tc10 and RhoT induced neurite outgrowth in PC12 and N1E-115 cells, but Cdc42 did not do this by itself. Tc10 and RhoT as well as Cdc42 bound to the N-terminal CRIB-motif-containing portion of N-WASP and activated N-WASP to induce Arp2/3-complex-mediated actin polymerization. The formation of peripheral processes and neurites by Tc10 and RhoT was prevented by the coexpression of dominant-negative mutants of N-WASP. Thus, N-WASP is essential for the process formation and neurite outgrowth induced by Tc10 and RhoT. Neuronal differentiation of PC12 and N1E-115 cells induced by dibutyryl cyclic AMP and by serum starvation, respectively, was prevented by dominant-negative Cdc42, Tc10 and RhoT. Taken together, all these Rho family proteins are required for neuronal differentiation, but they exert their functions differentially in process formation and neurite extension. Consequently, N-WASP activated by these small GTPases mediates neuronal differentiation in addition to its recently identified role in glucose uptake.

  16. Increased cyclooxygenase-2 and thromboxane synthase expression is implicated in diosgenin-induced megakaryocytic differentiation in human erythroleukemia cells.

    PubMed

    Cailleteau, C; Liagre, B; Battu, S; Jayat-Vignoles, C; Beneytout, J L

    2008-09-01

    Differentiation induction as a therapeutic strategy has, so far, the greatest impact in hematopoietic malignancies, most notably leukemia. Diosgenin is a very interesting natural product because, depending on the specific dose used, its biological effect is very different in HEL (human erythroleukemia) cells. For example, at 10 microM, diosgenin induced megakaryocytic differentiation, in contrast to 40 microM diosgenin, which induced apoptosis in HEL cells previously demonstrated using sedimentation field-flow fractionation (SdFFF). The goal of this work focused on the correlation between cyclooxygenase-2 (COX-2) and thromboxane synthase (TxS) and megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, the technique of SdFFF, having been validated in our models, was used in this new study as an analytical tool that provided us with more or less enriched differentiated cell fractions that could then be used for further analyses of enzyme protein expression and activity for the first time. In our study, we showed the implication of COX-2 and TxS in diosgenin-induced megakaryocytic differentiation in HEL cells. Furthermore, we showed that the analytical technique of SdFFF may be used as a tool to confirm our results as a function of the degree of cell differentiation.

  17. Transforming growth factor-{beta} inhibits CCAAT/enhancer-binding protein expression and PPAR{gamma} activity in unloaded bone marrow stromal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.

    2005-02-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2more » administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.« less

  18. miR-21 promotes the differentiation of hair follicle-derived neural crest stem cells into Schwann cells

    PubMed Central

    Ni, Yuxin; Zhang, Kaizhi; Liu, Xuejuan; Yang, Tingting; Wang, Baixiang; Fu, Li; A, Lan; Zhou, Yanmin

    2014-01-01

    Hair follicle-derived neural crest stem cells can be induced to differentiate into Schwann cells in vivo and in vitro. However, the underlying regulatory mechanism during cell differentiation remains poorly understood. This study isolated neural crest stem cells from human hair follicles and induced them to differentiate into Schwann cells. Quantitative RT-PCR showed that microRNA (miR)-21 expression was gradually increased during the differentiation of neural crest stem cells into Schwann cells. After transfection with the miR-21 agonist (agomir-21), the differentiation capacity of neural crest stem cells was enhanced. By contrast, after transfection with the miR-21 antagonist (antagomir-21), the differentiation capacity was attenuated. Further study results showed that SOX-2 was an effective target of miR-21. Without compromising SOX2 mRNA expression, miR-21 can down-regulate SOX protein expression by binding to the 3′-UTR of miR-21 mRNA. Knocking out the SOX2 gene from the neural crest stem cells significantly reversed the antagomir-21 inhibition of neural crest stem cells differentiating into Schwann cells. The results suggest that miR-21 expression was increased during the differentiation of neural crest stem cells into Schwann cells and miR-21 promoted the differentiation through down-regulating SOX protein expression by binding to the 3′-UTR of SOX2 mRNA. PMID:25206896

  19. Role of the POZ zinc finger transcription factor FBI-1 in human and murine adipogenesis.

    PubMed

    Laudes, Matthias; Christodoulides, Constantinos; Sewter, Ciaran; Rochford, Justin J; Considine, Robert V; Sethi, Jaswinder K; Vidal-Puig, Antonio; O'Rahilly, Stephen

    2004-03-19

    Poxvirus zinc finger (POZ) zinc finger domain transcription factors have been shown to play a role in the control of growth arrest and differentiation in several types of mesenchymal cells but not, as yet, adipocytes. We found that a POZ domain protein, factor that binds to inducer of short transcripts-1 (FBI-1), was induced during both murine and human preadipocyte differentiation with maximal expression levels seen at days 2-4. FBI-1 mRNA was expressed in human adipose tissue with the highest levels found in samples from morbidly obese subjects. Murine cell lines constitutively expressing FBI-1 showed evidence for accelerated adipogenesis with earlier induction of markers of differentiation and enhanced lipid accumulation, suggesting that FBI-1 may be an active participant in the differentiation process. Consistent with the properties of this family of proteins in other cell systems, 3T3L1 cells stably overexpressing FBI-1 showed reduced DNA synthesis and reduced expression of cyclin A, cyclin-dependent kinase 2, and p107, proteins known to be involved in the regulation of mitotic clonal expansion. In addition, FBI-1 reduced the transcriptional activity of the cyclin A promoter. Thus, FBI-1, a POZ zinc finger transcription factor, is induced during the early phases of human and murine preadipocyte differentiation where it may contribute to adipogenesis through influencing the switch from cellular proliferation to terminal differentiation.

  20. Water extract of the fruits of Alpinia oxyphylla inhibits osteoclast differentiation and bone loss.

    PubMed

    Ha, Hyunil; Shim, Ki-Shuk; Kim, Taesoo; Lee, Chung-Jo; Park, Ji Hyung; Kim, Han Sung; Ma, Jin Yeul

    2014-09-23

    Excessive bone resorption by osteoclasts causes pathological bone destruction, seen in various bone diseases. There is accumulating evidence that certain herbal extracts have beneficial effects on bone metabolism. The fruits of Alpinia oxyphylla has been traditionally used for the treatment of diarrhea and enuresis. In this study, we investigated the effects of water extract of the fruits of Alpinia oxyphylla (WEAO) on osteoclast differentiation and osteoclast-mediated bone destruction. For osteoclast differentiation assay, mouse bone marrow-derived macrophages (BMMs) were cultured in the presence of RANKL and M-CSF. RANKL signaling pathways and gene expression of transcription factors regulating osteoclast differentiation were investigated by real-time PCR and Western blotting. A constitutively active form of NFATc1 was retrovirally transduced into BMMs. Bone resorbing activity of mature osteoclast was examined on a plate coated with an inorganic crystalline calcium phosphate. The in vivo effect against bone destruction was assessed in a murine model of RANKL-induced osteoporosis by micro-computed tomography and bone metabolism marker analyses. WEAO dose-dependently inhibited RANKL-induced osteoclast differentiation from BMMs by targeting the early stages of osteoclast differentiation. WEAO inhibited RANKL-induced expression of NFATc1, the master regulator of osteoclast differentiation. Overexpression of a constitutively active form of NFATc1 blunted the inhibitory effect of WEAO on osteoclast differentiation, suggesting that NFATc1 is a critical target of the inhibitory action of WEAO. WEAO inhibited RANKL-induced expression of c-Fos, an upstream activator of NFATc1, by suppressing the classical NF-κB signaling pathway. WEAO also inhibited RANKL-induced down-regulation of Id2 and MafB, negative regulators of NFATc1. WEAO does not directly affect bone resorbing activity of mature osteoclasts. In accordance with the in vitro results, WEAO attenuated RANKL-induced bone destruction in mice by inhibiting osteoclast differentiation. This study demonstrates that WEAO exhibits a protective effect against bone loss by inhibiting RANKL-induced osteoclast differentiation. These findings suggest that WEAO might be useful for the prevention and treatment of bone diseases associated with excessive bone resorption.

  1. Aclacinomycin A Sensitizes K562 Chronic Myeloid Leukemia Cells to Imatinib through p38MAPK-Mediated Erythroid Differentiation

    PubMed Central

    Liu, Fu-Hwa; Huang, Yu-Wen; Huang, Huei-Mei

    2013-01-01

    Expression of oncogenic Bcr-Abl inhibits cell differentiation of hematopoietic stem/progenitor cells in chronic myeloid leukemia (CML). Differentiation therapy is considered to be a new strategy for treating this type of leukemia. Aclacinomycin A (ACM) is an antitumor antibiotic. Previous studies have shown that ACM induced erythroid differentiation of CML cells. In this study, we investigate the effect of ACM on the sensitivity of human CML cell line K562 to Bcr-Abl specific inhibitor imatinib (STI571, Gleevec). We first determined the optimal concentration of ACM for erythroid differentiation but not growth inhibition and apoptosis in K562 cells. Then, pretreatment with this optimal concentration of ACM followed by a minimally toxic concentration of imatinib strongly induced growth inhibition and apoptosis compared to that with simultaneous co-treatment, indicating that ACM-induced erythroid differentiation sensitizes K562 cells to imatinib. Sequential treatment with ACM and imatinib induced Bcr-Abl down-regulation, cytochrome c release into the cytosol, and caspase-3 activation, as well as decreased Mcl-1 and Bcl-xL expressions, but did not affect Fas ligand/Fas death receptor and procaspase-8 expressions. ACM/imatinib sequential treatment-induced apoptosis was suppressed by a caspase-9 inhibitor and a caspase-3 inhibitor, indicating that the caspase cascade is involved in this apoptosis. Furthermore, we demonstrated that ACM induced erythroid differentiation through the p38 mitogen-activated protein kinase (MAPK) pathway. The inhibition of erythroid differentiation by p38MAPK inhibitor SB202190, p38MAPK dominant negative mutant or p38MAPK shRNA knockdown, reduced the ACM/imatinib sequential treatment-mediated growth inhibition and apoptosis. These results suggest that differentiated K562 cells induced by ACM-mediated p38MAPK pathway become more sensitive to imatinib and result in down-regulations of Bcr-Abl and anti-apoptotic proteins, growth inhibition and apoptosis. These results provided a potential management by which ACM might have a crucial impact on increasing sensitivity of CML cells to imatinib in the differentiation therapeutic approaches. PMID:23613979

  2. Aclacinomycin A sensitizes K562 chronic myeloid leukemia cells to imatinib through p38MAPK-mediated erythroid differentiation.

    PubMed

    Lee, Yueh-Lun; Chen, Chih-Wei; Liu, Fu-Hwa; Huang, Yu-Wen; Huang, Huei-Mei

    2013-01-01

    Expression of oncogenic Bcr-Abl inhibits cell differentiation of hematopoietic stem/progenitor cells in chronic myeloid leukemia (CML). Differentiation therapy is considered to be a new strategy for treating this type of leukemia. Aclacinomycin A (ACM) is an antitumor antibiotic. Previous studies have shown that ACM induced erythroid differentiation of CML cells. In this study, we investigate the effect of ACM on the sensitivity of human CML cell line K562 to Bcr-Abl specific inhibitor imatinib (STI571, Gleevec). We first determined the optimal concentration of ACM for erythroid differentiation but not growth inhibition and apoptosis in K562 cells. Then, pretreatment with this optimal concentration of ACM followed by a minimally toxic concentration of imatinib strongly induced growth inhibition and apoptosis compared to that with simultaneous co-treatment, indicating that ACM-induced erythroid differentiation sensitizes K562 cells to imatinib. Sequential treatment with ACM and imatinib induced Bcr-Abl down-regulation, cytochrome c release into the cytosol, and caspase-3 activation, as well as decreased Mcl-1 and Bcl-xL expressions, but did not affect Fas ligand/Fas death receptor and procaspase-8 expressions. ACM/imatinib sequential treatment-induced apoptosis was suppressed by a caspase-9 inhibitor and a caspase-3 inhibitor, indicating that the caspase cascade is involved in this apoptosis. Furthermore, we demonstrated that ACM induced erythroid differentiation through the p38 mitogen-activated protein kinase (MAPK) pathway. The inhibition of erythroid differentiation by p38MAPK inhibitor SB202190, p38MAPK dominant negative mutant or p38MAPK shRNA knockdown, reduced the ACM/imatinib sequential treatment-mediated growth inhibition and apoptosis. These results suggest that differentiated K562 cells induced by ACM-mediated p38MAPK pathway become more sensitive to imatinib and result in down-regulations of Bcr-Abl and anti-apoptotic proteins, growth inhibition and apoptosis. These results provided a potential management by which ACM might have a crucial impact on increasing sensitivity of CML cells to imatinib in the differentiation therapeutic approaches.

  3. The Effect of Agmatine on Expression of IL-1β and TLX Which Promotes Neuronal Differentiation in Lipopolysaccharide-Treated Neural Progenitors.

    PubMed

    Song, Juhyun; Kumar, Bokara Kiran; Kang, Somang; Park, Kyung Ah; Lee, Won Taek; Lee, Jong Eun

    2013-12-01

    Differentiation of neural progenitor cells (NPCs) is important for protecting neural cells and brain tissue during inflammation. Interleukin-1 beta (IL-1β) is the most common pro- inflammatory cytokine in brain inflammation, and increased IL-1β levels can decrease the proliferation of NPCs. We aimed to investigate whether agmatine (Agm), a primary polyamine that protects neural cells, could trigger differentiation of NPCs by activating IL-1β in vitro. The cortex of ICR mouse embryos (E14) was dissociated to culture NPCs. NPCs were stimulated by lipopolysaccharide (LPS). After 6 days, protein expression of stem cell markers and differentiation signal factors was confirmed by using western blot analysis. Also, immunocytochemistry was used to confirm the cell fate. Agm treatment activated NPC differentiation significantly more than in the control group, which was evident by the increased expression of a neuronal marker, MAP2, in the LPS-induced, Agm-treated group. Differentiation of LPS-induced, Agm-treated NPCs was regulated by the MAPK pathway and is thought to be related to IL-1β activation and decreased expression of TLX, a transcription factor that regulates NPC differentiation. Our results reveal that Agm can promote NPC differentiation to neural stem cells by modulating IL-1β expression under inflammatory condition, and they suggest that Agm may be a novel therapeutic strategy for neuroinflammatory diseases.

  4. Soluble soy protein peptic hydrolysate stimulates adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Goto, Tsuyoshi; Mori, Ayaka; Nagaoka, Satoshi

    2013-08-01

    The molecular mechanisms underlying the potential health benefit effects of soybean proteins on obesity-associated metabolic disorders have not been fully clarified. In this study, we investigated the effects of soluble soybean protein peptic hydrolysate (SPH) on adipocyte differentiation by using 3T3-L1 murine preadipocytes. The addition of SPH increased lipid accumulation during adipocyte differentiation. SPH increased the mRNA expression levels of an adipogenic marker gene and decreased that of a preadipocyte marker gene, suggesting that SPH promotes adipocyte differentiation. SPH induced antidiabetic and antiatherogenic adiponectin mRNA expression and secretion. Moreover, SPH increased the mRNA expression levels of insulin-responsive glucose transporter 4 and insulin-stimulated glucose uptake. The expression levels of peroxisome proliferator-activated receptor γ (PPARγ), a key regulator of adipocyte differentiation, during adipocyte differentiation were up-regulated in 3T3-L1 cells treated with SPH, and lipid accumulation during adipocyte differentiation induced by SPH was inhibited in the presence of a PPARγ antagonist. However, SPH did not exhibit PPARγ ligand activity. These findings indicate that SPH stimulates adipocyte differentiation, at least in part, via the up-regulation of PPARγ expression levels. These effects of SPH might be important for the health benefit effects of soybean proteins on obesity-associated metabolic disorders. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Transforming growth factor (TGF)beta, fibroblast growth factor (FGF) and retinoid signalling pathways promote pancreatic exocrine gene expression in mouse embryonic stem cells.

    PubMed Central

    Skoudy, Anouchka; Rovira, Meritxell; Savatier, Pierre; Martin, Franz; León-Quinto, Trinidad; Soria, Bernat; Real, Francisco X

    2004-01-01

    Extracellular signalling cues play a major role in the activation of differentiation programmes. Mouse embryonic stem (ES) cells are pluripotent and can differentiate into a wide variety of specialized cells. Recently, protocols designed to induce endocrine pancreatic differentiation in vitro have been designed but little information is currently available concerning the potential of ES cells to differentiate into acinar pancreatic cells. By using conditioned media of cultured foetal pancreatic rudiments, we demonstrate that ES cells can respond in vitro to signalling pathways involved in exocrine development and differentiation. In particular, modulation of the hedgehog, transforming growth factor beta, retinoid, and fibroblast growth factor pathways in ES cell-derived embryoid bodies (EB) resulted in increased levels of transcripts encoding pancreatic transcription factors and cytodifferentiation markers, as demonstrated by RT-PCR. In EB undergoing spontaneous differentiation, expression of the majority of the acinar genes (i.e. amylase, carboxypeptidase A and elastase) was induced after the expression of endocrine genes, as occurs in vivo during development. These data indicate that ES cells can undergo exocrine pancreatic differentiation with a kinetic pattern of expression reminiscent of pancreas development in vivo and that ES cells can be coaxed to express an acinar phenotype by activation of signalling pathways known to play a role in pancreatic development and differentiation. PMID:14733613

  6. Mycobacterium tuberculosis strains exhibit differential and strain-specific molecular signatures in pulmonary epithelial cells.

    PubMed

    Mvubu, Nontobeko Eunice; Pillay, Balakrishna; Gamieldien, Junaid; Bishai, William; Pillay, Manormoney

    2016-12-01

    Although pulmonary epithelial cells are integral to innate and adaptive immune responses during Mycobacterium tuberculosis infection, global transcriptomic changes in these cells remain largely unknown. Changes in gene expression induced in pulmonary epithelial cells infected with M. tuberculosis F15/LAM4/KZN, F11, F28, Beijing and Unique genotypes were investigated by RNA sequencing (RNA-Seq). The Illumina HiSeq 2000 platform generated 50 bp reads that were mapped to the human genome (Hg19) using Tophat (2.0.10). Differential gene expression induced by the different strains in infected relative to the uninfected cells was quantified and compared using Cufflinks (2.1.0) and MeV (4.0.9), respectively. Gene expression varied among the strains with the total number of genes as follows: F15/LAM4/KZN (1187), Beijing (1252), F11 (1639), F28 (870), Unique (886) and H37Rv (1179). A subset of 292 genes was commonly induced by all strains, where 52 genes were down-regulated while 240 genes were up-regulated. Differentially expressed genes were compared among the strains and the number of induced strain-specific gene signatures were as follows: F15/LAM4/KZN (138), Beijing (52), F11 (255), F28 (55), Unique (186) and H37Rv (125). Strain-specific molecular gene signatures associated with functional pathways were observed only for the Unique and H37Rv strains while certain biological functions may be associated with other strain signatures. This study demonstrated that strains of M. tuberculosis induce differential gene expression and strain-specific molecular signatures in pulmonary epithelial cells. Specific signatures induced by clinical strains of M. tuberculosis can be further explored for novel host-associated biomarkers and adjunctive immunotherapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Generation of iPS-derived model cells for analyses of hair shaft differentiation.

    PubMed

    Kido, Takumi; Horigome, Tomoatsu; Uda, Minori; Adachi, Naoki; Hirai, Yohei

    2017-09-01

    Biological evaluation of hair growth/differentiation activity in vitro has been a formidable challenge, primarily due to the lack of relevant model cell systems. To solve this problem, we generated a stable model cell line in which successive differentiation via epidermal progenitors to hair components is easily inducible and traceable. Mouse induced pluripotent stem (iPS) cell-derived cells were selected to stably express a tetracycline (Tet)-inducible bone morphogenic protein-4 (BMP4) expression cassette and a luciferase reporter driven by a hair-specific keratin 31 gene (krt31) promoter (Tet-BMP4-KRT31-Luc iPS). While Tet- BMP4-KRT31-Luc iPS cells could be maintained as stable iPS cells, the cells differentiated to produce luciferase luminescence in the presence of all-trans retinoic acid (RA) and doxycycline (Dox), and addition of a hair differentiation factor significantly increased luciferase fluorescence. Thus, this cell line may provide a reliable cell-based screening system to evaluate drug candidates for hair differentiation activity.

  8. CXCL4 induces a unique transcriptome in monocyte-derived macrophages

    PubMed Central

    Gleissner, Christian A.; Shaked, Iftach; Little, Kristina M.; Ley, Klaus

    2012-01-01

    In atherosclerotic arteries, blood monocytes differentiate to macrophages in the presence of growth factors like macrophage colony-stimulation factor (MCSF) and chemokines like platelet factor 4 (CXCL4). To compare the gene expression signature of CXCL4-induced macrophages with MCSF-induced macrophages or macrophages polarized with IFN-γ/LPS (M1) or IL-4 (M2), we cultured primary human peripheral blood monocytes for six days. mRNA expression was measured by Affymetrix gene chips and differences were analyzed by Local Pooled Error test, Profile of Complex Functionality and Gene Set Enrichment Analysis. 375 genes were differentially expressed between MCSF- and CXCL4-induced macrophages, 206 of them overexpressed in CXCL4 macrophages coding for genes implicated in the inflammatory/immune response, antigen processing/presentation, and lipid metabolism. CXCL4-induced macrophages overexpressed some M1 and M2 genes and the corresponding cytokines at the protein level, however, their transcriptome clustered with neither M1 nor M2 transcriptomes. They almost completely lost the ability to phagocytose zymosan beads. Genes linked to atherosclerosis were not consistently up- or downregulated. Scavenger receptors showed lower and cholesterol efflux transporters higher expression in CXCL4- than MCSF-induced macrophages, resulting in lower LDL content. We conclude that CXCL4 induces a unique macrophage transcriptome distinct from known macrophage types, defining a new macrophage differentiation that we propose to call M4. PMID:20335529

  9. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) promotes lung fibroblast proliferation, survival and differentiation to myofibroblasts.

    PubMed

    Hasaneen, Nadia A; Cao, Jian; Pulkoski-Gross, Ashleigh; Zucker, Stanley; Foda, Hussein D

    2016-02-17

    Idiopathic pulmonary fibrosis (IPF) is a chronic progressively fatal disease. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) is a glycosylated transmembrane protein that induces the expression of some matrix metalloproteinase (MMP) in neighboring stromal cells through direct epithelial-stromal interactions. EMMPRIN is highly expressed in type II alveolar epithelial cells at the edges of the fibrotic areas in IPF lung sections. However, the exact role of EMMPRIN in IPF is unknown. To determine if EMMPRIN contributes to lung fibroblast proliferation, resistance to apoptosis, and differentiation to myofibroblasts, normal Human lung fibroblasts (NHLF) transiently transfected with either EMMPRIN/GFP or GFP were treated with TGF- β1 from 0 to 10 ng/ml for 48 h and examined for cell proliferation (thymidine incorporation), apoptosis (FACS analysis and Cell Death Detection ELISA assay), cell migration (Modified Boyden chamber) and differentiation to myofibroblasts using Western blot for α-smooth actin of cell lysates. The effect of EMMPRIN inhibition on NHLF proliferation, apoptosis, migration and differentiation to myofibroblasts after TGF- β1 treatment was examined using EMMPRIN blocking antibody. We examined the mechanism by which EMMPRIN induces its effects on fibroblasts by studying the β-catenin/canonical Wnt signaling pathway using Wnt luciferase reporter assays and Western blot for total and phosphorylated β-catenin. Human lung fibroblasts overexpressing EMMPRIN had a significant increase in cell proliferation and migration compared to control fibroblasts. Furthermore, EMMPRIN promoted lung fibroblasts resistance to apoptosis. Lung fibroblasts overexpressing EMMPRIN showed a significantly increased expression of α- smooth muscle actin, a marker of differentiation to myofibroblasts compared to control cells. TGF-β1 increased the expression of EMMPRIN in lung fibroblasts in a dose-dependent manner. Attenuation of EMMPRIN expression with the use of an EMMPRIN blocking antibody markedly inhibited TGF-β1 induced proliferation, migration, and differentiation of fibroblasts to myofibroblasts. EMMPRIN overexpression in lung fibroblasts was found to induce an increase in TOPFLASH luciferase reporter activity when compared with control fibroblasts. These findings indicate that TGF-β1 induces the release of EMMPRIN that activates β-catenin/canonical Wnt signaling pathway. EMMPRIN overexpression induces an anti-apoptotic and pro-fibrotic phenotype in lung fibroblasts that may contribute to the persistent fibro-proliferative state seen in IPF.

  10. ERα inhibited myocardin-induced differentiation in uterine fibroids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Xing-Hua, E-mail: xinghualiao@hotmail.com; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457; Li, Jun-Yan

    Uterine fibroids, also known as uterine leiomyomas, are a benign tumor of the human uterus and the commonest estrogen-dependent benign tumor found in women. Myocardin is an important transcriptional regulator in smooth and cardiac muscle development. The role of myocardin and its relationship with ERα in uterine fibroids have barely been addressed. We noticed that the expression of myocardin was markedly reduced in human uterine fibroid tissue compared with corresponding normal or adjacent myometrium tissue. Here we reported that myocardin induced the transcription and expression of differentiation markers SM22α and alpha smooth muscle actin (α-SMA) in rat primary uterine smoothmore » muscle cells (USMCs) and this effect was inhibited by ERα. Notably, we showed that, ERα induced expression of proliferation markers PCNA and ki-67 in rat primary USMCs. We also found ERα interacted with myocardin and formed complex to bind to CArG box and inhibit the SM22α promoter activity. Furthermore, ERα inhibited the transcription and expression of myocardin, and reduced the levels of transcription and expression of downstream target SM22α, a SMC differentiation marker. Our data thus provided important and novel insights into how ERα and myocardin interact to control the cell differentiation and proliferation of USMCs. Thus, it may provide potential therapeutic target for uterine fibroids.« less

  11. Granulocyte-macrophage and macrophage colony-stimulating factors differentially regulate alpha v integrin expression on cultured human macrophages.

    PubMed

    De Nichilo, M O; Burns, G F

    1993-03-15

    The colony-stimulating factors (CSFs) greatly influence mature macrophage function in vitro: macrophage (M)-CSF induces maturation of monocytes and enhances differentiated cell function; granulocyte-macrophage (GM)-CSF stimulates a variety of antimicrobial functions. In vivo M-CSF is thought to promote differentiation, and GM-CSF is thought to potentiate the inflammatory response. One mechanism by which these differential effects may be achieved is through the receptor-mediated interaction of macrophages with their extracellular matrix. Here we show that M-CSF induces specifically the expression of the alpha v beta 5 integrin receptor, whereas GM-CSF rapidly induces mRNA and surface expression of the alpha v beta 3 integrin. The M-CSF-treated cells acquire a flattened epitheloid phenotype, and on vitronectin the alpha v beta 5 is located in adhesion plaques. These cells do not bind collagen or laminin. In contrast, cells treated with GM-CSF adopt an elongated phenotype on a number of substrates, including collagen and laminin, and express alpha v beta 3 at the leading edge of cells on vitronectin. These results suggest that a primary means by which the CSFs exert their individual effects on mature cells may be through regulating integrin expression.

  12. Hypoxia Promotes Osteogenesis but Suppresses Adipogenesis of Human Mesenchymal Stromal Cells in a Hypoxia-Inducible Factor-1 Dependent Manner

    PubMed Central

    Lohanatha, Ferenz L.; Hahne, Martin; Strehl, Cindy; Fangradt, Monique; Tran, Cam Loan; Schönbeck, Kerstin; Hoff, Paula; Ode, Andrea; Perka, Carsten; Duda, Georg N.; Buttgereit, Frank

    2012-01-01

    Background Bone fracture initiates a series of cellular and molecular events including the expression of hypoxia-inducible factor (HIF)-1. HIF-1 is known to facilitate recruitment and differentiation of multipotent human mesenchymal stromal cells (hMSC). Therefore, we analyzed the impact of hypoxia and HIF-1 on the competitive differentiation potential of hMSCs towards adipogenic and osteogenic lineages. Methodology/Principal Findings Bone marrow derived primary hMSCs cultured for 2 weeks either under normoxic (app. 18% O2) or hypoxic (less than 2% O2) conditions were analyzed for the expression of MSC surface markers and for expression of the genes HIF1A, VEGFA, LDHA, PGK1, and GLUT1. Using conditioned medium, adipogenic or osteogenic differentiation as verified by Oil-Red-O or von-Kossa staining was induced in hMSCs under either normoxic or hypoxic conditions. The expression of HIF1A and VEGFA was measured by qPCR. A knockdown of HIF-1α by lentiviral transduction was performed, and the ability of the transduced hMSCs to differentiate into adipogenic and osteogenic lineages was analyzed. Hypoxia induced HIF-1α and HIF-1 target gene expression, but did not alter MSC phenotype or surface marker expression. Hypoxia (i) suppressed adipogenesis and associated HIF1A and PPARG gene expression in hMSCs and (ii) enhanced osteogenesis and associated HIF1A and RUNX2 gene expression. shRNA-mediated knockdown of HIF-1α enhanced adipogenesis under both normoxia and hypoxia, and suppressed hypoxia-induced osteogenesis. Conclusions/Significance Hypoxia promotes osteogenesis but suppresses adipogenesis of human MSCs in a competitive and HIF-1-dependent manner. We therefore conclude that the effects of hypoxia are crucial for effective bone healing, which may potentially lead to the development of novel therapeutic approaches. PMID:23029528

  13. Resveratrol Ameliorates the Maturation Process of β-Cell-Like Cells Obtained from an Optimized Differentiation Protocol of Human Embryonic Stem Cells

    PubMed Central

    Pezzolla, Daniela; López-Beas, Javier; Lachaud, Christian C.; Domínguez-Rodríguez, Alejandro; Smani, Tarik; Hmadcha, Abdelkrim; Soria, Bernat

    2015-01-01

    Human embryonic stem cells (hESCs) retain the extraordinary capacity to differentiate into different cell types of an adult organism, including pancreatic β-cells. For this particular lineage, although a lot of effort has been made in the last ten years to achieve an efficient and reproducible differentiation protocol, it was not until recently that this aim was roughly accomplished. Besides, several studies evidenced the impact of resveratrol (RSV) on insulin secretion, even though the mechanism by which this polyphenol potentiates glucose-stimulated insulin secretion (GSIS) is still not clear. The aim of this study was to optimize an efficient differentiation protocol that mimics in vivo pancreatic organogenesis and to investigate whether RSV may improve the final maturation step to obtain functional insulin-secreting cells. Our results indicate that treatment of hESCs (HS-181) with activin-A induced definitive endoderm differentiation as detected by the expression of SOX17 and FOXA2. Addition of retinoic acid (RA), Noggin and Cyclopamine promoted pancreatic differentiation as indicated by the expression of the early pancreatic progenitor markers ISL1, NGN3 and PDX1. Moreover, during maturation in suspension culture, differentiating cells assembled in islet-like clusters, which expressed specific endocrine markers such as PDX1, SST, GCG and INS. Similar results were confirmed with the human induced Pluripotent Stem Cell (hiPSC) line MSUH-001. Finally, differentiation protocols incorporating RSV treatment yielded numerous insulin-positive cells, induced significantly higher PDX1 expression and were able to transiently normalize glycaemia when transplanted in streptozotocin (STZ) induced diabetic mice thus promoting its survival. In conclusion, our strategy allows the efficient differentiation of hESCs into pancreatic endoderm capable of generating β-cell-like cells and demonstrates that RSV improves the maturation process. PMID:25774684

  14. Extracellular Purines Promote the Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells to the Osteogenic and Adipogenic Lineages

    PubMed Central

    Zini, Roberta; Rossi, Lara; Salvestrini, Valentina; Ferrari, Davide; Manfredini, Rossella; Lemoli, Roberto M.

    2013-01-01

    Extracellular nucleotides are potent signaling molecules mediating cell-specific biological functions, mostly within the processes of tissue damage and repair and flogosis. We previously demonstrated that adenosine 5′-triphosphate (ATP) inhibits the proliferation of human bone marrow-derived mesenchymal stem cells (BM-hMSCs), while stimulating, in vitro and in vivo, their migration. Here, we investigated the effects of ATP on BM-hMSC differentiation capacity. Molecular analysis showed that ATP treatment modulated the expression of several genes governing adipogenic and osteoblastic (ie, WNT-pathway-related genes) differentiation of MSCs. Functional studies demonstrated that ATP, under specific culture conditions, stimulated adipogenesis by significantly increasing the lipid accumulation and the expression levels of the adipogenic master gene PPARγ (peroxisome proliferator-activated receptor-gamma). In addition, ATP stimulated osteogenic differentiation by promoting mineralization and expression of the osteoblast-related gene RUNX2 (runt-related transcription factor 2). Furthermore, we demonstrated that ATP stimulated adipogenesis via its triphosphate form, while osteogenic differentiation was induced by the nucleoside adenosine, resulting from ATP degradation induced by CD39 and CD73 ectonucleotidases expressed on the MSC membrane. The pharmacological profile of P2 purinergic receptors (P2Rs) suggests that adipogenic differentiation is mainly mediated by the engagement of P2Y1 and P2Y4 receptors, while stimulation of the P1R adenosine-specific subtype A2B is involved in adenosine-induced osteogenic differentiation. Thus, we provide new insights into molecular regulation of MSC differentiation. PMID:23259837

  15. Inhibition of Protein Farnesylation Arrests Adipogenesis and Affects PPARγ Expression and Activation in Differentiating Mesenchymal Stem Cells

    PubMed Central

    Rivas, Daniel; Akter, Rahima; Duque, Gustavo

    2007-01-01

    Protein farnesylation is required for the activation of multiple proteins involved in cell differentiation and function. In white adipose tissue protein, farnesylation has shown to be essential for the successful differentiation of preadipocytes into adipocytes. We hypothesize that protein farnesylation is required for PPARγ2 expression and activation, and therefore for the differentiation of human mesenchymal stem cells (MSCs) into adipocytes. MSCs were plated and induced to differentiate into adipocytes for three weeks. Differentiating cells were treated with either an inhibitor of farnesylation (FTI-277) or vehicle alone. The effect of inhibition of farnesylation in differentiating adipocytes was determined by oil red O staining. Cell survival was quantified using MTS Formazan. Additionally, nuclear extracts were obtained and prelamin A, chaperon protein HDJ-2, PPARγ, and SREBP-1 were determined by western blot. Finally, DNA binding PPARγ activity was determined using an ELISA-based PPARγ activation quantification method. Treatment with an inhibitor of farnesylation (FTI-277) arrests adipogenesis without affecting cell survival. This effect was concomitant with lower levels of PPARγ expression and activity. Finally, accumulation of prelamin A induced an increased proportion of mature SREBP-1 which is known to affect PPARγ activity. In summary, inhibition of protein farnesylation arrests the adipogenic differentiation of MSCs and affects PPARγ expression and activity. PMID:18274630

  16. Safeguarding Stem Cell-Based Regenerative Therapy against Iatrogenic Cancerogenesis: Transgenic Expression of DNASE1, DNASE1L3, DNASE2, DFFB Controlled By POLA1 Promoter in Proliferating and Directed Differentiation Resisting Human Autologous Pluripotent Induced Stem Cells Leads to their Death

    PubMed Central

    Malecki, Marek; LaVanne, Christine; Alhambra, Dominique; Dodivenaka, Chaitanya; Nagel, Sarah; Malecki, Raf

    2014-01-01

    Introduction The worst possible complication of using stem cells for regenerative therapy is iatrogenic cancerogenesis. The ultimate goal of our work is to develop a self-triggering feedback mechanism aimed at causing death of all stem cells, which resist directed differentiation, keep proliferating, and can grow into tumors. Specific aim The specific aim was threefold: (1) to genetically engineer the DNA constructs for the human, recombinant DNASE1, DNASE1L3, DNASE2, DFFB controlled by POLA promoter; (2) to bioengineer anti-SSEA-4 antibody guided vectors delivering transgenes to human undifferentiated and proliferating pluripotent stem cells; (3) to cause death of proliferating and directed differentiation resisting stem cells by transgenic expression of the human recombinant the DNases (hrDNases). Methods The DNA constructs for the human, recombinant DNASE1, DNASE1L3, DNASE2, DFFB controlled by POLA promoter were genetically engineered. The vectors targeting specifically SSEA-4 expressing stem cells were bioengineered. The healthy volunteers’ bone marrow mononuclear cells (BMMCs) were induced into human, autologous, pluripotent stem cells with non-integrating plasmids. Directed differentiation of the induced stem cells into endothelial cells was accomplished with EGF and BMP. The anti-SSEA 4 antibodies’ guided DNA vectors delivered the transgenes for the human recombinant DNases’ into proliferating stem cells. Results Differentiation of the pluripotent induced stem cells into the endothelial cells was verified by highlighting formation of tight and adherens junctions through transgenic expression of recombinant fluorescent fusion proteins: VE cadherin, claudin, zona occludens 1, and catenin. Proliferation of the stem cells was determined through highlighting transgenic expression of recombinant fluorescent proteins controlled by POLA promoter, while also reporting expression of the transgenes for the hrDNases. Expression of the transgenes for the DNases resulted in complete collapse of the chromatin architecture and degradation of the proliferating cells’ genomic DNA. The proliferating stem cells, but not the differentiating ones, were effectively induced to die. Conclusion Herein, we describe attaining the proof-of-concept for the strategy, whereby transgenic expression of the genetically engineered human recombinant DNases in proliferating and directed differentiation resisting stem cells leads to their death. This novel strategy reduces the risk of iatrogenic neoplasms in stem cell therapy. PMID:25045589

  17. DR-nm23 gene expression in neuroblastoma cells: relationship to integrin expression, adhesion characteristics, and differentiation.

    PubMed

    Amendola, R; Martinez, R; Negroni, A; Venturelli, D; Tanno, B; Calabretta, B; Raschellà, G

    1997-09-03

    Neuroblastoma, a childhood tumor originating from cells of the embryonic neural crest, retains the ability to differentiate, yielding cells with epithelial-Schwann-like, neuronal, or melanocytic characteristics. Since nm23 gene family members have been proposed to play a role in cellular differentiation, as well as in metastasis suppression, we investigated whether and how DR-nm23, a recently identified third member of the human nm23 gene family, might be involved in neuroblastoma differentiation. Three neuroblastoma cell lines (human LAN-5, human SK-N-SH, and murine N1E-115) were used in these experiments; cells from two of the lines (SK-N-SH and N1E-115) were also studied after being stably transfected with a plasmid containing a full-length DR-nm23 complementary DNA. Cellular expression of specific messenger RNAs and proteins was assessed by use of standard techniques. Cellular adhesion to a variety of protein substrates was also evaluated. DR-nm23 messenger RNA levels in nontransfected LAN-5 and SK-N-SH cells generally increased with time after exposure to differentiation-inducing conditions; levels of the other two human nm23 messenger RNAs (nm23-H1 and nm23-H2) remained essentially constant. Transfected SK-N-SH cells overexpressing DR-nm23 exhibited some characteristics of differentiated cells (increased vimentin and collagen type IV expression) even in the absence of differentiation-inducing conditions. Compared with control cells, DR-nm23-transfected cells exposed to differentiation-inducing conditions showed a greater degree of growth arrest (SK-N-SH cells) and greater increases in integrin protein expression, especially of integrin beta1 (N1E-115 cells). DR-nm23-transfected N1E-115 cells also showed a marked increase in adhesion to collagen type I-coated tissue culture plates that was inhibited by preincubation with an anti-integrin beta1 antibody. DR-nm23 gene expression appears to be associated with differentiation in neuroblastoma cells and may affect cellular adhesion through regulation of integrin protein expression.

  18. mNotch1 signaling and erythropoietin cooperate in erythroid differentiation of multipotent progenitor cells and upregulate beta-globin.

    PubMed

    Henning, Konstanze; Schroeder, Timm; Schwanbeck, Ralf; Rieber, Nikolaus; Bresnick, Emery H; Just, Ursula

    2007-09-01

    In many developing tissues, signaling mediated by activation of the transmembrane receptor Notch influences cell-fate decisions, differentiation, proliferation, and cell survival. Notch receptors are expressed on hematopoietic cells and cognate ligands on bone marrow stromal cells. Here, we investigate the role of mNotch1 signaling in the control of erythroid differentiation of multipotent progenitor cells. Multipotent FDCP-mix cell lines engineered to permit the conditional induction of the constitutively active intracellular domain of mNotch1 (mN1(IC)) by the 4-hydroxytamoxifen (OHT)-inducible system were used to analyze the effects of activated mNotch1 on erythroid differentiation and on expression of Gata1, Fog1, Eklf, NF-E2, and beta-globin. Expression was analyzed by Northern blotting and real-time polymerase chain reaction. Enhancer activity of reporter constructs was determined with the dual luciferase system in transient transfection assays. Induction of mN1(IC) by OHT resulted in increased and accelerated differentiation of FDCP-mix cells along the erythroid lineage. Erythroid maturation was induced by activated Notch1 also under conditions that normally promote self-renewal, but required the presence of erythropoietin for differentiation to proceed. While induction of Notch signaling rapidly upregulated Hes1 and Hey1 expression, the expression of Gata1, Fog1, Eklf, and NF-E2 remained unchanged. Concomitantly with erythroid differentiation, activated mNotch1 upregulated beta-globin RNA. Notch signaling transactivated a reporter construct harboring a conserved RBP-J (CBF1) binding site in the hypersensitive site 2 (HS2) of human beta-globin. Transactivation by activated Notch was completely abolished when this RBP-J site was mutated to prevent RBP-J binding. Our results show that activation of mNotch1 induces erythroid differentiation in cooperation with erythropoietin and upregulates beta-globin expression.

  19. Efficient and Reproducible Myogenic Differentiation from Human iPS Cells: Prospects for Modeling Miyoshi Myopathy In Vitro

    PubMed Central

    Tanaka, Akihito; Woltjen, Knut; Miyake, Katsuya; Hotta, Akitsu; Ikeya, Makoto; Yamamoto, Takuya; Nishino, Tokiko; Shoji, Emi; Sehara-Fujisawa, Atsuko; Manabe, Yasuko; Fujii, Nobuharu; Hanaoka, Kazunori; Era, Takumi; Yamashita, Satoshi; Isobe, Ken-ichi; Kimura, En; Sakurai, Hidetoshi

    2013-01-01

    The establishment of human induced pluripotent stem cells (hiPSCs) has enabled the production of in vitro, patient-specific cell models of human disease. In vitro recreation of disease pathology from patient-derived hiPSCs depends on efficient differentiation protocols producing relevant adult cell types. However, myogenic differentiation of hiPSCs has faced obstacles, namely, low efficiency and/or poor reproducibility. Here, we report the rapid, efficient, and reproducible differentiation of hiPSCs into mature myocytes. We demonstrated that inducible expression of myogenic differentiation1 (MYOD1) in immature hiPSCs for at least 5 days drives cells along the myogenic lineage, with efficiencies reaching 70–90%. Myogenic differentiation driven by MYOD1 occurred even in immature, almost completely undifferentiated hiPSCs, without mesodermal transition. Myocytes induced in this manner reach maturity within 2 weeks of differentiation as assessed by marker gene expression and functional properties, including in vitro and in vivo cell fusion and twitching in response to electrical stimulation. Miyoshi Myopathy (MM) is a congenital distal myopathy caused by defective muscle membrane repair due to mutations in DYSFERLIN. Using our induced differentiation technique, we successfully recreated the pathological condition of MM in vitro, demonstrating defective membrane repair in hiPSC-derived myotubes from an MM patient and phenotypic rescue by expression of full-length DYSFERLIN (DYSF). These findings not only facilitate the pathological investigation of MM, but could potentially be applied in modeling of other human muscular diseases by using patient-derived hiPSCs. PMID:23626698

  20. Forced expression of Hnf1b/Foxa3 promotes hepatic fate of embryonic stem cells.

    PubMed

    Yahoo, Neda; Pournasr, Behshad; Rostamzadeh, Jalal; Hakhamaneshi, Mohammad Saeed; Ebadifar, Asghar; Fathi, Fardin; Baharvand, Hossein

    2016-05-20

    Embryonic stem (ES) cell-derived hepatocytes have the potential to be used for basic research, regenerative medicine, and drug discovery. Recent reports demonstrated that in addition to conventional differentiation inducers such as chemical compounds and cytokines, overexpression of lineage-specific transcription factors could induce ES cells to differentiate to a hepatic fate. Here, we hypothesized that lentivirus-mediated inducible expression of hepatic lineage transcription factors could enhance mouse ES cells to hepatocyte-like cells. We screened the effects of candidate transcription factors Hnf1b, Hnf1a, Hnf4a, Foxa1, Foxa3 and Hex, and determined that the combination of Hnf1b/Foxa3 promoted expression of several hepatic lineage-specific markers and proteins, in addition to glycogen storage, ICG uptake, and secretion of albumin and urea. The differentiated cells were engraftable and expressed albumin when transplanted into a carbon tetrachloride-injured mouse model. These results demonstrated the crucial role of Hnf1b and Foxa3 in hepatogenesis in vitro and provided a valuable tool for the efficient differentiation of HLCs from ES cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Detergents with different chemical properties induce variable degree of cytotoxicity and mRNA expression of lipid-metabolizing enzymes and differentiation markers in cultured keratinocytes.

    PubMed

    Wei, Tianling; Geijer, Sophia; Lindberg, Magnus; Berne, Berit; Törmä, Hans

    2006-12-01

    The knowledge how detergents with different chemical properties influence epidermal keratinocytes is sparse. In the present study, the effects of five detergents were examined with respect to cell-toxicity and mRNA expression of key-enzymes in barrier lipid production and keratinocyte differentiation markers. First, the LD(50) for each detergent were determined. Secondly, keratinocytes were exposed to sub-toxic concentrations and the mRNA expression was analysed by real-time PCR after 24 h exposure to the detergents. SLS and CAPB induced a concentration-dependent increase in the expression of enzymes producing cholesterol and ceramides, while transcripts of enzymes producing fatty acids were unaffected. SLES and cocoglucoside increased the expression of certain enzymes involved in cholesterol and fatty acid synthesis while sodium cocoamphoacetate (SCAA) stimulated expression of transcripts involved in fatty acid synthesis. The expression of differentiation markers were increased by SLS, SLES and CAPB, while SCAA and cocoglucoside exhibited no effect. The present findings show that detergents have variable effects on lipid synthesis and keratinocyte differentiation, which could partly explain their barrier destruction potential in vivo.

  2. Kynurenine promotes the goblet cell differentiation of HT-29 colon carcinoma cells by modulating Wnt, Notch and AhR signals.

    PubMed

    Park, Joo-Hung; Lee, Jeong-Min; Lee, Eun-Jin; Kim, Da-Jeong; Hwang, Won-Bhin

    2018-04-01

    Various amino acids regulate cell growth and differentiation. In the present study, we examined the ability of HT-29 cells to differentiate into goblet cells in RPMI and DMEM which are largely different in the amounts of numerous amino acids. Most of the HT-29 cells differentiated into goblet cells downregulating the stem cell marker Lgr5 when cultured in DMEM, but remained undifferentiated in RPMI. The goblet cell differentiation in DMEM was inhibited by 1-methyl-tryptophan (1-MT), an inhibitor of indoleamine 2,3 dioxygenase-1 which is the initial enzyme in tryptophan metabolism along the kynurenine (KN) pathway, whereas tryptophan and KN induced goblet cell differentiation in RPMI. The levels of Notch1 and its activation product Notch intracytoplasmic domain in HT-29 cells were lower in DMEM than those in RPMI and were increased by 1-MT in both media. HT-29 cells grown in both media expressed β-catenin at the same level on day 2 when goblet cell differentiation was not observed. β-catenin expression, which was increased by 1-MT in both media, was decreased by KN. DMEM reduced Hes1 expression while enhancing Hath1 expression. Finally, aryl hydrocarbon receptor (AhR) activation moderately induced goblet cell differentiation. Our results suggest that KN promotes goblet cell differentiation by regulating Wnt, Notch, and AhR signals and expression of Hes1 and Hath1.

  3. microRNA-184 Induces a Commitment Switch to Epidermal Differentiation.

    PubMed

    Nagosa, Sara; Leesch, Friederike; Putin, Daria; Bhattacharya, Swarnabh; Altshuler, Anna; Serror, Laura; Amitai-Lange, Aya; Nasser, Waseem; Aberdam, Edith; Rouleau, Matthieu; Tattikota, Sudhir G; Poy, Matthew N; Aberdam, Daniel; Shalom-Feuerstein, Ruby

    2017-12-12

    miR-184 is a highly evolutionary conserved microRNA (miRNA) from fly to human. The importance of miR-184 was underscored by the discovery that point mutations in miR-184 gene led to corneal/lens blinding disease. However, miR-184-related function in vivo remained unclear. Here, we report that the miR-184 knockout mouse model displayed increased p63 expression in line with epidermal hyperplasia, while forced expression of miR-184 by stem/progenitor cells enhanced the Notch pathway and induced epidermal hypoplasia. In line, miR-184 reduced clonogenicity and accelerated differentiation of human epidermal cells. We showed that by directly repressing cytokeratin 15 (K15) and FIH1, miR-184 induces Notch activation and epidermal differentiation. The disease-causing miR-184 C57U mutant failed to repress K15 and FIH1 and to induce Notch activation, suggesting a loss-of-function mechanism. Altogether, we propose that, by targeting K15 and FIH1, miR-184 regulates the transition from proliferation to early differentiation, while mis-expression or mutation in miR-184 results in impaired homeostasis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Naringin protects human adipose-derived mesenchymal stem cells against hydrogen peroxide-induced inhibition of osteogenic differentiation.

    PubMed

    Wang, Lei; Zhang, Yu-Ge; Wang, Xiu-Mei; Ma, Long-Fei; Zhang, Yuan-Min

    2015-12-05

    Extensive evidence indicates that oxidative stress plays a pivotal role in the development of osteoporosis. We show that naringin, a natural antioxidant and anti-inflammatory compound, effectively protects human adipose-derived mesenchymal stem cells (hADMSCs) against hydrogen peroxide (H2O2)-induced inhibition of osteogenic differentiation. Naringin increased viability of hAMDSCs and attenuated H2O2-induced cytotoxicity. Naringin also reversed H2O2-induced oxidative stress. Oxidative stress induced by H2O2 inhibits osteogenic differentiation by decreasing alkaline phosphatase (ALP) activity, calcium content and mRNA expression levels of osteogenesis marker genes RUNX2 and OSX in hADMSCs. However, addition of naringin leads to a significant recovery, suggesting the protective effects of naringin against H2O2-induced inhibition of osteogenic differentiation. Furthermore, the H2O2-induced decrease of protein expressions of β-catenin and clyclin D1, two important transcriptional regulators of Wnt-signaling, was successfully rescued by naringin treatment. Also, in the presence of Wnt inhibitor DKK-1, naringin is no longer effective in stimulating ALP activity, increasing calcium content and mRNA expression levels of RUNX2 and OSX in H2O2-exposed hADMSCs. These data clearly demonstrates that naringin protects hADMSCs against oxidative stress-induced inhibition of osteogenic differentiation, which may involve Wnt signaling pathway. Our work suggests that naringin may be a useful addition to the treatment armamentarium for osteoporosis and activation of Wnt signaling may represent attractive therapeutic strategy for the treatment of degenerative disease of bone tissue. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Mechanisms of crystalline silica-induced pulmonary toxicity revealed by global gene expression profiling

    PubMed Central

    Sellamuthu, Rajendran; Umbright, Christina; Li, Shengqiao; Kashon, Michael; Joseph, Pius

    2015-01-01

    A proper understanding of the mechanisms underlying crystalline silica-induced pulmonary toxicity has implications in the management and potential prevention of the adverse health effects associated with silica exposure including silicosis, cancer and several auto-immune diseases. Human lung type II epithelial cells and rat lungs exposed to crystalline silica were employed as experimental models to determine global gene expression changes in order to understand the molecular mechanisms underlying silica-induced pulmonary toxicity. The differential gene expression profile induced by silica correlated with its toxicity in the A549 cells. The biological processes perturbed by silica exposure in the A549 cells and rat lungs, as identified by the bioinformatics analysis of the differentially expressed genes, demonstrated significant similarity. Functional categorization of the differentially expressed genes identified cancer, cellular movement, cellular growth and proliferation, cell death, inflammatory response, cell cycle, cellular development, and genetic disorder as top ranking biological functions perturbed by silica exposure in A549 cells and rat lungs. Results of our study, in addition to confirming several previously identified molecular targets and mechanisms involved in silica toxicity, identified novel molecular targets and mechanisms potentially involved in silica-induced pulmonary toxicity. Further investigations, including those focused on the novel molecular targets and mechanisms identified in the current study may result in better management and, possibly, reduction and/or prevention of the potential adverse health effects associated with crystalline silica exposure. PMID:22087542

  6. MiR-133 is Involved in Estrogen Deficiency-Induced Osteoporosis through Modulating Osteogenic Differentiation of Mesenchymal Stem Cells.

    PubMed

    Lv, Hao; Sun, Yujie; Zhang, Yuchen

    2015-05-27

    MiR-133 expression is dysregulated in postmenopausal osteoporosis. However, its role in postmenopausal osteoporosis is still not well understood. In the current study, we explore how estrogen deficiency affects miR-133 expression and how miR-133 is involved in osteogenic differentiation of mesenchymal stem cells (MSCs). qRT-PCR analysis was performed to assess miR-133 expression in MSCs isolated from bone marrow of an ovariectomized (OVX) animal model and postmenopausal osteoporosis patients (PMOP) and their corresponding controls. The binding between miR-133 and predicted target SLC39A1 was verified using dual luciferase assay and Western blot analysis. The effect of miR-133 and SLC39A1 on osteogenic differentiation of MSCs was assessed through measuring alkaline phosphatase (ALP), mineralization nodules, and osteoblast-specific genes Runx2 and Osterix expression. miR-133 expression is significantly enhanced as a result of estrogen deficiency. Its overexpression is negatively correlated to osteogenic differentiation of hMSCs. SLC39A1 showed an inverse expression trend to miR-133 during the differentiation. miR-133 can directly target 3'UTR of SLC39A1 and thereby modulate its expression in hMSCs. The miR-133-SLC39A1 axis might play an important role in osteogenic differentiation of hMSCs. SLC39A1 can promote ALP activity and formation of mineralization nodules. In addition, SLC39A1 expression level is also positively correlated with RUNX2 and Osterix. Estrogen deficiency is associated with miR-133 overexpression. MiR-133 can induce postmenopausal osteoporosis by weakening osteogenic differentiation of hMSCs, at least partly through repressing SLC39A1 expression.

  7. MiR-133 is Involved in Estrogen Deficiency-Induced Osteoporosis through Modulating Osteogenic Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Lv, Hao; Sun, Yujie; Zhang, Yuchen

    2015-01-01

    Background MiR-133 expression is dysregulated in postmenopausal osteoporosis. However, its role in postmenopausal osteoporosis is still not well understood. In the current study, we explore how estrogen deficiency affects miR-133 expression and how miR-133 is involved in osteogenic differentiation of mesenchymal stem cells (MSCs). Material/Methods qRT-PCR analysis was performed to assess miR-133 expression in MSCs isolated from bone marrow of an ovariectomized (OVX) animal model and postmenopausal osteoporosis patients (PMOP) and their corresponding controls. The binding between miR-133 and predicted target SLC39A1 was verified using dual luciferase assay and Western blot analysis. The effect of miR-133 and SLC39A1 on osteogenic differentiation of MSCs was assessed through measuring alkaline phosphatase (ALP), mineralization nodules, and osteoblast-specific genes Runx2 and Osterix expression. Results miR-133 expression is significantly enhanced as a result of estrogen deficiency. Its overexpression is negatively correlated to osteogenic differentiation of hMSCs. SLC39A1 showed an inverse expression trend to miR-133 during the differentiation. miR-133 can directly target 3′UTR of SLC39A1 and thereby modulate its expression in hMSCs. The miR-133-SLC39A1 axis might play an important role in osteogenic differentiation of hMSCs. SLC39A1 can promote ALP activity and formation of mineralization nodules. In addition, SLC39A1 expression level is also positively correlated with RUNX2 and Osterix. Conclusions Estrogen deficiency is associated with miR-133 overexpression. MiR-133 can induce postmenopausal osteoporosis by weakening osteogenic differentiation of hMSCs, at least partly through repressing SLC39A1 expression. PMID:26013661

  8. The AhR agonist VAF347 augments retinoic acid-induced differentiation in leukemia cells

    PubMed Central

    Ibabao, Christopher N.; Bunaciu, Rodica P.; Schaefer, Deanna M.W.; Yen, Andrew

    2015-01-01

    In binary cell-fate decisions, driving one lineage and suppressing the other are conjoined. We have previously reported that aryl hydrocarbon receptor (AhR) promotes retinoic acid (RA)-induced granulocytic differentiation of lineage bipotent HL-60 myeloblastic leukemia cells. VAF347, an AhR agonist, impairs the development of CD14+CD11b+ monocytes from granulo-monocytic (GM) stage precursors. We thus hypothesized that VAF347 propels RA-induced granulocytic differentiation and impairs D3-induced monocytic differentiation of HL-60 cells. Our results show that VAF347 enhanced RA-induced cell cycle arrest, CD11b integrin expression and neutrophil respiratory burst. Granulocytic differentiation is known to be driven by MAPK signaling events regulated by Fgr and Lyn Src-family kinases, the CD38 cell membrane receptor, the Vav1 GEF, the c-Cbl adaptor, as well as AhR, all of which are embodied in a putative signalsome. We found that the VAF347 AhR ligand regulates the signalsome. VAF347 augments RA-induced expression of AhR, Lyn, Vav1, and c-Cbl as well as p47phox. Several interactions of partners in the signalsome appear to be enhanced: Fgr interaction with c-Cbl, CD38, and with pS259c-Raf and AhR interaction with c-Cbl and Lyn. Thus, we report that, while VAF347 impedes monocytic differentiation induced by 1,25-dihydroxyvitamin D3, VAF347 promotes RA-induced differentiation. This effect seems to involve but not to be limited to Lyn, Vav1, c-Cbl, AhR, and Fgr. PMID:25941627

  9. The AhR agonist VAF347 augments retinoic acid-induced differentiation in leukemia cells.

    PubMed

    Ibabao, Christopher N; Bunaciu, Rodica P; Schaefer, Deanna M W; Yen, Andrew

    2015-01-01

    In binary cell-fate decisions, driving one lineage and suppressing the other are conjoined. We have previously reported that aryl hydrocarbon receptor (AhR) promotes retinoic acid (RA)-induced granulocytic differentiation of lineage bipotent HL-60 myeloblastic leukemia cells. VAF347, an AhR agonist, impairs the development of CD14(+)CD11b(+) monocytes from granulo-monocytic (GM) stage precursors. We thus hypothesized that VAF347 propels RA-induced granulocytic differentiation and impairs D3-induced monocytic differentiation of HL-60 cells. Our results show that VAF347 enhanced RA-induced cell cycle arrest, CD11b integrin expression and neutrophil respiratory burst. Granulocytic differentiation is known to be driven by MAPK signaling events regulated by Fgr and Lyn Src-family kinases, the CD38 cell membrane receptor, the Vav1 GEF, the c-Cbl adaptor, as well as AhR, all of which are embodied in a putative signalsome. We found that the VAF347 AhR ligand regulates the signalsome. VAF347 augments RA-induced expression of AhR, Lyn, Vav1, and c-Cbl as well as p47(phox). Several interactions of partners in the signalsome appear to be enhanced: Fgr interaction with c-Cbl, CD38, and with pS259c-Raf and AhR interaction with c-Cbl and Lyn. Thus, we report that, while VAF347 impedes monocytic differentiation induced by 1,25-dihydroxyvitamin D3, VAF347 promotes RA-induced differentiation. This effect seems to involve but not to be limited to Lyn, Vav1, c-Cbl, AhR, and Fgr.

  10. α2 Integrin, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-3 act sequentially to induce differentiation of mouse embryonic stem cells into odontoblast-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozeki, Nobuaki; Kawai, Rie; Hase, Naoko

    We previously reported that interleukin 1β acts via matrix metalloproteinase (MMP)-3 to regulate cell proliferation and suppress apoptosis in α2 integrin-positive odontoblast-like cells differentiated from mouse embryonic stem (ES) cells. Here we characterize the signal cascade underpinning odontoblastic differentiation in mouse ES cells. The expression of α2 integrin, extracellular matrix metalloproteinase inducer (Emmprin), and MMP-3 mRNA and protein were all potently increased during odontoblastic differentiation. Small interfering RNA (siRNA) disruption of the expression of these effectors potently suppressed the expression of the odontoblastic biomarkers dentin sialophosphoprotein, dentin matrix protein-1 and alkaline phosphatase, and blocked odontoblast calcification. Our siRNA, western blotmore » and blocking antibody analyses revealed a unique sequential cascade involving α2 integrin, Emmprin and MMP-3 that drives ES cell differentiation into odontoblasts. This cascade requires the interaction between α2 integrin and Emmprin and is potentiated by exogenous MMP-3. Finally, although odontoblast-like cells potently express α2, α6, αV, β1, and β3, integrins, we confirmed that β1 integrin acts as the trigger for ES cell differentiation, apparently in complex with α2 integrin. These results demonstrate a unique and unanticipated role for an α2 integrin-, Emmprin-, and MMP-3-mediated signaling cascade in driving mouse ES cell differentiation into odontoblast-like cells. - Highlights: • Odontoblast differentiation requires activation of α2 integrin, Emmprin and MMP-3. • α2 integrin, Emmprin and MMP-3 form a sequential signaling cascade. • β1 integrin acts a specific trigger for odontoblast differentiation. • The role of these effectors is highly novel and unanticipated.« less

  11. Scoparone attenuates RANKL-induced osteoclastic differentiation through controlling reactive oxygen species production and scavenging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Hyun; Jang, Hae-Dong, E-mail: haedong@hnu.kr

    Scoparone, one of the bioactive components of Artemisia capillaris Thunb, has various biological properties including immunosuppressive, hepatoprotective, anti-allergic, anti-inflammatory, and antioxidant effects. This study aims at evaluating the anti-osteoporotic effect of scoparone and its underlying mechanism in vitro. Scoparone demonstrated potent cellular antioxidant capacity. It was also found that scoparone inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and suppressed cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression via c-jun N-terminal kinase (JNK)/extracellular signal-regulated kinase (ERK)/p38-mediated c-Fos–nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) signaling pathway. During osteoclast differentiation, the production of general reactive oxygen speciesmore » (ROS) and superoxide anions was dose-dependently attenuated by scoparone. In addition, scoparone diminished NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 1 (Nox1) expression and activation via the tumor necrosis factor receptor-associated factor 6 (TRAF6)–cSrc–phosphatidylinositol 3-kinase (PI3k) signaling pathway and prevented the disruption of mitochondrial electron transport chain system. Furthermore, scoparone augmented the expression of superoxide dismutase 1 (SOD1) and catalase (CAT). The overall results indicate that the inhibitory effect of scoparone on RANKL-induced osteoclast differentiation is attributed to the suppressive effect on ROS and superoxide anion production by inhibiting Nox1 expression and activation and protecting the mitochondrial electron transport chain system and the scavenging effect of ROS resulting from elevated SOD1 and CAT expression. - Highlights: • Scoparone dose-dependently inhibited RANKL-induced osteoclast differentiation. • Scoparone diminished general ROS and superoxide anions in a dose-dependent manner. • Scoparone inhibited Nox1 expression and activation. • Scoparone prevented the disruption of mitochondrial electron transport chain system. • Scoparone augmented superoxide dismutase and catalase expression.« less

  12. Aberrant epithelial differentiation by cigarette smoke dysregulates respiratory host defence.

    PubMed

    Amatngalim, Gimano D; Schrumpf, Jasmijn A; Dishchekenian, Fernanda; Mertens, Tinne C J; Ninaber, Dennis K; van der Linden, Abraham C; Pilette, Charles; Taube, Christian; Hiemstra, Pieter S; van der Does, Anne M

    2018-04-01

    It is currently unknown how cigarette smoke-induced airway remodelling affects highly expressed respiratory epithelial defence proteins and thereby mucosal host defence.Localisation of a selected set of highly expressed respiratory epithelial host defence proteins was assessed in well-differentiated primary bronchial epithelial cell (PBEC) cultures. Next, PBEC were cultured at the air-liquid interface, and during differentiation for 2-3 weeks exposed daily to whole cigarette smoke. Gene expression, protein levels and epithelial cell markers were subsequently assessed. In addition, functional activities and persistence of the cigarette smoke-induced effects upon cessation were determined.Expression of the polymeric immunoglobulin receptor, secretory leukocyte protease inhibitor and long and short PLUNC (palate, lung and nasal epithelium clone protein) was restricted to luminal cells and exposure of differentiating PBECs to cigarette smoke resulted in a selective reduction of the expression of these luminal cell-restricted respiratory host defence proteins compared to controls. This reduced expression was a consequence of cigarette smoke-impaired end-stage differentiation of epithelial cells, and accompanied by a significant decreased transepithelial transport of IgA and bacterial killing.These findings shed new light on the importance of airway epithelial cell differentiation in respiratory host defence and could provide an additional explanation for the increased susceptibility of smokers and patients with chronic obstructive pulmonary disease to respiratory infections. Copyright ©ERS 2018.

  13. Transcriptional and post-transcriptional down-regulation of cyclin D1 contributes to C6 glioma cell differentiation induced by forskolin.

    PubMed

    He, Songmin; Zhu, Wenbo; Zhou, Yuxi; Huang, Yijun; Ou, Yanqiu; Li, Yan; Yan, Guangmei

    2011-09-01

    Malignant gliomas are the most common and lethal intracranial tumors, and differentiation therapy shows great potential to be a promising candidate for their treatment. Here, we have elaborated that a PKA activator, forskolin, represses cell growth via cell cycle arrest in the G0/G1 phase and induces cell differentiation characteristic with elongated processes and restoration of GFAP expression. In mechanisms, we verified that forskolin significantly diminishes the mRNA and protein level of a key cell cycle regulator cyclin D1, and maintenance of low cyclin D1 expression level was required for forskolin-induced proliferation inhibition and differentiation by gain and loss of function approaches. In addition, that forskolin down-regulated the cyclin D1 by proteolytic (post-transcriptional) mechanisms was dependent on GSK-3β activation at Ser9. The pro-differentiation activity of forskolin and related molecular mechanisms imply that forskolin can be developed into a candidate for the future in differentiation therapy of glioma, and cyclin D1 is a promising target for pro-differentiation strategy. Copyright © 2011 Wiley-Liss, Inc.

  14. Bropirimine inhibits osteoclast differentiation through production of interferon-β

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Hiroaki; Mochizuki, Ayako; Yoshimura, Kentaro

    Bropirimine is a synthetic agonist for toll-like receptor 7 (TLR7). In this study, we investigated the effects of bropirimine on differentiation and bone-resorbing activity of osteoclasts in vitro. Bropirimine inhibited osteoclast differentiation of mouse bone marrow-derived macrophages (BMMs) induced by receptor activator of nuclear factor κB ligand (RANKL) in a concentration-dependent manner. Furthermore, it suppressed the mRNA expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1), a master transcription factor for osteoclast differentiation, without affecting BMM viability. Bropirimine also inhibited osteoclast differentiation induced in co-cultures of mouse bone marrow cells (BMCs) and mouse osteoblastic UAMS-32 cells in the presencemore » of activated vitamin D{sub 3}. Bropirimine partially suppressed the expression of RANKL mRNA in UAMS-32 cells induced by activated vitamin D{sub 3}. Finally, the anti-interferon-β (IFN-β) antibody restored RANKL-dependent differentiation of BMMs into osteoclasts suppressed by bropirimine. These results suggest that bropirimine inhibits differentiation of osteoclast precursor cells into osteoclasts via TLR7-mediated production of IFN-β.« less

  15. Differentiation of Mesenchymal Stem Cells Towards Nephrogenic Lineage and Their Enhanced Resistance to Oxygen Peroxide-induced Oxidative Stress.

    PubMed

    Tayyeb, Asima; Shahzad, Naveed; Ali, Gibran

    2017-07-01

    Mesenchymal stem cells (MSCs) have been publicized to ameliorate kidney injury both in vitro and in vivo. However, very less is known if MSCs can be differentiated towards renal lineages and their further application potential in kidney injuries. The present study developed a conditioning system of growth factors fibroblast growth factor 2, transforming growth factor-β2, and leukemia inhibitory factor for in vitro differentiation of MSCs isolated from different sources towards nephrogenic lineage. Less invasively isolated adipose-derived MSCs were also compared to bone marrow-derived MSCs for their differentiation potential to induce renal cell. Differentiated MSCs were further evaluated for their resistance to oxidative stress induced by oxygen peroxide. A combination of growth factors successfully induced differentiation of MSCs. Both types of differentiated cells showed significant expression of pronephrogenic markers (Wnt4, Wt1, and Pax2) and renal epithelial markers (Ecad and ZO1). In contrast, expression of mesenchymal stem cells marker Oct4 and Vim were downregulated. Furthermore, differentiated adipose-derived MSCs and bone marrow-derived MSCs showed enhanced and comparable resistance to oxygen peroxide-induced oxidative stress. Adipose-derived MSC provides a promising alternative to bone marrow-derived MSC as a source of autologous stem cells in human kidney injuries. In addition, differentiated MSCs with further in vivo investigations may serve as a cell source for tissue engineering or cell therapy in different renal ailments.

  16. ACTIVATION OF MU OPIOID RECEPTORS IN THE STRIATUM DIFFERENTIALLY AUGMENTS METHAMPHETAMINE-INDUCED GENE EXPRESSION AND ENHANCES STEREOTYPIC BEHAVIOR

    PubMed Central

    Horner, Kristen A.; Hebbard, John C.; Logan, Anna S.; Vanchipurakel, Golda A.; Gilbert, Yamiece E.

    2013-01-01

    Mu opioid receptors are densely expressed in the patch compartment of striatum and contribute to methamphetamine-induced patch-enhanced gene expression and stereotypy. In order to further elucidate the role of mu opioid receptor activation in these phenomena, we examined whether activation of mu opioid receptors would enhance methamphetamine-induced stereotypy and prodynorphin, c-fos, arc and zif/268 expression in the patch and/or matrix compartments of striatum, as well as the impact of mu opioid receptor activation on the relationship between patch-enhanced gene expression and stereotypy. Male Sprague-Dawley rats were intrastriatally infused with D-Ala(2)-N-Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO; 1 μg/μl), treated with methamphetamine (0.5 mg/kg) and sacrificed at 45 minutes or 2 hours later. DAMGO augmented methamphetamine-induced zif/268 mRNA expression in the patch and matrix compartments, while prodynorphin expression was increased in the dorsolateral patch compartment. DAMGO pretreatment did not affect methamphetamine-induced arc and c-fos expression. DAMGO enhanced methamphetamine-induced stereotypy and resulted in greater patch versus matrix expression of prodynorphin in the dorsolateral striatum, leading to a negative correlation between the two. These findings indicate that mu opioid receptors contribute to methamphetamine-induced stereotypy, but can differentially influence the genomic responses to methamphetamine. These data also suggest that prodynorphin may offset the overstimulation of striatal neurons by methamphetamine. PMID:22150526

  17. Lactic Acid is Elevated in Idiopathic Pulmonary Fibrosis and Induces Myofibroblast Differentiation Via pH-Dependent Activation of Transforming Growth Factor-β

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kottman, R. M.; Kulkarni, Ajit A.; Smolnycki, Katie A.

    2012-10-15

    Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex disease for which the pathogenesis is poorly understood. In this study, we identified lactic acid as a metabolite that is elevated in the lung tissue of patients with IPF. Objectives: This study examines the effect of lactic acid on myofibroblast differentiation and pulmonary fibrosis. Methods:We used metabolomic analysis to examine cellular metabolism in lung tissuefrom patients with IPFanddeterminedthe effects of lactic acid and lactate dehydrogenase-5 (LDH5) overexpression on myofibroblast differentiation and transforming growth factor (TGF)-b activation in vitro. Measurements and Main Results: Lactic acid concentrations from healthy and IPF lung tissue weremore » determined by nuclear magnetic resonance spectroscopy; a-smooth muscle actin, calponin, and LDH5 expression were assessed by Western blot of cell culture lysates. Lactic acid and LDH5 were significantly elevated in IPF lung tissue compared with controls. Physiologic concentrations of lactic acid induced myofibroblast differentiation via activation of TGF-b. TGF-b induced expression of LDH5 via hypoxia-inducible factor 1a (HIF1a). Importantly, overexpression of both HIF1a and LDH5 in human lung fibroblasts induced myofibroblast differentiation and synergized with low dose TGF-b to induce differentiation. Furthermore, inhibition of both HIF1a and LDH5 inhibited TGF-b–induced myofibroblast differentiation. Conclusions: We have identified the metabolite lactic acid as an important mediator of myofibroblast differentiation via a pHdependent activation of TGF-b. We propose that the metabolic milieu of the lung, and potentially other tissues, is an important driving force behind myofibroblast differentiation and potentially the initiation and progression of fibrotic disorders.« less

  18. Lactic Acid Is Elevated in Idiopathic Pulmonary Fibrosis and Induces Myofibroblast Differentiation via pH-Dependent Activation of Transforming Growth Factor-β

    PubMed Central

    Kottmann, Robert Matthew; Kulkarni, Ajit A.; Smolnycki, Katie A.; Lyda, Elizabeth; Dahanayake, Thinesh; Salibi, Rami; Honnons, Sylvie; Jones, Carolyn; Isern, Nancy G.; Hu, Jian Z.; Nathan, Steven D.; Grant, Geraldine; Phipps, Richard P.

    2012-01-01

    Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex disease for which the pathogenesis is poorly understood. In this study, we identified lactic acid as a metabolite that is elevated in the lung tissue of patients with IPF. Objectives: This study examines the effect of lactic acid on myofibroblast differentiation and pulmonary fibrosis. Methods: We used metabolomic analysis to examine cellular metabolism in lung tissue from patients with IPF and determined the effects of lactic acid and lactate dehydrogenase-5 (LDH5) overexpression on myofibroblast differentiation and transforming growth factor (TGF)-β activation in vitro. Measurements and Main Results: Lactic acid concentrations from healthy and IPF lung tissue were determined by nuclear magnetic resonance spectroscopy; α-smooth muscle actin, calponin, and LDH5 expression were assessed by Western blot of cell culture lysates. Lactic acid and LDH5 were significantly elevated in IPF lung tissue compared with controls. Physiologic concentrations of lactic acid induced myofibroblast differentiation via activation of TGF-β. TGF-β induced expression of LDH5 via hypoxia-inducible factor 1α (HIF1α). Importantly, overexpression of both HIF1α and LDH5 in human lung fibroblasts induced myofibroblast differentiation and synergized with low-dose TGF-β to induce differentiation. Furthermore, inhibition of both HIF1α and LDH5 inhibited TGF-β–induced myofibroblast differentiation. Conclusions: We have identified the metabolite lactic acid as an important mediator of myofibroblast differentiation via a pH-dependent activation of TGF-β. We propose that the metabolic milieu of the lung, and potentially other tissues, is an important driving force behind myofibroblast differentiation and potentially the initiation and progression of fibrotic disorders. PMID:22923663

  19. Expression of the transforming growth factor alpha protooncogene in differentiating human promyelocytic leukemia (HL-60) cells.

    PubMed

    Walz, T M; Malm, C; Wasteson, A

    1993-01-01

    The process of myeloid differentiation in human promyelocytic leukemia cells (HL-60) is accompanied by the coordinate expression of numerous protooncogenes. To investigate the expression of transforming growth factor alpha (TGF-alpha) in myeloid differentiation, HL-60 cells were induced to differentiate into granulocytes with 1.25% dimethyl sulfoxide, 0.2 microM all-trans retinoic acid, or 500 microM N6,O2-dibutyryladenosine-3'5'-cyclic monophosphate or differentiated along the monocyte/macrophage pathway with 0.1 microM phorbol-12-myristate-13-acetate. Using Northern blot analyses, TGF-alpha transcripts were detected within 24 h of treatment in cells differentiating toward granulocytes; maximal levels of gene expression were reached after 3 days or later and remained essentially constant throughout the observation period. These cells released TGF-alpha protein, as demonstrated by analysis of the incubation medium. In contrast, no TGF-alpha RNA or protein was detectable in HL-60 cell cultures when induced with phorbol-12-myristate-13-acetate. Epidermal growth factor receptor transcripts could not be detected either in undifferentiated or in differentiated HL-60 cells; therefore it appears as if an autocrine loop involving TGF-alpha in HL-60 cells is unlikely. In conclusion, the results demonstrate, for the first time, the expression of TGF-alpha in human granulocyte precursor cells. Our findings may indicate novel regulatory pathways in hematopoiesis.

  20. Identification of Centella asiatica's Effective Ingredients for Inducing the Neuronal Differentiation.

    PubMed

    Jiang, Hui; Zheng, Guoshuai; Lv, Junwei; Chen, Heyu; Lin, Jinjin; Li, Yiyang; Fan, Guorong; Ding, Xianting

    2016-01-01

    Centella asiatica, commonly known as Gotu kola, has been widely used as a traditional herb for decades. Yet, the study on which compounds or compound combinations actually lead to its brain benefits remains scarce. To study the neuroprotection effects of Centella asiatica, neuronal differentiation of PC12 cells was applied. In our pilot study, we isolated 45 Centella asiatica fractions and tested their abilities for inducing neuronal differentiation on PC12 cells. The most effective fraction showed robust induction in neurite outgrowth and neurofilament expression. LC-MS fingerprint analysis of this fraction revealed asiatic acid and madecassic acid as the dominant components. A further investigation on the pure combination of these two compounds indicated that the combination of these two compounds extensively promoted nerve differentiation in vitro. Application of PD98059, a protein MEK inhibitor, attenuated combination-induced neurofilament expression, indicating the combination-induced nerve differentiation through activation of MEK signaling pathway. Our results support the use of combination of asiatic acid and madecassic acid as an effective mean to intervene neurodegenerative diseases in which neurotrophin deficiency is involved.

  1. Identification of Centella asiatica's Effective Ingredients for Inducing the Neuronal Differentiation

    PubMed Central

    Jiang, Hui; Zheng, Guoshuai; Lv, Junwei; Chen, Heyu; Lin, Jinjin; Li, Yiyang; Fan, Guorong

    2016-01-01

    Centella asiatica, commonly known as Gotu kola, has been widely used as a traditional herb for decades. Yet, the study on which compounds or compound combinations actually lead to its brain benefits remains scarce. To study the neuroprotection effects of Centella asiatica, neuronal differentiation of PC12 cells was applied. In our pilot study, we isolated 45 Centella asiatica fractions and tested their abilities for inducing neuronal differentiation on PC12 cells. The most effective fraction showed robust induction in neurite outgrowth and neurofilament expression. LC-MS fingerprint analysis of this fraction revealed asiatic acid and madecassic acid as the dominant components. A further investigation on the pure combination of these two compounds indicated that the combination of these two compounds extensively promoted nerve differentiation in vitro. Application of PD98059, a protein MEK inhibitor, attenuated combination-induced neurofilament expression, indicating the combination-induced nerve differentiation through activation of MEK signaling pathway. Our results support the use of combination of asiatic acid and madecassic acid as an effective mean to intervene neurodegenerative diseases in which neurotrophin deficiency is involved. PMID:27446228

  2. Gene Expression Profile of NF-κB, Nrf2, Glycolytic, and p53 Pathways During the SH-SY5Y Neuronal Differentiation Mediated by Retinoic Acid.

    PubMed

    de Bittencourt Pasquali, Matheus Augusto; de Ramos, Vitor Miranda; Albanus, Ricardo D Oliveira; Kunzler, Alice; de Souza, Luis Henrinque Trentin; Dalmolin, Rodrigo Juliani Siqueira; Gelain, Daniel Pens; Ribeiro, Leila; Carro, Luigi; Moreira, José Cláudio Fonseca

    2016-01-01

    SH-SY5Y cells, a neuroblastoma cell line that is a well-established model system to study the initial phases of neuronal differentiation, have been used in studies to elucidate the mechanisms of neuronal differentiation. In the present study, we investigated alterations of gene expression in SH-SY5Y cells during neuronal differentiation mediated by retinoic acid (RA) treatment. We evaluated important pathways involving nuclear factor kappa B (NF-κB), nuclear E2-related factor 2 (Nrf2), glycolytic, and p53 during neuronal differentiation. We also investigated the involvement of reactive oxygen species (ROS) in modulating the gene expression profile of those pathways by antioxidant co-treatment with Trolox®, a hydrophilic analogue of α-tocopherol. We found that RA treatment increases levels of gene expression of NF-κB, glycolytic, and antioxidant pathway genes during neuronal differentiation of SH-SY5Y cells. We also found that ROS production induced by RA treatment in SH-SY5Y cells is involved in gene expression profile alterations, chiefly in NF-κB, and glycolytic pathways. Antioxidant co-treatment with Trolox® reversed the effects mediated by RA NF-κB, and glycolytic pathways gene expression. Interestingly, co-treatment with Trolox® did not reverse the effects in antioxidant gene expression mediated by RA in SH-SY5Y. To confirm neuronal differentiation, we quantified endogenous levels of tyrosine hydroxylase, a recognized marker of neuronal differentiation. Our data suggest that during neuronal differentiation mediated by RA, changes in profile gene expression of important pathways occur. These alterations are in part mediated by ROS production. Therefore, our results reinforce the importance in understanding the mechanism by which RA induces neuronal differentiation in SH-SY5Y cells, principally due this model being commonly used as a neuronal cell model in studies of neuronal pathologies.

  3. Propylthiouracil, independent of its antithyroid effect, promotes vascular smooth muscle cells differentiation via PTEN induction.

    PubMed

    Chen, Wei-Jan; Pang, Jong-Hwei S; Lin, Kwang-Huei; Lee, Dany-Young; Hsu, Lung-An; Kuo, Chi-Tai

    2010-01-01

    Propylthiouracil (PTU), independent of its antithyroid effect, is recently found to have an antiatherosclerotic effect. The aim of this study is to determine the impact of PTU on phenotypic modulation of vascular smooth muscle cells (VSMCs), as phenotypic modulation may contribute to the growth of atherosclerotic lesions and neointimal formation after arterial injury. Propylthiouracil reduced neointimal formation in balloon-injured rat carotid arteries. In vitro, PTU may convert VSMCs from a serum-induced dedifferentiation state to a differentiated state, as indicated by a spindle-shaped morphology and an increase in the expression of SMC differentiation marker contractile proteins, including calponin and smooth muscle (SM)-myosin heavy chain (SM-MHC). Transient transfection studies in VSMCs demonstrated that PTU induced the activity of SMC marker genes (calponin and SM-MHC) promoters, indicating that PTU up-regulates these genes expression predominantly at the transcriptional level. Furthermore, PTU enhanced the expression of PTEN and inhibition of PTEN by siRNA knockdown blocked PTU-induced activation of contractile proteins expression and promoter activity. In the rat carotid injury model, PTU reversed the down-regulation of contractile proteins and up-regulated PTEN in the neointima induced by balloon injury. Propylthiouracil promotes VSMC differentiation, at lest in part, via induction of the PTEN-mediated pathway. These findings suggest a possible mechanism by which PTU may contribute to its beneficial effects on atherogenesis and neointimal formation after arterial injury.

  4. Effects and mechanisms of melatonin on neural differentiation of induced pluripotent stem cells.

    PubMed

    Shu, Tao; Wu, Tao; Pang, Mao; Liu, Chang; Wang, Xuan; Wang, Juan; Liu, Bin; Rong, Limin

    2016-06-03

    Melatonin, a lipophilic molecule mainly synthesized in the pineal gland, has properties of antioxidation, anti-inflammation, and antiapoptosis to improve neuroprotective functions. Here, we investigate effects and mechanisms of melatonin on neural differentiation of induced pluripotent stem cells (iPSCs). iPSCs were induced into neural stem cells (NSCs), then further differentiated into neurons in medium with or without melatonin, melatonin receptor antagonist (Luzindole) or Phosphatidylinositide 3 kinase (PI3K) inhibitor (LY294002). Melatonin significantly promoted the number of neurospheres and cell viability. In addition, Melatonin markedly up-regulated gene and protein expression of Nestin and MAP2. However, Luzindole or LY294002 attenuated these increase. The expression of pAKT/AKT were increased by Melatonin, while Luzindole or LY294002 declined these melatonin-induced increase. These results suggest that melatonin significantly increased neural differentiation of iPSCs via activating PI3K/AKT signaling pathway through melatonin receptor. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Role of alpha- and beta-adrenergic receptors in cardiomyocyte differentiation from murine-induced pluripotent stem cells.

    PubMed

    Li, Xiao-Li; Zeng, Di; Chen, Yan; Ding, Lu; Li, Wen-Ju; Wei, Ting; Ou, Dong-Bo; Yan, Song; Wang, Bin; Zheng, Qiang-Sun

    2017-02-01

    Induced pluripotent stem cell (iPSC)-derived cardiomyocytes are a promising source of cells for regenerative heart disease therapies, but progress towards their use has been limited by their low differentiation efficiency and high cellular heterogeneity. Previous studies have demonstrated expression of adrenergic receptors (ARs) in stem cells after differentiation; however, roles of ARs in fate specification of stem cells, particularly in cardiomyocyte differentiation and development, have not been characterized. Murine-induced pluripotent stem cells (miPSCs) were cultured in hanging drops to form embryoid bodies, cells of which were then differentiated into cardiomyocytes. To determine whether ARs regulated miPSC differentiation into cardiac lineages, effects of the AR agonist, epinephrine (EPI), on miPSC differentiation and underlying signalling mechanisms, were evaluated. Treatment with EPI, robustly enhanced miPSC cardiac differentiation, as indicated by increased expression levels of cardiac-specific markers, GATA4, Nkx2.5 and Tnnt2. Although β-AR signalling is the foremost signalling pathway in cardiomyocytes, EPI-enhanced cardiac differentiation depended more on α-AR signalling than β-AR signalling. In addition, selective activation of α 1 -AR signalling with specific agonists induced vigorous cardiomyocyte differentiation, whereas selective activation of α 2 - or β-AR signalling induced no or less differentiation, respectively. EPI- and α 1 -AR-dependent cardiomyocyte differentiation from miPSCs occurred through specific promotion of CPC proliferation via the MEK-ERK1/2 pathway and regulation of miPS cell-cycle progression. These results demonstrate that activation of ARs, particularly of α 1 -ARs, promoted miPSC differentiation into cardiac lineages via MEK-ERK1/2 signalling. © 2016 John Wiley & Sons Ltd.

  6. RNA‑sequencing analysis of aberrantly expressed long non‑coding RNAs and mRNAs in a mouse model of ventilator‑induced lung injury.

    PubMed

    Xu, Bo; Wang, Yizhou; Li, Xiujuan; Mao, Yanfei; Deng, Xiaoming

    2018-05-17

    Long non-coding RNAs (lncRNAs) are closely associated with the regulation of various biological processes and are involved in the pathogenesis of numerous diseases. However, to the best of our knowledge, the role of lncRNAs in ventilator‑induced lung injury (VILI) has yet to be evaluated. In the present study, high‑throughput sequencing was applied to investigate differentially expressed lncRNAs and mRNAs (fold change >2; false discovery rate <0.05). Bioinformatics analysis was employed to predict the functions of differentially expressed lncRNAs. A total of 104 lncRNAs (74 upregulated and 30 downregulated) and 809 mRNAs (521 upregulated and 288 downregulated) were differentially expressed in lung tissues from the VILI group. Gene ontology analysis demonstrated that the differentially expressed lncRNAs and mRNAs were mainly associated with biological functions, including apoptosis, angiogenesis, neutrophil chemotaxis and skeletal muscle cell differentiation. The top four enriched pathways were the tumor necrosis factor (TNF) signaling pathway, P53 signaling pathway, neuroactive ligand‑receptor interaction and the forkhead box O signaling pathway. Several lncRNAs were predicted to serve a vital role in VILI. Subsequently, three lncRNAs [mitogen‑activated protein kinase kinase 3, opposite strand (Map2k3os), dynamin 3, opposite strand and abhydrolase domain containing 11, opposite strand] and three mRNAs (growth arrest and DNA damage‑inducible α, claudin 4 and thromboxane A2 receptor) were measured by reverse transcription‑quantitative polymerase chain reaction, in order to confirm the veracity of RNA‑sequencing analysis. In addition, Map2k3os small interfering RNA transfection inhibited the expression of stretch‑induced cytokines [TNF‑α, interleukin (IL)‑1β and IL‑6] in MLE12 cells. In conclusion, the results of the present study provided a profile of differentially expressed lncRNAs in VILI. Several important lncRNAs may be involved in the pathological process of VILI, which may be useful to guide further investigation into the pathogenesis for this disease.

  7. Polyphosphate induces matrix metalloproteinase-3-mediated proliferation of odontoblast-like cells derived from induced pluripotent stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozeki, Nobuaki; Hase, Naoko; Yamaguchi, Hideyuki

    2015-05-01

    Inorganic polyphosphate [Poly(P)] may represent a physiological source of phosphate and has the ability to induce bone differentiation in osteoblasts. We previously reported that cytokine-induced matrix metalloproteinase (MMP)-3 accelerates the proliferation of purified odontoblast-like cells. In this study, MMP-3 small interfering RNA (siRNA) was transfected into odontoblast-like cells derived from induced pluripotent stem cells to investigate whether MMP-3 activity is induced by Poly(P) and/or is associated with cell proliferation and differentiation into odontoblast-like cells. Treatment with Poly(P) led to an increase in both cell proliferation and additional odontoblastic differentiation. Poly(P)-treated cells showed a small but significant increase in dentin sialophosphoproteinmore » (DSPP) and dentin matrix protein-1 (DMP-1) mRNA expression, which are markers of mature odontoblasts. The cells also acquired additional odontoblast-specific properties including adoption of an odontoblastic phenotype typified by high alkaline phosphatase (ALP) activity and a calcification capacity. In addition, Poly(P) induced expression of MMP-3 mRNA and protein, and increased MMP-3 activity. MMP-3 siRNA-mediated disruption of the expression of these effectors potently suppressed the expression of odontoblastic biomarkers ALP, DSPP, and DMP-1, and blocked calcification. Interestingly, upon siRNA-mediated silencing of MMP-3, we noted a potent and significant decrease in cell proliferation. Using specific siRNAs, we revealed that a unique signaling cascade, Poly(P)→MMP-3→DSPP and/or DMP-1, was intimately involved in the proliferation of odontoblast-like cells. - Highlights: • Polyphosphate increases proliferation of iPS cell-derived odontoblast-like cells. • Polyphosphate-induced MMP-3 results in an increase of cell proliferation. • Induced cell proliferation involves MMP-3, DSPP, and/or DMP-1 sequentially. • Induced MMP-3 also results in an increase of odontoblastic differentiation.« less

  8. Transcription factor activating protein 2 beta (TFAP2B) mediates noradrenergic neuronal differentiation in neuroblastoma.

    PubMed

    Ikram, Fakhera; Ackermann, Sandra; Kahlert, Yvonne; Volland, Ruth; Roels, Frederik; Engesser, Anne; Hertwig, Falk; Kocak, Hayriye; Hero, Barbara; Dreidax, Daniel; Henrich, Kai-Oliver; Berthold, Frank; Nürnberg, Peter; Westermann, Frank; Fischer, Matthias

    2016-02-01

    Neuroblastoma is an embryonal pediatric tumor that originates from the developing sympathetic nervous system and shows a broad range of clinical behavior, ranging from fatal progression to differentiation into benign ganglioneuroma. In experimental neuroblastoma systems, retinoic acid (RA) effectively induces neuronal differentiation, and RA treatment has been therefore integrated in current therapies. However, the molecular mechanisms underlying differentiation are still poorly understood. We here investigated the role of transcription factor activating protein 2 beta (TFAP2B), a key factor in sympathetic nervous system development, in neuroblastoma pathogenesis and differentiation. Microarray analyses of primary neuroblastomas (n = 649) demonstrated that low TFAP2B expression was significantly associated with unfavorable prognostic markers as well as adverse patient outcome. We also found that low TFAP2B expression was strongly associated with CpG methylation of the TFAP2B locus in primary neuroblastomas (n = 105) and demethylation with 5-aza-2'-deoxycytidine resulted in induction of TFAP2B expression in vitro, suggesting that TFAP2B is silenced by genomic methylation. Tetracycline inducible re-expression of TFAP2B in IMR-32 and SH-EP neuroblastoma cells significantly impaired proliferation and cell cycle progression. In IMR-32 cells, TFAP2B induced neuronal differentiation, which was accompanied by up-regulation of the catecholamine biosynthesizing enzyme genes DBH and TH, and down-regulation of MYCN and REST, a master repressor of neuronal genes. By contrast, knockdown of TFAP2B by lentiviral transduction of shRNAs abrogated RA-induced neuronal differentiation of SH-SY5Y and SK-N-BE(2)c neuroblastoma cells almost completely. Taken together, our results suggest that TFAP2B is playing a vital role in retaining RA responsiveness and mediating noradrenergic neuronal differentiation in neuroblastoma. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Distinct MicroRNA Expression Profile and Targeted Biological Pathways in Functional Myeloid-derived Suppressor Cells Induced by Δ9-Tetrahydrocannabinol in Vivo

    PubMed Central

    Hegde, Venkatesh L.; Tomar, Sunil; Jackson, Austin; Rao, Roshni; Yang, Xiaoming; Singh, Udai P.; Singh, Narendra P.; Nagarkatti, Prakash S.; Nagarkatti, Mitzi

    2013-01-01

    Δ9-Tetrahydrocannabinol (THC), the major bioactive component of marijuana, has been shown to induce functional myeloid-derived suppressor cells (MDSCs) in vivo. Here, we studied the involvement of microRNA (miRNA) in this process. CD11b+Gr-1+ MDSCs were purified from peritoneal exudates of mice administered with THC and used for genome-wide miRNA profiling. Expression of CD31 and Ki-67 confirmed that the THC-MDSCs were immature and proliferating. THC-induced MDSCs exhibited distinct miRNA expression signature relative to various myeloid cells and BM precursors. We identified 13 differentially expressed (>2-fold) miRNA in THC-MDSCs relative to control BM precursors. In silico target prediction for these miRNA and pathway analysis using multiple bioinformatics tools revealed significant overrepresentation of Gene Ontology clusters within hematopoiesis, myeloid cell differentiation, and regulation categories. Insulin-like growth factor 1 signaling involved in cell growth and proliferation, and myeloid differentiation pathways were among the most significantly enriched canonical pathways. Among the differentially expressed, miRNA-690 was highly overexpressed in THC-MDSCs (∼16-fold). Transcription factor CCAAT/enhancer-binding protein α (C/EBPα) was identified as a potential functional target of miR-690. Supporting this, C/EBPα expression was attenuated in THC-MDSCs as compared with BM precursors and exhibited an inverse relation with miR-690. miR-690 knockdown using peptide nucleic acid-antagomiR was able to unblock and significantly increase C/EBPα expression establishing the functional link. Further, CD11b+Ly6G+Ly6C+ and CD11b+Ly6G−Ly6C+ purified subtypes showed high levels of miR-690 with attenuated C/EBPα expression. Moreover, EL-4 tumor-elicited MDSCs showed increased miR-690 expression. In conclusion, miRNA are significantly altered during the generation of functional MDSC from BM. Select miRNA such as miR-690 targeting genes involved in myeloid expansion and differentiation likely play crucial roles in this process and therefore in cannabinoid-induced immunosuppression. PMID:24202177

  10. T-bet expression by Th cells promotes type 1 inflammation but is dispensable for colitis.

    PubMed

    Zimmermann, J; Kühl, A A; Weber, M; Grün, J R; Löffler, J; Haftmann, C; Riedel, R; Maschmeyer, P; Lehmann, K; Westendorf, K; Mashreghi, M-F; Löhning, M; Mack, M; Radbruch, A; Chang, H D

    2016-11-01

    The transcription factor T-bet is highly expressed by Th cells isolated from the inflamed intestine of Crohn's disease patients, and has been regarded a critical driver of murine T cell-induced colitis. However, we show here that T-bet expression by Th cells is not required for the manifestation of T-cell-induced colitis in the presence of segmented filamentous bacteria and Helicobacter hepaticus. T-bet expression by Th cells controls their survival and localization, their repertoire of chemokine and chemokine receptor expression, the accumulation of monocytes and macrophages in the inflamed colon, and their differentiation to the M1 type, i.e., type 1 inflammation. Nevertheless, T-bet-deficient Th cells efficiently induce colitis, as reflected by weight loss, diarrhea, and colon histopathology. T-bet-deficient Th cells differentiate into Th1/17 cells, able to express IFN-γ and IL-17A upon restimulation. While neutralization of IL-17A exacerbated colitis induced by wild-type or T-bet-deficient Th cells, neutralization of IFN-γ completely abolished colitis.

  11. Differentiation and upregulation of heat shock protein 70 induced by a subset of histone deacetylase inhibitors in mouse and human embryonic stem cells.

    PubMed

    Park, Jeong-A; Kim, Young-Eun; Seok, Hyun-Jeong; Park, Woo-Youn; Kwon, Hyung-Joo; Lee, Younghee

    2011-03-01

    Inhibiting histone deacetylase (HDAC) activity modulates the epigenetic status of cells, resulting in an alteration of gene expression and cellular function. Here, we investigated the effects of HDAC inhibitors on mouse embryonic stem (ES) cells. The HDAC inhibitors trichostatin A, suberoylanilide hydroxamic acid, sodium butyrate, and valproic acid induced early differentiation of mouse ES cells and triggered induction of heatshock protein (HSP)70. In contrast, class III HDAC inhibitors failed to induce differentiation or HSP70 expression. Transcriptional upregulation of HSP70 was confirmed by mRNA expression analysis, an inhibitor study, and chromatin immunoprecipitation. HSP70 induction was dependent on the SAPK/ JNK, p38, and PI3K/Akt pathways. Differentiation and induction of HSP70 by a subset of HDAC inhibitors was also examined in human ES cells, which suggests that the phenomenon generally occurs in ES cells. A better understanding of the effects of HDAC inhibitors may give more insight into their application in stem cell biology.

  12. Role of the POZ Zinc Finger Transcription Factor FBI-1 in Human and Murine Adipogenesis

    PubMed Central

    Laudes, Matthias; Christodoulides, Constantinos; Sewter, Ciaran; Rochford, Justin J.; Considine, Robert V.; Sethi, Jaswinder K.; Vidal-Puig, Antonio; O’Rahilly, Stephen

    2015-01-01

    Poxvirus zinc finger (POZ) zinc finger domain transcription factors have been shown to play a role in the control of growth arrest and differentiation in several types of mesenchymal cells but not, as yet, adipocytes. We found that a POZ domain protein, factor that binds to inducer of short transcripts-1 (FBI-1), was induced during both murine and human preadipocyte differentiation with maximal expression levels seen at days 2–4. FBI-1 mRNA was expressed in human adipose tissue with the highest levels found in samples from morbidly obese subjects. Murine cell lines constitutively expressing FBI-1 showed evidence for accelerated adipogenesis with earlier induction of markers of differentiation and enhanced lipid accumulation, suggesting that FBI-1 may be an active participant in the differentiation process. Consistent with the properties of this family of proteins in other cell systems, 3T3L1 cells stably overexpressing FBI-1 showed reduced DNA synthesis and reduced expression of cyclin A, cyclin-dependent kinase 2, and p107, proteins known to be involved in the regulation of mitotic clonal expansion. In addition, FBI-1 reduced the transcriptional activity of the cyclin A promoter. Thus, FBI-1, a POZ zinc finger transcription factor, is induced during the early phases of human and murine preadipocyte differentiation where it may contribute to adipogenesis through influencing the switch from cellular proliferation to terminal differentiation. PMID:14701838

  13. Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eom, Young Woo; Biomedical Research Institute, Lifeliver Co., Ltd., Suwon; Lee, Jong Eun

    2011-04-29

    Highlights: {yields} hASCs were differentiated into skeletal muscle cells by treatment with 5-azacytidine, FGF-2, and the supernatant of cultured hASCs. {yields} Dystrophin and MyHC were expressed in late differentiation step by treatment with the supernatant of cultured hASCs. {yields} hASCs expressing dystrophin and MyHC contributed to myotube formation during co-culture with mouse myoblast C2C12 cells. -- Abstract: Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear. We investigated the myogenic phases of humanmore » adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells. In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1 day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6 days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step. Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation. Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.« less

  14. IAA8 expression during vascular cell differentiation

    Treesearch

    Andrew T. Groover; Amy Pattishall; Alan M. Jones

    2003-01-01

    We report the characterization of a member of the auxin-induced IAA gene family from zinnia, designated zIAA8, which is expressed by mesophyll cells differentiating as tracheary elements in vitro. Transcription of zIAA8 is upregulated within 3 h after cell isolation in inductive medium,...

  15. Antioxidant defense and apoptotic effectors in ascorbic acid and β-glycerophosphate-induced osteoblastic differentiation.

    PubMed

    Chaves Neto, Antonio Hernandes; Machado, Daisy; Yano, Cláudia Lumy; Ferreira, Carmen Veríssima

    2011-01-01

    MC3T3-E1 cells grown in the presence of ascorbic acid and β-glycerophosphate (AA/β-GP) express alkaline phosphatase and produce an extensive collagenous extracellular matrix. Differentiated MC3T3-E1 cells are more sensitive to hydrogen peroxide-induced oxidative stress than undifferentiated cells. In this study, we compared the profile of antioxidant enzymes and molecular markers of apoptosis in undifferentiated and differentiated MC3T3-E1 cells (cell differentiation was induced by treatment with AA/β-GP). Differentiated osteoblasts showed lower expression and activity of catalase, glutathione S-transferase and glutathione peroxidase. The total superoxide dismutase activity and the expression of Cu/Zn superoxide dismutase were also lower, while the expression of Mn superoxide dismutase was higher in differentiated osteoblasts. The level of malondialdehyde, a widely used marker for oxidative stress, was lower in the AA/β-GP group compared with control cells, but this difference was not significant. Western blotting showed that treatment with AA/β-GP increased the Bax/Bcl-2 ratio used as an index of cellular vulnerability to apoptosis. In addition, the activities of caspases 3, 8 and 9 and cleaved poly (ADP) ribose polymerase were significantly higher in differentiated cells. These findings provide new insights into how changes in the activities of major antioxidant enzymes and in the signaling pathways associated with apoptosis may influence the susceptibility of bone cells to oxidative stress. © 2011 The Authors. Journal compilation © 2011 Japanese Society of Developmental Biologists.

  16. Murine bone cell lines as models for spaceflight induced effects on differentiation and gene expression

    NASA Astrophysics Data System (ADS)

    Lau, P.; Hellweg, C. E.; Baumstark-Khan, C.; Reitz, G.

    Critical health factors for space crews especially on long-term missions are radiation exposure and the absence of gravity DNA double strand breaks DSB are presumed to be the most deleterious DNA lesions after radiation as they disrupt both DNA strands in close proximity Besides radiation risk the absence of gravity influences the complex skeletal apparatus concerning muscle and especially bone remodelling which results from mechanical forces exerting on the body Bone is a dynamic tissue which is life-long remodelled by cells from the osteoblast and osteoclast lineage Any imbalance of this system leads to pathological conditions such as osteoporosis or osteopetrosis Osteoblastic cells play a crucial role in bone matrix synthesis and differentiate either into bone-lining cells or into osteocytes Premature terminal differentiation has been reported to be induced by a number of DNA damaging or cell stress inducing agents including ionising and ultraviolet radiation as well as treatment with mitomycin C In the present study we compare the effects of sequential differentiation by adding osteoinductive substances ss -glycerophosphate and ascorbic acid Radiation-induced premature differentiation was investigated regarding the biosynthesis of specific osteogenic marker molecules and the differentiation dependent expression of marker genes The bone cell model established in our laboratory consists of the osteocyte cell line MLO-Y4 the osteoblast cell line OCT-1 and the subclones 4 and 24 of the osteoblast cell line MC3T3-E1 expressing several

  17. Communication-dependent mineralization of osteoblasts via gap junctions.

    PubMed

    Hashida, Yukihiko; Nakahama, Ken-ichi; Shimizu, Kaori; Akiyama, Masako; Harada, Kiyoshi; Morita, Ikuo

    2014-04-01

    Connexin43 (Cx43) is a major gap junction (GJ) protein in bone and plays a critical role in osteoblast differentiation. Several studies show that osteoblast differentiation is delayed by Cx43 ablation. However, the precise mechanism underlying the role of Cx43 in osteoblast differentiation is not fully understood. Firstly, we analyzed the phenotype of a conditional knockout mouse, which was generated by mating of an osterix promoter-driven Cre expressing mouse with a Cx43-floxed mouse. As expected, delayed ossification was observed. Secondly, we demonstrated that the cell communication via gap junctions played an important role in osteoblast differentiation using a tamoxifen-inducible knockout system in vitro. Genetic ablation of Cx43 resulted in both the disruption of cell-communications and the attenuation of osteoblast mineralization induced by BMP-2, but not by ascorbic acid. Moreover, restoring full-length Cx43 (382aa) expression rescued the impairment of osteoblast cell-communication and osteoblast mineralization; however, the expression of the Cx43 N-terminal mutant (382aaG2V) did not rescue either of them. Comparing the gene expression profiles, the genes directly regulated by BMP-2 were attenuated by Cx43 gene ablation. These results suggested that the cell-communication mediated by gap junctions was indispensable for normal differentiation of osteoblast induced by BMP-2. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Induction of Erythroid Differentiation in Human Erythroleukemia Cells by Depletion of Malic Enzyme 2

    PubMed Central

    Everett, Peter; Clish, Clary B.; Sukhatme, Vikas P.

    2010-01-01

    Malic enzyme 2 (ME2) is a mitochondrial enzyme that catalyzes the conversion of malate to pyruvate and CO2 and uses NAD as a cofactor. Higher expression of this enzyme correlates with the degree of cell de-differentiation. We found that ME2 is expressed in K562 erythroleukemia cells, in which a number of agents have been found to induce differentiation either along the erythroid or the myeloid lineage. We found that knockdown of ME2 led to diminished proliferation of tumor cells and increased apoptosis in vitro. These findings were accompanied by differentiation of K562 cells along the erythroid lineage, as confirmed by staining for glycophorin A and hemoglobin production. ME2 knockdown also totally abolished growth of K562 cells in nude mice. Increased ROS levels, likely reflecting increased mitochondrial production, and a decreased NADPH/NADP+ ratio were noted but use of a free radical scavenger to decrease inhibition of ROS levels did not reverse the differentiation or apoptotic phenotype, suggesting that ROS production is not causally involved in the resultant phenotype. As might be expected, depletion of ME2 induced an increase in the NAD+/NADH ratio and ATP levels fell significantly. Inhibition of the malate-aspartate shuttle was insufficient to induce K562 differentiation. We also examined several intracellular signaling pathways and expression of transcription factors and intermediate filament proteins whose expression is known to be modulated during erythroid differentiation in K562 cells. We found that silencing of ME2 leads to phospho-ERK1/2 inhibition, phospho-AKT activation, increased GATA-1 expression and diminished vimentin expression. Metabolomic analysis, conducted to gain insight into intermediary metabolic pathways that ME2 knockdown might affect, showed that ME2 depletion resulted in high orotate levels, suggesting potential impairment of pyrimidine metabolism. Collectively our data point to ME2 as a potentially novel metabolic target for leukemia therapy. PMID:20824065

  19. The adaptor protein p62 is involved in RANKL-induced autophagy and osteoclastogenesis.

    PubMed

    Li, Rui-Fang; Chen, Gang; Ren, Jian-Gang; Zhang, Wei; Wu, Zhong-Xing; Liu, Bing; Zhao, Yi; Zhao, Yi-Fang

    2014-12-01

    Previous studies have implicated autophagy in osteoclast differentiation. The aim of this study was to investigate the potential role of p62, a characterized adaptor protein for autophagy, in RANKL-induced osteoclastogenesis. Real-time quantitative PCR and western blot analyses were used to evaluate the expression levels of autophagy-related markers during RANKL-induced osteoclastogenesis in mouse macrophage-like RAW264.7 cells. Meanwhile, the potential relationship between p62/LC3 localization and F-actin ring formation was tested using double-labeling immunofluorescence. Then, the expression of p62 in RAW264.7 cells was knocked down using small-interfering RNA (siRNA), followed by detecting its influence on RANKL-induced autophagy activation, osteoclast differentiation, and F-actin ring formation. The data showed that several key autophagy-related markers including p62 were significantly altered during RANKL-induced osteoclast differentiation. In addition, the expression and localization of p62 showed negative correlation with LC3 accumulation and F-actin ring formation, as demonstrated by western blot and immunofluorescence analyses, respectively. Importantly, the knockdown of p62 obviously attenuated RANKL-induced expression of autophagy- and osteoclastogenesis-related genes, formation of TRAP-positive multinuclear cells, accumulation of LC3, as well as formation of F-actin ring. Our study indicates that p62 may play essential roles in RANKL-induced autophagy and osteoclastogenesis, which may help to develop a novel therapeutic strategy against osteoclastogenesis-related diseases. © The Author(s) 2014.

  20. CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages.

    PubMed

    Gleissner, Christian A; Shaked, Iftach; Little, Kristina M; Ley, Klaus

    2010-05-01

    In atherosclerotic arteries, blood monocytes differentiate to macrophages in the presence of growth factors, such as macrophage colony-stimulation factor (M-CSF), and chemokines, such as platelet factor 4 (CXCL4). To compare the gene expression signature of CXCL4-induced macrophages with M-CSF-induced macrophages or macrophages polarized with IFN-gamma/LPS (M1) or IL-4 (M2), we cultured primary human peripheral blood monocytes for 6 d. mRNA expression was measured by Affymetrix gene chips, and differences were analyzed by local pooled error test, profile of complex functionality, and gene set enrichment analysis. Three hundred seventy-five genes were differentially expressed between M-CSF- and CXCL4-induced macrophages; 206 of them overexpressed in CXCL4 macrophages coding for genes implicated in the inflammatory/immune response, Ag processing and presentation, and lipid metabolism. CXCL4-induced macrophages overexpressed some M1 and M2 genes and the corresponding cytokines at the protein level; however, their transcriptome clustered with neither M1 nor M2 transcriptomes. They almost completely lost the ability to phagocytose zymosan beads. Genes linked to atherosclerosis were not consistently upregulated or downregulated. Scavenger receptors showed lower and cholesterol efflux transporters showed higher expression in CXCL4- than M-CSF-induced macrophages, resulting in lower low-density lipoprotein content. We conclude that CXCL4 induces a unique macrophage transcriptome distinct from known macrophage types, defining a new macrophage differentiation that we propose to call M4.

  1. Differential Pre-mRNA Splicing Regulates Nnat Isoforms in the Hypothalamus after Gastric Bypass Surgery in Mice

    PubMed Central

    Scott, William R.; Gelegen, Cigdem; Chandarana, Keval; Karra, Efthimia; Yousseif, Ahmed; Amouyal, Chloé; Choudhury, Agharul I.; Andreelli, Fabrizio; Withers, Dominic J.; Batterham, Rachel L.

    2013-01-01

    Background Neuronatin (NNAT) is an endoplasmic reticulum proteolipid implicated in intracellular signalling. Nnat is highly-expressed in the hypothalamus, where it is acutely regulated by nutrients and leptin. Nnat pre-mRNA is differentially spliced to create Nnat-α and -β isoforms. Genetic variation of NNAT is associated with severe obesity. Currently, little is known about the long-term regulation of Nnat. Methods Expression of Nnat isoforms were examined in the hypothalamus of mice in response to acute fast/feed, chronic caloric restriction, diet-induced obesity and modified gastric bypass surgery. Nnat expression was assessed in the central nervous system and gastrointestinal tissues. RTqPCR was used to determine isoform-specific expression of Nnat mRNA. Results Hypothalamic expression of both Nnat isoforms was comparably decreased by overnight and 24-h fasting. Nnat expression was unaltered in diet-induced obesity, or subsequent switch to a calorie restricted diet. Nnat isoforms showed differential expression in the hypothalamus but not brainstem after bypass surgery. Hypothalamic Nnat-β expression was significantly reduced after bypass compared with sham surgery (P = 0.003), and was positively correlated with post-operative weight-loss (R2 = 0.38, P = 0.01). In contrast, Nnat-α expression was not suppressed after bypass surgery (P = 0.19), and expression did not correlate with reduction in weight after surgery (R2 = 0.06, P = 0.34). Hypothalamic expression of Nnat-β correlated weakly with circulating leptin, but neither isoform correlated with fasting gut hormone levels post- surgery. Nnat expression was detected in brainstem, brown-adipose tissue, stomach and small intestine. Conclusions Nnat expression in hypothalamus is regulated by short-term nutrient availability, but unaltered by diet-induced obesity or calorie restriction. While Nnat isoforms in the hypothalamus are co-ordinately regulated by acute nutrient supply, after modified gastric bypass surgery Nnat isoforms show differential expression. These results raise the possibility that in the radically altered nutrient and hormonal milieu created by bypass surgery, resultant differential splicing of Nnat pre-mRNA may contribute to weight-loss. PMID:23527188

  2. TPA induces a block of differentiation and increases the susceptibility to neoplastic transformation of a rat thyroid epithelial cell line.

    PubMed

    Portella, G; Vitagliano, D; Li, Z; Sferratore, F; Santoro, M; Vecchio, G; Fusco, A

    1998-01-01

    The PC Cl 3 cell line is a well-characterized epithelial cell line of rat thyroid origin. This cell line retains in vitro the typical markers of thyroid differentiation: thyroglobulin (TG) synthesis and secretion, iodide uptake, thyroperoxidase (TPO) expression, and dependency on TSH for growth. Although the differentiated phenotype of thyroid cells has been relatively well described, the molecular mechanisms that regulate both differentiation and neoplastic transformation of thyroid cells still need to be investigated in detail. Protein kinase C (PKC), the target of tetradecanoylphorbol acetate (TPA), regulates growth and differentiation of several cell types. Here we show that treatment of PC Cl 3 cells with TPA induces an acute block of thyroid differentiation. TPA-treated PC Cl 3 cells are unable to trap iodide and the expression levels of thyroglobulin, TSH receptor, and TPO genes are drastically reduced by TPA treatment. This differentiation block is not caused by a reduced expression of one of the master genes of thyroid differentiation, the thyroid transcription factor 1 (TTF-1). TPA-treated PC Cl 3 cells display an increased growth rate indicating that, in addition to the differentiation block, TPA also significantly affects the growth regulation of thyroid cells. Finally, TPA treatment dramatically increases the number of transformation foci induced in PC Cl 3 cells by retroviruses carrying v-Ki-ras, v-Ha-ras, and v-mos oncogenes. These findings support the notion that the PKC pathway can influence proliferation, differentiation, and neoplastic transformation of thyroid cells in culture.

  3. Achaete-Scute Homolog 1 Expression Controls Cellular Differentiation of Neuroblastoma

    PubMed Central

    Kasim, Mumtaz; Heß, Vicky; Scholz, Holger; Persson, Pontus B.; Fähling, Michael

    2016-01-01

    Neuroblastoma, the major cause of infant cancer deaths, results from fast proliferation of undifferentiated neuroblasts. Treatment of high-risk neuroblastoma includes differentiation with retinoic acid (RA); however, the resistance of many of these tumors to RA-induced differentiation poses a considerable challenge. Human achaete-scute homolog 1 (hASH1) is a proneural basic helix-loop-helix transcription factor essential for neurogenesis and is often upregulated in neuroblastoma. Here, we identified a novel function for hASH1 in regulating the differentiation phenotype of neuroblastoma cells. Global analysis of 986 human neuroblastoma datasets revealed a negative correlation between hASH1 and neuron differentiation that was independent of the N-myc (MYCN) oncogene. Using RA to induce neuron differentiation in two neuroblastoma cell lines displaying high and low levels of hASH1 expression, we confirmed the link between hASH1 expression and the differentiation defective phenotype, which was reversed by silencing hASH1 or by hypoxic preconditioning. We further show that hASH1 suppresses neuronal differentiation by inhibiting transcription at the RA receptor element. Collectively, our data indicate hASH1 to be key for understanding neuroblastoma resistance to differentiation therapy and pave the way for hASH1-targeted therapies for augmenting the response of neuroblastoma to differentiation therapy. PMID:28066180

  4. Interleukin-5 regulates genes involved in B-cell terminal maturation.

    PubMed

    Horikawa, Keisuke; Takatsu, Kiyoshi

    2006-08-01

    Interleukin (IL)-5 induces CD38-activated splenic B cells to differentiate into immunoglobulin M-secreting cells and undergo micro to gamma 1 class switch recombination (CSR) at the DNA level, resulting in immunoglobulin G1 (IgG1) production. Interestingly, IL-4, a well-known IgG1-inducing factor does not induce immunoglobulin production or micro to gamma 1 CSR in CD38-activated B cells. In the present study, we implemented complementary DNA microarrays to investigate the contribution of IL-5-induced gene expression in CD38-stimulated B cells to immunoglobulin-secreting cell differentiation and micro to gamma 1 CSR. IL-5 and IL-4 stimulation of CD38-activated B cells induced the expression of 418 and 289 genes, respectively, that consisted of several clusters. Surprisingly, IL-5-inducible 78 genes were redundantly regulated by IL-4. IL-5 and IL-4 also suppressed the gene expression of 319 and 325 genes, respectively, 97 of which were overlapped. Genes critically regulated by IL-5 include immunoglobulin-related genes such as J chain and immunoglobulinkappa, and genes involved in B-cell maturation such as BCL6, activation-induced cytidine deaminase (Aid) and B lymphocyte-induced maturation protein-1 (Blimp-1) and tend to be induced slowly after IL-5 stimulation. Intriguingly, among genes, the retroviral induction of Blimp-1 and Aid in CD38-activated B cells could induce IL-4-dependent maturation to Syndecan-1+ antibody-secreting cells and micro to gamma 1 CSR, respectively, in CD38-activated B cells. Taken together, preferential Aid and Blimp-1 expression plays a critical role in IL-5-induced immunoglobulin-secreting cell differentiation and micro to gamma 1 CSR in CD38-activated B cells.

  5. Rapamycin regulates autophagy and cell adhesion in induced pluripotent stem cells.

    PubMed

    Sotthibundhu, Areechun; McDonagh, Katya; von Kriegsheim, Alexander; Garcia-Munoz, Amaya; Klawiter, Agnieszka; Thompson, Kerry; Chauhan, Kapil Dev; Krawczyk, Janusz; McInerney, Veronica; Dockery, Peter; Devine, Michael J; Kunath, Tilo; Barry, Frank; O'Brien, Timothy; Shen, Sanbing

    2016-11-15

    Cellular reprogramming is a stressful process, which requires cells to engulf somatic features and produce and maintain stemness machineries. Autophagy is a process to degrade unwanted proteins and is required for the derivation of induced pluripotent stem cells (iPSCs). However, the role of autophagy during iPSC maintenance remains undefined. Human iPSCs were investigated by microscopy, immunofluorescence, and immunoblotting to detect autophagy machinery. Cells were treated with rapamycin to activate autophagy and with bafilomycin to block autophagy during iPSC maintenance. High concentrations of rapamycin treatment unexpectedly resulted in spontaneous formation of round floating spheres of uniform size, which were analyzed for differentiation into three germ layers. Mass spectrometry was deployed to reveal altered protein expression and pathways associated with rapamycin treatment. We demonstrate that human iPSCs express high basal levels of autophagy, including key components of APMKα, ULK1/2, BECLIN-1, ATG13, ATG101, ATG12, ATG3, ATG5, and LC3B. Block of autophagy by bafilomycin induces iPSC death and rapamycin attenuates the bafilomycin effect. Rapamycin treatment upregulates autophagy in iPSCs in a dose/time-dependent manner. High concentration of rapamycin reduces NANOG expression and induces spontaneous formation of round and uniformly sized embryoid bodies (EBs) with accelerated differentiation into three germ layers. Mass spectrometry analysis identifies actin cytoskeleton and adherens junctions as the major targets of rapamycin in mediating iPSC detachment and differentiation. High levels of basal autophagy activity are present during iPSC derivation and maintenance. Rapamycin alters expression of actin cytoskeleton and adherens junctions, induces uniform EB formation, and accelerates differentiation. IPSCs are sensitive to enzyme dissociation and require a lengthy differentiation time. The shape and size of EBs also play a role in the heterogeneity of end cell products. This research therefore highlights the potential of rapamycin in producing uniform EBs and in shortening iPSC differentiation duration.

  6. ERα inhibited myocardin-induced differentiation in uterine fibroids.

    PubMed

    Liao, Xing-Hua; Li, Jun-Yan; Dong, Xiu-Mei; Wang, Xiuhong; Xiang, Yuan; Li, Hui; Yu, Cheng-Xi; Li, Jia-Peng; Yuan, Bai-Yin; Zhou, Jun; Zhang, Tong-Cun

    2017-01-01

    Uterine fibroids, also known as uterine leiomyomas, are a benign tumor of the human uterus and the commonest estrogen-dependent benign tumor found in women. Myocardin is an important transcriptional regulator in smooth and cardiac muscle development. The role of myocardin and its relationship with ERα in uterine fibroids have barely been addressed. We noticed that the expression of myocardin was markedly reduced in human uterine fibroid tissue compared with corresponding normal or adjacent myometrium tissue. Here we reported that myocardin induced the transcription and expression of differentiation markers SM22α and alpha smooth muscle actin (α-SMA) in rat primary uterine smooth muscle cells (USMCs) and this effect was inhibited by ERα. Notably, we showed that, ERα induced expression of proliferation markers PCNA and ki-67 in rat primary USMCs. We also found ERα interacted with myocardin and formed complex to bind to CArG box and inhibit the SM22α promoter activity. Furthermore, ERα inhibited the transcription and expression of myocardin, and reduced the levels of transcription and expression of downstream target SM22α, a SMC differentiation marker. Our data thus provided important and novel insights into how ERα and myocardin interact to control the cell differentiation and proliferation of USMCs. Thus, it may provide potential therapeutic target for uterine fibroids. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Monocyte-lymphocyte fusion induced by the HIV-1 envelope generates functional heterokaryons with an activated monocyte-like phenotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique

    Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4{sup +} T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependentmore » phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. - Highlights: • Jurkat T cells expressing the HIV-1 envelope fuse with THP-1 monocytes. • Heterokaryons display a dominant myeloid phenotype and monocyte function. • Heterokaryons exhibit activation features in the absence of activation agents. • Activation is not due to cell-cell interaction but requires cell-cell fusion. • The activated monocyte-like phenotype is mediated by TLR2/TLR4 signaling.« less

  8. EWS Knockdown and Taxifolin Treatment Induced Differentiation and Removed DNA Methylation from p53 Promoter to Promote Expression of Puma and Noxa for Apoptosis in Ewing’s Sarcoma

    PubMed Central

    Hossain, Mohammad Motarab; Ray, Swapan Kumar

    2016-01-01

    Ewing’s sarcoma is a pediatric tumor that mainly occurs in soft tissues and bones. Malignant characteristics of Ewing’s sarcoma are correlated with expression of EWS oncogene. We achieved knockdown of EWS expression using a plasmid vector encoding EWS short hairpin RNA (shRNA) to increase anti-tumor mechanisms of taxifolin (TFL), a new flavonoid, in human Ewing’s sarcoma cells in culture and animal models. Immunofluorescence microscopy and flow cytometric analysis showed high expression of EWS in human Ewing’s sarcoma SK-N-MC and RD-ES cell lines. EWS shRNA plus TFL inhibited 80% cell viability and caused the highest decreases in EWS expression at mRNA and protein levels in both cell lines. Knockdown of EWS expression induced morphological features of differentiation. EWS shRNA plus TFL caused more alterations in molecular markers of differentiation than either agent alone. EWS shRNA plus TFL caused the highest decreases in cell migration with inhibition of survival, angiogenic and invasive factors. Knockdown of EWS expression was associated with removal of DNA methylation from p53 promoter, promoting expression of p53, Puma, and Noxa. EWS shRNA plus TFL induced the highest amounts of apoptosis with activation of extrinsic and intrinsic pathways in both cell lines in culture. EWS shRNA plus TFL also inhibited growth of Ewing’s sarcoma tumors in animal models due to inhibition of differentiation inhibitors and angiogenic and invasive factors and also induction of activation of caspase-3 for apoptosis. Collectively, knockdown of EWS expression increased various anti-tumor mechanisms of TFL in human Ewing’s sarcoma in cell culture and animal models. PMID:27547487

  9. EWS Knockdown and Taxifolin Treatment Induced Differentiation and Removed DNA Methylation from p53 Promoter to Promote Expression of Puma and Noxa for Apoptosis in Ewing's Sarcoma.

    PubMed

    Hossain, Mohammad Motarab; Ray, Swapan Kumar

    2014-10-01

    Ewing's sarcoma is a pediatric tumor that mainly occurs in soft tissues and bones. Malignant characteristics of Ewing's sarcoma are correlated with expression of EWS oncogene. We achieved knockdown of EWS expression using a plasmid vector encoding EWS short hairpin RNA (shRNA) to increase anti-tumor mechanisms of taxifolin (TFL), a new flavonoid, in human Ewing's sarcoma cells in culture and animal models. Immunofluorescence microscopy and flow cytometric analysis showed high expression of EWS in human Ewing's sarcoma SK-N-MC and RD-ES cell lines. EWS shRNA plus TFL inhibited 80% cell viability and caused the highest decreases in EWS expression at mRNA and protein levels in both cell lines. Knockdown of EWS expression induced morphological features of differentiation. EWS shRNA plus TFL caused more alterations in molecular markers of differentiation than either agent alone. EWS shRNA plus TFL caused the highest decreases in cell migration with inhibition of survival, angiogenic and invasive factors. Knockdown of EWS expression was associated with removal of DNA methylation from p53 promoter, promoting expression of p53, Puma, and Noxa. EWS shRNA plus TFL induced the highest amounts of apoptosis with activation of extrinsic and intrinsic pathways in both cell lines in culture. EWS shRNA plus TFL also inhibited growth of Ewing's sarcoma tumors in animal models due to inhibition of differentiation inhibitors and angiogenic and invasive factors and also induction of activation of caspase-3 for apoptosis. Collectively, knockdown of EWS expression increased various anti-tumor mechanisms of TFL in human Ewing's sarcoma in cell culture and animal models.

  10. Hyperglycemia Augments the Adipogenic Transdifferentiation Potential of Tenocytes and Is Alleviated by Cyclic Mechanical Stretch.

    PubMed

    Wu, Yu-Fu; Huang, Yu-Ting; Wang, Hsing-Kuo; Yao, Chung-Chen Jane; Sun, Jui-Sheng; Chao, Yuan-Hung

    2017-12-28

    Diabetes mellitus is associated with damage to tendons, which may result from cellular dysfunction in response to a hyperglycemic environment. Tenocytes express diminished levels of tendon-associated genes under hyperglycemic conditions. In contrast, mechanical stretch enhances tenogenic differentiation. However, whether hyperglycemia increases the non-tenogenic differentiation potential of tenocytes and whether this can be mitigated by mechanical stretch remains elusive. We explored the in vitro effects of high glucose and mechanical stretch on rat primary tenocytes. Specifically, non-tenogenic gene expression, adipogenic potential, cell migration rate, filamentous actin expression, and the activation of signaling pathways were analyzed in tenocytes treated with high glucose, followed by the presence or absence of mechanical stretch. We analyzed tenocyte phenotype in vivo by immunohistochemistry using an STZ (streptozotocin)-induced long-term diabetic mouse model. High glucose-treated tenocytes expressed higher levels of the adipogenic transcription factors PPAR γ and C/EBPs. PPARγ was also highly expressed in diabetic tendons. In addition, increased adipogenic differentiation and decreased cell migration induced by high glucose implicated a fibroblast-to-adipocyte phenotypic change. By applying mechanical stretch to tenocytes in high-glucose conditions, adipogenic differentiation was repressed, while cell motility was enhanced, and fibroblastic morphology and gene expression profiles were strengthened. In part, these effects resulted from a stretch-induced activation of ERK (extracellular signal-regulated kinases) and a concomitant inactivation of Akt. Our results show that mechanical stretch alleviates the augmented adipogenic transdifferentiation potential of high glucose-treated tenocytes and helps maintain their fibroblastic characteristics. The alterations induced by high glucose highlight possible pathological mechanisms for diabetic tendinopathy. Furthermore, the beneficial effects of mechanical stretch on tenocytes suggest that an appropriate physical load possesses therapeutic potential for diabetic tendinopathy.

  11. Differential regional expression patterns of α-synuclein, TNF-α, and IL-1β; and variable status of dopaminergic neurotoxicity in mouse brain after Paraquat treatment

    PubMed Central

    2011-01-01

    Background Paraquat (1, 1-dimethyl-4, 4-bipyridium dichloride; PQ) causes neurotoxicity, especially dopaminergic neurotoxicity, and is a supposed risk factor for Parkinson's disease (PD). However, the cellular and molecular mechanisms of PQ-induced neurodegeneration are far from clear. Previous studies have shown that PQ induces neuroinflammation and dopaminergic cell loss, but the prime cause of those events is still in debate. Methods We examined the neuropathological effects of PQ not only in substantia nigra (SN) but also in frontal cortex (FC) and hippocampus of the progressive mouse (adult Swiss albino) model of PD-like neurodegeneration, using immunohistochemistry, western blots, and histological and biochemical analyses. Results PQ caused differential patterns of changes in cellular morphology and expression of proteins related to PD and neuroinflammation in the three regions examined (SN, FC and hippocampus). Coincident with behavioral impairment and brain-specific ROS generation, there was differential immunolocalization and decreased expression levels of tyrosine hydroxylase (TH) in the three regions, whereas α-synuclein immunopositivity increased in hippocampus, increased in FC and decreased in SN. PQ-induced neuroinflammation was characterized by area-specific changes in localization and appearances of microglial cells with or without activation and increment in expression patterns of tumor necrosis factor-α in the three regions of mouse brain. Expression of interleukin-1β was increased in FC and hippocampus but not significantly changed in SN. Conclusion The present study demonstrates that PQ induces ROS production and differential α-synuclein expression that promotes neuroinflammation in microglia-dependent or -independent manners, and produces different patterns of dopaminergic neurotoxicity in three different regions of mouse brain. PMID:22112368

  12. A fucose containing polymer-rich fraction from the brown alga Ascophyllum nodosum mediates lifespan increase and thermal-tolerance in Caenorhabditis elegans, by differential effects on gene and protein expression.

    PubMed

    Kandasamy, Saveetha; Khan, Wajahatullah; Evans, Franklin D; Critchley, Alan T; Zhang, Junzeng; Fitton, J H; Stringer, Damien N; Gardiner, Vicki-Anne; Prithiviraj, Balakrishnan

    2014-02-01

    The extracts of the brown alga, Ascophyllum nodosum, which contains several bioactive compounds, have been shown to impart biotic and abiotic stress tolerance properties when consumed by animals. However, the physiological, biochemical and molecular mechanism underlying such effects remain elusive. We investigated the effect of A. nodosum fucose-containing polymer (FCP) on tolerance to thermally induced stress using the invertebrate animal model, Caenorhabditis elegans. FCP at a concentration of 150 μg mL(-1) significantly improved the life span and tolerance against thermally induced stress in C. elegans. The treatment increased the C. elegans survival by approximately 24%, when the animals were under severe thermally induced stress (i.e. 35 °C) and 27% under mild stress (i.e. 30 °C) conditions. The FCP induced differential expression of genes and proteins is associated with stress response pathways. Under thermal stress, FCP treatment significantly altered the expression of 65 proteins (54 up-regulated & 11 down-regulated). Putative functional analysis of FCP-induced differential proteins signified an association of altered proteins in stress-related molecular and biochemical pathways of the model worm.

  13. HSP27 regulates TGF-β mediated lung fibroblast differentiation through the Smad3 and ERK pathways.

    PubMed

    Wang, Gang; Jiao, Hao; Zheng, Jun-Nian; Sun, Xia

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic lethal interstitial lung disease with unknown etiology. Recent studies have indicated that heat-shock protein 27 (HSP27) contributes to the pathogenesis of IPF through the regulation of epithelial-mesenchymal transition (EMT). However, the expression and role of HSP27 in fibroblasts during pulmonary fibrogenesis has not been investigated to date, at least to the best of our knowledge. In this study, we examined the expression of HSP27 in fibrotic lung tissue and fibroblasts from bleomycin (BLM)-challenged mice and human lung fibroblasts treated with transforming growth factor-β (TGF-β). The results revealed that the expression of HSP27 was significantly increased in fibrotic lung tissue and fibroblasts from BLM-challenged mice. In vitro, TGF-β stimulated HSP27 expression in and the differentiation of human lung fibroblasts. The knockdown of Smad3 expression or nuclear factor-κB p65 subunit attenuated the TGF-β-induced increase in HSP27 expression and the differentiation of human lung fibroblasts. In addition, the knockdown of HSP27 expression attenuated the TGF-β-induced activation of ERK and Smad3, and inhibited the differentiation of human lung fibroblasts. On the whole, the findings of our study demonstrate that HSP27 expression is upregulated in lung fibroblasts during pulmonary fibrosis, and subsequently, HSP27 modulates lung fibroblast differentiation through the Smad3 and ERK pathways.

  14. All-Trans-Retinoic Acid Stimulates Overexpression of Tumor Protein D52 (TPD52, Isoform 3) and Neuronal Differentiation of IMR-32 Cells.

    PubMed

    Kotapalli, Sudha Sravanti; Dasari, Chandrashekhar; Duscharla, Divya; Kami Reddy, Karthik Reddy; Kasula, Manjula; Ummanni, Ramesh

    2017-12-01

    Tumor protein D52 (TPD52), a proto-oncogene is overexpressed in a variety of epithelial carcinomas and plays an important role in cell proliferation, migration, and cell death. In the present study we found that the treatment of IMR-32 neuroblastoma (NB) cells with retinoic acid (RA) stimulates an increase in expression of TPD52. TPD52 expression is detectable after 72 h, can be maintained till differentiation of NB cells suggesting that TPD52 is involved in differentiation. Here, we demonstrate that TPD52 is essential for RA to promote differentiation of NB cells. Our results show that exogenous expression of EGFP-TPD52 in IMR-32 cells resulted cell differentiation even without RA. RA by itself and with overexpression of TPD52 can increase the ability of NB cells differentiation. Interestingly, transfection of IMR-32 cells with a specific small hairpin RNA for efficient knockdown of TPD52 attenuated RA induced NB cells differentiation. Transcriptional and translational level expression of neurotropic (BDNF, NGF, Nestin) and differentiation (β III tubulin, NSE, TH) factors in NB cells with altered TPD52 expression and/or RA treatment confirmed essential function of TPD52 in cellular differentiation. Furthermore, we show that TPD52 protects cells from apoptosis and arrest cell proliferation by varying expression of p27Kip1, activation of Akt and ERK1/2 thus promoting cell differentiation. Additionally, inhibition of STAT3 activation by its specific inhibitor arrested NB cells differentiation by EGFP-TPD52 overexpression with or without RA. Taken together, our data reveal that TPD52 act through activation of JAK/STAT signaling pathway to undertake NB cells differentiation induced by RA. J. Cell. Biochem. 118: 4358-4369, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Hypoxia-inducible factor 1–mediated human GATA1 induction promotes erythroid differentiation under hypoxic conditions

    PubMed Central

    Zhang, Feng-Lin; Shen, Guo-Min; Liu, Xiao-Ling; Wang, Fang; Zhao, Ying-Ze; Zhang, Jun-Wu

    2012-01-01

    Abstract Hypoxia-inducible factor promotes erythropoiesis through coordinated cell type–specific hypoxia responses. GATA1 is essential to normal erythropoiesis and plays a crucial role in erythroid differentiation. In this study, we show that hypoxia-induced GATA1 expression is mediated by HIF1 in erythroid cells. Under hypoxic conditions, significantly increased GATA1 mRNA and protein levels were detected in K562 cells and erythroid induction cultures of CD34+ haematopoietic stem/progenitor cells. Enforced HIF1α expression increased GATA1 expression, while HIF1α knockdown by RNA interference decreased GATA1 expression. In silico analysis revealed one potential hypoxia response element (HRE). The results from reporter gene and mutation analysis suggested that this element is necessary for hypoxic response. Chromatin immunoprecipitation (ChIP)-PCR showed that the putative HRE was recognized and bound by HIF1 in vivo. These results demonstrate that the up-regulation of GATA1 during hypoxia is directly mediated by HIF1.The mRNA expression of some erythroid differentiation markers was increased under hypoxic conditions, but decreased with RNA interference of HIF1α or GATA1. Flow cytometry analysis also indicated that hypoxia, desferrioxamine or CoCl2 induced expression of erythroid surface markers CD71 and CD235a, while expression repression of HIF1α or GATA1 by RNA interference led to a decreased expression of CD235a. These results suggested that HIF1-mediated GATA1 up-regulation promotes erythropoiesis in order to satisfy the needs of an organism under hypoxic conditions. PMID:22050843

  16. Derivation, expansion and differentiation of induced pluripotent stem cells in continuous suspension cultures

    PubMed Central

    Fluri, David A.; Tonge, Peter D.; Song, Hannah; Baptista, Ricardo P.; Shakiba, Nika; Shukla, Shreya; Clarke, Geoffrey; Nagy, Andras; Zandstra, Peter W.

    2016-01-01

    We demonstrate derivation of induced pluripotent stem cells (iPSCs) from terminally differentiated mouse cells in serum- and feeder-free stirred suspension cultures. Temporal analysis of global gene expression revealed high correlations between cells reprogrammed in suspension and cells reprogrammed in adhesion-dependent conditions. Suspension (S) reprogrammed iPSCs (SiPSCs) could be differentiated into all three germ layers in vitro and contributed to chimeric embryos in vivo. SiPSC generation allowed for efficient selection of reprogramming factor expressing cells based on their differential survival and proliferation in suspension. Seamless integration of SiPSC reprogramming and directed differentiation enabled the scalable production of functionally and phenotypically defined cardiac cells in a continuous single cell- and small aggregate-based process. This method is an important step towards the development of a robust PSC generation, expansion and differentiation technology. PMID:22447133

  17. Global analysis of glycoproteins identifies markers of endotoxin tolerant monocytes and GPR84 as a modulator of TNFα expression.

    PubMed

    Müller, Mario M; Lehmann, Roland; Klassert, Tilman E; Reifenstein, Stella; Conrad, Theresia; Moore, Christoph; Kuhn, Anna; Behnert, Andrea; Guthke, Reinhard; Driesch, Dominik; Slevogt, Hortense

    2017-04-12

    Exposure of human monocytes to lipopolysaccharide (LPS) induces a temporary insensitivity to subsequent LPS challenges, a cellular state called endotoxin tolerance. In this study, we investigated the LPS-induced global glycoprotein expression changes of tolerant human monocytes and THP-1 cells to identify markers and glycoprotein targets capable to modulate the immunosuppressive state. Using hydrazide chemistry and LC-MS/MS analysis, we analyzed glycoprotein expression changes during a 48 h LPS time course. The cellular snapshots at different time points identified 1491 glycoproteins expressed by monocytes and THP-1 cells. Label-free quantitative analysis revealed transient or long-lasting LPS-induced expression changes of secreted or membrane-anchored glycoproteins derived from intracellular membrane coated organelles or from the plasma membrane. Monocytes and THP-1 cells demonstrated marked differences in glycoproteins differentially expressed in the tolerant state. Among the shared differentially expressed glycoproteins G protein-coupled receptor 84 (GPR84) was identified as being capable of modulating pro-inflammatory TNFα mRNA expression in the tolerant cell state when activated with its ligand Decanoic acid.

  18. Rho/Rock cross-talks with transforming growth factor-β/Smad pathway participates in lung fibroblast-myofibroblast differentiation.

    PubMed

    Ji, Hong; Tang, Haiying; Lin, Hongli; Mao, Jingwei; Gao, Lili; Liu, Jia; Wu, Taihua

    2014-11-01

    The differentiation of fibroblasts, which are promoted by transforming growth factor-β (TGF-β)/Smad, is involved in the process of pulmonary fibrosis. The Rho/Rho-associated coiled-coil-forming protein kinase (Rock) pathway may regulate the fibroblast differentiation and myofibroblast expression of α-smooth muscle actin (α-SMA), however, the mechanism is not clear. The aim of the present study was to evaluate the role of Rho/Rock and TGF-β/Smad in TGF-β1-induced lung fibroblasts differentiation. Human embryonic lung fibroblasts were stimulated by TGF-β1, Y-27632 (inhibitor of Rho/Rock signaling) and staurosporine (inhibitor of TGF-β/Smad signaling). The α-SMA expression, cell cycle progression, content of the extracellular matrix (ECM) in cell culture supernatants and the expression of RhoA, RhoC, Rock1 and Smad2 were detected. The results demonstrated that α-SMA-positive cells significantly increased following TGF-β1 stimulation. Rho/Rock and TGF-β/Smad inhibitors suppressed TGF-β1-induced lung fibroblast differentiation. The inhibitors increased G 0 /G 1 and decreased S and G 2 /M percentages. The concentrations of the ECM proteins in the supernatant were significantly increased by TGF-β1 stimulation, whereas they were decreased by inhibitor stimulation. RhoA, RhoC, Rock1, Smad2 and tissue inhibitor of metalloproteinase-1 were upregulated by TGF-β1 stimulation. The Rho/Rock inhibitor downregulated Smad2 expression and the TGF-β/Smad inhibitor downregulated RhoA, RhoC and Rock1 expression. Therefore, the Rho/Rock pathway and Smad signaling were involved in the process of lung fibroblasts transformation, induced by TGF-β1, to myofibroblasts. The two pathways may undergo cross-talk in the lung fibroblasts differentiation in vitro .

  19. Identification of genes differentially regulated by vitamin D deficiency that alter lung pathophysiology and inflammation in allergic airways disease.

    PubMed

    Foong, Rachel E; Bosco, Anthony; Troy, Niamh M; Gorman, Shelley; Hart, Prue H; Kicic, Anthony; Zosky, Graeme R

    2016-09-01

    Vitamin D deficiency is associated with asthma risk. Vitamin D deficiency may enhance the inflammatory response, and we have previously shown that airway remodeling and airway hyperresponsiveness is increased in vitamin D-deficient mice. In this study, we hypothesize that vitamin D deficiency would exacerbate house dust mite (HDM)-induced inflammation and alterations in lung structure and function. A BALB/c mouse model of vitamin D deficiency was established by dietary manipulation. Responsiveness to methacholine, airway smooth muscle (ASM) mass, mucus cell metaplasia, lung and airway inflammation, and cytokines in bronchoalveolar lavage (BAL) fluid were assessed. Gene expression patterns in mouse lung samples were profiled by RNA-Seq. HDM exposure increased inflammation and inflammatory cytokines in BAL, baseline airway resistance, tissue elastance, and ASM mass. Vitamin D deficiency enhanced the HDM-induced influx of lymphocytes into BAL, ameliorated the HDM-induced increase in ASM mass, and protected against the HDM-induced increase in baseline airway resistance. RNA-Seq identified nine genes that were differentially regulated by vitamin D deficiency in the lungs of HDM-treated mice. Immunohistochemical staining confirmed that protein expression of midline 1 (MID1) and adrenomedullin was differentially regulated such that they promoted inflammation, while hypoxia-inducible lipid droplet-associated, which is associated with ASM remodeling, was downregulated. Protein expression studies in human bronchial epithelial cells also showed that addition of vitamin D decreased MID1 expression. Differential regulation of these genes by vitamin D deficiency could determine lung inflammation and pathophysiology and suggest that the effect of vitamin D deficiency on HDM-induced allergic airways disease is complex. Copyright © 2016 the American Physiological Society.

  20. Vitamin K2 and cotylenin A synergistically induce monocytic differentiation and growth arrest along with the suppression of c-MYC expression and induction of cyclin G2 expression in human leukemia HL-60 cells.

    PubMed

    Maniwa, Yasuhisa; Kasukabe, Takashi; Kumakura, Shunichi

    2015-08-01

    Although all-trans retinoic acid (ATRA) is a standard and effective drug used for differentiation therapy in acute promyelocytic leukemia, ATRA-resistant leukemia cells ultimately emerge during this treatment. Therefore, the development of new drugs or effective combination therapy is urgently needed. We demonstrate that the combined treatment of vitamin K2 and cotylenin A synergistically induced monocytic differentiation in HL-60 cells. This combined treatment also synergistically induced NBT-reducing activity and non-specific esterase-positive cells as well as morphological changes to monocyte/macrophage-like cells. Vitamin K2 and cotylenin A cooperatively inhibited the proliferation of HL-60 cells in short-term and long-term cultures. This treatment also induced growth arrest at the G1 phase. Although 5 µg/ml cotylenin A or 5 µM vitamin K2 alone reduced c-MYC gene expression in HL-60 cells to approximately 45% or 80% that of control cells, respectively, the combined treatment almost completely suppressed c-MYC gene expression. We also demonstrated that the combined treatment of vitamin K2 and cotylenin A synergistically induced the expression of cyclin G2, which had a positive effect on the promotion and maintenance of cell cycle arrest. These results suggest that the combination of vitamin K2 and cotylenin A has therapeutic value in the treatment of acute myeloid leukemia.

  1. Genome-wide expression analysis of human in vivo irritated epidermis: differential profiles induced by sodium lauryl sulfate and nonanoic acid.

    PubMed

    Clemmensen, Anders; Andersen, Klaus E; Clemmensen, Ole; Tan, Qihua; Petersen, Thomas K; Kruse, Torben A; Thomassen, Mads

    2010-09-01

    The pathogenesis of irritant contact dermatitis (ICD) is poorly understood, and genes participating in the epidermal response to chemical irritants are only partly known. It is commonly accepted that different irritants have different mechanisms of action in the development of ICD. To define the differential molecular events induced in the epidermis by different irritants, we collected sequential biopsies ((1/2), 4, and 24 hours after a single exposure and at day 11 after repeated exposure) from human volunteers exposed to either sodium lauryl sulfate (SLS) or nonanoic acid (NON). Gene expression analysis using high-density oligonucleotide microarrays (representing 47,000 transcripts) revealed essentially different pathway responses (1/2)hours after exposure: NON transiently induced the IL-6 pathway as well as a number of mitogen-activated signaling cascades including extracellular signal-regulated kinase and growth factor receptor signaling, whereas SLS transiently downregulated cellular energy metabolism pathways. Differential expression of the cyclooxygenase-2 and matrix metalloproteinase 3 transcripts was confirmed immunohistochemically. After cumulative exposure, 883 genes were differentially expressed, whereas we identified 23 suggested common biomarkers for ICD. In conclusion, we bring new insights into two hitherto less well-elucidated phases of skin irritancy: the very initial as well as the late phase after single and cumulative mild exposures, respectively.

  2. Hantaviruses induce cell type- and viral species-specific host microRNA expression signatures

    PubMed Central

    Shin, Ok Sarah; Kumar, Mukesh; Yanagihara, Richard; Song, Jin-Won

    2014-01-01

    The mechanisms of hantavirus-induced modulation of host cellular immunity remain poorly understood. Recently, microRNAs (miRNAs) have emerged as a class of essential regulators of host immune response genes. To ascertain if differential host miRNA expression toward representative hantavirus species correlated with immune response genes, miRNA expression profiles were analyzed in human endothelial cells, macrophages and epithelial cells infected with pathogenic and nonpathogenic rodent- and shrew-borne hantaviruses. Distinct miRNA expression profiles were observed in a cell type- and viral species-specific pattern. A subset of miRNAs, including miR-151-5p and miR-1973, were differentially expressed between Hantaan virus and Prospect Hill virus. Pathway analyses confirmed that the targets of selected miRNAs were associated with inflammatory responses and innate immune receptor-mediated signaling pathways. Our data suggest that differential immune responses following hantavirus infection may be regulated in part by cellular miRNA through dysregulation of genes critical to the inflammatory process. PMID:24074584

  3. Integrated data analysis identifies potential inducers and pathways during the endothelial differentiation of bone-marrow stromal cells by DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine.

    PubMed

    Xu, Rui; Chen, Wenbin; Zhang, Zhifen; Qiu, Yang; Wang, Yong; Zhang, Bingchang; Lu, Wei

    2018-05-30

    Bone-Marrow Stromal Cells (BMSCs)-derived vascular endothelial cells (VECs) is regarded as an important therapeutic strategy for spinal cord injury, disc degeneration, cerebral ischemic disease and diabetes. The change in DNA methylation level is essential for stem cell differentiation. However, the DNA methylation related mechanisms underlying the endothelial differentiation of BMSCs are not well understood. In this study, DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5-aza-dC) significantly elevated the endothelial markers expression (CD31/PECAM1, CD105/ENG, eNOS and VE-cadherin), as well as promoted the capacity of angiogenesis on Matrigel. The result of Alexa 488-Ac-LDL uptake assay indicated that the differentiation ratio of BMSCs into VECs was 68.7% in 5-azaz-dC induced differentiation. And then we screened differentiation inducers with altered expression patterns and DNA methylation levels in four important families (VEGF, ANG, FGF and ETS). By integrating these data, five endothelial differentiation inducers (VEGFA, ANGPT2, FGF2, FGF9 and ETS1) which were directly upregulated by 5-aza-dC and five indirect factors (FGF1, FGF3, ETS2, ETV1 and ETV4) were identified. These data suggested that 5-aza-dC is an excellent chemical molecule for BMSCs differentiation into functional VECs and also provided essential clues for DNA methylation related signaling during 5-aza-dC induced endothelial differentiation of BMSCs. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. An integrated approach to elucidate signaling pathways of dioscin-induced apoptosis, energy metabolism and differentiation in acute myeloid leukemia.

    PubMed

    Chan, She-Hung; Liang, Pi-Hui; Guh, Jih-Hwa

    2018-06-01

    Although the therapeutics have improved the rates of remission and cure of acute myelogenous leukemia (AML) in recent decades, there is still an unmet medical need for AML therapies because disease relapses are a major obstacle in patients who become refractory to salvage therapy. The development of therapeutic agents promoting both cytotoxicity and cell differentiation may provide opportunities to improve the clinical outcome. Dioscin-induced apoptosis in leukemic cells was identified through death receptor-mediated extrinsic apoptosis pathway. The formation of Bak and tBid, and loss of mitochondrial membrane potential were induced by dioscin suggesting the activation of intrinsic apoptotsis pathway. A functional analysis of transcription factors using transcription factor-DNA interaction array and IPA analysis demonstrated that dioscin induced a profound increase of protein expression of CCAAT/enhancer-binding protein α (C/EBPα), a critical factor for myeloid differentiation. Two-dimensional gel electrophoresis assay confirmed the increase of C/EBPα expression. Dioscin-induced differentiation was substantiated by an increase of CD11b protein expression and the induction of differentiation toward myelomonocytic/granulocytic lineages using hematoxylin and eosin staining. Moreover, both glycolysis and gluconeogenesis pathways after two-dimensional gel electrophoresis assay and IPA network enrichment analysis were proposed to dioscin action. In conclusion, the data suggest that dioscin exerts its antileukemic effect through the upregulation of both death ligands and death receptors and a crosstalk activation of mitochondrial apoptosis pathway with the collaboration of tBid and Bak formation. In addition, proteomics approach reveals an altered metabolic signature of dioscin-treated cells and the induction of differentiation of promyelocytes to granulocytes and monocytes in which the C/EBPα plays a key role.

  5. Activation of peroxisome proliferator-activated receptor-gamma reverses squamous metaplasia and induces transitional differentiation in normal human urothelial cells.

    PubMed

    Varley, Claire Lucy; Stahlschmidt, Jens; Smith, Barbara; Stower, Michael; Southgate, Jennifer

    2004-05-01

    We observed that in urothelium, both cornifying and noncornifying forms of squamous metaplasia are accompanied by changes in the localization of the nuclear hormone receptors, peroxisome proliferator activated receptor gamma (PPAR-gamma) and retinoid X receptor (RXR-alpha). To obtain objective evidence for a role for PPAR-gamma-mediated signaling in urothelial differentiation, we examined expression of the cytokeratin isotypes CK13, CK20, and CK14 as indicators of transitional, terminal transitional, and squamous differentiation, respectively, in cultures of normal human urothelial cells. In control culture conditions, normal human urothelial cells showed evidence of squamous differentiation (CK14+, CK13-, CK20-). Treatment with the high-affinity PPAR-gamma agonist, troglitazone (TZ), resulted in gain of CK13 and loss of CK14 protein expression. The effect of TZ was significantly augmented when the autocrine-stimulated epidermal growth factor receptor pathway was inhibited and this resulted in induction of CK20 expression. The RXR-specific inhibitors PA452, HX531, and HX603 inhibited the TZ-induced CK13 expression, supporting a role for RXR in the induction of CK13 expression. Thus, signaling through PPAR-gamma can mediate transitional differentiation of urothelial cells and this is modulated by growth regulatory programs.

  6. Heat shock instructs hESCs to exit from the self-renewal program through negative regulation of OCT4 by SAPK/JNK and HSF1 pathway.

    PubMed

    Byun, Kyunghee; Kim, Taek-Kyun; Oh, Jeehyun; Bayarsaikhan, Enkhjargal; Kim, Daesik; Lee, Min Young; Pack, Chan-Gi; Hwang, Daehee; Lee, Bonghee

    2013-11-01

    Environmental factors affect self-renewal of stem cells by modulating the components of self-renewal networks. Heat shock, an environmental factor, induces heat shock factors (HSFs), which up-regulate stress response-related genes. However, the link of heat shock to self-renewal of stem cells has not been elucidated yet. Here, we present the direct link of heat shock to a core stem cell regulator, OCT4, in the self-renewal network through SAPK/JNK and HSF1 pathway. We first showed that heat shock initiated differentiation of human embryonic stem cells (hESCs). Gene expression analysis revealed that heat shock increased the expression of many genes involved in cellular processes related to differentiation of stem cells. We then examined the effects of HSFs induced by heat shock on core self-renewal factors. Among HSFs, heat shock induced mainly HSF1 in hESCs. The HSF1 repressed the expression of OCT4, leading to the differentiation of hESCs and the above differentiation-related gene expression change. We further examined the effects of the upstream MAP (mitogen-activated protein) kinases of HSF1 on the repression of OCT4 expression by HSF1. Among the MAP kinases, SAPK/JNK controlled predominantly the repression of the OCT4 expression by HSF1. The direct link of heat shock to the core self-renewal regulator through SAPK/JNK and HSF1 provides a fundamental basis for understanding the effect of heat and other stresses involving activation of HSF1 on the self-renewal program and further controlling differentiation of hESCs in a broad spectrum of stem cell applications using these stresses. © 2013.

  7. A lentiviral vector with a short troponin-I promoter for tracking cardiomyocyte differentiation of human embryonic stem cells.

    PubMed

    Gallo, P; Grimaldi, S; Latronico, M V G; Bonci, D; Pagliuca, A; Gallo, P; Ausoni, S; Peschle, C; Condorelli, G

    2008-02-01

    Human embryonic stem cells (hESCs) may become important for cardiac repair due to their potentially unlimited ability to generate cardiomyocytes (CMCs). Moreover, genetic manipulation of hESC-derived CMCs would be a very promising technique for curing myocardial disorders. At the present time, however, inducing the differentiation of hESCs into CMCs is extremely difficult and, therefore, an easy and standardizable technique is needed to evaluate differentiation strategies. Vectors driving cardiac-specific expression may represent an important tool not only for monitoring new cardiac-differentiation strategies, but also for the manipulation of cardiac differentiation of ESCs. To this aim, we generated cardiac-specific lentiviral vectors (LVVs) in which expression is driven by a short fragment of the cardiac troponin-I proximal promoter (TNNI3) with a human cardiac alpha-actin enhancer, and tested its suitability in inducing tissue-specific gene expression and ability to track the CMC lineage during differentiation of ESCs. We determined that (1) TNNI3-LVVs efficiently drive cardiac-specific gene expression and mark the cardiomyogenic lineage in human and mouse ESC differentiation systems (2) the cardiac alpha-actin enhancer confers a further increase in gene-expression specificity of TNNI3-LVVs in hESCs. Although this technique may not be useful in tracking small numbers of cells, data suggested that TNNI3-based LVVs are a powerful tool for manipulating human ESCs and modifying hESC-derived CMCs.

  8. The RB-related gene Rb2/p130 in neuroblastoma differentiation and in B-myb promoter down-regulation.

    PubMed

    Raschellà, G; Tanno, B; Bonetto, F; Negroni, A; Claudio, P P; Baldi, A; Amendola, R; Calabretta, B; Giordano, A; Paggi, M G

    1998-05-01

    The retinoblastoma family of nuclear factors is composed of RB, the prototype of the tumour suppressor genes and of the strictly related genes p107 and Rb2/p130. The three genes code for proteins, namely pRb, p107 and pRb2/p130, that share similar structures and functions. These proteins are expressed, often simultaneously, in many cell types and are involved in the regulation of proliferation and differentiation. We determined the expression and the phosphorylation of the RB family gene products during the DMSO-induced differentiation of the N1E-115 murine neuroblastoma cells. In this system, pRb2/p130 was strongly up-regulated during mid-late differentiation stages, while, on the contrary, pRb and p107 resulted markedly decreased at late stages. Differentiating N1E-115 cells also showed a progressive decrease in B-myb levels, a proliferation-related protein whose constitutive expression inhibits neuronal differentiation. Transfection of each of the RB family genes in these cells was able, at different degrees, to induce neuronal differentiation, to inhibit [3H]thymidine incorporation and to down-regulate the activity of the B-myb promoter.

  9. Interrogation of transcriptomic changes associated with drug-induced hepatic sinusoidal dilatation in colorectal cancer.

    PubMed

    Jarzabek, Monika A; Proctor, William R; Vogt, Jennifer; Desai, Rupal; Dicker, Patrick; Cain, Gary; Raja, Rajiv; Brodbeck, Jens; Stevens, Dale; van der Stok, Eric P; Martens, John W M; Verhoef, Cornelis; Hegde, Priti S; Byrne, Annette T; Tarrant, Jacqueline M

    2018-01-01

    Drug-related sinusoidal dilatation (SD) is a common form of hepatotoxicity associated with oxaliplatin-based chemotherapy used prior to resection of colorectal liver metastases (CRLM). Recently, hepatic SD has also been associated with anti-delta like 4 (DLL4) cancer therapies targeting the NOTCH pathway. To investigate the hypothesis that NOTCH signaling plays an important role in drug-induced SD, gene expression changes were examined in livers from anti-DLL4 and oxaliplatin-induced SD in non-human primate (NHP) and patients, respectively. Putative mechanistic biomarkers of bevacizumab (bev)-mediated protection against oxaliplatin-induced SD were also investigated. RNA was extracted from whole liver sections or centrilobular regions by laser-capture microdissection (LCM) obtained from NHP administered anti-DLL4 fragment antigen-binding (F(ab')2 or patients with CRLM receiving oxaliplatin-based chemotherapy with or without bev. mRNA expression was quantified using high-throughput real-time quantitative PCR. Significance analysis was used to identify genes with differential expression patterns (false discovery rate (FDR) < 0.05). Eleven (CCL2, CCND1, EFNB2, ERG, ICAM1, IL16, LFNG, NOTCH1, NOTCH4, PRDX1, and TGFB1) and six (CDH5, EFNB2, HES1, IL16, MIK67, HES1 and VWF) candidate genes were differentially expressed in the liver of anti-DLL4- and oxaliplatin-induced SD, respectively. Addition of bev to oxaliplatin-based chemotherapy resulted in differential changes in hepatic CDH5, HEY1, IL16, JAG1, MMP9, NOTCH4 and TIMP1 expression. This work implicates NOTCH and IL16 pathways in the pathogenesis of drug-induced SD and further explains the hepato-protective effect of bev in oxaliplatin-induced SD observed in CRLM patients.

  10. Pregnancy-induced gene expression changes in vivo among women with rheumatoid arthritis: a pilot study.

    PubMed

    Goin, Dana E; Smed, Mette Kiel; Pachter, Lior; Purdom, Elizabeth; Nelson, J Lee; Kjærgaard, Hanne; Olsen, Jørn; Hetland, Merete Lund; Zoffmann, Vibeke; Ottesen, Bent; Jawaheer, Damini

    2017-05-25

    Little is known about gene expression changes induced by pregnancy in women with rheumatoid arthritis (RA) and healthy women because the few studies previously conducted did not have pre-pregnancy samples available as baseline. We have established a cohort of women with RA and healthy women followed prospectively from a pre-pregnancy baseline. In this study, we tested the hypothesis that pregnancy-induced changes in gene expression among women with RA who improve during pregnancy (pregDAS improved ) overlap substantially with changes observed among healthy women and differ from changes observed among women with RA who worsen during pregnancy (pregDAS worse ). Global gene expression profiles were generated by RNA sequencing (RNA-seq) from 11 women with RA and 5 healthy women before pregnancy (T0) and at the third trimester (T3). Among the women with RA, eight showed an improvement in disease activity by T3, whereas three worsened. Differential expression analysis was used to identify genes demonstrating significant changes in expression within each of the RA and healthy groups (T3 vs T0), as well as between the groups at each time point. Gene set enrichment was assessed in terms of Gene Ontology processes and protein networks. A total of 1296 genes were differentially expressed between T3 and T0 among the 8 pregDAS improved women, with 161 genes showing at least two-fold change (FC) in expression by T3. The majority (108 of 161 genes) were also differentially expressed among healthy women (q<0.05, FC≥2). Additionally, a small cluster of genes demonstrated contrasting changes in expression between the pregDAS improved and pregDAS worse groups, all of which were inducible by type I interferon (IFN). These IFN-inducible genes were over-expressed at T3 compared to the T0 baseline among the pregDAS improved women. In our pilot RNA-seq dataset, increased pregnancy-induced expression of type I IFN-inducible genes was observed among women with RA who improved during pregnancy, but not among women who worsened. These findings warrant further investigation into expression of these genes in RA pregnancy and their potential role in modulation of disease activity. These results are nevertheless preliminary and should be interpreted with caution until replicated in a larger sample.

  11. A threshold level of NFATc1 activity facilitates thymocyte differentiation and opposes notch-driven leukaemia development

    PubMed Central

    Klein-Hessling, Stefan; Rudolf, Ronald; Muhammad, Khalid; Knobeloch, Klaus-Peter; Maqbool, Muhammad Ahmad; Cauchy, Pierre; Andrau, Jean-Christophe; Avots, Andris; Talora, Claudio; Ellenrieder, Volker; Screpanti, Isabella; Serfling, Edgar; Patra, Amiya Kumar

    2016-01-01

    NFATc1 plays a critical role in double-negative thymocyte survival and differentiation. However, the signals that regulate Nfatc1 expression are incompletely characterized. Here we show a developmental stage-specific differential expression pattern of Nfatc1 driven by the distal (P1) or proximal (P2) promoters in thymocytes. Whereas, preTCR-negative thymocytes exhibit only P2 promoter-derived Nfatc1β expression, preTCR-positive thymocytes express both Nfatc1β and P1 promoter-derived Nfatc1α transcripts. Inducing NFATc1α activity from P1 promoter in preTCR-negative thymocytes, in addition to the NFATc1β from P2 promoter impairs thymocyte development resulting in severe T-cell lymphopenia. In addition, we show that NFATc1 activity suppresses the B-lineage potential of immature thymocytes, and consolidates their differentiation to T cells. Further, in the pTCR-positive DN3 cells, a threshold level of NFATc1 activity is vital in facilitating T-cell differentiation and to prevent Notch3-induced T-acute lymphoblastic leukaemia. Altogether, our results show NFATc1 activity is crucial in determining the T-cell fate of thymocytes. PMID:27312418

  12. Interleukin-1β modulates smooth muscle cell phenotype to a distinct inflammatory state relative to PDGF-DD via NF-κB-dependent mechanisms.

    PubMed

    Alexander, Matthew R; Murgai, Meera; Moehle, Christopher W; Owens, Gary K

    2012-04-02

    Smooth muscle cell (SMC) phenotypic modulation in atherosclerosis and in response to PDGF in vitro involves repression of differentiation marker genes and increases in SMC proliferation, migration, and matrix synthesis. However, SMCs within atherosclerotic plaques can also express a number of proinflammatory genes, and in cultured SMCs the inflammatory cytokine IL-1β represses SMC marker gene expression and induces inflammatory gene expression. Studies herein tested the hypothesis that IL-1β modulates SMC phenotype to a distinct inflammatory state relative to PDGF-DD. Genome-wide gene expression analysis of IL-1β- or PDGF-DD-treated SMCs revealed that although both stimuli repressed SMC differentiation marker gene expression, IL-1β distinctly induced expression of proinflammatory genes, while PDGF-DD primarily induced genes involved in cell proliferation. Promoters of inflammatory genes distinctly induced by IL-1β exhibited over-representation of NF-κB binding sites, and NF-κB inhibition in SMCs reduced IL-1β-induced upregulation of proinflammatory genes as well as repression of SMC differentiation marker genes. Interestingly, PDGF-DD-induced SMC marker gene repression was not NF-κB dependent. Finally, immunofluorescent staining of mouse atherosclerotic lesions revealed the presence of cells positive for the marker of an IL-1β-stimulated inflammatory SMC, chemokine (C-C motif) ligand 20 (CCL20), but not the PDGF-DD-induced gene, regulator of G protein signaling 17 (RGS17). Results demonstrate that IL-1β- but not PDGF-DD-induced phenotypic modulation of SMC is characterized by NF-κB-dependent activation of proinflammatory genes, suggesting the existence of a distinct inflammatory SMC phenotype. In addition, studies provide evidence for the possible utility of CCL20 and RGS17 as markers of inflammatory and proliferative state SMCs within atherosclerotic plaques in vivo.

  13. Chronic ethanol exposure changes dopamine D2 receptor splicing during retinoic acid-induced differentiation of human SH-SY5Y cells.

    PubMed

    Wernicke, Catrin; Hellmann, Julian; Finckh, Ulrich; Rommelspacher, Hans

    2010-01-01

    There is evidence for ethanol-induced impairment of the dopaminergic system in the brain during development. The dopamine D2 receptor (DRD2) and the dopamine transporter (DAT) are decisively involved in dopaminergic signaling. Two splice variants of DRD2 are known, with the short one (DRD2s) representing the autoreceptor and the long one (DRD2l) the postsynaptic receptor. We searched for a model to investigate the impact of chronic ethanol exposure and withdrawal on the expression of these proteins during neuronal differentiation. RA-induced differentiation of human neuroblastoma SH-SY5Y cells seems to represent such a model. Our real-time RT-PCR, Western blot, and immunocytochemistry analyses of undifferentiated and RA-differentiated cells have demonstrated the enhanced expression of both splice variants of DRD2, with the short one being stronger enhanced than the long one under RA-treatment, and the DRD2 distribution on cell bodies and neurites under both conditions. In contrast, DAT was down-regulated by RA. The DAT is functional both in undifferentiated and RA-differentiated cells as demonstrated by [(3)H]dopamine uptake. Chronic ethanol exposure during differentiation for up to 4 weeks resulted in a delayed up-regulation of DRD2s. Ethanol withdrawal caused an increased expression of DRD2l and a normalization of DRD2s. Thus the DRD2s/DRD2l ratio was still disturbed. The dopamine level was increased by RA-differentiation compared to controls and was diminished under RA/ethanol treatment and ethanol withdrawal compared to RA-only treated cells. In conclusion, chronic ethanol exposure impairs differentiation-dependent adaptation of dopaminergic proteins, specifically of DRD2s. RA-differentiating SH-SY5Y cells are suited to study the impact of chronic ethanol exposure and withdrawal on expression of dopaminergic proteins during neuronal differentiation.

  14. Linking transgene expression of engineered mesenchymal stem cells and angiopoietin-1-induced differentiation to target cancer angiogenesis.

    PubMed

    Conrad, Claudius; Hüsemann, Yves; Niess, Hanno; von Luettichau, Irene; Huss, Ralf; Bauer, Christian; Jauch, Karl-Walter; Klein, Christoph A; Bruns, Christiane; Nelson, Peter J

    2011-03-01

    To specifically target tumor angiogenesis by linking transgene expression of engineered mesenchymal stem cells to angiopoietin-1-induced differentiation. Mesenchymal stem cells (MSCs) have been used to deliver therapeutic genes into solid tumors. These strategies rely on their homing mechanisms only to deliver the therapeutic agent. We engineered murine MSC to express reporter genes or therapeutic genes under the selective control of the Tie2 promoter/enhancer. This approach uses the differentiative potential of MSCs induced by the tumor microenvironment to drive therapeutic gene expression only in the context of angiogenesis. When injected into the peripheral circulation of mice with either, orthotopic pancreatic or spontaneous breast cancer, the engineered MSCs were actively recruited to growing tumor vasculature and induced the selective expression of either reporter red florescent protein or suicide genes [herpes simplex virus-thymidine kinase (TK) gene] when the adoptively transferred MSC developed endothelial-like characteristics. The TK gene product in combination with the prodrug ganciclovir (GCV) produces a potent toxin, which affects replicative cells. The homing of engineered MSC with selective induction of TK in concert with GCV resulted in a toxic tumor-specific environment. The efficacy of this approach was demonstrated by significant reduction in primary tumor growth and prolongation of life in both tumor models. This "Trojan Horse" combined stem cell/gene therapy represents a novel treatment strategy for tailored therapy of solid tumors.

  15. Myt1L Promotes Differentiation of Oligodendrocyte Precursor Cells and is Necessary for Remyelination After Lysolecithin-Induced Demyelination.

    PubMed

    Shi, Yanqing; Shao, Qi; Li, Zhenghao; Gonzalez, Ginez A; Lu, Fengfeng; Wang, Dan; Pu, Yingyan; Huang, Aijun; Zhao, Chao; He, Cheng; Cao, Li

    2018-04-01

    The differentiation and maturation of oligodendrocyte precursor cells (OPCs) is essential for myelination and remyelination in the CNS. The failure of OPCs to achieve terminal differentiation in demyelinating lesions often results in unsuccessful remyelination in a variety of human demyelinating diseases. However, the molecular mechanisms controlling OPC differentiation under pathological conditions remain largely unknown. Myt1L (myelin transcription factor 1-like), mainly expressed in neurons, has been associated with intellectual disability, schizophrenia, and depression. In the present study, we found that Myt1L was expressed in oligodendrocyte lineage cells during myelination and remyelination. The expression level of Myt1L in neuron/glia antigen 2-positive (NG2 + ) OPCs was significantly higher than that in mature CC1 + oligodendrocytes. In primary cultured OPCs, overexpression of Myt1L promoted, while knockdown inhibited OPC differentiation. Moreover, Myt1L was potently involved in promoting remyelination after lysolecithin-induced demyelination in vivo. ChIP assays showed that Myt1L bound to the promoter of Olig1 and transcriptionally regulated Olig1 expression. Taken together, our findings demonstrate that Myt1L is an essential regulator of OPC differentiation, thereby supporting Myt1L as a potential therapeutic target for demyelinating diseases.

  16. Human Pluripotent Stem Cells Differentiated in Fully Defined Medium Generate Hematopoietic CD34+ and CD34− Progenitors with Distinct Characteristics

    PubMed Central

    Chicha, Laurie; Feki, Anis; Boni, Alessandro; Irion, Olivier; Hovatta, Outi; Jaconi, Marisa

    2011-01-01

    Background Differentiation of pluripotent stem cells in vitro provides a powerful means to investigate early developmental fates, including hematopoiesis. In particular, the use of a fully defined medium (FDM) would avoid biases induced by unidentified factors contained in serum, and would also allow key molecular mediators involved in such a process to be identified. Our goal was to induce in vitro, the differentiation of human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) into morphologically and phenotypically mature leukocytes and erythrocytes, in the complete absence of serum and feeder cells. Methodology/Principal Findings ESC and iPSC were sequentially induced in liquid cultures for 4 days with bone morphogenic protein-4, and for 4 days with FLT3-ligand, stem cell factor, thrombopoietin and vascular endothelium growth factor. Cell differentiation status was investigated by both mRNA expression and FACS expression profiles. Cells were further sorted and assayed for their hematopoietic properties in colony-forming unit (CFU) assays. In liquid cultures, cells progressively down-modulated Oct-4 expression while a sizeable cell fraction expressed CD34 de novo. SCL/Tal1 and Runx1 transcripts were exclusively detected in CD34+ cells. In clonal assays, both ESC and iPSC-derived cells generated CFU, albeit with a 150-fold lower efficacy than cord blood (CB) CD34+ cells. ESC-derived CD34+ cells generated myeloid and fully hemoglobinized erythroid cells whereas CD34− cells almost exclusively generated small erythroid colonies. Both ESC and iPSC-derived erythroid cells expressed embryonic and fetal globins but were unable to synthesize adult β-globin in contrast with CB cells, suggesting that they had differentiated from primitive rather than from definitive hematopoietic progenitors. Conclusions/Significance Short-term, animal protein-free culture conditions are sufficient to sustain the differentiation of human ESC and iPSC into primitive hematopoietic progenitors, which, in turn, produce more mature blood cell types. However, additional factors have yet to be identified to allow their differentiation into definitive erythroid cultures. PMID:21364915

  17. Human pluripotent stem cells differentiated in fully defined medium generate hematopoietic CD34- and CD34+ progenitors with distinct characteristics.

    PubMed

    Chicha, Laurie; Feki, Anis; Boni, Alessandro; Irion, Olivier; Hovatta, Outi; Jaconi, Marisa

    2011-02-25

    Differentiation of pluripotent stem cells in vitro provides a powerful means to investigate early developmental fates, including hematopoiesis. In particular, the use of a fully defined medium (FDM) would avoid biases induced by unidentified factors contained in serum, and would also allow key molecular mediators involved in such a process to be identified. Our goal was to induce in vitro, the differentiation of human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) into morphologically and phenotypically mature leukocytes and erythrocytes, in the complete absence of serum and feeder cells. ESC and iPSC were sequentially induced in liquid cultures for 4 days with bone morphogenic protein-4, and for 4 days with FLT3-ligand, stem cell factor, thrombopoietin and vascular endothelium growth factor. Cell differentiation status was investigated by both mRNA expression and FACS expression profiles. Cells were further sorted and assayed for their hematopoietic properties in colony-forming unit (CFU) assays. In liquid cultures, cells progressively down-modulated Oct-4 expression while a sizeable cell fraction expressed CD34 de novo. SCL/Tal1 and Runx1 transcripts were exclusively detected in CD34(+) cells. In clonal assays, both ESC and iPSC-derived cells generated CFU, albeit with a 150-fold lower efficacy than cord blood (CB) CD34(+) cells. ESC-derived CD34(+) cells generated myeloid and fully hemoglobinized erythroid cells whereas CD34(-) cells almost exclusively generated small erythroid colonies. Both ESC and iPSC-derived erythroid cells expressed embryonic and fetal globins but were unable to synthesize adult β-globin in contrast with CB cells, suggesting that they had differentiated from primitive rather than from definitive hematopoietic progenitors. Short-term, animal protein-free culture conditions are sufficient to sustain the differentiation of human ESC and iPSC into primitive hematopoietic progenitors, which, in turn, produce more mature blood cell types. However, additional factors have yet to be identified to allow their differentiation into definitive erythroid cultures.

  18. Perfluorooctane sulfonate induces neuronal and oligodendrocytic differentiation in neural stem cells and alters the expression of PPARγ in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan Ibrahim, Wan Norhamidah, E-mail: hamidah@science.upm.edu.my; Tofighi, Roshan, E-mail: Roshan.Tofighi@ki.se; Onishchenko, Natalia, E-mail: Natalia.Onishchenko@ki.se

    2013-05-15

    Perfluorinated compounds are ubiquitous chemicals of major concern for their potential adverse effects on the human population. We have used primary rat embryonic neural stem cells (NSCs) to study the effects of perfluorooctane sulfonate (PFOS) on the process of NSC spontaneous differentiation. Upon removal of basic fibroblast growth factor, NSCs were exposed to nanomolar concentrations of PFOS for 48 h, and then allowed to differentiate for additional 5 days. Exposure to 25 or 50 nM concentration resulted in a lower number of proliferating cells and a higher number of neurite-bearing TuJ1-positive cells, indicating an increase in neuronal differentiation. Exposure tomore » 50 nM also significantly increased the number of CNPase-positive cells, pointing to facilitation of oligodendrocytic differentiation. PPAR genes have been shown to be involved in PFOS toxicity. By q-PCR we detected an upregulation of PPARγ with no changes in PPARα or PPARδ genes. One of the downstream targets of PPARs, the mitochondrial uncoupling protein 2 (UCP2) was also upregulated. The number of TuJ1- and CNPase-positive cells increased after exposure to PPARγ agonist rosiglitazone (RGZ, 3 μM) and decreased after pre-incubation with the PPARγ antagonist GW9662 (5 μM). RGZ also upregulated the expression of PPARγ and UCP2 genes. Meanwhile GW9662 abolished the UCP2 upregulation and decreased Ca{sup 2+} activity induced by PFOS. Interestingly, a significantly higher expression of PPARγ and UCP3 genes was also detected in mouse neonatal brain after prenatal exposure to PFOS. These data suggest that PPARγ plays a role in the alteration of spontaneous differentiation of NSCs induced by nanomolar concentrations of PFOS. - Highlights: • PFOS decreases proliferation of neural stem cells (NSCs). • PFOS induces neuronal and oligodendrocytic differentiation in NSCs. • PFOS alters expression of PPARγ and UCP2 in vitro. • PFOS alters expression of PPARγ and UCP3 in vivo. • Block of PPARγ by the selective antagonist GW9662 abolishes the effects of PFOS.« less

  19. Transient upregulation of CBFA1 in response to bone morphogenetic protein-2 and transforming growth factor beta1 in C2C12 myogenic cells coincides with suppression of the myogenic phenotype but is not sufficient for osteoblast differentiation.

    PubMed

    Lee, M H; Javed, A; Kim, H J; Shin, H I; Gutierrez, S; Choi, J Y; Rosen, V; Stein, J L; van Wijnen, A J; Stein, G S; Lian, J B; Ryoo, H M

    1999-04-01

    The bone morphogenetic protein (BMP)-2 is a potent osteoinductive signal, inducing bone formation in vivo and osteoblast differentiation from non-osseous cells in vitro. The runt domain-related protein Cbfa1/PEBP2alphaA/AML-3 is a critical component of bone formation in vivo and transcriptional regulator of osteoblast differentiation. To investigate the relationship between the extracellular BMP-2 signal, Cbfa1, and osteogenesis, we examined expression of Cbfa1 and osteoblastic genes during the BMP-2 induced osteogenic transdifferentiation of the myoblastic cell line C2C12. BMP-2 treatment completely blocked myotube formation and transiently induced expression of Cbfa1 and the bone-related homeodomain protein Msx-2 concomitant with loss of the myoblast phenotype. While induction of collagen type I and alkaline phosphatase (AP) expression coincided with Cbfa1 expression, Cbfa1 mRNA was strikingly downregulated at the onset of expression of osteopontin (OPN) and osteocalcin (OCN) genes, reflecting the mature osteoblast phenotype. TGF-beta1 treatment effectively suppressed myogenesis and induced Cbfa1 expression but was insufficient to support osteoblast differentiation reflected by the absence of ALP, OPN, and OCN. We addressed whether induction of Cbfa1 in response to BMP-2 results in the transcriptional activation of the OC promoter which contains three enhancer Cbfa1 elements. Transfection studies show BMP-2 suppresses OC promoter activity in C2C12, but not in osteoblastic ROS 17/2.8 cells. Maximal suppression of OC promoter activity in response to BMP-2 requires sequences in the proximal promoter (up to nt -365) and may occur independent of the three Cbfa sites. Taken together, our results demonstrate a dissociation of Cbfa1 expression from development of the osteoblast phenotype. Our findings suggest that Cbfal may function transiently to divert a committed myoblast to a potentially osteogenic cell. However, other factors induced by BMP-2 appear to be necessary for complete expression of the osteoblast phenotype.

  20. Thrombopoietin inhibits murine mast cell differentiation

    PubMed Central

    Martelli, Fabrizio; Ghinassi, Barbara; Lorenzini, Rodolfo; Vannucchi, Alessandro M; Rana, Rosa Alba; Nishikawa, Mitsuo; Partamian, Sandra; Migliaccio, Giovanni; Migliaccio, Anna Rita

    2009-01-01

    We have recently shown that Mpl, the thrombopoietin receptor, is expressed on murine mast cells and on their precursors and that targeted deletion of the Mpl gene increases mast cell differentiation in mice. Here we report that treatment of mice with thrombopoietin, or addition of this growth factor to bone marrow-derived mast cell cultures, severely hampers the generation of mature cells from their precursors by inducing apoptosis. Analysis of the expression profiling of mast cells obtained in the presence of thrombopoietin suggests that thrombopoietin induces apoptosis of mast cells by reducing expression of the transcription factor Mitf and its target anti-apoptotic gene Bcl2. PMID:18276801

  1. The effects of dan-shen root on cardiomyogenic differentiation of human placenta-derived mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kun; Li, Shi-zheng, E-mail: ychozon@yahoo.com.cn; Zhang, Yun-li

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Conditional medium and dan-shen root were used for cardiomyogenic differentiation. Black-Right-Pointing-Pointer They all could induce hPDMSCs to differentiate into cardiomyocytes. Black-Right-Pointing-Pointer The induction effect of the latter was slightly higher compared to that of the former. Black-Right-Pointing-Pointer Dan-shen root could be a good inducer for cardiomyogenic differentiation. -- Abstract: The aim of this study was to search for a good inducer agent using for cardiomyogenic differentiation of stem cells. Human placenta-derived mesenchymal stem cells (hPDMSCs) were isolated and incubated in enriched medium. Fourth passaged cells were treated with 10 mg/L dan-shen root for 20 days. Morphologic characteristics weremore » analyzed by confocal and electron microscopy. Expression of {alpha}-sarcomeric actin was analyzed by immunohistochemistry. Expression of cardiac troponin-I (TnI) was analyzed by immunohistofluorescence. Atrial natriuretic factor (ANF) and beta-myocin heavy chain ({beta}-MHC) were detected by reverse transcriptase polymerase chain reaction (RT-PCR). hPDMSCs treated with dan-shen root gradually formed a stick-like morphology and connected with adjoining cells. On the 20th day, most of the induced cells stained positive with {alpha}-sarcomeric actin and TnI antibody. ANF and {beta}-MHC were also detected in the induced cells. Approximately 80% of the cells were successfully transdifferentiated into cardiomyocytes. In conclusion, dan-shen root is a good inducer agent used for cardiomyogenic differentiation of hPDMSCs.« less

  2. CoCl2 , a mimic of hypoxia, enhances bone marrow mesenchymal stem cells migration and osteogenic differentiation via STAT3 signaling pathway.

    PubMed

    Yu, Xin; Wan, Qilong; Cheng, Gu; Cheng, Xin; Zhang, Jing; Pathak, Janak L; Li, Zubing

    2018-06-16

    Mesenchymal stem cells homing and migration is a crucial step during bone fracture healing. Hypoxic environment in fracture site induces bone marrow mesenchymal stem cells (BMSCs) migration, but its mechanism remains unclear. Our previous study and studies by other groups have reported the involvement of signal transducer and activator of transcription 3 (STAT3) pathway in cell migration. However, the role of STAT3 pathway in hypoxia-induced cell migration is still unknown. In this study, we investigated the role of STAT3 signaling in hypoxia-induced BMSCs migration and osteogenic differentiation. BMSCs isolated from C57BL/6 male mice were cultured in the presence of cobalt chloride (CoCl 2 ) to simulate intracellular hypoxia. Hypoxia enhanced BMSCs migration, and upregulated cell migration related gene expression i.e., metal-loproteinase (MMP) 7, MMP9 and C-X-C motif chemokine receptor 4. Hypoxia enhanced the phosphorylation of STAT3, and cell migration related proteins: c-jun n-terminal kinase (JNK), focal of adhesion kinase (FAK), extracellular regulated protein kinases and protein kinase B 1/2 (ERK1/2). Moreover, hypoxia enhanced expression of osteogenic differentiation marker. Inhibition of STAT3 suppressed the hy-poxia-induced BMSCs migration, cell migration related signaling molecules phos-phorylation, and osteogenic differentiation related gene expression. In conclusion, our result indicates that hypoxia-induced BMSCs migration and osteogenic differentiation is via STAT3 phosphorylation and involves the cooperative activity of the JNK, FAK and MMP9 signaling pathways. This article is protected by copyright. All rights reserved.

  3. Retinoic Acid Therapy Resistance Progresses from Unilineage to Bilineage in HL-60 Leukemic Blasts

    PubMed Central

    Jensen, Holly A.; Bunaciu, Rodica P.; Ibabao, Christopher N.; Myers, Rebecca; Varner, Jeffrey D.; Yen, Andrew

    2014-01-01

    Emergent resistance can be progressive and driven by global signaling aberrations. All-trans retinoic acid (RA) is the standard therapeutic agent for acute promyelocytic leukemia, but 10–20% of patients are not responsive, and initially responsive patients relapse and develop retinoic acid resistance. The patient-derived, lineage-bipotent acute myeloblastic leukemia (FAB M2) HL-60 cell line is a potent tool for characterizing differentiation-induction therapy responsiveness and resistance in t(15;17)-negative cells. Wild-type (WT) HL-60 cells undergo RA-induced granulocytic differentiation, or monocytic differentiation in response to 1,25-dihydroxyvitamin D3 (D3). Two sequentially emergent RA-resistant HL-60 cell lines, R38+ and R38-, distinguishable by RA-inducible CD38 expression, do not arrest in G1/G0 and fail to upregulate CD11b and the myeloid-associated signaling factors Vav1, c-Cbl, Lyn, Fgr, and c-Raf after RA treatment. Here, we show that the R38+ and R38- HL-60 cell lines display a progressive reduced response to D3-induced differentiation therapy. Exploiting the biphasic dynamic of induced HL-60 differentiation, we examined if resistance-related defects occurred during the first 24 h (the early or “precommitment” phase) or subsequently (the late or “lineage-commitment” phase). HL-60 were treated with RA or D3 for 24 h, washed and retreated with either the same, different, or no differentiation agent. Using flow cytometry, D3 was able to induce CD38, CD11b and CD14 expression, and G1/G0 arrest when present during the lineage-commitment stage in R38+ cells, and to a lesser degree in R38- cells. Clustering analysis of cytometry and quantified Western blot data indicated that WT, R38+ and R38- HL-60 cells exhibited decreasing correlation between phenotypic markers and signaling factor expression. Thus differentiation induction therapy resistance can develop in stages, with initial partial RA resistance and moderate vitamin D3 responsiveness (unilineage maturation block), followed by bilineage maturation block and progressive signaling defects, notably the reduced expression of Vav1, Fgr, and c-Raf. PMID:24922062

  4. Characterization and comparison of osteoblasts derived from mouse embryonic stem cells and induced pluripotent stem cells.

    PubMed

    Ma, Ming-San; Kannan, Vishnu; de Vries, Anneriek E; Czepiel, Marcin; Wesseling, Evelyn M; Balasubramaniyan, Veerakumar; Kuijer, Roel; Vissink, Arjan; Copray, Sjef C V M; Raghoebar, Gerry M

    2017-01-01

    New developments in stem cell biology offer alternatives for the reconstruction of critical-sized bone defects. One of these developments is the use of induced pluripotent stem (iPS) cells. These stem cells are similar to embryonic stem (ES) cells, but can be generated from adult somatic cells and therefore do not raise ethical concerns. Proper characterization of iPS-derived osteoblasts is important for future development of safe clinical applications of these cells. For this reason, we differentiated mouse ES and iPS cells toward osteoblasts using osteogenic medium and compared their functionality. Immunocytochemical analysis showed significant expression of bone markers (osteocalcin and collagen type I) in osteoblasts differentiated from ES and iPS cells on days 7 and 30. An in vitro mineralization assay confirmed the functionality of osteogenically differentiated ES and iPS cells. Gene expression arrays focusing on osteogenic differentiation were performed in order to compare the gene expression pattern in both differentiated and undifferentiated ES cells and iPS cells. We observed a significant upregulation of osteogenesis-related genes such as Runx2, osteopontin, collagen type I, Tnfsf11, Csf1, and alkaline phosphatase upon osteogenic differentiation of the ES and iPS cells. We further validated the expression of key osteogenic genes Runx2, osteopontin, osteocalcin, collagen type I, and osterix in both differentiated and undifferentiated ES and iPS cells by means of quantified real-time polymerase chain reaction. We conclude that ES and iPS cells are similar in their osteogenic differentiation capacities, as well as in their gene expression patterns.

  5. Eradication of acute promyelocytic leukemia-initiating cells by PML/RARA-targeting.

    PubMed

    Nasr, Rihab; de Thé, Hugues

    2010-06-01

    Acute promyelocytic leukemia (APL) is characterized by a t(15;17) translocation that yields a PML/RARA fusion protein. Expression of PML/RARA, a potent transcriptional repressor, induces APL in mice. Both retinoic acid (RA) and arsenic trioxide directly target PML/RARA-mediated transcriptional repression and protein stability, inducing rapid differentiation of the promyelocytes and clinical remission in most APL patients. RA also triggers growth arrest and progressive clearance of leukemia initiating cells (LIC), both ex vivo and in vivo. Suboptimal RA concentrations or expression of the PLZF/RARA variant allows complete RA-induced differentiation, but neither LIC clearance nor disease remission. Thus, RA-induced differentiation and LIC clearance may be uncoupled. The RA/arsenic trioxide association, which dramatically synergizes for PML/RARA degradation but not for differentiation, rapidly clears LIC in a proteasome-dependent manner, resulting in APL eradication in murine models and patients. Collectively, these results demonstrate that LIC clearance, which mirrors PML/RARA degradation, is the primary basis for APL cure by the RA/arsenic trioxide association, rather than differentiation. Oncogene degradation could be a generally applicable therapeutic strategy to clear LICs in several types of tumors.

  6. Indirect immobilized Jagged1 suppresses cell cycle progression and induces odonto/osteogenic differentiation in human dental pulp cells.

    PubMed

    Manokawinchoke, Jeeranan; Nattasit, Praphawi; Thongngam, Tanutchaporn; Pavasant, Prasit; Tompkins, Kevin A; Egusa, Hiroshi; Osathanon, Thanaphum

    2017-08-31

    Notch signaling regulates diverse biological processes in dental pulp tissue. The present study investigated the response of human dental pulp cells (hDPs) to the indirect immobilized Notch ligand Jagged1 in vitro. The indirect immobilized Jagged1 effectively activated Notch signaling in hDPs as confirmed by the upregulation of HES1 and HEY1 expression. Differential gene expression profiling using an RNA sequencing technique revealed that the indirect immobilized Jagged1 upregulated genes were mainly involved in extracellular matrix organization, disease, and signal transduction. Downregulated genes predominantly participated in the cell cycle, DNA replication, and DNA repair. Indirect immobilized Jagged1 significantly reduced cell proliferation, colony forming unit ability, and the number of cells in S phase. Jagged1 treated hDPs exhibited significantly higher ALP enzymatic activity, osteogenic marker gene expression, and mineralization compared with control. Pretreatment with a γ-secretase inhibitor attenuated the Jagged1-induced ALP activity and mineral deposition. NOTCH2 shRNA reduced the Jagged1-induced osteogenic marker gene expression, ALP enzymatic activity, and mineral deposition. In conclusion, indirect immobilized Jagged1 suppresses cell cycle progression and induces the odonto/osteogenic differentiation of hDPs via the canonical Notch signaling pathway.

  7. Successful pod infections by Moniliophthora roreri result in differential Theobroma cacao gene expression depending on the clone's level of tolerance.

    PubMed

    Ali, Shahin S; Melnick, Rachel L; Crozier, Jayne; Phillips-Mora, Wilberth; Strem, Mary D; Shao, Jonathan; Zhang, Dapeng; Sicher, Richard; Meinhardt, Lyndel; Bailey, Bryan A

    2014-09-01

    An understanding of the tolerance mechanisms of Theobroma cacao used against Moniliophthora roreri, the causal agent of frosty pod rot, is important for the generation of stable disease-tolerant clones. A comparative view was obtained of transcript populations of infected pods from two susceptible and two tolerant clones using RNA sequence (RNA-Seq) analysis. A total of 3009 transcripts showed differential expression among clones. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis of differentially expressed genes indicated shifts in 152 different metabolic pathways between the tolerant and susceptible clones. Real-time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR) analyses of 36 genes verified the differential expression. Regression analysis validated a uniform progression in gene expression in association with infection levels and fungal loads in the susceptible clones. Expression patterns observed in the susceptible clones diverged in tolerant clones, with many genes showing higher expression at a low level of infection and fungal load. Principal coordinate analyses of real-time qRT-PCR data separated the gene expression patterns between susceptible and tolerant clones for pods showing malformation. Although some genes were constitutively differentially expressed between clones, most results suggested that defence responses were induced at low fungal load in the tolerant clones. Several elicitor-responsive genes were highly expressed in tolerant clones, suggesting rapid recognition of the pathogen and induction of defence genes. Expression patterns suggested that the jasmonic acid-ethylene- and/or salicylic acid-mediated defence pathways were activated in the tolerant clones, being enhanced by reduced brassinosteroid (BR) biosynthesis and catabolic inactivation of both BR and abscisic acids. Finally, several genes associated with hypersensitive response-like cell death were also induced in tolerant clones. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  8. CD147 promotes the formation of functional osteoclasts through NFATc1 signalling.

    PubMed

    Nishioku, Tsuyoshi; Terasawa, Mariko; Baba, Misaki; Yamauchi, Atsushi; Kataoka, Yasufumi

    2016-04-29

    CD147, a membrane glycoprotein of the immunoglobulin superfamily, is highly upregulated during dynamic cellular events including tissue remodelling. Elevated CD147 expression is present in the joint of rheumatoid arthritis patients. However, the role of CD147 in bone destruction remains unclear. To determine whether CD147 is involved in osteoclastogenesis, we studied its expression in mouse osteoclasts and its role in osteoclast differentiation and function. CD147 expression was markedly upregulated during osteoclast differentiation. To investigate the role of CD147 in receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption activity, osteoclast precursor cells were transfected with CD147 siRNA. Decreased CD147 expression inhibited osteoclast formation and bone resorption, inhibited RANKL-induced nuclear translocation of the nuclear factor of activated T cells (NFAT) c1 and decreased the expression of the d2 isoform of vacuolar ATPase Vo domain and cathepsin K. Therefore, CD147 plays a critical role in the differentiation and function of osteoclasts by upregulating NFATc1 through the autoamplification of its expression in osteoclastogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Juvenile hormone and colony conditions differentially influence cytochrome P450 gene expression in the termite Reticulitermes flavipes.

    PubMed

    Zhou, X; Song, C; Grzymala, T L; Oi, F M; Scharf, M E

    2006-12-01

    In lower termites, the worker caste is a totipotent immature stage that is capable of differentiating into other adult caste phenotypes. We investigated the diversity of family 4 cytochrome P450 (CYP4) genes in Reticulitermes flavipes workers, with the specific goal of identifying P450s potentially involved in regulating caste differentiation. Seven novel CYP4 genes were identified. Quantitative real-time PCR revealed the tissue distribution of expression for the seven CYP4s, as well as temporal expression changes in workers in association with a release from colony influences and during juvenile hormone (JH)-induced soldier caste differentiation. Several fat-body-related CYP4 genes were differentially expressed after JH treatment. Still other genes changed expression in association with removal from colony influences, suggesting that primer pheromones and/or other colony influences impact their expression. These findings add to a growing database of candidate termite caste-regulatory genes, and provide explicit evidence that colony factors influence termite gene expression.

  10. Cytotoxicity and inhibitory effects of low-concentration triclosan on adipogenic differentiation of human mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Li-Wu; Wu, Qiangen; Green, Bridgett

    2012-07-15

    Humans at all ages are continually exposed to triclosan (TCS), a widely used antimicrobial agent that can be found in many daily hygiene products, such as toothpastes and shampoos; however, the toxicological and biological effects of TCS in the human body after long-term and low-concentration exposure are far from being well understood. In the current study, we investigated the effects of TCS on the differentiation of human mesenchymal stem cells (hMSCs) by measuring the cytotoxicity, morphological changes, lipid accumulation, and the expression of adipocyte differentiation biomarkers during 21-day adipogenesis. Significant cytotoxicity was observed in un-induced hMSCs treated with high-concentration TCSmore » (≥ 5.0 μM TCS), but not with low-concentration treatments (≤ 2.5 μM TCS). TCS inhibited adipocyte differentiation of hMSCs in a concentration-dependent manner in the 0.156 to 2.5 μM range as indicated by morphological changes with Oil Red O staining, which is an index of lipid accumulation. The inhibitory effect was confirmed by a decrease in gene expression of specific adipocyte differentiation biomarkers including adipocyte protein 2, lipoprotein lipase, and adiponectin. Our study demonstrates that TCS inhibits adipocyte differentiation of hMSCs under concentrations that are not cytotoxic and in the range observed in human blood. -- Highlights: ► TCS is cytotoxic to un-induced hMSCs at concentrations ≥ 5.0 μM. ► TCS at concentrations ≤ 2.5 μM is not cytotoxic to induced hMSCs. ► TCS at non-cytotoxic concentrations inhibits lipid formation in induced hMSCs. ► TCS decreases the expression of specific biomarkers of adipocyte differentiation. ► TCS at concentrations observed in human blood inhibits adipogenesis of hMSCs.« less

  11. Rho-associated kinase inhibitors promote the cardiac differentiation of embryonic and induced pluripotent stem cells.

    PubMed

    Cheng, Ya-Ting; Yeih, Dong-Feng; Liang, Shu-Man; Chien, Chia-Ying; Yu, Yen-Ling; Ko, Bor-Sheng; Jan, Yee-Jee; Kuo, Cheng-Chin; Sung, Li-Ying; Shyue, Song-Kun; Chen, Ming-Fong; Yet, Shaw-Fang; Wu, Kenneth K; Liou, Jun-Yang

    2015-12-15

    Rho-associated kinase (ROCK) plays an important role in maintaining embryonic stem (ES) cell pluripotency. To determine whether ROCK is involved in ES cell differentiation into cardiac and hematopoietic lineages, we evaluated the effect of ROCK inhibitors, Y-27632 and fasudil on murine ES and induced pluripotent stem (iPS) cell differentiation. Gene expression levels were determined by real-time PCR, Western blot analysis and immunofluorescent confocal microscopy. Cell transplantation of induced differentiated cells were assessed in vivo in a mouse model (three groups, n=8/group) of acute myocardial infarction (MI). The cell engraftment was examined by immunohistochemical staining and the outcome was analyzed by echocardiography. Cells were cultured in hematopoietic differentiation medium in the presence or absence of ROCK inhibitor and colony formation as well as markers of ES, hematopoietic stem cells (HSC) and cells of cardiac lineages were analyzed. ROCK inhibition resulted in a drastic change in colony morphology accompanied by loss of hematopoietic markers (GATA-1, CD41 and β-Major) and expressed markers of cardiac lineages (GATA-4, Isl-1, Tbx-5, Tbx-20, MLC-2a, MLC-2v, α-MHC, cTnI and cTnT) in murine ES and iPS cells. Fasudil-induced cardiac progenitor (Mesp-1 expressing) cells were infused into a murine MI model. They engrafted into the peri-infarct and infarct regions and preserved left ventricular function. These findings provide new insights into the signaling required for ES cell differentiation into hematopoietic as well as cardiac lineages and suggest that ROCK inhibitors are useful in directing iPS cell differentiation into cardiac progenitor cells for cell therapy of cardiovascular diseases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. The Differentiation of Human Adipose-Derived Stem Cells towards a Urothelium-Like Phenotype In Vitro and the Dynamic Temporal Changes of Related Cytokines by Both Paracrine and Autocrine Signal Regulation

    PubMed Central

    Zhou, Zhe; Zhang, Ke; Zhou, Juan; Zhao, Yang; Wang, Zhong; Lu, Mu-jun

    2014-01-01

    Purpose To investigate the differentiation ability of human adipose-derived stem cells (ASCs) towards urothelium-like cells in vitro and the dynamic changes of related cytokines and cytokine receptors in the culture medium. Materials and Methods The ASCs were induced using both conditioned media (CM) and the transwell co-culture system with an immortalized urothelium cell line (SV-HUC-1,HUC) for 21 days. Protein and mRNA expression of the mature urothelium specific markers uroplakin-IA (UP-1A) and uroplakin-II (UP-II) were detected by immunofluorescence and quantitative real-time PCR, respectively. Array detection was used to screen 41 cytokines and receptors in the upper medium of urothelium, non-induced ASCs and urothelium-induced ASCs at three time points, early (12 hours), intermediate (7 days) and late (21 days). Results After induction for 7 days, the ASCs grown in both CM and transwell co-culture system expressed uroplakin-IA (13.54±2.00%; 17.28±1.84%) and uroplakin-II (19.49±1.73%; 13.98±1.47%). After induction for 21 days, ASCs grown in co-culture had significantly increased expression of uroplakin-IA (48.03±1.25%; 49.57±2.85%) and uroplakin-II (45.38±2.50%; 46.58±1.95%). In the upper medium of urothelium, 28 cytokines and 8 cytokine receptors had significantly higher expression than the counterpart of non-induced ASCs. After 7 days induction, the expression of 22 cytokines and 8 cytokine receptors was significantly elevated in the upper medium of induced ASCs compared to non-induced ASCs. At the early and intermediate time points, ASCs secreted high levels of relative cytokines and soluble receptors, but their expressions decreased significantly at the late time point. Conclusion The adipose-derived stem cells have the potential to be differentiated into urothelium-like cells in vitro by both CM and transwell co-culture system with mature urothelium. Numerous cytokines and receptors were involved in the differentiation process with dynamic temporal changes by both paracrine and autocrine signal regulation. Further studies should be carried out to determine the detailed mechanism of cytokines and receptors and to enhance the urothelium differentiation efficiency of ASCs. PMID:24752317

  13. The differentiation of human adipose-derived stem cells towards a urothelium-like phenotype in vitro and the dynamic temporal changes of related cytokines by both paracrine and autocrine signal regulation.

    PubMed

    Zhang, Ming; Xu, Ming-Xi; Zhou, Zhe; Zhang, Ke; Zhou, Juan; Zhao, Yang; Wang, Zhong; Lu, Mu-Jun

    2014-01-01

    To investigate the differentiation ability of human adipose-derived stem cells (ASCs) towards urothelium-like cells in vitro and the dynamic changes of related cytokines and cytokine receptors in the culture medium. The ASCs were induced using both conditioned media (CM) and the transwell co-culture system with an immortalized urothelium cell line (SV-HUC-1,HUC) for 21 days. Protein and mRNA expression of the mature urothelium specific markers uroplakin-IA (UP-1A) and uroplakin-II (UP-II) were detected by immunofluorescence and quantitative real-time PCR, respectively. Array detection was used to screen 41 cytokines and receptors in the upper medium of urothelium, non-induced ASCs and urothelium-induced ASCs at three time points, early (12 hours), intermediate (7 days) and late (21 days). After induction for 7 days, the ASCs grown in both CM and transwell co-culture system expressed uroplakin-IA (13.54±2.00%; 17.28±1.84%) and uroplakin-II (19.49±1.73%; 13.98±1.47%). After induction for 21 days, ASCs grown in co-culture had significantly increased expression of uroplakin-IA (48.03±1.25%; 49.57±2.85%) and uroplakin-II (45.38±2.50%; 46.58±1.95%). In the upper medium of urothelium, 28 cytokines and 8 cytokine receptors had significantly higher expression than the counterpart of non-induced ASCs. After 7 days induction, the expression of 22 cytokines and 8 cytokine receptors was significantly elevated in the upper medium of induced ASCs compared to non-induced ASCs. At the early and intermediate time points, ASCs secreted high levels of relative cytokines and soluble receptors, but their expressions decreased significantly at the late time point. The adipose-derived stem cells have the potential to be differentiated into urothelium-like cells in vitro by both CM and transwell co-culture system with mature urothelium. Numerous cytokines and receptors were involved in the differentiation process with dynamic temporal changes by both paracrine and autocrine signal regulation. Further studies should be carried out to determine the detailed mechanism of cytokines and receptors and to enhance the urothelium differentiation efficiency of ASCs.

  14. Pharmacologic inhibition of lactate production prevents myofibroblast differentiation.

    PubMed

    Kottmann, Robert Matthew; Trawick, Emma; Judge, Jennifer L; Wahl, Lindsay A; Epa, Amali P; Owens, Kristina M; Thatcher, Thomas H; Phipps, Richard P; Sime, Patricia J

    2015-12-01

    Myofibroblasts are one of the primary cell types responsible for the accumulation of extracellular matrix in fibrosing diseases, and targeting myofibroblast differentiation is an important therapeutic strategy for the treatment of pulmonary fibrosis. Transforming growth factor-β (TGF-β) has been shown to be an important inducer of myofibroblast differentiation. We previously demonstrated that lactate dehydrogenase and its metabolic product lactic acid are important mediators of myofibroblast differentiation, via acid-induced activation of latent TGF-β. Here we explore whether pharmacologic inhibition of LDH activity can prevent TGF-β-induced myofibroblast differentiation. Primary human lung fibroblasts from healthy patients and those with pulmonary fibrosis were treated with TGF-β and or gossypol, an LDH inhibitor. Protein and RNA were analyzed for markers of myofibroblast differentiation and extracellular matrix generation. Gossypol inhibited TGF-β-induced expression of the myofibroblast marker α-smooth muscle actin (α-SMA) in a dose-dependent manner in both healthy and fibrotic human lung fibroblasts. Gossypol also inhibited expression of collagen 1, collagen 3, and fibronectin. Gossypol inhibited LDH activity, the generation of extracellular lactic acid, and the rate of extracellular acidification in a dose-dependent manner. Furthermore, gossypol inhibited TGF-β bioactivity in a dose-dependent manner. Concurrent treatment with an LDH siRNA increased the ability of gossypol to inhibit TGF-β-induced myofibroblast differentiation. Gossypol inhibits TGF-β-induced myofibroblast differentiation through inhibition of LDH, inhibition of extracellular accumulation of lactic acid, and inhibition of TGF-β bioactivity. These data support the hypothesis that pharmacologic inhibition of LDH may play an important role in the treatment of pulmonary fibrosis. Copyright © 2015 the American Physiological Society.

  15. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblastsmore » from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases.« less

  16. Different profiles of neuroendocrine cell differentiation evolve in the PC-310 human prostate cancer model during long-term androgen deprivation.

    PubMed

    Jongsma, Johan; Oomen, Monique H; Noordzij, Marinus A; Van Weerden, Wytske M; Martens, Gerard J M; van der Kwast, Theodorus H; Schröder, Fritz H; van Steenbrugge, Gert J

    2002-03-01

    Neuroendocrine (NE) cells are androgen-independent cells and secrete growth-modulating peptide hormones via a regulated secretory pathway (RSP). We studied NE differentiation after long-term androgen withdrawal in the androgen-dependent human prostate cancer xenograft PC-310. Tumor-bearing nude mice were killed at 0, 2, 5, 7, 14, 21, 47, 84, and 154 days after castration. The half-life of the PC-310 tumor was 10 days, with a stable residual tumor volume of 30--40% after 21 days and longer periods of androgen deprivation. Proliferative activity and prostate-specific antigen serum levels decreased to zero after castration, whereas cell-cycle arrest was manifested by increased p27(kip1) expression. A temporary downregulation of androgen receptor (AR) expression was noted after androgen deprivation. The expression of chromogranin A, secretogranin III, and secretogranin V (7B2) increased 5 days after castration and later. Subsequently, pro-hormone convertase 1 and peptidyl alpha--amidating monooxygenase as well as vascular endothelial growth factor were expressed from 7 days after castration on. Finally, such growth factors as gastrin-releasing peptide and serotonin were expressed in a small part of the NE cells 21 days after castration, but strong expression was induced late during androgen deprivation, that is, 84 and 154 days after castration, respectively. Androgen deprivation of the NE-differentiated PC-310 model induced the formation of NE-differentiated AR(minus sign) and non-NE AR(+) tumor residues. The NE-differentiated cells actively produced growth factors via an RSP that may lead to hormone-refractory disease. The dormant non-NE AR(+) tumor cells were shown to remain androgen sensitive even after long-term androgen deprivation. In the PC-310 xenograft, time-dependent NE differentiation and subsequent maturation were induced after androgen depletion. The androgen-dependent PC-310 xenograft model constitutes an excellent model for studying the role of NE cells in the progression of clinical prostate cancer. Copyright 2002 Wiley-Liss, Inc.

  17. Ca2+-dependent localization of integrin-linked kinase to cell junctions in differentiating keratinocytes.

    PubMed

    Vespa, Alisa; Darmon, Alison J; Turner, Christopher E; D'Souza, Sudhir J A; Dagnino, Lina

    2003-03-28

    Integrin complexes are necessary for proper proliferation and differentiation of epidermal keratinocytes. Differentiation of these cells is accompanied by down-regulation of integrins and focal adhesions as well as formation of intercellular adherens junctions through E-cadherin homodimerization. A central component of integrin adhesion complexes is integrin-linked kinase (ILK), which can induce loss of E-cadherin expression and epithelial-mesenchymal transformation when ectopically expressed in intestinal and mammary epithelia. In cultured primary mouse keratinocytes, we find that ILK protein levels are independent of integrin expression and signaling, since they remain constant during Ca(2+)-induced differentiation. In contrast, keratinocyte differentiation is accompanied by marked reduction in kinase activity in ILK immunoprecipitates and altered ILK subcellular distribution. Specifically, ILK distributes in close apposition to actin fibers along intercellular junctions in differentiated but not in undifferentiated keratinocytes. ILK localization to cell-cell borders occurs independently of integrin signaling and requires Ca(2+) as well as an intact actin cytoskeleton. Further, and in contrast to what is observed in other epithelial cells, ILK overexpression in differentiated keratinocytes does not promote E-cadherin down-regulation and epithelial-mesenchymal transition. Thus, novel tissue-specific mechanisms control the formation of ILK complexes associated with cell-cell junctions in differentiating murine epidermal keratinocytes.

  18. Osteo-/odontogenic differentiation of induced mesenchymal stem cells generated through epithelial-mesenchyme transition of cultured human keratinocytes.

    PubMed

    Yi, Jin-Kyu; Mehrazarin, Shebli; Oh, Ju-Eun; Bhalla, Anu; Oo, Jenessa; Chen, Wei; Lee, Min; Kim, Reuben H; Shin, Ki-Hyuk; Park, No-Hee; Kang, Mo K

    2014-11-01

    Revascularization of necrotic pulp has been successful in the resolution of periradicular inflammation; yet, several case studies suggest the need for cell-based therapies using mesenchymal stem cells (MSCs) as an alternative for de novo pulp regeneration. Because the availability of MSCs may be limited, especially in an aged population, the current study reports an alternative approach in generating MSCs from epidermal keratinocytes through a process called epithelial-mesenchymal transition (EMT). We induced EMT in primary normal human epidermal keratinocytes (NHEKs) by transient transfection of small interfering RNA targeting the p63 gene. The resulting cells were assayed for their mesenchymal marker expression, proliferation capacities as a monolayer and in a 3-dimensional collagen scaffold, and differentiation capacities. Transient transfection of p63 small-interfering RNA successfully abolished the expression of endogenous p63 in NHEKs and induced the expression of mesenchymal markers (eg, vimentin and fibronectin), whereas epithelial markers (eg, E-cadherin and involucrin) were lost. The NHEKs exhibiting the EMT phenotype acquired extended replicative potential and an increased telomere length compared with the control cells. Similar to the established MSCs, the NHEKs with p63 knockdown showed attachment onto the 3-dimensional collagen scaffold and underwent progressive proliferation and differentiation. Upon differentiation, these EMT cells expressed alkaline phosphatase activity, osteocalcin, and osteonectin and readily formed mineralized nodules detected by alizarin S red staining, showing osteo-/odontogenic differentiation. The induction of EMT in primary NHEKs by means of transient p63 knockdown allows the generation of induced MSCs from autologous sources. These cells may be used for tissues engineering purposes, including that of dental pulp. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. The homeodomain transcription factor Cdx1 does not behave as an oncogene in normal mouse intestine.

    PubMed

    Crissey, Mary Ann S; Guo, Rong-Jun; Fogt, Franz; Li, Hong; Katz, Jonathan P; Silberg, Debra G; Suh, Eun Ran; Lynch, John P

    2008-01-01

    The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium.

  20. Piezo type mechanosensitive ion channel component 1 functions as a regulator of the cell fate determination of mesenchymal stem cells.

    PubMed

    Sugimoto, Asuna; Miyazaki, Aya; Kawarabayashi, Keita; Shono, Masayuki; Akazawa, Yuki; Hasegawa, Tomokazu; Ueda-Yamaguchi, Kimiko; Kitamura, Takamasa; Yoshizaki, Keigo; Fukumoto, Satoshi; Iwamoto, Tsutomu

    2017-12-18

    The extracellular environment regulates the dynamic behaviors of cells. However, the effects of hydrostatic pressure (HP) on cell fate determination of mesenchymal stem cells (MSCs) are not clearly understood. Here, we established a cell culture chamber to control HP. Using this system, we found that the promotion of osteogenic differentiation by HP is depend on bone morphogenetic protein 2 (BMP2) expression regulated by Piezo type mechanosensitive ion channel component 1 (PIEZO1) in MSCs. The PIEZO1 was expressed and induced after HP loading in primary MSCs and MSC lines, UE7T-13 and SDP11. HP and Yoda1, an activator of PIEZO1, promoted BMP2 expression and osteoblast differentiation, whereas inhibits adipocyte differentiation. Conversely, PIEZO1 inhibition reduced osteoblast differentiation and BMP2 expression. Furthermore, Blocking of BMP2 function by noggin inhibits HP induced osteogenic maker genes expression. In addition, in an in vivo model of medaka with HP loading, HP promoted caudal fin ray development whereas inhibition of piezo1 using GsMTx4 suppressed its development. Thus, our results suggested that PIEZO1 is responsible for HP and could functions as a factor for cell fate determination of MSCs by regulating BMP2 expression.

  1. Notch3 and Mef2c Proteins Are Mutually Antagonistic via Mkp1 Protein and miR-1/206 MicroRNAs in Differentiating Myoblasts*

    PubMed Central

    Gagan, Jeffrey; Dey, Bijan K.; Layer, Ryan; Yan, Zhen; Dutta, Anindya

    2012-01-01

    The Notch signaling pathway is a well known regulator of skeletal muscle stem cells known as satellite cells. Loss of Notch1 signaling leads to spontaneous myogenic differentiation. Notch1, normally expressed in satellite cells, is targeted for proteasomal degradation by Numb during differentiation. A homolog of Notch1, Notch3, is also expressed in these cells but is not inhibited by Numb. We find that Notch3 is paradoxically up-regulated during the early stages of differentiation by an enhancer that requires both MyoD and activated Notch1. Notch3 itself strongly inhibits the myogenic transcription factor Mef2c, most likely by increasing the p38 phosphatase Mkp1, which inhibits the Mef2c activator p38 MAP kinase. Active Notch3 decreases differentiation. Mef2c, however, induces microRNAs miR-1 and miR-206, which directly down-regulate Notch3 and allow differentiation to proceed. Thus, the myogenic differentiation-induced microRNAs miR-1 and -206 are important for differentiation at least partly because they turn off Notch3. We suggest that the transient expression of Notch3 early in differentiation generates a temporal lag between myoblast activation by MyoD and terminal differentiation into myotubes directed by Mef2c. PMID:23055528

  2. Proteomic analysis of cell cycle arrest and differentiation induction caused by ATPR, a derivative of all-trans retinoic acid, in human gastric cancer SGC-7901 cells.

    PubMed

    Xia, Quan; Zhao, Yingli; Wang, Jiali; Qiao, Wenhao; Zhang, Dongling; Yin, Hao; Xu, Dujuan; Chen, Feihu

    2017-07-01

    4-amino-2-trifluoromethyl-phenyl retinate (ATPR) was reported to potentially inhibit proliferation and induce differentiation activity in some tumor cells. In this study, a proteomics approach was used to investigate the possible mechanism by screening the differentially expressed protein profiles of SGC-7901 cells before and after ATPR-treatment in vitro. Peptides digested from the total cellular proteins were analyzed by reverse phase LC-MS/MS followed by a label-free quantification analysis. The SEQUEST search engine was used to identify proteins and bioinformatics resources were used to investigate the involved pathways for the differentially expressed proteins. Thirteen down-regulated proteins were identified in the ATPR-treated group. Bioinformatics analysis showed that the effects of ATPR on 14-3-3ε might potentially involve the PI3K-AKT-FOXO pathway and P27Kip1 expression. Western blot and RT-PCR analysis showed that ATPR could inhibit AKT phosphorylation, up-regulate the expression of FOXO1A and P27Kip1 at both the protein and mRNA levels, and down-regulate the cytoplasmic expression of cyclin E and CDK2. ATPR-induced G0/G1 phase arrest and differentiation can be ablated if the P27kip1 gene is silenced with sequence-specific siRNA or in 14-3-3ε overexpression of SGC-7901 cells. ATPR might cause cell cycle arrest and differentiation in SGC-7901 cells by simultaneously inhibiting the phosphorylation of AKT and down-regulating 14-3-3ε. This change would then enhance the inhibition of cyclin E/CDK2 by up-regulating FOXO1A and P27Kip1. Our findings could be of value for finding new drug targets and for developing more effective differentiation inducer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Tetramethylpyrazine induces SH-SY5Y cell differentiation toward the neuronal phenotype through activation of the PI3K/Akt/Sp1/TopoIIβ pathway.

    PubMed

    Yan, Yong-Xin; Zhao, Jun-Xia; Han, Shuo; Zhou, Na-Jing; Jia, Zhi-Qiang; Yao, Sheng-Jie; Cao, Cui-Li; Wang, Yan-Ling; Xu, Yan-Nan; Zhao, Juan; Yan, Yun-Li; Cui, Hui-Xian

    2015-12-01

    Tetramethylpyrazine (TMP) is an active compound extracted from the traditional Chinese medicinal herb Chuanxiong. Previously, we have shown that TMP induces human SH-SY5Y neuroblastoma cell differentiation toward the neuronal phenotype by targeting topoisomeraseIIβ (TopoIIβ), a protein implicated in neural development. In the present study, we aimed to elucidate whether the transcriptional factors specificity protein 1 (Sp1) and nuclear factor Y (NF-Y), in addition to the upstream signaling pathways ERK1/2 and PI3K/Akt, are involved in modulating TopoIIβ expression in the neuronal differentiation process. We demonstrated that SH-SY5Y cells treated with TMP (80μM) terminally differentiated into neurons, characterized by increased neuronal markers, tubulin βIII and microtubule associated protein 2 (MAP2), and increased neurite outgrowth, with no negative effect on cell survival. TMP also increased the expression of TopoIIβ, which was accompanied by increased expression of Sp1 in the differentiated neuron-like cells, whereas NF-Y protein levels remained unchanged following the differentiation progression. We also found that the phosphorylation level of Akt, but not ERK1/2, was significantly increased as a result of TMP stimulation. Furthermore, as established by chromatin immunoprecipitation (ChIP) assay, activation of the PI3K/Akt pathway increased Sp1 binding to the promoter of the TopoIIβ gene. Blockage of PI3K/Akt was shown to lead to subsequent inhibition of TopoIIβ expression and neuronal differentiation. Collectively, the results indicate that the PI3K/Akt/Sp1/TopoIIβ signaling pathway is necessary for TMP-induced neuronal differentiation. Our findings offer mechanistic insights into understanding the upstream regulation of TopoIIβ in neuronal differentiation, and suggest potential applications of TMP both in neuroscience research and clinical practice to treat relevant diseases of the nervous system. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. DIFFERENTIAL GENE EXPRESSION BY CHAPEL HILL FINE PARTICLES IN HUMAN ALVEOLAR MACHROPHAGES

    EPA Science Inventory

    Pollutant particles (PM) induce systemic and lung inflammation. Alveolar macrophages (AM) are one of the lung cells directly exposed to PM that may initiate these responses. In this study, we determined the gene expression profile induced by Chapel Hill fine particles (PM2.5) in ...

  5. IL-33 inhibits RANKL-induced osteoclast formation through the regulation of Blimp-1 and IRF-8 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiyomiya, Hiroyasu; Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580; Ariyoshi, Wataru

    2015-05-01

    Interleukin (IL)-33 is a recently discovered proinflammatory cytokine that belongs to the IL-1 family. Several studies have reported that IL-33 inhibits osteoclast differentiation. However, the mechanism of IL-33 regulation of osteoclastogenesis remains unclear. In the present study, we examined the effect of IL-33 on osteoclast formation in vitro. IL-33 suppressed osteoclast formation in both mouse bone marrow cells and monocyte/macrophage cell line RAW264.7 cells induced by receptor activator of NF-κB ligand (RANKL) and/or macrophage stimulating factor (M-CSF). IL-33 also inhibited the expression of RANKL-induced nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), thereby decreasing the expression of osteoclastogenesis-related marker genes, includingmore » Cathepsin K, Osteoclast stimulatory transmembrane protein (Oc-stamp) and Tartrate-resistant acid phosphatase (Trap). Blockage of IL-33-ST2 binding suppressed the IL-33-mediated inhibition of NFATc1. RANKL-induced B-lymphocyte-induced maturation protein-1 (Blimp-1) expression was also suppressed by IL-33, which was followed by the stimulation of anti-osteoclastic genes such as interferon regulatory factor-8 (IRF-8). These results suggest that IL-33-ST2 interactions down-regulate both RANKL-induced NFATc1 activation and osteoclast differentiation via the regulation of Blimp-1 and IRF-8 expression. - Highlights: • IL-33 inhibits RANKL-induced osteoclast formation. • IL-33 has inhibitory effect on the RANKL-induced NFATc1 expression. • IL-33-induced NFATc1 suppression depends on the regulation of Blimp-1 and IRF-8.« less

  6. Lipopolysaccharide induces proliferation and osteogenic differentiation of adipose-derived mesenchymal stromal cells in vitro via TLR4 activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herzmann, Nicole; Salamon, Achim; Fiedler, Tomas

    Multipotent mesenchymal stromal cells (MSC) are capable of multi-lineage differentiation and support regenerative processes. In bacterial infections, resident MSC can come intocontact with and need to react to bacterial components. Lipopolysaccharide (LPS), a typical structure of Gram-negative bacteria, increases the proliferation and osteogenic differentiation of MSC. LPS is usually recognized by the toll-like receptor (TLR) 4 and induces pro-inflammatory reactions in numerous cell types. In this study, we quantified the protein expression of TLR4 and CD14 on adipose-derived MSC (adMSC) in osteogenic differentiation and investigated the effect of TLR4 activation by LPS on NF-κB activation, proliferation and osteogenic differentiation ofmore » adMSC. We found that TLR4 is expressed on adMSC whereas CD14 is not, and that osteogenic differentiation induced an increase of the amount of TLR4 protein whereas LPS stimulation did not. Moreover, we could show that NF-κB activation via TLR4 occurs upon LPS treatment. Furthermore, we were able to show that competitive inhibition of TLR4 completely abolished the stimulatory effect of LPS on the proliferation and osteogenic differentiation of adMSC. In addition, the inhibition of TLR4 leads to the complete absence of osteogenic differentiation of adMSC, even when osteogenically stimulated. Thus, we conclude that LPS induces proliferation and osteogenic differentiation of adMSC in vitro through the activation of TLR4 and that the TLR4 receptor seems to play a role during osteogenic differentiation of adMSC.« less

  7. Pneumolysin-induced autophagy contributes to inhibition of osteoblast differentiation through downregulation of Sp1 in human osteosarcoma cells.

    PubMed

    Kim, Jinwook; Lee, Hee-Weon; Rhee, Dong Kwon; Paton, James C; Pyo, Suhkneung

    2017-11-01

    The 53kDa protein pneumolysin (PLY) is the main virulence factor of Streptococcus pneumoniae, a leading cause of invasive pneumococcal diseases. PLY forms pores in cholesterol-containing membranes, thereby interfering with the function of cells. Bone destruction is a serious matter in chronic inflammatory diseases such as septic arthritis and osteomyelitis. S. pneumoniae is increasingly being recognized as a common cause of septic arthritis, but its pathogenesis is poorly defined. We examined the effect of PLY on osteoblast differentiation and its mechanisms of action. The effect of PLY on osteoblast differentiation was evaluated by qRT-PCR, ALP activity assay, flow cytometric analysis, and Western blotting. We also examined the role of PLY-induced autophagy in osteoblast differentiation using RNA interference analysis. PLY inhibited osteoblast differentiation by decreasing the expression of osteoblast marker genes such as Runx2 and OCN, along with ALP activity. ROS production was increased by PLY during osteoblast differentiation. PLY induced autophagy through ROS-mediated regulation of AMPK and mTOR, which downregulated the expression of Sp1 and subsequent inhibition of differentiation. Treatment with autophagy inhibitors or Atg5 siRNA alleviated the PLY-induced inhibition of differentiation. The results suggest that PLY inhibits osteoblast differentiation by downregulation of Sp1 accompanied by induction of autophagy through ROS-mediated regulation of the AMPK/mTOR pathway. This study proposes a molecular mechanism for inhibition of osteoblast differentiation in response to PLY. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Anabolic activity of ursolic acid in bone: Stimulating osteoblast differentiation in vitro and inducing new bone formation in vivo.

    PubMed

    Lee, Su-Ui; Park, Sang-Joon; Kwak, Han Bok; Oh, Jaemin; Min, Yong Ki; Kim, Seong Hwan

    2008-01-01

    In the field of osteoporosis, there has been growing interest in anabolic agents that enhance bone mass and improve bone architecture. In this study, we demonstrated that the ubiquitous plant triterpenoid, ursolic acid, enhances differentiation and mineralization of osteoblasts in vitro. We found that ursolic acid induced the expression of osteoblast-specific genes with the activation of mitogen-activated protein kinases, nuclear factor-kappaB, and activator protein-1. Additionally, noggin, an antagonist of bone morphogenetic proteins (BMPs), inhibited ursolic acid-induced osteoblast differentiation. Noggin also inhibited the activation of Smad and the induction of BMP-2 mRNA expression by ursolic acid in the late stage of osteoblast differentiation. Importantly, ursolic acid was shown to have bone-forming activity in vivo in a mouse calvarial bone formation model. A high proportion of positive immunostaining of BMP-2 was found in the nuclear region of woven bone formed by ursolic acid. These results suggested that ursolic acid has the anabolic potential to stimulate osteoblast differentiation and enhance new bone formation.

  9. Regulated expression of the MRP8 and MRP14 genes during terminal differentiation of human promyelocytic leukemic HL-60 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner-Bartnicki, A.L.; Murao, S.; Collart, F.R.

    1992-02-14

    The calcium-binding proteins MRP8 and MRP14 are induced during monomyelocytic cell maturation and may mediate the growth arrest in differentiating HL-60 cells. We determined the levels of a protein complex (PC) containing MRP8 and MRP14 and investigated the mechanism by which the genes encoding these proteins are regulated in HL-60 cells treated with the differentiation-inducing agent mycophenolic acid. Elevated levels of the PC were found to directly parallel gains in the steady-state levels of MRP8 and MRP14 mRNA. Transcription studies with the use of nuclear run-on experiments revealed increased transcription initiation at the MRP8 and MRP14 promoters after MPA treatment.more » 1{alpha},25-Dihydroxyvitamin D{sub 3}, which induces HL-60 cell differentiation by another mechanism, was also found to increase transcription initiation at the MRP8 and MRP14 promoters, suggesting that this initiation is the major control of MRP8 and MRP14 gene expression during terminal differentiation of human promyelocytic cells.« less

  10. Transcriptomic analysis reveals differential gene expression in response to aluminium in common bean (Phaseolus vulgaris) genotypes

    PubMed Central

    Eticha, Dejene; Zahn, Marc; Bremer, Melanie; Yang, Zhongbao; Rangel, Andrés F.; Rao, Idupulapati M.; Horst, Walter J.

    2010-01-01

    Background and Aims Aluminium (Al) resistance in common bean is known to be due to exudation of citrate from the root after a lag phase, indicating the induction of gene transcription and protein synthesis. The aims of this study were to identify Al-induced differentially expressed genes and to analyse the expression of candidate genes conferring Al resistance in bean. Methods The suppression subtractive hybridization (SSH) method was used to identify differentially expressed genes in an Al-resistant bean genotype (‘Quimbaya’) during the induction period. Using quantitative real-time PCR the expression patterns of selected genes were compared between an Al-resistant and an Al-sensitive genotype (‘VAX 1’) treated with Al for up to 24 h. Key Results Short-term Al treatment resulted in up-regulation of stress-induced genes and down-regulation of genes involved in metabolism. However, the expressions of genes encoding enzymes involved in citrate metabolism were not significantly affected by Al. Al treatment dramatically increased the expression of common bean expressed sequence tags belonging to the citrate transporter gene family MATE (multidrug and toxin extrusion family protein) in both the Al-resistant and -sensitive genotype in close agreement with Al-induced citrate exudation. Conclusions The expression of a citrate transporter MATE gene is crucial for citrate exudation in common bean. However, although the expression of the citrate transporter is a prerequisite for citrate exudation, genotypic Al resistance in common bean particularly depends on the capacity to sustain the synthesis of citrate for maintaining the cytosolic citrate pool that enables exudation. PMID:20237115

  11. Enhanced osteogenic differentiation of MC3T3-E1 cells on grid-topographic surface and evidence for involvement of YAP mediator.

    PubMed

    Zhang, Yingying; Gong, He; Sun, Yan; Huang, Yan; Fan, Yubo

    2016-05-01

    Numerous studies have shown that surface topography can promote cell-substrate associations and deeply influence cell fate. The intracellular mechanism or how micro- or nano-patterned extracellular signal is ultimately linked to activity of nuclear transcription factors remains unknown. It has been reported that Yes-associated protein (YAP) can respond to extracellular matrix microenvironment signals, thus regulates stem cell differentiation process. We propose that YAP may play a role in mediating the topography induced cell differentiation. To this end, we fabricated polydimethylsiloxane (PDMS) micropatterns with grid topology (GT) (3 μm pattern width, 2 μm pattern interval length, 7 μm pattern height); nonpatterned PDMS substrates were used as the planar controls. The MC3T3-E1 cells were then cultured on these surfaces, respectively, in osteogenic inducing medium. Cell differentiation in terms of osteogenesis related gene expression, protein levels, alkaline phosphatase activity and extracellular matrix mineralization was assessed. It was shown that the cells on GT surfaces had stronger osteogenesis capacity. In addition, expression level of YAP was increased when MC3T3-E1 cells grew on GT substrates, which was similar to the levels of osteogenic differentiation markers. It was also shown that YAP knockdown attenuated GT substrates-induced MC3T3-E1 differentiation, which reduced the osteogenic differentiation effect of the GT substrates. Collectively, our findings indicate that GT substrates-induced MC3T3-E1 differentiation may be associated with YAP. This paper provides new target points for transcriptional mechanism research of microenvironment induced cell differentiation and a useful approach to obtain more biofunctionalization scaffolds for tissue engineering. © 2016 Wiley Periodicals, Inc.

  12. Myostatin Suppression of Akirin1 Mediates Glucocorticoid-Induced Satellite Cell Dysfunction

    PubMed Central

    Dong, Yanjun; Pan, Jenny S.; Zhang, Liping

    2013-01-01

    Glucocorticoids production is increased in many pathological conditions that are associated with muscle loss, but their role in causing muscle wasting is not fully understood. We have demonstrated a new mechanism of glucocorticoid-induced muscle atrophy: Dexamethasone (Dex) suppresses satellite cell function contributing to the development of muscle atrophy. Specifically, we found that Dex decreases satellite cell proliferation and differentiation in vitro and in vivo. The mechanism involved Dex-induced upregulation of myostatin and suppression of Akirin1, a promyogenic gene. When myostatin was inhibited in Dex-treated mice, Akirin1 expression increased as did satellite cell activity, muscle regeneration and muscle growth. In addition, silencing myostatin in myoblasts or satellite cells prevented Dex from suppressing Akirin1 expression and cellular proliferation and differentiation. Finally, overexpression of Akirin1 in myoblasts increased their expression of MyoD and myogenin and improved cellular proliferation and differentiation, theses improvements were no longer suppressed by Dex. We conclude that glucocorticoids stimulate myostatin which inhibits Akirin1 expression and the reparative functions of satellite cells. These responses attribute to muscle atrophy. Thus, inhibition of myostatin or increasing Akirin1 expression could lead to therapeutic strategies for improving satellite cell activation and enhancing muscle growth in diseases associated with increased glucocorticoid production. PMID:23516508

  13. Myostatin suppression of Akirin1 mediates glucocorticoid-induced satellite cell dysfunction.

    PubMed

    Dong, Yanjun; Pan, Jenny S; Zhang, Liping

    2013-01-01

    Glucocorticoids production is increased in many pathological conditions that are associated with muscle loss, but their role in causing muscle wasting is not fully understood. We have demonstrated a new mechanism of glucocorticoid-induced muscle atrophy: Dexamethasone (Dex) suppresses satellite cell function contributing to the development of muscle atrophy. Specifically, we found that Dex decreases satellite cell proliferation and differentiation in vitro and in vivo. The mechanism involved Dex-induced upregulation of myostatin and suppression of Akirin1, a promyogenic gene. When myostatin was inhibited in Dex-treated mice, Akirin1 expression increased as did satellite cell activity, muscle regeneration and muscle growth. In addition, silencing myostatin in myoblasts or satellite cells prevented Dex from suppressing Akirin1 expression and cellular proliferation and differentiation. Finally, overexpression of Akirin1 in myoblasts increased their expression of MyoD and myogenin and improved cellular proliferation and differentiation, theses improvements were no longer suppressed by Dex. We conclude that glucocorticoids stimulate myostatin which inhibits Akirin1 expression and the reparative functions of satellite cells. These responses attribute to muscle atrophy. Thus, inhibition of myostatin or increasing Akirin1 expression could lead to therapeutic strategies for improving satellite cell activation and enhancing muscle growth in diseases associated with increased glucocorticoid production.

  14. Water Extract of Ashwagandha Leaves Limits Proliferation and Migration, and Induces Differentiation in Glioma Cells

    PubMed Central

    Kataria, Hardeep; Shah, Navjot; Kaul, Sunil C.; Wadhwa, Renu; Kaur, Gurcharan

    2011-01-01

    Root extracts of Withania somnifera (Ashwagandha) are commonly used as a remedy for a variety of ailments and a general tonic for overall health and longevity in the Indian traditional medicine system, Ayurveda. We undertook a study to investigate the anti-proliferative and differentiation-inducing activities in the water extract of Ashwagandha leaves (ASH-WEX) by examining in glioma cells. Preliminary detection for phytochemicals was performed by thin-layer chromatography. Cytotoxicity was determined using trypan blue and MTT assays. Expression level of an hsp70 family protein (mortalin), glial cell differentiation marker [glial fibrillary acidic protein (GFAP)] and neural cell adhesion molecule (NCAM) were analyzed by immunocytochemistry and immunoblotting. Anti-migratory assay was also done using wound-scratch assay. Expression levels of mortalin, GFAP and NCAM showed changes, subsequent to the treatment with ASH-WEX. The data support the existence of anti-proliferative, differentiation-inducing and anti-migratory/anti-metastasis activities in ASH-WEX that could be used as potentially safe and complimentary therapy for glioma. PMID:20007262

  15. [Differentiation of human periodontal ligament stem cells into neuron-like cells in vitro].

    PubMed

    Zhen, Lei; Liu, Hong-Wei

    2009-02-01

    To isolate and purify the human periodontal ligament stem cells (PDLSC) and investigate the differentiation potentials of PDLSC into neuron-like cells in vitro. PDLSC were isolated and cultivated. PDLSC of passage 2 was plated at a density of 5 x 10(3) per mL. At 80% confluence, the PDLSC were preinduced for 24 hours, and were subsequently replaced with an inducing medium containing certain concentration of 13-mercaptoethanal (beta-ME). After 6 hours of induction, the results were evaluated by morphological observation, immunocytochemical staining for neuron specific enolase (NSE), neurofilament (NF) and glial fibrillary acid protein (GFAP) expression and RT-PCR for NSE, NF, GFAP mRNA. Meanwhile, the uninduced PDLSC were used as a negative control. PDLSC could be differentiate into cells with typical neuronal morphology. Immunohisto-chemistry and RT-PCR confirmed that the induced cells expressed NSE and NF, two marked enzymes of neuron cell. PDLSC can be induced into neuron-like cells in vitro. PDLSC have the capability of multilineage differentiations.

  16. Systematic Analysis of Cell-Type Differences in the Epithelial Secretome Reveals Insights into the Pathogenesis of RSV-Induced Lower Respiratory Tract Infections

    PubMed Central

    Zhao, Yingxin; Jamaluddin, Mohammad; Zhang, Yueqing; Sun, Hong; Ivanciuc, Teodora; Garofalo, Roberto P.; Brasier, Allan R.

    2017-01-01

    Lower respiratory tract infections (LRTIs) from Respiratory Syncytial Virus (RSV) are due, in part, to secreted signals from lower airway cells that modify immune response and trigger airway remodeling. To understand this process, we applied an unbiased quantitative proteomics analysis of the RSV-induced epithelial secretory response in cells representative of the trachea (hBECs) vs small airway bronchiolar cells (hSAECs). A workflow was established using telomerase- immortalized human epithelial cells that revealed highly reproducible cell type-specific differences in both secreted proteins and nanoparticles (exosomes). Approximately one-third of secretome proteins are exosomal, with the remainder from lysosomal and vacuolar compartments. We applied this workflow to three independently derived primary human cultures from trachea (phBECs) vs bronchioles (phSAECs). 577 differentially expressed proteins from control supernatants and 966 differentially expressed proteins from RSV-infected cell supernatants were identified at a 1% false discovery rate (FDR). Fifteen proteins unique to RSV-infected phBECs were regulated by epithelial-specific ets homology factor (EHF). 106 proteins unique to RSV-infected hSAECs were regulated by the transcription factor NFκB. In this latter group, we validated the differential expression of Chemokine (C-C Motif) Ligand 20 (CCL20)/macrophage-inducible protein (MIP)3α, thymic stromal lymphopoietin (TSLP) and chemokine (CC) ligand 3-like 1(CCL3-L1) because of their roles in Th2 polarization. CCL20/MIP3α was the most active mucin-inducing factor in the RSV-infected hSAEC secretome, and was differentially expressed in smaller airways in a mouse model of RSV infection. These studies provide insights into the complexity of innate responses, and regional differences in epithelial secretome participating in RSV LRTI-induced airway remodeling. PMID:28258195

  17. Manganese-Induced Neurotoxicity and Alterations in Gene Expression in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Gandhi, Deepa; Sivanesan, Saravanadevi; Kannan, Krishnamurthi

    2018-06-01

    Manganese (Mn) is an essential trace element required for many physiological functions including proper biochemical and cellular functioning of the central nervous system (CNS). However, exposure to excess level of Mn through occupational settings or from environmental sources has been associated with neurotoxicity. The cellular and molecular mechanism of Mn-induced neurotoxicity remains unclear. In the current study, we investigated the effects of 30-day exposure to a sub-lethal concentration of Mn (100 μM) in human neuroblastoma cells (SH-SY5Y) using transcriptomic approach. Microarray analysis revealed differential expression of 1057 transcripts in Mn-exposed SH-SY5Y cells as compared to control cells. Gene functional annotation cluster analysis exhibited that the differentially expressed genes were associated with several biological pathways. Specifically, genes involved in neuronal pathways including neuron differentiation and development, regulation of neurogenesis, synaptic transmission, and neuronal cell death (apoptosis) were found to be significantly altered. KEGG pathway analysis showed upregulation of p53 signaling pathways and neuroactive ligand-receptor interaction pathways, and downregulation of neurotrophin signaling pathway. On the basis of the gene expression profile, possible molecular mechanisms underlying Mn-induced neuronal toxicity were predicted.

  18. Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma

    PubMed Central

    Landreville, Solange; Agapova, Olga A.; Matatall, Katie A.; Kneass, Zachary T.; Onken, Michael D.; Lee, Ryan S.; Bowcock, Anne M.; Harbour, J. William

    2011-01-01

    Purpose Metastasis is responsible for the death of most cancer patients, yet few therapeutic agents are available which specifically target the molecular events that lead to metastasis. We recently showed that inactivating mutations in the tumor suppressor gene BAP1 are closely associated with loss of melanocytic differentiation in uveal melanoma and metastasis (UM). The purpose of this study was to identify therapeutic agents that reverse the phenotypic effects of BAP1 loss in UM. Experimental Design In silico screens were performed to identify therapeutic compounds predicted to differentiate UM cells using Gene Set Enrichment Analysis and Connectivity Map databases. Valproic acid, trichostatin A, LBH-589 and suberoylanilide hydroxamic acid were evaluated for their effects on UM cells using morphologic evaluation, MTS viability assays, BrdU incorporation, flow cytometry, clonogenic assays, gene expression profiling, histone acetylation and ubiquitination assays, and a murine xenograft tumorigenicity model. Results HDAC inhibitors induced morphologic differentiation, cell cycle exit, and a shift to a differentiated, melanocytic gene expression profile in cultured UM cells. Valproic acid inhibited the growth of UM tumors in vivo. Conclusions These findings suggest that HDAC inhibitors may have therapeutic potential for inducing differentiation and prolonged dormancy of micrometastatic disease in UM. PMID:22038994

  19. Concerted effects of heterogeneous nuclear ribonucleoprotein C1/C2 to control vitamin D-directed gene transcription and RNA splicing in human bone cells.

    PubMed

    Zhou, Rui; Park, Juw Won; Chun, Rene F; Lisse, Thomas S; Garcia, Alejandro J; Zavala, Kathryn; Sea, Jessica L; Lu, Zhi-Xiang; Xu, Jianzhong; Adams, John S; Xing, Yi; Hewison, Martin

    2017-01-25

    Traditionally recognized as an RNA splicing regulator, heterogeneous nuclear ribonucleoprotein C1/C2 (hnRNPC1/C2) can also bind to double-stranded DNA and function in trans as a vitamin D response element (VDRE)-binding protein. As such, hnRNPC1/C2 may couple transcription induced by the active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH) 2 D) with subsequent RNA splicing. In MG63 osteoblastic cells, increased expression of the 1,25(OH) 2 D target gene CYP24A1 involved immunoprecipitation of hnRNPC1/C2 with CYP24A1 chromatin and RNA. Knockdown of hnRNPC1/C2 suppressed expression of CYP24A1, but also increased expression of an exon 10-skipped CYP24A1 splice variant; in a minigene model the latter was attenuated by a functional VDRE in the CYP24A1 promoter. In genome-wide analyses, knockdown of hnRNPC1/C2 resulted in 3500 differentially expressed genes and 2232 differentially spliced genes, with significant commonality between groups. 1,25(OH) 2 D induced 324 differentially expressed genes, with 187 also observed following hnRNPC1/C2 knockdown, and a further 168 unique to hnRNPC1/C2 knockdown. However, 1,25(OH) 2 D induced only 10 differentially spliced genes, with no overlap with differentially expressed genes. These data indicate that hnRNPC1/C2 binds to both DNA and RNA and influences both gene expression and RNA splicing, but these actions do not appear to be linked through 1,25(OH) 2 D-mediated induction of transcription. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Human serum amyloid A genes are expressed in monocyte/macrophage cell lines.

    PubMed

    Urieli-Shoval, S; Meek, R L; Hanson, R H; Eriksen, N; Benditt, E P

    1994-09-01

    Serum amyloid A (apoSAA) is a family of proteins found, mainly associated with high density lipoproteins, in the blood plasma of mammals and at least one avian species, the Pekin duck. These proteins are present in small amounts under normal circumstances, but their concentration is capable of rising 100- to 1,000-fold in situations involving tissue injury or infection. Like classic acute phase proteins they are produced in the liver; however, expression of one of the apoSAA genes is known to occur in activated macrophages of mice. We examined three human macrophage precursor cell lines (THP-1, U-937, and HL-60), before and after differentiation with phorbol 12-myristate 13-acetate or 1 alpha,25-dihydroxy-vitamin D3, for apoSAA messenger (m)-RNA expression and found that: 1) induction of steady-state apoSAA mRNA by lipopolysaccharide, interleukin-1, or interleukin-6 required the presence of the synthetic glucocorticoid dexamethasone; 2) the three known active genes, apoSAA1, apoSAA2, and apoSAA4, were induced in THP-1 cells, whereas the pseudogene apoSAA3 was not; 3) differentiated and undifferentiated THP-1 cells expressed apoSAA mRNA, but U-937 cells expressed apoSAA mRNA (low levels) only after phorbol 12-myristate 13-acetate differentiation and HL-60 cells did not express apoSAA mRNA whether differentiated or not; 4) apoSAA protein was detectable immunologically at a low level in lyophilized medium from induced THP-1 cells. Our findings are compatible with the hypotheses that 1) apoSAA gene expression in human monocytes/macrophages in vivo is differentiation dependent; 2) activated macrophages provide a local source of apoSAA at sites of tissue injury or inflammation; 3) apoSAA is induced in tissue macrophages by local stimuli, under conditions that may not evoke the systemic acute phase response.

  1. Inhibition of mitogen-activated protein kinase kinase, DNA methyltransferase, and transforming growth factor-β promotes differentiation of human induced pluripotent stem cells into enterocytes.

    PubMed

    Kodama, Nao; Iwao, Takahiro; Kabeya, Tomoki; Horikawa, Takashi; Niwa, Takuro; Kondo, Yuki; Nakamura, Katsunori; Matsunaga, Tamihide

    2016-06-01

    We previously reported that small-molecule compounds were effective in generating pharmacokinetically functional enterocytes from human induced pluripotent stem (iPS) cells. In this study, to determine whether the compounds promote the differentiation of human iPS cells into enterocytes, we investigated the effects of a combination of mitogen-activated protein kinase kinase (MEK), DNA methyltransferase (DNMT), and transforming growth factor (TGF)-β inhibitors on intestinal differentiation. Human iPS cells cultured on feeder cells were differentiated into endodermal cells by activin A. These endodermal-like cells were then differentiated into intestinal stem cells by fibroblast growth factor 2. Finally, the cells were differentiated into enterocyte cells by epidermal growth factor and small-molecule compounds. After differentiation, mRNA expression levels and drug-metabolizing enzyme activities were measured. The mRNA expression levels of the enterocyte marker sucrase-isomaltase and the major drug-metabolizing enzyme cytochrome P450 (CYP) 3A4 were increased by a combination of MEK, DNMT, and TGF-β inhibitors. The mRNA expression of CYP3A4 was markedly induced by 1α,25-dihydroxyvitamin D3. Metabolic activities of CYP1A1/2, CYP2B6, CYP2C9, CYP2C19, CYP3A4/5, UDP-glucuronosyltransferase, and sulfotransferase were also observed in the differentiated cells. In conclusion, MEK, DNMT, and TGF-β inhibitors can be used to promote the differentiation of human iPS cells into pharmacokinetically functional enterocytes. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  2. Differentiation of embryonic stem cells into hepatocytes that coexpress coagulation factors VIII and IX.

    PubMed

    Cao, Jun; Shang, Chang-zhen; Lü, Li-hong; Qiu, De-chuan; Ren, Meng; Chen, Ya-jin; Min, Jun

    2010-11-01

    To establish an efficient culture system to support embryonic stem (ES) cell differentiation into hepatocytes that coexpress F-VIII and F-IX. Mouse E14 ES cells were cultured in differentiation medium containing sodium butyrate (SB), basic fibroblast growth factor (bFGF), and/or bone morphogenetic protein 4 (BMP4) to induce the differentiation of endoderm cells and hepatic progenitor cells. Hepatocyte growth factor, oncostatin M, and dexamethasone were then used to induce the maturation of ES cell-derived hepatocytes. The mRNA expression levels of endoderm-specific genes and hepatocyte-specific genes, including the levels of F-VIII and F-IX, were detected by RT-PCR and real-time PCR during various stages of differentiation. Protein expression was examined by immunofluorescence and Western blot. At the final stage of differentiation, flow cytometry was performed to determine the percentage of cells coexpressing F-VIII and F-IX, and ELISA was used to detect the levels of F-VIII and F-IX protein secreted into the culture medium. The expression of endoderm-specific and hepatocyte-specific markers was upregulated to highest level in response to the combination of SB, bFGF, and BMP4. Treatment with the three inducers during hepatic progenitor differentiation significantly enhanced the mRNA and protein levels of F-VIII and F-IX in ES cell-derived hepatocytes. More importantly, F-VIII and F-IX were coexpressed with high efficiency at the final stage of differentiation, and they were also secreted into the culture medium. We have established a novel in vitro differentiation protocol for ES-derived hepatocytes that coexpress F-VIII and F-IX that may provide a foundation for stem cell replacement therapy for hemophilia.

  3. Nucleolar protein PES1 is a marker of neuroblastoma outcome and is associated with neuroblastoma differentiation

    PubMed Central

    Nakaguro, Masato; Kiyonari, Shinichi; Kishida, Satoshi; Cao, Dongliang; Murakami-Tonami, Yuko; Ichikawa, Hitoshi; Takeuchi, Ichiro; Nakamura, Shigeo; Kadomatsu, Kenji

    2015-01-01

    Neuroblastoma (NB) is a childhood malignant tumor that arises from precursor cells of the sympathetic nervous system. Spontaneous regression is a phenomenon unique to NBs and is caused by differentiation of tumor cells. PES1 is a multifunctional protein with roles in both neural development and ribosome biogenesis. Various kinds of models have revealed the significance of PES1 in neurodevelopment. However, the roles of PES1 in NB tumorigenesis and differentiation have remained unknown. Here we show that NB cases with MYCN amplification and clinically unfavorable stage (INSS stage 4) express higher levels of PES1. High PES1 expression was associated with worse overall and relapse-free survival. In NB cell lines, PES1 knockdown suppressed tumor cell growth and induced apoptosis. This growth inhibition was associated with the expression of NB differentiation markers. However, when the differentiation of NB cell lines was induced by the use of all-trans retinoic acid, there was a corresponding decrease in PES1 expression. Pes1 expression of tumorspheres originated from MYCN transgenic mice also diminished after the induction of differentiation with growth factors. We also reanalyzed the distribution of PES1 in the nucleolus. PES1 was localized in the dense fibrillar component, but not in the granular component of nucleoli. After treatment with the DNA-damaging agent camptothecin, this distribution was dramatically changed to diffuse nucleoplasmic. These data suggest that PES1 is a marker of NB outcome, that it regulates NB cell proliferation, and is associated with NB differentiation. PMID:25557119

  4. Histone acetylation is associated with differential gene expression in the rapid and robust memory CD8+ T-cell response

    PubMed Central

    Fann, Monchou; Godlove, Jason M.; Catalfamo, Marta; Wood, William H.; Chrest, Francis J.; Chun, Nicholas; Granger, Larry; Wersto, Robert; Madara, Karen; Becker, Kevin; Henkart, Pierre A.; Weng, Nan-ping

    2006-01-01

    To understand the molecular basis for the rapid and robust memory T-cell responses, we examined gene expression and chromatin modification by histone H3 lysine 9 (H3K9) acetylation in resting and activated human naive and memory CD8+ T cells. We found that, although overall gene expression patterns were similar, a number of genes are differentially expressed in either memory or naive cells in their resting and activated states. To further elucidate the basis for differential gene expression, we assessed the role of histone H3K9 acetylation in differential gene expression. Strikingly, higher H3K9 acetylation levels were detected in resting memory cells, prior to their activation, for those genes that were differentially expressed following activation, indicating that hyperacetylation of histone H3K9 may play a role in selective and rapid gene expression of memory CD8+ T cells. Consistent with this model, we showed that inducing high levels of H3K9 acetylation resulted in an increased expression in naive cells of those genes that are normally expressed differentially in memory cells. Together, these findings suggest that differential gene expression mediated at least in part by histone H3K9 hyperacetylation may be responsible for the rapid and robust memory CD8+ T-cell response. PMID:16868257

  5. Kallikrein-related peptidase 4 induces cancer-associated fibroblast features in prostate-derived stromal cells.

    PubMed

    Kryza, Thomas; Silva, Lakmali M; Bock, Nathalie; Fuhrman-Luck, Ruth A; Stephens, Carson R; Gao, Jin; Samaratunga, Hema; Lawrence, Mitchell G; Hooper, John D; Dong, Ying; Risbridger, Gail P; Clements, Judith A

    2017-10-01

    The reciprocal communication between cancer cells and their microenvironment is critical in cancer progression. Although involvement of cancer-associated fibroblasts (CAF) in cancer progression is long established, the molecular mechanisms leading to differentiation of CAFs from normal fibroblasts are poorly understood. Here, we report that kallikrein-related peptidase-4 (KLK4) promotes CAF differentiation. KLK4 is highly expressed in prostate epithelial cells of premalignant (prostatic intraepithelial neoplasia) and malignant lesions compared to normal prostate epithelia, especially at the peristromal interface. KLK4 induced CAF-like features in the prostate-derived WPMY1 normal stromal cell line, including increased expression of alpha-smooth muscle actin, ESR1 and SFRP1. KLK4 activated protease-activated receptor-1 in WPMY1 cells increasing expression of several factors (FGF1, TAGLN, LOX, IL8, VEGFA) involved in prostate cancer progression. In addition, KLK4 induced WPMY1 cell proliferation and secretome changes, which in turn stimulated HUVEC cell proliferation that could be blocked by a VEGFA antibody. Importantly, the genes dysregulated by KLK4 treatment of WPMY1 cells were also differentially expressed between patient-derived CAFs compared to matched nonmalignant fibroblasts and were further increased by KLK4 treatment. Taken together, we propose that epithelial-derived KLK4 promotes tumour progression by actively promoting CAF differentiation in the prostate stromal microenvironment. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  6. Transcriptome profiling and cataloging differential gene expression in floral buds of fertile and sterile lines of cotton (Gossypium hirsutum L.).

    PubMed

    Hamid, Rasmieh; Tomar, Rukam S; Marashi, Hassan; Shafaroudi, Saeid Malekzadeh; Golakiya, Balaji A; Mohsenpour, Motahhareh

    2018-06-20

    Cytoplasmic Male Sterility is maternally inherited trait in plants, characterized by failure to produce functional pollen during anther development. Anther development is modulated through the interaction of nuclear and mitochondrial genes. In the present study, differential gene expression of floral buds at the sporogenous stage (SS) and microsporocyte stage (MS) between CGMS and its fertile maintainer line of cotton plants was studied. A total of 320 significantly differentially expressed genes, including 20 down-regulated and 37 up-regulated in CGMS comparing with its maintainer line at the SS stage, as well as and 89 down-regulated and 4 up-regulated in CGMS compared to the fertile line at MS stage. Comparing the two stages in the same line, there were 6 down-regulated differentially expressed genes only induced in CGMS and 9 up-regulated differentially expressed gene only induced in its maintainer. GO analysis revealed essential genes responsible for pollen development, and cytoskeleton category show differential expression between the fertile and CGMS lines. Validation studies by qRT-PCR shows concordance with RNA-seq result. A set of novel SSRs identified in this study can be used in evaluating genetic relationships among cultivars, QTL mapping, and marker-assisted breeding. We reported aberrant expression of genes related to pollen exine formation, and synthesis of pectin lyase, myosine heavy chain, tubulin, actin-beta, heat shock protein and myeloblastosis (MYB) protein as targets for CMS in cotton. The results of this study contribute to basic information for future screening of genes and identification of molecular portraits responsible for CMS as well as to elucidate molecular mechanisms that lead to CMS in cotton. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Early expression of triggering receptors and regulatory role of 2B4 in human natural killer cell precursors undergoing in vitro differentiation

    PubMed Central

    Sivori, Simona; Falco, Michela; Marcenaro, Emanuela; Parolini, Silvia; Biassoni, Roberto; Bottino, Cristina; Moretta, Lorenzo; Moretta, Alessandro

    2002-01-01

    In this study we analyzed the progression of cell surface receptor expression during the in vitro-induced human natural killer (NK) cell maturation from CD34+ Lin− cell precursors. NKp46 and NKp30, two major triggering receptors that play a central role in natural cytotoxicity, were expressed before the HLA class I-specific inhibitory receptors. Moreover, their appearance at the cell surface correlated with the acquisition of cytolytic activity by developing NK cells. Although the early expression of triggering receptors may provide activating signals required for inducing further cell differentiation, it may also affect the self-tolerance of developing NK cells. Our data show that a fail-safe mechanism preventing killing of normal autologous cells may be provided by the 2B4 surface molecule, which, at early stages of NK cell differentiation, functions as an inhibitory rather than as an activating receptor. PMID:11917118

  8. Antileukemic Potential of Momordica charantia Seed Extracts on Human Myeloid Leukemic HL60 Cells

    PubMed Central

    Soundararajan, Ramani; Prabha, Punit; Rai, Umesh; Dixit, Aparna

    2012-01-01

    Momordica charantia (bitter gourd) has been used in the traditional system of medicine for the treatment of various diseases. Anticancer activity of M. charantia extracts has been demonstrated by numerous in vitro and in vivo studies. In the present study, we investigated the differentiation inducing potential of fractionated M. charantia seed extracts in human myeloid HL60 cells. We found that the HL60 cells treated with the fractionated seed extracts differentiated into granulocytic lineage as characterized by NBT staining, CD11b expression, and specific esterase activity. The differentiation inducing principle was found to be heat-stable, and organic in nature. The differentiation was accompanied by a downregulation of c-myc transcript, indicating the involvement of c-myc pathway, at least in part, in differentiation. Taken together these results indicate that fractionated extracts of M. charantia seeds possess differentiation inducing activity and therefore can be evaluated for their potential use in differentiation therapy for leukemia in combination with other inducers of differentiation. PMID:22654956

  9. Msx1-modulated muscle satellite cells retain a primitive state and exhibit an enhanced capacity for osteogenic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Ke, E-mail: dingke@med.uestc.edu.cn; Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072; Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing 400038

    Multipotent muscle satellite cells (MuSCs) have been identified as potential seed cells for bone tissue engineering. However, MuSCs exhibit a rapid loss of stemness after in vitro culturing, thereby compromising their therapeutic efficiency. Muscle segment homeobox gene 1 (msx1) has been found to induce the dedifferentiation of committed progenitor cells, as well as terminally differentiated myotubes. In this study, a Tet-off retroviral gene delivery system was used to modulate msx1 expression. After ten passages, MuSCs that did not express msx-1 (e.g., the non-msx1 group) were compared with MuSCs with induced msx-1 expression (e.g., the msx1 group). The latter group exhibitedmore » a more juvenile morphology, it contained a significantly lower percentage of senescent cells characterized by positive β-galactosidase staining, and it exhibited increased proliferation and a higher proliferation index. Immunocytochemical stainings further detected a more primitive gene expression profile for the msx1 group, while osteogenic differentiation assays and ectopic bone formation assays demonstrated an improved capacity for the msx1 group to undergo osteogenic differentiation. These results suggest that transient expression of msx1 in MuSCs can retain a primitive state, thereby enhancing their capacity for osteogenic differentiation and restoring the potential for MuSCs to serve as seed cells for bone tissue engineering.« less

  10. Msx1-modulated muscle satellite cells retain a primitive state and exhibit an enhanced capacity for osteogenic differentiation.

    PubMed

    Ding, Ke; Liu, Wen-Ying; Zeng, Qiang; Hou, Fang; Xu, Jian-Zhong; Yang, Zhong

    2017-03-01

    Multipotent muscle satellite cells (MuSCs) have been identified as potential seed cells for bone tissue engineering. However, MuSCs exhibit a rapid loss of stemness after in vitro culturing, thereby compromising their therapeutic efficiency. Muscle segment homeobox gene 1 (msx1) has been found to induce the dedifferentiation of committed progenitor cells, as well as terminally differentiated myotubes. In this study, a Tet-off retroviral gene delivery system was used to modulate msx1 expression. After ten passages, MuSCs that did not express msx-1 (e.g., the non-msx1 group) were compared with MuSCs with induced msx-1 expression (e.g., the msx1 group). The latter group exhibited a more juvenile morphology, it contained a significantly lower percentage of senescent cells characterized by positive β-galactosidase staining, and it exhibited increased proliferation and a higher proliferation index. Immunocytochemical stainings further detected a more primitive gene expression profile for the msx1 group, while osteogenic differentiation assays and ectopic bone formation assays demonstrated an improved capacity for the msx1 group to undergo osteogenic differentiation. These results suggest that transient expression of msx1 in MuSCs can retain a primitive state, thereby enhancing their capacity for osteogenic differentiation and restoring the potential for MuSCs to serve as seed cells for bone tissue engineering. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Inhibition of hypoxia inducible factors combined with all-trans retinoic acid treatment enhances glial transdifferentiation of neuroblastoma cells.

    PubMed

    Cimmino, Flora; Pezone, Lucia; Avitabile, Marianna; Acierno, Giovanni; Andolfo, Immacolata; Capasso, Mario; Iolascon, Achille

    2015-06-09

    Neuroblastoma (NBL) is a heterogeneous tumor characterized by a wide range of clinical manifestations. A high tumor cell differentiation grade correlates to a favorable stage and positive outcome. Expression of the hypoxia inducible factors HIF1-α (HIF1A gene) and HIF2-α (EPAS1 gene) and/or hypoxia-regulated pathways has been shown to promote the undifferentiated phenotype of NBL cells. Our hypothesis is that HIF1A and EPAS1 expression represent one of the mechanisms responsible for the lack of responsiveness of NBL to differentiation therapy. Clinically, high levels of HIF1A and EPAS1 expression were associated with inferior survival in two NBL microarray datasets, and patient subgroups with lower expression of HIF1A and EPAS1 showed significant enrichment of pathways related to neuronal differentiation. In NBL cell lines, the combination of all-trans retinoic acid (ATRA) with HIF1A or EPAS1 silencing led to an acquired glial-cell phenotype and enhanced expression of glial-cell differentiation markers. Furthermore, HIF1A or EPAS1 silencing might promote cell senescence independent of ATRA treatment. Taken together, our data suggest that HIF inhibition coupled with ATRA treatment promotes differentiation into a more benign phenotype and cell senescence in vitro. These findings open the way for additional lines of attack in the treatment of NBL minimal residue disease.

  12. Inhibition of hypoxia inducible factors combined with all-trans retinoic acid treatment enhances glial transdifferentiation of neuroblastoma cells

    PubMed Central

    Cimmino, Flora; Pezone, Lucia; Avitabile, Marianna; Acierno, Giovanni; Andolfo, Immacolata; Capasso, Mario; Iolascon, Achille

    2015-01-01

    Neuroblastoma (NBL) is a heterogeneous tumor characterized by a wide range of clinical manifestations. A high tumor cell differentiation grade correlates to a favorable stage and positive outcome. Expression of the hypoxia inducible factors HIF1-α (HIF1A gene) and HIF2-α (EPAS1 gene) and/or hypoxia-regulated pathways has been shown to promote the undifferentiated phenotype of NBL cells. Our hypothesis is that HIF1A and EPAS1 expression represent one of the mechanisms responsible for the lack of responsiveness of NBL to differentiation therapy. Clinically, high levels of HIF1A and EPAS1 expression were associated with inferior survival in two NBL microarray datasets, and patient subgroups with lower expression of HIF1A and EPAS1 showed significant enrichment of pathways related to neuronal differentiation. In NBL cell lines, the combination of all-trans retinoic acid (ATRA) with HIF1A or EPAS1 silencing led to an acquired glial-cell phenotype and enhanced expression of glial-cell differentiation markers. Furthermore, HIF1A or EPAS1 silencing might promote cell senescence independent of ATRA treatment. Taken together, our data suggest that HIF inhibition coupled with ATRA treatment promotes differentiation into a more benign phenotype and cell senescence in vitro. These findings open the way for additional lines of attack in the treatment of NBL minimal residue disease. PMID:26057707

  13. Inhibition of the NAD-Dependent Protein Deacetylase SIRT2 Induces Granulocytic Differentiation in Human Leukemia Cells

    PubMed Central

    Sunami, Yoshitaka; Araki, Marito; Hironaka, Yumi; Morishita, Soji; Kobayashi, Masaki; Liew, Ei Leen; Edahiro, Yoko; Tsutsui, Miyuki; Ohsaka, Akimichi; Komatsu, Norio

    2013-01-01

    Sirtuins, NAD-dependent protein deacetylases, play important roles in cellular functions such as metabolism and differentiation. Whether sirtuins function in tumorigenesis is still controversial, but sirtuins are aberrantly expressed in tumors, which may keep cancerous cells undifferentiated. Therefore, we investigated whether the inhibition of sirtuin family proteins induces cellular differentiation in leukemic cells. The sirtuin inhibitors tenovin-6 and BML-266 induce granulocytic differentiation in the acute promyelocytic leukemia (APL) cell line NB4. This differentiation is likely caused by an inhibition of SIRT2 deacetylase activity, judging from the accumulation of acetylated α-tubulin, a major SIRT2 substrate. Unlike the clinically used differentiation inducer all-trans retinoic acid, tenovin-6 shows limited effects on promyelocytic leukemia–retinoic acid receptor α (PML-RAR-α) stability and promyelocytic leukemia nuclear body formation in NB4 cells, suggesting that tenovin-6 does not directly target PML-RAR-α activity. In agreement with this, tenovin-6 induces cellular differentiation in the non-APL cell line HL-60, where PML-RAR-α does not exist. Knocking down SIRT2 by shRNA induces granulocytic differentiation in NB4 cells, which demonstrates that the inhibition of SIRT2 activity is sufficient to induce cell differentiation in NB4 cells. The overexpression of SIRT2 in NB4 cells decreases the level of granulocytic differentiation induced by tenovin-6, which indicates that tenovin-6 induces granulocytic differentiation by inhibiting SIRT2 activity. Taken together, our data suggest that targeting SIRT2 is a viable strategy to induce leukemic cell differentiation. PMID:23460888

  14. Human mesenchymal stromal cell-secreted lactate induces M2-macrophage differentiation by metabolic reprogramming

    PubMed Central

    Civini, Sara; Pacelli, Consiglia; Dieng, Mame Massar; Lemieux, William; Jin, Ping; Bazin, Renée; Patey, Natacha; Marincola, Francesco M.; Moldovan, Florina; Zaouter, Charlotte; Trudeau, Louis-Eric; Benabdhalla, Basma; Louis, Isabelle; Beauséjour, Christian; Stroncek, David; Le Deist, Françoise; Haddad, Elie

    2016-01-01

    Human mesenchymal stromal cells (MSC) have been shown to dampen immune response and promote tissue repair, but the underlying mechanisms are still under investigation. Herein, we demonstrate that umbilical cord-derived MSC (UC-MSC) alter the phenotype and function of monocyte-derived dendritic cells (DC) through lactate-mediated metabolic reprogramming. UC-MSC can secrete large quantities of lactate and, when present during monocyte-to-DC differentiation, induce instead the acquisition of M2-macrophage features in terms of morphology, surface markers, migratory properties and antigen presentation capacity. Microarray expression profiling indicates that UC-MSC modify the expression of metabolic-related genes and induce a M2-macrophage expression signature. Importantly, monocyte-derived DC obtained in presence of UC-MSC, polarize naïve allogeneic CD4+ T-cells into Th2 cells. Treatment of UC-MSC with an inhibitor of lactate dehydrogenase strongly decreases lactate concentration in culture supernatant and abrogates the effect on monocyte-to-DC differentiation. Metabolic analysis further revealed that UC-MSC decrease oxidative phosphorylation in differentiating monocytes while strongly increasing the spare respiratory capacity proportional to the amount of secreted lactate. Because both MSC and monocytes are recruited in vivo at the site of tissue damage and inflammation, we propose the local increase of lactate concentration induced by UC-MSC and the consequent enrichment in M2-macrophage generation as a mechanism to achieve immunomodulation. PMID:27070086

  15. Generation of induced pluripotent stem cells as a potential source of hematopoietic stem cells for transplant in PNH patients.

    PubMed

    Phondeechareon, Tanapol; Wattanapanitch, Methichit; U-Pratya, Yaowalak; Damkham, Chanapa; Klincumhom, Nuttha; Lorthongpanich, Chanchao; Kheolamai, Pakpoom; Laowtammathron, Chuti; Issaragrisil, Surapol

    2016-10-01

    Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hemolytic anemia caused by lack of CD55 and CD59 on blood cell membrane leading to increased sensitivity of blood cells to complement. Hematopoietic stem cell transplantation (HSCT) is the only curative therapy for PNH, however, lack of HLA-matched donors and post-transplant complications are major concerns. Induced pluripotent stem cells (iPSCs) derived from patients are an attractive source for generating autologous HSCs to avoid adverse effects resulting from allogeneic HSCT. The disease involves only HSCs and their progeny; therefore, other tissues are not affected by the mutation and may be used to produce disease-free autologous HSCs. This study aimed to derive PNH patient-specific iPSCs from human dermal fibroblasts (HDFs), characterize and differentiate to hematopoietic cells using a feeder-free protocol. Analysis of CD55 and CD59 expression was performed before and after reprogramming, and hematopoietic differentiation. Patients' dermal fibroblasts expressed CD55 and CD59 at normal levels and the normal expression remained after reprogramming. The iPSCs derived from PNH patients had typical pluripotent properties and differentiation capacities with normal karyotype. After hematopoietic differentiation, the differentiated cells expressed early hematopoietic markers (CD34 and CD43) with normal CD59 expression. The iPSCs derived from HDFs of PNH patients have normal levels of CD55 and CD59 expression and hold promise as a potential source of HSCs for autologous transplantation to cure PNH patients.

  16. Relationship of calcitonin mRNA expression to the differentiation state of HL 60 cells.

    PubMed

    Kiefer, P; Bacher, M; Pflüger, K H

    1994-05-01

    Raised plasma levels of immunoreactive human calcitonin (ihCT) can be found in patients with myeloid leukemia and seem to indicate a poor prognosis. High levels were found in acute undifferentiated and acute myeloblastic leukemia. To test whether CT expression could be a marker of myeloid differentiation, we used the promyelocytic leukemia cell line HL 60 which also expresses ihCT as a model system for myeloid differentiation. Exponentially growing HL 60 cells as well as differentiation induced HL 60 cells expressed a single 1.0 Kb CT transcript. The induction of HL 60 cell differentiation along the granulocytic lineage by DMSO or HMBA had no effect on the level of CT transcripts. Induction of monocytic/macrophagic differentiation by TPA resulted in a transient, about 10-fold elevated expression of CT steady state mRNA after 24 h. In contrast to TPA, induction of HL 60 cell differentiation along the monocytic pathway by Vit D3 had no detectable effect on the level of the CT in RNA expression at corresponding time points. These findings suggest that the transient induction of CT steady state mRNA expression by TPA is rather a direct effect of the phorbol ester than commitment along the monocytic line of differentiation.

  17. Role of the Lipoxygenase Pathway in RSV-induced Alternatively Activated Macrophages Leading to Resolution of Lung Pathology

    PubMed Central

    Shirey, Kari Ann; Lai, Wendy; Pletneva, Lioubov M.; Karp, Christopher L.; Divanovic, Senad; Blanco, Jorge C. G.; Vogel, Stefanie N.

    2013-01-01

    Resolution of severe RSV-induced bronchiolitis is mediated by alternatively activated macrophages (AA-Mϕ) that counteract cyclooxygenase (COX)-2-induced lung pathology. Herein, we report that RSV infection of 5-lipoxygenase (LO)−/− and 15-LO−/− macrophages or mice failed to elicit AA-Mϕ differentiation and concomitantly exhibited increased COX-2 expression. Further, RSV infection of 5-LO−/− mice resulted in enhanced lung pathology. Pharmacologic inhibition of 5-LO or 15-LO also blocked differentiation of RSV-induced AA-Mϕ in vitro and, conversely, treatment of 5-LO−/− macrophages with downstream products, lipoxin A4 (LXA4) and resolvin E1 (RvE1), but not leukotriene B4 (LTB4) or LTD4, partially restored expression of AA-Mϕ markers. Indomethacin blockade of COX activity in RSV-infected macrophages increased 5-LO, and 15-LO, as well as arginase-1 mRNA expression. Treatment of RSV-infected mice with indomethacin also resulted not only in enhanced lung arginase-1 mRNA expression and decreased COX-2, but also, decreased lung pathology in RSV-infected 5-LO−/− mice. Treatment of RSV-infected cotton rats with a COX-2-specific inhibitor resulted in enhanced lung 5-LO mRNA and AA-Mϕ marker expression. Together, these data suggest a novel therapeutic approach for RSV that promotes AA-Mϕ differentiation by activating the 5-LO pathway. PMID:24064666

  18. Gelatin-Derived Graphene–Silicate Hybrid Materials Are Biocompatible and Synergistically Promote BMP9-Induced Osteogenic Differentiation of Mesenchymal Stem Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Yulong; Qazvini, Nader Taheri; Zane, Kylie

    Graphene-based materials are used in many fields but have found only limited applications in biomedicine, including bone tissue engineering. Here, we demonstrate that novel hybrid materials consisting of gelatin-derived graphene and silicate nanosheets of Laponite (GL) are biocompatible and promote osteogenic differentiation of mesenchymal stem cells (MSCs). Homogeneous cell attachment, long-term proliferation, and osteogenic differentiation of MSCs on a GL-scaffold were confirmed using optical microscopy and scanning electron microscopy. GL-powders made by pulverizing the GL-scaffold were shown to promote bone morphogenetic protein (BMP9)-induced osteogenic differentiation. GL-powders increased the alkaline phosphatase (ALP) activity in immortalized mouse embryonic fibroblasts but decreased themore » ALP activity in more-differentiated immortalized mouse adipose-derived cells. Note, however, that GL-powders promoted BMP9-induced calcium mineral deposits in both MSC lines, as assessed using qualitative and quantitative alizarin red assays. Furthermore, the expression of chondro-osteogenic regulator markers such as Runx2, Sox9, osteopontin, and osteocalcin was upregulated by the GL-powder, independent of BMP9 stimulation; although the powder synergistically upregulated the BMP9-induced Osterix expression, the adipogenic marker PPAR gamma was unaffected. Furthermore, in vivo stem cell implantation experiments demonstrated that GL-powder could significantly enhance the BMP9-induced ectopic bone formation from MSCs. Collectively, our results strongly suggest that the GL hybrid materials promote BMP9-induced osteogenic differentiation of MSCs and hold promise for the development of bone tissue engineering platforms.« less

  19. Loss of MyoD and Myf5 in Skeletal Muscle Stem Cells Results in Altered Myogenic Programming and Failed Regeneration.

    PubMed

    Yamamoto, Masakazu; Legendre, Nicholas P; Biswas, Arpita A; Lawton, Alexander; Yamamoto, Shoko; Tajbakhsh, Shahragim; Kardon, Gabrielle; Goldhamer, David J

    2018-03-13

    MyoD and Myf5 are fundamental regulators of skeletal muscle lineage determination in the embryo, and their expression is induced in satellite cells following muscle injury. MyoD and Myf5 are also expressed by satellite cell precursors developmentally, although the relative contribution of historical and injury-induced expression to satellite cell function is unknown. We show that satellite cells lacking both MyoD and Myf5 (double knockout [dKO]) are maintained with aging in uninjured muscle. However, injured muscle fails to regenerate and dKO satellite cell progeny accumulate in damaged muscle but do not undergo muscle differentiation. dKO satellite cell progeny continue to express markers of myoblast identity, although their myogenic programming is labile, as demonstrated by dramatic morphological changes and increased propensity for non-myogenic differentiation. These data demonstrate an absolute requirement for either MyoD or Myf5 in muscle regeneration and indicate that their expression after injury stabilizes myogenic identity and confers the capacity for muscle differentiation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Serum from CCl4-induced acute rat injury model induces differentiation of ADSCs towards hepatic cells and reduces liver fibrosis.

    PubMed

    Baig, Maria Tayyab; Ali, Gibran; Awan, Sana Javaid; Shehzad, Umara; Mehmood, Azra; Mohsin, Sadia; Khan, Shaheen N; Riazuddin, Sheikh

    2017-10-01

    Cellular therapies hold promise to alleviate liver diseases. This study explored the potential of allogenic serum isolated from rat with acute CCl 4 injury to differentiate adipose derived stem cells (ADSCs) towards hepatic lineage. Acute liver injury was induced by CCl 4 which caused significant increase in serum levels of VEGF, SDF1α and EGF. ADSCs were preconditioned with 3% serum isolated from normal and acute liver injury models. ADSCs showed enhanced expression of hepatic markers (AFP, albumin, CK8 and CK19). These differentiated ADSCs were transplanted intra-hepatically in CCl 4 -induced liver fibrosis model. After one month of transplantation, fibrosis and liver functions (alkaline phosphatase, ALAT and bilirubin) showed marked improvement in acute injury group. Elevated expression of hepatic (AFP, albumin, CK 18 and HNF4a) and pro survival markers (PCNA and VEGF) and improvement in liver architecture as deduced from results of alpha smooth muscle actin, Sirius red and Masson's trichome staining was observed.

  1. Cross-talk between EGF and BMP9 signalling pathways regulates the osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Liu, Xing; Qin, Jiaqiang; Luo, Qing; Bi, Yang; Zhu, Gaohui; Jiang, Wei; Kim, Stephanie H; Li, Mi; Su, Yuxi; Nan, Guoxin; Cui, Jing; Zhang, Wenwen; Li, Ruidong; Chen, Xiang; Kong, Yuhan; Zhang, Jiye; Wang, Jinhua; Rogers, Mary Rose; Zhang, Hongyu; Shui, Wei; Zhao, Chen; Wang, Ning; Liang, Xi; Wu, Ningning; He, Yunfeng; Luu, Hue H; Haydon, Rex C; Shi, Lewis L; Li, Tingyu; He, Tong-Chuan; Li, Ming

    2013-09-01

    Mesenchymal stem cells (MSCs) are multipotent progenitors, which give rise to several lineages, including bone, cartilage and fat. Epidermal growth factor (EGF) stimulates cell growth, proliferation and differentiation. EGF acts by binding with high affinity to epidermal growth factor receptor (EGFR) on the cell surface and stimulating the intrinsic protein tyrosine kinase activity of its receptor, which initiates a signal transduction cascade causing a variety of biochemical changes within the cell and regulating cell proliferation and differentiation. We have identified BMP9 as one of the most osteogenic BMPs in MSCs. In this study, we investigate if EGF signalling cross-talks with BMP9 and regulates BMP9-induced osteogenic differentiation. We find that EGF potentiates BMP9-induced early and late osteogenic markers of MSCs in vitro, which can be effectively blunted by EGFR inhibitors Gefitinib and Erlotinib or receptor tyrosine kinase inhibitors AG-1478 and AG-494 in a dose- and time-dependent manner. Furthermore, EGF significantly augments BMP9-induced bone formation in the cultured mouse foetal limb explants. In vivo stem cell implantation experiment reveals that exogenous expression of EGF in MSCs can effectively potentiate BMP9-induced ectopic bone formation, yielding larger and more mature bone masses. Interestingly, we find that, while EGF can induce BMP9 expression in MSCs, EGFR expression is directly up-regulated by BMP9 through Smad1/5/8 signalling pathway. Thus, the cross-talk between EGF and BMP9 signalling pathways in MSCs may underline their important roles in regulating osteogenic differentiation. Harnessing the synergy between BMP9 and EGF should be beneficial for enhancing osteogenesis in regenerative medicine. © 2013 The Authors. Journal of Cellular and Molecular Medicine Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  2. Cross-talk between EGF and BMP9 signalling pathways regulates the osteogenic differentiation of mesenchymal stem cells

    PubMed Central

    Liu, Xing; Qin, Jiaqiang; Luo, Qing; Bi, Yang; Zhu, Gaohui; Jiang, Wei; Kim, Stephanie H; Li, Mi; Su, Yuxi; Nan, Guoxin; Cui, Jing; Zhang, Wenwen; Li, Ruidong; Chen, Xiang; Kong, Yuhan; Zhang, Jiye; Wang, Jinhua; Rogers, Mary Rose; Zhang, Hongyu; Shui, Wei; Zhao, Chen; Wang, Ning; Liang, Xi; Wu, Ningning; He, Yunfeng; Luu, Hue H; Haydon, Rex C; Shi, Lewis L; Li, Tingyu; He, Tong-Chuan; Li, Ming

    2013-01-01

    Mesenchymal stem cells (MSCs) are multipotent progenitors, which give rise to several lineages, including bone, cartilage and fat. Epidermal growth factor (EGF) stimulates cell growth, proliferation and differentiation. EGF acts by binding with high affinity to epidermal growth factor receptor (EGFR) on the cell surface and stimulating the intrinsic protein tyrosine kinase activity of its receptor, which initiates a signal transduction cascade causing a variety of biochemical changes within the cell and regulating cell proliferation and differentiation. We have identified BMP9 as one of the most osteogenic BMPs in MSCs. In this study, we investigate if EGF signalling cross-talks with BMP9 and regulates BMP9-induced osteogenic differentiation. We find that EGF potentiates BMP9-induced early and late osteogenic markers of MSCs in vitro, which can be effectively blunted by EGFR inhibitors Gefitinib and Erlotinib or receptor tyrosine kinase inhibitors AG-1478 and AG-494 in a dose- and time-dependent manner. Furthermore, EGF significantly augments BMP9-induced bone formation in the cultured mouse foetal limb explants. In vivo stem cell implantation experiment reveals that exogenous expression of EGF in MSCs can effectively potentiate BMP9-induced ectopic bone formation, yielding larger and more mature bone masses. Interestingly, we find that, while EGF can induce BMP9 expression in MSCs, EGFR expression is directly up-regulated by BMP9 through Smad1/5/8 signalling pathway. Thus, the cross-talk between EGF and BMP9 signalling pathways in MSCs may underline their important roles in regulating osteogenic differentiation. Harnessing the synergy between BMP9 and EGF should be beneficial for enhancing osteogenesis in regenerative medicine. PMID:23844832

  3. Differential regulation of cyclin-dependent kinase inhibitors in neuroblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Lan; Department of Pharmaceutical Sciences, Jilin University, Changchun 130021; Paul, Pritha

    2013-05-31

    Highlights: •GRP-R signaling differentially regulated the expression of p21 and p27. •Silencing GRP/GRP-R downregulated p21, while p27 expression was upregulated. •Inhibition of GRP/GRP-R signaling enhanced PTEN expression, correlative to the increased expression of p27. •PTEN and p27 co-localized in cytoplasm and silencing PTEN decreased p27 expression. -- Abstract: Gastrin-releasing peptide (GRP) and its receptor (GRP-R) are highly expressed in undifferentiated neuroblastoma, and they play critical roles in oncogenesis. We previously reported that GRP activates the PI3K/AKT signaling pathway to promote DNA synthesis and cell cycle progression in neuroblastoma cells. Conversely, GRP-R silencing induces cell cycle arrest. Here, we speculated thatmore » GRP/GRP-R signaling induces neuroblastoma cell proliferation via regulation of cyclin-dependent kinase (CDK) inhibitors. Surprisingly, we found that GRP/GRP-R differentially induced expressions of p21 and p27. Silencing GRP/GRP-R decreased p21, but it increased p27 expressions in neuroblastoma cells. Furthermore, we found that the intracellular localization of p21 and p27 in the nuclear and cytoplasmic compartments, respectively. In addition, we found that GRP/GRP-R silencing increased the expression and accumulation of PTEN in the cytoplasm of neuroblastoma cells where it co-localized with p27, thus suggesting that p27 promotes the function of PTEN as a tumor suppressor by stabilizing PTEN in the cytoplasm. GRP/GRP-R regulation of CDK inhibitors and tumor suppressor PTEN may be critical for tumoriogenesis of neuroblastoma.« less

  4. Ethylene-induced differential gene expression during abscission of citrus leaves

    PubMed Central

    Merelo, Paz; Cercós, Manuel; Tadeo, Francisco R.; Talón, Manuel

    2008-01-01

    The main objective of this work was to identify and classify genes involved in the process of leaf abscission in Clementina de Nules (Citrus clementina Hort. Ex Tan.). A 7 K unigene citrus cDNA microarray containing 12 K spots was used to characterize the transcriptome of the ethylene-induced abscission process in laminar abscission zone-enriched tissues and the petiole of debladed leaf explants. In these conditions, ethylene induced 100% leaf explant abscission in 72 h while, in air-treated samples, the abscission period started later and took 240 h. Gene expression monitored during the first 36 h of ethylene treatment showed that out of the 12 672 cDNA microarray probes, ethylene differentially induced 725 probes distributed as follows: 216 (29.8%) probes in the laminar abscission zone and 509 (70.2%) in the petiole. Functional MIPS classification and manual annotation of differentially expressed genes highlighted key processes regulating the activation and progress of the cell separation that brings about abscission. These included cell-wall modification, lipid transport, protein biosynthesis and degradation, and differential activation of signal transduction and transcription control pathways. Expression data associated with the petiole indicated the occurrence of a double defensive strategy mediated by the activation of a biochemical programme including scavenging ROS, defence and PR genes, and a physical response mostly based on lignin biosynthesis and deposition. This work identifies new genes probably involved in the onset and development of the leaf abscission process and suggests a different but co-ordinated and complementary role for the laminar abscission zone and the petiole during the process of abscission. PMID:18515267

  5. Cytosolic malate dehydrogenase regulates RANKL-mediated osteoclastogenesis via AMPK/c-Fos/NFATc1 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Se Jeong; Gu, Dong Ryun; Center for Metabolic Function Regulation

    2016-06-17

    Cytosolic malate dehydrogenase (malate dehydrogenase 1, MDH1) plays pivotal roles in the malate/aspartate shuttle that might modulate metabolism between the cytosol and mitochondria. In this study, we investigated the role of MDH1 in osteoclast differentiation and formation. MDH1 expression was induced by receptor activator of nuclear factor kappa-B ligand (RANKL) treatment. Knockdown of MDH1 by infection with retrovirus containing MDH1-specific shRNA (shMDH1) reduced mature osteoclast formation and bone resorption activity. Moreover, the expression of marker genes associated with osteoclast differentiation was downregulated by shMDH1 treatment, suggesting a role of MDH1 in osteoclast differentiation. In addition, intracellular ATP production was reducedmore » following the activation of adenosine 5′ monophosphate-activated protein kinase (AMPK), a cellular energy sensor and negative regulator of RANKL-induced osteoclast differentiation, in shMDH1-infected osteoclasts compared to control cells. In addition, the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a critical transcription factor of osteoclastogenesis, was decreased with MDH1 knockdown during RANKL-mediated osteoclast differentiation. These findings provide strong evidence that MDH1 plays a critical role in osteoclast differentiation and function via modulation of the intracellular energy status, which might affect AMPK activity and NFATc1 expression.« less

  6. Knockdown of SALL4 Protein Enhances All-trans Retinoic Acid-induced Cellular Differentiation in Acute Myeloid Leukemia Cells*

    PubMed Central

    Liu, Li; Liu, Liang; Leung, Lai-Han; Cooney, Austin J.; Chen, Changyi; Rosengart, Todd K.; Ma, Yupo; Yang, Jianchang

    2015-01-01

    All-trans retinoic acid (ATRA) is a differentiation agent that revolutionized the treatment of acute promyelocytic leukemia. However, it has not been useful for other types of acute myeloid leukemia (AML). Here we explored the effect of SALL4, a stem cell factor, on ATRA-induced AML differentiation in both ATRA-sensitive and ATRA-resistant AML cells. Aberrant SALL4 expression has been found in nearly all human AML cases, whereas, in normal bone marrow and peripheral blood cells, its expression is only restricted to hematopoietic stem/progenitor cells. We reason that, in AMLs, SALL4 activation may prevent cell differentiation and/or protect self-renewal that is seen in normal hematopoietic stem/progenitor cells. Indeed, our studies show that ATRA-mediated myeloid differentiation can be largely blocked by exogenous expression of SALL4, whereas ATRA plus SALL4 knockdown causes significantly increased AML differentiation and cell death. Mechanistic studies indicate that SALL4 directly associates with retinoic acid receptor α and modulates ATRA target gene expression. SALL4 is shown to recruit lysine-specific histone demethylase 1 (LSD1) to target genes and alter the histone methylation status. Furthermore, coinhibition of LSD1 and SALL4 plus ATRA treatment exhibited the strongest anti-AML effect. These findings suggest that SALL4 plays an unfavorable role in ATRA-based regimes, highlighting an important aspect of leukemia therapy. PMID:25737450

  7. Advanced glycation end product-induced astrocytic differentiation of cultured neurospheres through inhibition of Notch-Hes1 pathway-mediated neurogenesis.

    PubMed

    Guo, Yijing; Wang, Pin; Sun, Haixia; Cai, Rongrong; Xia, Wenqing; Wang, Shaohua

    2013-12-23

    This study aims to investigate the roles of the Notch-Hes1 pathway in the advanced glycation end product (AGE)-mediated differentiation of neural stem cells (NSCs). We prepared pLentiLox3.7 lentiviral vectors that express short hairpin RNA (shRNA) against Notch1 and transfected it into NSCs. Cell differentiation was analyzed under confocal laser-scanning microscopy. The percentage of neurons and astrocytes was quantified by normalizing the total number of TUJ1+ (Neuron-specific class III β-tubulin) and GFAP+ (Glial fibrillary acidic protein) cells to the total number of Hoechst 33342-labeled cell nuclei. The protein and gene expression of Notch-Hes1 pathway components was examined via western blot analysis and real-time PCR. After 1 week of incubation, we found that AGE-bovine serum albumin (BSA) (400 μg/mL) induced the astrocytic differentiation of cultured neurospheres and inhibited neuronal formation. The expression of Notch-Hes1 pathway components was upregulated in the cells in the AGE-BSA culture medium. Immunoblot analysis indicated that shRNA silencing of Notch1 expression in NSCs significantly increases neurogenesis and suppresses astrocytic differentiation in NSCs incubated with AGE-BSA. AGEs promote the astrocytic differentiation of cultured neurospheres by inhibiting neurogenesis through the Notch-Hes1 pathway, providing a potential therapeutic target for hyperglycemia-related cognitive deficits.

  8. The AP-1 transcription factor Fra1 inhibits follicular B cell differentiation into plasma cells

    PubMed Central

    Grötsch, Bettina; Brachs, Sebastian; Lang, Christiane; Luther, Julia; Derer, Anja; Schlötzer-Schrehardt, Ursula; Bozec, Aline; Fillatreau, Simon; Berberich, Ingolf; Hobeika, Elias; Reth, Michael; Wagner, Erwin F.; Schett, Georg

    2014-01-01

    The cornerstone of humoral immunity is the differentiation of B cells into antibody-secreting plasma cells. This process is tightly controlled by a regulatory gene network centered on the transcriptional repressor B lymphocyte–induced maturation protein 1 (Blimp1). Proliferation of activated B cells is required to foster Blimp1 expression but needs to be terminated to avoid overshooting immune reactions. Activator protein 1 (AP-1) transcription factors become quickly up-regulated upon B cell activation. We demonstrate that Fra1, a Fos member of AP-1, enhances activation-induced cell death upon induction in activated B cells. Moreover, mice with B cell–specific deletion of Fra1 show enhanced plasma cell differentiation and exacerbated antibody responses. In contrast, transgenic overexpression of Fra1 blocks plasma cell differentiation and immunoglobulin production, which cannot be rescued by Bcl2. On the molecular level, Fra1 represses Blimp1 expression and interferes with binding of the activating AP-1 member c-Fos to the Blimp1 promoter. Conversely, overexpression of c-Fos in Fra1 transgenic B cells releases Blimp1 repression. As Fra1 lacks transcriptional transactivation domains, we propose that Fra1 inhibits Blimp1 expression and negatively controls plasma cell differentiation through binding to the Blimp1 promoter. In summary, we demonstrate that Fra1 negatively controls plasma cell differentiation by repressing Blimp1 expression. PMID:25288397

  9. Prohibitin 2 Regulates the Proliferation and Lineage-Specific Differentiation of Mouse Embryonic Stem Cells in Mitochondria

    PubMed Central

    Komazaki, Shinji; Enomoto, Kei; Seki, Yasuhiro; Wang, Ying Ying; Ishigaki, Yohei; Ninomiya, Naoto; Noguchi, Taka-aki K.; Kokubu, Yuko; Ohnishi, Keigoh; Nakajima, Yoshiro; Kato, Kaoru; Intoh, Atsushi; Takada, Hitomi; Yamakawa, Norio; Wang, Pi-Chao; Asashima, Makoto; Kurisaki, Akira

    2014-01-01

    Background The pluripotent state of embryonic stem (ES) cells is controlled by a network of specific transcription factors. Recent studies also suggested the significant contribution of mitochondria on the regulation of pluripotent stem cells. However, the molecules involved in these regulations are still unknown. Methodology/Principal Findings In this study, we found that prohibitin 2 (PHB2), a pleiotrophic factor mainly localized in mitochondria, is a crucial regulatory factor for the homeostasis and differentiation of ES cells. PHB2 was highly expressed in undifferentiated mouse ES cells, and the expression was decreased during the differentiation of ES cells. Knockdown of PHB2 induced significant apoptosis in pluripotent ES cells, whereas enhanced expression of PHB2 contributed to the proliferation of ES cells. However, enhanced expression of PHB2 strongly inhibited ES cell differentiation into neuronal and endodermal cells. Interestingly, only PHB2 with intact mitochondrial targeting signal showed these specific effects on ES cells. Moreover, overexpression of PHB2 enhanced the processing of a dynamin-like GTPase (OPA1) that regulates mitochondrial fusion and cristae remodeling, which could induce partial dysfunction of mitochondria. Conclusions/Significance Our results suggest that PHB2 is a crucial mitochondrial regulator for homeostasis and lineage-specific differentiation of ES cells. PMID:24709813

  10. Retrogenic ICOS Expression Increases Differentiation of KLRG-1hi CD127lo CD8+ T Cells During Listeria Infection and Diminishes Recall Responses1

    PubMed Central

    Liu, Danya; Burd, Eileen M.; Coopersmith, Craig M.; Ford, Mandy L.

    2016-01-01

    Following T cell encounter with antigen, multiple signals are integrated to collectively induce distinct differentiation programs within antigen-specific CD8+ T cell populations. Several factors contribute to these cell fate decisions including the amount and duration of antigen, exposure to inflammatory cytokines, and degree of ligation of cosignaling molecules. The inducible costimulator (ICOS) is not expressed on resting T cells but is rapidly upregulated upon encounter with antigen. However, the impact of ICOS signaling on programmed differentiation is not well understood. In this study we therefore sought to determine the role of ICOS signaling on CD8+ T cell programmed differentiation. Through the creation of novel ICOS retrogenic antigen-specific TCR transgenic CD8+ T cells, we interrogated the phenotype, functionality, and recall potential of CD8+ T cells that receive early and sustained ICOS signaling during antigen exposure. Our results reveal that these ICOS signals critically impacted cell fate decisions of antigen-specific CD8+ T cells, resulting in increased frequencies of KLRG-1hiCD127lo cells, altered BLIMP-1, T-bet, and eomesodermin expression, and increased cytolytic capacity as compared to empty vector controls. Interestingly, however, ICOS retrogenic CD8+ T cells also preferentially homed to non-lymphoid organs, and exhibited reduced multi-cytokine functionality and reduced ability to mount secondary recall responses upon challenge in vivo. In sum, our results suggest that an altered differentiation program is induced following early and sustained ICOS expression, resulting in the generation of more cytolyticly potent, terminally differentiated effectors that possess limited capacity for recall response. PMID:26729800

  11. Prostaglandin E2 inhibits Tr1 cell differentiation through suppression of c-Maf

    PubMed Central

    Hooper, Kirsten Mary; Kong, Weimin

    2017-01-01

    Prostaglandin E2 (PGE2), a major lipid mediator abundant at inflammatory sites, acts as a proinflammatory agent in models of inflammatory/autoimmune diseases by promoting CD4 Th1/Th17 differentiation. Regulatory T cells, including the IL-10 producing Tr1 cells counterbalance the proinflammatory activity of effector Th1/Th17 cells. Tr1 cell differentiation and function are induced by IL-27, and depend primarily on sustained expression of c-Maf in addition to AhR and Blimp-1. In agreement with the in vivo proinflammatory role of PGE2, here we report for the first time that PGE2 inhibits IL-27-induced differentiation and IL-10 production of murine CD4+CD49b+LAG-3+Foxp3- Tr1 cells. The inhibitory effect of PGE2 was mediated through EP4 receptors and induction of cAMP, leading to a significant reduction in c-Maf expression. Although PGE2 reduced IL-21 production in differentiating Tr1 cells, its inhibitory effect on Tr1 differentiation and c-Maf expression also occurred independent of IL-21 signaling. PGE2 did not affect STAT1/3 activation, AhR expression and only marginally reduced Egr-2/Blimp-1 expression. The effect of PGE2 on CD4+CD49b+LAG-3+ Tr1 differentiation was not associated with either induction of Foxp3 or IL-17 production, suggesting a lack of transdifferentiation into Foxp3+ Treg or effector Th17 cells. We recently reported that PGE2 inhibits the expression and production of IL-27 from activated conventional dendritic cells (cDC) in vivo and in vitro. The present study indicates that PGE2 also reduces murine Tr1 differentiation and function directly by acting on IL-27-differentiating Tr1 cells. Together, the ability of PGE2 to inhibit IL-27 production by cDC, and the direct inhibitory effect on Tr1 differentiation mediated through reduction in c-Maf expression, represent a new mechanistic perspective for the proinflammatory activity of PGE2. PMID:28604806

  12. Role of WDHD1 in Human Papillomavirus-Mediated Oncogenesis Identified by Transcriptional Profiling of E7-Expressing Cells

    PubMed Central

    Zhou, Yunying; Zhang, Qishu; Gao, Ge; Zhang, Xiaoli; Liu, Yafei; Yuan, Shoudao

    2016-01-01

    ABSTRACT The E7 oncoprotein of the high-risk human papillomavirus (HPV) plays a major role in HPV-induced carcinogenesis. E7 abrogates the G1 cell cycle checkpoint and induces genomic instability, but the mechanism is not fully understood. In this study, we performed RNA sequencing (RNA-seq) to characterize the transcriptional profile of keratinocytes expressing HPV 16 (HPV-16) E7. At the transcriptome level, 236 genes were differentially expressed between E7 and vector control cells. A subset of the differentially expressed genes, most of them novel to E7-expressing cells, was further confirmed by real-time PCR. Of interest, the activities of multiple transcription factors were altered in E7-expressing cells. Through bioinformatics analysis, pathways altered in E7-expressing cells were investigated. The upregulated genes were enriched in cell cycle and DNA replication, as well as in the DNA metabolic process, transcription, DNA damage, DNA repair, and nucleotide metabolism. Specifically, we focused our studies on the gene encoding WDHD1 (WD repeat and high mobility group [HMG]-box DNA-binding protein), one of the genes that was upregulated in E7-expressing cells. WDHD1 is a component of the replisome that regulates DNA replication. Recent studies suggest that WDHD1 may also function as a DNA replication initiation factor as well as a G1 checkpoint regulator. We found that in E7-expressing cells, the steady-state level of WDHD1 protein was increased along with the half-life. Moreover, downregulation of WDHD1 reduced E7-induced G1 checkpoint abrogation and rereplication, demonstrating a novel function for WDHD1. These studies shed light on mechanisms by which HPV induces genomic instability and have therapeutic implications. IMPORTANCE The high-risk HPV types induce cervical cancer and encode an E7 oncoprotein that plays a major role in HPV-induced carcinogenesis. However, the mechanism by which E7 induces carcinogenesis is not fully understood; specific anti-HPV agents are not available. In this study, we performed RNA-seq to characterize transcriptional profiling of keratinocytes expressing HPV-16 E7 and identified more than 200 genes that were differentially expressed between E7 and vector control cells. Through bioinformatics analysis, pathways altered in E7-expressing cells were identified. Significantly, the WDHD1 gene, one of the genes that is upregulated in E7-expressing cells, was found to play an important role in E7-induced G1 checkpoint abrogation and rereplication. These studies shed light on mechanisms by which HPV induces genomic instability and have therapeutic implications. PMID:27099318

  13. Propionibacterium acnes induces an adjuvant effect in B-1 cells and affects their phagocyte differentiation via a TLR2-mediated mechanism.

    PubMed

    Gambero, Monica; Teixeira, Daniela; Butin, Liane; Ishimura, Mayari Eika; Mariano, Mario; Popi, Ana Flavia; Longo-Maugéri, Ieda Maria

    2016-09-01

    B-1 lymphocytes are present in large numbers in the mouse peritoneal cavity, as are macrophages, and are responsible for natural IgM production. These lymphocytes migrate to inflammatory foci and are also involved in innate immunity. It was also demonstrated that B-1 cells are able to differentiated into phagocytes (B-1CDP), which is characterized by expression of F4/80 and increased phagocytic activity. B-1 cell responses to antigens and adjuvants are poorly characterized. It has been shown that Propionibacterium acnes suspensions induce immunomodulatory effects in both macrophages and B-2 lymphocytes. We recently demonstrated that this bacterium has the ability to increase B-1 cell populations both in vitro and in vivo. P. acnes induces B-1CDP differentiation, increases the expression of TLR2, TLR4 and TLR9 and augments the expression of CD80, CD86 and CD40 in B-1 and B-1CDP cells. Because P. acnes has been shown to modulate TLR expression, in this study, we investigated the role of TLR2 and TLR4 in B-1 cell population, including B-1CDP differentiation and phagocytic activity in vitro and in vivo. Interestingly, we have demonstrated that TLR2 signaling could be involved in the increase in the B-1 cell population induced by P. acnes. Furthermore, the early differentiation of B-1CDP is also dependent of TLR2. It was also observed that TLR signals also interfere in the phagocytic ability of B-1 cells and their phagocytes. According to these data, it is clear that P. acnes promotes an important adjuvant effect in B-1 cells by inducing them to differentiate into B-1CDP cells and modulates their phagocytic functions both in vivo and in vitro. Moreover, most of these effects are mediated primarily via TLR2. These data reinforce the findings that such bacterial suspensions have powerful adjuvant properties. The responses of B-1 cells to exogenous stimulation indicate that these cells are important to the innate immune response. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Changes in microRNA expression during differentiation of embryonic and induced pluripotent stem cells to definitive endoderm.

    PubMed

    Francis, Natalie; Moore, Melanie; Asan, Simona G; Rutter, Guy A; Burns, Chris

    2015-01-01

    Pluripotent stem cells, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have the potential to treat type 1 diabetes through cell replacement therapy. However, the protocols used to generate insulin-expressing cells in vitro frequently result in cells which have an immature phenotype and are functionally restricted. MicroRNAs (miRNAs) are now known to be important in cell fate specification, and a unique miRNA signature characterises pancreatic development at the definitive endoderm stage. Several studies have described differences in miRNA expression between ESCs and iPSCs. Here we have used microarray analysis both to identify miRNAs up- or down-regulated upon endoderm formation, and also miRNAs differentially expressed between ESCs and iPSCs. Several miRNAs fulfilling both these criteria were identified, suggesting that differences in the expression of these miRNAs may affect the ability of pluripotent stem cells to differentiate into definitive endoderm. The expression of these miRNAs was validated by qRT-PCR, and the relationship between one of these miRNAs, miR-151a-5p, and its predicted target gene, SOX17, was investigated by luciferase assay, and suggested an interaction between miR-151a-5p and this key transcription factor. In conclusion, these findings demonstrate a unique miRNA expression pattern for definitive endoderm derived from both embryonic and induced pluripotent stem cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Differential GFP expression patterns induced by different heavy metals in Tg(hsp70:gfp) transgenic medaka (Oryzias latipes).

    PubMed

    Ng, Grace Hwee Boon; Xu, Hongyan; Pi, Na; Kelly, Barry C; Gong, Zhiyuan

    2015-06-01

    Heat shock protein 70 (Hsp70) is one of the most widely used biomarker for monitoring environment perturbations in biological systems. To facilitate the analysis of hsp70 expression as a biomarker, we generated a Tg(hsp70:gfp) transgenic medaka line in which green fluorescence protein (GFP) reporter gene was driven by the medaka hsp70 promoter. Here, we characterized Tg(hsp70:gfp) medaka for inducible GFP expression by seven environment-relevant heavy metals, including mercury, arsenic, lead, cadmium, copper, chromium, and zinc. We found that four of them (mercury, arsenic, lead, and cadmium) induced GFP expression in multiple and different organs. In general, the liver, kidney, gut, and skin are among the most frequent organs to show induced GFP expression. In contrast, no detectable GFP induction was observed to copper, chromium, or zinc, indicating that the transgenic line was not responsive to all heavy metals. RT-qPCR determination of hsp70 mRNA showed similar induction and non-induction by these metals, which also correlated with the levels of metal uptake in medaka exposed to these metals. Our observations suggested that these heavy metals have different mechanisms of toxicity and/or differential bioaccumulation in various organs; different patterns of GFP expression induced by different metals may be used to determine or exclude metals in water samples tested. Furthermore, we also tested several non-metal toxicants such as bisphenol A, 2,3,7,8-tetrachlorodibenzo-p-dioxin, 4-introphenol, and lindane; none of them induced significant GFP expression in Tg(hsp70:gfp) medaka, further suggesting that the inducibility of Tg(hsp70:gfp) for GFP expression is specific to a subset of heavy metals.

  16. High Glucose Inhibits Neural Stem Cell Differentiation Through Oxidative Stress and Endoplasmic Reticulum Stress.

    PubMed

    Chen, Xi; Shen, Wei-Bin; Yang, Penghua; Dong, Daoyin; Sun, Winny; Yang, Peixin

    2018-06-01

    Maternal diabetes induces neural tube defects by suppressing neurogenesis in the developing neuroepithelium. Our recent study further revealed that high glucose inhibited embryonic stem cell differentiation into neural lineage cells. However, the mechanism whereby high glucose suppresses neural differentiation is unclear. To investigate whether high glucose-induced oxidative stress and endoplasmic reticulum (ER) stress lead to the inhibition of neural differentiation, the effect of high glucose on neural stem cell (the C17.2 cell line) differentiation was examined. Neural stem cells were cultured in normal glucose (5 mM) or high glucose (25 mM) differentiation medium for 3, 5, and 7 days. High glucose suppressed neural stem cell differentiation by significantly decreasing the expression of the neuron marker Tuj1 and the glial cell marker GFAP and the numbers of Tuj1 + and GFAP + cells. The antioxidant enzyme superoxide dismutase mimetic Tempol reversed high glucose-decreased Tuj1 and GFAP expression and restored the numbers of neurons and glial cells differentiated from neural stem cells. Hydrogen peroxide treatment imitated the inhibitory effect of high glucose on neural stem cell differentiation. Both high glucose and hydrogen peroxide triggered ER stress, whereas Tempol blocked high glucose-induced ER stress. The ER stress inhibitor, 4-phenylbutyrate, abolished the inhibition of high glucose or hydrogen peroxide on neural stem cell differentiation. Thus, oxidative stress and its resultant ER stress mediate the inhibitory effect of high glucose on neural stem cell differentiation.

  17. Differences in gene expression profiles and signaling pathways in rhabdomyolysis-induced acute kidney injury.

    PubMed

    Geng, Xiaodong; Wang, Yuanda; Hong, Quan; Yang, Jurong; Zheng, Wei; Zhang, Gang; Cai, Guangyan; Chen, Xiangmei; Wu, Di

    2015-01-01

    Rhabdomyolysis is a threatening syndrome because it causes the breakdown of skeletal muscle. Muscle destruction leads to the release of myoglobin, intracellular proteins, and electrolytes into the circulation. The aim of this study was to investigate the differences in gene expression profiles and signaling pathways upon rhabdomyolysis-induced acute kidney injury (AKI). In this study, we used glycerol-induced renal injury as a model of rhabdomyolysis-induced AKI. We analyzed data and relevant information from the Gene Expression Omnibus database (No: GSE44925). The gene expression data for three untreated mice were compared to data for five mice with rhabdomyolysis-induced AKI. The expression profiling of the three untreated mice and the five rhabdomyolysis-induced AKI mice was performed using microarray analysis. We examined the levels of Cyp3a13, Rela, Aldh7a1, Jun, CD14. And Cdkn1a using RT-PCR to determine the accuracy of the microarray results. The microarray analysis showed that there were 1050 downregulated and 659 upregulated genes in the rhabdomyolysis-induced AKI mice compared to the control group. The interactions of all differentially expressed genes in the Signal-Net were analyzed. Cyp3a13 and Rela had the most interactions with other genes. The data showed that Rela and Aldh7a1 were the key nodes and had important positions in the Signal-Net. The genes Jun, CD14, and Cdkn1a were also significantly upregulated. The pathway analysis classified the differentially expressed genes into 71 downregulated and 48 upregulated pathways including the PI3K/Akt, MAPK, and NF-κB signaling pathways. The results of this study indicate that the NF-κB, MAPK, PI3K/Akt, and apoptotic pathways are regulated in rhabdomyolysis-induced AKI.

  18. The active principle region of Buyang Huanwu decoction induced differentiation of bone marrow-derived mesenchymal stem cells into neural-like cells

    PubMed Central

    Zheng, Jinghui; Wan, Yi; Chi, Jianhuai; Shen, Dekai; Wu, Tingting; Li, Weimin; Du, Pengcheng

    2012-01-01

    The present study induced in vitro-cultured passage 4 bone marrow-derived mesenchymal stem cells to differentiate into neural-like cells with a mixture of alkaloid, polysaccharide, aglycone, glycoside, essential oils, and effective components of Buyang Huanwu decoction (active principle region of decoction for invigorating yang for recuperation). After 28 days, nestin and neuron-specific enolase were expressed in the cytoplasm. Reverse transcription-PCR and western blot analyses showed that nestin and neuron-specific enolase mRNA and protein expression was greater in the active principle region group compared with the original formula group. Results demonstrated that the active principle region of Buyang Huanwu decoction induced greater differentiation of rat bone marrow-derived mesenchymal stem cells into neural-like cells in vitro than the original Buyang Huanwu decoction formula. PMID:25806066

  19. Erythroid differentiation ability of butyric acid analogues: identification of basal chemical structures of new inducers of foetal haemoglobin.

    PubMed

    Bianchi, Nicoletta; Chiarabelli, Cristiano; Zuccato, Cristina; Lampronti, Ilaria; Borgatti, Monica; Amari, Gabriele; Delcanale, Maurizio; Chiavilli, Francesco; Prus, Eugenia; Fibach, Eitan; Gambari, Roberto

    2015-04-05

    Several investigations have demonstrated a mild clinical status in patients with β-globin disorders and congenital high persistence of foetal haemoglobin. This can be mimicked by a pharmacological increase of foetal γ-globin genes expression and foetal haemoglobin production. Our goal was to apply a multistep assay including few screening methods (benzidine staining, RT-PCR and HPLC analyses) and erythroid cellular model systems (the K562 cell line and erythroid precursors collected from peripheral blood) to select erythroid differentiation agents with foetal haemoglobin inducing potential. With this methodology, we have identified a butyric acid derivative, namely the 4174 cyclopropanecarboxylic acid compound, able to induce erythroid differentiation without antiproliferative effect in K562 cells and increase of γ-globin gene expression in erythroid precursor cells. The results are relevant for pharmacological treatments of haemoglobinopathies, including β-thalassaemia and sickle cell anaemia. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Magnolol Inhibits RANKL-induced osteoclast differentiation of raw 264.7 macrophages through heme oxygenase-1-dependent inhibition of NFATc1 expression.

    PubMed

    Lu, Sheng-Hua; Chen, Tso-Hsiao; Chou, Tz-Chong

    2015-01-23

    Magnolol (1) isolated from Magnolia officinalis exhibits many beneficial effects such as anti-inflammatory and antioxidant activity. The aim of this study was to evaluate the effects of magnolol (1) on RANKL-induced osteoclast differentiation and investigate the underlying molecular mechanisms. Treatment with magnolol (1) significantly inhibited osteoclast differentiation of RAW 264.7 macrophages and bone-resorbing activity of osteoclasts in the RANKL-induced system. Moreover, RANKL-activated JNK/ERK/AP-1 and NF-κB signaling, ROS formation, and NFATc1 activation were attenuated by magnolol (1). A novel finding of this study is that magnolol (1) can increase heme oxygenase-1 (HO-1) expression and Nrf2 activation in RANKL-stimulated cells. Blocking HO-1 activity with tin protoporphyrin IX markedly reversed magnolol (1)-mediated inhibition of osteoclast differentiation, NFATc1 nuclear translocation, and MMP-9 activity, suggesting that HO-1 contributes to the attenuation of NFATc1-mediated osteoclastogenesis by magnolol (1). Therefore, the inhibitory effect of magnolol (1) on osteoclast differentiation is due to inhibition of MAPK/c-fos/AP-1 and NF-κB signaling as well as ROS production and up-regulation of HO-1 expression, which ultimately suppresses NFATc1 induction. These findings indicate that magnolol (1) may have potential to treat bone diseases associated with excessive osteoclastogenesis.

  1. Lipocalin-2 inhibits osteoclast formation by suppressing the proliferation and differentiation of osteoclast lineage cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyun-Ju, E-mail: biohjk@knu.ac.kr; Yoon, Hye-Jin; Yoon, Kyung-Ae

    Lipocalin-2 (LCN2) is a member of the lipocalin superfamily and plays a critical role in the regulation of various physiological processes, such as inflammation and obesity. In this study, we report that LCN2 negatively modulates the proliferation and differentiation of osteoclast precursors, resulting in impaired osteoclast formation. The overexpression of LCN2 in bone marrow-derived macrophages or the addition of recombinant LCN2 protein inhibits the formation of multinuclear osteoclasts. LCN2 suppresses macrophage colony-stimulating factor (M-CSF)-induced proliferation of osteoclast precursor cells without affecting their apoptotic cell death. Interestingly, LCN2 decreases the expression of the M-CSF receptor, c-Fms, and subsequently blocks its downstreammore » signaling cascades. In addition, LCN2 inhibits RANKL-induced osteoclast differentiation and attenuates the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are important modulators in osteoclastogenesis. Mechanistically, LCN2 inhibits NF-κB signaling pathways, as demonstrated by the suppression of IκBα phosphorylation, nuclear translocation of p65, and NF-κB transcriptional activity. Thus, LCN2 is an anti-osteoclastogenic molecule that exerts its effects by retarding the proliferation and differentiation of osteoclast lineage cells. - Highlights: • LCN2 expression is regulated during osteoclast development. • LCN2 suppresses M-CSF-mediated osteoclast precursor proliferation. • LCN2 inhibits RANKL-induced osteoclast differentiation.« less

  2. WNK1 is involved in Nogo66 inhibition of OPC differentiation.

    PubMed

    Zhang, Zhao-Huan; Li, Jiao-Jiao; Wang, Qing-Jin; Zhao, Wei-Qian; Hong, Jiang; Lou, Shu-jie; Xu, Xiao-Hui

    2015-03-01

    LINGO-1 is a transmembrane receptor expressed primarily in the central nervous system (CNS) and plays an important role in myelination. Recent studies have indicated that it is also involved in oligodendrocyte precursor cell (OPC) survival and differentiation; however, the downstream signaling pathway underlying OPC development is unknown. In our previous study, we found that LINGO-1 is associated with WNK1 in mediating Nogo-induced neurite extension inhibition by RhoA activation. In an effort to identify the role of LINGO-1-WNK1 in OPCs, we first confirmed that WNK1 is also expressed in OPCs and co-localized with LINGO-1, which suppresses WNK1 expression by RNA interference-attenuated Nogo66-induced inhibition of OPC differentiation. Furthermore, we mapped the WNK1 kinase domain using several fragmented peptides to identify the key region of interaction with LINGO-1. We found that a sequence corresponding to the D6 peptide is necessary for the interaction. Finally, we found that using the TAT-D6 peptide to introduce D6 peptide into primary cultured OPC inhibits the association between LINGO-1 and WNK1 and significantly attenuates Nogo66-induced inhibition of OPC differentiation. Taken together, our results show that WNK1, via a specific region on WNK1 kinase domain, interacts with LINGO-1, thus mediating Nogo66-inhibited OPC differentiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Differentiation of human umbilical cord mesenchymal stromal cells into low immunogenic hepatocyte-like cells.

    PubMed

    Zhao, Qinjun; Ren, Hongying; Li, Xiyuan; Chen, Zhong; Zhang, Xiangyu; Gong, Wei; Liu, Yongjun; Pang, Tianxiang; Han, Zhong Chao

    2009-01-01

    Mesenchymal stromal cells (MSC) isolated from several human tissues have been known to differentiate into the hepatic lineage in vitro, but the immunogenicity of the differentiated hepatocyte-like cells (DHC) has not been reported. Umbilical cord (UC) MSC are thought to be an attractive cell source for cell therapy because of their young age and low infection rate compared with adult tissue MSC. Hepatic differentiation of UC-MSC was induced with a 2-step protocol. The expressions of hepatic markers were detected by RT-PCR and immunofluorescence staining. Albumin production and urea secretion were measured by ELISA and colorimetric assay respectively. The immunosuppressive properties of DHC was detected by mixed lymphocyte culture. After incubation with specific growth factors, including hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF), UC MSC exhibited a high hepatic differentiation ability in an adherent culture condition. The differentiated UC MSC showed hepatocyte-like morphology and expressed several liver-specific markers at gene and protein levels. Furthermore, the DHC exhibited hepatocyte-specific functions, including albumin secretion, low-density lipoprotein uptake and urea production. More importantly, DHC did not express major histocompatibility complex (MHC) II antigen and were not able to induce lymphocyte proliferation in mixed lymphocyte culture, as undifferentiated UC MSC did. Our results indicate that UC MSC are able to differentiate into functional hepatocyte-like cells that still retain their low immunogenicity in vitro. More importantly, DHC incorporated into the parenchyma of liver when transplanted into mice with CCl(4)-induced liver injury. Therefore, DHC may be an ideal source for cell therapy of liver diseases.

  4. Activation of the kinase activity of ATM by retinoic acid is required for CREB-dependent differentiation of neuroblastoma cells.

    PubMed

    Fernandes, Norvin D; Sun, Yingli; Price, Brendan D

    2007-06-01

    The ATM protein kinase is mutated in ataxia telangiectasia, a genetic disease characterized by defective DNA repair, neurodegeneration, and growth factor signaling defects. The activity of ATM kinase is activated by DNA damage, and this activation is required for cells to survive genotoxic events. In addition to this well characterized role in DNA repair, we now demonstrate a novel role for ATM in the retinoic acid (RA)-induced differentiation of SH-SY5Y neuroblastoma cells into post-mitotic, neuronal-like cells. RA rapidly activates the activity of ATM kinase, leading to the ATM-dependent phosphorylation of the CREB protein, extrusion of neuritic processes, and differentiation of SH-SY5Y cells into neuronal-like cells. When ATM protein expression was suppressed by short hairpin RNA, the ATM-dependent phosphorylation of CREB was blocked. Furthermore, ATM-negative cells failed to differentiate into neuronal-like cells when exposed to retinoic acid; instead, they underwent cell death. Expression of a constitutively active CREBVP16 construct, or exposure to forskolin to induce CREB phosphorylation, rescued ATM negative cells and restored differentiation. Furthermore, when dominant negative CREB proteins with mutations in either the CREB phosphorylation site (CREBS133A) or the DNA binding domain (KCREB) were introduced into SH-SY5Y cells, retinoic acid-induced differentiation was blocked and the cells underwent cell death. The results demonstrate that ATM is required for the retinoic acid-induced differentiation of SH-SY5Y cells through the ATM dependent-phosphorylation of serine 133 of CREB. These results therefore define a novel mechanism for activation of the activity of ATM kinase by RA, and implicate ATM in the regulation of CREB function during RA-induced differentiation.

  5. Abscisic-acid-induced cellular apoptosis and differentiation in glioma via the retinoid acid signaling pathway.

    PubMed

    Zhou, Nan; Yao, Yu; Ye, Hongxing; Zhu, Wei; Chen, Liang; Mao, Ying

    2016-04-15

    Retinoid acid (RA) plays critical roles in regulating differentiation and apoptosis in a variety of cancer cells. Abscisic acid (ABA) and RA are direct derivatives of carotenoids and share structural similarities. Here we proposed that ABA may also play a role in cellular differentiation and apoptosis by sharing a similar signaling pathway with RA that may be involved in glioma pathogenesis. We reported for the first time that the ABA levels were twofold higher in low-grade gliomas compared with high-grade gliomas. In glioma tissues, there was a positive correlation between the ABA levels and the transcription of cellular retinoic acid-binding protein 2 (CRABP2) and a negative correlation between the ABA levels and transcription of fatty acid-binding protein 5 (FABP5). ABA treatment induced a significant increase in the expression of CRABP2 and a decrease in the expression of peroxisome proliferator-activated receptor (PPAR) in glioblastoma cells. Remarkably, both cellular apoptosis and differentiation were increased in the glioblastoma cells after ABA treatment. ABA-induced cellular apoptosis and differentiation were significantly reduced by selectively silencing RAR-α, while RAR-α overexpression exaggerated the ABA-induced effects. These results suggest that ABA may play a role in the pathogenesis of glioma by promoting cellular apoptosis and differentiation through the RA signaling pathway. © 2015 UICC.

  6. Biologically synthesized silver nanoparticles induce neuronal differentiation of SH-SY5Y cells via modulation of reactive oxygen species, phosphatases, and kinase signaling pathways.

    PubMed

    Dayem, Ahmed Abdal; Kim, BongWoo; Gurunathan, Sangiliyandi; Choi, Hye Yeon; Yang, Gwangmo; Saha, Subbroto Kumar; Han, Dawoon; Han, Jihae; Kim, Kyeongseok; Kim, Jin-Hoi; Cho, Ssang-Goo

    2014-07-01

    Nano-scale materials are noted for unique properties, distinct from those of their bulk material equivalents. In this study, we prepared spherical silver nanoparticles (AgNPs) with an average size of about 30 nm and tested their potency to induce neuronal differentiation of SH-SY5Y cells. Human neuroblastoma SH-SY5Y cells are considered an ideal in vitro model for studying neurogenesis, as they can be maintained in an undifferentiated state or be induced to differentiate into neuron-like phenotypes in vitro by several differentiation-inducing agents. Treatment of SH-SY5Y cells by biologically synthesized AgNPs led to cell morphological changes and significant increase in neurite length and enhanced the expression of neuronal differentiation markers such as Map-2, β-tubulin III, synaptophysin, neurogenin-1, Gap-43, and Drd-2. Furthermore, we observed an increase in generation of intracellular reactive oxygen species (ROS), activation of several kinases such as ERK and AKT, and downregulation of expression of dual-specificity phosphatases (DUSPs) in AgNPs-exposed SH-SY5Y cells. Our results suggest that AgNPs modulate the intracellular signaling pathways, leading to neuronal differentiation, and could be applied as promising nanomaterials for stem cell research and therapy. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Generation of Arbas Cashmere Goat Induced Pluripotent Stem Cells Through Fibroblast Reprogramming.

    PubMed

    Tai, Dapeng; Liu, Pengxia; Gao, Jing; Jin, Muzi; Xu, Teng; Zuo, Yongchun; Liang, Hao; Liu, Dongjun

    2015-08-01

    Various factors affect the process of obtaining stable Arbas cashmere goat embryonic stem cells (ESCs), for example, the difficulty in isolating cells at the appropriate stage of embryonic development, the in vitro culture environment, and passage methods. With the emergence of induced pluripotent stem cell (iPSC) technology, it has become possible to use specific genes to induce somatic cell differentiation in PSCs. We transferred OCT4, SOX2, c-MYC, and KLF4 into Arbas cashmere goat fetal fibroblasts, then induced and cultured them using a drug-inducible system to obtain Arbas goat iPSCs that morphologically resembled mouse iPSCs. After identification, the obtained goat iPSCs expressed ESC markers, had a normal karyotype, could differentiate into embryoid bodies in vitro, and could differentiate into three germ layer cell types and form teratomas in vivo. We used microarray gene expression profile analysis to elucidate the reprogramming process. Our results provide the experimental basis for establishing cashmere goat iPSC lines and for future in-depth studies on molecular mechanism of cashmere goat somatic cell reprogramming.

  8. A New Module in Neural Differentiation Control: Two MicroRNAs Upregulated by Retinoic Acid, miR-9 and -103, Target the Differentiation Inhibitor ID2

    PubMed Central

    Savino, Mauro; Laneve, Pietro; Caffarelli, Elisa; Nasi, Sergio

    2012-01-01

    The transcription factor ID2 is an important repressor of neural differentiation strongly implicated in nervous system cancers. MicroRNAs (miRNAs) are increasingly involved in differentiation control and cancer development. Here we show that two miRNAs upregulated on differentiation of neuroblastoma cells – miR-9 and miR-103 – restrain ID2 expression by directly targeting the coding sequence and 3′ untranslated region of the ID2 encoding messenger RNA, respectively. Notably, the two miRNAs show an inverse correlation with ID2 during neuroblastoma cell differentiation induced by retinoic acid. Overexpression of miR-9 and miR-103 in neuroblastoma cells reduces proliferation and promotes differentiation, as it was shown to occur upon ID2 inhibition. Conversely, an ID2 mutant that cannot be targeted by either miRNA prevents retinoic acid-induced differentiation more efficient than wild-type ID2. These findings reveal a new regulatory module involving two microRNAs upregulated during neural differentiation that directly target expression of the key differentiation inhibitor ID2, suggesting that its alteration may be involved in neural cancer development. PMID:22848373

  9. A new module in neural differentiation control: two microRNAs upregulated by retinoic acid, miR-9 and -103, target the differentiation inhibitor ID2.

    PubMed

    Annibali, Daniela; Gioia, Ubaldo; Savino, Mauro; Laneve, Pietro; Caffarelli, Elisa; Nasi, Sergio

    2012-01-01

    The transcription factor ID2 is an important repressor of neural differentiation strongly implicated in nervous system cancers. MicroRNAs (miRNAs) are increasingly involved in differentiation control and cancer development. Here we show that two miRNAs upregulated on differentiation of neuroblastoma cells--miR-9 and miR-103--restrain ID2 expression by directly targeting the coding sequence and 3' untranslated region of the ID2 encoding messenger RNA, respectively. Notably, the two miRNAs show an inverse correlation with ID2 during neuroblastoma cell differentiation induced by retinoic acid. Overexpression of miR-9 and miR-103 in neuroblastoma cells reduces proliferation and promotes differentiation, as it was shown to occur upon ID2 inhibition. Conversely, an ID2 mutant that cannot be targeted by either miRNA prevents retinoic acid-induced differentiation more efficient than wild-type ID2. These findings reveal a new regulatory module involving two microRNAs upregulated during neural differentiation that directly target expression of the key differentiation inhibitor ID2, suggesting that its alteration may be involved in neural cancer development.

  10. Prenatal arsenic exposure alters REST/NRSF and microRNA regulators of embryonic neural stem cell fate in a sex-dependent manner

    PubMed Central

    Tyler, Christina R.; Labrecque, Matthew T.; Solomon, Elizabeth R.; Guo, Xun; Allan, Andrea M.

    2016-01-01

    Exposure to arsenic, a common environmental toxin found in drinking water, leads to a host of neurological pathologies. We have previously demonstrated that developmental exposure to a low level of arsenic (50 ppb) alters epigenetic processes that underlie deficits in adult hippocampal neurogenesis leading to aberrant behavior. It is unclear if arsenic impacts the programming and regulation of embryonic neurogenesis during development when exposure occurs. The master negative regulator of neural-lineage, REST/NRSF, controls the precise timing of fate specification and differentiation of neural stem cells (NSCs). Early in development (embryonic day 14), we observed increased expression of Rest, its co-repressor, CoREST, and the inhibitory RNA binding/splicing protein, Ptbp1, and altered expression of mRNA spliced isoforms of Pbx1 that are directly regulated by these factors in the male brain in response to prenatal 50 ppb arsenic exposure. These increases were concurrent with decreased expression of microRNA-9 (miR-9), miR-9*, and miR-124, all of which are REST/NRSF targets and inversely regulate Rest expression to allow for maturation of NSCs. Exposure to arsenic decreased the formation of neuroblasts in vitro from NSCs derived from male pup brains. The female response to arsenic was limited to increased expression of CoREST and Ptbp2, an RNA binding protein that allows for appropriate splicing of genes involved in the progression of neurogenesis. These changes were accompanied by increased neuroblast formation in vitro from NSCs derived from female pups. Unexposed male mice express transcriptomic factors to induce differentiation earlier in development compared to unexposed females. Thus, arsenic exposure likely delays differentiation of NSCs in males while potentially inducing precocious differentiation in females early in development. These effects are mitigated by embryonic day 18 of development. Arsenic-induced dysregulation of the regulatory loop formed by REST/NRSF, its target microRNAs, miR-9 and miR-124, and RNA splicing proteins, PTBP1 and 2, leads to aberrant programming of NSC function that is perhaps perpetuated into adulthood inducing deficits in differentiation we have previously observed. PMID:27751817

  11. PKA-induced receptor activator of NF-kappaB ligand (RANKL) expression in vascular cells mediates osteoclastogenesis but not matrix calcification.

    PubMed

    Tseng, Wendy; Graham, Lucia S; Geng, Yifan; Reddy, Aneela; Lu, Jinxiu; Effros, Rita B; Demer, Linda; Tintut, Yin

    2010-09-24

    Vascular calcification is a predictor of cardiovascular mortality and is prevalent in patients with atherosclerosis and chronic renal disease. It resembles skeletal osteogenesis, and many bone cells as well as bone-related factors involved in both formation and resorption have been localized in calcified arteries. Previously, we showed that aortic medial cells undergo osteoblastic differentiation and matrix calcification both spontaneously and in response to PKA agonists. The PKA signaling pathway is also involved in regulating bone resorption in skeletal tissue by stimulating osteoblast-production of osteoclast regulating cytokines, including receptor-activator of nuclear κB ligand (RANKL) and interleukins. Therefore, we investigated whether PKA activators regulate osteoclastogenesis in aortic smooth muscle cells (SMC). Treatment of murine SMC with the PKA agonist forskolin stimulated RANKL expression at both mRNA and protein levels. Forskolin also stimulated expression of interleukin-6 but not osteoprotegerin (OPG), an inhibitor of RANKL. Consistent with these results, osteoclastic differentiation was induced when monocytic preosteoclasts (RAW264.7) were cocultured with forskolin-treated aortic SMC. Oxidized phospholipids also slightly induced RANKL expression in T lymphocytes, another potential source of RANKL in the vasculature. Because previous studies have shown that RANKL treatment alone induces matrix calcification of valvular and vascular cells, we next examined whether RANKL mediates forskolin-induced matrix calcification by aortic SMC. RANKL inhibition with OPG had little or no effect on osteoblastic differentiation and matrix calcification of aortic SMC. These findings suggest that, as in skeletal tissues, PKA activation induces bone resorptive factors in the vasculature and that aortic SMC calcification specifically induced by PKA, is not mediated by RANKL.

  12. Differentiation expression during proliferative activity induced through different pathways: in situ hybridization study of thyroglobulin gene expression in thyroid epithelial cells

    PubMed Central

    1990-01-01

    In canine thyrocytes in primary culture, our previous studies have identified three mitogenic agents and pathways: thyrotropin (TSH) acting through cyclic AMP (cAMP), EGF and its receptor tyrosine protein kinase, and the phorbol esters that stimulate protein kinase C. TSH enhances, while EGF and phorbol esters inhibit, the expression of differentiation. Given that growth and differentiation expression are often considered as mutually exclusive activities of the cells, it was conceivable that the differentiating action of TSH was restricted to noncycling (Go) cells, while the inhibition of the differentiation expression by EGF and phorbol esters only concerned proliferating cells. Therefore, the capacity to express the thyroglobulin (Tg) gene, the most prominent marker of differentiation in thyrocytes, was studied in proliferative cells (with insulin) and in quiescent cells (without insulin). Using cRNA in situ hybridization, we observed that TSH (and, to a lesser extent, insulin and insulin-like growth factor I) restored or maintained the expression of the Tg gene. Without these hormones, the Tg mRNA content became undetectable in most of the cells. EGF and 12-0-tetradecanoyl phorbol-13-acetate (TPA) inhibited the Tg mRNA accumulation induced by TSH (and/or insulin). Most of the cells (up to 90%) responded to both TSH and EGF. Nevertheless, the range of individual response was quite variable. The effects of TSH and EGF on differentiation expression were not dependent on insulin and can therefore be dissociated from their mitogenic effects. Cell cycling did not affect the induction of Tg gene. Indeed, the same cell distribution of Tg mRNA content was observed in quiescent cells stimulated by TSH alone, or in cells approximately 50% of which had performed one mitotic cycle in response to TSH + insulin. Moreover, after proliferation in "dedifferentiating" conditions (EGF + serum + insulin), thyrocytes had acquired a fusiform fibroblast-like morphology, and responded to TSH by regaining a characteristic epithelial shape and high Tg mRNA content. 32 h after the replacement of EGF by TSH, cells in mitosis presented the same distribution of the Tg mRNA content as the rest of the cell population. This implies that cell cycling (at least 27 h, as previously shown) did not affect the induction of the Tg gene which is clearly detectable after a time lag of at least 24 h. The data unequivocally show that the reexpression of differentiation and proliferative activity are separate but fully compatible processes when induced by cAMP in thyrocytes.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2199463

  13. A WNT/beta-catenin signaling activator, R-spondin, plays positive regulatory roles during skeletal myogenesis.

    PubMed

    Han, Xiang Hua; Jin, Yong-Ri; Seto, Marianne; Yoon, Jeong Kyo

    2011-03-25

    R-spondins (RSPOs) are a recently characterized family of secreted proteins that activate WNT/β-catenin signaling. In this study, we investigated the potential roles of the RSPO proteins during myogenic differentiation. Overexpression of the Rspo1 gene or administration of recombinant RSPO2 protein enhanced mRNA and protein expression of a basic helix-loop-helix (bHLH) class myogenic determination factor, MYF5, in both C2C12 myoblasts and primary satellite cells, whereas MYOD or PAX7 expression was not affected. RSPOs also promoted myogenic differentiation and induced hypertrophic myotube formation in C2C12 cells. In addition, Rspo2 and Rspo3 gene knockdown by RNA interference significantly compromised MYF5 expression, myogenic differentiation, and myotube formation. Furthermore, Myf5 expression was reduced in the developing limbs of mouse embryos lacking the Rspo2 gene. Finally, we demonstrated that blocking of WNT/β-catenin signaling by DKK1 or a dominant-negative form of TCF4 reversed MYF5 expression, myogenic differentiation, and hypertrophic myotube formation induced by RSPO2, indicating that RSPO2 exerts its activity through the WNT/β-catenin signaling pathway. Our results provide strong evidence that RSPOs are key positive regulators of skeletal myogenesis acting through the WNT/β-catenin signaling pathway.

  14. A WNT/β-Catenin Signaling Activator, R-spondin, Plays Positive Regulatory Roles during Skeletal Myogenesis*

    PubMed Central

    Han, Xiang Hua; Jin, Yong-Ri; Seto, Marianne; Yoon, Jeong Kyo

    2011-01-01

    R-spondins (RSPOs) are a recently characterized family of secreted proteins that activate WNT/β-catenin signaling. In this study, we investigated the potential roles of the RSPO proteins during myogenic differentiation. Overexpression of the Rspo1 gene or administration of recombinant RSPO2 protein enhanced mRNA and protein expression of a basic helix-loop-helix (bHLH) class myogenic determination factor, MYF5, in both C2C12 myoblasts and primary satellite cells, whereas MYOD or PAX7 expression was not affected. RSPOs also promoted myogenic differentiation and induced hypertrophic myotube formation in C2C12 cells. In addition, Rspo2 and Rspo3 gene knockdown by RNA interference significantly compromised MYF5 expression, myogenic differentiation, and myotube formation. Furthermore, Myf5 expression was reduced in the developing limbs of mouse embryos lacking the Rspo2 gene. Finally, we demonstrated that blocking of WNT/β-catenin signaling by DKK1 or a dominant-negative form of TCF4 reversed MYF5 expression, myogenic differentiation, and hypertrophic myotube formation induced by RSPO2, indicating that RSPO2 exerts its activity through the WNT/β-catenin signaling pathway. Our results provide strong evidence that RSPOs are key positive regulators of skeletal myogenesis acting through the WNT/β-catenin signaling pathway. PMID:21252233

  15. A balance of FGF and BMP signals regulates cell cycle exit and Equarin expression in lens cells

    PubMed Central

    Jarrin, Miguel; Pandit, Tanushree; Gunhaga, Lena

    2012-01-01

    In embryonic and adult lenses, a balance of cell proliferation, cell cycle exit, and differentiation is necessary to maintain physical function. The molecular mechanisms regulating the transition of proliferating lens epithelial cells to differentiated primary lens fiber cells are poorly characterized. To investigate this question, we used gain- and loss-of-function analyses to modulate fibroblast growth factor (FGF) and/or bone morphogenetic protein (BMP) signals in chick lens/retina explants. Here we show that FGF activity plays a key role for proliferation independent of BMP signals. Moreover, a balance of FGF and BMP signals regulates cell cycle exit and the expression of Ccdc80 (also called Equarin), which is expressed at sites where differentiation of lens fiber cells occurs. BMP activity promotes cell cycle exit and induces Equarin expression in an FGF-dependent manner. In contrast, FGF activity is required but not sufficient to induce cell cycle exit or Equarin expression. Furthermore, our results show that in the absence of BMP activity, lens cells have increased cell cycle length or are arrested in the cell cycle, which leads to decreased cell cycle exit. Taken together, these findings suggest that proliferation, cell cycle exit, and early differentiation of primary lens fiber cells are regulated by counterbalancing BMP and FGF signals. PMID:22718906

  16. Long non-coding RNA expression patterns in lung tissues of chronic cigarette smoke induced COPD mouse model.

    PubMed

    Zhang, Haiyun; Sun, Dejun; Li, Defu; Zheng, Zeguang; Xu, Jingyi; Liang, Xue; Zhang, Chenting; Wang, Sheng; Wang, Jian; Lu, Wenju

    2018-05-15

    Long non-coding RNAs (lncRNAs) have critical regulatory roles in protein-coding gene expression. Aberrant expression profiles of lncRNAs have been observed in various human diseases. In this study, we investigated transcriptome profiles in lung tissues of chronic cigarette smoke (CS)-induced COPD mouse model. We found that 109 lncRNAs and 260 mRNAs were significantly differential expressed in lungs of chronic CS-induced COPD mouse model compared with control animals. GO and KEGG analyses indicated that differentially expressed lncRNAs associated protein-coding genes were mainly involved in protein processing of endoplasmic reticulum pathway, and taurine and hypotaurine metabolism pathway. The combination of high throughput data analysis and the results of qRT-PCR validation in lungs of chronic CS-induced COPD mouse model, 16HBE cells with CSE treatment and PBMC from patients with COPD revealed that NR_102714 and its associated protein-coding gene UCHL1 might be involved in the development of COPD both in mouse and human. In conclusion, our study demonstrated that aberrant expression profiles of lncRNAs and mRNAs existed in lungs of chronic CS-induced COPD mouse model. From animal models perspective, these results might provide further clues to investigate biological functions of lncRNAs and their potential target protein-coding genes in the pathogenesis of COPD.

  17. Cyclin D1 Repression of Peroxisome Proliferator-Activated Receptor γ Expression and Transactivation

    PubMed Central

    Wang, Chenguang; Pattabiraman, Nagarajan; Zhou, Jian Nian; Fu, Maofu; Sakamaki, Toshiyuki; Albanese, Chris; Li, Zhiping; Wu, Kongming; Hulit, James; Neumeister, Peter; Novikoff, Phyllis M.; Brownlee, Michael; Scherer, Philipp E.; Jones, Joan G.; Whitney, Kathleen D.; Donehower, Lawrence A.; Harris, Emily L.; Rohan, Thomas; Johns, David C.; Pestell, Richard G.

    2003-01-01

    The cyclin D1 gene is overexpressed in human breast cancers and is required for oncogene-induced tumorigenesis. Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor selectively activated by ligands of the thiazolidinedione class. PPARγ induces hepatic steatosis, and liganded PPARγ promotes adipocyte differentiation. Herein, cyclin D1 inhibited ligand-induced PPARγ function, transactivation, expression, and promoter activity. PPARγ transactivation induced by the ligand BRL49653 was inhibited by cyclin D1 through a pRB- and cdk-independent mechanism, requiring a region predicted to form an helix-loop-helix (HLH) structure. The cyclin D1 HLH region was also required for repression of the PPARγ ligand-binding domain linked to a heterologous DNA binding domain. Adipocyte differentiation by PPARγ-specific ligands (BRL49653, troglitazone) was enhanced in cyclin D1−/− fibroblasts and reversed by retroviral expression of cyclin D1. Homozygous deletion of the cyclin D1 gene, enhanced expression by PPARγ ligands of PPARγ and PPARγ-responsive genes, and cyclin D1−/− mice exhibit hepatic steatosis. Finally, reduction of cyclin D1 abundance in vivo using ponasterone-inducible cyclin D1 antisense transgenic mice, increased expression of PPARγ in vivo. The inhibition of PPARγ function by cyclin D1 is a new mechanism of signal transduction cross talk between PPARγ ligands and mitogenic signals that induce cyclin D1. PMID:12917338

  18. In vitro quantitative and relative gene expression analysis of pancreatic transcription factors Pdx-1, Ngn-3, Isl-1, Pax-4, Pax-6 and Nkx-6.1 in trans-differentiated human hepatic progenitors.

    PubMed

    Vishwakarma, Sandeep Kumar; Rahamathulla, Syed; Bardia, Avinash; Tiwari, Santosh K; Srinivas, Gunda; Raj, Avinash; Tripura, Chaturvedula; Sandhya, Annamaneni; Habeeb, Mohammed Aejaz; Khan, Aleem A; Pande, Gopal; Reddy, K Pratap; Reddy, P Yugandhar

    2014-09-01

    Diabetes is a major health concern throughout the world because of its increasing prevalence in epidemic proportions. β-Cell deterioration in the pancreas is a crucial factor for the progression of diabetes mellitus. Therefore, the restoration of β-cell mass and its function is of vital importance for the development of effective therapeutic strategies and most accessible cell sources for the treatment of diabetes mellitus. Human fetuses (12-20 weeks gestation age) were used to isolate human hepatic progenitor cells (hHPCs) from fetal liver using a two-step collagenase digestion method. Epithelial cell adhesion molecule-positive (EpCAM+ve)-enriched hHPCs were cultured in vitro and induced with 5-30 mmol/L concentration of glucose for 0-32 h. Pdx-1 expression and insulin secretion was analyzed using immunophenotypic and chemifluorescence assays, respectively. Relative gene expression was quantified in induced hHPCs, and compared with uninduced and pancreatic cells to identify the activated transcription factors (Pdx-1, Ngn-3, Isl-1, Pax-4, Pax-6 and Nkx-6.1) involved in β-cell production. EpCAM+ve cells derived from human fetal liver showed high in vitro trans-differentiation potential towards the β-cell phenotype with 23 mmol/L glucose induction after 24 h. The transcription factors showed eminent expression in induced cells. The expression level of transcription factors was found significantly high in 23 mmol/L-induced hHPCs as compared with the uninduced cells. The present study has shown an exciting new insight into β-cell development from hHPCs trans-differentiation. Relative quantification of gene expression in trans-differentiated cells offers vast possibility for the production of a maximum number of functionally active pancreatic β-cells for a future cure of diabetes.

  19. Identification of embryonic precursor cells that differentiate into thymic epithelial cells expressing autoimmune regulator

    PubMed Central

    Takizawa, Nobukazu; Miyauchi, Maki; Yanai, Hiromi; Tateishi, Ryosuke; Shinzawa, Miho; Yoshinaga, Riko; Kurihara, Masaaki; Yasuda, Hisataka; Sakamoto, Reiko; Yoshida, Nobuaki

    2016-01-01

    Medullary thymic epithelial cells (mTECs) expressing autoimmune regulator (Aire) are critical for preventing the onset of autoimmunity. However, the differentiation program of Aire-expressing mTECs (Aire+ mTECs) is unclear. Here, we describe novel embryonic precursors of Aire+ mTECs. We found the candidate precursors of Aire+ mTECs (pMECs) by monitoring the expression of receptor activator of nuclear factor-κB (RANK), which is required for Aire+ mTEC differentiation. pMECs unexpectedly expressed cortical TEC molecules in addition to the mTEC markers UEA-1 ligand and RANK and differentiated into mTECs in reaggregation thymic organ culture. Introduction of pMECs in the embryonic thymus permitted long-term maintenance of Aire+ mTECs and efficiently suppressed the onset of autoimmunity induced by Aire+ mTEC deficiency. Mechanistically, pMECs differentiated into Aire+ mTECs by tumor necrosis factor receptor-associated factor 6-dependent RANK signaling. Moreover, nonclassical nuclear factor-κB activation triggered by RANK and lymphotoxin-β receptor signaling promoted pMEC induction from progenitors exhibiting lower RANK expression and higher CD24 expression. Thus, our findings identified two novel stages in the differentiation program of Aire+ mTECs. PMID:27401343

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu Qisheng; Valverde, Paloma; Chen, Jake

    Osterix (Osx) is a zinc-finger-containing transcription factor that is expressed in osteoblasts of all endochondral and membranous bones. In Osx null mice osteoblast differentiation is impaired and bone formation is absent. In this study, we hypothesized that overexpression of Osx in murine bone marrow stromal cells (BMSC) would be able to enhance their osteoblastic differentiation and mineralization in vitro. Retroviral transduction of Osx in BMSC cultured in non-differentiating medium did not affect expression of Runx2/Cbfa1, another key transcription factor of osteoblast differentiation, but induced an increase in the expression of other markers associated with the osteoblastic lineage including alkaline phosphatase,more » bone sialoprotein, osteocalcin, and osteopontin. Retroviral transduction of Osx in BMSC also increased their proliferation, alkaline phosphatase activity, and ability to form bone nodules. These events occurred without significant changes in the expression of {alpha}1(II) procollagen or lipoprotein lipase, which are markers of chondrogenic and adipogenic differentiation, respectively.« less

  1. Differentiation of eosinophilic leukemia EoL-1 cells into eosinophils induced by histone deacetylase inhibitors.

    PubMed

    Ishihara, Kenji; Takahashi, Aki; Kaneko, Motoko; Sugeno, Hiroki; Hirasawa, Noriyasu; Hong, JangJa; Zee, OkPyo; Ohuchi, Kazuo

    2007-03-06

    EoL-1 cells differentiate into eosinophils in the presence of n-butyrate, but the mechanism has remained to be elucidated. Because n-butyrate can inhibit histone deacetylases, we hypothesized that the inhibition of histone deacetylases induces the differentiation of EoL-1 cells into eosinophils. In this study, using n-butyrate and two other histone deacetylase inhibitors, apicidin and trichostatin A, we have analyzed the relationship between the inhibition of histone deacetylases and the differentiation into eosinophils in EoL-1 cells. It was demonstrated that apicidin and n-butyrate induced a continuous acetylation of histones H4 and H3, inhibited the proliferation of EoL-1 cells without attenuating the level of FIP1L1-PDGFRA mRNA, and induced the expression of markers for mature eosinophils such as integrin beta7, CCR1, and CCR3 on EoL-1 cells, while trichostatin A evoked a transient acetylation of histones and induced no differentiation into eosinophils. These findings suggest that the continuous inhibition of histone deacetylases in EoL-1 cells induces the differentiation into mature eosinophils.

  2. Expression of toll-like receptors 2 and 4 and CD14 during differentiation of HL-60 cells induced by phorbol 12-myristate 13-acetate and 1 alpha, 25-dihydroxy-vitamin D(3).

    PubMed

    Li, Changlin; Wang, Yibing; Gao, Li; Zhang, Jingsong; Shao, Jie; Wang, Shengnian; Feng, Weiguo; Wang, Xingyu; Li, Minglie; Chang, Zongliang

    2002-01-01

    Macrophages form a crucial bridge between the innate and adaptive immune response. One of their most important functions is to recognize infectious microorganisms. Toll-like receptors (TLRs) are key elements in pathogen recognition, and among them, TLR2 and TLR4 are most discussed. However, expression patterns of TLRs during myeloid cell differentiation to macrophage are unknown. In this study, we examined differentiation in the model human myeloid cell line, HL-60, treated with phorbol 12-myristate 13-acetate (PMA) or VitD(3). Expression of TLR2, TLR4, and CD14 were measured by reverse transcription-PCR, RNase protection assay, and fluorescence-activated cell sorter assays. After treatment by PMA (1, 10, and 100 nM) for 12, 24, and 48 h, expression of TLR2 and CD14 mRNA was increased in a time- and dose-dependent manner. However, VitD(3) only induced expression of CD14 but not TLR2 in HL-60 cells. TLR4 was expressed constitutively before differentiation and increased slightly after that. Thus, PMA-mediated differentiation of HL-60 cells to macrophages is associated largely with TLR2 expression and, to a much lesser extent, with TLR4. Furthermore, up-regulation of TLR2 and CD14 mRNA expression by PMA was abrogated by a protein kinase C inhibitor, Calphostine C, suggesting the up-regulation of TLR2 and CD14 mRNA is dependent on the activation of protein kinase C. Coexpression of CD14/TLR2 and/or CD14/TLR4 may be essential but not sufficient for the production of tumor necrosis factor-alpha in response to lipopolysaccharide in our system.

  3. The Homeodomain Transcription Factor Cdx1 Does Not Behave as an Oncogene in Normal Mouse Intestine1

    PubMed Central

    Crissey, Mary Ann S; Guo, Rong-Jun; Fogt, Franz; Li, Hong; Katz, Jonathan P; Silberg, Debra G; Suh, Eun Ran; Lynch, John P

    2008-01-01

    The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium. PMID:18231635

  4. Wheat differential gene expression induced by different races of Puccinia triticina.

    PubMed

    Neugebauer, Kerri A; Bruce, Myron; Todd, Tim; Trick, Harold N; Fellers, John P

    2018-01-01

    Puccinia triticina, the causal agent of wheat leaf rust, causes significant losses in wheat yield and quality each year worldwide. During leaf rust infection, the host plant recognizes numerous molecules, some of which trigger host defenses. Although P. triticina reproduces clonally, there is still variation within the population due to a high mutation frequency, host specificity, and environmental adaptation. This study explores how wheat responds on a gene expression level to different P. triticina races. Six P. triticina races were inoculated onto a susceptible wheat variety and samples were taken at six days post inoculation, just prior to pustule eruption. RNA sequence data identified 63 wheat genes differentially expressed between the six races. A time course, conducted over the first seven days post inoculation, was used to examine the expression pattern of 63 genes during infection. Forty-seven wheat genes were verified to have differential expression. Three common expression patterns were identified. In addition, two genes were associated with race specific gene expression. Differential expression of an ER molecular chaperone gene was associated with races from two different P. triticina lineages. Also, differential expression in an alanine glyoxylate aminotransferase gene was associated with races with virulence shifts for leaf rust resistance genes.

  5. Incensole acetate prevents beta-amyloid-induced neurotoxicity in human olfactory bulb neural stem cells.

    PubMed

    El-Magd, Mohammed A; Khalifa, Sara F; A Alzahrani, Faisal Abdulrahman; Badawy, Abdelnaser A; El-Shetry, Eman S; Dawood, Lamess M; Alruwaili, Mohammed M; Alrawaili, Hedib A; Risha, Engi F; El-Taweel, Fathy M; Marei, Hany E

    2018-06-15

    β-Amyloid peptide (Aβ) is a potent neurotoxic protein associated with Alzheimer's disease (AD) which causes oxidative damage to neurons. Incensole acetate (IA) is a major constituent of Boswellia carterii resin, which has anti-inflammatory and protective properties against damage of a large verity of neural subtypes. However, this neuroprotective effect was not studied on human olfactory bulb neural stem cells (hOBNSCs). Herein, we evaluated this effect and studied the underlying mechanisms. Exposure to Aβ 25-35 (5 and 10 μM for 24 h) inhibited proliferation (revealed by downregulation of Nestin and Sox2 gene expression), and induced differentiation (marked by increased expression of the immature neuronal marker Map2 and the astrocyte marker Gfap) of hOBNSCs. However, pre-treatment with IA (100 μM for 4 h) stimulated proliferation and differentiation of neuronal, rather than astrocyte, markers. Moreover, IA pretreatment significantly decreased the Aβ 25-35 -induced viability loss, apoptotic rate (revealed by decreased caspase 3 activity and protein expression, downregulated expression of Bax, caspase 8, cyto c, caspase3, and upregulated expression of Bcl2 mRNAs and proteins, in addition to elevated mitochondrial membrane potential and lowered intracellular Ca +2 ). IA reduced Aβ-mediated ROS production (revealed by decreased intracellular ROS and MDA level, and increased SOD, CAT, and GPX contents), and inhibited Aβ-induced inflammation (marked by down-regulated expression of IL1b, TNFa, NfKb, and Cox2 genes). IA also significantly upregulated mRNA and protein expression of Erk1/2 and Nrf2. Notably, IA increased the antioxidant enzyme heme oxygenase-1 (HO-1) expression and this effect was reversed by HO-1 inhibitor zinc protoporphyrin (ZnPP) leading to reduction of the neuroprotective effect of IA against Aβ-induced neurotoxicity. These findings clearly show the ability of IA to initiate proliferation and differentiation of neuronal progenitors in hOBNSCs and induce HO-1 expression, thereby protecting the hOBNSCs cells from Aβ 25-35 -induced oxidative cell death. Thus, IA may be applicable as a potential preventive agent for AD by its effect on hOBNSCs and could also be used as an adjuvant to hOBNSCs in cellular therapy of neurodegenerative diseases. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-delta.

    PubMed

    Yan, Zhen Cheng; Liu, Dao Yan; Zhang, Li Li; Shen, Chen Yi; Ma, Qun Li; Cao, Ting Bing; Wang, Li Juan; Nie, Hai; Zidek, Walter; Tepel, Martin; Zhu, Zhi Ming

    2007-03-09

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-delta (PPAR-delta)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each p<0.05). Adipocyte hypertrophy induced by high-fat diet was accompanied by increased CB1 expression in adipose tissue, whereas exercise significantly reduced CB1 expression (each p<0.05). CB1 receptor expression and adipocyte differentiation were directly regulated by PPAR-delta. Adipocyte hypertrophy induced by high-fat diet was accompanied by reduced PPAR-delta. Furthermore, selective silencing of PPAR-delta by RNA interference in 3T3-L1-preadipocyte cells significantly increased CB1 expression from 1.00+/-0.06 (n=3) to 1.91+/-0.06 (n=3; p<0.01) and increased adipocyte differentiation, whereas adenovirus-mediated overexpression of PPAR-delta significantly reduced CB1 expression to 0.39+/-0.03 (n=3; p<0.01) and reduced adipocyte differentiation. In the presence of the CB1 antagonist rimonabant adipocyte differentiation in stimulated 3T3 L1 preadipocyte cells was significantly reduced. The study indicates that high-fat diet-induced hypertrophy of adipocytes is associated with increased CB1 receptor expression which is directly regulated by PPAR-delta. Both CB1 and PPAR-delta are intimately involved in therapeutic interventions against a most important cardiovascular risk factor.

  7. The Methods and Mechanisms to Differentiate Endothelial-Like Cells and Smooth Muscle Cells from Mesenchymal Stem Cells for Vascularization in Vaginal Reconstruction.

    PubMed

    Zhang, Hua; Zhang, Jingkun; Huang, Xianghua; Li, Yanan

    2018-06-01

    Endothelial cells and smooth muscle cells (SMCs) are important aspects of vascularization in vaginal reconstruction. Research has confirmed that mesenchymal stem cells could differentiate into endothelial-like cells and SMCs. But the methods were more complicated and the mechanism was unknown. In the current study, we induced the bone mesenchymal stem cells (BMSCs) to differentiate into endothelial-like cells and SMCs in vitro by differentiation medium and investigated the effect of Wnt/β-catenin signaling on the differentiation process of BMSCs. Results showed that the hypoxic environment combined with VEGF and bFGF could induce increased expression of endothelial-like cells markers VEGFR1, VEGFR2, and vWF. The SMCs derived from BMSCs induced by TGF-β1 and PDGF-AB significantly expressed SMC markers SMMHC11 and α-SMA. The data also showed that activation of Wnt/β-catenin signaling could promote the differentiation of BMSCs into endothelial-like cells and SMCs. Thus, we established endothelial-like cells and SMCs in vitro by more simple methods, presented the important role of hypoxic environment on the differentiation of BMSCs into endothelial-like cells, and confirmed that the Wnt/β-catenin signaling pathway has a positive impact on the differentiation of BMSCs into endothelial-like cells and SMCs. This is important for vascular reconstruction.

  8. Differentiation of hepatocytes from induced pluripotent stem cells derived from human hair follicle mesenchymal stem cells.

    PubMed

    Shi, Xu; Lv, Shuang; He, Xia; Liu, Xiaomei; Sun, Meiyu; Li, Meiying; Chi, Guangfan; Li, Yulin

    2016-10-01

    Due to the limitations of organ donors and immune rejection in severe liver diseases, stem cell-based therapy presents a promising application for tissue repair and regeneration. As a novel cell source, mesenchymal stem cells separated from human hair follicles (HF-MSCs) are convenient to obtain and have no age limit. To date, the differentiation of HF-MSCs into hepatocytes has not been reported. In this study, we explored whether HF-MSCs and HF-MSC-derived-induced pluripotent stem cells (HF-iPS) could differentiate into hepatocytes in vitro. Flow cytometry, Oil Red O stain and Alizarin Red stain were used to identify the characteristics of HF-MSCs. The expression of liver-specific gene was detected by immunofluorescence and Quantitative Polymerase Chain Reaction. Periodic Acid-Schiff stain, Indocyanine Green stain and Low-Density Lipoprotein stain were performed to evaluate the functions of induced hepatocyte-like cells (HLCs). HF-MSCs were unable to differentiate into HLCs using previously reported procedures for MSCs from other tissues. However, HF-iPS efficiently induced the generation of HLCs that expressed hepatocyte markers and drug metabolism-related genes. HF-iPS can be used as novel and alternative cellular tools for inducing hepatocytes in vitro, simultaneously benefiting from utilizing HF-MSCs as a noninvasive and convenient cell source for reprogramming.

  9. Generation of induced pluripotent stem cells (iPSCs) stably expressing CRISPR-based synergistic activation mediator (SAM).

    PubMed

    Xiong, Kai; Zhou, Yan; Hyttel, Poul; Bolund, Lars; Freude, Kristine Karla; Luo, Yonglun

    2016-11-01

    Human fibroblasts were engineered to express the CRISPR-based synergistic activation mediator (SAM) complex: dCas9-VP64 and MS2-P65-HSF1. Two induced pluripotent stem cells (iPSCs) clones expressing SAM were established by transducing these fibroblasts with lentivirus expressing OCT4, SOX2, KLF4 and C-MYC. We have validated that the reprogramming cassette is silenced in the SAM iPSC clones. Expression of pluripotency genes (OCT4, SOX2, LIN28A, NANOG, GDF3, SSEA4, and TRA-1-60), differentiation potential to all three germ layers, and normal karyotypes are validated. These SAM-iPSCs provide a novel, useful tool to investigate genetic regulation of stem cell proliferation and differentiation through CRISPR-mediated activation of endogenous genes. Copyright © 2016 Michael Boutros, German Cancer Research Center, Heidelberg, Germany. Published by Elsevier B.V. All rights reserved.

  10. Inhibition of EGR-1 and NF-kappa B gene expression by dexamethasone during phorbol ester-induced human monocytic differentiation.

    PubMed

    Hass, R; Brach, M; Gunji, H; Kharbanda, S; Kufe, D

    1992-10-20

    The treatment of human myeloid leukemia cells (HL-60, U-937, THP-1) with 12-O-tetradecanoylphorbol-13-acetate (TPA) is associated with growth arrest and appearance of a differentiated monocytic phenotype. While previous studies have reported that the glucocorticoid dexamethasone blocks phenotypic characteristics of monocytic differentiation, we demonstrated in the present work that dexamethasone delays the effects of TPA on the loss of U-937 cell proliferation. We also demonstrated that this glucocorticoid inhibits TPA-induced increases in expression of the EGR-1 early response gene. The results of nuclear run-on assays and half-life experiments indicated that this effect of dexamethasone is regulated at the post-transcriptional level. Similar studies were performed for the NF-kappa B gene. While TPA treatment was associated with transient increases in NF-kappa B mRNA levels, this induction was blocked by dexamethasone. In contrast, dexamethasone had no significant effect on the activation of pre-existing NF-kappa B protein as determined in DNA-binding assays. Taken together, these findings suggest that the activated glucocorticoid receptor inhibits signaling pathways which include expression of the EGR-1 and NF-kappa B genes and that such effects may contribute to a block in TPA-induced monocytic differentiation.

  11. PPARγ agonists promote differentiation of cancer stem cells by restraining YAP transcriptional activity

    PubMed Central

    Rattanakorn, Kirk; Gadi, Abhilash; Verma, Narendra; Maurizi, Giulia; Gunaratne, Preethi H.; Coarfa, Cristian; Kennedy, Oran D.; Garabedian, Michael J.; Basilico, Claudio; Mansukhani, Alka

    2016-01-01

    Osteosarcoma (OS) is a highly aggressive pediatric bone cancer in which most tumor cells remain immature and fail to differentiate into bone-forming osteoblasts. However, OS cells readily respond to adipogenic stimuli suggesting they retain mesenchymal stem cell-like properties. Here we demonstrate that nuclear receptor PPARγ agonists such as the anti-diabetic, thiazolidinedione (TZD) drugs induce growth arrest and cause adipogenic differentiation in human, mouse and canine OS cells as well as in tumors in mice. Gene expression analysis reveals that TZDs induce lipid metabolism pathways while suppressing targets of the Hippo-YAP pathway, Wnt signaling and cancer-related proliferation pathways. Significantly, TZD action appears to be restricted to the high Sox2 expressing cancer stem cell population and is dependent on PPARγ expression. TZDs also affect growth and cell fate by causing the cytoplasmic sequestration of the transcription factors SOX2 and YAP that are required for tumorigenicity. Finally, we identify a TZD-regulated gene signature based on Wnt/Hippo target genes and PPARγ that predicts patient outcomes. Together, this work highlights a novel connection between PPARγ agonist in inducing adipogenesis and mimicking the tumor suppressive hippo pathway. It also illustrates the potential of drug repurposing for TZD-based differentiation therapy for osteosarcoma. PMID:27528232

  12. Dynamic changes in gene expression during human trophoblast differentiation.

    PubMed

    Handwerger, Stuart; Aronow, Bruce

    2003-01-01

    The genetic program that directs human placental differentiation is poorly understood. In a recent study, we used DNA microarray analyses to determine genes that are dynamically regulated during human placental development in an in vitro model system in which highly purified cytotrophoblast cells aggregate spontaneously and fuse to form a multinucleated syncytium that expresses placental lactogen, human chorionic gonadotropin, and other proteins normally expressed by fully differentiated syncytiotrophoblast cells. Of the 6918 genes present on the Incyte Human GEM V microarray that we analyzed over a 9-day period, 141 were induced and 256 were downregulated by more than 2-fold. The dynamically regulated genes fell into nine distinct kinetic patterns of induction or repression, as detected by the K-means algorithm. Classifying the genes according to functional characteristics, the regulated genes could be divided into six overall categories: cell and tissue structural dynamics, cell cycle and apoptosis, intercellular communication, metabolism, regulation of gene expression, and expressed sequence tags and function unknown. Gene expression changes within key functional categories were tightly coupled to the morphological changes that occurred during trophoblast differentiation. Within several key gene categories (e.g., cell and tissue structure), many genes were strongly activated, while others with related function were strongly repressed. These findings suggest that trophoblast differentiation is augmented by "categorical reprogramming" in which the ability of induced genes to function is enhanced by diminished synthesis of other genes within the same category. We also observed categorical reprogramming in human decidual fibroblasts decidualized in vitro in response to progesterone, estradiol, and cyclic AMP. While there was little overlap between genes that are dynamically regulated during trophoblast differentiation versus decidualization, many of the categories in which genes were strongly activated also contained genes whose expression was strongly diminished. Taken together, these findings point to a fundamental role for simultaneous induction and repression of mRNAs that encode functionally related proteins during the differentiation process.

  13. IDH1R132H in Neural Stem Cells: Differentiation Impaired by Increased Apoptosis

    PubMed Central

    Rosiak, Kamila; Smolarz, Maciej; Stec, Wojciech J.; Peciak, Joanna; Grzela, Dawid; Winiecka-Klimek, Marta; Stoczynska-Fidelus, Ewelina; Krynska, Barbara; Piaskowski, Sylwester; Rieske, Piotr

    2016-01-01

    Background The high frequency of mutations in the isocitrate dehydrogenase 1 (IDH1) gene in diffuse gliomas indicates its importance in the process of gliomagenesis. These mutations result in loss of the normal function and acquisition of the neomorphic activity converting α-ketoglutarate to 2-hydroxyglutarate. This potential oncometabolite may induce the epigenetic changes, resulting in the deregulated expression of numerous genes, including those related to the differentiation process or cell survivability. Methods Neural stem cells were derived from human induced pluripotent stem cells following embryoid body formation. Neural stem cells transduced with mutant IDH1R132H, empty vector, non-transduced and overexpressing IDH1WT controls were differentiated into astrocytes and neurons in culture. The neuronal and astrocytic differentiation was determined by morphology and expression of lineage specific markers (MAP2, Synapsin I and GFAP) as determined by real-time PCR and immunocytochemical staining. Apoptosis was evaluated by real-time observation of Caspase-3 activation and measurement of PARP cleavage by Western Blot. Results Compared with control groups, cells expressing IDH1R132H retained an undifferentiated state and lacked morphological changes following stimulated differentiation. The significant inhibitory effect of IDH1R132H on neuronal and astrocytic differentiation was confirmed by immunocytochemical staining for markers of neural stem cells. Additionally, real-time PCR indicated suppressed expression of lineage markers. High percentage of apoptotic cells was detected within IDH1R132H-positive neural stem cells population and their derivatives, if compared to normal neural stem cells and their derivatives. The analysis of PARP and Caspase-3 activity confirmed apoptosis sensitivity in mutant protein-expressing neural cells. Conclusions Our study demonstrates that expression of IDH1R132H increases apoptosis susceptibility of neural stem cells and their derivatives. Robust apoptosis causes differentiation deficiency of IDH1R132H-expressing cells. PMID:27145078

  14. Filaggrin-dependent secretion of sphingomyelinase protects against staphylococcal α-toxin-induced keratinocyte death.

    PubMed

    Brauweiler, Anne M; Bin, Lianghua; Kim, Byung Eui; Oyoshi, Michiko K; Geha, Raif S; Goleva, Elena; Leung, Donald Y M

    2013-02-01

    The skin of patients with atopic dermatitis (AD) has defects in keratinocyte differentiation, particularly in expression of the epidermal barrier protein filaggrin. AD skin lesions are often exacerbated by Staphylococcus aureus-mediated secretion of the virulence factor α-toxin. It is unknown whether lack of keratinocyte differentiation predisposes to enhanced lethality from staphylococcal toxins. We investigated whether keratinocyte differentiation and filaggrin expression protect against cell death induced by staphylococcal α-toxin. Filaggrin-deficient primary keratinocytes were generated through small interfering RNA gene knockdown. RNA expression was determined by using real-time PCR. Cell death was determined by using the lactate dehydrogenase assay. Keratinocyte cell survival in filaggrin-deficient (ft/ft) mouse skin biopsies was determined based on Keratin 5 staining. α-Toxin heptamer formation and acid sphingomyelinase expression were determined by means of immunoblotting. We found that filaggrin expression, occurring as the result of keratinocyte differentiation, significantly inhibits staphylococcal α-toxin-mediated pathogenicity. Furthermore, filaggrin plays a crucial role in protecting cells by mediating the secretion of sphingomyelinase, an enzyme that reduces the number of α-toxin binding sites on the keratinocyte surface. Finally, we determined that sphingomyelinase enzymatic activity directly prevents α-toxin binding and protects keratinocytes against α-toxin-induced cytotoxicity. The current study introduces the novel concept that S aureus α-toxin preferentially targets and destroys filaggrin-deficient keratinocytes. It also provides a mechanism to explain the increased propensity for S aureus-mediated exacerbation of AD skin disease. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  15. Cigarette smoke differentially affects IL-13-induced gene expression in human airway epithelial cells.

    PubMed

    Mertens, Tinne C J; van der Does, Anne M; Kistemaker, Loes E; Ninaber, Dennis K; Taube, Christian; Hiemstra, Pieter S

    2017-07-01

    Allergic airways inflammation in asthma is characterized by an airway epithelial gene signature composed of POSTN , CLCA1 , and SERPINB2 This Th2 gene signature is proposed as a tool to classify patients with asthma into Th2-high and Th2-low phenotypes. However, many asthmatics smoke and the effects of cigarette smoke exposure on the epithelial Th2 gene signature are largely unknown. Therefore, we investigated the combined effect of IL-13 and whole cigarette smoke (CS) on the Th2 gene signature and the mucin-related genes MUC5AC and SPDEF in air-liquid interface differentiated human bronchial (ALI-PBEC) and tracheal epithelial cells (ALI-PTEC). Cultures were exposed to IL-13 for 14 days followed by 5 days of IL-13 with CS exposure. Alternatively, cultures were exposed once daily to CS for 14 days, followed by 5 days CS with IL-13. POSTN , SERPINB2 , and CLCA1 expression were measured 24 h after the last exposure to CS and IL-13. In both models POSTN , SERPINB2 , and CLCA1 expression were increased by IL-13. CS markedly affected the IL-13-induced Th2 gene signature as indicated by a reduced POSTN , CLCA1 , and MUC5AC expression in both models. In contrast, IL-13-induced SERPINB2 expression remained unaffected by CS, whereas SPDEF expression was additively increased. Importantly, cessation of CS exposure failed to restore IL-13-induced POSTN and CLCA1 expression. We show for the first time that CS differentially affects the IL-13-induced gene signature for Th2-high asthma. These findings provide novel insights into the interaction between Th2 inflammation and cigarette smoke that is important for asthma pathogenesis and biomarker-guided therapy in asthma. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  16. Olive (Olea europaea) Leaf Extract Induces Apoptosis and Monocyte/Macrophage Differentiation in Human Chronic Myelogenous Leukemia K562 Cells: Insight into the Underlying Mechanism

    PubMed Central

    Han, Junkyu; Jlaiel, Lobna; Sayadi, Sami; Isoda, Hiroko

    2014-01-01

    Differentiation therapy is an attractive approach aiming at reversing malignancy and reactivating endogenous differentiation programs in cancer cells. Olive leaf extract, known for its antioxidant activity, has been demonstrated to induce apoptosis in several cancer cells. However, its differentiation inducing properties and the mechanisms involved are still poorly understood. In this study, we investigated the effect of Chemlali Olive Leaf Extract (COLE) for its potential differentiation inducing effect on multipotent leukemia K562 cells. Results showed that COLE inhibits K562 cells proliferation and arrests the cell cycle at G0/G1, and then at G2/M phase over treatment time. Further analysis revealed that COLE induces apoptosis and differentiation of K562 cells toward the monocyte lineage. Microarray analysis was conducted to investigate the underlying mechanism of COLE differentiation inducing effect. The differentially expressed genes such as IFI16, EGR1, NFYA, FOXP1, CXCL2, CXCL3, and CXCL8 confirmed the commitment of K562 cells to the monocyte/macrophage lineage. Thus our results provide evidence that, in addition to apoptosis, induction of differentiation is one of the possible therapeutic effects of olive leaf in cancer cells. PMID:24803988

  17. Olive (Olea europaea) leaf extract induces apoptosis and monocyte/macrophage differentiation in human chronic myelogenous leukemia K562 cells: insight into the underlying mechanism.

    PubMed

    Samet, Imen; Han, Junkyu; Jlaiel, Lobna; Sayadi, Sami; Isoda, Hiroko

    2014-01-01

    Differentiation therapy is an attractive approach aiming at reversing malignancy and reactivating endogenous differentiation programs in cancer cells. Olive leaf extract, known for its antioxidant activity, has been demonstrated to induce apoptosis in several cancer cells. However, its differentiation inducing properties and the mechanisms involved are still poorly understood. In this study, we investigated the effect of Chemlali Olive Leaf Extract (COLE) for its potential differentiation inducing effect on multipotent leukemia K562 cells. Results showed that COLE inhibits K562 cells proliferation and arrests the cell cycle at G0/G1, and then at G2/M phase over treatment time. Further analysis revealed that COLE induces apoptosis and differentiation of K562 cells toward the monocyte lineage. Microarray analysis was conducted to investigate the underlying mechanism of COLE differentiation inducing effect. The differentially expressed genes such as IFI16, EGR1, NFYA, FOXP1, CXCL2, CXCL3, and CXCL8 confirmed the commitment of K562 cells to the monocyte/macrophage lineage. Thus our results provide evidence that, in addition to apoptosis, induction of differentiation is one of the possible therapeutic effects of olive leaf in cancer cells.

  18. Endothelial nitric oxide synthase is dynamically expressed during bone marrow stem cell differentiation into endothelial cells.

    PubMed

    Liu, Zhenguo; Jiang, Yuehua; Hao, Hong; Gupta, Kalpna; Xu, Jian; Chu, Ling; McFalls, Edward; Zweier, Jay; Verfaillie, Catherine; Bache, Robert J

    2007-09-01

    This study was designed to investigate the developmental expression of endothelial nitric oxide synthase (eNOS) during stem cell differentiation into endothelial cells and to examine the functional status of the newly differentiated endothelial cells. Mouse adult multipotent progenitor cells (MAPCs) were used as the source of stem cells and were induced to differentiate into endothelial cells with vascular endothelial growth factor (VEGF) in serum-free medium. Expression of eNOS in the cells during differentiation was evaluated with real-time PCR, nitric oxide synthase (NOS) activity, and Western blot analysis. It was found that eNOS, but no other NOS, was present in undifferentiated MAPCs. eNOS expression disappeared in the cells immediately after induction of differentiation. However, eNOS expression reoccurred at day 7 during differentiation. Increasing eNOS mRNA, protein content, and activity were observed in the cells at days 14 and 21 during differentiation. The differentiated endothelial cells formed dense capillary networks on growth factor-reduced Matrigel. VEGF-stimulated phosphorylation of extracellular signal-regulated kinase (ERK)-1 and ERK-2 occurred in these cells, which was inhibited by NOS inhibitor N(G)-nitro-L-arginine methyl ester. In conclusion, these data demonstrate that eNOS is present in MAPCs and is dynamically expressed during the differentiation of MAPCs into endothelial cells in vitro.

  19. [Differentiation of bone marrow derived from mesenchymal stem cells into cardiomyocyte-like cells induced by co-culture with rat myocardial cells].

    PubMed

    Zhang, Rong-Li; Jiang, Er-Lie; Wang, Mei; Zhou, Zheng; Zhai, Wen-Jing; Zhai, Wei-Hua; Wang, Hua; Wang, Zhi-Yong; Bao, Yu-Shi; DU, Hong; Han, Ming-Zhe

    2008-10-01

    The study was purposed to investigate the differentiation ability of mesenchymal stem cells (MSCs) into myocardial cells in vitro. Rat bone marrow-derived MSCs were labeled and co-cultured with neonatal rat cardiomyocytes (CM) for 5 - 7 days. The expression of cell surface antigens was detected by flow cytometry, and the expression of muscle-specific marker myosin and troponin T in labeled cells was detected by immunofluorescence. The results showed that in vitro cultured MSCs expressed CD90, CD44, CD105, CD54, not expressed CD34, CD45, CD31. After co-cultured with neonatal rat CM, labeled MSCs differentiated into cardiomyocyte-like cells expressing myosin and troponin T. It is concluded that MSCs can differentiate into cardiomyocyte-like cells when co-cultured with neonatal myocardial cells in vitro. In co-culture of two kind of cells in ratio of four to one showed obvious efficacy differentiating MSCs into CMs.

  20. Interferon regulatory factor 4 (IRF4) controls myeloid-derived suppressor cell (MDSC) differentiation and function.

    PubMed

    Nam, Sorim; Kang, Kyeongah; Cha, Jae Seon; Kim, Jung Woo; Lee, Hee Gu; Kim, Yonghwan; Yang, Young; Lee, Myeong-Sok; Lim, Jong-Seok

    2016-12-01

    Myeloid-derived suppressor cells (MDSCs) are immature cells that do not differentiate into mature myeloid cells. Two major populations of PMN-MDSCs (Ly6G high Ly6C low Gr1 high CD11b + ) and MO-MDSCs (Ly6G - Ly6C high Gr-1 int CD11b + ) have an immune suppressive function. Interferon regulatory factor 4 (IRF4) has a role in the negative regulation of TLR signaling and is associated with lymphoid cell development. However, the roles of IRF4 in myeloid cell differentiation are unclear. In this study, we found that IRF4 expression was remarkably suppressed during the development of MDSCs in the tumor microenvironment. Both the mRNA and protein levels of IRF4 in MDSCs were gradually reduced, depending on the development of tumors in the 4T1 model. siRNA-mediated knockdown of IRF4 in bone marrow cells promoted the differentiation of PMN-MDSCs. Similarly, IRF4 inhibition in bone marrow cells using simvastatin, which has been known to inhibit IRF4 expression, increased PMN-MDSC numbers. In contrast, IRF4 overexpression in bone marrow cells inhibited the total numbers of MDSCs, especially PMN-MDSCs. Notably, treatment with IL-4, an upstream regulator of IRF4, induced IRF4 expression in the bone marrow cells, and consequently, IL-4-induced IRF4 expression resulted in a decrease in PMN-MDSC numbers. Finally, we confirmed that IRF4 expression in MDSCs can modulate their activity to inhibit T cell proliferation through IL-10 production and ROS generation, and myeloid-specific deletion of IRF4 leads to the increase of MDSC differentiation. Our present findings indicate that IRF4 reduction induced by tumor formation can increase the number of MDSCs, and increases in the IRF4 expression in MDSCs may infringe on the immune-suppressive function of MDSCs. © Society for Leukocyte Biology.

  1. Identification of Differentially Expressed Genes in Chilling-Induced Potato (Solanum tuberosum L.); a Data Analysis Study.

    PubMed

    Koc, I; Vatansever, R; Ozyigit, I I; Filiz, E

    2015-10-01

    Cold stress, as chilling (<20 °C) or freezing (<0 °C), is one of the frequently exposed stresses in cultivated plants like potato. Under cold stress, plants differentially modulate their gene expression to develop a cold tolerance/acclimation. In the present study, we aimed to identify the overall gene expression profile of chilling-stressed (+4 °C) potato at four time points (4, 8, 12, and 48 h), with a particular emphasis on the genes related with transcription factors (TFs), phytohormones, lipid metabolism, signaling pathway, and photosynthesis. A total of 3504 differentially expressed genes (DEGs) were identified at four time points of chilling-induced potato, of which 1397 were found to be up-regulated while 2107 were down-regulated. Heatmap showed that genes were mainly up-regulated at 4-, 8-, and 12-h time points; however, at 48-h time point, they inclined to down-regulate. Seventy five up-regulated TF genes were identified from 37 different families/groups, including mainly from bHLH, WRKY, CCAAT-binding, HAP3, and bZIP families. Protein kinases and calcium were major signaling molecules in cold-induced signaling pathway. A collaborated regulation of phytohormones was observed in chilling-stressed potato. Lipid metabolisms were regulated in a way, highly probably, to change membrane composition to avoid cold damage and render in signaling. A down-regulated gene expression profile was observed in photosynthesis pathway, probably resulting from chilling-induced reduced enzyme activity or light-triggered ROSs damage. The findings of this study will be a valuable theoretical knowledge in terms of understanding the chilling-induced tolerance mechanisms in cultivated potato plants as well as in other Solanum species.

  2. The inhibition of macrophage foam cell formation by tetrahydroxystilbene glucoside is driven by suppressing vimentin cytoskeleton.

    PubMed

    Yao, Wenjuan; Huang, Lei; Sun, Qinju; Yang, Lifeng; Tang, Lian; Meng, Guoliang; Xu, Xiaole; Zhang, Wei

    2016-10-01

    Macrophage foam cell formation triggered by oxLDL is an important event that occurs during the development of atherosclerosis. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside (TSG) exhibits significant anti-atherosclerotic activity. Herein we used U937 cells induced by PMA and oxLDL in vitro to investigate the inhibitory effects of TSG on U937 differentiation and macrophage foam cell formation. TSG pretreatment markedly inhibited cell differentiation induced by PMA, macrophage apoptosis and foam cell formation induced by oxLDL. The inhibition of vimentin expression and cleavage was involved in these inhibitory effects of TSG. The suppression of vimentin by siRNA in U937 significantly inhibited cell differentiation, apoptosis and foam cell formation. Using inhibitors for TGFβR1 and PI3K, we found that vimentin production in U937 cells is regulated by TGFβ/Smad signaling, but not by PI3K-Akt-mTOR signaling. Meanwhile, TSG pretreatment inhibited both the expression of TGFβ1 and the phosphorylation of Smad2 and Smad3, and TSG suppressed the nuclear translocation of Smad4 induced by PMA and oxLDL. Furthermore, TSG attenuated the induced caspase-3 activation and adhesion molecules levels by PMA and oxLDL. PMA and oxLDL increased the co-localization of vimentin with ICAM-1, which was attenuated by pretreatment with TSG. These results suggest that TSG inhibits macrophage foam cell formation through suppressing vimentin expression and cleavage, adhesion molecules expression and vimentin-ICAM-1 co-localization. The interruption of TGFβ/Smad pathway and caspase-3 activation is responsible for the downregulation of TSG on vimentin expression and degradation, respectively. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Overexpression of Telomerase Reverse Transcriptase Induces Autism-like Excitatory Phenotypes in Mice.

    PubMed

    Kim, Ki Chan; Rhee, Jeehae; Park, Jong-Eun; Lee, Dong-Keun; Choi, Chang Soon; Kim, Ji-Woon; Lee, Han-Woong; Song, Mi-Ryoung; Yoo, Hee Jeong; Chung, ChiHye; Shin, Chan Young

    2016-12-01

    In addition to its classical role as a regulator of telomere length, recent reports suggest that telomerase reverse transcriptase (TERT) plays a role in the transcriptional regulation of gene expression such as β-catenin-responsive pathways. Silencing or over-expression of TERT in cultured NPCs demonstrated that TERT induced glutamatergic neuronal differentiation. During embryonic brain development, expression of transcription factors involved in glutamatergic neuronal differentiation was increased in mice over-expressing TERT (TERT-tg mice). We observed increased expression of NMDA receptor subunits and phosphorylation of α-CaMKII in TERT-tg mice. TERT-tg mice showed autism spectrum disorder (ASD)-like behavioral phenotypes as well as lowered threshold against electrically induced seizure. Interestingly, the NMDA receptor antagonist memantine restored behavioral abnormalities in TERT-tg mice. Consistent with the alteration in excitatory/inhibitory (E/I) ratio, TERT-tg mice showed autism-like behaviors, abnormal synaptic organization, and function in mPFC suggesting the role of altered TERT activity in the manifestation of ASD, which is further supported by the significant association of certain SNPs in Korean ASD patients.

  4. In vitro differentiated hepatic oval-like cells enhance hepatic regeneration in CCl4 -induced hepatic injury.

    PubMed

    Awan, Sana Javaid; Baig, Maria Tayyab; Yaqub, Faiza; Tayyeb, Asima; Ali, Gibran

    2017-01-01

    Hepatic oval cells are likely to be activated during advanced stage of liver fibrosis to reconstruct damaged hepatic tissue. However, their scarcity, difficulties in isolation, and in vitro expansion hampered their transplantation in fibrotic liver. This study was aimed to investigate the repair potential of in vitro differentiated hepatic oval-like cells in CCl 4 -induced liver fibrosis. BMSCs and oval cells were isolated and characterized from C57BL/6 GFP + mice. BMSCs were differentiated into oval cells by preconditioning with HGF, EGF, SCF, and LIF and analyzed for the oval cells-specific genes. Efficiency of oval cells to reduce hepatocyte injury was studied by determining cell viability, release of LDH, and biochemical tests in a co-culture system. Further, in vivo repair potential of differentiated oval cells was determined in CCl 4 -induced fibrotic model by gene expression analysis, biochemical tests, mason trichrome, and Sirius red staining. Differentiated oval cells expressed hepatic oval cells-specific markers AFP, ALB, CK8, CK18, CK19. These differentiated cells when co-cultured with injured hepatocytes showed significant hepato-protection as measured by reduction in apoptosis, LDH release, and improvement in liver functions. Transplantation of differentiated oval cells like cells in fibrotic livers exhibited enhanced homing, reduced liver fibrosis, and improved liver functions by augmenting hepatic microenvironment by improved liver functions. This preconditioning strategy to differentiate BMSCs into oval cell leads to improved survival and homing of transplanted cells. In addition, reduction in fibrosis and functional improvement in mice with CCl 4 -induced liver fibrosis was achieved. © 2016 International Federation for Cell Biology.

  5. Differentiation of Spermatogonia Stem Cells into Functional Mature Neurons Characterized with Differential Gene Expression.

    PubMed

    Bojnordi, Maryam Nazm; Azizi, Hossein; Skutella, Thomas; Movahedin, Mansoureh; Pourabdolhossein, Fereshteh; Shojaei, Amir; Hamidabadi, Hatef Ghasemi

    2017-09-01

    Transplantation of embryonic stem cells (ESCs) is a promising therapeutic approach for the treatment of neurodegenerative diseases. However, ESCs are not usable clinically due to immunological and ethical limitations. The identification of an alternative safe cell source opens novel options via autologous transplantation in neuro-regeneration circumventing these problems. Here, we examined the neurogenic capacity of embryonic stem-like cells (ES-like cells) derived from the testis using neural growth factor inducers and utilized them to generate functional mature neurons. The neuronal differentiation of ES-like cells is induced in three stages. Stage 1 is related to embryoid body (EB) formation. To induce neuroprogenitor cells, EBs were cultured in the presence of retinoic acid, N 2 supplement and fibroblast growth factor followed by culturing in a neurobasal medium containing B 27 , N 2 supplements for additional 10 days, to allow the maturation and development of neuronal progenitor cells. The neurogenic differentiation was confirmed by immunostaining for markers of mature neurons. The differentiated neurons were positive for Tuj1 and Tau1. Real-time PCR dates indicated the expression of Nestin and Neuro D (neuroprogenitor markers) in induced cells at the second stage of the differentiation protocol. The differentiated mature neurons exhibited the specific neuron markers Map2 and β-tubulin. The functional maturity of neurons was confirmed by an electrophysiological analysis of passive and active neural membrane properties. These findings indicated a differentiation capacity of ES-like cells derived from the testis to functionally mature neurons, which proposes them as a novel cell source for neuroregenerative medicine.

  6. Conditions Inducing Excessive O-GlcNAcylation Inhibit BMP2-Induced Osteogenic Differentiation of C2C12 Cells.

    PubMed

    Gu, Hanna; Song, Mina; Boonanantanasarn, Kanitsak; Baek, Kyunghwa; Woo, Kyung Mi; Ryoo, Hyun-Mo; Baek, Jeong-Hwa

    2018-01-09

    Hyperglycemic conditions in diabetic patients can affect various cellular functions, including the modulation of osteogenic differentiation. However, the molecular mechanisms by which hyperglycemia affects osteogenic differentiation are yet to be clarified. This study aimed to investigate whether the aberrant increase in protein O -linked-β- N -acetylglucosamine glycosylation ( O -GlcNAcylation) contributes to the suppression of osteogenic differentiation due to hyperglycemia. To induce osteogenic differentiation, C2C12 cells were cultured in the presence of recombinant human bone morphogenetic protein 2 (BMP2). Excessive protein O -GlcNAcylation was induced by treating C2C12 cells with high glucose, glucosamine, or N -acetylglucosamine concentrations or by O -GlcNAc transferase (OGT) overexpression. The effect of O -GlcNAcylation on osteoblast differentiation was then confirmed by examining the expression levels of osteogenic marker gene mRNAs, activity of alkaline phosphatase, and transcriptional activity of Runx2, a critical transcription factor for osteoblast differentiation and bone formation. Cell treatment with high glucose, glucosamine or N -acetylglucosamine increased O -GlcNAcylation of Runx2 and the total levels of O -GlcNAcylated proteins, which led to a decrease in the transcriptional activity of Runx2, expression levels of osteogenic marker genes (Runx2, osterix, alkaline phosphatase, and type I collagen), and activity of alkaline phosphatase. These inhibitory effects were rescued by lowering protein O -GlcNAcylation levels by adding STO45849, an OGT inhibitor, or by overexpressing β- N -acetylglucosaminidase. Our findings suggest that excessive protein O -GlcNAcylation contributes to high glucose-suppressed osteogenic differentiation.

  7. Differential effect of 1{alpha},25-dihydroxyvitamin D{sub 3} on Hsp28 and PKC{beta} gene expression in the phorbol ester-resistant human myeloid HL-525 leukemic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yong J.; Galoforo, S.S.; Berns, C.M.

    We investigated the effect of 1{alpha},25-dihydroxyvitamin D{sub 3} [1,25-(OH){sub 2}D{sub 3}] on the expression of the 28-kDa heat shock protein gene (hsp28) and the protein kinase C beta gene (PKC{beta}) in the human myeloid HL-60 leukemic cell variant HL-525, which is resistance to phorbol ester-induced macrophage differentiation. Northern and Western blot analysis showed little or no hsp28 gene expression in the HL-60 cell variant, HL-205, which is susceptible to such differentiation, while a relatively high basal level of hps28 gene expression was observed in the HL-525 cells. However, both cell lines demonstrated heat shock-induced expression of this gene. During treatmentmore » with 50-300 nM 1,25-(OH){sub 2}D{sub 3}, a marked reduction of hsp28 gene expression was not associated with heat shock transcription factor-heat shock element (HSF-HSE) binding activity. Our results suggest that the differential effect of 1,25-(OH){sub 2}D{sub 3} on hsp28 and PKC{beta} gene expression is due to the different sequence composition of the vitamin D response element in the in the promoter region as well as an accessory factor for each gene or that 1,25-(OH){sub 2}D{sub 3} increases PKC{beta} gene expression, which in turn negatively regulates the expression of the hsp28 gene, or vice versa.« less

  8. Thyroid Hormone-Induced Hypertrophy in Mesenchymal Stem Cell Chondrogenesis Is Mediated by Bone Morphogenetic Protein-4

    PubMed Central

    Karl, Alexandra; Olbrich, Norman; Pfeifer, Christian; Berner, Arne; Zellner, Johannes; Kujat, Richard; Angele, Peter; Nerlich, Michael

    2014-01-01

    Chondrogenic differentiating mesenchymal stem cells (MSCs) express markers of hypertrophic growth plate chondrocytes. As hypertrophic cartilage undergoes ossification, this is a concern for the application of MSCs in articular cartilage tissue engineering. To identify mechanisms that elicit this phenomenon, we used an in vitro hypertrophy model of chondrifying MSCs for differential gene expression analysis and functional experiments with the focus on bone morphogenetic protein (BMP) signaling. Hypertrophy was induced in chondrogenic MSC pellet cultures by transforming growth factor β (TGFβ) and dexamethasone withdrawal and addition of triiodothyronine. Differential gene expression analysis of BMPs and their receptors was performed. Based on these results, the in vitro hypertrophy model was used to investigate the effect of recombinant BMP4 and the BMP inhibitor Noggin. The enhancement of hypertrophy could be shown clearly by an increased cell size, alkaline phosphatase activity, and collagen type X deposition. Upon induction of hypertrophy, BMP4 and the BMP receptor 1B were upregulated. Addition of BMP4 further enhanced hypertrophy in the absence, but not in the presence of TGFβ and dexamethasone. Thyroid hormone induced hypertrophy by upregulation of BMP4 and this induced enhancement of hypertrophy could be blocked by the BMP antagonist Noggin. BMP signaling is an important modulator of the late differentiation stages in MSC chondrogenesis and the thyroid hormone induces this pathway. As cartilage tissue engineering constructs will be exposed to this factor in vivo, this study provides important insight into the biology of MSC-based cartilage. Furthermore, the possibility to engineer hypertrophic cartilage may be helpful for critical bone defect repair. PMID:23937304

  9. Genes involved in nonpermissive temperature-induced cell differentiation in Sertoli TTE3 cells bearing temperature-sensitive simian virus 40 large T-antigen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabuchi, Yoshiaki; Kondo, Takashi; Suzuki, Yoshihisa

    2005-04-15

    Sertoli TTE3 cells, derived from transgenic mice bearing temperature-sensitive simian virus 40 large T (tsSV40LT)-antigen, proliferated continuously at a permissive temperature (33 deg C) whereas inactivation of the large T-antigen by a nonpermissive temperature (39 deg C) led to differentiation as judged by elevation of transferrin. To clarify the detailed mechanisms of differentiation, we investigated the time course of changes in gene expression using cDNA microarrays. Of the 865 genes analyzed, 14 genes showed increased levels of expression. Real-time quantitative PCR revealed that the mRNA levels of p21{sup waf1}, milk fat globule membrane protein E8, heat-responsive protein 12, and selenoproteinmore » P were markedly elevated. Moreover, the differentiated condition induced by the nonpermissive temperature significantly increased mRNA levels of these four genes in several cell lines from the transgenic mice bearing the oncogene. The present results regarding changes in gene expression will provide a basis for a further understanding of molecular mechanisms of differentiation in both Sertoli cells and cell lines transformed by tsSV40LT-antigen.« less

  10. Immunoregulatory cytokines in mouse placental extracts inhibit in vitro osteoclast differentiation of murine macrophages.

    PubMed

    Canellada, A; Custidiano, A; Abraham, F; Rey, E; Gentile, T

    2013-03-01

    Previous studies showed that placental extracts (PE) alleviates arthritic symptoms in animal models of arthritis. To evaluate whether murine PEs obtained at embryonic days 7.5 (PE7) and 17.5 (PE18) regulate RANKL-induced osteoclast differentiation, RAW 264.7 cells were cultured with RANKL and MCSF in presence or not of PEs. Tartrate-resistant acid phosphatase (TRAP) was stained and multinucleated TRAP positive cells were visualized under a light microscope. Cathepsin K and metalloprotease expression was assessed by RT-PCR and gelatin zymography respectively. NFATc1 expression was determined by immunoblot. To analyze NFAT-dependent transcription, macrophages were transfected with a luciferase reporter plasmid. Cytokines were determined in PEs by ELISA and immunoblot. Transforming growth factor (TGF)- beta and Interleukin (IL)-10 receptor were inhibited in cell cultures with specific antibodies. PE7 and PE18 inhibited RANKL-induced multinucleated TRAP positive cells, Cathepsin K expression and metalloprotease activity, as well as NFATc1 expression and activity, thereby inhibiting osteoclast differentiation of RAW cells. Inflammatory/Regulatory cytokine ratio was higher in PE7 than in PE18. Blocking TGF-beta abolished the effect of both, PE7 and PE18, on multinucleated TRAP positive cells and metalloprotease expression, whereas blocking IL-10 receptor reverted the effect of PE18 but not of PE7. Inhibition of osteoclast differentiation by PEs was not unexpected, since cytokines detected in extracts were previously found to regulate osteoclast differentiation. PEs inhibited osteoclast differentiation of macrophages in vitro. Downregulation of NFATc1 might be involved in this effect. Regulatory/Th2 cytokines play a role in the effect of PEs on osteoclast differentiation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Natural Product Vibsanin A Induces Differentiation of Myeloid Leukemia Cells through PKC Activation.

    PubMed

    Yu, Zu-Yin; Xiao, He; Wang, Li-Mei; Shen, Xing; Jing, Yu; Wang, Lin; Sun, Wen-Feng; Zhang, Yan-Feng; Cui, Yu; Shan, Ya-Jun; Zhou, Wen-Bing; Xing, Shuang; Xiong, Guo-Lin; Liu, Xiao-Lan; Dong, Bo; Feng, Jian-Nan; Wang, Li-Sheng; Luo, Qing-Liang; Zhao, Qin-Shi; Cong, Yu-Wen

    2016-05-01

    All-trans retinoic acid (ATRA)-based cell differentiation therapy has been successful in treating acute promyelocytic leukemia, a unique subtype of acute myeloid leukemia (AML). However, other subtypes of AML display resistance to ATRA-based treatment. In this study, we screened natural, plant-derived vibsane-type diterpenoids for their ability to induce differentiation of myeloid leukemia cells, discovering that vibsanin A potently induced differentiation of AML cell lines and primary blasts. The differentiation-inducing activity of vibsanin A was mediated through direct interaction with and activation of protein kinase C (PKC). Consistent with these findings, pharmacological blockade of PKC activity suppressed vibsanin A-induced differentiation. Mechanistically, vibsanin A-mediated activation of PKC led to induction of the ERK pathway and decreased c-Myc expression. In mouse xenograft models of AML, vibsanin A administration prolonged host survival and inhibited PKC-mediated inflammatory responses correlated with promotion of skin tumors in mice. Collectively, our results offer a preclinical proof of concept for vibsanin A as a myeloid differentiation-inducing compound, with potential application as an antileukemic agent. Cancer Res; 76(9); 2698-709. ©2016 AACR. ©2016 American Association for Cancer Research.

  12. PHTHALATE ESTER-INDUCED GUBERNACULAR LESIONS ARE ASSOCIATED WITH REDUCED INSL-3 GENE EXPRESSION IN THE FETAL RAT TESTIS

    EPA Science Inventory

    Phthalate ester-induced gubernacular ligament lesions are associated with reduced Insl3 gene expression in the fetal rat testis during sexual differentiation.
    VS Wilson, C Lambright, J Furr, J Ostby, C Wood, G Held, LE Gray Jr.
    U.S. EPA, ORD, NHEERL, Reproductive Toxicology...

  13. Gene expression profiling of bone marrow mesenchymal stem cells from Osteogenesis Imperfecta patients during osteoblast differentiation.

    PubMed

    Kaneto, Carla Martins; Pereira Lima, Patrícia S; Prata, Karen Lima; Dos Santos, Jane Lima; de Pina Neto, João Monteiro; Panepucci, Rodrigo Alexandre; Noushmehr, Houtan; Covas, Dimas Tadeu; de Paula, Francisco José Alburquerque; Silva, Wilson Araújo

    2017-06-01

    Mesenchymal stem cells (MSCs) are precursors present in adult bone marrow that are able to differentiate into osteoblasts, adipocytes and chondroblasts that have gained great importance as a source for cell therapy. Recently, a number of studies involving the analysis of gene expression of undifferentiated MSCs and of MSCs in the differentiation into multiple lineage processes were observed but there is no information concerning the gene expression of MSCs from Osteogenesis Imperfecta (OI) patients. Osteogenesis Imperfecta is characterized as a genetic disorder in which a generalized osteopenia leads to excessive bone fragility and severe bone deformities. The aim of this study was to analyze gene expression profile during osteogenic differentiation from BMMSCs (Bone Marrow Mesenchymal Stem Cells) obtained from patients with Osteogenesis Imperfecta and from control subjects. Bone marrow samples were collected from three normal subjects and five patients with OI. Mononuclear cells were isolated for obtaining mesenchymal cells that had been expanded until osteogenic differentiation was induced. RNA was harvested at seven time points during the osteogenic differentiation period (D0, D+1, D+2, D+7, D+12, D+17 and D+21). Gene expression analysis was performed by the microarray technique and identified several differentially expressed genes. Some important genes for osteoblast differentiation had lower expression in OI patients, suggesting a smaller commitment of these patient's MSCs with the osteogenic lineage. Other genes also had their differential expression confirmed by RT-qPCR. An increase in the expression of genes related to adipocytes was observed, suggesting an increase of adipogenic differentiation at the expense osteogenic differentiation. Copyright © 2017. Published by Elsevier Masson SAS.

  14. Chromatin remodeling agent trichostatin A: a key-factor in the hepatic differentiation of human mesenchymal stem cells derived of adult bone marrow

    PubMed Central

    Snykers, Sarah; Vanhaecke, Tamara; De Becker, Ann; Papeleu, Peggy; Vinken, Mathieu; Van Riet, Ivan; Rogiers, Vera

    2007-01-01

    Background The capability of human mesenchymal stem cells (hMSC) derived of adult bone marrow to undergo in vitro hepatic differentiation was investigated. Results Exposure of hMSC to a cocktail of hepatogenic factors [(fibroblast growth factor-4 (FGF-4), hepatocyte growth factor (HGF), insulin-transferrin-sodium-selenite (ITS) and dexamethasone)] failed to induce hepatic differentiation. Sequential exposure to these factors (FGF-4, followed by HGF, followed by HGF+ITS+dexamethasone), however, resembling the order of secretion during liver embryogenesis, induced both glycogen-storage and cytokeratin (CK)18 expression. Additional exposure of the cells to trichostatin A (TSA) considerably improved endodermal differentiation, as evidenced by acquisition of an epithelial morphology, chronological expression of hepatic proteins, including hepatocyte-nuclear factor (HNF)-3β, alpha-fetoprotein (AFP), CK18, albumin (ALB), HNF1α, multidrug resistance-associated protein (MRP)2 and CCAAT-enhancer binding protein (C/EBP)α, and functional maturation, i.e. upregulated ALB secretion, urea production and inducible cytochrome P450 (CYP)-dependent activity. Conclusion hMSC are able to undergo mesenchymal-to-epithelial transition. TSA is hereby essential to promote differentiation of hMSC towards functional hepatocyte-like cells. PMID:17407549

  15. Measles Virus Persistent Infection of Human Induced Pluripotent Stem Cells.

    PubMed

    Naaman, Hila; Rabinski, Tatiana; Yizhak, Avi; Mizrahi, Solly; Avni, Yonat Shemer; Taube, Ran; Rager, Bracha; Weinstein, Yacov; Rall, Glenn; Gopas, Jacob; Ofir, Rivka

    2018-02-01

    In this study, we found that the measles virus (MV) can infect human-induced pluripotent stem cells (hiPSCs). Wild-type MV strains generally use human signaling lymphocyte activation molecule (SLAM; CD150) as a cellular receptor, while vaccine strains such as the Edmonston strain can use both CD150 and CD46 as receptors. It is not yet known how early in the embryonal differentiation stages these receptors are expressed. We established two hiPSCs (BGU-iPSCs and EMF-iPSCs) which express CD46 and CD150. Both cell types can be infected by MV to form persistent, noncytopathic cell lines that release infectious MV particles. Following MV persistent infection, BGU-iPSCs and EMF-iPSCs remain pluripotent and can differentiate in vitro into the three germ layers. This includes cells expressing the neuronal differentiation markers: NF68 and miRNA-124. Since the MV does not integrate into the cell's genome, it can be utilized as a vehicle to systematically introduce genes into iPSC, to dissect and to define factors regulating lineage differentiation.

  16. Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation

    PubMed Central

    2010-01-01

    Background Myxococcus xanthus is a Gram negative bacterium that can differentiate into metabolically quiescent, environmentally resistant spores. Little is known about the mechanisms involved in differentiation in part because sporulation is normally initiated at the culmination of a complex starvation-induced developmental program and only inside multicellular fruiting bodies. To obtain a broad overview of the sporulation process and to identify novel genes necessary for differentiation, we instead performed global transcriptome analysis of an artificial chemically-induced sporulation process in which addition of glycerol to vegetatively growing liquid cultures of M. xanthus leads to rapid and synchronized differentiation of nearly all cells into myxospore-like entities. Results Our analyses identified 1 486 genes whose expression was significantly regulated at least two-fold within four hours of chemical-induced differentiation. Most of the previously identified sporulation marker genes were significantly upregulated. In contrast, most genes that are required to build starvation-induced multicellular fruiting bodies, but which are not required for sporulation per se, were not significantly regulated in our analysis. Analysis of functional gene categories significantly over-represented in the regulated genes, suggested large rearrangements in core metabolic pathways, and in genes involved in protein synthesis and fate. We used the microarray data to identify a novel operon of eight genes that, when mutated, rendered cells unable to produce viable chemical- or starvation-induced spores. Importantly, these mutants displayed no defects in building fruiting bodies, suggesting these genes are necessary for the core sporulation process. Furthermore, during the starvation-induced developmental program, these genes were expressed in fruiting bodies but not in peripheral rods, a subpopulation of developing cells which do not sporulate. Conclusions These results suggest that microarray analysis of chemical-induced spore formation is an excellent system to specifically identify genes necessary for the core sporulation process of a Gram negative model organism for differentiation. PMID:20420673

  17. The Mixture of Anemarrhena asphodeloides and Coptis chinensis Attenuates High-Fat Diet-Induced Colitis in Mice.

    PubMed

    Lim, Su-Min; Choi, Hyun-Sik; Kim, Dong-Hyun

    2017-01-01

    Anemarrhena asphodeloides (AA, family Liliaceae) inhibits macrophage activation by inhibiting IRAK1 phosphorylation and helper T (Th)17 differentiation. Coptis chinensis (CC, family Ranunculaceae), which inhibits macrophage activation by inhibiting the binding of lipopolysaccharide (LPS) on toll-like receptor 4 and inducing regulatory T (Treg) cell differentiation. The mixture of AA and CC (AC-mix) synergistically attenuates 2,4,6-trinitrobenzenesulfonic acid or dextran sulfate sodium-induced colitis in mice by inhibiting NF-[Formula: see text]B activation and regulating Th17/Treg balance. In the present study, we examined the effect of AC-mix on high-fat diet (HFD)-induced colitis in mice, which induced NF-[Formula: see text]B activation and disturbed Th17/Treg balance. Long-term feeding of HFD in mice caused colitis, including increased macroscopic score and myeloperoxidase activity. Oral administration of AC-mix (20[Formula: see text]mg/kg) suppressed HFD-induced myeloperoxidase activity by 68% ([Formula: see text]). Furthermore, treatment with the AC-mix (20[Formula: see text]mg/kg) inhibited HFD-induced activation of NF-[Formula: see text]B and expression of cyclooxygenase-2, inducible NO synthase, interleukin (IL)-17, and tumor necrosis factor-alpha but increased HFD- suppressed expression of IL-10. AC-mix suppressed HFD-induced differentiation into Th17 cells by 46% ([Formula: see text]) and increased HFD-induced differentiation into regulatory T cells 2.2-fold ([Formula: see text]). AC-mix also suppressed the HFD-induced Proteobacteria/Bacteroidetes ratio on the gut microbiota by 48% ([Formula: see text]). These findings suggest that AC-mix can ameliorate HFD-induced colitis by regulating innate and adaptive immunities and correcting the disturbance of gut microbiota.

  18. Prostate cancer cells induce osteoblastic differentiation via semaphorin 3A.

    PubMed

    Liu, Fuzhou; Shen, Weiwei; Qiu, Hao; Hu, Xu; Zhang, Chao; Chu, Tongwei

    2015-03-01

    Prostate cancer metastasis to bone is the second most commonly diagnosed malignant disease among men worldwide. Such metastatic disease is characterized by the presence of osteoblastic bone lesions, and is associated with high rates of mortality. However, the various mechanisms involved in prostate cancer-induced osteoblastic differentiation have not been fully explored. Semaphorin 3A (Sema 3A) is a newly identified regulator of bone metabolism which stimulates differentiation of pre-osteoblastic cells under physiological conditions. We investigated in this study whether prostate cancer cells can mediate osteoblastic activity through Sema 3A. We cultured osteoprogenitor MC3T3-E1 cells in prostate cancer-conditioned medium, and analyzed levels of Sema 3A protein in diverse prostate cancer cell lines to identify cell lines in which Sema 3A production showed a positive correlation with osteo-stimulation. C4-2 cells were stably transfected with Sema 3A short hairpin RNA to further determine whether Sema 3A contributes to the ability of C4-2 cells to induce osteoblastic differentiation. Down-regulation of Sema 3A expression decreased indicators of C4-2 CM-induced osteoblastic differentiation, including alkaline phosphatase production and mineralization. Additionally, silencing or neutralizing Sema 3A in C4-2 cells resulted in diminished β-catenin expression in osteogenitor MC3T3-E1 cells. Our results suggest that prostate cancer-induced osteoblastic differentiation is at least partially mediated by Sema 3A, and may be regulated by the β-catenin signalling pathway. Sema 3A may represent a novel target for treatment of prostate cancer-induced osteoblastic lesions. © 2014 Wiley Periodicals, Inc.

  19. Requirement of 8-mercaptoguanosine as a costimulus for IL-4-dependent mu to gamma1 class switch recombination in CD38-activated B cells.

    PubMed

    Tsukamoto, Yumiko; Uehara, Shoji; Mizoguchi, Chieko; Sato, Atsushi; Horikawa, Keisuke; Takatsu, Kiyoshi

    2005-10-21

    Mature B-2 cells expressing surface IgM and IgD proliferate upon stimulation by CD38, CD40 or lipopolysaccharide (LPS) and differentiate into IgG1-producing plasma cells in the presence of cytokines. The process of class switch recombination (CSR) from IgM to other isotypes is highly regulated by cytokines and activation-induced cytidine deaminase (AID). Blimp-1 and XBP-1 play an essential role in the terminal differentiation of switched B-2 cells to Ig-producing plasma cells. IL-5 induces AID and Blimp-1 expression in CD38- and CD40-activated B-2 cells, leading to mu to gamma1 CSR at DNA level and IgG1 production. IL-4, a well-known IgG1-inducing factor, does not induce mu to gamma1 CSR in CD38-activated B-2 cells or Blimp-1, while IL-4 induces mu to gamma1 CSR, XBP-1 expression, and IgG1 production expression in CD40-activated B-2 cells. Interestingly, the addition of 8-mercaptoguanosine (8-SGuo) with IL-4 to the culture of CD38-activated B cells can induce mu to gamma1 CSR, Blimp-1 expression, and IgG1 production. Intriguingly, 8-SGuo by itself induces AID expression in CD38-activated B cells. However, it does not induce mu to gamma1 CSR. These results imply that the mode of B-cell activation for extracellular stimulation affects the outcome of cytokine stimulation with respect to the efficiency and direction of CSR, and the requirements of the transcriptional regulator and the generation of antibody-secreting cells. Furthermore, our data suggest the requirement of additional molecules in addition to AID for CSR.

  20. A protein phosphatase network controls the temporal and spatial dynamics of differentiation commitment in human epidermis

    PubMed Central

    Walko, Gernot; Viswanathan, Priyalakshmi; Tihy, Matthieu; Nijjher, Jagdeesh; Dunn, Sara-Jane; Lamond, Angus I

    2017-01-01

    Epidermal homeostasis depends on a balance between stem cell renewal and terminal differentiation. The transition between the two cell states, termed commitment, is poorly understood. Here, we characterise commitment by integrating transcriptomic and proteomic data from disaggregated primary human keratinocytes held in suspension to induce differentiation. Cell detachment induces several protein phosphatases, five of which - DUSP6, PPTC7, PTPN1, PTPN13 and PPP3CA – promote differentiation by negatively regulating ERK MAPK and positively regulating AP1 transcription factors. Conversely, DUSP10 expression antagonises commitment. The phosphatases form a dynamic network of transient positive and negative interactions that change over time, with DUSP6 predominating at commitment. Boolean network modelling identifies a mandatory switch between two stable states (stem and differentiated) via an unstable (committed) state. Phosphatase expression is also spatially regulated in vivo and in vitro. We conclude that an auto-regulatory phosphatase network maintains epidermal homeostasis by controlling the onset and duration of commitment. PMID:29043977

  1. Effects and mechanisms of melatonin on the proliferation and neural differentiation of PC12 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yumei; Zhang, Ziqiang; Lv, Qiongxia

    Melatonin, a lipophilic molecule that is mainly synthesized in the pineal gland, performs various neuroprotective functions. However, the detailed role and mechanisms of promoting neuronal differentiation remains limited. This study demonstrated that 10 μM melatonin led to significant increases in the proliferation and neurite outgrowth of PC12 cells. Increased expression of microtubule-associated protein 2 (MAP2, a neuron-specific protein) was also observed. However, luzindole (melatonin receptor antagonist) and PD98059 (MEK inhibitor) attenuated these increases. LY294002 (AKT inhibitor) inhibited melatonin-mediated proliferation in PC12 cells and did not affect melatonin-induced neural differentiation. The expression of p-ERK1/2/ERK1/2 was increased by melatonin treatment for 14 days in PC12 cells,more » whereas luzindole or PD98059 reduced the melatonin-induced increase. These results suggest that the activation of both the MEK/ERK and PI3K/AKT signaling pathways could potentially contribute to melatonin-mediated proliferation, but that only the MEK/ERK pathway participates in the melatonin-induced neural differentiation of PC12 cells. Altogether, our study demonstrates for the first time that melatonin may exert a positive effect on neural differentiation via melatonin receptor signalling and that the MEK/ERK1/2 signalling may act down stream from the melatonin pathway. - Highlights: • Melatonin improves the proliferation of PC12 cells. • Melatonin induces neural differentiation of PC12 cells. • Melatonin-mediated proliferation in PC12 cells relies on the ERK and AKT pathways. • Activation of ERK is essential for melatonin-induced neural differentiation of PC12.« less

  2. Gene expression profiling data of Schizosaccharomyces pombe under nitrosative stress using differential display.

    PubMed

    Biswas, Pranjal; Majumdar, Uddalak; Ghosh, Sanjay

    2016-03-01

    Excess production of nitric oxide (NO) and reactive nitrogen intermediates (RNIs) causes nitrosative stress on cells. Schizosaccharomyces pombe was used as a model to study nitrosative stress response. In the present data article, we have used differential display to identify the differentially expressed genes in the fission yeast under nitrosative stress conditions. We have used pure NO donor compound detaNONOate at final concentrations of 0.1 mM and 1 mM to treat the cells for 15 min alongside control before studying their gene expression profiles. At both the treated conditions, we identified genes which were commonly repressed while several genes were induced upon both 0.1 mM and 1 mM treatments. The differentially expressed genes were further analyzed in DAVID and categorized into several different pathways.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galloway, Chad A.; Smith, Harold C., E-mail: harold.smith@rochester.edu

    Apolipoprotein B mRNA is edited at cytidine 6666 in the enterocytes lining the small intestine of all mammals; converting a CAA codon to a UAA stop codon. The conversion is {approx}80% efficient in this tissue and leads to the expression of the truncated protein, ApoB48, essential for secretion of dietary lipid as chylomicrons. Caco-2 cell raft cultures have been used as an in vitro model for the induction of editing activity during human small intestinal cell differentiation. This induction of apoB mRNA editing has been ascribed to the expression of APOBEC-1. In agreement our data demonstrated differentiation-dependent induction of expressionmore » of the editing enzyme APOBEC-1 and in addition we show alternative splicing of the essential auxiliary factor ACF. However, transfection of these editing factors in undifferentiated proliferating Caco-2 cells was not sufficient to induce robust apoB mRNA editing activity. Only differentiation of Caco-2 cells could induce more physiological like levels of apoB mRNA editing. The data suggested that additional regulatory mechanism(s) were induced by differentiation that controlled the functional activity of editing factors.« less

  4. Identification of transcription coactivator OCA-B-dependent genes involved in antigen-dependent B cell differentiation by cDNA array analyses.

    PubMed

    Kim, Unkyu; Siegel, Rachael; Ren, Xiaodi; Gunther, Cary S; Gaasterland, Terry; Roeder, Robert G

    2003-07-22

    The tissue-specific transcriptional coactivator OCA-B is required for antigen-dependent B cell differentiation events, including germinal center formation. However, the identity of OCA-B target genes involved in this process is unknown. This study has used large-scale cDNA arrays to monitor changes in gene expression patterns that accompany mature B cell differentiation. B cell receptor ligation alone induces many genes involved in B cell expansion, whereas B cell receptor and helper T cell costimulation induce genes associated with B cell effector function. OCA-B expression is induced by both B cell receptor ligation alone and helper T cell costimulation, suggesting that OCA-B is involved in B cell expansion as well as B cell function. Accordingly, several genes involved in cell proliferation and signaling, such as Lck, Kcnn4, Cdc37, cyclin D3, B4galt1, and Ms4a11, have been identified as OCA-B-dependent genes. Further studies on the roles played by these genes in B cells will contribute to an understanding of B cell differentiation.

  5. A behavioral task with more opportunities for memory acquisition promotes the survival of new neurons in the adult dentate gyrus.

    PubMed

    Aasebø, Ida E J; Kasture, Ameya Sanjay; Passeggeri, Marzia; Tashiro, Ayumu

    2018-05-09

    It has been suggested that the dentate gyrus, particularly its new neurons generated via adult neurogenesis, is involved in memory acquisition and recall. Here, we trained rats in two types of Morris water maze tasks that are differentially associated with these two memory processes, and examined whether new neurons are differently affected by the two tasks performed during the second week of neuronal birth. Our results indicate that the task involving more opportunities to acquire new information better supports the survival of new neurons. Further, we assessed whether the two tasks differentially induce the expression of an immediate early gene, Zif268, which is known to be induced by neuronal activation. While the two tasks differentially induce Zif268 expression in the dentate gyrus, the proportions of new neurons activated were similar between the two tasks. Thus, we conclude that while the two tasks differentially activate the dentate gyrus, the task involving more opportunities for memory acquisition during the second week of the birth of new neurons better promotes the survival of the new neurons.

  6. Global gene expression analyses of hematopoietic stem cell-like cell lines with inducible Lhx2 expression

    PubMed Central

    Richter, Karin; Wirta, Valtteri; Dahl, Lina; Bruce, Sara; Lundeberg, Joakim; Carlsson, Leif; Williams, Cecilia

    2006-01-01

    Background Expression of the LIM-homeobox gene Lhx2 in murine hematopoietic cells allows for the generation of hematopoietic stem cell (HSC)-like cell lines. To address the molecular basis of Lhx2 function, we generated HSC-like cell lines where Lhx2 expression is regulated by a tet-on system and hence dependent on the presence of doxycyclin (dox). These cell lines efficiently down-regulate Lhx2 expression upon dox withdrawal leading to a rapid differentiation into various myeloid cell types. Results Global gene expression of these cell lines cultured in dox was compared to different time points after dox withdrawal using microarray technology. We identified 267 differentially expressed genes. The majority of the genes overlapping with HSC-specific databases were those down-regulated after turning off Lhx2 expression and a majority of the genes overlapping with those defined as late progenitor-specific genes were the up-regulated genes, suggesting that these cell lines represent a relevant model system for normal HSCs also at the level of global gene expression. Moreover, in situ hybridisations of several genes down-regulated after dox withdrawal showed overlapping expression patterns with Lhx2 in various tissues during embryonic development. Conclusion Global gene expression analysis of HSC-like cell lines with inducible Lhx2 expression has identified genes putatively linked to self-renewal / differentiation of HSCs, and function of Lhx2 in organ development and stem / progenitor cells of non-hematopoietic origin. PMID:16600034

  7. Transforming growth factor-β-induced gene product-h3 inhibits odontoblastic differentiation of dental pulp cells.

    PubMed

    Serita, Suguru; Tomokiyo, Atsushi; Hasegawa, Daigaku; Hamano, Sayuri; Sugii, Hideki; Yoshida, Shinichiro; Mizumachi, Hiroyuki; Mitarai, Hiromi; Monnouchi, Satoshi; Wada, Naohisa; Maeda, Hidefumi

    2017-06-01

    The aim of this study was to investigate transforming growth factor-β-induced gene product-h3 (βig-h3) expression in dental pulp tissue and its effects on odontoblastic differentiation of dental pulp cells (DPCs). A rat direct pulp capping model was prepared using perforated rat upper first molars capped with mineral trioxide aggregate cement. Human DPCs (HDPCs) were isolated from extracted teeth. βig-h3 expression in rat dental pulp tissue and HDPCs was assessed by immunostaining. Mineralization of HDPCs was assessed by Alizarin red-S staining. Odontoblast-related gene expression in HDPCs was analyzed by quantitative RT-PCR. Expression of βig-h3 was detected in rat dental pulp tissue, and attenuated by direct pulp capping, while expression of interleukin-1β and tumor necrosis factor-α was increased in exposed pulp tissue. βig-h3 expression was also detected in HDPCs, with reduced expression during odontoblastic differentiation. The above cytokines reduced βig-h3 expression in HDPCs, and promoted their mineralization. Recombinant βig-h3 inhibited the expression of odontoblast-related genes and mineralization of HDPCs, while knockdown of βig-h3 gene expression promoted the expression of odontoblast-related genes in HDPCs. The present findings suggest that βig-h3 in DPCs may be involved in reparative dentin formation and that its expression is likely to negatively regulate this process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Cyclin D1 negatively regulates the expression of differentiation genes in HT-29 M6 mucus-secreting colon cancer cells.

    PubMed

    Mayo, Clara; Mayol, Xavier

    2009-08-28

    HT-29 M6 colon cancer cells differentiate to a mucus-secreting phenotype in culture. We found that the pattern of cyclin D1 expression in HT-29 M6 cells did not correlate with instances of cell proliferation but was specifically induced during a dedifferentiation process following disaggregation of epithelial cell layers, even under conditions that did not allow cell cycle reentrance. Interestingly, ectopic expression of cyclin D1 in differentiated cells led to the inhibition of the transcriptional activity of differentiation gene promoters, such as the mucin MUC1. We thus propose that the overexpression of cyclin D1 found in colon cancer favours tumour dedifferentiation as one mechanism of tumour progression.

  9. Differentiation-induced skin cancer suppression by FOS, p53, and TACE/ADAM17

    PubMed Central

    Guinea-Viniegra, Juan; Zenz, Rainer; Scheuch, Harald; Jiménez, María; Bakiri, Latifa; Petzelbauer, Peter; Wagner, Erwin F.

    2012-01-01

    Squamous cell carcinomas (SCCs) are heterogeneous and aggressive skin tumors for which innovative, targeted therapies are needed. Here, we identify a p53/TACE pathway that is negatively regulated by FOS and show that the FOS/p53/TACE axis suppresses SCC by inducing differentiation. We found that epidermal Fos deletion in mouse tumor models or pharmacological FOS/AP-1 inhibition in human SCC cell lines induced p53 expression. Epidermal cell differentiation and skin tumor suppression were caused by a p53-dependent transcriptional activation of the metalloprotease TACE/ADAM17 (TNF-α–converting enzyme), a previously unknown p53 target gene that was required for NOTCH1 activation. Although half of cutaneous human SCCs display p53-inactivating mutations, restoring p53/TACE activity in mouse and human skin SCCs induced tumor cell differentiation independently of the p53 status. We propose FOS/AP-1 inhibition or p53/TACE reactivating strategies as differentiation-inducing therapies for SCCs. PMID:22772468

  10. Induction of functional Fc receptors in P388 leukemia cells. Requirement for multiple differentiation signals.

    PubMed

    Cohen, D A; Stotelmyer, N L; Kaplan, A M

    1985-04-01

    The development of functional Fc receptors (FcR) during induced differentiation with the tumor promoter, phorbol myristate acetate (PMA), was studied in the murine tumor cell line, P388. PMA induced the appearance of FcR on the membranes of P388 cells as indicated by the binding of IgG-coated sheep red blood cells (IgG-SRBC). Concentrations of PMA as low as 1 ng/ml were sufficient to induce the expression of FcR as well as to inhibit cellular division and to induce adherence in the P388 tumor cell line; however, optimal FcR induction occurred at PMA concentrations of 10-100 ng/ml. Immunofluorescent analysis with heat-aggregated myeloma proteins indicated that PMA induced FcR which were capable of binding IgG2a and IgG2b immunoglobulins, but not IgG1. Adherence to a substratum was determined to be a second required signal for expression of FcR, since PMA induction of P388 tumor cells in teflon dishes failed to fully develop FcR and adherence of P388 cells to poly-L-lysine-coated culture dishes in the absence of PMA was insufficient for FcR expression. FcR which appeared after PMA induction were non-functional in the sense that membrane-bound IgG-SRBC were not ingested to any significant extent by the tumor cells. However, if FcR induction occurred in the presence conA-induced rat spleen cell culture supernatants, phagocytosis of membrane-bound erythrocytes occurred. These findings suggest that for the expression of FcR which are capable of particle internalization, at least three identifiable membrane-transmitted signals are required during differentiation.

  11. DIDO as a Switchboard that Regulates Self-Renewal and Differentiation in Embryonic Stem Cells.

    PubMed

    Fütterer, Agnes; de Celis, Jésus; Navajas, Rosana; Almonacid, Luis; Gutiérrez, Julio; Talavera-Gutiérrez, Amaia; Pacios-Bras, Cristina; Bernascone, Ilenia; Martin-Belmonte, Fernando; Martinéz-A, Carlos

    2017-04-11

    Transition from symmetric to asymmetric cell division requires precise coordination of differential gene expression. We show that embryonic stem cells (ESCs) mainly express DIDO3 and that their differentiation after leukemia inhibitory factor withdrawal requires DIDO1 expression. C-terminal truncation of DIDO3 (Dido3ΔCT) impedes ESC differentiation while retaining self-renewal; small hairpin RNA-Dido1 ESCs have the same phenotype. Dido3ΔCT ESC differentiation is rescued by ectopic expression of DIDO3, which binds the Dido locus via H3K4me3 and RNA POL II and induces DIDO1 expression. DIDO1, which is exported to cytoplasm, associates with, and is N-terminally phosphorylated by PKCiota. It binds the E3 ubiquitin ligase WWP2, which contributes to cell fate by OCT4 degradation, to allow expression of primitive endoderm (PE) markers. PE formation also depends on phosphorylated DIDO3 localization to centrosomes, which ensures their correct positioning for PE cell polarization. We propose that DIDO isoforms act as a switchboard that regulates genetic programs for ESC transition from pluripotency maintenance to promotion of differentiation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Increased oxidative stress and antioxidant expression in mouse keratinocytes following exposure to paraquat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Adrienne T.; Gray, Joshua P.; Shakarjian, Michael P.

    Paraquat (1,1'-dimethyl-4,4'-bipyridinium) is a widely used herbicide known to induce skin toxicity. This is thought to be due to oxidative stress resulting from the generation of cytotoxic reactive oxygen intermediates (ROI) during paraquat redox cycling. The skin contains a diverse array of antioxidant enzymes which protect against oxidative stress including superoxide dismutase (SOD), catalase, glutathione peroxidase-1 (GPx-1), heme oxygenase-1 (HO-1), metallothionein-2 (MT-2), and glutathione-S-transferases (GST). In the present studies we compared paraquat redox cycling in primary cultures of undifferentiated and differentiated mouse keratinocytes and determined if this was associated with oxidative stress and altered expression of antioxidant enzymes. We foundmore » that paraquat readily undergoes redox cycling in both undifferentiated and differentiated keratinocytes, generating superoxide anion and hydrogen peroxide as well as increased protein oxidation which was greater in differentiated cells. Paraquat treatment also resulted in increased expression of HO-1, Cu,Zn-SOD, catalase, GSTP1, GSTA3 and GSTA4. However, no major differences in expression of these enzymes were evident between undifferentiated and differentiated cells. In contrast, expression of GSTA1-2 was significantly greater in differentiated relative to undifferentiated cells after paraquat treatment. No changes in expression of MT-2, Mn-SOD, GPx-1, GSTM1 or the microsomal GST's mGST1, mGST2 and mGST3, were observed in response to paraquat. These data demonstrate that paraquat induces oxidative stress in keratinocytes leading to increased expression of antioxidant genes. These intracellular proteins may be important in protecting the skin from paraquat-mediated cytotoxicity.« less

  13. Coordination of Myeloid Differentiation with Reduced Cell Cycle Progression by PU.1 Induction of MicroRNAs Targeting Cell Cycle Regulators and Lipid Anabolism.

    PubMed

    Solomon, Lauren A; Podder, Shreya; He, Jessica; Jackson-Chornenki, Nicholas L; Gibson, Kristen; Ziliotto, Rachel G; Rhee, Jess; DeKoter, Rodney P

    2017-05-15

    During macrophage development, myeloid progenitor cells undergo terminal differentiation coordinated with reduced cell cycle progression. Differentiation of macrophages from myeloid progenitors is accompanied by increased expression of the E26 transformation-specific transcription factor PU.1. Reduced PU.1 expression leads to increased proliferation and impaired differentiation of myeloid progenitor cells. It is not understood how PU.1 coordinates macrophage differentiation with reduced cell cycle progression. In this study, we utilized cultured PU.1-inducible myeloid cells to perform genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis coupled with gene expression analysis to determine targets of PU.1 that may be involved in regulating cell cycle progression. We found that genes encoding cell cycle regulators and enzymes involved in lipid anabolism were directly and inducibly bound by PU.1 although their steady-state mRNA transcript levels were reduced. Inhibition of lipid anabolism was sufficient to reduce cell cycle progression in these cells. Induction of PU.1 reduced expression of E2f1 , an important activator of genes involved in cell cycle and lipid anabolism, indirectly through microRNA 223. Next-generation sequencing identified microRNAs validated as targeting cell cycle and lipid anabolism for downregulation. These results suggest that PU.1 coordinates cell cycle progression with differentiation through induction of microRNAs targeting cell cycle regulators and lipid anabolism. Copyright © 2017 American Society for Microbiology.

  14. Pancreatic differentiation of Pdx1-GFP reporter mouse induced pluripotent stem cells.

    PubMed

    Porciuncula, Angelo; Kumar, Anujith; Rodriguez, Saray; Atari, Maher; Araña, Miriam; Martin, Franz; Soria, Bernat; Prosper, Felipe; Verfaillie, Catherine; Barajas, Miguel

    2016-12-01

    Efficient induction of defined lineages in pluripotent stem cells constitutes the determinant step for the generation of therapeutically relevant replacement cells to potentially treat a wide range of diseases, including diabetes. Pancreatic differentiation has remained an important challenge in large part because of the need to differentiate uncommitted pluripotent stem cells into highly specialized hormone-secreting cells, which has been shown to require a developmentally informed step-by-step induction procedure. Here, in the framework of using induced pluripotent stem cells (iPSCs) to generate pancreatic cells for pancreatic diseases, we have generated and characterized iPSCs from Pdx1-GFP transgenic mice. The use of a GFP reporter knocked into the endogenous Pdx1 promoter allowed us to monitor pancreatic induction based on the expression of Pdx1, a pancreatic master transcription factor, and to isolate a pure Pdx1-GFP + population for downstream applications. Differentiated cultures timely expressed markers specific to each stage and end-stage progenies acquired a rather immature beta-cell phenotype, characterized by polyhormonal expression even among cells highly expressing the Pdx1-GFP reporter. Our findings highlight the utility of employing a fluorescent protein reporter under the control of a master developmental gene in order to devise novel differentiation protocols for relevant cell types for degenerative diseases such as pancreatic beta cells for diabetes. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  15. The C1 domain-targeted isophthalate derivative HMI-1b11 promotes neurite outgrowth and GAP-43 expression through PKCα activation in SH-SY5Y cells.

    PubMed

    Talman, Virpi; Amadio, Marialaura; Osera, Cecilia; Sorvari, Salla; Boije Af Gennäs, Gustav; Yli-Kauhaluoma, Jari; Rossi, Daniela; Govoni, Stefano; Collina, Simona; Ekokoski, Elina; Tuominen, Raimo K; Pascale, Alessia

    2013-07-01

    Protein kinase C (PKC) is a family of serine/threonine phosphotransferases ubiquitously expressed and involved in multiple cellular functions, such as proliferation, apoptosis and differentiation. The C1 domain of PKC represents an attractive drug target, especially for developing PKC activators. Dialkyl 5-(hydroxymethyl)isophthalates are a novel group of synthetic C1 domain ligands that exhibit antiproliferative effect in HeLa cervical carcinoma cells. Here we selected two isophthalates, HMI-1a3 and HMI-1b11, and characterized their effects in the human neuroblastoma cell line SH-SY5Y. Both of the active isophthalates exhibited significant antiproliferative and differentiation-inducing effects. Since HMI-1b11 did not impair cell survival even at the highest concentration tested (20μM), and supported neurite growth and differentiation of SH-SY5Y cells, we focused on studying its downstream signaling cascades and effects on gene expression. Consistently, genome-wide gene expression microarray and gene set enrichment analysis indicated that HMI-1b11 (10μM) induced changes in genes mainly related to cell differentiation. In particular, further studies revealed that HMI-1b11 exposure induced up-regulation of GAP-43, a marker for neurite sprouting and neuronal differentiation. These effects were induced by a 7-min HMI-1b11 treatment and specifically depended on PKCα activation, since pretreatment with the selective inhibitor Gö6976 abolished the up-regulation of GAP-43 protein observed at 12h. In parallel, we found that a 7-min exposure to HMI-1b11 induced PKCα accumulation to the cytoskeleton, an effect that was again prevented by pretreatment with Gö6976. Despite similar binding affinities to PKC, the isophthalates had different effects on PKC-dependent ERK1/2 signaling: HMI-1a3-induced ERK1/2 phosphorylation was transient, while HMI-1b11 induced a rapid but prolonged ERK1/2 phosphorylation. Overall our data are in accordance with previous studies showing that activation of the PKCα and ERK1/2 pathways participate in regulating neuronal differentiation. Furthermore, since PKC has been classified as one of the cognitive kinases, and activation of PKC is considered a potential therapeutic strategy for the treatment of cognitive disorders, our findings suggest that HMI-1b11 represents a promising lead compound in research aimed to prevent or counteract memory impairment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Low-dose/dose-rate γ radiation depresses neural differentiation and alters protein expression profiles in neuroblastoma SH-SY5Y cells and C17.2 neural stem cells.

    PubMed

    Bajinskis, Ainars; Lindegren, Heléne; Johansson, Lotta; Harms-Ringdahl, Mats; Forsby, Anna

    2011-02-01

    The effects of low doses of ionizing radiation on cellular development in the nervous system are presently unclear. The focus of the present study was to examine low-dose γ-radiation-induced effects on the differentiation of neuronal cells and on the development of neural stem cells to glial cells. Human neuroblastoma SH-SY5Y cells were exposed to (137)Cs γ rays at different stages of retinoic acid-induced neuronal differentiation, and neurite formation was determined 6 days after exposure. When SH-SY5Y cells were exposed to low-dose-rate γ rays at the onset of differentiation, the number of neurites formed per cell was significantly less after exposure to either 10, 30 or 100 mGy compared to control cells. Exposure to 10 and 30 mGy attenuated differentiation of immature C17.2 mouse-derived neural stem cells to glial cells, as verified by the diminished expression of glial fibrillary acidic protein. Proteomic analysis of the neuroblastoma cells by 2D-PAGE after 30 mGy irradiation showed that proteins involved in neuronal development were downregulated. Proteins involved in cell cycle and proliferation were altered in both cell lines after exposure to 30 mGy; however, the rate of cell proliferation was not affected in the low-dose range. The radiation-induced attenuation of differentiation and the persistent changes in protein expression is indicative of an epigenetic rather than a cytotoxic mechanism.

  17. TWEAK in inclusion-body myositis muscle: possible pathogenic role of a cytokine inhibiting myogenesis.

    PubMed

    Morosetti, Roberta; Gliubizzi, Carla; Sancricca, Cristina; Broccolini, Aldobrando; Gidaro, Teresa; Lucchini, Matteo; Mirabella, Massimiliano

    2012-04-01

    Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor Fn14 exert pleiotropic effects, including regulation of myogenesis. Sporadic inclusion-body myositis (IBM) is the most common muscle disease of the elderly population and leads to severe disability. IBM mesoangioblasts, different from mesoangioblasts in other inflammatory myopathies, display a myogenic differentiation defect. The objective of the present study was to investigate TWEAK-Fn14 expression in IBM and other inflammatory myopathies and explore whether TWEAK modulation affects myogenesis in IBM mesoangioblasts. TWEAK, Fn14, and NF-κB expression was assessed by immunohistochemistry and Western blot in cell samples from both muscle biopsies and primary cultures. Mesoangioblasts isolated from samples of IBM, dermatomyositis, polymyositis, and control muscles were treated with recombinant human TWEAK, Fn14-Fc chimera, and anti-TWEAK antibody. TWEAK-RNA interference was performed in IBM and dermatomyositis mesoangioblasts. TWEAK levels in culture media were determined by enzyme-linked immunosorbent assay. In IBM muscle, we found increased TWEAK-Fn14 expression. Increased levels of TWEAK were found in differentiation medium from IBM mesoangioblasts. Moreover, TWEAK inhibited myogenic differentiation of mesoangioblasts. Consistent with this evidence, TWEAK inhibition by Fn14-Fc chimera or short interfering RNA induced myogenic differentiation of IBM mesoangioblasts. We provide evidence that TWEAK is a negative regulator of human mesoangioblast differentiation. Dysregulation of the TWEAK-Fn14 axis in IBM muscle may induce progressive muscle atrophy and reduce activation and differentiation of muscle precursor cells. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Convergent evolution of heat-inducibility during subfunctionalization of the Hsp70 gene family

    PubMed Central

    2013-01-01

    Background Heat-shock proteins of the 70 kDa family (Hsp70s) are essential chaperones required for key cellular functions. In eukaryotes, four subfamilies can be distinguished according to their function and localisation in different cellular compartments: cytosol, endoplasmic reticulum, mitochondria and chloroplasts. Generally, multiple cytosol-type Hsp70s can be found in metazoans that show either constitutive expression and/or stress-inducibility, arguing for the evolution of different tasks and functions. Information about the hsp70 copy number and diversity in microbial eukaryotes is, however, scarce, and detailed knowledge about the differential gene expression in most protists is lacking. Therefore, we have characterised the Hsp70 gene family of Paramecium caudatum to gain insight into the evolution and differential heat stress response of the distinct family members in protists and to investigate the diversification of eukaryotic hsp70s focusing on the evolution of heat-inducibility. Results Eleven putative hsp70 genes could be detected in P. caudatum comprising homologs of three major Hsp70-subfamilies. Phylogenetic analyses revealed five evolutionarily distinct Hsp70-groups, each with a closer relationship to orthologous sequences of Paramecium tetraurelia than to another P. caudatum Hsp70-group. These highly diverse, paralogous groups resulted from duplications preceding Paramecium speciation, underwent divergent evolution and were subject to purifying selection. Heat-shock treatments were performed to test for differential expression patterns among the five Hsp70-groups as well as for a functional conservation within Paramecium. These treatments induced exceptionally high mRNA up-regulations in one cytosolic group with a low basal expression, indicative for the major heat inducible hsp70s. All other groups showed comparatively high basal expression levels and moderate heat-inducibility, signifying constitutively expressed genes. Comparative EST analyses for P. tetraurelia hsp70s unveiled a corresponding expression pattern, which supports a functionally conserved evolution of the Hsp70 gene family in Paramecium. Conclusions Our analyses suggest an independent evolution of the heat-inducible cytosol-type hsp70s in Paramecium and in its close relative Tetrahymena, as well as within higher eukaryotes. This result indicates convergent evolution during hsp70 subfunctionalization and implies that heat-inducibility evolved several times during the course of eukaryotic evolution. PMID:23433225

  19. [Differentially expressed genes of cell signal transduction associated with benzene poisoning by cDNA microarray].

    PubMed

    Wang, Hong; Bi, Yongyi; Tao, Ning; Wang, Chunhong

    2005-08-01

    To detect the differential expression of cell signal transduction genes associated with benzene poisoning, and to explore the pathogenic mechanisms of blood system damage induced by benzene. Peripheral white blood cell gene expression profile of 7 benzene poisoning patients, including one aplastic anemia, was determined by cDNA microarray. Seven chips from normal workers were served as controls. Cluster analysis of gene expression profile was performed. Among the 4265 target genes, 176 genes associated with cell signal transduction were differentially expressed. 35 up-regulated genes including PTPRC, STAT4, IFITM1 etc were found in at least 6 pieces of microarray; 45 down-regulated genes including ARHB, PPP3CB, CDC37 etc were found in at least 5 pieces of microarray. cDNA microarray technology is an effective technique for screening the differentially expressed genes of cell signal transduction. Disorder in cell signal transduction may play certain role in the pathogenic mechanism of benzene poisoning.

  20. Increased phospho-AKT is associated with loss of the androgen receptor during the progression of N-methyl-N-nitrosourea-induced prostate carcinogenesis in rats.

    PubMed

    Liao, Zhiming; Wang, Shihua; Boileau, Thomas W-M; Erdman, John W; Clinton, Steven K

    2005-07-01

    Characterization of molecular events during N-methyl-N-nitrosourea (MNU)-induced rat prostate carcinogenesis enhances the utility of this model for the preclinical assessment of preventive strategies. Androgen independence is typical of advanced human prostate cancer and may occur through multiple mechanisms including the loss of androgen receptor (AR) expression and the activation of alternative signaling pathways. We examined the interrelationships between AR and p-AKT expression by immunohistochemical staining during MNU-androgen-induced prostate carcinogenesis in male Wistar-Unilever rats. Histone nuclear staining and image analysis was employed to assess parallel changes in chromatin and nuclear structure. The percentage of AR positive nuclei decreased (P < 0.01) as carcinogenesis progressed: hyperplasia (92%), atypical hyperplasia (92%), well-differentiated adenocarcinoma (57%), moderately-differentiated adenocarcinoma (19%), and poorly-differentiated adenocarcinoma (10%). Conversely, p-AKT staining increased significantly during carcinogenesis. Sparse staining was observed in normal tissues (0.2% of epithelial area) and hyperplastic lesions (0.1%), while expression increased significantly (P < 0.001) in atypical hyperplasia (7.6%), well-differentiated adenocarcinoma (16.7%), moderately-differentiated adenocarcinoma (19.6%), and poorly-differentiated adenocarcinoma (17.4%). In parallel, nuclear morphometry revealed increased nuclear size, greater irregularity, and lower DNA compactness as cancers became more poorly differentiated. In the MNU model, the progressive evolution of dominant tumor cell populations showing an increase in p-AKT in parallel with a decline in AR staining suggests that activation of AKT signaling may be one of several mechanisms contributing to androgen insensitivity during prostate cancer progression. Our observations mimic findings suggested by human studies and support the relevance of the MNU model in preclinical studies of preventive strategies. (c) 2005 Wiley-Liss, Inc.

  1. Induced pluripotent stem cells with NOTCH1 gene mutation show impaired differentiation into smooth muscle and endothelial cells: Implications for bicuspid aortic valve-related aortopathy.

    PubMed

    Jiao, Jiao; Tian, Weihua; Qiu, Ping; Norton, Elizabeth L; Wang, Michael M; Chen, Y Eugene; Yang, Bo

    2018-03-12

    The NOTCH1 gene mutation has been identified in bicuspid aortic valve patients. We developed an in vitro model with human induced pluripotent stem cells (iPSCs) to evaluate the role of NOTCH1 in smooth muscle and endothelial cell (EC) differentiation. The iPSCs were derived from a patient with a normal tricuspid aortic valve and aorta. The NOTCH1 gene was targeted in iPSCs with the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 nuclease (Cas9) system. The NOTCH1 -/- (NOTCH1 homozygous knockout) and isogenic control iPSCs (wild type) were differentiated into neural crest stem cells (NCSCs) and into cardiovascular progenitor cells (CVPCs). The NCSCs were differentiated into smooth muscle cells (SMCs). The CVPCs were differentiated into ECs. The differentiations of SMCs and ECs were compared between NOTCH1 -/- and wild type cells. The expression of NCSC markers (SRY-related HMG-box 10 and transcription factor AP-2 alpha) was significantly lower in NOTCH1 -/- NCSCs than in wild type NCSCs. The SMCs derived from NOTCH1 -/- NCSCs showed immature morphology with smaller size and decreased expression of all SMC-specific contractile proteins. In NOTCH1 -/- CVPCs, the expression of ISL1, NKX2.5, and MYOCD was significantly lower than that in isogenic control CVPCs, indicating impaired differentiation from iPSCs to CVPCs. The NOTCH1 -/- ECs derived from CVPCs showed significantly lower expression of cluster of differentiation 105 and cluster of differentiation 31 mRNA and protein, indicating a defective differentiation process. NOTCH1 is critical in SMC and EC differentiation of iPSCs through NCSCs and CVPCs, respectively. NOTCH1 gene mutations might potentially contribute to the development of thoracic aortic aneurysms by affecting SMC differentiation in some patients with bicuspid aortic valve. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  2. Beta-hydroxy-beta-methylbutyrate (HMB) stimulates myogenic cell proliferation, differentiation and survival via the MAPK/ERK and PI3K/Akt pathways.

    PubMed

    Kornasio, Reut; Riederer, Ingo; Butler-Browne, Gillian; Mouly, Vincent; Uni, Zehava; Halevy, Orna

    2009-05-01

    Beta-hydroxy-beta-methylbutyrate (HMB), a leucine catabolite, has been shown to prevent exercise-induced protein degradation and muscle damage. We hypothesized that HMB would directly regulate muscle-cell proliferation and differentiation and would attenuate apoptosis, the latter presumably underlying satellite-cell depletion during muscle degradation or atrophy. Adding various concentrations of HMB to serum-starved myoblasts induced cell proliferation and MyoD expression as well as the phosphorylation of MAPK/ERK. HMB induced differentiation-specific markers, increased IGF-I mRNA levels and accelerated cell fusion. Its inhibition of serum-starvation- or staurosporine-induced apoptosis was reflected by less apoptotic cells, reduced BAX expression and increased levels of Bcl-2 and Bcl-X. Annexin V staining and flow cytometry analysis showed reduced staurosporine-induced apoptosis in human myoblasts in response to HMB. HMB enhanced the association of the p85 subunit of PI3K with tyrosine-phosphorylated proteins. HMB elevated Akt phosphorylation on Thr308 and Ser473 and this was inhibited by Wortmannin, suggesting that HMB acts via Class I PI3K. Blocking of the PI3K/Akt pathway with specific inhibitors revealed its requirement in mediating the promotive effects of HMB on muscle cell differentiation and fusion. These direct effects of HMB on myoblast differentiation and survival resembling those of IGF-I, at least in culture, suggest its positive influence in preventing muscle wasting.

  3. MicroRNA-29a ameliorates glucocorticoid-induced suppression of osteoblast differentiation by regulating β-catenin acetylation.

    PubMed

    Ko, Jih-Yang; Chuang, Pei-Chin; Chen, Ming-Wen; Ke, Huei-Ching; Wu, Shin-Long; Chang, Yu-Hsuan; Chen, Yu-Shan; Wang, Feng-Sheng

    2013-12-01

    Excess glucocorticoid treatment induces loss of osteoblast differentiation. Post-translational modification of β-catenin reportedly regulates osteogenic activities in bone cells. This study was undertaken to test whether miR-29a signaling regulates the acetylation status of β-catenin in the glucocorticoid-mediated osteoblast dysfunction. Murine osteoblast cultures were incubated under osteogenic conditions with or without supraphysiological glucocorticoid, miR-29a precursor, antisense oligonucleotides or histone deacetylase 4 (HDAC4) RNA interferences. Osteoblast differentiation was determined by alkaline phosphatase activity, calcium deposition, and von Kossa stain. β-Catenin acetylation and miR-29a transcription were detected by immunoblotting, chromatin immunoprecipitation and quantitative PCR. Protein interaction was detected by fluorescence protein ligation assay. Supraphysiological glucocorticoid treatment repressed osteoblast differentiation and induced loss of miR-29a expression and acetylated β-catenin levels in osteoblast cultures. Gain of miR-29a function attenuated the deleterious effects of glucocorticoid on osteogenic gene expression and mineralized nodule formation, whereas knockdown of miR-29a signaling accelerated loss of osteoblast differentiation capacity. miR-29a reduced HDAC4 signaling and attenuated the glucocorticoid-mediated β-catenin deacetylation and ubiquitination and restored nuclear β-catenin levels. Glucocorticoid-induced loss of miR-29a signaling occurred through transcriptional and translational regulation. Interruption of HDAC4 signaling attenuated the glucocorticoid-induced hypoacetylation of histone H3 at lysine 9 (H3K9Ac) and restored the enrichment of H3K9Ac in miR-29a proximal promoter region and miR-29a transcription in cell cultures. Taken together, excess glucocorticoid-induced loss of miR-29a signaling accelerates β-catenin deacetylation and ubiquitination that impairs osteogenic activities of osteoblast cultures. miR-29a and HDAC4 reciprocal regulation of H3K9 acetylation contributes to the acetylation status of β-catenin and miR-29a expression. Enhancement of miR-29a signaling is an alternative strategy for protecting against the adverse actions of excess glucocorticoid on differentiation capacity of osteogenic cells. © 2013.

  4. Euphorbia factor L1 inhibits osteoclastogenesis by regulating cellular redox status and induces Fas-mediated apoptosis in osteoclast.

    PubMed

    Hong, Seong-Eun; Lee, Jiae; Seo, Dong-Hyun; In Lee, Hye; Ri Park, Doo; Lee, Gong-Rak; Jo, You-Jin; Kim, Narae; Kwon, Minjung; Shon, Hansem; Kyoung Seo, Eun; Kim, Han-Sung; Young Lee, Soo; Jeong, Woojin

    2017-11-01

    Excessive bone resorption caused by increased osteoclast number or activity leads to a variety of bone diseases including osteoporosis, rheumatoid arthritis and periodontitis. Thus, the therapeutic strategy for these diseases has been focused primarily on the inhibition of osteoclast formation and function. This study shows that euphorbia factor L1 (EFL1), a diterpenoid isolated from Euphorbia lathyris, inhibited osteoclastogenesis and induced osteoclast apoptosis. EFL1 suppressed osteoclast formation and bone resorption at both initial and terminal differentiation stages. EFL1 inhibited receptor activator of NF-κB ligand (RANKL)-induced NFATc1 induction with attenuated NF-κB activation and c-Fos expression. EFL1 decreased the level of reactive oxygen species by scavenging them or activating Nrf2, and inhibited PGC-1β that regulates mitochondria biogenesis. In addition, EFL1 induced apoptosis in differentiated osteoclasts by increasing Fas ligand expression followed by caspase activation. Moreover, EFL1 inhibited inflammation-induced bone erosion and ovariectomy-induced bone loss in mice. These findings suggest that EFL1 inhibits osteoclast differentiation by regulating cellular redox status and induces Fas-mediated apoptosis in osteoclast, and may provide therapeutic potential for preventing or treating bone-related diseases caused by excessive osteoclast. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators and cell type-specific gene expression

    PubMed Central

    Ruijtenberg, Suzan; van den Heuvel, Sander

    2016-01-01

    ABSTRACT Cell proliferation and differentiation show a remarkable inverse relationship. Precursor cells continue division before acquiring a fully differentiated state, while terminal differentiation usually coincides with proliferation arrest and permanent exit from the division cycle. Mechanistic insight in the temporal coordination between cell cycle exit and differentiation has come from studies of cells in culture and genetic animal models. As initially described for skeletal muscle differentiation, temporal coordination involves mutual antagonism between cyclin-dependent kinases that promote cell cycle entry and transcription factors that induce tissue-specific gene expression. Recent insights highlight the contribution of chromatin-regulating complexes that act in conjunction with the transcription factors and determine their activity. In particular SWI/SNF chromatin remodelers contribute to dual regulation of cell cycle and tissue-specific gene expression during terminal differentiation. We review the concerted regulation of the cell cycle and cell type-specific transcription, and discuss common mutations in human cancer that emphasize the clinical importance of proliferation versus differentiation control. PMID:26825227

  6. Identification of genes differentially expressed during interaction of resistant and susceptible apple cultivars (Malus × domestica) with Erwinia amylovora

    PubMed Central

    2010-01-01

    Background The necrogenic enterobacterium, Erwinia amylovora is the causal agent of the fire blight (FB) disease in many Rosaceaespecies, including apple and pear. During the infection process, the bacteria induce an oxidative stress response with kinetics similar to those induced in an incompatible bacteria-plant interaction. No resistance mechanism to E. amylovora in host plants has yet been characterized, recent work has identified some molecular events which occur in resistant and/or susceptible host interaction with E. amylovora: In order to understand the mechanisms that characterize responses to FB, differentially expressed genes were identified by cDNA-AFLP analysis in resistant and susceptible apple genotypes after inoculation with E. amylovora. Results cDNA were isolated from M.26 (susceptible) and G.41 (resistant) apple tissues collected 2 h and 48 h after challenge with a virulent E. amylovora strain or mock (buffer) inoculated. To identify differentially expressed transcripts, electrophoretic banding patterns were obtained from cDNAs. In the AFLP experiments, M.26 and G.41 showed different patterns of expression, including genes specifically induced, not induced, or repressed by E. amylovora. In total, 190 ESTs differentially expressed between M.26 and G.41 were identified using 42 pairs of AFLP primers. cDNA-AFLP analysis of global EST expression in a resistant and a susceptible apple genotype identified different major classes of genes. EST sequencing data showed that genes linked to resistance, encoding proteins involved in recognition, signaling, defense and apoptosis, were modulated by E. amylovora in its host plant. The expression time course of some of these ESTs selected via a bioinformatic analysis has been characterized. Conclusion These data are being used to develop hypotheses of resistance or susceptibility mechanisms in Malus to E. amylovora and provide an initial categorization of genes possibly involved in recognition events, early signaling responses the subsequent development of resistance or susceptibility. These data also provided potential candidates for improving apple resistance to fire blight either by marker-assisted selection or genetic engineering. PMID:20047654

  7. Induction of intermediate mesoderm by retinoic acid receptor signaling from differentiating mouse embryonic stem cells.

    PubMed

    Oeda, Shiho; Hayashi, Yohei; Chan, Techuan; Takasato, Minoru; Aihara, Yuko; Okabayashi, Koji; Ohnuma, Kiyoshi; Asashima, Makoto

    2013-01-01

    Renal lineages including kidney are derived from intermediate mesoderm, which are differentiated from a subset of caudal undifferentiated mesoderm. The inductive mechanisms of mammalian intermediate mesoderm and renal lineages are still poorly understood. Mouse embryonic stem cells (mESCs) can be a good in vitro model to reconstitute the developmental pathway of renal lineages and to analyze the mechanisms of the sequential differentiation. We examined the effects of Activin A and retinoic acid (RA) on the induction of intermediate mesoderm from mESCs under defined, serum-free, adherent, monolayer culture conditions. We measured the expression level of intermediate mesodermal marker genes and examined the developmental potential of the differentiated cells into kidney using an ex vivo transplantation assay. Adding Activin A followed by RA to mESC cultures induced the expression of marker genes and proteins for intermediate mesoderm, odd-skipped related 1 (Osr1) and Wilm’s Tumor 1 (Wt1). These differentiated cells integrated into laminin-positive tubular cells and Pax2-positive renal cells in cultured embryonic kidney explants. We demonstrated that intermediate mesodermal marker expression was also induced by RA receptor (RAR) agonist, but not by retinoid X receptor (RXR) agonists. Furthermore, the expression of these markers was decreased by RAR antagonists. We directed the differentiation of mESCs into intermediate mesoderm using Activin A and RA and revealed the role of RAR signaling in this differentiation. These methods and findings will improve our understanding of renal lineage development and could contribute to the regenerative medicine of kidney.

  8. The transcriptome of nitrofen-induced pulmonary hypoplasia in the rat model of congenital diaphragmatic hernia.

    PubMed

    Mahood, Thomas H; Johar, Dina R; Iwasiow, Barbara M; Xu, Wayne; Keijzer, Richard

    2016-05-01

    We currently do not know how the herbicide nitrofen induces lung hypoplasia and congenital diaphragmatic hernia in rats. Our aim was to compare the differentially expressed transcriptome of nitrofen-induced hypoplastic lungs to control lungs in embryonic day 13 rat embryos before the development of embryonic diaphragmatic defects. Using next-generation sequencing technology, we identified the expression profile of microRNA (miRNA) and mRNA genes. Once the dataset was validated by both RT-qPCR and digital-PCR, we conducted gene ontology, miRNA target analysis, and orthologous miRNA sequence matching for the deregulated miRNAs in silico. Our study identified 186 known mRNA and 100 miRNAs which were differentially expressed in nitrofen-induced hypoplastic lungs. Sixty-four rat miRNAs homologous to known human miRNAs were identified. A subset of these genes may promote lung hypoplasia in rat and/or human, and we discuss their associations. Potential miRNA pathways relevant to nitrofen-induced lung hypoplasia include PI3K, TGF-β, and cell cycle kinases. Nitrofen-induced hypoplastic lungs have an abnormal transcriptome that may lead to impaired development.

  9. Exploring the Therapeutic Mechanism of Desmodium styracifolium on Oxalate Crystal-Induced Kidney Injuries Using Comprehensive Approaches Based on Proteomics and Network Pharmacology.

    PubMed

    Hou, Jiebin; Chen, Wei; Lu, Hongtao; Zhao, Hongxia; Gao, Songyan; Liu, Wenrui; Dong, Xin; Guo, Zhiyong

    2018-01-01

    Purpose: As a Chinese medicinal herb, Desmodium styracifolium (Osb.) Merr (DS) has been applied clinically to alleviate crystal-induced kidney injuries, but its effective components and their specific mechanisms still need further exploration. This research first combined the methods of network pharmacology and proteomics to explore the therapeutic protein targets of DS on oxalate crystal-induced kidney injuries to provide a reference for relevant clinical use. Methods: Oxalate-induced kidney injury mouse, rat, and HK-2 cell models were established. Proteins differentially expressed between the oxalate and control groups were respectively screened using iTRAQ combined with MALDI-TOF-MS. The common differential proteins of the three models were further analyzed by molecular docking with DS compounds to acquire differential targets. The inverse docking targets of DS were predicted through the platform of PharmMapper. The protein-protein interaction (PPI) relationship between the inverse docking targets and the differential proteins was established by STRING. Potential targets were further validated by western blot based on a mouse model with DS treatment. The effects of constituent compounds, including luteolin, apigenin, and genistein, were investigated based on an oxalate-stimulated HK-2 cell model. Results: Thirty-six common differentially expressed proteins were identified by proteomic analysis. According to previous research, the 3D structures of 15 major constituents of DS were acquired. Nineteen differential targets, including cathepsin D (CTSD), were found using molecular docking, and the component-differential target network was established. Inverse-docking targets including p38 MAPK and CDK-2 were found, and the network of component-reverse docking target was established. Through PPI analysis, 17 inverse-docking targets were linked to differential proteins. The combined network of component-inverse docking target-differential proteins was then constructed. The expressions of CTSD, p-p38 MAPK, and p-CDK-2 were shown to be increased in the oxalate group and decreased in kidney tissue by the DS treatment. Luteolin, apigenin, and genistein could protect oxalate-stimulated tubular cells as active components of DS. Conclusion: The potential targets including the CTSD, p38 MAPK, and CDK2 of DS in oxalate-induced kidney injuries and the active components (luteolin, apigenin, and genistein) of DS were successfully identified in this study by combining proteomics analysis, network pharmacology prediction, and experimental validation.

  10. Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice.

    PubMed

    Akundi, Ravi S; Huang, Zhenyu; Eason, Joshua; Pandya, Jignesh D; Zhi, Lianteng; Cass, Wayne A; Sullivan, Patrick G; Büeler, Hansruedi

    2011-01-13

    PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca²+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson's disease (PD) display altered activity in the nigrostriatal system of Pink1⁻/⁻ mice. Purified brain mitochondria of Pink1⁻/⁻ mice showed impaired Ca²+ storage capacity, resulting in increased Ca²+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1⁻/⁻ mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1⁻/⁻ mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1⁻/⁻ mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1⁻/⁻ embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1⁻/⁻ mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting. Increased mitochondrial Ca²+ sensitivity and JNK activity are early defects in Pink1⁻/⁻ mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1⁻/⁻ mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant expression of genes that regulate innate immune responses. While some differentially expressed genes may mitigate neurodegeneration, increased LPS-induced brain cytokine expression and impaired cytokine-induced NF-κB activation may predispose neurons of Pink1⁻/⁻ mice to inflammation and injury-induced cell death.

  11. CPM Is a Useful Cell Surface Marker to Isolate Expandable Bi-Potential Liver Progenitor Cells Derived from Human iPS Cells.

    PubMed

    Kido, Taketomo; Koui, Yuta; Suzuki, Kaori; Kobayashi, Ayaka; Miura, Yasushi; Chern, Edward Y; Tanaka, Minoru; Miyajima, Atsushi

    2015-10-13

    To develop a culture system for large-scale production of mature hepatocytes, liver progenitor cells (LPCs) with a high proliferation potential would be advantageous. We have found that carboxypeptidase M (CPM) is highly expressed in embryonic LPCs, hepatoblasts, while its expression is decreased along with hepatic maturation. Consistently, CPM expression was transiently induced during hepatic specification from human-induced pluripotent stem cells (hiPSCs). CPM(+) cells isolated from differentiated hiPSCs at the immature hepatocyte stage proliferated extensively in vitro and expressed a set of genes that were typical of hepatoblasts. Moreover, the CPM(+) cells exhibited a mature hepatocyte phenotype after induction of hepatic maturation and also underwent cholangiocytic differentiation in a three-dimensional culture system. These results indicated that hiPSC-derived CPM(+) cells share the characteristics of LPCs, with the potential to proliferate and differentiate bi-directionally. Thus, CPM is a useful marker for isolating hiPSC-derived LPCs, which allows development of a large-scale culture system for producing hepatocytes and cholangiocytes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. CPM Is a Useful Cell Surface Marker to Isolate Expandable Bi-Potential Liver Progenitor Cells Derived from Human iPS Cells

    PubMed Central

    Kido, Taketomo; Koui, Yuta; Suzuki, Kaori; Kobayashi, Ayaka; Miura, Yasushi; Chern, Edward Y.; Tanaka, Minoru; Miyajima, Atsushi

    2015-01-01

    Summary To develop a culture system for large-scale production of mature hepatocytes, liver progenitor cells (LPCs) with a high proliferation potential would be advantageous. We have found that carboxypeptidase M (CPM) is highly expressed in embryonic LPCs, hepatoblasts, while its expression is decreased along with hepatic maturation. Consistently, CPM expression was transiently induced during hepatic specification from human-induced pluripotent stem cells (hiPSCs). CPM+ cells isolated from differentiated hiPSCs at the immature hepatocyte stage proliferated extensively in vitro and expressed a set of genes that were typical of hepatoblasts. Moreover, the CPM+ cells exhibited a mature hepatocyte phenotype after induction of hepatic maturation and also underwent cholangiocytic differentiation in a three-dimensional culture system. These results indicated that hiPSC-derived CPM+ cells share the characteristics of LPCs, with the potential to proliferate and differentiate bi-directionally. Thus, CPM is a useful marker for isolating hiPSC-derived LPCs, which allows development of a large-scale culture system for producing hepatocytes and cholangiocytes. PMID:26365514

  13. Six1 overexpression at early stages of HPV16-mediated transformation of human keratinocytes promotes differentiation resistance and EMT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Hanwen; Pirisi, Lucia; Creek, Kim E., E-mail: creekk@sccp.sc.edu

    Previous studies in our laboratory discovered that SIX1 mRNA expression increased during in vitro progression of HPV16-immortalized human keratinocytes (HKc/HPV16) toward a differentiation-resistant (HKc/DR) phenotype. In this study, we explored the role of Six1 at early stages of HPV16-mediated transformation by overexpressing Six1 in HKc/HPV16. We found that Six1 overexpression in HKc/HPV16 increased cell proliferation and promoted cell migration and invasion by inducing epithelial–mesenchymal transition (EMT). Moreover, the overexpression of Six1 in HKc/HPV16 resulted in resistance to serum and calcium-induced differentiation, which is the hallmark of the HKc/DR phenotype. Activation of MAPK in HKc/HPV16 overexpressing Six1 is linked to resistancemore » to calcium-induced differentiation. In conclusion, this study determined that Six1 overexpression resulted in differentiation resistance and promoted EMT at early stages of HPV16-mediated transformation of human keratinocytes. - Highlights: • Six1 expression increases during HPV16-mediated transformation. • Six1 overexpression causes differentiation resistance in HPV16-immortalized cells. • Six1 overexpression in HPV16-immortalized keratinocytes activates MAPK. • Activation of MAPK promotes EMT and differentiation resistance. • Six1 overexpression reduces Smad-dependent TGF-β signaling.« less

  14. Bergamottin Promotes Adipocyte Differentiation and Inhibits Tumor Necrosis Factor-α-induced Inflammatory Cytokines Induction in 3T3-L1 Cells.

    PubMed

    Mizuno, Hideya; Hatano, Tomoko; Taketomi, Ayako; Kawabata, Mami; Nakabayashi, Toshikatsu

    2017-01-01

    Nowadays, a lot of food ingredients are marketed as dietary supplements for health. Because the effectiveness and mechanisms of these compounds have not been fully characterized, they might have unknown functions. Therefore, we investigated the effect of several food ingredients (Bergamottin, Chrysin, L-Citrulline and β-Carotene) known as health foods on adipocyte differentiation by using 3T3-L1 preadipocytes. In this study, we found that Bergamottin, a furanocoumarin isolated from grapefruit juice, promotes adipocyte differentiation. In addition, Bergamottin increases the expression of adiponectin, an anti-inflammatory adipokine, and peroxisome proliferator activated receptor γ (PPARγ), a nuclear receptor regulating adipocyte differentiation. Furthermore, the anti-inflammatory activity of Bergamottin was demonstrated by its inhibition of the activation of nuclear factor-κB (NF-κB), an inflammatory transcription factor. Stimulation of mature 3T3-L1 adipocytes by tumor necrosis factor-α (TNF-α) decreased the expression of the endogeneous NF-κB inhibitor, IκBα. Treatment with Bergamottin further decreased the TNF-α-induced change in IκBα expression, suggesting that Bergamottin mediated the inhibition of NF-κB activation. In addition, Bergamottin decreased the TNF-α-induced increase in the mRNA levels of pro-inflammatory adipokines, monocyte chemoattractant protein-1 and interleukin-6. Taken together, our results show that Bergamottin treatment could inhibit inflammatory activity through promoting adipocyte differentiation, which in turn suggests that Bergamottin has the potential to minimize the risk factors of metabolic syndrome.

  15. p-Hydroxylcinnamaldehyde induces the differentiation of oesophageal carcinoma cells via the cAMP-RhoA-MAPK signalling pathway

    PubMed Central

    Ma, Ming; Zhao, Lian-mei; Yang, Xing-xiao; Shan, Ya-nan; Cui, Wen-xuan; Chen, Liang; Shan, Bao-en

    2016-01-01

    p-Hydroxylcinnamaldehyde (CMSP) has been identified as an inhibitor of the growth of various cancer cells. However, its function in oesophageal squamous cell carcinoma (ESCC) and the underlying mechanism remain unclear. The aim of the present study was to characterize the differentiation effects of CMSP, as well as its mechanism in the differentiation of ESCC Kyse30 and TE-13 cells. The function of CMSP in the viability, colony formation, migration and invasion of Kyse30 and TE-13 cells was determined by MTS, colony-formation, wound healing and transwell assays. Western blotting and pull-down assays were used to investigate the effect of CMSP on the expression level of malignant markers of ESCC, as well as the activity of MAPKs, RhoA and GTP-RhoA in Kyse30 and TE-13 cells. We found that CMSP could inhibit proliferation and migration and induce Kyse30 and TE-13 cell differentiation, characterized by dendrite-like outgrowth, decreased expression of tumour-associated antigens, as well as the decreased expression of malignant markers. Furthermore, increased cAMP, p-P38 and decreased activities of ERK, JNK and GTP-RhoA, were detected after treatment with CMSP. These results indicated that CMSP induced the differentiation of Kyse30 and TE-13 cells through mediating the cAMP-RhoA-MAPK axis, which might provide new potential strategies for ESCC treatment. PMID:27501997

  16. Terminal epidermal differentiation is regulated by the interaction of Fra-2/AP-1 with Ezh2 and ERK1/2

    PubMed Central

    Wurm, Stefanie; Zhang, Jisheng; Guinea-Viniegra, Juan; García, Fernando; Muñoz, Javier; Bakiri, Latifa; Ezhkova, Elena

    2015-01-01

    Altered epidermal differentiation characterizes numerous skin diseases affecting >25% of the human population. Here we identified Fra-2/AP-1 as a key regulator of terminal epidermal differentiation. Epithelial-restricted, ectopic expression of Fra-2 induced expression of epidermal differentiation genes located within the epidermal differentiation complex (EDC). Moreover, in a papilloma-prone background, a reduced tumor burden was observed due to precocious keratinocyte differentiation by Fra-2 expression. Importantly, loss of Fra-2 in suprabasal keratinocytes is sufficient to cause skin barrier defects due to reduced expression of differentiation genes. Mechanistically, Fra-2 binds and transcriptionally regulates EDC gene promoters, which are co-occupied by the transcriptional repressor Ezh2. Fra-2 remains transcriptionally inactive in nondifferentiated keratinocytes, where it was found monomethylated and dimethylated on Lys104 and interacted with Ezh2. Upon keratinocyte differentiation, Fra-2 is C-terminally phosphorylated on Ser320 and Thr322 by ERK1/2, leading to transcriptional activation. Thus, the induction of epidermal differentiation by Fra-2 is controlled by a dual mechanism involving Ezh2-dependent methylation and activation by ERK1/2-dependent phosphorylation. PMID:25547114

  17. Regulated expression of the MRP8 and MRP14 genes in human promyelocytic leukemic HL-60 cell treated with the differentiation-inducing agents mycophenolic acid and 1{alpha},25-Dihydroxyvitamin D{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner-Bartnicki, A.L.; Murao, S.; Collart, F.R.

    1992-12-31

    The calcium-binding proteins MRP8 and MEP14 are present in mature monomyelocytic cells and are induced during differentiation. Previous studies have demonstrated that the proteins may mediate the growth arrest in differentiating HL-60 cells. We determined the levels of a protein complex (PC) containing MRP8 and MRP14 and investigated the mechanism by which the genes encoding these proteins are regulated in HL-60 cells treated with the differentiation-inducing agent mycophenorc acid (MPA)While the PC was barely detectable in untreated cells, MPA treatment resulted in elevated levels of the PC which were maximal at 3-4 d, and were found to directly parallel gainsmore » in the steady-state levels of MRP8 and MRP14 MRNA. Transcription studies with the use of nuclear run-on experiments revealed increased transcription initiation at the MRP8 and MRP14 promoters after MPA treatment. 1{alpha},25-Dihydroxyvitamin D{sub 3}, which induces HL-60 cell differentiation by another mechanism, was also found to increase transcription initiation at the MRP8 and MRP14 promoters. Our results suggest that this initiation is the major control of maturation agent-mediated increases in MRP8 and MRPl4 gene expression, and support a role for the PC in terminal differentiation of human monomyelocytic cells.« less

  18. Differentiation-inducing and anti-proliferative activities of isoliquiritigenin and all-trans-retinoic acid on B16F0 melanoma cells: Mechanisms profiling by RNA-seq.

    PubMed

    Chen, Xiaoyu; Yang, Ming; Hao, Wenjin; Han, Jichun; Ma, Jun; Wang, Caixia; Sun, Shiguo; Zheng, Qiusheng

    2016-10-30

    Melanoma is a cancer that arises from melanocytes, specialized pigmented cells that are found predominantly in the skin. The incidence of malignant melanoma has significantly increased over the last decade. With the development of therapy, the survival rate of some kind of cancer has been improved greatly. But the treatment of melanoma remains unsatisfactory. Much of melanoma's resistance to traditional chemotherapy is believed to arise intrinsically, by virtue of potent growth and cell survival-promoting genetic alteration. Therefore, significant attention has recently been focused on differentiation therapy, as well as differentiation inducer compounds. In previous study, we found isoliquiritigenin (ISL), a natural product extracted from licorice, could induce B16F0 melanoma cell differentiation. Here we investigated the transcriptional response of melanoma differentiation process induced by ISL and all-trans-retinoic acid (RA). Results showed that 390 genes involves in 201 biochemical pathways were differentially expressed in ISL treatment and 304 genes in 193 pathways in RA treatment. Differential expressed genes (DGEs, fold-change (FC)≥10) with the function of anti-proliferative and differentiation inducing indicated a loss of grade malignancy characteristic. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated glutathione metabolism, glycolysis/gluconeogenesis and pentose phosphate pathway were the top three relative pathway perturbed by ISL, and mitogen-activated protein kinase (MAPK) signaling pathway was the most important pathway in RA treatment. In the analysis of hierarchical clustering of DEGs, we discovered 72 DEGs involved in the process of drug action. We thought Cited1, Tgm2, Xaf1, Cd59a, Fbxo2, Adh7 may have critical role in the differentiation of melanoma. The evidence displayed herein confirms the critical role of reactive oxygen species (ROS) in melanoma pathobiology and provides evidence for future targets in the development of next-generation biomarkers and therapeutics. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Differential DNases are selectively used in neuronal apoptosis depending on the differentiation state.

    PubMed

    Shiokawa, D; Tanuma, S

    2004-10-01

    In this study, we investigate the roles of two apoptotic endonucleases, CAD and DNase gamma, in neuronal apoptosis. High expression of CAD, but not DNase gamma, is detected in proliferating N1E-115 neuroblastoma cells, and apoptotic DNA fragmentation induced by staurosporine under proliferating conditions is abolished by the expression of a caspase-resistant form of ICAD. After the induction of neuronal differentiation, CAD disappearance and the induction of DNase gamma occur simultaneously in N1E-115 cells. Apoptotic DNA fragmentation that occurs under differentiating conditions is suppressed by the downregulation of DNase gamma caused by its antisense RNA. The induction of DNase gamma is also observed during neuronal differentiation of PC12 cells, and apoptotic DNA fragmentation induced by NGF deprivation is inhibited by the antisense-mediated downregulation of DNase gamma. These observations suggest that DNA fragmentation in neuronal apoptosis is catalyzed by either CAD or DNase gamma depending on the differentiation state. Furthermore, DNase gamma is suggested to be involved in naturally occurring apoptosis in developing nervous systems.

  20. Distinct gene networks modulate floral induction of autonomous maize and photoperiod-dependent teosinte.

    PubMed

    Minow, Mark A A; Ávila, Luis M; Turner, Katie; Ponzoni, Elena; Mascheretti, Iride; Dussault, Forest M; Lukens, Lewis; Rossi, Vincenzo; Colasanti, Joseph

    2018-05-25

    Temperate maize was domesticated from its tropical ancestor, teosinte. Whereas temperate maize is an autonomous day-neutral plant, teosinte is an obligate short-day plant that requires uninterrupted long nights to induce flowering. Leaf-derived florigenic signals trigger reproductive growth in both teosinte and temperate maize. To study the genetic mechanisms underlying floral inductive pathways in maize and teosinte, mRNA and small RNA genome-wide expression analyses were conducted on leaf tissue from plants that were induced or not induced to flower. Transcriptome profiles reveal common differentially expressed genes during floral induction, but a comparison of candidate flowering time genes indicates that photoperiod and autonomous pathways act independently. Expression differences in teosinte are consistent with the current paradigm for photoperiod-induced flowering, where changes in circadian clock output trigger florigen production. Conversely, differentially expressed genes in temperate maize link carbon partitioning and flowering, but also show altered expression of circadian clock genes that are distinct from those altered upon photoperiodic induction in teosinte. Altered miRNA399 levels in both teosinte and maize suggest a novel common connection between flowering and phosphorus perception. These findings provide insights into the molecular mechanisms underlying a strengthened autonomous pathway that enabled maize growth throughout temperate regions.

  1. In vitro and in vivo imaging and tracking of intestinal organoids from human induced pluripotent stem cells.

    PubMed

    Jung, Kwang Bo; Lee, Hana; Son, Ye Seul; Lee, Ji Hye; Cho, Hyun-Soo; Lee, Mi-Ok; Oh, Jung-Hwa; Lee, Jaemin; Kim, Seokho; Jung, Cho-Rok; Kim, Janghwan; Son, Mi-Young

    2018-01-01

    Human intestinal organoids (hIOs) derived from human pluripotent stem cells (hPSCs) have immense potential as a source of intestines. Therefore, an efficient system is needed for visualizing the stage of intestinal differentiation and further identifying hIOs derived from hPSCs. Here, 2 fluorescent biosensors were developed based on human induced pluripotent stem cell (hiPSC) lines that stably expressed fluorescent reporters driven by intestine-specific gene promoters Krüppel-like factor 5 monomeric Cherry (KLF5 mCherry ) and intestine-specific homeobox enhanced green fluorescence protein (ISX eGFP ). Then hIOs were efficiently induced from those transgenic hiPSC lines in which mCherry- or eGFP-expressing cells, which appeared during differentiation, could be identified in intact living cells in real time. Reporter gene expression had no adverse effects on differentiation into hIOs and proliferation. Using our reporter system to screen for hIO differentiation factors, we identified DMH1 as an efficient substitute for Noggin. Transplanted hIOs under the kidney capsule were tracked with fluorescence imaging (FLI) and confirmed histologically. After orthotopic transplantation, the localization of the hIOs in the small intestine could be accurately visualized using FLI. Our study establishes a selective system for monitoring the in vitro differentiation and for tracking the in vivo localization of hIOs and contributes to further improvement of cell-based therapies and preclinical screenings in the intestinal field.-Jung, K. B., Lee, H., Son, Y. S., Lee, J. H., Cho, H.-S., Lee, M.-O., Oh, J.-H., Lee, J., Kim, S., Jung, C.-R., Kim, J., Son, M.-Y. In vitro and in vivo imaging and tracking of intestinal organoids from human induced pluripotent stem cells. © FASEB.

  2. Cholecalciferol (vitamin D) differentially regulates antimicrobial peptide expression in bovine mammary epithelial cells: implications during Staphylococcus aureus internalization.

    PubMed

    Téllez-Pérez, Ana Dolores; Alva-Murillo, Nayeli; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2012-11-09

    Vitamin D has immunomodulatory functions regulating the expression of host defense genes. The aim of this study was to determine the effect of cholecalciferol (vitamin D3) on S. aureus internalization into bovine mammary epithelial cells (bMEC) and antimicrobial peptide (AP) mRNA expression. Cholecalciferol (1-200 nM) did not affect S. aureus growth and bMEC viability; but it reduced bacterial internalization into bMEC (15-74%). Also, bMEC showed a basal expression of all AP genes evaluated, which were induced by S. aureus. Cholecalciferol alone or together with bacteria diminished tracheal antimicrobial peptide (TAP) and bovine neutrophil β-defensin (BNBD) 5 mRNA expression; while alone induced the expression of lingual antimicrobial peptide (LAP), bovine β-defensin 1 (DEFB1) and bovine psoriasin (S100A7), which was inhibited in the presence of S. aureus. This compound (50 nM) increased BNBD10 mRNA expression coinciding with the greatest reduction in S. aureus internalization. Genes of vitamin D pathway (25-hydroxylase and 1 α-hydroxylase) show basal expression, which was induced by cholecalciferol or bacteria. S. aureus induced vitamin D receptor (VDR) mRNA expression, but not in the presence of cholecalciferol. In conclusion, cholecalciferol can reduce S. aureus internalization and differentially regulates AP expression in bMEC. Thus, vitamin D could be an effective innate immunity modulator in mammary gland, which leads to a better defense against bacterial infection. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Levetiracetam attenuates hippocampal expression of synaptic plasticity-related immediate early and late response genes in amygdala-kindled rats

    PubMed Central

    2010-01-01

    Background The amygdala-kindled rat is a model for human temporal lobe epilepsy and activity-dependent synaptic plasticity. Hippocampal RNA isolated from amygdala-kindled rats at different kindling stages was analyzed to identify kindling-induced genes. Furthermore, effects of the anti-epileptic drug levetiracetam on kindling-induced gene expression were examined. Results Cyclooxygenase-2 (Cox-2), Protocadherin-8 (Pcdh8) and TGF-beta-inducible early response gene-1 (TIEG1) were identified and verified as differentially expressed transcripts in the hippocampus of kindled rats by in situ hybridization and quantitative RT-PCR. In addition, we identified a panel of 16 additional transcripts which included Arc, Egr3/Pilot, Homer1a, Ania-3, MMP9, Narp, c-fos, NGF, BDNF, NT-3, Synaptopodin, Pim1 kinase, TNF-α, RGS2, Egr2/krox-20 and β-A activin that were differentially expressed in the hippocampus of amygdala-kindled rats. The list consists of many synaptic plasticity-related immediate early genes (IEGs) as well as some late response genes encoding transcription factors, neurotrophic factors and proteins that are known to regulate synaptic remodelling. In the hippocampus, induction of IEG expression was dependent on the afterdischarge (AD) duration. Levetiracetam, 40 mg/kg, suppressed the development of kindling measured as severity of seizures and AD duration. In addition, single animal profiling also showed that levetiracetam attenuated the observed kindling-induced IEG expression; an effect that paralleled the anti-epileptic effect of the drug on AD duration. Conclusions The present study provides mRNA expression data that suggest that levetiracetam attenuates expression of genes known to regulate synaptic remodelling. In the kindled rat, levetiracetam does so by shortening the AD duration thereby reducing the seizure-induced changes in mRNA expression in the hippocampus. PMID:20105316

  4. Lysophosphatidic acid-induced ADAM12 expression mediates human adipose tissue-derived mesenchymal stem cell-stimulated tumor growth.

    PubMed

    Do, Eun Kyoung; Kim, Young Mi; Heo, Soon Chul; Kwon, Yang Woo; Shin, Sang Hun; Suh, Dong-Soo; Kim, Ki-Hyung; Yoon, Man-Soo; Kim, Jae Ho

    2012-11-01

    Lysophosphatidic acid (LPA) is involved in mesenchymal stem cell-stimulated tumor growth in vivo. However, the molecular mechanism by which mesenchymal stem cells promote tumorigenesis remains elusive. In the present study, we demonstrate that conditioned medium from A549 human lung adenocarcinoma cells (A549 CM) induced the expression of ADAM12, a disintegrin and metalloproteases family member, in human adipose tissue-derived mesenchymal stem cells (hASCs). A549 CM-stimulated ADAM12 expression was abrogated by pretreatment of hASCs with the LPA receptor 1 inhibitor Ki16425 or by small interfering RNA-mediated silencing of LPA receptor 1, suggesting a key role for the LPA-LPA receptor 1 signaling axis in A549 CM-stimulated ADAM12 expression. Silencing of ADAM12 expression using small interfering RNA or short hairpin RNA abrogated LPA-induced expression of both α-smooth muscle actin, a marker of carcinoma-associated fibroblasts, and ADAM12 in hASCs. Using a xenograft transplantation model of A549 cells, we demonstrated that silencing of ADAM12 inhibited the hASC-stimulated in vivo growth of A549 xenograft tumors and the differentiation of transplanted hASCs to α-smooth muscle actin-positive carcinoma-associated fibroblasts. LPA-conditioned medium from hASCs induced the adhesion of A549 cells and silencing of ADAM12 inhibited LPA-induced expression of extracellular matrix proteins, periostin and βig-h3, in hASCs and LPA-conditioned medium-stimulated adhesion of A549 cells. These results suggest a pivotal role for LPA-stimulated ADAM12 expression in tumor growth and the differentiation of hASCs to carcinoma-associated fibroblasts expressing α-smooth muscle actin, periostin, and βig-h3. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eom, Young Woo; Oh, Ji-Eun; Lee, Jong In

    2014-02-28

    Highlights: • Expression of FGF-2, FGF-4, EGF, and HGF decreased during long-term culture of BMSCs. • Loss of growth factors induced autophagy, senescence and decrease of stemness. • FGF-2 increased proliferation potential via AKT and ERK activation in BMSCs. • FGF-2 suppressed LC3-II expression and down-regulated senescence of BMSCs. • HGF was important in maintenance of the differentiation potential of BMSCs. - Abstract: Mesenchymal stem cells (MSCs) are an active topic of research in regenerative medicine due to their ability to secrete a variety of growth factors and cytokines that promote healing of damaged tissues and organs. In addition, thesemore » secreted growth factors and cytokines have been shown to exert an autocrine effect by regulating MSC proliferation and differentiation. We found that expression of EGF, FGF-4 and HGF were down-regulated during serial passage of bone marrow-derived mesenchymal stem cells (BMSCs). Proliferation and differentiation potentials of BMSCs treated with these growth factors for 2 months were evaluated and compared to BMSCs treated with FGF-2, which increased proliferation of BMSCs. FGF-2 and -4 increased proliferation potentials at high levels, about 76- and 26-fold, respectively, for 2 months, while EGF and HGF increased proliferation of BMSCs by less than 2.8-fold. Interestingly, differentiation potential, especially adipogenesis, was maintained only by HGF treatment. Treatment with FGF-2 rapidly induced activation of AKT and later induced ERK activation. The basal level of phosphorylated ERK increased during serial passage of BMSCs treated with FGF-2. The expression of LC3-II, an autophagy marker, was gradually increased and the population of senescent cells was increased dramatically at passage 7 in non-treated controls. But FGF-2 and FGF-4 suppressed LC3-II expression and down-regulated senescent cells during long-term (i.e. 2 month) cultures. Taken together, depletion of growth factors during serial passage could induce autophagy, senescence and down-regulation of stemness (proliferation via FGF-2/-4 and differentiation via HGF) through suppression of AKT and ERK signaling.« less

  6. Calreticulin Regulates VEGF-A in Neuroblastoma Cells.

    PubMed

    Weng, Wen-Chin; Lin, Kuan-Hung; Wu, Pei-Yi; Lu, Yi-Chien; Weng, Yi-Cheng; Wang, Bo-Jeng; Liao, Yung-Feng; Hsu, Wen-Ming; Lee, Wang-Tso; Lee, Hsinyu

    2015-08-01

    Calreticulin (CRT) has been previously correlated with the differentiation of neuroblastoma (NB), implying a favorable prognostic factor. Vascular endothelial growth factor (VEGF) has been reported to participate in the behavior of NB. This study investigated the association of CRT and VEGF-A in NB cells. The expressions of VEGF-A and HIF-1α, with overexpression or knockdown of CRT, were measured in three NB cells (SH-SY5Y, SK-N-DZ, and stNB-V1). An inducible CRT NB cell line and knockdown CRT stable cell lines were also established. The impacts of CRT overexpression on NB cell apoptosis, proliferation, and differentiation were also evaluated. We further examined the role of VEGF-A in the NB cell differentiation via VEGF receptor blockade. Constitutive overexpression of CRT led to NB cell differentiation without proliferation. Thus, an inducible CRT stNB-V1 cell line was generated by a tetracycline-regulated gene system. CRT overexpression increased VEGF-A and HIF-1α messenger RNA (mRNA) expressions in SH-SY5Y, SK-N-DZ, and stNB-V1 cells. CRT overexpression also enhanced VEGF-A protein expression and secretion level in conditioned media in different NB cell lines. Knockdown of CRT decreased VEGF-A and HIF-1α mRNA expressions and lowered VEGF-A protein expression and secretion level in conditioned media in different NB cell lines. We further demonstrated that NB cell apoptosis was not affected by CRT overexpression in stNB-V1 cells. Nevertheless, overexpression of CRT suppressed cell proliferation and enhanced cell differentiation in stNB-V1 cells, whereas blockage of VEGFR-1 markedly suppressed the expression of neuron-specific markers including GAP43, NSE2, and NFH, as well as TrkA, a molecular marker indicative of NB cell differentiation. Our findings suggest that VEGF-A is involved in CRT-related neuronal differentiation in NB. Our work may provide important information for developing a new therapeutic strategy to improve the outcome of NB patients.

  7. DNA topoisomerase IIβ stimulates neurite outgrowth in neural differentiated human mesenchymal stem cells through regulation of Rho-GTPases (RhoA/Rock2 pathway) and Nurr1 expression.

    PubMed

    Zaim, Merve; Isik, Sevim

    2018-04-25

    DNA topoisomerase IIβ (topo IIβ) is known to regulate neural differentiation by inducing the neuronal genes responsible for critical neural differentiation events such as neurite outgrowth and axon guidance. However, the pathways of axon growth controlled by topo IIβ have not been clarified yet. Microarray results of our previous study have shown that topo IIβ silencing in neural differentiated primary human mesenchymal stem cells (hMSCs) significantly alters the expression pattern of genes involved in neural polarity, axonal growth, and guidance, including Rho-GTPases. This study aims to further analyze the regulatory role of topo IIβ on the process of axon growth via regulation of Rho-GTPases. For this purpose, topo IIβ was silenced in neurally differentiated hMSCs. Cells lost their morphology because of topo IIβ deficiency, becoming enlarged and flattened. Additionally, a reduction in both neural differentiation efficiency and neurite length, upregulation in RhoA and Rock2, downregulation in Cdc42 gene expression were detected. On the other hand, cells were transfected with topo IIβ gene to elucidate the possible neuroprotective effect of topo IIβ overexpression on neural-induced hMSCs. Topo IIβ overexpression prompted all the cells to exhibit neural cell morphology as characterized by longer neurites. RhoA and Rock2 expressions were downregulated, whereas Cdc42 expression was upregulated. Nurr1 expression level correlated with topo IIβ in both topo IIβ-overexpressed and -silenced cells. Furthermore, differential translocation of Rho-GTPases was detected by immunostaining in response to topo IIβ. Our results suggest that topo IIβ deficiency could give rise to neurodegeneration through dysregulation of Rho-GTPases. However, further in-vivo research is needed to demonstrate if re-regulation of Rho GTPases by topo IIβ overexpression could be a neuroprotective treatment in the case of neurodegenerative diseases.

  8. Regulated expression and role of c-Myb in the cardiovascular-directed differentiation of mouse embryonic stem cells.

    PubMed

    Ishida, Masayoshi; El-Mounayri, Omar; Kattman, Steven; Zandstra, Peter; Sakamoto, Hiroshi; Ogawa, Minetaro; Keller, Gordon; Husain, Mansoor

    2012-01-20

    c-myb null (knockout) embryonic stem cells (ESC) can differentiate into cardiomyocytes but not contractile smooth muscle cells (SMC) in embryoid bodies (EB). To define the role of c-Myb in SMC differentiation from ESC. In wild-type (WT) EB, high c-Myb levels on days 0-2 of differentiation undergo ubiquitin-mediated proteosomal degradation on days 2.5-3, resurging on days 4-6, without changing c-myb mRNA levels. Activin-A and bone morphogenetic protein 4-induced cardiovascular progenitors were isolated by FACS for expression of vascular endothelial growth factor receptor (VEGFR)2 and platelet-derived growth factor receptor (PDGFR)α. By day 3.75, hematopoesis-capable VEGFR2+ cells were fewer, whereas cardiomyocyte-directed VEGFR2+/PDGFRα+ cells did not differ in abundance in knockout versus WT EB. Importantly, highest and lowest levels of c-Myb were observed in VEGFR2+ and VEGFR2+/PDGFRα+ cells, respectively. Proteosome inhibitor MG132 and lentiviruses enabling inducible expression or knockdown of c-myb were used to regulate c-Myb in WT and knockout EB. These experiments showed that c-Myb promotes expression of VEGFR2 over PDGFRα, with chromatin immunopreciptation and promoter-reporter assays defining specific c-Myb-responsive binding sites in the VEGFR2 promoter. Next, FACS-sorted VEGFR2+ cells expressed highest and lowest levels of SMC- and fibroblast-specific markers, respectively, at days 7-14 after retinoic acid (RA) as compared with VEGFR2+/PDGFRα+ cells. By contrast, VEGFR2+/PDGFRα+ cells cultured without RA beat spontaneously, like cardiomyocytes between days 7 and 14, and expressed cardiac troponin. Notably, RA was required to more fully differentiate SMC from VEGFR2+ cells and completely blocked differentiation of cardiomyocytes from VEGFR2+/PDGFRα+ cells. c-Myb is tightly regulated by proteosomal degradation during cardiovascular-directed differentiation of ESC, expanding early-stage VEGFR2+ progenitors capable of RA-responsive SMC formation.

  9. Differential Roles of Hydrogen Peroxide in Adaptive and Inflammatory Gene Expression Induced by Exposure of Human Airway Epithelial Cells to Zn2+

    EPA Science Inventory

    Oxidant stress is believed to play an important role in particulate matter (PM)–mediated toxicity in the respiratory tract. Zinc (Zn2+) is a ubiquitous component of PM that has been shown to induce adverse responses such as inflammatory and adaptive gene expression in airway epit...

  10. Altered expression of miRNAs in the uterus from a letrozole-induced rat PCOS model.

    PubMed

    Li, Chunjin; Chen, Lu; Zhao, Yun; Chen, Shuxiong; Fu, Lulu; Jiang, Yanwen; Gao, Shan; Liu, Zhuo; Wang, Fengge; Zhu, Xiaoling; Rao, Jiahui; Zhang, Jing; Zhou, Xu

    2017-01-20

    Polycystic ovary syndrome (PCOS) causes female subfertility with ovarian disorders and may be associated with increased rate of early-pregnancy failure. Rat PCOS models were established using letrozole to understand the uterine pathogenesis of PCOS. The differential expression of microRNAs (miRNAs) was observed in rat uterus with PCOS. After estrous cycles were disrupted, significantly abnormal ovarian morphology and hormone level were observed in rats with PCOS. A total of 148 miRNAs differentially expressed were identified in the uterus from the letrozole-induced rat model compared with the control. These miRNAs included 111 upregulated miRNAs and 37 downregulated miRNAs. The differential expression of miR-484, miR-375-3p, miR-324-5p, and miR-223-3p was further confirmed by quantitative reverse transcription polymerase chain reaction. Bioinformatic analysis showed that these four miRNAs were predicted to regulate a large number of genes with different functions. Pathway analysis supported that target genes of miRNAs were involved in insulin secretion and signaling pathways, such as wnt, AMPK, PI3K-Akt, and Ras. These data indicated that miRNAs differentially expressed in rat uterus with PCOS may be associated with PCOS pathogenesis in the uterus. Our findings can help clarify the mechanism of uterine defects in PCOS. Copyright © 2016. Published by Elsevier B.V.

  11. Protein Kinase Inhibitor γ reciprocally regulates osteoblast and adipocyte differentiation by downregulating Leukemia Inhibitory Factor

    PubMed Central

    Chen, Xin; Hausman, Bryan S.; Luo, Guangbin; Zhou, Guang; Murakami, Shunichi; Rubin, Janet; Greenfield, Edward M.

    2013-01-01

    The Protein Kinase Inhibitor (Pki) gene family inactivates nuclear PKA and terminates PKA-induced gene expression. We previously showed that Pkig is the primary family member expressed in osteoblasts and that Pkig knockdown increases the effects of parathyroid hormone and isoproterenol on PKA activation, gene expression, and inhibition of apoptosis. Here, we determined whether endogenous levels of Pkig regulate osteoblast differentiation. Pkig is the primary family member in MEFs, murine marrow-derived mesenchymal stem cells, and human mesenchymal stem cells. Pkig deletion increased forskolin-dependent nuclear PKA activation and gene expression and Pkig deletion or knockdown increased osteoblast differentiation. PKA signaling is known to stimulate adipogenesis; however, adipogenesis and osteogenesis are often reciprocally regulated. We found that the reciprocal regulation predominates over the direct effects of PKA since adipogenesis was decreased by Pkig deletion or knockdown. Pkig deletion or knockdown simultaneously increased osteogenesis and decreased adipogenesis in mixed osteogenic/adipogenic medium. Pkig deletion increased PKA-induced expression of Leukemia Inhibitory Factor (Lif) mRNA and LIF protein. LIF neutralizing antibodies inhibited the effects on osteogenesis and adipogenesis of either Pkig deletion in MEFs or PKIγ knockdown in both murine and human mesenchymal stem cells. Collectively, our results show that endogenous levels of Pkig reciprocally regulate osteoblast and adipocyte differentiation and that this reciprocal regulation is mediated in part by LIF. PMID:23963683

  12. Hepatocyte nuclear factor-4alpha induces transdifferentiation of hematopoietic cells into hepatocytes.

    PubMed

    Khurana, Satish; Jaiswal, Amit K; Mukhopadhyay, Asok

    2010-02-12

    Hematopoietic stem cells can directly transdifferentiate into hepatocytes because of cellular plasticity, but the molecular basis of transdifferentiation is not known. Here, we show the molecular basis using lineage-depleted oncostatin M receptor beta-expressing (Lin(-)OSMRbeta(+)) mouse bone marrow cells in a hepatic differentiation culture system. Differentiation of the cells was marked by the expression of albumin. Hepatocyte nuclear factor (HNF)-4alpha was expressed and translocated into the nuclei of the differentiating cells. Suppression of its activation in OSM-neutralized culture medium inhibited cellular differentiation. Ectopic expression of full-length HNF4alpha in 32D myeloid cells resulted in decreased myeloid colony-forming potential and increased expression of hepatocyte-specific genes and proteins. Nevertheless, the neohepatocytes produced in culture expressed active P450 enzyme. The obligatory role of HNF4alpha in hepatic differentiation was confirmed by transfecting Lin(-)OSMRbeta(+) cells with dominant negative HNF4alpha in the differentiation culture because its expression inhibited the transcription of the albumin and tyrosine aminotransferase genes. The loss and gain of functional activities strongly suggested that HNF4alpha plays a central role in the transdifferentiation process. For the first time, this report demonstrates the mechanism of transdifferentiation of hematopoietic cells into hepatocytes, in which HNF4alpha serves as a molecular switch.

  13. Adrenomedullin is a key Protein Mediating Rotary Cell Culture System that Induces the Effects of Simulated Microgravity on Human Breast Cancer Cells

    NASA Astrophysics Data System (ADS)

    Chen, Li; Yang, Xi; Cui, Xiang; Jiang, Minmin; Gui, Yu; Zhang, Yanni; Luo, Xiangdong

    2015-11-01

    Microgravity or simulated microgravity promotes stem cell proliferation and inhibits differentiation. But, researchers have not yet been able to understand the underlying mechanism through which microgravity or simulated microgravity brings about stem cell proliferation and inhibition of differentiation. In this study, we investigated the effect of simulated microgravity (SMG) on MDA-MB-231 and MCF-7 human breast cancer cells using rotary cell culture system (RCCS). SMG induced a significant accumulation of these cancer cells in S phase of the cell cycle. But, compared with the static group, there was no effect on the overall growth rate of cells in the RCCS group. Furthermore, the expression of cyclin D1 was inhibited in the RCCS group, indicating that RCCS induced cell cycle arrest. In addition, RCCS also induced glycolytic metabolism by increasing the expression of adrenomedullin (ADM), but not HIF1 a. The addition of ADM further enhanced the effects of SMG, which was induced by RCCS. But, the addition of adrenomedullin antagonist (AMA) reversed these effects of SMG. Finally, our results proved that RCCS, which induced cells cycle arrest of breast cancer cells, enhanced glycolysis and upregulated the expression of ADM. But, this did not lead to an increase in hypoxia-inducible factor-1 a (HIF1 a) expression. Thus, we have uncovered a new mechanism for understanding the Warburg effect in breast cancer cells, this mechanism is not the same as hypoxia induced glycolysis.

  14. Transcriptional profiling of predator-induced phenotypic plasticity in Daphnia pulex.

    PubMed

    Rozenberg, Andrey; Parida, Mrutyunjaya; Leese, Florian; Weiss, Linda C; Tollrian, Ralph; Manak, J Robert

    2015-01-01

    Predator-induced defences are a prominent example of phenotypic plasticity found from single-celled organisms to vertebrates. The water flea Daphnia pulex is a very convenient ecological genomic model for studying predator-induced defences as it exhibits substantial morphological changes under predation risk. Most importantly, however, genetically identical clones can be transcriptionally profiled under both control and predation risk conditions and be compared due to the availability of the sequenced reference genome. Earlier gene expression analyses of candidate genes as well as a tiled genomic microarray expression experiment have provided insights into some genes involved in predator-induced phenotypic plasticity. Here we performed the first RNA-Seq analysis to identify genes that were differentially expressed in defended vs. undefended D. pulex specimens in order to explore the genetic mechanisms underlying predator-induced defences at a qualitatively novel level. We report 230 differentially expressed genes (158 up- and 72 down-regulated) identified in at least two of three different assembly approaches. Several of the differentially regulated genes belong to families of paralogous genes. The most prominent classes amongst the up-regulated genes include cuticle genes, zinc-metalloproteinases and vitellogenin genes. Furthermore, several genes from this group code for proteins recruited in chromatin-reorganization or regulation of the cell cycle (cyclins). Down-regulated gene classes include C-type lectins, proteins involved in lipogenesis, and other families, some of which encode proteins with no known molecular function. The RNA-Seq transcriptome data presented in this study provide important insights into gene regulatory patterns underlying predator-induced defences. In particular, we characterized different effector genes and gene families found to be regulated in Daphnia in response to the presence of an invertebrate predator. These effector genes are mostly in agreement with expectations based on observed phenotypic changes including morphological alterations, i.e., expression of proteins involved in formation of protective structures and in cuticle strengthening, as well as proteins required for resource re-allocation. Our findings identify key genetic pathways associated with anti-predator defences.

  15. Involvement of the histamine H{sub 4} receptor in clozapine-induced hematopoietic toxicity: Vulnerability under granulocytic differentiation of HL-60 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Aya; Mouri, Akihiro; Nagai, Tomoko

    Clozapine is an effective antipsychotic for treatment-resistant schizophrenia, but can cause fatal hematopoietic toxicity as agranulocytosis. To elucidate the mechanism of hematopoietic toxicity induced by clozapine, we developed an in vitro assay system using HL-60 cells, and investigated the effect on hematopoiesis. HL-60 cells were differentiated by all-trans retinoic acid (ATRA) into three states according to the following hematopoietic process: undifferentiated HL-60 cells, those undergoing granulocytic ATRA-differentiation, and ATRA-differentiated granulocytic cells. Hematopoietic toxicity was evaluated by analyzing cell survival, cell proliferation, granulocytic differentiation, apoptosis, and necrosis. In undifferentiated HL-60 cells and ATRA-differentiated granulocytic cells, both clozapine (50 and 100 μM)more » and doxorubicin (0.2 µM) decreased the cell survival rate, but olanzapine (1–100 µM) did not. Under granulocytic differentiation for 5 days, clozapine, even at a concentration of 25 μM, decreased survival without affecting granulocytic differentiation, increased caspase activity, and caused apoptosis rather than necrosis. Histamine H{sub 4} receptor mRNA was expressed in HL-60 cells, whereas the expression decreased under granulocytic ATRA-differentiation little by little. Both thioperamide, a histamine H{sub 4} receptor antagonist, and DEVD-FMK, a caspase-3 inhibitor, exerted protection against clozapine-induced survival rate reduction, but not of live cell counts. 4-Methylhistamine, a histamine H{sub 4} receptor agonist, decreased the survival rate and live cell counts, as did clozapine. HL-60 cells under granulocytic differentiation are vulnerable under in vitro assay conditions to hematopoietic toxicity induced by clozapine. Histamine H{sub 4} receptor is involved in the development of clozapine-induced hematopoietic toxicity through apoptosis, and may be a potential target for preventing its occurrence through granulocytic differentiation. - Highlights: • HL-60 cells under granulocytic differentiation were vulnerable for clozapine. • HL-60 cells would be in vitro assay systems for hematopoietic toxicity by clozapine. • Histamine H{sub 4} receptor was involved in hematopoietic toxicity with apoptosis. • Histamine H{sub 4} receptor may be therapeutic target to prevent hematopoietic toxicity.« less

  16. Acetyl-11-Keto-β-Boswellic Acid Promotes Osteoblast Differentiation by Inhibiting Tumor Necrosis Factor-α and Nuclear Factor-κB Activity.

    PubMed

    Bai, Fan; Chen, Xuewu; Yang, Hui; Xu, Hong-Guang

    2018-06-20

    Tumor necrosis factor (TNF) -α plays a crucial role in rheumatoid arthritis (RA)-related bone loss disease. The main mechanism of action of RA induced bone loss is the significant inhibitory effect of TNF-α on osteoblast differentiation. TNF-α inhibits osteoblast differentiation mainly by activating nuclear factor (NF) -κB signaling pathway. Owing to the crucial role of TNF-α and NF-κB in the inhibition of osteoblast differentiation, they are considered as targets for the development of therapeutic drugs. In the present study, we evaluated the NF-κB inhibitor Boswellic acid (BA) and its derivatives in the regulation of osteoblast differentiation and the molecular mechanism. Based on the cell model of TNF-α induced inhibition of osteoblast differentiation of MC3T3-E1, the regulatory role of BAs was studied. The result of MTT assay indicated that bone morphogenetic protein (BMP) -2, TNF-α, or acetyl-11-keto-β-BA (AKBA) impact no significant effect for cell viability of MC3T3-E1. The results of alkaline phosphatase (ALP activity assay and real-time polymerase chain reaction indicated that AKBA blocked TNF-α-induced inhibition of the expression of osteoblast markers, suggesting that AKBA rescued osteoblast differentiation from TNF-α-induced inhibition. Additionally, AKBA stimulated the BMP-2-induced expression of osteoblast markers, suggesting that AKBA promotes osteoblast differentiation directly. The results of western blotting and luciferase assay indicated that N-κB signaling was activated by TNF-α. The overexpression of NF-κB component p65 in MC3T3-E1 was found to attenuate the positive effect of AKBA in osteoblast differentiation, suggesting that AKBA potentiates osteoblast differentiation by inhibiting NF-κB signaling. Collectively, AKBA promotes osteoblast differentiation by inhibiting TNF-α and NF-κB. Our study revealed a new discovery of AKBA in regulating osteoblast differentiation, and demonstrated that AKBA may be a potential anabolic agent in the treatment of RA-derived bone loss disease.

  17. [Extracellular signal-regulated kinase signaling pathway regulates the endothelial differentiation of periodontal ligament stem cells].

    PubMed

    Zhu, Hong; Luo, Lankun; Wang, Ying; Tan, Jun; Xue, Peng; Wang, Qintao

    2016-03-01

    To investigate the effect of extracellular signal-regulated kinase (ERK) signaling pathway on the endothelial differentiation of periodontal ligament stem cells (PDLSC). Human PDLSC was cultured in the medium with vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (b-FGF) to induce endothelial differentiation. Endothelial inducing cells was incubated with U0126, a specific p-ERK1/2 inhibitor. PDLSC from one person were randomly divided into four groups: control group, endothelial induced group, endothelial induced+DMSO group and endothelial induced+U0126 group. The protein expression of the p-EKR1/2 was analyzed by Western blotting at 0, 1, 3, 6 and 12 hours during endonthelial induction. The mRNA expressions of CD31, VE-cadherin, and VEGF were detected by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) after a 7-day induction. The proportion of CD31(+) to VE-cadherin(+) cells was identified by flow cytometry, and the ability of capillary-like tubes formation was detected by Matrigel assay after a 14-day induction. The measurement data were statistically analyzed. Phosphorylated ERK1/2 protein level in PDLSC was increased to 1.24±0.12 and 1.03±0.24 at 1 h and 3 h respectively, during the endothelial induction (P<0.01). The mRNA expressions of CD31 and VEGF in induced+U0126 group were decreased to 0.09±0.18 and 0.49±0.17, which were both significantly different with those in induced group (P<0.05). The proportion of CD31(+) to VE-cadherin(+) cells of induced+U0126 group were decreased to 5.22±0.85 and 3.56±0.87, which were both significantly different with those in induced group (P<0.05). In Matrigel assay, the branching points, tube number and tube length were decreased to 7.0±2.7, 33.5±6.4, and (15 951.0±758.1) pixels, which were all significantly different with those in induced group (P<0.05). The endothelial differentiation of PDLSC is positively regulated by ERK signaling pathway. Inhibition of ERK1/2 phosphorylation could suppress endothelial differentiation of PDLSC.

  18. Regulation of Schwann Cell Differentiation and Proliferation by the Pax-3 Transcription Factor

    PubMed Central

    Moate, Roy M.; Jessen, Kristjan R.; Mirsky, Rhona; Parkinson, David B.

    2017-01-01

    Pax-3 is a paired domain transcription factor that plays many roles during vertebrate development. In the Schwann cell lineage, Pax-3 is expressed at an early stage in Schwann cells precursors of the embryonic nerve, is maintained in the nonmyelinating cells of the adult nerve, and is upregulated in Schwann cells after peripheral nerve injury. Consistent with this expression pattern, Pax-3 has previously been shown to play a role in repressing the expression of the myelin basic protein gene in Schwann cells. We have studied the role of Pax-3 in Schwann cells and have found that it controls not only the regulation of cell differentiation but also the survival and proliferation of Schwann cells. Pax-3 expression blocks both the induction of Oct-6 and Krox-20 (K20) by cyclic AMP and completely inhibits the ability of K20, the physiological regulator of myelination in the peripheral nervous system, to induce myelin gene expression in Schwann cells. In contrast to other inhibitors of myelination, we find that Pax-3 represses myelin gene expression in a c-Jun-independent manner. In addition to this, we find that Pax-3 expression alone is sufficient to inhibit the induction of apoptosis by TGFβ1 in Schwann cells. Expression of Pax-3 is also sufficient to induce the proliferation of Schwann cells in the absence of added growth factors and to reverse K20-induced exit from the cell cycle. These findings indicate new roles for the Pax-3 transcription factor in controlling the differentiation and proliferation of Schwann cells during development and after peripheral nerve injury. PMID:22532290

  19. Ecstasy (MDMA) Alters Cardiac Gene Expression and DNA Methylation: Implications for Circadian Rhythm Dysfunction in the Heart

    PubMed Central

    Koczor, Christopher A.; Ludlow, Ivan; Hight, Robert S.; Jiao, Zhe; Fields, Earl; Ludaway, Tomika; Russ, Rodney; Torres, Rebecca A.; Lewis, William

    2015-01-01

    MDMA (ecstasy) is an illicit drug that stimulates monoamine neurotransmitter release and inhibits reuptake. MDMA’s acute cardiotoxicity includes tachycardia and arrhythmia which are associated with cardiomyopathy. MDMA acute cardiotoxicity has been explored, but neither long-term MDMA cardiac pathological changes nor epigenetic changes have been evaluated. Microarray analyses were employed to identify cardiac gene expression changes and epigenetic DNA methylation changes. To identify permanent MDMA-induced pathogenetic changes, mice received daily 10- or 35-day MDMA, or daily 10-day MDMA followed by 25-day saline washout (10 + 25 days). MDMA treatment caused differential gene expression (p < .05, fold change >1.5) in 752 genes following 10 days, 558 genes following 35 days, and 113 genes following 10-day MDMA + 25-day saline washout. Changes in MAPK and circadian rhythm gene expression were identified as early as 10 days. After 35 days, circadian rhythm genes (Per3, CLOCK, ARNTL, and NPAS2) persisted to be differentially expressed. MDMA caused DNA hypermethylation and hypomethylation that was independent of gene expression; hypermethylation of genes was found to be 71% at 10 days, 68% at 35 days, and 91% at 10 + 25 days washout. Differential gene expression paralleled DNA methylation in 22% of genes at 10-day treatment, 17% at 35 days, and 48% at 10 + 25 days washout. We show here that MDMA induced cardiac epigenetic changes in DNA methylation where hypermethylation predominated. Moreover, MDMA induced gene expression of key elements of circadian rhythm regulatory genes. This suggests a fundamental organism-level event to explain some of the etiologies of MDMA dysfunction in the heart. PMID:26251327

  20. Ecstasy (MDMA) Alters Cardiac Gene Expression and DNA Methylation: Implications for Circadian Rhythm Dysfunction in the Heart.

    PubMed

    Koczor, Christopher A; Ludlow, Ivan; Hight, Robert S; Jiao, Zhe; Fields, Earl; Ludaway, Tomika; Russ, Rodney; Torres, Rebecca A; Lewis, William

    2015-11-01

    MDMA (ecstasy) is an illicit drug that stimulates monoamine neurotransmitter release and inhibits reuptake. MDMA's acute cardiotoxicity includes tachycardia and arrhythmia which are associated with cardiomyopathy. MDMA acute cardiotoxicity has been explored, but neither long-term MDMA cardiac pathological changes nor epigenetic changes have been evaluated. Microarray analyses were employed to identify cardiac gene expression changes and epigenetic DNA methylation changes. To identify permanent MDMA-induced pathogenetic changes, mice received daily 10- or 35-day MDMA, or daily 10-day MDMA followed by 25-day saline washout (10 + 25 days). MDMA treatment caused differential gene expression (p < .05, fold change >1.5) in 752 genes following 10 days, 558 genes following 35 days, and 113 genes following 10-day MDMA + 25-day saline washout. Changes in MAPK and circadian rhythm gene expression were identified as early as 10 days. After 35 days, circadian rhythm genes (Per3, CLOCK, ARNTL, and NPAS2) persisted to be differentially expressed. MDMA caused DNA hypermethylation and hypomethylation that was independent of gene expression; hypermethylation of genes was found to be 71% at 10 days, 68% at 35 days, and 91% at 10 + 25 days washout. Differential gene expression paralleled DNA methylation in 22% of genes at 10-day treatment, 17% at 35 days, and 48% at 10 + 25 days washout. We show here that MDMA induced cardiac epigenetic changes in DNA methylation where hypermethylation predominated. Moreover, MDMA induced gene expression of key elements of circadian rhythm regulatory genes. This suggests a fundamental organism-level event to explain some of the etiologies of MDMA dysfunction in the heart. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Cytoskeletal proteins and stem cell markers gene expression in human bone marrow mesenchymal stromal cells after different periods of simulated microgravity

    NASA Astrophysics Data System (ADS)

    Gershovich, P. M.; Gershovich, J. G.; Zhambalova, A. P.; Romanov, Yu. A.; Buravkova, L. B.

    2012-01-01

    Mesenchymal stem (stromal) cells (MSCs) are present in a variety of tissues during prenatal and postnatal human development. In adult organism, they are prevalent in bone marrow and supposed to be involved in space-flight induced osteopenia. We studied expression of various genes in human bone marrow MSCs after different terms of simulated microgravity (SMG) provided by Random Positioning Machine. Simulated microgravity induced transient changes in expression level of genes associated with actin cytoskeleton, especially after 48 h of SMG. However, after 120 h exposure in SMG partial restoration of gene expression levels (relative to the control) was found. Similar results were obtained with bmMSCs subjected to 24 h readaptation in static state after 24 h in SMG. Analysis of 84 genes related to identification, growth and differentiation of stem cells revealed that expression of nine genes was changed slightly after 48 h in SMG. More pronounced changes in gene expression of "stem cells markers" were observed after 120 h of simulated microgravity. Among 84 investigated genes, 30 were up-regulated and 24 were down-regulated. Finally, MSCs osteogenesis induced by long-term (10-20 days) simulation of microgravity was accompanied by down-regulation of gene expression of the main osteogenic differentiation markers ( ALPL, OMD) and master transcription osteogenic factor of MSCs ( Runx2). Thus, our study demonstrated that changes in expression level of some genes associated with actin cytoskeleton and stem cell markers are supposed to be one of the mechanisms, which contribute to precursor's cellular adaptation to the microgravity conditions. These results can clarify genomic mechanisms through which SMG reduces osteogenic differentiation of bmMSCs.

  2. The use of biodegradable PLGA nanoparticles to mediate SOX9 gene delivery in human mesenchymal stem cells (hMSCs) and induce chondrogenesis.

    PubMed

    Kim, Jae-Hwan; Park, Ji Sun; Yang, Han Na; Woo, Dae Gyun; Jeon, Su Yeon; Do, Hyun-Jin; Lim, Hye-Young; Kim, Jung Mo; Park, Keun-Hong

    2011-01-01

    In stem cell therapy, transfection of specific genes into stem cells is an important technique to induce cell differentiation. To perform gene transfection in human mesenchymal stem cells (hMSCs), we designed and fabricated a non-viral vector system for specific stem cell differentiation. Several kinds of gene carriers were evaluated with regard to their transfection efficiency and their ability to enhance hMSCs differentiation. Of these delivery vehicles, biodegradable poly (DL-lactic-co-glycolic acid) (PLGA) nanoparticles yielded the best results, as they complexed with high levels of plasmid DNA (pDNA), allowed robust gene expression in hMSCs, and induced chondrogenesis. Polyplexing with polyethylenimine (PEI) enhanced the cellular uptake of SOX9 DNA complexed with PLGA nanoparticles both in vitro and in vivo. The expression of enhanced green fluorescent protein (EGFP) and SOX9 increased up to 75% in hMSCs transfected with PEI/SOX9 complexed PLGA nanoparticles 2 days after transfection. SOX9 gene expression was evaluated by RT-PCR, real time-qPCR, glycosaminoglycan (GAG)/DNA levels, immunoblotting, histology, and immunofluorescence. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Differential Induction of Immunogenic Cell Death and Interferon Expression in Cancer Cells by Structured ssRNAs.

    PubMed

    Lee, Jaewoo; Lee, Youngju; Xu, Li; White, Rebekah; Sullenger, Bruce A

    2017-06-07

    Activation of the RNA-sensing pattern recognition receptor (PRR) in cancer cells leads to cell death and cytokine expression. This cancer cell death releases tumor antigens and damage-associated molecular patterns (DAMPs) that induce anti-tumor immunity. However, these cytokines and DAMPs also cause adverse inflammatory and thrombotic complications that can limit the overall therapeutic benefits of PRR-targeting anti-cancer therapies. To overcome this problem, we generated and evaluated two novel and distinct ssRNA molecules (immunogenic cell-killing RNA [ICR]2 and ICR4). ICR2 and ICR4 differentially stimulated cell death and PRR signaling pathways and induced different patterns of cytokine expression in cancer and innate immune cells. Interestingly, DAMPs released from ICR2- and ICR4-treated cancer cells had distinct patterns of stimulation of innate immune receptors and coagulation. Finally, ICR2 and ICR4 inhibited in vivo tumor growth as effectively as poly(I:C). ICR2 and ICR4 are potential therapeutic agents that differentially induce cell death, immune stimulation, and coagulation when introduced into tumors. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  4. The inhibitory effect of vitamin K on RANKL-induced osteoclast differentiation and bone resorption.

    PubMed

    Wu, Wei-Jie; Kim, Min Seuk; Ahn, Byung-Yong

    2015-10-01

    To further understand the correlation between vitamin K and bone metabolism, the effects of vitamins K1, menaquinone-4 (MK-4), and menaquinone-7 (MK-7) on RANKL-induced osteoclast differentiation and bone resorption were comparatively investigated. Vitamin K2 groups (MK-4 and MK-7) were found to significantly inhibit RANKL-medicated osteoclast cell formation of bone marrow macrophages (BMMs) in a dose-dependent manner, without any evidence of cytotoxicity. The mRNA expression of specific osteoclast differentiation markers, such as c-Fos, NFATc1, OSCAR, and TRAP, as well as NFATc1 protein expression and TRAP activity in RANKL-treated BMMs were inhibited by vitamin K2, although MK-4 exhibited a significantly greater efficiency compared to MK-7. In contrast, the same dose of vitamin K1 had no inhibitory effect on RANKL-induced osteoclast cell formation, but increased the expression of major osteoclastogenic genes. Interestingly, vitamins K1, MK-4 and MK-7 all strongly inhibited osteoclastic bone resorption (p < 0.01) in a dose dependent manner. These results suggest that vitamins K1, MK-4 and MK-7 have anti-osteoporotic properties, while their regulation effects on osteoclastogenesis are somewhat different.

  5. Development of a targeted transgenesis strategy in highly differentiated cells: a powerful tool for functional genomic analysis.

    PubMed

    Puttini, Stefania; Ouvrard-Pascaud, Antoine; Palais, Gael; Beggah, Ahmed T; Gascard, Philippe; Cohen-Tannoudji, Michel; Babinet, Charles; Blot-Chabaud, Marcel; Jaisser, Frederic

    2005-03-16

    Functional genomic analysis is a challenging step in the so-called post-genomic field. Identification of potential targets using large-scale gene expression analysis requires functional validation to identify those that are physiologically relevant. Genetically modified cell models are often used for this purpose allowing up- or down-expression of selected targets in a well-defined and if possible highly differentiated cell type. However, the generation of such models remains time-consuming and expensive. In order to alleviate this step, we developed a strategy aimed at the rapid and efficient generation of genetically modified cell lines with conditional, inducible expression of various target genes. Efficient knock-in of various constructs, called targeted transgenesis, in a locus selected for its permissibility to the tet inducible system, was obtained through the stimulation of site-specific homologous recombination by the meganuclease I-SceI. Our results demonstrate that targeted transgenesis in a reference inducible locus greatly facilitated the functional analysis of the selected recombinant cells. The efficient screening strategy we have designed makes possible automation of the transfection and selection steps. Furthermore, this strategy could be applied to a variety of highly differentiated cells.

  6. Genetic and pharmacological analysis identifies a physiological role for the AHR in epidermal differentiation

    PubMed Central

    van den Bogaard, Ellen; Podolsky, Michael; Smits, Jos; Cui, Xiao; John, Christian; Gowda, Krishne; Desai, Dhimant; Amin, Shantu; Schalkwijk, Joost; Perdew, Gary H.

    2015-01-01

    Stimulation of the aryl hydrocarbon receptor (AHR) by xenobiotics is known to affect epidermal differentiation and skin barrier formation. The physiological role of endogenous AHR signaling in keratinocyte differentiation is not known. We used murine and human skin models to address the hypothesis that AHR activation is required for normal keratinocyte differentiation. Using transcriptome analysis of Ahr-/- and Ahr+/+ murine keratinocytes, we found significant enrichment of differentially expressed genes linked to epidermal differentiation. Primary Ahr-/- keratinocytes showed a significant reduction in terminal differentiation gene and protein expression, similar to Ahr+/+ keratinocytes treated with AHR antagonists GNF351 and CH223191, or the selective AHR modulator (SAhRM), SGA360. In vitro keratinocyte differentiation led to increased AHR levels and subsequent nuclear translocation, followed by induced CYP1A1 gene expression. Monolayer cultured primary human keratinocytes treated with AHR antagonists also showed an impaired terminal differentiation program. Inactivation of AHR activity during human skin equivalent development severely impaired epidermal stratification, terminal differentiation protein expression and stratum corneum formation. As disturbed epidermal differentiation is a main feature of many skin diseases, pharmacological agents targeting AHR signaling or future identification of endogenous keratinocyte-derived AHR ligands should be considered as potential new drugs in dermatology. PMID:25602157

  7. Gene expression profiling analysis of the effects of low-intensity pulsed ultrasound on induced pluripotent stem cell-derived neural crest stem cells.

    PubMed

    Xia, Bin; Zou, Yang; Xu, Zhiling; Lv, Yonggang

    2017-11-01

    Low-intensity pulsed ultrasound (LIPUS) is a noninvasive technique that has been shown to affect cell proliferation, migration, and differentiation and promote the regeneration of damaged peripheral nerve. Our previous studies had proved that LIPUS can significantly promote the neural differentiation of induced pluripotent stem cell-derived neural crest stem cells (iPSCs-NCSCs) and enhance the repair of rat-transected sciatic nerve. To further explore the underlying mechanisms of LIPUS treatment of iPSCs-NCSCs, this study reported the gene expression profiling analysis of iPSCs-NCSCs before and after LIPUS treatment using the RNA-sequencing (RNA-Seq) method. It was found that expression of 76 genes of iPSCs-NCSCs cultured in a serum-free neural induction medium and expression of 21 genes of iPSCs-NCSCs cultured in a neuronal differentiation medium were significantly changed by LIPUS treatment. The differentially expressed genes are related to angiogenesis, nervous system activity and functions, cell activities, and so on. The RNA-seq results were further verified by a quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). High correlation was observed between the results obtained from qRT-PCR and RNA-Seq. This study presented new information on the global gene expression patterns of iPSCs-NCSCs after LIPUS treatment and may expand the understanding of the complex molecular mechanism of LIPUS treatment of iPSCs-NCSCs. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  8. Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.

    Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference mapmore » of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.« less

  9. Maternal nutrition induces gene expression changes in fetal muscle and adipose tissues in sheep.

    PubMed

    Peñagaricano, Francisco; Wang, Xin; Rosa, Guilherme Jm; Radunz, Amy E; Khatib, Hasan

    2014-11-28

    Maternal nutrition during different stages of pregnancy can induce significant changes in the structure, physiology, and metabolism of the offspring. These changes could have important implications on food animal production especially if these perturbations impact muscle and adipose tissue development. Here, we evaluated the impact of different maternal isoenergetic diets, alfalfa haylage (HY; fiber), corn (CN; starch), and dried corn distillers grains (DG; fiber plus protein plus fat), on the transcriptome of fetal muscle and adipose tissues in sheep. Prepartum diets were associated with notable gene expression changes in fetal tissues. In longissimus dorsi muscle, a total of 224 and 823 genes showed differential expression (FDR ≤0.05) in fetuses derived from DG vs. CN and HY vs. CN maternal diets, respectively. Several of these significant genes affected myogenesis and muscle differentiation. In subcutaneous and perirenal adipose tissues, 745 and 208 genes were differentially expressed (FDR ≤0.05), respectively, between CN and DG diets. Many of these genes are involved in adipogenesis, lipogenesis, and adipose tissue development. Pathway analysis revealed that several GO terms and KEGG pathways were enriched (FDR ≤0.05) with differentially expressed genes associated with tissue and organ development, chromatin biology, and different metabolic processes. These findings provide evidence that maternal nutrition during pregnancy can alter the programming of fetal muscle and fat tissues in sheep. The ramifications of the observed gene expression changes, in terms of postnatal growth, body composition, and meat quality of the offspring, warrant future investigation.

  10. PMA Induces SnoN Proteolysis and CD61 Expression through an Autocrine Mechanism

    PubMed Central

    Li, Chonghua; Peart, Natoya; Xuan, Zhenyu; Lewis, Dorothy E; Xia, Yang; Jin, Jianping

    2014-01-01

    Phorbol-12-myristate-13-acetate, also called PMA, is a small molecule that activates protein kinase C and functions to differentiate hematologic lineage cells. However, the mechanism of PMA-induced cellular differentiation is not fully understood. We found that PMA triggers global enhancement of protein ubiquitination in K562, a myelogenous leukemia cell line and one of the enhanced-ubiquitination targets is SnoN, an inhibitor of the Smad signaling pathway. Our data indicated that PMA stimulated the production of Activin A, a cytokine of the TGF-β family. Activin A then activated the phosphorylation of both Smad2 and Smad3. In consequence, SnoN is ubiquitinated by the APCCdh1 ubiquitin ligase with the help of phosphorylated Smad2. Furthermore, we found that SnoN proteolysis is important for the expression of CD61, a marker of megakaryocyte. These results indicate that protein ubiquitination promotes megakaryopoiesis via degrading SnoN, an inhibitor of CD61 expression, strengths the roles of ubiquitination in cellular differentiation. PMID:24637302

  11. Dexamethasone facilitates erythropoiesis in murine embryonic stem cells differentiating into hematopoietic cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Anand S.; Kaushal, Sharmeela; Mishra, Rangnath

    2006-07-28

    Differentiating embryonic stem (ES) cells are increasingly emerging as an important source of hematopoietic progenitors with a potential to be useful for both basic and clinical research applications. It has been suggested that dexamethasone facilitates differentiation of ES cells towards erythrocytes but the mechanism responsible for sequential expression of genes regulating this process are not well-understood. Therefore, we in vitro induced differentiation of murine ES cells towards erythropoiesis and studied the sequential expression of a set of genes during the process. We hypothesized that dexamethasone-activates its cognate nuclear receptors inducing up-regulation of erythropoietic genes such as GATA-1, Flk-1, Epo-R, andmore » direct ES cells towards erythropoietic differentiation. ES cells were cultured in primary hematopoietic differentiation media containing methyl-cellulose, IMDM, IL-3, IL-6, and SCF to promote embryoid body (EB) formation. Total RNA of day 3, 5, and 9-old EBs was isolated for gene expression studies using RT-PCR. Cells from day 9 EBs were subjected to secondary differentiation using three different cytokines and growth factors combinations: (1) SCF, EPO, dexamethasone, and IGF; (2) SCF, IL-3, IL-6, and TPO; and (3) SCF IL-3, IL-6, TPO, and EPO. Total RNA from day 12 of secondary differentiated ES cells was isolated to study the gene expression pattern during this process. Our results demonstrate an up-regulation of GATA-1, Flk-1, HoxB-4, Epo-R, and globin genes ({alpha}-globin, {beta}H-1 globin, {beta}-major globin, {epsilon} -globin, and {zeta}-globin) in the 9-day-old EBs, whereas, RNA from 5-day-old EBs showed expression of HoxB-4, {epsilon}-globin, {gamma}-globin, {beta}H1-globin, and Flk-1. Three-day-old EBs showed only HoxB-4 and Flk-1 gene expression and lacked expression of all globin genes. These findings indicate that erythropoiesis-specific genes are activated later in the course of differentiation. Gene expression studies on the ES cells of secondary EB origin cultured in media containing dexamethasone showed a down-regulation of GATA-3 and an up-regulation of GATA-1, Flk-1, and Epo-R in comparison to the two other cytokines and growth factor combinations containing media. The secondary differentiation also showed an enhanced production of erythrocytic precursors in dexamethasone containing media in comparison to that in the control media. Our results indicate that dexamethasone can prove to be an effective agent which can be employed to enhance differentiation towards erythrocytic progenitors from ES cells.« less

  12. MicroRNAs expression in ox-LDL treated HUVECs: MiR-365 modulates apoptosis and Bcl-2 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Bing; Xiao, Bo; Liang, Desheng

    Highlights: {yields} We evaluated the role of miRNAs in ox-LDL induced apoptosis in ECs. {yields} We found 4 up-regulated and 11 down-regulated miRNAs in apoptotic ECs. {yields} Target genes of the dysregulated miRNAs regulate ECs apoptosis and atherosclerosis. {yields} MiR-365 promotes ECs apoptosis via suppressing Bcl-2 expression. {yields} MiR-365 inhibitor alleviates ECs apoptosis induced by ox-LDL. -- Abstract: Endothelial cells (ECs) apoptosis induced by oxidized low-density lipoprotein (ox-LDL) is thought to play a critical role in atherosclerosis. MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth,more » proliferation, and apoptosis. However, whether miRNAs are associated with ox-LDL induced apoptosis and their effect on ECs is still unknown. Therefore, this study evaluated potential miRNAs and their involvement in ECs apoptosis in response to ox-LDL stimulation. Microarray and qRT-PCR analysis performed on human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL identified 15 differentially expressed (4 up- and 11 down-regulated) miRNAs. Web-based query tools were utilized to predict the target genes of the differentially expressed miRNAs, and the potential target genes were classified into different function categories with the gene ontology (GO) term and KEGG pathway annotation. In particular, bioinformatics analysis suggested that anti-apoptotic protein B-cell CLL/lymphoma 2 (Bcl-2) is a target gene of miR-365, an apoptomir up-regulated by ox-LDL stimulation in HUVECs. We further showed that transfection of miR-365 inhibitor partly restored Bcl-2 expression at both mRNA and protein levels, leading to a reduction of ox-LDL-mediated apoptosis in HUVECs. Taken together, our findings indicate that miRNAs participate in ox-LDL-mediated apoptosis in HUVECs. MiR-365 potentiates ox-LDL-induced ECs apoptosis by regulating the expression of Bcl-2, suggesting potential novel therapeutic targets for atherosclerosis.« less

  13. Hepatic differentiation capability of rat bone marrow-derived mesenchymal stem cells and hematopoietic stem cells.

    PubMed

    Shu, Sai-Nan; Wei, Lai; Wang, Jiang-Hua; Zhan, Yu-Tao; Chen, Hong-Song; Wang, Yu

    2004-10-01

    To investigate the different effects of mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) on hepatic differentiation. MSCs from rat bone marrow were isolated and cultured by standard methods. HSCs from rat bone marrow were isolated and purified by magnetic activated cell sorting. Both cell subsets were induced. Morphology, RT-PCR and immunocytochemistry were used to identify the hepatic differentiation grade. MSCs exhibited round in shape after differentiation, instead of fibroblast-like morphology before differentiation. Albumin mRNA and protein were expressed positively in MSCs, without detection of alpha-fetoprotein (AFP). HSCs were polygonal in shape after differentiation. The expression of albumin signal decreased and AFP signal increased. The expression of CK18 was continuous in MSCs and HSCs both before and after induction. Both MSCs and HSCs have hepatic differentiation capabilities. However, their capabilities are not the same. MSCs can differentiate into mature hepatocyte-like cells, never expressing early hepatic specific genes, while Thy-1.1(+) cells are inclined to differentiate into hepatic stem cell-like cells, with an increasing AFP expression and a decreasing albumin signal. CK18 mRNA is positive in Thy-1.1(+) cells and MSCs, negative in Thy-1.1(-) cells. It seems that CK18 has some relationship with Thy-1.1 antigen, and CK18 may be a predictive marker of hepatic differentiation capability.

  14. Curcumin induces G2/M arrest, apoptosis, NF-κB inhibition, and expression of differentiation genes in thyroid carcinoma cells.

    PubMed

    Schwertheim, Suzan; Wein, Frederik; Lennartz, Klaus; Worm, Karl; Schmid, Kurt Werner; Sheu-Grabellus, Sien-Yi

    2017-07-01

    The therapy of unresectable advanced thyroid carcinomas shows unfavorable outcome. Constitutive nuclear factor-κB (NF-κB) activation in thyroid carcinomas frequently contributes to therapeutic resistance; the radioiodine therapy often fails due to the loss of differentiated functions in advanced thyroid carcinomas. Curcumin is known for its anticancer properties in a series of cancers, but only few studies have focused on thyroid cancer. Our aim was to evaluate curcumin's molecular mechanisms and to estimate if curcumin could be a new therapeutic option in advanced thyroid cancer. Human thyroid cancer cell lines TPC-1 (papillary), FTC-133 (follicular), and BHT-101 (anaplastic) were treated with curcumin. Using real-time PCR analysis, we investigated microRNA (miRNA) and mRNA expression levels. Cell cycle, Annexin V/PI staining, and caspase-3 activity analysis were performed to detect apoptosis. NF-κB p65 activity and cell proliferation were analyzed using appropriate ELISA-based colorimetric assay kits. Treatment with 50 μM curcumin significantly increased the mRNA expression of the differentiation genes thyroglobulin (TG) and sodium iodide symporter (NIS) in all three cell lines and induced inhibition of cell proliferation, apoptosis, and decrease of NF-κB p65 activity. The miRNA expression analyses showed a significant deregulation of miRNA-200c, -21, -let7c, -26a, and -125b, known to regulate cell differentiation and tumor progression. Curcumin arrested cell growth at the G2/M phase. Curcumin increases the expression of redifferentiation markers and induces G2/M arrest, apoptosis, and downregulation of NF-κB activity in thyroid carcinoma cells. Thus, curcumin appears to be a promising agent to overcome resistance to the conventional cancer therapy.

  15. Heme Oxygenase-1 Influences Satellite Cells and Progression of Duchenne Muscular Dystrophy in Mice.

    PubMed

    Pietraszek-Gremplewicz, Katarzyna; Kozakowska, Magdalena; Bronisz-Budzynska, Iwona; Ciesla, Maciej; Mucha, Olga; Podkalicka, Paulina; Madej, Magdalena; Glowniak, Urszula; Szade, Krzysztof; Stepniewski, Jacek; Jez, Mateusz; Andrysiak, Kalina; Bukowska-Strakova, Karolina; Kaminska, Anna; Kostera-Pruszczyk, Anna; Jozkowicz, Alicja; Loboda, Agnieszka; Dulak, Jozef

    2018-07-10

    Muscle damage in Duchenne muscular dystrophy (DMD) caused by the lack of dystrophin is strongly linked to inflammation. Heme oxygenase-1 (HO-1; Hmox1) is an anti-inflammatory and cytoprotective enzyme affecting myoblast differentiation by inhibiting myomiRs. The role of HO-1 has not been so far well addressed in DMD. In dystrophin-deficient mdx mice, expression of Hmox1 in limb skeletal muscles and diaphragm is higher than in wild-type animals, being consistently elevated from 8 up to 52 weeks, both in myofibers and inflammatory leukocytes. Accordingly, HO-1 expression is induced in muscles of DMD patients. Pharmacological inhibition of HO-1 activity or genetic ablation of Hmox1 aggravates muscle damage and inflammation in mdx mice. Double knockout animals (Hmox1 -/- mdx) demonstrate impaired exercise capacity in comparison with mdx mice. Interestingly, in contrast to the effect observed in muscle fibers, in dystrophin-deficient muscle satellite cells (SCs) expression of Hmox1 is decreased, while MyoD, myogenin, and miR-206 are upregulated compared with wild-type counterparts. Mdx SCs demonstrate disturbed and enhanced differentiation, which is further intensified by Hmox1 deficiency. RNA sequencing revealed downregulation of Atf3, MafK, Foxo1, and Klf2 transcription factors, known to activate Hmox1 expression, as well as attenuation of nitric oxide-mediated cGMP-dependent signaling in mdx SCs. Accordingly, treatment with NO-donor induces Hmox1 expression and inhibits differentiation. Finally, differentiation of mdx SCs was normalized by CO, a product of HO-1 activity. Innovation and Conclusions: HO-1 is induced in DMD, and HO-1 inhibition aggravates DMD pathology. Therefore, HO-1 can be considered a therapeutic target to alleviate this disease. Antioxid. Redox Signal. 00, 000-000.

  16. Neurotrophin regulation of sodium and calcium channels in human neuroblastoma cells.

    PubMed

    Urbano, F J; Buño, W

    2000-01-01

    Neurotrophins, acting through tyrosine kinase family genes, are essential for neuronal differentiation. The expression of tyrosine kinase family genes is prognostic in neuroblastoma, and neurotrophins reduce proliferation and induce differentiation, indicating that neuroblastomas are regulated by neurotrophins. We tested the effects of nerve growth factor and brain-derived neurotrophic factor on Na(+) and Ca(2+) currents, using the whole-cell patch-clamp technique, in human neuroblastoma NB69 cells. Control cells exhibited a slow tetrodotoxin-resistant (IC(50)=98 nM) Na(+) current and a high-voltage-activated Ca(2+) current. Exposure to nerve growth factor (50 ng/ml) and/or brain-derived neurotrophic factor (5 ng/ml) produced the expression of a fast tetrodotoxin-sensitive (IC(50)=10 nM) Na(+) current after day 3, and suppressed the slow tetrodotoxin-resistant variety. The same type of high-voltage-activated Ca(2+) current was expressed in control and treated cells. The treatment increased the surface density of both Na(+) and Ca(2+) currents with time after plating, from 17 pA/pF at days 3-5 and 1-5 to 34 and 30 pA/pF after days 6-10, respectively. Therefore, both nerve growth factor and brain-derived neurotrophic factor, acting through different receptors of the tyrosine kinase family and also possibly the tumor necrosis factor receptor-II, were able to regulate differentiation and the expression of Na(+) and Ca(2+) channels, partially reproducing the modifications induced by diffusible astroglial factors. We show that neurotrophins induced differentiation to a neuronal phenotype and modified the expression of Na(+) and Ca(2+) currents, partially reproducing the effects of diffusible astroglial factors.

  17. Alcohol-induced suppression of KDM6B dysregulates the mineralization potential in dental pulp stem cells

    PubMed Central

    Hoang, Michael; Kim, Jeffrey J.; Kim, Yiyoung; Tong, Elizabeth; Trammell, Benjamin; Liu, Yao; Shi, Songtao; Lee, Chang-Ryul; Hong, Christine; Wang, Cun-Yu; Kim, Yong

    2016-01-01

    Epigenetic changes, such as alteration of DNA methylation patterns, have been proposed as a molecular mechanism underlying the effect of alcohol on the maintenance of adult stem cells. We have performed genome-wide gene expression microarray and DNA methylome analysis to identify molecular alterations via DNA methylation changes associated with exposure of human dental pulp stem cells (DPSCs) to ethanol (EtOH). By combined analysis of the gene expression and DNA methylation, we have found a significant number of genes that are potentially regulated by EtOH-induced DNA methylation. As a focused approach, we have also performed a pathway-focused RT-PCR array analysis to examine potential molecular effects of EtOH on genes involved in epigenetic chromatin modification enzymes, fibroblastic markers, and stress and toxicity pathways in DPSCs. We have identified and verified that lysine specific demethylase 6B (KDM6B) was significantly dysregulated in DPSCs upon EtOH exposure. EtOH treatment during odontogenic/osteogenic differentiation of DPSCs suppressed the induction of KDM6B with alterations in the expression of differentiation markers. Knockdown of KDM6B resulted in a marked decrease in mineralization from implanted DPSCs in vivo. Furthermore, an ectopic expression of KDM6B in EtOH-treated DPSCs restored the expression of differentiation-related genes. Our study has demonstrated that EtOH-induced inhibition of KDM6B plays a role in the dysregulation of odontogenic/osteogenic differentiation in the DPSC model. This suggests a potential molecular mechanism for cellular insults of heavy alcohol consumption that can lead to decreased mineral deposition potentially associated with abnormalities in dental development and also osteopenia/osteoporosis, hallmark features of fetal alcohol spectrum disorders. PMID:27286573

  18. Comparative Proteomics Analysis Reveals L-Arginine Activates Ethanol Degradation Pathways in HepG2 Cells.

    PubMed

    Yan, Guokai; Lestari, Retno; Long, Baisheng; Fan, Qiwen; Wang, Zhichang; Guo, Xiaozhen; Yu, Jie; Hu, Jun; Yang, Xingya; Chen, Changqing; Liu, Lu; Li, Xiuzhi; Purnomoadi, Agung; Achmadi, Joelal; Yan, Xianghua

    2016-03-17

    L-Arginine (Arg) is a versatile amino acid that plays crucial roles in a wide range of physiological and pathological processes. In this study, to investigate the alteration induced by Arg supplementation in proteome scale, isobaric tags for relative and absolute quantification (iTRAQ) based proteomic approach was employed to comparatively characterize the differentially expressed proteins between Arg deprivation (Ctrl) and Arg supplementation (+Arg) treated human liver hepatocellular carcinoma (HepG2) cells. A total of 21 proteins were identified as differentially expressed proteins and these 21 proteins were all up-regulated by Arg supplementation. Six amino acid metabolism-related proteins, mostly metabolic enzymes, showed differential expressions. Intriguingly, Ingenuity Pathway Analysis (IPA) based pathway analysis suggested that the three ethanol degradation pathways were significantly altered between Ctrl and +Arg. Western blotting and enzymatic activity assays validated that the key enzymes ADH1C, ALDH1A1, and ALDH2, which are mainly involved in ethanol degradation pathways, were highly differentially expressed, and activated between Ctrl and +Arg in HepG2 cells. Furthermore, 10 mM Arg significantly attenuated the cytotoxicity induced by 100 mM ethanol treatment (P < 0.0001). This study is the first time to reveal that Arg activates ethanol degradation pathways in HepG2 cells.

  19. IGF-1 Promotes Brn-4 Expression and Neuronal Differentiation of Neural Stem Cells via the PI3K/Akt Pathway

    PubMed Central

    Zhang, Xinhua; Zhang, Lei; Cheng, Xiang; Guo, Yuxiu; Sun, Xiaohui; Chen, Geng; Li, Haoming; Li, Pengcheng; Lu, Xiaohui; Tian, Meiling; Qin, Jianbing; Zhou, Hui; Jin, Guohua

    2014-01-01

    Our previous studies indicated that transcription factor Brn-4 is upregulated in the surgically denervated hippocampus in vivo, promoting neuronal differentiation of hippocampal neural stem cells (NSCs) in vitro. The molecules mediating Brn-4 upregulation in the denervated hippocampus remain unknown. In this study we examined the levels of insulin-like growth factor-1 (IGF-1) in hippocampus following denervation. Surgical denervation led to a significant increase in IGF-1 expression in vivo. We also report that IGF-1 treatment on NSCs in vitro led to a marked acceleration of Brn-4 expression and cell differentiation down neuronal pathways. The promotion effects were blocked by PI3K-specific inhibitor (LY294002), but not MAPK inhibitor (PD98059); levels of phospho-Akt were increased by IGF-1 treatment. In addition, inhibition of IGF-1 receptor (AG1024) and mTOR (rapamycin) both attenuated the increased expression of Brn-4 induced by IGF-1. Together, the results demonstrated that upregulation of IGF-1 induced by hippocampal denervation injury leads to activation of the PI3K/Akt signaling pathway, which in turn gives rise to upregulation of the Brn-4 and subsequent stem cell differentiation down neuronal pathways. PMID:25474202

  20. Increased adipogenicity of cells from regenerating skeletal muscle.

    PubMed

    Yamanouchi, Keitaro; Yada, Erica; Ishiguro, Naomi; Hosoyama, Tohru; Nishihara, Masugi

    2006-09-10

    Adipose tissue development is observed in some muscle pathologies, however, mechanisms that induce accumulation of this tissue as well as its cellular origin are unknown. The adipogenicity of cells from bupivacaine hydrochloride (BPVC)-treated and untreated muscle was compared in vitro. Culturing cells from both BPVC-treated and untreated muscles in adipogenic differentiation medium (ADM) for 10 days resulted in the appearance of mature adipocytes, but their number was 3.5-fold higher in cells from BPVC-treated muscle. Temporal expressions of PPARgamma and the presence of lipid droplets during adipogenic differentiation were examined. On day 2 of culture in ADM, only cells from BPVC-treated muscle were positive both for PPARgamma and lipid droplets. Pref-1 was expressed in cells from untreated muscle, whereas its expression was absent in cells from BPVC-treated muscle. In ADM, the presence of insulin, which negates an inhibitory effect of Pref-1 on adipogenic differentiation, was required for PPARgamma2 expression in cells from untreated muscle, but not for cells from BPVC-treated muscle. These results indicate that BPVC-induced degenerative/regenerative changes in muscle lead to increased adipogenicity of cells, and suggest that this increased adipogenicity not only involves an increase in the number of cells having adipogenic potential, but also contributes to the progression of these cells toward adipogenic differentiation.

  1. 6-Gingerol Suppresses Adipocyte-Derived Mediators of Inflammation In Vitro and in High-Fat Diet-Induced Obese Zebra Fish.

    PubMed

    Choi, Jia; Kim, Kui-Jin; Kim, Byung-Hak; Koh, Eun-Jeong; Seo, Min-Jung; Lee, Boo-Yong

    2017-02-01

    The present study was performed to investigate the molecular mechanism of 6-gingerol on adipocyte-mediated systemic inflammation in vitro and in high-fat diet-induced obese zebra fish. 6-Gingerol decreased adipogenesis due to the suppression of adipocyte differentiation markers, including peroxisome proliferator-activated receptor gamma, CCAATT enhancer binding protein α , and adipocyte protein 2, and triglyceride synthesis enzymes, including sterol regulatory element-binding protein-1, fatty acid synthase, lysophosphatidic acid acyltransferase, and acyl-coA : diacylglycerol acyltransferase 1, in 3T3-L1. A coculture insert system using 3T3-L1 with RAW 264.7 (coculture insert system using fully differentiated 3T3-L1 cells with RAW 264.7 macrophages) revealed that 6-gingerol increased anti-inflammatory cytokine interleukin-10. The expression of TNF α , monocyte chemotactic protein-1, interleukin-1 β , and interleukin-6 were decreased in the coculture insert system using fully differentiated 3T3-L1 cells with RAW 264.7 macrophages treated with 6-gingerol. Moreover, the coculture insert system using fully differentiated 3T3-L1 cells with RAW 264.7 macrophages treated with 6-gingerol inhibited the protein expression of TNF α and monocyte chemotactic protein-1 in RAW 264.7. 6-Gingerol decreased c-JUN N-terminal kinase and I kappa B kinase beta and its downstream target AP-1 expression in the coculture insert system using fully differentiated 3T3-L1 cells with RAW 264.7 macrophages. Furthermore, 6-gingerol decreased the expression of inducible nitric oxide synthase stimulated by the coculture insert system using fully differentiated 3T3-L1 cells with RAW 264.7 macrophages in RAW 264.7 and attenuated nitric oxide production in diet-induced obese zebra fish. Our results suggest that 6-gingerol suppresses inflammation through the regulation of the c-JUN N-terminal kinase-I kappa B kinase beta and its downstream targets. Georg Thieme Verlag KG Stuttgart · New York.

  2. Differentially Expressed Genes Associated with Low-Dose Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Hegyesi, Hargita; Sándor, Nikolett; Schilling, Boglárka; Kis, Enikő; Lumniczky, Katalin; Sáfrány, Géza

    We have studied low dose radiation induced gene expression alterations in a primary human fibroblast cell line using Agilent's whole human genome microarray. Cells were irradiated with 60Co γ-rays (0; 0.1; 0.5 Gy) and 2 hours later total cellular RNA was isolated. We observed differential regulation of approximately 300-500 genes represented on the microarray. Of these, 126 were differentially expressed at both doses, among them significant elevation of GDF-15 and KITLG was confirmed by qRT-PCR. Based on the transcriptional studies we selected GDF-15 to assess its role in radiation response, since GDF-15 is one of the p53 gene targets and is believed to participate in mediating p53 activities. First we confirmed gamma-radiation induced dose-dependent changes in GDF-15 expression by qRT-PCR. Next we determined the effect of GDF-15 silencing on radiosensitivity. Four GDF-15 targeting shRNA expressing lentiviral vectors were transfected into immortalized human fibroblast cells. We obtained efficient GDF-15 silencing in one of the four constructs. RNA interference inhibited GDF-15 gene expression and enhanced the radiosensitivity of the cells. Our studies proved that GDF-15 plays an essential role in radiation response and may serve as a promising target in radiation therapy.

  3. Klf10 regulates odontoblast differentiation and mineralization via promoting expression of dentin matrix protein 1 and dentin sialophosphoprotein genes

    PubMed Central

    Chen, Zhuo; Li, Wentong; Wang, Han; Wan, Chunyan; Luo, Daoshu; Deng, Shuli

    2016-01-01

    Klf10, a member of the Krüppel-like family of transcription factors, is critical for osteoblast differentiation, bone formation and mineralization. However, whether Klf10 is involved in odontoblastic differentiation and tooth development has not been determined. In this study, we investigate the expression patterns of Klf10 during murine tooth development in vivo and its role in odontoblastic differentiation in vitro. Klf10 protein was expressed in the enamel organ and the underlying mesenchyme, ameloblasts and odontoblasts at early and later stages of murine molar formation. Furthermore, the expression of Klf10, Dmp1, Dspp and Runx2 was significantly elevated during the process of mouse dental papilla mesenchymal differentiation and mineralization. The overexpression of Klf10 induced dental papilla mesenchymal cell differentiation and mineralization as detected by alkaline phosphatase staining and alizarin red S assay. Klf10 additionally up-regulated the expression of odontoblastic differentiation marker genes Dmp1, Dspp and Runx2 in mouse dental papilla mesenchymal cells. The molecular mechanism of Klf10 in controlling Dmp1 and Dspp expression is thus to activate their regulatory regions in a dosage-dependent manner. Our results suggest that Klf10 is involved in tooth development and promotes odontoblastic differentiation via the up-regulation of Dmp1 and Dspp transcription. PMID:26310138

  4. Spatial learning impairment induced by chronic stress is related to individual differences in novelty reactivity: search for neurobiological correlates.

    PubMed

    Touyarot, K; Venero, C; Sandi, C

    2004-02-01

    Although chronic stress has been reported to induce deleterious effects on hippocampal structure and function, the possible existence of individual differences in the vulnerability to develop stress-induced cognitive alterations was hypothesized. This study was designed to evaluate (i) whether individual variability in behavioural reactivity to novelty could be related to a differential vulnerability to show spatial learning deficits after chronic stress in young adult rats, and (ii) to what extent, could individual differences in stress-induced cognitive alterations be related to alterations in specific neurobiological substrates. Four month-old Wistar male rats were classified according to their locomotor reactivity to a novel environment, as either low (LR) or highly (HR) reactive, and then either submitted to psychosocial stress for 21-days (consisting of the daily cohabitation of each young adult rat with a new middle-aged rat) or left undisturbed. The results showed that psychosocial stress induced a marked deficit in spatial learning in the water maze in HR, but not in LR, rats. Then, a second experiment investigated the possible differential expression of corticosteroid receptors (MR and GR) and cell adhesion molecules (NCAM and L1) in the hippocampus of HR and LR rats, both under basal conditions and after exposure to chronic social stress. Although chronic stress induced a reduction on the hippocampal expression of MRs and the NCAM-140 isoform, the levels of these molecules did not differ between stressed rats with and without spatial learning impairments; i.e., between HR- and LR-stressed rats, respectively. Nevertheless, it should be noted that the reduction of the hippocampal expression of NCAM-140 induced by psychosocial stress was particularly marked in HR stressed rats. However, the expression of GRs, NCAM-120 and NCAM-180 isoforms, and L1, was not affected by stress, regardless of the reactivity of the animals. Therefore, although we failed to find a neurobiological substrate that specifically correlated with the differential cognitive vulnerability to chronic stress shown by animals with a different novelty reactivity, this study confirms the hypothesis that rats differ in their susceptibility to display stress-induced impairments in hippocampus-dependent spatial learning tasks. In addition, it provides a model to further search for the neurobiological substrate(s) involved in the differential susceptibility to develop stress-induced cognitive impairments.

  5. Bilobalide induces neuronal differentiation of P19 embryonic carcinoma cells via activating Wnt/β-catenin pathway.

    PubMed

    Liu, Mei; Guo, Jingjing; Wang, Juan; Zhang, Luyong; Pang, Tao; Liao, Hong

    2014-08-01

    Bilobalide, a natural product extracted from Ginkgo biloba leaf, is known to exhibit a number of pharmacological activities. So far, whether it could affect embryonic stem cell differentiation is still unknown. The main aim of this study was to investigate the effect of bilobalide on P19 embryonic carcinoma cells differentiation and the underlying mechanisms. Our results showed that bilobalide induced P19 cells differentiation into neurons in a concentration- and time-dependent manner. We also found that bilobalide promoted neuronal differentiation through activation of Wnt/β-catenin signaling pathway. Exposure to bilobalide increased inactive GSK-3β phosphorylation, further induced the nuclear accumulation of β-catenin, and also up-regulated the expression of Wnt ligands Wnt1 and Wnt7a. Neuronal differentiation induced by bilobalide was totally abolished by XAV939, an inhibitor of Wnt/β-catenin pathway. These results revealed a novel role of bilobalide in neuronal differentiation from P19 embryonic cells acting through Wnt/β-catenin signaling pathway, which would provide a better insight into the beneficial effects of bilobalide in brain diseases.

  6. Expression of root-related transcription factors associated with flooding tolerance of soybean (Glycine max).

    PubMed

    Valliyodan, Babu; Van Toai, Tara T; Alves, Jose Donizeti; de Fátima P Goulart, Patricia; Lee, Jeong Dong; Fritschi, Felix B; Rahman, Mohammed Atiqur; Islam, Rafiq; Shannon, J Grover; Nguyen, Henry T

    2014-09-29

    Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be necessary to reveal their potential to enhance flooding tolerance of soybean cultivars.

  7. Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean (Glycine max)

    PubMed Central

    Valliyodan, Babu; Van Toai, Tara T.; Alves, Jose Donizeti; de Fátima P. Goulart, Patricia; Lee, Jeong Dong; Fritschi, Felix B.; Rahman, Mohammed Atiqur; Islam, Rafiq; Shannon, J. Grover; Nguyen, Henry T.

    2014-01-01

    Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be necessary to reveal their potential to enhance flooding tolerance of soybean cultivars. PMID:25268626

  8. Moringa oleifera Lam. improves lipid metabolism during adipogenic differentiation of human stem cells.

    PubMed

    Barbagallo, I; Vanella, L; Distefano, A; Nicolosi, D; Maravigna, A; Lazzarino, G; Di Rosa, M; Tibullo, D; Acquaviva, R; Li Volti, G

    2016-12-01

    Moringa oleifera Lam., a multipurpose tree, is used traditionally for its nutritional and medicinal properties. It has been used for the treatment of a variety of conditions, including inflammation, cancer and metabolic disorders. We investigated the effect of Moringa oleifera Lam. on adipogenic differentiation of human adipose-derived mesenchymal stem cells and its impact on lipid metabolism and cellular antioxidant systems. We showed that Moringa oleifera Lam. treatment during adipogenic differentiation reduces inflammation, lipid accumulation and induces thermogenesis by activation of uncoupling protein 1 (UCP1), sirtuin 1 (SIRT1), peroxisome proliferator-activated receptor alpha (PPARα), and coactivator 1 alpha (PGC1α). In addition, Moringa oleifera Lam. induces heme oxygenase-1 (HO-1), a well established protective and antioxidant enzyme. Finally Moringa oleifera Lam. significantly decreases the expression of molecules involved in adipogenesis and upregulates the expression of mediators involved in thermogenesis and lipid metabolism. Our results suggest that Moringa oleifera Lam. may promote the brown remodeling of white adipose tissue inducing thermogenesis and improving metabolic homeostasis.

  9. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell and patient-derived tumor organoids

    PubMed Central

    Huang, Ling; Holtzinger, Audrey; Jagan, Ishaan; BeGora, Michael; Lohse, Ines; Ngai, Nicholas; Nostro, Cristina; Wang, Rennian; Muthuswamy, Lakshmi B.; Crawford, Howard C.; Arrowsmith, Cheryl; Kalloger, Steve E.; Renouf, Daniel J.; Connor, Ashton A; Cleary, Sean; Schaeffer, David F.; Roehrl, Michael; Tsao, Ming-Sound; Gallinger, Steven; Keller, Gordon; Muthuswamy, Senthil K.

    2016-01-01

    There are few in vitro models of exocrine pancreas development and primary human pancreatic adenocarcinoma (PDAC). We establish three-dimensional culture conditions to induce the differentiation of human pluripotent stem cells (PSCs) into exocrine progenitor organoids that form ductal and acinar structures in culture and in vivo. Expression of mutant KRAS or TP53 in progenitor organoids induces mutation-specific phenotypes in culture and in vivo. Expression of TP53R175H induced cytosolic SOX9 localization. In patient tumors bearing TP53 mutations, SOX9 was cytoplasmic and associated with mortality. Culture conditions are also defined for clonal generation of tumor organoids from freshly resected PDAC. Tumor organoids maintain the differentiation status, histoarchitecture, phenotypic heterogeneity of the primary tumor, and retain patient-specific physiologic changes including hypoxia, oxygen consumption, epigenetic marks, and differential sensitivity to EZH2 inhibition. Thus, pancreatic progenitor organoids and tumor organoids can be used to model PDAC and for drug screening to identify precision therapy strategies. PMID:26501191

  10. C/EBPβ-LAP*/LAP Expression Is Mediated by RSK/eIF4B-Dependent Signalling and Boosted by Increased Protein Stability in Models of Monocytic Differentiation

    PubMed Central

    Christmann, Martin; Friesenhagen, Judith; Westphal, Andreas; Pietsch, Daniel; Brand, Korbinian

    2015-01-01

    The transcription factor C/EBPβ plays a key role in monocytic differentiation and inflammation. Its small isoform LIP is associated with proliferation at early premonocytic developmental stages and regulated via mTOR-dependent signalling. During later stages of (pre)monocytic differentiation there is a considerable increase in the large C/EBPβ isoforms LAP*/LAP which inhibit proliferation thus supporting terminal differentiation. Here, we showed in different models of monocytic differentiation that this dramatic increase in the LAP*/LAP protein and LAP/LIP ratio was accompanied by an only modest/retarded mRNA increase suggesting an important role for (post)translational mechanisms. We found that LAP*/LAP formation was induced via MEK/RSK-dependent cascades, whereas mTOR/S6K1 were not involved. Remarkably, LAP*/LAP expression was dependent on phosphorylated eIF4B, an acceleratory protein of RNA helicase eIF4A. PKR inhibition reduced the expression of eIF4B and C/EBPβ in an eIF2α-independent manner. Furthermore, under our conditions a marked stabilisation of LAP*/LAP protein occurred, accompanied by reduced chymotrypsin-like proteasome/calpain activities and increased calpastatin levels. Our study elucidates new signalling pathways inducing LAP*/LAP expression and indicates new alternative PKR functions in monocytes. The switch from mTOR- to RSK-mediated signalling to orchestrate eIF4B-dependent LAP*/LAP translation, accompanied by increased protein stability but only small mRNA changes, may be a prototypical example for the regulation of protein expression during selected processes of differentiation/proliferation. PMID:26646662

  11. Skeletal muscle tissue transcriptome differences in lean and obese female beagle dogs.

    PubMed

    Grant, R W; Vester Boler, B M; Ridge, T K; Graves, T K; Swanson, K S

    2013-08-01

    Skeletal muscle is a large and insulin-sensitive tissue that is an important contributor to metabolic homeostasis and energy expenditure. Many metabolic processes are altered with obesity, but the contribution of muscle tissue in this regard is unclear. A limited number of studies have compared skeletal muscle gene expression of lean and obese dogs. Using microarray technology, our objective was to identify genes and functional classes differentially expressed in skeletal muscle of obese (14.6 kg; 8.2 body condition score; 44.5% body fat) vs. lean (8.6 kg; 4.1 body condition score; 22.9% body fat) female beagle adult dogs. Alterations in 77 transcripts was observed in genes pertaining to the functional classes of signaling, transport, protein catabolism and proteolysis, protein modification, development, transcription and apoptosis, cell cycle and differentiation. Genes differentially expressed in obese vs. lean dog skeletal muscle indicate oxidative stress and altered skeletal muscle cell differentiation. Many genes traditionally associated with lipid, protein and carbohydrate metabolism were not altered in obese vs. lean dogs, but genes pertaining to endocannabinoid metabolism, insulin signaling, type II diabetes mellitus and carnitine transport were differentially expressed. The relatively small response of skeletal muscle could indicate that changes are occurring at a post-transcriptional level, that other tissues (e.g., adipose tissue) were buffering skeletal muscle from metabolic dysfunction or that obesity-induced changes in skeletal muscle require a longer period of time and that the length of our study was not sufficient to detect them. Although only a limited number of differentially expressed genes were detected, these results highlight genes and functional classes that may be important in determining the etiology of obesity-induced derangement of skeletal muscle function. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.

  12. Differentially displayed expressed sequence tags in Melipona scutellaris (Hymenoptera, Apidae, Meliponini) development.

    PubMed

    Santana, Flávia A; Nunes, Francis M F; Vieira, Carlos U; Machado, Maria Alice M S; Kerr, Warwick E; Silva, Wilson A; Bonetti, Ana Maria

    2006-03-01

    We have compared gene expression, using the Differential Display Reverse Transcriptase-Polymerase Chain Reaction (DDRT-PCR) technique, by means of mRNA profile in Melipona scutellaris during ontogenetic postembryonic development, in adult worker, and in both Natural and Juvenile Hormone III-induced adult queen. Six, out of the nine ESTs described here, presented differentially expressed in the phases L1 or L2, or even in both of them, suggesting that key mechanisms to the development of Melipona scutellaris are regulated in these stages. The combination HT11G-AP05 revealed in L1 and L2 a product which matches to thioredoxin reductase protein domain in the Clostridium sporogenes, an important protein during cellular oxidoreduction processes. This study represents the first molecular evidence of differential gene expression profiles toward a description of the genetic developmental traits in the genus Melipona.

  13. Estrogen treatment up-regulates female genes but does not suppress all early testicular markers during rainbow trout male-to-female gonadal transdifferentiation.

    PubMed

    Vizziano-Cantonnet, Denise; Baron, Daniel; Mahè, Sophie; Cauty, Chantal; Fostier, Alexis; Guiguen, Yann

    2008-11-01

    In non-mammalian vertebrates, estrogens are key players in ovarian differentiation, but the mechanisms by which they act remain poorly understood. The present study on rainbow trout was designed to investigate whether estrogens trigger the female pathway by activating a group of early female genes (i.e. cyp19a1, foxl2a, foxl2b, fst, bmp4, and fshb) and by repressing early testicular markers (i.e. dmrt1, nr0b1, sox9a1 and sox9a2). Feminization was induced in genetically all-male populations using 17alpha-ethynylestradiol (EE2, 20 mg/kg of food during 2 months). The expression profiles of 100 candidate genes were obtained by real-time RT-PCR and 45 expression profiles displayed a significant differential expression between control populations (males and females) and EE2-treated populations. These expression profiles were grouped in five temporally correlated expression clusters. The estrogen treatment induced most of the early ovarian differentiation genes (foxl2a, foxl2b, fst, bmp4, and fshb) and in particular foxl2a, which was strongly and quickly up-regulated. Simultaneously, Leydig cell genes, involved in androgen synthesis, as well as some Sertoli cell markers (amh, sox9a2) were strongly repressed. However, in contrast to our initial hypothesis, some genes considered as essential for mammalian and fish testis differentiation were not suppressed during the early process of estrogen-induced feminization (dmrt1, nr0b1, sox9a1 and pax2a) and some were even strongly up-regulated (nr0b1, sox9a1and pax2a). In conclusion, estrogens trigger male-to-female transdifferentiation by up-regulating most ovarian specific genes and this up-regulation appears to be crucial for an effective feminization, but estrogens do not concomitantly down-regulate all the testicular differentiation markers.

  14. MLL5, a trithorax homolog, indirectly regulates H3K4 methylation, represses cyclin A2 expression, and promotes myogenic differentiation

    PubMed Central

    Sebastian, Soji; Sreenivas, Prethish; Sambasivan, Ramkumar; Cheedipudi, Sirisha; Kandalla, Prashanth; Pavlath, Grace K.; Dhawan, Jyotsna

    2009-01-01

    Most cells in adult tissues are nondividing. In skeletal muscle, differentiated myofibers have exited the cell cycle permanently, whereas satellite stem cells withdraw transiently, returning to active proliferation to repair damaged myofibers. We have examined the epigenetic mechanisms operating in conditional quiescence by analyzing the function of a predicted chromatin regulator mixed lineage leukemia 5 (MLL5) in a culture model of reversible arrest. MLL5 is induced in quiescent myoblasts and regulates both the cell cycle and differentiation via a hierarchy of chromatin and transcriptional regulators. Knocking down MLL5 delays entry of quiescent myoblasts into S phase, but hastens S-phase completion. Cyclin A2 (CycA) mRNA is no longer restricted to S phase, but is induced throughout G0/G1, with activation of the cell cycle regulated element (CCRE) in the CycA promoter. Overexpressed MLL5 physically associates with the CCRE and impairs its activity. MLL5 also regulates CycA indirectly: Cux, an activator of CycA promoter and S phase is induced in RNAi cells, and Brm/Brg1, CCRE-binding repressors that promote differentiation are repressed. In knockdown cells, H3K4 methylation at the CCRE is reduced, reflecting quantitative global changes in methylation. MLL5 appears to lack intrinsic histone methyl transferase activity, but regulates expression of histone-modifying enzymes LSD1 and SET7/9, suggesting an indirect mechanism. Finally, expression of muscle regulators Pax7, Myf5, and myogenin is impaired in MLL5 knockdown cells, which are profoundly differentiation defective. Collectively, our results suggest that MLL5 plays an integral role in novel chromatin regulatory mechanisms that suppress inappropriate expression of S-phase-promoting genes and maintain expression of determination genes in quiescent cells. PMID:19264965

  15. Induction of endoplasmic reticulum calcium pump expression during early leukemic B cell differentiation.

    PubMed

    Aït Ghezali, Lamia; Arbabian, Atousa; Roudot, Hervé; Brouland, Jean-Philippe; Baran-Marszak, Fanny; Salvaris, Evelyn; Boyd, Andrew; Drexler, Hans G; Enyedi, Agnes; Letestu, Remi; Varin-Blank, Nadine; Papp, Bela

    2017-06-26

    Endoplasmic reticulum (ER) calcium storage and release play important roles in B lymphocyte maturation, survival, antigen-dependent cell activation and immunoglobulin synthesis. Calcium is accumulated in the endoplasmic reticulum (ER) by Sarco/Endoplasmic Reticulum Calcium ATPases (SERCA enzymes). Because lymphocyte function is critically dependent on SERCA activity, it is important to understand qualitative and quantitative changes of SERCA protein expression that occur during B lymphoid differentiation and leukemogenesis. In this work we investigated the modulation of SERCA expression during the pharmacologically induced differentiation of leukemic precursor B lymphoblast cell lines that carry the E2A-PBX1 fusion oncoprotein. Changes of SERCA levels during differentiation were determined and compared to those of established early B lymphoid differentiation markers. SERCA expression of the cells was compared to that of mature B cell lines as well, and the effect of the direct inhibition of SERCA-dependent calcium transport on the differentiation process was investigated. We show that E2A-PBX1 + leukemia cells simultaneously express SERCA2 and SERCA3-type calcium pumps; however, their SERCA3 expression is markedly inferior to that of mature B cells. Activation of protein kinase C enzymes by phorbol ester leads to phenotypic differentiation of the cells, and this is accompanied by the induction of SERCA3 expression. Direct pharmacological inhibition of SERCA-dependent calcium transport during phorbol ester treatment interferes with the differentiation process. These data show that the calcium pump composition of the ER is concurrent with increased SERCA3 expression during the differentiation of precursor B acute lymphoblastic leukemia cells, that a cross-talk exists between SERCA function and the control of differentiation, and that SERCA3 may constitute an interesting new marker for the study of early B cell phenotype.

  16. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination.

    PubMed

    Zhao, Chunnian; Sun, GuoQiang; Li, Shengxiu; Shi, Yanhong

    2009-04-01

    MicroRNAs have been implicated as having important roles in stem cell biology. MicroRNA-9 (miR-9) is expressed specifically in neurogenic areas of the brain and may be involved in neural stem cell self-renewal and differentiation. We showed previously that the nuclear receptor TLX is an essential regulator of neural stem cell self-renewal. Here we show that miR-9 suppresses TLX expression to negatively regulate neural stem cell proliferation and accelerate neural differentiation. Introducing a TLX expression vector that is not prone to miR-9 regulation rescued miR-9-induced proliferation deficiency and inhibited precocious differentiation. In utero electroporation of miR-9 in embryonic brains led to premature differentiation and outward migration of the transfected neural stem cells. Moreover, TLX represses expression of the miR-9 pri-miRNA. By forming a negative regulatory loop with TLX, miR-9 provides a model for controlling the balance between neural stem cell proliferation and differentiation.

  17. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination

    PubMed Central

    Zhao, Chunnian; Sun, GuoQiang; Li, Shengxiu; Shi, Yanhong

    2009-01-01

    Summary MicroRNAs are important players in stem cell biology. Among them, microRNA-9 (miR-9) is expressed specifically in neurogenic areas of the brain. Whether miR-9 plays a role in neural stem cell self-renewal and differentiation is unknown. We showed previously that nuclear receptor TLX is an essential regulator of neural stem cell self-renewal. Here we show that miR-9 suppresses TLX expression to negatively regulate neural stem cell proliferation and accelerate neural differentiation. Introducing a TLX expression vector lacking the miR-9 recognition site rescued miR-9-induced proliferation deficiency and inhibited precocious differentiation. In utero electroporation of miR-9 in embryonic brains led to premature differentiation and outward migration of the transfected neural stem cells. Moreover, TLX represses miR-9 pri-miRNA expression. MiR-9, by forming a negative regulatory loop with TLX, establishes a model for controlling the balance between neural stem cell proliferation and differentiation. PMID:19330006

  18. MiR-132 regulates osteogenic differentiation via downregulating Sirtuin1 in a peroxisome proliferator-activated receptor β/δ–dependent manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Kai; Qu, Bo; Liao, Dongfa

    MicroRNAs (miRNAs) play significant roles in multiple diseases by regulating the expression of their target genes. Type 2 diabetes mellitus (T2DM) is a chronic endocrine and metabolic disease with complex mechanisms. T2DM can result in diabetic osteoporosis (DO), which is characterized by bone loss, decreased bone mineral density and increased bone fractures. The promotion of osteogenic differentiation of osteoblasts is an effective way to treat osteoporosis. In the present study, high glucose (HG) and free fatty acids (FFA) were employed to mimic T2DM in MC3T3-E1 cells. To induce osteogenic differentiation, MC3T3-E1 cells were cultured in osteogenic medium. The results showedmore » that osteogenic differentiation was significantly suppressed by HG and FFA. We found that miR-132 expression was significantly upregulated and much higher in HG-FFA–induced cells than other selected miRNAs, indicating that miR-132 might play an important role in DO. Furthermore, overexpression of miR-132 markedly inhibited the expression of key markers of osteogenic differentiation and alkaline phosphatase (ALP) activity. Reciprocally, inhibition of miR-132 restored osteogenic differentiation, even under treatment with HG-FFA. We also showed that Sirtuin 1 (Sirt1) was one of the target genes of miR-132, whose expression was controlled by miR-132. Ectopic expression of Sirt1 reversed the decrease in osteogenic differentiation caused by miR-132 and HG-FFA. These results demonstrated the direct role of miR-132 in suppressing osteogenic differentiation through downregulating Sirt1. Moreover, we demonstrated that peroxisome proliferator-activated receptor β/δ (PPARβ/δ) was a downstream molecule of Sirt1, and its knockout by PPARβ/δ siRNA significantly abolished the promotive effects of Sirt1 on osteogenic differentiation, indicating that Sirt1 functioned in a PPARβ/δ–dependent manner. Taken together, we provide crucial evidence that miR-132 plays a key role in regulating osteogenic differentiation through Sirt1 in a PPARβ/δ–dependent manner, indicating that miR-132 and Sirt1-PPARβ/δ may act as potential therapeutic targets for T2DM–induced osteoporosis. - Highlights: • MiR-132 participates in regulating osteogenic differentiation of MC3T3-E1 cells. • Sirt1 is a target gene of miR-132. • Sirt1 is the effector of miR-132 in regulating osteogenic differentiation. • MiR-132-Sirt1 regulates osteogenic differentiation in a PPARβ/δ–dependent manner.« less

  19. ONTOGENY OF CHANGES IN FETAL TESTIS GENE EXPRESSION INDUCED IN MALE OFFSPRING AFTER MATERNAL TREATMENT WITH DEHP (DIETHYLHEXYL PHTHALATE)

    EPA Science Inventory

    Phthalate esters are high production volume, ubiquitous environmental chemicals some of which induce reproductive malformations in rats when administered during sexual differentiation. Recently we have shown that malformations in gubernacular ligament development induced by DEHP...

  20. Tissue Inhibitor of Metalloproteinase-2 (TIMP-2) expression is regulated by multiple neural differentiation signals

    PubMed Central

    Jaworski, Diane M.; Pérez-Martínez, Leonor

    2010-01-01

    Neuronal differentiation requires exquisitely timed cell cycle arrest for progenitors to acquire an appropriate neuronal cell fate and is achieved by communication between soluble signals, such as growth factors and extracellular matrix molecules. Here we report that the expression of TIMP-2, a matrix metalloproteinase inhibitor, is up-regulated by signals that control proliferation (bFGF and EGF) and differentiation (retinoic acid and NGF) in neural progenitor and neuroblastoma cell lines. TIMP-2 expression coincides with the appearance of neurofilament-positive neurons, indicating that TIMP-2 may play a role in neurogenesis. The up-regulation of TIMP-2 expression by proliferative signals suggests a role in the transition from proliferation to neuronal differentiation. Live labeling experiments demonstrate TIMP-2 expression only on α3 integrin-positive cells. Thus, TIMP-2 function may be mediated via interaction with integrin receptor(s). We propose that TIMP-2 represents a component of the neurogenic signaling cascade induced by mitogenic stimuli that may withdraw progenitor cells from the cell cycle permitting their terminal neuronal differentiation. PMID:16805810

Top