Sample records for induced draft fans

  1. 25. VIEW TO THE SOUTH OF INDUCED DRAFT FANS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. VIEW TO THE SOUTH OF INDUCED DRAFT FANS ON THE SIXTH FLOOR OF THE CENTRAL BOILER HOUSE. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  2. 46 CFR 58.01-25 - Means of stopping machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... forced-draft and induced-draft fans, fuel-oil transfer pumps, fuel-oil unit and service pumps, and... space concerned so that the fans or pumps may be stopped in case of fire in the compartment in which...

  3. Martins Creek SES 800 MW-Units 3 and 4: design and operating experience with axial flow FD and ID fans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curley, C.C.; Olesen, P.

    1976-09-01

    The Martins Creek SES units 3 and 4 are 820 MW crude oil- or residual oil-fired power units. The forced draft and induced draft fans used in the plants are variable pitch axial flow units. The design, operation, maintenance, and field testing of these fans are discussed. (LCL)

  4. Martins Creek S. E. S. 800-MW Units 3 and 4: design and operating experience with axial-flow FD and ID fans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curley, C.C.; Overas, A.J.

    1976-01-01

    The design and performance of the variable-pitch axial-flow forced-draft and induced-draft fans used in two 820MW generating units at the Martins Creek Power Plant are described. Information is included on fan design; silencers; mechanical and metallurgical testing; insulation; performance testing; start-up and shutdown procedures; and maintenance. (LCL)

  5. 46 CFR 58.01-25 - Means of stopping machinery.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... forced-draft and induced-draft fans, fuel-oil transfer pumps, fuel-oil unit and service pumps, and similar fuel-oil pumps must be fitted with remote controls from a readily accessible position outside the space concerned so that the fans or pumps may be stopped in case of fire in the compartment in which...

  6. 46 CFR 58.01-25 - Means of stopping machinery.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... forced-draft and induced-draft fans, fuel-oil transfer pumps, fuel-oil unit and service pumps, and similar fuel-oil pumps must be fitted with remote controls from a readily accessible position outside the space concerned so that the fans or pumps may be stopped in case of fire in the compartment in which...

  7. 46 CFR 58.01-25 - Means of stopping machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... forced-draft and induced-draft fans, fuel-oil transfer pumps, fuel-oil unit and service pumps, and similar fuel-oil pumps must be fitted with remote controls from a readily accessible position outside the space concerned so that the fans or pumps may be stopped in case of fire in the compartment in which...

  8. 46 CFR 58.01-25 - Means of stopping machinery.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... forced-draft and induced-draft fans, fuel-oil transfer pumps, fuel-oil unit and service pumps, and similar fuel-oil pumps must be fitted with remote controls from a readily accessible position outside the space concerned so that the fans or pumps may be stopped in case of fire in the compartment in which...

  9. Environmental Assessment for Infrastructure Improvements in the Base Developed Area at Eielson Air Force Base, Alaska

    DTIC Science & Technology

    2011-03-01

    utilizing aqueous ammonia used to control nitrogen oxide and dry flue gas desulfurization used to control sulfur dioxide) will be included as part of...blowers; boiler combustion air and forced draft fans; boiler flue gas ; induced draft fans and stacks; as well as extensions of the plant control

  10. Environmental Assessment for Infrastructure Improvements in the Base Developed Area at Eielson Air Force Base, Alaska

    DTIC Science & Technology

    2011-03-01

    aqueous ammonia used to control nitrogen oxide and dry flue gas desulfurization used to control sulfur dioxide) will be included as part of the...boiler combustion air and forced draft fans; boiler flue gas ; induced draft fans and stacks; as well as extensions of the plant control; electrical

  11. 46 CFR 111.103-9 - Machinery stop stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... fan, induced draft fan, blower of an inert gas system, fuel oil transfer pump, fuel oil unit, fuel oil service pump, and any other fuel oil pumps must have a stop control that is outside of the space containing the pump or fan. (b) Each stop control must meet § 111.103-7. ...

  12. 46 CFR 111.103-9 - Machinery stop stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... fan, induced draft fan, blower of an inert gas system, fuel oil transfer pump, fuel oil unit, fuel oil service pump, and any other fuel oil pumps must have a stop control that is outside of the space containing the pump or fan. (b) Each stop control must meet § 111.103-7. ...

  13. 46 CFR 111.103-9 - Machinery stop stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... fan, induced draft fan, blower of an inert gas system, fuel oil transfer pump, fuel oil unit, fuel oil service pump, and any other fuel oil pumps must have a stop control that is outside of the space containing the pump or fan. (b) Each stop control must meet § 111.103-7. ...

  14. 46 CFR 111.103-9 - Machinery stop stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... fan, induced draft fan, blower of an inert gas system, fuel oil transfer pump, fuel oil unit, fuel oil service pump, and any other fuel oil pumps must have a stop control that is outside of the space containing the pump or fan. (b) Each stop control must meet § 111.103-7. ...

  15. 46 CFR 111.103-9 - Machinery stop stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fan, induced draft fan, blower of an inert gas system, fuel oil transfer pump, fuel oil unit, fuel oil service pump, and any other fuel oil pumps must have a stop control that is outside of the space containing the pump or fan. (b) Each stop control must meet § 111.103-7. ...

  16. 46 CFR 61.20-3 - Main and auxiliary machinery and associated equipment, including fluid control systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... control for the means of stopping machinery driving forced and induced draft fans, fuel oil transfer pumps, fuel oil unit pumps, and fans in the ventilation systems serving machinery and cargo spaces shall be...

  17. 92. FORCED DRAFT FAN & BASE OF BOILER SETTINGS SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    92. FORCED DRAFT FAN & BASE OF BOILER SETTINGS SHOWING ASH REMOVAL DOORS. NOTE STOKER LINE SHAFT DRIVE UNDER CEILING. - Lakeview Pumping Station, Clarendon & Montrose Avenues, Chicago, Cook County, IL

  18. 42. BOILER HOUSE FOURTH FLOOR, FORCED DRAFT FANS ABOVE BOILERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. BOILER HOUSE FOURTH FLOOR, FORCED DRAFT FANS ABOVE BOILERS (SEE DRAWING Nos. 10 & 11 OF 13) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  19. Improved motors for utility applications: Volume 6, Squirrel-cage rotor analysis: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffith, J.W.; McCoy, R.M.

    1986-11-01

    An analysis of squirrel cage induction motor rotors was undertaken in response to an Industry Assessment Study finding 10% of motor failures to be rotor related. The analysis focuses on evaluating rotor design life. The evaluation combines state-of-the-art electromagnetic, thermal, and structural solution techniques into an integrated analysis and presents a simple summary. Finite element techniques are central tools in the analysis. The analysis is applied to a specific forced draft fan drive design. Fans as a category of application have a higher failure rate than other categories of power station auxiliary motor applications. Forced-draft fan drives are one ofmore » the major fan drives which accelerate a relatively high value of rotor load inertia. Various starting and operating conditions are studied for this forced-draft fan drive motor including a representative application duty cycle.« less

  20. Caught in the Draft

    ERIC Educational Resources Information Center

    Edge, Ron

    2007-01-01

    We've all seen (in movies, newscasts, or perhaps in person) the violent effect of the downwash that occurs when a helicopter hovers over the ground. Leaves, grass, and debris are dramatically blown about. We've also sat in front of circulating room fans and felt a large draft, whereas there seems to be very little air movement behind the fan. The…

  1. 46 CFR 61.20-3 - Main and auxiliary machinery and associated equipment, including fluid control systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... control for the means of stopping machinery driving forced and induced draft fans, fuel oil transfer pumps..., including fluid control systems. 61.20-3 Section 61.20-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... Equipment § 61.20-3 Main and auxiliary machinery and associated equipment, including fluid control systems...

  2. 46 CFR 61.20-3 - Main and auxiliary machinery and associated equipment, including fluid control systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... control for the means of stopping machinery driving forced and induced draft fans, fuel oil transfer pumps..., including fluid control systems. 61.20-3 Section 61.20-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... Equipment § 61.20-3 Main and auxiliary machinery and associated equipment, including fluid control systems...

  3. 46 CFR 61.20-3 - Main and auxiliary machinery and associated equipment, including fluid control systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... control for the means of stopping machinery driving forced and induced draft fans, fuel oil transfer pumps..., including fluid control systems. 61.20-3 Section 61.20-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... Equipment § 61.20-3 Main and auxiliary machinery and associated equipment, including fluid control systems...

  4. 46 CFR 61.20-3 - Main and auxiliary machinery and associated equipment, including fluid control systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... control for the means of stopping machinery driving forced and induced draft fans, fuel oil transfer pumps..., including fluid control systems. 61.20-3 Section 61.20-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... Equipment § 61.20-3 Main and auxiliary machinery and associated equipment, including fluid control systems...

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Brett C.; Less, Brennan D.; Delp, William W.

    To inform efforts to improve combustion appliance testing in residential energy efficiency programs, we studied the frequency of coincident fan use and depressurization-induced downdrafting and spillage from atmospherically vented (i.e., natural draft) wall furnaces in airtight apartments. Indoor environmental conditions, heating appliance operation, use of exhaust fans, and cooking with stovetop or oven were monitored for approximately three weeks each in 16 apartment units in two buildings in Northern California. Apartments also were assessed using standard combustion appliance safety test methods and enhanced protocols. Monitoring occurred in February and March of 2016, with heating demand corresponding to 7.3 ± 0.5more » heating degree-days at a 65ºF reference temperature. Most of the furnaces spilled combustion products when the apartments were depressurized in the “worst-case” challenge condition of all exhaust fans operating at their highest settings and all windows closed. Many also spilled under less challenging conditions (e.g., with kitchen exhaust fan on low and bathroom fan operating). On average, bathroom exhaust fans were operated 3.9% of monitored minutes (13.5% max), and cooking (burner or kitchen fan operation) occurred 4.6% of minutes (max 13.3%). Event lengths averaged 17 minutes (max 540) and 34 minutes (max 324), respectively. Their coincident operation averaged 0.34% of minutes (max 2.0%), with average event length of 13 minutes (max 92 minutes). This suggests that the operation of apartment units at or near the currently used worst-case challenge condition is quite rare. Wall furnace burners operated an average of 2.8% of minutes (max of 8.9%), with average burner cycle length of 14 minutes (max 162). Coincident bath fan use, cooking and wall furnace operation was very rare, occurring only a handful of times across all apartments. The highest rate was 0.075% of monitored minutes in one apartment, and the longest event length was 12 minutes. Exhaust fan operation in this study may have been more frequent than typical as participants were asked to use an exhaust fan whenever cooking or bathing. Consistent with the low levels of coincident operation, unambiguous spillage occurred in only 4 apartments and the longest event was 5 minutes. The frequency of partial spillage is unknown, owing to a lack of a clear signal from monitored parameters. Downdrafting during exhaust fan use occurred in all 13 of the apartments with relevant data, and 9 of these units had 10 or more events. Exhaust fans also sometimes led to weakened draft, even if downdrafting did not occur. Each unambiguous spillage event identified in the study was immediately preceded by downdrafting. The observed occurrence of downdrafting and spillage may have been impacted in those apartments with the most severe drafting problems (i.e., appliances spilled combustion pollutants under ‘natural’ test conditions), because occupants in these units were instructed to open windows whenever using the kitchen exhaust fan.« less

  6. 76 FR 52972 - United States v. Regal Beloit Corp. and A.O. Smith Corp.; Proposed Final Judgment and Competitive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... magnet technology, thereby allowing the motor to run more efficiently. 15. Motors sold for use in pool...-efficient motors because pool pumps typically run for many hours a day, sometimes even continuously. Pool... and fan blades are among the more difficult design aspects of furnace draft inducers. 51. Furnaces are...

  7. 9 CFR 3.65 - Terminal facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., or air conditioning and may be ventilated or air circulated by means of fans, blowers, or an air conditioning system so as to minimize drafts, odors, and moisture condensation. Auxiliary ventilation, such as exhaust fans and vents or fans or blowers or air conditioning shall be used for any animal holding area...

  8. Evaluation of Resuspension from Propeller Wash in DoD Harbors

    DTIC Science & Technology

    2016-05-01

    RESUSPENSION CHARACTERIZATION ............................................................. 11 5.3 DEEP -DRAFT RESUSPENSION STUDY IN PEARL HARBOR...RESUSPENSION FROM A DEEP -DRAFT VESSEL .............................................. 21 6.4.1 Field Observations Using ADCP...event resulted in validation of the FANS model for prediction of sediment resuspension by a deep draft vessel. While working on the resuspension

  9. Central solar-energy receiver

    DOEpatents

    Not Available

    1981-10-27

    An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan is described. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

  10. Central solar energy receiver

    DOEpatents

    Drost, M. Kevin

    1983-01-01

    An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

  11. Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet) (in Chinese; English)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from themore » furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature, and so on). For furnaces or boilers using an induced-draft (ID) fan, the furnace negative pressure depends on the fan performance and frictional losses between the fan inlet and the point of air leakage. In most cases, it would be necessary to measure or estimate negative pressure at the opening. The amount of air leakage, the heat lost in flue gases, and their effects on increased furnace or boiler fuel consumption can be calculated by using the equations and graphs given in Industrial Furnaces (see W. Trinks et al., below). Note that the actual heat input required to compensate for the heat loss in flue gases due to air leakage would be greater than the heat contained in the air leakage because of the effect of available heat in the furnace. For a high-temperature furnace that is not maintained properly, the fuel consumption increase due to air leakage can be as high as 10% of the fuel input.« less

  12. Caught in the Draft

    NASA Astrophysics Data System (ADS)

    Edge, Ron

    2007-09-01

    We've all seen (in movies, newscasts, or perhaps in person) the violent effect of the downwash that occurs when a helicopter hovers over the ground. Leaves, grass, and debris are dramatically blown about. We've also sat in front of circulating room fans and felt a large draft, whereas there seems to be very little air movement behind the fan. The cause of this is a delightful manifestation of Bernoulli's principle. The fan blades, or helicopter rotor blades, produce a pressure differential as air passes through them—let us say p1 before and p2 after, as shown in Fig. 1, with p2 greater than p1. If p0 is the ambient pressure, Bernoulli's equation gives p0=p1 +(1/2)ρv12, where v1 is the velocity of the air entering the fan. Continuity requires that v2 leaving the fan must equal v1 entering the fan for an incompressible fluid, approximately true here (Av1 = Av2, where A is the area swept out by the blades, the "rotor disk area"). However, some distance below the rotor (or in front of the fan) the velocity is vd (vdowndraft in the figure) and the pressure again p0, so Bernoulli gives us p2 + (1/2)ρv22 = (p1 + Δp) + (1/2) ρv12 = [p1 + (p2 - p1)] +(1/2) ρv12 = p2 + (1/2)ρv12 = p0 + (1/2) ρvd2.

  13. Typical uses of NASTRAN in a petrochemical industry

    NASA Technical Reports Server (NTRS)

    Winter, J. R.

    1978-01-01

    NASTRAN was principally used to perform failure analysis and redesign process equipment. It was also employed in the evaluation of vendor designs and proposed design modifications to existing process equipment. Stress analysis of forced draft fans, distillation trays, metal stacks, jacketed pipes, heat exchangers, large centrifugal fans, and agitator support structures are described.

  14. Database Assessment of Pollution Control in the Military Explosives and Propellants Production Industry.

    DTIC Science & Technology

    1986-02-01

    published by the Electric Power Research Institute (EPRI 1982ab). The status of spray-dryer flue gas desulfurization and the DOWA process developed by...cooled by spray aeration and recirculated to the quencher and scrubber. The gas flow through the system is controlled by an induced draft fan. All...Figure 9.6). The flue gas from the MHF is composed of SO C8,CO,ILRO, CHS and NO . It passes through an after- 2, 2 2 ’ 2 x burner where H S is

  15. A variational multiscale method for particle-cloud tracking in turbomachinery flows

    NASA Astrophysics Data System (ADS)

    Corsini, A.; Rispoli, F.; Sheard, A. G.; Takizawa, K.; Tezduyar, T. E.; Venturini, P.

    2014-11-01

    We present a computational method for simulation of particle-laden flows in turbomachinery. The method is based on a stabilized finite element fluid mechanics formulation and a finite element particle-cloud tracking method. We focus on induced-draft fans used in process industries to extract exhaust gases in the form of a two-phase fluid with a dispersed solid phase. The particle-laden flow causes material wear on the fan blades, degrading their aerodynamic performance, and therefore accurate simulation of the flow would be essential in reliable computational turbomachinery analysis and design. The turbulent-flow nature of the problem is dealt with a Reynolds-Averaged Navier-Stokes model and Streamline-Upwind/Petrov-Galerkin/Pressure-Stabilizing/Petrov-Galerkin stabilization, the particle-cloud trajectories are calculated based on the flow field and closure models for the turbulence-particle interaction, and one-way dependence is assumed between the flow field and particle dynamics. We propose a closure model utilizing the scale separation feature of the variational multiscale method, and compare that to the closure utilizing the eddy viscosity model. We present computations for axial- and centrifugal-fan configurations, and compare the computed data to those obtained from experiments, analytical approaches, and other computational methods.

  16. Acting on Lessons Learned: A NASA Glenn Acoustics Branch Perspective

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    2008-01-01

    Lessons learned from the International Space Station have indicated that early attention to acoustics will be key to achieving safer, more productive environments for new long duration missions. Fans are known to be dominant noise sources, and reducing fan noise poses challenges for fan manufacturers and systems engineers. The NASA Glenn Acoustics Branch has considered ways in which expertise and capabilities traditionally used to understand and mitigate aircraft engine noise can be used to address small fan noise issues in Exploration and Information Technology applications. Many could benefit if NASA can capture what is known about small fan aero and acoustic performance in a "Guide for the Design, Selection, and Installation of Fans for Spaceflight Applications." A draft outline for this document will be offered as a useful starting point for brainstorming ideas for the various smaller, near-term research projects that would need to be addressed first.

  17. 9 CFR 3.76 - Indoor housing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... provide for their health and well-being and to minimize odors, drafts, ammonia levels, and moisture condensation. Ventilation must be provided by windows, doors, vents, fans, or air conditioning. Auxiliary...

  18. 9 CFR 3.126 - Facilities, indoor.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., vents, fans, or air-conditioning and shall be ventilated so as to minimize drafts, odors, and moisture condensation. (c) Lighting. Indoor housing facilities shall have ample lighting, by natural or artificial means...

  19. 43. BOILER HOUSE FOURTH FLOOR, CLOSER VIEW OF STACKS, FORCED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. BOILER HOUSE FOURTH FLOOR, CLOSER VIEW OF STACKS, FORCED DRAFT FANS, AND COAL BUNKER - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  20. 32. VIEW OF BASEMENT BELOW BOILER 904 LOOKING SOUTHEAST AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. VIEW OF BASEMENT BELOW BOILER 904 LOOKING SOUTHEAST AT TURBINE DRIVEN FORCED DRAFT FAN FOR BOILER 904. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  1. Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter ...

    EPA Pesticide Factsheets

    This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10% and 30% moisture content on a wet basis) in a forced-draft fan stove, and (iv) wood in a natural-draft rocket cookstove. LPG combustion had the highest thermal efficiency (~57%) and the lowest PAH emissions per unit fuel energy, resulting in the lowest PAH emissions per useful energy delivered (MJd). The average benzo[a]pyrene (B[a]P) emission factor for LPG was 0.842 µg/MJd; the emission rate was 0.043 µg/min. The highest PAH emissions were from wood burning in the natural-draft stove (209-700 µg B[a]P/MJd). PAH emissions from kerosene were significantly lower than those from the wood burning in the natural-draft cookstove, but higher than those from LPG. It is expected that in rural regions where LPG and kerosene are unavailable or unaffordable, the forced-draft fan stove may be an alternative because its emission factor (5.17-8.07 µg B[a]P/MJd) and emission rate (0.52-0.57 µg/min) are similar to kerosene (5.36 µg B[a]P/MJd and 0.45 µg/min). Compared with wood combustion emissions, LPG stoves emit less total PAH emissions and less fractions of high molecular weight PAHs. Relatively large variations in PAH emissions from LPG call for additional future tests to identify the major

  2. 44. BOILER HOUSE FOURTH FLOOR, GENERAL VIEW OF BASE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. BOILER HOUSE FOURTH FLOOR, GENERAL VIEW OF BASE OF STACKS, FORCED DRAFT FANS, AND COAL BUNKER LOOKING TO COAL BUNKER - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  3. Fundamental Combustion Characteristics of Sewage Sludge in Fluidized Bed Incinerator with Turbocharger

    NASA Astrophysics Data System (ADS)

    Murakami, Takahiro; Suzuki, Yoshizo; Nagasawa, Hidekazu; Yamamoto, Takafumi; Koseki, Takami; Hirose, Hitoshi; Ochi, Shuichi

    An epoch-making incineration plant, which is equipped with a pressurized fluidized-bed combustor coupled to a turbocharger, for the recovery of the energy contained in sewage sludge is proposed. This plant has three main advantages. (1) A pressure vessel is unnecessary because the maximum operating pressure is 0.3 MPa (absolute pressure). The material cost for plant construction can be reduced. (2) CO2 emissions originating from power generation can be decreased because the FDF (Forced Draft Fan) and the IDF (Induced Draft Fan) are omitted. (3) Steam in the flue gas becomes a working fluid of the turbocharger, so that in addition to the combustion air, the surplus air is also generable. Therefore, this proposed plant will not only save energy but also the generate energy. The objective of this study is to elucidate the fundamental combustion characteristics of the sewage sludge using a lab-scale pressurized fluidized bed combustor (PFBC). The tested fuels are de-watered sludge and sawdust. The temperature distribution in the furnace and N2O emissions in the flue gas are experimentally clarified. As the results, for sludge only combustion, the temperature in the sand bed decreases by drying and pyrolysis, and the pyrolysis gas burns in the freeboard so that the temperature rises. On the other hand, the residual char of sawdust after pyrolysis burns stably in the sand bed for the co-firing of sludge and sawdust. Thus the temperature of the co-firing is considerably higher than that of the sludge only combustion. N2O emissions decreases with increasing freeboard temperature, and are controlled by the temperature for all experimental conditions. These data can be utilize to operation the demonstration plant.

  4. Solar tower enhanced natural draft dry cooling tower

    NASA Astrophysics Data System (ADS)

    Yang, Huiqiang; Xu, Yan; Acosta-Iborra, Alberto; Santana, Domingo

    2017-06-01

    Concentrating Solar Power (CSP) plants are located in desert areas where the Direct Normal Irradiance (DNI) value is very high. Since water resource is scarcely available, mechanical draft cooing technology is commonly used, with power consumption of mechanical fans being approximately 2% of the total power generated. Today, there is only one solar power plant (Khi Solar One in South Africa) uses a condenser installed in a Natural Draft Cooling (NDC) tower that avoids the windage loss of water occurring in wet cooling towers. Although, Khi Solar One is a cavity receiver power tower, the receivers can be hung onto the NDC tower. This paper looks at a novel integration of a NDC tower into an external molten salt receiver of a solar power plant, which is one of a largest commercial molten salt tower in China, with 100MWe power capacity. In this configuration study, the NDC tower surrounds the concrete tower of the receiver concentrically. In this way, the receiver concrete tower is the central support of the NDC tower, which consists of cable networks that are fixed to the concrete tower and suspended at a certain height over the floor. The cable networks support the shell of the NDC tower. To perform a preliminary analysis of the behavior of this novel configuration, two cases of numerical simulation in three dimensional (3D) models have been solved using the commercial Computational Fluid Dynamics (CFD) code, ANSYS Fluent 6.3. The results show that the integration of the NDC tower into an external central receiver tower is feasible. Additionally, the total heat transfer rate is not reduced but slightly increases when the molten salt receiver is in operation because of the additional natural draft induced by the high temperature of the receiver.

  5. The Crisis Posting: Scenarios for Class Discussion and Creation

    ERIC Educational Resources Information Center

    Jebb, John F.

    2005-01-01

    For years, the author has been a fan of assigning students in business communication classes to draft messages that explained complex decisions or situations. The assignment is the author's variation of the negative or bad news message. This traditional genre has generated a new Web-based method by which people and organizations respond to public…

  6. Silica dust exposures during selected construction activities.

    PubMed

    Flanagan, Mary Ellen; Seixas, Noah; Majar, Maria; Camp, Janice; Morgan, Michael

    2003-01-01

    This study characterized exposure for dust-producing construction tasks. Eight common construction tasks were evaluated for quartz and respirable dust exposure by collecting 113 personal task period samples for cleanup; demolition with handheld tools; concrete cutting; concrete mixing; tuck-point grinding; surface grinding; sacking and patching concrete; and concrete floor sanding using both time-integrating filter samples and direct-reading respirable dust monitors. The geometric mean quartz concentration was 0.10 mg/m(3) (geometric standard deviation [GSD]=4.88) for all run time samples, with 71% exceeding the threshold limit value. Activities with the highest exposures were surface grinding, tuck-point grinding, and concrete demolition (GM[GSD] of 0.63[4.12], 0.22[1.94], and 0.10[2.60], respectively). Factors recorded each minute were task, tool, work area, respiratory protection and controls used, estimated cross draft, and whether anyone nearby was making dust. Factors important to exposure included tool used, work area configuration, controls employed, cross draft, and in some cases nearby dust. More protective respirators were employed as quartz concentration increased, although respiratory protection was found to be inadequate for 42% of exposures. Controls were employed for only 12% of samples. Exposures were reduced with three controls: box fan for surface grinding and floor sanding, and vacuum/shroud for surface grinding, with reductions of 57, 50, and 71%, respectively. Exposures were higher for sweeping compound, box fan for cleanup, ducted fan dilution, and wetted substrate. Construction masons and laborers are frequently overexposed to silica. The usual protection method, respirators, was not always adequate, and engineering control use was infrequent and often ineffective.

  7. Performance of a Retrofitted Multicyclone for PM2.5 Emission Control

    NASA Astrophysics Data System (ADS)

    Dewika, M.; Rashid, M.; Ammar, M. R.

    2018-03-01

    This paper presents on the performance of a retrofitted multicyclone system, which aims to increase the collection efficiency of PM2.5 (i.e. particulate size fraction ≤ 2.5 μm) emission. The multicyclone was retrofitted by extracting 15% and 20% of the total volumetric air flow rate at the dust hopper of the unit using an additional Induced Draft Fan. The total collection efficiency with and without the extraction was measured at various air volumetric flow rates and particulate mass inlet concentration. The results showed that there was a reduction of 12% to 54% depending on the inlet concentration of PM2.5 emission in the stack with compared to without extraction increasing the collection efficiency of the retrofitted multicyclone. The finding suggests that a simple technique of applying gas extraction at the dust hopper of a multicyclone as reported in this study able to increase the overall performance in fine particulate collection.

  8. Would a Draft Save the Navy Money? A New Look.

    DTIC Science & Technology

    1983-07-01

    incentives to meet stipulated manning objectives (52,200 4YO accessions annually of whom 70 percent m be HSDGs). (4) 70 percent of draft-induced accessions...savings by as much as two- thirds at any given percentage of 4YO accessions who are draft -induced. Recall that in these calculations we assume: (a) a...percent for each percent of 4YO accession require- ments who are draft induced. Yet only about 60 percent of the Navy’s total annual HSDG accession

  9. Effect on fan flow characteristics of length and axial location of a cascade thrust reverser

    NASA Technical Reports Server (NTRS)

    Dietrich, D. A.

    1975-01-01

    A series of static tests were conducted on a model fan with a diameter of 14.0 cm to determine the fan operating characteristics, the inlet static pressure contours, the fan-exit total and static pressure contours, and the fan-exit pressure distortion parameters associated with the installation of a partial-circumferential-emission cascade thrust reverser. The tests variables included the cascade axial length, the axial location of the reverser, and the type of fan inlet. It was shown that significant total and static pressure distortions were produced in the fan aft duct, and that some configurations induced a static pressure distortion at the fan face. The amount of flow passed by the fan and the level of the flow distortions were dependent upon all the variables tested.

  10. Flow characteristics and spillage mechanisms of wall-mounted and jet-isolated range hoods subject to influence from cross draft.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Peng, Kuan-Lin

    2012-01-01

    The effects of draft on the flow and spillage characteristics of wall-mounted and jet-isolated range hoods were investigated. A specially designed draft generator that could supply low-swirl air current was used to provide "cross draft" from three directions, lateral (θ = 0(o)), oblique (θ = 45(o)), and front (θ = 90(o)), with respect to the center point of the range hoods. Flow characteristics of oil mist were inspected through visualization of smoke flows with light scattering (laser light sheet-assisted visualization of smoke flow). The leakage mechanisms, which were closely related to the flow features, were studied by examining both movies and still pictures showing smoke-flow evolution. The sulfur hexafluoride tracer gas concentration detection method was employed to measure the capture indices. The results showed that the lateral draft pushed the pollutants generated under the hood in the opposite direction and induced serious spillage. The oblique draft pushed the pollutants toward both the rear wall and opposite side and induced more serious spillage than did the lateral draft. The frontal draft forced the pollutants to bifurcate into streams moving toward the left and the right, and induced the most serious pollutant spillage among the three tested drafts. Pollutant spillage became critically significant as the cross draft velocity was increased to greater than 0.2 m/sec. Spillage of pollutants increased as the velocity of the cross draft was increased. Increasing the suction flow rate of the range hood may increase resistance to the draft, but the benefits were limited at draft velocities greater than 0.2 m/sec. Both range hoods had a similarly low capture index under the influence of the lateral draft. For the oblique and frontal drafts, the jet-isolated range hood demonstrated a higher capture index than did the wall-mounted range hood.

  11. NATO Allied Medical Publication 7.5 Study Draft 3 (AMedP 7.5 SD.3), NATO Planning Guide for the Estimation of CBRN Casualties

    DTIC Science & Technology

    2015-12-01

    Requirements Office for CBRN Defense ( J -8, JRO). The publication of this IDA document does not indicate endorsement by the Department of Defense, nor should...Personnel Carrier (APC) 36 Stationary Vehicle – Open Windows, Fan on Fresh Air Truck/Van 40 * Adapted from J . H. Park et al., “Measurement of Air Exchange...appropriately. The following sub-points use the following construct: effects of severity k result from challenge type A, and effects of severity j result

  12. Structural insights into 5‧ flap DNA unwinding and incision by the human FAN1 dimer

    NASA Astrophysics Data System (ADS)

    Zhao, Qi; Xue, Xiaoyu; Longerich, Simonne; Sung, Patrick; Xiong, Yong

    2014-12-01

    Human FANCD2-associated nuclease 1 (FAN1) is a DNA structure-specific nuclease involved in the processing of DNA interstrand crosslinks (ICLs). FAN1 maintains genomic stability and prevents tissue decline in multiple organs, yet it confers ICL-induced anti-cancer drug resistance in several cancer subtypes. Here we report three crystal structures of human FAN1 in complex with a 5‧ flap DNA substrate, showing that two FAN1 molecules form a head-to-tail dimer to locate the lesion, orient the DNA and unwind a 5‧ flap for subsequent incision. Biochemical experiments further validate our model for FAN1 action, as structure-informed mutations that disrupt protein dimerization, substrate orientation or flap unwinding impair the structure-specific nuclease activity. Our work elucidates essential aspects of FAN1-DNA lesion recognition and a unique mechanism of incision. These structural insights shed light on the cellular mechanisms underlying organ degeneration protection and cancer drug resistance mediated by FAN1.

  13. Development of a nitrogen-doped 2D material for tribological applications in the boundary-lubrication regime.

    PubMed

    Chandrabhan, Shende Rashmi; Jayan, Velayudhanpillai; Parihar, Somendra Singh; Ramaprabhu, Sundara

    2017-01-01

    The present paper describes a facile synthesis method for nitrogen-doped reduced graphene oxide (N-rGO) and the application of N-rGO as an effective additive for improving the tribological properties of base oil. N-rGO has been characterized by different characterization techniques such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. N-rGO-based nanolubricants are prepared and their tribological properties are studied using a four-ball tester. The nanolubricants show excellent stability over a period of six months and a significant decrease in coefficient of friction (25%) for small amounts of N-rGO (3 mg/L). The improvement in tribological properties can be attributed to the sliding mechanism of N-rGO accompanied by the high mechanical strength of graphene. Further, the nanolubricant is prepared at large scale (700 liter) and field trials are carried out at one NTPC thermal plant in India. The implementation of the nanolubricant in an induced draft (ID) fan results in the remarkable decrease in the power consumption.

  14. Lymphohematopoietic Cancers Induced by Chemicals and Other Agents: Overview and Implications for Risk Assessment (External Review Draft)

    EPA Science Inventory

    This draft report provides an overview of the types of mechanisms underlying the lymphohematopoietic cancers induced by chemical agents and radiation in humans, with a primary emphasis on leukemia and leukemia-inducing agents. It focuses on how mechanistic information on human l...

  15. The Aerodynamic Performance of an Over-the-Rotor Liner With Circumferential Grooves on a High Bypass Ratio Turbofan Rotor

    NASA Technical Reports Server (NTRS)

    Bozak, Richard F.; Hughes, Christopher E.; Buckley, James

    2013-01-01

    While liners have been utilized throughout turbofan ducts to attenuate fan noise, additional attenuation is obtainable by placing an acoustic liner over-the-rotor. Previous experiments have shown significant fan performance losses when acoustic liners are installed over-the-rotor. The fan blades induce an oscillating flow in the acoustic liners which results in a performance loss near the blade tip. An over-the-rotor liner was designed with circumferential grooves between the fan blade tips and the acoustic liner to reduce the oscillating flow in the acoustic liner. An experiment was conducted in the W-8 Single-Stage Axial Compressor Facility at NASA Glenn Research Center on a 1.5 pressure ratio fan to evaluate the impact of this over-the-rotor treatment design on fan aerodynamic performance. The addition of a circumferentially grooved over-the-rotor design between the fan blades and the acoustic liner reduced the performance loss, in terms of fan adiabatic efficiency, to less than 1 percent which is within the repeatability of this experiment.

  16. The Aerodynamic Performance of an Over-The-Rotor Liner with Circumferential Grooves on a High Bypass Ratio Turbofan Rotor

    NASA Technical Reports Server (NTRS)

    Bozak, Rick; Hughes, Christopher; Buckley, James

    2013-01-01

    While liners have been utilized throughout turbofan ducts to attenuate fan noise, additional attenuation is obtainable by placing an acoustic liner over-the-rotor. Previous experiments have shown significant fan performance losses when acoustic liners are installed over-the-rotor. The fan blades induce an oscillating flow in the acoustic liners which results in a performance loss near the blade tip. An over-the-rotor liner was designed with circumferential grooves between the fan blade tips and the acoustic liner to reduce the oscillating flow in the acoustic liner. An experiment was conducted in the W-8 Single-Stage Axial Compressor Facility at NASA Glenn Research Center on a 1.5 pressure ratio fan to evaluate the impact of this over-the-rotor treatment design on fan aerodynamic performance. The addition of a circumferentially grooved over-the-rotor design between the fan blades and the acoustic liner reduced the performance loss, in terms of fan adiabatic efficiency, to less than 1% which is within the repeatability of this experiment.

  17. Structural Integrity Evaluation of the Lear Fan 2100 Aircraft

    NASA Technical Reports Server (NTRS)

    Kan, H. P.; Dyer, T. A.

    1996-01-01

    An in-situ nondestructive inspection was conducted to detect manufacturing and assembly induced defects in the upper two wing surfaces (skin s) and upper fuselage skin of the Lear Fan 2100 aircraft E009. The effects of the defects, detected during the inspection, on the integrity of the structure was analytically evaluated. A systematic evaluation was also conducted to determine the damage tolerance capability of the upper wing skin against impact threats and assembly induced damage. The upper wing skin was divided into small regions for damage tolerance evaluations. Structural reliability, margin of safety, allowable strains, and allowable damage size were computed. The results indicated that the impact damage threat imposed on composite military aircraft structures is too severe for the Lear Fan 2100 upper wing skin. However, the structural integrity is not significantly degraded by the assembly induced damage for properly assembled structures, such as the E009 aircraft.

  18. Development and maintenance of a telescoping debris flow fan in response to human-induced fan surface channelization, Chalk Creek Valley Natural Debris Flow Laboratory, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Wasklewicz, T.; Scheinert, C.

    2016-01-01

    Channel change has been a constant theme throughout William L. Graf's research career. Graf's work has examined channel changes in the context of natural environmental fluctuations, but more often has focused on quantifying channel change in the context of anthropogenic modifications. Here, we consider how channelization of a debris flows along a bajada has perpetuated and sustained the development of 'telescoping' alluvial fan. Two-dimensional debris-flow modeling shows the importance of the deeply entrenched channelized flow in the development of a telescoping alluvial fan. GIS analyses of repeat (five different debris flows), high-resolution (5 cm) digital elevation models (DEMs) generated from repeat terrestrial laser scanning (TLS) data elucidate sediment and topographic dynamics of the new telescoping portion of the alluvial fan (the embryonic fan). Flow constriction from channelization helps to perpetuate debris-flow runout and to maintain the embryonic fan and telescoping nature of the alluvial fan complex. Embryonic fan development, in response to five debris flows, proceeds with a major portion of the flows depositing on the southern portion of the embryonic fan. The third through the fifth debris flows also begin to shift some deposition to the northern portion of the embryonic. The transfer of sediment from a higher portion of the embryonic fan to a lower portion continues currently on the embryonic fan. While channelized flow has been shown to be critical to the maintenance of the telescoping fan, the flow constriction has led to higher than background levels of sediment deposition in Chalk Creek, a tributary of the Arkansas River. A majority of the sediment from each debris flow is incorporated into Chalk Creek as opposed to being stored on the embryonic fan.

  19. Factor Associated with Neutral Sphingomyelinase Activity Mediates Navigational Capacity of Leukocytes Responding to Wounds and Infection: Live Imaging Studies in Zebrafish Larvae

    PubMed Central

    Boecke, Alexandra; Sieger, Dirk; Neacsu, Cristian Dan; Kashkar, Hamid

    2012-01-01

    Factor associated with neutral sphingomyelinase activity (FAN) is an adaptor protein that specifically binds to the p55 receptor for TNF (TNF-RI). Our previous investigations demonstrated that FAN plays a role in TNF-induced actin reorganization by connecting the plasma membrane with actin cytoskeleton, suggesting that FAN may impact on cellular motility in response to TNF and in the context of immune inflammatory conditions. In this study, we used the translucent zebrafish larvae for in vivo analysis of leukocyte migration after morpholino knockdown of FAN. FAN-deficient zebrafish leukocytes were impaired in their migration toward tail fin wounds, leading to a reduced number of cells reaching the wound. Furthermore, FAN-deficient leukocytes show an impaired response to bacterial infections, suggesting that FAN is generally required for the directed chemotactic response of immune cells independent of the nature of the stimulus. Cell-tracking analysis up to 3 h after injury revealed that the reduced number of leukocytes is not due to a reduction in random motility or speed of movement. Leukocytes from FAN-deficient embryos protrude pseudopodia in all directions instead of having one clear leading edge. Our results suggest that FAN-deficient leukocytes exhibit an impaired navigational capacity, leading to a disrupted chemotactic response. PMID:22802420

  20. Fan and wing force data from wind tunnel investigation of a 0.38 meter (15 inch) diameter VTOL model lift fan installed in a two dimensional wing

    NASA Technical Reports Server (NTRS)

    Yuska, J. A.; Diedrich, J. H.

    1972-01-01

    Test data are presented for a 38-cm (15-in.) diameter, 1.28 pressure ratio model VTOL lift fan installed in a two-dimensional wing and tested in a 2.74-by 4.58-meter (9-by 15-ft)V/STOL wind tunnel. Tests were run with and without exit louvers over a wide range of crossflow velocities and wing angle of attack. Tests were also performed with annular-inlet vanes, inlet bell-mouth surface disconuities, and fences to induce fan windmilling. Data are presented on the axial force of the fan assembly and overall wing forces and moments as measured on force balances for various static and crossflow test conditions. Midspan wing surface pressure coefficient data are also given.

  1. Centrifugal fans: Similarity, scaling laws, and fan performance

    NASA Astrophysics Data System (ADS)

    Sardar, Asad Mohammad

    Centrifugal fans are rotodynamic machines used for moving air continuously against moderate pressures through ventilation and air conditioning systems. There are five major topics presented in this thesis: (1) analysis of the fan scaling laws and consequences of dynamic similarity on modelling; (2) detailed flow visualization studies (in water) covering the flow path starting at the fan blade exit to the evaporator core of an actual HVAC fan scroll-diffuser module; (3) mean velocity and turbulence intensity measurements (flow field studies) at the inlet and outlet of large scale blower; (4) fan installation effects on overall fan performance and evaluation of fan testing methods; (5) two point coherence and spectral measurements conducted on an actual HVAC fan module for flow structure identification of possible aeroacoustic noise sources. A major objective of the study was to identity flow structures within the HVAC module that are responsible for noise and in particular "rumble noise" generation. Possible mechanisms for the generation of flow induced noise in the automotive HVAC fan module are also investigated. It is demonstrated that different modes of HVAC operation represent very different internal flow characteristics. This has implications on both fan HVAC airflow performance and noise characteristics. It is demonstrated from principles of complete dynamic similarity that fan scaling laws require that Reynolds, number matching is a necessary condition for developing scale model fans or fan test facilities. The physical basis for the fan scaling laws derived was established from both pure dimensional analysis and also from the fundamental equations of fluid motion. Fan performance was measured in a three times scale model (large scale blower) in air of an actual forward curved automotive HVAC blower. Different fan testing methods (based on AMCA fan test codes) were compared on the basis of static pressure measurements. Also, the flow through an actual HVAC fan-impeller/diffuser section in water was observed with a flow visualization technique using a shear-thickening dye (in addition to a conventional dye). Full dynamic similarity was maintained between RVAC operation in water as when operated in air. Recommendations are provided both for further investigation of critical flow regions with more sophisticated measurement methods and for improved fan-scroll design to reduce possible aeroacoustic noise with improved aerodynamic performance.

  2. Radiation-induced refraction artifacts in the optical CT readout of polymer gel dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Warren G.; Jirasek, Andrew, E-mail: jirasek@uvic.ca; Wells, Derek M.

    2014-11-01

    Purpose: The objective of this work is to demonstrate imaging artifacts that can occur during the optical computed tomography (CT) scanning of polymer gel dosimeters due to radiation-induced refractive index (RI) changes in polyacrylamide gels. Methods: A 1 L cylindrical polyacrylamide gel dosimeter was irradiated with 3 × 3 cm{sup 2} square beams of 6 MV photons. A prototype fan-beam optical CT scanner was used to image the dosimeter. Investigative optical CT scans were performed to examine two types of rayline bending: (i) bending within the plane of the fan-beam and (ii) bending out the plane of the fan-beam. Tomore » address structured errors, an iterative Savitzky–Golay (ISG) filtering routine was designed to filter 2D projections in sinogram space. For comparison, 2D projections were alternatively filtered using an adaptive-mean (AM) filter. Results: In-plane rayline bending was most notably observed in optical CT projections where rays of the fan-beam confronted a sustained dose gradient that was perpendicular to their trajectory but within the fan-beam plane. These errors caused distinct streaking artifacts in image reconstructions due to the refraction of higher intensity rays toward more opaque regions of the dosimeter. Out-of-plane rayline bending was observed in slices of the dosimeter that featured dose gradients perpendicular to the plane of the fan-beam. These errors caused widespread, severe overestimations of dose in image reconstructions due to the higher-than-actual opacity that is perceived by the scanner when light is bent off of the detector array. The ISG filtering routine outperformed AM filtering for both in-plane and out-of-plane rayline errors caused by radiation-induced RI changes. For in-plane rayline errors, streaks in an irradiated region (>7 Gy) were as high as 49% for unfiltered data, 14% for AM, and 6% for ISG. For out-of-plane rayline errors, overestimations of dose in a low-dose region (∼50 cGy) were as high as 13 Gy for unfiltered data, 10 Gy for AM, and 3.1 Gy for ISG. The ISG routine also addressed unrelated artifacts that previously needed to be manually removed in sinogram space. However, the ISG routine blurred reconstructions, causing losses in spatial resolution of ∼5 mm in the plane of the fan-beam and ∼8 mm perpendicular to the fan-beam. Conclusions: This paper reveals a new category of imaging artifacts that can affect the optical CT readout of polyacrylamide gel dosimeters. Investigative scans show that radiation-induced RI changes can cause significant rayline errors when rays confront a prolonged dose gradient that runs perpendicular to their trajectory. In fan-beam optical CT, these errors manifested in two ways: (1) distinct streaking artifacts caused by in-plane rayline bending and (2) severe overestimations of opacity caused by rays bending out of the fan-beam plane and missing the detector array. Although the ISG filtering routine mitigated these errors better than an adaptive-mean filtering routine, it caused unacceptable losses in spatial resolution.« less

  3. Radiation-induced refraction artifacts in the optical CT readout of polymer gel dosimeters.

    PubMed

    Campbell, Warren G; Wells, Derek M; Jirasek, Andrew

    2014-11-01

    The objective of this work is to demonstrate imaging artifacts that can occur during the optical computed tomography (CT) scanning of polymer gel dosimeters due to radiation-induced refractive index (RI) changes in polyacrylamide gels. A 1 L cylindrical polyacrylamide gel dosimeter was irradiated with 3 × 3 cm(2) square beams of 6 MV photons. A prototype fan-beam optical CT scanner was used to image the dosimeter. Investigative optical CT scans were performed to examine two types of rayline bending: (i) bending within the plane of the fan-beam and (ii) bending out the plane of the fan-beam. To address structured errors, an iterative Savitzky-Golay (ISG) filtering routine was designed to filter 2D projections in sinogram space. For comparison, 2D projections were alternatively filtered using an adaptive-mean (AM) filter. In-plane rayline bending was most notably observed in optical CT projections where rays of the fan-beam confronted a sustained dose gradient that was perpendicular to their trajectory but within the fan-beam plane. These errors caused distinct streaking artifacts in image reconstructions due to the refraction of higher intensity rays toward more opaque regions of the dosimeter. Out-of-plane rayline bending was observed in slices of the dosimeter that featured dose gradients perpendicular to the plane of the fan-beam. These errors caused widespread, severe overestimations of dose in image reconstructions due to the higher-than-actual opacity that is perceived by the scanner when light is bent off of the detector array. The ISG filtering routine outperformed AM filtering for both in-plane and out-of-plane rayline errors caused by radiation-induced RI changes. For in-plane rayline errors, streaks in an irradiated region (>7 Gy) were as high as 49% for unfiltered data, 14% for AM, and 6% for ISG. For out-of-plane rayline errors, overestimations of dose in a low-dose region (∼50 cGy) were as high as 13 Gy for unfiltered data, 10 Gy for AM, and 3.1 Gy for ISG. The ISG routine also addressed unrelated artifacts that previously needed to be manually removed in sinogram space. However, the ISG routine blurred reconstructions, causing losses in spatial resolution of ∼5 mm in the plane of the fan-beam and ∼8 mm perpendicular to the fan-beam. This paper reveals a new category of imaging artifacts that can affect the optical CT readout of polyacrylamide gel dosimeters. Investigative scans show that radiation-induced RI changes can cause significant rayline errors when rays confront a prolonged dose gradient that runs perpendicular to their trajectory. In fan-beam optical CT, these errors manifested in two ways: (1) distinct streaking artifacts caused by in-plane rayline bending and (2) severe overestimations of opacity caused by rays bending out of the fan-beam plane and missing the detector array. Although the ISG filtering routine mitigated these errors better than an adaptive-mean filtering routine, it caused unacceptable losses in spatial resolution.

  4. Induced hypothermia for infants with hypoxic- ischemic encephalopathy using a servo-controlled fan: an exploratory pilot study.

    PubMed

    Horn, Alan; Thompson, Clare; Woods, David; Nel, Alida; Bekker, Adrie; Rhoda, Natasha; Pieper, Clarissa

    2009-06-01

    Several trials suggest that hypothermia is beneficial in selected infants with hypoxic-ischemic encephalopathy. However, the cooling methods used required repeated interventions and were either expensive or reported significant temperature variation. The objective of this pilot study was to describe the use, efficacy, and physiologic impact of an inexpensive servo-controlled cooling fan blowing room-temperature air. A servo-controlled fan was manufactured and used to cool 10 infants with hypoxic-ischemic encephalopathy to a rectal temperature of 33 degrees C to 34 degrees C. The infants were sedated with phenobarbital, but clonidine was administered to some infants if shivering or discomfort occurred. A servo-controlled radiant warmer was used simultaneously with the fan to prevent overcooling. The settings used on the fan and radiant warmer differed slightly between some infants as the technique evolved. A rectal temperature of 34 degrees C was achieved in a median time of 58 minutes. Overcooling did not occur, and the mean temperature during cooling was 33.6 degrees C +/- 0.2 degrees C. Inspired oxygen requirements increased in 6 infants, and 5 infants required inotropic support during cooling, but this was progressively reduced after 1 to 2 days. Dehydration did not occur. Five infants shivered when faster fan speeds were used, but 4 of the 5 infants had hypomagnesemia. Shivering was controlled with clonidine in 4 infants, but 1 infant required morphine. Servo-controlled fan cooling with room-temperature air, combined with servo-controlled radiant warming, was an effective, simple, and safe method of inducing and maintaining rectal temperatures of 33 degrees C to 34 degrees C in sedated infants with hypoxic-ischemic encephalopathy. After induction of hypothermia, a low fan speed facilitated accurate temperature control, and warmer-controlled rewarming at 0.2 degrees C increments every 30 minutes resulted in more appropriate rewarming than when 0.5 degrees C increments every hour were used.

  5. Quiet Clean Short-haul Experimental Engine (QCSEE). Aerodynamic and aeromechanical performance of a 50.8 cm (20 inch) diameter 1.34 PR variable pitch fan with core flow

    NASA Technical Reports Server (NTRS)

    Giffin, R. G.; Mcfalls, R. A.; Beacher, B. F.

    1977-01-01

    The fan aerodynamic and aeromechanical performance tests of the quiet clean short haul experimental engine under the wing fan and inlet with a simulated core flow are described. Overall forward mode fan performance is presented at each rotor pitch angle setting with conventional flow pressure ratio efficiency fan maps, distinguishing the performance characteristics of the fan bypass and fan core regions. Effects of off design bypass ratio, hybrid inlet geometry, and tip radial inlet distortion on fan performance are determined. The nonaxisymmetric bypass OGV and pylon configuration is assessed relative to both total pressure loss and induced circumferential flow distortion. Reverse mode performance, obtained by resetting the rotor blades through both the stall pitch and flat pitch directions, is discussed in terms of the conventional flow pressure ratio relationship and its implications upon achievable reverse thrust. Core performance in reverse mode operation is presented in terms of overall recovery levels and radial profiles existing at the simulated core inlet plane. Observations of the starting phenomena associated with the initiation of stable rotor flow during acceleration in the reverse mode are briefly discussed. Aeromechanical response characteristics of the fan blades are presented as a separate appendix, along with a description of the vehicle instrumentation and method of data reduction.

  6. V/STOL aircraft and method

    DOEpatents

    Owens, Phillip R.

    1997-01-01

    Aircraft apparatus and method capable of V/STOL (vertical, short takeoff and landing) in addition to conventional flight. For V/STOL operation, induced lift is provided by blowing air over the upper surface of each wing through a duct installed near the leading edge. Intake air is supplied to the blowing fan through a duct installed near the trailing edge, thus providing suction as well as blowing. Two fans in series are required. The engine provides power not only to the propeller but also to a transmission which provides power to the pulleys driving the belt-driven fans.

  7. Sources and levels of background noise in the NASA Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.

    1988-01-01

    Background noise levels are measured in the NASA Ames Research Center 40- by 80-Foot Wind Tunnel following installation of a sound-absorbent lining on the test-section walls. Results show that the fan-drive noise dominated the empty test-section background noise at airspeeds below 120 knots. Above 120 knots, the test-section broadband background noise was dominated by wind-induced dipole noise (except at lower harmonics of fan blade-passage tones) most likely generated at the microphone or microphone support strut. Third-octave band and narrow-band spectra are presented for several fan operating conditions and test-section airspeeds. The background noise levels can be reduced by making improvements to the microphone wind screen or support strut. Empirical equations are presented relating variations of fan noise with fan speed or blade-pitch angle. An empirical expression for typical fan noise spectra is also presented. Fan motor electric power consumption is related to the noise generation. Preliminary measurements of sound absorption by the test-section lining indicate that the 152 mm thick lining will adequately absorb test-section model noise at frequencies above 300 Hz.

  8. Unsteady Flow Dynamics and Acoustics of Two-Outlet Centrifugal Fan Design

    NASA Astrophysics Data System (ADS)

    Wong, I. Y. W.; Leung, R. C. K.; Law, A. K. Y.

    2011-09-01

    In this study, a centrifugal fan design with two flow outlets is investigated. This design aims to provide high mass flow rate but low noise performance. Two dimensional unsteady flow simulation with CFD code (FLUENT 6.3) is carried out to analyze the fan flow dynamics and its acoustics. The calculations were done using the unsteady Reynolds averaged Navier Stokes (URANS) approach in which effects of turbulence were accounted for using κ-ɛ model. This work aims to provide an insight how the dominant noise source mechanisms vary with a key fan geometrical paramters, namely, the ratio between cutoff distance and the radius of curvature of the fan housing. Four new fan designs were calculated. Simulation results show that the unsteady flow-induced forces on the fan blades are found to be the main noise sources. The blade force coefficients are then used to build the dipole source terms in Ffowcs Williams and Hawkings (FW-H) Equation for estimating their noise effects. It is found that one design is able to deliver a mass flow 34% more, but with sound pressure level (SPL) 10 dB lower, than the existing design .

  9. Depositional processes of alluvial fans along the Hilina Pali fault scarp, Island of Hawaii

    NASA Astrophysics Data System (ADS)

    Morgan, Alexander M.; Craddock, Robert A.

    2017-11-01

    A series of previously unstudied alluvial fans are actively forming along the Hilina Pali escarpment on the south flank of Kīlauea volcano on the Island of Hawaii. These fans are characterized by their steep slopes, coarse grain sizes, and lobate surface morphology. Fans are fed by bedrock channels that drain from the Ka'ū Desert, but sediment is mostly sourced from deeply eroded alcoves carved into the Hilina Pali. Examination of recent deposits indicates that the fans are dominantly constructed from gravel and larger sized sediment. Flow discharges calculated using field measurements of channel geometries and the Manning equation indicate that events inducing sediment transport are of high magnitude and occur during high intensity precipitation events, including Kona storms. The fans along the Hilina Pali appear to be a rare example of fans formed predominately from sieve lobe deposition owing to the area's high slopes, high discharge, coarse bedload, and limited supply of fine-grained sediment. Given such conditions, sieve lobe deposition can form large lobes consisting of boulder-sized material, which may have implications for the identification of depositional processes when interpreting the stratigraphic record.

  10. Tectonic and climatic controls on fan systems: The Kohrud mountain belt, Central Iran

    NASA Astrophysics Data System (ADS)

    Jones, Stuart J.; Arzani, Nasser; Allen, Mark B.

    2014-04-01

    Late Pleistocene to Holocene fans of the Kohrud mountain belt (Central Iran) illustrate the problems of differentiating tectonic and climatic drivers for the sedimentary signatures of alluvial fan successions. It is widely recognised that tectonic processes create the topography that causes fan development. The existence and position of fans along the Kohrud mountain belt, NE of Esfahan, are controlled by faulting along the Qom-Zefreh fault system and associated fault zones. These faults display moderate amounts of historical and instrumental seismicity, and so may be considered to be tectonically active. However, fluvial systems on the fans are currently incising in response to low Gavkhoni playa lake levels since the mid-Holocene, producing incised gullies on the fans up to 30 m deep. These gullies expose an interdigitation of lake deposits (dominated by fine-grained silts and clays with evaporites) and coarse gravels that characterise the alluvial fan sediments. The boundaries of each facies are mostly sharp, with fan sediments superimposed on lake sediments with little to no evidence of reworking. In turn, anhydrite-glauberite, mirabilite and halite crusts drape over the gravels, recording a rapid return to still water, shallow ephemeral saline lake sedimentation. Neither transition can be explained by adjustment of the hinterland drainage system after tectonic uplift. The potential influence in Central Iran of enhanced monsoons, the northward drift of the Intertopical Convergence Zone (ITCZ) and Mediterranean climates for the early Holocene (~ 6-10 ka) point to episodic rainfall (during winter months) associated with discrete high magnitude floods on the fan surfaces. The fan sediments were deposited under the general influence of a highstand playa lake whose level was fluctuating in response to climate. This study demonstrates that although tectonism can induce fan development, it is the sensitive balance between aridity and humidity resulting from changes in the climate regime of Central Iran that influences the nature of fan sequences and how they interrelate to associated facies.

  11. V/STOL aircraft and method

    DOEpatents

    Owens, P.R.

    1997-11-18

    Aircraft apparatus and method capable of V/STOL (vertical, short takeoff and landing) in addition to conventional flight are disclosed. For V/STOL operation, induced lift is provided by blowing air over the upper surface of each wing through a duct installed near the leading edge. Intake air is supplied to the blowing fan through a duct installed near the trailing edge, thus providing suction as well as blowing. Two fans in series are required. The engine provides power not only to the propeller but also to a transmission which provides power to the pulleys driving the belt-driven fans. 10 figs.

  12. Bioactivity of 2′-deoxyinosine-incorporated aptamer AS1411

    PubMed Central

    Fan, Xinmeng; Sun, Lidan; Wu, Yun; Zhang, Lihe; Yang, Zhenjun

    2016-01-01

    Aptamers can be chemically modified to enhance nuclease resistance and increase target affinity. In this study, we performed chemical modification of 2′-deoxyinosine in AS1411, an anti-proliferative G-rich oligodeoxynucleotide aptamer, which binds selectively to the nucleolin protein. Its function was augmented when 2′-deoxyinosine was incorporated at positions 12, 13, 15, and 24 of AS1411, respectively. In addition, double incorporation of 2′-deoxyinosine at positions 12 and 24 (FAN-1224dI), 13 and 24 (FAN-1324dI), and 15 and 24 (FAN-1524dI) promoted G-quartet formation, as well as inhibition of DNA replication and tumor cell growth, and induced S-phase cell cycle arrest. In further animal experiments, FAN-1224dI, FAN-1324dI and FAN-1524dI resulted in enhanced treatment effects than AS1411 alone. These results suggested that the position and number of modification substituents in AS1411 are critical parameters to improve the diagnostic and therapeutic function of the aptamer. Structural investigations of the FAN-1524dI/nucleolin complex structure, using molecular dynamics simulation, revealed the critical interactions involving nucleolin and 2′-dI incorporated AS1411 compared with AS1411 alone. These findings augment understanding of the role of 2′-deoxyinosine moieties in interactive binding processes. PMID:27194215

  13. Bioactivity of 2'-deoxyinosine-incorporated aptamer AS1411.

    PubMed

    Fan, Xinmeng; Sun, Lidan; Wu, Yun; Zhang, Lihe; Yang, Zhenjun

    2016-05-19

    Aptamers can be chemically modified to enhance nuclease resistance and increase target affinity. In this study, we performed chemical modification of 2'-deoxyinosine in AS1411, an anti-proliferative G-rich oligodeoxynucleotide aptamer, which binds selectively to the nucleolin protein. Its function was augmented when 2'-deoxyinosine was incorporated at positions 12, 13, 15, and 24 of AS1411, respectively. In addition, double incorporation of 2'-deoxyinosine at positions 12 and 24 (FAN-1224dI), 13 and 24 (FAN-1324dI), and 15 and 24 (FAN-1524dI) promoted G-quartet formation, as well as inhibition of DNA replication and tumor cell growth, and induced S-phase cell cycle arrest. In further animal experiments, FAN-1224dI, FAN-1324dI and FAN-1524dI resulted in enhanced treatment effects than AS1411 alone. These results suggested that the position and number of modification substituents in AS1411 are critical parameters to improve the diagnostic and therapeutic function of the aptamer. Structural investigations of the FAN-1524dI/nucleolin complex structure, using molecular dynamics simulation, revealed the critical interactions involving nucleolin and 2'-dI incorporated AS1411 compared with AS1411 alone. These findings augment understanding of the role of 2'-deoxyinosine moieties in interactive binding processes.

  14. Potential disturbance interactions with a single IGV in an F109 turbofan engine

    NASA Astrophysics Data System (ADS)

    Kirk, Joel F.

    A common cause of aircraft engine failure is the high cycle fatigue of engine blades and stators. One of the primary causes of these failures is due to blade row interactions, which cause an aerodynamic excitation to be resonant with a mechanical natural frequency. Traditionally, the primary source of such aerodynamic excitations has been practically limited to viscous wakes from upstream components. However, more advanced designs require that blade rows be very highly loaded and closely spaced. This results in aerodynamic excitation from potential fields of down stream engine components, in addition to the known wake excitations. An experimental investigation of the potential field from the fan of a Honeywell F109 turbofan engine has been completed. The investigation included velocity measurements upstream of the fan, addition of an airfoil shaped probe upstream of the fan on which surface pressure measurements were acquired, and measurement of the velocity in the interaction region between the probe and the fan. This investigation sought to characterize the response on the upstream probe due to the fan potential field and the interaction between a viscous wake and the potential field; as such, all test conditions were for subsonic fan speeds. The results from the collected data show that fan-induced potential disturbances propagate upstream at acoustic velocities, to produce vane surface-pressure amplitudes as high as 40 percent Joel F. Kirk of the inlet, mean total pressure. Further, these fan-induced pressure amplitudes display large variations between the two vane surfaces. An argument is made that the structure of the pressure response is consistent with the presence of two distinct sources of unsteady forcing disturbances. The disturbances on the incoming-rotation-facing surface of the IGV propagated upstream at a different speed than those on the outgoing-rotation-facing surface, indicating that one originated from a rotating source and the other from a stationary source. An argument is made to suggest that the stationary source is due to the rotor blades cutting through the wake of the IGV.

  15. Autogenic dynamics of debris-flow fans

    NASA Astrophysics Data System (ADS)

    van den Berg, Wilco; de Haas, Tjalling; Braat, Lisanne; Kleinhans, Maarten

    2015-04-01

    Alluvial fans develop their semi-conical shape by cyclic avulsion of their geomorphologically active sector from a fixed fan apex. These cyclic avulsions have been attributed to both allogenic and autogenic forcings and processes. Autogenic dynamics have been extensively studied on fluvial fans through physical scale experiments, and are governed by cyclic alternations of aggradation by unconfined sheet flow, fanhead incision leading to channelized flow, channel backfilling and avulsion. On debris-flow fans, however, autogenic dynamics have not yet been directly observed. We experimentally created debris-flow fans under constant extrinsic forcings, and show that autogenic dynamics are a fundamental intrinsic process on debris-flow fans. We found that autogenic cycles on debris-flow fans are driven by sequences of backfilling, avulsion and channelization, similar to the cycles on fluvial fans. However, the processes that govern these sequences are unique for debris-flow fans, and differ fundamentally from the processes that govern autogenic dynamics on fluvial fans. We experimentally observed that backfilling commenced after the debris flows reached their maximum possible extent. The next debris flows then progressively became shorter, driven by feedbacks on fan morphology and flow-dynamics. The progressively decreasing debris-flow length caused in-channel sedimentation, which led to increasing channel overflow and wider debris flows. This reduced the impulse of the liquefied flow body to the flow front, which then further reduced flow velocity and runout length, and induced further in-channel sedimentation. This commenced a positive feedback wherein debris flows became increasingly short and wide, until the channel was completely filled and the apex cross-profile was plano-convex. At this point, there was no preferential transport direction by channelization, and the debris flows progressively avulsed towards the steepest, preferential, flow path. Simultaneously, the debris flows started to channelize, forced by increasingly effective concentration of the flow impulse to the flow front, which caused more effective lateral levee formation and an increasingly well-defined channel. This process continued until the debris flows reached their maximum possible extent and the cycle was reverted. Channelization occurred in the absence of erosion, in contrast with fluvial fans. Backfilling and channelization cycles were gradual and symmetric, requiring multiple debris flows to be completed. These results add debris-flow fans to the spectrum of fan-shaped aqueous systems that are affected by autogenic dynamics, now ranging from low-gradient rivers systems to steep-gradient mass-flow fans.

  16. Numerical investigation on the self-induced unsteadiness in tip leakage flow of a micro-axial fan rotor

    NASA Astrophysics Data System (ADS)

    Chen, Jinxin; Lai, Huanxin

    2015-06-01

    The self-induced unsteadiness in tip leakage flow (TLF) of a micro-axial fan rotor is numerically studied by solvingReynolds-averaged Navier-Stokes equations. The micro-axial fan, which is widely used in cooling systems of electronic devices, has a tip clearance of 6% of the axial chord length of the blade. At the design rotation speed, four cases near the peak efficiency point (PEP) with self-induced unsteadiness and four steady cases which have much weaker pressure fluctuations are investigated Using the "interface" separating the incoming main flow and the TLF defined by Du et al. [1], an explanation based on the propagation of the low energy spot and its multi-passing through the high gradient zone of the relativetotal pressure, is proposed to clarify the originating mechanism of the unsteadiness. At the operating points near the PEP, the main flow is weaker than the TLF and the interface moves upstream. The low energy spot which propagates along in the close behind of the interface has opportunity to circulate in the circumferential direction and passes through the sensitive interfaces several times, a slight perturbation therefore may be magnified significantlyand develops into the self-induced unsteadiness. The explanation is demonstrated by numerical results

  17. Particulate generation and control in the PREPP (Process Experimental Pilot Plant) incinerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stermer, D.L.; Gale, L.G.

    1989-03-01

    Particulate emissions in radioactive incineration systems using a wet scrubbing system are generally ultimately controlled by flowing the process offgas stream through a high-efficiency filter, such as a High Efficient Particulate Air (HEPA) filter. Because HEPA filters are capable of reducing particulate emissions over an order of magnitude below regulatory limits, they consequently are vulnerable to high loading rates. This becomes a serious handicap in radioactive systems when filter change-out is required at an unacceptably high rate. The Process Experimental Pilot Plant (PREPP) incineration system is designed for processing retrieved low level mixed hazardous waste. It has a wet offgasmore » treatment system consisting of a Quencher, Venturi Scrubber, Entrainment Eliminator, Mist Eliminator, two stages of HEPA filters, and induced draft fans. During previous tests, it was noted that the offgas filters loaded with particulate at a rate requiring replacement as often as every four hours. During 1988, PREPP conducted a series of tests which included an investigation of the causes of heavy particulate accumulation on the offgas filters in relation to various operating parameters. This was done by measuring the particulate concentrations in the offgas system, primarily as a function of scrub solution salt concentration, waste feed rate, and offgas flow rate. 2 figs., 9 tabs.« less

  18. Natural hazards on alluvial fans: the debris flow and flash flood disaster of December 1999, Vargas state, Venezuela

    USGS Publications Warehouse

    Larsen, Matthew C.; Wieczorek, Gerald F.; Eaton, L.S.; Torres-Sierra, Heriberto; Sylva, Walter F.

    2001-01-01

    Large populations live on or near alluvial fans in locations such as Los Angeles, California, Salt Lake City, Utah, Denver, Colorado, and lesser known areas such as Sarno, Italy, and Vargas, Venezuela. Debris flows and flash floods occur episodically in these alluvial fan environments, and place many communities at high risk during intense and prolonged rainfall. In December 1999, rainstorms induced thousands of landslides along the Cordillera de la Costa, Vargas, Venezuela. Rainfall accumulation of 293 mm during the first 2 weeks of December was followed by an additional 911 mm of rainfall on December 14 through 16. Debris flows and floods inundated coastal communities resulting in a catastrophic death toll of as many as 30,000 people. Flash floods and debris flows caused severe property destruction on alluvial fans at the mouths of the coastal mountain drainage network. In time scales spanning thousands of years, the alluvial fans along this Caribbean coastline are dynamic zones of high geomorphic activity. Because most of the coastal zone in Vargas consists of steep mountain fronts that rise abruptly from the Caribbean Sea, the alluvial fans provide practically the only flat areas upon which to build. Rebuilding and reoccupation of these areas requires careful determination of hazard zones to avoid future loss of life and property. KEY TERMS: Debris flows, flash floods, alluvial fans, natural hazards, landslides, Venezuela

  19. Suppression of motion-induced streak artifacts along chords in fan-beam BPF-reconstructions of motion-contaminated projection data

    NASA Astrophysics Data System (ADS)

    King, Martin; Xia, Dan; Yu, Lifeng; Pan, Xiaochuan; Giger, Maryellen

    2006-03-01

    Usage of the backprojection filtration (BPF) algorithm for reconstructing images from motion-contaminated fan-beam data may result in motion-induced streak artifacts, which appear in the direction of the chords on which images are reconstructed. These streak artifacts, which are most pronounced along chords tangent to the edges of the moving object, may be suppressed by use of the weighted BPF (WBPF) algorithm, which can exploit the inherent redundancies in fan-beam data. More specifically, reconstructions using full-scan and short-scan data can allow for substantial suppression of these streaks, whereas those using reduced-scan data can allow for partial suppression. Since multiple different reconstructions of the same chord can be obtained by varying the amount of redundant data used, we have laid the groundwork for a possible method to characterize the amount of motion encoded within the data used for reconstructing an image on a particular chord. Furthermore, since motion artifacts in WBPF reconstructions using full-scan and short-scan data appear similar to those in corresponding fan-beam filtered backprojection (FFBP) reconstructions for the cases performed in this study, the BPF and WBPF algorithms potentially may be used to arrive at a more fundamental characterization of how motion artifacts appear in FFBP reconstructions.

  20. Unsteady Reynolds-averaged Navier-Stokes simulations of inlet distortion in the fan system of a gas-turbine aero-engine

    NASA Astrophysics Data System (ADS)

    Spotts, Nathan

    As modern trends in commercial aircraft design move toward high-bypass-ratio fan systems of increasing diameter with shorter, nonaxisymmetric nacelle geometries, inlet distortion is becoming common in all operating regimes. The distortion may induce aerodynamic instabilities within the fan system, leading to catastrophic damage to fan blades, should the surge margin be exceeded. Even in the absence of system instability, the heterogeneity of the flow affects aerodynamic performance significantly. Therefore, an understanding of fan-distortion interaction is critical to aircraft engine system design. This thesis research elucidates the complex fluid dynamics and fan-distortion interaction by means of computational fluid dynamics (CFD) modeling of a complete engine fan system; including rotor, stator, spinner, nacelle and nozzle; under conditions typical of those encountered by commercial aircraft. The CFD simulations, based on a Reynolds-averaged Navier-Stokes (RANS) approach, were unsteady, three-dimensional, and of a full-annulus geometry. A thorough, systematic validation has been performed for configurations from a single passage of a rotor to a full-annulus system by comparing the predicted flow characteristics and aerodynamic performance to those found in literature. The original contributions of this research include the integration of a complete engine fan system, based on the NASA rotor 67 transonic stage and representative of the propulsion systems in commercial aircraft, and a benchmark case for unsteady RANS simulations of distorted flow in such a geometry under realistic operating conditions. This study is unique in that the complex flow dynamics, resulting from fan-distortion interaction, were illustrated in a practical geometry under realistic operating conditions. For example, the compressive stage is shown to influence upstream static pressure distributions and thus suppress separation of flow on the nacelle. Knowledge of such flow physics is valuable for engine system design.

  1. MX Siting Investigation. Water Resources Program. Volume II. Review Draft, Water Appropriations Hearing Presentation and Support Documentation, Dry Lake Valley, Nevada.

    DTIC Science & Technology

    1981-09-30

    will be required to de - liver the 651 gpm (41 l/s) needed for peak water use at the LSC. The existing Air Force test well at 3S-64E-12ca has been pumped...Valley is probably over 10,000 feet (3048 m) thick in the central part of the valley and is composed of alluvial fan, fluvial, playa , srl lacustrine...VALLEY T3.NSmIP STATION T E𔃾P SP. or SS. SILICA C AL C IU4 ACG. E5SILJ4 SCDIU I QANSA-SECT 5 6 C1 Ŕ VQ %;,. DES C CONE PH SOLIDS (5102) CA V$ A% 1 IN/6

  2. Flow Induced Noise from Turbulent Flow over Steps and Gaps

    DTIC Science & Technology

    2010-05-04

    Wall Jet Facility which is detailed in Figures 2.1 through 2.3. In this facility a Cincinnati Fan variable speed centrifugal fan with model number...the flow over the multiple backward steps considered in this study The following subsections will concentrate on the oil flow visualization performed ...NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Virginia Polytechnic Institute and State University

  3. On the study of wavy leading-edge vanes to achieve low fan interaction noise

    NASA Astrophysics Data System (ADS)

    Tong, Fan; Qiao, Weiyang; Xu, Kunbo; Wang, Liangfeng; Chen, Weijie; Wang, Xunnian

    2018-04-01

    The application of wavy leading-edge vanes to reduce a single-stage axial fan noise is numerically studied. The aerodynamic and acoustic performance of the fan is numerically investigated using a hybrid unsteady Reynolds averaged Navier-Stokes (URANS)/acoustic analogy method (Goldstein equations). First, the hybrid URANS/Goldstein method is developed and successfully validated against experiment results. Next, numerical simulations are performed to investigate the noise reduction effects of the wavy leading-edge vanes. The aerodynamic and acoustic performance is assessed for a fan with vanes equipped with two different wavy leading-edge profiles and compared with the performance of conventional straight leading-edge vanes. Results indicate that a fan with wavy leading-edge vanes produces lower interaction noise than the baseline fan without a significant loss in aerodynamic performance. In fact, it is demonstrated that wavy leading-edge vanes have the potential to lead to both aerodynamic and acoustic improvements. The two different wavy leading-edge profiles are shown to successfully reduce the fan tone sound power level by 1.2 dB and 4.3 dB, respectively. Fan efficiency is also improved by about 1% with one of the tested wavy leading-edge profiles. Large eddy simulation (LES) is also performed for a simplified fan stage model to assess the effects of wavy leading-edge vanes on the broadband fan noise. Results indicate that the overall sound power level of a fan can be reduced by about 4 dB with the larger wavy leading-edge profile. Finally, the noise reduction mechanisms are investigated and analysed. It is found that the wavy leading-edge profiles can induce significant streamwise vorticity around the leading-edge protuberances and reduce pressure fluctuations (especially at locations of wavy leading-edge hills) and unsteady forces on the stator vanes. The underlying mechanism of the reduced pressure fluctuations is also discussed by examining the magnitude-squared coherence between the velocity and pressure fluctuations in the vicinity of the noise sources. Moreover, a reduction in the correlation level of the wall pressure fluctuations along the vane leading-edge is observed, as well as destructive phase interference along the vane leading-edge.

  4. Low speed wind tunnel test of ground proximity and deck edge effects on a lift cruise fan V/STOL configuration, volume 1

    NASA Technical Reports Server (NTRS)

    Stewart, V. R.

    1979-01-01

    The characteristics were determined of a lift cruise fan V/STOL multi-mission configuration in the near proximity to the edge of a small flat surface representation of a ship deck. Tests were conducted at both static and forward speed test conditions. The model (0.12 scale) tested was a four fan configuration with modifications to represent a three fan configuration. Analysis of data showed that the deck edge effects were in general less critical in terms of differences from free air than a full deck (in ground effect) configuration. The one exception to this was when the aft edge of the deck was located under the center of gravity. This condition, representative of an approach from the rear, showed a significant lift loss. Induced moments were generally small compared to the single axis control power requirements, but will likely add to the pilot work load.

  5. Draft genome sequence of Dactylonectria macrodydima, a plant pathogenic fungus in the Nectriaceae

    USDA-ARS?s Scientific Manuscript database

    Dactylonectria macrodidyma is part of the Nectriaceae, a family containing important plant pathogens. This species possesses the ability to induce disease on grapevine, avocado and olive. Here, we report the first draft genome of D. macrodidyma isolate JAC15-08. The assembled genome was 58 Mbp and c...

  6. Study of stator-vane fluctuating pressures in a turbofan engine for static and flight tests

    NASA Technical Reports Server (NTRS)

    Mueller, A. W.

    1984-01-01

    As part of a program to study the fan noise generated from turbofan engines, fluctuating surface pressures induced by fan-rotor wakes were measured on core- and bypass-stator outlet guide vanes of a modified JT15D-1 engine. Tests were conducted with the engine operating on an outdoor test stand and in flight. The amplitudes of pressures measured at fan-rotor blade-passage fundamental frequencies were generally higher and appeared less stable for the static tests than for the flight tests. Fluctuating pressures measured at the blade-passage frequency of the high-speed core compressor were interpreted to be acoustic; however, disturbance trace velocities for either the convected rotor wakes or acoustic pressures were difficult to interpret because of the complex environment.

  7. Characteristics of PCDD/F emissions from secondary copper smelting industry.

    PubMed

    Hung, Pao Chen; Chang, Chia Chia; Chang, Shu Hao; Chang, Moo Been

    2015-01-01

    Characteristics and mechanisms of PCDD/F formation with different feed materials in secondary copper smelting industry are investigated. The results indicate that PCDD/Fs are significantly formed even with the reaction time less than 0.1s, especially when the material containing high residues (Cu3) is fed. High copper content (65±2%) in the feed material enhances PCDD/F formation rate. Memory effect and de novo synthesis are two important mechanisms leading to PCDD/F formation. PCDD/F concentrations at the cyclone's inlet are between 2.92 and 12.4ng-TEQNm(-3) and increase with increasing residue content in the feed material. Two regions are identified for high potential of PCDD/F formation including the brass melt surface of the induction furnace and piping before the induced draft fan of the inlet hood. PCDD/Fs in flue gas are effectively removed with a cyclone and bag filter at low operating temperatures (<60°C) to meet the emission limit of 1.0ng-TEQNm(-3). 1,2,3,4,6,7,8-HpCDF has the largest mass fraction of PCDD/Fs and can serve as a fingerprint for emissions from secondary copper smelting processes. The total emission factor of PCDD/Fs from flue gas, residual and fly ash in the secondary copper smelting process investigated is 22.01μg-TEQtonne(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. On random pressure pulses in the turbine draft tube

    NASA Astrophysics Data System (ADS)

    Kuibin, P. A.; Shtork, S. I.; Skripkin, S. G.; Tsoy, M. A.

    2017-04-01

    The flow in the conical part of the hydroturbine draft tube undergoes various instabilities due to deceleration and flow swirling at off-design operation points. In particular, the precessing vortex rope develops at part-load regimes in the draft tube. This rope induces periodical low-frequency pressure oscillations in the draft tube. Interaction of rotational (asynchronous) mode of disturbances with the elbow can bring to strong oscillations in the whole hydrodynamical system. Recent researches on flow structure in the discharge cone in a regime of free runner had revealed that helical-like vortex rope can be unstable itself. Some coils of helix close to each other and reconnection appears with generation of a vortex ring. The vortex ring moves toward the draft tube wall and downstream. The present research is focused on interaction of vortex ring with wall and generation of pressure pulses.

  9. A new blade element method for calculating the performance of high and intermediate solidity axial flow fans

    NASA Technical Reports Server (NTRS)

    Borst, H. V.

    1978-01-01

    A method is presented to design and predict the performance of axial flow rotors operating in a duct. The same method is suitable for the design of ducted fans and open propellers. The unified method is based on the blade element approach and the vortex theory for determining the three dimensional effects, so that two dimensional airfoil data can be used for determining the resultant force on each blade element. Resolution of this force in the thrust and torque planes and integration allows the total performance of the rotor, fan or propeller to be predicted. Three different methods of analysis, one based on a momentum flow theory; another on the vortex theory of propellers; and a third based on the theory of ducted fans, agree and reduce cascade airfoil data to single line as a function of the loading and induced angle of attack at values of constant inflow angle. The theory applies for any solidity from .01 to over 1 and any blade section camber. The effects of the duct and blade number can be determined so that the procedure applies over the entire range from two blade open propellers, to ducted helicopter tail rotors, to axial flow compressors with or without guide vanes, and to wind tunnel drive fans.

  10. Plasma-based Compressor Stall Control

    NASA Astrophysics Data System (ADS)

    McGowan, Ryan; Corke, Thomas

    2017-11-01

    The use of dielectric barrier discharge (DBD) plasma actuator casing treatment to prevent or delay stall inception in an axial fan is examined. The actuators are powered by a pulsed-DC waveform which induces a larger peak velocity than a purely AC waveform such as a sine or sawtooth wave. With this system, a high-voltage DC source is supplied to both electrodes, remaining constant in time for the exposed electrode. Meanwhile, the covered electrode is periodically grounded for several microseconds and allowed to rise back to the source DC level. To test the actuators' ability to interact with and modify the formation of stall cells, a facility has been designed and constructed around nonconductive fan blades. The actuators are installed in the fan casing near the blade tips. The instrumentation allows for the measurement of rotating pressure disturbances (traveling stall cells) in this tip gap region as well as fan performance characteristics including pressure rise and flow rate. The casing plasma actuation is found to reduce the correlation of the rotating stall cells, thereby extending the stall margin of the fan. Various azimuthal arrangements of the plasma actuator casing treatment is explored, as well as input voltage levels to the actuator to determine optimum conditions. NASA SBIR Contract NNX14CC12C.

  11. Universality, twisted fans, and the Ising model. [Renormalization, two-loop calculations, scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dash, J.W.; Harrington, S.J.

    1975-06-24

    Critical exponents are evaluated for the Ising model using universality in the form of ''twisted fans'' previously introduced in Reggeon field theory. The universality is with respect to scales induced through renormalization. Exact twists are obtained at ..beta.. = 0 in one loop for D = 2,3 with ..nu.. = 0.75 and 0.60 respectively. In two loops one obtains ..nu.. approximately 1.32 and 0.68. No twists are obtained for eta, however. The results for the standard two loop calculations are also presented as functions of a scale.

  12. Experimental investigation of the draft tube inlet flow of a bulb turbine

    NASA Astrophysics Data System (ADS)

    Vuillemard, J.; Aeschlimann, V.; Fraser, R.; Lemay, S.; Deschênes, C.

    2014-03-01

    In the BulbT project framework, a bulb turbine model was studied with a strongly diverging draft tube. At high discharge, flow separation occurs in the draft tube correlated to significant efficiency and power drops. In this context, a focus was put on the draft tube inlet flow conditions. Actually, a precise inlet flow velocity field is required for comparison and validation purposes with CFD simulation. This paper presents different laser Doppler velocimetry (LDV) measurements at the draft tube inlet and their analysis. The LDV was setup to measure the axial and circumferential velocity on a radius under the runner and a diameter under the hub. A method was developed to perform indirect measurement of the mean radial velocity component. Five operating conditions were studied to correlate the inlet flow to the separation in the draft tube. Mean velocities, fluctuations and frequencies allowed characterizing the flow. Using this experimental database, the flow structure was characterized. Phase averaged velocities based on the runner position allowed detecting the runner blade wakes. The velocity gradients induced by the blade tip vortices were captured. The guide vane wakes was also detected at the draft tube inlet. The recirculation in the hub wake was observed.

  13. Simulation model of the integrated flight/propulsion control system, displays, and propulsion system for ASTOVL lift-fan aircraft

    NASA Technical Reports Server (NTRS)

    Chung, W. Y. William; Borchers, Paul F.; Franklin, James A.

    1995-01-01

    A simulation model has been developed for use in piloted evaluations of takeoff, transition, hover, and landing characteristics of an advanced, short takeoff, vertical landing lift fan fighter aircraft. The flight/propulsion control system includes modes for several response types which are coupled to the aircraft's aerodynamic and propulsion system effectors through a control selector tailored to the lift fan propulsion system. Head-up display modes for approach and hover, tailored to their corresponding control modes are provided in the simulation. Propulsion system components modeled include a remote lift and a lift/cruise engine. Their static performance and dynamic response are represented by the model. A separate report describes the subsonic, power-off aerodynamics and jet induced aerodynamics in hover and forward flight, including ground effects.

  14. Conference on Fluid Machinery, 8th, Budapest, Hungary, Sept. 1987, Proceedings. Volumes 1 & 2

    NASA Astrophysics Data System (ADS)

    Szabo, A.; Kisbocskoi, L.

    The present conference on turbomachine fluid mechanics gives attention to the analysis of labyrinth seals, irrigation turbomachinery, axial-flow fans, poppet valves, the generation of Karman vortices, self-rectifying Wells-type air turbines, computer simulations for water-supply systems, the computation of meridional flow in turbomachines, entrained air effects on vortex pump performance, the three-dimensional potential flow in a draft tube, and hydro powerplant diagnostic methods. Also discussed are a mathematical model for the initiation of cavitation wear, cryogenic flow in ejectors, flow downstream of guide vanes in a Kaplan turbine, unsteady flow in rotating cascades, novel methods for turbomachine vibration monitoring, cavitation breakdown in centrifugal pumps, test results for Banki turbines, centrifugal compressor return-channel flow, performance predictions for regenerative turbomachines, and secondary flows in a centrifugal pump.

  15. Aerodynamics model for a generic ASTOVL lift-fan aircraft

    NASA Technical Reports Server (NTRS)

    Birckelbaw, Lourdes G.; Mcneil, Walter E.; Wardwell, Douglas A.

    1995-01-01

    This report describes the aerodynamics model used in a simulation model of an advanced short takeoff and vertical landing (ASTOVL) lift-fan fighter aircraft. The simulation model was developed for use in piloted evaluations of transition and hover flight regimes, so that only low speed (M approximately 0.2) aerodynamics are included in the mathematical model. The aerodynamic model includes the power-off aerodynamic forces and moments and the propulsion system induced aerodynamic effects, including ground effects. The power-off aerodynamics data were generated using the U.S. Air Force Stability and Control Digital DATCOM program and a NASA Ames in-house graphics program called VORVIEW which allows the user to easily analyze arbitrary conceptual aircraft configurations using the VORLAX program. The jet-induced data were generated using the prediction methods of R. E. Kuhn et al., as referenced in this report.

  16. The effect of circumferential distortion on fan performance at two levels of blade loading

    NASA Technical Reports Server (NTRS)

    Hartmann, M. J.; Sanger, N. L.

    1975-01-01

    Single stage fans designed for two levels of pressure ratio or blade loading were subjected to screen-induced circumferential distortions of 90-degree extent. Both fan rotors were designed for a blade tip speed of 425 m/sec, blade solidity of 1.3 and a hub-to-tip radius ratio of 0.5. Circumferential measurements of total pressure, temperature, static pressure, and flow angle were obtained at the hub, mean and tip radii at five axial stations. Rotor loading level did not appear to have a significant influence on rotor response to distorted flow. Losses in overall pressure ratio due to distortion were most severe in the stator hub region of the more highly loaded stage. At the near stall operating condition tip and hub regions of (either) rotor demonstrated different response characteristics to the distorted flow. No effect of loading was apparent on interactions between rotor and upstream distorted flow fields.

  17. The Impact of College Education on Geographic Mobility: Identifying Education Using Multiple Components of Vietnam Draft Risk. NBER Working Paper No. 16463

    ERIC Educational Resources Information Center

    Malamud, Ofer; Wozniak, Abigail K.

    2010-01-01

    We examine whether higher education is a causal determinant of geographic mobility using variation in college attainment induced by draft-avoidance behavior during the Vietnam War. We use national and state-level induction risk to identify both educational attainment and veteran status among cohorts of affected men observed in the 1980 Census. Our…

  18. An Acoustic Source Reactive to Tow Cable Strum

    DTIC Science & Technology

    2012-09-21

    sound wave radiates from the head mass. Dkt . No. 101720 Application No. ?? REPLACEMENT SHEET? /3 DRAFT 1 CABLE CURVATURE INDUCING LONGITUDINAL...MOTION IDEALIZED TOW CABLE (NO TRANSVERSE VIBRATION) REALISTIC TOW CABLE (INCLUDES TRANSVERSE VIBRATION) DIRECTION OF TOW FIG. 1 (PRIOR ART) Dkt . No...DISPLACEMENT DISPLACEMENT LONGITUDINAL (PRIOR ART) DISPLACEMENT LONGITUDINAL Dkt . No. 101720 Application No. ?? REPLACEMENT SHEET? /3 DRAFT 10 A B B A

  19. Vertical feed stick wood fuel burning furnace system

    DOEpatents

    Hill, Richard C.

    1984-01-01

    A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  20. Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Forman, R. G.; Zanganeh, M.

    2014-01-01

    This paper describes the results of a research program conducted to improve the understanding of fatigue crack growth rate behavior in the threshold growth rate region and to answer a question on the validity of threshold region test data. The validity question relates to the view held by some experimentalists that using the ASTM load shedding test method does not produce valid threshold test results and material properties. The question involves the fanning behavior observed in threshold region of da/dN plots for some materials in which the low R-ratio data fans out from the high R-ratio data. This fanning behavior or elevation of threshold values in the low R-ratio tests is generally assumed to be caused by an increase in crack closure in the low R-ratio tests. Also, the increase in crack closure is assumed by some experimentalists to result from using the ASTM load shedding test procedure. The belief is that this procedure induces load history effects which cause remote closure from plasticity and/or roughness changes in the surface morphology. However, experimental studies performed by the authors have shown that the increase in crack closure is a result of extensive crack tip bifurcations that can occur in some materials, particularly in aluminum alloys, when the crack tip cyclic yield zone size becomes less than the grain size of the alloy. This behavior is related to the high stacking fault energy (SFE) property of aluminum alloys which results in easier slip characteristics. Therefore, the fanning behavior which occurs in aluminum alloys is a function of intrinsic dislocation property of the alloy, and therefore, the fanned data does represent the true threshold properties of the material. However, for the corrosion sensitive steel alloys tested in laboratory air, the occurrence of fanning results from fretting corrosion at the crack tips, and these results should not be considered to be representative of valid threshold properties because the fanning is eliminated when testing is performed in dry air.

  1. Draft Genome Sequence of Pedobacter sp. Strain V48, Isolated from a Coastal Sand Dune in the Netherlands

    PubMed Central

    Bitzer, Adam S.; Garbeva, Paolina

    2014-01-01

    Pedobacter sp. strain V48 participates in an interaction with Pseudomonas fluorescens which elicits interaction-induced phenotypes. We report the draft genome sequence of Pedobacter sp. V48, consisting of 6.46 Mbp. The sequence will contribute to improved understanding of the genus and facilitate genomic analysis of the model interspecies interaction with P. fluorescens. PMID:24578271

  2. Magnetic structure and magnetization of helical antiferromagnets in high magnetic fields perpendicular to the helix axis at zero temperature

    DOE PAGES

    Johnston, David

    2017-09-05

    The zero-temperature angles of magnetic moments in a helix or sinusoidal fan confined to the x y plane, with respect to an in-plane magnetic field H x applied perpendicular to the z axis of a helix or fan, are calculated for commensurate helices and fans with field-independent turn angles k d between moments in adjacent layers of the helix or fan using the classical J 0 - J 1 - J 2 Heisenberg model. For 0 < k d < 4 π / 9 , first-order transitions from helix to a fan structure occur at fields H t as previouslymore » inferred, where the fan is found to be approximately sinusoidal. However, for 4 π / 9 ≤ k d ≤ π , different behaviors are found depending on the value of k d and these properties vary nonmonotonically with k d . In this k d range, the change from helix to fanlike structure is usually a crossover with no phase transition between them, although first-order transitions are found for k d = 3 π / 5 and 8 π / 11 and a second-order transition for k d = 3 π / 4 . At a critical field H c , the fan or fanlike structures exhibit a second-order transition to the paramagnetic state. The H c for a helix undergoing a field-induced change to a fan or fanlike structure is found to be the same as for a sinusoidal fan with the same k d and interlayer interactions. We present analytical expressions for H c versus k d. We also calculated the average x -axis moment per spin μ x ave versus H x for helices and fans with crossovers and phase transitions between them. When smooth helix to fanlike crossovers occur in the range 4 π / 9 ≤ k d ≤ π , μ x ave exhibits an S-shape behavior with increasing H x . The behavior we predict is consistent with μ x ave ( H x ) data previously reported by Sangeetha et al. [Phys. Rev. B 94, 014422 (2016)] for single-crystal EuCo 2 P 2 possessing a helix ground state with k d ≈ 0.85 π . The low-field magnetic susceptibility and the ratio H t / H c are calculated analytically or numerically versus k d for helices, and are shown to approach the respective known limits for k d → 0 .« less

  3. Magnetic structure and magnetization of helical antiferromagnets in high magnetic fields perpendicular to the helix axis at zero temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, David

    The zero-temperature angles of magnetic moments in a helix or sinusoidal fan confined to the x y plane, with respect to an in-plane magnetic field H x applied perpendicular to the z axis of a helix or fan, are calculated for commensurate helices and fans with field-independent turn angles k d between moments in adjacent layers of the helix or fan using the classical J 0 - J 1 - J 2 Heisenberg model. For 0 < k d < 4 π / 9 , first-order transitions from helix to a fan structure occur at fields H t as previouslymore » inferred, where the fan is found to be approximately sinusoidal. However, for 4 π / 9 ≤ k d ≤ π , different behaviors are found depending on the value of k d and these properties vary nonmonotonically with k d . In this k d range, the change from helix to fanlike structure is usually a crossover with no phase transition between them, although first-order transitions are found for k d = 3 π / 5 and 8 π / 11 and a second-order transition for k d = 3 π / 4 . At a critical field H c , the fan or fanlike structures exhibit a second-order transition to the paramagnetic state. The H c for a helix undergoing a field-induced change to a fan or fanlike structure is found to be the same as for a sinusoidal fan with the same k d and interlayer interactions. We present analytical expressions for H c versus k d. We also calculated the average x -axis moment per spin μ x ave versus H x for helices and fans with crossovers and phase transitions between them. When smooth helix to fanlike crossovers occur in the range 4 π / 9 ≤ k d ≤ π , μ x ave exhibits an S-shape behavior with increasing H x . The behavior we predict is consistent with μ x ave ( H x ) data previously reported by Sangeetha et al. [Phys. Rev. B 94, 014422 (2016)] for single-crystal EuCo 2 P 2 possessing a helix ground state with k d ≈ 0.85 π . The low-field magnetic susceptibility and the ratio H t / H c are calculated analytically or numerically versus k d for helices, and are shown to approach the respective known limits for k d → 0 .« less

  4. Flow characteristics and spillage mechanisms of an inclined quad-vortex range hood subject to influence from draft.

    PubMed

    Huang, Rong Fung; Chen, Jia-Kun; Lin, Jyun-Hua

    2015-01-01

    The flow and spillage characteristics of an inclined quad-vortex (IQV) range hood subject to the influence of drafts from various directions were studied. The laser-assisted smoke flow visualization technique was used to reveal the flow characteristics, and the tracer-gas (sulfur hexafluoride) concentration detection method was used to indicate the quantitative values of the capture efficiency of the hood. It was found that the leakage mechanisms of the IQV range hood are closely related to the flow characteristics. A critical draft velocity of about 0.5 m/s and a critical face velocity of about 0.25 m/s for the IQV range hood were found. When the IQV range hood was influenced by a draft with a velocity larger than the critical draft velocity, the spillage of pollutants became significant and the pollutant spillage rate increased with increasing draft velocity. At draft velocities less than or equal to the critical value, no containment leakages induced by the turbulence diffusion, reverse flow, or boundary-layer separation were observed, and the capture efficiency was about 100%. The IQV range hood exhibited a high ability to resist the influences of lateral and frontal drafts. The capture efficiency of the IQV range hood operated at the suction flow rate 5 to 9 m(3)/min is higher than that of the conventional range hood operated at 11 to 15 m(3)/min.

  5. Expression of the gene cluster associated with the Escherichia coli pilus adhesin K99.

    PubMed

    Lee, J H; Isaacson, R E

    1995-10-01

    The biogenesis of the pilus adhesin K99 is dependent on the expression of eight contiguous genes, fanA to fanH. Transposon mutants were prepared by using TnlacZ and TnphoA, and selected transposon mutants were used to measure expression of each K99 gene. Expression of the K99 genes is likely controlled at the transcription level, since in general, there were no differences between the results obtained with the two transposons. fanC was the most highly expressed, and fanD was expressed at very low levels. The expression of TnlacZ fusions in fanA and fanB fusions was high. Deletion of fanA, fanB, and part of fanC abolished the expression of fanD but had no effect on the distal genes fanE to fanH. To locate the DNA regions required for expression of fanE to fanH, deletion mutations were prepared and the effects on expression of fanE to fanH were determined. The deletion of a segment between fanD and fanE abolished fanE and fanF expression but did not affect fanG and fanH. The deletion of a portion of fanF (approximately 1 kb proximal to fanG) abolished the expression of fanG and fanH. These results indicate the presence of regulatory elements proximal to fanE and to fanG. Putative promoters were identified in these regions by DNA homology and by primer extension. A stem-loop structure that may act as a transcriptional attenuator of fanF was also found at the beginning of fanF. These data confirm our previous model of K99 transcriptional organization.

  6. Expression of the gene cluster associated with the Escherichia coli pilus adhesin K99.

    PubMed Central

    Lee, J H; Isaacson, R E

    1995-01-01

    The biogenesis of the pilus adhesin K99 is dependent on the expression of eight contiguous genes, fanA to fanH. Transposon mutants were prepared by using TnlacZ and TnphoA, and selected transposon mutants were used to measure expression of each K99 gene. Expression of the K99 genes is likely controlled at the transcription level, since in general, there were no differences between the results obtained with the two transposons. fanC was the most highly expressed, and fanD was expressed at very low levels. The expression of TnlacZ fusions in fanA and fanB fusions was high. Deletion of fanA, fanB, and part of fanC abolished the expression of fanD but had no effect on the distal genes fanE to fanH. To locate the DNA regions required for expression of fanE to fanH, deletion mutations were prepared and the effects on expression of fanE to fanH were determined. The deletion of a segment between fanD and fanE abolished fanE and fanF expression but did not affect fanG and fanH. The deletion of a portion of fanF (approximately 1 kb proximal to fanG) abolished the expression of fanG and fanH. These results indicate the presence of regulatory elements proximal to fanE and to fanG. Putative promoters were identified in these regions by DNA homology and by primer extension. A stem-loop structure that may act as a transcriptional attenuator of fanF was also found at the beginning of fanF. These data confirm our previous model of K99 transcriptional organization. PMID:7558331

  7. Induced traffic and induced demand in benefit-cost analysis - draft

    DOT National Transportation Integrated Search

    1998-07-01

    Subsequent to the US DOT's 1995 "conditions and Performance" report to Congress, the HERS (Highway Economic Requirements System) model used by FHWA to evaluate national highway investment options was modified to incorporate both short run and long ru...

  8. Experimental impact testing and analysis of composite fan cases

    NASA Astrophysics Data System (ADS)

    Vander Klok, Andrew Joe

    For aircraft engine certification, one of the requirements is to demonstrate the ability of the engine to withstand a fan blade-out (FBO) event. A FBO event may be caused by fatigue failure of the fan blade itself or by impact damage of foreign objects such as bird strike. An un-contained blade can damage flight critical engine components or even the fuselage. The design of a containment structure is related to numerous parameters such as the blade tip speed; blade material, size and shape; hub/tip diameter; fan case material, configuration, rigidity, etc. To investigate all parameters by spin experiments with a full size rotor assembly can be prohibitively expensive. Gas gun experiments can generate useful data for the design of engine containment cases at much lower costs. To replicate the damage modes similar to that on a fan case in FBO testing, the gas gun experiment has to be carefully designed. To investigate the experimental procedure and data acquisition techniques for FBO test, a low cost, small spin rig was first constructed. FBO tests were carried out with the small rig. The observed blade-to-fan case interactions were similar to those reported using larger spin rigs. The small rig has the potential in a variety of applications from investigating FBO events, verifying concept designs of rotors, to developing spin testing techniques. This rig was used in the developments of the notched blade releasing mechanism, a wire trigger method for synchronized data acquisition, high speed video imaging and etc. A relationship between the notch depth and the release speed was developed and verified. Next, an original custom designed spin testing facility was constructed. Driven by a 40HP, 40,000rpm air turbine, the spin rig is housed in a vacuum chamber of phi72inx40in (1829mmx1016mm). The heavily armored chamber is furnished with 9 viewports. This facility enables unprecedented investigations of FBO events. In parallel, a 15.4ft (4.7m) long phi4.1inch (105mm) diameter single stage gas gun was developed. A thermodynamic based relationship between the required gas pressure and targeted velocity was proposed. The predicted velocity was within +/-7%. Quantitative measurements of force and displacement were attempted. The transmitted impact force was measured with load cells. The out-of-plane deformation was measured with a projection grating profilometry method. The composite panels and fan cases used in this work were made of S2-glass plain weave fabrics with API SC-15 toughened epoxy resin using the vacuum assisted resin transfer molding (VARTM) method. Using the gas gun, the impact behavior of the composite was investigated at velocities ranging from 984ft/s to 1502ft/s (300m/s to 458m/s) following a draft ASTM testing standard. To compare the ballistic protection capability of different materials, a new parameter EBL, the projectile kinetic energy at the target ballistic limit normalized by the contact area of the projectile, was proposed. S2-glass/epoxy composite is ranked very high in EBL per areal weight. Finally, a testing method for replicating spin pit testing with a gas gun test was developed. Major differences between the two tests are the initial conditions of the blade upon contact with the target. In spin testing, the released blade has two velocity components, rotational and translational whereas in gas gun testing, the projectile has only the translational velocity. To account for the influence of the rotational velocity, three projectile designs were experimentally investigated. The results show that to generate similar damage modes in gas gun testing, it is critical to ensure the deformation of the projectile before testing is similar to that of a released blade. With the pre-bent blade, the gas gun experiment was able to replicate the damage modes of the fan case in FBO test on flat composite panels.

  9. Direct numerical simulation of broadband trailing edge noise from a NACA 0012 airfoil

    NASA Astrophysics Data System (ADS)

    Mehrabadi, Mohammad; Bodony, Daniel

    2016-11-01

    Commercial jet-powered aircraft produce unwanted noise at takeoff and landing when they are close to near-airport communities. Modern high-bypass-ratio turbofan engines have reduced jet exhaust noise sufficiently such that noise from the main fan is now significant. In preparation for a large-eddy simulation of the NASA/GE Source Diagnostic Test Fan, we study the broadband noise due to the turbulent flow on a NACA 0012 airfoil at zero degree angle-of-attack, a chord-based Reynolds number of 408,000 and a Mach number of 0.115 using direct numerical simulation (DNS) and wall-modeled large-eddy simulation (WMLES). The flow conditions correspond to existing experimental data. We investigate the roughness-induced transition-to-turbulence and sound generation from a DNS perspective as well as examine how these two features are captured by a wall model. Comparisons between the DNS- and WMLES-predicted noise are made and provide guidance on the use of WMLES for broadband fan noise prediction. AeroAcoustics Research Consortium.

  10. LDV survey of cavitation and resonance effect on the precessing vortex rope dynamics in the draft tube of Francis turbines

    NASA Astrophysics Data System (ADS)

    Favrel, A.; Müller, A.; Landry, C.; Yamamoto, K.; Avellan, F.

    2016-11-01

    The large-scale penetration of the electrical grid by intermittent renewable energy sources requires a continuous operating range extension of hydropower plants. This causes the formation of unfavourable flow patterns in the draft tube of turbines and pump-turbines. At partial load operation, a precessing cavitation vortex rope is formed at the Francis turbine runner outlet, acting as an excitation source for the hydraulic system. In case of resonance, the resulting high-amplitude pressure pulsations can put at risk the stability of the machine and of the electrical grid to which it is connected. It is therefore crucial to understand and accurately simulate the underlying physical mechanisms in such conditions. However, the exact impact of cavitation and hydro-acoustic resonance on the flow velocity fluctuations in the draft tube remains to be established. The flow discharge pulsations expected to occur in the draft tube in resonance conditions have for instance never been verified experimentally. In this study, two-component Laser Doppler Velocimetry is used to investigate the axial and tangential velocity fluctuations at the runner outlet of a reduced scale physical model of a Francis turbine. The investigation is performed for a discharge equal to 64 % of the nominal value and three different pressure levels in the draft tube, including resonance and cavitation-free conditions. Based on the convective pressure fluctuations induced by the vortex precession, the periodical velocity fluctuations over one typical precession period are recovered by phase averaging. The impact of cavitation and hydro-acoustic resonance on both axial and tangential velocity fluctuations in terms of amplitude and phase shift is highlighted for the first time. It is shown that the occurrence of resonance does not have significant effects on the draft tube velocity fields, suggesting that the synchronous axial velocity fluctuations are surprisingly negligible compared to the velocity fluctuations induced by the vortex precession.

  11. On orthogonal projectors induced by compact groups and Haar measures

    NASA Astrophysics Data System (ADS)

    Niezgoda, Marek

    2008-02-01

    We study the difference of two orthogonal projectors induced by compact groups of linear operators acting on a vector space. An upper bound for the difference is derived using the Haar measures of the groups. A particular attention is paid to finite groups. Some applications are given for complex matrices and unitarily invariant norms. Majorization inequalities of Fan and Hoffmann and of Causey are rediscovered.

  12. Draft Genome Sequences of Clinical Isolates of Serotype 6E Streptococcus pneumoniae from Five Asian Countries.

    PubMed

    Park, In Ho; Baek, Jin Yang; Song, Jae-Hoon; Ko, Kwan Soo; Kim, Kyung-Hyo

    2017-03-09

    Although serotype 6E Streptococcus pneumoniae consistently expresses capsules of either vaccine-serotype 6A or 6B, certain genetic variants of serotype 6E may evade vaccine induced immunity. Thus, draft genome sequences from five clinical isolates of serotype 6E from each of five different Asian countries have been generated to provide insight into the genomic diversity in serotype 6E strains. Copyright © 2017 Park et al.

  13. Two novel genes, fanA and fanB, involved in the biogenesis of K99 fimbriae.

    PubMed

    Roosendaal, E; Boots, M; de Graaf, F K

    1987-08-11

    The nucleotide sequence of the region located transcriptionally upstream of the K99 fimbrial subunit gene (fanC) was determined. Several putative transcription signals and two open reading frames, designated fanA and fanB, became apparent. Frameshift mutations in fanA and fanB reduced K99 fimbriae expression 8-fold and 16-fold, respectively. Complementation of the mutants in trans restored the K99 expression to about 75% of the wild type level, indicating that fanA and fanB code for transacting polypeptides involved in the biogenesis of K99 fimbriae. The fanA and fanB gene products FanA and FanB were not detectable in minicell preparations, indicating that both polypeptides are synthesized in very small amounts. However, in an in vitro DNA directed translation system FanA and FanB could be identified. The deduced amino acid sequences of FanA and FanB showed that both polypeptides contain no signal peptides, indicating a cytoplasmic location. Furthermore, the polypeptides are very hydrophilic, mainly basic, and exhibit remarkable homology to each other and to a regulatory protein (papB) encoded by the pap-operon (1). Some of these features are characteristics of nucleic acid binding proteins, which suggests that FanA and FanB have a regulatory function in the synthesis of FanC and the auxiliary polypeptides FanD-H.

  14. Effect of a ceiling fan ventilation system on finishing young bulls' health, behaviour and growth performance.

    PubMed

    Magrin, L; Brscic, M; Lora, I; Rumor, C; Tondello, L; Cozzi, G; Gottardo, F

    2017-06-01

    This research aimed at assessing the effects of a ceiling fan ventilation system on health, feeding, social behaviour and growth response of finishing young bulls fattened indoors during a mild summer season. A total of 69 Charolais young bulls were housed in six pens without any mechanical ventilation system (Control) and in six pens equipped with ceiling fans. The experimental period lasted 98 days from June until mid-September 2014. Four experimental days were considered in order to assess the effect of the ventilation system under two different microclimatic conditions: 2 alert days at monthly interval with temperature humidity index (THI) between 75 and 78, and 2 normal days with THI⩽74. Health and behaviour of the bulls were evaluated through 8-h observation sessions starting after morning feed delivery. The study was carried out during a rather cool summer with a climate average THI of 68.9 and 4 days with average THI>75. Despite these mild climate conditions, ceiling fans lowered litter moisture and acted as a preventive measure for bulls' dirtiness (odd ratio=47.9; 95% CI 19.6 to 117.4). The risk of abnormal breathing was increased for Control bulls (odd ratio=40.7; 95% CI 5.4 to 304.2). When exposed to alert THI conditions, respiration rate and panting scores increased and rumination duration dropped in Control bulls compared with bulls provided with a ceiling fan. During observations under alert THI, bulls spent less time eating, more time being inactive and consumed more water compared with normal THI conditions. Bulls' daily dry matter intake measured during the observation sessions decreased on alert compared with normal THI days (P<0.001) due to a drop of intake during the daylight hours. Ceiling fan treatment had no effect on bulls' growth performance or water consumption but these results most likely depended on the mild climate conditions. Ceiling fans proved to mitigate some of the negative effects of heat stress on bulls' behaviour (rumination, lying down and drinking water) and respiration rate, however. The lack of a significant improvement of bulls' growth response should not discourage beef farmers from using ceiling fans in indoor systems, considering the likely increase in frequency and intensity of heat waves in the planet's temperate areas induced by global warming.

  15. Fault-sourced alluvial fans and their interaction with axial fluvial drainage: An example from the Plio-Pleistocene Upper Valdarno Basin (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Fidolini, Francesco; Ghinassi, Massimiliano; Aldinucci, Mauro; Billi, Paolo; Boaga, Jacopo; Deiana, Rita; Brivio, Lara

    2013-05-01

    The present study deals with the fault-sourced, alluvial-fan deposits of the Plio-Pleistocene Upper Valdarno Basin (Northern Apennines, Italy). Different phases of alluvial fan aggradation, progradation and backstep are discussed as possible effects of the interaction among fault-generated accommodation space, sediment supply and discharge variations affecting the axial fluvial drainage. The Upper Valdarno Basin, located about 35 km SE of Florence, is filled with 550 m palustrine, lacustrine and alluvial deposits forming four main unconformity-bounded units (i.e. synthems). The study alluvial-fan deposits belong to the two uppermost synthems (Montevarchi and Torrente Ciuffenna synthems) and are Early to Middle Pleistocene in age. These deposits are sourced from the fault-bounded, NE margin of the basin and interfinger with axial fluvial deposits. Alluvial fan deposits of the Montevarchi Synthem consist of three main intervals: i) a lower interval, which lacks any evidence of a depositional trend and testify balance between the subsidence rate (i.e. fault activity) and the amount of sediment provided from the margin; ii) a coarsening-upward middle interval, pointing to a decrease in subsidence rate associated with an augment in sediment supply; iii) a fining-upward, upper interval (locally preserved), documenting a phase of tectonic quiescence associated with a progressive re-equilibration of the tectonically-induced morphological profile. The basin-scale unconformity, which separates the Montevarchi and Torrente Ciuffenna synthems was due to the entrance of the Arno River into the basin as consequence of a piracy. This event caused a dramatic increase in water discharge of the axial fluvial system, and its consequent embanking. Such an erosional surface started to develop in the axial areas, and propagated along the main tributaries, triggering erosion of the alluvial fan deposits. Alluvial-fan deposits of the Torrente Ciuffenna Synthem accumulated above the unconformity during a phase of tectonic quiescence, and show a fining-upward depositional trend. This trend was generated by a progressive decrease in sediment supply stemming out from upstream migration of the knickpoints developed during the embanking of the axial system.

  16. Performance of a 1.57 pressure-ratio transonic fan stage with a screen-induced 90 deg circumferential inlet flow distortion

    NASA Technical Reports Server (NTRS)

    Sanger, N. L.

    1976-01-01

    A transonic fan stage having a design pressure ratio of 1.57 was tested with a 90 degree circumferential distortion imposed on the inlet flow. The rotor diameter was approximately 50.8 cm, and the design pressure ratio was 1.60 at a tip speed of 425 m/sec. Overall performance at 70 and 100 percent of design speed showed a loss of stall pressure ratio and flow range at design speed and no significant loss in stall pressure ratio at 70 percent of design speed. Detailed flow measurements are presented to show the rotor-upstream flow interactions and the attenuation and amplification properties through the stage.

  17. Computational Analysis of a Chevron Nozzle Uniquely Tailored for Propulsion Airframe Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Elmiligui, Alaa A.; Hunter, Craig A.; Thomas, Russell H.; Pao, S. Paul; Mengle, Vinod G.

    2006-01-01

    A computational flow field and predicted jet noise source analysis is presented for asymmetrical fan chevrons on a modern separate flow nozzle at take off conditions. The propulsion airframe aeroacoustic asymmetric fan nozzle is designed with an azimuthally varying chevron pattern with longer chevrons close to the pylon. A baseline round nozzle without chevrons and a reference nozzle with azimuthally uniform chevrons are also studied. The intent of the asymmetric fan chevron nozzle was to improve the noise reduction potential by creating a favorable propulsion airframe aeroacoustic interaction effect between the pylon and chevron nozzle. This favorable interaction and improved noise reduction was observed in model scale tests and flight test data and has been reported in other studies. The goal of this study was to identify the fundamental flow and noise source mechanisms. The flow simulation uses the asymptotically steady, compressible Reynolds averaged Navier-Stokes equations on a structured grid. Flow computations are performed using the parallel, multi-block, structured grid code PAB3D. Local noise sources were mapped and integrated computationally using the Jet3D code based upon the Lighthill Acoustic Analogy with anisotropic Reynolds stress modeling. In this study, trends of noise reduction were correctly predicted. Jet3D was also utilized to produce noise source maps that were then correlated to local flow features. The flow studies show that asymmetry of the longer fan chevrons near the pylon work to reduce the strength of the secondary flow induced by the pylon itself, such that the asymmetric merging of the fan and core shear layers is significantly delayed. The effect is to reduce the peak turbulence kinetic energy and shift it downstream, reducing overall noise production. This combined flow and noise prediction approach has yielded considerable understanding of the physics of a fan chevron nozzle designed to include propulsion airframe aeroacoustic interaction effects.

  18. Submarine fans: Characteristics, models, classification, and reservoir potential

    NASA Astrophysics Data System (ADS)

    Shanmugam, G.; Moiola, R. J.

    1988-02-01

    Submarine-fan sequences are important hydrocarbon reservoirs throughout the world. Submarine-fan sequences may be interpreted from bed-thickness trends, turbidite facies associations, log motifs, and seismic-reflection profiles. Turbidites occurring predominantly in channels and lobes (or sheet sands) constitute the major portion of submarine-fan sequences. Thinning- and thickening-upward trends are suggestive of channel and lobe deposition, respectively. Mounded seismic reflections are commonly indicative of lower-fan depositional lobes. Fan models are discussed in terms of modern and ancient fans, attached and detached lobes, highly efficient and poorly efficient systems, and transverse and longitudinal fans. In general, depositional lobes are considered to be attached to feeder channels. Submarine fans can be classified into four types based on their tectonic settings: (1) immature passive-margin fans (North Sea type); (2) mature passive-margin fans (Atlantic type); (3) active-margin fans (Pacific type); and (4) mixed-setting fans. Immature passive-margin fans (e.g., Balder, North Sea), and active-margin fans (e.g., Navy, Pacific Ocean) are usually small, sand-rich, and possess well developed lobes. Mature passive-margin fans (e.g., Amazon, Atlantic Ocean) are large, mud-rich, and do not develop typical lobes. However, sheet sands are common in the lower-fan regions of mature passive-margin fans. Mixed-setting fans display characteristics of either Atlantic type (e.g., Bengal, Bay of Bengal), or Pacific type (Orinoco, Caribbean), or both. Conventional channel-lobe models may not be applicable to fans associated with mature passive margins. Submarine fans develop primarily during periods of low sea level on both active- and passive-margin settings. Consequently, hydrocarbon-bearing fan sequences are associated generally with global lowstands of sea level. Channel-fill sandstones in most tectonic settings are potential reservoirs. Lobes exhibit the most favorable reservoir quality in terms of sand content, lateral continuity, and porosity development. Lower-fan sheet sands may also make good reservoirs. Quartz-rich sandstones of mature passive-margin fans are most likely to preserve depositional porosity, whereas lithic sandstones of active-margin fans may not.

  19. Sedimentary and structural evolution of a Pleistocene small-scale push moraine in eastern Poland: New insight into paleoenvironmental conditions at the margin of an advancing ice lobe

    NASA Astrophysics Data System (ADS)

    Włodarski, Wojciech; Godlewska, Anna

    2016-08-01

    Recent studies of push moraines have focused on the interplay between the dynamics of ice margins and the environmental variables of the foreland into which they advance. These studies showed that the spatial distribution, geometry and style of the glaciotectonic deformation of push moraines are controlled by ice-induced stresses, the strain rate, the rheology of the deposits and hydraulic conductivity. In this work, we provide new insight into this interplay at a small spatio-temporal scale, specifically, the ancient glacial system of the Liwiec ice lobe within the younger Saalian ice sheet in eastern Poland. The paleoenvironmental variables that are analysed here refer to the dynamics of the hydrological processes that affected the patterns and sediment deposition rate on the terminoglacial fan and the resulting mechanical stratigraphy and hydraulic conductivity of the foreland. We document the progradational sequence of the fan deposits that developed as a result of the ice lobe thickening and the steepening of its stationary front. The sedimentary features of the fan, the lithology of its basement and the hydraulic conductivity of the foreland strongly influenced the geometry and kinematics of fold growth during the advance of the ice lobe. The predominance of flexural slip and the development of fractures, including fold-accommodation faults, were interpreted to be an effect of buckle folding due to horizontal shortening induced by ice advance. The partial overriding of the push moraine by the ice lobe and, thus, the submarginal conditions for deformation were inferred from the significant hinge migration and internal deformation of the strata under undrained conditions in one of the folds. The synfolding deposition pattern of the fan growth strata allowed us to suggest that the push moraine was probably formed by a sustained advance rather than surge.

  20. Characterizations of pumping-induced land subsidence in coastal aquifers - model development and field-scale implementations

    NASA Astrophysics Data System (ADS)

    Ni, C.; Huang, Y.; Lu, C.

    2012-12-01

    The pumping-induced land subsidence events are typically founded in coastal aquifers in Taiwan especially in the areas of lower alluvial fans. Previous investigations have recognized the irreversible situation for an aquifer deformation even if the pumped water is significantly reduced or stopped. Long-term monitoring projects on land subsidence in Choshui alluvial fan in central Taiwan have improved the understanding of the deformations in the aquifer system. To characterization the detailed land subsidence mechanism, this study develops an inverse numerical model to estimate the deformation parameters such as the specific storage (Ss) and vertical hydraulic conductivity (Kv) for interbeds. Similar to the concept of Hydraulic tomography survey (HTS), the developed model employs the iterative cokriging estimator to improve the accuracy of estimating deformation parameters. A one-dimensional numerical example is employed to assess the accuracy of the developed inverse model. The developed model is then applied to field-scale data from compaction monitoring wells (CMW) installed in the lower Choshui River fan. Results of the synthetic example show that the developed inverse model can reproduce well the predefined geologic features of the synthetic aquifer. The model provides better estimations of Kv patterns and magnitudes. Slightly less detail of the Ss was obtained due to the insensitivity of transient stresses for specified sampling times. Without prior information from field measurements, the developed model associated with deformation measurements form CMW can estimate Kv and Ss fields with great spatial resolution.

  1. Stratigraphy of Aeolis Dorsa, Mars: Stratigraphic context of the great river deposits

    NASA Astrophysics Data System (ADS)

    Kite, Edwin S.; Howard, Alan D.; Lucas, Antoine S.; Armstrong, John C.; Aharonson, Oded; Lamb, Michael P.

    2015-06-01

    Unraveling the stratigraphic record is the key to understanding ancient climate and past climate changes on Mars (Grotzinger, J. et al. [2011]. Astrobiology 11, 77-87). Stratigraphic records of river deposits hold particular promise because rain or snowmelt must exceed infiltration plus evaporation to allow sediment transport by rivers. Therefore, river deposits when placed in stratigraphic order could constrain the number, magnitudes, and durations of the wettest (and presumably most habitable) climates in Mars history. We use crosscutting relationships to establish the stratigraphic context of river and alluvial-fan deposits in the Aeolis Dorsa sedimentary basin, 10°E of Gale crater. At Aeolis Dorsa, wind erosion has exhumed a stratigraphic section of sedimentary rocks consisting of at least four unconformity-bounded rock packages, recording three or more distinct episodes of surface runoff. Early deposits (>700 m thick) are embayed by river deposits (>400 m thick), which are in turn unconformably draped by fan-shaped deposits (<100 m thick) which we interpret as alluvial fans. Yardang-forming layered deposits (>900 m thick) unconformably drape all previous deposits. River deposits embay a dissected landscape formed of sedimentary rock. The river deposits are eroding out of at least two distinguishable units. There is evidence for pulses of erosion during the interval of river deposition. The total interval spanned by river deposits is >(1 × 106-2 × 107) yr, and this is extended if we include alluvial-fan deposits. Alluvial-fan deposits unconformably postdate thrust faults which crosscut the river deposits. This relationship suggests a relatively dry interval of >4 × 107 yr after the river deposits formed and before the fan-shaped deposits formed, based on probability arguments. Yardang-forming layered deposits unconformably postdate all of the earlier deposits. They contain rhythmite and their induration suggests a damp or wet (near-) surface environment. The time gap between the end of river deposition and the onset of yardang-forming layered deposits is constrained to >1 × 108 yr by the high density of impact craters embedded at the unconformity. The time gap between the end of alluvial-fan deposition and the onset of yardang-forming layered deposits was at least long enough for wind-induced saltation abrasion to erode 20-30 m into the alluvial-fan deposits. We correlate the yardang-forming layered deposits to the upper layers of Gale crater's mound (Mt. Sharp/Aeolis Mons), and the fan-shaped deposits to Peace Vallis fan in Gale crater. Alternations between periods of low mean obliquity and periods of high mean obliquity may have modulated erosion-deposition cycling in Aeolis. This is consistent with the results from an ensemble of simulations of Solar System orbital evolution and the resulting history of the obliquity of Mars. 57 of our 61 simulations produce one or more intervals of continuously low mean Mars obliquity that are long enough to match our Aeolis Dorsa unconformity data.

  2. A saw-tooth plasma actuator for film cooling efficiency enhancement of a shaped hole

    NASA Astrophysics Data System (ADS)

    Li, Guozhan; Yu, Jianyang; Liu, Huaping; Chen, Fu; Song, Yanping

    2017-08-01

    This paper reports the large eddy simulations of the effects of a saw-tooth plasma actuator and the laidback fan-shaped hole on the film cooling flow characteristics, and the numerical results are compared with a corresponding standard configuration (cylindrical hole without the saw-tooth plasma actuator). For this numerical research, the saw-tooth plasma actuator is installed just downstream of the cooling hole and a phenomenological plasma model is employed to provide the 3D plasma force vectors. The results show that thanks to the downward force and the momentum injection effect of the saw-tooth plasma actuator, the cold jet comes closer to the wall surface and extends further downstream. The saw-tooth plasma actuator also induces a new pair of vortex which weakens the strength of the counter-rotating vortex pair (CRVP) and entrains the coolant towards the wall, and thus the diffusion of the cold jet in the crossflow is suppressed. Furthermore, the laidback fan-shaped hole reduces the vertical jet velocity causing the disappearance of downstream spiral separation node vortices, this compensates for the deficiency of the saw-tooth plasma actuator. Both effects of the laidback fan-shaped hole and the saw-tooth plasma actuator effectively control the development of the CRVP whose size and strength are smaller than those of the anti-counter rotating vortex pair in the far field, thus the centerline and the spanwise-averaged film cooling efficiency are enhanced. The average film cooling efficiency is the biggest in the Fan-Dc = 1 case, which is 80% bigger than that in the Fan-Dc = 0 case and 288% bigger than that in the Cyl-Dc = 0 case.

  3. Modeling 3-D permeability distribution in alluvial fans using facies architecture and geophysical acquisitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Lin; Gong, Huili; Dai, Zhenxue

    Alluvial fans are highly heterogeneous in hydraulic properties due to complex depositional processes, which make it difficult to characterize the spatial distribution of the hydraulic conductivity ( K). An original methodology is developed to identify the spatial statistical parameters (mean, variance, correlation range) of the hydraulic conductivity in a three-dimensional (3-D) setting by using geological and geophysical data. More specifically, a large number of inexpensive vertical electric soundings are integrated with a facies model developed from borehole lithologic data to simulate the log 10( K) continuous distributions in multiple-zone heterogeneous alluvial megafans. The Chaobai River alluvial fan in the Beijing Plain,more » China, is used as an example to test the proposed approach. Due to the non-stationary property of the K distribution in the alluvial fan, a multiple-zone parameterization approach is applied to analyze the conductivity statistical properties of different hydrofacies in the various zones. The composite variance in each zone is computed to describe the evolution of the conductivity along the flow direction. Consistently with the scales of the sedimentary transport energy, the results show that conductivity variances of fine sand, medium-coarse sand, and gravel decrease from the upper (zone 1) to the lower (zone 3) portion along the flow direction. In zone 1, sediments were moved by higher-energy flooding, which induces poor sorting and larger conductivity variances. The composite variance confirms this feature with statistically different facies from zone 1 to zone 3. Lastly, the results of this study provide insights to improve our understanding on conductivity heterogeneity and a method for characterizing the spatial distribution of  K in alluvial fans.« less

  4. Modeling 3-D permeability distribution in alluvial fans using facies architecture and geophysical acquisitions

    DOE PAGES

    Zhu, Lin; Gong, Huili; Dai, Zhenxue; ...

    2017-02-03

    Alluvial fans are highly heterogeneous in hydraulic properties due to complex depositional processes, which make it difficult to characterize the spatial distribution of the hydraulic conductivity ( K). An original methodology is developed to identify the spatial statistical parameters (mean, variance, correlation range) of the hydraulic conductivity in a three-dimensional (3-D) setting by using geological and geophysical data. More specifically, a large number of inexpensive vertical electric soundings are integrated with a facies model developed from borehole lithologic data to simulate the log 10( K) continuous distributions in multiple-zone heterogeneous alluvial megafans. The Chaobai River alluvial fan in the Beijing Plain,more » China, is used as an example to test the proposed approach. Due to the non-stationary property of the K distribution in the alluvial fan, a multiple-zone parameterization approach is applied to analyze the conductivity statistical properties of different hydrofacies in the various zones. The composite variance in each zone is computed to describe the evolution of the conductivity along the flow direction. Consistently with the scales of the sedimentary transport energy, the results show that conductivity variances of fine sand, medium-coarse sand, and gravel decrease from the upper (zone 1) to the lower (zone 3) portion along the flow direction. In zone 1, sediments were moved by higher-energy flooding, which induces poor sorting and larger conductivity variances. The composite variance confirms this feature with statistically different facies from zone 1 to zone 3. Lastly, the results of this study provide insights to improve our understanding on conductivity heterogeneity and a method for characterizing the spatial distribution of  K in alluvial fans.« less

  5. Turbofan gas turbine engine with variable fan outlet guide vanes

    NASA Technical Reports Server (NTRS)

    Wood, Peter John (Inventor); LaChapelle, Donald George (Inventor); Grant, Carl (Inventor); Zenon, Ruby Lasandra (Inventor); Mielke, Mark Joseph (Inventor)

    2010-01-01

    A turbofan gas turbine engine includes a forward fan section with a row of fan rotor blades, a core engine, and a fan bypass duct downstream of the forward fan section and radially outwardly of the core engine. The forward fan section has only a single stage of variable fan guide vanes which are variable fan outlet guide vanes downstream of the forward fan rotor blades. An exemplary embodiment of the engine includes an afterburner downstream of the fan bypass duct between the core engine and an exhaust nozzle. The variable fan outlet guide vanes are operable to pivot from a nominal OGV position at take-off to an open OGV position at a high flight Mach Number which may be in a range of between about 2.5-4+. Struts extend radially across a radially inwardly curved portion of a flowpath of the engine between the forward fan section and the core engine.

  6. Radially leaned outlet guide vanes for fan source noise reduction

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.

    1973-01-01

    Two quiet engine program half scale fans one with a subsonic and the other with a supersonic fan tip speed at takeoff were run with 30 degree leaned and radial outlet guide vanes. Acoustic data at takeoff fan speed on the subsonic tip speed fan showed decreases in 200-foot sideline noise of from 1 to 2 PNdb. The supersonic tip speed fan a takeoff fan speed, however, showed noise increases of up 3 PNdb and a decrease in fan efficiency. At approach fan speed, the subsonic tip speed fan showed a noise decrease of 2.3 PNdb at the 200-foot sideline maximum angle and an increase in efficiency. The supersonic tip speed fan showed noise increase of 3.5 PNdb and no change in efficiency. The decrease in fan efficiency and the nature of the noise increase largely high frequency broadband noise lead to the speculation that an aerodynamic problem occurred.

  7. 1. EXTERIOR VIEW OF NEW FAN HOUSE AND HILLMAN FAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR VIEW OF NEW FAN HOUSE AND HILLMAN FAN HOUSE LOOKING NORTHWEST The building on the left, the New Fan House, houses a Corliss steam engine which powered a Buffalo Forge Company single inlet Duplex Conoidal centrifugal exhausted fan through a metal updraft chimney. Part of the brick airway leading to the Baltimore shaft is visible to its right rear. The Hillman Fan House, on the right, houses the 1883 double inlet Guibal fan. The south entry, the curve of the fan housing, and brick updraft chimney are visible in this view. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA

  8. Design, fabrication and acoustic tests of a 36 inch (0.914 meter) statorless turbotip fan

    NASA Technical Reports Server (NTRS)

    Smith, E. G.; Stempert, D. L.; Uhl, W. R.

    1975-01-01

    The LF336/E is a 36 inch (0.914 meter) diameter fan designed to operate in a rotor-alone configuration. Design features required for modification of the existing LF336/A rotor-stator fan into the LF336/E statorless fan configuration are discussed. Tests of the statorless fan identified an aerodynamic performance deficiency due to inaccurate accounting of the fan exit swirl during the aerodynamic design. This performance deficiency, related to fan exit static pressure levels, produced about a 20 percent thrust loss. A study was then conducted for further evaluation of the fan exit flow fields typical of statorless fan systems. This study showed that through proper selection of fan design variables such as pressure ratio, radius ratio, and swirl distributions, performance of a statorless fan configuration could be improved with levels of thrust approaching the conventional rotor-stator fan system. Acoustic measurements were taken for the statorless fan system at both GE and NASA, and when compared to other lift fan systems, showed noise levels comparable to the quietest lift fan configuration which included rotor-stator spacing and acoustic treatment. The statorless fan system was also used to determine effects of rotor leading edge serrations on noise generations. A cascade test program identified the serration geometry based on minimum pressure losses, wake turbulence levels and noise generations.

  9. Fan-shaped antennas: Realization of wideband characteristics and generation of stop bands

    NASA Astrophysics Data System (ADS)

    Nakano, H.; Morishita, K.; Iitsuka, Y.; Mimaki, H.; Yoshida, T.; Yamauchi, J.

    2008-08-01

    This paper presents four fan-shaped antennas: U.S.-FAN, CROSS-FAN, CROSS-FAN-W, and CROSS-FAN-S. Each of these antennas stands upright above a ground plane, and has edges expressed by an exponential function and a circle function. The four antennas are investigated using frequencies from 1.5 GHz to 11 GHz. The CROSS-FAN is found to have a lower VSWR over a wide frequency band compared to the U.S.-FAN. The CROSS-FAN-W and CROSS-FAN-S are modified versions of the CROSS-FAN, each designed to have a stop band (a high VSWR frequency range) for interference cancellation. The stop band for the CROSS-FAN-W is controlled by a wire (total length 4Lwire) that connects the fan-shaped elements. The center frequency of the stop band fstop is close to the frequency corresponding to a wire segment length Lwire of half the wavelength. It is also found that the stop band in the CROSS-FAN-S can be controlled by four slots, one cut into each of the fan-shaped elements. The center frequency of the stop band fstop is close to the frequency corresponding to a slot length Lslot of one-quarter of the wavelength. Experimental work is performed to confirm the theoretical results, using the CROSS-FAN-S.

  10. Variable pitch fan system for NASA/Navy research and technology aircraft

    NASA Technical Reports Server (NTRS)

    Ryan, W. P.; Black, D. M.; Yates, A. F.

    1977-01-01

    Preliminary design of a shaft driven, variable-pitch lift fan and lift-cruise fan was conducted for a V/STOL Research and Technology Aircraft. The lift fan and lift-cruise fan employed a common rotor of 157.5 cm diameter, 1.18 pressure ratio variable-pitch fan designed to operate at a rotor-tip speed of 284 mps. Fan performance maps were prepared and detailed aerodynamic characteristics were established. Cost/weight/risk trade studies were conducted for the blade and fan case. Structural sizing was conducted for major components and weights determined for both the lift and lift-cruise fans.

  11. Smart Fan Modules And System

    DOEpatents

    Cipolla, Thomas M.; Kaufman, Richard I.; Mok, Lawrence S.

    2003-07-15

    A fan module including: two or more individual fans, each fan having an air movement means and a motor engaged with the air movement means for accelerating air entering each of the two or more individual fans; a temperature sensor for sensing a temperature associated with the two or more fans and for outputting a first signal corresponding to the temperature; rotational speed sensor for outputting a second signal corresponding to a rotational speed of each of the two or more fans; and a processor for receiving the first and second signals and controlling the two or more individual fans based on the first and second signals. A fan module including: two or more individual fans, each fan having an air movement means and a motor engaged with the air movement means for accelerating air entering each of the two or more individual fans; a temperature sensor for sensing a temperature associated with the two or more fans and for outputting a first signal corresponding to the temperature; rotational speed sensor for outputting a second signal corresponding to a rotational speed of each of the two or more fans; and a processor for receiving the first and second signals and controlling the two or more individual fans based on the first and second signals.

  12. Comparison of Far-Field Noise for Three Significantly Different Model Turbofans

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.

    2008-01-01

    Far-field noise sound power level (PWL) spectra and overall sound pressure level (OASPL) directivities were compared for three significantly different model fan stages which were tested in the NASA Glenn 9x15 Low Speed Wind Tunnel. The test fans included the Advanced Ducted Propulsor (ADP) Fan1, the baseline Source Diagnostic Test (SDT) fan, and the Quiet High Speed Fan2 (QHSF2) These fans had design rotor tangential tip speeds from 840 to 1474 ft/s and stage pressure ratios from 1.29 to 1.82. Additional parameters included rotor-stator spacing, stator sweep, and downstream support struts. Acoustic comparison points were selected on the basis of stage thrust. Acoustic results for the low tip speed/low pressure ratio fan (ADP Fan1) were thrust-adjusted to show how a geometrically-scaled version of this fan might compare at the higher design thrust levels of the other two fans. Lowest noise levels were typically observed for ADP Fan1 (which had a radial stator) and for the intermediate tip speed fan (Source Diagnostics Test, SDT, R4 rotor) with a swept stator. Projected noise levels for the ADP fan to the SDT swept stator configuration at design point conditions showed the fans to have similar noise levels. However, it is possible that the ADP fan could be 2 to 3 dB quieter with incorporation of a swept stator. Benefits of a scaled ADP fan include avoidance of multiple pure tones associated with transonic and higher blade tip speeds. Penalties of a larger size ADP fan would include increased nacelle size and drag.

  13. Comparison of Far-field Noise for Three Significantly Different Model Turbofans

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.

    2008-01-01

    Far-field noise sound power level (PWL) spectra and overall sound pressure level (OASPL) directivities were compared for three significantly different model fan stages which were tested in the NASA Glenn 9 15 Low Speed Wind Tunnel. The test fans included the Advanced Ducted Propulsor (ADP) Fan1, the baseline Source Diagnostic Test (SDT) fan, and the Quiet High Speed Fan2 (QHSF2). These fans had design rotor tangential tip speeds from 840 to 1474 ft/s and stage pressure ratios from 1.29 to 1.82. Additional parameters included rotor-stator spacing, stator sweep, and downstream support struts. Acoustic comparison points were selected on the basis of stage thrust. Acoustic results for the low tip speed/low pressure ratio fan (ADP Fan1) were thrust-adjusted to show how a geometrically-scaled version of this fan might compare at the higher design thrust levels of the other two fans. Lowest noise levels were typically observed for ADP Fan1 (which had a radial stator) and for the intermediate tip speed fan (Source Diagnostics Test, SDT, R4 rotor) with a swept stator. Projected noise levels for the ADP fan to the SDT swept stator configuration at design point conditions showed the fans to have similar noise levels. However, it is possible that the ADP fan could be 2 to 3 dB quieter with incorporation of a swept stator. Benefits of a scaled ADP fan include avoidance of multiple pure tones associated with transonic and higher blade tip speeds. Penalties of a larger size ADP fan would include increased nacelle size and drag.

  14. Energy efficient engine: Fan test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Sullivan, T. J.

    1980-01-01

    A single stage fan and quarter stage booster were designed for the energy efficient engine. The fan has an inlet radius ratio of 0.342 and a specific flow rate of 208.9 Kg/S sq m (42.8 lbm/sec sq ft). The fan rotor has 32 medium aspect ratio (2.597) titanium blades with a partspan shroud at 55% blade height. The design corrected fan tip speed is 411.5 M/S (1350 ft/sec). The quarter stage island splits the total fan flow with approximately 22% of the flow being supercharged by the quarter stage rotor. The fan bypass ratio is 6.8. The core flow total pressure ratio is 1.67 and the fan bypass pressure ratio is 1.65. The design details of the fan and booster blading, and the fan frame and static structure for the fan configuration are presented.

  15. CF6 jet engine performance improvement: New fan

    NASA Technical Reports Server (NTRS)

    Fasching, W. A.

    1980-01-01

    As part of the NASA sponsored engine component improvement program, and fan package was developed to reduce fuel consumption in current CF6 turbofan aircraft engine. The new fan package consist of an improved fan blade, reduced fan tip clearance due to a fan case stiffener, and a smooth fan casing tip shroud. CF6 engine performance and acoustic tests demonstrated the predicted 1.8% improvement in cruise sfc without an increase in engine noise. Power management thrust/fan speed characteristics were defined. Mechanical and structural integrity was demonstrated in model fan rotor photoelastic stress tests, full-size fan blade bench fatigue tests, and CF6 engine bird ingestion, crosswind, and cyclic endurance tests. The fan was certified in the CF6-500c2/E2 engines and is in commerical service on the Boeing 747-200, Douglas DC-10-30, and Atrbus industrie A300B aircraft.

  16. Engine component improvement: Performance improvement, JT9D-7 3.8 AR fan

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.

    1980-01-01

    A redesigned, fuel efficient fan for the JT9D-7 engine was tested. Tests were conducted to determine the effect of the 3.8 AR fan on performance, stability, operational characteristics, and noise of the JT9D-7 engine relative to the current 4.6 AR Bill-of-Material fan. The 3.8 AR fan provides increased fan efficiency due to a more advanced blade airfoil with increased chord, eliminating one part span shroud and reducing the number of fan blades and fan exit guide vanes. Engine testing at simulated cruise conditions demonstrated the predicted 1.3 percent improvement in specific fuel consumption with the redesigned 3.8 AR fan. Flight testing and sea level stand engine testing demonstrated exhaust gas temperature margins, fan and low pressure compressor stability, operational suitability, and noise levels comparable to the Bill-of-Material fan.

  17. 7. EXTERIOR VIEW OF BALTIMORE FAN HOUSE, AIRWAY, AND HILLMAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. EXTERIOR VIEW OF BALTIMORE FAN HOUSE, AIRWAY, AND HILLMAN FAN HOUSE LOOKING SOUTHEAST The roof of the 1908 Baltimore Fan House is to the left; the doorway opens onto the rear of the metal fan housing. In the immediate foreground is a section of the blast doors installed in the airway directly over the shaft to protect the fans in case of a mine explosion. The sloping airway, to the right, connects with the New Fan House, whose metal updraft chimney is evident in the right background. The engine house of the Hillman Fan House is in the left background with the fan housing and updraft chimney connected. The boiler house stack is in the background. All of the engines in the fan complex were powered by the boiler house. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA

  18. Primary structure and subcellular localization of two fimbrial subunit-like proteins involved in the biosynthesis of K99 fibrillae.

    PubMed

    Roosendaal, E; Jacobs, A A; Rathman, P; Sondermeyer, C; Stegehuis, F; Oudega, B; de Graaf, F K

    1987-09-01

    Analysis of the nucleotide sequence of the distal part of the fan gene cluster encoding the proteins involved in the biosynthesis of the fibrillar adhesin, K99, revealed the presence of two structural genes, fanG and fanH. The amino acid sequence of the gene products (FanG and FanH) showed significant homology to the amino acid sequence of the fibrillar subunit protein (FanC). Introduction of a site-specific frameshift mutation in fanG or fanH resulted in a simultaneous decrease in fibrillae production and adhesive capacity. Analysis of subcellular fractions showed that, in contrast to the K99 fibrillar subunit (FanC), both the FanH and the FanG protein were loosely associated with the outer membrane, possibly on the periplasmic side, but were not components of the fimbriae themselves.

  19. Design features of fans, blowers, and compressors

    NASA Astrophysics Data System (ADS)

    Cheremisinoff, N. P.; Cheremisinoff, P. N.

    Fan engineering and compression machines are discussed. Basic aspects of fan performance and design are reviewed, and the design and performance characteristics of radial-flow fans, axial-flow fans, and controllable pitch fans are examined in detail. Air-conditioning systems are discussed, and noise, vibration, and mechanical considerations in fans are extensively examined. The thermodynamic principles governing compression machines are reviewed, and piston compressors, rotary compressors, blowers, and centrifugal compressors are discussed.

  20. Comparison of BacT/Alert FAN and FAN Plus Bottles with Conventional Medium for Culturing Cerebrospinal Fluid.

    PubMed

    Yoo, In Young; Chun, Sejong; Song, Dong Joon; Huh, Hee Jae; Lee, Nam Yong

    2016-11-01

    We compared the BacT/Alert system FAN and FAN Plus media to conventional media for culturing cerebrospinal fluid (CSF) with 2,545 samples. FAN/FAN Plus bottles showed better performance for isolating microorganisms in CSF than conventional media (positive rate, 7.2% [182/2,545] versus 3.1% [80/2,545]). The incremental recovery rate of Cryptococcus neoformans from FAN Plus bottles was higher than that from FAN bottles. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Effects of perforation number of blade on aerodynamic performance of dual-rotor small axial flow fans

    NASA Astrophysics Data System (ADS)

    Hu, Yongjun; Wang, Yanping; Li, Guoqi; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong

    2015-04-01

    Compared with single rotor small axial flow fans, dual-rotor small axial flow fans is better regarding the static characteristics. But the aerodynamic noise of dual-rotor small axial flow fans is worse than that of single rotor small axial flow fans. In order to improve aerodynamic noise of dual-rotor small axial flow fans, the pre-stage blades with different perforation numbers are designed in this research. The RANS equations and the standard k-ɛ turbulence model as well as the FW-H noise model are used to simulate the flow field within the fan. Then, the aerodynamic performance of the fans with different perforation number is compared and analyzed. The results show that: (1) Compared to the prototype fan, the noise of fans with perforation blades is reduced. Additionally, the noise of the fans decreases with the increase of the number of perforations. (2) The vorticity value in the trailing edge of the pre-stage blades of perforated fans is reduced. It is found that the vorticity value in the trailing edge of the pre-stage blades decreases with the increase of the number of perforations. (3) Compared to the prototype fan, the total pressure rising and efficiency of the fans with perforation blades drop slightly.

  2. Using Synthetic Aperture Radar data of terrestrial analogs to test for alluvial fan formation mechanisms on Titan

    NASA Astrophysics Data System (ADS)

    Cartwright, R. J.; Burr, D. M.

    2017-03-01

    Landforms on Titan include features hypothesized to be alluvial fans. Terrestrial alluvial fans form via two processes: fluid-gravity flows (sheetfloods) and sediment-gravity flows (debris flows). Along the Panamint Mountain Range in Death Valley, California, USA, seven fans formed primarily by debris flows are located adjacent to seven fans formed primarily by sheetfloods. The causal difference between these two groupings stems from their catchment lithologies; the debris flow fan catchments are clay-rich and relatively sand-poor, and the sheetflood fan catchments are clay-poor and sand-rich. On Titan, the low and mid latitudes are dominated by sand seas, demonstrating that sand is available for transport. At high latitudes, these sand seas are absent, suggesting that transportable sand is scarce. Based on the sedimentology of the two Panamint Range fan types, we hypothesize that possible fans at lower latitudes on Titan are formed by sheetfloods, whereas those at higher latitudes formed primarily by debris flows. To test these hypotheses, we measured and analyzed the mean normalized radar cross sections (σ°) and changes in σ° with downfan distance for debris flow and sheetflood fans along the Panamint Range. We then compared the results with the same measurements for possible fans on Titan. We find that, in the Panamint Range, debris flow fans are brighter than sheetflood fans and have greater change in σ° with downfan distance, and that on Titan, low-latitude possible fans are likewise brighter than the fans at high latitudes with greater change in σ° with downfan distance. Consequently, our findings suggest that low-latitude possible fans on Titan are formed primarily by debris flows, whereas high-latitude possible fans on Titan are formed primarily by sheetfloods. Thus, our results do not support our hypotheses. Scenarios to explain these results include: (1) high-latitude possible fans are dominated by radar-dark debris flow deposits, (2) low- and mid-latitude possible fans are dominated by radar-bright sheetflood deposits, (3) sand-sized sediments were relatively scarce at the time of low- and mid-latitude possible fan formation, (4) bedrock composition varies as a function of latitude on Titan, (5) alluvial fans form differently on Titan because of the lower gravity conditions, and (6) fan-like features may result from non-alluvial processes, such as form distributary fluvial systems on Earth.

  3. Large Alluvial Fans on Mars

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Howard, Alan D.

    2004-01-01

    Several dozen distinct alluvial fans, 10 to greater than 40 km long downslope are observed exclusively in highlands craters. Within a search region between 0 deg. and 30 deg. S, alluvial fan-containing craters were only found between 18 and 29 S, and they all occur at around plus or minus 1 km of the MOLA-defined Martian datum. Within the study area they are not randomly distributed but instead form three distinct clusters. Fans typically descend greater than 1 km from where they disgorge from their alcoves. Longitudinal profiles show that their surfaces are very slightly concave with a mean slope of 2 degrees. Many fans exhibit very long, narrow low-relief ridges radially oriented down-slope, often branching at their distal ends, suggestive of distributaries. Morphometric data for 31 fans was derived from MOLA data and compared with terrestrial fans with high-relief source areas, terrestrial low gradient alluvial ramps in inactive tectonic settings, and older Martian alluvial ramps along crater floors. The Martian alluvial fans generally fall on the same trends as the terrestrial alluvial fans, whereas the gentler Martian crater floor ramps are similar in gradient to the low relief terrestrial alluvial surfaces. For a given fan gradient, Martian alluvial fans generally have greater source basin relief than terrestrial fans in active tectonic settings. This suggests that the terrestrial source basins either yield coarser debris or have higher sediment concentrations than their Martian counterpoints. Martian fans and Basin and Range fans have steeper gradients than the older Martian alluvial ramps and terrestrial low relief alluvial surfaces, which is consistent with a supply of coarse sediment. Martian fans are relatively large and of low gradient, similar to terrestrial fluvial fans rather than debris flow fans. However, gravity scaling uncertainties make the flow regime forming Martian fans uncertain. Martian fans, at least those in Holden crater, apparently formed around the time of the Noachian-Hesperian boundary. We infer that these fans formed during an episode of enhanced precipitation (probably snow) and runoff, which exhibited both sudden onset and termination.

  4. The modern Kaoping transient fan offshore SW Taiwan: Morphotectonics and development

    NASA Astrophysics Data System (ADS)

    Hsiung, Kan-Hsi; Yu, Ho-Shing; Chiang, Cheng-Shing

    2018-01-01

    Using bathymetry and seismic reflection profiles, this study examined and determined the transient nature of the Kaoping Fan located in the topographically complex slope offshore southwest Taiwan. Kaoping Fan is located west of the lower reach of the Kaoping Canyon at the lower Kaoping Slope, ranging from 2,200 to 3,000 m water depth, and has a relatively small areal extent restricted in the topographic lows confined by structural highs due to mud diapiric uplifting and thrust faulting. Kaoping Fan shows an asymmetrical triangular fan-shaped bathymetric feature elongated in an NW-SE direction but with a strong skew toward the east. The fan deposits consist of three main seismic facies: layered high-amplitude reflections in the upper section and stratified, parallel to sub-parallel low-amplitude reflections with variable continuity and channel fill facies in the lower section. In the absence of ground-truthing from core data, the seismic patterns suggest that the Kaoping Fan recorded the onset of channelized and over-bank deposits in the lower part and layered turbidite facies in the upper part subsequently. The development of the Kaoping Fan can be divided into three stages in terms of canyon activities and fan-feeding processes. Initially, Kaoping Fan was mainly fed by a point sediment source at the apex of the fan. Secondly, Kaoping Fan was maintained as a slope fan, mainly fed laterally by over-spilled sediments from the canyon. Finally, the Kaoping Canyon completely passes through the Kaoping Fan and supplies over-spilled sediments laterally, forming a transient fan with canyon incision and sediment by-passing. The accumulation of sediments and the growth of Kaoping Fan are primarily controlled by inherited complex paleo-topography and the evolution of Kaoping Canyon. The sediment delivery system of Kaoping Fan is characterized by lateral supply of over-spilling sediment flows and sediments bypassing to and beyond the base of slope. The Kaoping Fan together with the ponded Fangliao Fan in the topographically complex Kaoping Slope can be used as a type model for evaluating the topographic effects on the development of submarine fans on complex slopes in general.

  5. Evaluation of the Appropriate Washout Period Following Fan Therapy for Dyspnea in Patients With Advanced Cancer: A Pilot Study.

    PubMed

    Kako, Jun; Morita, Tatsuya; Yamaguchi, Takuhiro; Sekimoto, Asuko; Kobayashi, Masamitsu; Kinoshita, Hiroya; Ogawa, Asao; Zenda, Sadamoto; Uchitomi, Yosuke; Inoguchi, Hironobu; Matsushima, Eisuke

    2018-02-01

    To clarify the duration required for dyspnea to return to baseline severity after fan therapy, to evaluate whether fan-to-legs therapy or no fan therapy would be a suitable control therapy, and to investigate changes in patients' face surface temperature after fan therapy. In this pilot study, all participants received 3 interventions in the following order: no fan, fan to legs, and fan to face. Participants used a fan for 5 minutes, and they scored their dyspnea at 10-minute intervals for 60 minutes or until the score had returned to its baseline value, whichever occurred first. Nine patients with advanced cancer admitted to a palliative care unit were included; they had dyspnea at rest and rated its severity as at least 3 points on a 0- to 10-point numerical rating scale. Descriptive statistics and the Wilcoxon signed rank test were used to analyze the data. All patients completed the study. Of the 9 participants, 6 experienced a clinical benefit from using a fan to their faces. Of these patients, only 2 participants' (2 of 6) dyspnea scores returned to baseline by the end of the 60-minute assessment period after exposure to fan-to-face therapy. In fan-to-legs and no fan settings, there was no change in the dyspnea scores. There were significant differences between the baseline face surface temperature and that after fan-to-face and fan-to-legs settings. When using a crossover design to investigate the effect of fan therapy on dyspnea, 1 hour is an insufficient washout period.

  6. 30 CFR 57.8534 - Shutdown or failure of auxiliary fans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Shutdown or failure of auxiliary fans. 57.8534... Ventilation Underground Only § 57.8534 Shutdown or failure of auxiliary fans. (a) Auxiliary fans installed and... fan maintenance or fan adjustments where air quality is maintained in compliance with the applicable...

  7. The development of a laterally confined laboratory fan delta under sediment supply reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofeng; Wang, Siqiang; Wu, Xi; Xu, Shun; Li, Zhangyong

    2016-03-01

    In previous fan delta experiments, the effect of lateral confinement was generally ignored as these fans were usually unconfined with semiconical geometries. However, in gorge areas, fan development is usually laterally confined by valley walls. This study investigates autogenic processes of fan deltas in a laterally confined experimental tank. The experiment is divided into three phases. The sediment supply is held constant within each phase, so the autogenic processes of the fan are separated from the allogenic forcings. Results indicate that laterally confined fan deltas have higher progradation and aggradation potential, more regular channel braiding, and more even transverse sedimentation than unconfined fans. Besides, responses of fan deltas to sediment supply reduction are investigated in this research. At the initiation of the second and third phases, sediment feed rates are instantaneously reduced so that the allogenic forcings are predominant. Observations show that under sediment supply reduction, channelization on fan deltas are more pronounced and durations of the fluvial cycles are longer. The adjustment of fan morphology becomes slower as the self-regulation capacity of the fan decreases with reduced sediment supply.

  8. 30 CFR 57.4504 - Fan installations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for main and booster fans, and air ducts connecting main fans to underground openings shall be constructed of noncombustible materials. (b) Areas within 25 feet of main fans or booster fans shall be free...

  9. 30 CFR 57.4504 - Fan installations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for main and booster fans, and air ducts connecting main fans to underground openings shall be constructed of noncombustible materials. (b) Areas within 25 feet of main fans or booster fans shall be free...

  10. 30 CFR 57.4504 - Fan installations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for main and booster fans, and air ducts connecting main fans to underground openings shall be constructed of noncombustible materials. (b) Areas within 25 feet of main fans or booster fans shall be free...

  11. 30 CFR 57.4504 - Fan installations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for main and booster fans, and air ducts connecting main fans to underground openings shall be constructed of noncombustible materials. (b) Areas within 25 feet of main fans or booster fans shall be free...

  12. Fan Noise Source Diagnostic Test: Rotor Alone Aerodynamic Performance Results

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Jeracki, Robert J.; Woodward, Richard P.; Miller, Christopher J.

    2005-01-01

    The aerodynamic performance of an isolated fan or rotor alone model was measured in the NASA Glenn Research Center 9- by 15- Foot Low Speed Wind Tunnel as part of the Fan Broadband Source Diagnostic Test conducted at NASA Glenn. The Source Diagnostic Test was conducted to identify the noise sources within a wind tunnel scale model of a turbofan engine and quantify their contribution to the overall system noise level. The fan was part of a 1/5th scale model representation of the bypass stage of a current technology turbofan engine. For the rotor alone testing, the fan and nacelle, including the inlet, external cowl, and fixed area fan exit nozzle, were modeled in the test hardware; the internal outlet guide vanes located behind the fan were removed. Without the outlet guide vanes, the velocity at the nozzle exit changes significantly, thereby affecting the fan performance. As part of the investigation, variations in the fan nozzle area were tested in order to match as closely as possible the rotor alone performance with the fan performance obtained with the outlet guide vanes installed. The fan operating performance was determined using fixed pressure/temperature combination rakes and the corrected weight flow. The performance results indicate that a suitable nozzle exit was achieved to be able to closely match the rotor alone and fan/outlet guide vane configuration performance on the sea level operating line. A small shift in the slope of the sea level operating line was measured, which resulted in a slightly higher rotor alone fan pressure ratio at take-off conditions, matched fan performance at cutback conditions, and a slightly lower rotor alone fan pressure ratio at approach conditions. However, the small differences in fan performance at all fan conditions were considered too small to affect the fan acoustic performance.

  13. Controls on alluvial fans morphology

    NASA Astrophysics Data System (ADS)

    Delorme, P.; Devauchelle, O.; Lajeunesse, E.; Barrier, L.; Métivier, F.

    2017-12-01

    Using laboratory experiments, we investigate the influence of water and sediment discharges on the morphology of an alluvial fan. In our flume, a single-thread laminar river deposits corundum sand (0.4 mm) into a conical fan. We record the fan progradation with top-view images, and measure its shape using the deformation of a Moiré pattern. The fan remains virtually self-affine as it grows, with a nearly constant slope. We find that, when the sediment discharge is small, the longitudinal slope of the fan remains close to that of a river at the threshold for sediment transport. A higher sediment discharge causes the fan's slope to depart from the threshold value. Due to the downstream decrease of the sediment load, this slope gets shallower towards the fan's toe. This mechanism generates a slightly concave fan profile. This suggests that the proximal slope of an alluvial fan could be a proxy for the sediment flux that feeds the fan.Finally, we discuss the applicability of these results to natural systems.

  14. 30 CFR 75.302 - Main mine fans.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ventilated by one or more main mine fans. Booster fans shall not be installed underground to assist main mine fans except in anthracite mines. In anthracite mines, booster fans installed in the main air current or...

  15. 30 CFR 75.302 - Main mine fans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ventilated by one or more main mine fans. Booster fans shall not be installed underground to assist main mine fans except in anthracite mines. In anthracite mines, booster fans installed in the main air current or...

  16. 30 CFR 75.302 - Main mine fans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ventilated by one or more main mine fans. Booster fans shall not be installed underground to assist main mine fans except in anthracite mines. In anthracite mines, booster fans installed in the main air current or...

  17. 30 CFR 75.302 - Main mine fans.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ventilated by one or more main mine fans. Booster fans shall not be installed underground to assist main mine fans except in anthracite mines. In anthracite mines, booster fans installed in the main air current or...

  18. 30 CFR 75.302 - Main mine fans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ventilated by one or more main mine fans. Booster fans shall not be installed underground to assist main mine fans except in anthracite mines. In anthracite mines, booster fans installed in the main air current or...

  19. 30 CFR 75.313 - Main mine fan stoppage with persons underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main mine fan stoppage with persons underground... mine fan stoppage with persons underground. (a) If a main mine fan stops while anyone is underground and the ventilating quantity provided by the fan is not maintained by a back-up fan system— (1...

  20. 75 FR 79952 - Airworthiness Directives; DASSAULT AVIATION Model Falcon 10 Airplanes; Model FAN JET FALCON, FAN...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-21

    ... Airworthiness Directives; DASSAULT AVIATION Model Falcon 10 Airplanes; Model FAN JET FALCON, FAN JET FALCON.... List of Subjects in 14 CFR Part 39 Air transportation, Aircraft, Aviation safety, Safety. Adoption of.... (1) DASSAULT AVIATION Model Falcon 10 airplanes, Model FAN JET FALCON, FAN JET FALCON SERIES C, D, E...

  1. Quiet High Speed Fan II (QHSF II): Final Report

    NASA Technical Reports Server (NTRS)

    Kontos, Karen; Weir, Don; Ross, Dave

    2012-01-01

    This report details the aerodynamic, mechanical, structural design and fabrication of a Honey Engines Quiet High Speed Fan II (lower hub/tip ratio and higher specific flow than the Baseline I fan). This fan/nacelle system incorporates features such as advanced forward sweep and an advanced integrated fan/fan exit guide vane design that provides for the following characteristics: (1) Reduced noise at supersonic tip speeds, in comparison to current state-of-the-art fan technology; (2) Improved aeroelastic stability within the anticipated operating envelope; and (3) Aerodynamic performance consistent with current state-of-the-art fan technology. This fan was fabricated by Honeywell and tested in the NASA Glenn 9- by 15-Ft Low Speed Wind Tunnel for aerodynamic, aeromechanical, and acoustic performance.

  2. Structural controls on submarine-fan geometry and internal architecture: upper La Jolla fan system, offshore Southern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, S.A.; Buchman, S.B.

    1983-01-01

    La Jolla fan, offshore of San Diego, California, is a well-studied example of submarine-fan sedimentation, yet the internal architecture of the fan has remained poorly known. High-resolution seismic data, recorded in a 1 by 2 mi (1.6 by 3.3 km) grid, over much of the fan, allow better understanding of upper and middle fan features and processes, and of structural controls on fan sedimentation. Three bathymetrically prominent conduits supply sediment to the upper La Jolla fan system from stream and nearshore littoral drift-cell sources. La Jolla canyon (and contiguous La Jolla fan valley) is the main feeder to the fan.more » Seismic profiling data confirm the previously reported erosional character of the channel and constructional nature of flanking levees. These data also reveal that the position of the channel is controlled by the geometry of a buried, hard-rock structure. Seismic data demonstrate that the La Jolla fan system comprises a complex interleaved set of sediment wedges derived from multiple sources and woven around the wrench tectonic fabric of uplifts and basins of the southern California borderland. Thus, La Jolla fan system presents an expansion from the simple radial growth pattern of fan sedimentation to a complex fan system built of a number of smaller interwoven radial growth components. Despite these complexities, lithofacies patterns are in part predictable for the La Jolla fan system. Faultbounded uplifts form long-lived barriers to sediment dispersal and enhance channel development along their flanks. Multistory channel complexes, detectable seismically, commonly occur in these structurally controlled positions adjacent to wrench related uplifts.« less

  3. Temperature Stabilization of the NIFFTE Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Hicks, Caleb

    2017-09-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) is a collaboration measuring nuclear fission cross sections for use in advanced nuclear reactors. A neutron beam incident on targets of Uranium-235, Uranium-238, and Plutonium-239 is used to measure the neutron induced fission cross sections for these isotopes. A Time Projection Chamber (TPC) is used to record these reactions. Significant heat is generated by the readout cards mounted on the TPC, which are cooled by fans. One proposed measurement of the experiment is to compare the cross sections of the target to a proton target of gaseous hydrogen. A constant temperature inside the TPC's pressure vessel is desirable to maintain a constant number of hydrogen target atoms. In addition, a constant temperature minimizes the strain and wrinkles on an amplifying mesh inside the TPC. This poster describes the successful work to develop, build, and install a fan controller using a Raspberry Pi, an Arduino, and a custom circuit board to implement an algorithm called Proportional-Integral-Derivative control. This research was supported by US DOE MENP Grant DE-FG02-03ER41243.

  4. Inhibition of Reticulon-1A-Mediated Endoplasmic Reticulum Stress in Early AKI Attenuates Renal Fibrosis Development.

    PubMed

    Fan, Ying; Xiao, Wenzhen; Lee, Kyung; Salem, Fadi; Wen, Jiejun; He, Li; Zhang, Jing; Fei, Yang; Cheng, Dongsheng; Bao, Hongda; Liu, Yumei; Lin, Fujun; Jiang, Gengru; Guo, Zhiyong; Wang, Niansong; He, John Cijiang

    2017-07-01

    Several animal studies have shown an important role for endoplasmic reticulum (ER) stress in AKI, whereas human studies are lacking. We recently reported that Reticulon-1A (RTN1A) is a key mediator of ER stress and kidney cell injury. Here, we investigated whether modulation of RTN1A expression during AKI contributes to the progression to CKD. In a retrospective study of 51 patients with AKI, increased expression of RTN1A and other ER stress markers were associated with the severity of kidney injury and with progression to CKD. In an inducible tubular cell-specific RTN1A-knockdown mouse model subjected to folic acid nephropathy (FAN) or aristolochic acid nephropathy, reduction of RTN1A expression during the initial stage of AKI attenuated ER stress and kidney cell injury in early stages and renal fibrosis development in later stages. Treatment of wild-type mice with tauroursodeoxycholic acid, an inhibitor of ER stress, after the induction of kidney injury with FA facilitated renoprotection similar to that observed in RTN1A-knockdown mice. Conversely, in transgenic mice with inducible tubular cell-specific overexpression of RTN1A subjected to FAN, induction of RTN1A overexpression aggravated ER stress and renal injury at the early stage and renal fibrosis at the late stage of FAN. Together, our human and mouse data suggest that the RTN1A-mediated ER stress response may be an important determinant in the severity of AKI and maladaptive repair that may promote progression to CKD. Copyright © 2017 by the American Society of Nephrology.

  5. Navy Fan, California Borderland: Growth pattern and depositional processes

    USGS Publications Warehouse

    Normark, W.R.; Piper, D.J.W.

    1984-01-01

    Navy Fan is a Late Pleistocene sand-rich fan prograding into an irregularly shaped basin in the southern California Borderland. The middle fan, characterized by one active and two abandoned 'distributary' channels and associated lobe deposits, at present onlaps part of the basin slope directly opposite from the upper-fan valley, thus dividing the lower-fan/basin-plain regions into two separate parts of different depths. Fine-scale mesotopographic relief on the fan surface and correlation of individual turbidite beds through nearly 40 cores on the middle and lower fan provide data for evaluating the Late Pleistocene and Holocene depositional processes. ?? 1984 Springer-Verlag New York Inc.

  6. 11. EXTERIOR VIEW OF NEW FAN HOUSE LOOKING EAST The ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. EXTERIOR VIEW OF NEW FAN HOUSE LOOKING EAST The airway (on the left) leads from the Baltimore shaft to the New Fan House. The metal housing (center foreground) encases a single entry Duplex Conoidal fan, made by the Buffalo Forge Company. The Duplex Conoidal fan had two parts: a disk fan which drew air up the airway and a centrifugal fan set at a right angle to it which exhausted the air. The engine house (on the right) contains a direct connected Corliss engine. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA

  7. Structural integrity of wind tunnel wooden fan blades

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Wingate, Robert T.; Rooker, James R.; Mort, Kenneth W.; Zager, Harold E.

    1991-01-01

    Information is presented which was compiled by the NASA Inter-Center Committee on Structural Integrity of Wooden Fan Blades and is intended for use as a guide in design, fabrication, evaluation, and assurance of fan systems using wooden blades. A risk assessment approach for existing NASA wind tunnels with wooden fan blades is provided. Also, state of the art information is provided for wooden fan blade design, drive system considerations, inspection and monitoring methods, and fan blade repair. Proposed research and development activities are discussed, and recommendations are provided which are aimed at future wooden fan blade design activities and safely maintaining existing NASA wind tunnel fan blades. Information is presented that will be of value to wooden fan blade designers, fabricators, inspectors, and wind tunnel operations personnel.

  8. Advance Noise Control Fan II: Test Rig Fan Risk Management Study

    NASA Technical Reports Server (NTRS)

    Lucero, John

    2013-01-01

    Since 1995 the Advanced Noise Control Fan (ANCF) has significantly contributed to the advancement of the understanding of the physics of fan tonal noise generation. The 9'x15' WT has successfully tested multiple high speed fan designs over the last several decades. This advanced several tone noise reduction concepts to higher TRL and the validation of fan tone noise prediction codes.

  9. Sea level controls on the textural characteristics and depositional architecture of the Hueneme and associated submarine fan systems, Santa Monica Basin, California

    USGS Publications Warehouse

    Normark, W.R.; Piper, D.J.W.; Hiscott, R.N.

    1998-01-01

    Hueneme and Dume submarine fans in Santa Monica Basin consist of sandy channel and muddy levee facies on the upper fan. lenticular sand sheets on the middle fan. and thinly bedded turbidite and hemipelagic facies elsewhere. Fifteen widely correlatable key seismic reflections in high-resolution airgun and deep-towed boomer profiles subdivide the fan and basin deposits into time-slices that show different thickness and seismic-facies distributions, inferred to result from changes in Quaternary sea level and sediment supply. At times of low sea level, highly efficient turbidity currents generated by hyperpycnal flows or sediment failures at river deltas carry sand well out onto the middle-fan area. Thick, muddy flows formed rapidly prograding high levees mainly on the western (right-hand) side of three valleys that fed Hueneme fan at different times: the most recently active of the lowstand fan valleys. Hueneme fan valley, now heads in Hueneme Canyon. At times of high sea level, fans receive sand from submarine canyons that intercept littoral-drift cells and mixed sediment from earthquake-triggered slumps. Turbidity currents are confined to 'underfit' talweg channels in fan valleys and to steep, small, basin-margin fans like Dume fan. Mud is effectively separated from sand at high sea level and moves basinward across the shelf in plumes and in storm-generated lutite flows, contributing to a basin-floor blanket that is locally thicker than contemporary fan deposits and that onlaps older fans at the basin margin. The infilling of Santa Monica Basin has involved both fan and basin-floor aggradation accompanied by landward and basinward facies shifts. Progradation was restricted to the downslope growth of high muddy levees and the periodic basinward advance of the toe of the steeper and sandier Dume fan. Although the region is tectonically active, major sedimentation changes can be related to eustatic sea-level changes. The primary controls on facies shifts and fan growth appear to be an interplay of texture of source sediment, the efficiency with which turbidity currents transport sand, and the effects of delta distributary switching, all of which reflect sea-level changes.

  10. Kilovoltage Imaging Doses in the Radiotherapy of Pediatric Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng Jun, E-mail: jun.deng@yale.edu; Chen Zhe; Roberts, Kenneth B.

    Purpose: To investigate doses induced by kilovoltage cone-beam computed tomography (kVCBCT) to pediatric cancer patients undergoing radiotherapy, as well as strategies for dose reduction. Methods and Materials: An EGS4 Monte Carlo code was used to calculate three-dimensional dose deposition due to kVCBCT on 4 pediatric cancer patients. Absorbed doses to various organs were analyzed for both half-fan and full-fan modes. Clinical conditions, such as distance from organ at risk (OAR) to CBCT field border, kV peak energy, and testicular shielding, were studied. Results: The mean doses induced by one CBCT scan operated at 125 kV in half-fan mode to testes,more » liver, kidneys, femoral heads, spinal cord, brain, eyes, lens, and optical nerves were 2.9, 4.7, 7.7, 10.5, 8.8, 7.6, 7.7, 7.8, and 7.2 cGy, respectively. Increasing the distances from OARs to CBCT field border greatly reduced the doses to OARs, ranging from 33% reduction for spinal cord to 2300% reduction for testes. As photon beam energy increased from 60 to 125 kV, the dose increase due to kVCBCT ranged from 170% for lens to 460% for brain and spinal cord. A testicular shielding made of 1-cm cerrobend could reduce CBCT doses down to 31%, 51%, 68%, and 82%, respectively, for 60, 80, 100, and 125 kV when the testes lay within the CBCT field. Conclusions: Generally speaking, kVCBCT deposits much larger doses to critical structures in children than in adults, usually by a factor of 2 to 3. Increasing the distances from OARs to CBCT field border greatly reduces doses to OARs. Depending on OARs, kVCBCT-induced doses increase linearly or exponentially with photon beam energy. Testicular shielding works more efficiently at lower kV energies. On the basis of our study, it is essential to choose an appropriate scanning protocol when kVCBCT is applied to pediatric cancer patients routinely.« less

  11. Molecular modeling of human neutral sphingomyelinase provides insight into its molecular interactions.

    PubMed

    Dinesh; Goswami, Angshumala; Suresh, Panneer Selvam; Thirunavukkarasu, Chinnasamy; Weiergräber, Oliver H; Kumar, Muthuvel Suresh

    2011-01-01

    The neutral sphingomyelinase (N-SMase) is considered a major candidate for mediating the stress-induced production of ceramide, and it plays an important role in cell-cycle arrest, apoptosis, inflammation, and eukaryotic stress responses. Recent studies have identified a small region at the very N-terminus of the 55 kDa tumour necrosis factor receptor (TNF-R55), designated the neutral sphingomyelinase activating domain (NSD) that is responsible for the TNF-induced activation of N-SMase. There is no direct association between TNF-R55 NSD and N-SMase; instead, a protein named factor associated with N-SMase activation (FAN) has been reported to couple the TNF-R55 NSD to N-SMase. Since the three-dimensional fold of N-SMase is still unknown, we have modeled the structure using the protein fold recognition and threading method. Moreover, we propose models for the TNF-R55 NSD as well as the FAN protein in order to study the structural basis of N-SMase activation and regulation. Protein-protein interaction studies suggest that FAN is crucially involved in mediating TNF-induced activation of the N-SMase pathway, which in turn regulates mitogenic and proinflammatory responses. Inhibition of N-SMase may lead to reduction of ceramide levels and hence may provide a novel therapeutic strategy for inflammation and autoimmune diseases. Molecular dynamics (MD) simulations were performed to check the stability of the predicted model and protein-protein complex; indeed, stable RMS deviations were obtained throughout the simulation. Furthermore, in silico docking of low molecular mass ligands into the active site of N-SMase suggests that His135, Glu48, Asp177, and Asn179 residues play crucial roles in this interaction. Based on our results, these ligands are proposed to be potent and selective N-SMase inhibitors, which may ultimately prove useful as lead compounds for drug development.

  12. Morphology and sedimentology of glacigenic submarine fans on the west Greenland continental margin

    NASA Astrophysics Data System (ADS)

    O'Cofaigh, Colm; Hogan, Kelly A.; Dowdeswell, Julian A.; Jennings, Anne E.; Noormets, Riko; Evans, Jeffrey

    2014-05-01

    Along the West Greenland continental margin adjoining Baffin Bay, bathymetric data show a series of large submarine fans located at the mouths of cross-shelf troughs. Two of these fans, the Uummannaq Fan and the Disko Fan are trough-mouth fans built largely of debris delivered from ice sheet outlets of the Greenland Ice Sheet during past glacial maxima. On the Uummannaq Fan glacigenic debris flow deposits occur on the upper slope and extend to at least 1800 m water depth in front of the trough-mouth. The debris flow deposits are related to the remobilisation of subglacial debris that was delivered onto the upper slope at times when an ice stream was positioned at the shelf edge. In contrast, sedimentary facies from the northern sector of the fan are characterised by hemipelagic and ice-rafted sediments and turbidites; glacigenic debris flows are notably absent in cores from this region. Further south along the Greenland continental margin the surface of the Disko Fan is prominently channelised and associated sediments are acoustically stratified. Although glacigenic debris flow deposits do occur on the upper Disko Fan, sediments recovered in cores from elsewhere on the fan record the influence of turbidity current and meltwater sedimentation. The channelised form of the Disko fan contrasts markedly with that of the Uummannaq Fan and, more widely, with trough mouth fans from the Polar North Atlantic. Collectively these data highlight the variability of glacimarine depositional processes operating on trough-mouth fans on high-latitude continental slopes and show that glacigenic debris flows are but one of a number of mechanisms by which such large glacially-influenced depocentres form.

  13. Taxonomic study of the leafhopper genus Thagria Melichar (Hemiptera: Cicadellidae: Coelidiinae) from Guangxi, China.

    PubMed

    Fan, Zhi-Hua; Li, Zi-Zhong; Dai, Ren-Huai

    2015-02-13

    The paper deals with 21 valid species of the genus Thagria from Guangxi Autonomous Region, China. Eight new species are described and illustrated: T. biprocessa Fan & Dai, sp. nov., T. decussata Fan & Dai, sp. nov., T. irregularis Fan & Dai, sp. nov., T. multispinosa Fan & Dai, sp. nov., T. paramultipars Fan & Li, sp. nov., T. triangula Fan & Li, sp. nov., T. trifasciata Fan & Li, sp. nov. and T. webbi Fan & Li, sp. nov.. A key is given to distinguish all species of this genus from Guangxi, China and maps showing the geographic distribution of new species are also provided. The name Thagria xuae nom. emend. is given for T. xui Nielson.

  14. Fan Database and Web-tool for Choosing Quieter Spaceflight Fans

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.; Burnside, Nathan J.

    2007-01-01

    One critical aspect of designing spaceflight hardware is the selection of fans to provide the necessary cooling. And with efforts to minimize cost and the tendancy to be conservative with the amount of cooling provided, it is easy to choose an overpowered fan. One impact of this is that the fan uses more energy than is necessary. But, the more significant impact is that the hardware produces much more acoustic noise than if an optimal fan was chosen. Choosing the right fan for a specific hardware application is no simple task. It requires knowledge of cooling requirements and various fan performance characteristics as well as knowledge of the aerodynamic losses of the hardware in which the fan is to be installed. Knowledge of the acoustic emissions of each fan as a function of operating condition is also required in order to choose a quieter fan for a given design point. The purpose of this paper is to describe a database and design-tool that have been developed to aid spaceflight hardware developers in choosing a fan for their application that is based on aerodynamic performance and reduced acoustic emissions as well. This web-based-tool provides a limited amount of fan-data, provides a method for selecting a fan based on its projected operating point, and also provides a method for comparing and contrasting aerodynamic performance and acoustic data from different fans. Drill-down techniques are used to display details of the spectral noise characteristics of the fan at specific operation conditions. The fan aerodynamic and acoustic data were acquired at Ames Research Center in the Experimental Aero-Physics Branch's Anechoic Chamber. Acoustic data were acquired according to ANSI Standard S12.11-1987, "Method for the Measurement of Noise Emitted by Small Air-Moving Devices." One significant improvement made to this technique included automation that allows for a significant increase in flow-rate resolution. The web-tool was developed at Johnson Space Center and is based on the web-development application, SEQUEL, which includes graphics and drill-down capabilities. This paper will describe the type and amount of data taken for the fans and will give examples of this data. This paper will also describe the data-tool and gives examples of how it can be used to choose quieter fans for use in spaceflight hardware.

  15. Sloshing motion dynamics of a free surface in the draft tube cone of a Francis turbine operating in synchronous condenser mode

    NASA Astrophysics Data System (ADS)

    Vagnoni, Elena; Andolfatto, Loïc; Favrel, Arthur; Avellan, François

    2016-11-01

    The penetration of the electrical grid by intermittent renewable energy sources induces grid fluctuations which must be compensated in order to guarantee the stability of the grid. Hydropower plants can supply reactive power to ensure the grid stabilization by operating in condenser mode. In this operating mode, the turbine operates with the tail water depressed to let the runner spin in air to reduce the power consumption. Pressurized air is injected in the draft tube cone to maintain the water level below the runner and this induces air-water interaction phenomena which cause important power losses. Flow visualization and pressure fluctuation measurements are performed in a reduced scale physical model of a Francis turbine operating in condenser mode to investigate the dynamics of the air-water interaction in the draft tube cone which causes the sloshing motion of the free surface. An image post-processing method is developed, enabling a quantitative description of the sloshing motion. The latter depends on the Froude number. By increasing the value of the Froude number, the amplitude of the sloshing motion decreases, as well as the amplitude of the pressure fluctuations. The frequency of the sloshing motion corresponds to the first natural frequency of the water volume.

  16. CFD simulation of reverse water-hammer induced by collapse of draft-tube cavity in a model pump-turbine during runaway process

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxi; Cheng, Yongguang; Xia, Linsheng; Yang, Jiandong

    2016-11-01

    This paper reports the preliminary progress in the CFD simulation of the reverse water-hammer induced by the collapse of a draft-tube cavity in a model pump-turbine during the runaway process. Firstly, the Fluent customized 1D-3D coupling model for hydraulic transients and the Schnerr & Sauer cavitation model for cavity development are introduced. Then, the methods are validated by simulating the benchmark reverse water-hammer in a long pipe caused by a valve instant closure. The simulated head history at the valve agrees well with the measured data in literature. After that, the more complicated reverse water-hammer in the draft-tube of a runaway model pump-turbine, which is installed in a model pumped-storage power plant, is simulated. The dynamic processes of a vapor cavity, from generation, expansion, shrink to collapse, are shown. After the cavity collapsed, a sudden increase of pressure can be evidently observed. The process is featured by a locally expending and collapsing vapor cavity that is around the runner cone, which is different from the conventional recognition of violent water- column separation. This work reveals the possibility for simulating the reverse water-hammer phenomenon in turbines by 3D CFD.

  17. Sea-floor drainage features of Cascadia Basin and the adjacent continental slope, northeast Pacific Ocean

    USGS Publications Warehouse

    Hampton, M.A.; Karl, Herman A.; Kenyon, Neil H.

    1989-01-01

    Sea-floor drainage features of Cascadia Basin and the adjacent continental slope include canyons, primary fan valleys, deep-sea valleys, and remnant valley segments. Long-range sidescan sonographs and associated seismic-reflection profiles indicate that the canyons may originate along a mid-slope escarpment and grow upslope by mass wasting and downslope by valley erosion or aggradation. Most canyons are partly filled with sediment, and Quillayute Canyon is almost completely filled. Under normal growth conditions, the larger canyons connect with primary fan valleys or deep-sea valleys in Cascadia Basin, but development of accretionary ridges blocks or re-routes most canyons, forcing abandonment of the associated valleys in the basin. Astoria Fan has a primary fan valley that connects with Astoria Canyon at the fan apex. The fan valley is bordered by parallel levees on the upper fan but becomes obscure on the lower fan, where a few valley segments appear on the sonographs. Apparently, Nitinat Fan does not presently have a primary fan valley; none of the numerous valleys on the fan connect with a canyon. The Willapa-Cascadia-Vancouver-Juan de Fuca deep-sea valley system bypasses the submarine fans and includes deeply incised valleys to broad shallow swales, as well as within-valley terraces and hanging-valley confluences. ?? 1989.

  18. Prediction of aerodynamic noise in a ring fan based on wake characteristics

    NASA Astrophysics Data System (ADS)

    Sasaki, Soichi; Fukuda, Masaharu; Tsujino, Masao; Tsubota, Haruhiro

    2011-06-01

    A ring fan is a propeller fan that applies an axial-flow impeller with a ring-shaped shroud on the blade tip side. In this study, the entire flow field of the ring fan is simulated using computational fluid dynamics (CFD); the accuracy of the CFD is verified through a comparison with the aerodynamic characteristics of a propeller fan of current model. Moreover, the aerodynamic noise generated by the fan is predicted on the basis of the wake characteristics. The aerodynamic characteristic of the ring fan based on CFD can represent qualitatively the variation in the measured value. The main flow domain of the ring fan is formed at the tip side of the blade because blade tip vortex is not formed at that location. Therefore, the relative velocity of the ring fan is increased by the circumferential velocity. The sound pressure levels of the ring fan within the frequency band of less than 200 Hz are larger than that of the propeller fan. In the analysis of the wake characteristics, it revealed that Karman vortex shedding occurred in the main flow domain in the frequency domain lower than 200 Hz; the aerodynamic noise of the ring fan in the vortex shedding frequency enlarges due to increase in the relative velocity and the velocity fluctuation.

  19. Transcriptional organization of the DNA region controlling expression of the K99 gene cluster.

    PubMed

    Roosendaal, B; Damoiseaux, J; Jordi, W; de Graaf, F K

    1989-01-01

    The transcriptional organization of the K99 gene cluster was investigated in two ways. First, the DNA region, containing the transcriptional signals was analyzed using a transcription vector system with Escherichia coli galactokinase (GalK) as assayable marker and second, an in vitro transcription system was employed. A detailed analysis of the transcription signals revealed that a strong promoter PA and a moderate promoter PB are located upstream of fanA and fanB, respectively. No promoter activity was detected in the intercistronic region between fanB and fanC. Factor-dependent terminators of transcription were detected and are probably located in the intercistronic region between fanA and fanB (T1), and between fanB and fanC (T2). A third terminator (T3) was observed between fanC and fanD and has an efficiency of 90%. Analysis of the regulatory region in an in vitro transcription system confirmed the location of the respective transcription signals. A model for the transcriptional organization of the K99 cluster is presented. Indications were obtained that the trans-acting regulatory polypeptides FanA and FanB both function as anti-terminators. A model for the regulation of expression of the K99 gene cluster is postulated.

  20. BPM Motors in Residential Gas Furnaces: What are theSavings?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutz, James; Franco, Victor; Lekov, Alex

    2006-05-12

    Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We use field-measured staticmore » pressure in ducts to get typical system curves to calculate how furnaces would operate in the field. We contrast this with the electricity consumption of a furnace blower operating under the DOE test procedure and manufacturer rated conditions. Furnace electricity use is also affected by operating modes that happen at the beginning and end of each furnace firing cycle. These operating modes are the pre-purge and post-purge by the draft inducer, the on-delay and off-delay of the blower, and the hot surface ignitor operation. To accurately calculate this effect, we use the number of firing cycles in a typical California house in the Central Valley of California. Cooling hours are not considered in the DOE test procedure. We also account for furnace blower use by the air conditioner and stand-by power. Overall BPM motors outperform PSC motors, but the total electricity savings are significantly less than projected using the DOE test procedure conditions. The performance gains depend on the static pressure of the household ducts, which are typically much higher than in the test procedures.« less

  1. 14 CFR 29.908 - Cooling fans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cooling fans. 29.908 Section 29.908... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.908 Cooling fans. For cooling fans that are a part of a powerplant installation the following apply: (a) Category A. For cooling fans installed...

  2. 30 CFR 57.8519 - Underground main fan controls.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground main fan controls. 57.8519 Section... Ventilation Surface and Underground § 57.8519 Underground main fan controls. All underground main fans shall have controls placed at a suitable protected location remote from the fan and preferably on the surface...

  3. 30 CFR 75.331 - Auxiliary fans and tubing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auxiliary fans and tubing. 75.331 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.331 Auxiliary fans and tubing. (a) When auxiliary fans and tubing are used for face ventilation, each auxiliary fan shall be— (1...

  4. 30 CFR 57.22205 - Doors on main fans (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Doors on main fans (I-A, II-A, III, and V-A... main fans (I-A, II-A, III, and V-A mines). In mines ventilated by multiple main fans, each main fan... reversal through the fan. The doors shall be located so that they are not in direct line with explosive...

  5. Design Guidelines for Quiet Fans and Pumps for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Lovell, John S.; Magliozzi, Bernard

    2008-01-01

    This document presents guidelines for the design of quiet fans and pumps of the class used on space vehicles. A simple procedure is presented for the prediction of fan noise over the meaningful frequency spectrum. A section also presents general design criteria for axial flow fans, squirrel cage fans, centrifugal fans, and centrifugal pumps. The basis for this report is an experimental program conducted by Hamilton Standard under NASA Contract NAS 9-12457. The derivations of the noise predicting methods used in this document are explained in Hamilton Standard Report SVHSER 6183, "Fan and Pump Noise Control," dated May 1973 (6).

  6. Tune-Up Your Fan Systems for Improved Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fans are used extensively in commercial buildings and represent approximately 6% of total energy consumed by commercial buildings. The U.S. Department of Energy (DOE) estimates that fans in commercial buildings consume 158 billion kWh of electricity annually. Maintaining fan systems in proper condition provides energy savings and ensures a comfortable and healthy environment. While many fan systems have significant energy savings opportunities available through improvements in fan selection, system design, and operational practices, it is not always apparent when a fan system needs maintenance or what opportunities are available for improvements. This resource is designed for facility managers and maintenancemore » staff to provide easy-to-implement actionable guidance on fan efficiency measures for existing ducted air systems.« less

  7. Development Specification for the FN-323/324, Oxygen Ventilation Loop Fan Assembly

    NASA Technical Reports Server (NTRS)

    Ralston, Russell; Campbell, Colin

    2017-01-01

    This specification establishes the requirements for design, performance, safety, and manufacture of the FN-323/324, Oxygen Ventilation Loop Fan Assembly as part of the Advanced EMU (AEMU) Portable Life Support System (PLSS). Fan development for the advanced Portable Life Support System (PLSS) began in 2009 with the development of Fan 1.0. This fan was used in PLSS 2.0 for circulation of the ventilation loop gas. Fan 2.0 was delivered in 2015 and will be used in the PLSS 2.5 Live Loads test series. This fan used the same motor as Fan 1.0, but had a larger volute and impeller in hopes of achieving lower speeds. The next iteration of the advanced PLSS fan is the subject of the requirements contained within this document, and will be used with the PLSS 2.5 -302 configuration.

  8. Design study and performance analysis of a high-speed multistage variable-geometry fan for a variable cycle engine

    NASA Technical Reports Server (NTRS)

    Sullivan, T. J.; Parker, D. E.

    1979-01-01

    A design technology study was performed to identify a high speed, multistage, variable geometry fan configuration capable of achieving wide flow modulation with near optimum efficiency at the important operating condition. A parametric screening study of the front and rear block fans was conducted in which the influence of major fan design features on weight and efficiency was determined. Key design parameters were varied systematically to determine the fan configuration most suited for a double bypass, variable cycle engine. Two and three stage fans were considered for the front block. A single stage, core driven fan was studied for the rear block. Variable geometry concepts were evaluated to provide near optimum off design performance. A detailed aerodynamic design and a preliminary mechanical design were carried out for the selected fan configuration. Performance predictions were made for the front and rear block fans.

  9. Effect of crossflow velocity on VTOL lift fan blade passing frequency noise generation

    NASA Technical Reports Server (NTRS)

    Stimpert, D. L.

    1973-01-01

    Analysis of noise measurements taken during tests of a remote lift fan wing installation, a V/STOL model transport with both lift and lift/cruise fans, and XV5B research aircraft flight tests has indicated a definite increase in pure tone sound pressure level due to crossflow over the face of the life fans. The fan-in-wing and V/STOL model transport tests were conducted in the NASA Ames 40 ft. by 80 ft. wing tunnel and the XV5B flight tests at Moffett Field. Increases up to 10 db were observed for the lift fan installation tested at crossflow to fan tip velocity ratios up to 0.25. Cruise fan noise levels were found to be unaffected by the external flow. The noise level increase was shown to be related to an increase in fan distortion levels.

  10. Towards a three-component model of fan loyalty: a case study of Chinese youth.

    PubMed

    Zhang, Xiao-xiao; Liu, Li; Zhao, Xian; Zheng, Jian; Yang, Meng; Zhang, Ji-qi

    2015-01-01

    The term "fan loyalty" refers to the loyalty felt and expressed by a fan towards the object of his/her fanaticism in both everyday and academic discourses. However, much of the literature on fan loyalty has paid little attention to the topic from the perspective of youth pop culture. The present study explored the meaning of fan loyalty in the context of China. Data were collected by the method of in-depth interviews with 16 young Chinese people aged between 19 and 25 years who currently or once were pop fans. The results indicated that fan loyalty entails three components: involvement, satisfaction, and affiliation. These three components regulate the process of fan loyalty development, which can be divided into four stages: inception, upgrade, zenith, and decline. This model provides a conceptual explanation of why and how young Chinese fans are loyal to their favorite stars. The implications of the findings are discussed.

  11. Experimental investigation of the noise emission of axial fans under distorted inflow conditions

    NASA Astrophysics Data System (ADS)

    Zenger, Florian J.; Renz, Andreas; Becher, Marcus; Becker, Stefan

    2016-11-01

    An experimental investigation on the noise emission of axial fans under distorted inflow conditions was conducted. Three fans with forward-skewed fan blades and three fans with backward-skewed fan blades and a common operating point were designed with a 2D element blade method. Two approaches were adopted to modify the inflow conditions: first, the inflow turbulence intensity was increased by two different rectangular grids and second, the inflow velocity profile was changed to an asymmetric characteristic by two grids with a distinct bar stacking. An increase in the inflow turbulence intensity affects both tonal and broadband noise, whereas a non-uniform velocity profile at the inlet influences mainly tonal components. The magnitude of this effect is not the same for all fans but is dependent on the blade skew. The impact is greater for the forward-skewed fans than for the backward-skewed and thus directly linked to the fan blade geometry.

  12. Health assessment of cooling fan bearings using wavelet-based filtering.

    PubMed

    Miao, Qiang; Tang, Chao; Liang, Wei; Pecht, Michael

    2012-12-24

    As commonly used forced convection air cooling devices in electronics, cooling fans are crucial for guaranteeing the reliability of electronic systems. In a cooling fan assembly, fan bearing failure is a major failure mode that causes excessive vibration, noise, reduction in rotation speed, locked rotor, failure to start, and other problems; therefore, it is necessary to conduct research on the health assessment of cooling fan bearings. This paper presents a vibration-based fan bearing health evaluation method using comblet filtering and exponentially weighted moving average. A new health condition indicator (HCI) for fan bearing degradation assessment is proposed. In order to collect the vibration data for validation of the proposed method, a cooling fan accelerated life test was conducted to simulate the lubricant starvation of fan bearings. A comparison between the proposed method and methods in previous studies (i.e., root mean square, kurtosis, and fault growth parameter) was carried out to assess the performance of the HCI. The analysis results suggest that the HCI can identify incipient fan bearing failures and describe the bearing degradation process. Overall, the work presented in this paper provides a promising method for fan bearing health evaluation and prognosis.

  13. A Method to Further Reduce the Perceived Noise of Low Tip Speed Fans

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.

    2000-01-01

    The use of low tip speed, high bypass ratio fans is a method for reducing the noise of turbofan jet engines. These fans typically have a low number of rotor blades and a number of stator vanes sufficient to achieve cut-off of the blade passing tone. Their perceived noise levels are typically dominated by broadband noise caused by the rotor wake turbulence - stator interaction mechanism. A 106 bladed, 1100 ft/sec takeoff tip speed fan, the Alternative Low Noise Fan, has been tested and shown to have reduced broadband noise. This reduced noise is believed to be the result of the high rotor blade number. Although this fan with 106 blades would not be practical with materials as they exist today, a fan with 50 or so blades could be practically realized. A noise estimate has indicated that such a 50 bladed, low tip speed fan could be 2 to 3 EPNdB quieter than an 18 bladed fan. If achieved, this level of noise reduction would be significant and points to the use of a high blade number, low tip speed fan as a possible configuration for reduced fan noise.

  14. Health Assessment of Cooling Fan Bearings Using Wavelet-Based Filtering

    PubMed Central

    Miao, Qiang; Tang, Chao; Liang, Wei; Pecht, Michael

    2013-01-01

    As commonly used forced convection air cooling devices in electronics, cooling fans are crucial for guaranteeing the reliability of electronic systems. In a cooling fan assembly, fan bearing failure is a major failure mode that causes excessive vibration, noise, reduction in rotation speed, locked rotor, failure to start, and other problems; therefore, it is necessary to conduct research on the health assessment of cooling fan bearings. This paper presents a vibration-based fan bearing health evaluation method using comblet filtering and exponentially weighted moving average. A new health condition indicator (HCI) for fan bearing degradation assessment is proposed. In order to collect the vibration data for validation of the proposed method, a cooling fan accelerated life test was conducted to simulate the lubricant starvation of fan bearings. A comparison between the proposed method and methods in previous studies (i.e., root mean square, kurtosis, and fault growth parameter) was carried out to assess the performance of the HCI. The analysis results suggest that the HCI can identify incipient fan bearing failures and describe the bearing degradation process. Overall, the work presented in this paper provides a promising method for fan bearing health evaluation and prognosis. PMID:23262486

  15. Computational Aerodynamic Simulations of a 1215 ft/sec Tip Speed Transonic Fan System Model for Acoustic Methods Assessment and Development

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of a 1215 ft/sec tip speed transonic fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which for this model did not include a split flow path with core and bypass ducts. As a result, it was only necessary to adjust fan rotational speed in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the flow fields at all operating conditions reveals no excessive boundary layer separations or related secondary-flow problems.

  16. Conceptual design studies of lift/cruise fans for military transports

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A study program for conceptual design studies of remote lift and lift/cruise fan systems to meet the requirements of military V/STOL aircraft was conducted. Parametric performance and design data are presented for fans covering a range of pressure ratios, including both single and two stage fan concepts. The gas generator selected for these fan systems was the J101-GE-100 engine. Noise generation and transient response were determined for selected fan systems.

  17. Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Appliances: Validating VENT-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, Vi H.; Pastor-Perez, Albert; Singer, Brett C.

    2013-04-01

    VENT-II is a computer program designed to provide detailed analysis of natural draft and induced draft combustion appliance vent-systems (i.e., furnace or water heater). This program is capable of predicting house depressurization thresholds that lead to backdrafting and spillage of combustion appliances; however, validation reports of the program being applied for this purpose are not readily available. The purpose of this report is to assess VENT-II’s ability to predict combustion gas spillage events due to house depressurization by comparing VENT-II simulated results with experimental data for four appliance configurations. The results show that VENT-II correctly predicts depressurizations resulting in spillagemore » for natural draft appliances operating in cold and mild outdoor conditions, but not for hot conditions. In the latter case, the predicted depressurizations depend on whether the vent section is defined as part of the vent connector or the common vent when setting up the model. Overall, the VENTII solver requires further investigation before it can be used reliably to predict spillage caused by depressurization over a full year of weather conditions, especially where hot conditions occur.« less

  18. Quantifying relief on alluvial fans using airborne lidar to reveal patterns of sediment accumulation

    NASA Astrophysics Data System (ADS)

    Morelan, A. E., III; Oskin, M. E.

    2017-12-01

    We present a method of quantifying detailed surface relief on alluvial fans from high-resolution topography. Average slope and curvature of the fan are used together to empirically derive an idealized, radially symmetric fan surface, from which we compute residual topography. Maps produced using this technique highlight spatial patterns of fan deposition and avulsion. Regions of high residual topography reveal active and abandoned sediment lobes accumulated from recent depositional events, often with well-defined channels at their apex. Preliminary observations suggest that surface relief is uniform across a collection of fans in a given region and source lithology. Alluvial fans with granitic catchment lithologies in eastern California (n=12), each with varying source catchment size and mean fan slope, all show relief of around 4 meters. A collection of fans from the Carrizo Plain in central California (n=12), with source catchments set within Miocene marine and nonmarine sedimentary rocks, show significantly lower relief values around 2 meters. We hypothesize that particle grain size determines this contrasting relief through its control on the thickness of fan-building debris flows. In both settings we find that sediment lobes tend to extend toward the fan toe. This pattern supports a process, observed in analog experiments, of fan deposition dominated by back-filling and overtopping of distributary channels by debris-flows.

  19. The Noise of a Forward Swept Fan

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Elliott, David M.; Fite, E. Brian

    2003-01-01

    A forward swept fan, designated the Quiet High Speed Fan (QHSF), was tested in the NASA Glenn 9-by 15-foot Low Speed Wind Tunnel to investigate its noise reduction relative to a baseline fan of the same aerodynamic performance. The objective of the Quiet High Speed Fan was a 6 decibel reduction in the Effective Perceived Noise relative to the baseline fan at the takeoff condition. The intent of the Quiet High Speed Fan design was to provide both a multiple pure tone noise reduction from the forward sweep of the fan rotor and a rotor-stator interaction blade passing tone noise reduction from a leaned stator. The tunnel noise data indicted that the Quiet High Speed Fan was quieter than the baseline fan for a significant portion of the operating line and was 6 dB quieter near the takeoff condition. Although reductions in the multiple pure tones were observed, the vast majority of the EPNdB reduction was a result of the reduction in the blade passing tone and its harmonics. The baseline fan's blade passing tone was dominated by the rotor-strut interaction mechanism. The observed blade passing tone reduction could be the result of either the redesign of the Quiet High Speed Fan Rotor or the redesigned stator. The exact cause of this rotor-strut noise reduction, whether from the rotor or stator redesign, was not discernable from this experiment.

  20. 78 FR 25626 - Energy Conservation Program for Consumer Products: Energy Conservation Standards for Ceiling Fans...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ... Light Kits AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION... for residential ceiling fans and ceiling fan light kits in the Federal Register. This document... other aspect of the rulemaking for ceiling fans and ceiling fan light kits. The comment period is...

  1. 30 CFR 77.212 - Draw-off tunnel ventilation fans; installation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Draw-off tunnel ventilation fans; installation... UNDERGROUND COAL MINES Surface Installations § 77.212 Draw-off tunnel ventilation fans; installation. When fans are used to ventilate draw-off tunnels the fans shall be: (a) Installed on the surface; (b...

  2. 14 CFR 27.903 - Engines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... usage. (b) Engine or drive system cooling fan blade protection. (1) If an engine or rotor drive system... fan blade fails. This must be shown by showing that— (i) The fan blades are contained in case of failure; (ii) Each fan is located so that a failure will not jeopardize safety; or (iii) Each fan blade...

  3. 14 CFR 27.903 - Engines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... usage. (b) Engine or drive system cooling fan blade protection. (1) If an engine or rotor drive system... fan blade fails. This must be shown by showing that— (i) The fan blades are contained in case of failure; (ii) Each fan is located so that a failure will not jeopardize safety; or (iii) Each fan blade...

  4. 14 CFR 27.903 - Engines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... usage. (b) Engine or drive system cooling fan blade protection. (1) If an engine or rotor drive system... fan blade fails. This must be shown by showing that— (i) The fan blades are contained in case of failure; (ii) Each fan is located so that a failure will not jeopardize safety; or (iii) Each fan blade...

  5. 14 CFR 27.903 - Engines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... usage. (b) Engine or drive system cooling fan blade protection. (1) If an engine or rotor drive system... fan blade fails. This must be shown by showing that— (i) The fan blades are contained in case of failure; (ii) Each fan is located so that a failure will not jeopardize safety; or (iii) Each fan blade...

  6. 14 CFR 27.903 - Engines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... usage. (b) Engine or drive system cooling fan blade protection. (1) If an engine or rotor drive system... fan blade fails. This must be shown by showing that— (i) The fan blades are contained in case of failure; (ii) Each fan is located so that a failure will not jeopardize safety; or (iii) Each fan blade...

  7. Online Fan Practices and CALL

    ERIC Educational Resources Information Center

    Sauro, Shannon

    2017-01-01

    This article provides a narrative overview of research on online fan practices for language and literacy learning, use, and identity work. I begin with an introduction to online fan communities and common fan practices found in these online affinity spaces, the best known of which is fan fiction, fictional writing that reinterprets and remixes the…

  8. Counterrotatable booster compressor assembly for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Moniz, Thomas Ory (Inventor); Orlando, Robert Joseph (Inventor)

    2004-01-01

    A counterrotatable booster compressor assembly for a gas turbine engine having a counterrotatable fan section with a first fan blade row connected to a first drive shaft and a second fan blade row axially spaced from the first fan blade row and connected to a second drive shaft, the counterrotatable booster compressor assembly including a first compressor blade row connected to the first drive shaft and a second compressor blade row interdigitated with the first compressor blade row and connected to the second drive shaft. A portion of each fan blade of the second fan blade row extends through a flowpath of the counterrotatable booster compressor so as to function as a compressor blade in the second compressor blade row. The counterrotatable booster compressor further includes a first platform member integral with each fan blade of the second fan blade row at a first location so as to form an inner flowpath for the counterrotatable booster compressor and a second platform member integral with each fan blade of the second fan blade row at a second location so as to form an outer flowpath for the counterrotatable booster compressor.

  9. Geophysical Investigation of Subsurface Characteristics of Icy Debris Fans with Ground Penetrating Radar in the Wrangell Mountains, Alaska

    NASA Astrophysics Data System (ADS)

    Smith, T. D.; Jacob, R. W.

    2013-12-01

    Authors Tracey Smith^1, Rob Jacob^1, Jeffrey Trop^1, Keith Williams^2 and Craig Kochel^1 Bucknell University, Geology and Environmental Geoscience Department, Lewisburg, PA UNAVCO, 6350 Nautilus Dr., Boulder, CO 80301 Icy debris fans have recently been described as deglaciation features on Earth and similar features have been observed on Mars, however, the subsurface characteristics remain unknown. We used ground penetrating radar (GPR) to non-invasively investigate the subsurface characteristics of icy debris fans near McCarthy, Alaska, USA. The three fans investigated in Alaska are the East, West, and Middle fans which are between the Nabesna ice cap and the McCarthy Glacier. Icy debris fans in general are a largely unexplored suite of paraglacial landforms and processes in alpine regions. Recent field studies focused on direct observations and depositional processes. The results showed that each fan's composition is primarily influenced by the type and frequency of mass wasting processes that supply the fan. Photographic studies show that the East fan receives far more ice and snow avalanches whereas the Middle and West fan receive fewer mass wasting events but more clastic debris is deposited on the Middle and West fan from rock falls and icy debris flows. GPR profiles and WARR surveys consisting of both, common mid-point (CMP), and common shot-point (CSP) surveys investigated the subsurface geometry of the fans and the McCarthy Glacier.All GPR surveys were collected in 2013 with 100MHz bi-static antennas. Four axial profiles and three cross-fan profiles were done on the West and Middle fans as well as the McCarthy Glacier in order to investigate the relationship between the three features. Terrestrial laser surveying of the surface and real-time kinematic GPS provided the surface elevation used to correct the GPR data for topographic changes. GPR profiles yielded reflectors that were continuous for 10+ m and hyperbolic reflections in the subsurface. The WARR surveys provided the GPR signal velocity through the subsurface material and allowed transformation of two-way traveltimes (TWTT) in GPR profiles to be converted to depth. In addition, the eight WARR surveys spaced on the fans and on the glacier provide information on variability of subsurface velocities. The profiles of the Middle and West fan have more energy returning to the surface and therefore many more reflections than profiles done on the McCarthy Glacier. Based on the WARR surveys, we interpret the lower energy return in the glacier to be caused by two reasons. 1) The increased attenuation due to wet ice versus drier ice and on the fan with GPR velocities >0.15m/ns. 2) Lack of interfaces in the glacier compared to those in the fans which are produced by the events depositing material to an ablated icy debris fan surface. The GPR profiles on the West and Middle fans show multiple point scatters at TWTT of less than 200ns. The Middle fan is distinguished from the West fan by its multiple point scatters at TWTT greater than 200ns, clearly showing the Middle fan with a greater thickness. The observations from the GPR profiles correlate with the photographic evidence for types of processes and the composition of their deposits on each fan respectively.

  10. Low Noise Research Fan Stage Design

    NASA Technical Reports Server (NTRS)

    Hobbs, David E.; Neubert, Robert J.; Malmborg, Eric W.; Philbrick, Daniel H.; Spear, David A.

    1995-01-01

    This report describes the design of a Low Noise ADP Research Fan stage. The fan is a variable pitch design which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes and core stators. This fan stage design was combined with a nacelle and engine core duct to form a powered fan/nacelle, subscale model. This model is intended for use in aerodynamic performance, acoustic and structural testing in a wind tunnel. The model has a 22-inch outer fan diameter and a hub-to-top ratio of 0.426 which permits the use of existing NASA fan and cowl force balance designs and rig drive system. The design parameters were selected to permit valid acoustic and aerodynamic comparisons with the PW 17-inch rig previously tested under NASA contract. The fan stage design is described in detail. The results of the design axisymmetric analysis at aerodynamic design condition are included. The structural analysis of the fan rotor and attachment is described including the material selections and stress analysis. The blade and attachment are predicted to have adequate low cycle fatigue life, and an acceptable operating range without resonant stress or flutter. The stage was acoustically designed with airfoil counts in the fan exit guide vane and core stator to minimize noise. A fan-FEGV tone analysis developed separately under NASA contract was used to determine these airfoil counts. The fan stage design was matched to a nacelle design to form a fan/nacelle model for wind tunnel testing. The nacelle design was developed under a separate NASA contract. The nacelle was designed with an axisymmetric inlet, cowl and nozzle for convenience in testing and fabrication. Aerodynamic analysis of the nacelle confirmed the required performance at various aircraft operating conditions.

  11. Nocturnal Fanning Suppresses Downy Mildew Epidemics in Sweet Basil

    PubMed Central

    Cohen, Yigal; Ben-Naim, Yariv

    2016-01-01

    Downy mildew is currently the most serious disease of sweet basil around the world. The oomycete causal agent Peronospora belbahrii requires ≥ 4h free leaf moisture for infection and ≥7.5h of water-saturated atmosphere (relative humidity RH≥95%) at night for sporulation. We show here that continued nocturnal fanning (wind speed of 0.4–1.5 m/s) from 8pm to 8am dramatically suppressed downy mildew development. In three experiments conducted during 2015, percent infected leaves in regular (non-fanned) net-houses reached a mean of 89.9, 94.3 and 96.0% compared to1.2, 1.7 and 0.5% in adjacent fanned net-houses, respectively. Nocturnal fanning reduced the number of hours per night with RH≥95% thus shortened the dew periods below the threshold required for infection or sporulation. In experiments A, B and C, the number of nights with ≥4h of RH≥95% was 28, 10 and 17 in the non-fanned net-houses compared to 5, 0 and 5 in the fanned net-houses, respectively. In the third experiment leaf wetness sensors were installed. Dew formation was strongly suppressed in the fanned net-house as compared to the non-fanned net-house. Healthy potted plants became infected and sporulated a week later if placed one night in the non-fanned house whereas healthy plants placed during that night in the fanned house remained healthy. Infected potted basil plants sporulated heavily after one night of incubation in the non-fanned house whereas almost no sporulation occurred in similar plants incubated that night in the fanned house. The data suggest that nocturnal fanning is highly effective in suppressing downy mildew epidemics in sweet basil. Fanning prevented the within-canopy RH from reaching saturation, reduced dew deposition on the leaves, and hence prevented both infection and sporulation of P. belbahrii. PMID:27171554

  12. Static test of a fan-powered chin nozzle for V/STOl applications

    NASA Technical Reports Server (NTRS)

    Salemann, V.

    1981-01-01

    The performance of a "chin" nozzle which diverts flow in a downward direction immediately downstream of a fan typical of designs suitable for V/STOL A applications was evaluated. Back pressure distortion to the fan and fan discharge pressure distortion were also measured. Results show that the distortion is significant at the closest spacing between the fan exit and cascade entrance tested, and that the chin nozzle performance deteriorates with increased flow diversion to the chin nozzle. Color oil flow visualization on video tape and still photos were also obtained. Tests were conducted behind a 12" model fan in the NASA-Lewis fan calibration facility.

  13. A novel personal cooling system (PCS) incorporated with phase change materials (PCMs) and ventilation fans: An investigation on its cooling efficiency.

    PubMed

    Lu, Yehu; Wei, Fanru; Lai, Dandan; Shi, Wen; Wang, Faming; Gao, Chuansi; Song, Guowen

    2015-08-01

    Personal cooling systems (PCS) have been developed to mitigate the impact of severe heat stress for humans working in hot environments. It is still a great challenge to develop PCSs that are portable, inexpensive, and effective. We studied the performance of a new hybrid PCS incorporating both ventilation fans and phase change materials (PCMs). The cooling efficiency of the newly developed PCS was investigated on a sweating manikin in two hot conditions: hot humid (HH, 34°C, 75% RH) and hot dry (HD, 34°C, 28% RH). Four test scenarios were selected: fans off with no PCMs (i.e., Fan-off, the CONTROL), fans on with no PCMs (i.e., Fan-on), fans off with fully solidified PCMs (i.e., PCM+Fan-off), and fans on with fully solidified PCMs (i.e., PCM+Fan-on). It was found that the addition of PCMs provided a 54∼78min cooling in HH condition. In contrast, the PCMs only offered a 19-39min cooling in HD condition. In both conditions, the ventilation fans greatly enhanced the evaporative heat loss compared with Fan-off. The hybrid PCS (i.e., PCM+Fan-on) provided a continuous cooling effect during the three-hour test and the average cooling rate for the whole body was around 111 and 315W in HH and HD conditions, respectively. Overall, the new hybrid PCS may be an effective means of ameliorating symptoms of heat stress in both hot-humid and hot-dry environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Influence of Coanda surface curvature on performance of bladeless fan

    NASA Astrophysics Data System (ADS)

    Li, Guoqi; Hu, Yongjun; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong

    2014-10-01

    The unique Coanda surface has a great influence on the performance of bladeless fan. However, there is few studies to explain the relationship between the performance and Coanda surface curvature at present. In order to gain a qualitative understanding of effect of the curvature on the performance of bladeless fan, numerical studies are performed in this paper. Firstly, three-dimensional numerical simulation is done by Fluent software. For the purpose to obtain detailed information of the flow field around the Coanda surface, two-dimensional numerical simulation is also conducted. Five types of Coanda surfaces with different curvature are designed, and the flow behaviour and the performance of them are analyzed and compared with those of the prototype. The analysis indicates that the curvature of Coanda surface is strongly related to blowing performance, It is found that there is an optimal curvature of Coanda surfaces among the studied models. Simulation result shows that there is a special low pressure region. With increasing curvature in Y direction, several low pressure regions gradually enlarged, then begin to merge slowly, and finally form a large area of low pressure. From the analyses of streamlines and velocity angle, it is found that the magnitude of the curvature affects the flow direction and reasonable curvature can induce fluid flow close to the wall. Thus, it leads to that the curvature of the streamlines is consistent with that of Coanda surface. Meanwhile, it also causes the fluid movement towards the most suitable direction. This study will provide useful information to performance improvements of bladeless fans.

  15. Quiet, Efficient Fans for Spaceflight: An Overview of NASA's Technology Development Plan

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    2010-01-01

    A Technology Development Plan to improve the aerodynamic and acoustic performance of spaceflight fans has been submitted to NASA s Exploration Technology Development Program. The plan describes a research program intended to make broader use of the technology developed at NASA Glenn to increase the efficiency and reduce the noise of aircraft engine fans. The goal is to develop a set of well-characterized government-owned fans nominally suited for spacecraft ventilation and cooling systems. NASA s Exploration Life Support community will identify design point conditions for the fans in this study. Computational Fluid Dynamics codes will be used in the design and analysis process. The fans will be built and used in a series of tests. Data from aerodynamic and acoustic performance tests will be used to validate performance predictions. These performance maps will also be entered into a database to help spaceflight fan system developers make informed design choices. Velocity measurements downstream of fan rotor blades and stator vanes will also be collected and used for code validation. Details of the fan design, analysis, and testing will be publicly reported. With access to fan geometry and test data, the small fan industry can independently evaluate design and analysis methods and work towards improvement.

  16. Large Well-Exposed Alluvial Fans in Deep Late-Noachian Craters

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Howard, A. D.

    2004-01-01

    Large, fresh-appearing alluvial fans (typically greater than 10 km long) have been identified during a systematic search of 100 m/pixel low-sun daylight THEMIS IR imaging in deep late-Noachian or early-Hesperian craters. Our study of these fans was augmented with MOLA-derived topography and high-resolution MOC and THEMIS VIS images where available. The influence of alluvial fan deposition on the topography of crater floors has been recognized in previous topographic studies. Recent Mars Odyssey-era studies have also identified and described in detail a fluvial delta or fan of approximately the same age as the alluvial fans of this study. Our results, at the time of this writing, indicate that these fans are only found in less than 5% of all craters greater than or equal to 70 kilometers in diameter within a large study region. In every case the fan-containing craters were restricted to a latitude belt between 20 degrees S and 30 degrees S. All of which had significant topographic relief and appeared morphologically younger than typical mid-Noachian craters in the size range. However, large fans were not found in the most pristine (and presumably youngest) craters in this size range. Most Martian fans have morphologies consistent with terrestrial debris-flow-dominated fans.

  17. Deposystem architectures and lithofacies of a submarine fan-dominated deep sea succession in an orogen: A case study from the Upper Triassic Langjiexue Group of southern Tibet

    NASA Astrophysics Data System (ADS)

    Zhang, Chaokai; Li, Xianghui; Mattern, Frank; Mao, Guozheng; Zeng, Qinggao; Xu, Wenli

    2015-11-01

    Over thirty stratigraphic sections of the Himalaya orogen Upper Triassic Langjiexue Group in southern Tibet, China, were studied to interpret the environments and lithofacies. The facies associations channel (A), lobe (B), levee-interchannel (C), and basin plain (D) with nine facies (A1-3, B1-3, and C1-3) were distinguished. They form six architectural elements: channel-interchannel, overbank-levee, crevasse-splay, outer fan-lobe, fan-fringe, and basin plain. Taking into account the facies analysis, (sub-) deposystem correlation, paleocurrent dispersal pattern, and restoration of primary stratal width, the Langjiexue Group displays the architecture of a coalescing submarine fan-dominated deep sea deposystem, measuring about 400-500 km × 600-700 km in size or even more, one of the largest pre-Cenozoic submarine fans ever reported. Subdivisionally, four fans, lacking inner fans, could have coalesced laterally within the submarine fan deposystem, and at least six submarine fan developments were vertically succeeded by mid- to outer-fan deposits with progradational to retrogradational successions. According to the range of 30-70% of sandstone content, the fan deposystem is mud- and sand-rich, suggesting a medium-far (over 400-600 km) transport of sediment from the source area.

  18. Summary of Lift and Lift/Cruise Fan Powered Lift Concept Technology

    NASA Technical Reports Server (NTRS)

    Cook, Woodrow L.

    1993-01-01

    A summary is presented of some of the lift and lift/cruise fan technology including fan performance, fan stall, ground effects, ingestion and thrust loss, design tradeoffs and integration, control effectiveness and several other areas related to vertical short takeoff and landing (V/STOL) aircraft conceptual design. The various subjects addressed, while not necessarily pertinent to specific short takeoff/vertical landing (STOVL) supersonic designs being considered, are of interest to the general field of lift and lift/cruise fan aircraft designs and may be of importance in the future. The various wind tunnel and static tests reviewed are: (1) the Doak VZ-4 ducted fan, (2) the 0.57 scale model of the Bell X-22 ducted fan aircraft, (3) the Avrocar, (4) the General Electric lift/cruise fan, (5) the vertical short takeoff and landing (V/STOL) lift engine configurations related to ingestion and consequent thrust loss, (6) the XV-5 and other fan-in-wing stall consideration, (7) hybrid configurations such as lift fan and lift/cruise fan or engines, and (8) the various conceptual design studies by air-frame contractors. Other design integration problems related to small and large V/STOL transport aircraft are summarized including lessons learned during more recent conceptual design studies related to a small executive V/STOL transport aircraft.

  19. 30 CFR 57.8518 - Main and booster fans.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Main and booster fans. 57.8518 Section 57.8518... and Underground § 57.8518 Main and booster fans. (a) All mine main and booster fans installed and used..., or adjustments. (b) In the event of main or booster fan failure due to a malfunction, accident, power...

  20. 30 CFR 57.8518 - Main and booster fans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Main and booster fans. 57.8518 Section 57.8518... and Underground § 57.8518 Main and booster fans. (a) All mine main and booster fans installed and used..., or adjustments. (b) In the event of main or booster fan failure due to a malfunction, accident, power...

  1. 30 CFR 57.8518 - Main and booster fans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main and booster fans. 57.8518 Section 57.8518... and Underground § 57.8518 Main and booster fans. (a) All mine main and booster fans installed and used..., or adjustments. (b) In the event of main or booster fan failure due to a malfunction, accident, power...

  2. 30 CFR 57.8518 - Main and booster fans.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Main and booster fans. 57.8518 Section 57.8518... and Underground § 57.8518 Main and booster fans. (a) All mine main and booster fans installed and used..., or adjustments. (b) In the event of main or booster fan failure due to a malfunction, accident, power...

  3. 30 CFR 57.8518 - Main and booster fans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Main and booster fans. 57.8518 Section 57.8518... and Underground § 57.8518 Main and booster fans. (a) All mine main and booster fans installed and used..., or adjustments. (b) In the event of main or booster fan failure due to a malfunction, accident, power...

  4. Simulation test results for lift/cruise fan research and technology aircraft

    NASA Technical Reports Server (NTRS)

    Bland, M. P.; Konsewicz, R. K.

    1976-01-01

    A flight simulation program was conducted on the flight simulator for advanced aircraft (FSAA). The flight simulation was a part of a contracted effort to provide a lift/cruise fan V/STOL aircraft mathematical model for flight simulation. The simulated aircraft is a configuration of the Lift/Cruise Fan V/STOL research technology aircraft (RTA). The aircraft was powered by three gas generators driving three fans. One lift fan was installed in the nose of the aircraft, and two lift/cruise fans at the wing root. The thrust of these fans was modulated to provide pitch and roll control, and vectored to provide yaw, side force control, and longitudinal translation. Two versions of the RTA were defined. One was powered by the GE J97/LF460 propulsion system which was gas-coupled for power transfer between fans for control. The other version was powered by DDA XT701 gas generators driving 62 inch variable pitch fans. The flight control system in both versions of the RTA was the same.

  5. Towards a Three-Component Model of Fan Loyalty: A Case Study of Chinese Youth

    PubMed Central

    Zhang, Xiao-xiao; Liu, Li; Zhao, Xian; Zheng, Jian; Yang, Meng; Zhang, Ji-qi

    2015-01-01

    The term “fan loyalty” refers to the loyalty felt and expressed by a fan towards the object of his/her fanaticism in both everyday and academic discourses. However, much of the literature on fan loyalty has paid little attention to the topic from the perspective of youth pop culture. The present study explored the meaning of fan loyalty in the context of China. Data were collected by the method of in-depth interviews with 16 young Chinese people aged between 19 and 25 years who currently or once were pop fans. The results indicated that fan loyalty entails three components: involvement, satisfaction, and affiliation. These three components regulate the process of fan loyalty development, which can be divided into four stages: inception, upgrade, zenith, and decline. This model provides a conceptual explanation of why and how young Chinese fans are loyal to their favorite stars. The implications of the findings are discussed. PMID:25886557

  6. Late Quaternary alluvial fans of Emli Valley in the Ecemiş Fault Zone, south central Turkey: Insights from cosmogenic nuclides

    NASA Astrophysics Data System (ADS)

    Akif Sarıkaya, M.; Yıldırım, Cengiz; Çiner, Attila

    2015-01-01

    Alluvial fans within the paraglacial Ecemiş River drainages on the Aladağlar Mountains in south central Turkey were studied using geomorphological, sedimentological, and chlorine-36 terrestrial cosmogenic nuclide (TCN) surface exposure dating methods to examine the timing of alluvial fan abandonment/incision, and to understand the role of climatic and tectonic processes in the region. These alluvial fan complexes are among the best-preserved succession of alluvial fans in Turkey and they were offset by the major strike-slip Ecemiş Fault of the Central Anatolian Fault Zone. The alluvial fans are mostly composed of well-lithified limestone cobbles (5 to 25 cm in size), and comprise crudely stratified thick beds with a total thickness reaching up to about 80 m. TCN surface exposure dating indicates that the oldest alluvial fan surface (Yalak Fan) was likely formed and subsequently abandoned latest by 136.0 ± 23.4 ka ago, largely on the transition of the Penultimate Glaciation (Marine Isotope Stage 6, MIS 6) to the Last Interglacial (MIS 5) (i.e. Termination II). The second set of alluvial fan (Emli Fan) was possibly developed during the Last Interglacial (MIS 5), and incised twice by between roughly 97.0 ± 13.8 and 81.2 ± 13.2 ka ago. A younger alluvial fan deposit placed on relatively older erosional terraces of the Emli Fan suggests that it may have been produced during the Last Glacial Cycle (MIS 2). These events are similar to findings from other fluvial and lacustrine deposits throughout central Anatolia. The incision times of the Ecemiş alluvial fan surfaces largely coincide with major climatic shifts from the cooler glacial periods to warmer interglacial/interstadial conditions. This indicates that alluvial fans were produced by outwash sediments of paleoglaciers during cooler conditions, and, later, when glaciers started to retreat due to a major warming event, the excess water released from the glaciers incised the pre-existing fan surfaces. An alluvial fan in the study area was also cut by the Ecemiş Fault, highlighting the influence of tectonics on fan development. It was offset vertically 35 ± 3 m since at least 97.0 ± 13.8 ka, which suggests a 0.36 ± 0.06 mm a- 1 vertical slip-rate of the fault.

  7. A prediction model for lift-fan simulator performance. M.S. Thesis - Cleveland State Univ.

    NASA Technical Reports Server (NTRS)

    Yuska, J. A.

    1972-01-01

    The performance characteristics of a model VTOL lift-fan simulator installed in a two-dimensional wing are presented. The lift-fan simulator consisted of a 15-inch diameter fan driven by a turbine contained in the fan hub. The performance of the lift-fan simulator was measured in two ways: (1) the calculated momentum thrust of the fan and turbine (total thrust loading), and (2) the axial-force measured on a load cell force balance (axial-force loading). Tests were conducted over a wide range of crossflow velocities, corrected tip speeds, and wing angle of attack. A prediction modeling technique was developed to help in analyzing the performance characteristics of lift-fan simulators. A multiple linear regression analysis technique is presented which calculates prediction model equations for the dependent variables.

  8. Aircraft Noise Prediction Program (ANOPP) Fan Noise Prediction for Small Engines

    NASA Technical Reports Server (NTRS)

    Hough, Joe W.; Weir, Donald S.

    1996-01-01

    The Fan Noise Module of ANOPP is used to predict the broadband noise and pure tones for axial flow compressors or fans. The module, based on the method developed by M. F. Heidmann, uses empirical functions to predict fan noise spectra as a function of frequency and polar directivity. Previous studies have determined the need to modify the module to better correlate measurements of fan noise from engines in the 3000- to 6000-pound thrust class. Additional measurements made by AlliedSignal have confirmed the need to revise the ANOPP fan noise method for smaller engines. This report describes the revisions to the fan noise method which have been verified with measured data from three separate AlliedSignal fan engines. Comparisons of the revised prediction show a significant improvement in overall and spectral noise predictions.

  9. The morphology, processes, and evolution of Monterey Fan: a revisit

    USGS Publications Warehouse

    Gardner, James V.; Bohannon, Robert G.; Field, Michael E.; Masson, Douglas G.

    2010-01-01

    Long-range (GLORIA) and mid-range (TOBI) sidescan imagery and seismic-reflection profiles have revealed the surface morphology and architecture of the complete Monterey Fan. The fan has not developed a classic wedge shape because it has been blocked for much of its history by Morro Fracture Zone. The barrier has caused the fan to develop an upper-fan and lower-fan sequence that are distinctly different from one another. The upper-fan sequence is characterized by Monterey and Ascension Channels and associated Monterey Channel-levee system. The lower-fan sequence is characterized by depositional lobes of the Ascension, Monterey, and Sur-Parkington-Lucia systems, with the Monterey depositional lobe being the youngest. Presently, the Monterey depositional lobe is being downcut because the system has reached a new, lower base level in the Murray Fracture Zone. A five-step evolution of Monterey Fan is presented, starting with initial fan deposition in the Late Miocene, about 5.5 Ma. This first stage was one of filling bathymetric lows in the oceanic basement in what was to become the upper-fan segment. The second stage involved filling the bathymetric low on the north side of Morro Fracture Zone, and probably not much sediment was transported beyond the fracture zone. The third stage witnessed sediment being transported around both ends of Morro Fracture Zone and initial sedimentation on the lower-fan segment. During the fourth stage Ascension Channel was diverted into Monterey Channel, thereby cutting off sedimentation to the Ascension depositional lobe.

  10. Numerical Study of Aeroacoustic Sound on Performance of Bladeless Fan

    NASA Astrophysics Data System (ADS)

    Jafari, Mohammad; Sojoudi, Atta; Hafezisefat, Parinaz

    2017-03-01

    Aeroacoustic performance of fans is essential due to their widespread application. Therefore, the original aim of this paper is to evaluate the generated noise owing to different geometric parameters. In current study, effect of five geometric parameters was investigated on well performance of a Bladeless fan. Airflow through this fan was analyzed simulating a Bladeless fan within a 2 m×2 m×4 m room. Analysis of the flow field inside the fan and evaluating its performance were obtained by solving conservations of mass and momentum equations for aerodynamic investigations and FW-H noise equations for aeroacoustic analysis. In order to design Bladeless fan Eppler 473 airfoil profile was used as the cross section of this fan. Five distinct parameters, namely height of cross section of the fan, outlet angle of the flow relative to the fan axis, thickness of airflow outlet slit, hydraulic diameter and aspect ratio for circular and quadratic cross sections were considered. Validating acoustic code results, we compared numerical solution of FW-H noise equations for NACA0012 with experimental results. FW-H model was selected to predict the noise generated by the Bladeless fan as the numerical results indicated a good agreement with experimental ones for NACA0012. To validate 3-D numerical results, the experimental results of a round jet showed good agreement with those simulation data. In order to indicate the effect of each mentioned parameter on the fan performance, SPL and OASPL diagrams were illustrated.

  11. Experimental investigation of the local wave speed in a draft tube with cavitation vortex rope

    NASA Astrophysics Data System (ADS)

    Landry, C.; Favrel, A.; Müller, A.; Nicolet, C.; Yamamoto, K.; Avellan, F.

    2014-03-01

    Hydraulic machines operating in a wider range are subjected to cavitation developments inducing undesirable pressure pulsations which could lead to potential instability of the power plant. The occurrence of pulsating cavitation volumes in the runner and the draft tube is considered as a mass source of the system and is depending on the cavitation compliance. This dynamic parameter represents the cavitation volume variation with the respect to a variation of pressure and defines implicitly the local wave speed in the draft tube. This parameter is also decisive for an accurate prediction of system eigen frequencies. Therefore, the local wave speed in the draft tube is intrinsically linked to the eigen frequencies of the hydraulic system. Thus, if the natural frequency of a hydraulic system can be determined experimentally, it also becomes possible to estimate a local wave speed in the draft tube with a numerical model. In the present study, the reduced scale model of a Francis turbine (v=0.29) was investigated at off-design conditions. In order to measure the first eigenmode of the hydraulic test rig, an additional discharge was injected at the inlet of the hydraulic turbine at a variable frequency and amplitude to excite the system. Thus, with different pressure sensors installed on the test rig, the first eigenmode was determined. Then, a hydro-acoustic test rig model was developed with the In-house EPFL SIMSEN software and the local wave speed in the draft tube was adjusted to obtain the same first eigen frequency as that measured experimentally. Finally, this method was applied for different Thoma and Froude numbers at part load conditions.

  12. Optimal cooling strategies for players in Australian Tennis Open conditions.

    PubMed

    Lynch, Grant P; Périard, Julien D; Pluim, Babette M; Brotherhood, John R; Jay, Ollie

    2018-03-01

    We compared the utility of four cooling interventions for reducing heat strain during simulated tennis match-play in an environment representative of the peak conditions possible at the Australian Open (45°C, <10% RH, 475W/m 2 solar radiation). Nine trained males undertook four trials in a climate chamber, each time completing 4 sets of simulated match-play. During ITF-mandated breaks (90-s between odd-numbered games; 120-s between sets), either iced towels (ICE), an electric fan (FAN dry ), a fan with moisture applied to the skin (FAN wet ), or ad libitum 10°C water ingestion only (CON) was administered. Rectal temperature (T re ), mean skin temperature (T sk ), heart rate (HR), thermal sensation (TS), perceived exertion (RPE) and whole body sweating (WBSR) were measured. After set 3, T re was lower in ICE (38.2±0.3°C) compared to FAN dry (38.7±0.5°C; p=0.02) and CON (38.5±0.5°C; p=0.05), while T re in FAN wet (38.2±0.3°C) was lower than FAN dry (p=0.05). End-exercise T re was lower in ICE (38.1±0.3°C) and FAN wet (38.2±0.4°C) than FAN dry (38.9±0.7°C; p<0.04) and CON (38.8±0.5°C; p<0.04).T sk for ICE (35.3±0.8°C) was lower than all conditions, and T sk for FAN wet (36.6±1.1°C) was lower than FAN dry (38.1±1.3°C; p<0.05). TS for ICE and FAN wet were lower than CON and FAN dry (p<0.05). HR was suppressed in ICE and FAN wet relative to CON and FAN dry (p<0.05). WBSR was greater in FAN dry compared to FAN wet (p<0.01) and ICE (p<0.001). Fan use must be used with skin wetting to be effective in hot/dry conditions. This strategy and the currently recommended ICE intervention both reduced T re by ∼0.5-0.6°C and T sk by ∼1.0-1.5°C while mitigating rises in HR and TS. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  13. 10. EXTERIOR VIEW OF STONE RETAINING WALL, AIRWAY, BALTIMORE FAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. EXTERIOR VIEW OF STONE RETAINING WALL, AIRWAY, BALTIMORE FAN HOUSE AND HILLMAN FAN HOUSE LOOKING EAST The stone retaining wall encloses a pit which may have been the original site of the Hillman Fan House steam engine. The concrete foundations in the left foreground are more recent (c. 1930) additions which may be supports for a porch or stairway. The sloping airshaft, in the middle ground, connected the Baltimore shaft to the New Fan House (not shown) and Hillman Fan House in the background. The Hillman engine house is on the left. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA

  14. Quiet Clean Short-haul Experimental Engine (QCSEE). The aerodynamic and mechanical design of the QCSEE over-the-wing fan

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The aerodynamic and mechanical design of a fixed-pitch 1.36 pressure ratio fan for the over-the-wing (OTW) engine is presented. The fan has 28 blades. Aerodynamically, the fan blades were designed for a composite blade, but titanium blades were used in the experimental fan as a cost savings measure.

  15. Enhanced Fan Noise Modeling for Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Krejsa, Eugene A.; Stone, James R.

    2014-01-01

    This report describes work by consultants to Diversitech Inc. for the NASA Glenn Research Center (GRC) to revise the fan noise prediction procedure based on fan noise data obtained in the 9- by 15 Foot Low-Speed Wind Tunnel at GRC. The purpose of this task is to begin development of an enhanced, analytical, more physics-based, fan noise prediction method applicable to commercial turbofan propulsion systems. The method is to be suitable for programming into a computational model for eventual incorporation into NASA's current aircraft system noise prediction computer codes. The scope of this task is in alignment with the mission of the Propulsion 21 research effort conducted by the coalition of NASA, state government, industry, and academia to develop aeropropulsion technologies. A model for fan noise prediction was developed based on measured noise levels for the R4 rotor with several outlet guide vane variations and three fan exhaust areas. The model predicts the complete fan noise spectrum, including broadband noise, tones, and for supersonic tip speeds, combination tones. Both spectra and directivity are predicted. Good agreement with data was achieved for all fan geometries. Comparisons with data from a second fan, the ADP fan, also showed good agreement.

  16. 9. DETAIL OF THE FAN HOUSE INTERIOR, SHOWING FAN OPENINGS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL OF THE FAN HOUSE INTERIOR, SHOWING FAN OPENINGS. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  17. Active Vibration Reduction of Titanium Alloy Fan Blades (FAN1) Using Piezoelectric Materials

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Kauffman, Jeffrey; Duffy, Kirsten; Provenza, Andrew; Morrison, Carlos

    2010-01-01

    The NASA Glenn Research Center is developing smart adaptive structures to improve fan blade damping at resonances using piezoelectric (PE) transducers. In this paper, a digital resonant control technique emulating passive shunt circuits is used to demonstrate vibration reduction of FAN1 Ti real fan blade at the several target modes. Single-mode control and multi-mode control using one piezoelectric material are demonstrated. Also a conceptual study of how to implement this digital control system into the rotating fan blade is discussed.

  18. Reverse Flow Engine Core Having a Ducted Fan with Integrated Secondary Flow Blades

    NASA Technical Reports Server (NTRS)

    Kisska, Michael K. (Inventor); Princen, Norman H. (Inventor); Kuehn, Mark S. (Inventor); Cosentino, Gary B. (Inventor)

    2014-01-01

    Secondary air flow is provided for a ducted fan having a reverse flow turbine engine core driving a fan blisk. The fan blisk incorporates a set of thrust fan blades extending from an outer hub and a set of integral secondary flow blades extending intermediate an inner hub and the outer hub. A nacelle provides an outer flow duct for the thrust fan blades and a secondary flow duct carries flow from the integral secondary flow blades as cooling air for components of the reverse flow turbine engine.

  19. Gas Turbine Engine Having Fan Rotor Driven by Turbine Exhaust and with a Bypass

    NASA Technical Reports Server (NTRS)

    Suciu, Gabriel L. (Inventor); Chandler, Jesse M. (Inventor)

    2016-01-01

    A gas turbine engine has a core engine incorporating a core engine turbine. A fan rotor is driven by a fan rotor turbine. The fan rotor turbine is in the path of gases downstream from the core engine turbine. A bypass door is moveable from a closed position at which the gases from the core engine turbine pass over the fan rotor turbine, and moveable to a bypass position at which the gases are directed away from the fan rotor turbine. An aircraft is also disclosed.

  20. Advanced Low-Noise Research Fan Stage Design

    NASA Technical Reports Server (NTRS)

    Neubert, Robert; Bock, Larry; Malmborg, Eric; Owen-Peer, William

    1997-01-01

    This report describes the design of the Advanced Low-Noise Research Fan stage. The fan is a variable pitch design, which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes (FEGVs) and core stators. The fan stage design is combined with a nacelle and engine core duct to form a powered fan/nacelle subscale model. This model is intended for use in combined aerodynamic, acoustic, and structural testing in a wind tunnel. The fan has an outer diameter of 22 in. and a hub-to-tip of 0.426 in., which allows the use of existing NASA fan and cowl force balance and rig drive systems. The design parameters were selected to permit valid acoustic and aerodynamic comparisons with the Pratt & Whitney (P&W) 17- and 22-in. rigs previously tested under NASA contract. The fan stage design is described in detail. The results of the design axisymmetric and Navier-Stokes aerodynamic analysis are presented at the critical design conditions. The structural analysis of the fan rotor and attachment is included. The blade and attachment are predicted to have adequate low-cycle fatigue life and an acceptable operating range without resonant stress or flutter. The stage was acoustically designed with airfoil counts in the FEGV and core stator to minimize noise. A fan/FEGV tone analysis developed separately under NASA contract was used to determine the optimum airfoil counts. The fan stage was matched to the existing nacelle, designed under the previous P&W low-noise contract, to form a fan/nacelle model for wind tunnel testing. It is an axisymmetric nacelle for convenience in testing and analysis. Previous testing confirmed that the nacelle performed as required at various aircraft operating conditions.

  1. Integrated computer-aided design using minicomputers

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.

    1980-01-01

    Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), a highly interactive software, has been implemented on minicomputers at the NASA Langley Research Center. CAD/CAM software integrates many formerly fragmented programs and procedures into one cohesive system; it also includes finite element modeling and analysis, and has been interfaced via a computer network to a relational data base management system and offline plotting devices on mainframe computers. The CAD/CAM software system requires interactive graphics terminals operating at a minimum of 4800 bits/sec transfer rate to a computer. The system is portable and introduces 'interactive graphics', which permits the creation and modification of models interactively. The CAD/CAM system has already produced designs for a large area space platform, a national transonic facility fan blade, and a laminar flow control wind tunnel model. Besides the design/drafting element analysis capability, CAD/CAM provides options to produce an automatic program tooling code to drive a numerically controlled (N/C) machine. Reductions in time for design, engineering, drawing, finite element modeling, and N/C machining will benefit productivity through reduced costs, fewer errors, and a wider range of configuration.

  2. Noise generated by quiet engine fans. 1: FanB

    NASA Technical Reports Server (NTRS)

    Montegani, F. J.

    1972-01-01

    Acoustical tests of full scale fans for jet engines are presented. The fans are described and some aerodynamic operating data are given. Far field noise around the fan was measured for a variety of configurations over a range of operating conditions. Complete results of one third octave band analysis are presented in tabular form. Power spectra and sideline perceived noise levels are included.

  3. Review of Aircraft Engine Fan Noise Reduction

    NASA Technical Reports Server (NTRS)

    VanZante, Dale

    2008-01-01

    Aircraft turbofan engines incorporate multiple technologies to enhance performance and durability while reducing noise emissions. Both careful aerodynamic design of the fan and proper installation of the fan into the system are requirements for achieving the performance and acoustic objectives. The design and installation characteristics of high performance aircraft engine fans will be discussed along with some lessons learned that may be applicable to spaceflight fan applications.

  4. 30 CFR 57.22208 - Auxiliary fans (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Auxiliary fans (I-A, II-A, III, and V-A mines). 57.22208 Section 57.22208 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... fans (I-A, II-A, III, and V-A mines). (a) Auxiliary fans, except fans used in shops and other areas...

  5. Computational Aerodynamic Simulations of a 1484 ft/sec Tip Speed Quiet High-Speed Fan System Model for Acoustic Methods Assessment and Development

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of a 1484 ft/sec tip speed quiet high-speed fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which includes a core duct and a bypass duct that merge upstream of the fan system nozzle. As a result, only fan rotational speed and the system bypass ratio, set by means of a translating nozzle plug, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive or critical boundary layer separations or related secondary-flow problems, with the exception of the hub boundary layer at the core duct entrance. At that location a significant flow separation is present. The region of local flow recirculation extends through a mixing plane, however, which for the particular mixing-plane model used is now known to exaggerate the recirculation. In any case, the flow separation has relatively little impact on the computed rotor and FEGV flow fields.

  6. Alluvial Fan Delineation from SAR and LIDAR-Derived Digital Elevation Models in the Philippines

    NASA Astrophysics Data System (ADS)

    Aquino, D. T.; Ortiz, I.; Timbas, N.; Gacusan, R.; Montalbo, K.; Eco, R. C.; Lagmay, A.

    2013-12-01

    Occurrence of floods and debris flows leading to the formation of alluvial fans at the base of mountains naturally improve fertility of alluvial plains. However, these formations also have detrimental effects to communities within these zones like the case of Barangay (village) Andap, New Bataan, Compostela Valley where the whole village was wiped out by debris flow when it was hit by Supertyphoon Bopha in 2012. Hence, demarcating the boundaries of alluvial fans is crucial in disaster preparedness and mitigation. This study describes a method to delineate alluvial fans through contour maps from SAR and LiDAR-derived digital elevation models. Based on this data, we used hydrographic apex point polygons to plot the outflow points of upstream watersheds. The watershed and alluvial fan polygons were used to simulate debris flows in the study sites. The fans generated from the flood simulation were consistent with the polygons delineated from the digital elevation model. Satellite imagery and evidences of alluvial deposits found on site revealed 392 alluvial fans in the country. Widest among these is the sprawling 760 sq km fan identified in Cagayan Valley threatening about 434,329 persons at risk of debris flow. Other fans include those identified in Calapan, Mindoro (531 sq km), Kaliwanagan, Pangasinan (436 sq km), Pampanga Alluvial Fan (325 sq km), Mina, Iloilo (315 sq km), Lamsugod, S. Cotabato (286 sq km), in Tignaman, Oton and Alimodian in Iloilo (272 sq km), and the bajada, a series of alluvial fan coalescing to form a larger fan, identified in Ilocos Norte (218 sq km).

  7. A tilting wind tunnel for fire behavior studies

    Treesearch

    David R. Weise

    1994-01-01

    The combined effects of wind velocity and slope on wildland fire behavior can be studied in the laboratory using a tilting wind tunnel. The tilting wind tunnel requires a commercially available fan to induce wind and can be positioned to simulate heading and backing fires spreading up and down slope. The tunnel is portable and can be disassembled for transport using a...

  8. Non-Synchronous Vibration of Turbomachinery Airfoils

    DTIC Science & Technology

    2006-03-01

    study and prevention of non-synchronous vibrations. Non-synchronous vibrations in turbine engine blades are the result of the interaction of an...was a modern fan vane blade known as the H2 case. This blade encountered NSV in experimental rig testing. An analysis was performed with TURBO ...design stage for flow over turbine engine blades . REFERENCES Anagnostopoulos, P., ed. Flow-Induced Vibrations in Engineering

  9. Installation effects on performance of multiple model V/STOL lift fans

    NASA Technical Reports Server (NTRS)

    Diedrich, J. H.; Clough, N.; Lieblein, S.

    1972-01-01

    An experimental program was performed in which the individual performance of multiple VTOL model lift fans was measured. The model tested consisted of three 5.5 in. diameter tip-turbine driven model VTOL lift fans mounted chordwise in a two-dimensional wing to simulate a pod-type array. The performance data provided significant insight into possible thrust variations and losses caused by the presence of cover doors, adjacent fuselage panels, and adjacent fans. The effect of a partial loss of drive air supply (simulated gas generator failure) on fan performance was also investigated. The results of the tests demonstrated that lift fan installation variables and hardware can have a significant effect on the thrust of the individual fans.

  10. Performance power evaluation of DC fan cooling system for PV panel by using ANSYS CFX

    NASA Astrophysics Data System (ADS)

    Syafiqah, Z.; Amin, N. A. M.; Irwan, Y. M.; Irwanto, M.; Leow, W. Z.; Amelia, A. R.

    2017-09-01

    A research has been conducted to find the optimum combination for DC fan air cooling system of photovoltaic (PV) panel. During normal operation of PV panel, it is estimated that only 15 % of solar radiation is converted into electrical energy. Meanwhile, the rest of the solar radiation is converted into heat energy which affects the performance of the PV panel. Therefore, the aim of this research is to investigate the performance power evaluation of DC fan cooling system for PV panel by using ANSYS CFX. The effect of airflow configuration of DC fan has been investigated. This is to analyze whether the airflow circulation of DC fan cause a change towards the maximum temperature of PV panel. Besides, the impact of varying number of DC fans attached at the back of PV panel is evaluated. The result of airflow circulation of DC fan has been discussed. Meanwhile, with the increment number of DC fans, the PV panel temperature drops significantly. As a conclusion, the optimum number of DC fans is two with the combination of inlet airflow.

  11. An aerodynamic investigation of two 1.83-meter-diameter fan systems designed to drive a subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Page, V. R.; Eckert, W. T.; Mort, K. W.

    1977-01-01

    An experimental, aerodynamic investigation was made of two 1.83 m diameter fan systems which are being considered for the repowered drive section of the 40- by 80-foot wind tunnel at NASA Ames Research Center. One system was low speed, the other was high speed. The low speed fan was tested at various stagger angles from 32.9 deg to 62.9 deg. At a fan blade stagger angle of 40.8 deg and operating at a tip speed of 1155 m/sec, the low speed fan developed 207.3 m of head. The high speed fan had a design blade stagger angle of 56.2 deg and was tested at this stagger angle only. The high speed fan operating at 191.5 m/sec developed 207.3 m of head. Radial distributions of static pressure coefficients, total pressure coefficients, and angles of swirl are presented. Radial surveys were conducted at four azimuth locations in front of the fan, and repeated downstream of the fan. Data were taken for various flow control devices and for two inlet contraction lengths.

  12. 30 CFR 57.22205 - Doors on main fans (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Doors on main fans (I-A, II-A, III, and V-A mines). 57.22205 Section 57.22205 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... main fans (I-A, II-A, III, and V-A mines). In mines ventilated by multiple main fans, each main fan...

  13. Alluvial Fans on Mars

    NASA Technical Reports Server (NTRS)

    Kraal, E. R.; Moore, J. M.; Howard, A. D.; Asphaug, E. A.

    2005-01-01

    Moore and Howard [1] reported the discovery of large alluvial fans in craters on Mars. Their initial survey from 0-30 S found that these fans clustered in three distinct regions and occurred at around the +1 km MOLA defined Mars datum. However, due to incomplete image coverage, Moore and Howard [1]could not conduct a comprehensive survey. They also recognized, though did not quantitatively address, gravity scaling issues. Here, we briefly discuss the identification of alluvial fans on Mars, then consider the general equations governing the deposition of alluvial fans and hypothesize a method for learning about grain size in alluvial fans on Mars.

  14. Design and Test of Fan/Nacelle Models Quiet High-Speed Fan Design

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J. (Technical Monitor); Repp, Russ; Gentile, David; Hanson, David; Chunduru, Srinivas

    2003-01-01

    The primary objective of the Quiet High-Speed Fan (QHSF) program was to develop an advanced high-speed fan design that will achieve a 6 dB reduction in overall fan noise over a baseline configuration while maintaining similar performance. The program applies and validates acoustic, aerodynamic, aeroelastic, and mechanical design tools developed by NASA, US industry, and academia. The successful fan design will be used in an AlliedSignal Engines (AE) advanced regional engine to be marketed in the year 2000 and beyond. This technology is needed to maintain US industry leadership in the regional turbofan engine market.

  15. Big Fans

    NASA Image and Video Library

    2018-03-05

    Shown in this image from NASA's Mars Reconnaissance Orbiter (MRO) are alluvial fans, fan-shaped deposits emerging from regions of steep topography. Alluvial fans on Mars are thought to be ancient and record past episodes of flowing water. This image shows part of one of those fans, which has been eroded. The old stream channels now stand above the rest of the fan as ridges, mostly in the southern (bottom) part of the image. This can occur because the channel materials are more resistant to erosion; perhaps they had larger grains (gravel) or because minerals deposited from the water cemented together. https://photojournal.jpl.nasa.gov/catalog/PIA22332

  16. On the design and structural analysis of jet engine fan blade structures

    NASA Astrophysics Data System (ADS)

    Amoo, Leye M.

    2013-07-01

    Progress in the design and structural analysis of commercial jet engine fan blades is reviewed and presented. This article is motivated by the key role fan blades play in the performance of advanced gas turbine jet engines. The fundamentals of the associated physics are emphasized. Recent developments and advancements have led to an increase and improvement in fan blade structural durability, stability and reliability. This article is intended as a high level review of the fan blade environment and current state of structural design to aid further research in developing new and innovative fan blade technologies.

  17. An Assessment of Current Fan Noise Prediction Capability

    NASA Technical Reports Server (NTRS)

    Envia, Edmane; Woodward, Richard P.; Elliott, David M.; Fite, E. Brian; Hughes, Christopher E.; Podboy, Gary G.; Sutliff, Daniel L.

    2008-01-01

    In this paper, the results of an extensive assessment exercise carried out to establish the current state of the art for predicting fan noise at NASA are presented. Representative codes in the empirical, analytical, and computational categories were exercised and assessed against a set of benchmark acoustic data obtained from wind tunnel tests of three model scale fans. The chosen codes were ANOPP, representing an empirical capability, RSI, representing an analytical capability, and LINFLUX, representing a computational aeroacoustics capability. The selected benchmark fans cover a wide range of fan pressure ratios and fan tip speeds, and are representative of modern turbofan engine designs. The assessment results indicate that the ANOPP code can predict fan noise spectrum to within 4 dB of the measurement uncertainty band on a third-octave basis for the low and moderate tip speed fans except at extreme aft emission angles. The RSI code can predict fan broadband noise spectrum to within 1.5 dB of experimental uncertainty band provided the rotor-only contribution is taken into account. The LINFLUX code can predict interaction tone power levels to within experimental uncertainties at low and moderate fan tip speeds, but could deviate by as much as 6.5 dB outside the experimental uncertainty band at the highest tip speeds in some case.

  18. Debris flow deposition and reworking by the Colorado River in Grand Canyon, Arizona

    USGS Publications Warehouse

    Yanites, Brian J.; Webb, Robert H.; Griffiths, Peter G.; Magirl, Christopher S.

    2006-01-01

    Flow regulation by large dams affects downstream flow competence and channel maintenance. Debris flows from 740 tributaries in Grand Canyon, Arizona, transport coarse‐grained sediment onto debris fans adjacent to the Colorado River. These debris fans constrict the river to form rapids and are reworked during river flows that entrain particles and transport them downstream. Beginning in 1963, flood control operations of Glen Canyon Dam limited the potential for reworking of aggraded debris fans. We analyzed change in debris fans at the mouths of 75‐Mile and Monument Creeks using photogrammetry of aerial photography taken from 1965 to 2000 and supplemented with ground surveys performed from 1987 to 2005. Our results quantify the debris fan aggradation that resulted from debris flows from 1984 to 2003. Volume, area, and river constriction increased at both debris fans. Profiles of the two debris fans show that net aggradation occurred in the middle of debris fans at stages above maximum dam releases, and surface shape shifted from concave to convex. Dam releases above power plant capacity partially reworked both debris fans, although reworking removed much less sediment than what was added by debris flow deposition. Large dam releases would be required to create additional reworking to limit the rate of debris fan aggradation in Grand Canyon.

  19. Evaluating the Effectiveness of Cooling Vest in a Hot and Humid Environment.

    PubMed

    Yi, Wen; Zhao, Yijie; Chan, Albert P C

    2017-05-01

    This study aims to evaluate the effectiveness of a newly designed hybrid cooling vest for construction workers in alleviating heat stress. Two types of cooling vests, namely, a commonly worn Vest A and a newly designed Vest B, were tested in a climatic chamber environment (34.0°C temperature, 60% relative humidity, and 0.4 m s-1 air velocity) using a sweating thermal manikin. Four test scenarios were included: fan off with no phase change materials (PCMs) (Fan-off), fan on with no PCMs (Fan-on), fan off with completely solidified PCMs (PCM + Fan-off), and fan on with completely solidified PCMs (PCM + Fan-on). Test results showed that Vests A and B provided a continuous cooling effect during the 3-h test. The average cooling power for the torso region of Vest B was 67 W, which was higher than that of Vest A (56 W). The addition of PCMs offered a cooling effect of approximately 60 min. Ventilation fans considerably improved the evaporative heat loss compared with the Fan-off condition. The newly designed hybrid cooling vest (Vest B) may be an effective means to reduce heat strain and enhance work performance in a hot and humid environment. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  20. Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System.

    PubMed

    Lee, Chengming; Chen, Rongshun

    2015-05-20

    Recently, saving the cooling power in servers by controlling the fan speed has attracted considerable attention because of the increasing demand for high-density servers. This paper presents an optimal self-tuning proportional-integral-derivative (PID) controller, combining a PID neural network (PIDNN) with fan-power-based optimization in the transient-state temperature response in the time domain, for a server fan cooling system. Because the thermal model of the cooling system is nonlinear and complex, a server mockup system simulating a 1U rack server was constructed and a fan power model was created using a third-order nonlinear curve fit to determine the cooling power consumption by the fan speed control. PIDNN with a time domain criterion is used to tune all online and optimized PID gains. The proposed controller was validated through experiments of step response when the server operated from the low to high power state. The results show that up to 14% of a server's fan cooling power can be saved if the fan control permits a slight temperature response overshoot in the electronic components, which may provide a time-saving strategy for tuning the PID controller to control the server fan speed during low fan power consumption.

  1. CFD Models of a Serpentine Inlet, Fan, and Nozzle

    NASA Technical Reports Server (NTRS)

    Chima, R. V.; Arend, D. J.; Castner, R. S.; Slater, J. W.; Truax, P. P.

    2010-01-01

    Several computational fluid dynamics (CFD) codes were used to analyze the Versatile Integrated Inlet Propulsion Aerodynamics Rig (VIIPAR) located at NASA Glenn Research Center. The rig consists of a serpentine inlet, a rake assembly, inlet guide vanes, a 12-in. diameter tip-turbine driven fan stage, exit rakes or probes, and an exhaust nozzle with a translating centerbody. The analyses were done to develop computational capabilities for modeling inlet/fan interaction and to help interpret experimental data. Three-dimensional Reynolds averaged Navier-Stokes (RANS) calculations of the fan stage were used to predict the operating line of the stage, the effects of leakage from the turbine stream, and the effects of inlet guide vane (IGV) setting angle. Coupled axisymmetric calculations of a bellmouth, fan, and nozzle were used to develop techniques for coupling codes together and to investigate possible effects of the nozzle on the fan. RANS calculations of the serpentine inlet were coupled to Euler calculations of the fan to investigate the complete inlet/fan system. Computed wall static pressures along the inlet centerline agreed reasonably well with experimental data but computed total pressures at the aerodynamic interface plane (AIP) showed significant differences from the data. Inlet distortion was shown to reduce the fan corrected flow and pressure ratio, and was not completely eliminated by passage through the fan

  2. Acetone utilization by sulfate-reducing bacteria: draft genome sequence of Desulfococcus biacutus and a proteomic survey of acetone-inducible proteins.

    PubMed

    Gutiérrez Acosta, Olga B; Schleheck, David; Schink, Bernhard

    2014-07-11

    The sulfate-reducing bacterium Desulfococcus biacutus is able to utilize acetone for growth by an inducible degradation pathway that involves a novel activation reaction for acetone with CO as a co-substrate. The mechanism, enzyme(s) and gene(s) involved in this acetone activation reaction are of great interest because they represent a novel and yet undefined type of activation reaction under strictly anoxic conditions. In this study, a draft genome sequence of D. biacutus was established. Sequencing, assembly and annotation resulted in 159 contigs with 5,242,029 base pairs and 4773 predicted genes; 4708 were predicted protein-encoding genes, and 3520 of these had a functional prediction. Proteins and genes were identified that are specifically induced during growth with acetone. A thiamine diphosphate-requiring enzyme appeared to be highly induced during growth with acetone and is probably involved in the activation reaction. Moreover, a coenzyme B12- dependent enzyme and proteins that are involved in redox reactions were also induced during growth with acetone. We present for the first time the genome of a sulfate reducer that is able to grow with acetone. The genome information of this organism represents an important tool for the elucidation of a novel reaction mechanism that is employed by a sulfate reducer in acetone activation.

  3. Large Scale Application of Vibration Sensors for Fan Monitoring at Commercial Layer Hen Houses

    PubMed Central

    Chen, Yan; Ni, Ji-Qin; Diehl, Claude A.; Heber, Albert J.; Bogan, Bill W.; Chai, Li-Long

    2010-01-01

    Continuously monitoring the operation of each individual fan can significantly improve the measurement quality of aerial pollutant emissions from animal buildings that have a large number of fans. To monitor the fan operation by detecting the fan vibration is a relatively new technique. A low-cost electronic vibration sensor was developed and commercialized. However, its large scale application has not yet been evaluated. This paper presents long-term performance results of this vibration sensor at two large commercial layer houses. Vibration sensors were installed on 164 fans of 130 cm diameter to continuously monitor the fan on/off status for two years. The performance of the vibration sensors was compared with fan rotational speed (FRS) sensors. The vibration sensors exhibited quick response and high sensitivity to fan operations and therefore satisfied the general requirements of air quality research. The study proved that detecting fan vibration was an effective method to monitor the on/off status of a large number of single-speed fans. The vibration sensor itself was $2 more expensive than a magnetic proximity FRS sensor but the overall cost including installation and data acquisition hardware was $77 less expensive than the FRS sensor. A total of nine vibration sensors failed during the study and the failure rate was related to the batches of product. A few sensors also exhibited unsteady sensitivity. As a new product, the quality of the sensor should be improved to make it more reliable and acceptable. PMID:22163544

  4. Investigation of an Axial Fan—Blade Stress and Vibration Due to Aerodynamic Pressure Field and Centrifugal Effects

    NASA Astrophysics Data System (ADS)

    Xu, Cheng; Amano, Ryoichi Samuel; Lee, Eng Kwong

    A 1.829m (6ft) diameter industrial large flow-rate axial fan operated at 1770rpm was studied experimentally in laboratory conditions. The flow characteristics on the fan blade surfaces were investigated by measuring the pressure distributions on the blade suction and pressure surfaces and the results were discussed by comparing with analytical formulations and CFD. Flow visualizations were also performed to validate the flow characteristics near the blade surface and it was demonstrated that the flow characteristics near the fan blade surface were dominated by the centrifugal force of the fan rotation which resulted in strong three-dimensional flows. The time-dependent pressure measurement showed that the pressure oscillations on the fan blade were significantly dominated by vortex shedding from the fan blades. It was further demonstrated that the pressure distributions during the fan start-up were highly unsteady, and the main frequency variation of the static pressure was much smaller than the fan rotational frequency. The time-dependent pressure measurement when the fan operated at a constant speed showed that the magnitude of the blade pressure variation with time and the main variation frequency was much smaller than the fan rotational frequency. The pressure variations that were related to the vortex shedding were slightly smaller than the fan rotational frequency. The strain gages were used to measure the blade stress and the results were compared with FEA results.

  5. Draft Environmental Impact Report/Environmental Impact Statement. Cullinan Ranch Specific Plan.

    DTIC Science & Technology

    1983-05-01

    COMMITMENTS OF RESOURCES WHICH WOULD BE INVOLVED IN THE PROPOSED ACTION SHOULD IT BE IMPLEMENTED 150 VII. GROWTH -INDUCING IMPACTS OF THE PROPOSED ACTION 151... conditions Involving soft bay mud and peat deposits, and 3) raise the surface level of the project to accnmmodate planned settlement and provide...data becomes available. These issues are indicated with an asterisk (*). 1. Growth inducement with required expansion of Infrastructure to support

  6. High-Resolution Geologic Mapping of Martian Terraced Fan Deposits

    NASA Astrophysics Data System (ADS)

    Wolak, J. M.; Patterson, A. B.; Smith, S. D.; Robbins, N. N.

    2018-06-01

    This abstract documents our initial progress (year 1) mapping terraced fan features on Mars. Our objective is to investigate the role of fluids during fan formation and produce the first high-resolution geologic map (1:18k) of a terraced fan.

  7. Observational Analysis of Coronal Fans

    NASA Technical Reports Server (NTRS)

    Talpeanu, D.-C.; Rachmeler, L; Mierla, Marilena

    2017-01-01

    Coronal fans (see Figure 1) are bright observational structures that extend to large distances above the solar surface and can easily be seen in EUV (174 angstrom) above the limb. They have a very long lifetime and can live up to several Carrington rotations (CR), remaining relatively stationary for many months. Note that they are not off-limb manifestation of similarly-named active region fans. The solar conditions required to create coronal fans are not well understood. The goal of this research was to find as many associations as possible of coronal fans with other solar features and to gain a better understanding of these structures. Therefore, we analyzed many fans and created an overview of their properties. We present the results of this statistical analysis and also a case study on the longest living fan.

  8. Extended frequency turbofan model

    NASA Technical Reports Server (NTRS)

    Mason, J. R.; Park, J. W.; Jaekel, R. F.

    1980-01-01

    The fan model was developed using two dimensional modeling techniques to add dynamic radial coupling between the core stream and the bypass stream of the fan. When incorporated into a complete TF-30 engine simulation, the fan model greatly improved compression system frequency response to planar inlet pressure disturbances up to 100 Hz. The improved simulation also matched engine stability limits at 15 Hz, whereas the one dimensional fan model required twice the inlet pressure amplitude to stall the simulation. With verification of the two dimensional fan model, this program formulated a high frequency F-100(3) engine simulation using row by row compression system characteristics. In addition to the F-100(3) remote splitter fan, the program modified the model fan characteristics to simulate a proximate splitter version of the F-100(3) engine.

  9. The Effect of Bypass Nozzle Exit Area on Fan Aerodynamic Performance and Noise in a Model Turbofan Simulator

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Podboy, Gary, G.; Woodward, Richard P.; Jeracki, Robert, J.

    2013-01-01

    The design of effective new technologies to reduce aircraft propulsion noise is dependent on identifying and understanding the noise sources and noise generation mechanisms in the modern turbofan engine, as well as determining their contribution to the overall aircraft noise signature. Therefore, a comprehensive aeroacoustic wind tunnel test program was conducted called the Fan Broadband Source Diagnostic Test as part of the NASA Quiet Aircraft Technology program. The test was performed in the anechoic NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel using a 1/5 scale model turbofan simulator which represented a current generation, medium pressure ratio, high bypass turbofan aircraft engine. The investigation focused on simulating in model scale only the bypass section of the turbofan engine. The test objectives were to: identify the noise sources within the model and determine their noise level; investigate several component design technologies by determining their impact on the aerodynamic and acoustic performance of the fan stage; and conduct detailed flow diagnostics within the fan flow field to characterize the physics of the noise generation mechanisms in a turbofan model. This report discusses results obtained for one aspect of the Source Diagnostic Test that investigated the effect of the bypass or fan nozzle exit area on the bypass stage aerodynamic performance, specifically the fan and outlet guide vanes or stators, as well as the farfield acoustic noise level. The aerodynamic performance, farfield acoustics, and Laser Doppler Velocimeter flow diagnostic results are presented for the fan and four different fixed-area bypass nozzle configurations. The nozzles simulated fixed engine operating lines and encompassed the fan stage operating envelope from near stall to cruise. One nozzle was selected as a baseline reference, representing the nozzle area which would achieve the design point operating conditions and fan stage performance. The total area change from the smallest to the largest nozzle was 12.9 percent of the baseline nozzle area. The results will show that there are significant changes in aerodynamic performance and farfield acoustics as the fan nozzle area is increased. The weight flow through the fan model increased between 7 and 9 percent, the fan and stage pressure dropped between 8 and 10 percent, and the adiabatic efficiency increased between 2 and 3 percent--the magnitude of the change dependent on the fan speed. Results from force balance measurements of fan and outlet guide vane thrust will show that as the nozzle exit area is increased the combined thrust of the fan and outlet guide vanes together also increases, between 2 and 3.5 percent, mainly due to the increase in lift from the outlet guide vanes. In terms of farfield acoustics, the overall sound power level produced by the fan stage dropped nearly linearly between 1 dB at takeoff condition and 3.5 dB at approach condition, mainly due to a decrease in the broadband noise levels. Finally, fan swirl angle survey and Laser Doppler Velocimeter mean velocity and turbulence data obtained in the fan wake will show that the swirl angles and turbulence levels within the wake decrease as the fan nozzle area increases, which helps to explain the drop in the fan broadband noise at all fan speeds.

  10. Multi-objective optimization design and experimental investigation of centrifugal fan performance

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Songling; Hu, Chenxing; Zhang, Qian

    2013-11-01

    Current studies of fan performance optimization mainly focus on two aspects: one is to improve the blade profile, and another is only to consider the influence of single impeller structural parameter on fan performance. However, there are few studies on the comprehensive effect of the key parameters such as blade number, exit stagger angle of blade and the impeller outlet width on the fan performance. The G4-73 backward centrifugal fan widely used in power plants is selected as the research object. Based on orthogonal design and BP neural network, a model for predicting the centrifugal fan performance parameters is established, and the maximum relative errors of the total pressure and efficiency are 0.974% and 0.333%, respectively. Multi-objective optimization of total pressure and efficiency of the fan is conducted with genetic algorithm, and the optimum combination of impeller structural parameters is proposed. The optimized parameters of blade number, exit stagger angle of blade and the impeller outlet width are seperately 14, 43.9°, and 21 cm. The experiments on centrifugal fan performance and noise are conducted before and after the installation of the new impeller. The experimental results show that with the new impeller, the total pressure of fan increases significantly in total range of the flow rate, and the fan efficiency is improved when the relative flow is above 75%, also the high efficiency area is broadened. Additionally, in 65% -100% relative flow, the fan noise is reduced. Under the design operating condition, total pressure and efficiency of the fan are improved by 6.91% and 0.5%, respectively. This research sheds light on the considering of comprehensive effect of impeller structrual parameters on fan performance, and a new impeller can be designed to satisfy the engineering demand such as energy-saving, noise reduction or solving air pressure insufficiency for power plants.

  11. Quaternary alluvial fans of Ciudad Juárez, Chihuahua, northern México: OSL ages and implications for climatic history of the region

    USGS Publications Warehouse

    Zúñiga de León, David; Kershaw, Stephen; Mahan, Shannon

    2016-01-01

    Alluvial fans formed from sediments derived from erosion of the Juárez Mountains in northernmost México have a significant flood impact on the Ciudad Juárez, which is built on the fan system. The northern part of Ciudad Juárez is the most active; further south, older parts of the fan, upon which the rest of the city is built, were largely eroded by natural processes prior to human habitation and subsequently modified only recently by human construction. Three aeolian sand samples, collected from the uppermost (youngest) parts of the fan system in the city area, in places where human intervention has not disturbed the sediment, and constrain the latest dates of fan building. Depositional ages of the Quaternary alluvial fans were measured using Optically Stimulated Luminescence (OSL) on aeolian sands that have inter-fingered with alluvial fan material. These dates are: a) sample P1, 31 ka; b) sample P2, 41 ka; c) sample P3, 74 ka, between Oxygen Isotope Stages (OIS) 3 to 5. They demonstrate that fan development, in the area now occupied by the city, terminated in the Late Pleistocene, immediately after what we interpret to have been an extended period of erosion without further deposition, lasting from the Late Pleistocene to Holocene. The three dates broadly correspond to global glacial periods, implying that the cool, dry periods may reflect periods of aeolian transport in northern México in between phases that were wetter to form the alluvial fans. Alluvial fan margins inter-finger with fluvial terrace sediments derived from the Río Bravo, indicating an additional component of fan dissection by Río Bravo lateral erosion, presumed to be active during earlier times than our OSL ages, but these are not yet dated. Further dating is required to ascertain the controls on the fan and fluvial system.

  12. Supercritical flows and their control on the architecture and facies of small-radius sand-rich fan lobes

    NASA Astrophysics Data System (ADS)

    Postma, George; Kleverlaan, Kick

    2018-02-01

    New insights into flow characteristics of supercritical, high-density turbidity currents initiated renewed interest in a sand-rich lobe complex near the hamlet of Mizala in the Sorbas Basin (Tortonian, SE Spain). The field study was done using drone-made images taken along bed strike in combination with physical tracing of bounding surfaces and section logging. The studied lobe systems show a consistent built-up of lobe elements of 1.5-2.0 m thick, which form the building 'blocks' of the lobe system. The stacking of lobe elements shows lateral shift and compensational relief infill. The new model outlined in this paper highlights three stages of fan lobe development: I. an early aggradational stage with lobe elements characterized by antidune and traction-carpet bedforms and burrowed mud intervals (here called 'distal fan' deposits); II. a progradational stage, where the distal fan deposits are truncated by lobe elements of amalgamated sandy to gravelly units characterized by cyclic step bedform facies (designated as 'supra fan' deposits). The supra fan is much more channelized and scoured and of higher flow energy than the distal-fan. Aggradation of the supra-fan is terminated by a 'pappy' pebbly sandstone and by substrate liquefaction, 'pappy' referring to a typical, porridge-like texture indicating rapid deposition under conditions of little-to-no shear. The facies-bounded termination of the supra-fan is here related to its maximum elevation, causing the lobe-feeding supercritical flow to choke and to expand upwards by a strong hydraulic jump at the channel outlet; III. a backfilling stage, characterized by backfilling of the remaining relief with progressively thinning and fining of turbidite beds and eventually with mud. The three-stage development for fan-lobe building is deducted from reoccurring architectural and facies characteristics in three successive fan-lobes. The validity of using experimental, supercritical-flow fan studies for understanding the intrinsic mechanisms in sand-rich-fan lobe development is discussed.

  13. Timing and nature of alluvial fan development along the Chajnantor Plateau, northern Chile

    NASA Astrophysics Data System (ADS)

    Cesta, Jason M.; Ward, Dylan J.

    2016-11-01

    Alluvial systems in the Atacama Desert provide a unique opportunity to elucidate the sedimentary response to climate variability, particularly changes in precipitation, in hyperarid environments. Alluvial fans along the eastern margin of the Salar de Atacama, adjacent to the Chajnantor Plateau in the Atacama Desert of northern Chile, provide an archive of climate-modulated sediment transfer and erosion at an extreme of Earth's climate. Three regional alluvial fan surfaces (Qf1 [oldest] to Qf3 [youngest]) were mapped along the western flank of the Chajnantor Plateau. The alluvial fans were examined with geomorphic and terrestrial cosmogenic 36Cl surface exposure dating methods to define the timing of alluvial fan formation and to determine the role of climatic processes on fan development in a hyperarid environment. Alluvial fans in the study area are comprised of hyperconcentrated flow and boulder-rich debris flow deposits that reflect deposition transitioning between cohesive and noncohesive regimes. Alluvial fan surfaces yield exposure ages that range from 49.6 ± 4.4 to 194 ± 12 ka, while debris flow boulders yield exposure ages ranging from 12.4 ± 2.1 to 229 ± 53 ka. Cosmogenic 36Cl exposure ages indicate that abandonment of alluvial fan surfaces Qf1, Qf2, and Qf3 date to 175 ± 22.6 ka (MIS 6), 134.5 ± 9.18 ka (MIS 6), and 20.07 ± 6.26 ka (MIS 2), respectively. A 36Cl concentration-depth profile through alluvial fan Qf1 suggests a simple depositional history with minimal nuclide inheritance implying relatively rapid aggradation (6 m in ca. 25 kyr) followed by surface abandonment ca. 180-200 ka. Our data support a strong climatic control on alluvial fan evolution in the region, and we propose that the alluvial fans along the margins of the Salar de Atacama form according to the humid model of fan formation.

  14. Flow performance of highly loaded axial fan with bowed rotor blades

    NASA Astrophysics Data System (ADS)

    Chen, L.; Liu, X. J.; Yang, A. L.; Dai, R.

    2013-12-01

    In this paper, a partial bowed rotor blade was proposed for a newly designed high loaded axial fan. The blade was positively bowed 30 degrees from hub to 30 percent spanwise position. Flows of radial blade and bowed blade fans were numerically compared for various operation conditions. Results show that the fan's performance is improved. At the designed condition with flow coefficient of 0.52, the efficiency of the bowed blade fan is increased 1.44% and the static pressure rise is increased 11%. Comparing the flow structures, it can be found that the separated flow in the bowed fan is reduced and confined within 20 percent span, which is less than the 35 percent in the radial fan. It means that the bowed blade generates negative blade force and counteracts partial centrifugal force. It is alleviates the radial movements of boundary layers in fan's hub region. Flow losses due to 3D mixing are reduced in the rotor. Inlet flow to downstream stator is also improved.

  15. Fan Noise Source Diagnostic Test Computation of Rotor Wake Turbulence Noise

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Envia, E.; Thorp, S. A.; Shabbir, A.

    2002-01-01

    An important source mechanism of fan broadband noise is the interaction of rotor wake turbulence with the fan outlet guide vanes. A broadband noise model that utilizes computed rotor flow turbulence from a RANS code is used to predict fan broadband noise spectra. The noise model is employed to examine the broadband noise characteristics of the 22-inch Source Diagnostic Test fan rig for which broadband noise data were obtained in wind tunnel tests at the NASA Glenn Research Center. A 9-case matrix of three outlet guide vane configurations at three representative fan tip speeds are considered. For all cases inlet and exhaust acoustic power spectra are computed and compared with the measured spectra where possible. In general, the acoustic power levels and shape of the predicted spectra are in good agreement with the measured data. The predicted spectra show the experimentally observed trends with fan tip speed, vane count, and vane sweep. The results also demonstrate the validity of using CFD-based turbulence information for fan broadband noise calculations.

  16. Small fan-in is beautiful

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiu, V.; Makaruk, H.E.

    1997-09-01

    The starting points of this paper are two size-optimal solutions: (1) one for implementing arbitrary Boolean functions; and (2) another one for implementing certain subclasses of Boolean functions. Because VLSI implementations do not cope well with highly interconnected nets -- the area of a chip grows with the cube of the fan-in -- this paper will analyze the influence of limited fan-in on the size optimality for the two solutions mentioned. First, the authors will extend a result from Horne and Hush valid for fan-in {Delta} = 2 to arbitrary fan-in. Second, they will prove that size-optimal solutions are obtainedmore » for small constant fan-ins for both constructions, while relative minimum size solutions can be obtained for fan-ins strictly lower that linear. These results are in agreement with similar ones proving that for small constant fan-ins ({Delta} = 6...9) there exist VLSI-optimal (i.e., minimizing AT{sup 2}) solutions, while there are similar small constants relating to the capacity of processing information.« less

  17. Flow determination of a pump-turbine at zero discharge

    NASA Astrophysics Data System (ADS)

    Edinger, G.; Erne, S.; Doujak, E.; Bauer, C.

    2014-03-01

    When starting up a reversible Francis pump-turbine in pump mode, the machine may operate at zero flow at a given gate opening. Besides reversal flow and prerotation in the draft tube cone, the onset of a fully separated flow in the vaned diffuser is observable at zero- discharge condition. In this paper, the occurrence of prerotation and reversal flow in the conical draft tube and the flow in one stay vane channel of a pump-turbine are examined experimentally and compared to numerical simulations. In order to assess the strongly three-dimensional flow in the stay vane channel, measurements with a 2D laser doppler velocimeter (LDV) were performed at various positions. The inlet flow in the draft tube cone, which becomes significantly at zero discharge in pump mode, is investigated by velocity measurements at two different positions. Pressure fluctuations in the draft tube cone induced by complex flow patterns are also recorded and analyzed. It is found that the swirl number at zero discharge does not significant differ from the values obtained at very low load pumping. Experimental investigations combined with CFD have shown that in the stay vane channel flow velocity components different from zero occur even at no discharge. Streamline plots show the fully separated flow structure.

  18. Computational Aerodynamic Simulations of an 840 ft/sec Tip Speed Advanced Ducted Propulsor Fan System Model for Acoustic Methods Assessment and Development

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of an 840 ft/sec tip speed, Advanced Ducted Propulsor fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, lownoise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15- foot Low Speed Wind Tunnel at the NASA Glenn Research Center, resulting in quality, detailed aerodynamic and acoustic measurement data. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating conditions simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, excluding a long core duct section downstream of the core inlet guide vane. As a result, only fan rotational speed and system bypass ratio, set by specifying static pressure downstream of the core inlet guide vane row, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. The computed blade row flow fields for all five fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive boundary layer separations or related secondary-flow problems. A few spanwise comparisons between computational and measurement data in the bypass duct show that they are in good agreement, thus providing a partial validation of the computational results.

  19. Use of the Logistics Composite Model to Evaluate Avionics Availability.

    DTIC Science & Technology

    1981-07-01

    66 FANM - - 2 8 FANP 5 22 1 21 FANR 2 6 - - FANU 1o 39 1 1 FANW 3 8 1 1 FANZ - - 2 2 FAN4 3 20 2 ŕ FAN6 4 17 - - FAN9 4 7 2 6 FAPA 4 24 6 38 FAPB I I...FAM5 8 20 FAM6 3 5 FAM7 1 1 FANE 2 FANK 2 31 FANP 7 FANU 6 7 FANW 1 8 FANZ 1 FAN4 2 31 FAN6 3 4 FAN9 2 8 FAPA 9 47 FAPE 1 17 FAPH 19 72 FAPJ I I FAPK

  20. Supersonic through-flow fan assessment

    NASA Technical Reports Server (NTRS)

    Kepler, C. E.; Champagne, G. A.

    1988-01-01

    A study was conducted to assess the performance potential of a supersonic through-flow fan engine for supersonic cruise aircraft. It included a mean-line analysis of fans designed to operate with in-flow velocities ranging from subsonic to high supersonic speeds. The fan performance generated was used to estimate the performance of supersonic fan engines designed for four applications: a Mach 2.3 supersonic transport, a Mach 2.5 fighter, a Mach 3.5 cruise missile, and a Mach 5.0 cruise vehicle. For each application an engine was conceptualized, fan performance and engine performance calculated, weight estimates made, engine installed in a hypothetical vehicle, and mission analysis was conducted.

  1. Fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, Rajeev R.; Cowan, Thomas E.

    1996-01-01

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate.

  2. NASA/Navy life/cruise fan preliminary design report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Preliminary design studies were performed to define a turbotip lift/cruise fan propulsion system for a Navy multimission aircraft. The fan is driven by the exhausts of the YJ97-GE-100 turbojet or a 20 percent Growth J97 configuration as defined during the studies. The LCF459 fan configuration defined has a tip diameter of 1.50 meters (59.0 inches) and develops a design point thrust of 75,130 N (16,890 lbs) at a fan pressure ratio of 1.319. The fan has an estimated weight of 386 kg (850 lbs). Trade studies performed to define the selected configuration are described.

  3. Modeling and Prediction of Fan Noise

    NASA Technical Reports Server (NTRS)

    Envia, Ed

    2008-01-01

    Fan noise is a significant contributor to the total noise signature of a modern high bypass ratio aircraft engine and with the advent of ultra high bypass ratio engines like the geared turbofan, it is likely to remain so in the future. As such, accurate modeling and prediction of the basic characteristics of fan noise are necessary ingredients in designing quieter aircraft engines in order to ensure compliance with ever more stringent aviation noise regulations. In this paper, results from a comprehensive study aimed at establishing the utility of current tools for modeling and predicting fan noise will be summarized. It should be emphasized that these tools exemplify present state of the practice and embody what is currently used at NASA and Industry for predicting fan noise. The ability of these tools to model and predict fan noise is assessed against a set of benchmark fan noise databases obtained for a range of representative fan cycles and operating conditions. Detailed comparisons between the predicted and measured narrowband spectral and directivity characteristics of fan nose will be presented in the full paper. General conclusions regarding the utility of current tools and recommendations for future improvements will also be given.

  4. Use of TOPSAR digital elevation data to determine the 3-dimensional shape of an alluvial fan

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.

    1995-01-01

    Landforms in arid regions record the interplay between tectonic forces and climate. Alluvial fans are a common landform in desert regions where the rate of uplift is greater than weathering or sedimentation. Changes in uplift rate or climatic conditions can lead to isolation of the currently forming fan surface through entrenchment and construction of another fan either further from the mountain front (decreased uplift or increased runoff) or closer to the mountain front (increased uplift or decreased runoff). Thus, many alluvial fans are made up of a mosaic of fan units of different age, some older than 1 million years. For this reason, determination of the stages of fan evolution can lead to a history of uplift and runoff. In an attempt to separate the effects of tectonic (uplift) and climatic (weathering, runoff, sedimentation) processes on the shapes of alluvial fan units, a modified conic equation developed by Troeh (1965) was fitted to TOPSAR digital topographic data for the Trail Canyon alluvial fan in Death Valley, California. This allows parameters for the apex position, slope, and radial curvature to be compared with unit age.

  5. Tone Noise Predictions for a Spacecraft Cabin Ventilation Fan Ingesting Distorted Inflow and the Challenges of Validation

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Shook, Tony D.; Astler, Douglas T.; Bittinger, Samantha A.

    2011-01-01

    A fan tone noise prediction code has been developed at NASA Glenn Research Center that is capable of estimating duct mode sound power levels for a fan ingesting distorted inflow. This code was used to predict the circumferential and radial mode sound power levels in the inlet and exhaust duct of an axial spacecraft cabin ventilation fan. Noise predictions at fan design rotational speed were generated. Three fan inflow conditions were studied: an undistorted inflow, a circumferentially symmetric inflow distortion pattern (cylindrical rods inserted radially into the flowpath at 15deg, 135deg, and 255deg), and a circumferentially asymmetric inflow distortion pattern (rods located at 15deg, 52deg and 173deg). Noise predictions indicate that tones are produced for the distorted inflow cases that are not present when the fan operates with an undistorted inflow. Experimental data are needed to validate these acoustic predictions, as well as the aerodynamic performance predictions. Given the aerodynamic design of the spacecraft cabin ventilation fan, a mechanical and electrical conceptual design study was conducted. Design features of a fan suitable for obtaining detailed acoustic and aerodynamic measurements needed to validate predictions are discussed.

  6. Tone Noise Predictions for a Spacecraft Cabin Ventilation Fan Ingesting Distorted Inflow and the Challenges of Validation

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Shook, Tony D.; Astler, Douglas T.; Bittinger, Samantha A.

    2012-01-01

    A fan tone noise prediction code has been developed at NASA Glenn Research Center that is capable of estimating duct mode sound power levels for a fan ingesting distorted inflow. This code was used to predict the circumferential and radial mode sound power levels in the inlet and exhaust duct of an axial spacecraft cabin ventilation fan. Noise predictions at fan design rotational speed were generated. Three fan inflow conditions were studied: an undistorted inflow, a circumferentially symmetric inflow distortion pattern (cylindrical rods inserted radially into the flowpath at 15deg, 135deg, and 255deg), and a circumferentially asymmetric inflow distortion pattern (rods located at 15deg, 52deg and 173deg). Noise predictions indicate that tones are produced for the distorted inflow cases that are not present when the fan operates with an undistorted inflow. Experimental data are needed to validate these acoustic predictions, as well as the aerodynamic performance predictions. Given the aerodynamic design of the spacecraft cabin ventilation fan, a mechanical and electrical conceptual design study was conducted. Design features of a fan suitable for obtaining detailed acoustic and aerodynamic measurements needed to validate predictions are discussed.

  7. Acoustic Measurements of an Uninstalled Spacecraft Cabin Ventilation Fan Prototype

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Brown, Clifford A.; Shook, Tony D.; Winkel, James; Kolacz, John S.; Podboy, Devin M.; Loew, Raymond A.; Mirecki, Julius H.

    2012-01-01

    Sound pressure measurements were recorded for a prototype of a spacecraft cabin ventilation fan in a test in the NASA Glenn Acoustical Testing Laboratory. The axial fan is approximately 0.089 m (3.50 in.) in diameter and 0.223 m (9.00 in.) long and has nine rotor blades and eleven stator vanes. At design point of 12,000 rpm, the fan was predicted to produce a flow rate of 0.709 cu m/s (150 cfm) and a total pressure rise of 925 Pa (3.72 in. of water) at 12,000 rpm. While the fan was designed to be part of a ducted atmospheric revitalization system, no attempt was made to throttle the flow or simulate the installed configuration during this test. The fan was operated at six speeds from 6,000 to 13,500 rpm. A 13-microphone traversing array was used to collect sound pressure measurements along two horizontal planes parallel to the flow direction, two vertical planes upstream of the fan inlet and two vertical planes downstream of the fan exhaust. Measurements indicate that sound at blade passing frequency harmonics contribute significantly to the overall audible noise produced by the fan at free delivery conditions.

  8. Preliminary Aerodynamic Investigation of Fan Rotor Blade Morphing

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2012-01-01

    Various new technologies currently under development may enable controlled blade shape variability, or so-called blade morphing, to be practically employed in aircraft engine fans and compressors in the foreseeable future. The current study is a relatively brief, preliminary computational fluid dynamics investigation aimed at partially demonstrating and quantifying the aerodynamic potential of fan rotor blade morphing. The investigation is intended to provide information useful for near-term planning, as well as aerodynamic solution data sets that can be subsequently analyzed using advanced acoustic diagnostic tools, for the purpose of making fan noise comparisons. Two existing fan system models serve as baselines for the investigation: the Advanced Ducted Propulsor fan with a design tip speed of 806 ft/sec and a pressure ratio of 1.294, and the Source Diagnostic Test fan with a design tip speed of 1215 ft/sec and a pressure ratio of 1.470. Both are 22-in. sub-scale, low-noise research fan/nacelle models that have undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. The study, restricted to fan rotor blade morphing only, involves a fairly simple blade morphing technique. Specifically, spanwise-linear variations in rotor blade-section setting angle are applied to alter the blade shape; that is, the blade is linearly retwisted from hub to tip. Aerodynamic performance comparisons are made between morphed-blade and corresponding baseline configurations on the basis of equal fan system thrust, where rotor rotational speed for the morphed-blade fan is varied to change the thrust level for that configuration. The results of the investigation confirm that rotor blade morphing could be a useful technology, with the potential to enable significant improvements in fan aerodynamic performance. Even though the study is very limited in scope and confined to simple geometric perturbations of two existing fan systems, the aerodynamic effectiveness of blade morphing is demonstrated by the configurations analyzed. In particular, for the Advanced Ducted Propulsor fan it is demonstrated that the performance levels of the original variable-pitch baseline design can be achieved using blade morphing instead of variable pitch, and for the Source Diagnostic Test fan the performance at important off-design operating points is substantially increased with blade morphing.

  9. Prototype Morphing Fan Nozzle Demonstrated

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun; Song, Gang-Bing

    2004-01-01

    Ongoing research in NASA Glenn Research Center's Structural Mechanics and Dynamics Branch to develop smart materials technologies for aeropropulsion structural components has resulted in the design of the prototype morphing fan nozzle shown in the photograph. This prototype exploits the potential of smart materials to significantly improve the performance of existing aircraft engines by introducing new inherent capabilities for shape control, vibration damping, noise reduction, health monitoring, and flow manipulation. The novel design employs two different smart materials, a shape-memory alloy and magnetorheological fluids, to reduce the nozzle area by up to 30 percent. The prototype of the variable-area fan nozzle implements an overlapping spring leaf assembly to simplify the initial design and to provide ease of structural control. A single bundle of shape memory alloy wire actuators is used to reduce the nozzle geometry. The nozzle is subsequently held in the reduced-area configuration by using magnetorheological fluid brakes. This prototype uses the inherent advantages of shape memory alloys in providing large induced strains and of magnetorheological fluids in generating large resistive forces. In addition, the spring leaf design also functions as a return spring, once the magnetorheological fluid brakes are released, to help force the shape memory alloy wires to return to their original position. A computerized real-time control system uses the derivative-gain and proportional-gain algorithms to operate the system. This design represents a novel approach to the active control of high-bypass-ratio turbofan engines. Researchers have estimated that such engines will reduce thrust specific fuel consumption by 9 percent over that of fixed-geometry fan nozzles. This research was conducted under a cooperative agreement (NCC3-839) at the University of Akron.

  10. General Aerodynamic Characteristics of a Research Model with High Disk Loading Direct Lifting Fan Mounted in Fuselage

    NASA Image and Video Library

    1960-10-26

    3/4 Low front view of fuselage and fan. Showing jet engine hanging below. Lift fan powered by jet exhaust. General Aerodynamic Characteristics of a Research Model with High Disk Loading Direct Lifting Fan Mounted in Fuselage

  11. Supersonic throughflow fans for high-speed aircraft

    NASA Technical Reports Server (NTRS)

    Ball, Calvin L.; Moore, Royce D.

    1990-01-01

    A brief overview is provided of past supersonic throughflow fan activities; technology needs are discussed; the design is described of a supersonic throughflow fan stage, a facility inlet, and a downstream diffuser; and the results are presented from the analysis codes used in executing the design. Also presented is a unique engine concept intended to permit establishing supersonic throughflow within the fan on the runway and maintaining the supersonic throughflow condition within the fan throughout the flight envelope.

  12. 8. EXTERIOR VIEW OF BALTIMORE FAN HOUSE LOOKING NORTHEAST The ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. EXTERIOR VIEW OF BALTIMORE FAN HOUSE LOOKING NORTHEAST The engine room and south airway are in the foreground. The brick walls covering the fan housing and brick upshaft chimney are in the background. The engine room, fan housing, and airways are covered with reinforced concrete roofing. In the left foreground is an airlock leading into the airway. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA

  13. High fidelity phase locked PIV measurements analysing the flow fields surrounding an oscillating piezoelectric fan

    NASA Astrophysics Data System (ADS)

    Jeffers, Nicholas; Nolan, Kevin; Stafford, Jason; Donnelly, Brian

    2014-07-01

    Piezoelectric fans have been studied extensively and are seen as a promising technology for thermal management due to their ability to provide quiet, reliable cooling with low power consumption. The fluid mechanics of an unconfined piezoelectric fan are complex which is why the majority of the literature to date confines the fan in an attempt to simplify the flow field. This paper investigates the fluid mechanics of an unconfined fan operating in its first vibration frequency mode. The piezoelectric fan used in this study measures 12.7mm × 70mm and resonates at 92.5Hz in air. A custom built experimental facility was developed to capture the fan's flow field using phase locked Particle Image Velocimetry (PIV). The phase locked PIV results are presented in terms of vorticity and show the formation of a horse shoe vortex. A three dimensional A2 criterion constructed from interpolated PIV measurements was used to identify the vortex core in the vicinity of the fan. This analysis was used to clearly identify the formation of a horse shoe vortex that turns into a hairpin vortex before it breaks up due to a combination of vortex shedding and flow along the fan blade. The results presented in this paper contribute to both the fluid dynamics and heat transfer literature concerning first mode fan oscillation.

  14. Experimental Investigation on Design Enhancement of Axial Fan Using Fixed Guide Vane

    NASA Astrophysics Data System (ADS)

    Munisamy, K. M.; Govindasamy, R.; Thangaraju, S. K.

    2015-09-01

    Airflow passes through the rotating blade in an axial flow fan will experience a helical flow pattern. This swirling effect leads the system to experience swirl energy losses or pressure drop yet reducing the total efficiency of the fan system. A robust tool to encounter this air spin past the blade is by introducing guide vane to the system. Owing to its importance, a new approach in designing outlet guide vane design for a commercial usage 1250mm diameter axial fan with a 30° pitch angle impeller has been introduced in this paper. A single line metal of proper curvature guide vane design technique has been adopted for this study. By choosing fan total efficiency as a target variable to be improved, the total and static pressure on the design point were set to be constraints. Therefore, the guide vane design was done based on the improvement target on the static pressure in system. The research shows that, with the improvement in static pressure by 29.63% through guide vane installation, the total fan efficiency is increased by 5.12%, thus reduces the fan power by 5.32%. Good agreement were found, that when the fan total efficiency increases, the power consumption of the fan is reduced. Therefore, this new approach of guide vane design can be applied to improve axial fan performance.

  15. Laboratory alluvial fans in one dimension.

    PubMed

    Guerit, L; Métivier, F; Devauchelle, O; Lajeunesse, E; Barrier, L

    2014-08-01

    When they reach a flat plain, rivers often deposit their sediment load into a cone-shaped structure called alluvial fan. We present a simplified experimental setup that reproduces, in one dimension, basic features of alluvial fans. A mixture of water and glycerol transports and deposits glass beads between two transparent panels separated by a narrow gap. As the beads, which mimic natural sediments, get deposited in this gap, they form an almost one-dimensional fan. At a moderate sediment discharge, the fan grows quasistatically and maintains its slope just above the threshold for sediment transport. The water discharge determines this critical slope. At leading order, the sediment discharge only controls the velocity at which the fan grows. A more detailed analysis reveals a slight curvature of the fan profile, which relates directly to the rate at which sediments are transported.

  16. Design study of an air pump and integral lift engine ALF-504 using the Lycoming 502 core

    NASA Technical Reports Server (NTRS)

    Rauch, D.

    1972-01-01

    Design studies were conducted for an integral lift fan engine utilizing the Lycoming 502 fan core with the final MQT power turbine. The fan is designed for a 12.5 bypass ratio and 1.25:1 pressure ratio, and provides supercharging for the core. Maximum sea level static thrust is 8370 pounds with a specific fuel consumption of 0.302 lb/hr-lb. The dry engine weight without starter is 1419 pounds including full-length duct and sound-attenuating rings. The engine envelope including duct treatment but not localized accessory protrusion is 53.25 inches in diameter and 59.2 inches long from exhaust nozzle exit to fan inlet flange. Detailed analyses include fan aerodynamics, fan and reduction gear mechanical design, fan dynamic analysis, engine noise analysis, engine performance, and weight analysis.

  17. Acoustic Power Transmission Through a Ducted Fan

    NASA Technical Reports Server (NTRS)

    Envia, Ed

    2016-01-01

    For high-speed ducted fans, when the rotor flowfield is shock-free, the main contribution to the inlet radiated acoustic power comes from the portion of the rotor stator interaction sound field that is transmitted upstream through the rotor. As such, inclusion of the acoustic transmission is an essential ingredient in the prediction of the fan inlet noise when the fan tip relative speed is subsonic. This paper describes a linearized Euler based approach to computing the acoustic transmission of fan tones through the rotor. The approach is embodied in a code called LINFLUX was applied to a candidate subsonic fan called the Advanced Ducted Propulsor (ADP). The results from this study suggest that it is possible to make such prediction with sufficient fidelity to provide an indication of the acoustic transmission trends with the fan tip speed.

  18. Acoustic and aerodynamic performance of a 1.5-pressure-ratio, 1.83-meter (6 ft) diameter fan stage for turbofan engines (QF-2)

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Lucas, J. G.; Balombin, J. R.

    1977-01-01

    The fan was externally driven by an electric motor. Design features for low-noise generation included the elimination of inlet guide vanes, long axial spacing between the rotor and stator blade rows, and the selection of blade-vane numbers to achieve duct-mode cutoff. The fan QF-2 results were compared with those of another full-scale fan having essentially identical aerodynamic design except for nozzle geometry and the direction of rotation. The fan QF-2 aerodynamic results were also compared with those obtained from a 50.8 cm rotor-tip-diameter model of the reverse rotation fan QF-2 design. Differences in nozzle geometry other than exit area significantly affected the comparison of the results of the full-scale fans.

  19. Noise generated by quiet engine fans. 2: Fan A. [measurement of power spectra and sideline perceived noise levels

    NASA Technical Reports Server (NTRS)

    Montegani, F. J.; Schaefer, J. W.; Stakolich, E. G.

    1974-01-01

    A significant effort within the NASA Quiet Engine Program has been devoted to acoustical evaluation at the Lewis Research Center noise test facility of a family of full-scale fans. This report, documents the noise results obtained with fan A - a 1.5-pressure-ratio, 1160-ft/sec-tip-speed fan. The fan is described and some aerodynamic operating data are given. Far-field noise around the fan was measured for a variety of configurations pertaining to acoustical treatment and over a range of operating conditions. Complete results of 1/3-octave band analysis of the data are presented in tabular form. Included also are power spectra and sideline perceived noise levels. Some representative 1/3-octave band data are presented graphically, and sample graphs of continuous narrow-band spectra are also provided.

  20. Broadband Fan Noise Prediction System for Turbofan Engines. Volume 3; Validation and Test Cases

    NASA Technical Reports Server (NTRS)

    Morin, Bruce L.

    2010-01-01

    Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the third volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User s Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by validation studies that were done on three fan rigs. It concludes with recommended improvements and additional studies for BFaNS.

  1. Morphology and growth pattern of Amazon deep-sea fan: a computer-processed GLORIA side-scan mosaic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flood, R.D.; Damuth, J.E.

    1984-04-01

    Deep-sea fans have become increasingly important targets for exploration because of their favorable facies associations. A better understanding of deep-sea fans is needed to successfully exploit these complex sediment bodies. Recent studies of the Amazon fan, using long-range side-scan sonar (GLORIA) and single-channel seismic data, provide an overall view of channel patterns of this fan and demonstrate the relationship between successive channel/levee systems. The digitally collected GLORIA data have been computer processed to produce a mosaic of the fan. Computer processing has corrected the records for slant range and ship navigation, and targets have been enhanced. Many features of themore » modern fan system are readily apparent on the sonar mosaic. The 1.5 to 0.5-km (5000 to 1600-ft) wide channels meander intensely across the fan with sinuosities up to 2.5. Because of these meanders, the channel gradients decrease regularly across the fan despite changes in regional slope. Other channel-related targets include cutoff meanders, overbank deposits (especially small debris flows), and channel branchings. Other debris flows cover large areas of the fan and override channel/levee systems. Air-gun records show that this fan is built of a series of channel/levee systems that overlay one another. Channels from at least 6 of these systems are visible at the surface now, but apparently only one channel at a time has been active. The length of time needed to build a single channel/levee system is not known, but it appears to be rapid.« less

  2. Vertical/Short Takeoff and Landing Model in the 10- by 10-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1979-05-21

    A technician checks a 0.25-scale engine model of a Vought Corporation V-530 engine in the test section of the 10- by 10-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Vought created a low-drag tandem-fan Vertical/Short and Takeoff and Landing (V/STOL) engine in the mid-1970s, designated as the V-530. The first fan on the tandem-fan engine was supplied with air through a traditional subsonic inlet, seen on the lower front of the engine. The air was exhausted through the nacelle during normal flight and directed down during takeoffs. The rear fan was supplied by the oval-shaped top inlet during all phases of the flight. The second fan exhausted its air through a rear vectorable nozzle. NASA Lewis and Vought partnered in the late 1970s to collect an array of inlet and nozzle design information on the tandem fan engines for the Navy. Vought created this .25-scale model of the V-530 for extensive testing in Lewis' 10- by 10-foot tunnel. During an early series of tests, the front fan was covered, and a turbofan simulator was used to supply air to the rear fan. The researchers then analyzed the performance of only the front fan inlet. During the final series of tests, the flow from the front fan was used to supply airflow to the rear fan. The researchers studied the inlet's recovery, distortion, and angle-of-attack limits over various flight conditions.

  3. Effect of tip flange on tip leakage flow of small axial flow fans

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Jin, Yingzi; Jin, Yuzhen

    2014-02-01

    Aerodynamic performance of an axial flow fan is closely related to its tip clearance leakage flow. In this paper, the hot-wire anemometer is used to measure the three dimensional mean velocity near the blade tips. Moreover, the filtered N-S equations with finite volume method and RNG k-ɛ turbulence model are adopted to carry out the steady simulation calculation of several fans that differ only in tip flange shape and number. The large eddy simulation and the FW-H noise models are adopted to carry out the unsteady numerical calculation and aerodynamic noise prediction. The results of simulation calculation agree roughly with that of tests, which proves the numerical calculation method is feasible.The effects of tip flange shapes and numbers on the blade tip vortex structure and the characteristics are analyzed. The results show that tip flange of the fan has a certain influence on the characteristics of the fan. The maximum efficiencies for the fans with tip flanges are shifted towards partial flow with respect to the design point of the datum fan. Furthermore, the noise characteristics for the fans with tip flanges have become more deteriorated than that for the datum fan. Tip flange contributes to forming tip vortex shedding and the effect of the half-cylinder tip flange on tip vortex shedding is obvious. There is a distinct relationship between the characteristics of the fan and tip vortex shedding. The research results provide the profitable reference for the internal flow mechanism of the performance optimization of small axial flow fans.

  4. 30 CFR 57.22203 - Main fan operation (I-C mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main fan operation (I-C mines). 57.22203... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22203 Main fan operation (I-C mines). Main fans shall be operated continuously while ore production is in progress. ...

  5. ENERGY STAR Certified Ventilating Fans

    EPA Pesticide Factsheets

    Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Ventilating Fans that are effective as of October 1, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=vent_fans.pr_crit_vent_fans

  6. 30 CFR 57.8529 - Auxiliary fan systems

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auxiliary fan systems 57.8529 Section 57.8529 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Underground Only § 57.8529 Auxiliary fan systems When auxiliary fan systems are used, such systems shall...

  7. ENERGY STAR Certified Ceiling Fans

    EPA Pesticide Factsheets

    Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Ceiling Fans that are effective as of April 1, 2012. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=ceiling_fans.pr_crit_ceiling_fans

  8. Online Fan Fiction and Critical Media Literacy

    ERIC Educational Resources Information Center

    Black, Rebecca W.

    2010-01-01

    This article explores English-language-learning (ELL) youths' engagement with popular media through composing and publicly posting stories in an online fan fiction writing space. Fan fiction is a genre that lends itself to critical engagement with media texts as fans repurpose popular media to design their own narratives. Analyses describe how…

  9. 78 FR 42758 - 36(b)(1) Arms Sales Notification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... aircraft, to include: Inlet/Fan Modules, Core Engine Modules, Rear Compressor Drive Turbines, Fan Drive...-PW-229 engines for the Hellenic Air Force F-16 aircraft, to include: Inlet/Fan Modules, Core Engine Modules, Rear Compressor Drive Turbines, Fan Drive Turbine Modules, Augmentor Duct and Nozzle Modules, and...

  10. 30 CFR 57.8525 - Main fan maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main fan maintenance. 57.8525 Section 57.8525 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Underground Only § 57.8525 Main fan maintenance. Main fans shall be maintained according to either the...

  11. Alcohol-Related Fan Behavior on College Football Game Day

    ERIC Educational Resources Information Center

    Glassman, Tavis; Werch, Chudley E.; Jobli, Edessa; Bian, Hui

    2007-01-01

    High-risk drinking on game day represents a unique public health challenge. Objective: The authors examined the drinking behavior of college football fans and assessed the support for related interventions. Participants: The authors randomly selected 762 football fans, including college students, alumni, and other college football fans, to…

  12. A general representation for axial-flow fans and turbines

    NASA Technical Reports Server (NTRS)

    Perl, W; Tucker, M

    1945-01-01

    A general representation of fan and turbine arrangements on a single classification chart is presented that is made possible by a particular definition of the stage of an axial-flow fan or turbine. Several unconventional fan and turbine arrangements are indicated and the applications of these arrangements are discussed.

  13. 30 CFR 75.331 - Auxiliary fans and tubing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (a) When auxiliary fans and tubing are used for face ventilation, each auxiliary fan shall be— (1... auxiliary fan is stopped— (1) Line brattice or other face ventilation control devices shall be used to maintain ventilation to affected faces; and (2) Electrical equipment in the affected working places shall...

  14. 30 CFR 75.331 - Auxiliary fans and tubing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (a) When auxiliary fans and tubing are used for face ventilation, each auxiliary fan shall be— (1... auxiliary fan is stopped— (1) Line brattice or other face ventilation control devices shall be used to maintain ventilation to affected faces; and (2) Electrical equipment in the affected working places shall...

  15. 30 CFR 75.331 - Auxiliary fans and tubing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (a) When auxiliary fans and tubing are used for face ventilation, each auxiliary fan shall be— (1... auxiliary fan is stopped— (1) Line brattice or other face ventilation control devices shall be used to maintain ventilation to affected faces; and (2) Electrical equipment in the affected working places shall...

  16. Late Holocene geomorphic record of fire in ponderosa pine and mixed-conifer forests, Kendrick Mountain, northern Arizona, USA

    Treesearch

    Sara E. Jenkins; Carolyn Hull Sieg; Diana E. Anderson; Darrell S. Kaufman; Philip A. Pearthree

    2011-01-01

    Long-term fire history reconstructions enhance our understanding of fire behaviour and associated geomorphic hazards in forested ecosystems. We used 14C ages on charcoal from fire-induced debris-flow deposits to date prehistoric fires on Kendrick Mountain, northern Arizona, USA. Fire-related debris-flow sedimentation dominates Holocene fan deposition in the study area...

  17. Investigation of induced recirculation during planned ventilation system maintenance

    PubMed Central

    Pritchard, C.J.; Scott, D.F.; Noll, J.D.; Voss, B.; Leonis, D.

    2015-01-01

    The Office of Mine Safety and Health Research (OMSHR) investigated ways to increase mine airflow to underground metal/nonmetal (M/NM) mine working areas to improve miners’ health and safety. One of those areas is controlled recirculation. Because the quantity of mine air often cannot be increased, reusing part of the ventilating air can be an effective alternative, if implemented properly, until the capacity of the present system is improved. The additional airflow can be used to provide effective dilution of contaminants and higher flow velocities in the underground mine environment. Most applications of controlled recirculation involve taking a portion of the return air and passing it back into the intake to increase the air volume delivered to the desired work areas. OMSHR investigated a Nevada gold mine where shaft rehabilitation was in progress and one of the two main fans was shut down to allow reduced air velocity for safe shaft work. Underground booster fan operating pressures were kept constant to maintain airflow to work areas, inducing controlled recirculation in one work zone. Investigation into system behavior and the effects of recirculation on the working area during times of reduced primary ventilation system airflow would provide additional information on implementation of controlled recirculation into the system and how these events affect M/NM ventilation systems. The National Institute for Occupational Safety and Health monitored the ventilation district when both main fans were operating and another scenario with one of the units turned off for maintenance. Airflow and contaminants were measured to determine the exposure effects of induced recirculation on miner health. Surveys showed that 19% controlled recirculation created no change in the overall district airflow distribution and a small reduction in district fresh air intake. Total dust levels increased only modestly and respirable dust levels were also low. Diesel particulate matter (DPM) levels showed a high increase in district intake mass flow, but minor increases in exposure levels related to the recirculation percentage. Utilization of DPM mass flow rates allows input into ventilation modeling programs to better understand and plan for ventilation changes and district recirculation effects on miners’ health. PMID:26190862

  18. Fan Noise Reduction: An Overview

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2001-01-01

    Fan noise reduction technologies developed as part of the engine noise reduction element of the Advanced Subsonic Technology Program are reviewed. Developments in low-noise fan stage design, swept and leaned outlet guide vanes, active noise control, fan flow management, and scarfed inlet are discussed. In each case, a description of the method is presented and, where available, representative results and general conclusions are discussed. The review concludes with a summary of the accomplishments of the AST-sponsored fan noise reduction research and a few thoughts on future work.

  19. Longitudinal aerodynamic characteristics of a low-wing lift-fan transport including hover characteristics in and out of ground effect

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.; Gentry, G. L., Jr.

    1977-01-01

    The longitudinal aerodynamic characteristics of a six-fan, tip-driven (remote) lift-fan VTOL transport through transition were determined by an investigation conducted in the Langley V/STOL tunnel. Tests were also made with the large midspan lift-fan pods and lift-cruise fans removed to determine their their influence on the stability and control of the configuration. Data were obtained for a range of model height above ground.

  20. Prop-fan data support study

    NASA Technical Reports Server (NTRS)

    Baum, J. A.; Dumais, P. J.; Mayo, M. G.; Metzger, F. B.; Shenkman, A. M.; Walker, G. G.

    1978-01-01

    Updated parametric prop-fan data packages are presented and the rationale used in developing the new prop-fan data is detailed. These data represent Hamilton Standard's projections of prop-fan characteristics for aircraft that are expected to be in-service in the 1985 to 1990 time frame. The basic prop-fan configuration was designed for efficient cruise operation at 0.8 Mach number and 10,668M altitude. The design blade tip speed is 244 mps and the design power loading is 301 KW/M squared.

  1. Evaluation of a ducted-fan power plant designed for high output and good cruise fuel economy

    NASA Technical Reports Server (NTRS)

    Behun, M; Rom, F E; Hensley, R V

    1950-01-01

    Theoretical analysis of performance of a ducted-fan power plant designed both for high-output, high-altitude operation at low supersonic Mach numbers and for good fuel economy at lower fight speeds is presented. Performance of ducted fan is compared with performance (with and without tail-pipe burner) of two hypothetical turbojet engines. At maximum power, the ducted fan has propulsive thrust per unit of frontal area between thrusts obtained by turbojet engines with and without tail-pipe burners. At cruise, the ducted fan obtains lowest thrust specific fuel consumption. For equal maximum thrusts, the ducted fan obtains cruising flight duration and range appreciably greater than turbojet engines.

  2. Experimental quiet engine program aerodynamic performance of fan A

    NASA Technical Reports Server (NTRS)

    Giffin, R. G.; Parker, D. E.; Dunbar, L. W.

    1971-01-01

    The aerodynamic component test results are presented of fan A, one of two high-bypass-ratio, 1160 feet per second single-stage fans, which was designed and tested as part of the NASA Experimental Quiet Engine Program. This fan was designed to deliver a bypass pressure ratio of 1.50 with an adiabatic efficiency of 86.5% at a total fan flow of 950 lb/sec. It was tested with and without inlet flow distortion. A bypass total-pressure ratio of 1.52 and an adiabatic efficiency of 88.3% at a total fan flow of 962 lb/sec were actually achieved. An operating margin of 12.4% was demonstrated at design speed.

  3. Method for fabricating fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, R.R.; Cowan, T.E.

    1994-12-27

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate. 3 figures.

  4. Characteristics of an anechoic chamber for fan noise testing

    NASA Technical Reports Server (NTRS)

    Wuzyniak, J. A.; Shaw, L. M.; Essary, J. D.

    1977-01-01

    Acoustical and mechanical design features of NASA Lewis Research Center's engine fan noise facility are described. Acoustic evaluation of the chamber, which is lined with an array of stepped wedges, is described. Results from the evaluation in terms of cut-off frequency and non-anechoic areas near the walls are detailed. Fan models are electrically driven to 20,600 RPM in either the inlet mode or exhaust mode to facilitate study of both fore and aft fan noise. Inlet noise characteristics of the first fan tested are discussed and compared to full-scale levels. Turbulence properties of the inlet flow and acoustic results are compared with and without a turbulence reducing screen over the fan inlet.

  5. Impact resistant boron/aluminum composites for large fan blades

    NASA Technical Reports Server (NTRS)

    Oller, T. L.; Salemme, C. T.; Bowden, J. H.; Doble, G. S.; Melnyk, P.

    1977-01-01

    Blade-like specimens were subjected to static ballistic impact testing to determine their relative FOD impact resistance levels. It was determined that a plus or minus 15 deg layup exhibited good impact resistance. The design of a large solid boron/aluminum fan blade was conducted based on the FOD test results. The CF6 fan blade was used as a baseline for these design studies. The solid boron/aluminum fan blade design was used to fabricate two blades. This effort enabled the assessment of the scale up of existing blade manufacturing details for the fabrication of a large B/Al fan blade. Existing CF6 fan blade tooling was modified for use in fabricating these blades.

  6. Reduced Perceived Noise Low Tip Speed Fans as a Result of Abandoning Cutoff Stator Vane Numbers

    NASA Technical Reports Server (NTRS)

    Dittmar, James

    1998-01-01

    As fan tip speeds are reduced, broadband noise is becoming more important in the calculation of perceived noise. Past experience indicates that lower vane number stators with either constant chord or constant solidity may be a way to reduce broadband noise caused by the interaction of the rotor wake turbulence with the stators. A baseline fan and a low blade number fan were investigated to determine if a noise reduction was possible. The low vane number fan showed a 2 PndB and a 1.5 PNLT noise reduction. These reductions show that this is a viable technique for reducing the perceived noise of low tip speed fans.

  7. Method for fabricating fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, Rajeev R.; Cowan, Thomas E.

    1994-01-01

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate.

  8. Fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, R.R.; Cowan, T.E.

    1996-06-11

    Disclosed are fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate. 3 figs.

  9. Experimental quiet engine program

    NASA Technical Reports Server (NTRS)

    Cornell, W. G.

    1975-01-01

    Full-scale low-tip-speed fans, a full-scale high-tip-speed fan, scale model versions of fans, and two full-scale high-bypass-ratio turbofan engines, were designed, fabricated, tested, and evaluated. Turbine noise suppression was investigated. Preliminary design studies of flight propulsion system concepts were used in application studies to determine acoustic-economic tradeoffs. Salient results are as follows: tradeoff evaluation of fan tip speed and blade loading; systematic data on source noise characteristics and suppression effectiveness; documentation of high- and low-fan-speed aerodynamic and acoustic technology; aerodynamic and acoustic evaluation of acoustic treatment configurations, casing tip bleed, serrated and variable pitch rotor blades, leaned outlet guide vanes, slotted tip casings, rotor blade shape modifications, and inlet noise suppression; systematic evaluation of aerodynamic and acoustic effects; flyover noise projections of engine test data; turbine noise suppression technology development; and tradeoff evaluation of preliminary design high-fan-speed and low-fan-speed flight engines.

  10. Results of an Advanced Fan Stage Operating Over a Wide Range of Speed and Bypass Ratio. Part 2; Comparison of CFD and Experimental Results

    NASA Technical Reports Server (NTRS)

    Celestina, Mark L.; Suder, Kenneth L.; Kulkarni, Sameer

    2010-01-01

    NASA and GE teamed to design and build a 57 percent engine scaled fan stage for a Mach 4 variable cycle turbofan/ramjet engine for access to space with multipoint operations. This fan stage was tested in NASA's transonic compressor facility. The objectives of this test were to assess the aerodynamic and aero mechanic performance and operability characteristics of the fan stage over the entire range of engine operation including: 1) sea level static take-off; 2) transition over large swings in fan bypass ratio; 3) transition from turbofan to ramjet; and 4) fan wind-milling operation at high Mach flight conditions. This paper will focus on an assessment of APNASA, a multistage turbomachinery analysis code developed by NASA, to predict the fan stage performance and operability over a wide range of speeds (37 to 100 percent) and bypass ratios.

  11. A Fan Design that Meets the NASA Aeronautics Noise Goals

    NASA Technical Reports Server (NTRS)

    Dittmar, James; Tweedt, Daniel; Jeracki, Robert; Envia, Edmaine; Bartos, Karen; Slater, John

    2003-01-01

    A fan concept was previously identified that would meet the NASA aeronautics goal of a 20 EPNdB reduction in aircraft noise. This was a 2-stage fan with a pressure ratio of 1.15 and a 460 ft/sec tip speed. The 2 stages were identical so that, with the proper synchrophasing, noise from one stage could be used to cancel noise from the other stage. This paper documents the aerodynamic design of the 2-stage fan concept in a 22-in. diameter size for testing in the NASA Glenn 9- by 15-ft wind tunnel. A set of rotor and stator coordinates are listed in the report. Stress and flutter analyses were done on these blades and showed that the design was structurally viable. A noise prediction code, using the blade coordinates and fan flows, indicated that the 2-stage fan would meet the goal of a 20 dB reduction in fan noise.

  12. 30 CFR 57.22209 - Auxiliary fans (I-C mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22209 Auxiliary fans (I-C mines.... Tests for methane shall be made at electric auxiliary fans before they are started. Such fans shall not be operated when air passing over or through them contains 0.5 percent or more methane. ...

  13. Test Operations Procedure (TOP) 06-2-301 Wind Testing

    DTIC Science & Technology

    2017-06-14

    critical to ensure that the test item is exposed to the required wind speeds. This may be an iterative process as the fan blade pitch, fan speed...fan speed is the variable that is adjusted to reach the required velocities. Calibration runs with a range of fan speeds are performed and a

  14. 30 CFR 75.311 - Main mine fan operation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main mine fan operation. 75.311 Section 75.311... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.311 Main mine fan operation. (a) Main mine fans shall be continuously operated, except as otherwise approved in the ventilation plan, or when...

  15. 75 FR 41102 - Energy Conservation Program: Energy Conservation Standards for Furnace Fans: Reopening of Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... Furnace Fans: Reopening of Public Comment Period AGENCY: Office of Energy Efficiency and Renewable Energy... work of residential heating and cooling systems (``furnace fans''). The comment period closed on July 6... information relevant to the furnace fan rulemaking will be accepted until July 27, 2010. ADDRESSES: Interested...

  16. 30 CFR 57.22209 - Auxiliary fans (I-C mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22209 Auxiliary fans (I-C mines.... Tests for methane shall be made at electric auxiliary fans before they are started. Such fans shall not be operated when air passing over or through them contains 0.5 percent or more methane. ...

  17. 10 CFR 429.33 - Ceiling fan light kits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Ceiling fan light kits. 429.33 Section 429.33 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.33 Ceiling fan light kits. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to ceiling fan light kits...

  18. 10 CFR 429.33 - Ceiling fan light kits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Ceiling fan light kits. 429.33 Section 429.33 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.33 Ceiling fan light kits. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to ceiling fan light kits...

  19. 10 CFR 429.33 - Ceiling fan light kits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Ceiling fan light kits. 429.33 Section 429.33 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.33 Ceiling fan light kits. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to ceiling fan light kits...

  20. Large Fluvial Fans and Exploration for Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Wilkinson, Murray Justin

    2005-01-01

    A report discusses the geological phenomena known, variously, as modern large (or large modern) fluvial fans or large continental fans, from a perspective of exploring for hydrocarbons. These fans are partial cones of river sediment that spread out to radii of 100 km or more. Heretofore, they have not been much recognized in the geological literature probably because they are difficult to see from the ground. They can, however, be seen in photographs taken by astronauts and on other remotely sensed imagery. Among the topics discussed in the report is the need for research to understand what seems to be an association among fluvial fans, alluvial fans, and hydrocarbon deposits. Included in the report is an abstract that summarizes the global distribution of large modern fluvial fans and a proposal to use that distribution as a guide to understanding paleo-fluvial reservoir systems where oil and gas have formed. Also included is an abstract that summarizes what a continuing mapping project has thus far revealed about the characteristics of large fans that have been found in a variety of geological environments.

  1. Numerical Simulation and Experimental Validation of Failure Caused by Vibration of a Fan

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Han, Wu; Feng, Jianmei; Jia, Xiaohan; Peng, Xueyuan

    2017-08-01

    This paper presents the root cause analysis of an unexpected fracture occurred on the blades of a motor fan used in a natural gas reciprocating compressor unit. A finite element model was established to investigate the natural frequencies and modal shapes of the fan, and a modal test was performed to verify the numerical results. It was indicated that the numerical results agreed well with experimental data. The third order natural frequency was close to the six times excitation frequency, and the corresponding modal shape was the combination of bending and torsional vibration, which consequently contributed to low-order resonance and fracture failure of the fan. The torsional moment obtained by a torsional vibration analysis of the compressor shaft system was exerted on the numerical model of the fan to evaluate the dynamic stress response of the fan. The results showed that the stress concentration regions on the numerical model were consistent with the location of fractures on the fan. Based on the numerical simulation and experimental validation, some recommendations were given to improve the reliability of the motor fan.

  2. Computational Aerodynamic Simulations of a Spacecraft Cabin Ventilation Fan Design

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2010-01-01

    Quieter working environments for astronauts are needed if future long-duration space exploration missions are to be safe and productive. Ventilation and payload cooling fans are known to be dominant sources of noise, with the International Space Station being a good case in point. To address this issue cost effectively, early attention to fan design, selection, and installation has been recommended, leading to an effort by NASA to examine the potential for small-fan noise reduction by improving fan aerodynamic design. As a preliminary part of that effort, the aerodynamics of a cabin ventilation fan designed by Hamilton Sundstrand has been simulated using computational fluid dynamics codes, and the computed solutions analyzed to quantify various aspects of the fan aerodynamics and performance. Four simulations were performed at the design rotational speed: two at the design flow rate and two at off-design flow rates. Following a brief discussion of the computational codes, various aerodynamic- and performance-related quantities derived from the computed flow fields are presented along with relevant flow field details. The results show that the computed fan performance is in generally good agreement with stated design goals.

  3. An Assessment of NASA Glenn's Aeroacoustic Experimental and Predictive Capabilities for Installed Cooling Fans. Part 1; Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Koch, L. Danielle; Wernet, Mark P.; Podboy, Gary G.

    2006-01-01

    Driven by the need for low production costs, electronics cooling fans have evolved differently than the bladed components of gas turbine engines which incorporate multiple technologies to enhance performance and durability while reducing noise emissions. Drawing upon NASA Glenn's experience in the measurement and prediction of gas turbine engine aeroacoustic performance, tests have been conducted to determine if these tools and techniques can be extended for application to the aerodynamics and acoustics of electronics cooling fans. An automated fan plenum installed in NASA Glenn's Acoustical Testing Laboratory was used to map the overall aerodynamic and acoustic performance of a spaceflight qualified 80 mm diameter axial cooling fan. In order to more accurately identify noise sources, diagnose performance limiting aerodynamic deficiencies, and validate noise prediction codes, additional aerodynamic measurements were recorded for two operating points: free delivery and a mild stall condition. Non-uniformities in the fan s inlet and exhaust regions captured by Particle Image Velocimetry measurements, and rotor blade wakes characterized by hot wire anemometry measurements provide some assessment of the fan aerodynamic performance. The data can be used to identify fan installation/design changes which could enlarge the stable operating region for the fan and improve its aerodynamic performance and reduce noise emissions.

  4. Engaging in distancing tactics among sport fans: effects on self-esteem and emotional responses.

    PubMed

    Bizman, Aharon; Yinon, Yoel

    2002-06-01

    The authors examined the effects of distancing tactics on self-esteem and emotions, following a win or loss of one's favorite team. They measured state self-esteem and emotional responses of basketball fans as they exited the sport arena after their team had won or lost an official game. Half of the fans were given the opportunity to increase or decrease their association with the team before the measures of self-esteem and emotions; the remaining fans were given the opportunity after the measures. The fans tended to associate more with the team after team success than after team failure. In addition, self-esteem and positive emotions were higher, and negative emotions lower, when measured after, rather than before, the opportunity to increase or decrease association with the team. Those effects were more pronounced among high-team-identification fans than among low-team-identification fans. The results suggest a distinction between the short- and long-term effects of game outcome on the willingness to associate with one's team. In the short term, willingness to associate with the team may oscillate in accordance with team performance, even among high-team-identification fans; in the long term, only high-team-identification fans may maintain their allegiance to the team.

  5. Submarine-fan sedimentation, Ouachita Mountains, Arkansas and Oklahoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moiola, R.J.; Shanmugam, G.

    1984-09-01

    More than 10,000 m (32,808 ft) of interbedded sandstones and shales comprise the Upper Mississippian and Lower Pennsylvanian flysch succession (Stanley, Jackfork, Johns Valley, Atoka) in the Ouachita Mountains of Arkansas and Oklahoma. Deposited primarily by turbidity current and hemipelagic processes in bathyal and abyssal water depths, these strata formed major submarine-fan complexes that prograded in a westward direction along the axis of an elongate remnant ocean basin that was associated with the collision and suturing of the North American and African-South American plates. A longitudinal fan system is visualized as the depositional framework for these strata, which were depositedmore » in a setting analogous to the modern Bengal fan of the Indian Ocean. Facies analysis of the Jackfork formation indicates that inner fan deposits are present in the vicinity of Little Rock, Arkansas; middle fan channel and interchannel deposits occur at DeGray Dam and Friendship, Arkansas; and outer fan depositional-lobe deposits are present in southeastern Oklahoma. Boulder-bearing units (olistostromes), many with exotic clasts, were shed laterally into the Ouachita basin. They occur throughout the flysch succession and in all fan environments (i.e., inner, middle, and outer). This relationship may serve as a useful criterion for recognizing analogous longitudinal fan systems in the rock record.« less

  6. Predicted and Measured Modal Sound Power Levels for a Fan Ingesting Distorted Inflow

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    2010-01-01

    Refinements have been made to a method for estimating the modal sound power levels of a ducted fan ingesting distorted inflow. By assuming that each propagating circumferential mode consists only of a single radial mode (the one with the highest cut-off ratio), circumferential mode sound power levels can be computed for a variety of inflow distortion patterns and operating speeds. Predictions from the refined theory have been compared to data from an experiment conducted in the Advanced Noise Control Fan at NASA Glenn Research Center. The inflow to the fan was distorted by inserting cylindrical rods radially into the inlet duct. The rods were placed at an axial location one rotor chord length upstream of the fan and arranged in both regular and irregular circumferential patterns. The fan was operated at 2000, 1800, and 1400 rpm. Acoustic pressure levels were measured in the fan inlet and exhaust ducts using the Rotating Rake fan mode measurement system. Far field sound pressure levels were also measured. It is shown that predicted trends in circumferential mode sound power levels closely match the experimental data for all operating speeds and distortion configurations tested. Insight gained through this work is being used to develop more advanced tools for predicting fan inflow distortion tone noise levels.

  7. Chloroplast targeting of FanC, the major antigenic subunit of Escherichia coli K99 fimbriae, in transgenic soybean.

    PubMed

    Garg, Renu; Tolbert, Melanie; Oakes, Judy L; Clemente, Thomas E; Bost, Kenneth L; Piller, Kenneth J

    2007-07-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a major cause of enteric diseases affecting livestock and humans. Edible transgenic plants producing E. coli fimbrial subunit proteins have the potential to vaccinate against these diseases, but have not reached their full potential as a renewable source of oral vaccines due in part to insufficient levels of recombinant protein accumulation. Previously, we reported that cytosol targeting of the E. coli K99 fimbrial subunit antigen resulted in FanC accumulation to approximately 0.4% of total soluble protein in soybean leaves (Piller et al. in Planta 222:6-18, 2005). In this study, we report on the subcellular targeting of FanC to chloroplasts. Twenty-two transgenic T1 progeny derived from seven individual T0 transformation events were characterized, and 17 accumulated transgenic FanC. All of the characterized events displayed relatively low T-DNA complexity, and all exhibited proper targeting of FanC to the chloroplast. Accumulation of chloroplast-targeted FanC was approximately 0.08% of total soluble leaf protein, or approximately 5-fold less than cytosol-targeted FanC. Protein analysis of leaves at various stages of maturity suggested stability of chloroplast-targeted FanC throughout leaf maturation. Furthermore, mice immunized intraperitoneally with protein extract derived from transgenic leaves expressing chloroplast-targeted FanC developed significant antibody titers against FanC. This is the first report of subcellular targeting of a vaccine subunit antigen in soybean.

  8. Decline of the performance of a portable axial-flow fan due to the friction and duct bending loss of a connected flexible duct.

    PubMed

    Ojima, Jun

    2017-03-28

    In a job site, a portable fan is often used to ventilate a confined space. When a portable fan is applied to such a space, the actual ventilation flow rate must be accurately estimated in advance because the safety level of contaminant and oxygen concentrations in the space will determine the ventilation requirements. When a portable fan is used with a flexible duct, the actual flow rate of the fan decreases due to the friction and duct bending loss of the duct. Intending to show the decline of a fan performance, the author conducted laboratory experiments and reported the quantitative effect of the friction and duct bending loss of a flexible duct to the flow rate of a portable fan. Four commercial portable fans of different specifications were procured for the experiments, and the decline of the performance of each portable fan due to the friction loss etc. of a connected flexible duct was investigated by measuring actual flow rate. The flow rate showed an obvious decrease from the rated flow rate when a flexible duct was connected. Connection of a straight polyester flexible duct and a straight aluminum flexible duct reduced the flow rates to 81.2 - 52.9% and less than 50%, respectively. The flow rate decreased with an increase of the bend angle of the flexible duct. It is recommended that flow rate check of a portable fan should be diligently carried out in every job site.

  9. V/STOL Tandem Fan transition section model test. [in the Lewis Research Center 10-by-10 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Simpkin, W. E.

    1982-01-01

    An approximately 0.25 scale model of the transition section of a tandem fan variable cycle engine nacelle was tested in the NASA Lewis Research Center 10-by-10 foot wind tunnel. Two 12-inch, tip-turbine driven fans were used to simulate a tandem fan engine. Three testing modes simulated a V/STOL tandem fan airplane. Parallel mode has two separate propulsion streams for maximum low speed performance. A front inlet, fan, and downward vectorable nozzle forms one stream. An auxilliary top inlet provides air to the aft fan - supplying the core engine and aft vectorable nozzle. Front nozzle and top inlet closure, and removal of a blocker door separating the two streams configures the tandem fan for series mode operations as a typical aircraft propulsion system. Transition mode operation is formed by intermediate settings of the front nozzle, blocker door, and top inlet. Emphasis was on the total pressure recovery and flow distortion at the aft fan face. A range of fan flow rates were tested at tunnel airspeeds from 0 to 240 knots, and angles-of-attack from -10 to 40 deg for all three modes. In addition to the model variables for the three modes, model variants of the top inlet were tested in the parallel mode only. These lip variables were: aft lip boundary layer bleed holes, and Three position turning vane. Also a bellmouth extension of the top inlet side lips was tested in parallel mode.

  10. Football fan aggression: the importance of low Basal cortisol and a fair referee.

    PubMed

    van der Meij, Leander; Klauke, Fabian; Moore, Hannah L; Ludwig, Yannick S; Almela, Mercedes; van Lange, Paul A M

    2015-01-01

    Fan aggression in football (soccer) is a societal problem that affects many countries worldwide. However, to date, most studies use an epidemiological or survey approach to explain football fan aggression. This study used a controlled laboratory study to advance a model of predictors for fan aggression. To do so, football fans (n = 74) saw a match summary in which their favorite team lost against their most important rival. Next, we measured levels of aggression with the hot sauce paradigm, in which fans were given the opportunity to administer a sample of hot sauce that a rival football supporter had to consume. To investigate if media exposure had the ability to reduce aggression, before the match fans saw a video in which fans of the rival team commented in a neutral, negative, or positive manner on their favorite team. Results showed that the media exposure did not affect aggression. However, participants displayed high levels of aggression and anger after having watched the match. Also, aggression was higher in fans with lower basal cortisol levels, which suggests that part of the aggression displayed was proactive and related to anti-social behavior. Furthermore, aggression was higher when the referee was blamed and aggression was lower when the performance of the participants' favorite team was blamed for the match result. These results indicate that aggression increased when the match result was perceived as unfair. Interventions that aim to reduce football fan aggression should give special attention to the perceived fairness of the match result.

  11. The Connemara Fan: a major glacial grounding line fan west of Ireland

    NASA Astrophysics Data System (ADS)

    McCarron, Stephen; Praeg, Daniel; Monteys, Xavier; Scott, Gill

    2014-05-01

    Glacigenic topography on the mid-shelf (~130-350 m water depth) west of Galway, Ireland appears to have the morphological form, internal architecture and sediments associated with a large glacial grounding-line fan. Seismic data collected in 2009 and 2012 (during the GLAMAR and GATEWAYS 1 campaigns) reveal that the broad, arcuate ridges of the 'Olex moraine' form the landward part of a fan system which prograded beyond the mid-shelf break (defining the outer margin of the 'Clare Platform') westwards into the Porcupine Seabight. The topography is comparable to larger shelf-edge trough-mouth fans found further north along the same margin, however no discernible 'trough' has been identified on the Clare Platform. The ridge and fan topographic assemblage is renamed the 'Connemara Fan' in its entirety, based on its genetic relations and geographic location due west of Connemara, western Ireland. A macrofossil recovered from within a debris flow on the outer fan slope comprised of remobilised plumites dates to ~ 20 ka Cal B.P., indicating sediment reworking downslope following deglacial sediment input to at least that time. The Connemara Fan is the most southerly glacigenic fan identified along the north-east Atlantic margin. Its identification also adds to our knowledge of possibly multiple generations of ice sheets feeding onto the Irish shelf from west-central Ireland and the occurrence of ice sheet geometries and dynamics that evacuated ice, melt-water and sediment (ice streams?) westwards across the Clare Platform during past glaciations.

  12. Influence of Applying Additional Forcing Fans for the Air Distribution in Ventilation Network

    NASA Astrophysics Data System (ADS)

    Szlązak, Nikodem; Obracaj, Dariusz; Korzec, Marek

    2016-09-01

    Mining progress in underground mines cause the ongoing movement of working areas. Consequently, it becomes necessary to adapt the ventilation network of a mine to direct airflow into newly-opened districts. For economic reasons, opening new fields is often achieved via underground workings. Length of primary intake and return routes increases and also increases the total resistance of a complex ventilation network. The development of a subsurface structure can make it necessary to change the air distribution in a ventilation network. Increasing airflow into newly-opened districts is necessary. In mines where extraction does not entail gas-related hazards, there is possibility of implementing a push-pull ventilation system in order to supplement airflows to newly developed mining fields. This is achieved by installing subsurface fan stations with forcing fans at the bottom of downcast shaft. In push-pull systems with multiple main fans, it is vital to select forcing fans with characteristic curves matching those of the existing exhaust fans to prevent undesirable mutual interaction. In complex ventilation networks it is necessary to calculate distribution of airflow (especially in networks with a large number of installed fans). In the article the influence of applying additional forcing fans for the air distribution in ventilation network for underground mine were considered. There are also analysed the extent of overpressure caused by the additional forcing fan in branches of the ventilation network (the operating range of additional forcing fan). Possibilities of increasing airflow rate in working areas were conducted.

  13. The interaction of prehistoric human settlement, sea level change and tectonic uplift of the Coastal Range, eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Yang, H.; Chen, W. S.

    2017-12-01

    The late Cenozoic mountain belt of Taiwan, resulting from the collision between the Eurasian and Philippine Sea plates, is known for its rapid tectonic uplift. As postglacial sea level rose ca. 15,000 yr ago, the eastern coast of Taiwan, due to the rapid tectonic uplift rate, displayed a totally different scenario comparing with most of the coastal plains around the world. At the beginning of postglacial era, the sea level rising rate was greater than the tectonic uplift rate which induced the original piedmont alluvial fan or coastal plain to be overwhelmed by sea water rapidly. Around 13.5 ka, the tectonic uplift rate caught up with the sea level rising and broad wave-cut platform formed. The approximation of tectonic uplift and sea level rising rates was lasting from 13.5 to 5ka, but shoreline progradation may have been enhanced by increased slope erosion which resulted in the alluvial fan forming at the later time of this period. As soon as the eustasy stabilized, the landmass continued to uplift which might have enhanced the river incising and wave erosion rapidly. Therefore the topographic expression along the eastern fringing of Coastal Range forms extended alluvial-fan, stream, and marine terraces and are covered by late Holocene colluvium and marine deposits. 88 archaeological sites were chosen in this study based on surface survey where the archaeological chronology of cultural stage is established primarily through examining pottery series and associated manual excavation. It is interesting that most of the archaeological sites were located on the alluvial fan although the Holocene marine terraces have formed after 5ka. There are no clear evidences to support a shore-oriented settlement, but the abundant alluvial depositional structures observed from the overlaying formation reveals the stream depositional system was still active at this time. If the Neolithic people wanted to come to the "new born" coastal region for the abundant ocean resources, they have to face the flat marine terraces should be still situated in inter-tidal or shallow sub-tidal zone and the alluvial fan where river began to incise might be a better choice for habitation.

  14. Boeing 18-Inch Fan Rig Broadband Noise Test

    NASA Technical Reports Server (NTRS)

    Ganz, Ulrich W.; Joppa, Paul D.; Patten, Timothy J.; Scharpf, Daniel F.

    1998-01-01

    The purposes of the subject test were to identify and quantify the mechanisms by which fan broadband noise is produced, and to assess the validity of such theoretical models of those mechanisms as may be available. The test was conducted with the Boeing 18-inch fan rig in the Boeing Low-Speed Aeroacoustic Facility (LSAF). The rig was designed to be particularly clean and geometrically simple to facilitate theoretical modeling and to minimize sources of interfering noise. The inlet is cylindrical and is equipped with a boundary layer suction system. The fan is typical of modern high-by-pass ratio designs but is capable of operating with or without fan exit guide vanes (stators), and there is only a single flow stream. Fan loading and tip clearance are adjustable. Instrumentation included measurements of fan performance, the unsteady flow field incident on the fan and stators, and far-field and in-duct acoustic fields. The acoustic results were manipulated to estimate the noise generated by different sources. Significant fan broadband noise was found to come from the rotor self-noise as measured with clean inflow and no boundary layer. The rotor tip clearance affected rotor self-noise somewhat. The interaction of the rotor with inlet boundary layer turbulence is also a significant source, and is strongly affected by rotor tip clearance. High level noise can be generated by a high-order nonuniform rotating at a fraction of the fan speed, at least when tip clearance and loading are both large. Stator-generated noise is the loudest of the significant sources, by a small margin, at least on this rig. Stator noise is significantly affected by propagation through the fan.

  15. Development of a Fan for Future Space Suit Applications

    NASA Technical Reports Server (NTRS)

    Paul. Heather L.; Converse, David; Dionne, Steven; Moser, Jeff

    2010-01-01

    NASA's next generation space suit system will place new demands on the fan used to circulate breathing gas through the ventilation loop of the portable life support system. Long duration missions with frequent extravehicular activities (EVAs), the requirement for significant increases in reliability and durability, and a mission profile that imposes strict limits on weight, volume and power create the basis for a set of requirements that demand more performance than is available from existing fan designs. This paper describes the development of a new fan to meet these needs. A centrifugal fan was designed with a normal operating speed of approximately 39,400 rpm to meet the ventilation flow requirements while also meeting the aggressive minimal packaging, weight and power requirements. The prototype fan also operates at 56,000 rpm to satisfy a second operating condition associated with a single fan providing ventilation flow to two spacesuits connected in series. This fan incorporates a novel nonmetallic "can" to keep the oxygen flow separate from the motor electronics, thus eliminating ignition potential. The nonmetallic can enables a small package size and low power consumption. To keep cost and schedule within project bounds a commercial motor controller was used. The fan design has been detailed and implemented using materials and approaches selected to address anticipated mission needs. Test data is presented to show how this fan performs relative to anticipated ventilation requirements for the EVA portable life support system. Additionally, data is presented to show tolerance to anticipated environmental factors such as acoustics, shock, and vibration. Recommendations for forward work to progress the technology readiness level and prepare the fan for the next EVA space suit system are also discussed.

  16. Reconnaissance of alluvial fans as potential sources of gravel aggregate, Santa Cruz River valley, Southeast Arizona

    USGS Publications Warehouse

    Lindsey, David A.; Melick, Roger

    2002-01-01

    This investigation was conducted to provide information on the aggregate potential of alluvial fan sediments in the Santa Cruz River valley. Pebble lithology, roundness, and particle size were determined in the field, and structures and textures of alluvial fan sediments were photographed and described. Additional measurements of particle size on digital photographs were made on a computer screen. Digital elevation models were acquired and compiled for viewing the areal extent of selected fans. Alluvial fan gravel in the Santa Cruz River valley reflects the lithology of its source. Gravel derived from granitic and gneissic terrane of the Tortolita, Santa Catalina, and Rincon Mountains weathers to grus and is generally inferior for use as aggregate. Gravel derived from the Tucson, Sierrita, and Tumacacori Mountains is composed mostly of angular particles of volcanic rock, much of it felsic in composition. This angular volcanic gravel should be suitable for use in asphalt but may require treatment for alkali-silica reaction prior to use in concrete. Gravel derived from the Santa Rita Mountains is of mixed plutonic (mostly granitic rocks), volcanic (mostly felsic rocks), and sedimentary (sandstone and carbonate rock) composition. The sedimentary component tends to make gravel derived from the Santa Rita Mountains slightly more rounded than other fan gravel. The coarsest (pebble, cobble, and boulder) gravel is found near the heads (proximal part) of alluvial fans. At the foot (distal part) of alluvial fans, most gravel is pebble-sized and interbedded with sand and silt. Some of the coarsest gravel was observed near the head of the Madera Canyon, Montosa Canyon, and Esperanza Wash fans. The large Cienega Creek fan, located immediately south and southeast of Tucson, consists entirely of distal-fan pebble gravel, sand, and silt.

  17. Channel Networks on Large Fans: Refining Analogs for the Ridge-forming Unit, Sinus Meridiani

    NASA Technical Reports Server (NTRS)

    Wilkinson, Justin

    2009-01-01

    Stream channels are generally thought of as forming within confined valley settings, separated by interfluves. Sinuous ridges on Mars and Earth are often interpreted as stream channels inverted by subsequent erosion of valley sides. In the case of the ridge-forming unit (RFU), this interpretation fails to explain the (i) close spacing of the ridges, which are (ii) organized in networks, and which (iii) cover large areas (approximately 175,000 km (exp 2)). Channel networks on terrestrial fans develop unconfined by valley slopes. Large fans (100s km long) are low-angle, fluvial features, documented worldwide, with characteristics that address these aspects of the RFU. Ridge patterns Channels on large fans provide an analog for the sinuous and elongated morphology of RFU ridges, but more especially for other patterns such as subparallel, branching and crossing networks. Branches are related to splays (delta-like distributaries are rare), whose channels can rejoin the main channel. Crossing patterns can be caused by even slight sinuosity splay-related side channels often intersect. An avulsion node distant from the fan apex, gives rise to channels with slightly different, and hence intersecting, orientations. Channels on neighboring fans intersect along the common fan margin. 2. Network density Channels are the dominant feature on large terrestrial fans (lakes and dune fields are minor). Inverted landscapes on subsequently eroded fans thus display indurated channels as networks of significantly close-spaced ridges. 3. Channel networks covering large areas Areas of individual large terrestrial fans can reach >200,000 km 2 (105-6 km 2 with nested fans), providing an analog for the wide area distribution of the RFU.

  18. Experimental Study of Alluvial Fan Formation

    NASA Astrophysics Data System (ADS)

    Delorme, P.; Devauchelle, O.; Barrier, L.; Métivier, F.

    2015-12-01

    At the outlet of mountain ranges, rivers flow onto flatter lowlands. The associated change of slope causes sediment deposition. As the river is free to move laterally, it builds conical sedimentary structures called alluvial fans. Their location at the interface between erosional and depositional areas makes them valuable sedimentary archives. To decipher these sedimentary records, we need to understand the dynamics of their growth. Most natural fans are built by braided streams. However, to avoid the complexity of braided rivers, we develop a small-scale experiment in which an alluvial fan is formed by a single channel. We use a mixture of water and glycerol to produce a laminar river. The fluid is mixed with corindon sand (~ 300 μm) in a tilted channel and left free to form a fan around its outlet. The sediment and water discharges are constant during an experimental run. We record the fan progradation and the channel morphology with top-view pictures. We also generate an elevation map with an optical method based on the deformation of a moiré pattern. We observe that, to leading order, the fan remains self-affine as it grows, with a constant slope. We compare two recent studies about the formation of one-dimensionnal fan [Guerit et al. 2014] and threshold rivers [Seizilles et al. 2013] to our experimental findings. In particular, we propose a theory witch relates the fan morphology to the control parameters ( fluid and sediment discharges, grain size). Our observation accord with the predictions, suggesting that the fan is built near the threshold of sediment motion. Finally, we intend to expand our interpretation to alluvial fans build by single-thread channels ( Okavango, Bostwana; Taquari and Paraguay, Brasil; Pastaza, Peru).

  19. Low Frequency Noise Contamination in Fan Model Testing

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.; Schifer, Nicholas A.

    2008-01-01

    Aircraft engine noise research and development depends on the ability to study and predict the noise created by each engine component in isolation. The presence of a downstream pylon for a model fan test, however, may result in noise contamination through pylon interactions with the free stream and model exhaust airflows. Additionally, there is the problem of separating the fan and jet noise components generated by the model fan. A methodology was therefore developed to improve the data quality for the 9 15 Low Speed Wind Tunnel (LSWT) at the NASA Glenn Research Center that identifies three noise sources: fan noise, jet noise, and rig noise. The jet noise and rig noise were then measured by mounting a scale model of the 9 15 LSWT model fan installation in a jet rig to simulate everything except the rotating machinery and in duct components of fan noise. The data showed that the spectra measured in the LSWT has a strong rig noise component at frequencies as high as 3 kHz depending on the fan and airflow fan exit velocity. The jet noise was determined to be significantly lower than the rig noise (i.e., noise generated by flow interaction with the downstream support pylon). A mathematical model for the rig noise was then developed using a multi-dimensional least squares fit to the rig noise data. This allows the rig noise to be subtracted or removed, depending on the amplitude of the rig noise relative to the fan noise, at any given frequency, observer angle, or nozzle pressure ratio. The impact of isolating the fan noise with this method on spectra, overall power level (OAPWL), and Effective Perceived Noise Level (EPNL) is studied.

  20. Fan cooling of the resting area in a free stalls dairy barn

    NASA Astrophysics Data System (ADS)

    Calegari, Ferdinando; Calamari, Luigi; Frazzi, Ermes

    2014-08-01

    This summer study evaluated the effect of providing additional fans (cooling) in the resting area within a free-stall dairy barn that had fans and sprinklers in the feeding area and paddock availability. Thirty cows were divided into two homogenous groups and kept in two pens: one had the resting area equipped with two fans (FAN) while no fans were added to the other resting area (CON). Microclimatic parameters, rectal temperature (RT), breathing rate (BR), milk yield, and milk pH traits were recorded. Time budgeting and the behaviour of the cows (time spent in the feeding area, standing and lying in other areas) were also recorded using digital video technology. Two slight-to-moderate heat waves were observed. During the hottest period the daily maximum temperature recorded was 33.5 °C and the daily maximum THI was 81.6. During this period, the BR and RT increased only slightly in both groups, with lower BR (n.s.) in FAN compared with CON. Milk yield was better maintained (n.s.) in FAN compared with CON during the hottest period. The FAN cows showed a greater ( P < 0.05) lying time in the free stalls (9.5 and 8.6 h/day in FAN and CON, respectively), whereas CON cows made greater ( P < 0.05) use of the paddock during evening and late evening hours. Consequently, the total daily lying time was 13.5 h/day in both groups. In conclusion, the results suggest that using fans in the resting area improves cow comfort, which increases use of the resting area. The lying time results also suggest that the benefits of providing ventilation in the resting area might be more evident in barns where there is no paddock.

  1. 77 FR 37717 - Electrical Cable Test Results and Analysis During Fire Exposure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... Fire Exposure AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; request for comment. SUMMARY...-2128, ``Electrical Cable Test Results and Analysis during Fire Exposure (ELECTRA-FIRE), A Consolidation of the Three Major Fire-Induced Circuit and Cable Failure Experiments Performed between 2001 and 2011...

  2. Controls on alluvial fan long-profiles

    USGS Publications Warehouse

    Stock, J.D.; Schmidt, K.M.; Miller, D.M.

    2008-01-01

    Water and debris flows exiting confined valleys have a tendency to deposit sediment on steep fans. On alluvial fans where water transport of gravel predominates, channel slopes tend to decrease downfan from ???0.10-0.04 to ???0.01 across wide ranges of climate and tectonism. Some have argued that this pattern reflects grain-size fining downfan such that higher threshold slopes are required just to entrain coarser particles in the waters of the upper fan, whereas lower slopes are required to entrain finer grains downfan (threshold hypothesis). An older hypothesis is that slope is adjusted to transport the supplied sediment load, which decreases downfan as deposition occurs (transport hypothesis). We have begun to test these hypotheses for alluvial fan long-profiles using detailed hydraulic and particle-size data in sediment transport models. On four alluvial fans in the western U.S., we find that channel hydraulic radiiare largely 0.5-0.9 m at fan heads, decreasing to 0.1-0.2 m at distal margins. We find that median gravel diameter does not change systematically along the upper 60%-80% of active fan channels as slope declines, so downstream gravel fining cannot explain most of the observed channel slope reduction. However, as slope declines, channel-bed sand cover increases systematically downfan from areal fractions of <20% above fan heads to distal fan values in excess of 70%. As a result, entrainment thresholds for bed material might decrease systematically downfan, leading to lower slopes. However, current models of this effect alone tend to underpredict downfan slope changes. This is likely due to off-channel gravel deposition. Calculations that match observed fan long-profiles require an exponential decline in gravel transport rate, so that on some fans approximately half of the load must be deposited off channel every -0.20-1.4 km downfan. This leads us to hypothesize that some alluvial fan long-proffies are statements about the rate of overbank deposition of coarse particles downfan, a process for which there is currently no mechanistic theory. ?? 2007 Geological Society of America.

  3. The morphometric and stratigraphic framework for estimates of debris flow incidence in the North Cascades foothills, Washington State, USA

    NASA Astrophysics Data System (ADS)

    Kovanen, Dori J.; Slaymaker, Olav

    2008-07-01

    Active debris flow fans in the North Cascade Foothills of Washington State constitute a natural hazard of importance to land managers, private property owners and personal security. In the absence of measurements of the sediment fluxes involved in debris flow events, a morphological-evolutionary systems approach, emphasizing stratigraphy, dating, fan morphology and debris flow basin morphometry, was used. Using the stratigraphic framework and 47 radiocarbon dates, frequency of occurrence and relative magnitudes of debris flow events have been estimated for three spatial scales of debris flow systems: the within-fan site scale (84 observations); the fan meso-scale (six observations) and the lumped fan, regional or macro-scale (one fan average and adjacent lake sediments). In order to characterize the morphometric framework, plots of basin area v. fan area, basin area v. fan gradient and the Melton ruggedness number v. fan gradient for the 12 debris flow basins were compared with those documented for semi-arid and paraglacial fans. Basin area to fan area ratios were generally consistent with the estimated level of debris flow activity during the Holocene as reported below. Terrain analysis of three of the most active debris flow basins revealed the variety of modes of slope failure and sediment production in the region. Micro-scale debris flow event systems indicated a range of recurrence intervals for large debris flows from 106-3645 years. The spatial variation of these rates across the fans was generally consistent with previously mapped hazard zones. At the fan meso-scale, the range of recurrence intervals for large debris flows was 273-1566 years and at the regional scale, the estimated recurrence interval of large debris flows was 874 years (with undetermined error bands) during the past 7290 years. Dated lake sediments from the adjacent Lake Whatcom gave recurrence intervals for large sediment producing events ranging from 481-557 years over the past 3900 years and clearly discernible sedimentation events in the lacustrine sediments had a recurrence interval of 67-78 years over that same period.

  4. Experimental Investigation of Terminal Fans Prograding on a Salt Substrate: 3-d Physical Experiments

    NASA Astrophysics Data System (ADS)

    Chatmas, E.; Kim, W.

    2015-12-01

    Interactions between geologic features and a mobile substrate layer are present in several passive margin locations throughout the world. Deformation of a substrate layer is primarily due to differential loading of sediment and results in complexities within the morphology and subsequently the stratigraphic record. By using simplified scaled tank experiments, we investigated the relationship between substrate deformation and fan evolution in a fluvial-dump-wind-redistribution setting. In this system, sediment is being eroded from a mountain range and creating terminal fans; fluvial channels form off of the fan body and the deposited fluvial sediment is the source for an aeolian dune field. Several past experimental studies have focused on how deltas and dunes are affected on when deposited on a salt substrate, however terminal fans and channel formation off of fans have not been thoroughly investigated. The current experiments focused on which variables are the most significant in controlling fan growth, channel initiation and channel behavior on the salt substrate. Our experimental basin is 120 cm long, 60 cm wide and 30 cm tall. The materials used for a suite of five experiments involved a polymer polydimethylsiloxane (PDMS) as the deformable substrate analog and 100-μm quartz sand. By isolating certain variables such as substrate thickness, basin slope and sediment discharge we are able to see how terminal fans and channels are affected in different settings. The experimental results show that 1) increase in substrate thickness increased the amount of subsidence around the fan body, limiting sediment transport to channels off of the toe of the fan, 2) a higher basin slope increased the number of channels formed and increased sinuosity and width variations of channels over distance, and 3) a higher sediment discharge rate on a thin substrate allowed for the farthest downstream fan deposits. Preliminary results show that channel behavior and fan morphology is strongly dependent on substrate thickness and basin slope directly influences channel geometry. These findings will also be compared to the Mojave River Wash located in southern California off the San Bernardino Mountains near Zzyzx, CA to further understand the dynamics of terminal fans on a mobile substrate.

  5. The Problem of Alluvial Fan Slopes

    NASA Astrophysics Data System (ADS)

    Stock, J. D.; Schmidt, K.

    2005-12-01

    Water and debris flows exiting confined valleys have a tendency to deposit sediment on steep fans. On alluvial fans, where water transport predominates, channel slopes tend to decrease downfan from ~0.08 to ~0.01 across wide ranges of climate and tectonism. Some have argued that this pattern reflects downfan grainsize fining so that higher slopes are required just to entrain coarser particles in the waters of the upper fan, while entrainment of finer grains downfan requires lower slopes (threshold hypothesis). An older hypothesis is that slope is adjusted to transport the supplied sediment load, which decreases downfan as deposition occurs (transport hypothesis). We have begun to test these hypotheses using detailed field measurements of hydraulic and sediment variables in sediment transport models. On some fans in the western U.S. we find that alluvial fan channel bankfull depths are largely 0.5-1.5 m at fan heads, decreasing to 0.1-0.2 m at distal margins. Contrary to many previous studies, we find that median gravel diameter does not change systematically along the upper 60- 80% of active fan channels. So downstream gravel fining cannot explain most of the observed channel slope reduction. However, as slope declines, surface sand cover increases systematically downfan from values of <20% above fan heads to distal fan values in excess of 70%. As a result, the threshold for sediment motion might decrease systematically downfan, leading to lower slopes. However, current models of this effect alone tend to underpredict downfan slope changes. This is likely due to off- channel gravel deposition. Calculations that match observed fan long-profiles require an exponential decline in gravel transport rate, so that on some fans approximately half of the load must be deposited off-channel every ~0.25-1.25 km downfan. This leads us to hypothesize that alluvial fan long- profiles are largely statements about the rate of deposition downfan. If so, there may be climatic and tectonic information in the long-profile, but a mechanistic theory for downfan deposition rate will be needed.

  6. Experimental investigation into the impact of vegetation on fan morphology and flow

    NASA Astrophysics Data System (ADS)

    Clarke, Lucy; McLelland, Stuart; Coulthard, Tom

    2013-04-01

    Riparian vegetation can significantly influence the geomorphology of fluvial systems, affecting channel geometry and flow dynamics. However, there is still limited understanding of the role vegetation plays in the development of alluvial fans, despite the large number of vegetated fans located in temperate and humid climates. An understanding of the feedback loops between water flow, sediment dynamics and vegetation is key to understanding the geomorphological response of alluvial fans. But it is difficult to investigate these relationships in the natural world due to the complexity of the geomorphic and biological processes and timescales involved. To examine the effects of vegetation on channel form, flow dynamics and morphology during fan evolution, a series of experiments were conducted using the Total Environment Simulator at the Deep, an experimental facility operated by the University of Hull. The experiments followed a 'similarity of processes' approach and so were not scaled to a specific field prototype. Live vegetation (alfalfa) was used to simulate the influence of vegetation on the fan development. A range of experiments were conducted on fan plots 2x2m in size, the same initial conditions and constant water discharge and sediment feed rates were used, but the vegetation density and amount of geomorphic time (when the sediment and water were running and there was active fan development) between seeding / vegetation growth varied between runs. The fan morphology was recorded at regular intervals using a laser scanner (at 1mm resolution) and high resolution video recording and overhead photography was also used to gain near-continuous data quantifying fan topography, flow patterns, channel migration and avulsion frequency. Image analysis also monitored the spatial extent of vegetation establishment. The use of these techniques allowed collection of high resolution spatial and temporal data on fan development with minimal disruption to the experiments. The results of the preliminary experiments showed that vegetation did influence the morphology and flow conditions during fan evolution. Vegetation reduced the number of active channels, and increasing the vegetation density also led to lower lateral migration rates, the formation of narrower and deeper channels and an increase in fan slope.

  7. Lacustrine fan delta deposition alongside intrabasinal structural highs in rift basins: an example from the Early Cretaceous Jiuquan Basin, Northwestern China

    NASA Astrophysics Data System (ADS)

    Zhang, Chengcheng; Muirhead, James D.; Wang, Hua; Chen, Si; Liao, Yuantao; Lu, Zongsheng; Wei, Jun

    2018-01-01

    Development of fan deltas alongside intrabasinal structural highs has been overlooked compared to those forming on basin margins. However, these fan deltas may provide important clues regarding the tectonic and climatic controls on deposition during rift development. This paper documents fan delta deposition alongside an intrabasinal structural high within the Early Cretaceous Xiagou Formation of the Jiuquan Basin, China, using subsurface geological and geophysical data. Deposits observed in drill core support fan delta deposition occurring almost exclusively through subaerial and subaqueous gravity flows. Subsurface mapping reveals a consistent decrease in the areal extent of fan deltas from lowstand to highstand system tracts, suggesting that deposition alongside the structural high is sensitive to lake-level changes. The temporal and spatial distribution of the fan deltas display retrogradational stacking patterns, where fan deltas exhibit a decreasing lateral extent up-sequence until fan delta deposition terminated and was replaced by deposition of fine-grained lacustrine deposits. The retrogradational stacking patterns observed alongside the intrabasinal structural high are not observed in fan deltas along the basin margin in the lower parts of the Xiagou Formation. Subsidence profiles also show differential subsidence across the basin during the earliest stages of this formation, likely resulting from border fault movements. These data suggest that non-uniform stacking patterns in the lower parts of the Xiagou Formation reflect basin-scale tectonic movements as the dominant control on synrift deposition patterns. However, later stages of Xiagou Formation deposition were characterized by uniform subsidence across the basin, and uniform retrogradational stacking patterns for fan deltas alongside the intrabasinal structural high and border fault. These observations suggest that basin-scale tectonic movements played a relatively limited role in controlling sediment deposition, and imply a potential change to regional-scale processes affecting fan delta deposition during later synrift stages. Climate change is favored here as the region-scale control on the uniform retrogradational fan delta stacking patterns. This assertion is supported by pollen assemblages, isotope signatures, and organic geochemical analyses, which collectively suggest a change from a humid to semi-arid environment during later synrift stages. We suggest that variations in stacking patterns between different fan delta systems can provide insights into the basin- and regional-scale processes that control rift basin deposition.

  8. Discrete-frequency and broadband noise radiation from diesel engine cooling fans

    NASA Astrophysics Data System (ADS)

    Kim, Geon-Seok

    This effort focuses on measuring and predicting the discrete-frequency and broadband noise radiated by diesel engine cooling fans. Unsteady forces developed by the interaction of the fan blade with inlet flow are the dominant source for both discrete-frequency and broadband noise of the subject propeller fan. In many cases, a primary source of discrepancy between fan noise prediction and measurement is due to incomplete description of the fan inflow. Particularly, in such engine cooling systems where space is very limited, it would be very difficult, if not, impossible to measure the fan inflow velocity field using the conventional, stationary hot-wire method. Instead, the fan inflow was measured with two-component x-type hot-film probes attached very close to the leading edge of a rotating blade. One of the advantages of the blade-mounted-probe measurement technique is that it measures velocities relative to the rotating probe, which enables the acquired data to be applied directly in many aerodynamic theories that have been developed for the airfoil fixed-coordinate system. However, the velocity time data measured by this technique contains the spatially non-uniform mean velocity field along with the temporal fluctuations. A phase-locked averaging technique was successfully employed to decompose the velocity data into time-invariant flow distortions and fluctuations due to turbulence. The angles of attack of the fan blades, obtained from inlet flow measurements, indicate that the blades are stalled. The fan's radiated noise was measured without contamination from the engine noise by driving the fan with an electric motor. The motor operated at a constant speed while a pair of speed controllable pulleys controlled the fan speed. Narrowband and 1/3-octave band sound power of the cooling fan was measured by using the comparison method with a reference sound source in a reverberant room. The spatially non-uniform mean velocity field was used in axial-flow fan noise theory to predict the discrete-frequency noise at the blade passing frequency (BPF) and harmonics. The unsteady lift was predicted by considering transverse and longitudinal velocity fluctuations. The influences due to an upstream finger guard were also investigated. The radiated sound power spectra that were measured for the fan are shown to be in excellent agreement with those predicted. The agreement between prediction and measurement is only fair at the fundamental BPF tone. Further experimental investigations revealed that the interaction noise between the fan blades and a shroud surrounding the fan might be the dominant source for the radiation at the first harmonic. The space-time correlation functions of the inflow velocity fluctuations were measured and utilized in stochastic lifting surface theory to calculate the unsteady blade lift and resulting broadband fan noise. The integral length scale of the inlet flow was found to be much smaller than the blade-to-blade separate distance of the fan. Therefore, contributions from blade-to-blade correlations of the various elements on different blades were found to be negligible and hence ignored; only the correlations between the strip elements on a given blade were considered. The cross-correlations measured between elements separated by more than the integral length scale were also found to be negligibly small. The predicted broadband sound power spectra agree well with those measured for frequencies greater than 400 Hz. There are deviations between the predictions and measurements at lower frequencies. These are likely due to fan blade stall, and possibly, anomalies in the noise measurement environment. In order to reduce the sound radiation at the blade rate tones, the baseline fan was replaced with a skewed fan. The backward skew angle of 30° was found to effectively reduce the 2nd and higher harmonics of the blade rate tone. The interaction of the shroud opening and the blade tips dominates the sound level at the fundamental tone. This tone was successfully reduced by incorporating a serrated shroud opening. Overall, a 2.8 dB sound power level reduction was achieved by applying the skewed fan and the serrated shroud opening simultaneously. Almost all blade rate tone levels were reduced without adversely affecting the flow performance of the system.

  9. Star Trek Rerun, Reread, Rewritten: Fan Writing as Textual Poaching.

    ERIC Educational Resources Information Center

    Jenkins III, Henry

    1988-01-01

    Discusses women who write fiction and fan literature based on the "Star Trek" universe, outlining how Star Trek fans force the primary text to accommodate alternate interests. Also considers the issue of literary property in light of the moral economy of the fan community that shapes the range of permissible retellings of the program…

  10. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... areas subject to alluvial fan flooding. 65.13 Section 65.13 Emergency Management and Assistance FEDERAL... areas subject to alluvial fan flooding. This section describes the procedures to be followed and the... provides protection from the base flood in an area subject to alluvial fan flooding. This information must...

  11. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... areas subject to alluvial fan flooding. 65.13 Section 65.13 Emergency Management and Assistance FEDERAL... areas subject to alluvial fan flooding. This section describes the procedures to be followed and the... provides protection from the base flood in an area subject to alluvial fan flooding. This information must...

  12. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... areas subject to alluvial fan flooding. 65.13 Section 65.13 Emergency Management and Assistance FEDERAL... areas subject to alluvial fan flooding. This section describes the procedures to be followed and the... provides protection from the base flood in an area subject to alluvial fan flooding. This information must...

  13. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... areas subject to alluvial fan flooding. 65.13 Section 65.13 Emergency Management and Assistance FEDERAL... areas subject to alluvial fan flooding. This section describes the procedures to be followed and the... provides protection from the base flood in an area subject to alluvial fan flooding. This information must...

  14. 41 CFR 102-74.190 - Are portable heaters, fans and other such devices allowed in Government-controlled facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., fans and other such devices allowed in Government-controlled facilities? 102-74.190 Section 102-74.190... § 102-74.190 Are portable heaters, fans and other such devices allowed in Government-controlled facilities? Federal agencies are prohibited from operating portable heaters, fans, and other such devices in...

  15. Fan and pump noise control

    NASA Technical Reports Server (NTRS)

    Misoda, J.; Magliozzi, B.

    1973-01-01

    The development is described of improved, low noise level fan and pump concepts for the space shuttle. In addition, a set of noise design criteria for small fans and pumps was derived. The concepts and criteria were created by obtaining Apollo hardware test data to correlate and modify existing noise estimating procedures. A set of space shuttle selection criteria was used to determine preliminary fan and pump concepts. These concepts were tested and modified to obtain noise sources and characteristics which yield the design criteria and quiet, efficient space shuttle fan and pump concepts.

  16. Application of a Meso-scale Based Ballistic Fabric Model to the Development of Advanced Lightweight Engine Fan Blade-Out Containment Structure

    DTIC Science & Technology

    2012-09-01

    composed of a basic metallic shell structure with a dry Kevlar wrap around it is considered. The fan blade is made of titanium alloy modeled by a Johnson...material. A multilayered Kevlar woven dry fabric structure is wrapped around the thin aluminum shell to form a soft hybrid fan case. A woven fabric material...debris protection fan case composed of a basic metallic shell structure with a dry Kevlar wrap around it is considered. The fan blade is made of titanium

  17. Noise from turbomachinery.

    NASA Technical Reports Server (NTRS)

    Feiler, C. E.; Conrad, E. W.

    1973-01-01

    This paper reviews turbomachinery noise from turbofan engines as typified by fan noise. The mechanisms and theories of fan noise are reviewed and concepts for its reduction, including acoustic suppresion are discussed. Correlations of the overall noise data from several full-scale fans tested at NASA-Lewis Research Center are presented as indicative of the current state-of-the-art. Estimates are presented to show economics versus reduced noise for two quieted experimental engines, one with subsonic and one with supersonic fan tip speed. Finally, some concepts that may have the potential to reduce fan noise are indicated.

  18. VSTOL tilt nacelle aerodynamics and its relation to fan blade stresses

    NASA Technical Reports Server (NTRS)

    Shaw, R. J.; Williams, R. C.; Koncsek, J. L.

    1978-01-01

    A scale model of a VSTOL tilt nacelle with a 0.508 m single stage fan was tested in a low speed wind tunnel to ascertain inlet aerodynamic and fan aeromechanical performance over the low speed flight envelope. Fan blade stress maxima occurred at discrete rotational speeds corresponding to integral engine order vibrations of the first flatwise bending mode. Increased fan blade stress levels coincided with internal boundary layer separation but became severe only when the separation location had progressed to the entry lip region of the inlet.

  19. Research on influence factor about the dynamic characteristic of armored vehicle hydraulic-driven fan system

    NASA Astrophysics Data System (ADS)

    Chao, Zhiqiang; Mao, Feiyue; Liu, Xiangbo; Li, Huaying; Han, Shousong

    2017-01-01

    In view of the large power of armored vehicle cooling system, the demand for high fan speed control and energy saving, this paper expounds the basic composition and principle of hydraulic-driven fan system and establishes the mathematical model of the system. Through the simulation analysis of different parameters, such as displacement of motor and working volume of fan system, the influences of performance parameters on the dynamic characteristic of hydraulic-driven fan system are obtained, which can provide theoretical guidance for system optimization design.

  20. Advanced turboprop testbed systems study

    NASA Technical Reports Server (NTRS)

    Goldsmith, I. M.

    1982-01-01

    The proof of concept, feasibility, and verification of the advanced prop fan and of the integrated advanced prop fan aircraft are established. The use of existing hardware is compatible with having a successfully expedited testbed ready for flight. A prop fan testbed aircraft is definitely feasible and necessary for verification of prop fan/prop fan aircraft integrity. The Allison T701 is most suitable as a propulsor and modification of existing engine and propeller controls are adequate for the testbed. The airframer is considered the logical overall systems integrator of the testbed program.

  1. Noise generated by quiet engine fans. 3: Fan C

    NASA Technical Reports Server (NTRS)

    Montegan, F. J.; Schaefer, J. W.; Schmiedlin, R. F.

    1976-01-01

    A family of fans designed with low noise features was acoustically evaluated, and noise results are documented for a 1.6-pressure-ratio, 472-m/sec (155-ft/sec) tip speed fan. The fan is described and some aerodynamic operating data are given. Far field noise around the fan was measured over a range of operating conditions for a variety of configurations having different arrangements of sound absorbing material in the flow ducts. Complete results of 1.3 octave band analysis of the data are presented in tabular form. Included also are acoustic power spectra and sideline perceived noise levels. Representative 1/3 octave band data are presented graphically, and sample graphs of continuous narrow band spectra are also provided.

  2. Experimental quiet engine program aerodynamic performance of Fan B

    NASA Technical Reports Server (NTRS)

    Giffin, R. G.; Parker, D. E.; Dunbar, L. W.

    1972-01-01

    This report presents the aerodynamic component test results of Fan B, one of two high-bypass-ratio, 1160 feet per second (353.6 m/sec) single-stage fans, which was designed and tested as part of the NASA Experimental Quiet Engine Program. The fan was designed to deliver a bypass pressure ratio of 1.50 with an adiabatic efficiency of 87.0% at a total fan flow of 950 lb/sec (430.9 kg/sec). It was tested with and without inlet distortion. A bypass total pressure ratio of 1.52 and an adiabatic efficiency of 86.9% at a total fan flow of 966 lb/sec (438.2 kg/sec) were actually achieved. An operating margin of 19.5% was demonstrated at design speed.

  3. Design and Manufacture of Wood Blades for Windtunnel Fans

    NASA Technical Reports Server (NTRS)

    Richardson, S. E.

    1998-01-01

    Many windtunnels use wooden fan blades, however, because of their usual long life (often in excess of 50 years) wooden blades typically do not have to be replaced very often; therefore, the expertise for designing and building wooden windtunnel fan blades is being lost. The purpose of this report is to document the design and build process so that when replacement blades are eventually required some of the critical information required is available. Information useful to fan-blade designers, fabricators, inspectors, and windtunnel operations personnel is included. Fixed pitch and variable pitch fans as well as fans which range in size from a few feet in diameter to over 40 ft. in diameter are described. Woods, adhesives, and coverings are discussed.

  4. Hamilton Standard Q-fan demonstrator dynamic pitch change test program, volume 1

    NASA Technical Reports Server (NTRS)

    Demers, W. J.; Nelson, D. J.; Wainauski, H. S.

    1975-01-01

    Tests of a full scale variable pitch fan engine to obtain data on the structural characteristics, response times, and fan/core engine compatibility during transient changes in blade angle, fan rpm, and engine power is reported. Steady state reverse thrust tests with a take off nozzle configuration were also conducted. The 1.4 meter diameter, 13 bladed controllable pitch fan was driven by a T55 L 11A engine with power and blade angle coordinated by a digital computer. The tests demonstrated an ability to change from full forward thrust to reverse thrust in less than one (1) second. Reverse thrust was effected through feather and through flat pitch; structural characteristics and engine/fan compatibility were within satisfactory limits.

  5. Modelling and parameterizing the influence of tides on ice-shelf melt rates

    NASA Astrophysics Data System (ADS)

    Jourdain, N.; Molines, J. M.; Le Sommer, J.; Mathiot, P.; de Lavergne, C.; Gurvan, M.; Durand, G.

    2017-12-01

    Significant Antarctic ice sheet thinning is observed in several sectors of Antarctica, in particular in the Amundsen Sea sector, where warm circumpolar deep waters affect basal melting. The later has the potential to trigger marine ice sheet instabilities, with an associated potential for rapid sea level rise. It is therefore crucial to simulate and understand the processes associated with ice-shelf melt rates. In particular, the absence of tides representation in ocean models remains a caveat of numerous ocean hindcasts and climate projections. In the Amundsen Sea, tides are relatively weak and the melt-induced circulation is stronger than the tidal circulation. Using a regional 1/12° ocean model of the Amundsen Sea, we nonetheless find that tides can increase melt rates by up to 36% in some ice-shelf cavities. Among the processes that can possibly affect melt rates, the most important is an increased exchange at the ice/ocean interface resulting from the presence of strong tidal currents along the ice drafts. Approximately a third of this effect is compensated by a decrease in thermal forcing along the ice draft, which is related to an enhanced vertical mixing in the ocean interior in presence of tides. Parameterizing the effect of tides is an alternative to the representation of explicit tides in an ocean model, and has the advantage not to require any filtering of ocean model outputs. We therefore explore different ways to parameterize the effects of tides on ice shelf melt. First, we compare several methods to impose tidal velocities along the ice draft. We show that getting a realistic spatial distribution of tidal velocities in important, and can be deduced from the barotropic velocities of a tide model. Then, we explore several aspects of parameterized tidal mixing to reproduce the tide-induced decrease in thermal forcing along the ice drafts.

  6. Load variation effects on the pressure fluctuations exerted on a Kaplan turbine runner

    NASA Astrophysics Data System (ADS)

    Amiri, K.; Mulu, B.; Raisee, M.; Cervantes, M. J.

    2014-03-01

    Introduction of intermittent electricity production systems like wind power and solar systems to electricity market together with the consumption-based electricity production resulted in numerous start/stops, load variations and off-design operation of water turbines. The hydropower systems suffer from the varying loads exerted on the stationary and rotating parts of the turbines during load variations which they are not designed for. On the other hand, investigations on part load operation of single regulated turbines, i.e., Francis and propeller, proved the formation of rotating vortex rope (RVR) in the draft tube. The RVR induces oscillating flow both in plunging and rotating modes which results in oscillating force with two different frequencies on the runner blades, bearings and other rotating parts of the turbine. The purpose of this study is to investigate the effect of transient operations on the pressure fluctuations on the runner and mechanism of the RVR formation/mitigation. Draft tube and runner blades of the Porjus U9 model, a Kaplan turbine, were equipped with pressure sensors. The model was run in off-cam mode during different load variation conditions to check the runner performance under unsteady condition. The results showed that the transients between the best efficiency point and the high load happens in a smooth way while transitions to/from the part load, where rotating vortex rope (RVR) forms in the draft tube induces high level of fluctuations with two frequencies on the runner; plunging and rotating mode of the RVR.

  7. Morphometry of Alluvial Fans in a Polar Desert (Svalbard, Norway): Implications for Interpreting Martian Fans

    NASA Astrophysics Data System (ADS)

    Hauber, E.; Preusker, F.; Trauthan, F.; Reiss, D.; Zanetti, M.; Jaumann, R.; Hiesinger, H.

    2009-04-01

    Alluvial fan-like landforms have been identified on Mars [e.g., 1-3]. Alluvial fans contain information on several controlling factors (tectonism, climate, lithology/geology), and therefore the investigation of possible Martian fans can reveal information about the planet`s climate. In lieu of direct observations of active depositional processes on Martian fans, comparisons with terrestrial analogues can constrain models of Martian fan formation derived from remote sensing data. Since present-day Mars is cold and dry, alluvial fans formed in cold deserts should be considered as useful analogues. The probably closest climatic analogue to Mars on Earth are the Antarctic Dry Valleys [5], but polar deserts can also be found in the Arctic. We report on our field work in summer 2008 and a simultaneous flight campaign with an airborne version (HRSC-AX) of the High Resolution Stereo Camera (HRSC) onboard Mars Express [6]. The results are compared with measurements of Martian fans, based on HRSC DEM. Our study area is in Svalbard near Longyearbyen (78°13'0"N, 15°38'0"E), around mountains of Mesozoic layered sandstones and shales) on the northern side of Adventfjorden. Climate data are available from the nearby Longyearbyen airport (just a few km from the study area). The present climate is arctic [7], with low mean annual air temperatures and very low precipitation, mostly as snow. Stereo images acquired in July 2008 (at the end of the snow melting season) were processed to orthoimages with a spatial resolution of 20 cm/pixel, and corresponding Digital Elevation Models (DEM) with a grid spacing of 50 cm/pixel. Simultaneous field measurements focused on channels and levees (widths, depths, heights), which were determined at vertical increments of 10 m, together with the local slope. Alluvial fans in the study area are present on slopes of all orientations. They typically coalesce into bajadas. Basically all alluvial fans in the study area are characterized by sinuous channels, many of which display well-developed lateral levees, and debris tongues. Boulder-sized (>1 m) rocks are present, but rare. Where a vertical section of the fan can be observed (typically at the toe, where braided rivers cut the fans), it appears poorly sorted. Following the reasoning of, e.g., [8,9], we conclude that the fans in our study area are dominated by debris flows. However, fluvial processes might also have been involved, and the complex interplay between fluvial incision and debris flows on alluvial fans is well known also from fans in different climatic environments [e.g., 10]. Topographic profiles along 55 fans were measured in HRSC-AX DEM. Fan length ranges between 80 m and about 800 m, with heights between 9 and 140 m (from apex to toe). The profiles of the Svalbard fans can be approximated very well with a power law function. Overall gradients vary between 0.11 and 0.43, with a peak at 0.18-0.2. Several measures have been suggested to quantify the concavity of river and fan profiles [e.g., 1, 11]. We use a simple method, which was suggested by Langbein [12] and is still widely used [e.g., 9, 13,14]. The Langbein-concavity of the fan profiles shows a continous range between 0 and 0.53. The topography of Martian fan-like features [2,3] is studied on the basis of DEM derived from HRSC stereo data [15,16], with a grid spacing of 50-100 m. An example of a profile along a Martian fan in Holden crater exhibits a Langbein-concavity of 0.194 and a gradient of 0.069. While the concavity falls in the range observed on Svalbard, the gradient is less. Another major difference is the fan dimension, with the fan in Holden Crater being much larger. We also produced a HRSC DEM of Mojave Crater on Mars, which displays a number of fans with dimensions similar to those on Svalbard [3], and discuss the relationship between local slopes and fans in Mojave Crater. Alluvial fans form by one or a combination of the following mechanisms: avulsing channelized rivers, sheet flows, and debris flows [17]. Previous studies comparing Martian and terrestrial fans have examined the usefulness of the concavity of along-fan profiles to discriminate between fluvially-dominated fans (concave-upward profiles) and debris flow-dominated fans (linear profiles) [1,2]. Morphological observations suggest that Svalbard fans are heavily affected by debris flows. However, their profiles show a continuum between more or less linear profiles and distinct concave-upward profiles, independent of orientation (which possibly controls snow accumulation and melting, and therefore depositional processes). We conclude that morphometric measures alone do not enable an unambiguous interpretation of processes acting on alluvial fans. Instead, complementary morphologic studies using high-resolution images seem to be required to discriminate between debris flows and fluvial activity on Mars, e.g., can we identify levees or debris tongues in HiRISE images? Their resolution is roughly 30 cm/px and should enable it. Even then, quantifiying the respective role of different depositional processes might be hard to achieve. [1] Moore, J.M. & Howard, A.D. (2005) JGR, 110, E04005, doi: 10.1029/2004JE00-2352. [2] Williams, R.M.E. et al. (2006) GRL, 33, L10201, doi: 10.1029/2005GL025618. [3] Williams, R.M.E. & Malin, M.C. (2008) Icarus, 198, 365-383. [4] Bull, W.B. (1977) Prog. Phys. Geogr., 1, 222-270. [5] Marchant, D.R. & Head, J.W. (2007) Icarus, 192, 187-222. [6] Jaumann, R. et al. (2007) Planet. Space Sci., 55, 928-952. [7] Hanssen-Bauer, I. & Førland, E.J. (1998) Climate Res., 10, 143-153. [8] De Scally, F.A. & Owens, I.F. (2004) Earth Surf. Proc. Landforms, 29, 311-322. [9] Blair, T.C. & McPherson, J.G. (1998) J. Sediment. Res., 68, 800- 818. [10] Whipple, K.X. & Dunne, T. (1992) Geol. Soc. Amer. Bull., 104, 887-900. [11] Zaprowski, B.J. et al. (2005) JGR, 110, F03004, doi: 10.1029/2004JF000138. [12] Langbein, W.B. (1964) USGS Prof. Paper 501 B, 119-122. [13] Phillips, J.D. & Lutz, J.D. (2008) Geomorphology 102, 554-566. [14] Larue, J.-P. (2008) Geomorphology 102, 343-367. [15] Scholten, F. et al. (2005) PE&RS, 71, 1143-1152. [16] Gwinner, K. et al. (2005) PFG, 5/2005, 387-394. [17] Parker, G. et al. (1998) J. Hydraul. Engin., 124, 985-995.

  8. Chronology of processes in high-gradient channels of medium-high mountains and their influence on the properties of alluvial fans

    NASA Astrophysics Data System (ADS)

    Šilhán, Karel

    2014-02-01

    High-gradient channels are the locations of the greatest geomorphological activity in medium-high mountains. The channels' frequency and character influence the contemporary morphology and morphometry of alluvial fans. There is currently no detailed information regarding the frequency of these processes in high-gradient channels and the evolution of alluvial fans in medium-high mountains in Central Europe. This study in the Moravskoslezské Beskydy Mts. analysed 22 alluvial fans (10 debris flow fans and 12 fluvial fans). The processes occurring on the fans were dated using dendrogeomorphological methods. A total of 748 increment cores were taken from 374 trees to reconstruct 153 geomorphological process events (60 debris flow and 93 floods). The frequency of the processes has been considerably increasing in the last four decades, which can be related to extensive tree cutting since the 1970s. Processes in high-gradient channels in the region (affecting the alluvial fans across the mountain range) are predominantly controlled by cyclonal activity during the warm periods of the year. Probable triggers of local events are heavy downpours in the summer. In addition, spring snowmelt has been identified as occasionally important. This study of the relations affecting the type and frequency of the processes and their effect on the properties of alluvial fans led to the creation of a universal framework for the medium-high flysch mountains of Central Europe. The framework particularly reflects the influence of the character of hydrometeorological extremes on the frequency and type of processes and their reflection in the properties of alluvial fans.

  9. Acoustic and aerodynamic performance of a 1.83-meter (6-ft) diameter 1.25-pressure-ratio fan (QF-8)

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Lucas, J. G.

    1976-01-01

    A 1.25-pressure-ratio 1.83-meter (6-ft) tip diameter experimental fan stage with characteristics suitable for engine application on STOL aircraft was tested for acoustic and aerodynamic performance. The design incorporated proven features for low noise, including absence of inlet guide vanes, low rotor blade tip speed, low aerodynamic blade loading, and long axial spacing between the rotor and stator blade rows. The fan was operated with five exhaust nozzle areas. The stage noise levels generally increased with a decrease in nozzle area. Separation of the acoustic one-third octave results into broadband and pure-tone components showed the broadband noise to be greater than the corresponding pure-tone components. The sideline perceived noise was highest in the rear quadrants. The acoustic results of QF-8 were compared with those of two similar STOL application fans in the test series. The QF-8 had somewhat higher relative noise levels than those of the other two fans. The aerodynamic results of QF-8 and the other two fans were compared with corresponding results from 50.8-cm (20-in.) diam scale models of these fans and design values. Although the results for the full-scale and scale models of the other two fans were in reasonable agreement for each design, the full-scale fan QF-8 results showed poor performance compared with corresponding model results and design expectations. Facility effects of the full-scale fan QF-8 installation were considered in analyzing this discrepancy.

  10. Broadband Fan Noise Prediction System for Turbofan Engines. Volume 2; BFaNS User's Manual and Developer's Guide

    NASA Technical Reports Server (NTRS)

    Morin, Bruce L.

    2010-01-01

    Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the second volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User s Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by step-by-step instructions for installing and running BFaNS. It concludes with technical documentation of the BFaNS computer program.

  11. Broadband Fan Noise Prediction System for Turbofan Engines. Volume 1; Setup_BFaNS User's Manual and Developer's Guide

    NASA Technical Reports Server (NTRS)

    Morin, Bruce L.

    2010-01-01

    Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the first volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User's Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by step-by-step instructions for installing and running Setup_BFaNS. It concludes with technical documentation of the Setup_BFaNS computer program.

  12. Football Fan Aggression: The Importance of Low Basal Cortisol and a Fair Referee

    PubMed Central

    van der Meij, Leander; Almela, Mercedes; van Lange, Paul A. M.

    2015-01-01

    Fan aggression in football (soccer) is a societal problem that affects many countries worldwide. However, to date, most studies use an epidemiological or survey approach to explain football fan aggression. This study used a controlled laboratory study to advance a model of predictors for fan aggression. To do so, football fans (n = 74) saw a match summary in which their favorite team lost against their most important rival. Next, we measured levels of aggression with the hot sauce paradigm, in which fans were given the opportunity to administer a sample of hot sauce that a rival football supporter had to consume. To investigate if media exposure had the ability to reduce aggression, before the match fans saw a video in which fans of the rival team commented in a neutral, negative, or positive manner on their favorite team. Results showed that the media exposure did not affect aggression. However, participants displayed high levels of aggression and anger after having watched the match. Also, aggression was higher in fans with lower basal cortisol levels, which suggests that part of the aggression displayed was proactive and related to anti-social behavior. Furthermore, aggression was higher when the referee was blamed and aggression was lower when the performance of the participants’ favorite team was blamed for the match result. These results indicate that aggression increased when the match result was perceived as unfair. Interventions that aim to reduce football fan aggression should give special attention to the perceived fairness of the match result. PMID:25844939

  13. Production of specific IgY antibody to the recombinant FanC protein produced in Escherichia coli.

    PubMed

    Nasiri, Khadijeh; Zibaee, Saeed; Nassiri, Mohammadreza; Tahmoorespur, Mojtaba; Haghparast, Alireza

    2016-08-01

    Enterotoxigenic Escherichia coli (ETEC) strains are one of the primary causes of diarrhea in newborn calves and in humans, pigs, and sheep. IgY technology has been identified as a promising alternative to generating a mass amount of specific antibody for use in immunotherapy and immunodiagnostics. The purpose of this study was to produce specific antibody by egg yolk antibody (IgY) to recombinant FanC protein from ETEC. FanC (K99) gene was amplified from ETEC by specific primers and polymerase chain reaction. The gene was cloned and subcloned into pTZ57R/T and pET32a (+) vectors, respectively. Recombinant vector was transferred into E. coli BL21 CodonPlus (DE3). Protein expression was investigated by 1 mM IPTG induction. Hens were immunized by the purified recombinant FanC protein. The activity and specificity of the IgY antibody were detected by dot-blotting, Western blotting, and indirect ELISA. We obtained FanC specific IgYs by immunizing the hens with the recombinant FanC protein. The anti-FanC IgY showed binding specifically to the FanC protein of ETEC. The results emphasize that specific IgY against the recombinant FanC protein could be recommended as a candidate for passive immunization against ETEC infection in animals and humans.

  14. Production of specific IgY antibody to the recombinant FanC protein produced in Escherichia coli

    PubMed Central

    Nasiri, Khadijeh; Zibaee, Saeed; Nassiri, Mohammadreza; Tahmoorespur, Mojtaba; Haghparast, Alireza

    2016-01-01

    Objective(s): Enterotoxigenic Escherichia coli (ETEC) strains are one of the primary causes of diarrhea in newborn calves and in humans, pigs, and sheep. IgY technology has been identified as a promising alternative to generating a mass amount of specific antibody for use in immunotherapy and immunodiagnostics. The purpose of this study was to produce specific antibody by egg yolk antibody (IgY) to recombinant FanC protein from ETEC. Materials and Methods: FanC (K99) gene was amplified from ETEC by specific primers and polymerase chain reaction. The gene was cloned and subcloned into pTZ57R/T and pET32a (+) vectors, respectively. Recombinant vector was transferred into E. coli BL21 CodonPlus (DE3). Protein expression was investigated by 1 mM IPTG induction. Hens were immunized by the purified recombinant FanC protein. The activity and specificity of the IgY antibody were detected by dot-blotting, Western blotting, and indirect ELISA. Results: We obtained FanC specific IgYs by immunizing the hens with the recombinant FanC protein. The anti-FanC IgY showed binding specifically to the FanC protein of ETEC. Conclusion: The results emphasize that specific IgY against the recombinant FanC protein could be recommended as a candidate for passive immunization against ETEC infection in animals and humans. PMID:27746871

  15. Two-stage, low noise advanced technology fan. 5: Acoustic final report

    NASA Technical Reports Server (NTRS)

    Sofrin, T. G.; Riloff, N., Jr.

    1975-01-01

    The NASA Q2S(quiet two-stage) fan is a 0.836m (32.9 in.) diameter model of the STF 433 engine fan, selected in a 1972 study for an Advanced Technology Transport (ATT) airplane. Noise-control features include: low tip speed, moderate stage pressure rise, large blade-vane spacings, no inlet guide vanes, and optimum blade and vane numbers. Tests were run on the baseline Q2S fan with standard inlet and discharge ducts. Further tests were made of a translating centerbody sonic inlet device and treated discharge ducts. Results were scaled to JT8D and JT3D engine fan size for comparison with current two-stage fans, and were also scaled to STF 433 fan size to compare calculated ATT flyover noise with FAR 36 limits. Baseline Q2S results scaled to JT8D and JT3D engine fan sizes showed substantial noise reductions. Calculated unsuppressed baseline ATT flyovers averaged about 2.5 EPNdB below FAR 36 limits. Using measured sonic inlet results, scaled baseline Q2S fan results, and calculated attenuations for a 1975 technology duct liner, projected flyover noise calculations for the ATT averaged about FAR 36 limits minus 10 EPNdB. Advances in suppression technology required to meet the 1985 goal of FAR 36 limits minus 20 EPNdB are discussed.

  16. Performance and noise of a low pressure ratio variable pitch fan designed for general aviation applications. [Langley 30 x 60 Tunnel

    NASA Technical Reports Server (NTRS)

    Metzger, F. B.; Menthe, R. W.; Mccolgan, C. J.

    1980-01-01

    A limited study has been conducted to establish the performance and noise characteristics of a low design tip speed (168 m/s, 550 ft/sec) low pressure ratio (1.04) variable pitch fan which was tested in the Langley 30 X 60 tunnel. This fan was designed for minimum noise when installed in the tail mount location of a twin engine aircraft which normally has both nose and tail mounted propulsors. Measurements showed the fan noise to be very close to predictions made during the design of the fan and extremely low in level (65 dBA at 1000 ft) with no acoustic treatment. This is about 8 dB lower than the unshrouded 2 blade propeller normally used in this installation. On the basis of tests conducted during this program, it appears that this level could be further reduced by 2 dBA if optimized acoustic treatments were installed in the fan duct. Even the best of the shrouded propellers tested previously were 7 dB higher in level than the Q-Fan without acoustic treatment. It was found that the cruise performance of this fan was within 5% of the predicted efficiency of 72%. Evaluation of the performance data indicated that disturbances in the inflow to the fan were the probable cause of the reduced performance.

  17. 75 FR 1017 - Airworthiness Directives; General Electric Company (GE) CF34-1A, CF34-3A, and CF34-3B Series...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ...) fan blades within compliance times specified in the AD, inspecting the fan blade abradable rub strip on certain engines for wear, inspecting the fan blades on certain engines for cracks, inspecting the.... This ad supersedure requires the same actions but corrects the effectivity for certain fan blades...

  18. 75 FR 37453 - Notice of Issuance of Final Determination Concerning Dimmer and Fan Speed Switch Controls

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... Determination Concerning Dimmer and Fan Speed Switch Controls AGENCY: U.S. Customs and Border Protection... country of origin of certain dimmer and fan speed switch controls which may be offered to the United... determination CBP concluded that Mexico is the country of origin of the dimmer and fan speed switch controls for...

  19. Aerodynamic Performance Measurements for a Forward Swept Low Noise Fan

    NASA Technical Reports Server (NTRS)

    Fite, E. Brian

    2006-01-01

    One source of noise in high tip speed turbofan engines, caused by shocks, is called multiple pure tone noise (MPT's). A new fan, called the Quiet High Speed Fan (QHSF), showed reduced noise over the part speed operating range, which includes MPT's. The QHSF showed improved performance in most respects relative to a baseline fan; however, a partspeed instability discovered during testing reduced the operating range below acceptable limits. The measured QHSF adiabatic efficiency on the fixed nozzle acoustic operating line was 85.1 percent and the baseline fan 82.9 percent, a 2.2 percent improvement. The operating line pressure rise at design point rotational speed and mass flow was 1.764 and 1.755 for the QHSF and baseline fan, respectively. Weight flow at design point speed was 98.28 lbm/sec for the QHSF and 97.97 lbm/sec for the baseline fan. The operability margin for the QHSF approached 0 percent at the 75 percent speed operating condition. The baseline fan maintained sufficient margin throughout the operating range as expected. Based on the stage aerodynamic measurements, this concept shows promise for improved performance over current technology if the operability limitations can be solved.

  20. Rene 95 brazed joint metallurgical program

    NASA Technical Reports Server (NTRS)

    Gay, C.; Givens, J.; Mastrorroco, S.; Sterman, A.

    1972-01-01

    This metallurgical program was specifically conducted for the establishment of material properties required for the design of the LF460 fan. The LF460 lift fan is an advanced 18:1 high thrust to weight single stage design. It has a turbine attached to the outer flowpath of the fan blade tip which minimizes the axial depth of the fan. Advanced lightweight attachment designs are employed in this concept to achieve minimum mass polar moments of inertia which are required for good aircraft flight response control. The design features which are unique to this advanced LF460 lift fan are the 0.010 inch thin Udimet 700 alloy integral tip turbine design, minimum weight braze attachment of the turbine to the fan blade, and the high strength and elevated temperature capability of the Rene'95 alloy for the fan blade. The data presented in this report show that the LF460 fan rotor design is feasible and that the design stresses and margins of safety were more than adequate. Prior to any production application, however, additional stress rupture/shear lap joints should be run in order to establish a firm 1200 F stress rupture curve for the CM50 braze metal.

  1. Reactive control of subsonic axial fan noise in a duct.

    PubMed

    Liu, Y; Choy, Y S; Huang, L; Cheng, L

    2014-10-01

    Suppressing the ducted fan noise at low frequencies without varying the flow capacity is still a technical challenge. This study examines a conceived device consisting of two tensioned membranes backed with cavities housing the axial fan for suppression of the sound radiation from the axial fan directly. The noise suppression is achieved by destructive interference between the sound fields from the axial fan of a dipole nature and sound radiation from the membrane via vibroacoustics coupling. A two-dimensional model with the flow effect is presented which allows the performance of the device to be explored analytically. The air flow influences the symmetrical behavior and excites the odd in vacuo mode response of the membrane due to kinematic coupling. Such an asymmetrical effect can be compromised with off-center alignment of the axial fan. Tension plays an important role to sustain the performance to revoke the deformation of the membrane during the axial fan operation. With the design of four appropriately tensioned membranes covered by a cylindrical cavity, the first and second blade passage frequencies of the axial fan can be reduced by at least 20 dB. The satisfactory agreement between experiment and theory demonstrates that its feasibility is practical.

  2. An Experimental Study of Fan Inflow Distortion Tone Noise

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    2010-01-01

    The tone noise generated when a fan ingests circumferentially distorted flow was studied by an experiment conducted with the Advanced Noise Control Fan at the NASA Glenn Research Center. The inflow was distorted by inserting cylindrical rods radially into the duct. The rods were arranged in circumferentially irregular patterns in three of the five configurations tested. Rods were held in place using a mounting ring with 30 equally spaced holes placed at an axial location one rotor chordlength upstream of the fan. Acoustic pressure was measured in the inlet and exhaust duct of the fan using the Rotating Rake fan tone measurement system. Sound power levels, calculated from the measured data, were plotted as a function of circumferential mode. An analytic description of the unsteady pressure distribution at the interaction plane between the stationary rods and the fan rotor is presented in a form suitable for representing the circumferentially irregularly placed rods. Terms in the analytical description for sound power were proven to be useful in determining the dominant circumferential modes measured in the experiment and the differences in mode power level between the configurations tested. Insight gained through this work will be useful in the development of tools to compute fan inflow distortion tone noise.

  3. Understanding Himalayan erosion and the significance of the Nicobar Fan

    NASA Astrophysics Data System (ADS)

    McNeill, Lisa C.; Dugan, Brandon; Backman, Jan; Pickering, Kevin T.; Pouderoux, Hugo F. A.; Henstock, Timothy J.; Petronotis, Katerina E.; Carter, Andrew; Chemale, Farid; Milliken, Kitty L.; Kutterolf, Steffen; Mukoyoshi, Hideki; Chen, Wenhuang; Kachovich, Sarah; Mitchison, Freya L.; Bourlange, Sylvain; Colson, Tobias A.; Frederik, Marina C. G.; Guèrin, Gilles; Hamahashi, Mari; House, Brian M.; Hüpers, Andre; Jeppson, Tamara N.; Kenigsberg, Abby R.; Kuranaga, Mebae; Nair, Nisha; Owari, Satoko; Shan, Yehua; Song, Insun; Torres, Marta E.; Vannucchi, Paola; Vrolijk, Peter J.; Yang, Tao; Zhao, Xixi; Thomas, Ellen

    2017-10-01

    A holistic view of the Bengal-Nicobar Fan system requires sampling the full sedimentary section of the Nicobar Fan, which was achieved for the first time by International Ocean Discovery Program (IODP) Expedition 362 west of North Sumatra. We identified a distinct rise in sediment accumulation rate (SAR) beginning ∼9.5 Ma and reaching 250-350 m/Myr in the 9.5-2 Ma interval, which equal or far exceed rates on the Bengal Fan at similar latitudes. This marked rise in SAR and a constant Himalayan-derived provenance necessitates a major restructuring of sediment routing in the Bengal-Nicobar submarine fan. This coincides with the inversion of the Eastern Himalayan Shillong Plateau and encroachment of the west-propagating Indo-Burmese wedge, which reduced continental accommodation space and increased sediment supply directly to the fan. Our results challenge a commonly held view that changes in sediment flux seen in the Bengal-Nicobar submarine fan were caused by discrete tectonic or climatic events acting on the Himalayan-Tibetan Plateau. Instead, an interplay of tectonic and climatic processes caused the fan system to develop by punctuated changes rather than gradual progradation.

  4. The rainfall-triggered landslide and flash-flood disaster in northern Venezuela, December 1999

    USGS Publications Warehouse

    Larsen, Matthew C.; Wieczorek, Gerald F.; Eaton, L.S.; Heriberto Torres-Sierra,

    2001-01-01

    Rainstorms in December 1999 induced thousands of landslides along the northern slopes of the Cordillera de la Costa mountain range principally in the state of Vargas, Venezuela. Rainfall accumulation of 293 millimeters during the first 2 weeks ofDecember was followed by an additional 911 millimeters of rainfall on December 14 through 16. The landslides and floods inundated coastal communities resulting in a catastrophic death toll estimated at between 15,000 and 30,000 people. Debris flow damage to houses, buildings, and infrastructure in the narrow coastal zone was severe. Flash floods on alluvial fans at the mouths of rivers draining the coastal mountain range also contributed to the general destruction. In time scales spanning decades to centuries, the alluvial fans along this Caribbean coastline are areas of high geomorphic activity. Because most of the coastal zone in Vargas consists of steep mountain fronts that rise directly from the Caribbean Sea, the alluvial fans provide the only relatively flat areas upon which to build. Rebuilding and reoccupation of these areas requires careful determination of hazard zones to avoid future loss of life and property. A limited assessment of the distribution and character of landslides is currently in progress by the U.S. Geological Survey in cooperation with the Venezuelan Ministry of Environment and Natural Resources.

  5. Revised Simulation Model of the Control System, Displays, and Propulsion System for a ASTOVL Lift Fan Aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.

    1997-01-01

    This report describes revisions to a simulation model that was developed for use in piloted evaluations of takeoff, transition, hover, and landing characteristics of an advanced short takeoff and vertical landing lift fan fighter aircraft. These revisions have been made to the flight/propulsion control system, head-up display, and propulsion system to reflect recent flight and simulation experience with short takeoff and vertical landing operations. They include nonlinear inverse control laws in all axes (eliminating earlier versions with state rate feedback), throttle scaling laws for flightpath and thrust command, control selector commands apportioned based on relative effectiveness of the individual controls, lateral guidance algorithms that provide more flexibility for terminal area operations, and a simpler representation of the propulsion system. The model includes modes tailored to the phases of the aircraft's operation, with several response types which are coupled to the aircraft's aerodynamic and propulsion system effectors through a control selector tailored to the propulsion system. Head-up display modes for approach and hover are integrated with the corresponding control modes. Propulsion system components modeled include a remote lift fan and a lift-cruise engine. Their static performance and dynamic responses are represented by the model. A separate report describes the subsonic, power-off aerodynamics and jet induced aerodynamics in hover and forward flight, including ground effects.

  6. A Comparison of Measured Tone Modes for Two Low Noise Propulsion Fans

    NASA Technical Reports Server (NTRS)

    Heidelberg, Laurence J.; Elliott, David M.

    2000-01-01

    The acoustic modes for two low tip speed propulsion fans were measured to examine the effects of fan tip speed, at constant pressure ratio. A continuously rotating microphone method was used that provided the complete modal structure (circumferential and radial order) at the fundamental and second harmonic of the blade passing tone as well as most of the third harmonic modes. The fans are compared in terms of their rotor/stator interaction modal power, and total tone power. It was hoped that the lower tip speed might produce less noise. This was not the case. The higher tip speed fan, at both takeoff and cutback speeds, had lower tone and interaction levels. This could be an indication that the higher aerodynamic loading required to produce the same pressure ratio for the lower tip speed fan resulted in a greater velocity deficit in the blade wakes and thus more noise. Results consistent with expected rotor transmission effects were noted in the inlet modal structures of both fans.

  7. An Assessment of NASA Glenn's Aeroacoustic Experimental and Predictive Capabilities for Installed Cooling Fans

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; VanZante, Dale E.; Wernet, Mark P.; Podboy, Gary G.

    2006-01-01

    Quiet, high performance electronics cooling fans are needed for both commercial applications and future manned space exploration missions. Researchers at NASA Glenn focusing on aircraft engine noise, have long been familiar with the challenge of reducing fan noise without sacrificing aerodynamic performance. Is it possible to capitalize on the lessons-learned in aircraft engine noise reduction to identify inexpensive ways to improve the aerodynamic and acoustic performance of electronics cooling fans? Recent tests at NASA Glenn have begun to look for answers to this question. The overall aerodynamic and acoustic performance of a commercially available, spaceflight qualified 80 mm diameter axial flow fan has been measured using an automated plenum in accordance with ISO 10302 in the hemi-anechoic chamber of NASA Glenn s Acoustical Testing Laboratory. These measurements are complemented by detailed aerodynamic measurements of the inlet, exhaust, and rotor wake regions of the fan using Particle Image Velocimetry and hot-wire probes. A study of preliminary results yielded recommendations for system designers, fan manufacturers, and researchers.

  8. Experimental and analytical dynamic flow characteristics of an axial-flow fan from an air cushion landing system model

    NASA Technical Reports Server (NTRS)

    Thompson, W. C.; Boghani, A. B.; Leland, T. J. W.

    1977-01-01

    An investigation was conducted to compare the steady-state and dynamic flow characteristics of an axial-flow fan which had been used previously as the air supply fan for some model air cushion landing system studies. Steady-state flow characteristics were determined in the standard manner by using differential orifice pressures for the flow regime from free flow to zero flow. In this same regime, a correlative technique was established so that fan inlet and outlet pressures could be used to measure dynamic flow as created by a rotating damper. Dynamic tests at damper frequencies up to 5 Hz showed very different flow characteristics when compared with steady-state flow, particularly with respect to peak pressures and the pressure-flow relationship at fan stall and unstall. A generalized, rational mathematical fan model was developed based on physical fan parameters and a steady-state flow characteristic. The model showed good correlation with experimental tests at damper frequencies up to 5 Hz.

  9. THz Beam Shaper Realizing Fan-Out Patterns

    NASA Astrophysics Data System (ADS)

    Liebert, K.; Rachon, M.; Siemion, A.; Suszek, J.; But, D.; Knap, W.; Sypek, M.

    2017-08-01

    Fan-out elements create an array of beams radiating at particular angles along the propagation axis. Therefore, they are able to form a matrix of equidistant spots in the far-field diffraction region. In this work, we report on the first fan-out structures designed for the THz range of radiation. Two types of light-dividing fan-out structures are demonstrated: (i) the 3×1 matrix fan-out structure based on the optimized binary phase grating and (ii) the 3×3 fan-out structure designed on the basis of the well-known Dammann grating. The structures were generated numerically and manufactured using the 3D printing technique with polyamide PA12. To obtain equal powers and symmetry of diffracted beams, the computer-aided optimization algorithm was used. Diffractive optical elements designed for 140 and 282 GHz were evaluated experimentally at both these frequencies using illumination with the wavefront coming from the point-like source. Described fan-out elements formed uniform intensity and equidistant energy distribution in agreement with the numerical simulations.

  10. Wind tunnel and ground static investigation of a large scale model of a lift/cruise fan V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An investigation was conducted in a 40 foot by 80 foot wind tunnel to determine the aerodynamic/propulsion characteristics of a large scale powered model of a lift/cruise fan V/STOL aircraft. The model was equipped with three 36 inch diameter turbotip X376B fans powered by three T58 gas generators. The lift fan was located forward of the cockpit area and the two lift/cruise fans were located on top of the wing adjacent to the fuselage. The three fans with associated thrust vectoring systems were used to provide vertical, and short, takeoff and landing capability. For conventional cruise mode operation, only the lift/cruise fans were utilized. The data that were obtained include lift, drag, longitudinal and lateral-directional stability characteristics, and control effectiveness. Data were obtained up to speeds of 120 knots at one model height of 20 feet for the conventional aerodynamic lift configuration and at several thrust vector angles for the powered lift configuration.

  11. Flow control of a centrifugal fan in a commercial air conditioner

    NASA Astrophysics Data System (ADS)

    Kim, Jiyu; Bang, Kyeongtae; Choi, Haecheon; Seo, Eung Ryeol; Kang, Yonghun

    2015-11-01

    Air-conditioning fans require a low noise level to provide user comfort and quietness. The aerodynamic noise sources are generated by highly unsteady, turbulent structures near the fan blade. In this study, we investigate the flow characteristics of a centrifugal fan in an air-conditioner indoor unit and suggest control ideas to develop a low noise fan. The experiment is conducted at the operation condition where the Reynolds number is 163000 based on the blade tip velocity and chord length. Intermittent separation occurs at the blade leading edge and thus flow significantly fluctuates there, whereas vortex shedding occurs at the blade trailing edge. Furthermore, the discharge flow observed in the axial plane near the shroud shows low-frequency intermittent behaviors, resulting in high Reynolds stresses. To control these flow structures, we modify the shapes of the blade leading edge and shroud of the centrifugal fan and obtain noise reduction. The flow characteristics of the base and modified fans will be discussed. Supported by 0420-20130051.

  12. Sound source localization on an axial fan at different operating points

    NASA Astrophysics Data System (ADS)

    Zenger, Florian J.; Herold, Gert; Becker, Stefan; Sarradj, Ennes

    2016-08-01

    A generic fan with unskewed fan blades is investigated using a microphone array method. The relative motion of the fan with respect to the stationary microphone array is compensated by interpolating the microphone data to a virtual rotating array with the same rotational speed as the fan. Hence, beamforming algorithms with deconvolution, in this case CLEAN-SC, could be applied. Sound maps and integrated spectra of sub-components are evaluated for five operating points. At selected frequency bands, the presented method yields sound maps featuring a clear circular source pattern corresponding to the nine fan blades. Depending on the adjusted operating point, sound sources are located on the leading or trailing edges of the fan blades. Integrated spectra show that in most cases leading edge noise is dominant for the low-frequency part and trailing edge noise for the high-frequency part. The shift from leading to trailing edge noise is strongly dependent on the operating point and frequency range considered.

  13. Predicting the Inflow Distortion Tone Noise of the NASA Glenn Advanced Noise Control Fan with a Combined Quadrupole-Dipole Model

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    2012-01-01

    A combined quadrupole-dipole model of fan inflow distortion tone noise has been extended to calculate tone sound power levels generated by obstructions arranged in circumferentially asymmetric locations upstream of a rotor. Trends in calculated sound power level agreed well with measurements from tests conducted in 2007 in the NASA Glenn Advanced Noise Control Fan. Calculated values of sound power levels radiated upstream were demonstrated to be sensitive to the accuracy of the modeled wakes from the cylindrical rods that were placed upstream of the fan to distort the inflow. Results indicate a continued need to obtain accurate aerodynamic predictions and measurements at the fan inlet plane as engineers work towards developing fan inflow distortion tone noise prediction tools.

  14. Variable scale channel avulsion history using fan architecture and stratigraphy, and sediment provenance of Sutlej-Yamuna fans in northwest Gangetic plains during Late Quaternary

    NASA Astrophysics Data System (ADS)

    Singh, Ajit; Gupta, Sanjeev; Sinha, Rajiv; Densmore, Alexander; Buylaert, Jan-Pieter; Carter, Andrew; Van-Dijk, Wout M.; Joshi, Suneel; Nayak, Nibedita; Mason, Philippa J.; Kumar, Dewashish; Mondal, Setbandhu; Murray, Andrew; Rai, Shiv P.; Shekhar, Shashank

    2016-04-01

    Channel avulsion during fan development controls distribution and deposition of channel sandbodies and hence alluvial architecture of a fan system. Variable scale spatio-temporal information of fluvial responses to past climate changes is stored in these channel sandbodies. Further these channel sandbodies form fluvial aquifers in alluvial fans and therefore understanding of alluvial architecture and stratigraphy of a fan is crucial for development of groundwater management strategies. In this study we used multiple approaches to map subsurface fluvial aquifer architecture and alluvial stratigraphy, and to estimate sediment provenance using U-Pb dating of detrital zircon grains of Sutlej-Yamuna fan system in northwest India. Satellite imagery based geomorphic mapping shows two large fan system with interfan area. The fan surfaces show presence of major and minor paleochannels. 2D resistivity tomography along several transects across fan surfaces shows distinct layers with contrasting resistivity values. These geo-electric facies corresponds to presence of channel sandbodies beneath surface signature of paleochannels and finer floodplain deposits useful to demarcate lateral extent of subsurface channel sandbodies. A more detailed subsurface stratigraphy using ~50m deep sediment cores and their luminescence ages from across fan surface shows presence of multi-storey sandbodies (MSB) separated by floodplain fines. Within the MSB, individual channel deposits are identified by presence of channel scour surfaces located at coarse sand overlying fine sand layer. Depositional ages of MSB's ranges from ~81 ka (late MIS5) to ~15 ka (MIS2) with major depositional break during MIS3 in parts of the fans. Sediment aggradation rate varies laterally across fan surface as well as vertically down the depth with an average rate of 0.54 mm/year. Fluvial channel persistence for studied time interval (about last 81 ka BP) shows major depositional breaks (and possible incision) at ~41 ka (mid MIS3) and ~31 ka (late MIS3). U-Pb age patterns of detrital zircon grains from cores located at paleochannels on the fan system show prominent age peaks at ~480 Ma and ~1800 Ma that respectively corresponds to modern Sutlej and Yamuna rivers. Luminescence ages of these samples suggest that major channel activity of Sutlej river at its fan system ceased around ~15 ka (post last-glacial maxima) and thereafter it avulsed to its modern course. Our surface study results clearly show that alluvial fan system have well developed longitudinal channel sandbodies that may or may not have surface expression in the form of paleochannel and/or longitudinal ridges. However our geophysical studies show that such channel sandbodies can be delineated in shallow surface on the basis of characteristic resistivity values. The subsurface stratigraphy results show development of MSB possibly due to series of small scale (intravalley) avulsion punctuated by large scale (intervalley) avulsion across the fan surface. Our provenance studies clearly identifies two major large scale channel avulsions of Sutlej and Yamuna rivers. Our study has importance for groundwater management policies in this water-stressed agricultural hotspot of India. Thus, understanding the variability in sand body stratigraphy, channel avulsion history, and aggradation rates is important for understanding aquifer geometry of alluvial fan system.

  15. Experimental investigation of the mass flow gain factor in a draft tube with cavitation vortex rope

    NASA Astrophysics Data System (ADS)

    Landry, C.; Favrel, A.; Müller, A.; Yamamoto, K.; Alligné, S.; Avellan, F.

    2017-04-01

    At off-design operating operations, cavitating flow is often observed in hydraulic machines. The presence of a cavitation vortex rope may induce draft tube surge and electrical power swings at part load and full load operations. The stability analysis of these operating conditions requires a numerical pipe model taking into account the complexity of the two-phase flow. Among the hydroacoustic parameters describing the cavitating draft tube flow in the numerical model, the mass flow gain factor, representing the mass excitation source expressed as the rate of change of the cavitation volume as a function of the discharge, remains difficult to model. This paper presents a quasi-static method to estimate the mass flow gain factor in the draft tube for a given cavitation vortex rope volume in the case of a reduced scale physical model of a ν = 0.27 Francis turbine. The methodology is based on an experimental identification of the natural frequency of the test rig hydraulic system for different Thoma numbers. With the identification of the natural frequency, it is possible to model the wave speed, the cavitation compliance and the volume of the cavitation vortex rope. By applying this new methodology for different discharge values, it becomes possible to identify the mass flow gain factor and improve the accuracy of the system stability analysis.

  16. The lift-fan aircraft: Lessons learned

    NASA Technical Reports Server (NTRS)

    Deckert, Wallace H.

    1995-01-01

    This report summarizes the highlights and results of a workshop held at NASA Ames Research Center in October 1992. The objective of the workshop was a thorough review of the lessons learned from past research on lift fans, and lift-fan aircraft, models, designs, and components. The scope included conceptual design studies, wind tunnel investigations, propulsion systems components, piloted simulation, flight of aircraft such as the SV-5A and SV-5B and a recent lift-fan aircraft development project. The report includes a brief summary of five technical presentations that addressed the subject The Lift-Fan Aircraft: Lessons Learned.

  17. A measuring stand for a ducted fan aircraft propulsion unit

    NASA Astrophysics Data System (ADS)

    Hlaváček, David

    2014-03-01

    The UL-39 ultra-light aircraft which is being developed by the Department of Aerospace Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, is equipped with an unconventional ducted fan propulsion unit. The unit consists of an axial fan driven by a piston engine and placed inside a duct ended with a nozzle. This article describes the arrangement of a modernised measuring stand for this highly specific propulsion unit which will be able to measure the fan pressure ratio and velocity field in front of and behind the fan and its characteristic curve.

  18. Fluctuating pressures on fan blades of a turbofan engine: Static and wind-tunnel investigations

    NASA Technical Reports Server (NTRS)

    Schoenster, J. A.

    1982-01-01

    To investigate the fan noise generated from turbofan engines, miniature pressure transducers were used to measure the fluctuating pressure on the fan blades of a JT15D engine. Tests were conducted with the engine operating on an outdoor test stand and in a wind tunnel. It was found that a potential flow interaction between the fan blades and six, large support struts in the bypass duct is a dominant noise source in the JT15D engine. Effects of varying fan speed and the forward speed on the blade pressure are also presented.

  19. Design and Test of Fan/Nacelle Models Quiet High-Speed Fan

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J. (Technical Monitor); Weir, Donald

    2003-01-01

    The Quiet High-Speed Fan program is a cooperative effort between Honeywell Engines & Systems (formerly AlliedSignal Engines & Systems) and the NASA Glenn Research Center. Engines & Systems has designed an advanced high-speed fan that will be tested on the Ultra High Bypass Propulsion Simulator in the NASA Glenn 9 x 15 foot wind tunnel, currently scheduled for the second quarter of 2000. An Engines & Systems modern fan design will be used as a baseline. A nacelle model is provided that is characteristic of a typical, modern regional aircraft nacelle and meets all of the program test objectives.

  20. Evaluation of the Tone Fan Noise Design/Prediction System (TFaNS) at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    1999-01-01

    Version 1.4 of TFaNS, the Tone Fan Noise Design/Prediction System. has recently been evaluated at the NASA Glenn Research Center. Data from tests of the Allison Ultra High Bypass Fan (UHBF) were used to compare to predicted farfield directivities for the radial stator configuration. There was good agreement between measured and predicted directivities at low fan speeds when rotor effects were neglected in the TFaNS calculations. At higher fan speeds, TFaNS is shown to be useful in predicting overall trends rather than absolute sound pressure levels.

  1. Shock Characteristics Measured Upstream of Both a Forward-Swept and an Aft-Swept Fan

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.; Krupar, Martin J.; Sutliff, Daniel L.; Horvath, Csaba

    2007-01-01

    Three different types of diagnostic data-blade surface flow visualization, shroud unsteady pressure, and laser Doppler velocimeter (LDV)--were obtained on two fans, one forward-swept and one aft-swept, in order to learn more about the shocks which propagate upstream of these rotors when they are operated at transonic tip speeds. Flow visualization data are presented for the forward-swept fan operating at 13831 rpm(sub c), and for the aft-swept fan operating at 12500 and 13831 rpm(sub c) (corresponding to tip rotational Mach numbers of 1.07 and 1.19, respectively). The flow visualization data identify where the shocks occur on the suction side of the rotor blades. These data show that at the takeoff speed, 13831 rpm(sub c), the shocks occurring in the tip region of the forward-swept fan are further downstream in the blade passage than with the aft-swept fan. Shroud unsteady pressure measurements were acquired using a linear array of 15 equally-spaced pressure transducers extending from two tip axial chords upstream to 0.8 tip axial chords downstream of the static position of the tip leading edge of each rotor. Such data are presented for each fan operating at one subsonic and five transonic tip speeds. The unsteady pressure data show relatively strong detached shocks propagating upstream of the aft-swept rotor at the three lowest transonic tip speeds, and weak, oblique pressure disturbances attached to the tip of the aft-swept fan at the two highest transonic tip speeds. The unsteady pressure measurements made with the forward-swept fan do not show strong shocks propagating upstream of that rotor at any of the tested speeds. A comparison of the forward-swept and aft-swept shroud unsteady pressure measurements indicates that at any given transonic speed the pressure disturbance just upstream of the tip of the forward-swept fan is much weaker than that of the aft-swept fan. The LDV data suggest that at 12500 and 13831 rpm(sub c), the forward-swept fan swallowed the passage shocks occurring in the tip region of the blades, whereas the aft-swept fan did not. Due to this difference, the flows just upstream of the two fans were found to be quite different at both of these transonic speeds. Nevertheless, despite distinct differences just upstream of the two rotors, the two fan flows were much more alike about one axial blade chord further upstream. As a result, the LDV data suggest that it is unwise to attempt to determine the effect that the shocks have on far field noise by focusing only on measurements (or CFD predictions) made very near the rotor. Instead, these data suggest that it is important to track the shocks throughout the inlet.

  2. A Pleistocene coastal alluvial fan complex produced by Middle Pleistocene glacio-fluvial processes

    NASA Astrophysics Data System (ADS)

    Adamson, Kathryn; Woodward, Jamie; Hughes, Philip; Giglio, Federico; Del Bianco, Fabrizio

    2014-05-01

    A coarse-grained alluvial fan sequence at Lipci, Kotor Bay, in western Montenegro, provides a sedimentary record of meltwater streams draining from the Orjen Massif (1,894 m a.s.l.) to the coastal zone. At Lipci sedimentary evidence and U-series ages have been used alongside offshore bathymetric imagery and seismic profiles to establish the size of the fan and constrain the nature and timing of its formation. Establishing the depositional history of such coastal fans is important for our understanding of cold stage sediment flux from glaciated uplands to the offshore zone, and for exploring the impact of sea level change on fan reworking. There is evidence of at least four phases of Pleistocene glaciation on the Orjen massif, which have been U-series dated and correlated to MIS 12, MIS 6, MIS 5d-2 and the Younger Dryas. A series of meltwater channels delivered large volumes of coarse- and fine-grained limestone sediment from the glaciated uplands into the Bay of Kotor. At the southern margin of the Orjen massif, a series of large (>700 m long) alluvial fans has developed. Some of these extend offshore for up to 600 m. Lipci fan lies downstream of end moraines in the valley immediately above, which were formed by an extensive outlet glacier of the Orjen ice cap during MIS 12. The terrestrial deposits are part of the fan apex (50 m a.s.l.) that lies at the foot of a steep bedrock channel, but the majority of the fan is now more than 25 m below sea level. The terrestrial fan sediments are strongly cemented by multiple generations of calcite precipitates: the oldest U-series ages are infinite indicating that the fan is >350 ka in age. These ages are in agreement with alluvial sedimentary evidence and U-series ages from other fluvial units on Mount Orjen. The terrestrial portion of the Lipci fan surface contains several channels. These are well preserved due to cementation with calcium carbonate. Submarine imagery indicates that the now submerged portion of the fan also contains deeply incised (up to 10 m) channels which are similar in morphology to those exposed onshore. It is likely that strong cementation of the fan sediments, and associated channel forms, has protected them from coastal erosion during several regression-transgression cycles. These records provide important opportunities to correlate the Pleistocene terrestrial glacial and fluvial records with the marine archive.

  3. Controls on morphometry and morphology of alluvial and colluvial fans in the high-Arctic setting, Petuniabukta, Svalbard.

    NASA Astrophysics Data System (ADS)

    Tomczyk, Aleksandra; Ewertowski, Marek

    2016-04-01

    The Petuniabukta (78o42' N, 16o32') is a bay in the northern part of Billefjorden in the central part of Spitsbergen Island, Svalbard. The bay is surrounded by six major, partly glaciated valleys. A numerous alluvial and colluvial fans have developed within valleys as well as along the fiord margins. Distribution and characterization of morphometric parameters of fans were investigated using time-series of orthophotos and digital elevation models (generated based on 1961, 1990, 2009 aerial photographs) and high resolution satellite imagery from 2013. In addition, a very detailed DEM and orthophoto (5 cm resolution) have been produced from unmanned aerial vehicle (UAV) imagery from 2014 and 2015, covering three fans characterised by different types of surface morphology. A 1:40,000 map showing the distribution of almost 300 alluvial and colluvial fans (ranging in area from 325 km2 to 451 275 km2), together with time-series of 1:5,000 geomorphological maps of sample fans enabled an assessment of the spatial and temporal evolution of processes responsible for delivery and erosion of sediments from the fans. The relationship between terrain parameters (e.g. slope, exposition) as well as geology was also investigated. Many of the studied alluvial fans were at least partly coupled and sediments were transferred from the upstream zone to the downstream zone, either due to debris-flow or channelized stream flow. In other cases, coarse sediments were stored within fans, and fines were transported downstream by sheet flows or sub-surface flows. In most of smaller colluvial fans and debris cones, sediments were delivered by mass movement processes (mainly rockfalls and snowfalls) and did not reach lower margin of landforms. Analysis of historical aerial photographs indicated recent increase in the activity of debris-flow modification of surface morphology of fans. Fans located outside limits of the Little Ice Age (LIA) glaciation are dominated by the secondary processes, which do not cause significant aggradation, but can substantially modified surface morphology. In contrary, surface morphology of fans located inside the limits of the LIA glaciation and along contemporary glaciers is dominated by the primary processes of deposition. The research was founded by the Polish National Science Centre.

  4. Manipulation of the swirling flow instability in hydraulic turbine diffuser by different methods of water injection

    NASA Astrophysics Data System (ADS)

    Rudolf, Pavel; Litera, Jiří; Alejandro Ibarra Bolanos, Germán; Štefan, David

    2018-06-01

    Vortex rope, which induces substantial pressure pulsations, arises in the draft tube (diffuser) of Francis turbine for off-design operating conditions. Present paper focuses on mitigation of those pulsations using active water jet injection control. Several modifications of the original Susan-Resiga's idea were proposed. All modifications are driven by manipulation of the shear layer region, which is believed to play important role in swirling flow instability. While some of the methods provide results close to the original one, none of them works in such a wide range. Series of numerical experiments support the idea that the necessary condition for vortex rope pulsation mitigation is increasing the fluid momentum along the draft tube axis.

  5. 76 FR 64293 - Airworthiness Directives; CFM International, S. A. Model CFM56-5B Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... serial number (S/N) fan blades, part number (P/N) 338- 002-114-0. This proposed AD was prompted by a normal quality sampling at CFM that isolated a production batch of fan blades with nonconforming geometry of mid-span shroud tips of the fan blades. This defect would cause the upper panel of the fan blade...

  6. 30 CFR 57.22204 - Main fan operation and inspection (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main fan operation and inspection (I-A, II-A, III, and V-A mines). 57.22204 Section 57.22204 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Main fan operation and inspection (I-A, II-A, III, and V-A mines). Main fans shall be— (a) Provided...

  7. 30 CFR 57.22207 - Booster fans (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Booster fans (I-A, II-A, III, and V-A mines... NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22207 Booster fans (I-A, II-A, III, and V-A mines). (a) Booster fans shall be approved by MSHA under the applicable...

  8. 30 CFR 57.22207 - Booster fans (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Booster fans (I-A, II-A, III, and V-A mines... NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22207 Booster fans (I-A, II-A, III, and V-A mines). (a) Booster fans shall be approved by MSHA under the applicable...

  9. 30 CFR 57.22207 - Booster fans (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Booster fans (I-A, II-A, III, and V-A mines... NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22207 Booster fans (I-A, II-A, III, and V-A mines). (a) Booster fans shall be approved by MSHA under the applicable...

  10. 30 CFR 57.22207 - Booster fans (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Booster fans (I-A, II-A, III, and V-A mines... NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22207 Booster fans (I-A, II-A, III, and V-A mines). (a) Booster fans shall be approved by MSHA under the applicable...

  11. Dynamics of high-bypass-engine thrust reversal using a variable-pitch fan

    NASA Technical Reports Server (NTRS)

    Schaefer, J. W.; Sagerser, D. R.; Stakolich, E. G.

    1977-01-01

    The test program demonstrated that successful and rapid forward-to reverse-thrust transients can be performed without any significant engine operational limitations for fan blade pitch changes through either feather pitch or flat pitch. For through-feather-pitch operation with a flight inlet, fan stall problems were encountered, and a fan blade overshoot technique was used to establish reverse thrust.

  12. 30 CFR 57.22204 - Main fan operation and inspection (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Main fan operation and inspection (I-A, II-A, III, and V-A mines). 57.22204 Section 57.22204 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Main fan operation and inspection (I-A, II-A, III, and V-A mines). Main fans shall be— (a) Provided...

  13. Noise Generation by Fans with Supersonic Tip Speeds

    NASA Technical Reports Server (NTRS)

    Glegg, Stewart; Envia, Edmane (Technical Monitor)

    2003-01-01

    Fan noise continues to be a significant issue for commercial aircraft engines and there still exists a requirement for improved understanding of the fundamental issues associated with fan noise source mechanisms. At the present time, most of the prediction methods identify the dominant acoustic sources to be associated with the stator vanes or blade trailing edges which are downstream of the fan face. However recent studies have shown that acoustic waves are significantly attenuated as they propagate upstream through a rotor, and if the appropriate corrections are applied, sound radiation from the engine inlet is significantly underpredicted. The prediction models can only be applied to fans with subsonic tip speeds. In contrast, most aircraft engines have fan tip speeds which are transonic and this implies an even higher attenuation for upstream propagating acoustic waves. Consequently understanding how sound propagates upstream through the fan is an important, and not well understood phenomena. The objective of this study is to provide improved insight into the upstream propagation effects through a rotor which are relevant to full scale engines. The focus of this study is on broadband fan noise generated by boundary layer turbulence interacting with the trailing edges of the fan blades. If this source mechanism is important upstream of the fan, the sound must propagate upstream through a transonic non uniform flow which includes large gradients and non linearities. Developing acoustic propagation models in this type of flow is challenging and currently limited to low frequency applications, where the frequency is of the same order as the blade passing frequency of the fan. For trailing edge noise, much higher frequencies are relevant and so a suitable approach needs to be developed, which is not limited by an unacceptably large computational effort. In this study we are in the process of developing a computational method which applies for the high frequencies of interest, and allows for any type of flow field associated with the fan. In this progress report the approach to be used and the basic equations will be presented. Some initial results will be given, but these are preliminary and need further verification.

  14. Preliminary results of chronostratigraphic field work, OSL-dating and morphogenetic reconstruction of an alluvial apron at Alborz southern foothill, Damghan basin, Iran

    NASA Astrophysics Data System (ADS)

    Büdel, Christian; Fuchs, Markus; Majid Padashi, Seyed; Baumhauer, Roland

    2014-05-01

    Here we present preliminary results of a chronostratigraphic study of an alluvial fan in the Damghan Basin, northern Iran. The basin sediments date back to the Mio- and Pliocene and therefore represent the starting point of alluvial fan aggradation. Today, the still active alluvial fans prograde from the Albors Mountain ranges and sit on the older sediment bodies. In this study, our focus is on the late Pleistocene to Holocene alluvial fan sedimentation history. The upper stratigraphy of the alluvial fans and intercalated lake deposits is characterized by six individual layers of gravels and fines, representing six different stratigraphic units. These units are described and classified by detailed geomorphological and stratigraphic mapping. To establish an alluvial fan chronology, six profiles were sampled for OSL dating. As expected, due to the high-energy transport system of alluvial fan aggradation in semi-desert environments, OSL dating of these sediments is challenging due to the problem of insufficient bleaching. Consequently, most of the samples are interpreted as maximum ages. However, the measurements show a consistent internal age structure and the overall OSL-based chronology is in agreement with the age model derived from our geomorphological analysis. As a first interpretation, based on surveyed geomorphological features and chronological analysis, we could identify seven morphodynamic phases, leading to a genetic model of alluvial fan aggradation. The oldest Pleistocene age estimate is derived from a former lake terrace. The following ages represent ongoing lake sediment deposition and the development of a proximal and mid-fan gravel cover. After the youngest lake deposits were accumulated within the Holocene, the lake starts to retreat and small alluvial fans are filling up the former lake bottom. This last sedimentation phase can be divided in at least two sub-phases, probably coupled to a lateral shifting of the active depositional lobe and to the abandonment and shallow incision of mid fan surfaces.

  15. Authigenic Carbonate Fans from Lower Jurassic Marine Shales (Alberta, Canada)

    NASA Astrophysics Data System (ADS)

    Martindale, R. C.; Them, T. R., II; Gill, B. C.; Knoll, A. H.

    2016-12-01

    Authigenic aragonite seafloor fans are a common occurrence in Archean and Paleoproterozoic carbonates, as well as Neoproterozoic cap carbonates. Similar carbonate fans are rare in Phanerozoic strata, with the exception of two mass extinction events; during the Permo-Triassic and Triassic-Jurassic boundaries, carbonate fans formed at the sediment-water interface and within the sediment, respectively. These crystal fans have been linked to carbon cycle perturbations at the end of the Permian and Triassic periods driven by rapid flood volcanism. The Early Jurassic Toarcian Ocean Anoxic Event (T-OAE) is also correlated with the emplacement of a large igneous province, but biological consequences were more modest. We have identified broadly comparable fibrous calcite layers (2-10 cm thick) in Pliensbachian-Toarcian cores from Alberta, Canada. This work focuses on the geochemical and petrographic description of these fans and surrounding sediment in the context of the T-OAE. At the macroscale, carbonates exhibit a fan-like (occasionally cone-in-cone) structure and displace the sediment around them as they grew. At the microscale, the carbonate crystals (pseudomorphs of aragonite) often initiate on condensed horizons or shells. Although they grow in multiple directions (growth within the sediment), the predominant crystal growth direction is towards the sediment-water interface. Resedimentation of broken fans is evidence that crystal growth was penecontemporaneous with sedimentation. The carbon isotope composition of the fans (transects up bladed crystals) and elemental abundances within the layers support shallow subsurface, microbially mediated growth. The resemblance of these Early Jurassic fibrous calcite layers to those found at the end-Triassic and their paucity in the Phanerozoic record suggest that analogous processes occurred at both events. Nevertheless, the Pliensbachian-Toarcian carbonate fans occur at multiple horizons and while some are within the T-OAE, others are significantly above and below the event. The formation of these authigenic layers cannot be driven exclusively by the geochemical and paleoenvironmental changes during the T-OAE. Therefore, a new model of formation for the Early Jurassic carbonate fans is required.

  16. Enhancing flood hazard estimation methods on alluvial fans using an integrated hydraulic, geological and geomorphological approach

    NASA Astrophysics Data System (ADS)

    Mollaei, Zeinab; Davary, Kamran; Majid Hasheminia, Seyed; Faridhosseini, Alireza; Pourmohamad, Yavar

    2018-04-01

    Due to the uncertainty concerning the location of flow paths on active alluvial fans, alluvial fan floods could be more dangerous than riverine floods. The United States Federal Emergency Management Agency (FEMA) used a simple stochastic model named FAN for this purpose, which has been practiced for many years. In the last decade, this model has been criticized as a consequence of development of more complex computer models. This study was conducted on three alluvial fans located in northeast and southeast Iran using a combination of the FAN model, the hydraulic portion of the FLO-2D model, and geomorphological information. Initial stages included three steps: (a) identifying the alluvial fans' landforms, (b) determining the active and inactive areas of alluvial fans, and (c) delineating 100-year flood within these selected areas. This information was used as an input in the mentioned three approaches of the (i) FLO-2D model, (ii) geomorphological method, and (iii) FAN model. Thereafter, the results of each model were obtained and geographical information system (GIS) layers were created and overlaid. Afterwards, using a scoring system, the results were evaluated and compared. The goal of this research was to introduce a simple but effective solution to estimate the flood hazards. It was concluded that the integrated method proposed in this study is superior at projecting alluvial fan flood hazards with minimum required input data, simplicity, and affordability, which are considered the primary goals of such comprehensive studies. These advantages are more highlighted in underdeveloped and developing countries, which may well lack detailed data and financially cannot support such costly projects. Furthermore, such a highly cost-effective method could be greatly advantageous and pragmatic for developed countries.

  17. Fan-structure waves in shear ruptures

    NASA Astrophysics Data System (ADS)

    Tarasov, Boris

    2016-04-01

    This presentation introduces a recently identified shear rupture mechanism providing a paradoxical feature of hard rocks - the possibility of shear rupture propagation through the highly confined intact rock mass at shear stress levels significantly less than frictional strength. According to the fan-mechanism the shear rupture propagation is associated with consecutive creation of small slabs in the fracture tip which, due to rotation caused by shear displacement of the fracture interfaces, form a fan-structure representing the fracture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength), self-sustaining stress intensification in the rupture tip (providing easy formation of new slabs), and self-unbalancing conditions in the fan-head (making the failure process inevitably spontaneous and violent). An important feature of the fan-mechanism is the fact that for the initial formation of the fan-structure an enhanced local shear stress is required, however, after completion of the fan-structure it can propagate as a dynamic wave through intact rock mass at shear stresses below the frictional strength. Paradoxically low shear strength of pristine rocks provided by the fan-mechanism determines the correspondingly low transient strength of the lithosphere, which favours generation of new earthquake faults in the intact rock mass adjoining pre-existing faults in preference to frictional stick-slip instability along these faults. The new approach reveals an alternative role of pre-existing faults in earthquake activity: they represent local stress concentrates in pristine rock adjoining the fault where special conditions for the fan-mechanism nucleation are created, while further dynamic propagation of the new fault (earthquake) occurs at low field stresses even below the frictional strength.

  18. Late Cretaceous and Paleogene sedimentation along east side of San Joaquin basin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, S.A.

    1986-04-01

    Depositional systems of the Late Cretaceous contrast with those of the Paleogene in the subsurface along the east side of the San Joaquin basin between Bakersfield and Fresno, California. Upper Cretaceous deposits include thick fan-delta and submarine fan facies of the Moreno and Panoche Formations, whereas the paleogene contains extensive nearshore, shelf, slope, and submarine fan deposits of the Lodo, Domengine, and Kreyenhagen Formations. These sediments were deposited on a basement surface having several west-trending ridges and valleys. West-flowing streams draining an ancestral Sierra Nevada of moderate relief formed prograding fan deltas that filled the valleys with thick wedges ofmore » nonmarine channel deposits, creating a bajada along the shoreline. Detrital material moved rapidly from the shoreline through a narrow shelf, into a complex of submarine fans in the subduction trough. During the early Eocene, a low sea level stand plus an end of Sierra Nevada uplift resulted in the erosion of the range to a peneplain. Stream-fed fan deltas were replaced by a major river system, which flowed west on about the present course of the Kern River. Following a rapid sea level increase, sand from the river system was deposited on the now broad shelf along a wide belt roughly coincident with California Highway 99. The river was also the point source for sand in a submarine fan northwest of Bakersfield. Both Upper Cretaceous and Paleogene depositional systems probably continue north along the east edge of the Great Valley. This proposed scenario for the east side of the San Joaquin is analogous to forearc deposits in the San Diego area, including the Cretaceous Rosario fan-delta and submarine fan system and the Eocene La Jolla and Poway nearshore, shelf, and submarine fan systems.« less

  19. Experimental alluvial fan evolution: Channel dynamics, slope controls, and shoreline growth

    NASA Astrophysics Data System (ADS)

    Reitz, Meredith D.; Jerolmack, Douglas J.

    2012-06-01

    River deltas and alluvial fans have channelization and deposition dynamics that are not entirely understood, but which dictate the evolution of landscapes of great social, economic, and ecologic value. Our lack of a process-based understanding of fan dynamics hampers our ability to construct accurate prediction and hazard models, leaving these regions vulnerable. Here we describe the growth of a series of experimental alluvial fans composed of a noncohesive grain mixture bimodal in size and density. We impose conditions that simulate a gravel/sand fan prograding into a static basin with constant water and sediment influx, and the resulting fans display realistic channelization and avulsion dynamics. We find that we can describe the dynamics of our fans in terms of a few processes: (1) an avulsion sequence with a timescale dictated by mass conservation between incoming flux and deposit volume; (2) a tendency for flow to reoccupy former channel paths; and (3) bistable slopes corresponding to separate entrainment and deposition conditions for grains. Several important observations related to these processes are: an avulsion timescale that increases with time and decreases with sediment feed rate; fan lobes that grow in a self-similar, quasi-radial pattern; and channel geometry that is adjusted to the threshold entrainment stress. We propose that the formation of well-defined channels in noncohesive fans is a transient phenomenon resulting from incision following avulsion, and can be directly described with dual transport thresholds. We present a fairly complete, process-based description of the mechanics of avulsion and its resulting timescale on our fans. Because the relevant dynamics depend only on threshold transport conditions and conservation of mass, we show how results may be directly applied to field-scale systems.

  20. Supplementary catalogue of the Anthomyiidae (Diptera) of China

    PubMed Central

    Wang, Mengmeng; Michelsen, Verner; Li, Kai; Zhu, Weibing

    2014-01-01

    Abstract The present catalogue of Anthomyiidae attempts to list all species (173) described or recorded from mainland China (165) and Taiwan (8) that for various reasons are not treated in “Flies of China” from 1998. The catalogue further lists Chinese species that are presently standing in new generic combinations compared to those of “Flies of China”, species that have changed name because of synonymy or misidentification, and species upgraded from subspecies to species. Regional distribution by province is specified for all species. Literature sources to descriptions or records of anthomyiid species from China are only given for those 173 species not covered by “Flies of China”. Four new combinations are proposed: Enneastigma fulva (Malloch, 1934), Enneastigma henanensis (Ge & Fan, 1982), Enneastigma lengshanensis (Xue, 2001) and Hylemya qinghaiensis (Fan, Chen & Ma, 1989). Eremomyia turbida Huckett, 1951 is revived from synonymy with Chortophila triticiperda Stein, 1900 (current name Eutrichota turbida). One subspecies is upgraded to species: Adia asiatica Fan, 1988. The following eight new synonymies are proposed: Delia pectinator fuscilateralis Fan in Fan & Zheng, 1992 with Delia pectinator Suwa, 1984; Eremomyia pilimana pilimarginata Fan & Qian in Fan, Chen, Ma & Ge, 1982 with Eremomyia turbida Huckett, 1951 (current name Eutrichota turbida); Lopesohylemya Fan, Chen & Ma, 1989 with Hylemya Robineau-Desvoidy, 1830; Deliomyia Fan in Fan et al., 1988 with Subhylemyia Ringdahl, 1933; Hydrophoria disticrassa Xue & Bai, 2009 with Hydrophoria pullata Wu, Liu & Wei, 1995 (current name Zaphne pullata); Heteroterma Wei, 2006 with Scathophaga Meigen, 1803; Heteroterma fanjingensis Wei, 2006 with Scathophaga curtipilata Feng, 2002; Scatomyza fansipanicola Ozerov in Ozerov & Krivosheina, 2011 with Scathophaga curtipilata Feng, 2002. The genus Heteroterma Wei, 2006 and species Heteroterma fanjingensis Wei, 2006 are reassigned from Anthomyiidae to Scathophagidae. PMID:25493060

  1. Prop-fan with improved stability

    NASA Technical Reports Server (NTRS)

    Rothman, Edward A. (Inventor); Violette, John A. (Inventor)

    1988-01-01

    Improved prop-fan stability is achieved by providing each blade of the prop-fan with a leading edge which, outwardly, from a location thereon at the mid-span of the blade, occupy generally a single plane.

  2. Unducted, counterrotating gearless front fan engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, J.B.

    This patent describes a high bypass ratio gas turbine engine. It comprises a core engine effective for generating combustion gases passing through a main flow path; a power turbine aft of the core engine and including first and second counter rotatable interdigitated turbine blade rows, effective for counterrotating first and second drive shafts, respectively; an unducted fan section forward of the core engine including a first fan blade row connected to the first drive shaft and a second fan blade row axially spaced aftward from the first fan blade row and connected to the second drive shaft; and a boostermore » compressor axially positioned between the first and second fan blade rows and including first compressor blade rows connected to the first drive shaft and second compressor blade rows connected to the second drive shaft.« less

  3. Alcohol-related fan behavior on college football game day.

    PubMed

    Glassman, Tavis; Werch, Chudley E; Jobli, Edessa; Bian, Hui

    2007-01-01

    High-risk drinking on game day represents a unique public health challenge. The authors examined the drinking behavior of college football fans and assessed the support for related interventions. The authors randomly selected 762 football fans, including college students, alumni, and other college football fans, to complete an anonymous online game-day survey. The authors collected data on participants' drinking behaviors and support for specific game-day interventions. Analysis revealed that, overall, fans drank significantly more on game day than they did the last time they partied or socialized. Nondrinkers were the most supportive of game-day interventions, followed by moderate drinkers, whereas heavy drinkers offered the least support. With the exception of limiting tailgating hours on game day, fans support game-day interventions, including alcohol-free alternatives, designating tailgating areas where open containers are permitted, and increasing law enforcement efforts.

  4. Portable Fan Assembly for the International Space Station

    NASA Technical Reports Server (NTRS)

    Jenkins, Arthur A.; Roman, Monsi C.

    1999-01-01

    NASA/ Marshall Space Flight Center (NASA/MSFC) is responsible for the design and fabrication of a Portable Fan Assembly (PFA) for the International Space Station (ISS). The PFA will be used to enhance ventilation inside the ISS modules as needed for crew comfort and for rack rotation. The PFA consists of the fan on-orbit replaceable unit (ORU) and two noise suppression packages (silencers). The fan ORU will have a mechanical interface with the Seat Track Equipment Anchor Assembly, in addition to the power supply module which includes a DC-DC converter, on/standby switch, speed control, power cable and connector. This paper provides a brief development history, including the criteria used for the fan, and a detailed description of the PFA operational configurations. Space Station requirements as well as fan performance characteristics are also discussed.

  5. Blade Vibration Measurement System for Unducted Fans

    NASA Technical Reports Server (NTRS)

    Marscher, William

    2014-01-01

    With propulsion research programs focused on new levels of efficiency and noise reduction, two avenues for advanced gas turbine technology are emerging: the geared turbofan and ultrahigh bypass ratio fan engines. Both of these candidates are being pursued as collaborative research projects between NASA and the engine manufacturers. The high bypass concept from GE Aviation is an unducted fan that features a bypass ratio of over 30 along with the accompanying benefits in fuel efficiency. This project improved the test and measurement capabilities of the unducted fan blade dynamic response. In the course of this project, Mechanical Solutions, Inc. (MSI) collaborated with GE Aviation to (1) define the requirements for fan blade measurements; (2) leverage MSI's radar-based system for compressor and turbine blade monitoring; and (3) develop, validate, and deliver a noncontacting blade vibration measurement system for unducted fans.

  6. Integrated propulsion/energy transfer control systems for lift-fan V/STOL aircraft. [reduction of total propulsion system and control system installation requirements

    NASA Technical Reports Server (NTRS)

    Deckert, W. H.; Rolls, L. S.

    1974-01-01

    An integrated propulsion/control system for lift-fan transport aircraft is described. System behavior from full-scale experimental and piloted simulator investigations are reported. The lift-fan transport is a promising concept for short-to-medium haul civil transportation and for other missions. The lift-fan transport concept features high cruise airspeed, favorable ride qualities, small perceived noise footprints, high utilization, transportation system flexibility, and adaptability to VTOL, V/STOL, or STOL configurations. The lift-fan transport has high direct operating costs in comparison to conventional aircraft, primarily because of propulsion system and aircraft low-speed control system installation requirements. An integrated lift-fan propulsion system/aircraft low-speed control system that reduces total propulsion system and control system installation requirements is discussed.

  7. Single stage, low noise, advanced technology fan. Volume 5: Fan acoustics. Section 1: Results and analysis

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.

    1976-01-01

    The acoustic tests and data analysis for a 0.508-scale fan vehicle of a 111,300 newton (25,000 pound) thrust, full-size engine, which would have application on an advanced transport aircraft, is described. The single-stage advanced technology fan was designed to a pressure ratio of 1.8 at a tip speed of 503 m/sec (1,650 ft/sec) to achieve the desired pressure ratio in a single-stage fan with low radius ratio (0.38), and to maintain adequate stall margin. The fan has 44 tip-shrouded rotor blades and 90 outlet guide vanes. The two basic approaches taken in the acoustic design were: (1) minimization of noise at the source, and (2) suppression of the generated noise in the inlet and bypass exhaust duct. Suppression of the generated noise was accomplished in the inlet through use of the hybrid concept (wall acoustic treatment plus airflow acceleration suppression) and in the exhaust duct with extensive acoustic treatment including a splitter. The goal of the design was attainment of twenty effective perceived noise decibels (20 EPNdB) below current Federal Air Regulation noise standards for a full-scale fan at the takeoff, cutback, and approach conditions. The suppression goal of FAR 36-20 was not reached, but improvements in the technology of both front and aft fan-noise suppression were realized. The suppressed fan noise was shown to be consistent with the proposed federal regulation on aircraft noise.

  8. Noise comparison of two 1.2-pressure-ratio fans with 15 and 42 rotor blades

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Glaser, F. W.; Wazyniak, J. A.

    1973-01-01

    Two 1.829-m-(6-ft-) diameter fans suitable for a quiet engine for future short-takeoff-and-landing (STOL) aircraft were compared. Both fans were designed for a 1.2 pressure ratio with similar weight flows, thrusts, and tip speeds. The first fan, designated QF-9, had 15 rotor blades and 11 stator blades. The rotor was highly loaded and the tip solidity was less than 1. The QF-9 rotor blades had an adjustable pitch feature which can be used for thrust reversal. The second fan, designated QF-6, operated at a moderate loading with a rotor tip solidity greater than 1. Fan QF-6 had 42 rotor blades and 50 stator blades. The low number of rotor blades for QF-9 reduced the frequency of the blade-passage tone below the range of maximum annoyance. In addition to this difference, the QF-9 fan had a somewhat smaller rotor-stator separation than the QF-6 fan. In terms of sound pressure level and sound power level, QF-9 was the noisier fan, with the power level results for QF-9 being about 1 db above those for QF-6 at equivalent operating points as determined by similar stage pressure ratios. At the same equivalent operating points, the maximum perceived noise along a 152.5-m (500-ft) sideline for QF-9 was about 2.5 PNdb below that for QF-6, which indicated that QF-9 was less objectionable to human hearing.

  9. Portable Life Support System 2.5 Fan Design and Development

    NASA Technical Reports Server (NTRS)

    Quinn, Gregory; Carra, Michael; Converse, David; Chullen, Cinda

    2016-01-01

    NASA is building a high-fidelity prototype of an advanced Portable Life Support System (PLSS) as part of the Advanced Exploration Systems Program. This new PLSS, designated as PLSS 2.5, will advance component technologies and systems knowledge to inform a future flight program. The oxygen ventilation loop of its predecessor, PLSS 2.0, was driven by a centrifugal fan developed using specifications from the Constellation Program. PLSS technology and system parameters have matured to the point where the existing fan will not perform adequately for the new prototype. In addition, areas of potential improvement were identified with the PLSS 2.0 fan that could be addressed in a new design. As a result, a new fan was designed and tested for the PLSS 2.5. The PLSS 2.5 fan is a derivative of the one used in PLSS 2.0, and it uses the same nonmetallic, canned motor, with a larger volute and impeller to meet the higher pressure drop requirements of the PLSS 2.5 ventilation loop. The larger impeller allows it to operate at rotational speeds that are matched to rolling element bearings, and which create reasonably low impeller tip speeds consistent with prior, oxygen-rated fans. Development of the fan also considered a shrouded impeller design that could allow larger clearances for greater oxygen safety, assembly tolerances and particle ingestion. This paper discusses the design, manufacturing and performance testing of the new fans.

  10. Comparison of inversion models using AIRSAR data for Death Valley, California

    NASA Technical Reports Server (NTRS)

    Kierein-Young, Kathryn S.

    1993-01-01

    Polarimetric Airborne Synthetic Aperture Radar (AIRSAR) data were collected for the Geologic Remote Sensing Field Experiment (GRSFE) over Death Valley, California, USA, in September 1989. AIRSAR is a four-look, quid-polarizaiton, three frequency instrument. It collects measurements at C-band (5.66 cm), L-band (23.98 cm), and P-band (68.13 cm), and has a GIFOV of 10 meters and a swath width of 12 kilometers. Because the radar measures at three wavelengths, different scales of surface roughness are measured. Also, dielectric constants can be calculated from the data. The scene used in this study is in Death Valley, California and is located over Trail Canyon alluvial fan, the valley floor, and Artists Drive alluvial fan. The fans are very different in mineralogic makeup, size, and surface roughness. Trail Canyon fan is located on the west side of the valley at the base of the Panamint Range and is a large fan with older areas of desert pavement and younger active channels. The source for the material on southern part of the fan is mostly quartzites and there is an area of carbonate source on the northern part of the fan. Artists Drive fan is located at the base of the Black Mountains on the east side of the valley and is a smaller, young fan with its source mostly from volcanic rocks. The valley floor contains playa and salt deposits that range from smooth to Devil's Golf course type salt pinnacles.

  11. Numerical ages of Holocene tributary debris fans inferred from dissolution pitting on carbonate boulders in the Grand Canyon of Arizona

    USGS Publications Warehouse

    Hereford, R.; Thompson, K.S.; Burke, K.J.

    1998-01-01

    Carbonate boulders transported down steep tributary channels by debris flow came to rest on Holocene debris fans beside the Colorado River in Grand Canyon National Park. Weakly acidic rainfall and the metabolic activity of blue-green algae have produced roughly hemispheric dissolution pits as much as 2-cm deep on the initially smooth surfaces of the boulders. The average depth of dissolution pits increases with relative age of fan surfaces. The deepening rate averages 2.4 mm/1000 yr (standard error = 0.2 mm/1000 yr), as calculated from several radiometrically dated surfaces and an archeological structure. This linear rate, which appears constant over at least the past 3000 yr, is consistent with field relations limiting the maximum age of the fans and with the physical chemistry of limestone dissolution. Dissolution-pit measurements (n = 6973) were made on 617 boulders on 71 fan surfaces at the 26 largest debris fans in Grand Canyon. Among these fan surfaces, the average pit depth ranges from 1.2 to 17.4 mm, and the resulting pit dissolution ages range from 500 to 7300 cal yr B.P. Most (75%) surfaces are younger than 3000 yr, probably because of removal of older debris fans by the Colorado River. Many of the ages are close to 800, 1600, 2300, 3100, or 4300 cal yr B.P. If not the result of differential preservation of fan surfaces, this clustering implies periods of heightened debris-flow activity and increased precipitation.

  12. Response Sensitivity of Typical Aircraft Jet Engine Fan Blade-Like Structures to Bird Impacts.

    DTIC Science & Technology

    1982-05-01

    AIRCRAFT ENGINE BU--ETC F/G 21/5 RESPONSE SENSITIVITY OF TYPICAL AIRCRAFT JET ENGINE FAN BLADE -L...SENSITIVITY OF TYPICAL AIRCRAFT JET ENGINE FAN BLADE -LIKE STRUCTURES TO BIRD IMPACTS David P. Bauer Robert S. Bertke University of Dayton Research...COVERED RESPONSE SENSITIVITY OF TYPICAL AIRCRAFT FINAL REPORT JET ENGINE FAN BLADE -LIKE STRUCTURES Oct. 1977 to Jan. 1979 TO BIRD IMPACTS s.

  13. 76 FR 70336 - Airworthiness Directives; Rolls-Royce plc RB211-524G2-19; -524G2-T-19; -524G3-19; -524G3-T-19...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... caused by fan blade flutter at certain engine settings during prolonged ground running. This condition, if not corrected, could affect the integrity of the fan blades, leading to cracking of multiple fan... aviation product. The MCAI describes the unsafe condition as: Several instances of fan blade cracking have...

  14. Aircraft Engine Exhaust Nozzle System for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elkoby, Ronen (Inventor)

    2014-01-01

    The aircraft exhaust engine nozzle system includes a fan nozzle to receive a fan flow from a fan disposed adjacent to an engine disposed above an airframe surface of the aircraft, a core nozzle disposed within the fan nozzle and receiving an engine core flow, and a pylon structure connected to the core nozzle and structurally attached with the airframe surface to secure the engine to the aircraft.

  15. Dynamic response of Hovercraft lift fans

    NASA Astrophysics Data System (ADS)

    Moran, D. D.

    1981-08-01

    Hovercraft lift fans are subjected to varying back pressure due to wave action and craft motions when these vehicles are operating in a seaway. The oscillatory back pressure causes the fans to perform dynamically, exhibiting a hysteresis type of response and a corresponding degradation in mean performance. Since Hovercraft motions are influenced by variations in lift fan pressure and discharge, it is important to understand completely the nature of the dynamic performance of lift fans in order to completely solve the Hovercraft seakeeping problem. The present study was performed to determine and classify the instabilities encountered in a centrifugal fan operating against time-varying back pressure. A model-scale experiment was developed in which the fan discharge was directed into a flow-measuring device, terminating in a rotating valve which produced an oscillatory back pressure superimposed upon a mean aerodynamic resistance. Pressure and local velocity were measured as functions of time at several locations in the fan volute. The measurements permitted the identification of rotating (or propagating) stall in the impeller. One cell and two cell configurations were classified and the transient condition connecting these two configurations was observed. The mechanisms which lead to rotating stall in a centrifugal compressor are presented and discussed with specific reference to Hovercraft applications.

  16. Intelligent Prediction of Fan Rotation Stall in Power Plants Based on Pressure Sensor Data Measured In-Situ

    PubMed Central

    Xu, Xiaogang; Wang, Songling; Liu, Jinlian; Liu, Xinyu

    2014-01-01

    Blower and exhaust fans consume over 30% of electricity in a thermal power plant, and faults of these fans due to rotation stalls are one of the most frequent reasons for power plant outage failures. To accurately predict the occurrence of fan rotation stalls, we propose a support vector regression machine (SVRM) model that predicts the fan internal pressures during operation, leaving ample time for rotation stall detection. We train the SVRM model using experimental data samples, and perform pressure data prediction using the trained SVRM model. To prove the feasibility of using the SVRM model for rotation stall prediction, we further process the predicted pressure data via wavelet-transform-based stall detection. By comparison of the detection results from the predicted and measured pressure data, we demonstrate that the SVRM model can accurately predict the fan pressure and guarantee reliable stall detection with a time advance of up to 0.0625 s. This superior pressure data prediction capability leaves significant time for effective control and prevention of fan rotation stall faults. This model has great potential for use in intelligent fan systems with stall prevention capability, which will ensure safe operation and improve the energy efficiency of power plants. PMID:24854057

  17. New Set of Fan Blades for the Altitude Wind Tunnel

    NASA Image and Video Library

    1951-08-21

    New wooden fan blades being prepared for installation in the Altitude Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The facility underwent a major upgrade in 1951 to increase its operating capacities in order to handle the new, more powerful turbojet engines being manufactured in the 1950s. The fan blades were prepared in the shop area, seen in this photograph, before being lowered through a hole in the tunnel and attached to the drive shaft. A new drive bearing and tail faring were also installed on the fan as part of this rehab project. A 12-bladed 31-foot-diameter spruce wood fan generated the 300 to 500 mile-per-hour airflow through the tunnel. An 18,000-horsepower General Electric induction motor located in the rear corner of the Exhauster Building drove the fan at 410 revolutions per minute. An extension shaft, sealed in the tunnel’s shell with flexible couplings that allowed for the movement of the shell, connected the motor to the fan. A bronze screen secured to the turning vanes protected the fan against damage from any engine parts sailing through the tunnel. Despite this screen the blades did become worn or cracked over time and had to be replaced.

  18. Review of noise reduction methods for centrifugal fans

    NASA Astrophysics Data System (ADS)

    Neise, W.

    1981-11-01

    Several methods for the reduction of centrifugal fan noise are presented, the most of which are aimed at a lower blade passage frequency level. The methods are grouped into five categories: casing modifications to increase the distance between impeller and cutoff, the introduction of a phase shift of the source pressure fluctuations, impeller modifications, radial clearance between impeller eye and inlet nozzle, and acoustical measures. Resonators mounted at the cutoff of centrifugal fans appear to be a highly efficient and simple means of reducing the blade passage tone, and the method can be used for new fan construction and existing installations without affecting the aerodynamic performance of the fan.

  19. Fan Cart: The Next Generation

    NASA Astrophysics Data System (ADS)

    Lamore, Brian

    2016-10-01

    For years the fan cart has provided physics students with an excellent resource for exploring fundamental mechanics concepts such as acceleration, Newton's laws, impulse, momentum, work-energy, and energy conversions. The Physics Teacher has even seen some excellent do-it-yourself (DIY) fan carts and activities. If you are interested in developing the `E' portion of your and your students' STEM (science, technology, engineering, and math) skills, one way to accomplish this is to revisit the DIY fan cart. In this article I share a design of a new edition of the DIY fan cart and some ideas for incorporating the engineering design process into your high school curriculum.

  20. The Shape of Trail Canyon Alluvial Fan, Death Valley

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Dohrenwend, John C.

    1993-01-01

    A modified conic equation has been fit to high-resolution digital topographic data for Trail Canyon alluvial fan in Death Valley, California. Fits were accomplished for 3 individual fan units of different age.

  1. Alluvial Fans in Mojave Crater

    NASA Image and Video Library

    2015-05-20

    This image from NASA Mars Reconnaissance Orbiter shows a landscape that is pervasively eroded, right up to the tops of the ridges, with channels extending down into depositional fans much like alluvial fans in the Mojave Desert.

  2. Advanced Noise Control Fan (ANCF)

    NASA Image and Video Library

    2014-01-15

    The Advanced Noise Control Fan shown here is located in NASA Glenn’s Aero-Acoustic Propulsion Laboratory. The 4-foot diameter fan is used to evaluate innovate aircraft engine noise reduction concepts less expensively and more quickly.

  3. Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification.

    PubMed

    Fan, Jianqing; Feng, Yang; Jiang, Jiancheng; Tong, Xin

    We propose a high dimensional classification method that involves nonparametric feature augmentation. Knowing that marginal density ratios are the most powerful univariate classifiers, we use the ratio estimates to transform the original feature measurements. Subsequently, penalized logistic regression is invoked, taking as input the newly transformed or augmented features. This procedure trains models equipped with local complexity and global simplicity, thereby avoiding the curse of dimensionality while creating a flexible nonlinear decision boundary. The resulting method is called Feature Augmentation via Nonparametrics and Selection (FANS). We motivate FANS by generalizing the Naive Bayes model, writing the log ratio of joint densities as a linear combination of those of marginal densities. It is related to generalized additive models, but has better interpretability and computability. Risk bounds are developed for FANS. In numerical analysis, FANS is compared with competing methods, so as to provide a guideline on its best application domain. Real data analysis demonstrates that FANS performs very competitively on benchmark email spam and gene expression data sets. Moreover, FANS is implemented by an extremely fast algorithm through parallel computing.

  4. Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification

    PubMed Central

    Feng, Yang; Jiang, Jiancheng; Tong, Xin

    2015-01-01

    We propose a high dimensional classification method that involves nonparametric feature augmentation. Knowing that marginal density ratios are the most powerful univariate classifiers, we use the ratio estimates to transform the original feature measurements. Subsequently, penalized logistic regression is invoked, taking as input the newly transformed or augmented features. This procedure trains models equipped with local complexity and global simplicity, thereby avoiding the curse of dimensionality while creating a flexible nonlinear decision boundary. The resulting method is called Feature Augmentation via Nonparametrics and Selection (FANS). We motivate FANS by generalizing the Naive Bayes model, writing the log ratio of joint densities as a linear combination of those of marginal densities. It is related to generalized additive models, but has better interpretability and computability. Risk bounds are developed for FANS. In numerical analysis, FANS is compared with competing methods, so as to provide a guideline on its best application domain. Real data analysis demonstrates that FANS performs very competitively on benchmark email spam and gene expression data sets. Moreover, FANS is implemented by an extremely fast algorithm through parallel computing. PMID:27185970

  5. Deeper and sparser nets are optimal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiu, V.; Makaruk, H.E.

    1998-03-01

    The starting points of this paper are two size-optimal solutions: (1) one for implementing arbitrary Boolean functions (Home and Hush, 1994); and (2) another one for implementing certain sub-classes of Boolean functions (Red`kin, 1970). Because VLSI implementations do not cope well with highly interconnected nets--the area of a chip grows with the cube of the fan-in (Hammerstrom, 1988)--this paper will analyze the influence of limited fan-in on the size optimality for the two solutions mentioned. First, the authors will extend a result from Home and Hush (1994) valid for fan-in {Delta} = 2 to arbitrary fan-in. Second, they will provemore » that size-optimal solutions are obtained for small constant fan-in for both constructions, while relative minimum size solutions can be obtained for fan-ins strictly lower that linear. These results are in agreement with similar ones proving that for small constant fan-ins ({Delta} = 6...9) there exist VLSI-optimal (i.e., minimizing AT{sup 2}) solutions (Beiu, 1997a), while there are similar small constants relating to the capacity of processing information (Miller 1956).« less

  6. Deeper sparsely nets are size-optimal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiu, V.; Makaruk, H.E.

    1997-12-01

    The starting points of this paper are two size-optimal solutions: (i) one for implementing arbitrary Boolean functions (Horne, 1994); and (ii) another one for implementing certain sub-classes of Boolean functions (Red`kin, 1970). Because VLSI implementations do not cope well with highly interconnected nets--the area of a chip grows with the cube of the fan-in (Hammerstrom, 1988)--this paper will analyze the influence of limited fan-in on the size optimality for the two solutions mentioned. First, the authors will extend a result from Horne and Hush (1994) valid for fan-in {Delta} = 2 to arbitrary fan-in. Second, they will prove that size-optimalmore » solutions are obtained for small constant fan-in for both constructions, while relative minimum size solutions can be obtained for fan-ins strictly lower than linear. These results are in agreement with similar ones proving that for small constant fan-ins ({Delta} = 6...9) there exist VLSI-optimal (i.e. minimizing AT{sup 2}) solutions (Beiu, 1997a), while there are similar small constants relating to the capacity of processing information (Miller 1956).« less

  7. Acoustic testing of a 1.5 pressure ratio low tip speed fan with casing tip bleed (QEP Fan B scale model)

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.; Minzner, W. R.; Paas, J. E.

    1971-01-01

    A scale model of the bypass flow region of a 1.5 pressure ratio, single stage, low tip speed fan was tested with a rotor tip casing bleed slot to determine its effects on noise generation. The bleed slot was located 1/2 inch (1.3 cm) upstream of the rotor leading edge and was configured to be a continuous opening around the circumference. The bleed manifold system was operated over a range of bleed rates corresponding to as much as 6% of the fan flow at approach thrust and 4.25% of the fan flow at takeoff thrust. Acoustic results indicate that a bleed rate of 4% of the fan flow reduces the fan maximum approach 200 foot (61.0 m) sideline PNL 0.5 PNdB and the corresponding takeoff thrust noise 1.1 PNdB below the level with zero bleed. However, comparison of the standard casing (no bleed slot) and the slotted bleed casing with zero bleed shows that the bleed slot itself caused a noise increase.

  8. Constructing the Hydrogeological Model of the Choushuichi Fan-delta in Central Taiwan with the Electrical Resistivity Measurements

    NASA Astrophysics Data System (ADS)

    Chang, P.; Chang, L.; Chen, W.; Chiang, C.

    2012-12-01

    In the study we used the resistivity measurements across the Choushuichi Fan-delta to establish a three-dimensional hydrogeological model. The resistivity measurements includes the half-Schlumberger surveys conducted during the year of 1990-2000 across the entire fan-delta area, and the two-dimensional resistivity data collected recently for the purpose of characterizing the recharge zone boundaries between the upper-fan gravels and the lower-fan clayey sediments. Core records from the monitoring wells in the area were used for the training data to help determining the resistivity ranges of the gavel, sand, and muddy sediments in the fan-delta. The resistivity measurements were inverted and converted into 1-D data form and interpolated for rendering a three dimensional resistivity volume that represents the general resistivity distribution in the Choushuichi fan-delta. We categorize the hydrogeological materials into gravels, sands, and clayey sediments with the resistivity ranges from the previous statistical analysis. Hence we are able to quickly construct a three-dimensional hydrogeological model with simple three materials.

  9. Human FAN1 promotes strand incision in 5'-flapped DNA complexed with RPA.

    PubMed

    Takahashi, Daisuke; Sato, Koichi; Hirayama, Emiko; Takata, Minoru; Kurumizaka, Hitoshi

    2015-09-01

    Fanconi anaemia (FA) is a human infantile recessive disorder. Seventeen FA causal proteins cooperatively function in the DNA interstrand crosslink (ICL) repair pathway. Dual DNA strand incisions around the crosslink are critical steps in ICL repair. FA-associated nuclease 1 (FAN1) is a DNA structure-specific endonuclease that is considered to be involved in DNA incision at the stalled replication fork. Replication protein A (RPA) rapidly assembles on the single-stranded DNA region of the stalled fork. However, the effect of RPA on the FAN1-mediated DNA incision has not been determined. In this study, we purified human FAN1, as a bacterially expressed recombinant protein. FAN1 exhibited robust endonuclease activity with 5'-flapped DNA, which is formed at the stalled replication fork. We found that FAN1 efficiently promoted DNA incision at the proper site of RPA-coated 5'-flapped DNA. Therefore, FAN1 possesses the ability to promote the ICL repair of 5'-flapped DNA covered by RPA. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  10. Genome sequence of a Proteus mirabilis strain isolated from the salivary glands of larval Lucilia sericata

    USDA-ARS?s Scientific Manuscript database

    We announced a draft genome sequence of a Proteus mirabilis strain derived from Lucilia sericata salivary glands. This strain is demonstrated to attract and induce oviposition by L. sericata, a common blow fly important to medicine, agriculture, and forensics. The genome will help to dissect inter...

  11. Vertical feed stick wood fuel burning furnace system

    DOEpatents

    Hill, Richard C.

    1982-01-01

    A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  12. Distance-Based Phylogenetic Methods Around a Polytomy.

    PubMed

    Davidson, Ruth; Sullivant, Seth

    2014-01-01

    Distance-based phylogenetic algorithms attempt to solve the NP-hard least-squares phylogeny problem by mapping an arbitrary dissimilarity map representing biological data to a tree metric. The set of all dissimilarity maps is a Euclidean space properly containing the space of all tree metrics as a polyhedral fan. Outputs of distance-based tree reconstruction algorithms such as UPGMA and neighbor-joining are points in the maximal cones in the fan. Tree metrics with polytomies lie at the intersections of maximal cones. A phylogenetic algorithm divides the space of all dissimilarity maps into regions based upon which combinatorial tree is reconstructed by the algorithm. Comparison of phylogenetic methods can be done by comparing the geometry of these regions. We use polyhedral geometry to compare the local nature of the subdivisions induced by least-squares phylogeny, UPGMA, and neighbor-joining when the true tree has a single polytomy with exactly four neighbors. Our results suggest that in some circumstances, UPGMA and neighbor-joining poorly match least-squares phylogeny.

  13. Study of VTOL in ground-effect flow field including temperature effect

    NASA Technical Reports Server (NTRS)

    Hill, W. G.; Jenkins, R. C.; Kalemaris, S. G.; Siclari, M. J.

    1982-01-01

    Detailed pressure, temperature, and velocity data were obtained for twin-fan configurations in-ground-effect and flow models to aid in predicting pressures and upwash forces on aircraft surfaces were developed. For the basic experiments, 49.5 mm-diameter jets were used, oriented normal to a simulated round plane, with pressurized, heated air providing a jet. The experimental data consisted of: (1) the effect of jet height and temperature on the ground, model, and upwash pressures, and temperatures, (2) the effect of simulated aircraft surfaces on the isolated flow field, (3) the jet-induced forces on a three-dimensional body with various strakes, (4) the effects of non-uniform coannular jets. For the uniform circular jets, temperature was varied from room temperature (24 C) to 232 C. Jet total pressure was varied between 9,300 Pascals and 31,500 Pascals. For the coannular jets, intended to represent turbofan engines, fan temperature was maintained at room temperature while core temperature was varied from room temperature to 437 C. Results are presented.

  14. Liquefaction and soil failure during 1994 northridge earthquake

    USGS Publications Warehouse

    Holzer, T.L.

    1999-01-01

    The 1994 Northridge, Calif., earthquake caused widespread permanent ground deformation on the gently sloping alluvial fan surface of the San Fernando Valley. The ground cracks and distributed deformation damaged both pipelines and surface structures. To evaluate the mechanism of soil failure, detailed subsurface investigations were conducted at four sites. Three sites are underlain by saturated sandy silts with low standard penetration test and cone penetration test values. These soils are similar to those that liquefied during the 1971 San Fernando earthquake, and are shown by widely used empirical relationships to be susceptible to liquefaction. The remaining site is underlain by saturated clay whose undrained shear strength is approximately half the value of the earthquake-induced shear stress at this location. This study demonstrates that the heterogeneous nature of alluvial fan sediments in combination with variations in the ground-water table can be responsible for complex patterns of permanent ground deformation. It may also help to explain some of the spatial variability of strong ground motion observed during the 1994 earthquake. ?? ASCE,.

  15. Evaluation of two inflow control devices for flight simulation of fan noise using a JT15D engine

    NASA Technical Reports Server (NTRS)

    Jones, W. L.; Mcardle, J. G.; Homyak, L.

    1979-01-01

    The program was developed to accurately simulate flight fan noise on ground static test stands. The results generally indicated that both the induct and external ICD's were effective in reducing the inflow turbulence and the fan blade passing frequency tone generated by the turbulence. The external ICD was essentially transparent to the propagating fan tone but the induct ICD caused attenuation under most conditions.

  16. Evaluation of Resuspension from Propeller Wash in DoD Harbors

    DTIC Science & Technology

    2016-09-01

    Environmental Research and Development Center FANS FOV ICP-MS Finite Analytical Navier-Stoker Solver Field of View Inductively Coupled Plasma with...Model (1984) and the Finite Analytical Navier- Stoker Solver (FANS) model (Chen et al., 2003) were set up to simulate and evaluate flow velocities and...model for evaluating the resuspension potential of propeller wash by a tugboat and the FANS model for a DDG. The Finite -Analytic Navier-Stokes (FANS

  17. Wind tunnel performance results of an aeroelastically scaled 2/9 model of the PTA flight test prop-fan

    NASA Technical Reports Server (NTRS)

    Stefko, George L.; Rose, Gayle E.; Podboy, Gary G.

    1987-01-01

    High speed wind tunnel aerodynamic performance tests of the SR-7A advanced prop-fan have been completed in support of the Prop-Fan Test Assessment (PTA) flight test program. The test showed that the SR-7A model performed aerodynamically very well. At the cruise design condition, the SR-7A prop fan had a high measured net efficiency of 79.3 percent.

  18. Shape Changing Airfoil

    NASA Technical Reports Server (NTRS)

    Ott, Eric A.

    2005-01-01

    Scoping of shape changing airfoil concepts including both aerodynamic analysis and materials-related technology assessment effort was performed. Three general categories of potential components were considered-fan blades, booster and compressor blades, and stator airfoils. Based on perceived contributions to improving engine efficiency, the fan blade was chosen as the primary application for a more detailed assessment. A high-level aerodynamic assessment using a GE90-90B Block 4 engine cycle and fan blade geometry indicates that blade camber changes of approximately +/-4deg would be sufficient to result in fan efficiency improvements nearing 1 percent. Constraints related to flight safety and failed mode operation suggest that use of the baseline blade shape with actuation to the optimum cruise condition during a portion of the cycle would be likely required. Application of these conditions to the QAT fan blade and engine cycle was estimated to result in an overall fan efficiency gain of 0.4 percent.

  19. Fault detection and diagnosis for refrigerator from compressor sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keres, Stephen L.; Gomes, Alberto Regio; Litch, Andrew D.

    A refrigerator, a sealed refrigerant system, and method are provided where the refrigerator includes at least a refrigerated compartment and a sealed refrigerant system including an evaporator, a compressor, a condenser, a controller, an evaporator fan, and a condenser fan. The method includes monitoring a frequency of the compressor, and identifying a fault condition in the at least one component of the refrigerant sealed system in response to the compressor frequency. The method may further comprise calculating a compressor frequency rate based upon the rate of change of the compressor frequency, wherein a fault in the condenser fan is identifiedmore » if the compressor frequency rate is positive and exceeds a condenser fan fault threshold rate, and wherein a fault in the evaporator fan is identified if the compressor frequency rate is negative and exceeds an evaporator fan fault threshold rate.« less

  20. V/STOL model fan stage rig design report

    NASA Technical Reports Server (NTRS)

    Cheatham, J. G.; Creason, T. L.

    1983-01-01

    A model single-stage fan with variable inlet guide vanes (VIGV) was designed to demonstrate efficient point operation while providing flow and pressure ratio modulation capability required for a V/STOL propulsion system. The fan stage incorporates a split-flap VIGV with an independently actuated ID flap to permit independent modulation of fan and core engine airstreams, a flow splitter integrally designed into the blade and vanes to completely segregate fan and core airstreams in order to maximize core stream supercharging for V/STOL operation, and an EGV with a variable leading edge fan flap for rig performance optimization. The stage was designed for a maximum flow size of 37.4 kg/s (82.3 lb/s) for compatibility with LeRC test facility requirements. Design values at maximum flow for blade tip velocity and stage pressure ratio are 472 m/s (1550 ft/s) and 1.68, respectively.

  1. Effect of rotor design tip speed on noise of a 1.21 pressure ratio model fan under static conditions

    NASA Technical Reports Server (NTRS)

    Loeffler, I. J.; Lieblein, S.; Stockman, N. O.

    1973-01-01

    Preliminary results are presented for a reverberant-field noise investigation of three fan stages designed for the same overall total pressure ratio of 1.21 at different rotor tip speeds (750, 900, and 1050 ft/sec). The stages were tested statically in a 15-inch-diameter model lift fan installed in a wing pod located in the test section of a wind tunnel. Although the fan stages produced essentially the same design pressure ratio, marked differences were observed in the variation of fan noise with fan operating speed. At design speed, the forward-radiated sound power level was approximately the same for the 750 ft/sec and 900 ft/sec stages. For the 1050 ft/sec stage, the design-speed forward-radiated power level was about 7 db higher due to the generation of multiple pure tone noise.

  2. Effect of rotor design tip speed on noise of a 1.21 pressure ratio model fan under static conditions

    NASA Technical Reports Server (NTRS)

    Loeffler, I. J.; Lieblein, S.; Stockman, N. O.

    1973-01-01

    Preliminary results are presented for a reverberant-field noise investigation of three fan stages designed for the same overall total pressure ratio of 1.21 at different rotor tip speeds (750, 900, and 1050 fps). The stages were tested statically in a 15-in.-dia model lift fan installed in a wing pod located in the test section of a wind tunnel. Although the fan stages produced essentially the same design pressure ratio, marked differences were observed in the variation of fan noise with fan operating speed. At design speed, the forward-radiated sound power level was approximately the same for the 750 and 900 fps stages. For the 1050 fps stage, the design-speed forward-radiated power level was about 7 dB higher due to the generation of multiple pure tone noise.

  3. Drive Fan for the Icing Research Tunnel

    NASA Image and Video Library

    1944-11-21

    View of the drive fan for the Icing Research Tunnel at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory in Cleveland, Ohio. The tunnel was built in the early 1940s to study the formation of ice on aircraft surfaces and methods of preventing or eradicating that ice. Ice buildup adds extra weight, effects aerodynamics, and sometimes blocks airflow through engines. The original 4100-horsepower induction motor was coupled directly to the 24-foot-diameter fan. The 12 wooden fan blades were protected on their leading edge by a neoprene boot. The system could create air speeds up to 300 miles per hour through the tunnel’s 6- by 9-foot test section. The large tail faring extending from the center of the fan is used to guide the airflow down the tunnel in a uniform way. A new 5000-horsepower motor was installed in 1987, and the original fan blades were replaced in 1993.

  4. Aerodynamic Design and Computational Analysis of a Spacecraft Cabin Ventilation Fan

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2010-01-01

    Quieter working environments for astronauts are needed if future long-duration space exploration missions are to be safe and productive. Ventilation and payload cooling fans are known to be dominant sources of noise, with the International Space Station being a good case in point. To address this issue in a cost-effective way, early attention to fan design, selection, and installation has been recommended. Toward that end, NASA has begun to investigate the potential for small-fan noise reduction through improvements in fan aerodynamic design. Using tools and methodologies similar to those employed by the aircraft engine industry, most notably computational fluid dynamics (CFD) codes, the aerodynamic design of a new cabin ventilation fan has been developed, and its aerodynamic performance has been predicted and analyzed. The design, intended to serve as a baseline for future work, is discussed along with selected CFD results

  5. TBCC Fan Stage Operability and Performance

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth L.

    2007-01-01

    NASA s Fundamental Aeronautics Program is investigating turbine-based propulsion systems for access to space because it provides the potential for aircraft-like, space-launch operations that may significantly reduce launch costs and improve safety. Studies performed under NASA s NGLT and the NASP High Speed Propulsion Assessment (HiSPA) program indicated a variable cycle turbofan/ramjet was the best configuration to satisfy access-to-space mission requirements because this configuration maximizes the engine thrust-to-weight ratio while minimizing frontal area. To this end, NASA and GE teamed to design a Mach 4 variable cycle turbofan/ramjet engine for access to space. To enable the wide operating range of a Mach 4+ variable cycle turbofan ramjet required the development of a unique fan stage design capable of multi-point operation to accommodate variations in bypass ratio (10X), fan speed (7X), inlet mass flow (3.5X), inlet pressure (8X), and inlet temperature (3X). The primary goal of the fan stage was to provide a high pressure ratio level with good efficiency at takeoff through the mid range of engine operation, while avoiding stall and losses at the higher flight Mach numbers, without the use of variable inlet guide vanes. Overall fan performance and operability therefore requires major consideration, as competing goals at different operating points and aeromechanical issues become major drivers in the design. To mitigate risk of meeting the unique design requirements for the fan stage, NASA and GE teamed to design and build a 57% engine scaled fan stage to be tested in NASA s transonic compressor facility. The objectives of this test are to assess the aerodynamic and aero mechanic performance and operability characteristics of the fan stage over the entire range of engine operation including: 1) sea level static take-off, 2) transition over large swings in fan bypass ratio, 3) transition from turbofan to ramjet, and 4) fan windmilling operation at high Mach flight conditions. In addition, the fan stage design was validated by performing pre-test CFD analysis using both GE proprietary and NASA s APNASA codes. Herein we will discuss 1) the fan stage design, 2) the experiment including the unique facility and instrumentation, and 3) the comparison of pre-test CFD analysis to initial aerodynamic test results for the baseline fan stage configuration. Measurements and pre-test analysis will be compared at 37%, 50%, 80%, 90%, and 100% of design speed to assess the ability of state-of-the-art design and analysis tools to meet the fan stage performance and operability requirements for turbine based propulsion for access to space.

  6. Effect of Two Advanced Noise Reduction Technologies on the Aerodynamic Performance of an Ultra High Bypass Ratio Fan

    NASA Technical Reports Server (NTRS)

    Hughes, Christoper E.; Gazzaniga, John A.

    2013-01-01

    A wind tunnel experiment was conducted in the NASA Glenn Research Center anechoic 9- by 15-Foot Low-Speed Wind Tunnel to investigate two new advanced noise reduction technologies in support of the NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project. The goal of the experiment was to demonstrate the noise reduction potential and effect on fan model performance of the two noise reduction technologies in a scale model Ultra-High Bypass turbofan at simulated takeoff and approach aircraft flight speeds. The two novel noise reduction technologies are called Over-the-Rotor acoustic treatment and Soft Vanes. Both technologies were aimed at modifying the local noise source mechanisms of the fan tip vortex/fan case interaction and the rotor wake-stator interaction. For the Over-the-Rotor acoustic treatment, two noise reduction configurations were investigated. The results showed that the two noise reduction technologies, Over-the-Rotor and Soft Vanes, were able to reduce the noise level of the fan model, but the Over-the-Rotor configurations had a significant negative impact on the fan aerodynamic performance; the loss in fan aerodynamic efficiency was between 2.75 to 8.75 percent, depending on configuration, compared to the conventional solid baseline fan case rubstrip also tested. Performance results with the Soft Vanes showed that there was no measurable change in the corrected fan thrust and a 1.8 percent loss in corrected stator vane thrust, which resulted in a total net thrust loss of approximately 0.5 percent compared with the baseline reference stator vane set.

  7. Dynamic response to strike-slip tectonic control on the deposition and evolution of the Baranof Fan, Gulf of Alaska

    USGS Publications Warehouse

    Walton, Maureen A. L.; Gulick, Sean P. S.; Reece, Robert S.; Barth, Ginger A.; Christeson, Gail L.; VanAvendonk, Harm J.

    2014-01-01

    The Baranof Fan is one of three large deep-sea fans in the Gulf of Alaska, and is a key component in understanding large-scale erosion and sedimentation patterns for southeast Alaska and western Canada. We integrate new and existing seismic reflection profiles to provide new constraints on the Baranof Fan area, geometry, volume, and channel development. We estimate the fan’s area and total sediment volume to be ∼323,000 km2 and ∼301,000 km3, respectively, making it among the largest deep-sea fans in the world. We show that the Baranof Fan consists of channel-levee deposits from at least three distinct aggradational channel systems: the currently active Horizon and Mukluk channels, and the waning system we call the Baranof channel. The oldest sedimentary deposits are in the northern fan, and the youngest deposits at the fan’s southern extent; in addition, the channels seem to avulse southward consistently through time. We suggest that Baranof Fan sediment is sourced from the Coast Mountains in southeastern Alaska, transported offshore most recently via fjord to glacial sea valley conduits. Because of the translation of the Pacific plate northwest past sediment sources on the North American plate along the Queen Charlotte strike-slip fault, we suggest that new channel formation, channel beheadings, and southward-migrating channel avulsions have been influenced by regional tectonics. Using a simplified tectonic reconstruction assuming a constant Pacific plate motion of 4.4 cm/yr, we estimate that Baranof Fan deposition initiated ca. 7 Ma.

  8. Wooden Fan Blades in the Icing Research Tunnel

    NASA Image and Video Library

    1979-02-21

    The drive fan for the Icing Research Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center in Cleveland, Ohio. The Lewis Icing Research Program, which began during World War II, utilized both research aircraft and the icing tunnel throughout the 1940s and 1950s. The research program was cancelled in 1958 as Lewis focused on space. The tunnel continued to be used occasionally for industrial customers in the 1960s and early 1970s. Lewis’ icing research was formally reinstituted just months before this photograph in 1978. The Icing Research Tunnel’s original 4100-horsepower induction motor was coupled directly to the 24-foot-diameter fan. Neoprene boots protected the leading edges of the 12 spruce fan blades. The system generated air speeds up to 300 miles per hour through the tunnel’s 6- by 9-foot test section. A large tail faring extended from the center of the fan to uniformly guide the airflow down the tunnel. NASA Headquarters ordered modifications to the Icing Research Tunnel in 1985 after wooden fan blades in a wind tunnel at Langley Research Center failed. Despite the fact that the large hub, seen in the center of the fan, provided an extra layer of protection against blade failure, Headquarters ordered the installation of a new set of wooden blades. The blades were ordered but not installed. The tunnel technicians instead agreed to inspect the fan after each run. A new 5000-horsepower motor was installed in 1987, and the original fan blades were finally replaced in 1993.

  9. Crystal structure of a Fanconi anemia-associated nuclease homolog bound to 5' flap DNA: basis of interstrand cross-link repair by FAN1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwon, Gwang Hyeon; Kim, Youngran; Liu, Yaqi

    2014-10-15

    Fanconi anemia (FA) is an autosomal recessive genetic disorder caused by defects in any of 15 FA genes responsible for processing DNA interstrand cross-links (ICLs). The ultimate outcome of the FA pathway is resolution of cross-links, which requires structure-selective nucleases. FA-associated nuclease 1 (FAN1) is believed to be recruited to lesions by a monoubiquitinated FANCI–FANCD2 (ID) complex and participates in ICL repair. Here, we determined the crystal structure of Pseudomonas aeruginosa FAN1 (PaFAN1) lacking the UBZ (ubiquitin-binding zinc) domain in complex with 5' flap DNA. All four domains of the right-hand-shaped PaFAN1 are involved in DNA recognition, with each domainmore » playing a specific role in bending DNA at the nick. The six-helix bundle that binds the junction connects to the catalytic viral replication and repair (VRR) nuclease (VRR nuc) domain, enabling FAN1 to incise the scissile phosphate a few bases distant from the junction. The six-helix bundle also inhibits the cleavage of intact Holliday junctions. PaFAN1 shares several conserved features with other flap structure-selective nucleases despite structural differences. A clamping motion of the domains around the wedge helix, which acts as a pivot, facilitates nucleolytic cleavage. The PaFAN1 structure provides insights into how archaeal Holliday junction resolvases evolved to incise 5' flap substrates and how FAN1 integrates with the FA complex to participate in ICL repair.« less

  10. Experimental and numerical analysis on noise reduction in a multi-blade centrifugal fan

    NASA Astrophysics Data System (ADS)

    Chen, X. J.; Y Cao, T.; Su, J.; Qin, G. L.

    2013-12-01

    In this work, analysis on noise source and reduction in a multi-blade centrifugal fan used for air-conditioners was carried out by experimental and numerical methods. Firstly, an experimental system using microphone mounted on volute surface for measuring surface pressure fluctuations of volute was designed and introduced, then surface pressure fluctuations of the whole volute for a multi-blade centrifugal fan were measured by this system, and the inlet noise for this fan was also obtained. And then, based on the experimental results, the aerodynamic noise source of the studied fan was analysed. The surface pressure fluctuations of the volute showed that there were largest surface pressure fluctuations near the volute tongue, and peaks appeared at the Blade Passing Frequency (BPF). The spectra of fan inlet noise showed that the peaks also appeared at BPF, and noise levels in a wide range of frequency were also larger. Secondly, the internal flow of the fan was simulated by commercial software under the same conditions with the experiment, and then the fluid flow and acoustic power field were obtained and discussed. The contours of acoustic power level showed that the larger noise was generated at the impeller area close to the outlet of scroll and at the volute tongue, which is same as that from experiment. Based on all of the results, we can find that the vortex noise is an important part of fan noise for the studied fan, and the rotation noise also cannot be neglected. Finally, several reduction methods that are thought to be effective based on experimental and numerical results were suggested.

  11. Space Radar Image of Death Valley, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This image shows Death Valley, California, centered at 36.629 degrees north latitude, 117.069 degrees west longitude. The image shows Furnace Creek alluvial fan and Furnace Creek Ranch at the far right, and the sand dunes near Stove Pipe Wells at the center. The dark fork-shaped feature between Furnace Creek fan and the dunes is a smooth flood-plain which encloses Cottonball Basin. This SIR-C/X-SAR supersite is an area of extensive field investigations and has been visited by both Space Radar Lab astronaut crews. Elevations in the valley range from 70 meters (230 feet) below sea level, the lowest in the United States, to more than 3,300 meters (10,800 feet) above sea level. Scientists are using SIR-C/X-SAR data from Death Valley to help answer a number of different questions about Earth's geology. One question concerns how alluvial fans are formed and change through time under the influence of climatic changes and earthquakes. Alluvial fans are gravel deposits that wash down from the mountains over time. They are visible in the image as circular, fan-shaped bright areas extending into the darker valley floor from the mountains. Information about the alluvial fans helps scientists study Earth's ancient climate. Scientists know the fans are built up through climatic and tectonic processes and they will use the SIR-C/X-SAR data to understand the nature and rates of weathering processes on the fans, soil formation and the transport of sand and dust by the wind. SIR-C/X-SAR's sensitivity to centimeter-scale (inch-scale) roughness provides detailed maps of surface texture. Such information can be used to study the occurrence and movement of dust storms and sand dunes. The goal of these studies is to gain a better understanding of the record of past climatic changes and the effects of those changes on a sensitive environment. This may lead to a better ability to predict future response of the land to different potential global climate-change scenarios. Death Valley is also one of the primary calibration sites for SIR-C/X-SAR. The bright dots near the center of the image are corner reflectors that have been set-up to calibrate the radar as the shuttle passes overhead. Thirty triangular-shaped reflectors (they look like aluminum pyramids) have been deployed by the calibration team from JPL over a 40- by 40-kilometer (25- by 25-mile) area in and around Death Valley. The calibration team will also deploy transponders (electronic reflectors) and receivers to measure the radar signals from SIR-C/X-SAR on the ground. SIR-C/X-SAR is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  12. Effect of Trailing Edge Flow Injection on Fan Noise and Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Fite, E. Brian; Woodward, Richard P.; Podboy, Gary G.

    2006-01-01

    An experimental investigation using trailing edge blowing for reducing fan rotor/guide vane wake interaction noise was completed in the NASA Glenn 9- by 15-foot Low Speed Wind Tunnel. Data were acquired to measure noise, aerodynamic performance, and flow features for a 22" tip diameter fan representative of modern turbofan technology. The fan was designed to use trailing edge blowing to reduce the fan blade wake momentum deficit. The test objective was to quantify noise reductions, measure impacts on fan aerodynamic performance, and document the flow field using hot-film anemometry. Measurements concentrated on approach, cutback, and takeoff rotational speeds as those are the primary conditions of acoustic interest. Data are presented for a 2% (relative to overall fan flow) trailing edge injection rate and show a 2 dB reduction in Overall Sound Power Level (OAPWL) at all fan test speeds. The reduction in broadband noise is nearly constant and is approximately 1.5 dB up to 20 kHz at all fan speeds. Measurements of tone noise show significant variation, as evidenced by reductions of up to 6 dB in the 2 BPF tone at 6700 rpm.: and increases of nearly 2 dB for the 4 BPF tone at approach speed. Aerodynamic performance measurements show the fan with 2 % injection has an overall efficiency that is comparable to the baseline fan and operates, as intended, with nearly the same pressure ratio and mass flow parameters. Hot-film measurements obtained at the approach operating condition indicate that mean blade wake filling in the tip region was not as significant as expected. This suggests that additional acoustic benefits could be realized if the trailing edge blowing could be modified to provide better filling of the wake momentum deficit. Nevertheless, the hot-film measurements indicate that the trailing edge blowing provided significant reductions in blade wake turbulence. Overall, these results indicate that further work may be required to fully understand the proper implementation of injecting flow at/near the trailing edge as a wake filling strategy. However, data do support the notion that noise reductions can be realized not only for tones but perhaps more importantly, also for broadband. Furthermore, the technique can be implemented without adversely effecting overall fan aerodynamic performance.

  13. Mars analogue alluvial fans along the Hilina Pali fault system, Island of Hawaíi

    NASA Astrophysics Data System (ADS)

    Morgan, A. M.; Craddock, R. A.

    2016-12-01

    Alluvial fans across the martian surface act as a testament to the planet's wetter past, but the magnitude and duration of runoff events and their formative environment remain poorly constrained. Here we describe the geomorphology and interpreted formative sedimentary processes of a series of coarse grained alluvial fans along the Hilina Pali fault system at the south end of the Island of Hawaíi. The Hilina Pali is a 500m fault scarp similar in slope to the interior of a crater rim, the preferential location for fan formation on Mars. Channels feeding the fans drain the Káū Desert on the leeward side of the Kilauea volcano. These channels take advantage of lava tubes and depressions in lava flows, and subsequent lava flows preferentially flow within channels. This creates a complicated stratigraphy that is difficult to interpret solely from remote sensing data. From measured channel cross sections and woody debris we calculate feeder channel discharges of 1.6-11.4 m3/s, implying runoff production rates of up to 4cm/hour. This value is in the range of rainfall that can be delivered during large cold core winter cyclones, locally known as `Kona storms', which can generate precipitation in excess of 1m/24h. While fluid is sourced from a broad area throughout the southern Káū Desert, interpolation-derived volumes of the fans and eroded alcoves above the fans suggest that fan sediment primarily is sourced directly from edge of the pali itself. We find that similar to fans on Mars, the Hilina Pali fans are relatively large relative to their contributing basin areas. However, the Hawaiian fans vary widely in their individual relations between area, slope, and grain size. We hypothesize this is due to variations in fine grained sediment supply. The fines required for increased suspension during debris flows are sourced from sand dunes and sand sheets consisting of volcanic tephra located several hundred meters north of the pali, and these dunes are unevenly distributed across the landscape. We are currently investigating the rheological properties of these flow events and applying results to a landform evolution model to investigate how fan growth is affected by the rapidly deforming Hilina Pali escarpment and varying sediment supply and basin rock erodibility.

  14. Investigation of Pneumatic Inlet and Diffuser Blowing on a Ducted Fan Propulsor in Static Thrust Operation

    NASA Technical Reports Server (NTRS)

    Kondor, Shayne; Englar, Robert J.; Lee, Warren J.

    2003-01-01

    Tilting ducted fans present a solution for the lifting and forward flight propulsion requirements of VTOL aircraft. However, the geometry of the duct enshrouding the propeller has great a effect on the efficiency of the fan in various flight modes. Shroud geometry controls the velocity and pressure at the face of the fan, while maintaining a finite loading out at the tips of the fan blades. A duct tailored for most efficient generation of static lifting thrust will generally suffer from performance deficiencies in forward flight. The converse is true as well, leaving the designer with a difficult trade affecting the overall performance and sizing of the aircraft. Ideally, the shroud of a vertical lifting fan features a generous bell mouth inlet promoting acceleration of flow into the face of the fan, and terminating in a converging nozzle at the exit. Flow entering the inlet is accelerated into the fan by the circulation about the shroud, resulting in an overall increase in thrust compared to an open propeller operating under the same conditions . The accelerating shroud design is often employed in lifting ducted fans to benefit from the thrust augmentation; however, such shroud designs produce significant drag penalties in axial flight, thus are unsuitable for efficient forward flight applications. Decelerating, or diffusing, duct designs are employed for higher speed forward flight configurations. The lower circulation on the shroud tends to decelerate the flow into the face of the fan, which is detrimental to static thrust development; however, net thrust is developed on the shroud while the benefits of finite blade loading are retained. With judicious shroud design for intended flight speeds, a net increase in efficiency can be obtained over an open propeller. In this experiment, conducted under contract to NASA LaRC (contract NAG-1-02093) circulation control is being applied to a mildly diffusing shroud design, intended for improved forward flight performance, to generate circulation in the sense of an accelerating duct design. The intent is to improve static thrust performance of a ducted fan tailored for high speed axial flight, while at the same time significantly reduce the pressure signature on the ground plane. Circulation control on the fan shroud is achieved by the Coanda effect.

  15. Resonance Effects in the NASA Transonic Flutter Cascade Facility

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Capece, V. R.; Ford, C. T.

    2003-01-01

    Investigations of unsteady pressure loadings on the blades of fans operating near the stall flutter boundary are carried out under simulated conditions in the NASA Transonic Flutter Cascade facility (TFC). It has been observed that for inlet Mach numbers of about 0.8, the cascade flowfield exhibits intense low-frequency pressure oscillations. The origins of these oscillations were not clear. It was speculated that this behavior was either caused by instabilities in the blade separated flow zone or that it was a tunnel resonance phenomenon. It has now been determined that the strong low-frequency oscillations, observed in the TFC facility, are not a cascade phenomenon contributing to blade flutter, but that they are solely caused by the tunnel resonance characteristics. Most likely, the self-induced oscillations originate in the system of exit duct resonators. For sure, the self-induced oscillations can be significantly suppressed for a narrow range of inlet Mach numbers by tuning one of the resonators. A considerable amount of flutter simulation data has been acquired in this facility to date, and therefore it is of interest to know how much this tunnel self-induced flow oscillation influences the experimental data at high subsonic Mach numbers since this facility is being used to simulate flutter in transonic fans. In short, can this body of experimental data still be used reliably to verify computer codes for blade flutter and blade life predictions? To answer this question a study on resonance effects in the NASA TFC facility was carried out. The results, based on spectral and ensemble averaging analysis of the cascade data, showed that the interaction between self-induced oscillations and forced blade motion oscillations is very weak and can generally be neglected. The forced motion data acquired with the mistuned tunnel, when strong self-induced oscillations were present, can be used as reliable forced pressure fluctuations provided that they are extracted from raw data sets by an ensemble averaging procedure.

  16. Lift/cruise fan V/STOL technology aircraft design definition study. Volume 2: Propulsion transmission system design

    NASA Technical Reports Server (NTRS)

    Obrien, W. J.

    1976-01-01

    Two types of lift/cruise fan technology aircraft were conceptually designed. One aircraft used turbotip fans pneumatically interconnected to three gas generators, and the other aircraft used variable pitch fans mechanically interconnected to three turboshaft engines. The components of each propulsion transmission system were analyzed and designed to the depth necessary to determine areas of risk, development methods, performance, weights and costs. The types of materials and manufacturing processes were identified to show that the designs followed a low cost approach. The lift/cruise fan thrust vectoring hoods, which are applicable to either aircraft configuration, were also evaluated to assure a low cost/low risk approach.

  17. Conceptual design studies of a V/STOL civil lift fan transport including effect of size and fan pressure ratio

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Conceptual design studies of V/STOL Lift Fan Commercial short-haul transport aircraft for the 1980-85 time period were studied to determine their technical and economic feasibility. The remote lift fan configurations with a variation in fan pressure ratio from 1.2 to 1.5 were investigated. Also studied were variation in stage length from 200 nautical miles to 800 nautical miles and cruise Mach numbers of 0.75 and 0.85. These results indicate a four engine configuration was feasible. The 95 PNdb noise footprint would be approximately 45 acres and the DOC's would be about 60% greater than conventional transports.

  18. Thrust modulation methods for a subsonic V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Woollett, R. R.

    1981-01-01

    Low speed wind tunnel tests were conducted to assess four methods for attaining thrust modulation for V/STOL aircraft. The four methods were: (1) fan speed change, (2) fan nozzle exit area change, (3) variable pitch rotor (VPR) fan, and (4) variable inlet guide vanes (VIGV). The interrelationships between inlet and thrust modulation system were also investigated using a double slotted inlet and thick lip inlet. Results can be summarized as: (1) the VPR and VIGV systems were the most promising, (2) changes in blade angle to obtain changes in fan thrust have significant implications for the inlet, and (3) both systems attained required level of thrust with acceptable levels of fan blade stress.

  19. Supersonic fan engines for military aircraft

    NASA Technical Reports Server (NTRS)

    Franciscus, L. C.

    1983-01-01

    Engine performance and mission studies were performed for turbofan engines with supersonic through-flow fans. A Mach 2.4 CTOL aircraft was used in the study. Two missions were considered: a long range penetrator mission and a long range intercept mission. The supersonic fan engine is compared with an augmented mixed flow turbofan in terms of mission radius for a fixed takeoff gross weight of 75,000 lbm. The mission radius of aircraft powered by supersonic fan engines could be 15 percent longer than aircraft powered with conventional turbofan engines at moderate thrust to gross weight ratios. The climb and acceleration performance of the supersonic fan engines is better than that of the conventional turbofan engines.

  20. Performance potential of air turbo-ramjet employing supersonic through-flow fan

    NASA Technical Reports Server (NTRS)

    Kepler, C. E.; Champagne, G. A.

    1989-01-01

    A study was conducted to assess the performance potential of a supersonic through-flow fan in an advanced engine designed to power a Mach-5 cruise vehicle. It included a preliminary evaluation of fan performance requirements and the desirability of supersonic versus subsonic combustion, the design and performance of supersonic fans, and the conceptual design of a single-pass air-turbo-rocket/ramjet engine for a Mach 5 cruise vehicle. The study results showed that such an engine could provide high thrust over the entire speed range from sea-level takeoff to Mach 5 cruise, especially over the transonic speed range, and high fuel specific impulse at the Mach 5 cruise condition, with the fan windmilling.

Top