Sample records for induced elevated levels

  1. Effect of sulfonylureas administered centrally on the blood glucose level in immobilization stress model.

    PubMed

    Sharma, Naveen; Sim, Yun-Beom; Park, Soo-Hyun; Lim, Su-Min; Kim, Sung-Su; Jung, Jun-Sub; Hong, Jae-Seung; Suh, Hong-Won

    2015-05-01

    Sulfonylureas are widely used as an antidiabetic drug. In the present study, the effects of sulfonylurea administered supraspinally on immobilization stress-induced blood glucose level were studied in ICR mice. Mice were once enforced into immobilization stress for 30 min and returned to the cage. The blood glucose level was measured 30, 60, and 120 min after immobilization stress initiation. We found that intracerebroventricular (i.c.v.) injection with 30 µg of glyburide, glipizide, glimepiride or tolazamide attenuated the increased blood glucose level induced by immobilization stress. Immobilization stress causes an elevation of the blood corticosterone and insulin levels. Sulfonylureas pretreated i.c.v. caused a further elevation of the blood corticosterone level when mice were forced into the stress. In addition, sulfonylureas pretreated i.c.v. alone caused an elevation of the plasma insulin level. Furthermore, immobilization stress-induced insulin level was reduced by i.c.v. pretreated sulfonylureas. Our results suggest that lowering effect of sulfonylureas administered supraspinally against immobilization stress-induced increase of the blood glucose level appears to be primarily mediated via elevation of the plasma insulin level.

  2. Is moral elevation an approach-oriented emotion?

    PubMed Central

    Van de Vyver, Julie; Abrams, Dominic

    2017-01-01

    Abstract Two studies were designed to test whether moral elevation should be conceptualized as an approach-oriented emotion. The studies examined the relationship between moral elevation and the behavioral activation and inhibition systems. Study 1 (N = 80) showed that individual differences in moral elevation were associated with individual differences in behavioral activation but not inhibition. Study 2 (N = 78) showed that an elevation-inducing video promoted equally high levels of approach orientation as an anger-inducing video and significantly higher levels of approach orientation than a control video. Furthermore, the elevation-inducing stimulus (vs. the control condition) significantly promoted prosocial motivation and this effect was sequentially mediated by feelings of moral elevation followed by an approach-oriented state. Overall the results show unambiguous support for the proposal that moral elevation is an approach-oriented emotion. Applied and theoretical implications are discussed. PMID:28191027

  3. Gestational exposure to elevated testosterone levels induces hypertension via heightened vascular angiotensin II type 1 receptor signaling in rats.

    PubMed

    Chinnathambi, Vijayakumar; More, Amar S; Hankins, Gary D; Yallampalli, Chandra; Sathishkumar, Kunju

    2014-07-01

    Pre-eclampsia is a life-threatening pregnancy disorder whose pathogenesis remains unclear. Plasma testosterone levels are elevated in pregnant women with pre-eclampsia and polycystic ovary syndrome, who often develop gestational hypertension. We tested the hypothesis that increased gestational testosterone levels induce hypertension via heightened angiotensin II signaling. Pregnant Sprague-Dawley rats were injected with vehicle or testosterone propionate from Gestational Day 15 to 19 to induce a 2-fold increase in plasma testosterone levels, similar to levels observed in clinical conditions like pre-eclampsia. A subset of rats in these two groups was given losartan, an angiotensin II type 1 receptor antagonist by gavage during the course of testosterone exposure. Blood pressure levels were assessed through a carotid arterial catheter and endothelium-independent vascular reactivity through wire myography. Angiotensin II levels in plasma and angiotensin II type 1 receptor expression in mesenteric arteries were also examined. Blood pressure levels were significantly higher on Gestational Day 20 in testosterone-treated dams than in controls. Treatment with losartan during the course of testosterone exposure significantly attenuated testosterone-induced hypertension. Plasma angiotensin II levels were not significantly different between control and testosterone-treated rats; however, elevated testosterone levels significantly increased angiotensin II type 1 receptor protein levels in the mesenteric arteries. In testosterone-treated rats, mesenteric artery contractile responses to angiotensin II were significantly greater, whereas contractile responses to K(+) depolarization and phenylephrine were unaffected. The results demonstrate that elevated testosterone during gestation induces hypertension in pregnant rats via heightened angiotensin II type 1 receptor-mediated signaling, providing a molecular mechanism linking elevated maternal testosterone levels with gestational hypertension. © 2014 by the Society for the Study of Reproduction, Inc.

  4. Gestational Exposure to Elevated Testosterone Levels Induces Hypertension via Heightened Vascular Angiotensin II Type 1 Receptor Signaling in Rats1

    PubMed Central

    Chinnathambi, Vijayakumar; More, Amar S.; Hankins, Gary D.; Yallampalli, Chandra; Sathishkumar, Kunju

    2014-01-01

    ABSTRACT Pre-eclampsia is a life-threatening pregnancy disorder whose pathogenesis remains unclear. Plasma testosterone levels are elevated in pregnant women with pre-eclampsia and polycystic ovary syndrome, who often develop gestational hypertension. We tested the hypothesis that increased gestational testosterone levels induce hypertension via heightened angiotensin II signaling. Pregnant Sprague-Dawley rats were injected with vehicle or testosterone propionate from Gestational Day 15 to 19 to induce a 2-fold increase in plasma testosterone levels, similar to levels observed in clinical conditions like pre-eclampsia. A subset of rats in these two groups was given losartan, an angiotensin II type 1 receptor antagonist by gavage during the course of testosterone exposure. Blood pressure levels were assessed through a carotid arterial catheter and endothelium-independent vascular reactivity through wire myography. Angiotensin II levels in plasma and angiotensin II type 1 receptor expression in mesenteric arteries were also examined. Blood pressure levels were significantly higher on Gestational Day 20 in testosterone-treated dams than in controls. Treatment with losartan during the course of testosterone exposure significantly attenuated testosterone-induced hypertension. Plasma angiotensin II levels were not significantly different between control and testosterone-treated rats; however, elevated testosterone levels significantly increased angiotensin II type 1 receptor protein levels in the mesenteric arteries. In testosterone-treated rats, mesenteric artery contractile responses to angiotensin II were significantly greater, whereas contractile responses to K+ depolarization and phenylephrine were unaffected. The results demonstrate that elevated testosterone during gestation induces hypertension in pregnant rats via heightened angiotensin II type 1 receptor-mediated signaling, providing a molecular mechanism linking elevated maternal testosterone levels with gestational hypertension. PMID:24855104

  5. Effects of morphine on stress induced anxiety in rats: role of nitric oxide and Hsp70.

    PubMed

    Joshi, Jagdish C; Ray, Arunabha; Gulati, Kavita

    2015-02-01

    The present study evaluated the effects of morphine on acute and chronic restraint stress (RS) induced anxiety modulation and the possible involvement of nitric oxide (NO) and heat shock proteins (Hsp70) during such effects. Acute RS (×1) induced anxiogenesis in the elevated plus maze (EPM) test which was associated with lowered brain NO metabolites (NOx) and elevated Hsp70 levels. Pretreatment with morphine (1 and 5 mg/kg) and L-arginine (500 mg/kg) attenuated the RS effects on EPM activity and brain NOx, whereas, Hsp70 levels were further augmented. Co-administration of both agents showed synergistic effects. By contrast, repeated RS (×15) did not induce any significant changes in EPM activity or brain NOx, but brain Hsp70 levels stayed elevated. Administration of morphine or L-arginine prior to chronic RS did not influence such chronic stress induced changes in behavioral and biochemical markers, but appreciably attenuated chronic RS induced elevation in Hsp70 levels. These results suggest that acute and chronic RS induced anxiety modulations were differentially influenced by morphine and L-arginine and that complex interactions involving brain NO and unregulated Hsp70 could regulate such effects. Copyright © 2014. Published by Elsevier Inc.

  6. Comparative evaluation of different extracts of leaves of Psidium guajava Linn. for hepatoprotective activity.

    PubMed

    Roy, Chanchal K; Das, Amit Kumar

    2010-01-01

    The study was designed to evaluate the hepatoprotective activity of different extracts (petroleum ether, chloroform, ethyl acetate, methanol and aqueous) of P. guajava in acute experimental liver injury induced by carbon tetrachloride and paracetamol. The effects observed were compared with a known hepatoprotective agent, silymarin (100 mg/kg p.o.). In the acute liver damage induced by different hepatotoxins, P. guajava methanolic leaf extract (200 mg/kg, p.o.) significantly reduced the elevated serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and bilirubin in carbon tetrachloride and paracetamol induced hepatotoxicity. P. guajava ethyl acetate leaf extract (200 mg/kg, p.o.) significantly reduced the elevated serum levels of aspartate aminotransferase, alanine aminotransferase and bilirubin in carbon tetrachloride induced hepatotoxicity whereas P. guajava aqueous leaf extract (200 mg/kg, p.o.) significantly reduced the elevated serum levels of alkaline phosphatase, alanine aminotransferase and bilirubin in carbon tetrachloride induced hepatotoxicity. P. guajava ethyl acetate and aqueous leaf extracts (200 mg/kg, p.o.) significantly reduced the elevated serum levels of aspartate aminotransferase in paracetamol induced hepatotoxicity. Histological examination of the liver tissues supported the hepatoprotection. It is concluded that the methanolic extract of leaves of Psidium guajava plant possesses better hepatoprotective activity compared to other extracts.

  7. Lowering glucose level elevates [Ca2+]i in hypothalamic arcuate nucleus NPY neurons through P/Q-type Ca2+ channel activation and GSK3β inhibition

    PubMed Central

    Chen, Yu; Zhou, Jun; Xie, Na; Huang, Chao; Zhang, Jun-qi; Hu, Zhuang-li; Ni, Lan; Jin, You; Wang, Fang; Chen, Jian-guo; Long, Li-hong

    2012-01-01

    Aim: To identify the mechanisms underlying the elevation of intracellular Ca2+ level ([Ca2+]i) induced by lowering extracellular glucose in rat hypothalamic arcuate nucleus NPY neurons. Methods: Primary cultures of hypothalamic arcuate nucleus (ARC) neurons were prepared from Sprague-Dawley rats. NPY neurons were identified with immunocytochemical method. [Ca2+]i was measured using fura-2 AM. Ca2+ current was recorded using whole-cell patch clamp recording. AMPK and GSK3β levels were measured using Western blot assay. Results: Lowering glucose level in the medium (from 10 to 1 mmol/L) induced a transient elevation of [Ca2+]i in ARC neurons, but not in hippocampal and cortical neurons. The low-glucose induced elevation of [Ca2+]i in ARC neurons depended on extracellular Ca2+, and was blocked by P/Q-type Ca2+channel blocker ω-agatoxin TK (100 nmol/L), but not by L-type Ca2+ channel blocker nifedipine (10 μmol/L) or N-type Ca2+channel blocker ω-conotoxin GVIA (300 nmol/L). Lowering glucose level increased the peak amplitude of high voltage-activated Ca2+ current in ARC neurons. The low-glucose induced elevation of [Ca2+]i in ARC neurons was blocked by the AMPK inhibitor compound C (20 μmol/L), and enhanced by the GSK3β inhibitor LiCl (10 mmol/L). Moreover, lowering glucose level induced the phosphorylation of AMPK and GSK3β, which was inhibited by compound C (20 μmol/L). Conclusion: Lowering glucose level enhances the activity of P/Q type Ca2+channels and elevates [Ca2+]i level in hypothalamic arcuate nucleus neurons via inhibition of GSK3β. PMID:22504905

  8. Endocrine antecedents of polycystic ovary syndrome (PCOS) in fetal and infant prenatally androgenized female rhesus monkeys

    PubMed Central

    Abbott, David H; Barnett, Deborah K; Levine, Jon E; Padmanabhan, Vasantha; Dumesic, Daniel A; Jacoris, Steve; Tarantal, Alice F

    2008-01-01

    Experimentally induced fetal androgen excess induces polycystic ovary syndrome (PCOS)-like traits in adult female rhesus monkeys. Developmental changes leading to this endocrinopathy are not known. We therefore studied 15 time-mated, gravid female rhesus monkeys with known female fetuses. Nine dams received daily subcutaneous injections of 15 mg testosterone propionate (TP) and six received injections of oil vehicle (controls) from 40 through 80 days of gestation (term 165 [range: ±10] days), and all fetuses were delivered by Cesarean-section using established methods at term. Ultrasound-guided fetal blood sample collection and peripheral venous sample collection of dams and subsequent infants enabled determination of circulating levels of steroid hormones, LH and FSH. TP injections elevated serum testosterone and androstenedione levels in the dams and prenatally androgenized (PA) fetuses. After cessation of TP injections, testosterone levels mostly normalized, while serum androstenedione levels in PA infants were elevated. TP injections did not increase estrogen levels in the dams, PA fetuses and infants, yet conjugated estrogen levels were elevated in the TP-injected dams. Serum levels of LH and FSH were elevated in late gestation PA fetuses, and LH levels were elevated in PA infants. These studies suggest that experimentally-induced fetal androgen excess increases gonadotropin secretion in PA female fetuses and infants, and elevates endogenous androgen levels in PA infants. Thus, in this nonhuman primate model, differential programming of the fetal hypothalamo-pituitary unit with concomitant hyperandrogenism provides evidence to suggest developmental origins of LH and androgen excess in adulthood. PMID:18385445

  9. Dopamine elevates intracellular zinc concentration in cultured rat embryonic cortical neurons through the cAMP-nitric oxide signaling cascade.

    PubMed

    Hung, Hui-Hsing; Kao, Lung-Sen; Liu, Pei-Shan; Huang, Chien-Chang; Yang, De-Ming; Pan, Chien-Yuan

    2017-07-01

    Zinc ion (Zn 2+ ), the second most abundant transition metal after iron in the body, is essential for neuronal activity and also induces toxicity if the concentration is abnormally high. Our previous results show that exposure of cultured cortical neurons to dopamine elevates intracellular Zn 2+ concentrations ([Zn 2+ ] i ) and induces autophagosome formation but the mechanism is not clear. In this study, we characterized the signaling pathway responsible for the dopamine-induced elevation of [Zn 2+ ] i and the effect of [Zn 2+ ] i in modulating the autophagy in cultured rat embryonic cortical neurons. N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), a membrane-permeable Zn 2+ chelator, could rescue the cell death and suppress the autophagosome puncta number induced by dopamine. Dopamine treatment increased the lipidation level of the endogenous microtubule-associated protein 1A/1B-light chain 3 (LC3 II), an autophagosome marker. TPEN added 1h before, but not after, dopamine treatment suppressed the dopamine-induced elevation of LC3 II level. Inhibitors of the dopamine D1-like receptor, protein kinase A (PKA), and NOS suppressed the dopamine-induced elevation of [Zn 2+ ] i . PKA activators and NO generators directly increased [Zn 2+ ] i in cultured neurons. Through cell fractionation, proteins with m.w. values between 5 and 10kD were found to release Zn 2+ following NO stimulation. In addition, TPEN pretreatment and an inhibitor against PKA could suppress the LC3 II level increased by NO and dopamine, respectively. Therefore, our results demonstrate that dopamine-induced elevation of [Zn 2+ ] i is mediated by the D1-like receptor-PKA-NO pathway and is important in modulating the cell death and autophagy. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Vitamin D3-induced hypercalcemia increases carbon tetrachloride-induced hepatotoxicity through elevated oxidative stress in mice

    PubMed Central

    Usuda, Haruki; Miura, Nobuhiko; Fukuishi, Nobuyuki; Nonogaki, Tsunemasa; Onosaka, Satomi

    2017-01-01

    The aim of this study was to determine whether calcium potentiates acute carbon tetrachloride (CCl4) -induced toxicity. Elevated calcium levels were induced in mice by pre-treatment with cholecalciferol (vitamin D3; V.D3), a compound that has previously been shown to induce hypercalcemia in human and animal models. As seen previously, mice injected with CCl4 exhibited increased plasma levels of alanine aminotransferase, aspartate aminotransferase, and creatinine; transient body weight loss; and increased lipid peroxidation along with decreased total antioxidant power, glutathione, ATP, and NADPH. Pre-treatment of these animals with V.D3 caused further elevation of the values of these liver functional markers without altering kidney functional markers; continued weight loss; a lower lethal threshold dose of CCl4; and enhanced effects on lipid peroxidation and total antioxidant power. In contrast, exposure to V.D3 alone had no effect on plasma markers of liver or kidney damage or on total antioxidant power or lipid peroxidation. The potentiating effect of V.D3 was positively correlated with elevation of hepatic calcium levels. Furthermore, direct injection of CaCl2 also enhanced CCl4-induced hepatic injury. Since CaCl2 induced hypercalcemia transiently (within 3 h of injection), our results suggest that calcium enhances the CCl4-induced hepatotoxicity at an early stage via potentiation of oxidative stress. PMID:28448545

  11. p21{sup WAF1/Cip1/Sdi1} knockout mice respond to doxorubicin with reduced cardiotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrand, Jerome; Xu, Beibei; Morrissy, Steve

    2011-11-15

    Doxorubicin (Dox) is an antineoplastic agent that can cause cardiomyopathy in humans and experimental animals. As an inducer of reactive oxygen species and a DNA damaging agent, Dox causes elevated expression of p21{sup WAF1/Cip1/Sdi1} (p21) gene. Elevated levels of p21 mRNA and p21 protein have been detected in the myocardium of mice following Dox treatment. With chronic treatment of Dox, wild type (WT) animals develop cardiomyopathy evidenced by elongated nuclei, mitochondrial swelling, myofilamental disarray, reduced cardiac output, reduced ejection fraction, reduced left ventricular contractility, and elevated expression of ANF gene. In contrast, p21 knockout (p21KO) mice did not show significantmore » changes in the same parameters in response to Dox treatment. In an effort to understand the mechanism of the resistance against Dox induced cardiomyopathy, we measured levels of antioxidant enzymes and found that p21KO mice did not contain elevated basal or inducible levels of glutathione peroxidase and catalase. Measurements of 6 circulating cytokines indicated elevation of IL-6, IL-12, IFN{gamma} and TNF{alpha} in Dox treated WT mice but not p21KO mice. Dox induced elevation of IL-6 mRNA was detected in the myocardium of WT mice but not p21KO mice. While the mechanism of the resistance against Dox induced cardiomyopathy remains unclear, lack of inflammatory response may contribute to the observed cardiac protection in p21KO mice. -- Highlights: Black-Right-Pointing-Pointer Doxorubicin induces p21 elevation in the myocardium. Black-Right-Pointing-Pointer Doxorubicin causes dilated cardiomyopathy in wild type mice. Black-Right-Pointing-Pointer p21 Knockout mice are resistant against doxorubicin induced cardiomyopathy. Black-Right-Pointing-Pointer Lack of inflammatory response correlates with the resistance in p21 knockout mice.« less

  12. Multi-Sensor Fused Interrogation of Brain to Determine ICP Level

    DTIC Science & Technology

    1997-08-01

    manifestations, but the decision is considerably more difficult for soldiers who are rendered immediately unconscious through blunt injury and concussion...is an example of swept sine excitation yielding low frequency resonance and attenuation data using head-down tilt to elevate ICP, and Figure 2 is an... excitation ) in an adult male excitation ) in female adult volunteer with ICP volunteer with ICP elevation induced through elevation induced through

  13. Hypoxia-independent upregulation of placental hypoxia inducible factor-1α gene expression contributes to the pathogenesis of preeclampsia.

    PubMed

    Iriyama, Takayuki; Wang, Wei; Parchim, Nicholas F; Song, Anren; Blackwell, Sean C; Sibai, Baha M; Kellems, Rodney E; Xia, Yang

    2015-06-01

    Accumulation of hypoxia inducible factor-1α (HIF-1α) is commonly an acute and beneficial response to hypoxia, whereas chronically elevated HIF-1α is associated with multiple disease conditions, including preeclampsia, a serious hypertensive disease of pregnancy. However, the molecular basis underlying the persistent elevation of placental HIF-1α in preeclampsia and its role in the pathogenesis of preeclampsia are poorly understood. Here we report that Hif-1α mRNA and HIF-1α protein were elevated in the placentas of pregnant mice infused with angiotensin II type I receptor agonistic autoantibody, a pathogenic factor in preeclampsia. Knockdown of placental Hif-1α mRNA by specific siRNA significantly attenuated hallmark features of preeclampsia induced by angiotensin II type I receptor agonistic autoantibody in pregnant mice, including hypertension, proteinuria, kidney damage, impaired placental vasculature, and elevated maternal circulating soluble fms-like tyrosine kinase-1 levels. Next, we discovered that Hif-1α mRNA levels and HIF-1α protein levels were induced in an independent preeclampsia model with infusion of the inflammatory cytokine tumor necrosis factor superfamily member 14 (LIGHT). SiRNA knockdown experiments also demonstrated that elevated HIF-1α contributed to LIGHT-induced preeclampsia features. Translational studies with human placentas showed that angiotensin II type I receptor agonistic autoantibody or LIGHT is capable of inducing HIF-1α in a hypoxia-independent manner. Moreover, increased HIF-1α was found to be responsible for angiotensin II type I receptor agonistic autoantibody or LIGHT-induced elevation of Flt-1 gene expression and production of soluble fms-like tyrosine kinase-1 in human villous explants. Overall, we demonstrated that hypoxia-independent stimulation of HIF-1α gene expression in the placenta is a common pathogenic mechanism promoting disease progression. Our findings reveal new insight to preeclampsia and highlight novel therapeutic possibilities for the disease. © 2015 American Heart Association, Inc.

  14. ELEVATED LEVELS OF INDUCIBLE HEAT SHOCK PROTEIN (HSP70-1) PROTECT MCF-7 CELLS FROM ARSENITE TOXICITY

    EPA Science Inventory

    Heat shock proteins (HSPs) belong to the highly conserved family of stress proteins and are induced following exposure to arsenic. Elevated HSPs protect against cellular damage from heat but it is unclear whether HSP induction alters the damaging effects of environmental chemical...

  15. Elevation of cAMP Levels Inhibits Doxorubicin-Induced Apoptosis in Pre- B ALL NALM- 6 Cells Through Induction of BAD Phosphorylation and Inhibition of P53 Accumulation.

    PubMed

    Fatemi, Ahmad; Kazemi, Ahmad; Kashiri, Meysam; Safa, Majid

    2015-01-01

    Recognition of the molecular mechanisms of cAMP action against DNA damage-induced apoptosis can be useful to improve the efficacy of DNA damaging therapeutic agents. Considering the critical role of bcl-2-associated death promoter (BAD) and p53 proteins in DNA damage -induced apoptosis, the aim of this study was to assess the effect of cAMP-elevating agents on these proteins in doxorubicin-treated pre-B acute lymphoblastic leukemia (pre-B ALL) NALM-6 cells.The pre-B ALL cell line NALM-6 was cultured and treated with doxorubicin in combination with or without cAMP-elevating agents forskolin and 3-isobutyl-1-methylxanthine (IBMX). Cell viability was measured by trypan blue staining and MTT assay. For evaluation of apoptosis, annexin-V staining by flow cytometry and caspase-3 activity assay were used. Protein expression of p53, BAD and phoshorylated BAD was detected by western blotting analysis.cAMP-increasing agents diminished the doxorubicin-mediated cytotoxicity in NALM-6 cells as indicated by the viability assays. Annexin-V apoptosis assay showed that the cAMP-elevating agents decreased doxorubicin-induced apoptosis. Moreover, doxorubicin-induced caspase-3 activity was attenuated in the presence of cAMP-increasing agents. Western blot results revealed the reduced expression of p53 protein in cells treated with combination of cAMP-elevating agents and doxorubicin in contrast to cells treated with doxorubicin alone. Expression of total BAD protein was not affected by doxorubicin and cAMP-elevating agents. However, phosphorylation of BAD protein was induced in the presence of cAMP-elevating agents. Our study suggests that elevated cAMP levels inhibit doxorubicin-induced apoptosis in pre-B ALL cells through induction of BAD phosphorylation and abrogation of p53 accumulation.

  16. Quantification of extracellular levels of corticosterone in the basolateral amygdaloid complex of freely-moving rats: a dialysis study of circadian variation and stress-induced modulation.

    PubMed

    Bouchez, Gaëlle; Millan, Mark J; Rivet, Jean-Michel; Billiras, Rodolphe; Boulanger, Raphaël; Gobert, Alain

    2012-05-03

    Corticosterone influences emotion and cognition via actions in a diversity of corticolimbic structures, including the amygdala. Since extracellular levels of corticosterone in brain have rarely been studied, we characterized a specific and sensitive enzymatic immunoassay for microdialysis quantification of corticosterone in the basolateral amygdaloid complex of freely-moving rats. Corticosterone levels showed marked diurnal variation with an evening (dark phase) peak and stable, low levels during the day (light phase). The "anxiogenic agents", FG7142 (20 mg/kg) and yohimbine (10 mg/kg), and an environmental stressor, 15-min forced-swim, induced marked and sustained (1-3 h) increases in dialysis levels of corticosterone in basolateral amygdaloid complex. They likewise increased dialysis levels of dopamine and noradrenaline, but not serotonin and GABA. As compared to basal corticosterone levels of ~200-300 pg/ml, the elevation provoked by forced-swim was ca. 20-fold and this increase was abolished by adrenalectomy. Interestingly, stress-induced rises of corticosterone levels in basolateral amygdaloid complex were abrogated by combined but not separate administration of the corticotrophin releasing factor(1) (CRF(1)) receptor antagonist, CP154,526, and the vasopressin(1b) (V(1b)) receptor antagonist, SSR149,415. Underpinning their specificity, they did not block forced-swim-induced elevations in dopamine and noradrenaline. In conclusion, extracellular levels of corticosterone in the basolateral amygdaloid complex display marked diurnal variation. Further, they are markedly elevated by acute stressors, the effects of which are mediated (in contrast to concomitant elevations in levels of monoamines) by co-joint recruitment of CRF(1) and V(1b) receptors. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Berberine-induced autophagic cell death by elevating GRP78 levels in cancer cells.

    PubMed

    La, Xiaoqin; Zhang, Lichao; Li, Zhuoyu; Yang, Peng; Wang, Yingying

    2017-03-28

    Berberine, an isoquinoline alkaloid extracted from Coptidis Rhizoma, has been shown to induce cancer cell autophagic death. Glucose regulated protein 78 (GRP78) is associated with stress-induced autophagy. However, the related mechanisms between berberine-induced cancer cell autophagy and GRP78 remain to be elucidated. Here, we report that berberine can induce autophagic cancer cell death by elevating levels of GRP78. These results further demonstrated that berberine enhanced GRP78 by suppression of ubiquitination / proteasomal degradation of GRP78 and activation of ATF6. Moreover, fluorescence spectrum assay revealed that berberine could bind to GRP78 and form complexes. Finally, co-IP analysis showed that the ability of GRP78 to bind to VPS34 was increased with berberine treatment. Taken together, our results suggest that berberine induces autophagic cancer cell death via enhancing GRP78 levels and the ability of GRP78 to bind to VPS34.

  18. Berberine-induced autophagic cell death by elevating GRP78 levels in cancer cells

    PubMed Central

    Li, Zhuoyu; Yang, Peng; Wang, Yingying

    2017-01-01

    Berberine, an isoquinoline alkaloid extracted from Coptidis Rhizoma, has been shown to induce cancer cell autophagic death. Glucose regulated protein 78 (GRP78) is associated with stress-induced autophagy. However, the related mechanisms between berberine-induced cancer cell autophagy and GRP78 remain to be elucidated. Here, we report that berberine can induce autophagic cancer cell death by elevating levels of GRP78. These results further demonstrated that berberine enhanced GRP78 by suppression of ubiquitination / proteasomal degradation of GRP78 and activation of ATF6. Moreover, fluorescence spectrum assay revealed that berberine could bind to GRP78 and form complexes. Finally, co-IP analysis showed that the ability of GRP78 to bind to VPS34 was increased with berberine treatment. Taken together, our results suggest that berberine induces autophagic cancer cell death via enhancing GRP78 levels and the ability of GRP78 to bind to VPS34. PMID:28157699

  19. [Children with hyperthyroidism due to elevated hCG levels].

    PubMed

    Jöbsis, Jasper J; van Trotsenburg, A S Paul; Merks, Johannes H M; Kamp, Gerdine A

    2014-01-01

    We describe two children with hyperthyroidism secondary to elevated hCG levels: one patient with gestational trophoblastic disease and one patient with choriocarcinoma. hCG resembles other glycoproteins that can lead to hyperthyroidism through TSH receptor activation. Also, through its LH-mimicking effect, hCG can induce high oestradiol levels, resulting in stormy pubertal development. False negative hCG tests due to the high-dose hook effect may complicate the diagnostic process. In patients with antibody-negative thyrotoxicosis, the diagnosis of hCG-induced hyperthyroidism must be considered.

  20. Is UV-induced DNA damage greater at higher elevation?

    PubMed

    Wang, Qing-Wei; Hidema, Jun; Hikosaka, Kouki

    2014-05-01

    • Although ultraviolet radiation (UV) is known to have negative effects on plant growth, there has been no direct evidence that plants growing at higher elevations are more severely affected by ultraviolet-B (UV-B) radiation, which is known to increase with elevation. We examined damage to DNA, a primary target of UV-B, in the widespread species Polygonum sachalinense (Fallopia sachalinensis) and Plantago asiatica at two elevations.• We sampled leaves of both species at 300 and 1700 m above sea level every 2 h for 11 d across the growing season and determined the level of cyclobutane pyrimidine dimer (CPD), a major product of UV damage to DNA.• The CPD level was significantly influenced by the time of day, date, elevation, and their interactions in both species. The CPD level tended to be higher at noon or on sunny days. DNA damage was more severe at 1700 m than at 300 m: on average, 8.7% greater at high elevation in P. asiatica and 7.8% greater in P. sachalinense Stepwise multiple regression analysis indicated that the CPD level was explained mainly by UV-B and had no significant relationship with other environmental factors such as temperature and photosynthetically active radiation.• UV-induced DNA damage in plants is greater at higher elevations. © 2014 Botanical Society of America, Inc.

  1. TRPV1: Contribution to Retinal Ganglion Cell Apoptosis and Increased Intracellular Ca2+ with Exposure to Hydrostatic Pressure

    PubMed Central

    Sappington, Rebecca M.; Sidorova, Tatiana; Long, Daniel J.; Calkins, David J.

    2013-01-01

    Purpose Elevated hydrostatic pressure induces retinal ganglion cell (RGC) apoptosis in culture. The authors investigated whether the transient receptor potential vanilloid 1 (TRPV1) channel, which contributes to pressure sensing and Ca2+-dependent cell death in other systems, also contributes to pressure-induced RGC death and whether this contribution involves Ca2+. Methods trpv1 mRNA expression in RGCs was probed with the use of PCR and TRPV1 protein localization through immunocytochemistry. Subunit-specific antagonism (iodo-resiniferatoxin) and agonism (capsaicin) were used to probe how TRPV1 activation affects the survival of isolated RGCs at ambient and elevated hydrostatic pressure (+70 mm Hg). Finally, for RGCs under pressure, the authors tested whether EGTA chelation of Ca2+ improves survival and whether, with the Ca2+ dye Fluo-4 AM, TRPV1 contributes to increased intracellular Ca2+. Results RGCs express trpv1 mRNA, with robust TRPV1 protein localization to the cell body and axon. For isolated RGCs under pressure, TRPV1 antagonism increased cell density and reduced apoptosis to ambient levels (P ≤ 0.05), whereas for RGCs at ambient pressure, TRPV1 agonism reduced density and increased apoptosis to levels for elevated pressure (P ≤ 0.01). Chelation of extracellular Ca2+ reduced RGC apoptosis at elevated pressure by nearly twofold (P ≤ 0.01). Exposure to elevated hydrostatic pressure induced a fourfold increase in RGC intracellular Ca2+ that was reduced by half with TRPV1 antagonism. Finally, in the DBA/2 mouse model of glaucoma, levels of TRPV1 in RGCs increased with elevated IOP. Conclusions RGC apoptosis induced by elevated hydrostatic pressure arises substantially through TRPV1, likely through the influx of extracellular Ca2+. PMID:18952924

  2. Effect of uric acid on inflammatory COX-2 and ROS pathways in vascular smooth muscle cells.

    PubMed

    Oğuz, Nurgül; Kırça, Mustafa; Çetin, Arzu; Yeşilkaya, Akın

    2017-10-01

    Hyperuricemia is thought to play a role in cardiovascular diseases (CVD), including hypertension, coronary artery disease and atherosclerosis. However, exactly how uric acid contributes to these pathologies is unknown. An underlying mechanism of inflammatory diseases, such as atherosclerosis, includes enhanced production of cyclooxygenase-2 (COX-2) and superoxide anion. Here, we aimed to examine the effect of uric acid on inflammatory COX-2 and superoxide anion production and to determine the role of losartan. Primarily cultured vascular smooth muscle cells (VSMCs) were time and dose-dependently induced by uric acid and COX-2 and superoxide anion levels were measured. COX-2 levels were determined by ELISA, and superoxide anion was measured by the superoxide dismutase (SOD)-inhibitable reduction of ferricytochrome c method. Uric acid elevated COX-2 levels in a time-dependent manner. Angiotensin-II receptor blocker, losartan, diminished uric-acid-induced COX-2 elevation. Uric acid also increased superoxide anion level in VSMCs. Uric acid plays an important role in CVD pathogenesis by inducing inflammatory COX-2 and ROS pathways. This is the first study demonstrating losartan's ability to reduce uric-acid-induced COX-2 elevation.

  3. Peripheral Blood Cells from Patients with Autoimmune Addison's Disease Poorly Respond to Interferons In Vitro, Despite Elevated Serum Levels of Interferon-Inducible Chemokines.

    PubMed

    Edvardsen, Kine; Bjånesøy, Trine; Hellesen, Alexander; Breivik, Lars; Bakke, Marit; Husebye, Eystein S; Bratland, Eirik

    2015-10-01

    Autoimmune Addison's disease (AAD) is a disorder caused by an immunological attack on the adrenal cortex. The interferon (IFN)-inducible chemokine CXCL10 is elevated in serum of AAD patients, suggesting a peripheral IFN signature. However, CXCL10 can also be induced in adrenocortical cells stimulated with IFNs, cytokines, or microbial components. We therefore investigated whether peripheral blood mononuclear cells (PBMCs) from AAD patients display an enhanced propensity to produce CXCL10 and the related chemokine CXCL9, after stimulation with type I or II IFNs or the IFN inducer poly (I:C). Although serum levels of CXCL10 and CXCL9 were significantly elevated in patients compared with controls, IFN stimulated patient PBMC produced significantly less CXCL10/CXCL9 than control PBMC. Low CXCL10 production was not significantly associated with medication, disease duration, or comorbidities, but the low production of poly (I:C)-induced CXCL10 among patients was associated with an AAD risk allele in the phosphatase nonreceptor type 22 (PTPN22) gene. PBMC levels of total STAT1 and -2, and IFN-induced phosphorylated STAT1 and -2, were not significantly different between patients and controls. We conclude that PBMC from patients with AAD are deficient in their response to IFNs, and that the adrenal cortex itself may be responsible for the increased serum levels of CXCL10.

  4. cAMP enhances BMP2-signaling through PKA and MKP1-dependent mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghayor, Chafik; Ehrbar, Martin; Miguel, Blanca San

    2009-04-03

    Recent studies suggest that the elevation of intracellular cyclic adenosine monophosphate (cAMP) and the activation of the protein kinase A regulate BMP-induced osteogenesis. However, the precise mechanisms underlying the enhancing effect of cAMP on BMP2 signaling were not completely revealed. In this study we investigated the effect of elevated cAMP level and PKA activation on the BMP2-induced osteoblastic differentiation in pluripotent C2C12 cells. Alkaline phosphatase activity and its mRNA were consistently induced by BMP2 treatment. The pretreatment of C2C12 cells with Forskolin, a cAMP generating agent, dbcAMP, an analogue of cAMP, or IBMX (3-isobutyl 1-methyl xanthine), and a nonspecific inhibitormore » of phosphodiesterases elicited further activation of alkaline phosphatase. Furthermore, elevated intracellular cAMP level increased BMP2-induced MKP1. On the other hand, BMP2-induced Erk phosphorylation (p44/p42) and cell proliferation were suppressed in the presence of cAMP. Thus, cAMP might enhance BMP2-induced osteoblastic differentiation by a MKP1-Erk-dependent mechanism.« less

  5. Experimental tooth pain elevates substance P and matrix metalloproteinase-8 levels in human gingival crevice fluid.

    PubMed

    Avellán, Nina-Li; Sorsa, Timo; Tervahartiala, Taina; Forster, Clemens; Kemppainen, Pentti

    2008-02-01

    Tooth pain can induce a neurogenic inflammatory reaction in gingiva in association with local elevations of matrix metalloproteinase (MMP)-8, which is considered the major tissue destructive protease in gingival crevice fluid (GCF). The pro-inflammatory neuropeptides released by sensory nerves coordinate the activities of the immuno-effector cells and may influence the secretion of MMP-8. With this background, we studied whether experimental tooth pain can trigger changes in GCF levels of the neuropeptide substance P (SP) and MMP-8. The GCF SP levels of stimulated and non-stimulated teeth were analyzed for SP using a competitive enzyme immunoassay (EIA). The GCF MMP-8 levels were determined by quantitative immunofluorometric assay (IFMA). Painful stimulation of the upper central incisor caused significant elevations in GCF SP and MMP-8 levels of the stimulated tooth. At the same time, the GCF SP and MMP-8 levels of non-stimulated control teeth were unchanged. These data indicate that experimental tooth pain can induce local elevations of SP and MMP-8 levels in GCF simultaneously. This supports the possibility of a local neurogenic spread of inflammatory reactions from intrapulpal to surrounding periodontal tissues.

  6. Effect of GABA receptor agonists or antagonists injected spinally on the blood glucose level in mice.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won

    2013-05-01

    The possible roles of gamma-amino butyric acid (GABA) receptors located in the spinal cord for the regulation of the blood glucose level were studied in ICR mice. We found in the present study that intrathecal (i.t.) injection with baclofen (a GABAB receptor agonist; 1-10 μg/5 μl) or bicuculline (a GABAA receptor antagonist; 1-10 μg/5 μl) caused an elevation of the blood glucose level in a dose-dependent manner. The hyperglycemic effect induced by baclofen was more pronounced than that induced by bicuculline. However, muscimol (a GABAA receptor agonist; 1-5 μg/5 μl) or phaclofen (a GABAB receptor antagonist; 5-10 μg/5 μl) administered i.t. did not affect the blood glucose level. Baclofen-induced elevation of the blood glucose was dose-dependently attenuated by phaclofen. Furthermore, i.t. pretreatment with pertussis toxin (PTX; 0.05 or 0.1 μg/5 μl) for 6 days dose-dependently reduced the hyperglycemic effect induced by baclofen. Our results suggest that GABAB receptors located in the spinal cord play important roles for the elevation of the blood glucose level. Spinally located PTX-sensitive G-proteins appear to be involved in hyperglycemic effect induced by baclofen. Furthermore, inactivation of GABAA receptors located in the spinal cord appears to be responsible for tonic up-regulation of the blood glucose level.

  7. Characterization of stress-induced suppression of long-term potentiation in the hippocampal CA1 field of freely moving rats.

    PubMed

    Hirata, Riki; Togashi, Hiroko; Matsumoto, Machiko; Yamaguchi, Taku; Izumi, Takeshi; Yoshioka, Mitsuhiro

    2008-08-21

    Several lines of evidence have shown that exposure to stress impairs long-term potentiation (LTP) in the CA1 field of the hippocampus, but the detailed mechanisms for this effect remain to be clarified. The present study elucidated the synaptic mechanism of stress-induced LTP suppression in conscious, freely moving rats using electrophysiological approaches. Open field stress (i.e., novel environment stress) and elevated platform stress (i.e., uncontrollable stress) were employed. Basal synaptic transmission was significantly reduced during exposure to elevated platform stress but not during exposure to open field stress. LTP induction was blocked by elevated platform stress but not influenced by open field stress. Significant increases in serum corticosterone levels were observed in the elevated platform stress group compared with the open field stress group. Furthermore, LTP suppression induced by elevated platform stress was prevented by pretreatment with an anxiolytic drug diazepam (1 mg/kg, i.p.). These results suggest that stress-induced LTP suppression depends on the relative intensity of the stressor. The inhibitory synaptic response induced by an intense psychological stress, such as elevated platform stress, may be attributable to LTP impairment in the CA1 field of the hippocampus.

  8. Reproductive Hormones Modify Reception of Species-Typical Communication Signals in a Female Anuran

    PubMed Central

    Lynch, Kathleen S.; Wilczynski, Walter

    2008-01-01

    In many vertebrates, the production and reception of species-typical courtship signals occurs when gonadotropin and gonadal hormone levels are elevated. These hormones may modify sensory processing in the signal receiver in a way that enhances behavioral responses to the signal. We examined this possibility in female túngara frogs (Physalaemus pustulosus) by treating them with either gonadotropin (which elevated estradiol) or saline and exposing them to either mate choruses or silence. Expression of an activity-dependent gene, egr-1, was quantified within two sub-nuclei of the auditory midbrain to investigate whether gonadotropin plus chorus exposure induced greater egr-1 induction than either of these stimuli alone. The laminar nucleus (LN), a sub-nucleus of the torus semicircularis that contains steroid receptors, exhibited elevated egr-1 induction in response to chorus exposure and gonadotropin treatment. Further analysis revealed that neither chorus exposure nor gonadotropin treatment alone elevated egr-1 expression in comparison to baseline levels whereas gonadotropin + chorus exposure did. This suggests that mate signals and hormones together produce an additive effect so that together they induce more egr-1 expression than either alone. Our previously published studies of female túngara frogs reveal that (1) gonadotropin-induced estradiol elevations also increase behavioral responses to male signals, and (2) reception of male signals elevates estradiol levels in the female. Here, we report data that reveal a novel mechanism by which males exploit female sensory processing to increase behavioral responses to their courtship signals. PMID:18032889

  9. Stress-induced release of the S100A8/A9 alarmin is elevated in coronary artery disease patients with impaired cortisol response.

    PubMed

    Jonasson, L; Grauen Larsen, H; Lundberg, A K; Gullstrand, B; Bengtsson, A A; Schiopu, A

    2017-12-13

    Psychological stress is thought to be an important trigger of cardiovascular events, yet the involved pathways and mediators are largely unknown. Elevated systemic levels of the pro-inflammatory alarmin S100A8/A9 correlate with poor prognosis in coronary artery disease (CAD) patients. Here, we investigated the links between S100A8/A9 release and parameters of anti-inflammatory glucocorticoid secretion in two different cohorts subjected to a psychological stress test. In the first cohort of 60 CAD patients, psychological stress induced a rapid increase of circulating S100A8/A9. This rapid S100A8/A9 response strongly correlated with elevated evening saliva cortisol levels, suggesting an association with a dysregulated hypothalamic-pituitary-adrenal (HPA) axis. In the second cohort of 27 CAD patients and 28 controls, elevated S100A8/A9 levels were still detectable 24 h after stress in 40% of patients and 36% of controls, with a tendency for higher levels in patients. The sustained S100A8/A9 response was associated with a poor rapid cortisol release after stress in patients, but not in the control group. Our findings reveal for the first time that acute psychological stress induces elevated levels of S100A8/A9. We also provide hypothesis-generating evidence that dysregulated cortisol secretion in CAD patients might be associated with an exaggerated pro-inflammatory S100A8/A9 response.

  10. Elevated carbon dioxide reduces emission of herbivore-induced volatiles in Zea mays.

    PubMed

    Block, Anna; Vaughan, Martha M; Christensen, Shawn A; Alborn, Hans T; Tumlinson, James H

    2017-09-01

    Terpene volatiles produced by sweet corn (Zea mays) upon infestation with pests such as beet armyworm (Spodoptera exigua) function as part of an indirect defence mechanism by attracting parasitoid wasps; yet little is known about the impact of climate change on this form of plant defence. To investigate how a central component of climate change affects indirect defence, we measured herbivore-induced volatile emissions in plants grown under elevated carbon dioxide (CO 2 ). We found that S. exigua infested or elicitor-treated Z. mays grown at elevated CO 2 had decreased emission of its major sesquiterpene, (E)-β-caryophyllene and two homoterpenes, (3E)-4,8-dimethyl-1,3,7-nonatriene and (3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene. In contrast, inside the leaves, elicitor-induced (E)-β-caryophyllene hyper-accumulated at elevated CO 2 , while levels of homoterpenes were unaffected. Furthermore, gene expression analysis revealed that the induction of terpene synthase genes following treatment was lower in plants grown at elevated CO 2 . Our data indicate that elevated CO 2 leads both to a repression of volatile synthesis at the transcriptional level and to limitation of volatile release through effects of CO 2 on stomatal conductance. These findings suggest that elevated CO 2 may alter the ability of Z. mays to utilize volatile terpenes to mediate indirect defenses. © 2017 John Wiley & Sons Ltd.

  11. Differential screening-selected gene aberrative in neuroblastoma (DAN) is increased in the CSF of patients with MS and may be induced by therapy with interferon-β.

    PubMed

    Mausner-Fainberg, Karin; Kolb, Hadar; Penn, Moran; Regev, Keren; Vaknin-Dembinsky, Adi; Gadoth, Avi; Kestenbaum, Meir; Karni, Arnon

    2016-03-15

    Bone morphogenic proteins (BMPs) signaling blockade induce neurogenesis and oligodendrogenesis. Differential screening-selected gene aberrative in neuroblastoma (DAN) is a glycoprotein that antagonizes BMPs. We found that DAN levels were higher in CSF compared to serum in all participants. CSF-DAN levels were elevated in RR-and progresssive MS patients compared to controls. Moreover, serum-DAN levels were reduced in those patients, but elevated in IFN-β1a treated patients. The main source of DAN is apparently CNS- resident cells. The enhanced levels of CSF-DAN in MS patients suggest a tendency to induce neurogenesis/oligodendrogenesis in the patients CNS. Our results suggest an unreported mode of action of IFN-β1a. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Ca2+ influx in the endothelial cells is required for the bradykinin-induced endothelium-dependent contraction in the porcine interlobar renal artery

    PubMed Central

    Ihara, Eikichi; Derkach, Dmitry N; Hirano, Katsuya; Nishimura, Junji; Nawata, Hajime; Kanaide, Hideo

    2001-01-01

    To determine the mechanism of bradykinin-induced production of endothelium-derived contracting factors, we monitored the changes in cytosolic Ca2+ concentration ([Ca2+]i) in in situ endothelial cells in porcine aortic valvular strips and the changes in [Ca2+]i of smooth muscle cells and force in porcine interlobar renal arterial strips using front-surface fluorometry of fura-2. In the presence of Nω-nitro-l-arginine methyl ester, bradykinin caused an endothelium-dependent transient elevation of [Ca2+]i and contraction in smooth muscle in the interlobar renal artery. This contraction was completely inhibited by a prostaglandin H2/thromboxane A2 receptor antagonist. In the absence of extracellular Ca2+, bradykinin failed to induce contraction. However, replenishing extracellular Ca2+ to 0.75 mm and higher induced an instantaneous contraction. However, replenishing Ca2+per se did not induce any contraction in the absence of bradykinin. Pretreatment with either 10−5m 1-(β-(3-(4-methoxyphenyl)propoxy)-4-methoxyphenethyl)-1H-imidazole hydrochloride (SKF96365) or 0.2 mm Ni2+ abolished the contraction induced by bradykinin in the presence of extracellular Ca2+. Treatment with 10−5m indomethacin completely inhibited the contractile response induced by Ca2+ replenishment, regardless of the timing of its application, before or after the application of bradykinin. In endothelial cells in the valvular strips, bradykinin caused a transient [Ca2+]i elevation in the presence of 1.25 mm extracellular Ca2+, but [Ca2+]i returned to the resting level within 10 min. Neither 10−5m SKF96365 nor 0.2 mm Ni2+ had any effect on the peak [Ca2+]i elevation, but decreased [Ca2+]i in the declining phase. In the absence of extracellular Ca2+, bradykinin induced a transient [Ca2+]i elevation to a level similar to that seen in the presence of 1.25 mm extracellular Ca2+. However, [Ca2+]i then rapidly returned to the prestimulation level within 5 min. Subsequent Ca2+ replenishment to 0.75 mm and higher in the presence of bradykinin elevated [Ca2+]i to significantly higher levels than the resting level seen in the media containing 1.25 mm Ca2+. In conclusion, Ca2+ influx in the endothelial cells is essential for bradykinin to induce endothelium-dependent contraction in the porcine interlobar renal artery. PMID:11483701

  13. Peripheral Blood Cells from Patients with Autoimmune Addison's Disease Poorly Respond to Interferons In Vitro, Despite Elevated Serum Levels of Interferon-Inducible Chemokines

    PubMed Central

    Bjånesøy, Trine; Hellesen, Alexander; Breivik, Lars; Bakke, Marit; Husebye, Eystein S.; Bratland, Eirik

    2015-01-01

    Autoimmune Addison's disease (AAD) is a disorder caused by an immunological attack on the adrenal cortex. The interferon (IFN)-inducible chemokine CXCL10 is elevated in serum of AAD patients, suggesting a peripheral IFN signature. However, CXCL10 can also be induced in adrenocortical cells stimulated with IFNs, cytokines, or microbial components. We therefore investigated whether peripheral blood mononuclear cells (PBMCs) from AAD patients display an enhanced propensity to produce CXCL10 and the related chemokine CXCL9, after stimulation with type I or II IFNs or the IFN inducer poly (I:C). Although serum levels of CXCL10 and CXCL9 were significantly elevated in patients compared with controls, IFN stimulated patient PBMC produced significantly less CXCL10/CXCL9 than control PBMC. Low CXCL10 production was not significantly associated with medication, disease duration, or comorbidities, but the low production of poly (I:C)-induced CXCL10 among patients was associated with an AAD risk allele in the phosphatase nonreceptor type 22 (PTPN22) gene. PBMC levels of total STAT1 and -2, and IFN-induced phosphorylated STAT1 and -2, were not significantly different between patients and controls. We conclude that PBMC from patients with AAD are deficient in their response to IFNs, and that the adrenal cortex itself may be responsible for the increased serum levels of CXCL10. PMID:25978633

  14. Chronically Elevated Levels of Short-Chain Fatty Acids Induce T Cell-Mediated Ureteritis and Hydronephrosis.

    PubMed

    Park, Jeongho; Goergen, Craig J; HogenEsch, Harm; Kim, Chang H

    2016-03-01

    Short-chain fatty acids (SCFAs) are major products of gut microbial fermentation and profoundly affect host health and disease. SCFAs generate IL-10(+) regulatory T cells, which may promote immune tolerance. However, SCFAs can also induce Th1 and Th17 cells upon immunological challenges and, therefore, also have the potential to induce inflammatory responses. Because of the seemingly paradoxical SCFA activities in regulating T cells, we investigated, in depth, the impact of elevated SCFA levels on T cells and tissue inflammation in mice. Orally administered SCFAs induced effector (Th1 and Th17) and regulatory T cells in ureter and kidney tissues, and they induced T cell-mediated ureteritis, leading to kidney hydronephrosis (hereafter called acetate-induced renal disease, or C2RD). Kidney hydronephrosis in C2RD was caused by ureteral obstruction, which was, in turn, induced by SCFA-induced inflammation in the ureteropelvic junction and proximal ureter. Oral administration of all major SCFAs, such as acetate, propionate, and butyrate, induced the disease. We found that C2RD development is dependent on mammalian target of rapamycin activation, T cell-derived inflammatory cytokines such as IFN-γ and IL-17, and gut microbiota. Young or male animals were more susceptible than old or female animals, respectively. However, SCFA receptor (GPR41 or GPR43) deficiency did not affect C2RD development. Thus, SCFAs, when systemically administered at levels higher than physiological levels, cause dysregulated T cell responses and tissue inflammation in the renal system. The results provide insights into the immunological and pathological effects of chronically elevated SCFAs. Copyright © 2016 by The American Association of Immunologists, Inc.

  15. Epidermal Dysfunction Leads to an Age-Associated Increase in Levels of Serum Inflammatory Cytokines.

    PubMed

    Hu, Lizhi; Mauro, Theodora M; Dang, Erle; Man, George; Zhang, Jing; Lee, Dale; Wang, Gang; Feingold, Kenneth R; Elias, Peter M; Man, Mao-Qiang

    2017-06-01

    Even though elderly populations lack visible or other clinical signs of inflammation, their serum cytokine and C-reactive protein levels typically are elevated. However, the origin of age-associated systemic inflammation is unknown. Our previous studies showed that abnormalities in epidermal function provoke cutaneous inflammation, and because intrinsically aged skin displays compromised permeability barrier homeostasis and reduced stratum corneum hydration, we hypothesized here that epidermal dysfunction could contribute to the elevations in serum cytokines in the elderly. Our results show first that acute disruption of the epidermal permeability barrier in young mice leads not only to a rapid increase in cutaneous cytokine mRNA expression but also an increase in serum cytokine levels. Second, cytokine levels in both the skin and serum increase in otherwise normal, aged mice (>12 months). Third, expression of tumor necrosis factor-α and amyloid A mRNA levels increased in the epidermis, but not in the liver, in parallel with a significant elevation in serum levels of cytokines. Fourth, disruption of the permeability barrier induced similar elevations in epidermal and serum cytokine levels in normal and athymic mice, suggesting that T cells play a negligible role in the elevations in cutaneous and serum inflammatory cytokines induced by epidermal dysfunction. Fifth, correction of epidermal function significantly reduced cytokine levels not only in the skin but also in the serum of aged mice. Together, these results indicate that the sustained abnormalities in epidermal function in chronologically aged skin contribute to the elevated serum levels of inflammatory cytokines, potentially predisposing the elderly to the subsequent development or exacerbation of chronic inflammatory disorders. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Liver enzyme elevation induced by hyperemesis gravidarum: aetiology, diagnosis and treatment.

    PubMed

    Conchillo, J M; Pijnenborg, J M A; Peeters, P; Stockbrügger, R W; Fevery, J; Koek, G H

    2002-10-01

    Three primigravidae were admitted during the first trimester of pregnancy with nausea, vomiting, ketonuria and liver enzyme elevation of varying severity. A 29-year-old woman had elevated aminotransferase values, at levels described in the literature (ASAT 112 U/l, ALAT 214 U/l). The second patient, a woman aged 26 years, had undergone in vitro fertilisation and showed higher liver enzyme elevation, including the total bilirubin level (ASAT 250 U/l, ALAT 474 U/l, total bilirubin 59.8 micromol/l). A 30-year-old woman had extremely high aminotransferase values (ASAT 705 U/l, ALAT 1674 U/l) and she is the first reported patient with ALAT values exceeding 1,000 U/l in connection with hyperemesis gravidarum. Gallstone disease, viral and drug-induced hepatitis were excluded in all of these patients. Treatment was symptomatic and the abnormal liver tests returned to normal promptly when the vomiting resolved, independent of the severity of liver enzyme elevation. The pregnancies proceeded normally and all three patients delivered healthy babies.

  17. Effect of pertussis and cholera toxins administered supraspinally on CA3 hippocampal neuronal cell death and the blood glucose level induced by kainic acid in mice.

    PubMed

    Kim, Chea-Ha; Park, Soo-Hyun; Sim, Yun-Beom; Sharma, Naveen; Kim, Sung-Su; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won

    2014-12-01

    The effect of cholera toxin (CTX) or pertussis toxin (PTX) administered supraspinally on hippocampal neuronal cell death in CA3 region induced by kainic acid (KA) was examined in mice. After the pretreatment with either PTX or CTX intracerebroventricularly (i.c.v.), mice were administered i.c.v. with KA. The i.c.v. treatment with KA caused a neuronal cell death in CA3 region and PTX, but not CTX, attenuated the KA-induced neuronal cell death. In addition, i.c.v. treatment with KA caused an elevation of the blood glucose level. The i.c.v. PTX pretreatment alone caused a hypoglycemia and inhibited KA-induced hyperglycemic effect. However, i.c.v. pretreatment with CTX did not affect the basal blood glucose level and KA-induced hyperglycemic effect. Moreover, KA administered i.c.v. caused an elevation of corticosterone level and reduction of the blood insulin level. Whereas, i.c.v. pretreatment with PTX further enhanced KA-induced up-regulation of corticosterone level. Furthermore, i.c.v. administration of PTX alone increased the insulin level and KA-induced hypoinsulinemic effect was reversed. In addition, PTX pretreatment reduces the KA-induced seizure activity. Our results suggest that supraspinally administered PTX, exerts neuroprotective effect against KA-induced neuronal cells death in CA3 region and neuroprotective effect of PTX is mediated by the reduction of KA-induced blood glucose level. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  18. Elevated O-GlcNAcylation promotes colonic inflammation and tumorigenesis by modulating NF-κB signaling.

    PubMed

    Yang, Yong Ryoul; Kim, Dae Hyun; Seo, Young-Kyo; Park, Dohyun; Jang, Hyun-Jun; Choi, Soo Youn; Lee, Yong Hwa; Lee, Gyun Hui; Nakajima, Kazuki; Taniguchi, Naoyuki; Kim, Jung-Min; Choi, Eun-Jeong; Moon, Hyo Youl; Kim, Il Shin; Choi, Jang Hyun; Lee, Ho; Ryu, Sung Ho; Cocco, Lucio; Suh, Pann-Ghill

    2015-05-20

    O-GlcNAcylation is a reversible post-translational modification. O-GlcNAc addition and removal is catalyzed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. More recent evidence indicates that regulation of O-GlcNAcylation is important for inflammatory diseases and tumorigenesis. In this study, we revealed that O-GlcNAcylation was increased in the colonic tissues of dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM)/DSS-induced colitis-associated cancer (CAC) animal models. Moreover, the O-GlcNAcylation level was elevated in human CAC tissues compared with matched normal counterparts. To investigate the functional role of O-GlcNAcylation in colitis, we used OGA heterozygote mice, which have an increased level of O-GlcNAcylation. OGA(+/-) mice have higher susceptibility to DSS-induced colitis than OGA(+/+) mice. OGA(+/-) mice exhibited a higher incidence of colon tumors than OGA(+/+) mice. In molecular studies, elevated O-GlcNAc levels were shown to enhance the activation of NF-κB signaling through increasing the binding of RelA/p65 to its target promoters. We also found that Thr-322 and Thr352 in the p65-O-GlcNAcylation sites are critical for p65 promoter binding. These results suggest that the elevated O-GlcNAcylation level in colonic tissues contributes to the development of colitis and CAC by disrupting regulation of NF-κB-dependent transcriptional activity.

  19. Ghrelin administered spinally increases the blood glucose level in mice.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won

    2014-04-01

    Ghrelin is known as a regulator of the blood glucose homeostasis and food intake. In the present study, the possible roles of ghrelin located in the spinal cord in the regulation of the blood glucose level were investigated in ICR mice. We found that intrathecal (i.t.) injection with ghrelin (from 1 to 10 μg) caused an elevation of the blood glucose level. In addition, i.t. pretreatment with YIL781 (ghrelin receptor antagonist; from 0.1 to 5 μg) markedly attenuated ghrelin-induced hyperglycemic effect. The plasma insulin level was increased by ghrelin. The enhanced plasma insulin level by ghrelin was reduced by i.t. pretreatment with YIL781. However, i.t. pretreatment with glucagon-like peptide-1 (GLP-1; 5 μg) did not affect the ghrelin-induced hyperglycemia. Furthermore, i.t. administration with ghrelin also elevated the blood glucose level, but in an additive manner, in d-glucose-fed model. Our results suggest that the activation of ghrelin receptors located in the spinal cord plays important roles for the elevation of the blood glucose level. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Increased plasma citrulline in mice marks diet-induced obesity and may predict the development of the metabolic syndrome.

    PubMed

    Sailer, Manuela; Dahlhoff, Christoph; Giesbertz, Pieter; Eidens, Mena K; de Wit, Nicole; Rubio-Aliaga, Isabel; Boekschoten, Mark V; Müller, Michael; Daniel, Hannelore

    2013-01-01

    In humans, plasma amino acid concentrations of branched-chain amino acids (BCAA) and aromatic amino acids (AAA) increase in states of obesity, insulin resistance and diabetes. We here assessed whether these putative biomarkers can also be identified in two different obesity and diabetic mouse models. C57BL/6 mice with diet-induced obesity (DIO) mimic the metabolic impairments of obesity in humans characterized by hyperglycemia, hyperinsulinemia and hepatic triglyceride accumulation. Mice treated with streptozotocin (STZ) to induce insulin deficiency were used as a type 1 diabetes model. Plasma amino acid profiling of two high fat (HF) feeding trials revealed that citrulline and ornithine concentrations are elevated in obese mice, while systemic arginine bioavailability (ratio of plasma arginine to ornithine + citrulline) is reduced. In skeletal muscle, HF feeding induced a reduction of arginine levels while citrulline levels were elevated. However, arginine or citrulline remained unchanged in their key metabolic organs, intestine and kidney. Moreover, the intestinal conversion of labeled arginine to ornithine and citrulline in vitro remained unaffected by HF feeding excluding the intestine as prime site of these alterations. In liver, citrulline is mainly derived from ornithine in the urea cycle and DIO mice displayed reduced hepatic ornithine levels. Since both amino acids share an antiport mechanism for mitochondrial import and export, elevated plasma citrulline may indicate impaired hepatic amino acid handling in DIO mice. In the insulin deficient mice, plasma citrulline and ornithine levels also increased and additionally these animals displayed elevated BCAA and AAA levels like insulin resistant and diabetic patients. Therefore, type 1 diabetic mice but not DIO mice show the "diabetic fingerprint" of plasma amino acid changes observed in humans. Additionally, citrulline may serve as an early indicator of the obesity-dependent metabolic impairments.

  1. Skeletal unloading induces resistance to insulin-like growth factor I

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Morey-Holton, E. R.

    1994-01-01

    In previous studies with a hindlimb elevation model, we demonstrated that skeletal unloading transiently inhibits bone formation. This effect is limited to the unloaded bones (the normally loaded humerus does not cease growing), suggesting that local factors are of prime importance. IGF-I is one such factor; it is produced in bone and stimulates bone formation. To determine the impact of skeletal unloading on IGF-I production and function, we assessed the mRNA levels of IGF-I and its receptor (IGF-IR) in the proximal tibia and distal femur of growing rats during 2 weeks of hindlimb elevation. The mRNA levels for IGF-I and IGF-IR rose during hindlimb elevation, returning toward control values during recovery. This was accompanied by a 77% increase in IGF-I levels in the bone, peaking at day 10 of unloading. Changes in IGF binding protein levels were not observed. Infusion of IGF-I (200 micrograms/day) during 1 week of hindlimb elevation doubled the increase in bone mass of the control animals but failed to reverse the cessation of bone growth in the hindlimb-elevated animals. We conclude that skeletal unloading induces resistance to IGF-I, which may result secondarily in increased local production of IGF-I.

  2. Impact of p53 status on heavy-ion radiation-induced micronuclei in circulating erythrocytes

    NASA Technical Reports Server (NTRS)

    Chang, P. Y.; Torous, D.; Lutze-Mann, L.; Winegar, R.

    2000-01-01

    Transgenic mice that differed in their p53 genetic status were exposed to an acute dose of highly charged and energetic (HZE) iron particle radiation. Micronuclei (MN) in two distinct populations of circulating peripheral blood erythrocytes, the immature reticulocytes (RETs) and the mature normochromatic erythrocytes (NCEs), were measured using a simple and efficient flow cytometric procedure. Our results show significant elevation in the frequency of micronucleated RETs (%MN-RETs) at 2 and 3 days post-radiation. At 3 days post-irradiation, the magnitude of the radiation-induced MN-RET was 2.3-fold higher in the irradiated p53 wild-type animals compared to the unirradiated controls, 2.5-fold higher in the p53 hemizygotes and 4.3-fold higher in the p53 nullizygotes. The persistence of this radiation-induced elevation of MN-RETs is dependent on the p53 genetic background of the animal. In the p53 wild-type and p53 hemizygotes, %MN-RETs returned to control levels by 9 days post-radiation. However, elevated levels of %MN-RETs in p53 nullizygous mice persisted beyond 56 days post-radiation. We also observed elevated MN-NCEs in the peripheral circulation after radiation, but the changes in radiation-induced levels of MN-NCEs appear dampened compared to those of the MN-RETs for all three strains of animals. These results suggest that the lack of p53 gene function may play a role in the iron particle radiation-induced genomic instability in stem cell populations in the hematopoietic system.

  3. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yi, E-mail: yi.luo@pfizer.com; Rana, Payal; Will, Yvonne

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting thatmore » fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated palmitate/ CsA induced toxicity. ► Palmitate sensitizes cells to the toxicity induced by CsA at therapeutic exposure. ► Elevated free fatty acids may predispose the patients to CsA-induced toxicity.« less

  4. Light Levels, Refractive Development, and Myopia – a Speculative Review

    PubMed Central

    Norton, Thomas T.; Siegwart, John T.

    2013-01-01

    Recent epidemiological evidence in children indicates that time spent outdoors is protective against myopia. Studies in animal models (chick, macaque, tree shrew) have found that light levels (similar to being in the shade outdoors) that are mildly elevated compared to indoor levels, slow form-deprivation myopia and (in chick and tree shrew) lens-induced myopia. Normal chicks raised in low light levels (50 lux) with a circadian light on/off cycle often develop spontaneous myopia. We propose a model in which the ambient illuminance levels produce a continuum of effects on normal refractive development and the response to myopiagenic stimuli such that low light levels favor myopia development and elevated levels are protective. Among possible mechanisms, elevation of retinal dopamine activity seems the most likely. Inputs from intrinsically-photosensitive retinal ganglion cells (ipRGCs) at elevated light levels may be involved, providing additional activation of retinal dopaminergic pathways. PMID:23680160

  5. Dietary deficiency of vitamin E aggravates retinal ganglion cell death in experimental glaucoma of rats.

    PubMed

    Ko, Mei-Lan; Peng, Pai-Huei; Hsu, Shens-Yao; Chen, Chau-Fong

    2010-09-01

    Investigate the effect of dietary vitamin E (Vit E) on the retinas of a rat model of induced glaucoma, in which surgically induced elevation of intraocular pressure (IOP) is associated with an increase in reactive oxygen species. Rats were fed a standard chow, Vit E-supplemented diet, or Vit E-deficient diet and subjected to surgically induced IOP elevation (or sham surgery) for five weeks. The retinal ganglion cells (RGCs) were subjected to retrograde fluorescent tracer labeling. The mean number of RGCs of rats on the standard chow, Vit E-supplemented diet, and Vit E-deficient diet were 79.6%, 78.6%, and 71.3% of controls, respectively. Lipid peroxidation of the retinas of rats given a Vit E-deficient diet were significantly higher after IOP elevation for three days (14.42 +/- 0.25 microM, P = 0.016) and five weeks (10.46 +/- 0.11 microM, p = 0.042), compared to rats given standard chow (11.37 +/- 0.31 microM; 8.95 +/- 0.16 microM). Compared with rats given standard chow, rats given a Vit E-deficient diet had significantly elevated concentrations of glutathione (p = 0.032), but no significant differences in the levels of total superoxide dismutase (SOD), Cu/Zn SOD, or catalase activities three days after IOP elevation. Rats fed a Vit E-deficient diet with surgically induced IOP elevation experience significantly more RGC death than rats fed a normal diet. This phenomenon may be related to the increased level of lipid peroxidation in Vit E-deficient rats.

  6. A Chinese herbal medicine, jia-wei-xiao-yao-san, prevents dimethylnitrosamine-induced hepatic fibrosis in rats.

    PubMed

    Chien, Shu-Chen; Chang, Wei-Chiao; Lin, Pu-Hua; Chang, Wei-Pin; Hsu, Shih-Chung; Chang, Jung-Chen; Wu, Ya-Chieh; Pei, Jin-Kuo; Lin, Chia-Hsien

    2014-01-01

    Jia-wei-xiao-yao-san (JWXYS) is a traditional Chinese herbal medicine that is widely used to treat neuropsychological disorders. Only a few of the hepatoprotective effects of JWXYS have been studied. The aim of this study was to investigate the hepatoprotective effects of JWXYS on dimethylnitrosamine- (DMN-) induced chronic hepatitis and hepatic fibrosis in rats and to clarify the mechanism through which JWXYS exerts these effects. After the rats were treated with DMN for 3 weeks, serum glutamic oxaloacetic transaminase (SGOT) and serum glutamic pyruvic transaminase (SGPT) levels were significantly elevated, whereas the albumin level decreased. Although DMN was continually administered, after the 3 doses of JWXYS were orally administered, the SGOT and SGPT levels significantly decreased and the albumin level was significantly elevated. In addition, JWXYS treatment prevented liver fibrosis induced by DMN. JWXYS exhibited superoxide-dismutase-like activity and dose-dependently inhibited DMN-induced lipid peroxidation and xanthine oxidase activity in the liver of rats. Our findings suggest that JWXYS exerts antifibrotic effects against DMN-induced chronic hepatic injury. The possible mechanism is at least partially attributable to the ability of JWXYS to inhibit reactive-oxygen-species-induced membrane lipid peroxidation.

  7. Betaine Attenuates Alcohol-Induced Pancreatic Steatosis.

    PubMed

    Yang, Wenjuan; Gao, Jinhang; Tai, Yang; Chen, Meng; Huang, Luming; Wen, Shilei; Huang, Zhiyin; Liu, Rui; Li, Jing; Tang, Chengwei

    2016-07-01

    To explore the effect of betaine on alcoholic pancreatic steatosis and its mechanism. Rats were randomly assigned to control, ethanol, or ethanol + betaine groups. Changes in pancreatic morphology; serum lipid levels; and pancreatic lipid, amylase and lipase levels were determined. The serum and adipose tissue adiponectin level was measured by an enzyme-linked immunoassay. Adiponectin receptor-1 (AdipoR1), AdipoR2, sterol regulatory element binding protein-1c (SREBP-1c), SREBP-2, and fatty acid synthetase expression levels were quantified. The SREBP-1c expression in SW1990 cells treated with various concentrations of ethanol or ethanol plus betaine and/or adiponectin was assessed. Alcohol-induced changes in pancreatic morphology were attenuated by betaine. Pancreatic triglyceride, free fatty acid and expression levels of SREBP-1c and fatty acid synthetase were elevated after ethanol feeding but remained at control levels after betaine supplementation. Alcohol-induced decreases in serum and adipose tissue adiponectin, pancreatic AdipoR1, amylase, and lipase were attenuated by betaine. Serum triglyceride and free fatty acid levels were elevated after alcohol consumption and remained higher after betaine supplementation compared with controls. Betaine and/or adiponectin suppressed alcohol-induced SREBP-1c upregulation in vitro. Betaine attenuated alcoholic-induced pancreatic steatosis most likely by suppressing pancreatic SREBP-1c both directly and through the restoration of adiponectin signaling.

  8. Metal ions induced heat shock protein response by elevating superoxide anion level in HeLa cells transformed by HSE-SEAP reporter gene.

    PubMed

    Yu, Zhanjiang; Yang, Xiaoda; Wang, Kui

    2006-06-01

    The aim of this work is to define the relationship between heat shock protein (HSP) and reactive oxygen species (ROS) in the cells exposed to different concentrations of metal ions, and to evaluate a new method for tracing the dynamic levels of cellular reactive oxygen species using a HSE-SEAP reporter gene. The expression of heat shock protein was measured using a secreted alkaline phosphatase (SEAP) reporter gene transformed into HeLa cell strain, the levels of superoxide anion (O(2)(-)) and hydrogen peroxide (H(2)O(2)) were determined by NBT reduction assay and DCFH staining flow cytometry (FCM), respectively. The experimental results demonstrated that the expression of heat shock protein induced by metal ions was linearly related to the cellular superoxide anion level before cytotoxic effects were observed, but not related to the cellular hydrogen peroxide level. The experimental results suggested that metal ions might induce heat shock protein by elevating cellular superoxide anion level, and thus the expression of heat shock protein indicated by the HSE-SEAP reporter gene can be an effective model for monitoring the dynamic level of superoxide anion and early metal-induced oxidative stress/cytotoxicity.

  9. Involvement of NMDA receptor in low-frequency magnetic field-induced anxiety in mice.

    PubMed

    Salunke, Balwant P; Umathe, Sudhir N; Chavan, Jagatpalsingh G

    2014-12-01

    It had been reported that exposure to extremely low-frequency magnetic field (ELFMF) induces anxiety in human and rodents. Anxiety mediates via the activation of N-methyl-d-aspartate (NMDA) receptor, whereas activation of γ-aminobutyric acid (GABA) receptor attenuates the same. Hence, the present study was carried out to understand the contribution of NMDA and/or GABA receptors modulation in ELFMF-induced anxiety for which Swiss albino mice were exposed to ELFMF (50 Hz, 10 G) by subjecting them to Helmholtz coils. The exposure was for 8 h/day for 7, 30, 60, 90 and 120 days. Anxiety level was assessed in elevated plus maze, open field test and social interaction test, on 7th, 30th, 60th, 90th and 120th exposure day, respectively. Moreover, the role of GABA and glutamate in ELFMF-induced anxiety was assessed by treating mice with muscimol [0.25 mg/kg intraperitoneally (i.p.)], bicuculline (1.0 mg/kg i.p.), NMDA (15 mg/kg i.p.) and MK-801 (0.03 mg/kg i.p.), as a GABAA and NMDA receptor agonist and antagonist, respectively. Glutamate receptor agonist exacerbated while inhibitor attenuated the ELFMF-induced anxiety. In addition, levels of GABA and glutamate were determined in regions of the brain viz, cortex, striatum, hippocampus and hypothalamus. Experiments demonstrated significant elevation of GABA and glutamate levels in the hippocampus and hypothalamus. However, GABA receptor modulators did not produce significant effect on ELFMF-induced anxiety and elevated levels of GABA at tested dose. Together, these findings suggest that ELFMF significantly induced anxiety behavior, and indicated the involvement of NMDA receptor in its effect.

  10. Risk factors and outcomes of sepsis-induced myocardial dysfunction and stress-induced cardiomyopathy in sepsis or septic shock: A comparative retrospective study.

    PubMed

    Jeong, Han Saem; Lee, Tae Hyub; Bang, Cho Hee; Kim, Jong-Ho; Hong, Soon Jun

    2018-03-01

    While both sepsis-induced myocardial dysfunction (SIMD) and stress-induced cardiomyopathy (SICMP) are common in patients with sepsis, the pathogenesis of the 2 diseases is different, and they require different treatment strategies. Thus, we aimed to investigate risk factors and outcomes between the 2 diseases.This retrospective study enrolled patients diagnosed with sepsis or septic shock, admitted to intensive care unit via emergency department in Korea University Anam Hospital, and who underwent transthoracic echocardiography within the first 24 hours of admission.In all, 25 patients with SIMD and 27 patients with SICMP were enrolled. Chronic obstructive pulmonary disease and a history of heart failure (HF) were more prevalent in both the SIMD and SICMP groups than in the control group. In the SIMD and SICMP groups, levels of inflammatory cytokines were similar. Serum troponin level was significantly elevated in the SICMP and SIMD group compared to the control group. N-terminal pro-brain natriuretic peptide (NT pro-BNP) level was significantly elevated in the SIMD group compared to the SICMP group or control group. The in-hospital mortality rate in the SIMD and SICMP group was about 40%, showing increased trends compared with the control group. The in-hospital mortality rate was significantly increased in SIMD group with EF<30% than in SICMP group with EF<30%. In multiple logistic regression analysis, a past history of diabetes mellitus (DM) and HF was significantly associated with the incidence of SIMD. Younger age, elevated levels of NT pro-BNP, and positive result of blood culture also showed significant odds ratio regard to the occurrence of SIMD. However, only elevated lactate and troponin level were positively associated with the incidence of SICMP.The SIMD and SICMP had different risk factors. The risk factors of SIMD were younger age, history of DM, history of HF, elevated NT pro-BNP, and positive result of blood culture. The elevated levels of lactate and troponin were identified as risk factors of SICMP. More importantly, in-hospital mortality rate from SIMD and SICMP showed increased trend and worse outcome in SIMD group with reduced EF<30%. Thus, developing SIMD or SICMP reflected poor prognosis in sepsis or septic shock.

  11. Risk factors and outcomes of sepsis-induced myocardial dysfunction and stress-induced cardiomyopathy in sepsis or septic shock

    PubMed Central

    Jeong, Han Saem; Lee, Tae Hyub; Bang, Cho Hee; Kim, Jong-Ho; Hong, Soon Jun

    2018-01-01

    Abstract While both sepsis-induced myocardial dysfunction (SIMD) and stress-induced cardiomyopathy (SICMP) are common in patients with sepsis, the pathogenesis of the 2 diseases is different, and they require different treatment strategies. Thus, we aimed to investigate risk factors and outcomes between the 2 diseases. This retrospective study enrolled patients diagnosed with sepsis or septic shock, admitted to intensive care unit via emergency department in Korea University Anam Hospital, and who underwent transthoracic echocardiography within the first 24 hours of admission. In all, 25 patients with SIMD and 27 patients with SICMP were enrolled. Chronic obstructive pulmonary disease and a history of heart failure (HF) were more prevalent in both the SIMD and SICMP groups than in the control group. In the SIMD and SICMP groups, levels of inflammatory cytokines were similar. Serum troponin level was significantly elevated in the SICMP and SIMD group compared to the control group. N-terminal pro-brain natriuretic peptide (NT pro-BNP) level was significantly elevated in the SIMD group compared to the SICMP group or control group. The in-hospital mortality rate in the SIMD and SICMP group was about 40%, showing increased trends compared with the control group. The in-hospital mortality rate was significantly increased in SIMD group with EF<30% than in SICMP group with EF<30%. In multiple logistic regression analysis, a past history of diabetes mellitus (DM) and HF was significantly associated with the incidence of SIMD. Younger age, elevated levels of NT pro-BNP, and positive result of blood culture also showed significant odds ratio regard to the occurrence of SIMD. However, only elevated lactate and troponin level were positively associated with the incidence of SICMP. The SIMD and SICMP had different risk factors. The risk factors of SIMD were younger age, history of DM, history of HF, elevated NT pro-BNP, and positive result of blood culture. The elevated levels of lactate and troponin were identified as risk factors of SICMP. More importantly, in-hospital mortality rate from SIMD and SICMP showed increased trend and worse outcome in SIMD group with reduced EF<30%. Thus, developing SIMD or SICMP reflected poor prognosis in sepsis or septic shock. PMID:29595686

  12. Activation of the prelimbic medial prefrontal cortex induces anxiety-like behaviors via N-Methyl-D-aspartate receptor-mediated glutamatergic neurotransmission in mice.

    PubMed

    Saitoh, Akiyoshi; Ohashi, Masanori; Suzuki, Satoshi; Tsukagoshi, Mai; Sugiyama, Azusa; Yamada, Misa; Oka, Jun-Ichiro; Inagaki, Masatoshi; Yamada, Mitsuhiko

    2014-08-01

    We investigated the possible roles of the prelimbic medial prefrontal cortex (PL) in the regulation of anxiety-like behaviors by pharmacologically activating the terminals of neuronal inputs or postsynaptic efferent neurons with a sodium channel activator veratrine. The extracellular glutamate levels were measured by in vivo microdialysis, and the behaviors were assessed with the open field (OF) test in mice simultaneously. The samples were collected every 10 min for 60 min, as basal levels of glutamate. The medium containing drugs were perfused for 30 min. The OF test was performed in the last 10 min of drug perfusion. After the drug treatments, the perfusion medium containing drugs was switched back to perfusion medium without drugs, and then samples were collected for another 90 min. The extracellular glutamate levels were significantly elevated after local perfusion of veratrine in the PL. At the same time, perfusion of veratrine in the PL produced anxiety-like behaviors in mice. Local coperfusion of a sodium channel blocker, lamotrigine, completely diminished the veratrine-induced elevated extracellular glutamate levels and the behavioral changes. Local coperfusion of an NMDA receptor antagonist, MK-801, but not a non-NMDA (AMPA/kainate) receptor antagonist, CNQX, completely diminished the behavioral changes without any effects on the veratrine-induced elevated extracellular glutamate levels. This study demonstrates that the activation of the PL with veratrine induces anxiety-like behaviors via NMDA receptor-mediated glutamatergic neurotransmission in mice. © 2014 Wiley Periodicals, Inc.

  13. Serum calprotectin levels correlate with biochemical and histological markers of disease activity in TNBS colitis

    PubMed Central

    Cury, Didia Bismara; Mizsputen, Sender Jankiel; Versolato, Clara; Miiji, Luciana Odashiro; Pereira, Edson; Delboni, Maria Aparecida; Schor, Nestor; Moss, Alan C.

    2014-01-01

    Background and aim Serum calprotectin is elevated in patients with inflammatory bowel disease (IBD). Whether it correlates other markers of disease activity is unknown. The aim of this study was to correlate serum calprotectin with biochemical and histological measures of intestinal inflammation. Materials and methods TNBS colitis was induced in wistar rats, and serial blood samples were collected at 0, 3, and 12 days. Animals were subsequently sacrificed for pathological evaluation at day 12. Serum calprotectin and cytokines were measured by ELISA. Pathologic changes were classified at the macroscopic and microscopic levels. Results TNBS colitis induced elevated serum calprotectin, TNF and IL-6 within 24 h. Levels of serum calprotectin remained elevated in parallel to persistence of loose stool and weight loss to day 12. Serum calprotectin levels correlated with serum levels of TNF-α and IL6 (p < 0.001), but not CRP. Animals with liquid stool had significantly higher levels of serum calprotectin than control animals. There was a correlation between macroscopic colitis scores, and levels of serum calprotectin. Conclusion Serum calprotectin levels correlate with biochemical and histological markers of inflammation in TNBS colitis. This biomarker may have potential for diagnostic use in patients with IBD. PMID:23685388

  14. Cathepsin K Knockout Alleviates Pressure Overload–Induced Cardiac Hypertrophy

    PubMed Central

    Hua, Yinan; Xu, Xihui; Shi, Guo-Ping; Chicco, Adam J.; Ren, Jun; Nair, Sreejayan

    2014-01-01

    Evidence from human and animal studies has documented elevated levels of lysosomal cysteine protease cathepsin K in failing hearts. Here, we hypothesized that ablation of cathepsin K mitigates pressure overload–induced cardiac hypertrophy. Cathepsin K knockout mice and their wild-type littermates were subjected to abdominal aortic constriction, resulting in cardiac remodeling (heart weight, cardiomyocyte size, left ventricular wall thickness, and end diastolic and end systolic dimensions) and decreased fractional shortening, the effects of which were significantly attenuated or ablated by cathepsin K knockout. Pressure overload dampened cardiomyocyte contractile function along with decreased resting Ca2+ levels and delayed Ca2+ clearance, which were partly resolved by cathepsin K knockout. Cardiac mammalian target of rapamycin and extracellular signal-regulated kinases (ERK) signaling cascades were upregulated by pressure overload, the effects of which were attenuated by cathepsin K knockout. In cultured H9c2 myoblast cells, silencing of cathepsin K blunted, whereas cathepsin K transfection mimicked phenylephrine–induced hypertrophic response, along with elevated phosphorylation of mammalian target of rapamycin and ERK. In addition, cathepsin K protein levels were markedly elevated in human hearts of end-stage dilated cardiomyopathy. Collectively, our data suggest that cathepsin K ablation mitigates pressure overload–induced hypertrophy, possibly via inhibition of the mammalian target of rapamycin and ERK pathways. PMID:23529168

  15. Cobalt chloride compromises transepithelial barrier properties of CaCo-2 BBe human gastrointestinal epithelial cell layers.

    PubMed

    DiGuilio, K M; Valenzano, M C; Rybakovsky, E; Mullin, J M

    2018-01-05

    Elevation of the transcription factor HIF-1 is a prominent mediator of not only processes that accompany hypoxia, but also the tumor microenvironment and tissue regeneration. This study uses mediators of "chemical hypoxia" to ask the question whether HIF-1α elevation in a healthy epithelial cell layer leads to leakiness in its tight junctional seals. Transepithelial electrical resistance and transepithelial diffusion of 14 C-D-mannitol and other radiolabeled probes are used as indicators of transepithelial barrier function of CaCo-2 BBe human gastrointestinal epithelial cell layers cultured on permeable supports. Western immunoblot analyses of integral tight junctional proteins (occludin and claudins) are used as further indicators of barrier function change. Cobalt, an inhibitor of the prolyl hydroxylase enzymes governing HIF-1α breakdown in the cell, induces transepithelial leakiness in CaCo-2 BBe cell layers in a time and concentration-dependent manner. This increased leakiness is accompanied by significant changes in certain specific integral tight junctional (TJ) proteins such as a decreased level of occludin and increased level of claudin-5. Similar results regarding barrier function compromise also occur with other chemical inhibitors of HIF-1α breakdown, namely ciclopiroxolamine (CPX) and dimethyloxalylglycine (DMOG). The increased leak is manifested by both decreased transepithelial electrical resistance (R t ) and increased paracellular diffusion of D-mannitol (J m ). The induced transepithelial leak shows significant size selectivity, consistent with induced effects on TJ permeability. Less-differentiated cell layers were significantly more affected than well-differentiated cell layers regarding induced transepithelial leak. A genetically modified CaCo-2 variant with reduced levels of HIF-1β, showed reduced transepithelial leak in response to cobalt exposure, further indicating that elevation of HIF-1α levels induced by agents of "chemical hypoxia" is responsible for the compromised barrier function of the CaCo-2 BBe cell layers. Exposure to inducers of chemical hypoxia elevated HIF-1α levels and increased transepithelial leak. The degree of epithelial differentiation has significant effects on this action, possibly explaining the varying effects of HIF-1 modulation in epithelial and endothelial barrier function in different physiological and pathophysiological conditions.

  16. Hepatoprotective and antioxidant activity of Phaseolus trilobus, Ait on bile duct ligation induced liver fibrosis in rats.

    PubMed

    Fursule, R A; Patil, S D

    2010-06-16

    Phaseolus trilobus Ait (Fabaceae) is extensively used by tribal people of Nandurbar district (Maharashtra, India) in the treatment of Jaundice and other liver disorders. of the present study was to assess the medicinal claim of Phaseolus trilobus as hepatoprotective and antioxidant. The hepatoprotective activity of methanol and aqueous extract of Phaseolus trilobus was evaluated by bile duct ligation induced liver fibrosis and antioxidant activity was evaluated using in vitro and in vivo antioxidant models viz anti-lipid peroxidation assay, super oxide radical scavenging assay and glutathione estimation in liver. Liver function tests were carried out to detect hepatoprotective activity, which was further supported by histopathological examination. Methanol and aqueous extracts of Phaseolus trilobus reduced elevated level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), bilirubin and hydroxyproline significantly (p<0.01) in bile duct ligated Wistar rats, proving hepatoprotective activity comparable with Silymarin. Both the extracts were found to reduce the elevated levels of serum thiobarbituric acid reactive substance (TBARS) and elevate superoxide scavenging radical activity proving antioxidant activity comparable with ascorbic acid. The reduced level of glutathione was found to be elevated in liver proving antioxidant activity comparable with Silymarin. Phaseolus trilobus posses hepatoprotective property and is effective in oxidative stress induced cholestatic hepatic injury. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Calcium metabolism and cardiovascular function after spaceflight

    NASA Technical Reports Server (NTRS)

    Hatton, Daniel C.; Yue, Qi; Dierickx, Jacqueline; Roullet, Chantal; Otsuka, Keiichi; Watanabe, Mitsuaki; Coste, Sarah; Roullet, Jean Baptiste; Phanouvang, Thongchan; Orwoll, Eric; hide

    2002-01-01

    To determine the influence of dietary calcium on spaceflight-induced alterations in calcium metabolism and blood pressure (BP), 9-wk-old spontaneously hypertensive rats, fed either high- (2%) or low-calcium (0.02%) diets, were flown on an 18-day shuttle flight. On landing, flight animals had increased ionized calcium (P < 0.001), elevated parathyroid hormone levels (P < 0.001), reduced calcitonin levels (P < 0.05), unchanged 1,25(OH)(2)D(3) levels, and elevated skull (P < 0.01) and reduced femur bone mineral density. Basal and thrombin-stimulated platelet free calcium (intracellular calcium concentration) were also reduced (P < 0.05). There was a tendency for indirect systolic BP to be reduced in conscious flight animals (P = 0.057). However, mean arterial pressure was elevated (P < 0.001) after anesthesia. Dietary calcium altered all aspects of calcium metabolism (P < 0.001), as well as BP (P < 0.001), but the only interaction with flight was a relatively greater increase in ionized calcium in flight animals fed low- compared with high-calcium diets (P < 0.05). The results indicate that 1) flight-induced disruptions of calcium metabolism are relatively impervious to dietary calcium in the short term, 2) increased ionized calcium did not normalize low-calcium-induced elevations of BP, and 3) parathyroid hormone was paradoxically increased in the high-calcium-fed flight animals after landing.

  18. SET8 is involved in the regulation of hyperglycemic memory in human umbilical endothelial cells.

    PubMed

    Chen, Xiangyuan; Wu, Qichao; Jiang, Hui; Wang, Jiaqiang; Zhao, Yanjun; Xu, Yajun; Zhu, Minmin

    2018-05-14

    Hyperglycemic memory occurs in diabetic cardiovascular complications, but the underlying mechanism remains to be elucidated. Although the depletion of SET8 leads to increased mitochondrial oxidative stress via increasing cellular reactive oxygen species (ROS) production, the role of SET8 in hyperglycemic memory-induced mitochondrial dysfunction is not well understood. Here, we investigated the role of SET8 in this setting. Our results showed that high glucose-induced vascular inflammation, ROS production and apoptosis remained at high levels even when glucose returned to normal level. Elevated glucose reduced SET8 expression, which also remained at low level after returning to normoglycemia. SET8 overexpression protected cells from elevated glucose and hyperglycemic memory-induced endothelial injury by blocking ROS accumulation, attenuating vascular inflammation, and restoring nitric oxide production. Thus, our results suggest that SET8 may be a key mediator in hyperglycemic memory.

  19. The protective role of low-concentration alcohol in high-fructose induced adverse cardiovascular events in mice.

    PubMed

    Wu, Xiaoqi; Pan, Bo; Wang, Ying; Liu, Lingjuan; Huang, Xupei; Tian, Jie

    2018-01-01

    Cardiovascular disease remains a worldwide public health issue. As fructose consumption is dramatically increasing, it has been demonstrated that a fructose-rich intake would increase the risk of cardiovascular disease. In addition, emerging evidences suggest that low concentration alcohol intake may exert a protective effect on cardiovascular system. This study aimed to investigate whether low-concentration alcohol consumption would prevent the adverse effects on cardiovascular events induced by high fructose in mice. From the results of hematoxylin-eosin staining, echocardiography, heart weight/body weight ratio and the expression of hypertrophic marker ANP, we found high-fructose result in myocardial hypertrophy and the low-concentration alcohol consumption would prevent the cardiomyocyte hypertrophy from happening. In addition, we observed low-concentration alcohol consumption could inhibit mitochondria swollen induced by high-fructose. The elevated levels of glucose, triglyceride, total cholesterol in high-fructose group were reduced by low concentration alcohol. Low expression levels of SIRT1 and PPAR-γ induced by high-fructose were significantly elevated when fed with low-concentration alcohol. The histone lysine 9 acetylation (acH3K9) level was decreased in PPAR-γ promoter in high-fructose group but elevated when intake with low concentration alcohol. The binding levels of histone deacetylase SIRT1 were increased in the same region in high-fructose group, while the low concentration alcohol can prevent the increased binding levels. Overall, our study indicates that low-concentration alcohol consumption could inhibit high-fructose related myocardial hypertrophy, cardiac mitochondria damaged and disorders of glucose-lipid metabolism. Furthermore, these findings also provide new insights into histone acetylation-deacetylation mechanisms of low-concentration alcohol treatment that may contribute to the prevention of cardiovascular disease induced by high-fructose intake. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Aiolos Overexpression in Systemic Lupus Erythematosus B Cell Subtypes and BAFF-Induced Memory B Cell Differentiation Are Reduced by CC-220 Modulation of Cereblon Activity.

    PubMed

    Nakayama, Yumi; Kosek, Jolanta; Capone, Lori; Hur, Eun Mi; Schafer, Peter H; Ringheim, Garth E

    2017-10-01

    BAFF is a B cell survival and maturation factor implicated in the pathogenesis of systemic lupus erythematosus (SLE). In this in vitro study, we describe that soluble BAFF in combination with IL-2 and IL-21 is a T cell contact-independent inducer of human B cell proliferation, plasmablast differentiation, and IgG secretion from circulating CD27 + memory and memory-like CD27 - IgD - double-negative (DN) B cells, but not CD27 - IgD + naive B cells. In contrast, soluble CD40L in combination with IL-2 and IL-21 induces these activities in both memory and naive B cells. Blood from healthy donors and SLE patients have similar circulating levels of IL-2, whereas SLE patients exhibit elevated BAFF and DN B cells and reduced IL-21. B cell differentiation transcription factors in memory, DN, and naive B cells in SLE show elevated levels of Aiolos, whereas Ikaros levels are unchanged. Treatment with CC-220, a modulator of the cullin ring ligase 4-cereblon E3 ubiquitin ligase complex, reduces Aiolos and Ikaros protein levels and BAFF- and CD40L-induced proliferation, plasmablast differentiation, and IgG secretion. The observation that the soluble factors BAFF, IL-2, and IL-21 induce memory and DN B cell activation and differentiation has implications for extrafollicular plasmablast development within inflamed tissue. Inhibition of B cell plasmablast differentiation by reduction of Aiolos and Ikaros may have utility in the treatment of SLE, where elevated levels of BAFF and Aiolos may prime CD27 + memory and DN memory-like B cells to become Ab-producing plasmablasts in the presence of BAFF and proinflammatory cytokines. Copyright © 2017 by The American Association of Immunologists, Inc.

  1. Aiolos Overexpression in Systemic Lupus Erythematosus B Cell Subtypes and BAFF-Induced Memory B Cell Differentiation Are Reduced by CC-220 Modulation of Cereblon Activity

    PubMed Central

    Nakayama, Yumi; Kosek, Jolanta; Capone, Lori; Schafer, Peter H.

    2017-01-01

    BAFF is a B cell survival and maturation factor implicated in the pathogenesis of systemic lupus erythematosus (SLE). In this in vitro study, we describe that soluble BAFF in combination with IL-2 and IL-21 is a T cell contact-independent inducer of human B cell proliferation, plasmablast differentiation, and IgG secretion from circulating CD27+ memory and memory-like CD27−IgD− double-negative (DN) B cells, but not CD27−IgD+ naive B cells. In contrast, soluble CD40L in combination with IL-2 and IL-21 induces these activities in both memory and naive B cells. Blood from healthy donors and SLE patients have similar circulating levels of IL-2, whereas SLE patients exhibit elevated BAFF and DN B cells and reduced IL-21. B cell differentiation transcription factors in memory, DN, and naive B cells in SLE show elevated levels of Aiolos, whereas Ikaros levels are unchanged. Treatment with CC-220, a modulator of the cullin ring ligase 4-cereblon E3 ubiquitin ligase complex, reduces Aiolos and Ikaros protein levels and BAFF- and CD40L-induced proliferation, plasmablast differentiation, and IgG secretion. The observation that the soluble factors BAFF, IL-2, and IL-21 induce memory and DN B cell activation and differentiation has implications for extrafollicular plasmablast development within inflamed tissue. Inhibition of B cell plasmablast differentiation by reduction of Aiolos and Ikaros may have utility in the treatment of SLE, where elevated levels of BAFF and Aiolos may prime CD27+ memory and DN memory-like B cells to become Ab-producing plasmablasts in the presence of BAFF and proinflammatory cytokines. PMID:28848067

  2. Vasopressin and motion sickness in cats

    NASA Technical Reports Server (NTRS)

    Fox, R. A.; Keil, L. C.; Daunton, N. G.; Crampton, G. H.; Lucot, J.

    1987-01-01

    Levels of arginine vasopressin (AVP) in blood plasma and cerebrospinal fluid (CSF) were measured in cats under several motion-sickness-inducing conditions. Plasma AVP increased significantly in both susceptible and resistant animals exposed to motion. When vomiting occurred, levels of plasma AVP were drmatically elevated (up to 27 times resting levels). There was no difference in resting levels of AVP of susceptible and resistant cats. Levels of CSF-AVP were not elevated immediately after vomiting, but the testing levels of CSF-AVP were lower in animals that vomited during motion than in those animals which did not vomit during motion. The results of these experiments show that changes in systemic AVP are directly related to vomiting induced by motion, however, CSF-AVP apparently does not change in association with vomiting. CSF-AVP does appear to be lower in animals that reach frank vomiting during motion stimulation than in animals which do not vomit.

  3. Pharmacological evidence for the role of nitric oxide in the modulation of stress-induced anxiety by morphine in rats.

    PubMed

    Anand, Rashmi; Gulati, Kavita; Ray, Arunabha

    2012-02-15

    The present study evaluated the effects of the opioid agonist, morphine on stress induced anxiogenesis and the possible involvement of nitric oxide (NO) in such effects in rats. Acute restraint stress consistently induced an anxiety-like response in the elevated plus maze test, i.e. reduced number of open arm entries and time spent in the open arms as compared to controls. Pretreatment with morphine (1 and 5mg/kg), attenuated the restraint stress induced anxiogenic response in a dose related manner. Restraint stress induced neurobehavioral suppression was associated with reductions in brain NO oxidation products (NOx) levels, which were also reversed with morphine. Interaction studies showed that sub-effective doses of morphine and l-arginine (a NO precursor) had synergistic effects on stress induced elevated plus maze activity and brain NOx, whereas, l-NAME (a NO synthase inhibitor) neutralized these effects of morphine. Repeated restraint stress (×5) induced adaptative changes as evidenced by normalization of behavioral suppression and elevations in brain NOx, as compared to acute stress. Pretreatment with morphine in combination with repeated stress (×5) showed potentiating effects in the induction of behavioral adaptation in the elevated plus maze and elevations in brain NOx, as compared to repeated stress alone. Further, l-NAME, when administered prior to morphine, blocked this effect of morphine on stress adaptation. These results suggest differential morphine-NO interactions during acute and repeated restraint stress. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Beneficial effects of neuropeptide galanin on reinstatement of exercise-induced somatic and psychological trauma.

    PubMed

    He, Biao; Fang, Penghua; Guo, Lili; Shi, Mingyi; Zhu, Yan; Xu, Bo; Bo, Ping; Zhang, Zhenwen

    2017-04-01

    Galanin is a versatile neuropeptide that is distinctly upregulated by exercise in exercise-related tissues. Although benefits from exercise-induced upregulation of this peptide have been identified, many issues require additional exploration. This Review summarizes the information currently available on the relationship between galanin and exercise-induced physical and psychological damage. On the one hand, body movement, exercise damage, and exercise-induced stress and pain significantly increase local and circulatory galanin levels. On the other hand, galanin plays an exercise-protective role to inhibit the flexor reflex and prevent excessive movement of skeletal muscles through enhancing response threshold and reducing acetylcholine release. Additionally, elevated galanin levels can boost repair of the exercise-induced damage in exercise-related tissues, including peripheral nerve, skeletal muscle, blood vessel, skin, bone, articulation, and ligament. Moreover, elevated galanin levels may serve as effective signals to buffer sport-induced stress and pain via inhibiting nociceptive signal transmission and enhancing pain threshold. This Review deepens our understanding of the profitable roles of galanin in exercise protection, exercise injury repair, and exercise-induced stress and pain. Galanin and its agonists may be used to develop a novel preventive and therapeutic strategy to prevent and treat exercise-induced somatic and psychological trauma. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Exercise-induced myalgia may limit the cardiovascular benefits of statins.

    PubMed

    Opie, Lionel H

    2013-12-01

    The positive health benefits of statins extend beyond the cardiovascular and include increased flow mediated dilation, decreased atrial fibrillation, modest antihypertensive effects and reduced risks of malignancies. Prominent among the statin side-effects are myalgia and muscular weakness, which may be associated with a rise in circulating creatine kinase values. In increasing severity and decreasing incidence, the statin-induced muscle related conditions are myalgia, myopathy with elevated creatine kinase (CK) levels with or without symptoms, and rhabdomyolysis. Statin use may increase CK levels without decreasing average muscle strength or exercise performance. In one large study, only about 2 % had myalgia that could be attributed to statin use. A novel current hypothesis is that statins optimize cardiac mitochondrial function but impair the vulnerable skeletal muscle by inducing different levels of reactive oxygen species (ROS) in these two sites. In an important observational study, both statins and exercise reduced the adverse outcomes of cardiovascular disease, and the effects were additive. The major unresolved problem is that either can cause muscular symptoms with elevation of blood creatine kinase levels. There is, as yet, no clearly defined outcomes based policy to deal with such symptoms from use of either statins or exercise or both. A reasonable practical approach is to assess the creatine kinase levels, and if elevated to reduce the statin dose or the intensity of exercise.

  6. Calcium Signaling Is Involved in Cadmium-Induced Neuronal Apoptosis via Induction of Reactive Oxygen Species and Activation of MAPK/mTOR Network

    PubMed Central

    Luo, Yan; Chen, Zi; Liu, Lei; Zhou, Hongyu; Chen, Wenxing; Shen, Tao; Han, Xiuzhen; Chen, Long; Huang, Shile

    2011-01-01

    Cadmium (Cd), a toxic environmental contaminant, induces oxidative stress, leading to neurodegenerative disorders. Recently we have demonstrated that Cd induces neuronal apoptosis in part by activation of the mitogen-activated protein kineses (MAPK) and mammalian target of rapamycin (mTOR) pathways. However, the underlying mechanism remains elusive. Here we show that Cd elevated intracellular calcium ion ([Ca2+]i) level in PC12, SH-SY5Y cells and primary murine neurons. BAPTA/AM, an intracellular Ca2+ chelator, abolished Cd-induced [Ca2+]i elevation, and blocked Cd activation of MAKPs including extracellular signal-regulated kinase 1/2 (Erk1/2), c-Jun N-terminal kinase (JNK) and p38, and mTOR-mediated signaling pathways, as well as cell death. Pretreatment with the extracellular Ca2+ chelator EGTA also prevented Cd-induced [Ca2+]i elevation, MAPK/mTOR activation, as well as cell death, suggesting that Cd-induced extracellular Ca2+ influx plays a critical role in contributing to neuronal apoptosis. In addition, calmodulin (CaM) antagonist trifluoperazine (TFP) or silencing CaM attenuated the effects of Cd on MAPK/mTOR activation and cell death. Furthermore, Cd-induced [Ca2+]i elevation or CaM activation resulted in induction of reactive oxygen species (ROS). Pretreatment with BAPTA/AM, EGTA or TFP attenuated Cd-induced ROS and cleavage of caspase-3 in the neuronal cells. Our findings indicate that Cd elevates [Ca2+]i, which induces ROS and activates MAPK and mTOR pathways, leading to neuronal apoptosis. The results suggest that regulation of Cd-disrupted [Ca2+]i homeostasis may be a new strategy for prevention of Cd-induced neurodegenerative diseases. PMID:21544200

  7. Elevated interleukin 6 is induced by prostaglandin E2 in a murine model of inflammation: possible role of cyclooxygenase-2.

    PubMed Central

    Hinson, R M; Williams, J A; Shacter, E

    1996-01-01

    Injection of mineral oils such as pristane into the peritoneal cavities of BALB/c mice results in a chronic peritonitis associated with high tissue levels of interleukin 6 (IL-6). Here we show that increased prostaglandin E2 (PGE2) synthesis causes induction of IL-6 and that expression of an inducible cyclooxygenase, Cox-2, may mediate this process. Levels of both PGE2 and IL-6 are elevated in inflammatory exudates from pristane-treated mice compared with lavage samples from untreated mice. The Cox-2 gene is induced in the peritoneal macrophage fraction isolated from the mice. A cause and effect relationship between increased macrophage PGE2 and IL-6 production is shown in vitro. When peritoneal macrophages are activated with an inflammatory stimulus (polymerized albumin), the Cox-2 gene is induced and secretion of PGE2 and IL-6 increases, with elevated PGE2 appearing before IL-6. Cotreatment with 1 microM indomethacin inhibits PGE2 production by the cells and reduces the induction of IL-6 mRNA but has no effect on Cox-2 mRNA, consistent with the fact that the drug inhibits catalytic activity of the cyclooxygenase but does not affect expression of the gene. Addition of exogenous PGE2 to macrophages induces IL-6 protein and mRNA synthesis, indicating that the eicosanoid stimulates IL-6 production at the level of gene expression. PGE2-stimulated IL-6 production is unaffected by addition of indomethacin. Taken together with the earlier finding that indomethacin diminishes the elevation of IL-6 in pristane-treated mice, the results show that PGE2 can induce IL-6 production in vivo and implicate expression of the Cox-2 gene in the regulation of this cytokine. Images Fig. 2 Fig. 4 Fig. 5 Fig. 6 Fig. 8 PMID:8643498

  8. Bombesin-like peptides stimulate growth hormone secretion mediated by the gastrin-releasing peptide receptor in cattle.

    PubMed

    Zhao, Hongqiong; Matsuda, Seinosuke; Thanthan, Sint; Yannaing, Swe; Kuwayama, Hideto

    2012-10-01

    This study was designed to determine the effects of bombesin-like peptides (BLPs) on the secretion of growth hormone (GH) and to characterize the receptor subtypes mediating these effects in cattle. Four experiments were conducted: (1) six steers were randomly assigned to receive intravenous (IV) bolus injections of 0, 0.2, 1.0, 12.5 and 50.0 μg/kg neuromedin C (NMC); (2) seven pre-weaned calves were IV injected with 1.0 μg/kg NMC; (3) six steers were IV injected with 2.5μg/kg bovine gastrin-releasing peptide (GRP), 1.0 μg/kg NMC combined with 20.0 μg/kg [d-Lys(3)]-GHRP-6 (an antagonist for the GH secretagogue receptor type 1a [GHS-R1a]), 1.0 μg/kg NMC combined with 20.0 μg/kg N-acetyl-GRP(20-26)-OCH(2)CH(3) (N-GRP-EE, an antagonist for the GRP receptor), 20.0 μg/kg N-GRP-EE alone, 1.0 μg/kg neuromedin B (NMB); and (4) four rats were IV injected 1.0 μg/kg NMC. A serial blood sample was collected before and after injection. Plasma GH levels dose-dependently increased at 5 min after NMC injection and the minimal effective dose was 1.0 μg/kg. Plasma GH level was elevated by GRP, but not by NMB. The NMC-induced elevation of GH was completely blocked by N-GRP-EE. The administration of NMC elevated GH level in pre-weaned calves but not in rats. Ghrelin level was unaffected by any treatments; and [d-Lys(3)]-GHRP-6 did not block the NMC-induced elevation of GH. The results indicate BLP-induced elevation of GH levels is mediated by the GRP receptor but not through a ghrelin/GHS-R1a pathway in cattle. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Experimental investigation of railway train-induced vibrations of surrounding ground and a nearby multi-story building

    NASA Astrophysics Data System (ADS)

    Xia, He; Chen, Jianguo; Wei, Pengbo; Xia, Chaoyi; de Roeck, G.; Degrande, G.

    2009-03-01

    In this paper, a field experiment was carried out to study train-induced environmental vibrations. During the field experiment, velocity responses were measured at different locations of a six-story masonry structure near the Beijing-Guangzhou Railway and along a small road adjacent to the building. The results show that the velocity response levels of the environmental ground and the building floors increase with train speed, and attenuate with the distance to the railway track. Heavier freight trains induce greater vibrations than lighter passenger trains. In the multi-story building, the lateral velocity levels increase monotonically with floor elevation, while the vertical ones increase with floor elevation in a fluctuating manner. The indoor floor vibrations are much lower than the outdoor ground vibrations. The lateral vibration of the building along the direction of weak structural stiffness is greater than along the direction with stronger stiffness. A larger room produces greater floor vibrations than the staircase at the same elevation, and the vibration at the center of a room is greater than at its corner. The vibrations of the building were compared with the Federal Transportation Railroad Administration (FTA) criteria for acceptable ground-borne vibrations expressed in terms of rms velocity levels in decibels. The results show that the train-induced building vibrations are serious, and some exceed the allowance given in relevant criterion.

  10. Differential Effects of IL6 and Activin A in the Development of Cancer-Associated Cachexia.

    PubMed

    Chen, Justin L; Walton, Kelly L; Qian, Hongwei; Colgan, Timothy D; Hagg, Adam; Watt, Matthew J; Harrison, Craig A; Gregorevic, Paul

    2016-09-15

    Cachexia is a life-threatening wasting syndrome lacking effective treatment, which arises in many cancer patients. Although ostensibly induced by multiple tumor-produced cytokines (tumorkines), their functional contribution to initiation and progression of this syndrome has proven difficult to determine. In this study, we used adeno-associated viral vectors to elevate circulating levels of the tumorkines IL6 and/or activin A in animals in the absence of tumors as a tactic to evaluate hypothesized roles in cachexia development. Mice with elevated levels of IL6 exhibited 8.1% weight loss after 9 weeks, whereas mice with elevated levels of activin A lost 11% of their body weight. Co-elevation of both tumorkines to levels approximating those observed in cancer cachexia models induced a more rapid and profound body weight loss of 15.4%. Analysis of body composition revealed that activin A primarily triggered loss of lean mass, whereas IL6 was a major mediator of fat loss. Histologic and transcriptional analysis of affected organs/tissues (skeletal muscle, fat, and liver) identified interactions between the activin A and IL6 signaling pathways. For example, IL6 exacerbated the detrimental effects of activin A in skeletal muscle, whereas activin A curbed the IL6-induced acute-phase response in liver. This study presents a useful model to deconstruct cachexia, opening a pathway to determining which tumorkines are best targeted to slow/reverse this devastating condition in cancer patients. Cancer Res; 76(18); 5372-82. ©2016 AACR. ©2016 American Association for Cancer Research.

  11. Differential expression of lactic acid isomers, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-8 in vaginal fluid from women with vaginal disorders.

    PubMed

    Beghini, J; Linhares, I M; Giraldo, P C; Ledger, W J; Witkin, S S

    2015-11-01

    Do metabolites in vaginal samples vary between women with different vaginal disorders. Cross-sectional study. Campinas, Brazil. Seventy-seven women (39.9%) with no vaginal disorder, 52 women (26.9%) with vulvovaginal candidiasis (VVC), 43 women (22.3%) with bacterial vaginosis (BV), and 21 women (10.9%) with cytolytic vaginosis (CTV). Concentrations of D- and L-lactic acid, extracellular matrix metalloproteinase inducer (EMMPRIN), and matrix metalloproteinase-8 (MMP-8), and the influence of Candida albicans on EMMPRIN production by cultured vaginal epithelial cells, were determined by enzyme-linked immunosorbent assay (ELISA). Associations were determined by the Mann-Whitney U-test and by Spearman's rank correlation test. Metabolite levels and their correlation with diagnoses. Vaginal concentrations of D- and L-lactic acid were reduced from control levels in BV (P < 0.0001); L-lactic acid levels were elevated in CTV (P = 0.0116). EMMPRIN and MMP-8 concentrations were elevated in VVC (P < 0.0001). EMMPRIN and L-lactic acid concentrations (P ≤ 0.008), but not EMMPRIN and D-lactic acid, were correlated in all groups. EMMPRIN also increased in proportion with the ratio of L- to D-lactic acid in controls and in women with BV (P ≤ 0.009). Concentrations of EMMPRIN and MMP-8 were correlated in controls and women with VVC (P ≤ 0.0002). Candida albicans induced EMMPRIN release from vaginal epithelial cells. Vaginal secretions from women with BV are deficient in D- and L-lactic acid, women with VVC have elevated EMMPRIN and MMP-8 levels, and women with CTV have elevated L-lactic acid levels. These deviations may contribute to the clinical signs, symptoms, and sequelae that are characteristic of these disorders. © 2014 Royal College of Obstetricians and Gynaecologists.

  12. Aerobic exercise training-induced changes in serum adropin level are associated with reduced arterial stiffness in middle-aged and older adults.

    PubMed

    Fujie, Shumpei; Hasegawa, Natsuki; Sato, Koji; Fujita, Satoshi; Sanada, Kiyoshi; Hamaoka, Takafumi; Iemitsu, Motoyuki

    2015-11-15

    Aging-induced arterial stiffening is reduced by aerobic exercise training, and elevated production of nitric oxide (NO) participates in this effect. Adropin is a regulator of endothelial NO synthase and NO release, and circulating adropin level decreases with age. However, the effect of habitual aerobic exercise on circulating adropin levels in healthy middle-aged and older adults remains unclear. We sought to determine whether serum adropin level is associated with exercise training-induced changes in arterial stiffness. First, in a cross-sectional study, we investigated the association between serum adropin level and both arterial stiffness and cardiorespiratory fitness in 80 healthy middle-aged and older subjects (65.6 ± 0.9 yr). Second, in an intervention study, we examined the effects of 8-wk aerobic exercise training on serum adropin level and arterial stiffness in 40 healthy middle-aged and older subjects (67.3 ± 1.0 yr) divided into two groups: aerobic exercise training and sedentary controls. In the cross-sectional study, serum adropin level was negatively correlated with carotid β-stiffness (r = -0.437, P < 0.001) and positively correlated with plasma NOx level (r = 0.493, P < 0.001) and cardiorespiratory fitness (r = 0.457, P < 0.001). Serum adropin levels were elevated after the 8-wk aerobic exercise training intervention, and training-induced changes in serum adropin level were correlated with training-induced changes in carotid β-stiffness (r = -0.399, P < 0.05) and plasma NOx level (r = 0.623, P < 0.001). Thus the increase in adropin may participate in the exercise-induced reduction of arterial stiffness. Copyright © 2015 the American Physiological Society.

  13. The inhibition of inducible nitric oxide synthase and oxidative stress by agmatine attenuates vascular dysfunction in rat acute endotoxemic model.

    PubMed

    El-Awady, Mohammed S; Nader, Manar A; Sharawy, Maha H

    2017-10-01

    Vascular dysfunction leading to hypotension is a major complication in patients with septic shock. Inducible nitric oxide synthase (iNOS) together with oxidative stress play an important role in development of vascular dysfunction in sepsis. Searching for an endogenous, safe and yet effective remedy was the chief goal for this study. The current study investigated the effect of agmatine (AGM), an endogenous metabolite of l-arginine, on sepsis-induced vascular dysfunction induced by lipopolysaccharides (LPS) in rats. AGM pretreatment (10mg/kg, i.v.) 1h before LPS (5mg/kg, i.v.) prevented the LPS-induced mortality and elevations in serum creatine kinase-MB isoenzyme (CK-MB) activity, lactate dehydrogenase (LDH) activity, C-reactive protein (CRP) level and total nitrite/nitrate (NOx) level after 24h from LPS injection. The elevation in aortic lipid peroxidation illustrated by increased malondialdehyde (MDA) content and the decrease in aortic glutathione (GSH) and superoxide dismutase (SOD) were also ameliorated by AGM. Additionally, AGM prevented LPS-induced elevation in mRNA expression of iNOS, while endothelial NOS (eNOS) mRNA was not affected. Furthermore AGM prevented the impaired aortic contraction to KCl and phenylephrine (PE) and endothelium-dependent relaxation to acetylcholine (ACh) without affecting endothelium-independent relaxation to sodium nitroprusside (SNP). AGM may represent a potential endogenous therapeutic candidate for sepsis-induced vascular dysfunction through its inhibiting effect on iNOS expression and oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Intracerebroventricular Kainic Acid-Induced Damage Affects Blood Glucose Level in d-glucose-fed Mouse Model

    PubMed Central

    Kim, Chea-Ha

    2015-01-01

    We have previously reported that the intracerebroventricular (i.c.v.) administration of kainic acid (KA) results in significant neuronal damage on the hippocampal CA3 region. In this study, we examined possible changes in the blood glucose level after i.c.v. pretreatment with KA. The blood glucose level was elevated at 30 min, began to decrease at 60 min and returned to normal at 120 min after D-glucose-feeding. We found that the blood glucose level in the KA-pretreated group was higher than in the saline-pretreated group. The up-regulation of the blood glucose level in the KA-pretreated group was still present even after 1~4 weeks. The plasma corticosterone and insulin levels were slightly higher in the KA-treated group. Corticosterone levels decreased whereas insulin levels were elevated when mice were fed with D-glucose. The i.c.v. pretreatment with KA for 24 hr caused a significant reversal of D-glucose-induced down-regulation of corticosterone level. However, the insulin level was enhanced in the KA-pretreated group compared to the vehicle-treated group when mice were fed with D-glucose. These results suggest that KA-induced alterations of the blood glucose level are related to cell death in the CA3 region whereas the up-regulation of blood glucose level in the KA-pretreated group appears to be due to a reversal of D-glucose feeding-induced down-regulation of corticosterone level. PMID:25792867

  15. Intracerebroventricular Kainic Acid-Induced Damage Affects Blood Glucose Level in d-glucose-fed Mouse Model.

    PubMed

    Kim, Chea-Ha; Hong, Jae-Seung

    2015-03-01

    We have previously reported that the intracerebroventricular (i.c.v.) administration of kainic acid (KA) results in significant neuronal damage on the hippocampal CA3 region. In this study, we examined possible changes in the blood glucose level after i.c.v. pretreatment with KA. The blood glucose level was elevated at 30 min, began to decrease at 60 min and returned to normal at 120 min after D-glucose-feeding. We found that the blood glucose level in the KA-pretreated group was higher than in the saline-pretreated group. The up-regulation of the blood glucose level in the KA-pretreated group was still present even after 1~4 weeks. The plasma corticosterone and insulin levels were slightly higher in the KA-treated group. Corticosterone levels decreased whereas insulin levels were elevated when mice were fed with D-glucose. The i.c.v. pretreatment with KA for 24 hr caused a significant reversal of D-glucose-induced down-regulation of corticosterone level. However, the insulin level was enhanced in the KA-pretreated group compared to the vehicle-treated group when mice were fed with D-glucose. These results suggest that KA-induced alterations of the blood glucose level are related to cell death in the CA3 region whereas the up-regulation of blood glucose level in the KA-pretreated group appears to be due to a reversal of D-glucose feeding-induced down-regulation of corticosterone level.

  16. Biochar addition induced the same plant responses as elevated CO2 in mine spoil.

    PubMed

    Zhang, Yaling; Drigo, Barbara; Bai, Shahla Hosseini; Menke, Carl; Zhang, Manyun; Xu, Zhihong

    2018-01-01

    Nitrogen (N) limitation is one of the major constrain factors for biochar in improving plant growth, the same for elevated atmospheric carbon dioxide (CO 2 ). Hence, we hypothesized that (1) biochar would induce the same plant responses as elevated CO 2 under N-poor conditions; (2) elevated CO 2 would decrease the potential of biochar application in improving plant growth. To test these hypotheses, we assessed the effects of pinewood biochar, produced at three pyrolytic temperatures (650, 750 and 850 °C), on C and N allocation at the whole-plant level of three plant species (Austrostipa ramossissima, Dichelachne micrantha and Isolepis nodosa) grown in the N poor mine spoil under both ambient (400 μL L -1 ) and elevated (700 μL L -1 ) CO 2 concentrations. Our data showed that biochar addition (1) significantly decreased leaf total N and δ 15 N (P < 0.05); (2) decreased leaf total N and δ 15 N more pronouncedly than those of root; and (3) showed more pronounced effects on improving plant biomass under ambient CO 2 than under elevated CO 2 concentration. Hence, it remained a strong possibility that biochar addition induced the same plant physiological responses as elevated CO 2 in the N-deficient mine spoil. As expected, elevated CO 2 decreased the ability of biochar addition in improving plant growth.

  17. Low concentrations of the soy phytoestrogen genistein induce proteinase inhibitor 9 and block killing of breast cancer cells by immune cells.

    PubMed

    Jiang, Xinguo; Patterson, Nicole M; Ling, Yan; Xie, Jianwei; Helferich, William G; Shapiro, David J

    2008-11-01

    The risks and benefits of diets and supplements containing the estrogenic soy isoflavone genistein are not well established. We report that 10 nm genistein potently induces the granzyme B inhibitor, proteinase inhibitor 9 (PI-9) in MCF-7 human breast cancer cells. By inducing PI-9, genistein inhibits the ability of human natural killer (NK) cells to lyse the target breast cancer cells. In ERalphaHA cells, stably transfected MCF-7 cells, which contain elevated levels of estrogen receptor-alpha (ERalpha), 100 pm genistein or 17beta-estradiol potently induce PI-9 and prevent NK cells from killing the target breast cancer cells. The concentrations of genistein that fully induce PI-9 in MCF-7 cells, and in ERalphaHA cells, are far lower than those previously reported to elicit estrogenic responses through ERalpha. Because 4-hydroxytamoxifen, raloxifene, and ICI 182,780/Faslodex all block genistein induction of PI-9 and elevated levels of ERalpha enhance induction of PI-9, genistein acts via ERalpha to induce PI-9. Increasing levels of ERalpha in breast cancer cells results in a progressive increase in induction of PI-9 by genistein and in the cell's ability to evade killing by NK cells. Moderate levels of dietary genistein and soy flour effectively induce PI-9 in human breast cancers grown in ovariectomized athymic mice. A significant population consumes levels of genistein in soy products that may be high enough to induce PI-9, perhaps potentiating the survival of some preexisting breast cancers by enabling them to evade immunosurveillance.

  18. Clopidogrel, a P2Y12 Receptor Antagonist, Potentiates the Inflammatory Response in a Rat Model of Peptidoglycan Polysaccharide-Induced Arthritis

    PubMed Central

    Rico, Mario C.; Dela Cadena, Raul A.; Kunapuli, Satya P.

    2011-01-01

    The P2Y12 receptor plays a crucial role in the regulation of platelet activation by several agonists, which is irreversibly antagonized by the active metabolite of clopidogrel, a widely used anti-thrombotic drug. In this study, we investigated whether reduction of platelet reactivity leads to reduced inflammatory responses using a rat model of erosive arthritis. We evaluated the effect of clopidogrel on inflammation in Lewis rats in a peptidoglycan polysaccharide (PG-PS)-induced arthritis model with four groups of rats: 1) untreated, 2) clopidogrel-treated, 3) PG-PS-induced, and 4) PG-PS-induced and clopidogrel-treated. There were significant differences between the PG-PS+clopidogrel group when compared to the PG-PS group including: increased joint diameter and clinical manifestations of inflammation, elevated plasma levels of pro-inflammatory cytokines (IL-1 beta, interferon (IFN) gamma, and IL-6), an elevated neutrophil blood count and an increased circulating platelet count. Plasma levels of IL-10 were significantly lower in the PG-PS+clopidogrel group compared to the PG-PS group. Plasma levels of platelet factor 4 (PF4) were elevated in both the PG-PS and the PG-PS+clopidogrel groups, however PF4 levels showed no difference upon clopidogrel treatment, suggesting that the pro- inflammatory effect of clopidogrel may be due to its action on cells other than platelets. Histology indicated an increase in leukocyte infiltration at the inflammatory area of the joint, increased pannus formation, blood vessel proliferation, subsynovial fibrosis and cartilage erosion upon treatment with clopidogrel in PG-PS-induced arthritis animals. In summary, animals treated with clopidogrel showed a pro-inflammatory effect in the PG-PS-induced arthritis animal model, which might not be mediated by platelets. Elucidation of the mechanism of clopidogrel-induced cell responses is important to understand the role of the P2Y12 receptor in inflammation. PMID:22028806

  19. Studying neuroprotective effect of Atorvastatin as a small molecule drug on high glucose-induced neurotoxicity in undifferentiated PC12 cells: role of NADPH oxidase.

    PubMed

    Rayegan, Samira; Dehpour, Ahmad Reza; Sharifi, Ali Mohammad

    2017-02-01

    Overproduction of reactive oxygen species (ROS) by NADPH oxidase (NOX) activation has been considered the essential mechanism induced by hyperglycemia in various tissues. However, there is no comprehensive study on the role of NOXs in high glucose (HG)-induced toxic effect in neural tissues. Recently, a therapeutic strategy in oxidative related pathologies has been introduced by blocking the undesirable actions of NOX enzymes by small molecules. The protective roles of Statins in ameliorating oxidative stress by NOX inhibition have been shown in some tissues except neural. We hypothesized then, that different NOXs may have role in HG-induced neural cell injury. Furthermore, we postulate that Atorvastatin as a small molecule may modulate this NOXs activity to protect neural cells. Undifferentiated PC12 cells were treated with HG (140 mM/24 h) in the presence and absence of Atorvastatin (1 μM/96 h). The cell viability was measured by MTT assay and the gene and protein expressions profile of NOX (1-4) were determined by RT-PCR and western blotting, respectively. Levels of ROS and malondialdehyde (MDA) were also evaluated. Gene and protein expression levels of NOX (1-4) and consequently ROS and MDA levels were elevated in HG-treated PC12 cells. Atorvastatin could significantly decrease HG-induced NOXs, ROS and MDA elevation and improve impaired cell viability. It can be concluded that HG could elevate NOXs activity, ROS and MDA levels in neural tissues and Atorvastatin as a small molecule NOX inhibitor drug may prevent and delay diabetic complications, particularly neuropathy.

  20. Protection against fine particle-induced pulmonary and systemic inflammation by omega-3 polyunsaturated fatty acids.

    PubMed

    Li, Xiang-Yong; Hao, Lei; Liu, Ying-Hua; Chen, Chih-Yu; Pai, Victor J; Kang, Jing X

    2017-03-01

    Exposure to fine particulate matter, such as through air pollution, has been linked to the increased incidence of chronic diseases. However, few measures have been taken to reduce the health risks associated with fine particle exposure. The identification of safe and effective methods to protect against fine particle exposure-related damage is urgently needed. We used synthetic, non-toxic, fluorescent fine particles to investigate the physical distribution of inhaled fine particles and their effects on pulmonary and systemic inflammation in mice. Tissue levels of omega-3 fatty acids were elevated via dietary supplementation or the fat-1 transgenic mouse model. Markers of pulmonary and systemic inflammation were assessed. We discovered that fine particulate matter not only accumulates in the lungs but can also penetrate the pulmonary barrier and travel into other organs, including the brain, liver, spleen, kidney, and testis. These particles induced both pulmonary and systemic inflammation and increased oxidative stress. We also show that elevating tissue levels of omega-3 fatty acids was effective in reducing fine particle-induced inflammation, whether as a preventive method (prior to exposure) or as an intervention (after exposure). These results advance our understanding of how fine particles contribute to disease development and suggest that increasing tissue omega-3 levels may be a promising nutritional means for reducing the risk of diseases induced by particle exposure. Our findings demonstrate that elevating tissue omega-3 levels can prevent and treat fine particle-induced health problems and thereby present an immediate, practical solution for reducing the disease burden of air pollution. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Suckling induced insulin-like growth factor-1 (IGF-1) release in mother rats.

    PubMed

    Lékó, András H; Cservenák, Melinda; Dobolyi, Árpád

    2017-12-01

    Lactation involves significant neuroendocrine changes. The elevated prolactin (PRL) release from the pituitary, induced markedly by suckling, is the most relevant example. Suckling also causes a significant and rapid elevation in growth hormone (GH) levels. GH is necessary for milk synthesis as milk yield is stopped completely in the absence of PRL and GH, while the absence of PRL alone causes only a 50% reduction. Insulin-like growth factor-1 (IGF-1) plays an important role in the GH axis. GH exerts its effects through IGF-1 in the periphery, for example in the mammary gland. In addition, IGF-1 is responsible for the long-loop feedback control of GH secretion. IGF-1 secretion has not been established yet in mothers. Therefore, in the present study, we investigated the effect of suckling on serum IGF-1 level in rat mothers and correlated it with serum PRL levels. We examined a potential mechanism of the regulation of IGF-1 level during suckling by administering IGF-1 into the lateral ventricle of rat mothers continuously for 12days, or acutely, right before the start of suckling. We described that suckling affected IGF-1 release based on one-way repeated measures ANOVA (F=10.8 and p<0.001) and caused a marked increase of IGF-1 level 30min after the start of suckling (p<0.001). We demonstrated a significant (p<0.05; the correlation coefficient was 0.29) correlation to PRL level during suckling which supports that PRL could induce IGF-1 release. The prolonged central IGF-1 administration diminished the suckling-induced IGF-1 surge (F=9.19 and p<0.001) while the acute treatment did not have any effect compared to artificial cerebrospinal fluid injection, analysed with two-way repeated measures ANOVA. In conclusion, suckling induces IGF-1 release either by elevating PRL or GH. Long-loop feedback via IGF-1 in the GH axis can diminish this action. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Roles of Autophagy in MPP+-Induced Neurotoxicity In Vivo: The Involvement of Mitochondria and α-Synuclein Aggregation

    PubMed Central

    Lin, Ming-Wei; Lei, Yen-Ping; Lin, Anya Maan-yuh

    2014-01-01

    Macroautophagy (also known as autophagy) is an intracellular self-eating mechanism and has been proposed as both neuroprotective and neurodestructive in the central nervous system (CNS) neurodegenerative diseases. In the present study, the role of autophagy involving mitochondria and α-synuclein was investigated in MPP+ (1-methyl-4-phenylpyridinium)-induced oxidative injury in chloral hydrate-anesthetized rats in vivo. The oxidative mechanism underlying MPP+-induced neurotoxicity was identified by elevated lipid peroxidation and heme oxygenase-1 levels, a redox-regulated protein in MPP+-infused substantia nigra (SN). At the same time, MPP+ significantly increased LC3-II levels, a hallmark protein of autophagy. To block MPP+-induced autophagy in rat brain, Atg7siRNA was intranigrally infused 4 d prior to MPP+ infusion. Western blot assay showed that in vivo Atg7siRNA transfection not only reduced Atg7 levels in the MPP+-infused SN but attenuated MPP+-induced elevation in LC3-II levels, activation of caspase 9 and reduction in tyrosine hydroxylase levels, indicating that autophagy is pro-death. The immunostaining study demonstrated co-localization of LC3 and succinate dehydrogenase (a mitochondrial complex II) as well as LC3 and α-synuclein, suggesting that autophagy may engulf mitochondria and α-synuclein. Indeed, in vivo Atg7siRNA transfection mitigated MPP+-induced reduction in cytochrome c oxidase. In addition, MPP+-induced autophagy differentially altered the α-synuclein aggregates in the infused SN. In conclusion, autophagy plays a prodeath role in the MPP+-induced oxidative injury by sequestering mitochondria in the rat brain. Moreover, our data suggest that the benefits of autophagy depend on the levels of α-synuclein aggregates in the nigrostriatal dopaminergic system of the rat brain. PMID:24646838

  3. Exercise-induced rhabdomyolysis.

    PubMed

    Lee, George

    2014-11-03

    Exercise-induced rhabdomyolysis, or exertional rhabdomyolysis (ER), is a clinical entity typically considered when someone presents with muscle stiffness, swelling, and pain out of proportion to the expected fatigue post exercise. The diagnosis is confirmed by myoglobinuria, and an elevated serum Creatinine Phosphokinase (CPK) level, usually 10 times the normal range. However, an elevation in CPK is seen in most forms of strenuous exercise, up to 20 times the upper normal range. Therefore, there is no definitive pathologic CPK cut-off. Fortunately the dreaded complication of acute renal failure is rare compared to other forms rhabdomyolysis. We review the risks, diagnosis, clinical course and treatment for exercise- induced rhabdomyolysis.

  4. Climatic role of terrestrial ecosystem under elevated CO2 : a bottom-up greenhouse gases budget.

    PubMed

    Liu, Shuwei; Ji, Cheng; Wang, Cong; Chen, Jie; Jin, Yaguo; Zou, Ziheng; Li, Shuqing; Niu, Shuli; Zou, Jianwen

    2018-05-07

    The net balance of greenhouse gas (GHG) exchanges between terrestrial ecosystems and the atmosphere under elevated atmospheric carbon dioxide (CO 2 ) remains poorly understood. Here, we synthesise 1655 measurements from 169 published studies to assess GHGs budget of terrestrial ecosystems under elevated CO 2 . We show that elevated CO 2 significantly stimulates plant C pool (NPP) by 20%, soil CO 2 fluxes by 24%, and methane (CH 4 ) fluxes by 34% from rice paddies and by 12% from natural wetlands, while it slightly decreases CH 4 uptake of upland soils by 3.8%. Elevated CO 2 causes insignificant increases in soil nitrous oxide (N 2 O) fluxes (4.6%), soil organic C (4.3%) and N (3.6%) pools. The elevated CO 2 -induced increase in GHG emissions may decline with CO 2 enrichment levels. An elevated CO 2 -induced rise in soil CH 4 and N 2 O emissions (2.76 Pg CO 2 -equivalent year -1 ) could negate soil C enrichment (2.42 Pg CO 2 year -1 ) or reduce mitigation potential of terrestrial net ecosystem production by as much as 69% (NEP, 3.99 Pg CO 2 year -1 ) under elevated CO 2 . Our analysis highlights that the capacity of terrestrial ecosystems to act as a sink to slow climate warming under elevated CO 2 might have been largely offset by its induced increases in soil GHGs source strength. © 2018 John Wiley & Sons Ltd/CNRS.

  5. Smad, but not MAPK, pathway mediates the expression of type I collagen in radiation induced fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yano, Hiroyuki; Division of Radioisotope Research, Department of Research Support, Research Promotion Project, Oita University, 1-1 Idaigaoka Hasama-machi, Yufu, Oita 879-5593; Hamanaka, Ryoji

    Highlights: Black-Right-Pointing-Pointer We examine how radiation affects the expression level and signal pathway of collagen. Black-Right-Pointing-Pointer TGF-{beta}1 mRNA is elevated earlier than those of collagen genes after irradiation. Black-Right-Pointing-Pointer Smad pathway mediates the expression of collagen in radiation induced fibrosis. Black-Right-Pointing-Pointer MAPK pathways are not affected in the expression of collagen after irradiation. -- Abstract: Radiation induced fibrosis occurs following a therapeutic or accidental radiation exposure in normal tissues. Tissue fibrosis is the excessive accumulation of collagen and other extracellular matrix components. This study investigated how ionizing radiation affects the expression level and signal pathway of type I collagen. Realmore » time RT-RCR showed that both {alpha}1and {alpha}2 chain of type I collagen mRNA were elevated from 48 h after irradiation with 10 Gy in NIH3T3 cells. The relative luciferase activities of both genes and type I collagen marker were elevated at 72 h. TGF-{beta}1 mRNA was elevated earlier than those of type I collagen genes. A Western blot analysis showed the elevation of Smad phosphorylation at 72 h. Conversely, treatment with TGF-{beta} receptor inhibitor inhibited the mRNA and relative luciferase activity of type I collagen. The phosphorylation of Smad was repressed with the inhibitor, and the luciferase activity was cancelled using a mutant construct of Smad binding site of {alpha}2(I) collagen gene. However, the MAPK pathways, p38, ERK1/2 and JNK, were not affected with specific inhibitors or siRNA. The data showed that the Smad pathway mediated the expression of type I collagen in radiation induced fibrosis.« less

  6. Elevated carbon dioxide increases salicylic acid in Glycine max.

    PubMed

    Casteel, Clare L; Segal, Lauren M; Niziolek, Olivia K; Berenbaum, May R; DeLucia, Evan H

    2012-12-01

    Concentrations of carbon dioxide (CO(2)) are increasing in the atmosphere, affecting soybean (Glycine max L.) phytohormone signaling and herbivore resistance. Whether the impact of elevated CO(2) on phytohormones and induced defenses is a generalized response within this species is an open question. We examined jasmonic acid (JA) and salicylic acid (SA) under ambient and elevated CO(2) concentrations with and without Japanese beetle (Popillia japonica Newman) damage and artificial damage across six soybean cultivars (HS93-4118, Pana, IA 3010, Loda, LN97-15076, and Dwight). Elevated CO(2) reduced constitutive levels of JA and related transcripts in some but not all soybean cultivars. In contrast to the variation in JA, constitutive levels of salicylic were increased universally among soybean cultivars grown under elevated CO(2). Variation in hormonal signaling may underpin observed variation in the response of insect herbivores and pathogens to plants grown under elevated CO(2).

  7. The plastidial retrograde signal methyl erythritol cyclopyrophosphate is a regulator of salicylic acid and jasmonic acid crosstalk

    PubMed Central

    Lemos, Mark; Xiao, Yanmei; Bjornson, Marta; Wang, Jin-zheng; Hicks, Derrick; de Souza, Amancio; Wang, Chang-Quan; Yang, Panyu; Ma, Shisong; Dinesh-Kumar, Savithramma; Dehesh, Katayoon

    2016-01-01

    The exquisite harmony between hormones and their corresponding signaling pathways is central to prioritizing plant responses to simultaneous and/or successive environmental trepidations. The crosstalk between jasmonic acid (JA) and salicylic acid (SA) is an established effective mechanism that optimizes and tailors plant adaptive responses. However, the underlying regulatory modules of this crosstalk are largely unknown. Global transcriptomic analyses of mutant plants (ceh1) with elevated levels of the stress-induced plastidial retrograde signaling metabolite 2-C-methyl-D-erythritol cyclopyrophosphate (MEcPP) revealed robustly induced JA marker genes, expected to be suppressed by the presence of constitutively high SA levels in the mutant background. Analyses of a range of genotypes with varying SA and MEcPP levels established the selective role of MEcPP-mediated signal(s) in induction of JA-responsive genes in the presence of elevated SA. Metabolic profiling revealed the presence of high levels of the JA precursor 12-oxo-phytodienoic acid (OPDA), but near wild type levels of JA in the ceh1 mutant plants. Analyses of coronatine-insensitive 1 (coi1)/ceh1 double mutant plants confirmed that the MEcPP-mediated induction is JA receptor COI1 dependent, potentially through elevated OPDA. These findings identify MEcPP as a previously unrecognized central regulatory module that induces JA-responsive genes in the presence of high SA, thereby staging a multifaceted plant response within the environmental context. PMID:26733689

  8. Decidual tissue growth and regression in the guinea pig: regulation by uterine blood flow and relation to circulating progesterone concentrations.

    PubMed

    Garris, D R

    1984-05-01

    The role of uterine blood flow (UBF) in the modulation of experimentally induced decidua formation was assessed in mature guinea pigs. The response to endometrial trauma, as indexed by uterine weight changes, was dependent upon the type of stimulus used, with deciduogenic effectiveness as follows: saline = oil = knife scratch less than scissor cut. Both the knife scratch and scissor cut techniques induced elevations in UBF compared with control values. Neither uterine weight nor UBF increased when trauma was applied to unresponsive uteri, indicating that inflammation was not the cause of uterine hyperemia. Uterine weight increased from basal levels on the day of trauma (i.e. day 5 of the estrous cycle) to a maximal weight between days 10 and 12 posttrauma. Maximal growth of the induced decidua occurred under conditions of elevated UBF. Subsequently, UBF declined between days 10 and 15 posttrauma, preceding the associate resorption of the induced decidua. During the period of decidua growth, serum progesterone levels were elevated compared with those in control animals. These data indicate that experimentally induced decidua formation in the guinea pig is associated with uterine hyperemia and increased corpus luteum activity, both of which are necessary for proper endometrial differentiation. It is hypothesized that these events mimic the uterine hyperemia associated with blastocyst implanplantation and early placentation in this species.

  9. Mitigation of acrylamide-induced behavioral deficits, oxidative impairments and neurotoxicity by oral supplements of geraniol (a monoterpene) in a rat model.

    PubMed

    Prasad, Sathya N; Muralidhara

    2014-11-05

    In the recent past, several phytoconstituents are being explored for their potential neuromodulatory effects in neurological diseases. Repeated exposure of acrylamide (ACR) leads to varying degree of neuronal damage in experimental animals and humans. In view of this, the present study investigated the efficacy of geraniol (GE, a natural monoterpene) to mitigate acrylamide (ACR)-induced oxidative stress, mitochondrial dysfunction and neurotoxicity in a rat model and compared its efficacy to that of curcumin (CU, a spice active principle with multiple biological activities). ACR administration (50mg/kg bw, i.p. 3times/week) for 4weeks to growing rats caused typical symptoms of neuropathy. ACR rats provided with daily oral supplements of phytoconstituents (GE: 100mg/kg bw/d; CU: 50mg/kg bw/d, 4weeks) exhibited marked improvement in behavioral tests. Both phytoconstituents markedly attenuated ACR-induced oxidative stress as evidenced by the diminished levels of reactive oxygen species, malondialdehyde and nitric oxide and restored the reduced glutathione levels in sciatic nerve (SN) and brain regions (cortex - Ct, cerebellum - Cb). Further, both phytoconstituents effectively diminished ACR-induced elevation in cytosolic calcium levels in SN and Cb. Furthermore, diminution in the levels of oxidative markers in the mitochondria was associated with elevation in the activities of antioxidant enzymes. While ACR mediated elevation in the acetylcholinesterase activity was reduced by both actives, the depletion in dopamine levels was restored only by CU in brain regions. Taken together our findings for the first time demonstrate that the neuromodulatory propensity of GE is indeed comparable to that of CU and may be exploited as a therapeutic adjuvant in the management of varied human neuropathy conditions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Maternal glucocorticoid elevation and associated blood metabonome changes might be involved in metabolic programming of intrauterine growth retardation in rats exposed to caffeine prenatally

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kou, Hao; Liu, Yansong; Liang, Gai

    Our previous studies demonstrated that prenatal caffeine exposure causes intrauterine growth retardation (IUGR), fetuses are over-exposed to high levels of maternal glucocorticoids (GC), and intrauterine metabolic programming and associated metabonome alteration that may be GC-mediated. However, whether maternal metabonomes would be altered and relevant metabolite variations might mediate the development of IUGR remained unknown. In the present studies, we examined the dose- and time-effects of caffeine on maternal metabonome, and tried to clarify the potential roles of maternal GCs and metabonome changes in the metabolic programming of caffeine-induced IUGR. Pregnant rats were treated with caffeine (0, 20, 60 or 180more » mg/kg · d) from gestational days (GD) 11 to 20, or 180 mg/kg · d caffeine from GD9. Metabonomes of maternal plasma on GD20 in the dose–effect study and on GD11, 14 and 17 in the time–course study were analyzed by {sup 1}H nuclear magnetic resonance spectroscopy, respectively. Caffeine administration reduced maternal weight gains and elevated both maternal and fetal corticosterone (CORT) levels. A negative correlation between maternal/fetal CORT levels and fetal bodyweight was observed. The maternal metabonome alterations included attenuated metabolism of carbohydrates, enhanced lipolysis and protein breakdown, and amino acid accumulation, suggesting GC-associated metabolic effects. GC-associated metabolite variations (α/β-glucoses, high density lipoprotein-cholesterol, β-hydroxybutyrate) were observed early following caffeine administration. In conclusion, prenatal caffeine exposure induced maternal GC elevation and metabonome alteration, and maternal GC and relevant discriminatory metabolites might be involved in the metabolic programming of caffeine-induced IUGR. - Highlights: • Prenatal caffeine exposure elevated maternal blood glucocorticoid levels. • Prenatal caffeine exposure altered maternal blood metabonomes. • Maternal metabonome alterations were associated with glucocorticoid elevation. • Maternal metabonomes were altered at early stage after caffeine exposure. • Maternal glucocorticoid and associated metabolites may be involved in fetal programming.« less

  11. Serum miRNAs miR-23a, 206, and 499 as Potential Biomarkers for Skeletal Muscle Atrophy

    PubMed Central

    Wang, Jing; He, Jian; Li, Wenjiong; Li, Jinglong; Chen, Shengju; Zhang, Peng; Liu, Hongju

    2017-01-01

    Muscle biopsy has long been expected to be replaced by noninvasive biomarkers with diagnostic value and prognostic applications for muscle atrophy. Growing evidence suggests that circulating microRNAs (miRNAs) could act as biomarkers for numerous pathophysiological statuses. In the present study, our results showed that the serum levels of six muscle-specific miRNAs (miR-1/23a/133/206/208b/499) were all elevated in unloading induced mice. The medium levels of these six muscle-specific miRNAs were all elevated in starvation induced atrophic C2C12 myotubes. Moreover, the serum levels of miR-23a/206/499 were induced in participants after 45 days of head-down bed rest (HDBR). The levels of miR-23a/206/499 were positively correlated with the ratio of soleus volume loss in HDBR participants, indicating that they might represent the process of muscle loss. In conclusion, our results demonstrated that circulating miRNAs could serve as useful biochemical and molecular indicators for muscle atrophy diagnosis and disease progression. PMID:29214178

  12. A benzoxazine derivative induces vascular endothelial cell apoptosis in the presence of fibroblast growth factor-2 by elevating NADPH oxidase activity and reactive oxygen species levels.

    PubMed

    Zhao, Jing; He, Qiuxia; Cheng, Yizhe; Zhao, Baoxiang; Zhang, Yun; Zhang, Shangli; Miao, Junying

    2009-09-01

    Previously, we found that 6,8-dichloro-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine (DBO) promoted apoptosis of human umbilical vascular endothelial cells (HUVECs) deprived of growth factors. In this study, we aimed to investigate the effect of DBO and its mechanism of action on angiogenesis and apoptosis of HUVECs in the presence of fibroblast growth factor-2 (FGF-2), which promotes angiogenesis and inhibits apoptosis in vivo and in vitro. DBO significantly inhibited capillary-like tube formation by promoting apoptosis of HUVECs in the presence of FGF-2 in vitro. Furthermore, DBO elevated the levels of reactive oxygen species (ROS) and nitric oxide (NO) and increased the activity of NADPH oxidase and inducible nitric oxide synthase (iNOS) in promoting apoptosis under this condition. Moreover, when NADPH oxidase was inhibited by its specific inhibitor, dibenziodolium chloride (DPI), DBO could not elevate ROS and NO levels in HUVECs. The data suggest that DBO is a new modulator of apoptosis in vitro, and it might function by increasing the activity of NADPH oxidase and iNOS, subsequently elevating the levels of ROS and NO in HUVECs. The findings of this study provide a new small molecule for investigating the FGF-2/NADPH oxidase/iNOS signaling pathway in apoptosis.

  13. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice.

    PubMed

    Priyadarshini, Emayavaramban; Anuradha, Carani Venkatraman

    2017-02-01

    High intake of dietary fructose causes perturbation in lipid metabolism and provokes lipid-induced insulin resistance. A rise in glucocorticoids (GCs) has recently been suggested to be involved in fructose-induced insulin resistance. The objective of the study was to investigate the effect of GC blockade on lipid abnormalities in insulin-resistant mice. Insulin resistance was induced in mice by administering a high-fructose diet (HFrD) for 60 days. Mifepristone (RU486), a GC antagonist, was administered to HFrD-fed mice for the last 18 days, and the intracellular and extracellular GC levels, the glucocorticoid receptor (GR) activation and the expression of GC-regulated genes involved in lipid metabolism were examined. HFrD elevated the intracellular GC content in both liver and adipose tissue and enhanced the GR nuclear translocation. The plasma GC level remained unchanged. The levels of free fatty acids and triglycerides in plasma were elevated, accompanied by increased plasma insulin and glucose levels and decreased hepatic glycogen content. Treatment with RU486 reduced plasma lipid levels, tissue GC levels and the expression of GC-targeted genes involved in lipid accumulation, and it improved insulin sensitivity. This study demonstrated that HFrD-induced lipid accumulation and insulin resistance are mediated by enhanced GC in liver and adipose tissue and that GC antagonism might reduce fructose-induced lipid abnormalities and insulin resistance. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  14. Cardiac ACE2/angiotensin 1–7/Mas receptor axis is activated in thyroid hormone-induced cardiac hypertrophy

    PubMed Central

    Diniz, Gabriela P.; Senger, Nathalia; Carneiro-Ramos, Marcela S.; Santos, Robson A. S.; Barreto-Chaves, Maria Luiza M.

    2015-01-01

    Objectives: Thyroid hormone (TH) promotes marked effects on the cardiovascular system, including the development of cardiac hypertrophy. Some studies have demonstrated that the renin–angiotensin system (RAS) is a key mediator of the cardiac growth in response to elevated TH levels. Although some of the main RAS components are changed in cardiac tissue on hyperthyroid state, the potential modulation of the counter regulatory components of the RAS, such as angiotensin-converting enzyme type 2 (ACE2), angiotensin 1–7 (Ang 1–7) levels and Mas receptor induced by hyperthyroidism is unknown. The aim of this study was to investigate the effect of hyperthyroidism on cardiac Ang 1–7, ACE2 and Mas receptor levels. Methods: Hyperthyroidism was induced in Wistar rats by daily intraperitoneal injections of T4 for 14 days. Results: Although plasma Ang 1–7 levels were unchanged by hyperthyroidism, cardiac Ang 1–7 levels were increased in TH-induced cardiac hypertrophy. ACE2 enzymatic activity was significantly increased in hearts from hyperthyroid animals, which may be contributing to the higher Ang 1–7 levels observed in the T4 group. Furthermore, elevated cardiac levels of Ang 1–7 levels were accompanied by increased Mas receptor protein levels. Conclusion: The counter-regulatory components of the RAS are activated in hyperthyroidism and may be contributing to modulate the cardiac hypertrophy in response to TH. PMID:26715125

  15. Factor VIII levels and the risk of pre-eclampsia, HELLP syndrome, pregnancy related hypertension and severe intrauterine growth retardation.

    PubMed

    Witsenburg, C P J; Rosendaal, F R; Middeldorp, J M; Van der Meer, F J M; Scherjon, S A

    2005-01-01

    Recently, acquired as well as genetic prothrombotic factors are associated with thrombotic events. These factors have also been related to conditions of uteroplacental insufficiency such as pre-eclampsia, HELLP syndrome and severe intrauterine growth restriction (IUGR). The aim of this study was to determine whether elevated factor VIII levels are associated with uteroplacental insufficiency, in particular pre-eclampsia, HELLP syndrome or pregnancy-induced hypertension and intrauterine growth retardation. Plasma samples of 75 women with a history of pregnancy complicated by pre-eclampsia, HELLP syndrome, pregnancy induced hypertension or intrauterine growth restriction were tested for factor VIII:C (FVIII:C) levels at a minimum of 10 weeks post-partum. Laboratory results were compared to factor VIII:C levels found in a healthy control group of 272 women. Mean factor VIII:C levels were similar at 123 IU/dl in both the patient group and the controls. In a logistic regression model, after adjusting for age and blood group, no effect of factor VIII:C levels on the risk of pregnancy complications was observed, with the exception of IUGR with (OR 2.9, CI 1.0-8.7) or without hypertension (OR 2.0, CI 0.7-6.4). If the elevated level of factor VIII would be the sole factor responsible for the increased risk observed, one would expect to find an effect of blood group on risk as well (blood group being an important determinant of FVIII:C). While no such effect could be shown a causal relationship between elevated levels of factor VIII and conditions of uteroplacental insufficiency such as pre-eclampsia, HELLP syndrome, pregnancy-induced hypertension and IUGR is not very likely.

  16. Role of CYP2E1 immunoglobulin G4 subclass antibodies and complement in pathogenesis of idiosyncratic drug-induced hepatitis.

    PubMed

    Njoku, Dolores B; Mellerson, Jenelle L; Talor, Monica V; Kerr, Douglas R; Faraday, Nauder R; Outschoorn, Ingrid; Rose, Noel R

    2006-02-01

    Idiosyncratic drug-induced hepatitis (IDDIH) is the third most common cause for acute liver failure in the United States. Previous studies have attempted to identify susceptible patients or early stages of disease with various degrees of success. To determine if total serum immunoglobulin subclasses, CYP2E1-specific subclass autoantibodies, complement components, or immune complexes could distinguish persons with IDDIH from others exposed to drugs, we studied persons exposed to halogenated volatile anesthetics, which have been associated with IDDIH and CYP2E1 autoantibodies. We found that patients with anesthetic-induced IDDIH had significantly elevated levels of CYP2E1-specific immunoglobulin G4 (IgG4) autoantibodies, while anesthetic-exposed healthy persons had significantly elevated levels of CYP2E1-specific IgG1 autoantibodies. Anesthetic IDDIH patients had significantly lower levels of C4a, C3a, and C5a compared to anesthetic-exposed healthy persons. C1q- and C3d-containing immune complexes were significantly elevated in anesthetic-exposed persons. In conclusion, our data suggest that anesthetic-exposed persons develop CYP2E1-specific IgG1 autoantibodies which may form detectable circulating immune complexes subsequently cleared by classical pathway activation of the complement system. Persons susceptible to anesthetic-induced IDDIH develop CYP2E1-specific IgG4 autoantibodies which form small, nonprecipitating immune complexes that escape clearance because of their size or by direct inhibition of complement activation.

  17. Sex-related and stage-dependent source-to-sink transition in Populus cathayana grown at elevated CO(2) and elevated temperature.

    PubMed

    Zhao, Hongxia; Li, Yongping; Zhang, Xiaolu; Korpelainen, Helena; Li, Chunyang

    2012-11-01

    Dioecious plants, which comprise more than 14,620 species, account for an important component of terrestrial ecosystems. Hence, understanding the sexually dimorphic responses in balancing carbon (C) supply and demand under elevated CO(2) is important for understanding leaf sink-to-source transitions. Here we investigate sex-related responses of the dioecious Populus cathayana Rehd. to elevated CO(2) and elevated temperature. The plants were grown in environmentally controlled growth chambers at two CO(2) enrichment regimes (350 ± 20 and 700 ± 20 μmol mol(-1)) with two temperature levels, elevated by 0 and 2 ± 0.2 °C (compared with the out-of-chamber environment). Plant growth characteristics, carbohydrate accumulation, C and nitrogen (N) allocation, photosynthetic capacity, N use efficiency and the morphology of mesophyll cells were investigated in the developing leaves (DLs) and expanded leaves (ELs) of both males and females. Elevated CO(2) enhanced plant growth and photosynthetic capacity in DLs of both males and females, and induced the male ELs to have a greater leaf mass production, net photosynthesis rate (P(n)), chlorophyll a/b ratio (Chl a/b), soluble protein level (SP), photosynthetic N use efficiency and soluble sugar level compared with females at the same leaf stage. Elevated temperature enhanced source activities and N uptake status during CO(2) enrichment, and the combined treatment induced males to be more responsive than females in sink capacities, especially in ELs, probably due to greater N acquisition from other plant parts. Our findings showed that elevated CO(2) increases the sink capacities of P. cathayana seedlings, and elevated temperature enhances the stimulation effect of elevated CO(2) on plant growth. Male ELs were found to play an important role in N acquisition from roots and stems under decreasing N in total leaves under elevated CO(2). Knowledge of the sex-specific leaf adaptability to warming climate can help us to understand sex-related source-to-sink transitions in dioecious plant species.

  18. Curcumin Attenuates Staurosporine-Mediated Death of Retinal Ganglion Cells

    PubMed Central

    Burugula, Balabharathi; Ganesh, Bhagyalaxmi S.

    2011-01-01

    Purpose. Staurosporine (SS) causes retinal ganglion cell (RGC) death in vivo, but the underlying mechanisms have been unclear. Since previous studies on RGC-5 cells indicated that SS induces cell death by elevating proteases, this study was undertaken to investigate whether SS induces RGC loss by elevating proteases in the retina, and curcumin prevents SS-mediated death of RGCs. Methods. Transformed mouse retinal ganglion-like cells (RGC-5) were treated with 2.0 μM SS and various doses of curcumin. Two optimal doses of SS (12.5 and 100 nM) and curcumin (2.5 and 10 μM) were injected into the vitreous of C57BL/6 mice. Matrix metalloproteinase (MMP)-9, tissue plasminogen activator (tPA), and urokinase plasminogen activator (uPA) activities were assessed by zymography assays. Viability of RGC-5 cells was assessed by MTT assays. RGC and amacrine cell loss in vivo was assessed by immunostaining with Brn3a and ChAT antibodies, respectively. Frozen retinal cross sections were immunostained for nuclear factor-κB (NF-κB). Results. Staurosporine induced uPA and tPA levels in RGC-5 cells, and MMP-9, uPA, and tPA levels in the retinas and promoted the death of RGC-5 cells in vitro and RGCs and amacrine cells in vivo. In contrast, curcumin attenuated RGC and amacrine cell loss, despite elevated levels of proteases. An NF-κB inhibitory peptide reversed curcumin-mediated protective effect on RGC-5 cells, but did not inhibit protease levels. Curcumin did not inhibit protease levels in vivo, but attenuated RGC and amacrine cell loss by restoring NF-κB expression. Conclusions. The results show that curcumin attenuates RGC and amacrine cell death despite elevated levels of proteases and raises the possibility that it may be used as a plausible adjuvant therapeutic agent to prevent the loss of these cells in retinal degenerative conditions. PMID:21498608

  19. Tissue-specific induction of Hsp90 mRNA and plasma cortisol response in chinook salmon following heat shock, seawater challenge, and handling challenge

    USGS Publications Warehouse

    Palmisano, Aldo N.; Winton, J.R.; Dickhoff, Walton W.

    2000-01-01

    In studying the whole-body response of chinook salmon (Oncorhynchus tshawytscha) to various stressors, we found that 5-hour exposure to elevated temperature (mean 21.6??C; + 10.6??C over ambient) induced a marked increase in Hsp90 messenger RNA accumulation in heart, brain, gill, muscle, liver, kidney, and tail fin tissues. The most vital tissues (heart, brain, gill, and muscle) showed the greatest Hsp90-mRNA response, with heart tissue increasing approximately 35-fold, Heat shock induced no increase in plasma cortisol. In contrast, a standard handling challenge induced high plasma cortisol levels, but no elevation in Hsp90 mRNA in any tissue, clearly separating the physiological and cellular stress responses. We saw no increase either in tissue Hsp90 mRNA levels or in plasma cortisol concentrations after exposing the fish to seawater overnight.

  20. Effect of tolbutamide, glyburide and glipizide administered supraspinally on CA3 hippocampal neuronal cell death and hyperglycemia induced by kainic acid in mice.

    PubMed

    Kim, Chea-Ha; Park, Soo-Hyun; Sim, Yun-Beom; Kim, Sung-Su; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won

    2014-05-20

    Sulfonylureas are widely used oral drugs for the treatment of type II diabetes mellitus. In the present study, the effects of sulfonylureas administered supraspinally on kainic acid (KA)-induced hippocampal neuronal cell death and hyperglycemia were studied in ICR mice. Mice were pretreated intracerebroventricularly (i.c.v.) with 30μg of tolbutamide, glyburide or glipizide for 10min and then, mice were administered i.c.v. with KA (0.1μg). The neuronal cell death in the CA3 region in the hippocampus was assessed 24h after KA administration and the blood glucose level was measured 30, 60, and 120min after KA administration. We found that i.c.v. pretreatment with tolbutamide, glyburide or glipizide attenuated the KA-induced neuronal cell death in CA3 region of the hippocampus and hyperglycemia. In addition, KA administered i.c.v. caused an elevation of plasma corticosterone level and a reduction of the plasma insulin level. The i.c.v. pretreatment with tolbutamide, glyburide or glipizide attenuated KA-induced increase of plasma corticosterone level. Furthermore, i.c.v. pretreatment with tolbutamide, glyburide or glipizide causes an elevation of plasma insulin level. Glipizide, but not tolbutamide or glyburide, pretreated i.c.v. caused a reversal of KA-induced hypoinsulinemic effect. Our results suggest that supraspinally administered tolbutamide, glyburide and glipizide exert a protective effect against KA-induced neuronal cells death in CA3 region of the hippocampus. The neuroprotective effect of tolbutamide, glyburide and glipizide appears to be mediated by lowering the blood glucose level induced by KA. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The BIG protein distinguishes the process of CO2 -induced stomatal closure from the inhibition of stomatal opening by CO2.

    PubMed

    He, Jingjing; Zhang, Ruo-Xi; Peng, Kai; Tagliavia, Cecilia; Li, Siwen; Xue, Shaowu; Liu, Amy; Hu, Honghong; Zhang, Jingbo; Hubbard, Katharine E; Held, Katrin; McAinsh, Martin R; Gray, Julie E; Kudla, Jörg; Schroeder, Julian I; Liang, Yun-Kuan; Hetherington, Alistair M

    2018-04-01

    We conducted an infrared thermal imaging-based genetic screen to identify Arabidopsis mutants displaying aberrant stomatal behavior in response to elevated concentrations of CO 2 . This approach resulted in the isolation of a novel allele of the Arabidopsis BIG locus (At3g02260) that we have called CO 2 insensitive 1 (cis1). BIG mutants are compromised in elevated CO 2 -induced stomatal closure and bicarbonate activation of S-type anion channel currents. In contrast with the wild-type, they fail to exhibit reductions in stomatal density and index when grown in elevated CO 2 . However, like the wild-type, BIG mutants display inhibition of stomatal opening when exposed to elevated CO 2 . BIG mutants also display wild-type stomatal aperture responses to the closure-inducing stimulus abscisic acid (ABA). Our results indicate that BIG is a signaling component involved in the elevated CO 2 -mediated control of stomatal development. In the control of stomatal aperture by CO 2 , BIG is only required in elevated CO 2 -induced closure and not in the inhibition of stomatal opening by this environmental signal. These data show that, at the molecular level, the CO 2 -mediated inhibition of opening and promotion of stomatal closure signaling pathways are separable and BIG represents a distinguishing element in these two CO 2 -mediated responses. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  2. Implications for glycine receptors and astrocytes in ethanol-induced elevation of dopamine levels in the nucleus accumbens.

    PubMed

    Adermark, Louise; Clarke, Rhona B C; Olsson, Torsten; Hansson, Elisabeth; Söderpalm, Bo; Ericson, Mia

    2011-01-01

    Elevated dopamine levels are believed to contribute to the rewarding sensation of ethanol (EtOH), and previous research has shown that strychnine-sensitive glycine receptors in the nucleus accumbens (nAc) are involved in regulating dopamine release and in mediating the reinforcing effects of EtOH. Furthermore, the osmoregulator taurine, which is released from astrocytes treated with EtOH, can act as an endogenous ligand for the glycine receptor, and increase extracellular dopamine levels. The aim of this study was to address if EtOH-induced swelling of astrocytes could contribute to elevated dopamine levels by increasing the extracellular concentration of taurine. Cell swelling was estimated by optical sectioning of fluorescently labeled astrocytes in primary cultures from rat, and showed that EtOH (25-150 mM) increased astrocyte cell volumes in a concentration- and ion-dependent manner. The EtOH-induced cell swelling was inhibited in cultures treated with the Na(+) /K(+) /2Cl⁻ cotransporter blocker furosemide (1 mM), Na(+) /K(+) -ATPase inhibitor ouabain (0.1 mM), potassium channel inhibitor BaCl₂ (50 µM) and in cultures containing low extracellular sodium concentration (3 mM). In vivo microdialysis performed in the nAc of awake and freely moving rats showed that local treatment with EtOH enhanced the concentrations of dopamine and taurine in the microdialysate, while glycine and β-alanine levels were not significantly modulated. EtOH-induced dopamine release was antagonized by local treatment with the glycine receptor antagonist strychnine (20 µM) or furosemide (100 µM or 1 mM). Furosemide also prevented EtOH-induced taurine release in the nAc. In conclusion, our data suggest that extracellular concentrations of dopamine and taurine are interconnected and that swelling of astrocytes contributes to the acute rewarding sensation of EtOH. © 2010 The Authors, Addiction Biology © 2010 Society for the Study of Addiction.

  3. Radiation-induced cyclooxygenase 2 up-regulation is dependent on redox status in prostate cancer cells.

    PubMed

    Li, Lingyun; Steinauer, Kirsten K; Dirks, Amie J; Husbeck, Bryan; Gibbs, Iris; Knox, Susan J

    2003-12-01

    Cyclooxygenase 2 (COX2) is the inducible isozyme of COX, a key enzyme in arachidonate metabolism and the conversion of arachidonic acid (AA) to prostaglandins (PGs) and other eicosanoids. Previous studies have demonstrated that the COX2 protein is up-regulated in prostate cancer cells after irradiation and that this results in elevated levels of PGE(2). In the present study, we further investigated whether radiation-induced COX2 up-regulation is dependent on the redox status of cells from the prostate cancer cell line PC-3. l-Buthionine sulfoximine (BSO), which inhibits gamma glutamyl cysteine synthetase (gammaGCS), and the antioxidants alpha-lipoic acid and N-acetyl-l-cysteine (NAC) were used to modulate the cellular redox status. BSO decreased the cellular GSH level and increased cellular reactive oxygen species (ROS) in PC-3 cells, whereas alpha-lipoic acid and NAC increased the GSH level and decreased cellular ROS. Both radiation and the oxidant H(2)O(2) had similar effects on COX2 up-regulation and PGE(2) production in PC-3 cells, suggesting that radiation-induced COX2 up-regulation is secondary to the production of ROS. The relative increases in COX2 expression and PGE(2) production induced by radiation and H(2)O(2) were even greater when PC-3 cells were pretreated with BSO. When the cells were pretreated with alpha-lipoic acid or NAC for 24 h, both radiation- and H(2)O(2)-induced COX2 up-regulation and PGE(2) production were markedly inhibited. These results demonstrate that radiation-induced COX2 up-regulation in prostate cancer cells is modulated by the cellular redox status. Radiation-induced increases in ROS levels contribute to the adaptive response of PC-3 cells, resulting in elevated levels of COX2.

  4. Effects of different carbon dioxide and LED lighting levels on the anti-oxidative capabilities of Gynura bicolor DC

    NASA Astrophysics Data System (ADS)

    Ren, Jin; Guo, Shuangsheng; Xu, Chunlan; Yang, Chengjia; Ai, Weidang; Tang, Yongkang; Qin, Lifeng

    2014-01-01

    Gynura bicolor DC is not only an edible plant but also a kind of traditional Chinese herbal medicine. G. bicolor DC grown in controlled environmental chambers under 3 CO2 concentrations [450 (ambient), 1500 (elevated), 8000 (super-elevated) μmol mol-1] and 3 LED lighting conditions [white (WL), 85% red + 15% blue (RB15), 70% red + 30% blue (RB30) ] were investigated to reveal plausible antioxidant anabolic responses to CO2 enrichment and LED light quality. Under ambient and elevated CO2 levels, blue light increasing from 15% to 30% was conducive to the accumulation of anthocyanins and total flavonoids, and the antioxidant activity of extract was also increased, but plant biomass was decreased. These results demonstrated that the reinforcement of blue light could induce more antioxidant of secondary metabolites, but depress the effective growth of G. bicolor DC under ambient and elevated CO2 levels. In addition, compared with the ambient and elevated CO2 levels, the increased anthocyanins, total flavonoids contents and antioxidant enzyme activities of G. bicolor DC under super-elevated CO2 level could serve as important components of antioxidative defense mechanism against CO2 stress. Hence, G. bicolor DC might have higher tolerance to CO2 stress.

  5. Experimental increase in baseline corticosterone level reduces oxidative damage and enhances innate immune response

    PubMed Central

    Pătraș, Laura; Pap, Péter L.; Vincze, Orsolya; Mureșan, Cosmin; Németh, József; Lendvai, Ádám Z.

    2018-01-01

    Glucocorticoid (GC) hormones are significant regulators of homeostasis. The physiological effects of GCs critically depend on the time of exposure (short vs. long) as well as on their circulating levels (baseline vs. stress-induced). Previous experiments, in which chronic and high elevation of GC levels was induced, indicate that GCs impair both the activity of the immune system and the oxidative balance. Nonetheless, our knowledge on how mildly elevated GC levels, a situation much more common in nature, might influence homeostasis is limited. Therefore, we studied whether an increase in GC level within the baseline range suppresses or enhances condition (body mass, hematocrit and coccidian infestation) and physiological state (humoral innate immune system activity and oxidative balance). We implanted captive house sparrows Passer domesticus with either 60 days release corticosterone (CORT) or control pellets. CORT-treated birds had elevated baseline CORT levels one week after the implantation, but following this CORT returned to its pre-treatment level and the experimental groups had similar CORT levels one and two months following the implantation. The mass of tail feathers grown during the initial phase of treatment was smaller in treated than in control birds. CORT implantation had a transient negative effect on body mass and hematocrit, but both of these traits resumed the pre-treatment values by one month post-treatment. CORT treatment lowered oxidative damage to lipids (malondialdehyde) and enhanced constitutive innate immunity at one week and one month post-implantation. Our findings suggest that a relatively short-term (i.e. few days) elevation of baseline CORT might have a positive and stimulatory effect on animal physiology. PMID:29432437

  6. Palmitic Acid Reduces Circulating Bone Formation Markers in Obese Animals and Impairs Osteoblast Activity via C16-Ceramide Accumulation.

    PubMed

    Alsahli, Ahmad; Kiefhaber, Kathryn; Gold, Tziporah; Muluke, Munira; Jiang, Hongfeng; Cremers, Serge; Schulze-Späte, Ulrike

    2016-05-01

    Obesity and impaired lipid metabolism increase circulating and local fatty acid (FA) levels. Our previous studies showed that a high high-saturated -fat diet induced greater bone loss in mice than a high high-unsaturated-fat diet due to increased osteoclast numbers and activity. The impact of elevated FA levels on osteoblasts is not yet clear. We induced obesity in 4 week old male mice using a palmitic acid (PA)- or oleic acid (OA)-enriched high fat high-fat diet (HFD) (20 % of calories from FA), and compared them to mice on a normal (R) caloric diet (10 % of calories from FA). We collected serum to determine FA and bone metabolism marker levels. Primary osteoblasts were isolated; cultured in PA, OA, or control (C) medium; and assessed for mineralization activity, gene expression, and ceramide levels. Obese animals in the PA and OA groups had significantly lower serum levels of bone formation markers P1NP and OC compared to normal weight animals (*p < 0.001), with the lowest marker levels in animals on an PA-enriched HFD (*p < 0.001). Accordingly, elevated levels of PA significantly reduced osteoblast mineralization activity in vitro (*p < 0.05). Elevated PA intake significantly increased C16 ceramide accumulation. This accumulation was preventable through inhibition of SPT2 (serine palmitoyl transferase 2) using myriocin. Elevated levels of PA reduce osteoblast function in vitro and bone formation markers in vivo. Our findings suggest that saturated PA can compromise bone health by affecting osteoblasts, and identify a potential mechanism through which obesity promotes bone loss.

  7. Lithium suppression of tau induces brain iron accumulation and neurodegeneration.

    PubMed

    Lei, P; Ayton, S; Appukuttan, A T; Moon, S; Duce, J A; Volitakis, I; Cherny, R; Wood, S J; Greenough, M; Berger, G; Pantelis, C; McGorry, P; Yung, A; Finkelstein, D I; Bush, A I

    2017-03-01

    Lithium is a first-line therapy for bipolar affective disorder. However, various adverse effects, including a Parkinson-like hand tremor, often limit its use. The understanding of the neurobiological basis of these side effects is still very limited. Nigral iron elevation is also a feature of Parkinsonian degeneration that may be related to soluble tau reduction. We found that magnetic resonance imaging T 2 relaxation time changes in subjects commenced on lithium therapy were consistent with iron elevation. In mice, lithium treatment lowers brain tau levels and increases nigral and cortical iron elevation that is closely associated with neurodegeneration, cognitive loss and parkinsonian features. In neuronal cultures lithium attenuates iron efflux by lowering tau protein that traffics amyloid precursor protein to facilitate iron efflux. Thus, tau- and amyloid protein precursor-knockout mice were protected against lithium-induced iron elevation and neurotoxicity. These findings challenge the appropriateness of lithium as a potential treatment for disorders where brain iron is elevated (for example, Alzheimer's disease), and may explain lithium-associated motor symptoms in susceptible patients.

  8. Attenuation of insulin resistance in rats by agmatine: role of SREBP-1c, mTOR and GLUT-2.

    PubMed

    Sharawy, Maha H; El-Awady, Mohammed S; Megahed, Nirmeen; Gameil, Nariman M

    2016-01-01

    Insulin resistance is a serious health condition worldwide; however, its exact mechanisms are still unclear. This study investigates agmatine (AGM; an endogenous metabolite of L-arginine) effects on insulin resistance induced by high fructose diet (HFD) in rats and the possible involved mechanisms. Sprague Dawley rats were fed 60% HFD for 12 weeks, and AGM (10 mg/kg/day, orally) was given from week 9 to 12. AGM significantly reduced HFD-induced elevation in fasting insulin level, homeostasis model assessment of insulin resistance (HOMA-IR) index and liver glycogen content from 3.44-, 3.62- and 2.07- to 2.59-, 2.78- and 1.3-fold, respectively, compared to the control group, while it increased HFD-induced reduction in glucose tolerance. Additionally, AGM significantly decreased HFD-induced elevation in serum triglycerides, low density lipoprotein cholesterol and very low density lipoprotein cholesterol levels from 3.18-, 2.97- and 4.75- to 1.25-, 1.25- and 1.07-fold, respectively, compared to control group. Conversely, AGM had no significant effect on HFD-induced changes in fasting glucose, glycosylated hemoglobin, insulin tolerance and high density lipoprotein cholesterol. Furthermore, AGM significantly reduced HFD-induced elevation in mRNA expression of glucose transporter type-2 (GLUT-2), mammalian target of rapamycin (mTOR) and sterol regulatory element-binding protein-1c (SREBP-1c) without affecting that of peroxisome proliferator-activated receptor-alpha (PPAR-α) in the liver. Additionally, AGM enhanced ACh-induced aortic relaxation and attenuated liver steatosis induced by HFD. In conclusion, AGM may have a therapeutic potential in insulin resistance through suppressing SREBP-1c, mTOR and GLUT-2 in liver.

  9. Fructose induced neurogenic hypertension mediated by overactivation of p38 MAPK to impair insulin signaling transduction caused central insulin resistance.

    PubMed

    Cheng, Pei-Wen; Lin, Yu-Te; Ho, Wen-Yu; Lu, Pei-Jung; Chen, Hsin-Hung; Lai, Chi-Cheng; Sun, Gwo-Ching; Yeh, Tung-Chen; Hsiao, Michael; Tseng, Ching-Jiunn; Liu, Chun-Peng

    2017-11-01

    Type 2 diabetes are at a high risk of complications related to hypertension, and reports have indicated that insulin levels may be associated with blood pressure (BP). Fructose intake has recently been reported to promote insulin resistance and superoxide formation. The aim of this study is to investigate whether fructose intake can enhance superoxide generation and impair insulin signaling in the NTS and subsequently elevate BP in rats with fructose-induced hypertension. Treatment with fructose for 4 weeks increased the BP, serum fasting insulin, glucose, homeostatic model assessment-insulin resistance, and triglyceride levels and reduced the serum direct high-density lipoprotein level in the fructose group. The Tempol treatment recovered the fructose-induced decrease in nitric oxide production in the NTS. Immunoblotting and immunofluorescence analyses further showed that fructose increased the p38- and fructose-induced phosphorylation of insulin receptor substrate 1 (IRS1 S307 ) and suppressed Akt S473 and neuronal nitric oxide synthase phosphorylation. Similarly, fructose was able to impair insulin sensitivity and increase insulin levels in the NTS. Fructose intake also increased the production of superoxide in the NTS. The results of this study suggest that fructose might induce central insulin resistance and elevate BP by enhancing superoxide production and activating p38 phosphorylation in the NTS. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The stress hormone cortisol blocks perceptual learning in humans.

    PubMed

    Dinse, Hubert R; Kattenstroth, J C; Lenz, M; Tegenthoff, M; Wolf, O T

    2017-03-01

    Cortisol, the primary glucocorticoid (GC) in humans, influences neuronal excitability and plasticity by acting on mineralocorticoid and glucocorticoid receptors. Cellular studies demonstrated that elevated GC levels affect neuronal plasticity, for example through a reduction of hippocampal long-term potentiation (LTP). At the behavioural level, after treatment with GCs, numerous studies have reported impaired hippocampal function, such as impaired memory retrieval. In contrast, relatively little is known about the impact of GCs on cortical plasticity and perceptual learning in adult humans. Therefore, in this study, we explored the impact of elevated GC levels on human perceptual learning. To this aim, we used a training-independent learning approach, where lasting changes in human perception can be induced by applying passive repetitive sensory stimulation (rss), the timing of which was determined from cellular LTP studies. In our placebo-controlled double-blind study, we used tactile LTP-like stimulation to induce improvements in tactile acuity (spatial two-point discrimination). Our results show that a single administration of hydrocortisone (30mg) completely blocked rss-induced changes in two-point discrimination. In contrast, the placebo group showed the expected rss-induced increase in two-point discrimination of over 14%. Our data demonstrate that high GC levels inhibit rss-induced perceptual learning. We suggest that the suppression of LTP, as previously reported in cellular studies, may explain the perceptual learning impairments observed here. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Puerarin protects against lead-induced cytotoxicity in cultured primary rat proximal tubular cells.

    PubMed

    Liu, Gang; Li, Zifa; Wang, Jinqiu; Wang, Hong; Wang, Zhenyong; Wang, Lin

    2014-10-01

    Puerarin, a potent free radicals scavenger, has been demonstrated to have protective efficacy in oxidative damage induced by nephrotoxins. In the present study, the attenuating effect of puerarin (PU) on lead (Pb)-induced apoptosis and oxidative stress was investigated in cultured primary rat proximal tubular (rPT) cells. Results showed that exposure to 0.5 µM Pb induced a decrease in cell viability accompanied with obvious cellular morphological alterations and caused an increase in apoptotic rate and apoptotic morphological changes. Simultaneously, depletion of mitochondrial membrane potential (ΔΨ) and intracellular glutathione (GSH); elevation of caspase-3 activity, intracellular reactive oxygen species, and malondialdehyde levels; and inhibition of GSH peroxidase (GSH-Px) activity were revealed in the cells exposed to Pb alone. However, simultaneous supplementation with PU (50 and 100 µM) protected rPT cells from Pb-induced cytotoxicity through inhibiting apoptosis, attenuating lipid peroxidation, renewing mitochondrial function, and elevating the intracellular antioxidants (nonenzymatic and enzymic) levels. In conclusion, these findings suggested that PU, as a widely distributed dietary antioxidant, contributes potentially to inhibition of Pb-induced cytotoxicity in rPT cells. © The Author(s) 2014.

  12. Acid Sphingomyelinase Mediates Oxidized-LDL Induced Apoptosis in Macrophage via Endoplasmic Reticulum Stress

    PubMed Central

    Zhao, Min; Pan, Wei; Shi, Rui-zheng; Bai, Yong-ping; You, Bo-yang; Zhang, Kai; Fu, Qiong-mei; Schuchman, Edward H.

    2016-01-01

    Aim: Macrophage apoptosis is a vital event in advanced atherosclerosis, and oxidized low-density lipoprotein (ox-LDL) is a major contributor to this process. Acid sphingomyelinase (ASM) and ceramide are also involved in the induction of apoptosis, particularly in macrophages. Our current study focuses on ASM and investigates its role in ox-LDL-induced macrophage apoptosis. Methods: Human THP-1 and mouse peritoneal macrophages were cultured in vitro and treated with ox-LDL. ASM activity and ceramide levels were quantified using ultra performance liquid chromatography. Protein and mRNA levels were analyzed using Western blot analysis and quantitative realtime PCR, respectively. Cell apoptosis was determined using Hoechst staining and flow cytometry. Results: Ox-LDL-induced macrophage apoptosis was triggered by profound endoplasmic reticulum (ER) stress, leading to an upregulation of ASM activity and ceramide levels at an early stage. ASM was inhibited by siRNA or desipramine (DES), and/or ceramide was degraded by recombinant acid ceramidase (AC). These events attenuated the effect of ox-LDL on ER stress. In contrast, recombinant ASM upregulated ceramide and ER stress. ASM siRNA, DES, recombinant AC, and ER stress inhibitor 4-phenylbutyric acid were blocked by elevated levels of C/EBP homologous protein (CHOP); ox-LDL induced elevated levels of CHOP. These events attenuated macrophage apoptosis. Conclusion: These results indicate that ASM/ceramide signaling pathway is involved in ox-LDL-induced macrophage apoptosis via ER stress pathway. PMID:26923251

  13. Lipid Storage Myopathy in Behçet's Disease: A Rare Cause of Elevated Serum Creatine Kinases Levels

    PubMed Central

    Yilmaz, Sedat; Cinar, Muhammet; Karslioglu, Yıldırım; Simsek, Ismail; Erdem, Hakan; Pay, Salih; Dinc, Ayhan

    2012-01-01

    Muscular involvement in Behçet's disease is rare and there are only a few case reports in the literature. The causes of elevated muscle enzymes in a patient with Behcet's disease are many, including myositis, drug-induced myopathy, metabolic myopathy, and the disease itself. We herein have defined an algorithmic approach to a patient with Behcet's disease and elevated muscle enzymes and report a case of coexisting of lipid storage myopathy. PMID:22937450

  14. The plastidial retrograde signal methyl erythritol cyclopyrophosphate is a regulator of salicylic acid and jasmonic acid crosstalk.

    PubMed

    Lemos, Mark; Xiao, Yanmei; Bjornson, Marta; Wang, Jin-Zheng; Hicks, Derrick; Souza, Amancio de; Wang, Chang-Quan; Yang, Panyu; Ma, Shisong; Dinesh-Kumar, Savithramma; Dehesh, Katayoon

    2016-03-01

    The exquisite harmony between hormones and their corresponding signaling pathways is central to prioritizing plant responses to simultaneous and/or successive environmental trepidations. The crosstalk between jasmonic acid (JA) and salicylic acid (SA) is an established effective mechanism that optimizes and tailors plant adaptive responses. However, the underlying regulatory modules of this crosstalk are largely unknown. Global transcriptomic analyses of mutant plants (ceh1) with elevated levels of the stress-induced plastidial retrograde signaling metabolite 2-C-methyl-D-erythritol cyclopyrophosphate (MEcPP) revealed robustly induced JA marker genes, expected to be suppressed by the presence of constitutively high SA levels in the mutant background. Analyses of a range of genotypes with varying SA and MEcPP levels established the selective role of MEcPP-mediated signal(s) in induction of JA-responsive genes in the presence of elevated SA. Metabolic profiling revealed the presence of high levels of the JA precursor 12-oxo-phytodienoic acid (OPDA), but near wild type levels of JA in the ceh1 mutant plants. Analyses of coronatine-insensitive 1 (coi1)/ceh1 double mutant plants confirmed that the MEcPP-mediated induction is JA receptor COI1 dependent, potentially through elevated OPDA. These findings identify MEcPP as a previously unrecognized central regulatory module that induces JA-responsive genes in the presence of high SA, thereby staging a multifaceted plant response within the environmental context. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Vascular peroxide 1 promotes ox-LDL-induced programmed necrosis in endothelial cells through a mechanism involving β-catenin signaling.

    PubMed

    Zhang, Yin-Zhuang; Wang, Lei; Zhang, Jie-Jie; Xiong, Xiao-Ming; Zhang, Di; Tang, Xuan-Meng; Luo, Xiu-Ju; Ma, Qi-Lin; Peng, Jun

    2018-05-03

    Vascular peroxidase 1 (VPO1) plays a key role in mediation of cardiovascular oxidative injury. This study aims to determine whether VPO1 can promote programmed necrosis of endothelial cells and the underlying mechanisms. Human umbilical vein endothelial cells (HUVECs) were incubated with oxidized low-density lipoprotein (ox-LDL, 100 μg/mL) for 48 h to induce cell injury, which showed an elevation in cell necrosis (reflected by the increased propidium iodide (PI) positive-staining cells, LDH release and decreased cell viability), concomitant with an increase in programmed necrosis-relevant proteins including receptor-interacting protein kinase 1/3 (RIPK1/3), p-RIPK3 and mixed lineage kinase domain like (MLKL); these phenomena were attenuated by necrostatin-1(Nec-1) and RIPK3 siRNA. Meanwhile, VPO1 was up-regulated in ox-LDL-treated endothelial cells accompanied by a decrease in GSK-3β activity and p-β-catenin levels, and an elevation of β-catenin levels; these phenomena were reversed in the presence of VPO1 siRNA or hypochlorous acid (HOCl) inhibitor; replacement of ox-LDL with HOCl could also induce endothelial programmed necrosis and activate the β-catenin signaling; β-catenin inhibitor could also suppress ox-LDL-induced RIPK-dependent necrosis. In hyperlipidemic patients, the plasma level of VPO1 was obviously increased concomitant with an elevation in plasma levels of RIPK1, RIPK3 and MLKL, and they were positively correlated. VPO1 plays an important role in promotion of endothelial programmed necrosis under hyperlipidemic conditions through activation of β-catenin signaling. It may serve as a novel therapeutic target for prevention of endothelial dysfunction in hyperlipidemia. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Inhibition of phosphodiesterase 4 amplifies cytokine-dependent induction of arginase in macrophages.

    PubMed

    Erdely, Aaron; Kepka-Lenhart, Diane; Clark, Melissa; Zeidler-Erdely, Patti; Poljakovic, Mirjana; Calhoun, William J; Morris, Sidney M

    2006-03-01

    Arginase is greatly elevated in asthma and is thought to play a role in the pathophysiology of this disease. As inhibitors of phosphodiesterase 4 (PDE4), the predominant PDE in macrophages, elevate cAMP levels and reduce inflammation, they have been proposed for use in treatment of asthma and chronic obstructive pulmonary disease. As cAMP is an inducer of arginase, we tested the hypothesis that a PDE4 inhibitor would enhance macrophage arginase induction by key cytokines implicated in asthma and other pulmonary diseases. RAW 264.7 cells were stimulated with IL-4 or transforming growth factor (TGF)-beta, with and without the PDE4 inhibitor rolipram. IL-4 and TGF-beta increased arginase activity 16- and 5-fold, respectively. Rolipram alone had no effect but when combined with IL-4 and TGF-beta synergistically enhanced arginase activity by an additional 15- and 5-fold, respectively. The increases in arginase I protein and mRNA levels mirrored increases in arginase activity. Induction of arginase II mRNA was also enhanced by rolipram but to a much lesser extent than arginase I. Unlike its effect in RAW 264.7 cells, IL-4 alone did not increase arginase activity in human alveolar macrophages (AM) from healthy volunteers. However, combining IL-4 with agents to induce cAMP levels induced arginase activity in human AM significantly above the level obtained with cAMP-inducing agents alone. In conclusion, agents that elevate cAMP significantly enhance induction of arginase by cytokines. Therefore, consequences of increased arginase expression should be evaluated whenever PDE inhibitors are proposed for treatment of inflammatory disorders in which IL-4 and/or TGF-beta predominate.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gough, Mallory, E-mail: m.gough1@lancaster.ac.uk; Blanthorn-Hazell, Sophee, E-mail: s.blanthorn-hazell@lancaster.ac.uk; Delury, Craig, E-mail: c.delury@lancaster.ac.uk

    Highlights: • Copper levels are elevated in the tumour microenvironment. • APP mitigates copper-induced growth inhibition of DU145 prostate cancer (PCa) cells. • The APP intracellular domain is a prerequisite; soluble forms have no effect. • The E1 CuBD of APP is also a prerequisite. • APP copper binding potentially mitigates copper-induced PCa cell growth inhibition. - Abstract: Copper plays an important role in the aetiology and growth of tumours and levels of the metal are increased in the serum and tumour tissue of patients affected by a range of cancers including prostate cancer (PCa). The molecular mechanisms that enablemore » cancer cells to proliferate in the presence of elevated copper levels are, therefore, of key importance in our understanding of tumour growth progression. In the current study, we have examined the role played by the amyloid precursor protein (APP) in mitigating copper-induced growth inhibition of the PCa cell line, DU145. A range of APP molecular constructs were stably over-expressed in DU145 cells and their effects on cell proliferation in the presence of copper were monitored. Our results show that endogenous APP expression was induced by sub-toxic copper concentrations in DU145 cells and over-expression of the wild-type protein was able to mitigate copper-induced growth inhibition via a mechanism involving the cytosolic and E1 copper binding domains of the full-length protein. APP likely represents one of a range of copper binding proteins that PCa cells employ in order to ensure efficient proliferation despite elevated concentrations of the metal within the tumour microenvironment. Targeting the expression of such proteins may contribute to therapeutic strategies for the treatment of cancers.« less

  18. Resveratrol prevents insulin resistance caused by short-term elevation of free fatty acids in vivo.

    PubMed

    Pereira, Sandra; Park, Edward; Moore, Jessy; Faubert, Brandon; Breen, Danna M; Oprescu, Andrei I; Nahle, Ashraf; Kwan, Denise; Giacca, Adria; Tsiani, Evangelia

    2015-11-01

    Elevated levels of plasma free fatty acids (FFA), which are commonly found in obesity, induce insulin resistance. FFA activate protein kinases including the proinflammatory IκBα kinase β (IKKβ), leading to serine phosphorylation of insulin receptor substrate 1 (IRS-1) and impaired insulin signaling. To test whether resveratrol, a polyphenol found in red wine, prevents FFA-induced insulin resistance, we used a hyperinsulinemic-euglycemic clamp with a tracer to assess hepatic and peripheral insulin sensitivity in overnight-fasted Wistar rats infused for 7 h with saline, Intralipid plus 20 U·mL(-1) heparin (IH; triglyceride emulsion that elevates FFA levels in vivo; 5.5 μL·min(-1)) with or without resveratrol (3 mg·kg(-1)·h(-1)), or resveratrol alone. Infusion of IH significantly decreased glucose infusion rate (GIR; P < 0.05) and peripheral glucose utilization (P < 0.05) and increased endogenous glucose production (EGP; P < 0.05) during the clamp compared with saline infusion. Resveratrol co-infusion, however, completely prevented the effects induced by IH infusion: it prevented the decreases in GIR (P < 0.05 vs. IH), peripheral glucose utilization (P < 0.05 vs. IH), and insulin-induced suppression of EGP (P < 0.05 vs. IH). Resveratrol alone had no effect. Furthermore, IH infusion increased serine (307) phosphorylation of IRS-1 in soleus muscle (∼30-fold, P < 0.001), decreased total IRS-1 levels, and decreased IκBα content, consistent with activation of IKKβ. Importantly, all of these effects were abolished by resveratrol (P < 0.05 vs. IH). These results suggest that resveratrol prevents FFA-induced hepatic and peripheral insulin resistance and, therefore, may help mitigate the health consequences of obesity.

  19. Evaluation of neuroprotective effect of quercetin with donepezil in scopolamine-induced amnesia in rats.

    PubMed

    Pattanashetti, Laxmi Adiveppa; Taranalli, Ashok D; Parvatrao, Vinay; Malabade, Rohit H; Kumar, Dushyant

    2017-01-01

    The objective of this study was to evaluate the neuroprotective effect of quercetin with donepezil in scopolamine-induced amnesia in rats. Five groups of adult male Wistar rats (12 months old) weighing 180-200 g ( n = 6) were used. The normal control group received normal saline and test group animals were pretreated orally with quercetin (25 mg/kg), donepezil (3 mg/kg), and a combination of quercetin (25 mg/kg) with donepezil (3 mg/kg), respectively, dosed at every 24 h interval for 14 consecutive days, afterward amnesia was induced by scopolamine (3 mg/kg) on the 14 th day through intraperitoneal route. Cognitive performance was assessed by the Morris water maze, elevated plus maze, and passive avoidance paradigm. Acetylcholinesterase enzyme (AchE) level, biochemical markers such as lipid peroxidase (LPO), glutathione (GSH), β amyloid 1-42 level, and histopathological study of rat brain were estimated. Statistical analysis was done by one-way analysis of variance, followed by Dunnett's post hoc test. P ≥ 0.05 was considered statistically significant. Pretreatment with quercetin, donepezil, and their combination showed a significant increase in escape latency, step-through latency, and decreased transfer latency in respective cognitive models of the Morris water maze, passive avoidance test, and elevated plus maze. Further coadministration significantly decreased AchE level, β amyloid 1-42 level as compared to individual therapy. Biochemical markers such as elevated GSH, decreased LPO were observed, and histopathological studies revealed the reversal of neuronal damage in the treatment group ( P < 0.05) as compared to scopolamine-treated control group. Pretreatment with quercetin potentiates the action of donepezil in scopolamine-induced amnesia in rats. The improved cognitive memory could be due to the synergistic effect of the drugs by decreasing AchE level, β amyloid 1-42 level, and antioxidant action in rat brain.

  20. Evaluation of neuroprotective effect of quercetin with donepezil in scopolamine-induced amnesia in rats

    PubMed Central

    Pattanashetti, Laxmi Adiveppa; Taranalli, Ashok D.; Parvatrao, Vinay; Malabade, Rohit H.; Kumar, Dushyant

    2017-01-01

    Objective: The objective of this study was to evaluate the neuroprotective effect of quercetin with donepezil in scopolamine-induced amnesia in rats. Materials and Methods: Five groups of adult male Wistar rats (12 months old) weighing 180–200 g (n = 6) were used. The normal control group received normal saline and test group animals were pretreated orally with quercetin (25 mg/kg), donepezil (3 mg/kg), and a combination of quercetin (25 mg/kg) with donepezil (3 mg/kg), respectively, dosed at every 24 h interval for 14 consecutive days, afterward amnesia was induced by scopolamine (3 mg/kg) on the 14th day through intraperitoneal route. Cognitive performance was assessed by the Morris water maze, elevated plus maze, and passive avoidance paradigm. Acetylcholinesterase enzyme (AchE) level, biochemical markers such as lipid peroxidase (LPO), glutathione (GSH), β amyloid1-42level, and histopathological study of rat brain were estimated. Statistical analysis was done by one-way analysis of variance, followed by Dunnett's post hoc test. P ≥ 0.05 was considered statistically significant. Results: Pretreatment with quercetin, donepezil, and their combination showed a significant increase in escape latency, step-through latency, and decreased transfer latency in respective cognitive models of the Morris water maze, passive avoidance test, and elevated plus maze. Further coadministration significantly decreased AchE level, β amyloid1-42level as compared to individual therapy. Biochemical markers such as elevated GSH, decreased LPO were observed, and histopathological studies revealed the reversal of neuronal damage in the treatment group (P < 0.05) as compared to scopolamine-treated control group. Conclusion: Pretreatment with quercetin potentiates the action of donepezil in scopolamine-induced amnesia in rats. The improved cognitive memory could be due to the synergistic effect of the drugs by decreasing AchE level, β amyloid1-42level, and antioxidant action in rat brain. PMID:28458424

  1. Passive stretch reduces calpain activity through nitric oxide pathway in unloaded soleus muscles.

    PubMed

    Xu, Peng-Tao; Li, Quan; Sheng, Juan-Juan; Chang, Hui; Song, Zhen; Yu, Zhi-Bin

    2012-08-01

    Unloading in spaceflight or long-term bed rest induces to pronounced atrophy of anti-gravity skeletal muscles. Passive stretch partially resists unloading-induced atrophy of skeletal muscle, but the mechanism remains elusive. The aims of this study were to investigate the hypotheses that stretch tension might increase protein level of neuronal nitric oxide synthase (nNOS) in unloaded skeletal muscle, and then nNOS-derived NO alleviated atrophy of skeletal muscle by inhibiting calpain activity. The tail-suspended rats were used to unload rat hindlimbs for 2 weeks, at the same time, left soleus muscle was stretched by applying a plaster cast to fix the ankle at 35° dorsiflexion. Stretch partially resisted atrophy and inhibited the decreased protein level and activity of nNOS in unloaded soleus muscles. Unloading increased frequency of calcium sparks and elevated intracellular resting and caffeine-induced Ca(2+) concentration ([Ca(2+)]i) in unloaded soleus muscle fibers. Stretch reduced frequency of calcium sparks and restored intracellular resting and caffeine-induced Ca(2+) concentration to control levels in unloaded soleus muscle fibers. The increased protein level and activity of calpain as well as the higher degradation of desmin induced by unloading were inhibited by stretch in soleus muscles. In conclusion, these results suggest that stretch can preserve the stability of sarcoplasmic reticulum Ca(2+) release channels which prevents the elevated [Ca(2+)]i by means of keeping nNOS activity, and then the enhanced protein level and activity of calpain return to control levels in unloaded soleus muscles. Therefore, stretch can resist in part atrophy of unloaded soleus muscles.

  2. Stimulus-dependent changes of extracellular glucose in the rat hippocampus determined by in vivo microdialysis.

    PubMed

    Rex, A; Bert, B; Fink, H; Voigt, J-P

    2009-10-19

    Neuronal activity is tightly coupled with brain energy metabolism; and glucose is an important energy substrate for neurons. The present in vivo microdialysis study was aimed at investigating changes in extracellular glucose concentrations in the rat ventral hippocampus due to exposure to the elevated plus maze. Determination of basal hippocampal glucose and lactate/pyruvate ratio in male Wistar rats was conducted in the home cage using in vivo microdialysis. Rats were exposed to the elevated plus maze, a rodent model of anxiety-related behaviour, or to unspecific stress induced by white noise (95dB) as a control condition. Basal hippocampal levels of glucose, as determined by zero-net-flux, and the basal lactate/pyruvate ratio were 1.49+/-0.05mmol/l and 13.8+/-1.1, respectively. In rats without manipulation, glucose levels remained constant throughout the experiment (120min). By contrast, exposure to the elevated plus maze led to a temporary decline in hippocampal glucose (-33.2+/-4.4%) which returned to baseline level in the home cage. White noise caused only a non-significant decrease in extracellular glucose level (-9.3+/-3.5%). In all groups, the lactate/pyruvate ratio remained unchanged by the experimental procedures. Our microdialysis study demonstrates that exposure to the elevated plus maze induces a transient decrease in extracellular hippocampal glucose concentration. In contrast, an unspecific stimulus did not change hippocampal glucose. The latter suggests that only specific behavioural stimuli increase hippocampal glucose utilization in the ventral hippocampus.

  3. Cardiac Overexpression of Antioxidant Catalase Attenuates Aging-Induced Cardiomyocyte Relaxation Dysfunction

    PubMed Central

    Ren, Jun; Li, Qun; Wu, Shan; Li, Shi-Yan; Babcock, Sara A.

    2007-01-01

    Catalase, an enzyme which detoxifies H2O2, may interfere with cardiac aging. To test this hypothesis, contractile and intracellular Ca2+ properties were evaluated in cardiomyocytes from young (3–4 mo) and old (26–28 mo) FVB and transgenic mice with cardiac overexpression of catalase. Contractile indices analyzed included peak shortening (PS), time-to-90% PS (TPS90), time-to-90% relengthening (TR90), half-width duration (HWD), maximal velocity of shortening/relengthening (± dL/dt) and intracellular Ca2+ levels or decay rate. Levels of advanced glycation endproduct (AGE), Na+/Ca2+ exchanger (NCX), sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2a), phospholamban (PLB), myosin heavy chain (MHC), membrane Ca2+ and K+ channels were measured by western blot. Catalase transgene prolonged survival while did not alter myocyte function by itself. Aging depressed ± dL/dt, prolonged HWD, TR90 and intracellular Ca2+ decay without affecting other indices in FVB myocytes. Aged FVB myocytes exhibited a stepper decline in PS in response to elevated stimulus or a dampened rise in PS in response to elevated extracellular Ca2+ levels. Interestingly, aging-induced defects were nullified or significantly attenuated by catalase. AGE level was elevated by 5-fold in aged FVB compared with young FVB mice, which was reduced by catalase. Expression of SERCA2a, NCX and Kv1.2 K+ channel was significantly reduced although levels of PLB, L-type Ca2+ channel dihydropyridine receptor and β-MHC isozyme remained unchanged in aged FVB hearts. Catalase restored NCX and Kv1.2 K+ channel but not SERCA2a level in aged mice. In summary, our data suggested that catalase protects cardiomyocytes from aging-induced contractile defect possibly via improved intracellular Ca2+ handling. PMID:17250874

  4. Glutamine Supplementation Attenuates Ethanol-Induced Disruption of Apical Junctional Complexes in Colonic Epithelium and Ameliorates Gut Barrier Dysfunction and Fatty Liver in Mice

    PubMed Central

    Chaudhry, Kamaljit K.; Shukla, Pradeep K.; Mir, Hina; Manda, Bhargavi; Gangwar, Ruchika; Yadav, Nikki; McMullen, Megan; Nagy, Laura E.; Rao, RadhaKrishna

    2015-01-01

    Previous in vitro studies showed that glutamine (Gln) prevents acetaldehyde-induced disruption of tight junctions and adherens junctions in Caco-2 cell monolayers and human colonic mucosa. In the present study, we evaluated the effect of Gln supplementation on ethanol-induced gut barrier dysfunction and liver injury in mice in vivo. Ethanol feeding caused a significant increase in inulin permeability in distal colon. Elevated permeability was associated with a redistribution of tight junction and adherens junction proteins and depletion of detergent-insoluble fractions of these proteins, suggesting that ethanol disrupts apical junctional complexes in colonic epithelium and increases paracellular permeability. Ethanol-induced increase in colonic mucosal permeability and disruption of junctional complexes were most severe in mice fed Gln-free diet. Gln supplementation attenuated ethanol-induced mucosal permeability and disruption of tight junctions and adherens junctions in a dose-dependent manner, indicating the potential role of glutamine in nutritional intervention to alcoholic tissue injury. Gln supplementation dose-dependently elevated reduced-protein thiols in colon without affecting the level of oxidized-protein thiols. Ethanol feeding depleted reduced protein thiols and elevated oxidized protein thiols. Ethanol-induced protein thiol oxidation was most severe in mice fed Gln-free diet and absent in mice fed Gln-supplemented diet, suggesting that antioxidant effect is one of the likely mechanisms involved in Gln-mediated amelioration of ethanol-induced gut barrier dysfunction. Ethanol feeding elevated plasma transaminase and liver triglyceride, which was accompanied by histopathologic lesions in the liver; ethanol-induced liver damage was attenuated by Gln supplementation. These results indicate that Gln supplementation ameliorates alcohol-induced gut and liver injury. PMID:26365579

  5. Testosterone replacement elevates the serum uric acid levels in patients with female to male gender identity disorder.

    PubMed

    Kurahashi, Hiroaki; Watanabe, Masami; Sugimoto, Morito; Ariyoshi, Yuichi; Mahmood, Sabina; Araki, Motoo; Ishii, Kazushi; Nasu, Yasutomo; Nagai, Atsushi; Kumon, Hiromi

    2013-01-01

    Gender identity disorder (GID) results from a disagreement between a person's biological sex and the gender to which he or she identifies. With respect to the treatment of female to male GID, testosterone replacement therapy (TRT) is available. The uric acid (UA) level can be influenced by testosterone; however, the early effects and dose-dependency of TRT on the serum UA concentration have not been evaluated in this population. We herein conducted a dose-response analysis of TRT in 160 patients with female to male GID. The TRT consisted of three treatment groups who received intramuscular injections of testosterone enanthate: 125 mg every two weeks, 250 mg every three weeks and 250 mg every two weeks. Consequently, serum UA elevation was observed after three months of TRT and there was a tendency toward testosterone dose-dependency. The onset of hyperuricemia was more prevalent in the group who received the higher dose. We also demonstrated a positive correlation between increased levels of serum UA and serum creatinine. Since the level of serum creatinine represents an individual's muscle volume and the muscle is a major source of purine, which induces UA upregulation, the serum UA elevation observed during TRT is at least partially attributed to an increase in muscle mass. This is the first study showing an association between serum UA elevation and a TRT-induced increase in muscle mass. The current study provides important information regarding TRT for the follow-up and management of the serum UA levels in GID patients.

  6. Difference in the action mechanism of radon inhalation and radon hot spring water drinking in suppression of hyperuricemia in mice

    PubMed Central

    Etani, Reo; Kataoka, Takahiro; Kanzaki, Norie; Sakoda, Akihiro; Tanaka, Hiroshi; Ishimori, Yuu; Mitsunobu, Fumihiro; Yamaoka, Kiyonori

    2016-01-01

    Although radon therapy is indicated for hyperuricemia, the underlying mechanisms of action have not yet been elucidated in detail. Therefore, we herein examined the inhibitory effects of radon inhalation and hot spring water drinking on potassium oxonate (PO)–induced hyperuricemia in mice. Mice inhaled radon at a concentration of 2000 Bq/m3 for 24 h or were given hot spring water for 2 weeks. Mice were then administrated PO at a dose of 500 mg/kg. The results obtained showed that serum uric acid levels were significantly increased by the administration of PO. Radon inhalation or hot spring water drinking significantly inhibited elevations in serum uric acid levels through the suppression of xanthine oxidase activity in the liver. Radon inhalation activated anti-oxidative functions in the liver and kidney. These results suggest that radon inhalation inhibits PO-induced hyperuricemia by activating anti-oxidative functions, while hot spring water drinking may suppress PO-induced elevations in serum uric acid levels through the pharmacological effects of the chemical compositions dissolved in it. PMID:27021217

  7. Early developmental and temporal characteristics of stress-induced secretion of pituitary-adrenal hormones in prenatally stressed rat pups.

    PubMed

    Takahashi, L K; Kalin, N H

    1991-08-30

    Previous experiments revealed that 14-day-old prenatally stressed rats have significantly elevated concentrations of plasma adrenocorticotrophic hormone (ACTH) and corticosterone suggesting these animals have an overactive hypothalamic-pituitary-adrenal (HPA) system. In these studies, however, stress-induced hormone levels were determined only immediately after exposure to an acute stressor. Therefore, in the current study, we examined in postnatal days 7, 14 and 21 prenatally stressed rats the stress-induced time course of this pituitary-adrenal hormone elevation. Plasma ACTH and corticosterone were measured in the basal state and at 0.0, 0.5, 1.0, 2.0 and 4.0 h after a 10-min exposure period to foot shocks administered in the context of social isolation. Results indicated that at all 3 ages, plasma ACTH in prenatally stressed rats was significantly elevated. Corticosterone concentrations were also significantly higher in prenatally stressed than in control rats, especially in day 14 rats. Analysis of stress-induced hormone fluctuations over time indicated that by 14 days of age, both prenatally stressed than in control and control rats had significant increases in plasma ACTH and corticosterone after exposure to stress. Furthermore, although prenatally stressed rats had significantly higher pituitary-adrenal hormone concentrations than control animals, the post-stress temporal patterns of decline in ACTH and corticosterone levels were similar between groups. Results suggest that throughout the preweaning period, prenatal stress produces an HPA system that functions in a manner similar to that of controls but at an increased level.

  8. ERK Signaling Pathway Plays a Key Role in Baicalin Protection Against Acetaminophen-Induced Liver Injury.

    PubMed

    Liao, Chia-Chih; Day, Yuan-Ji; Lee, Hung-Chen; Liou, Jiin-Tarng; Chou, An-Hsun; Liu, Fu-Chao

    2017-01-01

    Acetaminophen (APAP) overdose causes hepatocytes necrosis and acute liver failure. Baicalin (BA), a major flavonoid of Scutellariae radix, has potent hepatoprotective properties in traditional medicine. In the present study, we investigated the protective effects of BA on a APAP-induced liver injury in a mouse model. The mice received an intraperitoneal hepatotoxic dose of APAP (300[Formula: see text]mg/kg) and after 30[Formula: see text]min, were treated with BA at concentrations of 0, 15, 30, or 60[Formula: see text]mg/kg. After 16[Formula: see text]h of treatment, the mice were sacrificed for further analysis. APAP administration significantly elevated the serum alanine transferase (ALT) enzyme levels and hepatic myeloperoxidase (MPO) activity when compared with control animals. Baicalin treatment significantly attenuated the elevation of liver ALT levels, as well as hepatic MPO activity in a dose- dependent manner (15-60[Formula: see text]mg/kg) in APAP-treated mice. The strongest beneficial effects of BA were seen at a dose of 30[Formula: see text]mg/kg. BA treatment at 30[Formula: see text]mg/kg after APAP overdose reduced elevated hepatic cytokine (TNF-[Formula: see text] and IL-6) levels, and macrophage recruitment around the area of hepatotoxicity in immunohistochemical staining. Significantly, BA treatment can also decrease hepatic phosphorylated extracellular signal-regulated kinase (ERK) expression, which is induced by APAP overdose. Our data suggests that baicalin treatment can effectively attenuate APAP-induced liver injury by down-regulating the ERK signaling pathway and its downstream effectors of inflammatory responses. These results support that baicalin is a potential hepatoprotective agent.

  9. Role of CYP2E1 Immunoglobulin G4 Subclass Antibodies and Complement in Pathogenesis of Idiosyncratic Drug-Induced Hepatitis

    PubMed Central

    Njoku, Dolores B.; Mellerson, Jenelle L.; Talor, Monica V.; Kerr, Douglas R.; Faraday, Nauder R.; Outschoorn, Ingrid; Rose, Noel R.

    2006-01-01

    Idiosyncratic drug-induced hepatitis (IDDIH) is the third most common cause for acute liver failure in the United States. Previous studies have attempted to identify susceptible patients or early stages of disease with various degrees of success. To determine if total serum immunoglobulin subclasses, CYP2E1-specific subclass autoantibodies, complement components, or immune complexes could distinguish persons with IDDIH from others exposed to drugs, we studied persons exposed to halogenated volatile anesthetics, which have been associated with IDDIH and CYP2E1 autoantibodies. We found that patients with anesthetic-induced IDDIH had significantly elevated levels of CYP2E1-specific immunoglobulin G4 (IgG4) autoantibodies, while anesthetic-exposed healthy persons had significantly elevated levels of CYP2E1-specific IgG1 autoantibodies. Anesthetic IDDIH patients had significantly lower levels of C4a, C3a, and C5a compared to anesthetic-exposed healthy persons. C1q- and C3d-containing immune complexes were significantly elevated in anesthetic-exposed persons. In conclusion, our data suggest that anesthetic-exposed persons develop CYP2E1-specific IgG1 autoantibodies which may form detectable circulating immune complexes subsequently cleared by classical pathway activation of the complement system. Persons susceptible to anesthetic-induced IDDIH develop CYP2E1-specific IgG4 autoantibodies which form small, nonprecipitating immune complexes that escape clearance because of their size or by direct inhibition of complement activation. PMID:16467335

  10. Leptin does not induce an inflammatory response in the murine placenta.

    PubMed

    Appel, S; Turnwald, E-M; Alejandre-Alcazar, M A; Ankerne, J; Rother, E; Janoschek, R; Wohlfarth, M; Vohlen, C; Schnare, M; Meißner, U; Dötsch, J

    2014-06-01

    Leptin is described as a pro-inflammatory signal in fat tissue, which is released from adipocytes and in turn activates immune cells. Also, leptin levels are known to be increased in pregnancies complicated with enhanced inflammatory processes in the placenta. Hence, we assumed that increased leptin amounts might contribute to inducing an inflammatory response in the placenta. To test this hypothesis, pregnant mice were continuously infused with recombinant murine leptin s. c. from day g13 to g16, resulting in a 3-fold increase of maternal circulating serum leptin levels. Dissected placentas were examined for the expression of pro-inflammatory cytokines IL-6 and TNF-alpha and the anti-inflammatory cytokine IL-10 using qPCR analysis. No changes were found except for TNF-alpha, which was slightly elevated upon leptin stimulation. However, TNF-alpha protein levels were not significantly higher in placentas from leptin treated mice. Also, leukocyte infiltration in the labyrinth section of placentas was not increased. In summary, our data demonstrate for the first time that elevated leptin levels alone do not induce an inflammatory response in the placenta. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Use of Biomarkers to Optimize Heat Acclimation in Women

    DTIC Science & Technology

    1996-10-01

    that synthesis of HSP72 was induced in lymphocytes, spleen cells and soleus muscle after 20 min of exercise while rectal temperature elevated above 40...lethal temperatures for death due to nonexertionally and exertionally induced heat exhaustion, respectively (15). Upon completion of the exercise ...During exercise , interstitial fluid levels are reduced due to sweat formation and fluid shifts which tend to induce hypovolemia, compromising

  12. Carvedilol suppresses circulating and hepatic IL-6 responsible for hepatocarcinogenesis of chronically damaged liver in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaha, Mohamed, E-mail: Mohamed.Balaha@Med.Tanta.

    Carvedilol is an anti-oxidant non-selective β-blocker used for reduction of portal blood pressure, prophylaxis of esophageal varices development and bleeding in chronic liver diseases. Recently, it exhibited potent anti-inflammatory, anti-fibrotic, anti-proliferative and anti-carcinogenic effects. In the present study, we evaluated the possible suppressive effect of carvedilol on circulating and hepatic IL-6 levels responsible for hepatocarcinogenesis in a rat model of hepatic cirrhosis. Besides, its effect on hepatic STAT-3 levels, function tests, oxidative stress markers, and hydroxyproline content, hepatic tissue histopathological changes and immunohistochemical expression of E & N-cadherin. Nine-week-old male Wistar rats injected intraperitoneal by 1 ml/kg 10% CCL{sub 4}more » in olive oil three times/week (every other day) for 12 weeks to induce hepatic cirrhosis. Carvedilol (10 mg/kg/day suspended in 0.5% CMC orally), silymarin (50 mg/kg/day suspended in 0.5% CMC orally) or combination of both used to treat hepatic cirrhosis from 15th to 84th day. Our data showed that carvedilol and silymarin co-treatment each alone or in combination efficiently reduced the elevated serum IL-6, ALT, AST, ALP and BIL, hepatic IL-6, STAT-3, MDA levels and hydroxyproline content. In addition, it elevated the reduced serum ALB level, hepatic CAT activity and GSH level. Meanwhile, it apparently restored the normal hepatic architecture, collagen distribution and immunohistochemical E & N-cadherin expression. Furthermore, carvedilol was superior to silymarin in improving MDA level. Moreover, the combination of carvedilol and silymarin showed an upper hand in amelioration of the CCL{sub 4} induced hepatotoxicity than each alone. Therefore, carvedilol could be promising in prevention of hepatocarcinogenesis in chronic hepatic injuries. - Highlights: • Chronic liver damage ends into hepatocellular carcinoma in 5% of patients. • Persistent elevation of IL-6 induces hepatocarcinogenesis in chronic hepatic injury. • Carvedilol is an antioxidant β-blocker used for prophylaxis of portal hypertension. • Carvedilol suppresses the elevated serum and hepatic IL-6 levels. • Carvedilol could protect against hepatocarcinogenesis of chronically damaged liver.« less

  13. Air pollution & the brain: Subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease.

    PubMed

    Levesque, Shannon; Surace, Michael J; McDonald, Jacob; Block, Michelle L

    2011-08-24

    Increasing evidence links diverse forms of air pollution to neuroinflammation and neuropathology in both human and animal models, but the effects of long-term exposures are poorly understood. We explored the central nervous system consequences of subchronic exposure to diesel exhaust (DE) and addressed the minimum levels necessary to elicit neuroinflammation and markers of early neuropathology. Male Fischer 344 rats were exposed to DE (992, 311, 100, 35 and 0 μg PM/m³) by inhalation over 6 months. DE exposure resulted in elevated levels of TNFα at high concentrations in all regions tested, with the exception of the cerebellum. The midbrain region was the most sensitive, where exposures as low as 100 μg PM/m³ significantly increased brain TNFα levels. However, this sensitivity to DE was not conferred to all markers of neuroinflammation, as the midbrain showed no increase in IL-6 expression at any concentration tested, an increase in IL-1β at only high concentrations, and a decrease in MIP-1α expression, supporting that compensatory mechanisms may occur with subchronic exposure. Aβ42 levels were the highest in the frontal lobe of mice exposed to 992 μg PM/m³ and tau [pS199] levels were elevated at the higher DE concentrations (992 and 311 μg PM/m³) in both the temporal lobe and frontal lobe, indicating that proteins linked to preclinical Alzheimer's disease were affected. α Synuclein levels were elevated in the midbrain in response to the 992 μg PM/m³ exposure, supporting that air pollution may be associated with early Parkinson's disease-like pathology. Together, the data support that the midbrain may be more sensitive to the neuroinflammatory effects of subchronic air pollution exposure. However, the DE-induced elevation of proteins associated with neurodegenerative diseases was limited to only the higher exposures, suggesting that air pollution-induced neuroinflammation may precede preclinical markers of neurodegenerative disease in the midbrain.

  14. Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tseng, Michael T., E-mail: mttsen01@louisville.edu; Lu, Xiaoqin, E-mail: x0lu0003@louisville.edu; Duan, Xiaoxian, E-mail: x0duan02@louisville.edu

    2012-04-15

    Beyond the traditional use of ceria as an abrasive, the scope of nanoceria applications now extends into fuel cell manufacturing, diesel fuel additives, and for therapeutic intervention as a putative antioxidant. However, the biological effects of nanoceria exposure have yet to be fully defined, which gave us the impetus to examine its systemic biodistribution and biological responses. An extensively characterized nanoceria (5 nm) dispersion was vascularly infused into rats, which were terminated 1 h, 20 h or 30 days later. Light and electron microscopic tissue characterization was conducted and hepatic oxidative stress parameters determined. We observed acute ceria nanoparticle sequestrationmore » by Kupffer cells with subsequent bioretention in parenchymal cells as well. The internalized ceria nanoparticles appeared as spherical agglomerates of varying dimension without specific organelle penetration. In hepatocytes, the agglomerated nanoceria frequently localized to the plasma membrane facing bile canaliculi. Hepatic stellate cells also sequestered nanoceria. Within the sinusoids, sustained nanoceria bioretention was associated with granuloma formations comprised of Kupffer cells and intermingling CD3{sup +} T cells. A statistically significant elevation of serum aspartate aminotransferase (AST) level was seen at 1 and 20 h, but subsided by 30 days after ceria administration. Further, elevated apoptosis was observed on day 30. These findings, together with increased hepatic protein carbonyl levels on day 30, indicate ceria-induced hepatic injury and oxidative stress, respectively. Such observations suggest a single vascular infusion of nanoceria can lead to persistent hepatic retention of particles with possible implications for occupational and therapeutic exposures. -- Highlights: ► Time course study on nanoceria induced hepatic alterations in rats. ► Serum AST elevation indicated acute hepatotoxicity. ► Ceria is retained for up to 30 days in Kupffer cells, stellate cells and hepatocytes. ► Biopersistence of nanoceria induced hepatic granuloma formation. ► Chronic presence of nanoceria elevated hepatic protein carbonyl levels.« less

  15. Erythropoietin promotes oligodendrogenesis and myelin repair following lysolecithin-induced injury in spinal cord slice culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Yun Kyung; Kim, Gunha; Park, Serah

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Lysolecithin-induced demyelination elevated EpoR expression in OPCs. Black-Right-Pointing-Pointer In association with elevated EpoR, EPO increased OPCs proliferation. Black-Right-Pointing-Pointer EPO enhanced the oligodendrogenesis via activation of JAK2 pathway. Black-Right-Pointing-Pointer EPO promoted myelin repair following lysolecithin-induced demyelination. -- Abstract: Here, we sought to delineate the effect of EPO on the remyelination processes using an in vitro model of demyelination. We report that lysolecithin-induced demyelination elevated EPO receptor (EpoR) expression in oligodendrocyte progenitor cells (OPCs), facilitating the beneficial effect of EPO on the formation of oligodendrocytes (oligodendrogenesis). In the absence of EPO, the resultant remyelination was insufficient, possibly due to amore » limiting number of oligodendrocytes rather than their progenitors, which proliferate in response to lysolecithin-induced injury. By EPO treatment, lysolecithin-induced proliferation of OPCs was accelerated and the number of myelinating oligodendrocytes and myelin recovery was increased. EPO also enhanced the differentiation of neural progenitor cells expressing EpoR at high level toward the oligodendrocyte-lineage cells through activation of cyclin E and Janus kinase 2 pathways. Induction of myelin-forming oligodendrocytes by high dose of EPO implies that EPO might be the key factor influencing the final differentiation of OPCs. Taken together, our data suggest that EPO treatment could be an effective way to enhance remyelination by promoting oligodendrogenesis in association with elevated EpoR expression in spinal cord slice culture after lysolecithin-induced demyelination.« less

  16. Protection of LLC-PK1 cells against hydrogen peroxide-induced cell death by modulation of ceramide level.

    PubMed

    Yoo, Jae-Myung; Lee, Youn-Sun; Choi, Heon-Kyo; Lee, Yong-Moon; Hong, Jin-Tae; Yun, Yeo-Pyo; Oh, Seikwan; Yoo, Hwan-Soo

    2005-03-01

    Oxidative stress has been reported to elevate ceramide level during cell death. The purpose of the present study was to modulate cell death in relation to cellular glutathione (GSH) level and GST (glutathione S-transferase) expression by regulating the sphingolipid metabolism. LLC-PK1 cells were treated with H2O2 in the absence of serum to induce cell death. Subsequent to exposure to H2O2, LLC-PK1 cells were treated with desipramine, sphingomyelinase inhibitor, and N-acetylcysteine (NAC), GSH substrate. Based on comparative visual observation with H2O2-treated control cells, it was observed that 0.5 microM of desipramine and 25 mM of NAC exhibited about 90 and 95% of cytoprotection, respectively, against H2O2-induced cell death. Desipramine and NAC lowered the release of LDH activity by 36 and 3%, respectively, when compared to 71% in H2O2-exposed cells. Cellular glutathione level in 500 microM H2O2-treated cells was reduced to 890 pmol as compared to control level of 1198 pmol per mg protein. GST P1-1 expression was decreased in H2O2-treated cells compared to healthy normal cells. In conclusion, it has been inferred that H2O2-induced cell death is closely related to cellular GSH level and GST P1-1 expression in LLC-PK1 cells and occurs via ceramide elevation by sphingomyelinase activation.

  17. Comparison of the Protective Effects of Melatonin and Silymarin Against Gentamicin-Induced Nephrotoxicity in Rats.

    PubMed

    Ghaznavi, Habib; Mehrzadi, Saeed; Dormanesh, Banafshe; Tabatabaei, Seyyed Mohammad Taghi Hosseini; Vahedi, Habib; Hosseinzadeh, Azam; Pazoki-Toroudi, HamidReza; Rashidian, Amir

    2016-10-01

    This study compared the possible protective effects of silymarin and melatonin against gentamicin (GEN)-induced nephrotoxicity in rats. Rats were allocated to 6 groups: Group I, control group; Groups II and III, administered with silymarin or melatonin; Group IV, injected with GEN; and Groups V and VI, administered with silymarin or melatonin, and then injected with GEN. Compared with the rats in the control group, all rats injected with GEN significantly presented elevated levels of serum creatinine and urea that was accompanied by an increase in relative kidney weight, increase in renal reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and reduction in renal glutathione (GSH) level and superoxide dismutase (SOD) activity. Silymarin and melatonin pretreatment significantly lowered the elevated serum urea and creatinine concentration, kidney weight, and renal ROS and MDA levels. In addition, silymarin and melatonin significantly enhanced renal GSH level and SOD activity. This study indicates that silymarin and melatonin can attenuate renal injury in rats treated with GEN possibly by reducing the ROS level. © The Author(s) 2015.

  18. EXPRESSION OF INDUCIBLE HSP70 ENHANCES THE PROLIFERATION OF MCF-7 BREAST CANCER CELLS AND PROTECTS AGAINST THE CYTOTOXIC EFFECTS OF HYPERTHERMIA

    EPA Science Inventory

    Heat shock proteins (HSPs) are ubiquitous proteins that are induced following exposure to sub-lethal heat shock, are highly conserved during evolution and protect cells from damage through their function as molecular chaperones. Some cancers demonstrate elevated levels of Hsp70 ...

  19. Hepatoprotective effects of fermented Curcuma longa L. on carbon tetrachloride-induced oxidative stress in rats.

    PubMed

    Kim, Yongjae; You, Yanghee; Yoon, Ho-Geun; Lee, Yoo-Hyun; Kim, Kyungmi; Lee, Jeongmin; Kim, Min Soo; Kim, Jong-Choon; Jun, Woojin

    2014-05-15

    The hepatoprotective effect of fermented Curcuma longa L. (FC) was investigated in rats under CCl4-induced oxidative stress. FC at a dose of 30 or 300 mg/kg body weight (b.w.) was orally administered for 14 days followed by a single dose of CCl4 (1.25 mL/kg b.w. in 20% corn oil) on day 14. Pretreatment with FC drastically prevented the elevated activities of serum AST, ALT, LDH, and ALP caused by CCl4-induced hepatotoxicity. Histopathologically evident hepatic necrosis was significantly ameliorated by FC pretreatment. When compared to the CCl4-alone treated group, rats pretreated with FC displayed the reduced level of malondialdehyde. Furthermore, FC enhanced antioxidant capacities with higher activities of catalase, glutathione-S-transferase, glutathione reductase, and glutathione peroxidase, and level of reduced glutathione. These results suggest that FC could be a candidate used for the prevention against various liver diseases induced by oxidative stress via elevating antioxidative potentials and decreasing lipid peroxidation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. The interaction of escitalopram and R-citalopram at the human serotonin transporter investigated in the mouse.

    PubMed

    Jacobsen, Jacob P R; Plenge, Per; Sachs, Benjamin D; Pehrson, Alan L; Cajina, Manuel; Du, Yunzhi; Roberts, Wendy; Rudder, Meghan L; Dalvi, Prachiti; Robinson, Taylor J; O'Neill, Sharon P; Khoo, King S; Morillo, Connie Sanchez; Zhang, Xiaodong; Caron, Marc G

    2014-12-01

    Escitalopram appears to be a superior antidepressant to racemic citalopram. It has been hypothesized that binding of R-citalopram to the serotonin transporter (SERT) antagonizes escitalopram binding to and inhibition of the SERT, there by curtailing the elevation of extracellular 5-hydroxytryptamine (5-HTExt), and hence anti-depressant efficacy. Further, it has been suggested that a putative allosteric binding site is important for binding of escitalopram to the primary, orthosteric, site, and for R-citalopram's inhibition here of. Primary: Investigate at the human (h)SERT, at clinical relevant doses, whether R-citalopram antagonizes escitalopram-induced 5-HTExt elevation. Secondary: Investigate whether abolishing the putative allosteric site affects escitalopram-induced 5-HTExt elevation and/or modulates the effect of R-citalopram. Recombinant generation of hSERT transgenic mice; in vivo microdialysis; SERT binding; pharmacokinetics; 5-HT sensitive behaviors (tail suspension, marble burying). We generated mice expressing either the wild-type human SERT (hSERT(WT)) or hSERT carrying amino acid substitutions (A505V, L506F, I507L, S574T and I575T) collectively abolishing the putative allosteric site (hSERT(ALI/VFL+SI/TT)). One mg/kg escitalopram yielded clinical relevant plasma levels and brain levels consistent with therapeutic SERT occupancy. The hSERT mice showed normal basal 5-HTExt levels. Escitalopram-induced 5-HTExt elevation was not decreased by R-citalopram co-treatment and was unaffected by loss of the allosteric site. The behavioral effects of the clinically relevant escitalopram dose were small and tended to be enhanced by R-citalopram co-administration. We find no evidence that R-citalopram directly antagonizes escitalopram or that the putative allosteric site is important for hSERT inhibition by escitalopram.

  1. NO and H2O2 contribute to SO2 toxicity via Ca2+ signaling in Vicia faba guard cells.

    PubMed

    Yi, Min; Bai, Heli; Xue, Meizhao; Yi, Huilan

    2017-04-01

    NO and H 2 O 2 have been implicated as important signals in biotic and abiotic stress responses of plants to the environment. Previously, we have shown that SO 2 exposure increased the levels of NO and H 2 O 2 in plant cells. We hypothesize that, as signaling molecules, NO and H 2 O 2 mediate SO 2 -caused toxicity. In this paper, we show that SO 2 hydrates caused guard cell death in a concentration-dependent manner in the concentration range of 0.25 to 6 mmol L -1 , which was associated with elevation of intracellular NO, H 2 O 2 , and Ca 2+ levels in Vicia faba guard cells. NO donor SNP enhanced SO 2 toxicity, while NO scavenger c-PTIO and NO synthesis inhibitors L-NAME and tungstate significantly prevented SO 2 toxicity. ROS scavenger ascorbic acid (AsA) and catalase (CAT), Ca 2+ chelating agent EGTA, and Ca 2+ channel inhibitor LaCl 3 also markedly blocked SO 2 toxicity. In addition, both c-PTIO and AsA could completely block SO 2 -induced elevation of intracellular Ca 2+ level. Moreover, c-PTIO efficiently blocked SO 2 -induced H 2 O 2 elevation, and AsA significantly blocked SO 2 -induced NO elevation. These results indicate that extra NO and H 2 O 2 are produced and accumulated in SO 2 -treated guard cells, which further activate Ca 2+ signaling to mediate SO 2 toxicity. Our findings suggest that both NO and H 2 O 2 contribute to SO 2 toxicity via Ca 2+ signaling.

  2. The interaction of escitalopram and R-citalopram at the human serotonin transporter investigated in the mouse

    PubMed Central

    Jacobsen, Jacob P.R.; Plenge, Per; Sachs, Benjamin D.; Pehrson, Alan L.; Cajina, Manuel; Du, Yunzhi; Roberts, Wendy; Rudder, Meghan L.; Dalvi, Prachiti; Robinson, Taylor J.; O’Neill, Sharon P.; Khoo, King S.; Morillo, Connie Sanchez; Zhang, Xiaodong; Caron, Marc G.

    2015-01-01

    Rationale Escitalopram is a superior antidepressant to racemic citalopram. It has been hypothesized that binding of R-citalopram to the serotonin transporter (SERT) antagonizes escitalopram binding to and inhibition of the SERT, curtailing the elevation of extracellular 5-hydroxytryptamine (5-HTExt), and antidepressant efficacy. Further, it has been suggested that a putative allosteric binding site is important for binding of escitalopram to the primary, orthosteric, site, and for R-citalopram’s inhibition hereof. Objectives Primary: Investigate at the human (h)SERT, at clinical relevant doses, whether R-citalopram antagonizes escitalopram-induced 5-HTExt elevation. Secondary: Investigate whether abolishing the putative allosteric site affects escitalopram-induced 5-HTExt elevation and/or modulates the effect of R-citalopram. Methods Recombinant technology; in vivo microdialysis; receptor binding; pharmacokinetics; 5-HT sensitive behaviors (tail suspension, marble burying). Results We generated mice expressing either the wild-type human SERT (hSERTWT) or hSERT carrying amino acid substitutions (A505V, L506F, I507L, S574T and I575T) collectively abolishing the putative allosteric site (hSERTALI/VFL+SI/TT). One mg/kg escitalopram yielded clinical relevant plasma levels and brain levels consistent with therapeutic SERT occupancy. Importantly, escitalopram-induced 5-HTExt elevation was not decreased by R-citalopram co-treatment. Further, escitalopram-induced 5-HTExt elevation was not affected by loss of the allosteric site. The behavioral effects of the clinically relevant escitalopram dose were small, tending to be enhanced by R-citalopram co-administration. Conclusions We find no evidence that R-citalopram directly antagonizes escitalopram or that the putative allosteric site is important for hSERT inhibition by escitalopram. Our findings points to mechanisms for R-citalopram antagonism of escitalopram’s antidepressant action other than direct antagonistic binding interactions at the hSERT. PMID:24810106

  3. Elevated blood histamine levels and mast cell degranulation in solar urticaria.

    PubMed Central

    Hawk, J L; Eady, R A; Challoner, A V; Kobza-Black, A; Keahey, T M; Greaves, M W

    1980-01-01

    1 Ultraviolet radiation (UVR)-induced wealing was studied in four patients with solar urticaria, whose measured action spectra were within the range 300 to 700 nm. 2 Elevated histamine levels were found in blood draining wealed skin in all four patients. 3 Histological and electron microscopial studies of the irradiated skin showed evidence of mast cell degranulation. 4 These findings demonstrate an association between histamine release from mast cells and wealing in solar urticaria, and should encourage evaluation of drugs which suppress histamine release in this disorder. Images Figure 2 PMID:7356907

  4. Natural thermal adaptation increases heat shock protein levels and decreases oxidative stress.

    PubMed

    Oksala, Niku K J; Ekmekçi, F Güler; Ozsoy, Ergi; Kirankaya, Serife; Kokkola, Tarja; Emecen, Güzin; Lappalainen, Jani; Kaarniranta, Kai; Atalay, Mustafa

    2014-01-01

    Heat shock proteins (HSPs), originally identified as heat-inducible gene products, are a family of highly conserved proteins that respond to a wide variety of stress including oxidative stress. Although both acute and chronic oxidative stress have been well demonstrated to induce HSP responses, little evidence is available whether increased HSP levels provide enhanced protection against oxidative stress under elevated yet sublethal temperatures. We studied relationships between oxidative stress and HSPs in a physiological model by using Garra rufa (doctor fish), a fish species naturally acclimatized to different thermal conditions. We compared fish naturally living in a hot spring with relatively high water temperature (34.4±0.6°C) to those living in normal river water temperature (25.4±4.7°C), and found that levels of all the studied HSPs (HSP70, HSP60, HSP90, HSC70 and GRP75) were higher in fish living in elevated water temperature compared with normal river water temperature. In contrast, indicators of oxidative stress, including protein carbonyls and lipid hydroperoxides, were decreased in fish living in the elevated temperature, indicating that HSP levels are inversely associated with oxidative stress. The present results provide evidence that physiologically increased HSP levels provide protection against oxidative stress and enhance cytoprotection. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  5. The adrenocortical stress-response of Black-legged Kittiwake chicks in relation to dietary restrictions

    USGS Publications Warehouse

    Kitaysky, A.S.; Piatt, John F.; Wingfield, J.C.; Romano, M.

    1999-01-01

    In this study we examined hormonal responses of Black-legged Kittiwake (Rissa tridactyla) chicks to experimental variations in energy content and nutritional quality (low or high lipid to protein ratio, LPR) of their food. Starting at the age of 10 days, chicks were fed either high or low LPR fish at 30, 50, 70 and 100% of ad libitum energy intake. After 20 days of treatment, chicks were exposed to a standardized acute handling and restraint stress protocol, where a baseline sample was taken immediately after taking a chick from the nest, and three additional blood samples were taken at intervals up to 50 min. Testosterone and corticosterone titres in plasma were measured via radioimmunoassay. We found that baseline testosterone levels were not significantly affected by the experimental treatments. Food-restricted chicks had elevated baseline and acute stress-induced levels of corticosterone compared to chicks fed ad libitum. An elevation of circulating levels of corticosterone in energetically stressed individuals was further magnified by low nutritional quality of food. Baseline and acute stress-induced corticosterone levels of chicks were negatively correlated with their fat reserves. We conclude that the physiological condition of Black-legged Kittiwake chicks can be assessed reliably by measuring circulating levels of corticosterone. We discuss short-and long-term effects of elevated corticosterone secretion in food-stressed nest-bound chicks.

  6. The adrenocorical stress-response of Black-legged Kittiwake chicks in relation to dietary restrictions

    USGS Publications Warehouse

    Kitaysky, A.S.; Piatt, John F.; Wingfield, J.C.; Romano, M.

    1999-01-01

    In this study we examined hormonal responses of Black-legged Kittiwake (Rissa tridactyla) chicks to experimental variations in energy content and nutritional quality (low or high lipid to protein ratio, LPR) of their food. Starting at the age of 10 days, chicks were fed either high or low LPR fish at 30, 50, 70 and 100% of ad libitum energy intake. After 20 days of treatment, chicks were exposed to a standardized acute handling and restraint stress protocol, where a baseline sample was taken immediately after taking a chick from the nest, and three additional blood samples were taken at intervals up to 50 min. Testosterone and corticosterone titres in plasma were measured via radioimmunoassay. We found that baseline testosterone levels were not significantly affected by the experimental treatments. Food-restricted chicks had elevated baseline and acute stress-induced levels of corticosterone compared to chicks fed ad libitum. An elevation of circulating levels of corticosterone in energetically stressed individuals was further magnified by low nutritional quality of food. Baseline and acute stress-induced corticosterone levels of chicks were negatively correlated with their fat reserves. We conclude that the physiological condition of Black-legged Kittiwake chicks can be assessed reliably by measuring circulating levels of corticosterone. We discuss short- and long-term effects of elevated corticosterone secretion in food-stressed nest-bound chicks.

  7. Hypolipidemic activity of Phellinus rimosus against triton WR-1339 and high cholesterol diet induced hyperlipidemic rats.

    PubMed

    Rony, K A; Ajith, T A; Nima, N; Janardhanan, K K

    2014-03-01

    Patients with the risk for atherosclerotic disease will be targeted to reduce the existing hyperlipidemia. The hypolipidemic activity of Phellinus rimosus was studied using triton WR-1339 and high cholesterol diet (HCD) induced models. The triton induced elevated lipid profile was attenuated by P. rimosus or standard drug atorvastatin. Similarly, administration of P. rimosus along with HCD significantly decline serum triglyceride, total cholesterol, low-density lipoprotein, with elevating the high-density lipoprotein. Thiobarbituric acid reacting substances in heart and liver significantly decreased; where as activity of enzymatic antioxidants and level of reduced glutathione were significantly increased. In both models, P. rimosus extract showed a significant ameliorative effect on the elevated atherogenic index as well as LDL/HDL-C ratio. The hypolipidemic activity of P. rimosus can be ascribed to its inhibitory effect on the liver HMG CoA reductase activity. The results suggest the possible therapeutic potential of this fungus as hypolipidemic agent. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Increased choline kinase activity in 1,2-dimethylhydrazine-induced rat colon cancer.

    PubMed

    Nakagami, K; Uchida, T; Ohwada, S; Koibuchi, Y; Morishita, Y

    1999-11-01

    Cancer cells acquire particular characteristics that benefit their proliferation. We previously reported that human colon cancers examined had increased choline kinase activity and phosphocholine levels. The elevated phosphocholine levels were in part due to both activation of choline kinase and increased choline kinase alpha protein levels. In this report, we analyzed choline kinase, which catalyzes the phosphorylation of choline to produce phosphocholine, in rat 1,2-dimethylhydrazine (DMH)-induced colon cancer. This study is the first to demonstrate increased choline kinase alpha enzymatic activity, protein levels, and mRNA levels in DMH-induced colon cancer as well as human colon cancer, although phosphocholine was not increased in DMH-induced rat cancer. The increase in the mRNA level was partly due to an increase in the transcription of the choline kinase alpha gene. The increased choline kinase activity may be a specific characteristic acquired by cancer cells that benefits their proliferation.

  9. Bactericidal Antibiotics Induce Toxic Metabolic Perturbations that Lead to Cellular Damage.

    PubMed

    Belenky, Peter; Ye, Jonathan D; Porter, Caroline B M; Cohen, Nadia R; Lobritz, Michael A; Ferrante, Thomas; Jain, Saloni; Korry, Benjamin J; Schwarz, Eric G; Walker, Graham C; Collins, James J

    2015-11-03

    Understanding how antibiotics impact bacterial metabolism may provide insight into their mechanisms of action and could lead to enhanced therapeutic methodologies. Here, we profiled the metabolome of Escherichia coli after treatment with three different classes of bactericidal antibiotics (?-lactams, aminoglycosides, quinolones). These treatments induced a similar set of metabolic changes after 30 min that then diverged into more distinct profiles at later time points. The most striking changes corresponded to elevated concentrations of central carbon metabolites, active breakdown of the nucleotide pool, reduced lipid levels, and evidence of an elevated redox state. We examined potential end-target consequences of these metabolic perturbations and found that antibiotic-treated cells exhibited cytotoxic changes indicative of oxidative stress, including higher levels of protein carbonylation, malondialdehyde adducts, nucleotide oxidation, and double-strand DNA breaks. This work shows that bactericidal antibiotics induce a complex set of metabolic changes that are correlated with the buildup of toxic metabolic by-products. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Glucocorticoids mediate stress-induced impairment of retrieval of stimulus-response memory.

    PubMed

    Atsak, Piray; Guenzel, Friederike M; Kantar-Gok, Deniz; Zalachoras, Ioannis; Yargicoglu, Piraye; Meijer, Onno C; Quirarte, Gina L; Wolf, Oliver T; Schwabe, Lars; Roozendaal, Benno

    2016-05-01

    Acute stress and elevated glucocorticoid hormone levels are well known to impair the retrieval of hippocampus-dependent 'declarative' memory. Recent findings suggest that stress might also impair the retrieval of non-hippocampal memories. In particular, stress shortly before retention testing was shown to impair the retrieval of striatal stimulus-response associations in humans. However, the mechanism underlying this stress-induced retrieval impairment of non-hippocampal stimulus-response memory remains elusive. In the present study, we investigated whether an acute elevation in glucocorticoid levels mediates the impairing effects of stress on retrieval of stimulus-response memory. Male Sprague-Dawley rats were trained on a stimulus-response task in an eight-arm radial maze until they learned to associate a stimulus, i.e., cue, with a food reward in one of the arms. Twenty-four hours after successful acquisition, they received a systemic injection of vehicle, corticosterone (1mg/kg), the corticosterone-synthesis inhibitor metyrapone (35mg/kg) or were left untreated 1h before retention testing. We found that the corticosterone injection impaired the retrieval of stimulus-response memory. We further found that the systemic injection procedure per se was stressful as the vehicle administration also increased plasma corticosterone levels and impaired the retrieval of stimulus-response memory. However, memory retrieval was not impaired when rats were tested 2min after the systemic vehicle injection, before any stress-induced elevation in corticosterone levels had occurred. Moreover, metyrapone treatment blocked the effect of injection stress on both plasma corticosterone levels and memory retrieval impairment, indicating that the endogenous corticosterone response mediates the stress-induced memory retrieval impairment. None of the treatments affected rats' locomotor activity or motivation to search for the food reward within the maze. These findings show that stress may affect memory processes beyond the hippocampus and that these stress effects are due to the action of glucocorticoids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Sulforaphane induces Nrf2 and protects against CYP2E1-dependent binge alcohol-induced liver steatosis.

    PubMed

    Zhou, Richard; Lin, Jianjun; Wu, Defeng

    2014-01-01

    The mechanism(s) by which alcohol causes cell injury are still not clear but a major mechanism appears to be the role of lipid peroxidation and oxidative stress in alcohol toxicity. CYP2E1-generated ROS contributes to the ethanol-induced oxidant stress and inhibition of CYP2E1 activity decreases ethanol-induced fatty liver. The transcription factor Nrf2 regulates the expression of many cytoprotective enzymes which results in cellular protection against a variety of toxins. The current study was designed to evaluate the ability of sulforaphane, an activator of Nrf2, to blunt CYP2E1-dependent, ethanol-induced steatosis in vivo and in vitro. The sulforaphane treatment activated Nrf2, increased levels of the Nrf2 target heme oxygenase-1 and subsequently lowered oxidant stress as shown by the decline in lipid peroxidation and 3-nitrotyrosine protein adducts and an increase in GSH levels after the acute ethanol treatment. It decreased ethanol-elevated liver levels of triglycerides and cholesterol and Oil Red O staining. Similar results were found in vitro as addition of sulforaphane to HepG2 E47 cells, which express CYP2E1, elevated Nrf2 levels and decreased the accumulation of lipid in cells cultured with ethanol. Sulforaphane treatment had no effect on levels of or activity of CYP2E1. Sulforaphane proved to be an effective in vivo inhibitor of acute ethanol-induced fatty liver in mice. The possible amelioration of liver injury which occurs under these conditions by chemical activators of Nrf2 is of clinical relevance and worthy of further study. © 2013.

  12. Sulforaphane Induces Nrf2 and Protects Against CYP2E1-dependent Binge Alcohol –induced Liver Steatosis

    PubMed Central

    Zhou, Richard; Lin, Jianjun; Wu, Defeng

    2013-01-01

    Background The mechanism(s) by which alcohol causes cell injury are still not clear but a major mechanism appears to be the role of lipid peroxidation and oxidative stress in alcohol toxicity. CYP2E1-generated ROS contributes to the ethanol-induced oxidant stress and inhibition of CYP2E1 activity decreases ethanol-induced fatty liver. The transcription factor Nrf2 regulates the expression of many cytoprotective enzymes which results in cellular protection against a variety of toxins. Method The current study was designed to evaluate the ability of sulforaphane, an activator of Nrf2, to blunt CYP2E1-dependent, ethanol-induced steatosis in vivo and in vitro. Results The sulforaphane treatment activated Nrf2, increased levels of the Nrf2 target heme oxygenase -1 and subsequently lowered oxidant stress as shown by the decline in lipid peroxidation and 3-Nitrotyrosine protein adducts and an increase in GSH levels after the acute ethanol treatment. It decreased ethanol-elevated liver levels of triglycerides and cholesterol and Oil Red O staining. Similar results were found in vitro as addition of sulforaphane to HepG2 E47 cells, which express CYP2E1, elevated Nrf2 levels and decreased the accumulation of lipid in cells cultured with ethanol. Sulforaphane treatment had no effect on levels of or activity of CYP2E1. Conclusions Sulforaphane proved to be an effective in vivo inhibitor of acute ethanol–induced fatty liver in mice. General significance The possible amelioration of liver injury which occurs under these conditions by chemical activators of Nrf2 is of clinical relevance and worthy of further study. PMID:24060752

  13. Astaxanthin attenuates glutamate-induced apoptosis via inhibition of calcium influx and endoplasmic reticulum stress.

    PubMed

    Lin, Xiaotong; Zhao, Yan; Li, Shanhe

    2017-07-05

    Astaxanthin (AST) is a carotenoid that has been shown to have neuroprotective effects. In this study, it was found that AST significantly inhibited glutamate-induced loss of cell viability and apoptosis. AST pretreatment attenuated glutamate-induced activation of caspase-3, reduction of anti-apoptotic protein Bcl-2, and increase of pro-apoptotic protein Bak. In addition, AST pretreatment suppressed the production of intracellular reactive oxygen species. AST treatment also prevented glutamate-induced increase of the level of activated p38 mitogen-activated protein kinase (MAPK), which has been shown to promote apoptotic events. Furthermore, AST treatment greatly reduced the elevation of intracellular calcium level induced by glutamate and inhibited the activity of calpain, a calcium-dependent protease that plays an important role in mediating apoptosis stimulated by calcium overload in cytoplasm. Both oxidative stress and calcium overload can lead to endoplasmic reticulum (ER) stress. C/EBP-homologous protein (CHOP) is a bZIP transcription factor that can be activated by ER stress and promotes apoptosis. Here we found that AST attenuated glutamate-induced elevation of CHOP and ER chaperone glucose-regulated protein (GRP78). Overall, these results suggested that AST might protect cells against glutamate-induced apoptosis through maintaining redox balance and inhibiting glutamate-induced calcium influx and ER stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effects of indole-3-carbinol on clonidine-induced neurotoxicity in rats: Impact on oxidative stress, inflammation, apoptosis and monoamine levels.

    PubMed

    El-Naga, Reem N; Ahmed, Hebatalla I; Abd Al Haleem, Ekram N

    2014-09-01

    The relationship between inflammation, oxidative stress and the incidence of depression had been well studied. Indole-3-carbinol (I3C), a natural active compound found in cruciferous vegetables, was shown to have anti-oxidant and anti-inflammatory activities. Therefore, the aim of this study was to investigate the potential protective effects of I3C against clonidine-induced depression-like behaviors in rats. Also, the possible mechanisms underlying this neuroprotection; anti-oxidant, anti-inflammatory as well as the modulatory effect on monoamine levels in brain tissues were investigated. I3C was given orally (50mg/kg) daily over 2 weeks starting 7 days before giving clonidine (0.8mg/kg i.p.). Fluoxetine was used as a standard anti-depressant. Open-field test and forced swimming test were carried out to assess exploratory activity and despair behavior, respectively. I3C showed a significant improvement in the behavioral changes induced by clonidine. As indicators of oxidative stress, clonidine induced a significant reduction in GSH and SOD levels as well as an increase lipid peroxidation level. Tissue levels of pro-inflammatory and apoptotic markers were significantly increased in clonidine group. In addition, monoamine levels; noradrenaline and serotonin, showed a drastic decrease in clonidine group. Also, neuron specific enolase (NSE) was significantly elevated in clonidine group. In contrast, I3C pre-treatment significantly attenuated clonidine-induced oxidative stress, inflammation, apoptosis, decreased NSE expression and increased levels of monoamines. Fluoxetine was used as a standard. In conclusion, the findings of this study suggest that I3C protects against clonidine-induced depression. This neuroprotective effect is partially mediated by its anti-oxidant, anti-inflammatory and anti-apoptotic activities as well as elevating monoamines levels. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Eicosanoyl-5-hydroxytryptamide (EHT) prevents Alzheimer's disease-related cognitive and electrophysiological impairments in mice exposed to elevated concentrations of oligomeric beta-amyloid.

    PubMed

    Asam, Kesava; Staniszewski, Agnieszka; Zhang, Hong; Melideo, Scott L; Mazzeo, Adolfo; Voronkov, Michael; Huber, Kristen L; Pérez, Eduardo; Stock, Maxwell; Stock, Jeffry B; Arancio, Ottavio; Nicholls, Russell E

    2017-01-01

    Soluble forms of oligomeric beta-amyloid (Aβ) are thought to play a central role in Alzheimer's disease (AD). Transgenic manipulation of methylation of the serine/threonine protein phosphatase, PP2A, was recently shown to alter the sensitivity of mice to AD-related impairments resulting from acute exposure to elevated levels of Aβ. In addition, eicosanoyl-5-hydroxytryptamide (EHT), a naturally occurring component from coffee beans that modulates PP2A methylation, was shown to confer therapeutic benefits in rodent models of AD and Parkinson's disease. Here, we tested the hypothesis that EHT protects animals from the pathological effects of exposure to elevated levels of soluble oligomeric Aβ. We treated mice with EHT-containing food at two different doses and assessed the sensitivity of these animals to Aβ-induced behavioral and electrophysiological impairments. We found that EHT administration protected animals from Aβ-induced cognitive impairments in both a radial-arm water maze and contextual fear conditioning task. We also found that both chronic and acute EHT administration prevented Aβ-induced impairments in long-term potentiation. These data add to the accumulating evidence suggesting that interventions with pharmacological agents, such as EHT, that target PP2A activity may be therapeutically beneficial for AD and other neurological conditions.

  16. Elevated pentraxin 3 level at the early stage of exercise training is associated with reduction of arterial stiffness in middle-aged and older adults.

    PubMed

    Zempo-Miyaki, A; Fujie, S; Sato, K; Hasegawa, N; Sanada, K; Maeda, S; Hamaoka, T; Iemitsu, M

    2016-09-01

    Regular exercise improves aging-induced deterioration of arterial stiffness, and is associated with elevated production of pentraxin 3 (PTX3) and anti-inflammatory as well as anti-atherosclerotic effects. However, the time-dependent effect of exercise training on arterial stiffness and PTX3 production remains unclear. The purpose of this study was to investigate the time course of the association between the effects of training on the circulating PTX3 level and arterial stiffness in middle-aged and older adults. Thirty-two healthy Japanese subjects (66.2±1.3 year) were randomly divided into two groups: training (exercise intervention) and sedentary controls. Subjects in the training group completed 8 weeks of aerobic exercise training (60-70% peak oxygen uptake (VO2peak) for 45 min, 3 days per week); during the training period, we evaluated plasma PTX3 concentration and carotid-femoral pulse wave velocity (cfPWV) every 2 wk. cfPWV gradually declined over the 8-week training period, and was significantly reduced after 6 and 8 week of exercise intervention (P<0.05). Plasma PTX3 level was significantly increased after 4 weeks of the intervention (P<0.05). In addition, the exercise training-induced reduction in cfPWV was negatively correlated with the percent change in plasma PTX3 level after 6 week (r=-0.54, P<0.05) and 8 weeks (r=-0.51, P<0.05) of the intervention, but not correlated at 4 weeks. Plasma PTX3 level was elevated at the early stage of the exercise training intervention, and was subsequently associated with training-induced alteration of arterial stiffness in middle-aged and older adults.

  17. Treatment of Laser Induced Retinal Injuries

    DTIC Science & Technology

    1985-01-01

    AD TREATMENT OF LASER INDUCED RETINAL INJURIES cANNUAL/FINAL REPORT MICHAEL BELKIN INAVA NAVEH JANUARY 1985 Supported by U.S. ARMY MEDICAL RESEARCH...CF ,I446 11. TITLE (Include Security Classification) (U) Treatment of Laser Induced Retinal Injuries 12. PERSONAL AUTHOR(S) Michael Belkin 13a. TYPE...ciliary body as seen in uveitis , is associated by elevation of aqueous humor protein levels. Therefore, protein was used by some investigators as an

  18. SGK is a primary glucocorticoid-induced gene in the human.

    PubMed

    Náray-Fejes-Tóth, A; Fejes-Tóth, G; Volk, K A; Stokes, J B

    2000-12-01

    Serum- and glucocorticoid-induced kinase (sgk) is transcriptionally regulated by corticosteroids in several cell types. Recent findings suggest that sgk is an important gene in the early action of corticosteroids on epithelial sodium reabsorption. Surprisingly, the human sgk was reported not to be transcriptionally regulated by corticosteroids in a hepatoma cell line, and thus far no glucocorticoid response element has been identified in the human SGK gene. Since humans clearly respond to both aldosterone and glucocorticoids in cells where sgk action seems to be important, in this study we determined sgk mRNA levels following dexamethasone treatment for various duration in five human cell lines. These cell lines included epithelial cells (H441, T84 and HT29) and lymphoid/monocyte (U937 and THP-1) lines. Using quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), we found that sgk mRNA levels are markedly induced by glucocorticoids in all of the five cell lines studied. Time course analyses revealed that sgk mRNA levels are elevated as early as 30 min after addition of the glucocorticoid, and remain elevated for several hours. Northern analysis in H441 cells confirmed that sgk is an early induced gene. The induction of sgk by dexamethasone was unaffected by cycloheximide, indicating that it does not require de novo protein synthesis. These results indicate that the human sgk, just like its counterparts in other species, is a primary glucocorticoid-induced gene.

  19. Role of Hyperhomocysteinemia in the Regulation of Oxidative Stress and Inflammatory Responses in the Kidney: Protective Effect of Folic Acid Supplementation

    NASA Astrophysics Data System (ADS)

    Hwang, Sun-Young

    Hyperhomocysteinemia, a condition of elevated blood homocysteine (Hcy) level, is an independent risk factor for cardiovascular disease. Folic acid supplementation can effectively reduce blood Hcy levels. Recent studies have demonstrated that hyperhomocysteinemia is also associated with kidney disease. However, the underlying mechanisms remain unclear. The overall objective of the study was to investigate the biochemical and molecular mechanisms of Hcy-induced kidney injury and the effect of folic acid supplementation on Hcy-induced kidney injury. Hyperhomocysteinemia was induced in Sprague-Dawley rats by feeding a high-methionine diet for 12 weeks. An elevation of serum total Hcy level was observed in hyperhomocysteinemic rats. Hyperhomocysteinemia-induced superoxide anion production via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation resulted in oxidative stress in the kidney. Reduction of oxidative stress by inhibiting superoxide anion production effectively ameliorated hyperhomocysteinemia-induced kidney injury. Inflammatory responses such as increased chemokine expression have been implicated as one of the mechanisms of kidney disease. Monocyte chemoattractant protein-1 (MCP-1) is a potent chemokine that is involved in the inflammatory response in kidney disease. Nuclear factor-kappa B (NF-kappaB) plays an important role in upregulation of MCP-1 expression. We investigated the effect of hyperhomocysteinemia on MCP-1 expression and the molecular mechanism responsible for such an effect in rat kidneys as well as in human kidney proximal tubular cells.

  20. Impact of elevated levels of atmospheric CO2 and herbivory on flavonoids of soybean (Glycine max Linnaeus).

    PubMed

    O'Neill, Bridget F; Zangerl, Arthur R; Dermody, Orla; Bilgin, Damla D; Casteel, Clare L; Zavala, Jorge A; DeLucia, Evan H; Berenbaum, May R

    2010-01-01

    Atmospheric levels of carbon dioxide (CO2) have been increasing steadily over the last century. Plants grown under elevated CO2 conditions experience physiological changes, particularly in phytochemical content, that can influence their suitability as food for insects. Flavonoids are important plant defense compounds and antioxidants that can have a large effect on leaf palatability and herbivore longevity. In this study, flavonoid content was examined in foliage of soybean (Glycine max Linnaeus) grown under ambient and elevated levels of CO2 and subjected to damage by herbivores in three feeding guilds: leaf skeletonizer (Popillia japonica Newman), leaf chewer (Vanessa cardui Linnaeus), and phloem feeder (Aphis glycines Matsumura). Flavonoid content also was examined in foliage of soybean grown under ambient and elevated levels of O3 and subjected to damage by the leaf skeletonizer P. japonica. The presence of the isoflavones genistein and daidzein and the flavonols quercetin and kaempferol was confirmed in all plants examined, as were their glycosides. All compounds significantly increased in concentration as the growing season progressed. Concentrations of quercetin glycosides were higher in plants grown under elevated levels of CO2. The majority of compounds in foliage were induced in response to leaf skeletonization damage but remained unchanged in response to non-skeletonizing feeding or phloem-feeding. Most compounds increased in concentration in plants grown under elevated levels of O3. Insects feeding on G. max foliage growing under elevated levels of CO2 may derive additional antioxidant benefits from their host plants as a consequence of the change in ratios of flavonoid classes. This nutritional benefit could lead to increased herbivore longevity and increased damage to soybean (and perhaps other crop plants) in the future.

  1. Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment.

    PubMed

    Vasconcelos, Andrea R; Yshii, Lidia M; Viel, Tania A; Buck, Hudson S; Mattson, Mark P; Scavone, Cristoforo; Kawamoto, Elisa M

    2014-05-06

    Systemic bacterial infections often result in enduring cognitive impairment and are a risk factor for dementia. There are currently no effective treatments for infection-induced cognitive impairment. Previous studies have shown that intermittent fasting (IF) can increase the resistance of neurons to injury and disease by stimulating adaptive cellular stress responses. However, the impact of IF on the cognitive sequelae of systemic and brain inflammation is unknown. Rats on IF for 30 days received 1 mg/kg of lipopolysaccharide (LPS) or saline intravenously. Half of the rats were subjected to behavioral tests and the other half were euthanized two hours after LPS administration and the hippocampus was dissected and frozen for analyses. Here, we report that IF ameliorates cognitive deficits in a rat model of sepsis by a mechanism involving NF-κB activation, suppression of the expression of pro-inflammatory cytokines, and enhancement of neurotrophic support. Treatment of rats with LPS resulted in deficits in cognitive performance in the Barnes maze and inhibitory avoidance tests, without changing locomotor activity, that were ameliorated in rats that had been maintained on the IF diet. IF also resulted in reduced levels of mRNAs encoding the LPS receptor TLR4 and inducible nitric oxide synthase (iNOS) in the hippocampus. Moreover, IF prevented LPS-induced elevation of IL-1α, IL-1β and TNF-α levels, and prevented the LPS-induced reduction of BDNF levels in the hippocampus. IF also significantly attenuated LPS-induced elevations of serum IL-1β, IFN-γ, RANTES, TNF-α and IL-6 levels. Taken together, our results suggest that IF induces adaptive responses in the brain and periphery that can suppress inflammation and preserve cognitive function in an animal model of systemic bacterial infection.

  2. Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment

    PubMed Central

    2014-01-01

    Background Systemic bacterial infections often result in enduring cognitive impairment and are a risk factor for dementia. There are currently no effective treatments for infection-induced cognitive impairment. Previous studies have shown that intermittent fasting (IF) can increase the resistance of neurons to injury and disease by stimulating adaptive cellular stress responses. However, the impact of IF on the cognitive sequelae of systemic and brain inflammation is unknown. Methods Rats on IF for 30 days received 1 mg/kg of lipopolysaccharide (LPS) or saline intravenously. Half of the rats were subjected to behavioral tests and the other half were euthanized two hours after LPS administration and the hippocampus was dissected and frozen for analyses. Results Here, we report that IF ameliorates cognitive deficits in a rat model of sepsis by a mechanism involving NF-κB activation, suppression of the expression of pro-inflammatory cytokines, and enhancement of neurotrophic support. Treatment of rats with LPS resulted in deficits in cognitive performance in the Barnes maze and inhibitory avoidance tests, without changing locomotor activity, that were ameliorated in rats that had been maintained on the IF diet. IF also resulted in reduced levels of mRNAs encoding the LPS receptor TLR4 and inducible nitric oxide synthase (iNOS) in the hippocampus. Moreover, IF prevented LPS-induced elevation of IL-1α, IL-1β and TNF-α levels, and prevented the LPS-induced reduction of BDNF levels in the hippocampus. IF also significantly attenuated LPS-induced elevations of serum IL-1β, IFN-γ, RANTES, TNF-α and IL-6 levels. Conclusions Taken together, our results suggest that IF induces adaptive responses in the brain and periphery that can suppress inflammation and preserve cognitive function in an animal model of systemic bacterial infection. PMID:24886300

  3. Suppressing the morning rise in cortisol impairs free recall.

    PubMed

    Rimmele, Ulrike; Meier, Flurina; Lange, Tanja; Born, Jan

    2010-04-01

    Elevated glucocorticoid levels impair memory retrieval. We investigated whether retrieval under naturally elevated glucocorticoid levels, i.e., during the morning rise in cortisol can be improved by suppressing cortisol. In a crossover study 16 men retrieved emotional and neutral texts and pictures (learned 3 d earlier) 30 min after morning awakening, following administration of the cortisol synthesis inhibitor metyrapone or placebo. Unexpectedly, the metyrapone-induced cortisol suppression significantly impaired free recall of both materials. Recognition remained unaffected. Thus, not only high, but also very low glucocorticoid levels impair retrieval, with the latter effect possibly reflecting insufficient occupation of hippocampal/amygdalar mineralocorticoid receptors (MRs).

  4. Mediation of a corticosterone-induced reproductive conflict.

    PubMed

    Love, Oliver P; Breuner, Creagh W; Vézina, François; Williams, Tony D

    2004-06-01

    Current research in birds suggests that a conflict should exist during reproduction for the role of the glucocorticoid corticosterone (CORT). While elevated levels have been correlated with the increased energetic demand of raising offspring, elevated CORT levels have traditionally been implicated in reproductive abandonment. We examined the relationship between CORT and nest desertion in breeding wild female European starlings (Sturnus vulgaris) incorporating analyses of both total circulating levels and 'free', unbound CORT through analysis of corticosteroid-binding globulin (CBG). Free baseline CORT levels of nest-abandoning birds were significantly higher than nonabandoning birds within each stage, with chick-rearing birds exhibiting the highest free baseline CORT levels, while concurrently remaining the most resistant stage to nest desertion. Elevated free baseline CORT levels in chick-rearing birds were not due to increased total CORT secretion, but rather to a decrease in CBG levels. Overall, our results suggest that CORT and CBG interact to play a role in mediating the increased energetic demand of offspring, while minimizing the chances of nest desertion, thereby alleviating any potential behavioral conflict for CORT during reproduction. Furthermore, these results demonstrate that the traditional view of the role of CORT during reproduction is much more complex than previously appreciated. Together with mounting evidence, we suggest that elevated corticosteroid levels are an inherent and necessary part of reproduction in nonmammalian tetrapods.

  5. A moderate elevation of circulating levels of IGF-I does not alter ErbB2 induced mammary tumorigenesis

    PubMed Central

    2011-01-01

    Background Epidemiological evidence suggests that moderately elevated levels of circulating insulin-like growth factor-I (IGF-I) are associated with increased risk of breast cancer in women. How circulating IGF-I may promote breast cancer incidence is unknown, however, increased IGF-I signaling is linked to trastuzumab resistance in ErbB2 positive breast cancer. Few models have directly examined the effect of moderately high levels of circulating IGF-I on breast cancer initiation and progression. The purpose of this study was to assess the ability of circulating IGF-I to independently initiate mammary tumorigenesis and/or accelerate the progression of ErbB2 mediated mammary tumor growth. Methods We crossed heterozygous TTR-IGF-I mice with heterozygous MMTV-ErbB2 mice to generate 4 different genotypes: TTR-IGF-I/MMTV-ErbB2 (bigenic), TTR-IGF-I only, MMTV-ErbB2 only, and wild type (wt). Virgin females were palpated twice a week and harvested when tumors reached 1000 mm3. For study of normal development, blood and tissue were harvested at 4, 6 and 9 weeks of age in TTR-IGF-I and wt mice. Results TTR-IGF-I and TTR-IGF-I/ErbB2 bigenic mice showed a moderate 35% increase in circulating total IGF-I compared to ErbB2 and wt control mice. Elevation of circulating IGF-I had no effect upon pubertal mammary gland development. The transgenic increase in IGF-I alone wasn't sufficient to initiate mammary tumorigenesis. Elevated circulating IGF-I had no effect upon ErbB2-induced mammary tumorigenesis or metastasis, with median time to tumor formation being 30 wks and 33 wks in TTR-IGF-I/ErbB2 bigenic and ErbB2 mice respectively (p = 0.65). Levels of IGF-I in lysates from ErbB2/TTR-IGF-I tumors compared to ErbB2 was elevated in a similar manner to the circulating IGF-I, however, there was no effect on the rate of tumor growth (p = 0.23). There were no morphological differences in tumor type (solid adenocarcinomas) between bigenic and ErbB2 mammary glands. Conclusion Using the first transgenic animal model to elevate circulating levels of IGF-I to those comparable to women at increased risk of breast cancer, we showed that moderately high levels of systemic IGF-I have no effect on pubertal mammary gland development, initiating mammary tumorigenesis or promoting ErbB2 driven mammary carcinogenesis. Our work suggests that ErbB2-induced mammary tumorigenesis is independent of the normal variation in circulating levels of IGF-I. PMID:21867536

  6. Suppressors of cytokine-signaling proteins induce insulin resistance in the retina and promote survival of retinal cells.

    PubMed

    Liu, Xuebin; Mameza, Marie G; Lee, Yun Sang; Eseonu, Chikezie I; Yu, Cheng-Rong; Kang Derwent, Jennifer J; Egwuagu, Charles E

    2008-06-01

    Suppressors of cytokine signaling (SOCS) are implicated in the etiology of diabetes, obesity, and metabolic syndrome. Here, we show that some SOCS members are induced, while others are constitutively expressed, in retina and examine whether persistent elevation of SOCS levels in retina by chronic inflammation or cellular stress predisposes to developing insulin resistance in retina, a condition implicated in diabetic retinopathy. SOCS-mediated insulin resistance and neuroprotection in retina were investigated in 1) an experimental uveitis model, 2) SOCS1 transgenic rats, 3) insulin-deficient diabetic rats, 4) retinal cells depleted of SOCS6 or overexpressing SOCS1/SOCS3, and 5) oxidative stress and light-induced retinal degeneration models. We show that constitutive expression of SOCS6 protein in retinal neurons may improve glucose metabolism, while elevated SOCS1/SOCS3 expression during uveitis induces insulin resistance in neuroretina. SOCS-mediated insulin resistance, as indicated by its inhibition of basally active phosphoinositide 3-kinase/AKT signaling in retina, is validated in retina-specific SOCS1 transgenic rats and retinal cells overexpressing SOCS1/SOCS3. We further show that the SOCS3 level is elevated in retina by oxidative stress, metabolic stress of insulin-deficient diabetes, or light-induced retinal damage and protects ganglion cells from apoptosis, suggesting that upregulation of SOCS3 may be a common physiologic response of neuroretinal cells to cellular stress. Our data suggest two-sided roles of SOCS proteins in retina. Whereas SOCS proteins may improve glucose metabolism, mitigate deleterious effects of inflammation, and promote neuroprotection, persistent SOCS3 expression caused by chronic inflammation or cellular stress can induce insulin resistance and inhibit neurotrophic factors, such as ciliary neurotrophic factor, leukemia inhibitory factor, and insulin, that are essential for retinal cell survival.

  7. Mangiferin exerts hepatoprotective activity against D-galactosamine induced acute toxicity and oxidative/nitrosative stress via Nrf2–NFκB pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Joydeep; Ghosh, Jyotirmoy; Roy, Anandita

    Mangiferin, a xanthone glucoside, is well known to exhibit antioxidant, antiviral, antitumor, anti-inflammatory and gene-regulatory effects. In the present study, we isolated mangiferin from the bark of Mangifera indica and assessed its beneficial role in galactosamine (GAL) induced hepatic pathophysiology. GAL (400 mg/kg body weight) exposed hepatotoxic rats showed elevation in the activities of serum ALP, ALT, levels of triglycerides, total cholesterol, lipid-peroxidation and reduction in the levels of serum total proteins, albumin and cellular GSH. Besides, GAL exposure (5 mM) in hepatocytes induced apoptosis and necrosis, increased ROS and NO production. Signal transduction studies showed that GAL exposure significantlymore » increased the nuclear translocation of NFκB and elevated iNOS protein expression. The same exposure also elevated TNF-α, IFN-γ, IL-1β, IL-6, IL-12, IL-18 and decreased IL-10 mRNA expressions. Furthermore, GAL also decreased the protein expression of Nrf2, NADPH:quinine oxidoreductase-1, heme oxygenase-1 and GSTα. However, mangiferin administration in GAL intoxicated rats or coincubation of hepatocytes with mangiferin significantly altered all these GAL-induced adverse effects. In conclusion, the hepatoprotective role of mangiferin was due to induction of antioxidant defense via the Nrf2 pathway and reduction of inflammation via NFκB inhibition. Highlights: ►Galactosamine induces hepatocytes death via oxidative and nitrosative stress. ►Mangiferin exerts hepatoprotective effect/antioxidant defense via Nrf2 pathway. ►Mangiferin exerts anti-inflammatory responses by inhibiting NF-κB. ►Mangiferin suppresses galactosamine-induced repression of IL-10 mRNA.« less

  8. Repeated, but Not Acute, Stress Suppresses Inflammatory Plasma Extravasation

    NASA Astrophysics Data System (ADS)

    Strausbaugh, Holly J.; Dallman, Mary F.; Levine, Jon D.

    1999-12-01

    Clinical findings suggest that inflammatory disease symptoms are aggravated by ongoing, repeated stress, but not by acute stress. We hypothesized that, compared with single acute stressors, chronic repeated stress may engage different physiological mechanisms that exert qualitatively different effects on the inflammatory response. Because inhibition of plasma extravasation, a critical component of the inflammatory response, has been associated with increased disease severity in experimental arthritis, we tested for a potential repeated stress-induced inhibition of plasma extravasation. Repeated, but not single, exposures to restraint stress produced a profound inhibition of bradykinin-induced synovial plasma extravasation in the rat. Experiments examining the mechanism of inhibition showed that the effect of repeated stress was blocked by adrenalectomy, but not by adrenal medullae denervation, suggesting that the adrenal cortex mediates this effect. Consistent with known effects of stress and with mediation by the adrenal cortex, restraint stress evoked repeated transient elevations of plasma corticosterone levels. This elevated corticosterone was necessary and sufficient to produce inhibition of plasma extravasation because the stress-induced inhibition was blocked by preventing corticosterone synthesis and, conversely, induction of repeated transient elevations in plasma corticosterone levels mimicked the effects of repeated stress. These data suggest that repetition of a mild stressor can induce changes in the physiological state of the animal that enable a previously innocuous stressor to inhibit the inflammatory response. These findings provide a potential explanation for the clinical association between repeated stress and aggravation of inflammatory disease symptoms and provide a model for study of the biological mechanisms underlying the stress-induced aggravation of chronic inflammatory diseases.

  9. Stress-induced cardiomyopathy caused by heat stroke.

    PubMed

    Chen, Wei-Ta; Lin, Cheng-Hsin; Hsieh, Ming-Hsiung; Huang, Chun-Yao; Yeh, Jong-Shiuan

    2012-07-01

    Heat stroke is defined by central nervous system abnormalities and failure of proper maintenance of thermoregulation as a result of high core body temperature ensuing from exposure to high environmental temperatures or strenuous exercise. Common complications include acute respiratory distress syndrome, disseminated intravascular coagulation, acute renal injury, hepatic injury, and rhabdomyolysis. Myocardial injury may also occur during heat stroke, resulting in cardiac enzyme increase and ST-segment changes on the ECG. Such findings might behave as diagnostic pitfalls by mimicking the presentation of coronary artery occlusive myocardial infarction. A previous case report described a patient with heat stroke and ST-segment elevation, in which the definite cause of the ST-segment elevation was unclear; however, acute myocardial infarction caused by coronary artery disease was ruled out according to the clinical signs, serial ECG changes, and serum level of cardiac biomarkers. Stress-induced cardiomyopathy (Takotsubo cardiomyopathy) was suspected, but it could not be confirmed because of the lack of coronary angiography. We herein report a case of heat stroke presenting with ST-segment elevation and cardiogenic shock. Coronary angiography was performed and coronary artery occlusive myocardial infarction was ruled out because of the presence of patent coronary arteries. Left ventriculography showed midventricular and apical hypokinesis, and stress-induced cardiomyopathy was then determined to be the appropriate diagnosis. Heat stroke causes increase of serum catecholamine levels, in which oversecretion and abnormal responses to catecholamines are a possible cause of stress-induced cardiomyopathy. Catecholamines may therefore be the key in linking heat stroke and stress-induced cardiomyopathy. Copyright © 2011. Published by Mosby, Inc.

  10. Involvement of catalase in the protective benefits of metformin in mice with oxidative liver injury.

    PubMed

    Dai, Jie; Liu, Mingwei; Ai, Qing; Lin, Ling; Wu, Kunwei; Deng, Xinyu; Jing, Yuping; Jia, Mengying; Wan, Jingyuan; Zhang, Li

    2014-06-05

    Metformin is a commonly used anti-diabetic drug with AMP-activated protein kinase (AMPK)-dependent hypoglycemic activities. Recent studies have revealed its anti-inflammatory and anti-oxidative properties. In the present study, the anti-oxidative potential of metformin and its potential mechanisms were investigated in a mouse model with carbon tetrachloride (CCl₂)-induced severe oxidative liver injury. Our results showed that treatment with metformin significantly attenuated CCl₂-induced elevation of serum aminotransferases and hepatic histological abnormalities. The alleviated liver injury was associated with decreased hepatic contents of oxidized glutathione (GSSG) and malondialdehyde (MDA). In addition, metformin treatment dose-dependently enhanced the activities of catalase (CAT) and decreased CCl₄-induced elevation of hepatic H₂O₂ levels, but it had no obvious effects on the protein level of CAT. We also found that metformin increased the level of phosphorylated AMP-activated protein kinase (AMPK), but treatment with AMPK activator AICAR had no obvious effects on CAT activity. A molecular docking analysis indicated that metformin might interact with CAT via hydrogen bonds. These data suggested that metformin effectively alleviated CCl₄-induced oxidative liver injury in mice and these hepatoprotective effects might be associated with CAT. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Effects of environmental novelty on fear-related behavior and stress responses of rats to emotionally relevant odors.

    PubMed

    Nikaido, Y; Nakashima, T

    2009-05-16

    Although various emotional behaviors and activation of the hypothalamic-pituitary-adrenal (HPA) axis of rats are induced by the exposure of 2,5-dihydro-2,4,5-trimethylthiazoline: TMT, a component of fox odor, these odor-induced responses are influenced by the external environment. Our previous study demonstrated that exposure to green odor, a mixture of cis-3-hexenol and trans-2-hexenal, attenuated stress-induced elevation of the plasma ACTH level in rats. The present study investigated the effect of TMT or green odor on emotional behavior and the HPA axis stress response with or without the influence of environmental novelty. We exposed rats to TMT or green odor in "familiar" or "unfamiliar" environments and compared the various responses, including fear-related behaviors, non-defensive behaviors and plasma ACTH concentrations. TMT induced enhanced freezing behavior, reduced exploration behavior and elevations in plasma ACTH concentrations in two environmental conditions. Comparing TMT-induced responses in an unfamiliar environment with the familiar environment showed that environmental novelty enhanced TMT-induced fear-related behaviors and elevations of plasma ACTH concentrations. These results revealed that TMT causes fear and stress responses in both familiar and unfamiliar environments, although the novelty of an unfamiliar environment enhances these TMT-induced responses. On the other hand, green odor did not induce any responses in either environment. These findings indicate that odor-induced responses are influenced by the surrounding environment.

  12. Blast Exposure Causes Early and Persistent Aberrant Phospho- and Cleaved-Tau Expression in a Murine Model of Mild Blast-Induced Traumatic Brain Injury

    PubMed Central

    Huber, Bertrand R.; Meabon, James S.; Martin, Tobin J.; Mourad, Pierre D.; Bennett, Raymond; Kraemer, Brian C.; Cernak, Ibolja; Petrie, Eric C.; Emery, Michael J.; Swenson, Erik R.; Mayer, Cynthia; Mehic, Edin; Peskind, Elaine R.; Cook, David G.

    2014-01-01

    Mild traumatic brain injury (mTBI) is considered the ‘signature injury’ of combat veterans that have served during the wars in Iraq and Afghanistan. This prevalence of mTBI is due in part to the common exposure to high explosive blasts in combat zones. In addition to the threats of blunt impact trauma caused by flying objects and the head itself being propelled against objects, the primary blast overpressure (BOP) generated by high explosives is capable of injuring the brain. Compared to other means of causing TBI, the pathophysiology of mild-to-moderate BOP is less well understood. To study the consequences of BOP exposure in mice, we employed a well-established approach using a compressed gas-driven shock tube that recapitulates battlefield-relevant open-field BOP. We found that 24 hours post-blast a single mild BOP provoked elevation of multiple phosphor- and cleaved-tau species in neurons, as well as elevating manganese superoxide-dismutase (MnSOD or SOD2) levels, a cellular response to oxidative stress. In hippocampus, aberrant tau species persisted for at least 30 days post-exposure, while SOD2 levels returned to sham control levels. These findings suggest that elevated phospho- and cleaved-tau species may be among the initiating pathologic processes induced by mild blast exposure. These findings may have important implications for efforts to prevent blast-induced insults to the brain from progressing into long-term neurodegenerative disease processes. PMID:23948882

  13. Protective effect of crocin on BPA-induced liver toxicity in rats through inhibition of oxidative stress and downregulation of MAPK and MAPKAP signaling pathway and miRNA-122 expression.

    PubMed

    Vahdati Hassani, Faezeh; Mehri, Soghra; Abnous, Khalil; Birner-Gruenberger, Ruth; Hosseinzadeh, Hossein

    2017-09-01

    Bisphenol A (BPA) is an artificial environmental endocrine disrupting chemical and commonly used as a monomer of polycarbonate plastics and epoxy resins. The aim of the present study is to investigate the hepatoprotective effects of crocin, a constituent of saffron, against BPA-induced liver toxicity. We showed that treatment of male Wistar rats with 0.5 mg/kg BPA for 30 days increased the level of 8-isoprostane, decreased the level of reduced glutathione, elevated serum levels of aspartate aminotransferase, lactate dehydrogenase, triglyceride, and glucose, and induced periportal inflammation. Western blot results revealed that BPA increased the phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK1/2), and mitogen-activated protein kinase-activated protein kinase (MAPKAPK), but not p38. BPA also reduced the Akt signaling activation and upregulated microRNA (miR-122) expression. Moreover, we showed here that crocin 20 mg/kg administration ameliorated liver damage and improved elevated levels of TG and liver enzymes of BPA-treated rats possibly though antioxidant activity, downregulation of miR-122 transcript level and lowering the phosphorylation of JNK, ERK1/2, and MAPKAPK and subsequently their activities. Overall, the findings suggest that crocin possesses hepatoprotective effects against BPA-induced liver toxicity by enhancing the antioxidative defense system and regulation of important signaling pathway activities and miR-122 expression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Genetic Ablation of CD38 Protects against Western Diet-Induced Exercise Intolerance and Metabolic Inflexibility.

    PubMed

    Chiang, Shian-Huey; Harrington, W Wallace; Luo, Guizhen; Milliken, Naphtali O; Ulrich, John C; Chen, Jing; Rajpal, Deepak K; Qian, Ying; Carpenter, Tiffany; Murray, Rusty; Geske, Robert S; Stimpson, Stephen A; Kramer, Henning F; Haffner, Curt D; Becherer, J David; Preugschat, Frank; Billin, Andrew N

    2015-01-01

    Nicotinamide adenine dinucleotide (NAD+) is a key cofactor required for essential metabolic oxidation-reduction reactions. It also regulates various cellular activities, including gene expression, signaling, DNA repair and calcium homeostasis. Intracellular NAD+ levels are tightly regulated and often respond rapidly to nutritional and environmental changes. Numerous studies indicate that elevating NAD+ may be therapeutically beneficial in the context of numerous diseases. However, the role of NAD+ on skeletal muscle exercise performance is poorly understood. CD38, a multi-functional membrane receptor and enzyme, consumes NAD+ to generate products such as cyclic-ADP-ribose. CD38 knockout mice show elevated tissue and blood NAD+ level. Chronic feeding of high-fat, high-sucrose diet to wild type mice leads to exercise intolerance and reduced metabolic flexibility. Loss of CD38 by genetic mutation protects mice from diet-induced metabolic deficit. These animal model results suggest that elevation of tissue NAD+ through genetic ablation of CD38 can profoundly alter energy homeostasis in animals that are maintained on a calorically-excessive Western diet.

  15. An Analysis of Sound Exposure in a University Music Rehearsal

    ERIC Educational Resources Information Center

    Farmer, Joe; Thrasher, Michael; Fumo, Nelson

    2014-01-01

    Exposure to high sound levels may lead to a variety of hearing abnormalities, including Noise-Induced Hearing Loss (NIHL). Pre-professional university music majors may experience frequent exposure to elevated sound levels, and this may have implications on their future career prospects (Jansen, Helleman, Dreschler & de Laat, 2009). Studies…

  16. Acinar cell-specific knockout of the PTHrP gene decreases the proinflammatory and profibrotic responses in pancreatitis.

    PubMed

    Bhatia, Vandanajay; Rastellini, Cristiana; Han, Song; Aronson, Judith F; Greeley, George H; Falzon, Miriam

    2014-09-01

    Pancreatitis is a necroinflammatory disease with acute and chronic manifestations. Accumulated damage incurred during repeated bouts of acute pancreatitis (AP) can lead to chronic pancreatitis (CP). Pancreatic parathyroid hormone-related protein (PTHrP) levels are elevated in a mouse model of cerulein-induced AP. Here, we show elevated PTHrP levels in mouse models of pancreatitis induced by chronic cerulein administration and pancreatic duct ligation. Because acinar cells play a major role in the pathophysiology of pancreatitis, mice with acinar cell-specific targeted disruption of the Pthrp gene (PTHrP(Δacinar)) were generated to assess the role of acinar cell-secreted PTHrP in pancreatitis. These mice were generated using Cre-LoxP technology and the acinar cell-specific elastase promoter. PTHrP(Δacinar) exerted protective effects in cerulein and pancreatic duct ligation models, evident as decreased edema, histological damage, amylase secretion, pancreatic stellate cell (PSC) activation, and extracellular matrix deposition. Treating acinar cells in vitro with cerulein increased IL-6 expression and NF-κB activity; these effects were attenuated in PTHrP(Δacinar) cells, as were the cerulein- and carbachol-induced elevations in amylase secretion. The cerulein-induced upregulation of procollagen I expression was lost in PSCs from PTHrP(Δacinar) mice. PTHrP immunostaining was elevated in human CP sections. The cerulein-induced upregulation of IL-6 and ICAM-1 (human acinar cells) and procollagen I (human PSCs) was suppressed by pretreatment with the PTH1R antagonist, PTHrP (7-34). These findings establish PTHrP as a novel mediator of inflammation and fibrosis associated with CP. Acinar cell-secreted PTHrP modulates acinar cell function via its effects on proinflammatory cytokine release and functions via a paracrine pathway to activate PSCs. Copyright © 2014 the American Physiological Society.

  17. Mental stress induces sustained elevation of blood pressure and lipid peroxidation in postmenopausal women.

    PubMed

    Morimoto, Keiko; Morikawa, Mayuko; Kimura, Hiroko; Ishii, Nobuko; Takamata, Akira; Hara, Yasuko; Uji, Masami; Yoshida, Ken-Ichi

    2008-01-02

    Mental stress is thought to underlie cardiovascular events, but there is information on oxidative stress induced by mental stress in association with cardiovascular responses in women. Using a sensitive assay for plasma 4-hydroxy-2-nonenal (HNE), as a marker for oxidative stress, we addressed the relation between pressor responses and oxidative stress induced by mental or physical stress in premenopausal and postmenopausal women. Healthy subjects (7 postmenopausal and 8 premenopausal women, in early and late follicular phases) were subjected to mental and physical stress evoked by a Color Word Test (CWT) and isometric handgrip, respectively. The CWT induced a rapid elevation of diastolic blood pressure (DBP), at a higher level in the postmenopausal than in the premenopausal women (p<0.01), and this higher DBP was sustained during the CWT and recovery (p<0.01). The CWT induced a significant elevation in plasma noradrenaline in premenopausal women in the early follicular phase and in postmenopausal women (p<0.05). Plasma nitric oxide metabolites were higher in postmenopausal than in the premenopausal women in the late follicular phase (p<0.05), but did not change during exposure to the two types of stress in either group. Plasma HNE was increased during recovery from the CWT, but not the handgrip, in postmenopausal women (2.4 times, p<0.05). There was a significant difference in the time course of the CWT-induced HNE response between the postmenopausal and premenopausal women (p<0.05). These findings suggest that mental, but not physical, stress causes sustained diastolic blood pressure elevation in postmenopausal women, accompanied by heightened oxidative stress.

  18. Elevated expression of glutathione peroxidase in PC12 cells results in protection against methamphetamine but not MPTP toxicity.

    PubMed

    Hom, D G; Jiang, D; Hong, E J; Mo, J Q; Andersen, J K

    1997-06-01

    In vivo administration of either 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or methamphetamine (MA) produces damage to the dopaminergic nervous system which may be due in part to the generation of reactive oxygen species (ROS). The resistance of superoxide dismutase (SOD) over-expressing transgenic mice to the effects of both MPTP and MA suggests the involvement of superoxide in the resulting neurotoxicity of both compounds. Superoxide can be converted by SOD to hydrogen peroxide, which itself can cause cellular degeneration by reacting with free iron to produce highly reactive hydroxyl radicals resulting in damage to proteins, nucleic acids and membrane phospholipids. Hydrogen peroxide has also been reported to be produced via inhibition of NADH dehydrogenase by MPP + formed during oxidation of MPTP by MAO-B and by dopamine auto-oxidation following MA-induced dopamine release from synaptic vesicles within nerve terminals. To test whether hydrogen peroxide is an important factor in the toxicity of either of these two neurotoxins, we created clonal PC12 lines expressing elevated levels of the hydrogen peroxide-reducing enzyme glutathione peroxidase (GSHPx). Elevation of GSHPx levels in PC12 was found to diminish the rise in ROS levels and lipid peroxidation resulting from MA but not MPTP treatment. Elevated levels of GSHPx also appeared to prevent decreases in transport-mediated dopamine uptake produced via MA administration as well as to attenuate toxin-induced cell loss as measured by either MTT reduction or LDH release. Our data, therefore, suggest that hydrogen peroxide production likely contributes to MA toxicity in dopaminergic neurons.

  19. Heat shock response and mammal adaptation to high elevation (hypoxia).

    PubMed

    Wang, Xiaolin; Xu, Cunshuan; Wang, Xiujie; Wang, Dongjie; Wang, Qingshang; Zhang, Baochen

    2006-10-01

    The mammal's high elevation (hypoxia) adaptation was studied by using the immunological and the molecular biological methods to understand the significance of Hsp (hypoxia) adaptation in the organic high elevation, through the mammal heat shock response. (1) From high elevation to low elevation (natural hypoxia): Western blot and conventional RT-PCR and real-time fluorescence quota PCR were adopted. Expression difference of heat shock protein of 70 (Hsp70) and natural expression of brain tissue of Hsp70 gene was determined in the cardiac muscle tissue among the different elevation mammals (yak). (2) From low elevation to high elevation (hypoxia induction): The mammals (domestic rabbits) from the low elevation were sent directly to the areas with different high elevations like 2300, 3300 and 5000 m above sea level to be raised for a period of 3 weeks before being slaughtered and the genetic inductive expression of the brain tissue of Hsp70 was determined with RT-PCR. The result indicated that all of the mammals at different elevations possessed their heat shock response gene. Hsp70 of the high elevation mammal rose abruptly under stress and might be induced to come into being by high elevation (hypoxia). The speedy synthesis of Hsp70 in the process of heat shock response is suitable to maintain the cells' normal physiological functions under stress. The Hsp70 has its threshold value. The altitude of 5000 m above sea level is the best condition for the heat shock response, and it starts to reduce when the altitude is over 6000 m above sea level. The Hsp70 production quantity and the cell hypoxia bearing capacity have their direct ratio.

  20. Reduction in finger blood flow induced by hand-transmitted vibration: effect of hand elevation.

    PubMed

    Ye, Ying; Mauro, Marcella; Bovenzi, Massimo; Griffin, Michael J

    2015-10-01

    This study investigated the effect of hand elevation on reductions in finger blood flow (FBF) induced by hand-transmitted vibration. Fourteen males attended six sessions on six separate days, with a control sessions and a vibration session (125-Hz vibration at 44 ms(-2) rms) with the right hand supported at each of three elevations: 20 cm below heart level (HL), at HL, and 20 cm above HL. Finger blood flow on the left and right hand was measured every 30 s during each 25-min session comprised of five periods: (1) no force and no vibration (5 min), (2) 2-N force and no vibration (5 min), (3) 2-N force and vibration (5 min), (4) 2-N force and no vibration (5 min), and (5) no force and no vibration (5 min). Without vibration, FBF decreased with increasing elevation of the hand. During vibration of the right hand, FBF reduced on both hands. With elevation of the right hand, the percentage reduction in FBF due to vibration (relative to FBF on the same finger at the same elevation before exposure to vibration) was similar on the middle and little fingers of both hands. After cessation of vibration, there was delayed return of FBF with all three hand heights. Vibration of one hand reduces FBF on both exposed and unexposed hands, with the reduction dependent on the elevation of the hand. The mechanisms responsible for vibration-induced reductions in FBF seem to reduce blood flow as a percentage of the blood flow without vibration. Tasks requiring the elevation of the hands will be associated with lower FBF, and the FBF will be reduced further if there is exposure to hand-transmitted vibration.

  1. Characterization of the Differential Response of Endothelial Cells Exposed to Normal and Elevated Laminar Shear Stress

    PubMed Central

    White, Stephen J; Hayes, Elaine M; Lehoux, Stéphanie; Jeremy, Jamie Y; Horrevoets, Anton JG; Newby, Andrew C

    2011-01-01

    Most acute coronary events occur in the upstream region of stenotic atherosclerotic plaques that experience laminar shear stress (LSS) elevated above normal physiological levels. Many studies have described the atheroprotective effect on endothelial behavior of normal physiological LSS (approximately 15 dynes/cm2) compared to static or oscillatory shear stress (OSS), but it is unknown whether the levels of elevated shear stress imposed by a stenotic plaque would preserve, enhance or reverse this effect. Therefore we used transcriptomics and related functional analyses to compare human endothelial cells exposed to laminar shear stress of 15 (LSS15-normal) or 75 dynes/cm2 (LSS75-elevated). LSS75 upregulated expression of 145 and downregulated expression of 158 genes more than twofold relative to LSS15. Modulation of the metallothioneins (MT1-G, -M, -X) and NADPH oxidase subunits (NOX2, NOX4, NOX5, and p67phox) accompanied suppression of reactive oxygen species production at LSS75. Shear induced changes in dual specificity phosphatases (DUSPs 1, 5, 8, and 16 increasing and DUSPs 6 and 23 decreasing) were observed as well as reduced ERK1/2 but increased p38 MAP kinase phosphorylation. Amongst vasoactive substances, endothelin-1 expression decreased whereas vasoactive intestinal peptide (VIP) and prostacyclin expression increased, despite which intracellular cAMP levels were reduced. Promoter analysis by rVISTA identified a significant over representation of ATF and Nrf2 transcription factor binding sites in genes upregulated by LSS75 compared to LSS15. In summary, LSS75 induced a specific change in behavior, modifying gene expression, reducing ROS levels, altering MAP kinase signaling and reducing cAMP levels, opening multiple avenues for future study. J. Cell. Physiol. 226: 2841–2848, 2011. © 2011 Wiley-Liss, Inc. PMID:21302282

  2. Characterization of the differential response of endothelial cells exposed to normal and elevated laminar shear stress.

    PubMed

    White, Stephen J; Hayes, Elaine M; Lehoux, Stéphanie; Jeremy, Jamie Y; Horrevoets, Anton J G; Newby, Andrew C

    2011-11-01

    Most acute coronary events occur in the upstream region of stenotic atherosclerotic plaques that experience laminar shear stress (LSS) elevated above normal physiological levels. Many studies have described the atheroprotective effect on endothelial behavior of normal physiological LSS (approximately 15 dynes/cm(2)) compared to static or oscillatory shear stress (OSS), but it is unknown whether the levels of elevated shear stress imposed by a stenotic plaque would preserve, enhance or reverse this effect. Therefore we used transcriptomics and related functional analyses to compare human endothelial cells exposed to laminar shear stress of 15 (LSS15-normal) or 75 dynes/cm(2) (LSS75-elevated). LSS75 upregulated expression of 145 and downregulated expression of 158 genes more than twofold relative to LSS15. Modulation of the metallothioneins (MT1-G, -M, -X) and NADPH oxidase subunits (NOX2, NOX4, NOX5, and p67phox) accompanied suppression of reactive oxygen species production at LSS75. Shear induced changes in dual specificity phosphatases (DUSPs 1, 5, 8, and 16 increasing and DUSPs 6 and 23 decreasing) were observed as well as reduced ERK1/2 but increased p38 MAP kinase phosphorylation. Amongst vasoactive substances, endothelin-1 expression decreased whereas vasoactive intestinal peptide (VIP) and prostacyclin expression increased, despite which intracellular cAMP levels were reduced. Promoter analysis by rVISTA identified a significant over representation of ATF and Nrf2 transcription factor binding sites in genes upregulated by LSS75 compared to LSS15. In summary, LSS75 induced a specific change in behavior, modifying gene expression, reducing ROS levels, altering MAP kinase signaling and reducing cAMP levels, opening multiple avenues for future study. Copyright © 2011 Wiley-Liss, Inc.

  3. Involvement of Smad3 pathway in atrial fibrosis induced by elevated hydrostatic pressure.

    PubMed

    Wei, Wei; Rao, Fang; Liu, Fangzhou; Xue, Yumei; Deng, Chunyu; Wang, Zhaoyu; Zhu, Jiening; Yang, Hui; Li, Xin; Zhang, Mengzhen; Fu, Yongheng; Zhu, Wensi; Shan, Zhixin; Wu, Shulin

    2018-06-01

    Hypertension is a main risk factor for atrial fibrillation, but the direct effects of hydrostatic pressure on the atrial fibrosis are still unknown. The present study investigated whether hydrostatic pressure is responsible for atrial fibrosis, and addressed a potential role of the Smad pathway in this pathology. Biochemical assays were used to study regulation and expression of fibrotic factors in spontaneously hypertensive rats (SHRs) and Wistar rats, and in cardiac fibroblasts (CFs) cultured under standard (0 mmHg) and elevated (20, 40 mmHg) hydrostatic pressure. Levels of atrial fibrosis and protein expression of fibrotic factors Col-1A1/-3A1, TGF-β1, and MMP-2 in SHRs' left atrial tissues were higher than those in Wistar rats. Exposure to elevated pressure was associated with the proliferation of CFs. The protein expression of Col-1A1/-3A1, TGF-β1, and MMP-2 in CFs was also up-regulated in a pressure-dependent manner. The proliferation of CFs and increased expressions of fibrotic markers induced by elevated hydrostatic pressure could be reversed by the Smad3 inhibitor naringenin. The activation of Smad3 pathway was also stimulated by elevated hydrostatic pressure. These results demonstrate that CF secretory function and proliferation can be up-regulated by exposure to elevated pressure, and that Smad3 may modulate CF activation induced by high hydrostatic pressure. © 2017 Wiley Periodicals, Inc.

  4. Corn silk induced cyclooxygenase-2 in murine macrophages.

    PubMed

    Kim, Kyung A; Shin, Hyun-Hee; Choi, Sang Kyu; Choi, Hye-Seon

    2005-10-01

    Stimulation of murine macrophages with corn silk induced cyclooxygenase (COX)-2 with secretion of PGE2. Expression of COX-2 was inhibited by pyrolidine dithiocarbamate (PDTC), and increased DNA binding by nuclear factor kappa B (NF-kappaB), indicating that COX-2 induction proceeds also via the NF-kappaB signaling pathway. A specific inhibitor of COX-2 decreased the expression level of inducible nitric oxide synthase (iNOS) stimulated by corn silk. PGE2 elevated the expression level of iNOS, probably via EP2 and EP4 receptors on the surface of the macrophages.

  5. Cks1 Is Required for Tumor Cell Proliferation but Not Sufficient to Induce Hematopoietic Malignancies

    PubMed Central

    Kratzat, Susanne; Nikolova, Viktoriya; Miething, Cornelius; Hoellein, Alexander; Schoeffmann, Stephanie; Gorka, Oliver; Pietschmann, Elke; Illert, Anna-Lena; Ruland, Jürgen; Peschel, Christian; Nilsson, Jonas; Duyster, Justus; Keller, Ulrich

    2012-01-01

    The Cks1 component of the SCFSkp2 complex is necessary for p27Kip1 ubiquitylation and degradation. Cks1 expression is elevated in various B cell malignancies including Burkitt lymphoma and multiple myeloma. We have previously shown that loss of Cks1 results in elevated p27Kip1 levels and delayed tumor development in a mouse model of Myc-induced B cell lymphoma. Surprisingly, loss of Skp2 in the same mouse model also resulted in elevated p27Kip1 levels but exhibited no impact on tumor onset. This raises the possibility that Cks1 could have other oncogenic activities than suppressing p27Kip1. To challenge this notion we have targeted overexpression of Cks1 to B cells using a conditional retroviral bone marrow transduction-transplantation system. Despite potent ectopic overexpression, Cks1 was unable to promote B cell hyperproliferation or B cell malignancies, indicating that Cks1 is not oncogenic when overexpressed in B cells. Since Skp2 overexpression can drive T-cell tumorigenesis or other cancers we also widened the quest for oncogenic activity of Cks1 by ubiquitously expressing Cks1 in hematopoetic progenitors. At variance with c-Myc overexpression, which caused acute myeloid leukemia, Cks1 overexpression did not induce myeloproliferation or leukemia. Therefore, despite being associated with a poor prognosis in various malignancies, sole Cks1 expression is insufficient to induce lymphoma or a myeloproliferative disease in vivo. PMID:22624029

  6. Induced resistance to the antimicrobial peptide lactoferricin B in Staphylococcus aureus.

    PubMed

    Samuelsen, Orjan; Haukland, Hanne H; Jenssen, Håvard; Krämer, Manuela; Sandvik, Kjersti; Ulvatne, Hilde; Vorland, Lars H

    2005-06-20

    This study was designed to investigate inducible intrinsic resistance against lactoferricin B in Staphylococcus aureus. Serial passage of seven S. aureus strains in medium with increasing concentrations of peptide resulted in an induced resistance at various levels in all strains. The induced resistance was unstable and decreased relatively rapidly during passages in peptide free medium but the minimum inhibitory concentration remained elevated after thirty passages. Cross-resistance to penicillin G and low-level cross-resistance to the antimicrobial peptides indolicidin and Ala(8,13,18)-magainin-II amide [corrected] was observed. No cross-resistance was observed to the human cathelicidin LL-37. In conclusion, this study shows that S. aureus has intrinsic resistance mechanisms against antimicrobial peptides that can be induced upon exposure, and that this may confer low-level cross-resistance to other antimicrobial peptides.

  7. Gravity stress elevates the nociceptive threshold level with immunohistochemical changes in the rat brain

    NASA Astrophysics Data System (ADS)

    Kumei, Yasuhiro; Shimokawa, Reiko; Kimoto, Mari; Kawauchi, Yasuko; Shimokawa, Hitoyata; Makita, Koshi; Ohya, Keiichi; Toda, Kazuo

    2001-08-01

    Young Wistar male rats were exposed to 2G hypergravity by continuous centrifugation for 15 minutes. The nociceptive threshold was measured by using the von Frey type filament on the rat skin surfaces after hypergravity exposure. Following the hypergravity exposure, rats were sacrificed with anesthesia, then perfused and fixed for immunohistochemical examination. The 2G hypergravity elevated the nociceptive threshold up to 2-fold and induced analgesic effects on rats that remained for 2 hours after termination of centrifugation. Expression of Fos-immunoreactive proteins was prominently induced by 2G hypergravity in the arcuate nucleas and the paraventricular nucleus of the hypothalamus. The 15-minute flash exposure to 2G hypergravity induced pain suppression in rats, which might be attributed to change of neuronal activity in rat hypothalamus.

  8. Tumor induces muscle wasting in mice through releasing extracellular Hsp70 and Hsp90.

    PubMed

    Zhang, Guohua; Liu, Zhelong; Ding, Hui; Zhou, Yong; Doan, Hoang Anh; Sin, Ka Wai Thomas; Zhu, Zhiren J; Flores, Rene; Wen, Yefei; Gong, Xing; Liu, Qingyun; Li, Yi-Ping

    2017-09-19

    Cachexia, characterized by muscle wasting, is a major contributor to cancer-related mortality. However, the key cachexins that mediate cancer-induced muscle wasting remain elusive. Here, we show that tumor-released extracellular Hsp70 and Hsp90 are responsible for tumor's capacity to induce muscle wasting. We detected high-level constitutive release of Hsp70 and Hsp90 associated with extracellular vesicles (EVs) from diverse cachexia-inducing tumor cells, resulting in elevated serum levels in mice. Neutralizing extracellular Hsp70/90 or silencing Hsp70/90 expression in tumor cells abrogates tumor-induced muscle catabolism and wasting in cultured myotubes and in mice. Conversely, administration of recombinant Hsp70 and Hsp90 recapitulates the catabolic effects of tumor. In addition, tumor-released Hsp70/90-expressing EVs are necessary and sufficient for tumor-induced muscle wasting. Further, Hsp70 and Hsp90 induce muscle catabolism by activating TLR4, and are responsible for elevation of circulating cytokines. These findings identify tumor-released circulating Hsp70 and Hsp90 as key cachexins causing muscle wasting in mice.Cachexia affects many cancer patients causing weight loss and increasing mortality. Here, the authors identify extracellular Hsp70 and Hsp90, either in soluble form or secreted as part of exosomes from tumor cells, to be responsible for tumor induction of cachexia.

  9. Thyrotropin-induced hyperthyroidism caused by selective pituitary resistance to thyroid hormone. A new syndrome of "inappropriate secretion of TSH".

    PubMed Central

    Gershengorn, M C; Weintraub, B D

    1975-01-01

    An 18-yr-old woman with clinical and laboratory features of hyperthyroidism had persistently elevated serum levels of immunoreative thyrotropin (TSH). During 11 yr of follow-up there had been no evidence of a pituitary tumor. After thyrotropin-releasing hormone (TRH), there was a marked increase in TSH and secondarily in triiodothyronine (T3), the latter observation confirming the biologic activity of the TSH. Exogenous T3 raised serum T3 and several measurements of peripheral thyroid hormone effect, while decreasing serum TSH, thyroxine (T4), and thyroidal radioiodine uptake. After T3, the TRH-stimulated TSH response was decreased but was still inappropriate for the elevated serum T3 levels. Dexamethasone reduced serum TSH but did not inhibit TRH stimulation of TSH. Propylthiouracil reduced serum T4 and T3 and raised TSH. This patient represents a new syndrome of TSH-induced hyperthyroidism, differing from previous reports in the absence of an obvious pituitary tumor and in the responsiveness of the TSH to TRH stimulation and thyroid hormone suppression. This syndrome appears to be caused by a selective, partial resistance of the pituitary to the action of thyroid hormone. This case is also compared with previous reports in the literature of patients with elevated serum levels of immunoreactive TSH in the presence of elevated total and free thyroid hormones. A classification of these cases, termed "inappropriate secretion of TSH," is proposed. PMID:1159077

  10. Metabolomics analysis of rice responses to salinity stress revealed elevation of serotonin, and gentisic acid levels in leaves of tolerant varieties.

    PubMed

    Gupta, Poulami; De, Bratati

    2017-07-03

    A GC-MS based analytical approach was undertaken to understand the metabolomic responses of seedlings of 2 salt sensitive (Sujala and MTU 7029) and 2 tolerant varieties (Bhutnath, and Nonabokra) of indica rice (Oryza sativa L.) to NaCl induced stress. The 4 varieties responded differently to NaCl treatment with respect to the conserved primary metabolites (sugars, polyols, amino acids, organic acids and certain purine derivatives) of the leaf of rice seedlings. However, there were significant differences in salt induced production of chorismic acid derivatives. Serotonin level was increased in both the salt tolerant varieties in response to NaCl induced stress. In both the salt tolerant varieties, increased production of the signaling molecule gentisic acid in response to NaCl treatment was noticed. Salt tolerant varieties also produced increased level of ferulic acid and vanillic acid. In the salt sensitive varieties, cinnamic acid derivatives, 4-hydroxycinnamic acid (in Sujala) and 4-hydroxybenzoic acid (in MTU 7029), were elevated in the leaves. So increased production of the 2 signaling molecules serotonin and gentisic acid may be considered as 2 important biomarker compounds produced in tolerant varieties contributing toward NaCl tolerance.

  11. Difference in the action mechanism of radon inhalation and radon hot spring water drinking in suppression of hyperuricemia in mice.

    PubMed

    Etani, Reo; Kataoka, Takahiro; Kanzaki, Norie; Sakoda, Akihiro; Tanaka, Hiroshi; Ishimori, Yuu; Mitsunobu, Fumihiro; Yamaoka, Kiyonori

    2016-06-01

    Although radon therapy is indicated for hyperuricemia, the underlying mechanisms of action have not yet been elucidated in detail. Therefore, we herein examined the inhibitory effects of radon inhalation and hot spring water drinking on potassium oxonate (PO)-induced hyperuricemia in mice. Mice inhaled radon at a concentration of 2000 Bq/m(3) for 24 h or were given hot spring water for 2 weeks. Mice were then administrated PO at a dose of 500 mg/kg. The results obtained showed that serum uric acid levels were significantly increased by the administration of PO. Radon inhalation or hot spring water drinking significantly inhibited elevations in serum uric acid levels through the suppression of xanthine oxidase activity in the liver. Radon inhalation activated anti-oxidative functions in the liver and kidney. These results suggest that radon inhalation inhibits PO-induced hyperuricemia by activating anti-oxidative functions, while hot spring water drinking may suppress PO-induced elevations in serum uric acid levels through the pharmacological effects of the chemical compositions dissolved in it. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  12. Associations between basal cortisol levels and memory retrieval in healthy young individuals.

    PubMed

    Ackermann, Sandra; Hartmann, Francina; Papassotiropoulos, Andreas; de Quervain, Dominique J F; Rasch, Björn

    2013-11-01

    Cortisol is known to affect memory processes. On the one hand, stress-induced or pharmacologically induced elevations of cortisol levels enhance memory consolidation. On the other hand, such experimentally induced elevations of cortisol levels have been shown to impair memory retrieval. However, the effects of individual differences in basal cortisol levels on memory processes remain largely unknown. Here we tested whether individual differences in cortisol levels predict picture learning and recall in a large sample. A total of 1225 healthy young women and men viewed two different sets of emotional and neutral pictures on two consecutive days. Both sets were recalled after a short delay (10 min). On Day 2, the pictures seen on Day 1 were additionally recalled, resulting in a long-delay (20 hr) recall condition. Cortisol levels were measured three times on Days 1 and 2 via saliva samples before encoding, between encoding and recall as well as after recall testing. We show that stronger decreases in cortisol levels during retrieval testing were associated with better recall performance of pictures, regardless of emotional valence of the pictures or length of the retention interval (i.e., 10 min vs. 20 hr). In contrast, average cortisol levels during retrieval were not related to picture recall. Remarkably during encoding, individual differences in average cortisol levels as well as changes in cortisol did not predict memory recall. Our results support previous findings indicating that higher cortisol levels during retrieval testing hinders recall of episodic memories and extend this view onto interindividual changes in basal cortisol levels.

  13. Angiotensin II Evokes Angiogenic Signals within Skeletal Muscle through Co-ordinated Effects on Skeletal Myocytes and Endothelial Cells

    PubMed Central

    Gorman, Jennifer L.; Liu, Sammy T. K.; Slopack, Dara; Shariati, Khashayar; Hasanee, Adam; Olenich, Sara; Olfert, I. Mark; Haas, Tara L.

    2014-01-01

    Skeletal muscle overload induces the expression of angiogenic factors such as vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP)-2, leading to new capillary growth. We found that the overload-induced increase in angiogenesis, as well as increases in VEGF, MMP-2 and MT1-MMP transcripts were abrogated in muscle VEGF KO mice, highlighting the critical role of myocyte-derived VEGF in controlling this process. The upstream mediators that contribute to overload-induced expression of VEGF have yet to be ascertained. We found that muscle overload increased angiotensinogen expression, a precursor of angiotensin (Ang) II, and that Ang II signaling played an important role in basal VEGF production in C2C12 cells. Furthermore, matrix-bound VEGF released from myoblasts induced the activation of endothelial cells, as evidenced by elevated endothelial cell phospho-p38 levels. We also found that exogenous Ang II elevates VEGF expression, as well as MMP-2 transcript levels in C2C12 myotubes. Interestingly, these responses also were observed in skeletal muscle endothelial cells in response to Ang II treatment, indicating that these cells also can respond directly to the stimulus. The involvement of Ang II in muscle overload-induced angiogenesis was assessed. We found that blockade of AT1R-dependent Ang II signaling using losartan did not attenuate capillary growth. Surprisingly, increased levels of VEGF protein were detected in overloaded muscle from losartan-treated rats. Similarly, we observed elevated VEGF production in cultured endothelial cells treated with losartan alone or in combination with Ang II. These studies conclusively establish the requirement for muscle derived VEGF in overload-induced angiogenesis and highlight a role for Ang II in basal VEGF production in skeletal muscle. However, while Ang II signaling is activated following overload and plays a role in muscle VEGF production, inhibition of this pathway is not sufficient to halt overload-induced angiogenesis, indicating that AT1-independent signals maintain VEGF production in losartan-treated muscle. PMID:24416421

  14. Omega-3 Fatty Acid Deficiency Augments Risperidone-Induced Hepatic Steatosis in Rats: Positive Association with Stearoyl-CoA Desaturase

    PubMed Central

    McNamara, Robert K.; Magrisso, I. Jack; Hofacer, Rylon; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Benoit, Stephen C.

    2012-01-01

    Psychiatric patients frequently exhibit long-chain n-3 (LCn-3) fatty acid deficits and elevated triglyceride (TAG) production following chronic exposure to second generation antipsychotics (SGA). Emerging evidence suggests that SGAs and LCn-3 fatty acids have opposing effects on stearoyl-CoA desaturase-1 (SCD1), which plays a pivotal role in TAG biosynthesis. Here we evaluated whether low LCn-3 fatty acid status would augment elevations in rat liver and plasma TAG concentrations following chronic treatment with the SGA risperidone (RSP), and evaluated relationships with hepatic SCD1 expression and activity indices. In rats maintained on the n-3 fatty acid-fortified (control) diet, chronic RSP treatment significantly increased liver SCD1 mRNA and activity indices (18:1/18:0 and 16:1/16:0 ratios), and significantly increased liver, but not plasma, TAG concentrations. Rats maintained on the n-3 deficient diet exhibited significantly lower liver and erythrocyte LCn-3 fatty acid levels, and associated elevations in LCn-6/LCn-3 ratio. In n-3 deficient rats, RSP-induced elevations in liver SCD1 mRNA and activity indices (18:1/18:0 and 16:1/16:0 ratios) and liver and plasma TAG concentrations were significantly greater than those observed in RSP-treated controls. Plasma glucose levels were not altered by diet or RSP, and body weight was lower in RSP- and VEH-treated n-3 deficient rats. These preclinical data support the hypothesis that low n-3 fatty acid status exacerbates RSP-induced hepatic steatosis by augmenting SCD1 expression and activity. PMID:22750665

  15. Interactive Effects of Elevated [CO2] and Drought on the Maize Phytochemical Defense Response against Mycotoxigenic Fusarium verticillioides

    PubMed Central

    Vaughan, Martha M.; Huffaker, Alisa; Schmelz, Eric A.; Dafoe, Nicole J.; Christensen, Shawn A.; McAuslane, Heather J.; Alborn, Hans T.; Allen, Leon Hartwell; Teal, Peter E. A.

    2016-01-01

    Changes in climate due to rising atmospheric carbon dioxide concentration ([CO2]) are predicted to intensify episodes of drought, but our understanding of how these combined conditions will influence crop-pathogen interactions is limited. We recently demonstrated that elevated [CO2] alone enhances maize susceptibility to the mycotoxigenic pathogen, Fusarium verticillioides (Fv) but fumonisin levels remain unaffected. In this study we show that maize simultaneously exposed to elevated [CO2] and drought are even more susceptible to Fv proliferation and also prone to higher levels of fumonisin contamination. Despite the increase in fumonisin levels, the amount of fumonisin produced in relation to pathogen biomass remained lower than corresponding plants grown at ambient [CO2]. Therefore, the increase in fumonisin contamination was likely due to even greater pathogen biomass rather than an increase in host-derived stimulants. Drought did not negate the compromising effects of elevated [CO2] on the accumulation of maize phytohormones and metabolites. However, since elevated [CO2] does not influence the drought-induced accumulation of abscisic acid (ABA) or root terpenoid phytoalexins, the effects elevated [CO2] are negated belowground, but the stifled defense response aboveground may be a consequence of resource redirection to the roots. PMID:27410032

  16. JP-8 jet fuel exposure rapidly induces high levels of IL-10 and PGE2 secretion and is correlated with loss of immune function.

    PubMed

    Harris, David T; Sakiestewa, Debbie; Titone, Dominic; Witten, Mark

    2007-05-01

    The US Air Force has implemented the widespread use of JP-8 jet fuel in its operations, although a thorough understanding of its potential effects upon exposed personnel is unclear. Previous work has demonstrated that JP-8 exposure is immunosuppressive. In the present study, the potential mechanisms for the effects of JP-8 exposure on the immune system were investigated. Exposure of mice to JP-8 for 1 h/day resulted in immediate secretion of two immunosuppressive agents; namely, interleukin-10 (IL-10) and prostaglandin E2 (PGE2). JP-8 exposure rapidly induced a persistently high level of serum IL-10 and PGE2 at an exposure concentration of 1000 mg/m3. IL-10 levels peaked at 2 h post-JP-8 exposure and then stabilized at significantly elevated serum levels, while PGE2 levels peaked after 2-3 days of exposure and then stabilized. Elevated IL-10 and PGE2 levels may at least partially explain the effects of JP-8 exposure on immune function. Elevated IL-10 and PGE2 levels, however, cannot explain all of the effects due to JP-8 exposure (e.g., decreased organ weights and decreased viable immune cells), as treatment with a PGE2 inhibitor did not completely reverse the immunosuppressive effects of jet fuel exposure. Thus, low concentration JP-8 jet fuel exposures have significant effects on the immune system, which can be partially explained by the secretion of immunosuppressive modulators, which are cumulative over time.

  17. Polyclonal and allergen-induced cytokine responses in children with elevated immunoglobulin E but no atopic disease.

    PubMed

    Smart, J M; Tang, M L K; Kemp, A S

    2002-11-01

    Reduced Th1 and elevated Th2 cytokine responses are considered to be a principal mechanism in the generation of the inflammation leading to the manifestations of atopic disease in the skin of atopic dermatitis and in the airways of asthma. If reduced Th1 and elevated Th2 responses are principal determinants of the manifestation of atopic disease it might be expected that subjects with established disease would exhibit differences in their cytokine profiles as compared with atopic patients without clinical disease. To determine whether asymptomatic atopic children exhibit a cytokine imbalance similar to that seen in patients with established atopic disease or if they behave like non-atopic controls. Cytokine responses in a group of children with elevated IgE but no clinical manifestations of disease, atopic children with established disease and non-atopic controls were compared. We examined allergen-induced (house dust mite, HDM, rye grass pollen and RYE) cytokine responses in parallel with polyclonal (staphylococcal enterotoxin B, SEB) cytokine responses in a group of children with elevated serum IgE levels without current or past evidence of atopic disease (median age 6.6 years) and compared these with a non-atopic control group (median age 6.5 years) and a group of children with atopic disease (median age 6.7 years). Symptomatic atopic children had reduced SEB-induced IFN-gamma and increased SEB-induced IL-4 and IL-5 as compared with non-atopic controls. In contrast, SEB-induced IFN-gamma, IL-4 and IL-5 production in asymptomatic atopics was not significantly different from the non-atopic control subjects. Allergen-induced Th1 (IFN-gamma) and Th2 (IL-5 and IL-13) cytokine production was increased in both symptomatic atopics and asymptomatic atopics when compared with non-atopic controls. The defect in polyclonally induced IFN-gamma production was associated with the clinical manifestation of atopic disease but not the atopic stateper se. This suggests that the global reduction in IFN-gamma is the key determinant of the development of overt atopic disease. In contrast, elevated allergen-induced Th2 cytokine responses in children related to the atopic state per se irrespective of the presence of clinical atopic disease.

  18. Character and temporal evolution of apoptosis in acetaminophen-induced acute liver failure*.

    PubMed

    Possamai, Lucia A; McPhail, Mark J W; Quaglia, Alberto; Zingarelli, Valentina; Abeles, R Daniel; Tidswell, Robert; Puthucheary, Zudin; Rawal, Jakirty; Karvellas, Constantine J; Leslie, Elaine M; Hughes, Robin D; Ma, Yun; Jassem, Wayel; Shawcross, Debbie L; Bernal, William; Dharwan, Anil; Heaton, Nigel D; Thursz, Mark; Wendon, Julia A; Mitry, Ragai R; Antoniades, Charalambos G

    2013-11-01

    To evaluate the role of hepatocellular and extrahepatic apoptosis during the evolution of acetaminophen-induced acute liver failure. A prospective observational study in two tertiary liver transplant units. Eighty-eight patients with acetaminophen-induced acute liver failure were recruited. Control groups included patients with nonacetaminophen-induced acute liver failure (n = 13), nonhepatic multiple organ failure (n = 28), chronic liver disease (n = 19), and healthy controls (n = 11). Total and caspase-cleaved cytokeratin-18 (M65 and M30) measured at admission and sequentially on days 3, 7, and 10 following admission. Levels were also determined from hepatic vein, portal vein, and systemic arterial blood in seven patients undergoing transplantation. Protein arrays of liver homogenates from patients with acetaminophen-induced acute liver failure were assessed for apoptosis-associated proteins, and histological assessment of liver tissue was performed. Admission M30 levels were significantly elevated in acetaminophen-induced acute liver failure and non-acetaminophen induced acute liver failure patients compared with multiple organ failure, chronic liver disease, and healthy controls. Admission M30 levels correlated with outcome with area under receiver operating characteristic of 0.755 (0.639-0.885, p < 0.001). Peak levels in patients with acute liver failure were seen at admission then fell significantly but did not normalize over 10 days. A negative gradient of M30 from the portal to hepatic vein was demonstrated in patients with acetaminophen-induced acute liver failure (p = 0.042) at the time of liver transplant. Analysis of protein array data demonstrated lower apoptosis-associated protein and higher catalase concentrations in acetaminophen-induced acute liver failure compared with controls (p < 0.05). Explant histological analysis revealed evidence of cellular proliferation with an absence of histological evidence of apoptosis. Hepatocellular apoptosis occurs in the early phases of human acetaminophen-induced acute liver failure, peaking on day 1 of hospital admission, and correlates strongly with poor outcome. Hepatic regenerative/tissue repair responses prevail during the later stages of acute liver failure where elevated levels of M30 are likely to reflect epithelial cell death in extrahepatic organs.

  19. Oxidatively-induced DNA damage and base excision repair in euthymic patients with bipolar disorder.

    PubMed

    Ceylan, Deniz; Tuna, Gamze; Kirkali, Güldal; Tunca, Zeliha; Can, Güneş; Arat, Hidayet Ece; Kant, Melis; Dizdaroglu, Miral; Özerdem, Ayşegül

    2018-05-01

    Oxidatively-induced DNA damage has previously been associated with bipolar disorder. More recently, impairments in DNA repair mechanisms have also been reported. We aimed to investigate oxidatively-induced DNA lesions and expression of DNA glycosylases involved in base excision repair in euthymic patients with bipolar disorder compared to healthy individuals. DNA base lesions including both base and nucleoside modifications were measured using gas chromatography-tandem mass spectrometry and liquid chromatography-tandem mass spectrometry with isotope-dilution in DNA samples isolated from leukocytes of euthymic patients with bipolar disorder (n = 32) and healthy individuals (n = 51). The expression of DNA repair enzymes OGG1 and NEIL1 were measured using quantitative real-time polymerase chain reaction. The levels of malondialdehyde were measured using high performance liquid chromatography. Seven DNA base lesions in DNA of leukocytes of patients and healthy individuals were identified and quantified. Three of them had significantly elevated levels in bipolar patients when compared to healthy individuals. No elevation of lipid peroxidation marker malondialdehyde was observed. The level of OGG1 expression was significantly reduced in bipolar patients compared to healthy individuals, whereas the two groups exhibited similar levels of NEIL1 expression. Our results suggest that oxidatively-induced DNA damage occurs and base excision repair capacity may be decreased in bipolar patients when compared to healthy individuals. Measurement of oxidatively-induced DNA base lesions and the expression of DNA repair enzymes may be of great importance for large scale basic research and clinical studies of bipolar disorder. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. 50 Hz hippocampal stimulation in refractory epilepsy: Higher level of basal glutamate predicts greater release of glutamate.

    PubMed

    Cavus, Idil; Widi, Gabriel A; Duckrow, Robert B; Zaveri, Hitten; Kennard, Jeremy T; Krystal, John; Spencer, Dennis D

    2016-02-01

    The effect of electrical stimulation on brain glutamate release in humans is unknown. Glutamate is elevated at baseline in the epileptogenic hippocampus of patients with refractory epilepsy, and increases during spontaneous seizures. We examined the effect of 50 Hz stimulation on glutamate release and its relationship to interictal levels in the hippocampus of patients with epilepsy. In addition, we measured basal and stimulated glutamate levels in a subset of these patients where stimulation elicited a seizure. Subjects (n = 10) were patients with medically refractory epilepsy who were undergoing intracranial electroencephalography (EEG) evaluation in an epilepsy monitoring unit. Electrical stimulation (50 Hz) was delivered through implanted hippocampal electrodes (n = 11), and microdialysate samples were collected every 2 min. Basal glutamate, changes in glutamate efflux with stimulation, and the relationships between peak stimulation-associated glutamate concentrations, basal zero-flow levels, and stimulated seizures were examined. Stimulation of epileptic hippocampi in patients with refractory epilepsy caused increases in glutamate efflux (p = 0.005, n = 10), and 4 of ten patients experienced brief stimulated seizures. Stimulation-induced increases in glutamate were not observed during the evoked seizures, but rather were related to the elevation in interictal basal glutamate (R(2) = 0.81, p = 0.001). The evoked-seizure group had lower basal glutamate levels than the no-seizure group (p = 0.04), with no stimulation-induced change in glutamate efflux (p = 0.47, n = 4). Conversely, increased glutamate was observed following stimulation in the no-seizure group (p = 0.005, n = 7). Subjects with an atrophic hippocampus had higher basal glutamate levels (p = 0.03, n = 7) and higher stimulation-induced glutamate efflux. Electrical stimulation of the epileptic hippocampus either increased extracellular glutamate efflux or induced seizures. The magnitude of stimulated glutamate increase was related to elevation in basal interictal glutamate, suggesting a common mechanism, possibly impaired glutamate metabolism. Divergent mechanisms may exist for seizure induction and increased glutamate in patients with epilepsy. These data highlight the potential risk of 50 Hz stimulation in patients with epilepsy. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  1. Methylglyoxal Induces Changes in the Glyoxalase System and Impairs Glutamate Uptake Activity in Primary Astrocytes

    PubMed Central

    Galland, Fabiana; Lirio, Franciane; de Souza, Daniela Fraga; Da Ré, Carollina; Pacheco, Rafaela Ferreira; Vizuete, Adriana Fernanda; Quincozes-Santos, André; Leite, Marina Concli; Gonçalves, Carlos-Alberto

    2017-01-01

    The impairment of astrocyte functions is associated with diabetes mellitus and other neurodegenerative diseases. Astrocytes have been proposed to be essential cells for neuroprotection against elevated levels of methylglyoxal (MG), a highly reactive aldehyde derived from the glycolytic pathway. MG exposure impairs primary astrocyte viability, as evaluated by different assays, and these cells respond to MG elevation by increasing glyoxalase 1 activity and glutathione levels, which improve cell viability and survival. However, C6 glioma cells have shown strong signs of resistance against MG, without significant changes in the glyoxalase system. Results for aminoguanidine coincubation support the idea that MG toxicity is mediated by glycation. We found a significant decrease in glutamate uptake by astrocytes, without changes in the expression of the major transporters. Carbenoxolone, a nonspecific inhibitor of gap junctions, prevented the cytotoxicity induced by MG in astrocyte cultures. Thus, our data reinforce the idea that astrocyte viability depends on gap junctions and that the impairment induced by MG involves glutamate excitotoxicity. The astrocyte susceptibility to MG emphasizes the importance of this compound in neurodegenerative diseases, where the neuronal damage induced by MG may be aggravated by the commitment of the cells charged with MG clearance. PMID:28685011

  2. Methylglyoxal Induces Changes in the Glyoxalase System and Impairs Glutamate Uptake Activity in Primary Astrocytes.

    PubMed

    Hansen, Fernanda; Galland, Fabiana; Lirio, Franciane; de Souza, Daniela Fraga; Da Ré, Carollina; Pacheco, Rafaela Ferreira; Vizuete, Adriana Fernanda; Quincozes-Santos, André; Leite, Marina Concli; Gonçalves, Carlos-Alberto

    2017-01-01

    The impairment of astrocyte functions is associated with diabetes mellitus and other neurodegenerative diseases. Astrocytes have been proposed to be essential cells for neuroprotection against elevated levels of methylglyoxal (MG), a highly reactive aldehyde derived from the glycolytic pathway. MG exposure impairs primary astrocyte viability, as evaluated by different assays, and these cells respond to MG elevation by increasing glyoxalase 1 activity and glutathione levels, which improve cell viability and survival. However, C6 glioma cells have shown strong signs of resistance against MG, without significant changes in the glyoxalase system. Results for aminoguanidine coincubation support the idea that MG toxicity is mediated by glycation. We found a significant decrease in glutamate uptake by astrocytes, without changes in the expression of the major transporters. Carbenoxolone, a nonspecific inhibitor of gap junctions, prevented the cytotoxicity induced by MG in astrocyte cultures. Thus, our data reinforce the idea that astrocyte viability depends on gap junctions and that the impairment induced by MG involves glutamate excitotoxicity. The astrocyte susceptibility to MG emphasizes the importance of this compound in neurodegenerative diseases, where the neuronal damage induced by MG may be aggravated by the commitment of the cells charged with MG clearance.

  3. Dynamic release and clearance of circulating microparticles during cardiac stress.

    PubMed

    Augustine, Daniel; Ayers, Lisa V; Lima, Eduardo; Newton, Laura; Lewandowski, Adam J; Davis, Esther F; Ferry, Berne; Leeson, Paul

    2014-01-03

    Microparticles are cell-derived membrane vesicles, relevant to a range of biological responses and known to be elevated in cardiovascular disease. To investigate microparticle release during cardiac stress and how this response differs in those with vascular disease. We measured a comprehensive panel of circulating cell-derived microparticles by a standardized flow cytometric protocol in 119 patients referred for stress echocardiography. Procoagulant, platelet, erythrocyte, and endothelial but not leukocyte, granulocyte, or monocyte-derived microparticles were elevated immediately after a standardized dobutamine stress echocardiogram and decreased after 1 hour. Twenty-five patients developed stress-induced wall motion abnormalities suggestive of myocardial ischemia. They had similar baseline microparticle levels to those who did not develop ischemia, but, interestingly, their microparticle levels did not change during stress. Furthermore, no stress-induced increase was observed in those without inducible ischemia but with a history of vascular disease. Fourteen patients subsequently underwent coronary angiography. A microparticle rise during stress echocardiography had occurred only in those with normal coronary arteries. Procoagulant, platelet, erythrocyte, and endothelial microparticles are released during cardiac stress and then clear from the circulation during the next hour. This stress-induced rise seems to be a normal physiological response that is diminished in those with vascular disease.

  4. Suppression of AKT Potentiates Synergistic Cytotoxicity of Apigenin with TRAIL in Anaplastic Thyroid Carcinoma Cells.

    PubMed

    Kim, Si Hyoung; Kang, Jun Goo; Kim, Chul Sik; Ihm, Sung-Hee; Choi, Moon Gi; Yoo, Hyung Joon; Lee, Seong Jin

    2015-12-01

    We studied the effect of apigenin in combination with tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) on cell survival and the influence of AKT inhibition on the combined effect of apigenin with TRAIL in anaplastic thyroid carcinoma (ATC) cells. The human 8505C and CAL62 ATC cell lines were used. Apigenin in combination with TRAIL, compared to apigenin alone, reduced cell viability and Bcl2 protein levels, elevated the percentage of dead cells, as well as the protein levels of cleaved PARP and phospho-ERK1/2. The protein levels of Bcl-xL, Bax, Bid, total ERK1/2, and total and phospho-AKT were unchanged. Administration of wortmannin further reduced cell viability, and elevated the percentage of dead cells, cytotoxic activity and cleaved PARP protein levels. Apigenin synergizes with TRAIL through regulation of Bcl2 family proteins in inducing cytotoxicity, and suppression of AKT potentiates synergistic cytotoxicity of apigenin with TRAIL in ATC cells. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  5. Maltol, a Food Flavoring Agent, Attenuates Acute Alcohol-Induced Oxidative Damage in Mice

    PubMed Central

    Han, Ye; Xu, Qi; Hu, Jiang-ning; Han, Xin-yue; Li, Wei; Zhao, Li-chun

    2015-01-01

    The purpose of this study was to evaluate the hepatoprotective effect of maltol, a food-flavoring agent, on alcohol-induced acute oxidative damage in mice. Maltol used in this study was isolated from red ginseng (Panax ginseng C.A Meyer) and analyzed by high performance liquid chromatography (HPLC) and mass spectrometry. For hepatoprotective activity in vivo, pretreatment with maltol (12.5, 25 and 50 mg/kg; 15 days) drastically prevented the elevated activities of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP) and triglyceride (TG) in serum and the levels of malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) in liver tissue (p < 0.05). Meanwhile, the levels of hepatic antioxidant, such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) were elevated by maltol pretreatment, compared to the alcohol group (p < 0.05). Histopathological examination revealed that maltol pretreatment significantly inhibited alcohol-induced hepatocyte apoptosis and fatty degeneration. Interestingly, pretreatment of maltol effectively relieved alcohol-induced oxidative damage in a dose-dependent manner. Maltol appeared to possess promising anti-oxidative and anti-inflammatory capacities. It was suggested that the hepatoprotective effect exhibited by maltol on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties. PMID:25608939

  6. L-rhamnose induces browning in 3T3-L1 white adipocytes and activates HIB1B brown adipocytes.

    PubMed

    Choi, Minji; Mukherjee, Sulagna; Kang, Nam Hyeon; Barkat, Jameel Lone; Parray, Hilal Ahmad; Yun, Jong Won

    2018-06-01

    Induction of the brown adipocyte-like phenotype in white adipocytes (browning) is considered as a novel strategy to fight obesity due to the ability of brown adipocytes to increase energy expenditure. Here, we report that L-rhamnose induced browning by elevating expression levels of beige-specific marker genes, including Cd137, Cited1, Tbx1, Prdm16, Tmem26, and Ucp1, in 3T3-L1 adipocytes. Moreover, L-rhamnose markedly elevated expression levels of proteins involved in thermogenesis both in 3T3-L1 white and HIB1B brown adipocytes. L-rhamnose treatment in 3T3-L1 adipocytes also significantly elevated protein levels of p-HSL, p-AMPK, ACOX, and CPT1 as well as reduced levels of ACC, FAS, C/EBPα, and PPARγ, suggesting its possible role in enhancement of lipolysis and lipid catabolism as well as reduced adipogenesis and lipogenesis, respectively. The quick technique of efficient molecular docking provided insight into the strong binding of L-rhamnose to the fat-digesting glycine residue of β 3 -adrenergic receptor (AR), indicating strong involvement of L-rhamnose in fat metabolism. Further examination of the molecular mechanism of L-rhamnose revealed that it induced browning of 3T3-L1 adipocytes via coordination of multiple signaling pathways through β 3 -AR, SIRT1, PKA, and p-38. To the best of our knowledge, this is the first study to demonstrate that L-rhamnose plays multiple modulatory roles in the induction of white fat browning, activation of brown adipocytes, as well as promotion of lipid metabolism, thereby demonstrating its therapeutic potential for treatment of obesity. © 2018 IUBMB Life, 70(6):563-573, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  7. [Plant responses to elevated atmospheric carbon dioxide and transmission to other trophic levels]. Progress report, May 1991, DOE Grant DE-FG09-84ER60255

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, D.E.

    1991-05-01

    Experiments were performed to determine the effects of carbon dioxide on plants and on the insects feeding on these plants. Current progress is reported for the following experiments: Response of a Specialist-Feeding Insect Herbivore to Carbon Dioxide Induced Changes in Its Hostplant; Growth and Reproduction of Grasshoppers Feeding on a C{sub 4} Grass Under Elevated Carbon Dioxide; Elevated Carbon Dioxide and Temperature Effects on Growth and Defense of Big Sagebrush; Sagebrush and Grasshopper Responses to Atmospheric Carbon Dioxide Concentration; Biomass Allocation Patterns of Defoliated Sagebrush Grown Under Two Levels of Carbon Dioxide; and Sagebrush Carbon Allocation Patterns and Grasshopper Nutrition:more » The Influence of Carbon Dioxide Enrichment and Soil Mineral Limitation.« less

  8. Does elevation of serum creatinine in patients with chronic hepatitis C under therapy of telaprevir mean renal impairment?

    PubMed

    Matsui, Katsuomi; Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Ikeda, Hiroki; Okuse, Chiaki; Shibagaki, Yugo; Yasuda, Takashi; Kimura, Kenjiro

    2015-11-01

    Treatment with telaprevir (TVR) entails adverse side-effects including anaemia and elevation of serum creatinine (SCr) level. Our purpose was to evaluate the effects of treatment with TVR on renal function in adults with chronic hepatitis C. Thirteen adult patients with HCV genotype 1b who were scheduled to be treated with TVR, pegylated interferon (PEG IFN), and ribavirin (RBV) were prospectively followed. Patients were divided into two groups: (i) patients with an increase in SCr during the treatment (n = 8), and (ii) patients without an increase in SCr (n = 5). Urine and serum parameters were evaluated. Although there was no difference in SCr level between the two groups before HCV therapy, the SCr level was persistently high in the patients in the increase-in-SCr group during the triple therapy. The SCr level returned to the pre-treatment level after cessation of TVR. There were no differences in urinary L-FABP, NAG, serum cystatin C level and eGFRcys throughout the study between the two groups. The serum cystatin C level at pre-treatment tended to be higher in the increase-in-SCr group. Urinary L-FABP and NAG levels in these groups remained within normal limits during treatment. We found that the increase in SCr was not associated with the degree of renal impairment. The increase in SCr may have been induced as a result of a decrease in creatinine secretion from proximal tubules via inhibition of transporters of creatinine induced by TVR. Elevation of SCr levels with TVR therapy may not suggest renal impairment. © 2015 Asian Pacific Society of Nephrology.

  9. TXNIP/TRX/NF-κB and MAPK/NF-κB pathways involved in the cardiotoxicity induced by Venenum Bufonis in rats.

    PubMed

    Bi, Qi-Rui; Hou, Jin-Jun; Qi, Peng; Ma, Chun-Hua; Feng, Rui-Hong; Yan, Bing-Peng; Wang, Jian-Wei; Shi, Xiao-Jian; Zheng, Yuan-Yuan; Wu, Wan-Ying; Guo, De-An

    2016-03-10

    Venenum Bufonis (VB) is a widely used traditional medicine with serious cardiotoxic effects. The inflammatory response has been studied to clarify the mechanism of the cardiotoxicity induced by VB for the first time. In the present study, Sprague Dawley (SD) rats, were administered VB (100, 200, and 400 mg/kg) intragastrically, experienced disturbed ECGs (lowered heart rate and elevated ST-segment), increased levels of serum indicators (creatine kinase (CK), creatine kinase isoenzyme-MB (CK-MB), alanine aminotransferase (ALT), aspartate aminotransferase (AST)) and serum interleukin (IL-6, IL-1β, TNF-α) at 2 h, 4 h, 6 h, 8 h, 24 h, and 48 h, which reflected that an inflammatory response, together with cardiotoxicity, were involved in VB-treated rats. In addition, the elevated serum level of MDA and the down-regulated SOD, CAT, GSH, and GPx levels indicated the appearance of oxidative stress in the VB-treated group. Furthermore, based on the enhanced expression levels of TXNIP, p-NF-κBp65, p-IκBα, p-IKKα, p-IKKβ, p-ERK, p-JNK, and p-P38 and the obvious myocardial degeneration, it is proposed that VB-induced cardiotoxicity may promote an inflammatory response through the TXNIP/TRX/NF-κB and MAPK/NF-κB pathways. The observed inflammatory mechanism induced by VB may provide a theoretical reference for the toxic effects and clinical application of VB.

  10. Antioxidant and antihyperlipidemic effect of Solanum nigrum fruit extract on the experimental model against chronic ethanol toxicity

    PubMed Central

    Arulmozhi, Vadivel; Krishnaveni, Mani; Karthishwaran, Kandhan; Dhamodharan, Ganesan; Mirunalini, Sankaran

    2010-01-01

    The possible protective effect of Solanum nigrum fruit extract (SNFEt) was investigated for its antioxidant and antihyperlipidemic activity against ethanol-induced toxicity in rats. The experimental animals were intoxicated with 20% ethanol (7.9 g/kg/day) for 30 days via gastric intubation. SNFEt was administered at the dose of 250 mg/kg body weight along with the daily dose of ethanol for 30 days. From the result it was observed that ethanol-induced rats showed a significant elevation in the levels of Thiobarbituric acid reactive substances (TBARS), which lowered the antioxidant defense systems, such as, reduced glutathione (GSH) and vitamins C and E, when compared to the controls. In the lipid profiles, the levels of total cholesterol (TC), triglycerides (TG), low density lipoproteins (LDL), very low density lipoproteins (VLDL), free fatty acids (FFA), and phospholipids were significantly elevated in the ethanol-induced group, whereas, the high density lipoproteins (HDL) were found to be reduced in the plasma, and the phospholipid levels were significantly decreased in the tissues. Supplementation of SNFEt improved the antioxidant status by decreasing the levels of TBARS and altering the lipid profiles to near normal. These activities were also compared to the standard drug silymarin (25 mg/kg body weight). Thus the findings of the present study indicated a significant antioxidant and antihyperlipidemic activity of Solanum nigrum fruits, which offered protection against ethanol-induced toxicity. PMID:20548935

  11. Antioxidant activity of the oyster mushroom, Pleurotus ostreatus, on CCl(4)-induced liver injury in rats.

    PubMed

    Jayakumar, T; Ramesh, E; Geraldine, P

    2006-12-01

    This study was undertaken to investigate the putative antioxidant activity of the oyster mushroom Pleurotus ostreatus on CCl(4)-induced liver damage in male Wistar rats. Intraperitoneal administration of CCl(4) (2ml/kg) to rats for 4 days resulted in significantly elevated (p<0.05) serum levels of glutamic oxaloacetic transaminase (SGOT), glutamic pyruvate transaminase (SGPT) and alkaline phosphatase (SALP) compared to controls. In the liver, significantly elevated levels (p<0.05) of malondialdehyde (MDA) and lowered levels (p<0.05) of reduced glutathione (GSH) were observed following CCl(4) administration. Quantitative and qualitative analysis of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (Gpx) revealed lower activities of these antioxidant enzymes in the liver of CCl(4)-administered rats. An analysis of the isozyme pattern of these enzymes revealed variations in relative concentration presumably due to hepatotoxicity. When rats with CCl(4)-induced hepatotoxicity were treated with the extract of P. ostreatus, the serum SGOT, SGPT and SALP levels reverted to near normal, while the hepatic concentration of GSH, CAT, SOD and Gpx were significantly increased (p<0.05) and that of MDA significantly (p<0.05) lowered, when compared to CCl(4)-exposed untreated rats. Histopathological studies confirmed the hepatoprotective effect conferred by the extract of P. ostreatus. These results suggest that an extract of P. ostreatus is able to significantly alleviate the hepatotoxicity induced by CCl(4) in the rat.

  12. Air pollution & the brain: Subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease

    PubMed Central

    2011-01-01

    Background Increasing evidence links diverse forms of air pollution to neuroinflammation and neuropathology in both human and animal models, but the effects of long-term exposures are poorly understood. Objective We explored the central nervous system consequences of subchronic exposure to diesel exhaust (DE) and addressed the minimum levels necessary to elicit neuroinflammation and markers of early neuropathology. Methods Male Fischer 344 rats were exposed to DE (992, 311, 100, 35 and 0 μg PM/m3) by inhalation over 6 months. Results DE exposure resulted in elevated levels of TNFα at high concentrations in all regions tested, with the exception of the cerebellum. The midbrain region was the most sensitive, where exposures as low as 100 μg PM/m3 significantly increased brain TNFα levels. However, this sensitivity to DE was not conferred to all markers of neuroinflammation, as the midbrain showed no increase in IL-6 expression at any concentration tested, an increase in IL-1β at only high concentrations, and a decrease in MIP-1α expression, supporting that compensatory mechanisms may occur with subchronic exposure. Aβ42 levels were the highest in the frontal lobe of mice exposed to 992 μg PM/m3 and tau [pS199] levels were elevated at the higher DE concentrations (992 and 311 μg PM/m3) in both the temporal lobe and frontal lobe, indicating that proteins linked to preclinical Alzheimer's disease were affected. α Synuclein levels were elevated in the midbrain in response to the 992 μg PM/m3 exposure, supporting that air pollution may be associated with early Parkinson's disease-like pathology. Conclusions Together, the data support that the midbrain may be more sensitive to the neuroinflammatory effects of subchronic air pollution exposure. However, the DE-induced elevation of proteins associated with neurodegenerative diseases was limited to only the higher exposures, suggesting that air pollution-induced neuroinflammation may precede preclinical markers of neurodegenerative disease in the midbrain. PMID:21864400

  13. Anti-stress effects of cilnidipine and nimodipine in immobilization subjected mice.

    PubMed

    Kumar, Naresh; Singh, Nirmal; Jaggi, Amteshwar Singh

    2012-03-20

    The present study was designed to investigate the ameliorative role of cilnidipine and nimodipine in immobilization stress-induced behavioral alterations and memory defects in the mice. Acute stress was induced by immobilizing the mice for 150 min and stress-induced behavioral changes were assessed using actophotometer, hole board, open field and social interaction tests. The learning and memory was evaluated using elevated plus maze tests and biochemically, the corticosterone levels were measured in the blood serum. Acute immobilization stress resulted in decrease in locomotor activity, frequency of head dips and rearings in hole board; line crossing and rearing in the open field; increase in avoidance in social behavior along with development of memory deficits assessed by an increased transfer latency time and elevation of the corticosterone levels. Administration of cilnidipine (10 mg/kg), an L and N-type dual calcium channel blocker, and nimodipine (10 mg/kg), an L-type calcium channel blocker, significantly attenuated the immobilized stress-induced behavioral changes and restored memory deficits along with normalization of the corticosterone levels. Cilnidipine and nimodipine produced comparable beneficial effects in restoring immobilization stress subjected mice. It may be concluded that cilnidipine and nimodipine mediated attenuation of corticosterone release by blockage of calcium channels (both L and N-type) on the HPA-axis is responsible for beneficial effects in restoration of behavioral alterations and memory deficits in immobilization-induced acute stress in mice. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. HSP27 Inhibits Homocysteine-Induced Endothelial Apoptosis by Modulation of ROS Production and Mitochondrial Caspase-Dependent Apoptotic Pathway.

    PubMed

    Tian, Xin; Zhao, Lei; Song, Xianjing; Yan, Youyou; Liu, Ning; Li, Tianyi; Yan, Bingdi; Liu, Bin

    2016-01-01

    Objectives. Elevated plasma homocysteine (Hcy) could lead to endothelial dysfunction and is viewed as an independent risk factor for atherosclerosis. Heat shock protein 27 (HSP27), a small heat shock protein, is reported to exert protective effect against atherosclerosis. This study aims to investigate the protective effect of HSP27 against Hcy-induced endothelial cell apoptosis in human umbilical vein endothelial cells (HUVECs) and to determine the underlying mechanisms. Methods. Apoptosis, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) of normal or HSP27-overexpressing HUVECs in the presence of Hcy were analyzed by flow cytometry. The mRNA and protein expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Results. We found that Hcy could induce cell apoptosis with corresponding decrease of nitric oxide (NO) level, increase of endothelin-1 (ET-1), intracellular adhesion molecule-1 (ICAM-1), vascular cellular adhesion molecule-1 (VCAM-1), and monocyte chemoattractant protein-1 (MCP-1) levels, elevation of ROS, and dissipation of MMP. In addition, HSP27 could protect the cell against Hcy-induced apoptosis and inhibit the effect of Hcy on HUVECs. Furthermore, HSP27 could increase the ratio of Bcl-2/Bax and inhibit caspase-3 activity. Conclusions. Therefore, we concluded that HSP27 played a protective role against Hcy-induced endothelial apoptosis through modulation of ROS production and the mitochondrial caspase-dependent apoptotic pathway.

  15. Elevated nocturnal NEFA are an early signal for hyperinsulinaemic compensation during diet-induced insulin resistance in dogs.

    PubMed

    Broussard, Josiane L; Kolka, Cathryn M; Castro, Ana V B; Asare Bediako, Isaac; Paszkiewicz, Rebecca L; Szczepaniak, Edward W; Szczepaniak, Lidia S; Knutson, Kristen L; Kim, Stella P; Bergman, Richard N

    2015-11-01

    A normal consequence of increased energy intake and insulin resistance is compensatory hyperinsulinaemia through increased insulin secretion and/or reduced insulin clearance. Failure of compensatory mechanisms plays a central role in the pathogenesis of type 2 diabetes mellitus; consequently, it is critical to identify in vivo signal(s) involved in hyperinsulinaemic compensation. We have previously reported that high-fat feeding leads to an increase in nocturnal NEFA concentration. We therefore designed this study to test the hypothesis that elevated nocturnal NEFA are an early signal for hyperinsulinaemic compensation for insulin resistance. Blood sampling was conducted in male dogs to determine 24 h profiles of NEFA at baseline and during high-fat feeding with and without acute nocturnal NEFA suppression using a partial A1 adenosine receptor agonist. High-fat feeding increased nocturnal NEFA and reduced insulin sensitivity, effects countered by an increase in acute insulin response to glucose (AIR(g)). Pharmacological NEFA inhibition after 8 weeks of high-fat feeding lowered NEFA to baseline levels and reduced AIR(g) with no effect on insulin sensitivity. A significant relationship emerged between nocturnal NEFA levels and AIR(g). This relationship indicates that the hyperinsulinaemic compensation induced in response to high-fat feeding was prevented when the nocturnal NEFA pattern was returned to baseline. Elevated nocturnal NEFA are an important signal for hyperinsulinaemic compensation during diet-induced insulin resistance.

  16. IP-10 protects while MIP-2 promotes experimental anesthetic hapten - induced hepatitis

    PubMed Central

    Njoku, Dolores B.; Li, Zhaoxia; Mellerson, Jenelle L; Sharma, Rajni; Talor, Monica V.; Barat, Nicole; Rose, Noel R.

    2009-01-01

    MIP-2 and IFN-γ inducible protein-10 (IP-10) and their respective receptors, CXCR2 and CXCR3, modulate tissue inflammation by recruiting neutrophils or T cells from the spleen or bone marrow. Yet, how these chemokines modulate diseases such as immune-mediated drug-induced liver injury (DILI) is essentially unknown. To investigate how chemokines modulate experimental DILI in our model we used susceptible BALB/c (WT) and IL-4−/− (KO) mice that develop significantly reduced hepatitis and splenic T cell priming to anesthetic haptens and self proteins following TFA-S100 immunizations. We detected CXCR2+ splenic granulocytes in all mice two weeks following immunizations; by 3 weeks, MIP-2 levels (p<0.001) and GR1+ cells were elevated in WT livers, suggesting MIP-2-recruited granulocytes. Elevated splenic CXCR3+ CD4+T cells were identified after 2 weeks in KO mice indicating elevated IP-10 levels which were confirmed during T cell priming. This result suggested that IP-10 reduced T cell priming to critical DILI antigens. Increased T cell proliferation following co-culture of TFA-S100-primed WT splenocytes with anti-IP-10 (p<0.05) confirmed that IP-10 reduced T cell priming to CYP2E1 and TFA. We propose that MIP-2 promotes and IP-10 protects against the development of hepatitis and T cell priming in this murine model. PMID:19131211

  17. Eicosanoyl-5-hydroxytryptamide (EHT) prevents Alzheimer’s disease-related cognitive and electrophysiological impairments in mice exposed to elevated concentrations of oligomeric beta-amyloid

    PubMed Central

    Asam, Kesava; Staniszewski, Agnieszka; Zhang, Hong; Melideo, Scott L.; Mazzeo, Adolfo; Voronkov, Michael; Huber, Kristen L.; Pérez, Eduardo; Stock, Maxwell; Stock, Jeffry B.; Arancio, Ottavio

    2017-01-01

    Soluble forms of oligomeric beta-amyloid (Aβ) are thought to play a central role in Alzheimer’s disease (AD). Transgenic manipulation of methylation of the serine/threonine protein phosphatase, PP2A, was recently shown to alter the sensitivity of mice to AD-related impairments resulting from acute exposure to elevated levels of Aβ. In addition, eicosanoyl-5-hydroxytryptamide (EHT), a naturally occurring component from coffee beans that modulates PP2A methylation, was shown to confer therapeutic benefits in rodent models of AD and Parkinson’s disease. Here, we tested the hypothesis that EHT protects animals from the pathological effects of exposure to elevated levels of soluble oligomeric Aβ. We treated mice with EHT-containing food at two different doses and assessed the sensitivity of these animals to Aβ-induced behavioral and electrophysiological impairments. We found that EHT administration protected animals from Aβ-induced cognitive impairments in both a radial-arm water maze and contextual fear conditioning task. We also found that both chronic and acute EHT administration prevented Aβ-induced impairments in long-term potentiation. These data add to the accumulating evidence suggesting that interventions with pharmacological agents, such as EHT, that target PP2A activity may be therapeutically beneficial for AD and other neurological conditions. PMID:29253878

  18. Serum Amylase in Bulimia Nervosa and Purging Disorder: Differentiating the Association with Binge Eating versus Purging Behavior

    PubMed Central

    Wolfe, Barbara E.; Jimerson, David C.; Smith, Adrian; Keel, Pamela K.

    2011-01-01

    Objective Elevated serum amylase levels in bulimia nervosa (BN), associated with increased salivary gland size and self-induced vomiting in some patients, provide a possible marker of symptom severity. The goal of this study was to assess whether serum hyperamylasemia in BN is more closely associated with binge eating episodes involving consumption of large amounts of food or with purging behavior. Method Participants included women with BN (n=26); women with “purging disorder” (PD), a subtype of EDNOS characterized by recurrent purging in the absence of objectively large binge eating episodes (n=14); and healthy non-eating disorder female controls (n=32). There were no significant differences in age or body mass index (BMI) across groups. The clinical groups reported similar frequency of self-induced vomiting behavior and were free of psychotropic medications. Serum samples were obtained after overnight fast and were assayed for alpha-amylase by enzymatic method. Results Serum amylase levels were significantly elevated in BN (60.7 ± 25.4 international units [IU]/liter, mean ± sd) in comparison to PD (44.7 ± 17.1 IU/L, p < 02) and to Controls (49.3 ± 15.8, p < .05). Conclusion These findings provide evidence to suggest that it is recurrent binge eating involving large amounts of food, rather than self-induced vomiting, which contributes to elevated serum amylase values in BN. PMID:21781981

  19. The Role of Musk in Relieving the Neurodegenerative Changes Induced After Exposure to Chronic Stress.

    PubMed

    Abd El Wahab, Manal Galal; Ali, Soad Shaker; Ayuob, Nasra Naeim

    2018-06-01

    This study aimed to evaluate the effect induced by musk on Alzheimer's disease-such as neurodegenerative changes in mice exposed to chronic unpredictable mild stress (CUMS). Forty male Swiss albino mice were divided into 4 groups (n = 10); control, CUMS, CUMS + fluoxetine, CUMS + musk. At the end of the experiment, behavior of the mice was assessed. Serum corticosterone level, hippocampal protein level of the glucocorticoid receptors, and brain-derived neurotropic factor were also assessed. Hippocampus was histopathologically examined. Musk improved depressive status induced after exposure to CUMS as evidenced by the forced swimming and open field tests and improved the short-term memory as evidenced by the elevated plus maze test. Musk reduced both corticosterone levels and the hippocampal neurodegenerative changes observed after exposure to CUMS. These improvements were comparable to those induced by fluoxetine. Musk alleviated the memory impairment and neurodegenerative changes induced after exposure to the chronic stress.

  20. Hepatoprotective potential of ether insoluble phenolic components of n-butanol fraction (EPC-BF) of flaxseed against CCl(4) -induced liver damage in rats.

    PubMed

    Kasote, D M; Badhe, Y S; Zanwar, A A; Hegde, M V; Deshmukh, K K

    2012-07-01

    to investigate the hepatoprotective potential of ether insoluble phenolic components of n-butanol fraction (EPC-BF) of flaxseed against CCl(4) -induced liver damage in rats. Hepatotoxicity was induced to Wistar rats by administration of 0.2% CCl(4) in olive oil (8 mL/kg, i.p.) on the seventh day of treatment. Hepatoprotective potential of EPC-BF at doses, 250 and 500 mg/kg, p.o. was assessed through biochemical and histological parameters. EPC-BF and silymarin pretreated animal groups showed significantly decreased activities of Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and level of total bilirubin, elevated by CCl(4) intoxication. Hepatic lipid peroxidation elevated by CCl(4) intoxication were also found to be alleviated at almost normal level in the EPC-BF and silymarin pretreated groups. Histological studies supported the biochemical findings and treatment of EPC-BF at doses 250 and 500 mg/kg, p.o. was found to be effective in restoring CCl(4) -induced hepatic damage. However, EPC-BF did not show dose-dependent hepatoprotective potential. EPC-BF depicted maximum protection against CCl(4) -induced hepatic damage at lower dose 250 mg/kg than higher dose (500 mg/ kg). EPC-BF possesses the significant hepatoprotective activity against CCl(4) induced liver damage, which could be mediated through increase in antioxidant defenses.

  1. The potential antifibrotic impact of apocynin and alpha-lipoic acid in concanavalin A-induced liver fibrosis in rats: Role of NADPH oxidases 1 and 4.

    PubMed

    Fayed, Mostafa R; El-Naga, Reem N; Akool, El-Sayed; El-Demerdash, Ebtehal

    2018-01-01

    Liver fibrosis results from chronic inflammation that precipitates excessive accumulation of extracellular matrix. Oxidative stress is involved in its pathogenesis. This study aimed to elucidate the potential antifibrotic effect of the NADPH oxidase (NOX) inhibitor, apocynin against concanavalin A (ConA)-induced immunological model of liver fibrosis, and to investigate the ability of the antioxidant, alpha-lipoic acid (α-LA) to potentiate this effect. Rats were treated with apocynin and/or α-LA for six weeks. Hepatotoxicity indices, oxidative stress, insulin, NOXs, inflammatory and liver fibrosis markers were assessed. Treatment of animals with apocynin and α-LA significantly ameliorated the changes in liver functions and histopathological architecture induced by ConA. Liver fibrosis induced by ConA was evident where alpha-smooth muscle actin and transforming growth factor- beta1 were elevated, which was further confirmed by Masson's trichrome stain and increased hydroxyproline. Co-treatment with apocynin and α-LA significantly reduced their expression. Besides, apocynin and α-LA significantly ameliorated oxidative stress injury evoked by ConA, as evidenced by enhancing reduced glutathione content, antioxidant enzymes activities and decreasing lipid peroxides. ConA induced a significant elevation in serum insulin level and inflammatory markers; tumor necrosis factor-alpha, interleukin-6 and nuclear factor kappa b. Furthermore, the mRNA tissue expression of NOXs 1 and 4 was found to be elevated in the ConA group. All these elevations were significantly reduced by apocynin and α-LA co-treatment. These findings indicate that using apocynin and α-LA in combination possess marked antifibrotic effects, and that NOX enzymes are partially involved in the pathogenesis of ConA-induced liver fibrosis.

  2. The potential role of Morus alba leaves extract on the brain of mice infected with Schistosoma mansoni.

    PubMed

    Bauomy, Amira A

    2014-01-01

    Schistosomiasis is a neglected tropical disease which is associated with neuropsychiatric and neuropathological disorders. Herein, the main goal of the presented work is to investigate the effect of Morus alba leaves extract in mice brain infected with Schistosoma mansoni. Since, the resistance of Schistosomes to antischistosomal drug (praziquantel) has been examined, schistosomiasis induced brain oxidative stress as evidenced by the decrease of glutathione level, total antioxidant capacity and the activity of catalase significantly, while a significant elevation in the levels of nitrite/nitrate and malondialdhyde. In addition, the infection resulted in neurochemical disturbances, the main inhibitory amino acid, γ- aminobutyric acid level was decreased. In contrast, the level of chloride ions and acetylcholine esterase activity were significantly increased. Moreover, the histopathological section showed some impairments in the brain. The treatment with Morus alba leaves extract ameliorated the induced disturbances in schistosome-infected mice where the levels of non-enzymatic and enzymatic antioxidants were elevated. On the other hand, the levels of nitrite/nitrate and malondialdhyde were significantly reduced. Likewise, treatment of mice with Morus alba leaves extract improved the altered levels of γ- aminobutyric acid level and chloride ion. Also, it improved the recorded impairments of the histopathological section in the brain of schistosome infected mice.

  3. Apocynin protects against ethanol-induced gastric ulcer in rats by attenuating the upregulation of NADPH oxidases 1 and 4.

    PubMed

    El-Naga, Reem N

    2015-12-05

    Gastric ulcer is a common gastrointestinal disorder affecting many people all over the world. Absolute ethanol (5 ml/kg) was used to induce gastric ulceration in rats. Apocynin (50 mg/kg) was given orally one hour before the administration of absolute ethanol. Omeprazole (20 mg/kg) was used as a standard. Interestingly, apocynin pre-treatment provided 93.5% gastroprotection against ethanol-induced ulceration. Biochemically, gastric mucin content was significantly increased with apocynin pre-treatment. This finding was further supported by alcian blue staining of stomach sections obtained from the different treated groups. Also, gastric juice volume and acidity were significantly reduced. Apocynin significantly ameliorated ethanol-induced oxidative stress by replenishing reduced glutathione and superoxide dismutase levels as well as reducing elevated malondialdehyde levels in gastric tissues. Besides, ethanol-induced pro-inflammatory response was significantly decreased by apocynin pre-treatment via reducing elevated levels of pro-inflammatory markers; interleukin-1β, tumor necrosis factor-α, cyclooxygenase-2 and inducible nitric oxide synthase. Additionally, caspase-3 tissue level was significantly reduced in apocynin pre-treated group. Interestingly, NADPH oxidase-1 (NOX-1) and NOX-4 up-regulation was shown to be partially involved in the pathogenesis of ethanol-induced gastric ulceration and was significantly reversed by apocynin pre-treatment. Gastroprotective properties of apocynin were confirmed by histopathological examination. It is worth mentioning that apocynin was superior in all aspects except gastric mucin content parameter where it was significantly increased by 13.5 folds in the omeprazole pre-treated group. This study was the first to show that apocynin is a promising gastroprotective agent against ethanol-induced gastric ulceration, partially via its anti-oxidant, anti-inflammatory, anti-apoptotic effects as well as down-regulating NOX-1 and NOX-4 expression. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Proteinaceous and oligosaccharidic elicitors induce different calcium signatures in the nucleus of tobacco cells.

    PubMed

    Lecourieux, David; Lamotte, Olivier; Bourque, Stéphane; Wendehenne, David; Mazars, Christian; Ranjeva, Raoul; Pugin, Alain

    2005-12-01

    We previously reported elevated cytosolic calcium levels in tobacco cells in response to elicitors [D. Lecourieux, C. Mazars, N. Pauly, R. Ranjeva, A. Pugin, Analysis and effects of cytosolic free calcium elevations in response to elicitors in Nicotiana plumbaginifolia cells, Plant Cell 14 (2002) 2627-2641]. These data suggested that in response to elicitors, Ca2+, as a second messenger, was involved in both systemic acquired resistance (RSA) and/or hypersensitive response (HR) depending on calcium signature. Here, we used transformed tobacco cells with apoaequorin expressed in the nucleus to monitor changes in free nuclear calcium concentrations ([Ca2+](nuc)) in response to elicitors. Two types of elicitors are compared: proteins leading to necrosis including four elicitins and harpin, and non-necrotic elicitors including flagellin (flg22) and two oligosaccharidic elicitors, namely the oligogalacturonides (OGs) and the beta-1,3-glucan laminarin. Our data indicate that the proteinaceous elicitors induced a pronounced and sustainable [Ca2+](nuc) elevation, relative to the small effects of oligosaccharidic elicitors. This [Ca2+](nuc) elevation, which seems insufficient to induce cell death, is unlikely to result directly from the diffusion of calcium from the cytosol. The [Ca2+](nuc) rise depends on free cytosolic calcium, IP3, and active oxygen species (AOS) but is independent of nitric oxide.

  5. Elevated Adenosine Induces Placental DNA Hypomethylation Independent of A2B Receptor Signaling in Preeclampsia.

    PubMed

    Huang, Aji; Wu, Hongyu; Iriyama, Takayuki; Zhang, Yujin; Sun, Kaiqi; Song, Anren; Liu, Hong; Peng, Zhangzhe; Tang, Lili; Lee, Minjung; Huang, Yun; Ni, Xin; Kellems, Rodney E; Xia, Yang

    2017-07-01

    Preeclampsia is a prevalent pregnancy hypertensive disease with both maternal and fetal morbidity and mortality. Emerging evidence indicates that global placental DNA hypomethylation is observed in patients with preeclampsia and is linked to altered gene expression and disease development. However, the molecular basis underlying placental epigenetic changes in preeclampsia remains unclear. Using 2 independent experimental models of preeclampsia, adenosine deaminase-deficient mice and a pathogenic autoantibody-induced mouse model of preeclampsia, we demonstrate that elevated placental adenosine not only induces hallmark features of preeclampsia but also causes placental DNA hypomethylation. The use of genetic approaches to express an adenosine deaminase minigene specifically in placentas, or adenosine deaminase enzyme replacement therapy, restored placental adenosine to normal levels, attenuated preeclampsia features, and abolished placental DNA hypomethylation in adenosine deaminase-deficient mice. Genetic deletion of CD73 (an ectonucleotidase that converts AMP to adenosine) prevented the elevation of placental adenosine in the autoantibody-induced preeclampsia mouse model and ameliorated preeclampsia features and placental DNA hypomethylation. Immunohistochemical studies revealed that elevated placental adenosine-mediated DNA hypomethylation predominantly occurs in spongiotrophoblasts and labyrinthine trophoblasts and that this effect is independent of A2B adenosine receptor activation in both preeclampsia models. Extending our mouse findings to humans, we used cultured human trophoblasts to demonstrate that adenosine functions intracellularly and induces DNA hypomethylation without A2B adenosine receptor activation. Altogether, both mouse and human studies reveal novel mechanisms underlying placental DNA hypomethylation and potential therapeutic approaches for preeclampsia. © 2017 American Heart Association, Inc.

  6. Expression of p21Waf1/Cip1 and cyclin D1 is increased in butyrate-resistant HeLa cells.

    PubMed

    Derjuga, A; Richard, C; Crosato, M; Wright, P S; Chalifour, L; Valdez, J; Barraso, A; Crissman, H A; Nishioka, W; Bradbury, E M; Th'ng, J P

    2001-10-12

    Sodium butyrate induced cell cycle arrest in mammalian cells through an increase in p21Waf1/Cip1, although another study showed that this arrest is related to pRB signaling. We isolated variants of HeLa cells adapted to growth in 5 mm butyrate. One of these variants, clone 5.1, constitutively expressed elevated levels of p21Waf1/Cip1 when incubated in regular growth medium and in the presence of butyrate. Despite this elevated level of p21Waf1/Cip1, the cells continue to proliferate, albeit at a slower rate than parental HeLa cells. Western blot analyses showed that other cell cycle regulatory proteins were not up-regulated to compensate for the elevated expression of p21Waf1/Cip1. However, cyclin D1 was down-regulated by butyrate in HeLa cells but not in clone 5.1. We conclude that continued expression of cyclin D1 allowed clone 5.1 to grow in the presence of butyrate and elevated levels of p21Waf1/Cip1.

  7. N-Acetyl-L-cysteine protects thyroid cells against DNA damage induced by external and internal irradiation.

    PubMed

    Kurashige, Tomomi; Shimamura, Mika; Nagayama, Yuji

    2017-11-01

    We evaluated the effect of the antioxidant N-acetyl-L-cysteine (NAC) on the levels of reactive oxygen species (ROS), DNA double strand breaks (DSB) and micronuclei (MN) induced by internal and external irradiation using a rat thyroid cell line PCCL3. In internal irradiation experiments, ROS and DSB levels increased immediately after 131 I addition and then gradually declined, resulting in very high levels of MN at 24 and 48 h. NAC administration both pre- and also post- 131 I addition suppressed ROS, DSB and MN. In external irradiation experiments with a low dose (0.5 Gy), ROS and DSB increased shortly and could be prevented by NAC administration pre-, but not post-irradiation. In contrast, external irradiation with a high dose (5 Gy) increased ROS and DSB in a bimodal way: ROS and DSB levels increased immediately after irradiation, quickly returned to the basal levels and gradually rose again after >24 h. The second phase was in parallel with an increase in 4-hydroxy-2-nonenal. The number of MN induced by the second wave of ROS/DSB elevations was much higher than that by the first peak. In this situation, NAC administered pre- and post-irradiation comparably suppressed MN induced by a delayed ROS elevation. In conclusion, a prolonged ROS increase during internal irradiation and a delayed ROS increase after external irradiation with a high dose caused serious DNA damage, which were efficiently prevented by NAC. Thus, NAC administration even both after internal or external irradiation prevents ROS increase and eventual DNA damage.

  8. Relative contributions of pituitary-adrenal hormones to the ontogeny of behavioral inhibition in the rat.

    PubMed

    Takahashi, L K; Kim, H

    1995-04-01

    Recent investigations revealed that adrenalectomized (ADX) rat pups exhibit deficits in behavioral inhibition. Furthermore, administration of exogenous corticosterone (CORT) restores behavioral inhibition in ADX pups. Although these studies suggest that CORT has an important role in the development of behavioral inhibition, the relative behavioral effects of elevated pituitary hormone secretion induced by ADX are not known. Therefore, experiments were conducted to assess the potential behavioral effects of elevated adrenocorticotropin (ACTH) secretion induced by ADX and to further evaluate the contribution of endogenous CORT to the development of behavioral inhibition. In Experiment 1., we verified that 10-day-old ADX rats exhibit high levels of plasma ACTH throughout the preweaning period associated with the development of behavioral inhibition. In Experiment 2, 10-day-old pups were hypophysectomized (HYPOX) and ADX and were compared behaviorally to sham-operated controls on day 14. When tested in the presence of an anesthetized unfamiliar adult male rat, HYPOX + ADX pups exhibited low levels of freezing accompanied by ultrasonic vocalizations. These pups also had reduced concentrations of plasma ACTH and CORT. In Experiment 3, 10-day-old pups were HYPOX and tested for behavioral inhibition on day 14. In comparison to sham-operated controls, HYPOX rats exhibited significantly lower levels of freezing and had reduced plasma concentrations of ACTH and CORT. Results demonstrate clearly that deficits in freezing occur even in the presence of low plasma ACTH concentrations. Therefore, elevated secretion of pituitary hormones is not a major factor that contributes to the ADX-induced deficits in behavioral inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Treatment of lymphatic malformations of head and neck with OK-432 sclerotherapy induce systemic inflammatory response.

    PubMed

    Närkiö-Mäkelä, Mervi; Mäkelä, Teppo; Saarinen, Pia; Salminen, Päivi; Julkunen, Ilkka; Pitkäranta, Anne

    2011-01-01

    Systemic immune responses after OK-432 (Picibanil) sclerotherapy in patients with head and neck lymphatic malformations (LM) were examined to achieve a better understanding of the mechanism of OK-432 sclerotherapy and to evaluate the long-term treatment outcome. Serum samples from 17 consecutive patients with head and neck LMs were collected during a total of 26 OK-432 treatment episodes. Serum C-reactive protein (CRP), interleukins (IL) 1β, 6, 8, 10, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, RANTES, immune protein (IP)-10 and macrophage chemoattractant protein (MCP)-1 as well as blood leukocyte counts were determined. Clinical outcome of the treatment was evaluated at the last visit and from patient files. Elevated serum levels of IP-10 (means at baseline 702 ng/L, after 1 day 1180 ng/L, after 4 weeks 691 ng/L) were seen on day one after OK-432 sclerotherapy (p < 0.05). C-reactive protein and leukocyte counts 1 day after treatment differed statistically significantly (p < 0.05) from the baseline. No significant differences with other cytokines investigated were observed. Patients with macrocystic LM responded better than patients with microcystic LM (p = 0.01). The elevated levels of IP-10, C-reactive protein and leukocyte levels indicate that OK-432 sclerotherapy induces systemic immune responses in patients with LM. The mechanisms of OK-432 sclerotherapy are still not precisely understood, but the IP-10 elevation may reflect local antiangiogenetic properties of immunoactivation induced by OK-432.

  10. Oxidative stress induces transient O-GlcNAc elevation and tau dephosphorylation in SH-SY5Y cells.

    PubMed

    Kátai, Emese; Pál, József; Poór, Viktor Soma; Purewal, Rupeena; Miseta, Attila; Nagy, Tamás

    2016-12-01

    O-linked β-N-acetlyglucosamine or O-GlcNAc modification is a dynamic post-translational modification occurring on the Ser/Thr residues of many intracellular proteins. The chronic imbalance between phosphorylation and O-GlcNAc on tau protein is considered as one of the main hallmarks of Alzheimer's disease. In recent years, many studies also showed that O-GlcNAc levels can elevate upon acute stress and suggested that this might facilitate cell survival. However, many consider chronic stress, including oxidative damage as a major risk factor in the development of the disease. In this study, using the neuronal cell line SH-SY5Y we investigated the dynamic nature of O-GlcNAc after treatment with 0.5 mM H 2 O 2 for 30 min. to induce oxidative stress. We found that overall O-GlcNAc quickly increased and reached peak level at around 2 hrs post-stress, then returned to baseline levels after about 24 hrs. Interestingly, we also found that tau protein phosphorylation at site S262 showed parallel, whereas at S199 and PHF1 sites showed inverse dynamic to O-Glycosylation. In conclusion, our results show that temporary elevation in O-GlcNAc modification after H 2 O 2 -induced oxidative stress is detectable in cells of neuronal origin. Furthermore, oxidative stress changes the dynamic balance between O-GlcNAc and phosphorylation on tau proteins. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  11. The influence of phosphate, calcium and magnesium on matrix Gla-protein and vascular calcification: a systematic review.

    PubMed

    Houben, E; Neradova, A; Schurgers, L J; Vervloet, Marc

    2016-01-01

    Vitamin K-dependent matrix Gla protein (MGP) is a key inhibitor of vascular calcification (VC). MGP is synthesized by chondrocytes and vascular smooth muscle cells (VSMC) and the absence or inactivity of MGP results in excessive calcification of both growth plate and vasculature. Apart from its vitamin K dependency little is known about other factors that influence MGP metabolism. Phosphate, calcium and magnesium are involved in bone mineralization and play an important role in VC. In this review we provide a summary of the effect of phosphate, calcium, and magnesium on MGP metabolism. Elevated phosphate and calcium levels promote VC, in part by increasing the release of matrix vesicles (MV) that under the influence of calcium and phosphate become calcification competent. Phosphate and calcium simultaneously induce an upregulation of MGP protein and gene expression, which possibly inhibits calcification. Elevated phosphate levels did not change MGP protein levels in MV. On the contrary, elevated calcium concentrations caused a decrease of MGPloading in MV, which might in part explainthe calcifying effects of MV. Magnesium is a known inhibitor of VC. However, magnesium has been shown to have an inhibitory effect on MGP synthesis induced through downregulation of the calcium-sensing receptor and hereby causing a decrease in calcium induced MGP upregulation. There might also be stimulatory effect of magnesium on MGP in which the TRPM7 channel is involved. In conclusion there is a clear interaction between MGP and phosphate, calcium and magnesium. The upregulation of MGP by phosphate and calcium might be a cellular response that possibly results in the mitigation of VC.

  12. Intracellular and extracellular expression of the major inducible 70kDa heat shock protein in experimental ischemia-reperfusion injury of the spinal cord.

    PubMed

    Awad, Hamdy; Suntres, Zacharias; Heijmans, John; Smeak, Daniel; Bergdall-Costell, Valerie; Christofi, Fievos L; Magro, Cynthia; Oglesbee, Michael

    2008-08-01

    Inflammatory responses exacerbate ischemia-reperfusion (IR) injury of spinal cord, although understanding of mediators is incomplete. The major inducible 70kDa heat shock protein (hsp70) is induced by ischemia and extracellular hsp70 (e-hsp70) can modulate inflammatory responses, but there is no published information regarding e-hsp70 levels in the cerebrospinal fluid (CSF) or serum as part of any neurological disease state save trauma. The present work addresses this deficiency by examining e-hsp70 in serum and CSF of dogs in an experimental model of spinal cord IR injury. IR injury of spinal cord caused hind limb paraplegia within 2-3 h that was correlated to lumbosacral poliomalacia with T cell infiltrates at 3 d post-ischemia. In this context, we showed a 5.2-fold elevation of e-hsp70 in CSF that was induced by ischemia and was sustained for the following 3 d observation interval. Plasma e-hsp70 levels were unaffected by IR injury, indicating e-hsp70 release from within the central nervous system. A putative source of this e-hsp70 was ependymal cells in the ischemic penumbra, based upon elevated i-hsp70 levels detected within these cells. Results warrant further investigation of e-hsp70's potential to modulate spinal cord IR injury.

  13. Methamphetamine toxicity-induced calcineurin activation, nuclear translocation of nuclear factor of activated T-cells and elevation of cyclooxygenase 2 levels are averted by calpastatin overexpression in neuroblastoma SH-SY5Y cells.

    PubMed

    Chetsawang, Jirapa; Nudmamud-Thanoi, Sutisa; Phonchai, Ruchee; Abubakar, Zuroida; Govitrapong, Piyarat; Chetsawang, Banthit

    2018-06-23

    Methamphetamine (METH) is an addictive stimulant drug that has many negative consequences, including toxic effects to the brain. Recently, the induction of inflammatory processes has been identified as a potential contributing factor to induce neuronal cell degeneration. It has been demonstrated that the expression of inflammatory agents, such as cyclooxygenase 2 (COX-2), depends on the activation of calcineurin (CaN) and nuclear factor of activated T-cells (NFAT). Moreover, the excessive elevation in cytosolic Ca 2+ levels activates the cell death process, including calpain activation in neurons, which was diminished by the overexpression of the calpain inhibitor protein, calpastatin. However, it is unclear whether calpain mediates CaN-NFAT activation in the neurotoxic process. In the present study, we observed that the toxic high dose of METH-treated neuroblastoma SH-SY5Y cells significantly decreased cell viability but increased apoptotic cell death, the active cleaved form of calcineurin, the nuclear translocation of NFAT, and COX-2 levels. Nevertheless, these toxic effects were diminished in METH-treated calpastatin-overexpressing SH-SY5Y cells. These findings might emphasize the role of calpastatin against METH-induced toxicity by a mechanism related to calpain-dependent CaN-NFAT activation-induced COX-2 expression. Copyright © 2018. Published by Elsevier B.V.

  14. Hepatoprotective effect of 10% ethanolic extract from Curdrania tricuspidata leaves against ethanol-induced oxidative stress through suppression of CYP2E1.

    PubMed

    You, Yanghee; Min, Seoyoung; Lee, Yoo-Hyun; Hwang, Kwontack; Jun, Woojin

    2017-10-01

    The hepatoprotective effect of 10% ethanolic extract of Curdrania tricuspidata (CTE) was investigated in HepG2/2E1 cells and C57BL/6 J mice. When compared ethanol-only treated HepG2/2E1 cells, pretreatment of CTE prevented increased intra-cellular reactive oxygen species levels and decreased antioxidant activities by ethanol-induced oxidative stress. In C57BL/6 J mice, CTE at a dose of 250 mg/kg/day was administered for 10 days, with ethanol (5 g/kg/day) administered for the final 3 days. Pretreatment with CTE prevented the elevated activities of serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase caused by ethanol-induced hepatic damage. CTE-treated mice displayed a reduced level of malondialdehyde and increased antioxidant activities of catalase, glutathione S-transferase, glutathione peroxidase, and superoxide dismutase, as well as a reduced level of glutathione as compared with ethanol-only-treated mice. CTE-treated mice exhibited significant inhibition of CYP2E1 activities and expression. These results suggest that CTE could be a useful agent for the prevention of ethanol-induced oxidative damage in the liver, elevating antioxidative potentials and alleviating oxidative stress by suppressing CYP2El. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Hepatoprotective effect of chrysin on prooxidant-antioxidant status during ethanol-induced toxicity in female albino rats.

    PubMed

    Sathiavelu, Jayanthi; Senapathy, Giftson Jebakkan; Devaraj, Rajkumar; Namasivayam, Nalini

    2009-06-01

    To evaluate the effect of chrysin, a natural, biologically active compound extracted from many plants, honey and propolis, on the tissue and circulatory antioxidant status, and lipid peroxidation in ethanol-induced hepatotoxicity in rats. Rats were divided into four groups. Groups 1 and 2 received isocaloric glucose. Groups 3 and 4 received 20% ethanol, equivalent to 5 g/kg bodyweight every day. Groups 2 and 4 received chrysin (20 mg/kg bodyweight) dissolved in 0.5% dimethylsulfoxide. The results showed significantly elevated levels of tissue and circulatory thiobarbituric acid reactive substances, conjugated dienes and lipid hydroperoxides, and significantly lowered enzymic and non-enzymic antioxidant activity of superoxide dismutase, catalase and glutathione-related enzymes such as glutathione peroxidase, glutathione reductase, glutathione-S-transferase, reduced glutathione, vitamin C and vitamin E in ethanol-treated rats compared with the control. Chrysin administration to rats with ethanol-induced liver injury significantly decreased the levels of thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes, and significantly elevated the activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase and the levels of reduced glutathione, vitamin C and vitamin E in the tissues and circulation compared with those of the unsupplemented ethanol-treated rats. The histological changes observed in the liver and kidney correlated with the biochemical findings. Chrysin offers protection against free radical-mediated oxidative stress in rats with ethanol-induced liver injury.

  16. [Serum sclerostin levels and metabolic bone diseases].

    PubMed

    Yamauchi, Mika; Sugimoto, Toshitsugu

    2013-06-01

    Serum sclerostin levels are being investigated in various metabolic bone diseases. Since serum sclerostin levels are decreased in primary hyperparathyroidism and elevated in hypoparathyroidism, parathyroid hormone (PTH) is thought to be a regulatory factor for sclerostin. Serum sclerostin levels exhibit a significant positive correlation with bone mineral density. On the other hand, a couple of studies on postmenopausal women have shown that high serum sclerostin levels are a risk factor for fracture. Although glucocorticoid induced osteoporosis and diabetes are both diseases that reduce bone formation, serum sclerostin levels have been reported to be decreased in the former and elevated in the latter, suggesting differences in the effects of sclerostin in the two diseases. Serum sclerostin levels are correlated with renal function, and increase with reduction in renal function. Serum sclerostin level may be a new index of bone assessment that differs from bone mineral density and bone metabolic markers.

  17. Chronic treatment with fibrates elevates superoxide dismutase in adult mouse brain microvessels

    PubMed Central

    Wang, Guangming; Liu, Xiaowei; Guo, Qingmin; Namura, Shobu

    2010-01-01

    Fibrates are activators of peroxisome proliferator-activated receptor (PPAR) α. Pretreatment with fibrates has been shown to protect brain against ischemia in mice. We hypothesized that fibrates elevate superoxide dismutase (SOD) levels in the brain microvessels (BMV). BMV were isolated from male C57BL/6 and PPARα null mice that had been treated with fenofibrate or gemfibrozil for 7 days. To examine the effect of discontinuation of fenofibrate, another animal group treated with fenofibrate was examined on post-discontinuation day 3 (D-3). To examine whether SOD elevations attenuate oxidative stress in the ischemic brain, separate animals treated with fenofibrate for 7 days were subjected to 60 minutes focal ischemia on post-discontinuation day 0 (D-0) or D-3. Fenofibrate (30 mg/kg) increased mRNA levels of all three isoforms of SOD and activity level in BMV on D-0 but these effects were not detected on D-3. The elevations were not detected in PPARα null mice. SOD levels were also elevated by gemfibrozil (30 mg/kg). Fenofibrate significantly reduced superoxide production and protein oxidation in the ischemic brain at 30 minutes after reperfusion. Fenofibrate reduced infarct size measured at 24 hours after reperfusion on D-0; however, the infarct reduction was not seen when ischemia was induced on D-3. These findings suggest that fibrates elevate SOD in BMV through PPARα, which contributes to the infarct reduction, at least in part. Further studies are needed to establish the link between the SOD elevations and the brain protection by fibrates against ischemia. PMID:20813100

  18. 3-Mercaptopyruvate Sulfurtransferase, Not Cystathionine β-Synthase Nor Cystathionine γ-Lyase, Mediates Hypoxia-Induced Migration of Vascular Endothelial Cells.

    PubMed

    Tao, Beibei; Wang, Rui; Sun, Chen; Zhu, Yichun

    2017-01-01

    Hypoxia-induced angiogenesis is a common phenomenon in many physiological and patho-physiological processes. However, the potential differential roles of three hydrogen sulfide producing systems cystathionine γ-lyase (CSE)/H 2 S, cystathionine β-synthase (CBS)/H 2 S, and 3-mercaptopyruvate sulfurtransferase (MPST)/H 2 S in hypoxia-induced angiogenesis are still unknown. We found that minor hypoxia (10% oxygen) significantly increased the migration of vascular endothelial cells while hypoxia (8% oxygen) significantly inhibited cell migration. The present study was performed using cells cultured in 10% oxygen. RNA interference was used to block the endogenous generation of hydrogen sulfide by CSE, CBS, or MPST in a vascular endothelial cell migration model in both normoxia and hypoxia. The results showed that CBS had a promoting effect on the migration of vascular endothelial cells cultured in both normoxic and hypoxic conditions. In contrast, CSE had an inhibitory effect on cell migration. MPST had a promoting effect on the migration of vascular endothelial cells cultured in hypoxia; however, it had no effect on the cells cultured in normoxia. Importantly, it was found that the hypoxia-induced increase in vascular endothelial cell migration was mediated by MPST, but not CSE or CBS. The western blot analyses showed that hypoxia significantly increased MPST protein levels, decreased CSE protein levels and did not change CBS levels, suggesting that these three hydrogen sulfide-producing systems respond differently to hypoxic conditions. Interestingly, MPST protein levels were elevated by hypoxia in a bi-phasic manner and MPST mRNA levels increased later than the first stage elevation of the protein levels, implying that the expression of MPST induced by hypoxia was also regulated at a post-transcriptional level. RNA pull-down assay showed that some candidate RNA binding proteins, such as nucleolin and Annexin A2, were dissociated from the 3'-UTR of MPST mRNA in hypoxia which implied their involvement in MPST mRNA regulation.

  19. Leptin deficiency in mice counteracts imiquimod (IMQ)-induced psoriasis-like skin inflammation while leptin stimulation induces inflammation in human keratinocytes.

    PubMed

    Stjernholm, Theresa; Ommen, Pernille; Langkilde, Ane; Johansen, Claus; Iversen, Lars; Rosada, Cecilia; Stenderup, Karin

    2017-04-01

    Leptin is an adipocyte-derived cytokine secreted mostly by adipose tissue. Serum leptin levels are elevated in obese individuals and correlate positively with body mass index (BMI). Interestingly, serum leptin levels are also elevated in patients with psoriasis and correlate positively with disease severity. Psoriasis is associated with obesity; patients with psoriasis have a higher incidence of obesity, and obese individuals have a higher risk of developing psoriasis. Additionally, obese patients with psoriasis experience a more severe degree of psoriasis. In this study, we hypothesised that leptin may link psoriasis and obesity and plays an aggravating role in psoriasis. To investigate leptin's role in psoriasis, we applied the widely accepted imiquimod (IMQ)-induced psoriasis-like skin inflammation mouse model on leptin-deficient (ob/ob) mice and evaluated psoriasis severity. Moreover, we stimulated human keratinocytes with leptin and investigated the effect on proliferation and expression of pro-inflammatory proteins. In ob/ob mice, clinical signs of erythema, infiltration and scales in dorsal skin and inflammation in ear skin, as measured by ear thickness, were attenuated and compared with wt mice. Moreover, IL-17A and IL-22 mRNA expression levels, as well as increased epidermal thickness, were significantly less induced. In vitro, the effect of leptin stimulation on human keratinocytes demonstrated increased proliferation and induced secretion of several pro-inflammatory proteins; two hallmarks of psoriasis. In conclusion, leptin deficiency attenuated IMQ-induced psoriasis-like skin inflammation in a mouse model, and leptin stimulation induced a pro-inflammatory phenotype in human keratinocytes, thus, supporting an aggravating role of leptin in psoriasis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Extraction of lidar-based dune-crest elevations for use in examining the vulnerability of beaches to inundation during hurricanes

    USGS Publications Warehouse

    Stockdon, H.F.; Doran, K.S.; Sallenger, A.H.

    2009-01-01

    The morphology of coastal sand dunes plays an important role in determining how a beach will respond to a hurricane. Accurate measurements of dune height and position are essential for assessing the vulnerability of beaches to extreme coastal change during future landfalls. Lidar topographic surveys provide rapid, accurate, high-resolution datasets for identifying the location, position, and morphology of coastal sand dunes over large stretches of coast. An algorithm has been developed for identification of the crest of the most seaward sand dune that defines the landward limit of the beach system. Based on changes in beach slope along cross-shore transects of lidar data, dune elevation and location can automatically be extracted every few meters along the coastline. Dune elevations in conjunction with storm-induced water levels can be used to predict the type of coastal response (e.g., beach erosion, dune erosion, overwash, or inundation) that may be expected during hurricane landfall. The vulnerability of the beach system at Fire Island National Seashore in New York to the most extreme of these changes, inundation, is assessed by comparing lidar-derived dune elevations to modeled wave setup and storm surge height. The vulnerability of the beach system to inundation during landfall of a Category 3 hurricane is shown to be spatially variable because of longshore variations in dune height (mean elevation 5.44 m, standard deviation 1.32 m). Hurricane-induced mean water levels exceed dune elevations along 70 of the coastal park, making these locations more vulnerable to inundation during a Category 3 storm. ?? 2009 Coastal Education and Research Foundation.

  1. Predator stress-induced persistent emotional arousal is associated with alterations of plasma corticosterone and hippocampal steroid receptors in rat.

    PubMed

    Wang, Qingsong; Yu, Ke; Wang, Jun; Lin, Hang; Wu, Yuxian; Wang, Weiwen

    2012-04-21

    To investigate the long-term effects of psychological stress on emotionality, the emotional arousal of rats in 4 months after predator stress was assessed in both an open field environment and elevated plus maze. We also assessed the levels of plasma corticosterone (CORT) by radioimmunoassay, the distributions of brain glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) by immunohistochemistry, and the expressions of GR and MR by Western blot. The results showed that intense predator stress, which was adjusted to ensure consistent stressor intensity using rat tonic immobility behavior, successfully induced lasting decreased locomotor activity and habituation to novel environments, suppressed exploratory behavior, and increased anxiety-like behavior. The plasma CORT levels dramatically increased 1h after stress, then returned to basal levels at 1wk, decreased 1 month later, and remained significantly lower than control levels 4 months after exposure to stress. Immunohistochemical analysis showed that GR was markedly increased in the hippocampus and frontal cortexes of stressed rats and that the changes in the hippocampus were more pronounced. In contrast, MR expression was significantly decreased in both brain regions. Western analysis confirmed these dramatically elevated levels of GR expression and lower levels of MR expression in the hippocampus 4 months after stress. We conclude that acute severe psychological stress may induce long-term emotional behavioral changes, and that different patterns in plasma CORT, alterations in brain corticoid receptors, and increased hippocampal vulnerability to the effects of predator stress may play important roles in the persistent emotional arousal induced by intense psychological stress. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Experimental Autoimmune Encephalomyelitis (EAE)-Induced Elevated Expression of the E1 Isoform of Methyl CpG Binding Protein 2 (MeCP2E1): Implications in Multiple Sclerosis (MS)-Induced Neurological Disability and Associated Myelin Damage.

    PubMed

    Khorshid Ahmad, Tina; Zhou, Ting; AlTaweel, Khaled; Cortes, Claudia; Lillico, Ryan; Lakowski, Ted Martin; Gozda, Kiana; Namaka, Michael Peter

    2017-06-12

    Multiple sclerosis (MS) is a chronic neurological disease characterized by the destruction of central nervous system (CNS) myelin. At present, there is no cure for MS due to the inability to repair damaged myelin. Although the neurotrophin brain derived neurotrophic factor (BDNF) has a beneficial role in myelin repair, these effects may be hampered by the over-expression of a transcriptional repressor isoform of methyl CpG binding protein 2 (MeCP2) called MeCP2E1. We hypothesize that following experimental autoimmune encephalomyelitis (EAE)-induced myelin damage, the immune system induction of the pathogenic MeCP2E1 isoform hampers the myelin repair process by repressing BDNF expression. Using an EAE model of MS, we identify the temporal gene and protein expression changes of MeCP2E1, MeCP2E2 and BDNF. The expression changes of these key biological targets were then correlated with the temporal changes in neurological disability scores (NDS) over the entire disease course. Our results indicate that MeCP2E1 mRNA levels are elevated in EAE animals relative to naïve control (NC) and active control (AC) animals during all time points of disease progression. Our results suggest that the EAE-induced elevations in MeCP2E1 expression contribute to the repressed BDNF production in the spinal cord (SC). The sub-optimal levels of BDNF result in sustained NDS and associated myelin damage throughout the entire disease course. Conversely, we observed no significant differences in the expression patterns displayed for the MeCP2E2 isoform amongst our experimental groups. However, our results demonstrate that baseline protein expression ratios between the MeCP2E1 versus MeCP2E2 isoforms in the SC are higher than those identified within the dorsal root ganglia (DRG). Thus, the DRG represents a more conducive environment than that of the SC for BDNF production and transport to the CNS to assist in myelin repair. Henceforth, the sub-optimal BDNF levels we report in the SC may arise from the elevated MeCP2E1 vs. MeCP2E2 ratio in the SC that creates a more hostile environment thereby preventing local BDNF production. At the level of transcript, we demonstrate that EAE-induces the pathological enhanced expression of MeCP2E1 that contributes to enhanced NDS during the entire disease course. Thus, the pathological induction of the MeCP2E1 isoform contributes to the disruption of the normal homeostatic signaling equilibrium network that exists between cytokines, neurotrophins and chemokines that regulate the myelin repair process by repressing BDNF. Our research suggests that the elevated ratio of MeCP2E1 relative to MeCP2E2 may be a useful diagnostic marker that clinicians can utilize to determine the degree of neurological disability with associated myelin damage. The elevated MeCP2E1 vs. MeCP2E2 ratios (E1/E2) in the SC prevent BDNF from reaching optimal levels required for myelin repair. Thus, the lower E1/E2 ratios in the DRG, allow the DRG to serve as a weak secondary compensatory mechanism for enhanced production and delivery of BDNF to the SC to try to assist in myelin repair.

  3. Elevated hepatic fatty acid elongase-5 activity corrects dietary fat-induced hyperglycemia in obese BL/6J mice[S

    PubMed Central

    Tripathy, Sasmita; Torres-Gonzalez, Moises; Jump, Donald B.

    2010-01-01

    Elevated hepatic fatty acid elongase-5 (Elovl5) activity lowers blood glucose in fasted chow-fed C57BL/6J mice. As high-fat diets induce hyperglycemia and suppress hepatic Elovl5 activity, we tested the hypothesis that elevated hepatic Elovl5 expression attenuates hyperglycemia in high-fat-diet-induced obese mice. Increasing hepatic Elovl5 activity by a recombinant adenoviral approach restored blood glucose and insulin, HOMA-IR, and glucose tolerance to normal values in obese mice. Elevated Elovl5 activity increased hepatic content of Elovl5 products (20:3,n-6, 22:4,n-6) and suppressed levels of enzymes (Pck1, G6Pc) and transcription factors (FoxO1 and PGC1α, but not CRTC2) involved in gluconeogenesis. Effects of Elovl5 on FoxO1 nuclear abundance correlated with increased phosphorylation of FoxO1, Akt, and the catalytic unit of PP2A, as well as a decline in cellular abundance of TRB3. Such changes are mechanistically linked to the regulation of FoxO1 nuclear abundance and gluconeogenesis. These results show that Elovl5 activity impacts the hepatic abundance and phosphorylation status of multiple proteins involved in gluconeogenesis. Our findings establish a link between fatty acid elongation and hepatic glucose metabolism and suggest a role for regulators of Elovl5 activity in the treatment of diet-induced hyperglycemia. PMID:20488798

  4. Adenosine 5'-monophosphate ameliorates D-galactosamine/lipopolysaccharide-induced liver injury through an adenosine receptor-independent mechanism in mice.

    PubMed

    Zhan, Y; Wang, Z; Yang, P; Wang, T; Xia, L; Zhou, M; Wang, Y; Wang, S; Hua, Z; Zhang, J

    2014-01-09

    D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5'-monophosphate (5'-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5'-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5'-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5'-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5'-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury.

  5. Adenosine 5′-monophosphate ameliorates D-galactosamine/lipopolysaccharide-induced liver injury through an adenosine receptor-independent mechanism in mice

    PubMed Central

    Zhan, Y; Wang, Z; Yang, P; Wang, T; Xia, L; Zhou, M; Wang, Y; Wang, S; Hua, Z; Zhang, J

    2014-01-01

    D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5′-monophosphate (5′-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5′-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5′-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5′-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5′-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury. PMID:24407238

  6. Oriental Medicine Kyung-Ok-Ko Prevents and Alleviates Dehydroepiandrosterone-Induced Polycystic Ovarian Syndrome in Rats

    PubMed Central

    Lee, Jin Moo; Bae, Chun-Sik; Kim, Sung-Hoon; Ryu, Jong Hoon; Cho, Ik-Hyun

    2014-01-01

    Kyung-Ok-Ko (KOK), a traditional herbal prescription composed of Rehmannia glutinosa Liboschitz var. purpurae, Lycium chinense, Aquillaria agallocha, Poria cocos, Panax ginseng, and honey, has been widely used in traditional Oriental medicine as a vitalizing medicine or as the prescription for patients with age-associated disorders such as amnesia and stroke. However, the potential protective value of KOK for the treatment of polycystic ovarian syndrome (PCOS) is largely unknown. We investigated whether pre-administration (daily from 2 hours before PCOS induction) and post-administration (daily after induction of PCOS) of KOK (0.5, 1.0, and 2.0 g/kg/day, p.o.) could have a protective effect in a dehydroepiandrosterone (DHEA, s.c.)-induced PCOS rat model. Pre-administration of KOK significantly decreased the elevated body weight and ovary weight, elevated size and number of follicular cysts, elevated level of serum glucose, and estradiol after DHEA injection. KOK reduced the elevated percentage of CD8 (+) T lymphocytes in lymph nodes, the elevated mRNA expression of CD11b and CD3 in ovaries, and infiltration of macrophages in ovarian tissue with PCOS. KOK diminished the increased mRNA expression of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α), chemokines (IL-8, MCP-1), and iNOS in the ovaries, and increased the reduced mRNA expression of growth factors (EGF, TGF-β) by DHEA injection. Post-administration of KOK also improved the DHEA-induced PCOS-like symptoms, generally similar to those evident from pre-administration of KOK. KOK may effectively prevent and improve DHEA-induced PCOS via anti-inflammatory action, indicating its preventive and therapeutic potential for suppressing PCOS. PMID:24520334

  7. Oriental medicine Kyung-Ok-Ko prevents and alleviates dehydroepiandrosterone-induced polycystic ovarian syndrome in rats.

    PubMed

    Jang, Minhee; Lee, Min Jung; Lee, Jin Moo; Bae, Chun-Sik; Kim, Sung-Hoon; Ryu, Jong Hoon; Cho, Ik-Hyun

    2014-01-01

    Kyung-Ok-Ko (KOK), a traditional herbal prescription composed of Rehmannia glutinosa Liboschitz var. purpurae, Lycium chinense, Aquillaria agallocha, Poria cocos, Panax ginseng, and honey, has been widely used in traditional Oriental medicine as a vitalizing medicine or as the prescription for patients with age-associated disorders such as amnesia and stroke. However, the potential protective value of KOK for the treatment of polycystic ovarian syndrome (PCOS) is largely unknown. We investigated whether pre-administration (daily from 2 hours before PCOS induction) and post-administration (daily after induction of PCOS) of KOK (0.5, 1.0, and 2.0 g/kg/day, p.o.) could have a protective effect in a dehydroepiandrosterone (DHEA, s.c.)-induced PCOS rat model. Pre-administration of KOK significantly decreased the elevated body weight and ovary weight, elevated size and number of follicular cysts, elevated level of serum glucose, and estradiol after DHEA injection. KOK reduced the elevated percentage of CD8 (+) T lymphocytes in lymph nodes, the elevated mRNA expression of CD11b and CD3 in ovaries, and infiltration of macrophages in ovarian tissue with PCOS. KOK diminished the increased mRNA expression of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α), chemokines (IL-8, MCP-1), and iNOS in the ovaries, and increased the reduced mRNA expression of growth factors (EGF, TGF-β) by DHEA injection. Post-administration of KOK also improved the DHEA-induced PCOS-like symptoms, generally similar to those evident from pre-administration of KOK. KOK may effectively prevent and improve DHEA-induced PCOS via anti-inflammatory action, indicating its preventive and therapeutic potential for suppressing PCOS.

  8. Radiation-induced enzyme efflux from rat heart: sedentary animals. [Gamma radiation, lactate dehydrogenase, creative kinase, glutamate oxaloacetate transaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacWilliam, L.D.; Bhakthan, N.M.G.

    1976-01-01

    Serum levels of lactate dehydrogenase, creatine kinase, and glutamate oxaloacetate transaminase show initial elevations within 12 hr of exposure to 2,000 rads of ..gamma..-radiation to the thoracic region of rats. Significant decreases in heart muscle homogenate levels of these enzymes parallel initial elevations in the serum and may suggest that enhanced leakage of enzymes is a consequence of radiation injury to heart muscle. Insignificant alterations in mitochondrial glutamate oxaloacetate transaminase levels after exposure indicate that in vivo injury to the mitochondria from therapeutic levels of ..gamma..-radiation is questionable. The results support the contention that ionizing radiation instigates alterations in themore » dynamic permeability of membranes, allowing leakage of biologically active material out of the injured cell.« less

  9. L-carnitine mitigates UVA-induced skin tissue injury in rats through downregulation of oxidative stress, p38/c-Fos signaling, and the proinflammatory cytokines.

    PubMed

    Salama, Samir A; Arab, Hany H; Omar, Hany A; Gad, Hesham S; Abd-Allah, Gamil M; Maghrabi, Ibrahim A; Al Robaian, Majed M

    2018-04-01

    UVA comprises more than 90% of the solar UV radiation reaching the Earth. Artificial lightening lamps have also been reported to emit significant amounts of UVA. Exposure to UVA has been associated with dermatological disorders including skin cancer. At the molecular level, UVA damages different cellular biomolecules and triggers inflammatory responses. The current study was devoted to investigate the potential protective effect of L-carnitine against UVA-induced skin tissue injury using rats as a mammalian model. Rats were distributed into normal control group (NC), L-carnitine control group (LC), UVA-Exposed group (UVA), and UVA-Exposed and L-carnitine-treated group (UVA-LC). L-carnitine significantly attenuated UVA-induced elevation of the DNA damage markers 8-oxo-2'-deoxyguanosine (8-oxo-dG) and cyclobutane pyrimidine dimers (CPDs) as well as decreased DNA fragmentation and the activity of the apoptotic marker caspase-3. In addition, L-carnitine substantially reduced the levels of lipid peroxidation marker (TBARS) and protein oxidation marker (PCC) and significantly elevated the levels of the total antioxidant capacity (TAC) and the antioxidant reduced glutathione (GSH) in the skin tissues. Interestingly, L-carnitine upregulated the level of the DNA repair protein proliferating cell nuclear antigen (PCNA). Besides it mitigated the UVA-induced activation of the oxidative stress-sensitive signaling protein p38 and its downstream target c-Fos. Moreover, L-carnitine significantly downregulated the levels of the early response proinflammatory cytokines TNF-α, IL-6, and IL-1β. Collectively, our results highlight, for the first time, the potential attenuating effects of L-carnitine on UVA-induced skin tissue injury in rats that is potentially mediated through suppression of UVA-induced oxidative stress and inflammatory responses. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Imaging findings in a child with calcineurin inhibitor-induced pain syndrome after bone marrow transplant for beta thalassemia major.

    PubMed

    Ayyala, Rama S; Arnold, Staci D; Bhatia, Monica; Dastgir, Jahannaz

    2016-10-01

    Calcineurin inhibitor-induced pain syndrome is an entity recognized in patients on immunosuppressive therapy after transplantation. Diagnosis is characterized by onset of pain beginning in the setting of an elevated calcineurin-inhibitor trough level. Reducing the medication dose relieves symptoms. Imaging findings can be nonspecific, including bone marrow edema and periosteal reaction. We present the unique case of calcineurin inhibitor-induced pain syndrome in a child and review the imaging findings.

  11. Choline or CDP-choline alters serum lipid responses to endotoxin in dogs and rats: involvement of the peripheral nicotinic acetylcholine receptors.

    PubMed

    Ilcol, Yesim Ozarda; Yilmaz, Zeki; Cansev, Mehmet; Ulus, Ismail H

    2009-09-01

    We showed previously that choline administration protects dogs from endotoxin-induced multiple organ injury and platelet dysfunctions. Because sepsis/endotoxemia is associated with alterations in lipid metabolism, we have investigated whether choline or cytidine-5'-diphosphate choline, a choline donor, alters serum lipid responses to endotoxin in dogs and rats. In response to endotoxin, serum concentrations of triglycerides, choline-containing phospholipids, total cholesterol, and high-density lipoprotein cholesterol increased in a dose- and time-related manner. Administration of choline (20 mg/kg i.v. in dogs or 90 mg/kg i.p. in rats) or cytidine-5'-diphosphate choline (70 mg/kg i.v. in dogs) 5 min before and 4 and 8 h after endotoxin blocked or attenuated the increases in serum triglycerides, total cholesterol, and nonesterified fatty acids. Endotoxin-induced elevations in serum phospholipid levels did not change in rats and were enhanced in dogs by choline. In rats, serum lipid response to endotoxin was accompanied by severalfold elevations in serum levels of hepatorenal injury markers; their elevations were also blocked by choline. Pretreatment with hexamethonium blocked choline's effects on serum lipids and hepatorenal injury markers. Pretreatment with atropine blocked endotoxin-induced elevations in serum lipid and hepatorenal injury markers, but failed to alter choline's actions on these parameters. Choline treatment improved survival rate of rats in lethal endotoxin shock. In conclusion, these data show that choline treatment alters serum lipid responses to endotoxin and prevents hepatorenal injury during endotoxemia through a nicotinic acetylcholine receptor-mediated mechanism. Hence, choline and choline-containing compounds may have a therapeutic potential in the treatment of endotoxemia/sepsis.

  12. Elevated levels of plasma Big endothelin-1 and its relation to hypertension and skin lesions in individuals exposed to arsenic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Ekhtear; Islam, Khairul; Yeasmin, Fouzia

    Chronic arsenic (As) exposure affects the endothelial system causing several diseases. Big endothelin-1 (Big ET-1), the biological precursor of endothelin-1 (ET-1) is a more accurate indicator of the degree of activation of the endothelial system. Effect of As exposure on the plasma Big ET-1 levels and its physiological implications have not yet been documented. We evaluated plasma Big ET-1 levels and their relation to hypertension and skin lesions in As exposed individuals in Bangladesh. A total of 304 study subjects from the As-endemic and non-endemic areas in Bangladesh were recruited for this study. As concentrations in water, hair and nailsmore » were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The plasma Big ET-1 levels were measured using a one-step sandwich enzyme immunoassay kit. Significant increase in Big ET-1 levels were observed with the increasing concentrations of As in drinking water, hair and nails. Further, before and after adjusting with different covariates, plasma Big ET-1 levels were found to be significantly associated with the water, hair and nail As concentrations of the study subjects. Big ET-1 levels were also higher in the higher exposure groups compared to the lowest (reference) group. Interestingly, we observed that Big ET-1 levels were significantly higher in the hypertensive and skin lesion groups compared to the normotensive and without skin lesion counterpart, respectively of the study subjects in As-endemic areas. Thus, this study demonstrated a novel dose–response relationship between As exposure and plasma Big ET-1 levels indicating the possible involvement of plasma Big ET-1 levels in As-induced hypertension and skin lesions. -- Highlights: ► Plasma Big ET-1 is an indicator of endothelial damage. ► Plasma Big ET-1 level increases dose-dependently in arsenic exposed individuals. ► Study subjects in arsenic-endemic areas with hypertension have elevated Big ET-1 levels. ► Study subjects with arsenic-induced skin lesions show elevated plasma Big ET-1 levels. ► Arsenic-induced hypertension and skin lesions may be linked to plasma Big ET-1 levels.« less

  13. RELATIONSHIP BETWEEN INDUCED OXIDENT GENERATION AND ASTHMA SEVERITY

    EPA Science Inventory

    The role of oxygen radicals is implicated in many disease processes, including asthma. There is evidence that elevated oxidant status is associated with airway hyper responsiveness, however it is less clear whether increased levels of circulating reactive oxygen species are assoc...

  14. Not changes in membrane fluidity but proteotoxic stress triggers heat shock protein expression in Chlamydomonas reinhardtii.

    PubMed

    Rütgers, Mark; Muranaka, Ligia Segatto; Schulz-Raffelt, Miriam; Thoms, Sylvia; Schurig, Juliane; Willmund, Felix; Schroda, Michael

    2017-12-01

    A conserved reaction of all organisms exposed to heat stress is an increased expression of heat shock proteins (HSPs). Several studies have proposed that HSP expression in heat-stressed plant cells is triggered by an increased fluidity of the plasma membrane. Among the main lines of evidence in support of this model are as follows: (a) the degree of membrane lipid saturation was higher in cells grown at elevated temperatures and correlated with a lower amplitude of HSP expression upon a temperature upshift, (b) membrane fluidizers induce HSP expression at physiological temperatures, and (c) membrane rigidifier dimethylsulfoxide dampens heat-induced HSP expression. Here, we tested whether this holds also for Chlamydomonas reinhardtii. We show that heat-induced HSP expression in cells grown at elevated temperatures was reduced because they already contained elevated levels of cytosolic HSP70A/90A that apparently act as negative regulators of heat shock factor 1. We find that membrane rigidifier dimethylsulfoxide impaired translation under heat stress conditions and that membrane fluidizer benzyl alcohol not only induced HSP expression but also caused protein aggregation. These findings support the classical model for the cytosolic unfolded protein response, according to which HSP expression is induced by the accumulation of unfolded proteins. Hence, the membrane fluidity model should be reconsidered. © 2017 John Wiley & Sons Ltd.

  15. Proteome Analyses of Staphylococcus aureus Biofilm at Elevated Levels of NaCl

    PubMed Central

    Islam, Nazrul; Ross, Julia M; Marten, Mark R

    2016-01-01

    Our studies demonstrate that sodium chloride (NaCl) induces changes in biofilm, mediated by increased production of polysaccharides intercellular adhesion (PIA). We identified 12 proteins that showed higher abundance in increased level of NaCl. This includes one important protein (IsaA) known to be associated with biofilm stability. In addition, we also found higher abundance of a cold shock protein, CspA, at higher NaCl. We have also identified several other proteins that are differentially expressed to the elevated levels of NaCl and mapped them in the regulatory pathways of PIA. The majority of proteins are involved with various aspects bacterial metabolic function. Our results demonstrated that NaCl influences gene regulatory networks controlling exopolysaccharide expression. PMID:26973848

  16. Low dose of L-glutamic acid attenuated the neurological dysfunctions and excitotoxicity in bilateral common carotid artery occluded mice.

    PubMed

    Ramanathan, Muthiah; Abdul, Khadar K; Justin, Antony

    2016-10-01

    Glutamate, an excitatory neurotransmitter in the brain, produces excitotoxicity through its agonistic action on postsynaptic N-methyl-D-aspartate receptor, resulting in neurodegeneration. We hypothesized that the administration of low doses of glutamate in cerebral ischemia could attenuate the excitotoxicity in neurons through its autoreceptor regulatory mechanism, and thereby control neurodegeneration. To test the hypothesis, the effect of L-glutamic acid (L-GA) 400 μmol/l/kg was evaluated in a bilateral common carotid artery occlusion-induced global ischemic mouse model. Memantine was used as a positive control. Global ischemia in mice was induced by occlusion of both the common carotid artery (bilateral common carotid artery occlusion) for 20 min, followed by reperfusion injury. L-GA was infused slowly through the tail vein 30 min before the surgery and every 24 h thereafter until the end of the experiment. The time-dependent change in cerebral blood flow was monitored using a laser Doppler image analyzer. The neurotransmitters glutamate and γ-aminobutyric acid (GABA) and the neurobiochemicals ATP, glutathione, and nitric oxide were measured in the different regions of brain at 0, 24, 48, and 72 h after reperfusion injury. L-GA increased locomotor activity, muscle coordination, and cerebral blood flow in ischemic mice at 72 h after ischemic insult. L-GA reduced glutamate levels in the cortex, striatum, and hippocampus at 72 h, whereas GABA levels were elevated in all three brain regions studied. Further, L-GA elevated glutathione levels and attenuated nitric oxide levels, but failed to restore ATP levels 72 h after ischemia-reperfusion. We conclude that the gradual reduction of glutamate along with elevation of GABA in different brain regions could have contributed toward the neuroprotective effect of L-GA. Hence, a slow infusion of a low dose of L-GA could be beneficial in controlling excitotoxicity-induced neurodegeneration following ischemia.

  17. Ferroptosis is Involved in Acetaminophen Induced Cell Death.

    PubMed

    Lőrincz, Tamás; Jemnitz, Katalin; Kardon, Tamás; Mandl, József; Szarka, András

    2015-09-01

    The recently described form of programmed cell death, ferroptosis can be induced by agents causing GSH depletion or the inhibition of GPX4. Ferroptosis clearly shows distinct morphologic, biochemical and genetic features from apoptosis, necrosis and autophagy. Since NAPQI the highly reactive metabolite of the widely applied analgesic and antipyretic, acetaminophen induces a cell death which can be characterized by GSH depletion, GPX inhibition and caspase independency the involvement of ferroptosis in acetaminophen induced cell death has been investigated. The specific ferroptosis inhibitor ferrostatin-1 failed to elevate the viability of acetaminophen treated HepG2 cells. It should be noticed that these cells do not form NAPQI due to the lack of phase I enzyme expression therefore GSH depletion cannot be observed. However in the case of acetaminophen treated primary mouse hepatocytes the significant elevation of cell viability could be observed upon ferrostatin-1 treatment. Similar to ferrostatin-1 treatment, the addition of the RIP1 kinase inhibitor necrostatin-1 could also elevate the viability of acetaminophen treated primary hepatocytes. Ferrostatin-1 has no influence on the expression of CYP2E1 or on the cellular GSH level which suggest that the protective effect of ferrostatin-1 in APAP induced cell death is not based on the reduced metabolism of APAP to NAPQI or on altered NAPQI conjugation by cellular GSH. Our results suggest that beyond necroptosis and apoptosis a third programmed cell death, ferroptosis is also involved in acetaminophen induced cell death in primary hepatocytes.

  18. Iron overload by Superparamagnetic Iron Oxide Nanoparticles is a High Risk Factor in Cirrhosis by a Systems Toxicology Assessment

    NASA Astrophysics Data System (ADS)

    Wei, Yushuang; Zhao, Mengzhu; Yang, Fang; Mao, Yang; Xie, Hang; Zhou, Qibing

    2016-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent have been widely used in magnetic resonance imaging for tumor diagnosis and theranostics. However, there has been safety concern of SPIONs with cirrhosis related to excess iron-induced oxidative stress. In this study, the impact of iron overload by SPIONs was assessed on a mouse cirrhosis model. A single dose of SPION injection at 0.5 or 5 mg Fe/kg in the cirrhosis group induced a septic shock response at 24 h with elevated serum levels of liver and kidney function markers and extended impacts over 14 days including high levels of serum cholesterols and persistent low serum iron level. In contrast, full restoration of liver functions was found in the normal group with the same dosages over time. Analysis with PCR array of the toxicity pathways revealed the high dose of SPIONs induced significant expression changes of a distinct subset of genes in the cirrhosis liver. All these results suggested that excess iron of the high dose of SPIONs might be a risk factor for cirrhosis because of the marked impacts of elevated lipid metabolism, disruption of iron homeostasis and possibly, aggravated loss of liver functions.

  19. Effects of Chronic Exposure to Ultrasound of Alternating Frequencies on the Levels of Aggression and Anxiety in CBA and BALB/c mice.

    PubMed

    Pavlov, D A; Gorlova, A V; Ushakova, V M; Zubkov, E A; Morozova, A Yu; Inozemtsev, A N; Chekhonin, V P

    2017-08-01

    Stress-induced changes in the behavior of CBA and BALB/c mice were studied after 3-week ultrasound exposure (22-45 kHz). The mice of both lines demonstrated increased aggression in the resident-intruder and social interest paradigms and reduced number of social interactions in the social interest test. Elevated plus maze test showed a decrease in anxiety level in CBA mice and an increase in this parameter in BALB/c mice. Chronic exposure to ultrasound induced an increase in aggression level in mice of both lines that was not directly related to changes in anxiety level.

  20. Cytokine profile after oral food challenge in infants with food protein-induced enterocolitis syndrome.

    PubMed

    Kimura, Mitsuaki; Ito, Yasunori; Shimomura, Masaki; Morishita, Hideaki; Meguro, Takaaki; Adachi, Yuichi; Seto, Shiro

    2017-07-01

    Although food protein-induced enterocolitis syndrome (FPIES) is supposed to be caused by inflammation, the role of cytokines has not yet been clarified. To elucidate the role of cytokines in the development of symptoms and abnormal laboratory findings at an oral food challenge (OFC), changes in serum cytokine levels were analyzed for 6 OFCs in 4 patients with FPIES. The result of OFC was judged positive if any gastrointestinal (GI) symptoms (vomiting, diarrhea, or bloody stool) were induced. Among 11 cytokines profiled, serum levels of interleukin (IL)-2, IL-5, and IL-8 were clearly increased in all 4 positive OFCs in which elevations of the serum level of C-reactive protein (CRP) and peripheral blood neutrophilia were also seen. The level of serum IL-10 also rose in 2 positive OFCs. Remarkable increases in the serum level of interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), IL-6, and IL-12 were observed in a positive OFC where the serum level of CRP rose markedly (6.75 mg/dL). The serum levels of IL-5 were also elevated in 2 negative OFCs. No apparent specific correlations were found between cytokines and GI symptoms. These results suggest that IL-2 and IL-8 are involved in the antigen-specific immune responses in most patients with FPIES. Further studies are needed to elucidate the significance of these cytokine in the pathogenesis of FPIES. Copyright © 2016 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  1. Prostate cancer stem-like cells proliferate slowly and resist etoposide-induced cytotoxicity via enhancing DNA damage response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Judy; Father Sean O'Sullivan Research Institute, Hamilton, Ontario, Canada L8N 4A6; The Hamilton Centre for Kidney Research

    Despite the development of chemoresistance as a major concern in prostate cancer therapy, the underlying mechanisms remain elusive. In this report, we demonstrate that DU145-derived prostate cancer stem cells (PCSCs) progress slowly with more cells accumulating in the G1 phase in comparison to DU145 non-PCSCs. Consistent with the important role of the AKT pathway in promoting G1 progression, DU145 PCSCs were less sensitive to growth factor-induced activation of AKT in comparison to non-PCSCs. In response to etoposide (one of the most commonly used chemotherapeutic drugs), DU145 PCSCs survived significantly better than non-PCSCs. In addition to etoposide, PCSCs demonstrated increased resistancemore » to docetaxel, a taxane drug that is commonly used to treat castration-resistant prostate cancer. Etoposide produced elevated levels of γH2AX and triggered a robust G2/M arrest along with a coordinated reduction of the G1 population in PCSCs compared to non-PCSCs, suggesting that elevated γH2AX plays a role in the resistance of PCSCs to etoposide-induced cytotoxicity. We have generated xenograft tumors from DU145 PCSCs and non-PCSCs. Consistent with the knowledge that PCSCs produce xenograft tumors with more advanced features, we were able to demonstrate that PCSC-derived xenograft tumors displayed higher levels of γH2AX and p-CHK1 compared to non-PCSC-produced xenograft tumors. Collectively, our research suggests that the elevation of DNA damage response contributes to PCSC-associated resistance to genotoxic reagents. - Highlights: • Increased survival in DU145 PCSCs following etoposide-induced cytotoxicity. • PCSCs exhibit increased sensitivity to etoposide-induced DDR. • Resistance to cytotoxicity may be due to slower proliferation in PCSCs. • Reduced kinetics to growth factor induced activation of AKT in PCSCs.« less

  2. Obesity, hypertension and aldosterone: is leptin the link?

    PubMed

    Xie, Ding; Bollag, Wendy B

    2016-07-01

    Obesity is a serious health hazard with rapidly increasing prevalence in the United States. In 2014, the World Health Organization estimated that nearly 2 billion people worldwide were overweight with an estimated 600 million of these obese. Obesity is associated with many chronic diseases, including cardiovascular disease and hypertension. Data from the Framingham Heart study suggest that approximately 78% of the risk for hypertension in men and 65% in women is related to excess body weight, a relationship that is further supported by studies showing increases in blood pressure with weight gain and decreases with weight loss. However, the exact mechanism by which excess body fat induces hypertension remains poorly understood. Several clinical studies have demonstrated elevated plasma aldosterone levels in obese individuals, especially those with visceral adiposity, with decreased aldosterone levels measured in concert with reduced blood pressure following weight loss. Since aldosterone is a mineralocorticoid hormone that regulates blood volume and pressure, serum aldosterone levels may link obesity and hypertension. Nevertheless, the mechanism by which obesity induces aldosterone production is unclear. A recent study by Belin de Chantemele and coworkers suggests that one adipose-released factor, leptin, is a direct agonist for aldosterone secretion; other adipose-related factors may also contribute to elevated aldosterone levels in obesity, such as very low-density lipoprotein (VLDL), the levels of which are elevated in obesity and which also directly stimulates aldosterone biosynthesis. This focused review explores the possible roles of leptin and VLDL in modulating aldosterone secretion to underlie obesity-associated hypertension. © 2016 Society for Endocrinology.

  3. Unraveling the concentration-dependent metabolic response of Pseudomonas sp. HF-1 to nicotine stress by ¹H NMR-based metabolomics.

    PubMed

    Ye, Yangfang; Wang, Xin; Zhang, Limin; Lu, Zhenmei; Yan, Xiaojun

    2012-07-01

    Nicotine can cause oxidative damage to organisms; however, some bacteria, for example Pseudomonas sp. HF-1, are resistant to such oxidative stress. In the present study, we analyzed the concentration-dependent metabolic response of Pseudomonas sp. HF-1 to nicotine stress using ¹H NMR spectroscopy coupled with multivariate data analysis. We found that the dominant metabolites in Pseudomonas sp. HF-1 were eight aliphatic organic acids, six amino acids, three sugars and 11 nucleotides. After 18 h of cultivation, 1 g/L nicotine caused significant elevation of sugar (glucose, trehalose and maltose), succinate and nucleic acid metabolites (cytidine, 5'-CMP, guanine 2',3'-cyclic phosphate and adenosine 2',3'-cyclic phosphate), but decrease of glutamate, putrescine, pyrimidine, 2-propanol, diethyl ether and acetamide levels. Similar metabolomic changes were induced by 2 g/L nicotine, except that no significant change in trehalose, 5'-UMP levels and diethyl ether were found. However, 3 g/L nicotine led to a significant elevation in the two sugars (trehalose and maltose) levels and decrease in the levels of glutamate, putrescine, pyrimidine and 2-propanol. Our findings indicated that nicotine resulted in the enhanced nucleotide biosynthesis, decreased glucose catabolism, elevated succinate accumulation, severe disturbance in osmoregulation and complex antioxidant strategy. And a further increase of nicotine level was a critical threshold value that triggered the change of metabolic flow in Pseudomonas sp. HF-1. These findings revealed the comprehensive insights into the metabolic response of nicotine-degrading bacteria to nicotine-induced oxidative toxicity.

  4. Interferon-gamma inducible protein-10 as a potential biomarker in localized scleroderma.

    PubMed

    Magee, Kelsey E; Kelsey, Christina E; Kurzinski, Katherine L; Ho, Jonhan; Mlakar, Logan R; Feghali-Bostwick, Carol A; Torok, Kathryn S

    2013-01-01

    The purpose of this study was to evaluate the presence and levels of interferon-gamma inducible protein-10 (IP-10) in the plasma and skin of pediatric localized scleroderma (LS) patients compared to those of healthy pediatric controls and to determine if IP-10 levels correlate to clinical disease activity measures. The presence of IP-10 in the plasma was analyzed using a Luminex panel in 69 pediatric patients with LS and compared to 71 healthy pediatric controls. Of these patients, five had available skin biopsy specimens with concurrent clinical and serological data during the active disease phase, which were used to analyze the presence and location of IP-10 in the skin by immunohistochemistry (IHC). IP-10 levels were significantly elevated in the plasma of LS patients compared to that of healthy controls and correlated to clinical disease activity measures in LS. Immunohistochemistry staining of IP-10 was present in the dermal infiltrate of LS patients and was similar to that found in psoriasis skin specimens, the positive disease control. Elevation of IP-10 levels in the plasma compared to those of healthy controls and the presence of IP-10 staining in the affected skin of LS patients indicates that IP-10 is a potential biomarker in LS. Furthermore, significant elevation of IP-10 in LS patients with active versus inactive disease and correlations between IP-10 levels and standardized disease outcome measures of activity in LS strongly suggest that IP-10 may be a biomarker for disease activity in LS.

  5. Interferon-gamma inducible protein-10 as a potential biomarker in localized scleroderma

    PubMed Central

    2013-01-01

    Introduction The purpose of this study was to evaluate the presence and levels of interferon-gamma inducible protein-10 (IP-10) in the plasma and skin of pediatric localized scleroderma (LS) patients compared to those of healthy pediatric controls and to determine if IP-10 levels correlate to clinical disease activity measures. Methods The presence of IP-10 in the plasma was analyzed using a Luminex panel in 69 pediatric patients with LS and compared to 71 healthy pediatric controls. Of these patients, five had available skin biopsy specimens with concurrent clinical and serological data during the active disease phase, which were used to analyze the presence and location of IP-10 in the skin by immunohistochemistry (IHC). Results IP-10 levels were significantly elevated in the plasma of LS patients compared to that of healthy controls and correlated to clinical disease activity measures in LS. Immunohistochemistry staining of IP-10 was present in the dermal infiltrate of LS patients and was similar to that found in psoriasis skin specimens, the positive disease control. Conclusions Elevation of IP-10 levels in the plasma compared to those of healthy controls and the presence of IP-10 staining in the affected skin of LS patients indicates that IP-10 is a potential biomarker in LS. Furthermore, significant elevation of IP-10 in LS patients with active versus inactive disease and correlations between IP-10 levels and standardized disease outcome measures of activity in LS strongly suggest that IP-10 may be a biomarker for disease activity in LS. PMID:24499523

  6. A Hypothesis Regarding the Molecular Mechanism Underlying Dietary Soy-Induced Effects on Seizure Propensity

    PubMed Central

    Westmark, Cara Jean

    2014-01-01

    Numerous neurological disorders including fragile X syndrome, Down syndrome, autism, and Alzheimer’s disease are co-morbid with epilepsy. We have observed elevated seizure propensity in mouse models of these disorders dependent on diet. Specifically, soy-based diets exacerbate audiogenic-induced seizures in juvenile mice. We have also found potential associations between the consumption of soy-based infant formula and seizure incidence, epilepsy comorbidity, and autism diagnostic scores in autistic children by retrospective analyses of medical record data. In total, these data suggest that consumption of high levels of soy protein during postnatal development may affect neuronal excitability. Herein, we present our theory regarding the molecular mechanism underlying soy-induced effects on seizure propensity. We hypothesize that soy phytoestrogens interfere with metabotropic glutamate receptor signaling through an estrogen receptor-dependent mechanism, which results in elevated production of key synaptic proteins and decreased seizure threshold. PMID:25232349

  7. Effect of elevated CO₂ on phosphorus nutrition of phosphate-deficient Arabidopsis thaliana (L.) Heynh under different nitrogen forms.

    PubMed

    Niu, Yaofang; Chai, Rushan; Dong, Huifen; Wang, Huan; Tang, Caixian; Zhang, Yongsong

    2013-01-01

    Phosphorus (P) nutrition is always a key issue regarding plants responses to elevated CO(2). Yet it is unclear of how elevated CO(2) affects P uptake under different nitrogen (N) forms. This study investigated the influence of elevated CO(2) (800 µl l(-1)) on P uptake and utilization by Arabidopsis grown in pH-buffered phosphate (P)-deficient (0.5 µM) hydroponic culture supplying with 2mM nitrate (NO(3)(-)) or ammonium (NH(4)(+)). After 7 d treatment, elevated CO(2) enhanced the biomass production of both NO(3)(-)- and NH(4) (+)-fed plants but decreased the P amount absorbed per weight of roots and the P concentration in the shoots of plants supplied with NH(4)(+). In comparison, elevated CO(2) increased the amount of P absorbed per weight of roots, as well as the P concentration in plants and alleviated P deficiency-induced symptoms of plants supplied with NO(3)(-). Elevated CO(2) also increased the root/shoot ratio, total root surface area, and acid phosphatase activity, and enhanced the expression of genes or transcriptional factors involving in P uptake, allocation and remobilization in P deficient plants. Furthermore, elevated CO(2) increased the nitric oxide (NO) level in roots of NO(3)(-)-fed plants but decreased it in NH(4)(+)-fed plants. NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) inhibited plant P acquisition by roots under elevated CO(2). Considering all of these findings, this study concluded that a combination of elevated CO(2) and NO(3)(-) nutrition can induce a set of plant adaptive strategies to improve P status from P-deficient soluble sources and that NO may be a signalling molecule that controls these processes.

  8. Merkel Cell Polyomavirus Small T Antigen Promotes Pro-Glycolytic Metabolic Perturbations Required for Transformation

    PubMed Central

    Keibler, Mark A.; Park, Donglim Esther; Molla, Vadim; Cheng, Jingwei; Stephanopoulos, Gregory

    2016-01-01

    Merkel cell polyomavirus (MCPyV) is an etiological agent of Merkel cell carcinoma (MCC), a highly aggressive skin cancer. The MCPyV small tumor antigen (ST) is required for maintenance of MCC and can transform normal cells. To gain insight into cellular perturbations induced by MCPyV ST, we performed transcriptome analysis of normal human fibroblasts with inducible expression of ST. MCPyV ST dynamically alters the cellular transcriptome with increased levels of glycolytic genes, including the monocarboxylate lactate transporter SLC16A1 (MCT1). Extracellular flux analysis revealed increased lactate export reflecting elevated aerobic glycolysis in ST expressing cells. Inhibition of MCT1 activity suppressed the growth of MCC cell lines and impaired MCPyV-dependent transformation of IMR90 cells. Both NF-κB and MYC have been shown to regulate MCT1 expression. While MYC was required for MCT1 induction, MCPyV-induced MCT1 levels decreased following knockdown of the NF-κB subunit RelA, supporting a synergistic activity between MCPyV and MYC in regulating MCT1 levels. Several MCC lines had high levels of MYCL and MYCN but not MYC. Increased levels of MYCL was more effective than MYC or MYCN in increasing extracellular acidification in MCC cells. Our results demonstrate the effects of MCPyV ST on the cellular transcriptome and reveal that transformation is dependent, at least in part, on elevated aerobic glycolysis. PMID:27880818

  9. Inhibition property of green tea extract in relation to reserpine-induced ribosomal strips of rough endoplasmic reticulum (rER) of the rat kidney proximal tubule cells.

    PubMed

    Abdel-Majeed, Safer; Mohammad, Afzal; Shaima, Al-Bloushi; Mohammad, Rafique; Mousa, Shaker A

    2009-12-01

    The aim of this study was to evaluate the effect of green tea in inhibiting and reversing the nephrotoxicity of reserpine--a potent oxidative stress inducer--which induced cellular kidney damage. Serum biochemical parameters, antioxidant enzyme levels, thiobarbituric acid reactive substances (TBARS) and serum transaminases (glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT)) values and histopathology were systematically evaluated. Reserpine exposure led to increase the oxidative stress and organ injury was significantly observed through biochemical parameters and ultrastructural evaluation. Sprague-Dawely (S.D.) rats were intraperitonealy administered reserpine to induce oxidative kidney damage. Experimental rats were given green tea extract according to the protocol given below. Sixty rats were randomly divided into six groups, with 10 rats in each group. Reserpine was found to cause kidney proximal tubule damage, such as stripping and clustering of ribosomes from the rough endoplasmic reticulum (rER) and demolishing of mitochondrial christae with elevated level of oxidative stress markers, such as TBARS. While the ultrastructural study showed a revival of kidney proximal tubule cells as a result of the administration of green tea extract to rats. We suggest that green tea might elevate antioxidant defense system, clean up free radicals, lessen oxidative damages and protect kidney against reserpine-induced toxicity and thus had a potential protective effect.

  10. The biphasic effect of extracellular glucose concentration on carbachol-induced fluid secretion from mouse submandibular glands.

    PubMed

    Terachi, Momomi; Hirono, Chikara; Kitagawa, Michinori; Sugita, Makoto

    2018-06-01

    Cholinergic agonists evoke elevations of the cytoplasmic free-calcium concentration ([Ca 2+ ] i ) to stimulate fluid secretion in salivary glands. Salivary flow rates are significantly reduced in diabetic patients. However, it remains elusive how salivary secretion is impaired in diabetes. Here, we used an ex vivo submandibular gland perfusion technique to characterize the dependency of salivary flow rates on extracellular glucose concentration and activities of glucose transporters expressed in the glands. The cholinergic agonist carbachol (CCh) induced sustained fluid secretion, the rates of which were modulated by the extracellular glucose concentration in a biphasic manner. Both lowering the extracellular glucose concentration to less than 2.5 mM and elevating it to higher than 5 mM resulted in decreased CCh-induced fluid secretion. The CCh-induced salivary flow was suppressed by phlorizin, an inhibitor of the sodium-glucose cotransporter 1 (SGLT1) located basolaterally in submandibular acinar cells, which is altered at the protein expression level in diabetic animal models. Our data suggest that SGLT1-mediated glucose uptake in acinar cells is required to maintain the fluid secretion by sustaining Cl - secretion in real-time. High extracellular glucose levels may suppress the CCh-induced secretion of salivary fluid by altering the activities of ion channels and transporters downstream of [Ca 2+ ] i signals. © 2018 Eur J Oral Sci.

  11. Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses.

    PubMed

    Salazar-Parra, Carolina; Aranjuelo, Iker; Pascual, Inmaculada; Erice, Gorka; Sanz-Sáez, Álvaro; Aguirreolea, Jone; Sánchez-Díaz, Manuel; Irigoyen, Juan José; Araus, José Luis; Morales, Fermín

    2015-02-01

    Although plant performance under elevated CO2 has been extensively studied in the past little is known about photosynthetic performance changing simultaneously CO2, water availability and temperature conditions. Moreover, despite of its relevancy in crop responsiveness to elevated CO2 conditions, plant level C balance is a topic that, comparatively, has received little attention. In order to test responsiveness of grapevine photosynthetic apparatus to predicted climate change conditions, grapevine (Vitis vinifera L. cv. Tempranillo) fruit-bearing cuttings were exposed to different CO2 (elevated, 700ppm vs. ambient, ca. 400ppm), temperature (ambient vs. elevated, ambient +4°C) and irrigation levels (partial vs. full irrigation). Carbon balance was followed monitoring net photosynthesis (AN, C gain), respiration (RD) and photorespiration (RL) (C losses). Modification of environment (13)C isotopic composition (δ(13)C) under elevated CO2 (from -10.30 to -24.93‰) enabled the further characterization of C partitioning into roots, cuttings, shoots, petioles, leaves, rachides and berries. Irrespective of irrigation level and temperature, exposure to elevated CO2 induced photosynthetic acclimation of plants. C/N imbalance reflected the inability of plants grown at 700ppm CO2 to develop strong C sinks. Partitioning of labeled C to storage organs (main stem and roots) did not avoid accumulation of labeled photoassimilates in leaves, affecting negatively Rubisco carboxylation activity. The study also revealed that, after 20 days of treatment, no oxidative damage to chlorophylls or carotenoids was observed, suggesting a protective role of CO2 either at current or elevated temperatures against the adverse effect of water stress. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Protective effect of esculin on streptozotocin-induced diabetic renal damage in mice.

    PubMed

    Kang, Ki Sung; Lee, Woojung; Jung, Yujung; Lee, Ji Hwan; Lee, Seungyong; Eom, Dae-Woon; Jeon, Youngsic; Yoo, Hye Hyun; Jin, Ming Ji; Song, Kyung Il; Kim, Won Jun; Ham, Jungyeob; Kim, Hyoung Ja; Kim, Su-Nam

    2014-03-05

    The present study investigated the presence and mechanism of esculin-mediated renoprotection to assess its therapeutic potential. Esculin was orally administered at 20 mg/kg/day for 2 weeks to streptozotocin-induced diabetic mice, and its effects were compared with those of the vehicle in normal and diabetic mice. After oral administration of esculin to mice, the concentrations of esculin and esculetin in blood were 159.5 ± 29.8 and 9.7 ± 4.9 ng/mL at 30 min, respectively. Food and water intake were significantly increased in the diabetic mice compared to normal mice but attenuated in mice receiving esculin. The elevated blood glucose level and hepatic glucose-6-phosphatase expression were significantly reduced in esculin-treated diabetic mice, supporting the antidiabetic effect of esculin. Esculin also increased the uptake of glucose and induced the insulin-evoked phosphorylation of insulin receptor, Akt, and glycogen synthase kinase 3β in C2C12 myotubes, indicating a potential for improvement of insulin sensitivity. In addition, esculin lessened the elevated blood creatinine levels in diabetic mice and ameliorated diabetes-induced renal dysfunction by reducing caspase-3 activation in the kidney. Data support the beneficial effect of esculin against diabetes and oxidative stress-related inflammatory processes in the kidney.

  13. p-Aminophenol-induced hepatotoxicity in hamsters: role of glutathione.

    PubMed

    Fu, Xin; Chen, Theresa S; Ray, Mukunda B; Nagasawa, Herbert T; Williams, Walter M

    2004-01-01

    p-Aminophenol (PAP) is a widely used industrial chemical and a known nephrotoxin. Recently, it was found to also cause hepatotoxicity and glutathione (GSH) depletion in mice. The exact mechanism of liver toxicity is not known. The aims of this study were to determine whether PAP can cause acute hepatotoxicity in hamsters and to further investigate the role of GSH in PAP-induced toxicity. PAP was administered ip to hamsters in doses of 200-800 mg/kg. Liver damage at 24 h after PAP administration was assessed by elevations in plasma enzyme activities and histopathologic examination. GSH and cysteine (Cys) levels in liver at 4 h were determined by HPLC. PAP decreased hepatic GSH concentration to 8% and Cys to 30% of vehicle control values. It increased plasma glutamic pyruvic transaminase (GPT) activity by 47-fold and sorbitol dehydrogenase (SDH) activity by 113-fold. PAP also caused severe centrilobular hepatocellular necrosis. 2(RS)-n-Propylthiazolidine-4(R)-carboxylic acid (PTCA), a Cys precursor, attenuated the PAP-induced decreases in hepatic sulfhydryl levels; GSH and Cys were 39% and 78% of vehicle controls, respectively. PTCA also attenuated the PAP-induced elevations in plasma enzyme activities and hepatic necrosis. It was concluded that PAP hepatotoxicity is associated with depletion of hepatic GSH and can be prevented by PTCA. Copyright 2004 Wiley Periodicals, Inc.

  14. (-)-Epigallocatechin-3-O-gallate (EGCG) attenuates the hemodynamics stimulated by caffeine through decrease of catecholamines release.

    PubMed

    Han, Jin-Yi; Moon, Yong-Jin; Han, Jong-Hyun; Kim, Jong-Hoon; Woo, Jae-Hoon; Yoo, Hwan-Soo; Hong, Jin Tae; Ahn, Hee-Yul; Hong, Jong-Myeon; Oh, Ki-Wan

    2016-09-01

    A human study of the effects on hemodynamics of caffeine and epigallocatechin-3-O-gallate (EGCG) was performed. Caffeine tablets (200 mg) were orally administered to healthy males aged between 25 and 35 years 30 min after oral administration of EGCG tablets (100 and 200 mg). The increase in BP induced by caffeine was inhibited when co-administrated with EGCG. We found that caffeine slightly decreased heart rate (HR) in the volunteers. Although EGCG enhanced HR reduction, the effect was not significant. In addition, caffeine increased blood catecholamine levels, but EGCG inhibited the increase in noradrenaline, adrenaline and dopamine levels induced by caffeine. Whether EGCG decreases the elevated HR and systolic perfusion pressure, and ventricular contractility induced by adrenergic agonists in the isolated rat heart was investigated. The modified Krebs-Henseleit solution was perfused through a Langendorff apparatus to the isolated hearts of rats. HR, systolic perfusion pressure, and developed maximal rates of contraction (+dP/dtmax) and relaxation (-dP/dtmax) were increased by epinephrine (EP) and isoproterenol (IP). In contrast, EGCG decreased the elevated HR, systolic perfusion pressure, and left ventricular ±dp/dtmax induced by EP and/or IP. In conclusion, EGCG could attenuate the hemodynamics stimulated by caffeine through decreasing catecholamine release.

  15. Hypoglycemic and hypolipidemic effects of Aronia melanocarpa fruit juice in streptozotocin-induced diabetic rats.

    PubMed

    Valcheva-Kuzmanova, S; Kuzmanov, K; Tancheva, S; Belcheva, A

    2007-03-01

    Aronia melanocarpa fruit juice (AMFJ) is rich in phenolic antioxidants, especially flavonoids from the anthocyanin subclass. The aim of the present study was to investigate the influence of AMFJ on plasma glucose and lipids in diabetic rats. Diabetes was induced by an intraperitoneal injection of streptozotocin (50 mg/kg). AMFJ was applied by gavage at doses of 10 and 20 ml/kg for 6 weeks to normal and diabetic rats. Streptozotocin caused a significant elevation of plasma glucose by 141% and of plasma triglycerides (TG) by 64% in comparison with normal control rats and induced statistically insignificant elevations of total cholesterol and LDL-cholesterol and a reduction of HDL-cholesterol. Applied to normal rats, AMFJ did not influence plasma glucose and lipid levels. Applied to diabetic rats, AMFJ (10 and 20 ml/kg) significantly reduced plasma glucose by 44% and 42% and TG by 35% and 39%, respectively, to levels that did not significantly differ from those of the normal control rats and counteracted the influence of streptozotocin on total cholesterol, LDL-cholesterol and HDL-cholesterol. In conclusion, AMFJ significantly decreased the streptozotocin-induced abnormalities in blood glucose and TG in diabetic rats and might be useful in prevention and control of diabetes mellitus and diabetes-associated complications. Copyright 2007 Prous Science.

  16. Falsely elevated sodium levels during thiopental treatment in the ICU: technical interference on a laboratory device with important clinical relevance.

    PubMed

    Feyen, Bart F E; Coenen, Dries; Jorens, Philippe G; Wouters, Kristien; Maas, Andrew I R; Van Hoof, Viviane; Verbrugghe, Walter

    2013-02-01

    Thiopental is a cornerstone in the treatment of refractory status epilepticus and intractable intracranial hypertension. In our center we observed that thiopental might cause falsely elevated serum sodium levels. Triggered by a recent case experience of extremely elevated serum sodium levels during thiopental treatment, we retrospectively identified 53 patients treated with thiopental in our intensive care unit between 2007 and 2011 and evaluated electrolyte changes. We differentiated the analysis before and after introduction of a new device for sodium assays (Dimension Vista, Siemens) in the central laboratory in April 2010. Standardized in vitro laboratory tests were performed to study the effect of thiopental on sodium analysis. Before April 2010, serum sodium levels determined in the central laboratory showed a good agreement with the bedside point-of-care (POC) device during thiopental therapy with [sodium](laboratory) - [sodium](POC) of only 1.08 mmol/L (P = .0517). After April 2010, a strong discrepancy between laboratory values and POC values was observed with [sodium](laboratory) - [sodium](POC) = 11.57 mmol/L (P < .0001). Standardized in vitro testing confirmed that thiopental induced a dose-dependent false hypernatremia (P = .002). Thiopental treatment can result in falsely elevated serum sodium. This is a critical finding since high sodium levels preclude administrating mannitol or hypertonic saline for the treatment of elevated intracranial pressure. Moreover, a false high sodium level might lead to the inappropriate administration of hypotonic fluids potentially resulting in increased brain edema and even higher intracranial pressure. To our knowledge, this is the first paper describing this clinically relevant phenomenon.

  17. Increasing plasma free fatty acids in healthy subjects induces aortic distensibility changes seen in obesity.

    PubMed

    Rider, Oliver J; Holloway, Cameron J; Emmanuel, Yaso; Bloch, Edward; Clarke, Kieran; Neubauer, Stefan

    2012-05-01

    Elevated free fatty acid (FFA) levels are known to impair aortic elastic function. In obesity, FFA levels are elevated and aortic distensibility (AD) reduced in a pattern that predominantly affects the distal aorta. Despite this, the role of FFAs in obesity-related aortic stiffness remains unclear. Using vascular MRI, we aimed to determine if (1) FFA level correlated with AD in obesity; and (2) whether elevating FFA acutely and subacutely in normal-weight subjects reproduced the distal pattern of AD change in obesity. To do this, regional AD was recorded in 35 normal-weight and 70 obese subjects and then correlated with FFA levels. When compared with normal weight, obesity was associated with reduced AD in a pattern predominantly affecting the distal aorta (ascending aorta by -22%, proximal descending aorta by -25%, and abdominal aorta by -35%; P<0.001). After controlling for age, blood pressure, and body mass index, FFA levels remained negatively correlated with abdominal AD (r=-0.43, P<0.01). In 2 further normal-weight groups, AD was recorded before and after elevation of FFA levels with intralipid infusion (by +535%, n=9) and a 5-day high-fat, low-carbohydrate diet (by +48%, n=14). Both intralipid infusion and a low-carbohydrate diet resulted in reduced abdominal AD (infusion -22%, diet -28%; both P<0.05), reproducing the distal pattern AD reduction seen in obesity. These findings suggest that elevated FFA impair AD in obesity and provide a potential therapeutic target to improve aortic elastic function in obesity.

  18. Regulation of blood glucose level by kainic acid in mice: involvement of glucocorticoid system and non-NMDA receptors.

    PubMed

    Kim, Chea-Ha; Park, Soo-Hyun; Sim, Yun-Beom; Kim, Sung-Su; Jung, Jun-Sub; Sharma, Naveen; Suh, Hong-Won

    2017-02-28

    Kainic acid (KA) is a well-known excitatory neurotoxic substance. In the present study, effects of KA-injected intraperitoneally (i.p.), intracerebroventricularly (i.c.v.) or intrathecally (i.t.) on the blood glucose level were investigated in ICR mice. We found that KA administered intraperitoneally (i.p.), intracerebroventricularly (i.c.v.) or intrathecally (i.t.) increased the blood glucose and corticosterone levels, suggesting that KA-induced hyperglycemia appeared to be due to increased blood corticosterone level. In support of this finding, adrenalectomy causes a reduction of KA-induced hyperglycemia and neuronal cell death in CA3 regions of the hippocampus. In addition, pretreatment with i.c.v. or i.t. injection of CNQX (6-cyano-7-nitroquinoxaline-2, 3-dione; a non-NMDA receptor blocker) attenuated the i.p. and i.c.v. administered KA-induced hyperglycemia. KA administered i.c.v. caused an elevation of the blood corticosterone level whereas the plasma insulin level was reduced. Moreover, i.c.v. pretreatment with CNQX inhibited the decrease of plasma insulin level induced by KA i.c.v. injection, whereas the KA-induced plasma corticosterone level was further enhanced by CNQX pretreatment. Our results suggest that KA administered systemically or centrally produces hyperglycemia. A glucocorticoid system appears to be involved in KA-induced hyperglycemia. Furthermore, central non-N-methyl-D-aspartate receptors may be responsible for KA-induced hyperglycemia.

  19. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism

    USDA-ARS?s Scientific Manuscript database

    The common parasite Toxoplasma gondii induces behavioral alterations in its hosts including phenotypes increasing the likelihood of its transmission in rodents and reports of psychobehavioral alterations in humans. We have found that elevated levels of dopamine are associated with the encysted stage...

  20. Peri-implantation Ozone Exposure Alters Uterine Artery Flow and Induces Fetal Growth Restriction in Rats

    EPA Science Inventory

    Epidemiological studies suggest a relationship between air pollutant exposures to various adverse pregnancy outcomes. Elevated ambient ozone levels during the first and second trimesters have demonstrated an increased correlation to preeclampsia, gestational diabetes, and intraut...

  1. Heavy metals induce oxidative stress and trigger oxidative stress-mediated heat shock protein (hsp) modulation in the intertidal copepod Tigriopus japonicus.

    PubMed

    Kim, Bo-Mi; Rhee, Jae-Sung; Jeong, Chang-Bum; Seo, Jung Soo; Park, Gyung Soo; Lee, Young-Mi; Lee, Jae-Seong

    2014-11-01

    Heat shock proteins (hsps) are induced by a wide range of environmental stressors including heavy metals in aquatic organisms. However, the effect of heavy metals on zooplankton at the molecular level remains still unclear. In this study, we measured the intracellular reactive oxygen species (ROS) level and the antioxidant enzyme activities for 96 h after exposure to five heavy metals: arsenic (As), cadmium (Cd), copper (Cu), silver (Ag), and zinc (Zn) in the intertidal copepod Tigriopus japonicus. Activities of the antioxidant enzymes were highly elevated in metal-exposed copepods, indicating that heavy metals can induce oxidative stress by generating ROS, and stimulate the involvement of antioxidant enzymes as cellular defense mechanisms. Subsequently, transcriptional changes in hsp gene families were further investigated in the metal-exposed groups for 96 h. The ROS level and glutathione (GSH) content were significantly increased in Ag-, As-, and Cu-exposed copepods, while they were only slightly elevated in Cd- and Zn-exposed groups. Based on the numbers of significantly modulated hsp genes and their expression levels for 96 h, we measured the effect of heavy metals to stress genes of T. japonicus in the following order: Cu > Zn > Ag > As > Cd, implying that Cu acts as a stronger oxidative stress inducer than other heavy metals. Of them, the expression of hsp20 and hsp70 genes was substantially modulated by exposure to heavy metals, indicating that these genes would provide a sensitive molecular biomarker for aquatic monitoring of heavy metal pollution. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Effect of heparin bonding on catheter-induced fibrin formation and platelet activation.

    PubMed

    Nichols, A B; Owen, J; Grossman, B A; Marcella, J J; Fleisher, L N; Lee, M M

    1984-11-01

    Pathologic and experimental evidence indicates that platelet activation and fibrin formation contribute to the pathogenesis of angina pectoris, coronary vasospasm and myocardial infarction. Detection of localized intravascular platelet activation and fibrin formation in vivo by selective blood sampling requires catheters that do not induce coagulation ex vivo. We studied the effect of heparin bonding of catheter surfaces on activation of the coagulation system by cardiovascular catheters. Woven Dacron, polyvinylchloride, and polyurethane catheters were tested and compared with identical catheters with heparin-bonded surfaces in 47 patients undergoing percutaneous cardiac catheterization. Platelet activation was measured by radioimmunoassay of plasma platelet factor 4 (PF4), beta-thromboglobulin (BTG), and thromboxane B2 (TXB2) in blood samples withdrawn through catheters, and fibrin formation was assessed by determination of fibrinopeptide A (FPA) levels. In blood samples collected through conventional catheters, FPA, PF4, BTG, and TXB2 levels were markedly elevated; blood sampling through heparin-bonded catheters had no significant effect on FPA, PF4, BTG, or TXB2 levels. Scanning electron microscopy disclosed extensive platelet aggregates and fibrin strands adherent to the surface of conventional catheters but not to heparin-bonded catheter surfaces. This study demonstrates that (1) collection of blood samples through cardiovascular catheters causes artifactual elevation of FPA, PF4, BTG, and TXB2 levels, and (2) heparin-bonded catheter surfaces effectively prevent catheter-induced platelet alpha-granule release and fibrin formation on catheter surfaces. Heparin-bonded catheters will facilitate investigation of the role of intravascular coagulation in coronary artery disease by eliminating catheter-induced fibrin formation and platelet activation.

  3. Gut microbiota composition is correlated to grid floor induced stress and behavior in the BALB/c mouse.

    PubMed

    Bangsgaard Bendtsen, Katja Maria; Krych, Lukasz; Sørensen, Dorte Bratbo; Pang, Wanyong; Nielsen, Dennis Sandris; Josefsen, Knud; Hansen, Lars H; Sørensen, Søren J; Hansen, Axel Kornerup

    2012-01-01

    Stress has profound influence on the gastro-intestinal tract, the immune system and the behavior of the animal. In this study, the correlation between gut microbiota composition determined by Denaturing Grade Gel Electrophoresis (DGGE) and tag-encoded 16S rRNA gene amplicon pyrosequencing (454/FLX) and behavior in the Tripletest (Elevated Plus Maze, Light/Dark Box, and Open Field combined), the Tail Suspension Test, and Burrowing in 28 female BALB/c mice exposed to two weeks of grid floor induced stress was investigated. Cytokine and glucose levels were measured at baseline, during and after exposure to grid floor. Stressing the mice clearly changed the cecal microbiota as determined by both DGGE and pyrosequencing. Odoribacter, Alistipes and an unclassified genus from the Coriobacteriaceae family increased significantly in the grid floor housed mice. Compared to baseline, the mice exposed to grid floor housing changed the amount of time spent in the Elevated Plus Maze, in the Light/Dark Box, and burrowing behavior. The grid floor housed mice had significantly longer immobility duration in the Tail Suspension Test and increased their number of immobility episodes from baseline. Significant correlations were found between GM composition and IL-1α, IFN-γ, closed arm entries of Elevated Plus Maze, total time in Elevated Plus Maze, time spent in Light/Dark Box, and time spent in the inner zone of the Open Field as well as total time in the Open Field. Significant correlations were found to the levels of Firmicutes, e.g. various species of Ruminococccaceae and Lachnospiraceae. No significant difference was found for the evaluated cytokines, except an overall decrease in levels from baseline to end. A significant lower level of blood glucose was found in the grid floor housed mice, whereas the HbA1c level was significantly higher. It is concluded that grid floor housing changes the GM composition, which seems to influence certain anxiety-related parameters.

  4. Chrysophanic acid reduces testosterone-induced benign prostatic hyperplasia in rats by suppressing 5α-reductase and extracellular signal-regulated kinase

    PubMed Central

    Kim, Hye-Lin; Jung, Yunu; Kang, JongWook; Jeong, Mi-Young; Sethi, Gautam; Ahn, Kwang Seok; Um, Jae-Young

    2017-01-01

    Benign prostatic hyperplasia (BPH) is one of the most common chronic diseases in male population, of which incidence increases gradually with age. In this study, we investigated the effect of chrysophanic acid (CA) on BPH. BPH was induced by a 4-week injection of testosterone propionate (TP). Four weeks of further injection with vehicle, TP, TP + CA, TP + finasteride was carried on. In the CA treatment group, the prostate weight was reduced and the TP-induced histological changes were restored as the normal control group. CA treatment suppressed the TP-elevated prostate specific antigen (PSA) expression. In addition, 5α-reductase, a crucial factor in BPH development, was suppressed to the normal level close to the control group by CA treatment. The elevated expressions of androgen receptor (AR), estrogen receptor α and steroid receptor coactivator 1 by TP administration were also inhibited in the CA group when compared to the TP-induced BPH group. Then we evaluated the changes in three major factors of the mitogen-activated protein kinase chain during prostatic hyperplasia; extracellular signal-regulated kinase (ERK), c-Jun-N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38). While ERK was elevated in the process of BPH, JNK and p38 was not changed. This up-regulated ERK was also reduced as normal by CA treatment. Further in vitro studies with RWPE-1 cells confirmed TP-induced proliferation and elevated AR, PSA and p-ERK were all reduced by CA treatment. Overall, these results suggest a potential pharmaceutical feature of CA in the treatment of BPH. PMID:27880726

  5. Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats.

    PubMed

    Wang, T; Hu, X; Liang, S; Li, W; Wu, X; Wang, L; Jin, F

    2015-01-01

    Gut microbiota play a vital role in maintaining the health of the host. Many factors affect gut microbiota; application of broad range antibiotics disturb microbiota, while probiotic application protects the microbiota. To investigate how probiotics alter the physiological and psychological changes induced by antibiotics, we tested the performance of ampicillin-treated rats in the presence or absence of Lactobacillus fermentum strain NS9, in elevated plus maze and Morris water maze. The results showed that NS9 normalised the composition of gut microbiota and alleviated the ampicillin-induced inflammation in the colon. The levels of the mineralocorticoid and N-methyl-D-aspartate receptors were also elevated in the hippocampus of the ampillicin+NS9 treated group. NS9 administration also reduced the anxiety-like behaviour and alleviated the ampicillin-induced impairment in memory retention. These findings suggest that NS9 is beneficial to the host, because it restores the physiological and psychological abnormalities induced by ampicillin. Our results highlight how gut contents regulate the brain, and shed light on the clinical applications of probiotics to treat the side effect of antibiotics and mental disorders.

  6. Opposite Roles for p38MAPK-Driven Responses and Reactive Oxygen Species in the Persistence and Resolution of Radiation-Induced Genomic Instability

    PubMed Central

    Werner, Erica; Wang, Huichen; Doetsch, Paul W.

    2014-01-01

    We report the functional and temporal relationship between cellular phenotypes such as oxidative stress, p38MAPK-dependent responses and genomic instability persisting in the progeny of cells exposed to sparsely ionizing low-Linear Energy Transfer (LET) radiation such as X-rays or high-charge and high-energy (HZE) particle high-LET radiation such as 56Fe ions. We found that exposure to low and high-LET radiation increased reactive oxygen species (ROS) levels as a threshold-like response induced independently of radiation quality and dose. This response was sustained for two weeks, which is the period of time when genomic instability is evidenced by increased micronucleus formation frequency and DNA damage associated foci. Indicators for another persisting response sharing phenotypes with stress-induced senescence, including beta galactosidase induction, increased nuclear size, p38MAPK activation and IL-8 production, were induced in the absence of cell proliferation arrest during the first, but not the second week following exposure to high-LET radiation. This response was driven by a p38MAPK-dependent mechanism and was affected by radiation quality and dose. This stress response and elevation of ROS affected genomic instability by distinct pathways. Through interference with p38MAPK activity, we show that radiation-induced stress phenotypes promote genomic instability. In contrast, exposure to physiologically relevant doses of hydrogen peroxide or increasing endogenous ROS levels with a catalase inhibitor reduced the level of genomic instability. Our results implicate persistently elevated ROS following exposure to radiation as a factor contributing to genome stabilization. PMID:25271419

  7. Naringin ameliorates sodium arsenite-induced renal and hepatic toxicity in rats: decisive role of KIM-1, Caspase-3, TGF-β, and TNF-α.

    PubMed

    Adil, Mohammad; Kandhare, Amit D; Visnagri, Asjad; Bodhankar, Subhash L

    2015-01-01

    Chronic exposure of a naturally occurring metal arsenic leads to renal and hepatic diseases. Naringin, a flavanone glycoside, possesses anti-inflammatory and anti-oxidant potential. The aim of this investigation was to evaluate the protective effect of naringin against arsenic-induced renal and hepatic toxicity in rats. Renal and hepatic toxicity was induced in rats by sodium arsenite (5 mg/kg, p.o.). Rats were treated orally with either vehicle or naringin (20, 40, and 80 mg/kg) or Coenzyme Q10 (10 mg/kg) for 28 days. Various biochemical, histological, and molecular biomarkers were assessed in kidney and liver. Treatment with naringin (40 and 80 mg/kg) significantly and dose-dependently restored (p < 0.01 and p < 0.001) altered levels of kidney (serum creatinine, urine creatinine, BUN, uric acid, and creatinine clearance) and liver function test (AST and ALT) induced by sodium arsenite. Elevated levels of oxido-nitrosative stress in renal and hepatic tissue was significantly and dose-dependently decreased (p < 0.01 and p < 0.001) by naringin (40 and 80 mg/kg) treatment. It significantly and dose-dependently down-regulated (p < 0.01 and p < 0.001) renal KIM-1, Caspase-3, TGF-β, and TNF-α mRNA expression. Histopathological alteration induced in kidney and liver by sodium arsenite was reduced by naringin (40 and 80 mg/kg) treatment. In conclusion, naringin treatment ameliorates arsenic-induced renal and hepatic damage in rats due its antioxidant and anti-inflammatory properties via down-regulation of elevated oxido-nitrosative stress, KIM-1, Caspase-3, TGF-β, and TNF-α levels.

  8. Alkaline ceramidase 2 and its bioactive product sphingosine are novel regulators of the DNA damage response

    PubMed Central

    Xu, Ruijuan; Wang, Kai; Mileva, Izolda; Hannun, Yusuf A.; Obeid, Lina M.; Mao, Cungui

    2016-01-01

    Human cells respond to DNA damage by elevating sphingosine, a bioactive sphingolipid that induces programmed cell death (PCD) in response to various forms of stress, but its regulation and role in the DNA damage response remain obscure. Herein we demonstrate that DNA damage increases sphingosine levels in tumor cells by upregulating alkaline ceramidase 2 (ACER2) and that the upregulation of the ACER2/sphingosine pathway induces PCD in response to DNA damage by increasing the production of reactive oxygen species (ROS). Treatment with the DNA damaging agent doxorubicin increased both ACER2 expression and sphingosine levels in HCT116 cells in a dose-dependent manner. ACER2 overexpression increased sphingosine in HeLa cells whereas knocking down ACER2 inhibited the doxorubicin-induced increase in sphingosine in HCT116 cells, suggesting that DNA damage elevates sphingosine by upregulating ACER2. Knocking down ACER2 inhibited an increase in the apoptotic and necrotic cell population and the cleavage of poly ADP ribose polymerase (PARP) in HCT116 cells in response to doxorubicin as well as doxorubicin-induced release of lactate dehydrogenase (LDH) from these cells. Similar to treatment with doxorubicin, ACER2 overexpression induced an increase in the apoptotic and necrotic cell population and PARP cleavage in HeLa cells and LDH release from cells, suggesting that ACER2 upregulation mediates PCD in response to DNA damage through sphingosine. Mechanistic studies demonstrated that the upregulation of the ACER2/sphingosine pathway induces PCD by increasing ROS levels. Taken together, these results suggest that the ACER2/sphingosine pathway mediates PCD in response to DNA damage through ROS production. PMID:26943039

  9. Chemopreventive effect of bacoside A on N-nitrosodiethylamine-induced hepatocarcinogenesis in rats.

    PubMed

    Janani, Panneerselvam; Sivakumari, Kanakarajan; Geetha, Arumugam; Ravisankar, Baskaran; Parthasarathy, Chandrakesan

    2010-05-01

    Chemoprevention is an effective approach to control hepatocarcinogenesis. Bacoside A, the active constituent of Bacopa monniera Linn., is anticipated to play a role in chemoprevention of liver cancer. In the present study, we investigated the chemopreventive effect of bacoside A against N-nitrosodiethylamine-induced hepatocarcinogenesis in an animal model. Administration of carcinogen showed a significant elevation in the levels of lipid peroxidation, serum tumor marker enzymes and liver injury marker enzymes with subsequent decrease in the levels of both hemolysate and liver antioxidant status. Bacoside A co-treatment maintained the N-nitrosodiethylamine-induced alterations at near normal level. Histopathological and electron microscopic study of the liver tissue also supports the above biochemical observations. From our findings we conclude that bacoside A is effective to prevent DEN-induced hepatocellular carcinoma by quenching lipid peroxidation and enhancing antioxidant status through free radical scavenging mechanism and having potential of protecting endogenous enzymatic and non-enzymatic antioxidant activity.

  10. A Blend of Extracts from Houttuynia cordata, Nelumbo nucifera, and Camellia sinensis Protects Against Ethanol-Induced Liver Damage in C57BL/6 Mice.

    PubMed

    You, Yanghee; Lee, Hyunmi; Yoon, Ho-Geun; Park, Jeongjin; Kim, Ok-Kyung; Kim, Kyungmi; Lee, Min-Jae; Lee, Yoo-Hyun; Lee, Jeongmin; Jun, Woojin

    2018-02-01

    The protective activity of a mixture of aqueous and ethanolic extracts from Houttuynia cordata Thunb, Nelumbo nucifera G. leaves, and Camellia sinensis seed (HNC) was evaluated in C57BL/6 mice. Pretreatment with HNC prevented the elevation of serum aspartate aminotransferase and alanine aminotransferase caused by ethanol-induced hepatic damage. The HNC-treated mice showed significantly lower triglyceride levels, reduced CYP2E1 activity, and increased antioxidant enzyme activities and lipogenic mRNA levels. These results suggest that HNC might be a candidate agent for liver protection against ethanol-induced oxidative damage, through enhancement of antioxidant and antilipogenic activity.

  11. Drug fever and acute inflammation from hypercytokinemia triggered by dipeptidyl peptidase-4 inhibitor vildagliptin.

    PubMed

    Anno, Takatoshi; Kaneto, Hideaki; Kawasaki, Fumiko; Shigemoto, Ryo; Aoyama, Yumi; Kaku, Kohei; Okimoto, Niro

    2018-04-01

    A 69-year-old man started taking the dipeptidyl peptidase-4 inhibitor, vildagliptin. One week later, C-reactive protein and plasma immunoglobulin E levels were markedly elevated, and the vildagliptin was stopped. After the patient's laboratory findings were normalized, we decided to restart vildagliptin with the patient's agreement. The next day, he had a high fever, and C-reactive protein and procalcitonin levels were elevated. Although we failed to find a focus of infection, we started antibiotics therapy. Two days later, the high fever had improved, and the C-reactive protein level had decreased. A drug lymphocyte stimulation test showed a positive result for vildagliptin. We examined various kinds of cytokine and infection markers just before and after the treatment with vildagliptin. Finally, we diagnosed the patient with vildagliptin-induced drug fever, probably based on the increase of various inflammatory cytokine levels and the response to this. Taken together, we should be aware of the possibility of vildagliptin inducing drug fever and/or acute inflammation. © 2018 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  12. Hepatoprotective potential of ether insoluble phenolic components of n-butanol fraction (EPC-BF) of flaxseed against CCl4 -induced liver damage in rats

    PubMed Central

    Kasote, D. M.; Badhe, Y. S.; Zanwar, A. A.; Hegde, M. V.; Deshmukh, K. K.

    2012-01-01

    Objective: to investigate the hepatoprotective potential of ether insoluble phenolic components of n-butanol fraction (EPC-BF) of flaxseed against CCl4 -induced liver damage in rats. Materials and Methods: Hepatotoxicity was induced to Wistar rats by administration of 0.2% CCl4 in olive oil (8 mL/kg, i.p.) on the seventh day of treatment. Hepatoprotective potential of EPC-BF at doses, 250 and 500 mg/kg, p.o. was assessed through biochemical and histological parameters. Results: EPC-BF and silymarin pretreated animal groups showed significantly decreased activities of Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and level of total bilirubin, elevated by CCl4 intoxication. Hepatic lipid peroxidation elevated by CCl4 intoxication were also found to be alleviated at almost normal level in the EPC-BF and silymarin pretreated groups. Histological studies supported the biochemical findings and treatment of EPC-BF at doses 250 and 500 mg/kg, p.o. was found to be effective in restoring CCl4 -induced hepatic damage. However, EPC-BF did not show dose-dependent hepatoprotective potential. EPC-BF depicted maximum protection against CCl4 -induced hepatic damage at lower dose 250 mg/kg than higher dose (500 mg/ kg). Conclusion: EPC-BF possesses the significant hepatoprotective activity against CCl4 induced liver damage, which could be mediated through increase in antioxidant defenses. PMID:22923966

  13. Orthodontic treatment mediates dental pulp microenvironment via IL17A.

    PubMed

    Yu, Wenjing; Zhang, Yueling; Jiang, Chunmiao; He, Wei; Yi, Yating; Wang, Jun

    2016-06-01

    Orthodontic treatment induces dental tissue remodeling; however, dental pulp stem cell (DPSC)-mediated pulp micro-environmental alteration is still largely uncharacterized. In the present study, we identified elevated interleukin-17A (IL17A) in the dental pulp, which induced the osteogenesis of DPSCs after orthodontic force loading. Tooth movement animal models were established in Sprague-Dawley rats, and samples were harvested at 1, 4, 7, 14, and 21 days after orthodontic treatment loading. DPSC self-renewal and differentiation at different time points were examined, as well as the alteration of the microenvironment of dental pulp tissue by histological analysis and the systemic serum IL17A expression level by an ELISA assay. In vitro recombinant IL17A treatment was used to confirm the effect of IL17A on the enhancement of DPSC self-renewal and differentiation. Orthodontic treatment altered the dental pulp microenvironment by activation of the pro-inflammatory cytokine IL17A in vivo. Orthodontic loading significantly promoted the self-renewal and differentiation of DPSCs. Inflammation and elevated IL17A secretion occurred in the dental pulp during orthodontic tooth movement. Moreover, in vitro recombinant IL17A treatment mimicked the enhancement of the self-renewal and differentiation of DPSCs. Orthodontic treatment enhanced the differentiation and self-renewal of DPSCs, mediated by orthodontic-induced inflammation and subsequent elevation of IL17A level in the dental pulp microenvironment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Cytotoxic Effects of Ochratoxin A in Neuro-2a Cells: Role of Oxidative Stress Evidenced by N-acetylcysteine.

    PubMed

    Bhat, Pratiksha V; Pandareesh; Khanum, Farhath; Tamatam, Anand

    2016-01-01

    Ochratoxin-A (OTA), is toxic secondary metabolite and is found to be a source of vast range of toxic effects like hepatotoxicity, nephrotoxicity. However, the information available currently regarding neurotoxic effects exerted by OTA is scanty. Hence, the present study was aimed to evaluate the neurotoxic effects of OTA and the possible mechanisms of toxicity as well as the role of cytotoxic oxidative stress on neuronal (Neuro-2a) cell line was evaluated in vitro. Results of the MTT and LDH assay showed that, OTA induced dose-dependent cell death in Neuro-2a cells and EC50 value was determined as 500 nM. OTA induced high levels of reactive oxygen species (ROS) and elevated levels of malondialdehyde, also loss of mitochondrial membrane potential was observed in a dose depended manner. Effects of OTA on ROS induced chromosomal DNA damage was assessed by Comet assay and plasmid DNA damage assay in which increase in DNA damage was observed in Neuro-2a cells by increasing the OTA concentration. Further western blotting analysis of OTA treated Neuro-2a cells indicated elevated expression levels of c-Jun, JNK3 and cleaved caspase-3 leading to apoptotic cell death. Other hand realtime-Q-PCR analysis clearly indicates the suppressed expression of neuronal biomarker genes including AChE, BDNF, TH and NOS2. Further N-acetylcysteine (NAC) pretreatment to Neuro-2a cells followed by OTA treatment clearly evidenced that, the significant reversal of toxic effects exerted by OTA on Neuro-2a cells. In the present study, results illustrate that ROS a principle event in oxidative stress was elevated by OTA toxicity in Neuro-2a cells. However, further in vivo, animal studies are in need to conclude the present study reports and the use of NAC as a remedy for OTA induced neuronal stress.

  15. High Dietary Fat Intake during Lactation Promotes the Development of Social Stress-Induced Obesity in the Offspring of Mice.

    PubMed

    Tsuduki, Tsuyoshi; Yamamoto, Kazushi; E, Shuang; Hatakeyama, Yu; Sakamoto, Yu

    2015-07-17

    This study examined how a maternal high-fat diet (HD) during lactation and exposure of offspring to isolation stress influence the susceptibility of offspring to the development of obesity. C57BL/6J mice were fed a commercial diet (CD) during pregnancy and a CD or HD during lactation. Male offspring were weaned at three weeks of age, fed a CD until seven weeks of age, and fed a CD or HD until 11 weeks of age. Offspring were housed alone (isolation stress) or at six per cage (ordinary circumstances). Thus, offspring were assigned to one of eight groups: dams fed a CD or HD during lactation and offspring fed a CD or HD and housed under ordinary circumstances or isolation stress. Serum corticosterone level was significantly elevated by isolation stress. High-fat feeding of offspring reduced their serum corticosterone level, which was significantly elevated by a maternal HD. A maternal HD and isolation stress had combined effects in elevating the serum corticosterone level. These findings suggest that a maternal HD during lactation enhances the stress sensitivity of offspring. White adipose tissue weights were significantly increased by a maternal HD and isolation stress and by their combination. In addition, significant adipocyte hypertrophy was induced by a maternal HD and isolation stress and exacerbated by their combination. Thus, a maternal HD and isolation stress promote visceral fat accumulation and adipocyte hypertrophy, accelerating the progression of obesity through their combined effects. The mechanism may involve enhanced fatty acid synthesis and lipid influx from blood into adipose tissue. These findings demonstrate that a maternal HD during lactation may increase the susceptibility of offspring to the development of stress-induced obesity.

  16. Glutathione redox regulates airway hyperresponsiveness and airway inflammation in mice.

    PubMed

    Koike, Yoko; Hisada, Takeshi; Utsugi, Mitsuyoshi; Ishizuka, Tamotsu; Shimizu, Yasuo; Ono, Akihiro; Murata, Yukie; Hamuro, Junji; Mori, Masatomo; Dobashi, Kunio

    2007-09-01

    Glutathione is the major intracellular redox buffer. We have shown that glutathione redox status, which is the balance between intracellular reduced (GSH) and oxidized (GSSG) glutathione, in antigen-presenting cells (APC) regulates the helper T cell type 1 (Th1)/Th2 balance due to the production of IL-12. Bronchial asthma is a typical Th2 disease. Th2 cells and Th2 cytokines are characteristic of asthma and trigger off an inflammation. Accordingly, we studied the effects of the intracellular glutathione redox status on airway hyperresponsiveness (AHR) and allergen-induced airway inflammation in a mouse model of asthma. We used gamma-Glutamylcysteinylethyl ester (gamma-GCE), which is a membrane-permeating GSH precursor, to elevate the intracellular GSH level and GSH/GSSG ratio of mice. In vitro, gamma-GCE pretreatment of human monocytic THP-1 cells elevated the GSH/GSSG ratio and enhanced IL-12(p70) production induced by LPS. In the mouse asthma model, intraperitoneal injection of gamma-GCE elevated the GSH/GSSG ratio of lung tissue and reduced AHR. gamma-GCE reduced levels of IL-4, IL-5, IL-10, and the chemokines eotaxin and RANTES (regulated on activation, normal T cell expressed and secreted) in bronchoalveolar lavage fluid, whereas it enhanced the production of IL-12 and IFN-gamma. Histologically, gamma-GCE suppressed eosinophils infiltration. Interestingly, we also found that gamma-GCE directly inhibited chemokine-induced eosinophil chemotaxis without affecting eotaxin receptor chemokine receptor 3 (CCR3) expressions. Taken together, these findings suggest that changing glutathione redox balance, increase in GSH level, and the GSH/GSSG ratio by gamma-GCE, ameliorate bronchial asthma by altering the Th1/Th2 imbalance through IL-12 production from APC and suppressing chemokine production and eosinophil migration itself.

  17. Antihypertensive and cardioprotective effects of pumpkin seed oil.

    PubMed

    El-Mosallamy, Aliaa E M K; Sleem, Amany A; Abdel-Salam, Omar M E; Shaffie, Nermeen; Kenawy, Sanaa A

    2012-02-01

    Pumpkin seed oil is a natural product commonly used in folk medicine for treatment of prostatic hypertrophy. In the present study, the effects of treatment with pumpkin seed oil on hypertension induced by the nitric oxide synthase inhibitor N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME) (50 mg /kg/day) in rats were studied and compared with those of the calcium channel blocker amlodipine. Pumpkin seed oil (40 or 100 mg/kg), amlodipine (0.9 mg/kg), or vehicle (control) was given once daily orally for 6 weeks. Arterial blood pressure (BP), heart rate, electrocardiogram (ECG) changes, levels of serum nitric oxide (NO) (the concentrations of nitrite/nitrate), plasma malondialdehyde (MDA), blood glutathione, and erythrocytic superoxide dismutase activity were measured. Histopathological examination of heart and aorta was conducted as well. L-NAME administration resulted in a significant increase in BP starting from the second week. Pumpkin seed oil or amlodipine treatment significantly reduced the elevation in BP by L-NAME and normalized the L-NAME-induced ECG changes-namely, prolongation of the RR interval, increased P wave duration, and ST elevation. Both treatments significantly decreased the elevated levels of MDA and reversed the decreased levels of NO metabolites to near normal values compared with the L-NAME-treated group. Amlodipine also significantly increased blood glutathione content compared with normal (but not L-NAME-treated) rats. Pumpkin seed oil as well as amlodipine treatment protected against pathological alterations in heart and aorta induced by L-NAME. In conclusion, this study has shown that pumpkin seed oil exhibits an antihypertensive and cardioprotective effects through a mechanism that may involve generation of NO.

  18. The Herbal Medicine Cordyceps sinensis Protects Pancreatic Beta Cells from Streptozotocin-Induced Endoplasmic Reticulum Stress.

    PubMed

    Liu, Hong; Cao, Diyong; Liu, Hua; Liu, Xinghai; Mai, Wenli; Lan, Haitao; Huo, Wen; Zheng, Qian

    2016-08-01

    Our previous work found that Cordyceps sinensis (CS) improves the activity and secretory function of pancreatic islet beta cells. The objective was to observe a further possible role of CS in the protection of insulin-secreting cells. A rat model of type 2 diabetes mellitus was developed with streptozotocin (STZ) and a high-energy fat diet (HFD). CS was administered in the successful model of rats with type 2 diabetes. After 4 weeks, the biochemistry index of blood samples was measured, and pathologic observation was performed by immunohistochemistry. In the rats with type 2 diabetes induced by a HFD and STZ, the levels of fasting blood glucose and fasting insulin were elevated, and the insulin sensitivity index was decreased. Pathologic examination found an increased number of apoptotic cells, an elevated protein expression of pro-apoptotic C/EBP homologous protein (CHOP) and an increased c-Jun level by means of JNK phosphorylation, responsive to the endoplasmic reticulum stress of islet beta cells. With treatment by CS for 4 weeks, the elevated levels of both fasting blood glucose and fasting insulin in the rats with type 2 diabetes were significantly lower, and the decreased insulin sensitivity index was reversed. Compared to the control rats with type 2 diabetes, CS application significantly reduced the number of apoptotic cells and decreased protein expression of both CHOP and c-Jun. The herbal compound CS could protect pancreatic beta cells from the pro-apoptotic endoplasmic reticulum stress induced by HFD-STZ. This suggests an alternative approach to treating type 2 diabetes. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  19. Increased Expression of PcG Protein YY1 Negatively Regulates B Cell Development while Allowing Accumulation of Myeloid Cells and LT-HSC Cells

    PubMed Central

    Pan, Xuan; Jones, Morgan; Jiang, Jie; Zaprazna, Kristina; Yu, Duonan; Pear, Warren; Maillard, Ivan; Atchison, Michael L.

    2012-01-01

    Ying Yang 1 (YY1) is a multifunctional Polycomb Group (PcG) transcription factor that binds to multiple enhancer binding sites in the immunoglobulin (Ig) loci and plays vital roles in early B cell development. PcG proteins have important functions in hematopoietic stem cell renewal and YY1 is the only mammalian PcG protein with DNA binding specificity. Conditional knock-out of YY1 in the mouse B cell lineage results in arrest at the pro-B cell stage, and dosage effects have been observed at various YY1 expression levels. To investigate the impact of elevated YY1 expression on hematopoetic development, we utilized a mouse in vivo bone marrow reconstitution system. We found that mouse bone marrow cells expressing elevated levels of YY1 exhibited a selective disadvantage as they progressed from hematopoietic stem/progenitor cells to pro-B, pre-B, immature B and re-circulating B cell stages, but no disadvantage of YY1 over-expression was observed in myeloid lineage cells. Furthermore, mouse bone marrow cells expressing elevated levels of YY1 displayed enrichment for cells with surface markers characteristic of long-term hematopoietic stem cells (HSC). YY1 expression induced apoptosis in mouse B cell lines in vitro, and resulted in down-regulated expression of anti-apoptotic genes Bcl-xl and NFκB2, while no impact was observed in a mouse myeloid line. B cell apoptosis and LT-HSC enrichment induced by YY1 suggest that novel strategies to induce YY1 expression could have beneficial effects in the treatment of B lineage malignancies while preserving normal HSCs. PMID:22292011

  20. Differential patterns of endothelial and leucocyte activation in ‘typhus-like’ illnesses in Laos and Thailand

    PubMed Central

    Paris, D H; Jenjaroen, K; Blacksell, S D; Phetsouvanh, R; Wuthiekanun, V; Newton, P N; Day, N P J; Turner, G D H

    2008-01-01

    Scrub typhus is responsible for a large proportion of undifferentiated fevers in south-east Asia. The cellular tropism and pathophysiology of the causative agent, Orientia tsutsugamushi, remain poorly understood. We measured endothelial and leucocyte activation by soluble cell adhesion molecule enzyme-linked immunosorbent assays in 242 Lao and Thai patients with scrub or murine typhus, leptospirosis, dengue, typhoid and uncomplicated falciparum malaria on admission to hospital. Soluble E-selectin (sE-selectin) levels were lowest in dengue, sL-selectin highest in scrub typhus with a high sE-selectin to sL-selectin ratio in leptospirosis patients. In scrub typhus patients elevated sL-selectin levels correlated with the duration of skin rash (P = 0·03) and the presence of eschar (P = 0·03), elevated white blood cell (WBC) count (P = 0·007), elevated lymphocyte (P = 0·007) and neutrophil counts (P = 0·015) and elevated levels of sE-selectin correlated with the duration of illness before admission (P = 0·03), the presence of lymphadenopathy (P = 0·033) and eschar (P = 0·03), elevated WBC (P = 0·005) and neutrophil counts (P = 0·0003). In comparison, soluble selectin levels in murine typhus patients correlated only with elevated WBC counts (P = 0·03 for sE-selectin and sL-selectin). Soluble intercellular adhesion molecule-1 and soluble vascular adhesion molecule-1 levels were not associated significantly with any clinical parameters in scrub or murine typhus patients. The data presented suggest mononuclear cell activation in scrub typhus. As adhesion molecules direct leucocyte migration and induce inflammatory and immune responses, this may represent O. tsutsugamushi tropism during early dissemination, or local immune activation within the eschar. PMID:18505434

  1. Differential patterns of endothelial and leucocyte activation in 'typhus-like' illnesses in Laos and Thailand.

    PubMed

    Paris, D H; Jenjaroen, K; Blacksell, S D; Phetsouvanh, R; Wuthiekanun, V; Newton, P N; Day, N P J; Turner, G D H

    2008-07-01

    Scrub typhus is responsible for a large proportion of undifferentiated fevers in south-east Asia. The cellular tropism and pathophysiology of the causative agent, Orientia tsutsugamushi, remain poorly understood. We measured endothelial and leucocyte activation by soluble cell adhesion molecule enzyme-linked immunosorbent assays in 242 Lao and Thai patients with scrub or murine typhus, leptospirosis, dengue, typhoid and uncomplicated falciparum malaria on admission to hospital. Soluble E-selectin (sE-selectin) levels were lowest in dengue, sL-selectin highest in scrub typhus with a high sE-selectin to sL-selectin ratio in leptospirosis patients. In scrub typhus patients elevated sL-selectin levels correlated with the duration of skin rash (P = 0.03) and the presence of eschar (P = 0.03), elevated white blood cell (WBC) count (P = 0.007), elevated lymphocyte (P = 0.007) and neutrophil counts (P = 0.015) and elevated levels of sE-selectin correlated with the duration of illness before admission (P = 0.03), the presence of lymphadenopathy (P = 0.033) and eschar (P = 0.03), elevated WBC (P = 0.005) and neutrophil counts (P = 0.0003). In comparison, soluble selectin levels in murine typhus patients correlated only with elevated WBC counts (P = 0.03 for sE-selectin and sL-selectin). Soluble intercellular adhesion molecule-1 and soluble vascular adhesion molecule-1 levels were not associated significantly with any clinical parameters in scrub or murine typhus patients. The data presented suggest mononuclear cell activation in scrub typhus. As adhesion molecules direct leucocyte migration and induce inflammatory and immune responses, this may represent O. tsutsugamushi tropism during early dissemination, or local immune activation within the eschar.

  2. Structural rearrangements in the mitochondrial genome of Drosophila melanogaster induced by elevated levels of the replicative DNA helicase

    PubMed Central

    Ciesielski, Grzegorz L; Nadalutti, Cristina A; Oliveira, Marcos T; Griffith, Jack D; Kaguni, Laurie S

    2018-01-01

    Abstract Pathological conditions impairing functions of mitochondria often lead to compensatory upregulation of the mitochondrial DNA (mtDNA) replisome machinery, and the replicative DNA helicase appears to be a key factor in regulating mtDNA copy number. Moreover, mtDNA helicase mutations have been associated with structural rearrangements of the mitochondrial genome. To evaluate the effects of elevated levels of the mtDNA helicase on the integrity and replication of the mitochondrial genome, we overexpressed the helicase in Drosophila melanogaster Schneider cells and analyzed the mtDNA by two-dimensional neutral agarose gel electrophoresis and electron microscopy. We found that elevation of mtDNA helicase levels increases the quantity of replication intermediates and alleviates pausing at the replication slow zones. Though we did not observe a concomitant alteration in mtDNA copy number, we observed deletions specific to the segment of repeated elements in the immediate vicinity of the origin of replication, and an accumulation of species characteristic of replication fork stalling. We also found elevated levels of RNA that are retained in the replication intermediates. Together, our results suggest that upregulation of mtDNA helicase promotes the process of mtDNA replication but also results in genome destabilization. PMID:29432582

  3. Chronic fluoride exposure exacerbates headkidney pathology and causes immune commotion in Clarias gariepinus.

    PubMed

    Singh, Rashmi; Hussain, Md Arafat; Kumar, Jai; Kumar, Manmohan; Kumari, Usha; Mazumder, Shibnath

    2017-11-01

    The current study was aimed to understand the effects of chronic fluoride exposure on fish immune system. African sharp tooth catfish (Clarias gariepinus) were exposed to 73.45mg/L of fluoride corresponding to 1/10 96h LC 50 for 30 d and the effects on general fish health and several immune parameters were studied. Chronic fluoride exposure led to significant alteration in serum biochemical parameters including alkaline phosphatase, alanine transaminase, aspartate transaminase, triglycerides, cholesterol and blood urea nitrogen levels revealing the detrimental effect of fluoride on general fish health. Upregulation in cytochrome P450 1A expression, both at mRNA and protein level suggested that fluoride activates the detoxification machinery in headkidney (HK) of C. gariepinus. Histopathological analysis of HK from exposed fish further revealed fluoride-induced hypertrophy, increase in melano-macrophage centers (MMCs) and the development of cell-depleted regions. Fluoride reduced headkidney somatic index (HKSI) and the phagocytic potential of headkidney macrophages (HKM). It induced caspase-3-dependent headkidney leukocyte (HKL) apoptosis, elevated superoxide generation and production of pro-inflammatory cytokine TNF-α besides suppressed T-cell proliferation in the exposed fish. We surmise the elevation in superoxide levels coupled with increased TNF-α production to be plausible causes of fluoride-induced HKL apoptosis. It is concluded that chronic fluoride exposure induces structure-function alterations in HK, the primary lymphoid organ in fish leading to impairment in immune responses. Copyright © 2017. Published by Elsevier B.V.

  4. Agmatine Prevents Adaptation of the Hippocampal Glutamate System in Chronic Morphine-Treated Rats.

    PubMed

    Wang, Xiao-Fei; Zhao, Tai-Yun; Su, Rui-Bin; Wu, Ning; Li, Jin

    2016-12-01

    Chronic exposure to opioids induces adaptation of glutamate neurotransmission, which plays a crucial role in addiction. Our previous studies revealed that agmatine attenuates opioid addiction and prevents the adaptation of glutamate neurotransmission in the nucleus accumbens of chronic morphine-treated rats. The hippocampus is important for drug addiction; however, whether adaptation of glutamate neurotransmission is modulated by agmatine in the hippocampus remains unknown. Here, we found that continuous pretreatment of rats with ascending doses of morphine for 5 days resulted in an increase in the hippocampal extracellular glutamate level induced by naloxone (2 mg/kg, i.p.) precipitation. Agmatine (20 mg/kg, s.c.) administered concurrently with morphine for 5 days attenuated the elevation of extracellular glutamate levels induced by naloxone precipitation. Furthermore, in the hippocampal synaptosome model, agmatine decreased the release and increased the uptake of glutamate in synaptosomes from chronic morphine-treated rats, which might contribute to the reduced elevation of glutamate levels induced by agmatine. We also found that expression of the hippocampal NR2B subunit, rather than the NR1 subunit, of N-methyl-D-aspartate receptors (NMDARs) was down-regulated after chronic morphine treatment, and agmatine inhibited this reduction. Taken together, agmatine prevented the adaptation of the hippocampal glutamate system caused by chronic exposure to morphine, including modulating extracellular glutamate concentration and NMDAR expression, which might be one of the mechanisms underlying the attenuation of opioid addiction by agmatine.

  5. Increased plasma fibrinopeptide A levels during attacks induced by hyperventilation in patients with coronary vasospastic angina.

    PubMed

    Oshima, S; Ogawa, H; Yasue, H; Okumura, K; Matsuyama, K; Miyagi, H

    1989-07-01

    Plasma fibrinopeptide A levels, beta-thromboglobulin levels and platelet factor 4 levels were estimated by enzyme-linked immunosorbent assay before and after hyperventilation in 12 patients with coronary vasospastic angina and in 12 control subjects matched for age and gender. In all 12 study patients, anginal attacks accompanied by electrocardiographic (ECG) changes (ST elevation in 11 patients and ST depression in 1 patient) were induced by hyperventilation. Coronary angiography was performed on 11 of the 12 patients, and coronary artery spasm with the same ECG changes was induced by intracoronary injection of acetylcholine in all 11. The plasma fibrinopeptide A levels increased significantly from 2.0 +/- 0.4 to 10.0 +/- 2.4 ng/ml during the attack (p less than 0.001) in the study patients, but remained unchanged before and after hyperventilation in the control subjects. The plasma levels of beta-thromboglobulin and platelet factor 4 remained unchanged after hyperventilation in both groups. Our data indicate that coronary artery spasm may induce thrombin generation and trigger thrombus formation in the coronary artery.

  6. Hepatoprotective activity of Tribulus terrestris extract against acetaminophen-induced toxicity in a freshwater fish (Oreochromis mossambicus).

    PubMed

    Kavitha, P; Ramesh, R; Bupesh, G; Stalin, A; Subramanian, P

    2011-12-01

    The potential protective role of Tribulus terrestris in acetaminophen-induced hepatotoxicity in Oreochromis mossambicus was investigated. The effect of oral exposure of acetaminophen (500 mg/kg) in O. mossambicus at 24-h duration was evaluated. The plant extract (250 mg/kg) showed a remarkable hepatoprotective activity against acetaminophen-induced hepatotoxicity. It was judged from the tissue-damaging level and antioxidant levels in liver, gill, muscle and kidney tissues. Further acetaminophen impact induced a significant rise in the tissue-damaging level, and the antioxidant level was discernible from the enzyme activity modulations such as glutamate oxaloacetic transaminase, glutamate pyruvic transaminase, alkaline phosphatase, acid phosphatase, glucose-6-phosphate dehydrogenase, lactate dehydrogenase, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase, lipid peroxidase and reduced glutathione. The levels of all these enzymes have significantly (p < 0.05) increased in acetaminophen-treated fish tissues. The elevated levels of these enzymes were significantly controlled by the treatment of T. terrestris extract (250 kg/mg). Histopathological changes of liver, gill and muscle samples were compared with respective controls. The results of the present study specify the hepatoprotective and antioxidant properties of T. terrestris against acetaminophen-induced toxicity in freshwater fish, O. mossambicus.

  7. Induction of 1-acylglycerophosphocholine acyltransferase genes by fibrates in the liver of rats.

    PubMed

    Yamazaki, Tohru; Wakabayashi, Michiko; Ikeda, Erika; Tanaka, Shizuyo; Sakamoto, Takeshi; Mitsumoto, Atsushi; Kudo, Naomi; Kawashima, Yoichi

    2012-01-01

    The effect of fibrates (clofibric acid, bezafibrate and fenofibrate) on the gene expression and activity of 1-acylglycerophosphocholine acyltransferase (LPCAT) was investigated. The administration of 0.1% (w/w) clofibric acid, bezafibrate or fenofibrate in diet for 14 d to rats induced LPCAT activity in hepatic microsomes in the following order: fenofibrate>bezafibrate>clofibric acid. The LPCAT induced by fenofibrate preferred to arachidonoyl-CoA and linoleoyl-CoA to a greater extent than did LPCAT in control microsomes. The treatment with the fibrates resulted in upregulation of the relative expression of mRNAs encoding LPCAT3 and LPCAT4 in the following order: fenofibrate>bezafibrate>clofibric acid. The administration of fibrates did not change the expression of genes encoding either LPCAT1 or LPCAT2. The treatment with fibrates elevated relative levels of both mRNAs encoding Δ6 desaturase (Fads2) and Δ5 desaturase (Fads1) in the order of fenofibrate>bezafibrate>clofibric acid, and the extent of the increase in the level of Δ6 desaturase mRNA was greater than that of Δ5 desaturase. Fatty acid profile in hepatic phosphatidylcholine (PC) was significantly changed by the treatments with fibrates. These results suggest (i) that fibrates induce LPCAT activity in hepatic microsomes by elevating the expression of genes encoding LPCAT3 and LPCAT4, (ii) that the changes in fatty acid profile of hepatic PC are, in part, due to the elevated expression of two isoforms, LPCAT3 and LPCAT4, and (iii) that the ability of fibrates to induce these changes are in the order of fenofibrate>bezafibrate>clofibric acid.

  8. Transient elevation of glycolysis confers radio-resistance by facilitating DNA repair in cells.

    PubMed

    Bhatt, Anant Narayan; Chauhan, Ankit; Khanna, Suchit; Rai, Yogesh; Singh, Saurabh; Soni, Ravi; Kalra, Namita; Dwarakanath, Bilikere S

    2015-05-01

    Cancer cells exhibit increased glycolysis for ATP production (the Warburg effect) and macromolecular biosynthesis; it is also linked with therapeutic resistance that is generally associated with compromised respiratory metabolism. Molecular mechanisms underlying radio-resistance linked to elevated glycolysis remain incompletely understood. We stimulated glycolysis using mitochondrial respiratory modifiers (MRMs viz. di-nitro phenol, DNP; Photosan-3, PS3; Methylene blue, MB) in established human cell lines (HEK293, BMG-1 and OCT-1). Glucose utilization and lactate production, levels of glucose transporters and glycolytic enzymes were investigated as indices of glycolysis. Clonogenic survival, DNA repair and cytogenetic damage were studied as parameters of radiation response. MRMs induced the glycolysis by enhancing the levels of two important regulators of glucose metabolism GLUT-1 and HK-II and resulted in 2 fold increase in glucose consumption and lactate production. This increase in glycolysis resulted in resistance against radiation-induced cell death (clonogenic survival) in different cell lines at an absorbed dose of 5 Gy. Inhibition of glucose uptake and glycolysis (using fasentin, 2-deoxy-D-glucose and 3-bromopyruvate) in DNP treated cells failed to increase the clonogenic survival of irradiated cells, suggesting that radio-resistance linked to inhibition of mitochondrial respiration is glycolysis dependent. Elevated glycolysis also facilitated rejoining of radiation-induced DNA strand breaks by activating both non-homologous end joining (NHEJ) and homologous recombination (HR) pathways of DNA double strand break repair leading to a reduction in radiation-induced cytogenetic damage (micronuclei formation) in these cells. These findings suggest that enhanced glycolysis generally observed in cancer cells may be responsible for the radio-resistance, partly by enhancing the repair of DNA damage.

  9. N-terminal B-type natriuretic peptide concentrations are similarly increased by 30 minutes of moderate and brisk walking in patients with coronary artery disease.

    PubMed

    Scharhag, Jürgen; Herrmann, Markus; Weissinger, Melanie; Herrmann, Wolfgang; Kindermann, Wilfried

    2007-04-01

    Elevated concentrations of B-type natriuretic peptide (BNP) and N-terminal pro- BNP (NT-proBNP) reflect elevated myocardial wall stress due to volume or pressure overload in cardiac disease. Recently, exercise-induced elevations of (NT-pro)BNP in coronary artery disease (CAD) patients have been reported to result from exercise-induced ischemia associated regional wall abnormalities. Therefore, the study aimed to examine NT-proBNP concentrations in patients with CAD after moderate and brisk walking (MW, BW). We hypothesized that BW induces higher increases than MW. In randomized order 14 patients with stable CAD (12 male symbol/2 female symbol; 63 +/- 9 years; LV ejection fraction: 59+/-9%) of a out-patient rehabilitation group performed MW with 4.5 +/- 0.6 km/h (mean heart rate: 80 +/- 11/min) or BWat their allowed upper exercise heart rate of 102+/-9/min with a speed of 6.2 +/- 0.6 km/h for 30 min on a tartan track on two separate days. Blood samples were taken before, immediately, 1 h, 3 h and 1 day after exercise to determine NT-proBNP and cardiac troponin T (cTnT). Echocardiographic LV function was determined before and 1 h after exercise. Median concentrations of NT-proBNP significantly increased from 222 to 295 ng/l (MW) and from 222 to 296 ng/l (BW) without a difference between both modalities. cTnT remained below the detection limit of 0.01 microg/l. LV functions remained unchanged. A cutoff level of 250 ng/l distinguished CAD patients with elevated exercise-induced increases in NT-proBNP and a diminished LV ejection fraction at rest. BW and MW induce similar increases in NT-proBNP in CAD patients without myocardial damage, which have to be considered when NT-proBNP is determined. Derived from the exercise- induced increase in NTproBNP, the myocardial strain in BW is not elevated in comparison to MW.

  10. Protective effect of dexpanthenol on ischemia-reperfusion-induced renal injury in rats.

    PubMed

    Altintas, Ramazan; Parlakpinar, Hakan; Beytur, Ali; Vardi, Nigar; Polat, Alaadin; Sagir, Mustafa; Odabas, Gul Pelin

    2012-01-01

    This experimental study was designed to investigate protective and therapeutic effects of Dexpanthenol (Dxp), an alcoholic analogue of pantothenic acid, on kidney damage induced by ischemia-reperfusion (I/R) in rats. Forty rats were randomly divided into a control group and 4 I/R groups (1 h ischemia followed by 23 h reperfusion). Three I/R groups were treated by Dxp (500 mg/kg, i.p.) at 3 different time points (before ischemia, during ischemia and late reperfusion). The histopathological findings including apoptotic changes, and also tissue malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), blood urea nitrogen (BUN), serum creatinine (Cr) and albumin (Alb) levels were determined. Kidney tissue MDA levels were found to be significantly higher in the I/R group, whereas the values of GPX were lower when compared to the control group. The levels of SOD and CAT did not reach to statistical meaning level in I/R group. Dxp given during ischemia reduced the elevated MDA levels to the nearly control levels and this ameliorating effect was found as parallel to the result of GPX. Serum levels of BUN and Cr were significantly higher in I/R group. Dxp given during ischemia significantly reduced the elevated BUN and Cr levels when compared to I/R group. Renal I/R injury also induced extensive tubular necrosis, glomerular damage and apoptosis in the histological evaluation. Dxp ameliorated these histological damages in different amounts in all treatment groups. In this study the protective effects of Dxp against renal I/R injury has been evaluated for the first time. Copyright © 2012 S. Karger AG, Basel.

  11. Muscle pain and serum creatine kinase are not associated with low serum 25(OH) vitamin D levels in patients receiving statins.

    PubMed

    Kurnik, Daniel; Hochman, Israel; Vesterman-Landes, Janet; Kenig, Tali; Katzir, Itzhak; Lomnicky, Yosef; Halkin, Hillel; Loebstein, Ronen

    2012-07-01

    Vitamin D deficiency has been associated in some studies with nonspecific musculoskeletal pain and, more specifically, with statin-induced myalgia, which was ameliorated by high-dose vitamin D supplements. Our objective was to explore the association between vitamin D status and statin-induced myalgia and elevation of serum creatine kinase (CK). Retrospective cohort study, based on the electronic database of a health maintenance organization. Six thousand eight hundred and eight patients (71·5% women) to whom statins were dispensed during 2008 and who had ≥1 CK and 25-hydroxy vitamin D (25OHD) levels measured during statin exposure. Of these, 376 patients (5·5%) had switched from a first-line statin to atorvastatin because of muscle pain (n = 220) or other reasons (n = 156). Measurements; In the entire cohort, we compared serum CK levels among serum 25OHD quartiles. In addition, we compared CK and 25OHD levels among patients with myalgia, other switchers and nonswitchers. The median 25OHD level in the entire cohort was 21·8 ng/ml [interquartile range (IQR), 16·3-27·4]. CK levels were marginally lower in patients in the lowest 25OHD quartile [median CK (IQR) in 25OHD quartiles 1-4, 87 (61-130), 90 (65-131), 91 (65-132) and 91 (67-131) IU/ml, respectively; P = 0·007]. 25OHD levels in statin switchers were similar to those in nonswitchers; moreover, there were no differences in 25OHD among switchers with muscle pain and other switchers. Our findings do not support an association between low 25OHD levels and statin-induced myalgia or CK elevation. © 2011 Blackwell Publishing Ltd.

  12. Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance

    PubMed Central

    Loh, Kim; Fukushima, Atsushi; Zhang, Xinmei; Galic, Sandra; Briggs, Dana; Enriori, Pablo J.; Simonds, Stephanie; Wiede, Florian; Reichenbach, Alexander; Hauser, Christine; Sims, Natalie A.; Bence, Kendra K.; Zhang, Sheng; Zhang, Zhong-Yin; Kahn, Barbara B.; Neel, Benjamin G.; Andrews, Zane B.; Cowley, Michael A.; Tiganis, Tony

    2011-01-01

    SUMMARY In obesity, anorectic responses to leptin are diminished, giving rise to the concept of ‘leptin resistance’. Increased expression of protein tyrosine phosphatase 1B (PTP1B) has been associated with the attenuation of leptin signaling and development of cellular leptin resistance. Here we report that hypothalamic levels of the tyrosine phosphatase TCPTP are also elevated in obesity to attenuate the leptin response. We show that mice that lack TCPTP in neuronal cells have enhanced leptin sensitivity and are resistant to high fat diet-induced weight gain and the development of leptin resistance. Also, intracerebroventricular administration of a TCPTP inhibitor enhances leptin signaling and responses in mice. Moreover, the combined deletion of TCPTP and PTP1B in neuronal cells has additive effects in the prevention of diet-induced obesity. Our results identify TCPTP as a critical negative regulator of hypothalamic leptin signaling and causally link elevated TCPTP to the development of cellular leptin resistance in obesity. PMID:22000926

  13. The role of hormones in muscle hypertrophy.

    PubMed

    Fink, Julius; Schoenfeld, Brad Jon; Nakazato, Koichi

    2018-02-01

    Anabolic-androgenic steroids (AAS) and other hormones such as growth hormone (GH) and insulin-like growth factor-1 (IGF-1) have been shown to increase muscle mass in patients suffering from various diseases related to muscle atrophy. Despite known side-effects associated with supraphysiologic doses of such drugs, their anabolic effects have led to their widespread use and abuse by bodybuilders and athletes such as strength athletes seeking to improve performance and muscle mass. On the other hand, resistance training (RT) has also been shown to induce significant endogenous hormonal (testosterone (T), GH, IGF-1) elevations. Therefore, some bodybuilders employ RT protocols designed to elevate hormonal levels in order to maximize anabolic responses. In this article, we reviewed current RT protocol outcomes with and without performance enhancing drug usage. Acute RT-induced hormonal elevations seem not to be directly correlated with muscle growth. On the other hand, supplementation with AAS and other hormones might lead to supraphysiological muscle hypertrophy, especially when different compounds are combined.

  14. [Behavior in the forced-swimming test and expression of BDNF and Bcl-xl genes in the rat brain].

    PubMed

    Berezova, I V; Shishkina, G T; Kalinina, T S; Dygalo, N N

    2011-01-01

    A single exposure of rats to the forced-swimming stress decreased BDNF mRNA levels in the cortex and increased Bcl-xl gene expression in the hippocampus and amygdala 24 h after the stress. The animals demonstrated a depressive-like behavior and elevated blood corticosterone level. There was a significant negative correlation between BDNF mRNA level in the cortex and immobility time during swimming. Repeated exposure to swimming stress caused the elevation of the hippocampal BDNF mRNA level assessed 24 h after the second swimming session. The data suggest that stress-induced down-regulation of cortical BDNF gene expression and behavioral despair in the forced-swimming test may be interrelated. The increase in the BDNF and Bcl-xl mRNA levels may contribute to the mechanisms protecting the brain against negative effects of stress.

  15. ARSENIC-INDUCED SKIN CONDITIONS IDENTIFIED IN SOUTHWEST DERMATOLOGY PRACTICE: AN EPIDEMIOLOGIC TOOL?

    EPA Science Inventory

    Populations living in the Southwest United States are more likely to be exposed to elevated drinking water arsenic levels compared to other areas of the country. Skin changes, including hyperpigmentation and generalized hyperkeratosis, are the most common signs of chronic arsenic...

  16. Contribution of polyamines metabolism and GABA shunt to chilling tolerance induced by nitric oxide in cold-stored banana fruit.

    PubMed

    Wang, Yansheng; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2016-04-15

    Effect of exogenous nitric oxide (NO) on polyamines (PAs) catabolism, γ-aminobutyric acid (GABA) shunt, proline accumulation and chilling injury of banana fruit under cold storage was investigated. Banana fruit treated with NO sustained lower chilling injury index than the control. Notably elevated nitric oxide synthetase activity and endogenous NO level were observed in NO-treated banana fruit. PAs contents in treated fruit were significantly higher than control fruit, due to the elevated activities of arginine decarboxylase and ornithine decarboxylase. NO treatment increased the activities of diamine oxidase, polyamine oxidase and glutamate decarboxylase, while reduced GABA transaminase activity to lower levels compared with control fruit, which resulted the accumulation of GABA. Besides, NO treatment upregulated proline content and significantly enhanced the ornithine aminotransferase activity. These results indicated that the chilling tolerance induced by NO treatment might be ascribed to the enhanced catabolism of PAs, GABA and proline. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Modulation of Mitochondrial Complex I Activity Averts Cognitive Decline in Multiple Animal Models of Familial Alzheimer's Disease

    PubMed Central

    Zhang, Liang; Zhang, Song; Maezawa, Izumi; Trushin, Sergey; Minhas, Paras; Pinto, Matthew; Jin, Lee-Way; Prasain, Keshar; Nguyen, Thi D.T.; Yamazaki, Yu; Kanekiyo, Takahisa; Bu, Guojun; Gateno, Benjamin; Chang, Kyeong-Ok; Nath, Karl A.; Nemutlu, Emirhan; Dzeja, Petras; Pang, Yuan-Ping; Hua, Duy H.; Trushina, Eugenia

    2015-01-01

    Development of therapeutic strategies to prevent Alzheimer's disease (AD) is of great importance. We show that mild inhibition of mitochondrial complex I with small molecule CP2 reduces levels of amyloid beta and phospho-Tau and averts cognitive decline in three animal models of familial AD. Low-mass molecular dynamics simulations and biochemical studies confirmed that CP2 competes with flavin mononucleotide for binding to the redox center of complex I leading to elevated AMP/ATP ratio and activation of AMP-activated protein kinase in neurons and mouse brain without inducing oxidative damage or inflammation. Furthermore, modulation of complex I activity augmented mitochondrial bioenergetics increasing coupling efficiency of respiratory chain and neuronal resistance to stress. Concomitant reduction of glycogen synthase kinase 3β activity and restoration of axonal trafficking resulted in elevated levels of neurotrophic factors and synaptic proteins in adult AD mice. Our results suggest that metabolic reprogramming induced by modulation of mitochondrial complex I activity represents promising therapeutic strategy for AD. PMID:26086035

  18. Trastuzumab Alters the Expression of Genes Essential for Cardiac Function and Induces Ultrastructural Changes of Cardiomyocytes in Mice

    PubMed Central

    ElZarrad, M. Khair; Mukhopadhyay, Partha; Mohan, Nishant; Hao, Enkui; Dokmanovic, Milos; Hirsch, Dianne S.; Shen, Yi; Pacher, Pal; Wu, Wen Jin

    2013-01-01

    Treatment with trastuzumab, a humanized monoclonal antibody directed against the extracellular domain of Human Epidermal Growth Factor Receptor 2 (HER2), very successfully improves outcomes for women with HER2-positive breast cancer. However, trastuzumab treatment was recently linked to potentially irreversible serious cardiotoxicity, the mechanisms of which are largely elusive. This study reports that trastuzumab significantly alters the expression of myocardial genes essential for DNA repair, cardiac and mitochondrial functions, which is associated with impaired left ventricular performance in mice coupled with significant ultrastructural alterations in cardiomyocytes revealed by electron microscopy. Furthermore, trastuzumab treatment also promotes oxidative stress and apoptosis in myocardium of mice, and elevates serum levels of cardiac troponin-I (cTnI) and cardiac myosin light chain-1 (cMLC1). The elevated serum levels of cMLC1 in mice treated with trastuzumab highlights the potential that cMLC1 could be a useful biomarker for trastuzumab-induced cardiotoxicity. PMID:24255707

  19. Iodinated contrast media can induce long-lasting oxidative stress in hemodialysis patients.

    PubMed

    Hwang, Seun Deuk; Kim, Yoon Ji; Lee, Sang Heun; Cho, Deok Kyu; Cho, Yun Hyeong; Moon, Sung Jin; Lee, Sang Choel; Yoon, Soo Young

    2013-11-01

    Due to their comorbidities, dialysis patients have many chances to undergo radiologic procedures using iodinated contrast media. We aimed to assess time-sequenced blood oxidative stress level after contrast exposure in hemodialysis (HD) patients compared to those in the non-dialysis population. We included 21 anuric HD patients [HD-coronary angiography (CAG) group] and 23 persons with normal renal function (nonHD-CAG group) scheduled for CAG, and assessed 4 oxidative stress markers [advanced oxidation protein products (AOPP); catalase; 8-hydroxydeoxyguanosine; and malondialdehyde] before and after CAG, and subsequently up to 28 days. In the nonHD-CAG group, only AOPP increased immediately after CAG and returned to baseline within one day. However, in the HD-CAG group, all four oxidative stress markers were significantly increased starting one day after CAG, and remained elevated longer than those in the nonHD-CAG group. Especially, AOPP level remained elevated for a month after contrast exposure. Our study showed that iodinated contrast media induces severe and prolonged oxidative stress in HD patients.

  20. Receptor mediated elevation in FABP4 levels by advanced glycation end products induces cholesterol and triacylglycerol accumulation in THP-1 macrophages.

    PubMed

    Wang, Xiao Qun; Yang, Ke; He, Yu Song; Lu, Lin; Shen, Wei Feng

    2011-06-01

    Excessive formation of advanced glycation end products (AGE) and lipid accumulation in macrophages play a pivotal role in the progression of atherosclerosis in diabetes mellitus. This study aimed to determine the molecular link between AGE-induced fatty acid binding protein 4 (FABP4) expression and macrophage lipid accumulation. AGE-BSA markedly increased macrophage FABP4 expression via engagement of RAGE, a 35-kDa transmembrane receptor that is able to bind extracellular AGE and responsible for the corresponding signal transduction, whereas knockdown of RAGE significantly reversed the FABP4 up-regulation. This effect was further paralleled with elevated intracellular total cholesterol and triacylglycerol levels. Finally, administration of FABP4 inhibitor totally abolished the increased lipid contents in response to AGE-BSA. These results indicate that FABP4 up-regulation is responsible for the enhanced macrophage lipid accumulation by AGE, which may underlie the accelerated formation of foam cells and development of atherosclerotic cardiovascular diseases in diabetic patients.

  1. Inhibitory effects of losartan and azelnidipine on augmentation of blood pressure variability induced by angiotensin II in rats.

    PubMed

    Jiang, Danfeng; Kawagoe, Yukiko; Kuwasako, Kenji; Kitamura, Kazuo; Kato, Johji

    2017-07-05

    Increased blood pressure variability has been shown to be associated with cardiovascular morbidity and mortality. Recently we reported that continuous infusion of angiotensin II not only elevated blood pressure level, but also increased blood pressure variability in a manner assumed to be independent of blood pressure elevation in rats. In the present study, the effects of the angiotensin type I receptor blocker losartan and the calcium channel blocker azelnidipine on angiotensin II-induced blood pressure variability were examined and compared with that of the vasodilator hydralazine in rats. Nine-week-old male Wistar rats were subcutaneously infused with 240 pmol/kg/min angiotensin II for two weeks without or with oral administration of losartan, azelnidipine, or hydralazine. Blood pressure variability was evaluated using a coefficient of variation of blood pressure recorded every 15min under an unrestrained condition via an abdominal aortic catheter by a radiotelemetry system. Treatment with losartan suppressed both blood pressure elevation and augmentation of systolic blood pressure variability in rats infused with angiotensin II at 7 and 14 days. Azelnidipine also inhibited angiotensin II-induced blood pressure elevation and augmentation of blood pressure variability; meanwhile, hydralazine attenuated the pressor effect of angiotensin II, but had no effect on blood pressure variability. In conclusion, angiotensin II augmented blood pressure variability in an angiotensin type 1 receptor-dependent manner, and azelnidipine suppressed angiotensin II-induced augmentation of blood pressure variability, an effect mediated by the mechanism independent of the blood pressure-lowering action. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Micro-RNA-122 levels in acute liver failure and chronic hepatitis C.

    PubMed

    Dubin, Perry H; Yuan, Hejun; Devine, Robert K; Hynan, Linda S; Jain, Mamta K; Lee, William M

    2014-09-01

    MicroRNA-122 (miR-122) is the foremost liver-related micro-RNA, but its role in the hepatocyte is not fully understood. To evaluate whether circulating levels of miR-122 are elevated in chronic-HCV for a reason other than hepatic injury, we compared serum level in patients with chronic hepatitis C to other forms of liver injury including patients with acute liver failure and healthy controls. MiR-122 was quantitated using sera from 35 acute liver failure patients (20 acetaminophen-induced, 15 other etiologies), 39 chronic-HCV patients and 12 controls. In parallel, human genomic DNA (hgDNA) levels were measured to reflect quantitatively the extent of hepatic necrosis. Additionally, six HIV-HCV co-infected patients, who achieved viral clearance after undergoing therapy with interferon and ribavirin, had serial sera miR-122 and hgDNA levels measured before and throughout treatment. Serum miR-122 levels were elevated approximately 100-fold in both acute liver failure and chronic-HCV sera as compared to controls (P < 0.001), whereas hgDNA levels were only elevated in acute liver failure patients as compared to both chronic-HCV and controls (P < 0.001). Subgroup analysis showed that chronic-HCV sera with normal aminotransferase levels showed elevated miR-122 despite low levels of hepatocyte necrosis. All successfully treated HCV patients showed a significant Log10 decrease in miR-122 levels ranging from 0.16 to 1.46, after sustained viral response. Chronic-HCV patients have very elevated serum miR-122 levels in the range of most patients with severe hepatic injury leading to acute liver failure. Eradication of HCV was associated with decreased miR-122 but not hgDNA. An additional mechanism besides hepatic injury may be active in chronic-HCV to explain the exaggerated circulating levels of miR-122 observed. © 2014 Wiley Periodicals, Inc.

  3. Measurement of serum, liver, and brain cytokine induction, thiamine levels, and hepatopathology in rats exposed to a 4-day alcohol binge protocol.

    PubMed

    Zahr, Natalie M; Luong, Richard; Sullivan, Edith V; Pfefferbaum, Adolf

    2010-11-01

     In rodent and human studies, ethanol (EtOH) exposure is associated with elevated brain levels of the magnetic resonance spectroscopy (MRS) signal representing choline-containing compounds (Cho). One interpretation of elevated brain Cho is that it is a marker of neuroinflammation, and some evidence suggests that EtOH exposure promotes neuroinflammation. This study aimed to determine whether binge EtOH exposure (intragastric 3 g/kg 25% EtOH every 8 hours for 4 days) would induce the expression of certain cytokines in blood, liver, or brain, thereby supporting the neuroinflammation hypothesis of elevated Cho. Ten of 18 wild-type male Wistar rats (~322 g at baseline) were exposed to EtOH and attained average blood alcohol levels of ~315 mg/dl across 4 days. Blood for cytokine immunoassays was collected at baseline, after 5 doses of EtOH (binge), and immediately preceding euthanasia either 4 or 24 hours after the last dose of EtOH. Blood was additionally assayed for the levels of thiamine and liver enzymes; liver histopathology was performed postmortem; and tissue from liver and 6 brain regions was assayed for the potential induction of 7 cytokines. There were no group effects on the levels of thiamine or its phosphate derivatives, thiamine monophosphate or thiamine diphosphate. ANOVAs of liver enzyme levels indicated that only alkaline phosphatase (ALP) levels were higher in the EtOH group than in control group at binge; ALP elevations, however, are difficult to explain in the absence of changes in the levels of additional liver enzymes. Postmortem liver pathology provided evidence for minimal microvesicular lipidosis and portocentric fibrosis in the EtOH group. Group effects on the levels of the measured cytokines in the blood (TNF-α, IFN-γ, IL-1β, IL-4, IL-5, IL-13, and GRO/CXCL1) were not significant. Similarly, postmortem evaluation of liver cytokines did not reveal group effects. Postmortem evaluation of the 7 cytokines in 6 brain regions (anterior cerebellar vermis, cingulate cortex, frontal cortex, hippocampus, hypothalamus, striatum) also failed to identify group effects. A single 4-day bout of binge EtOH exposure alone was insufficient to induce the expression of 7 cytokines in blood, liver, or 6 brain regions of wild-type Wistar rats. Alternative interpretations for elevations in brain Cho in response to a 4-day binge EtOH treatment are therefore necessary and may include induction of cytokines not measured herein or other noninflammatory mechanisms. Copyright © 2010 by the Research Society on Alcoholism.

  4. Ascorbic acid deficiency stimulates hepatic expression of inflammatory chemokine, cytokine-induced neutrophil chemoattractant-1, in scurvy-prone ODS rats.

    PubMed

    Horio, Fumihiko; Kiyama, Keiichiro; Kobayashi, Misato; Kawai, Kaori; Tsuda, Takanori

    2006-02-01

    ODS rat has a hereditary defect in ascorbic acid biosynthesis and is a useful animal model for elucidating the physiological role of ascorbic acid. We previously demonstrated by using ODS rats that ascorbic acid deficiency changes the hepatic gene expression of acute phase proteins, as seen in acute inflammation. In this study, we investigated the effects of ascorbic acid deficiency on the production of inflammatory chemokine, cytokine-induced neutrophil chemoattractant-1 (CINC-1), in ODS rats. Male ODS rats (6 wk of age) were fed a basal diet containing ascorbic acid (300 mg/kg diet) or a diet without ascorbic acid for 14 d. Obvious symptoms of scurvy were not observed in the ascorbic acid-deficient rats. Ascorbic acid deficiency significantly elevated the serum concentration of CINC-1 on d 14. The liver and spleen CINC-1 concentrations in the ascorbic acid-deficient rats were significantly elevated to 600% and 180% of the respective values in the control rats. However, the lung concentration of CINC-1 was not affected by ascorbic acid deficiency. Ascorbic acid deficiency significantly elevated the hepatic mRNA level of CINC-1 (to 480% of the value in the control rats), but not the lung mRNA level. These results demonstrate that ascorbic acid deficiency elevates the serum, liver and spleen concentrations of CINC-1 as seen in acute inflammation, and suggest that ascorbic acid deficiency stimulate the hepatic CINC-1 gene expression.

  5. Ocular Penetration and Anti-inflammatory Activity of Ketorolac 0.45% and Bromfenac 0.09% Against Lipopolysaccharide-Induced Inflammation

    PubMed Central

    Galindo, Danielle; Villanueva, Linda; Nguyen, Cathy; Patel, Milan; Borbridge, Lisa; Attar, Mayssa; Schiffman, Rhett M.; Hollander, David A.

    2011-01-01

    Abstract Purpose Anti-inflammatory activity of topical nonsteroidal anti-inflammatory drugs is mediated by suppression of cyclooxygenase (COX) isoenzymes. This study compared ocular penetration and inflammation suppression of topical ketorolac 0.45% and bromfenac 0.09% ophthalmic solutions in a rabbit model. Methods At hour 0, 36 rabbits received ketorolac 0.45%, bromfenac 0.09%, or an artificial tear 3 times once every 20 min. Half of the rabbits in each group then received intravenous injections of lipopolysaccharide (LPS) and fluorescein isothiocyanate (FITC)–dextran at hour 1, and the other half at hour 10. Aqueous and iris-ciliary body (ICB) samples were collected in the former group at hour 2 (peak) and in the latter group at hour 11 (trough) An additional group of 6 animals received only FITC-dextran, and samples were collected 1 h later. Peak and trough nonsteroidal anti-inflammatory drug concentrations were compared with previously determined half-maximal inhibitory concentrations (IC50) for COX isoenzymes. Results Peak and trough aqueous and ICB concentrations of ketorolac were at least 7-fold or greater than those of bromfenac. At peak levels, both ketorolac 0.45% and bromfenac 0.09% significantly inhibited LPS-induced aqueous prostaglandin E2 and FITC-dextran elevation (P < 0.01). At trough, both study drugs significantly inhibited LPS-induced aqueous prostaglandin E2 elevation (P < 0.05), but only ketorolac 0.45% significantly reduced LPS-induced aqueous FITC-dextran elevation (P < 0.01). Aqueous and ICB ketorolac concentrations exceeded its IC50 for COX-1 and COX-2 at peak and trough. Aqueous and ICB bromfenac levels exceeded its IC50 for COX-2 at peak and trough, but not for COX-1 at trough aqueous levels and peak and trough ICB levels. Conclusions Both ketorolac 0.45% and bromfenac 0.09% effectively suppressed inflammation at peak. At trough, only ketorolac 0.45% effectively suppressed inflammation as measured by FITC-dextran leakage. The difference in inflammation suppression may be due to differences in tissue concentrations and/or greater COX-1 suppression by ketorolac 0.45%. PMID:21351868

  6. Sucralose, an activator of the glucose-sensing receptor, increases ATP by calcium-dependent and -independent mechanisms.

    PubMed

    Li, Longfei; Ohtsu, Yoshiaki; Nakagawa, Yuko; Masuda, Katsuyoshi; Kojima, Itaru

    2016-08-31

    Sucralose is an artificial sweetener and activates the glucose-sensing receptor expressed in pancreatic β-cells. Although sucralose does not enter β-cells nor acts as a substrate for glucokinase, it induces a marked elevation of intracellular ATP ([ATP]c). The present study was conducted to identify the signaling pathway responsible for the elevation of [ATP]c induced by sucralose. Previous studies have shown that sucralose elevates cyclic AMP (cAMP), activates phospholipase C (PLC) and stimulates Ca(2+) entry by a Na(+)-dependent mechanism in MIN6 cells. The addition of forskolin induced a marked elevation of cAMP, whereas it did not affect [ATP]c. Carbachol, an activator of PLC, did not increase [ATP]c. In addition, activation of protein kinase C by dioctanoylglycerol did not affect [ATP]c. In contrast, nifedipine, an inhibitor of the voltage-dependent Ca(2+) channel, significantly reduced [ATP]c response to sucralose. Removal of extracellular Na(+) nearly completely blocked sucralose-induced elevation of [ATP]c. Stimulation of Na(+) entry by adding a Na(+) ionophore monensin elevated [ATP]c. The monensin-induced elevation of [ATP]c was only partially inhibited by nifedipine and loading of BAPTA, both of which completely abolished elevation of [Ca(2+)]c. These results suggest that Na(+) entry is critical for the sucralose-induced elevation of [ATP]c. Both calcium-dependent and -independent mechanisms are involved in the action of sucralose.

  7. The protective effect of total phenolics from Oenanthe Javanica on acute liver failure induced by D-galactosamine.

    PubMed

    Ai, Guo; Huang, Zheng-Ming; Liu, Qing-Chuan; Han, Yan-Quan; Chen, Xi

    2016-06-20

    Water dropwort [Oenanthe javanica (O. javanica)] is an aquatic perennial herb cultivated in East Asian countries. It has been popularly used in traditional Chinese medicine which is beneficial for the treatment of many diseases, including jaundice and various types of chronic and acute hepatitis. In the present study, we investigated the hepatoprotective effect of total phenolics from O. javanica (TPOJ) against D-galactosamine (D-GalN) induced liver injury in mice. The hepatoprotective activity of TPOJ (125, 250 and 500mg/kg) was investigated on D-GalN (800mg/kg)-induced liver damages in mice. Blood and liver were collected for biochemical and microscopic analysis. RT-PCR was used to determine the changes in hepatic nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Protein levels of iNOS, COX-2, superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were determined by western blotting. In the animal studies, TPOJ could improve the survival of acute liver failure model significantly and prevente the D-GalN-induced elevation of the serum enzymatic markers and nonenzymatic markers levels significantly. Meanwhile, TPOJ-treatment decreased the malondialdehyde (MDA) level and elevated the content of glutathione (GSH) in the liver as compared to those in the D-GalN group. Hepatic activities and protein expressions of antioxidative enzymes, including SOD, GPx, and CAT were enhanced dose dependently with TPOJ. At the same time, application of TPOJ effectively suppressed the D-GalN-induced proinflammatory mRNA and protein expression of iNOS and COX-2. Subsequently, the serum levels of proinflammatory mediators, nitric oxide (NO) and prostaglandin E2 (PGE2) were reduced. Additionally, histological analyses also showed that TPOJ reduced the extent of liver lesions induced by D-GalN. Our investigation demonstrated the hepatoprotective activity of TPOJ and revealed that TPOJ attributed its significance in the traditional use for treating liver diseases. Copyright © 2016. Published by Elsevier Ireland Ltd.

  8. Static pressure accelerates ox-LDL-induced cholesterol accumulation via SREBP-1-mediated caveolin-1 downregulation in cultured vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Di-xian, E-mail: luodixian_2@163.com; Institute of Pharmacy and Pharmacology, College of Science and Technology, University of South China, Hengyang 421001, Hunan; First People's Hospital of Chenzhou City, Chenzhou 423000, Hunan

    Research highlights: {yields} Vertical static pressure accelerates ox-LDL-induced cholesterol accumulation in cultured vascular smooth muscle cells. {yields} Static pressure induces SREBP-1 activation. {yields} Static pressure downregulates the expressions of caveolin-1 by activating SREBP-1. {yields} Static pressure also downregulates the transcription of ABCA1 by activating SREBP-1. {yields} Static pressure increases ox-LDL-induced cholesterol accumulation by SREBP-1-mediated caveolin-1 downregulation in vascular smooth muscle cells cultured in vitro. -- Abstract: Objective: To investigate the effect of static pressure on cholesterol accumulation in vascular smooth muscle cells (VSMCs) and its mechanism. Methods: Rat-derived VSMC cell line A10 treated with 50 mg/L ox-LDL and different staticmore » pressures (0, 60, 90, 120, 150, 180 mm Hg) in a custom-made pressure incubator for 48 h. Intracellular lipid droplets and lipid levels were assayed by oil red O staining and HPLC; The mRNA levels of caveolin-1 and ABCA1, the protein levels of caveolin-1 SREBP-1 and mature SREBP-1 were respectively detected by RT-PCR or western blot. ALLN, an inhibitor of SREBP metabolism, was used to elevate SREBP-1 protein level in VSMCs treated with static pressure. Results: Static pressures significantly not only increase intracellular lipid droplets in VSMCs, but also elevate cellular lipid content in a pressure-dependent manner. Intracellular free cholesterol (FC), cholesterol ester (CE), total cholesterol (TC) were respectively increased from 60.5 {+-} 2.8 mg/g, 31.8 {+-} 0.7 mg/g, 92.3 {+-} 2.1 mg/g at atmosphere pressure (ATM, 0 mm Hg) to 150.8 {+-} 9.4 mg/g, 235.9 {+-} 3.0 mg/g, 386.7 {+-} 6.4 mg/g at 180 mm Hg. At the same time, static pressures decrease the mRNA and protein levels of caveolin-1, and induce the activation and nuclear translocation of SREBP-1. ALLN increases the protein level of mature SREBP-1 and decreases caveolin-1 expression, so that cellular lipid levels were upregulated. Conclusion: Static pressures stimulate ox-LDL-induced cholesterol accumulation in cultured VSMCs through decreasing caveolin-1 expression via inducing the maturation and nuclear translocation of SREBP-1.« less

  9. Curcumin elevates sirtuin level but does not postpone in vitro senescence of human cells building the vasculature

    PubMed Central

    Grabowska, Wioleta; Suszek, Małgorzata; Wnuk, Maciej; Lewinska, Anna; Wasiak, Emilia; Sikora, Ewa; Bielak-Zmijewska, Anna

    2016-01-01

    It is believed that curcumin, a component of the turmeric that belongs to hormetins, possesses anti-aging propensity. This property of curcumin can be partially explained by its influence on the level of sirtuins. Previously, we have shown that relatively high (2.5-10 μM) doses of curcumin induce senescence of cancer cells and cells building the vasculature. In the present study we examined whether curcumin at low doses (0.1 and 1 μM) is able to delay cell senescence and upregulate the level of sirtuins in human cells building the vasculature, namely vascular smooth muscle (VSMC) and endothelial (EC) cells. To this end we used cells senescing in a replicative and premature manner. We showed that low doses of curcumin in case of VSMC neither postponed the replicative senescence nor protected from premature senescence induced by doxorubicin. Moreover, curcumin slightly accelerated replicative senescence of EC. Despite some fluctuations, a clear increasing tendency in the level of sirtuins was observed in curcumin-treated young, senescing or already senescent cells. Sirtuin activation could be caused by the activation of AMPK resulting from superoxide elevation and ATP reduction. Our results show that curcumin at low doses can increase the level of sirtuins without delaying senescence of VSMC. PMID:27034011

  10. Elevated CO2 and/or ozone modify lignification in the wood of poplars (Populus tremula x alba)

    PubMed Central

    Richet, Nicolas; Afif, Dany; Tozo, Koffi; Pollet, Brigitte; Maillard, Pascale; Huber, Françoise; Priault, Pierrick; Banvoy, Jacques; Gross, Patrick; Dizengremel, Pierre; Lapierre, Catherine; Perré, Patrick; Cabané, Mireille

    2012-01-01

    Trees will have to cope with increasing levels of CO2 and ozone in the atmosphere. The purpose of this work was to assess whether the lignification process could be altered in the wood of poplars under elevated CO2 and/or ozone. Young poplars were exposed either to charcoal-filtered air (control), to elevated CO2 (800 μl l−1), to ozone (200 nl l−1) or to a combination of elevated CO2 and ozone in controlled chambers. Lignification was analysed at different levels: biosynthesis pathway activities (enzyme and transcript), lignin content, and capacity to incorporate new assimilates by using 13C labelling. Elevated CO2 and ozone had opposite effects on many parameters (growth, biomass, cambial activity, wood cell wall thickness) except on lignin content which was increased by elevated CO2 and/or ozone. However, this increased lignification was due to different response mechanisms. Under elevated CO2, carbon supply to the stem and effective lignin synthesis were enhanced, leading to increased lignin content, although there was a reduction in the level of some enzyme and transcript involved in the lignin pathway. Ozone treatment induced a reduction in carbon supply and effective lignin synthesis as well as transcripts from all steps of the lignin pathway and some corresponding enzyme activities. However, lignin content was increased under ozone probably due to variations in other major components of the cell wall. Both mechanisms seemed to coexist under combined treatment and resulted in a high increase in lignin content. PMID:22553285

  11. Baicalein Reduces Liver Injury Induced by Myocardial Ischemia and Reperfusion.

    PubMed

    Lai, Chang-Chi; Huang, Po-Hsun; Yang, An-Han; Chiang, Shu-Chiung; Tang, Chia-Yu; Tseng, Kuo-Wei; Huang, Cheng-Hsiung

    2016-01-01

    Baicalein is a component of the root of Scutellaria baicalensis Georgi, which has traditionally been used to treat liver disease in China. In the present study, we investigated baicalein' ability to reduce the liver injury induced by myocardial ischemia and reperfusion (I/R). Myocardial I/R was induced in this experiment by a 40[Formula: see text]min occlusion of the left anterior descending coronary artery and a 3[Formula: see text]h reperfusion in rats. The induced myocardial I/R significantly increased the serum levels of aspartate transaminase (AST) and alanine transaminase (ALT), indicating the presence of liver injury. Hepatic apoptosis was significantly increased. The serum levels of tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]), interleukin-1[Formula: see text] (IL-1[Formula: see text]), and interleukin-6 (IL-6) were significantly elevated, as was the TNF-[Formula: see text] level in the liver. Intravenous pretreatment with baicalein (3, 10, or 30[Formula: see text]mg/kg) 10[Formula: see text]min before myocardial I/R significantly reduced the serum level increase of AST and ALT, apoptosis in the liver, and the elevation of TNF-[Formula: see text], IL-1[Formula: see text], and IL-6 levels. Moreover, baicalein increased Bcl-2 and decreased Bax in the liver. Phosphorylation of the prosurvival kinases, including Akt and extracellular signal-regulated kinases 1 and 2 (ERK1/2), was also increased. In conclusion, we found that baicalein can reduce the liver injury induced by myocardial I/R. The underlying mechanisms are likely related to the inhibition of the extrinsic and intrinsic apoptotic pathways, possibly via the inhibition of TNF-[Formula: see text] production, the modulation of Bcl-2 and Bax, and the activation of Akt and ERK1/2. Our findings may provide a rationale for the application of baicalein or traditional Chinese medicine containing large amounts of baicalein to prevent liver injury in acute myocardial infarction and cardiac surgery.

  12. Protective effects of coffee-derived compounds on lipopolysaccharide/D-galactosamine induced acute liver injury in rats.

    PubMed

    Akashi, Iwao; Kagami, Keisuke; Hirano, Toshihiko; Oka, Kitaro

    2009-04-01

    The protective effects of coffee-derived compounds on lipopolysaccharide/D-galactosamine (LPS/D-GalN) induced acute liver injury in rats were investigated. Wistar rats were orally administered saline (control) or one of the test compounds (caffeine, chlorogenic acid, trigonelline, nicotinic acid or eight pyrazinoic acids) at a dose of 100 mg/kg, respectively. This was followed by intraperitoneal injection with LPS (100 mug/kg)/D-GalN (250 mg/kg) 1 h after administration of the test compounds. Blood samples were collected up to 12 h after LPS/D-GalN injection, followed by determination of plasma aspartate aminotransferase, alanine aminotransferase, tumour necrosis factor alpha (TNF-alpha) and interleukin 10 (IL-10) levels. Plasma aspartate aminotransferase and alanine aminotransferase levels were significantly increased after LPS/D-GalN-treatment, but were suppressed by pretreatment with caffeine (n = 5), nicotinic acid, non-substituted pyrazinoic acid or 5-methylpyrazinoic acid (n = 6, respectively) 12 h after LPS/D-GalN-treatment (P < 0.01, respectively). Moreover, the animals pretreated with these test compounds showed significantly higher survival rates (83-100%) compared with the control (23%). Only pretreatment with caffeine significantly suppressed the LPS/D-GalN induced elevation of plasma TNF-alpha levels 1 and 2 h after LPS/D-GalN-treatment (P < 0.01, respectively). Pretreatment with caffeine, nicotinic acid or non-substituted pyrazinoic acid activated the LPS/D-GalN induced elevation of plasma IL-10 levels at 1 and 2 h, although there were no statistically significant differences in IL-10 levels between control and nicotinic acid or non-substituted pyrazinoic acid treated rats. The results suggest that caffeine, nicotinic acid, non-substituted pyrazinoic acid and 5-methylpyrazinoic acid can protect against LPS/D-GalN induced acute liver injury, which may be mediated by the reduction of TNF-alpha production and/or increasing IL-10 production.

  13. Elevation of Glucose 6-Phosphate Dehydrogenase Activity Induced by Amplified Insulin Response in Low Glutathione Levels in Rat Liver

    PubMed Central

    Taniguchi, Misako; Mori, Nobuko; Iramina, Chizuru

    2016-01-01

    Weanling male Wistar rats were fed on a 10% soybean protein isolate (SPI) diet for 3 weeks with or without supplementing 0.3% sulfur-containing amino acids (SAA; methionine or cystine) to examine relationship between glutathione (GSH) levels and activities of NADPH-producing enzymes, glucose 6-phosphate dehydrogenase (G6PD) and malic enzyme (ME), in the liver. Of rats on the 10% SPI diet, GSH levels were lower and the enzyme activities were higher than of those fed on an SAA-supplemented diet. Despite the lower GSH level, γ-glutamylcysteine synthetase (γ-GCS) activity was higher in the 10% SPI group than other groups. Examination of mRNAs of G6PD and ME suggested that the GSH-suppressing effect on enzyme induction occurred prior to and/or at transcriptional levels. Gel electrophoresis of G6PD indicated that low GSH status caused a decrease in reduced form and an increase in oxidized form of the enzyme, suggesting an accelerated turnover rate of the enzyme. In primary cultured hepatocytes, insulin response to induce G6PD activity was augmented in low GSH levels manipulated in the presence of buthionine sulfoximine. These findings indicated that elevation of the G6PD activity in low GSH levels was caused by amplified insulin response for expression of the enzyme and accelerated turnover rate of the enzyme molecule. PMID:27597985

  14. Exploiting Novel Calcium-Mediated Apoptotic Processes for the Treatment of Human Breast Cancers with Elevated Nqo1 Levels

    DTIC Science & Technology

    2008-03-01

    in β-Lapachone-induced programmed necrosis. Biomedical Graduate Student Symposium, Case Western Reserve University, Cleveland, OH April 2002-06.  o...of β- lapachone-induced cell death” October, 2005  o The Vance Lemmon Poster Award, Biomedical Graduate Student Symposium, Case Western Reserve...cell death” April, 2005  o The Marcus Singer Poster Award, Biomedical Graduate Student Symposium, Case Western Reserve University, Cleveland, OH for

  15. The influence of age, anxiety and concern about falling on postural sway when standing at an elevated level.

    PubMed

    Sturnieks, Daina L; Delbaere, Kim; Brodie, Matthew A; Lord, Stephen R

    2016-10-01

    Psychological processes may influence balance and contribute to the risk of falls in older people. While a self-reported fear of falling is associated with increased postural sway, inducing fear using an elevated platform can lead to reduced sway, suggesting different underlying mechanisms whereby fear may influence balance control. This study examined changes in postural sway, muscle activity and physiological measures of arousal while standing on a 65cm elevated platform, compared to floor level, in young and older adults. The older adults were classified as fall concerned or not fall concerned based on the Falls Efficacy Scale-International and anxious or not anxious based on the Goldberg Anxiety Scale. Fall concern did not affect the physiological and sway response to the elevated platform. In response to the postural threat, the anxious participants increased their sway frequency (p=0.001) but did not reduce sway range (p=0.674). Conversely, non-anxious participants showed an adaptive tightening of balance control, effectively reducing sway range in the elevated condition (p<0.001). Generalised anxiety in older adults appears to differentially affect postural control strategies under threatening conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. α-Synuclein induced toxicity in brain stem serotonin neurons mediated by an AAV vector driven by the tryptophan hydroxylase promoter.

    PubMed

    Wan, Oi Wan; Shin, Eunju; Mattsson, Bengt; Caudal, Dorian; Svenningsson, Per; Björklund, Anders

    2016-05-23

    We studied the impact of α-synuclein overexpression in brainstem serotonin neurons using a novel vector construct where the expression of human wildtype α-synuclein is driven by the tryptophan hydroxylase promoter, allowing expression of α-synuclein at elevated levels, and with high selectivity, in serotonergic neurons. α-Synuclein induced degenerative changes in axons and dendrites, displaying a distorted appearance, suggesting accumulation and aggregation of α-synuclein as a result of impaired axonal transport, accompanied by a 40% loss of terminals, as assessed in the hippocampus. Tissue levels of serotonin and its major metabolite 5-HIAA remained largely unaltered, and the performance of the α-synuclein overexpressing rats in tests of spatial learning (water maze), anxiety related behavior (elevated plus maze) and depressive-like behavior (forced swim test) was not different from control, suggesting that the impact of the developing axonal pathology on serotonin neurotransmission was relatively mild. Overexpression of α-synuclein in the raphe nuclei, combined with overexpression in basal forebrain cholinergic neurons, resulted in more pronounced axonal pathology and significant impairment in the elevated plus maze. We conclude that α-synuclein pathology in serotonergic or cholinergic neurons alone is not sufficient to impair non-motor behaviors, but that it is their simultaneous involvement that determines severity of such symptoms.

  17. Colchicine therapy for hepatic murine schistosomal fibrosis: image analysis and serological study

    PubMed Central

    BADAWY, AFKAR A; EL-BADRAWY, NAWAL M; HASSAN, MONA M; EBEID, FATMA A

    1999-01-01

    Colchicine in a dose of 200 μg kg body weight/day (5 days/week) was administered to groups of Schistosoma mansoni infected mice 12 weeks post infection, either alone or following previous praziquantel therapy at the 8th week of infection. Certain groups received colchicine for 6 weeks and others received it for 10 weeks. Colchicine alone did not significantly change the light microscopic appearance of schistosomal liver fibrosis, or hepatic collagen content estimated histomorphometrically, and did not reduce the elevated IL-2 serum level. Colchicine induced hepatic injury consisted of intense inflammatory reaction in granuloma and portal tracts, hepatocytic degeneration, and elevation of serum AST and ALT levels. Colchicine seemed to postpone granulomatous reaction healing and collagen deposition rather than inhibiting collagen formation or degrading it. Colchicine inhibited proliferation of hepatocytes of infected mice by expanding G2-M phases of cell cycle, thus reduced Ag NOR count and raised cell ploidy and cyclic AMP serum level. Subsidence of schistosomal infection by praziquantel prior to colchicine therapy greatly reduced inflammatory cellular reaction, significantly diminished hepatic collagen deposition and serum IL-2 level, minimized the elevated nuclear ploidy and cyclic AMP serum level that followed colchicine therapy when administered alone. PMID:10365084

  18. Elevated guanosine 5'-diphosphate 3'-diphosphate level inhibits bacterial growth and interferes with FtsZ assembly.

    PubMed

    Yamaguchi, Takayoshi; Iida, Ken-Ichiro; Shiota, Susumu; Nakayama, Hiroaki; Yoshida, Shin-Ichi

    2015-12-01

    FtsZ, a protein essential for prokaryotic cell division, forms a ring structure known as the Z-ring at the division site. FtsZ has a GTP binding site and is assembled into linear structures in a GTP-dependent manner in vitro. We assessed whether guanosine 5'-diphosphate 3'-diphosphate (ppGpp), a global regulator of gene expression in starved bacteria, affects cell division in Salmonella Paratyphi A. Elevation of intracellular ppGpp levels by using the relA expression vector induced repression of bacterial growth and incorrect FtsZ assembly. We found that FtsZ forms helical structures in the presence of ppGpp by using the GTP binding site; however, ppGpp levels required to form helical structures were at least 20-fold higher than the required GTP levels in vitro. Furthermore, once formed, helical structures did not change to the straight form even after GTP addition. Our data indicate that elevation of the ppGpp level leads to inhibition of bacterial growth and interferes with FtsZ assembly. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development.

    PubMed

    Engineer, Cawas B; Ghassemian, Majid; Anderson, Jeffrey C; Peck, Scott C; Hu, Honghong; Schroeder, Julian I

    2014-09-11

    Environmental stimuli, including elevated carbon dioxide levels, regulate stomatal development; however, the key mechanisms mediating the perception and relay of the CO2 signal to the stomatal development machinery remain elusive. To adapt CO2 intake to water loss, plants regulate the development of stomatal gas exchange pores in the aerial epidermis. A diverse range of plant species show a decrease in stomatal density in response to the continuing rise in atmospheric CO2 (ref. 4). To date, one mutant that exhibits deregulation of this CO2-controlled stomatal development response, hic (which is defective in cell-wall wax biosynthesis, ref. 5), has been identified. Here we show that recently isolated Arabidopsis thaliana β-carbonic anhydrase double mutants (ca1 ca4) exhibit an inversion in their response to elevated CO2, showing increased stomatal development at elevated CO2 levels. We characterized the mechanisms mediating this response and identified an extracellular signalling pathway involved in the regulation of CO2-controlled stomatal development by carbonic anhydrases. RNA-seq analyses of transcripts show that the extracellular pro-peptide-encoding gene EPIDERMAL PATTERNING FACTOR 2 (EPF2), but not EPF1 (ref. 9), is induced in wild-type leaves but not in ca1 ca4 mutant leaves at elevated CO2 levels. Moreover, EPF2 is essential for CO2 control of stomatal development. Using cell-wall proteomic analyses and CO2-dependent transcriptomic analyses, we identified a novel CO2-induced extracellular protease, CRSP (CO2 RESPONSE SECRETED PROTEASE), as a mediator of CO2-controlled stomatal development. Our results identify mechanisms and genes that function in the repression of stomatal development in leaves during atmospheric CO2 elevation, including the carbonic-anhydrase-encoding genes CA1 and CA4 and the secreted protease CRSP, which cleaves the pro-peptide EPF2, in turn repressing stomatal development. Elucidation of these mechanisms advances the understanding of how plants perceive and relay the elevated CO2 signal and provides a framework to guide future research into how environmental challenges can modulate gas exchange in plants.

  20. Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development

    PubMed Central

    Engineer, Cawas B.; Ghassemian, Majid; Anderson, Jeffrey C.; Peck, Scott C.; Hu, Honghong; Schroeder, Julian I.

    2014-01-01

    Environmental stimuli, including elevated carbon dioxide levels, regulate stomatal development1–3; however, the key mechanisms mediating the perception and relay of the CO2 signal to the stomatal development machinery remain elusive. To adapt CO2 intake to water loss, plants regulate the development of stomatal gas exchange pores in the aerial epidermis. A diverse range of plant species show a decrease in stomatal density in response to the continuing rise in atmospheric CO2 (ref. 4). To date, one mutant that exhibits deregulation of this CO2-controlled stomatal development response, hic (which is defective in cell-wall wax biosynthesis, ref. 5), has been identified. Here we show that recently isolated Arabidopsis thaliana β-carbonic anhydrase double mutants (ca1 ca4)6 exhibit aninversion in their response to elevated CO2, showing increased stomatal development at elevated CO2 levels. We characterized the mechanisms mediating this response and identified an extracellular signalling pathway involved in the regulation of CO2-controlled stomatal development by carbonic anhydrases. RNA-seq analyses of transcripts show that the extracellular pro-peptide-encoding gene EPIDERMAL PATTERNING FACTOR 2 (EPF2)7,8, but not EPF1 (ref. 9), is induced in wild-type leaves but not inca1 ca4 mutant leaves at elevated CO2 levels. Moreover, EPF2 is essential for CO2 control of stomatal development. Using cell-wall proteomic analyses and CO2-dependent transcriptomic analyses, we identified a novel CO2-induced extracellular protease, CRSP (CO2 RESPONSE SECRETED PROTEASE), as a mediator of CO2-controlled stomatal development. Our results identify mechanisms and genes that function in the repression of stomatal development in leaves during atmospheric CO2 elevation, including the carbonic-anhydrase-encoding genes CA1 and CA4 and the secreted protease CRSP, which cleaves the pro-peptide EPF2, in turn repressing stomatal development. Elucidation of these mechanisms advances the understanding of how plants perceive and relay the elevated CO2 signal and provides a framework to guide future research into how environmental challenges can modulate gas exchange in plants. PMID:25043023

  1. Interspecific- and acclimation-induced variation in levels of heat-shock proteins 70 (hsp70) and 90 (hsp90) and heat-shock transcription factor-1 (HSF1) in congeneric marine snails (genus Tegula): implications for regulation of hsp gene expression.

    PubMed

    Tomanek, Lars; Somero, George N

    2002-03-01

    In our previous studies of heat-shock protein (hsp) expression in congeneric marine gastropods of the genus Tegula, we observed interspecific and acclimation-induced variation in the temperatures at which heat-shock gene expression is induced (T(on)). To investigate the factors responsible for these inter- and intraspecific differences in T(on), we tested the predictions of the 'cellular thermometer' model for the transcriptional regulation of hsp expression. According to this model, hsps not active in chaperoning unfolded proteins bind to a transcription factor, heat-shock factor-1 (HSF1), thereby reducing the levels of free HSF1 that are available to bind to the heat-shock element, a regulatory element upstream of hsp genes. Under stress, hsps bind to denatured proteins, releasing HSF1, which can now activate hsp gene transcription. Thus, elevated levels of heat-shock proteins of the 40, 70 and 90 kDa families (hsp 40, hsp70 and hsp90, respectively) would be predicted to elevate T(on). Conversely, elevated levels of HSF1 would be predicted to decrease T(on). Following laboratory acclimation to 13, 18 and 23 degrees C, we used solid-phase immunochemistry (western analysis) to quantify endogenous levels of two hsp70 isoforms (hsp74 and hsp72), hsp90 and HSF1 in the low- to mid-intertidal species Tegula funebralis and in two subtidal to low-intertidal congeners, T. brunnea and T. montereyi. We found higher endogenous levels of hsp72 (a strongly heat-induced isoform) at 13 and 18 degrees C in T. funebralis in comparison with T. brunnea and T. montereyi. However, T. funebralis also had higher levels of HSF1 than its congeners. The higher levels of HSF1 in T. funebralis cannot, within the framework of the cellular thermometer model, account for the higher T(on) observed for this species, although they may explain why T. funebralis is able to induce the heat-shock response more rapidly than T. brunnea. However, the cellular thermometer model does appear to explain the cause of the increases in T(on) that occurred during warm acclimation of the two subtidal species, in which warm acclimation was accompanied by increased levels of hsp72, hsp74 and hsp90, whereas levels of HSF1 remained stable. T. funebralis, which experiences greater heat stress than its subtidal congeners, consistently had higher ratios of hsp72 to hsp74 than its congeners, although the sum of levels of the two isoforms was similar for all three species except at the highest acclimation temperature (23 degrees C). The ratio of hsp72 to hsp74 may provide a more accurate estimate of environmental heat stress than the total concentrations of both hsp70 isoforms.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    KoraMagazi, Arouna; Wang, Dandan; Yousef, Bashir

    Rhein is an active component of rhubarb; a traditional Chinese medicine reported to induce apoptosis and cause liver toxicity. However, rhein's apoptotic-inducing effects, as well as its molecular mechanisms of action on hepatic cells need to be further explored. In the present study, rhein was found to trigger apoptosis in primary human hepatic HL-7702 cells as showed by annexin V/PI double staining assay and nuclear morphological changes demonstrated by Hoechst 33258 staining. Moreover, it was observed that the mechanism implicated in rhein-induced apoptosis was caspase-dependent, presumably via ER-stress associated pathways, as illustrated by up-regulation of glucose-regulated protein 78 (GRP 78), PKR-likemore » ER kinase (PERK), C-Jun N-terminal kinase (JNK) and CCAAT/enhancer-binding protein homologous protein (CHOP). Meanwhile, caspase-4 as a hallmark of ER-stress, was also showed to be activated following by caspase-3 activation. Furthermore, rhein also promoted intracellular elevation of calcium that contributed in apoptosis induction. Interestingly, pre-treatment with calpain inhibitor I reduced the effects of rhein on apoptosis induction and JNK activation. These data suggested that rhein-induced apoptosis through ER-stress and elevated intracellular calcium level in HL-7702 cells. - Highlights: • Rhein triggers apoptotic cell death on primary human hepatic HL-7702 cells. • Rhein leads to caspase-4 activation in HL-7702 cells. • Rhein induces endoplasmic reticulum stress pathways in HL-7702 cells. • Rhein causes elevation of intracellular calcium concentrations in HL-7702 cells.« less

  3. Elevated CO2 and salinity are responsible for phenolics-enrichment in two differently pigmented lettuces.

    PubMed

    Sgherri, Cristina; Pérez-López, Usue; Micaelli, Francesco; Miranda-Apodaca, Jon; Mena-Petite, Amaia; Muñoz-Rueda, Alberto; Quartacci, Mike Frank

    2017-06-01

    Both salt stress and high CO 2 level, besides influencing secondary metabolism, can affect oxidative status of plants mainly acting in an opposite way with salinity provoking oxidative stress and elevated CO 2 alleviating it. The aim of the present work was to study the changes in the composition of phenolic acids and flavonoids as well as in the antioxidant activity in two differently pigmented lettuce cvs (green or red leaf) when submitted to salinity (200 mM NaCl) or elevated CO 2 (700 ppm) or to their combination in order to evaluate how a future global change can affect lettuce quality. Following treatments, the red cv. always maintained higher levels of antioxidant secondary metabolites as well as antioxidant activity, proving to be more responsive to altered environmental conditions than the green one. Overall, these results suggest that the application of moderate salinity or elevated CO 2 , alone or in combination, can induce the production of some phenolics that increase the health benefits of lettuce. In particular, moderate salinity was able to induce the synthesis of the flavonoids quercetin, quercetin-3-O-glucoside, quercetin-3-O-glucuronide and quercitrin. Phenolics-enrichment as well as a higher antioxidant capacity were also observed under high CO 2 with the red lettuce accumulating cyanidin, free chlorogenic acid, conjugated caffeic and ferulic acid as well as quercetin, quercetin-3-O-glucoside, quercetin-3-O-glucuronide, luteolin-7-O-glucoside, rutin, quercitrin and kaempferol. When salinity was present in combination with elevated CO 2 , reduction in yield was prevented and a higher presence of phenolic compounds, in particular luteolin, was observed compared to salinity alone. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Influence of pre-, post-, and simultaneous perfusion of elevated calcium on the effect of ascending concentrations of lead on digoxin-induced cardiac arrest in isolated frog heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamoorthy, M.S.; Muthu, P.; Parthiban, N.

    1995-10-01

    Cardiotoxicity of lead, a ubiquitous environmental pollutant, has already been documented as a potentially lethal, although rarely recognized, complication of lead intoxication. Further, it has already been reported from this laboratory that lead acetate (LA) preperfusion potentiated cardiotoxicity of digoxin (DGN) in isolated frog heart preparation and that exposure to elevated calcium (elev. Ca{sup 2+}) prior to, and simultaneously with LA at 10{sup {minus}7} M concentration, attenuated this potentiation. As an extension of this work, it was considered of interest to study the effect of perfusion of elev. Ca{sup 2+} (6.5 mM) prior to, after and simultaneously with ascending concentrationsmore » of lead (10{sup {minus}9}, 10{sup {minus}7} and 10{sup {minus}5}M) on DGN induced cardiac arrest (CA) in isolated frog heart, since Pb{sup 2+} and Ca{sup 2+} ions are known to compete with each other for the same target sites at the cellular level, an instance of competitive mass action effect. 15 refs., 1 fig., 1 tab.« less

  5. Long-term exposure to high glucose induces changes in the content and distribution of some exocytotic proteins in cultured hippocampal neurons.

    PubMed

    Gaspar, J M; Castilho, Á; Baptista, F I; Liberal, J; Ambrósio, A F

    2010-12-29

    A few studies have reported the existence of depletion of synaptic vesicles, and changes in neurotransmitter release and in the content of exocytotic proteins in the hippocampus of diabetic rats. Recently, we found that diabetes alters the levels of synaptic proteins in hippocampal nerve terminals. Hyperglycemia is considered the main trigger of diabetic complications, although other factors, such as low insulin levels, also contribute to diabetes-induced changes. Thus, the aim of this work was to evaluate whether long-term elevated glucose per se, which mimics prolonged hyperglycemia, induces significant changes in the content and localization of synaptic proteins involved in exocytosis in hippocampal neurons. Hippocampal cell cultures were cultured for 14 days and were exposed to high glucose (50 mM) or mannitol (osmotic control; 25 mM plus 25 mM glucose), for 7 days. Cell viability and nuclear morphology were evaluated by MTT and Hoechst assays, respectively. The protein levels of vesicle-associated membrane protein-2 (VAMP-2), synaptosomal-associated protein-25 (SNAP-25), syntaxin-1, synapsin-1, synaptophysin, synaptotagmin-1, rabphilin 3a, and also of vesicular glutamate and GABA transporters (VGluT-1 and VGAT), were evaluated by immunoblotting, and its localization was analyzed by immunocytochemistry. The majority of the proteins were not affected. However, elevated glucose decreased the content of SNAP-25 and increased the content of synaptotagmin-1 and VGluT-1. Moreover, there was an accumulation of syntaxin-1, synaptotagmin-1 and VGluT-1 in the cell body of some hippocampal neurons exposed to high glucose. No changes were detected in mannitol-treated cells. In conclusion, elevated glucose per se did not induce significant changes in the content of the majority of the synaptic proteins studied in hippocampal cultures, with the exception of SNAP-25, synaptotagmin-1 and VGluT-1. However, there was an accumulation of some proteins in cell bodies of hippocampal neurons exposed to elevated glucose, suggesting that the trafficking of these proteins to the synapse may be compromised. Moreover, these results also suggest that other factors, in addition to hyperglycemia, certainly contribute to alterations detected in synaptic proteins in diabetic animals. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Antioxidant and antiapoptotic effects of green tea polyphenols against azathioprine-induced liver injury in rats.

    PubMed

    El-Beshbishy, Hesham A; Tork, Ola M; El-Bab, Mohamed F; Autifi, Mohamed A

    2011-04-01

    Green tea polyphenols (GTP) is considered to have protective effects against several diseases. The hepatotoxicity of azathioprine (AZA) has been reported and was found to be associated with oxidative damage. This study was conducted to evaluate the role of GTP to protect against AZA-induced liver injury in rats. AZA was administered i.p. in a single dose (50mgkg(-1)) to adult male rats. AZA-intoxicated rats were orally administered GTP (either 100mgkg(-1)day(-1) or 300mgkg(-1)day(-1), for 21 consecutive days, started 7 days prior AZA injection). AZA administration to rats resulted in significant elevation of serum transaminases (sALT and sAST), alkaline phosphatase (sALP), depletion of hepatic reduced glutathione (GSH), catalase (CAT) and glutathione peroxidase (GPx), accumulation of oxidized glutathione (GSSG), elevation of lipid peroxides (LPO) expressed as malondialdehyde (MDA), reduction of the hepatic total antioxidant activity (TAA), decrease serum total proteins and elevation of liver protein carbonyl content. Significant rises in liver tumor necrosis factor-alpha (TNF-α) and caspase-3 levels were noticed in AZA-intoxicated rats. Treatment of the AZA-intoxicated rats with GTP significantly prevented the elevations of sALT, sAST and sALP, inhibited depletion of hepatic GSH, GPx, CAT and GSSG and inhibited MDA accumulation. Furthermore, GTP had normalized serum total proteins and hepatic TAA, CAT, TNF-α and caspase-3 levels of AZA-intoxicated rats. In addition, GTP prevented the AZA-induced apoptosis and liver injury as indicated by the liver histopathological analysis. The linear regression analysis showed significant correlation in either AZA-GTP100 or AZA-GTP300 groups between TNF-α and each of serum ALT, AST, ALP and total proteins and liver TAA, GPX, CAT, GSH, GSSG, MDA and caspase-3 levels. However, liver TNF-α produced non-significant correlation with the serum total proteins in both AZA-GTP100 and AZA-GTP300 groups. In conclusion, our data indicate that GTP protects against AZA-induced liver injury in rats through antioxidant, anti-inflammatory and antiapoptotic mechanisms. However, further merit investigations are needed to verify these results and to assess the efficacy of GTP therapy to counteract the liver injury and oxidative stress status. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Dopamine-regulated adrenocorticotropic hormone secretion in lactating rats: functional plasticity of melanotropes.

    PubMed

    Oláh, Márk; Fehér, Pálma; Ihm, Zsófia; Bácskay, Ildikó; Kiss, Timea; Freeman, Marc E; Nagy, Gyorgy M; Vecsernyés, Miklós

    2009-01-01

    Pro-opiomelanocortin (POMC) is processed to adrenocorticotropic hormone (ACTH) and beta-lipotropin in corticotropes of the anterior lobe, and to alpha-melanocyte-stimulating hormone (alpha-MSH) and beta-endorphin in melanotropes of the intermediate lobe (IL) of the pituitary gland. While ACTH secretion is predominantly under the stimulatory influence of the hypothalamic factors, hormone secretion of the IL is tonically inhibited by neuroendocrine dopamine (NEDA) neurons. Lobe-specific POMC processing is not absolute. For example, D(2) type DA receptor (D2R)-deficient mice have elevated plasma ACTH levels, although it is known that corticotropes do not express D2R(s). Moreover, observations that suckling does not influence alpha-MSH release, while it induces an increase in plasma ACTH is unexplained. The aim of the present study was to investigate the involvement of the NEDA system in the regulation of ACTH secretion and the participation of the IL in ACTH production in lactating rats. Untreated and estradiol (E(2))-substituted ovariectomized (OVX) females were also studied. The concentration of ACTH in the IL was higher in lactating rats than in OVX rats, while the opposite change in alpha-MSH level of the IL was observed. DA levels in the IL and the neural lobe were lower in lactating rats than in OVX rats. Suckling-induced ACTH response was eliminated by pretreatment with the DA receptor agonist, bromocriptine (BRC). Inhibition of DA biosynthesis by alpha-methyl-p-tyrosine (alphaMpT) and blockade of D2R by domperidone (DOM) elevated plasma ACTH levels, but did not influence plasma alpha-MSH levels in lactating rats. The same drugs had opposite effects in OVX and OVX + E(2) animals. In lactating mothers, BRC was able to block ACTH responses induced by both alphaMpT and DOM. Surgical denervation of the IL elevated basal plasma levels of ACTH. Taken together, these data indicate that melanotropes synthesize ACTH during lactation and its release from these cells is regulated by NEDA neurons. Copyright 2009 S. Karger AG, Basel.

  8. Dopamine-Regulated Adrenocorticotropic Hormone Secretion in Lactating Rats: Functional Plasticity of Melanotropes

    PubMed Central

    Oláh, Márk; Fehér, Pálma; Ihm, Zsófia; Bácskay, Ildikó; Kiss, Timea; Freeman, Marc E.; Nagy, György M.; Vecsernyés, Miklós

    2009-01-01

    Pro-opiomelanocortin (POMC) is processed to adrenocorticotropic hormone (ACTH) and β-lipotropin in corticotropes of the anterior lobe, and to α-melanocyte-stimulating hormone (α-MSH) and β-endorphin in melanotropes of the intermediate lobe (IL) of the pituitary gland. While ACTH secretion is predominantly under the stimulatory influence of the hypothalamic factors, hormone secretion of the IL is tonically inhibited by neuroendocrine dopamine (NEDA) neurons. Lobe-specific POMC processing is not absolute. For example, D2 type DA receptor (D2R)-deficient mice have elevated plasma ACTH levels, although it is known that corticotropes do not express D2R(s). Moreover, observations that suckling does not influence α-MSH release, while it induces an increase in plasma ACTH is unexplained. The aim of the present study was to investigate the involvement of the NEDA system in the regulation of ACTH secretion and the participation of the IL in ACTH production in lactating rats. Untreated and estradiol (E2)-substituted ovariectomized (OVX) females were also studied. The concentration of ACTH in the IL was higher in lactating rats than in OVX rats, while the opposite change in α-MSH level of the IL was observed. DA levels in the IL and the neural lobe were lower in lactating rats than in OVX rats. Suckling-induced ACTH response was eliminated by pretreatment with the DA receptor agonist, bromocriptine (BRC). Inhibition of DA biosynthesis by α-methyl-p-tyrosine (αMpT) and blockade of D2R by domperidone (DOM) elevated plasma ACTH levels, but did not influence plasma α-MSH levels in lactating rats. The same drugs had opposite effects in OVX and OVX + E2 animals. In lactating mothers, BRC was able to block ACTH responses induced by both αMpT and DOM. Surgical denervation of the IL elevated basal plasma levels of ACTH. Taken together, these data indicate that melanotropes synthesize ACTH during lactation and its release from these cells is regulated by NEDA neurons. PMID:19641299

  9. Role of chymase in cigarette smoke-induced pulmonary artery remodeling and pulmonary hypertension in hamsters.

    PubMed

    Wang, Tao; Han, Su-Xia; Zhang, Shang-Fu; Ning, Yun-Ye; Chen, Lei; Chen, Ya-Juan; He, Guang-Ming; Xu, Dan; An, Jin; Yang, Ting; Zhang, Xiao-Hong; Wen, Fu-Qiang

    2010-03-31

    Cigarette smoking is an important risk factor for pulmonary arterial hypertension (PAH) in chronic obstructive pulmonary disease (COPD). Chymase has been shown to function in the enzymatic production of angiotensin II (AngII) and the activation of transforming growth factor (TGF)-beta1 in the cardiovascular system. The aim of this study was to determine the potential role of chymase in cigarette smoke-induced pulmonary artery remodeling and PAH. Hamsters were exposed to cigarette smoke; after 4 months, lung morphology and tissue biochemical changes were examined using immunohistochemistry, Western blotting, radioimmunoassay and reverse-transcription polymerase chain reaction. Our results show that chronic cigarette smoke exposure significantly induced elevation of right ventricular systolic pressures (RVSP) and medial hypertrophy of pulmonary arterioles in hamsters, concurrent with an increase of chymase activity and synthesis in the lung. Elevated Ang II levels and enhanced TGF-beta1/Smad signaling activation were also observed in smoke-exposed lungs. Chymase inhibition with chymostatin reduced the cigarette smoke-induced increase in chymase activity and Ang II concentration in the lung, and attenuated the RVSP elevation and the remodeling of pulmonary arterioles. Chymostatin did not affect angiotensin converting enzyme (ACE) activity in hamster lungs. These results suggest that chronic cigarette smoke exposure can increase chymase activity and expression in hamster lungs. The capability of activated chymase to induce Ang II formation and TGF-beta1 signaling may be part of the mechanism for smoking-induced pulmonary vascular remodeling. Thus, our study implies that blockade of chymase might provide benefits to PAH smokers.

  10. Deletion of the Ron receptor tyrosine kinase domain in mice provides protection from endotoxin-induced acute liver failure.

    PubMed

    Leonis, Mike A; Toney-Earley, Kenya; Degen, Sandra J F; Waltz, Susan E

    2002-11-01

    The targeted deletion of the cytoplasmic domain of the Ron receptor tyrosine kinase (TK) in mice leads to exaggerated responses to injury in several murine models of inflammation as well as increased lethality in response to endotoxin (lipopolysaccharide [LPS]). Using a well-characterized model of LPS-induced acute liver failure (ALF) in galactosamine (GalN)-sensitized mice, we show that Ron TK(-/-) mice display marked protection compared with control Ron TK(+/+) mice. Whereas control mice have profound elevation of serum aminotransferase levels (a marker of hepatocyte injury) and hemorrhagic necrosis of the liver, in dramatic contrast, Ron TK(-/-) mice have mild elevation of aminotransferase levels and relatively normal liver histology. These findings are associated with a reduction in the number of liver cells undergoing apoptosis in Ron TK(-/-) mice. Paradoxically, treatment of Ron TK(-/-) mice with LPS/GalN leads to markedly elevated (3.5-fold) serum levels of tumor necrosis factor (TNF) alpha, a key inflammatory mediator in this liver injury model, as well as reduced amounts of interleukin (IL) 10 (a suppressor of TNF-alpha production) and interferon (IFN)-gamma (a TNF-alpha sensitizer). These results show that ablation of the TK activity of the Ron receptor leads to protection from the development of hepatocellular apoptosis in response to treatment with LPS/GalN, even in the presence of excessive levels of serum TNF-alpha. In conclusion, our studies show that the Ron receptor TK plays a critical role in modulating the response of the liver to endotoxin.

  11. Measurement of amino acid levels in the vitreous humor of rats after chronic intraocular pressure elevation or optic nerve transection.

    PubMed

    Levkovitch-Verbin, Hana; Martin, Keith R G; Quigley, Harry A; Baumrind, Lisa A; Pease, Mary Ellen; Valenta, Danielle

    2002-10-01

    To investigate whether the levels of free amino acids and protein in the vitreous of rat eyes are altered with chronic intraocular pressure (IOP) elevation or after optic nerve transection. The concentrations of 20 amino acids in the vitreous humor were measured by high-performance liquid chromatography in both eyes of 41 rats with unilateral IOP elevation induced by translimbal photocoagulation. Eyes were studied 1 day and 1, 2, 4, and 9 weeks after initial IOP elevation. The same amino acids were measured in 41 rats 1 day and 2, 4, and 9 weeks after unilateral transection of the orbital optic nerve. The intravitreal protein level was assayed in additional 22 rats with IOP elevation and 12 rats after nerve transection. Two masked observers evaluated the amount of optic nerve damage with a semiquantitative, light-microscopic technique. In rats with experimental glaucoma, amino acid concentrations were unchanged 1 day after treatment. At 1 week, 4 of 20 amino acids (aspartate, proline, alanine, and lysine) were higher than in control eyes ( < or = 0.01), but this difference was nonsignificant after Bonferroni correction for multiple simultaneous amino acid comparisons (none achieved < 0.0025). No amino acid was significantly different from control in the nerve transection groups (all > 0.05). Vitreous protein level was significantly higher in glaucomatous eyes than their paired controls at 1 day ( < 0.0001) and 1 week ( < 0.002). One day and 1 week after optic nerve transection, vitreal proteins were significantly elevated compared with control eyes from untreated animals ( < 0.0020 and < 0.0022, respectively), though not compared with their fellow eyes ( = 0.25 and 0.10). Chronic experimental glaucoma and transection of the optic nerve increase the amount of protein in the rat vitreous above control levels. In the vitreous of rats with experimental glaucoma, a number of free amino acids were transiently elevated to a modest degree, but no significant difference in vitreous glutamate concentration was detected ( > 0.01).

  12. Elevated resistin levels induce central leptin resistance and increased atherosclerotic progression in mice

    USDA-ARS?s Scientific Manuscript database

    Resistin was originally identified as an adipocyte-derived factor upregulated during obesity and as a contributor to obesity-associated insulin resistance. Clinically, resistin has also been implicated in cardiovascular disease in a number of different patient populations. Our aim was to simultaneou...

  13. Elevated levels of plasma uric acid and its relation to hypertension in arsenic-endemic human individuals in Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huda, Nazmul; Department of Medicine, Rajshahi Medical College, Rajshahi 6000; Hossain, Shakhawoat

    Blood uric acid has been recognized as a putative marker for cardiovascular diseases (CVDs). CVDs are the major causes of arsenic-related morbidity and mortality. However, the association of arsenic exposure with plasma uric acid (PUA) levels in relation to CVDs has not yet been explored. This study for the first time demonstrated the associations of arsenic exposure with PUA levels and its relationship with hypertension. A total of 483 subjects, 322 from arsenic-endemic and 161 from non-endemic areas in Bangladesh were recruited as study subjects. Arsenic concentrations in the drinking water, hair and nails of the study subjects were measuredmore » by inductively coupled plasma mass spectroscopy. PUA levels were measured using a colorimetric method. We found that PUA levels were significantly (p < 0.001) higher in males and females living in arsenic-endemic areas than those in non-endemic area. Arsenic exposure (water, hair and nail arsenic) levels showed significant positive correlations with PUA levels. In multiple regression analyses, arsenic exposure levels were found to be the most significant contributors on PUA levels among the other variables that included age, body mass index, blood urea nitrogen, and smoking. There were dose–response relationships between arsenic exposure and PUA levels. Furthermore, diastolic and systolic blood pressure showed significant positive correlations with PUA levels. Finally, the average PUA levels were significantly higher in the hypertensive group than those in the normotensive group in both males and females living in arsenic-endemic areas. These results suggest that arsenic exposure-related elevation of PUA levels may be implicated in arsenic-induced CVDs. - Highlights: • PUA levels were higher in arsenic-endemic subjects than in non-endemic subjects. • Drinking water, hair and nail arsenic showed significant associations with PUA levels. • Drinking water, hair and nail arsenic showed dose–response relationships with PUA. • Arsenic-endemic hypertensive study subjects had elevated levels of PUA. • Increased PUA levels may be implicated in arsenic-induced CVDs.« less

  14. High-fat diet-induced obesity leads to resistance to leptin-induced cardiomyocyte contractile response.

    PubMed

    Ren, Jun; Zhu, Bang-Hao; Relling, David P; Esberg, Lucy B; Ceylan-Isik, Asli F

    2008-11-01

    Levels of the obese gene product leptin are often elevated in obesity and may contribute to obesity-induced cardiovascular complications. However, the role of leptin in obesity-associated cardiac abnormalities has not been clearly defined. This study was designed to determine the influence of high-fat diet-induced obesity on cardiac contractile response of leptin. Mechanical and intracellular Ca(2+) properties were evaluated using an IonOptix system in cardiomyocytes from adult rats fed low- and high-fat diets for 12 weeks. Cardiomyocyte contractile and intracellular Ca(2+) properties were examined including peak shortening, duration and maximal velocity of shortening/relengthening (TPS/TR(90), +/-dl/dt), Fura-2-fluorescence intensity change (DeltaFFI), and intracellular Ca(2+) decay rate (tau). Expression of the leptin receptor (Ob-R) was evaluated by western blot analysis. High-fat diet increased systolic blood pressure and plasma leptin levels. PS and +/-dl/dt were depressed whereas TPS and TR(90) were prolonged after high-fat diet feeding. Leptin elicited a concentration-dependent (0-1,000 nmol/l) inhibition of PS, +/-dl/dt, and DeltaFFI in low-fat but not high-fat diet-fed rat cardiomyocytes without affecting TPS and TR(90). The Janus kinase 2 (JAK2) inhibitor AG490, the mitogen-activated protein kinase (MAPK) inhibitor SB203580, and the nitric oxide synthase (NOS) inhibitor L-NAME abrogated leptin-induced cardiomyocyte contractile response in low-fat diet group without affecting the high-fat diet group. High-fat diet significantly downregulated cardiac expression of Ob-R. Elevation of extracellular Ca(2+) concentration nullified obesity-induced cardiomyocyte mechanical dysfunction and leptin-induced depression in PS. These data indicate presence of cardiac leptin resistance in diet-induced obesity possibly associated with impaired leptin receptor signaling.

  15. Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy.

    PubMed

    Kramer, Rita; Bielawski, Jacek; Kistner-Griffin, Emily; Othman, Alaa; Alecu, Irina; Ernst, Daniela; Kornhauser, Drew; Hornemann, Thorsten; Spassieva, Stefka

    2015-11-01

    Peripheral neuropathy is a major dose-limiting side effect of paclitaxel and cisplatin chemotherapy. In the current study, we tested the involvement of a novel class of neurotoxic sphingolipids, the 1-deoxysphingolipids. 1-Deoxysphingolipids are produced when the enzyme serine palmitoyltransferase uses l-alanine instead of l-serine as its amino acid substrate. We tested whether treatment of cells with paclitaxel (250 nM, 1 µM) and cisplatin (250 nM, 1 µM) would result in elevated cellular levels of 1-deoxysphingolipids. Our results revealed that paclitaxel, but not cisplatin treatment, caused a dose-dependent elevation of 1-deoxysphingolipids levels and an increase in the message and activity of serine palmitoyltransferase (P < 0.05). We also tested whether there is an association between peripheral neuropathy symptoms [evaluated by the European Organization for Research and Treatment of Cancer (EORTC) QLQ-chemotherapy-induced peripheral neuropathy-20 (CIPN20) instrument] and the 1-deoxysphingolipid plasma levels (measured by mass spectrometry) in 27 patients with breast cancer who were treated with paclitaxel chemotherapy. Our results showed that there was an association between the incidence and severity of neuropathy and the levels of very-long-chain 1-deoxyceramides such as C24 (P < 0.05), with the strongest association being with motor neuropathy (P < 0.001). Our data from cells and from patients with breast cancer suggest that 1-deoxysphingolipids, the very-long-chain in particular, play a role as molecular intermediates of paclitaxel-induced peripheral neuropathy. © FASEB.

  16. Fibroblast growth factor 21 has no direct role in regulating fertility in female mice.

    PubMed

    Singhal, Garima; Douris, Nicholas; Fish, Alan J; Zhang, Xinyao; Adams, Andrew C; Flier, Jeffrey S; Pissios, Pavlos; Maratos-Flier, Eleftheria

    2016-08-01

    Reproduction is an energetically expensive process. Insufficient calorie reserves, signaled to the brain through peripheral signals such as leptin, suppress fertility. Recently, fibroblast growth factor 21 (FGF21) was implicated as a signal from the liver to the hypothalamus that directly inhibits the hypothalamic-gonadotropin axis during fasting and starvation. However, FGF21 itself increases metabolic rate and can induce weight loss, which suggests that the effects of FGF21 on fertility may not be direct and may reflect changes in energy balance. To address this important question, we evaluated fertility in several mouse models with elevated FGF21 levels including ketogenic diet fed mice, fasted mice, mice treated with exogenous FGF21 and transgenic mice over-expressing FGF21. We find that ketogenic diet fed mice remain fertile despite significant elevation in serum FGF21 levels. Absence of FGF21 does not alter transient infertility induced by fasting. Centrally infused FGF21 does not suppress fertility despite its efficacy in inducing browning of inguinal white adipose tissue. Furthermore, a high fat diet (HFD) can restore fertility of female FGF21-overexpressing mice, a model of growth restriction, even in the presence of supraphysiological serum FGF21 levels. We conclude that FGF21 is not a direct physiological regulator of fertility in mice. The infertility observed in FGF21 overexpressing mice is likely driven by the increased energy expenditure and consequent excess calorie requirements resulting from high FGF21 levels.

  17. Elevated Hypothalamic Glucocorticoid Levels Are Associated With Obesity and Hyperphagia in Male Mice.

    PubMed

    Sefton, Charlotte; Harno, Erika; Davies, Alison; Small, Helen; Allen, Tiffany-Jayne; Wray, Jonathan R; Lawrence, Catherine B; Coll, Anthony P; White, Anne

    2016-11-01

    Glucocorticoid (Gc) excess, from endogenous overproduction in disorders of the hypothalamic-pituitary-adrenal axis or exogenous medical therapy, is recognized to cause adverse metabolic side effects. The Gc receptor (GR) is widely expressed throughout the body, including brain regions such as the hypothalamus. However, the extent to which chronic Gcs affect Gc concentrations in the hypothalamus and impact on GR and target genes is unknown. To investigate this, we used a murine model of corticosterone (Cort)-induced obesity and analyzed Cort levels in the hypothalamus and expression of genes relevant to Gc action. Mice were administered Cort (75 μg/mL) or ethanol (1%, vehicle) in drinking water for 4 weeks. Cort-treated mice had increased body weight, food intake, and adiposity. As expected, Cort increased plasma Cort levels at both zeitgeber time 1 and zeitgeber time 13, ablating the diurnal rhythm. Liquid chromatography dual tandem mass spectrometry revealed a 4-fold increase in hypothalamic Cort, which correlated with circulating levels and concentrations of Cort in other brain regions. This occurred despite decreased 11β-hydroxysteroid dehydrogenase (Hsd11b1) expression, the gene encoding the enzyme that regenerates active Gcs, whereas efflux transporter Abcb1 mRNA was unaltered. In addition, although Cort decreased hypothalamic GR (Nr3c1) expression 2-fold, the Gc-induced leucine zipper (Tsc22d3) mRNA increased, which indicated elevated GR activation. In keeping with the development of hyperphagia and obesity, Cort increased Agrp, but there were no changes in Pomc, Npy, or Cart mRNA in the hypothalamus. In summary, chronic Cort treatment causes chronic increases in hypothalamic Cort levels and a persistent elevation in Agrp, a mediator in the development of metabolic disturbances.

  18. Elevated Hypothalamic Glucocorticoid Levels Are Associated With Obesity and Hyperphagia in Male Mice

    PubMed Central

    Sefton, Charlotte; Harno, Erika; Davies, Alison; Small, Helen; Allen, Tiffany-Jayne; Wray, Jonathan R.; Lawrence, Catherine B.; Coll, Anthony P.

    2016-01-01

    Glucocorticoid (Gc) excess, from endogenous overproduction in disorders of the hypothalamic-pituitary-adrenal axis or exogenous medical therapy, is recognized to cause adverse metabolic side effects. The Gc receptor (GR) is widely expressed throughout the body, including brain regions such as the hypothalamus. However, the extent to which chronic Gcs affect Gc concentrations in the hypothalamus and impact on GR and target genes is unknown. To investigate this, we used a murine model of corticosterone (Cort)-induced obesity and analyzed Cort levels in the hypothalamus and expression of genes relevant to Gc action. Mice were administered Cort (75 μg/mL) or ethanol (1%, vehicle) in drinking water for 4 weeks. Cort-treated mice had increased body weight, food intake, and adiposity. As expected, Cort increased plasma Cort levels at both zeitgeber time 1 and zeitgeber time 13, ablating the diurnal rhythm. Liquid chromatography dual tandem mass spectrometry revealed a 4-fold increase in hypothalamic Cort, which correlated with circulating levels and concentrations of Cort in other brain regions. This occurred despite decreased 11β-hydroxysteroid dehydrogenase (Hsd11b1) expression, the gene encoding the enzyme that regenerates active Gcs, whereas efflux transporter Abcb1 mRNA was unaltered. In addition, although Cort decreased hypothalamic GR (Nr3c1) expression 2-fold, the Gc-induced leucine zipper (Tsc22d3) mRNA increased, which indicated elevated GR activation. In keeping with the development of hyperphagia and obesity, Cort increased Agrp, but there were no changes in Pomc, Npy, or Cart mRNA in the hypothalamus. In summary, chronic Cort treatment causes chronic increases in hypothalamic Cort levels and a persistent elevation in Agrp, a mediator in the development of metabolic disturbances. PMID:27649090

  19. Aldosterone induces fibrosis, oxidative stress and DNA damage in livers of male rats independent of blood pressure changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queisser, Nina; Happ, Kathrin; Link, Samuel

    Mineralocorticoid receptor blockers show antifibrotic potential in hepatic fibrosis. The mechanism of this protective effect is not known yet, although reactive oxygen species seem to play an important role. Here, we investigated the effects of elevated levels of aldosterone (Ald), the primary ligand of the mineralocorticoid receptor, on livers of rats in a hyperaldosteronism model: aldosterone-induced hypertension. Male Sprague–Dawley rats were treated for 4 weeks with aldosterone. To distinguish if damage caused in the liver depended on increased blood pressure or on increased Ald levels, the mineralocorticoid receptor antagonist spironolactone was given in a subtherapeutic dose, not normalizing blood pressure.more » To investigate the impact of oxidative stress, the antioxidant tempol was administered. Aldosterone induced fibrosis, detected histopathologically, and by expression analysis of the fibrosis marker, α-smooth muscle actin. Further, the mRNA amount of the profibrotic cytokine TGF-β was increased significantly. Fibrosis could be reduced by scavenging reactive oxygen species, and also by blocking the mineralocorticoid receptor. Furthermore, aldosterone treatment caused oxidative stress and DNA double strand breaks in livers, as well as the elevation of DNA repair activity. An increase of the transcription factor Nrf2, the main regulator of the antioxidative response could be observed, and of its target genes heme oxygenase-1 and γ-glutamylcysteine synthetase. All these effects of aldosterone were prevented by spironolactone and tempol. Already after 4 weeks of treatment, aldosteroneinfusion induced fibrosis in the liver. This effect was independent of elevated blood pressure. DNA damage caused by aldosterone might contribute to fibrosis progression when aldosterone is chronically increased. - Highlights: • Aldosterone has direct profibrotic effects on the liver independent of blood pressure. • Fibrosis is mediated by the mineralocorticoid receptor and oxidative stress. • Aldosterone induces transcription factor Nrf2 and Nrf2-regulated genes in the liver. • DNA damage caused by aldosterone might contribute to fibrosis progression.« less

  20. Inverted-U response of lacosamide on pilocarpine-induced status epilepticus and oxidative stress in C57BL/6 mice is independent of hippocampal collapsin response mediator protein-2.

    PubMed

    Nirwan, Nikita; Siraj, Fouzia; Vohora, Divya

    2018-06-18

    Currently, lacosamide (LCM) is not approved for use in status epilepticus (SE) but several shreds of evidence are available to support its use. The present study was, therefore, undertaken to evaluate the effect of LCM on pilocarpine (PILO) induced SE and neurodegeneration in C57BL/6 mice and to ascertain the involvement of CRMP-2 in mediating above effect. Pilocarpine-induced SE model was developed to explore the effect of LCM 20, 40 and 80 mg/kg in mice. We assessed the seizure severity, seizure latency, spontaneous alternation behavior (SAB) and motor coordination by behavioral observation. Histopathological evaluation and measurement of the levels of CRMP-2, reduced glutathione (GSH) and malondialdehyde (MDA) were carried out in mice hippocampus. LCM exhibited a biphasic effect i.e., protection against SE at 20 mg/kg and 40 mg/kg dose whilst aggravated seizure-like behavior and mortality at 80 mg/kg. Further, it increased percentage alternation (i.e., restored spatial memory) in SAB and elevated motor impairment with increasing dose. Histologically, LCM 20 mg/kg and 40 mg/kg (but not 80 mg/kg) reduced neurodegeneration. LCM 20 mg/kg and 40 mg/kg reversed the elevated MDA and GSH levels while 80 mg/kg showed a tendency to increase oxidative stress. In contrast, LCM (at all doses) reversed the pilocarpine-induced elevation of collapsin response mediator protein-2 (CRMP-2). LCM protected against pilocarpine-induced SE, associated neurodegeneration and improved pilocarpine-associated impairment of spatial memory. The study reveals that CRMP-2 may not be mediating the inverted-U-response of LCM at least in pilocarpine model. Therefore, the anti-oxidant effect of LCM (and not its ability to modulate CRMP-2) was anticipated as the mechanism underlying neuroprotection. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Normal Human Fibroblasts Are Resistant to RAS-Induced Senescence

    PubMed Central

    Benanti, Jennifer A.; Galloway, Denise A.

    2004-01-01

    Oncogenic stimuli are thought to induce senescence in normal cells in order to protect against transformation and to induce proliferation in cells with altered p53 and/or retinoblastoma (Rb) pathways. In human fibroblasts, RAS initiates senescence through upregulation of the cyclin-dependent kinase inhibitor p16INK4A. We show here that in contrast to cultured fibroblast strains, freshly isolated normal fibroblasts are resistant to RAS-induced senescence and instead show some characteristics of transformation. RAS did not induce growth arrest or expression of senescence-associated β-galactosidase, and Rb remained hyperphosphorylated despite elevated levels of p16. Instead, RAS promoted anchorage-independent growth of normal fibroblasts, although expression of hTert with RAS increased colony formation and allowed normal fibroblasts to bypass contact inhibition. To test the hypothesis that p16 levels determine how cells respond to RAS, we expressed RAS in freshly isolated fibroblasts that expressed very low levels of p16, in hTert-immortalized fibroblasts that had accumulated intermediate levels of p16, and in IMR90 fibroblasts with high levels of p16. RAS induced growth arrest in cells with higher p16 levels, and this effect was reversed by p16 knockdown in the hTert-immortalized fibroblasts. These findings indicate that culture-imposed stress sensitizes cells to RAS-induced arrest, whereas early passage cells do not arrest in response to RAS. PMID:15024073

  2. The role of IL-6 and IL-1beta in painful perineural inflammatory neuritis.

    PubMed

    Eliav, Eli; Benoliel, Rafael; Herzberg, Uri; Kalladka, Mythili; Tal, Michael

    2009-05-01

    Inflammation along a nerve trunk (perineural inflammation), without detectable axonal damage, has been shown to induce transient pain in the organ supplied by the nerve. The aims of the present study were to study the role IL-6 and IL-1beta, in pain induced by perineural inflammation. IL-6 and IL-1beta secretion from rat's sciatic nerves, L-5 Dorsal Root Ganglia (DRG), and the hind paw skin, 3 and 8 days following exposure of the nerve to Complete Freund's Adjuvant (CFA), were measured using ELISA method. Hind paw tactile-allodynia, mechano-hyperalgesia, heat-allodynia and electrical detection thresholds were tested up to 8 days following the application of CFA, IL-6 or IL-1beta adjacent to the sciatic nerve trunk. Employing electrophysiological recording, saphenous nerve spontaneous activity, nerve trunk mechano-sensitivity and paw tactile detection threshold (determined by recording action potential induced by the lowest mechanical stimulus) were assessed 3 and 8 days following exposure of the nerve trunk to CFA, IL-6, or IL-1beta. IL-6 and IL-1beta secretion from the nerve was significantly elevated on the 3rd day post-operation (DPO). On the 8th DPO, IL-6 levels returned to baseline while IL-1beta levels remained significantly elevated. The DRG cytokine's level was increased on the 3rd and 8th DPOs, contralateral cytokine's level was increased on the 3rd DPO. The skin IL-6 level was increased bilaterally on the 3rd DPO and returned to baseline on the 8th DPO. IL-1beta levels increased in the affected side on the 3rd and bilaterally on the 8th DPO. Direct application of IL-6 or CFA on the sciatic nerve induced significant hind paw tactile-allodynia from the 1st to 5th DPOs, reduced electrical detection threshold from the 1st to 3rd DPOs, mechano-hyperalgesia from 3rd to 5th DPOs and heat-allodynia on the 3rd DPO. Direct application of IL-1beta induced paw tactile and heat-allodynia on the 7-8th DPOs and mechano-hyperalgesia on the 5-8th DPOs. Perineural inflammation significantly increased spontaneous activity myelinated fibres 3 and 8 days following the application. Direct application of IL-6 induced elevation of spontaneous activity on the 3rd while IL-1beta on the 8th DPO. Nerve mechano-sensitivity was significantly increased on the 3rd day following exposure to CFA and IL-6 and on the 8th following CFA application. The rat's paw lowest mechanical force necessary for induction of action potential, was significantly reduced 3 days following CFA application. IL-6 and IL-1beta play an important role in pain induced by perineural inflammation. IL-6 activity is more prominent immediately following application (2-5th DPOs), while IL-1beta, activity is more significant in a later stage (5-8th DPOs).

  3. Early embryonic androgen exposure induces transgenerational epigenetic and metabolic changes.

    PubMed

    Xu, Ning; Chua, Angela K; Jiang, Hong; Liu, Ning-Ai; Goodarzi, Mark O

    2014-08-01

    Androgen excess is a central feature of polycystic ovary syndrome (PCOS), which affects 6% to 10% of young women. Mammals exposed to elevated androgens in utero develop PCOS-like phenotypes in adulthood, suggesting fetal origins of PCOS. We hypothesize that excess androgen exposure during early embryonic development may disturb the epigenome and disrupt metabolism in exposed and unexposed subsequent generations. Zebrafish were used to study the underlying mechanism of fetal origins. Embryos were exposed to androgens (testosterone and dihydrotestosterone) early at 26 to 56 hours post fertilization or late at 21 to 28 days post fertilization. Exposed zebrafish (F0) were grown to adults and crossed to generate unexposed offspring (F1). For both generations, global DNA methylation levels were examined in ovaries using a luminometric methylation assay, and fasting and postprandial blood glucose levels were measured. We found that early but not late androgen exposure induced changes in global methylation and glucose homeostasis in both generations. In general, F0 adult zebrafish exhibited altered global methylation levels in the ovary; F1 zebrafish had global hypomethylation. Fasting blood glucose levels were decreased in F0 but increased in F1; postprandial glucose levels were elevated in both F0 and F1. This androgenized zebrafish study suggests that transient excess androgen exposure during early development can result in transgenerational alterations in the ovarian epigenome and glucose homeostasis. Current data cannot establish a causal relationship between epigenetic changes and altered glucose homeostasis. Whether transgenerational epigenetic alteration induced by prenatal androgen exposure plays a role in the development of PCOS in humans deserves study.

  4. Early Embryonic Androgen Exposure Induces Transgenerational Epigenetic and Metabolic Changes

    PubMed Central

    Xu, Ning; Chua, Angela K.; Jiang, Hong; Liu, Ning-Ai

    2014-01-01

    Androgen excess is a central feature of polycystic ovary syndrome (PCOS), which affects 6% to 10% of young women. Mammals exposed to elevated androgens in utero develop PCOS-like phenotypes in adulthood, suggesting fetal origins of PCOS. We hypothesize that excess androgen exposure during early embryonic development may disturb the epigenome and disrupt metabolism in exposed and unexposed subsequent generations. Zebrafish were used to study the underlying mechanism of fetal origins. Embryos were exposed to androgens (testosterone and dihydrotestosterone) early at 26 to 56 hours post fertilization or late at 21 to 28 days post fertilization. Exposed zebrafish (F0) were grown to adults and crossed to generate unexposed offspring (F1). For both generations, global DNA methylation levels were examined in ovaries using a luminometric methylation assay, and fasting and postprandial blood glucose levels were measured. We found that early but not late androgen exposure induced changes in global methylation and glucose homeostasis in both generations. In general, F0 adult zebrafish exhibited altered global methylation levels in the ovary; F1 zebrafish had global hypomethylation. Fasting blood glucose levels were decreased in F0 but increased in F1; postprandial glucose levels were elevated in both F0 and F1. This androgenized zebrafish study suggests that transient excess androgen exposure during early development can result in transgenerational alterations in the ovarian epigenome and glucose homeostasis. Current data cannot establish a causal relationship between epigenetic changes and altered glucose homeostasis. Whether transgenerational epigenetic alteration induced by prenatal androgen exposure plays a role in the development of PCOS in humans deserves study. PMID:24992182

  5. Metabolic profiling of muscle contraction in lean compared with obese rodents.

    PubMed

    Thyfault, John P; Cree, Melanie G; Tapscott, Edward B; Bell, Jill A; Koves, Timothy R; Ilkayeva, Olga; Wolfe, Robert R; Dohm, G Lynis; Muoio, Deborah M

    2010-09-01

    Interest in the pathophysiological relevance of intramuscular triacylglycerol (IMTG) accumulation has grown from numerous studies reporting that abnormally high glycerolipid levels in tissues of obese and diabetic subjects correlate negatively with glucose tolerance. Here, we used a hindlimb perfusion model to examine the impact of obesity and elevated IMTG levels on contraction-induced changes in skeletal muscle fuel metabolism. Comprehensive lipid profiling was performed on gastrocnemius muscles harvested from lean and obese Zucker rats immediately and 25 min after 15 min of one-legged electrically stimulated contraction compared with the contralateral control (rested) limbs. Predictably, IMTG content was grossly elevated in control muscles from obese rats compared with their lean counterparts. In muscles of obese (but not lean) rats, contraction resulted in marked hydrolysis of IMTG, which was then restored to near resting levels during 25 min of recovery. Despite dramatic phenotypical differences in contraction-induced IMTG turnover, muscle levels of diacylglycerol (DAG) and long-chain acyl-CoAs (LCACoA) were surprisingly similar between groups. Tissue profiles of acylcarnitine metabolites suggested that the surfeit of IMTG in obese rats fueled higher rates of fat oxidation relative to the lean group. Muscles of the obese rats had reduced lactate levels immediately following contraction and higher glycogen resynthesis during recovery, consistent with a lipid-associated glucose-sparing effect. Together, these findings suggest that contraction-induced mobilization of local lipid reserves in obese muscles promotes beta-oxidation, while discouraging glucose utilization. Further studies are necessary to determine whether persistent oxidation of IMTG-derived fatty acids contributes to systemic glucose intolerance in other physiological settings.

  6. Antioxidants enhance the recovery of three cycles of bleomycin, etoposide, and cisplatin-induced testicular dysfunction, pituitary-testicular axis, and fertility in rats.

    PubMed

    Kilarkaje, Narayana; Mousa, Alyaa M; Al-Bader, Maie M; Khan, Khalid M

    2013-10-01

    To investigate the effects of an antioxidant cocktail (AC) on bleomycin, etoposide, and cisplatin (BEP)-induced testicular dysfunction. In vivo study. Research laboratory. Adult male and female Sprague-Dawley rats. The rats were treated with three cycles of 21 days each of therapeutically relevant dose levels of BEP (0.75, 7.5, and 1.5 mg/kg) with or without the AC (a mixture of α-tocopherol, L-ascorbic acid, Zn, and Se). Sperm parameters, fertility, serum hormone levels (ELISA), testicular histopathology, and expression of proliferating cell nuclear antigen (PCNA), and transferrin (Western blotting and immunohistochemistry) were evaluated at the end of treatment and a 63-day recovery period. At the end of treatment, the AC improved BEP-induced decrease in sperm motility and increase in abnormality but had no effect on reduced sperm count, fertility, and tubular atrophy, although it up-regulated germ cell proliferation. The AC normalized reduced inhibin B levels, but had no effect on decreased transferrin and testosterone and elevated LH levels. At the end of the recovery period, the AC enhanced the expression of PCNA and transferrin, repopulation of germ cells, LH-testosterone axis, and fertility, but had no effect on reduced FSH and elevated inhibin B levels. The antioxidants protect and then enhance the recovery of testicular and reproductive endocrine functions when administered concomitantly with BEP therapy. The AC may be beneficial to regain testicular functions after chemotherapy. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. ANGPTL3 is part of the machinery causing dyslipidemia majorily via LPL inhibition in mastitis mice.

    PubMed

    Xiao, Hong-Bo; Wang, Ji-Ying; Sun, Zhi-Liang

    2017-12-01

    Previous investigations have shown that inflammation induces changes in lipid and lipoprotein metabolism, and increased expression of angiopoietin-like protein 3 (ANGPTL3) contributes to the development of dyslipidemia. Here we investigated whether there is a correlation between increased ANGPTL3 expression and dyslipidemia in mastitis mice. Thirty mice were divided into two groups: control group and Staphylococcus aureus (S. aureus)-induced mastitis mice group. Changes in the levels of blood lipids [total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C)]; activity of myeloperoxidase (MPO); concentrations of plasma inflammation biomarkers [interferon-γ (IFNγ), tumor necrosis factor α (TNFα), and interleukin-1α (IL-1α)]; concentration of plasma ANGPTL3 protein; lipoprotein lipase (LPL) activities in postheparin plasma; expressions of hepatic N-acetylgalactosaminyltransferase 2 (GALNT2), hepatic ANGPTL3 and adipose LPL were determined. The major results indicated specific pathological mammary tissue changes, elevated MPO activity, reduced GALNT2 mRNA expression, elevated ANGPTL3 mRNA and protein expression and reduced LPL mRNA and protein expression. In plasma samples the S.aureus infused mice displayed elevated ANGPTL3 protein concentration, TG, TC and LDL-C levels, and reduced postheparin LPL activities and HDL-C level. The data suggests that ANGPTL3 is part of the machinery causing dyslipidemia majorily via LPL inhibition in mastitis mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Proteins altered by elevated levels of palmitate or glucose implicated in impaired glucose-stimulated insulin secretion

    PubMed Central

    Sol, E-ri M; Hovsepyan, Meri; Bergsten, Peter

    2009-01-01

    Background Development of type 2 diabetes mellitus (T2DM) is characterized by aberrant insulin secretory patterns, where elevated insulin levels at non-stimulatory basal conditions and reduced hormonal levels at stimulatory conditions are major components. To delineate mechanisms responsible for these alterations we cultured INS-1E cells for 48 hours at 20 mM glucose in absence or presence of 0.5 mM palmitate, when stimulatory secretion of insulin was reduced or basal secretion was elevated, respectively. Results After culture, cells were protein profiled by SELDI-TOF-MS and 2D-PAGE. Differentially expressed proteins were discovered and identified by peptide mass fingerprinting. Complimentary protein profiles were obtained by the two approaches with SELDI-TOF-MS being more efficient in separating proteins in the low molecular range and 2D-PAGE in the high molecular range. Identified proteins included alpha glucosidase, calmodulin, gars, glucose-6-phosphate dehydrogenase, heterogenous nuclear ribonucleoprotein A3, lon peptidase, nicotineamide adenine dinucleotide hydrogen (NADH) dehydrogenase, phosphoglycerate kinase, proteasome p45, rab2, pyruvate kinase and t-complex protein. The observed glucose-induced differential protein expression pattern indicates enhanced glucose metabolism, defense against reactive oxygen species, enhanced protein translation, folding and degradation and decreased insulin granular formation and trafficking. Palmitate-induced changes could be related to altered exocytosis. Conclusion The identified altered proteins indicate mechanism important for altered β-cell function in T2DM. PMID:19607692

  9. Combination treatment of elevated UVB radiation, CO2 and temperature has little effect on silver birch (Betula pendula) growth and phytochemistry.

    PubMed

    Lavola, Anu; Nybakken, Line; Rousi, Matti; Pusenius, Jyrki; Petrelius, Mari; Kellomäki, Seppo; Julkunen-Tiitto, Riitta

    2013-12-01

    Elevations of carbon dioxide, temperature and ultraviolet-B (UBV) radiation in the growth environment may have a high impact on the accumulation of carbon in plants, and the different factors may work in opposite directions or induce additive effects. To detect the changes in the growth and phytochemistry of silver birch (Betula pendula) seedlings, six genotypes were exposed to combinations of ambient or elevated levels of CO2 , temperature and UVB radiation in top-closed chambers for 7 weeks. The genotypes were relatively similar in their responses, and no significant interactive effects of three-level climate factors on the measured parameters were observed. Elevated UVB had no effect on growth, nor did it alter plant responses to CO2 and/or temperature in combined treatments. Growth in all plant parts increased under elevated CO2 , and height and stem biomass increased under elevated temperature. Increased carbon distribution to biomass did not reduce its allocation to phytochemicals: condensed tannins, most flavonols and phenolic acids accumulated under elevated CO2 and elevated UVB, but this effect disappeared under elevated temperature. Leaf nitrogen content decreased under elevated CO2 . We conclude that, as a result of high genetic variability in phytochemicals, B. pendula seedlings have potential to adapt to the tested environmental changes. The induction in protective flavonoids under UVB radiation together with the positive impact of elevated CO2 and temperature mitigates possible UVB stress effects, and thus atmospheric CO2 concentration and temperature are the climate change factors that will dictate the establishment and success of birch at higher altitudes in the future. © 2013 Scandinavian Plant Physiology Society.

  10. Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy

    PubMed Central

    Kramer, Rita; Bielawski, Jacek; Kistner-Griffin, Emily; Othman, Alaa; Alecu, Irina; Ernst, Daniela; Kornhauser, Drew; Hornemann, Thorsten; Spassieva, Stefka

    2015-01-01

    Peripheral neuropathy is a major dose-limiting side effect of paclitaxel and cisplatin chemotherapy. In the current study, we tested the involvement of a novel class of neurotoxic sphingolipids, the 1-deoxysphingolipids. 1-Deoxysphingolipids are produced when the enzyme serine palmitoyltransferase uses l-alanine instead of l-serine as its amino acid substrate. We tested whether treatment of cells with paclitaxel (250 nM, 1 µM) and cisplatin (250 nM, 1 µM) would result in elevated cellular levels of 1-deoxysphingolipids. Our results revealed that paclitaxel, but not cisplatin treatment, caused a dose-dependent elevation of 1-deoxysphingolipids levels and an increase in the message and activity of serine palmitoyltransferase (P < 0.05). We also tested whether there is an association between peripheral neuropathy symptoms [evaluated by the European Organization for Research and Treatment of Cancer (EORTC) QLQ-chemotherapy-induced peripheral neuropathy-20 (CIPN20) instrument] and the 1-deoxysphingolipid plasma levels (measured by mass spectrometry) in 27 patients with breast cancer who were treated with paclitaxel chemotherapy. Our results showed that there was an association between the incidence and severity of neuropathy and the levels of very-long-chain 1-deoxyceramides such as C24 (P < 0.05), with the strongest association being with motor neuropathy (P < 0.001). Our data from cells and from patients with breast cancer suggest that 1-deoxysphingolipids, the very-long-chain in particular, play a role as molecular intermediates of paclitaxel-induced peripheral neuropathy.—Kramer, R., Bielawski, J., Kistner-Griffin, E., Othman, A., Alecu, I., Ernst, D., Kornhauser, D., Hornemann, T., Spassieva, S. Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy. PMID:26198449

  11. Arsenate-induced maternal glucose intolerance and neural tube defects in a mouse model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Denise S.; Wlodarczyk, Bogdan J.; Mitchell, Laura E.

    Background: Epidemiological studies have linked environmental arsenic (As) exposure to increased type 2 diabetes risk. Periconceptional hyperglycemia is a significant risk factor for neural tube defects (NTDs), the second most common structural birth defect. A suspected teratogen, arsenic (As) induces NTDs in laboratory animals. Objectives: We investigated whether maternal glucose homeostasis disruption was responsible for arsenate-induced NTDs in a well-established dosing regimen used in studies of arsenic's teratogenicity in early neurodevelopment. Methods: We evaluated maternal intraperitoneal (IP) exposure to As 9.6 mg/kg (as sodium arsenate) in LM/Bc/Fnn mice for teratogenicity and disruption of maternal plasma glucose and insulin levels. Selectedmore » compounds (insulin pellet, sodium selenate (SS), N-acetyl cysteine (NAC), L-methionine (L-Met), N-tert-Butyl-{alpha}-phenylnitrone (PBN)) were investigated for their potential to mitigate arsenate's effects. Results: Arsenate caused significant glucose elevation during an IP glucose tolerance test (IPGTT). Insulin levels were not different between arsenate and control dams before (arsenate, 0.55 ng/dl; control, 0.48 ng/dl) or after glucose challenge (arsenate, 1.09 ng/dl; control, 0.81 ng/dl). HOMA-IR index was higher for arsenate (3.9) vs control (2.5) dams (p = 0.0260). Arsenate caused NTDs (100%, p < 0.0001). Insulin pellet and NAC were the most successful rescue agents, reducing NTD rates to 45% and 35%. Conclusions: IPGTT, insulin assay, and HOMA-IR results suggest a modest failure of glucose stimulated insulin secretion and insulin resistance characteristic of glucose intolerance. Insulin's success in preventing arsenate-induced NTDs provides evidence that these arsenate-induced NTDs are secondary to elevated maternal glucose. The NAC rescue, which did not restore maternal glucose or insulin levels, suggests oxidative disruption plays a role.« less

  12. Ellagic and ferulic acids alleviate gamma radiation and aluminium chloride-induced oxidative damage.

    PubMed

    Salem, Ahmed M; Mohammaden, Tarek F; Ali, Mohamed A M; Mohamed, Enas A; Hasan, Hesham F

    2016-09-01

    Ionizing radiation interacts with biological systems through the generation of free radicals, which induce oxidative stress. Aluminium (Al) can negatively impact human health by direct interaction with antioxidant enzymes. Ellagic acid (EA) and Ferulic acid (FA) are plant polyphenolic compounds, have gained attention due to their multiple biological activities. To date, no studies investigating the antioxidant effect of EA/FA in a model involving both γ radiation and aluminium chloride (AlCl3) have been reported. Herein, we investigated the protective effect of EA and FA against oxidative stress induced by γ radiation and AlCl3 in rats. Rats were divided into thirteen groups: a negative control group, 3 positive control groups (γ-irradiated, AlCl3-treated and γ-irradiated+AlCl3-treated) and 9 groups (3 γ-irradiated, 3 AlCl3-treated and 3 γ-irradiated+AlCl3-treated) treated with EA and/or FA. Liver function and lipid profile were assessed. Levels of lipid peroxidation, protein oxidation and endogenous antioxidants as well as the concentrations of copper, iron and zinc were estimated in liver tissue homogenate. Furthermore, liver tissue sections were histologically examined. Oral administration of EA and/or FA resulted in 1) amelioration of AlCl3 and/or γ-radiation-induced hepatic function impairment, dyslipidemia and hepatic histological alterations; 2) reduction in liver MDA and PCC levels; 3) elevation of liver CAT, GPx and SOD activity as well as GSH level; 4) elevation in liver Cu concentrations which was accompanied by a reduction in Fe and Zn concentrations. Oral administration of EA and/or FA may be useful for ameliorating γ radiation and/or AlCl3-induced oxidative damage. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Sodic alkaline stress mitigation by exogenous melatonin in tomato needs nitric oxide as a downstream signal.

    PubMed

    Liu, Na; Gong, Biao; Jin, Zhiyong; Wang, Xiufeng; Wei, Min; Yang, Fengjuan; Li, Yan; Shi, Qinghua

    2015-08-15

    The present study was designed to determine the interactive effect of exogenous melatonin and nitric oxide (NO) on sodic alkaline stress mitigation in tomato seedlings. It was observed that exogenous melatonin treatment elevated NO levels in alkaline-stressed tomato roots. However, exogenous NO had little effects on melatonin levels. Importantly, melatonin-induced NO generation was accompanied by increased tolerance to alkaline stress. Chemical scavenging of NO reduced melatonin-induced alkaline stress tolerance and defense genes' expression. However, inhibition of melatonin biosynthesis had a little effect on NO-induced alkaline stress tolerance. These results strongly suggest that NO, acting as a downstream signal, is involved in the melatonin-induced tomato tolerance to alkaline stress. This process creates a new signaling pathway for improving stress tolerance in plant. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Matured Hop Bittering Components Induce Thermogenesis in Brown Adipose Tissue via Sympathetic Nerve Activity.

    PubMed

    Morimoto-Kobayashi, Yumie; Ohara, Kazuaki; Takahashi, Chika; Kitao, Sayoko; Wang, Guanying; Taniguchi, Yoshimasa; Katayama, Mikio; Nagai, Katsuya

    2015-01-01

    Obesity is the principal symptom of metabolic syndrome, which refers to a group of risk factors that increase the likelihood of atherosclerosis. In recent decades there has been a sharp rise in the incidence of obesity throughout the developed world. Iso-α-acids, the bitter compounds derived from hops in beer, have been shown to prevent diet-induced obesity by increasing lipid oxidation in the liver and inhibition of lipid absorption from the intestine. Whereas the sharp bitterness induced by effective dose of iso-α-acids precludes their acceptance as a nutrient, matured hop bittering components (MHB) appear to be more agreeable. Therefore, we tested MHB for an effect on ameliorating diet-induced body fat accumulation in rodents. MHB ingestion had a beneficial effect but, compared to iso-α-acids and despite containing structurally similar compounds, acted via different mechanisms to reduce body fat accumulation. MHB supplementation significantly reduced body weight gain, epididymal white adipose tissue weight, and plasma non-esterified free fatty acid levels in diet-induced obese mice. We also found that uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT) was significantly increased in MHB-fed mice at both the mRNA and protein levels. In addition, MHB administration in rats induced the β-adrenergic signaling cascade, which is related to cAMP accumulation in BAT, suggesting that MHB could modulate sympathetic nerve activity innervating BAT (BAT-SNA). Indeed, single oral administration of MHB elevated BAT-SNA in rats, and this elevation was dissipated by subdiaphragmatic vagotomy. Single oral administration of MHB maintained BAT temperature at a significantly higher level than in control rats. Taken together, these findings indicate that MHB ameliorates diet-induced body fat accumulation, at least partly, by enhancing thermogenesis in BAT via BAT-SNA activation. Our data suggests that MHB is a useful tool for developing functional foods or beverages to counteract the accumulation of body fat.

  15. Antiurolithiatic Effect of Sirupeelai Samoola Kudineer: A Polyherbal Siddha Decoction on Ethylene Glycol-induced Renal Calculus in Experimental Rats

    PubMed Central

    Vasanthi, A. Hannah Rachel; Muthulakshmi, V.; Gayathri, V.; Manikandan, R.; Ananthi, S.; Kuruvilla, Sarah

    2017-01-01

    Background: Sirupeelai Samoola Kudineer (SK), a polyherbal decoction containing four medicinal plants has been used in Siddha system of medicine, practiced in Southern parts of India for the management of urolithiasis. Objective: The present study is carried out to scientifically validate the traditional claim and to study the mechanism of action of the drug. Materials and Methods: In the present study, anti-urolithiatic effect of SK was evaluated in Sprague-Dawley rats using ethylene glycol through drinking water and intraperitoneal injection of sodium oxalate. Renal damage was confirmed by the increased production of thiobarbituric acid reactive substance (TBARS). Results: Co-treatment with SK to urolithiatic rats for 21 days significantly prevented the elevation of renal and urinary stone biomarkers in plasma and renal tissue thereby preventing renal damage and the formation of renal calculi. Administration of SK at all doses and cystone restored the antioxidant (glutathione) levels by preventing the elevation of TBARS in the kidney tissue, which was further confirmed by histological sections. Conclusions: SK treatment promotes diuresis which leads to flushing of the renal stones and maintains the alkaline environment in the urinary system which probably mediates the antilithiatic activity. SK provides structural and functional protection to the kidneys by enhancing its physiological function against stone formation and validates its clinical use. SUMMARY SK exhibited antilithiatic and diuretic potential in ethylene glycol and sodium oxalate induced urolithiasis in ratsElevated urinary stone markers (Calcium, oxalate, uric acid, magnesium and phosphates) in plasma and renal tubular enzymes (LDH, GGT, ALP, AST ALT) in urolithiatic rats were reversed by SK treatmentSK administration significantly reduced the level of renal stress markers like Urea, Creatinine, LPO and elevated SOD, GPx, GSH levels aiding in nephroprotectionSK also provides structural and functional protection against ethylene glycol- induced renal calculus in rats as evidenced by histopathological studies. Abbreviations used: SK: Sirupeelai Samoola Kudineer; TBARS: ThioBarbituric Acid Reactive Substances; SOD: SuperOxide Dismutase; GPx: Gluthathione peroxidase; GSH- Glutathione; LPO: Lipid peroxidation as measured as TBARS; AST: Aspartate AminoTransferase; ALT: Alanine Amino transferase; GGT: Gamma Glutamyl Transferase; LDH: Lactate Dehydrogenase. PMID:28808392

  16. EFFECT OF AROCLOR 1254 ON THE TRANSCRIPTION FACTOR CREB AND CELL VIABILITY IN A PRIMARY CULTURE OF IMMATURE CORTICAL CELLS.

    EPA Science Inventory

    Considerable work indicates that elevations in Ca2+ levels and kinase activity are sensitive responses to polychlorinated biphenyls (PCBs), which are developmental neurotoxicants. In cortical cells in vitro the PCB mixture Aroclor 1254 (A1254) induces temporally and mechanistica...

  17. 4-(4-Hydroxy-3-methoxyphenyl)-2-butanone modulates redox signal in gamma-irradiation-induced nephrotoxicity in rats.

    PubMed

    Abozaid, Omayma A R; Moawed, Fatma S M; Farrag, Mostafa A; Abdel Aziz, Abdel Aziz A

    2017-12-01

    Cellular exposure to ionising radiation leads to oxidative stress events, which refer to elevated intracellular levels of reactive oxygen species (ROS). The elevated levels of ROS significantly contributed to γ-radiation (IR) induced cytotoxicity. In an attempt to minimise these cytotoxic effects, antioxidant compounds have been identified to counteract radiation- associated toxicities. We mainly aimed to study the protective effect of 4-(4-hydroxy-3-methoxyphenyl)-2-butanone (HMB) on IR-induced nephrotoxicity, whereas it was previously shown to have anti-inflammatory effects in different inflammation models. Animals were treated orally with HMB (25 mg/kg b.wt daily) then performed by whole-body gamma-irradiation of animals with 6 Gy; a single dose applied on the 15th day and animals were sacrificed at the end of the 23rd day. It was found that IR exposure significantly induced renal oxidative injury that accompanied by inflammatory disturbance. Also, NADPH oxidase and iNOS gene expressions were significantly up-regulated, while the mitochondrial enzymes (complex I & II) were significantly down-regulated in IR exposed animals. Additionally, Western immunoblotting analysis of signalling growth factor protein; p38 MAPK was significantly overexpressed. Interestingly, HMB treatment showed statistically significant amelioration in parameters with an improved histological structure upon the IR-induced nephrotoxicity. It can be concluded that modulation of NADPH-oxidase, iNOS and mitochondrial enzymes by HMB might be responsible for the amendment of the antioxidant status and impairment of p38 MAPK signal, thus attenuate the nephrotoxicity induced post IR exposure.

  18. Differential response of hexaploid and tetraploid wheat to interactive effects of elevated [CO2] and low phosphorus.

    PubMed

    Pandey, Renu; Lal, Milan Kumar; Vengavasi, Krishnapriya

    2018-06-04

    Hexaploid wheat is more responsive than tetraploid to the interactive effects of elevated [CO 2 ] and low P in terms of carboxylate efflux, enzyme activity and gene expression (TaPT1 and TaPAP). Availability of mineral nutrients to plants under changing climate has become a serious challenge to food security and economic development. An understanding of how elevated [CO 2 ] influences phosphorus (P) acquisition processes at the whole-plant level would be critical in selecting cultivars as well as to maintain optimum yield in limited-P conditions. Wheat (Triticum aestivum and T. durum) grown hydroponically with sufficient and low P concentration were exposed to elevated and ambient [CO 2 ]. Improved dry matter partitioning towards root resulted in increased root-to-shoot ratio, root length, volume, surface area, root hair length and density at elevated [CO 2 ] with low P. Interaction of low P and [CO 2 ] induced activity of enzymes (phosphoenolpyruvate carboxylase, malate dehydrogenase and citrate synthase) in root tissue resulting in twofold increase in carboxylates and acid phosphatase exudation. Physiological absorption capacity of roots showed that plants alter their uptake kinetics by increasing affinity (low K m ) in response to elevated [CO 2 ] under low P supply. Increased relative expression of genes, purple acid phosphatase (TaPAP) and high-affinity Pi transporter (TaPT1) in roots induced by elevated [CO 2 ] and low P supported our physiological observations. Hexaploid wheat (PBW-396) being more responsive to elevated [CO 2 ] at low P supply as compared to tetraploid (PDW-233) necessitates the ploidy effect to be explored further which might be advantageous under changing climate.

  19. Nitrogen assimilation and transpiration: key processes conditioning responsiveness of wheat to elevated [CO2] and temperature.

    PubMed

    Jauregui, Iván; Aroca, Ricardo; Garnica, María; Zamarreño, Ángel M; García-Mina, José M; Serret, Maria D; Parry, Martin; Irigoyen, Juan J; Aranjuelo, Iker

    2015-11-01

    Although climate scenarios have predicted an increase in [CO(2)] and temperature conditions, to date few experiments have focused on the interaction of [CO(2)] and temperature effects in wheat development. Recent evidence suggests that photosynthetic acclimation is linked to the photorespiration and N assimilation inhibition of plants exposed to elevated CO(2). The main goal of this study was to analyze the effect of interacting [CO(2)] and temperature on leaf photorespiration, C/N metabolism and N transport in wheat plants exposed to elevated [CO(2)] and temperature conditions. For this purpose, wheat plants were exposed to elevated [CO(2)] (400 vs 700 µmol mol(-1)) and temperature (ambient vs ambient + 4°C) in CO(2) gradient greenhouses during the entire life cycle. Although at the agronomic level, elevated temperature had no effect on plant biomass, physiological analyses revealed that combined elevated [CO(2)] and temperature negatively affected photosynthetic performance. The limited energy levels resulting from the reduced respiratory and photorespiration rates of such plants were apparently inadequate to sustain nitrate reductase activity. Inhibited N assimilation was associated with a strong reduction in amino acid content, conditioned leaf soluble protein content and constrained leaf N status. Therefore, the plant response to elevated [CO(2)] and elevated temperature resulted in photosynthetic acclimation. The reduction in transpiration rates induced limitations in nutrient transport in leaves of plants exposed to elevated [CO(2)] and temperature, led to mineral depletion and therefore contributed to the inhibition of photosynthetic activity. © 2015 Scandinavian Plant Physiology Society.

  20. Therapeutic effects of N-acetyl-L-cysteine on liver damage induced by long-term CCl4 administration.

    PubMed

    Otrubová, Oľga; Turecký, Ladislav; Uličná, Oľga; Janega, Pavol; Luha, Ján; Muchová, Jana

    2018-01-01

    N-acetyl-L-cysteine (NAC) is a drug routinely used in several health problems, e.g. liver damage. There is some information emerged on its negative effects in certain situations. The aim of our study was to examine its ability to influence liver damage induced by long-term burden. We induced liver damage by CCl4 (10 weeks) and monitored the impact of parallel NAC administration (daily 150 mg/kg of b.w.) on liver morphology and some biochemical parameters (triacylglycerols, cholesterol, alanine aminotransferase (ALT), aspartate aminotransferase (AST), bilirubin, bile acids, proteins, albumins and cholinesterase). NAC significantly decreased levels of bile acids and bilirubin in plasma and triacylglycerols in liver, all of them elevated by impairment with CCl4. Reduction of cholesterol induced by CCl4 was completely recovered in the presence of NAC as indicated by its elevation to control levels. NAC administration did not improve the histological parameters. Together with protective effects of NAC, we found also its deleterious properties: parallel administration of CCl4 and NAC increased triacylglycerols, ALT and AST activity and significantly increased plasma cholinesterase activity. We have observed nonsignificantly increased percentage of liver tissue fibrosis. Our results have shown that NAC administered simultaneously with liver damaging agent CCl4, exhibits not only protective, but also deleterious effects as indicated by several biochemical parameters.

  1. Hepatotoxicity and endothelial dysfunction induced by high choline diet and the protective effects of phloretin in mice.

    PubMed

    Ren, Daoyuan; Liu, Yafei; Zhao, Yan; Yang, Xingbin

    2016-08-01

    The involvement of choline and its metabolite trimethylamine-N-oxide (TMAO) in endothelial dysfunction and atherosclerosis has been repeatedly confirmed. Phloretin, a dihydrochalcone flavonoid usually present in apples, possesses a variety of biological activities including vascular nutrition. This study was designed to investigate whether phloretin could alleviate or prevent high choline-induced vascular endothelial dysfunction and liver injury in mice. Mice were provided with 3% high choline water and given phloretin orally daily for 10 weeks. The high choline-treated mice showed the significant dyslipidemia and hyperglycemia with the impaired liver and vascular endothelium (p < 0.01). Administration of phloretin at 200 and 400 mg/kg bw significantly reduced the choline-induced elevation of serum TC, TG, LDL-C, AST, ALT, ET-1 and TXA2 (p < 0.01), and markedly antagonized the choline-induced decrease of serum PGI2, HDL-C and NO levels. Furthermore, phloretin elevated hepatic SOD and GSH-Px activities and decreased hepatic MDA levels of the mice exposed to high choline water. Moreover, histopathological test with the H&E and Oil Red O staining of liver sections confirmed the high choline diet-caused liver steatosis and the hepatoprotective effect of phloretin. These findings suggest that high choline causes oxidative damage, and phloretin alleviate vascular endothelial dysfunction and liver injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Role of (Pro)Renin Receptor in Albumin Overload-Induced Nephropathy in Rats.

    PubMed

    Fang, Hui; Deng, Mokan; Zhang, Linlin; Lu, Aihua; Su, Jiahui; Xu, Chuanming; Zhou, Li; Wang, Lei; Ou, Jing-Song; Wang, Weidong; Yang, Tianxin

    2018-05-30

    Proteinuria is not only a common feature of chronic kidney diseases (CKD) but also an independent risk factor promoting CKD progression to end-stage renal failure. However, the underlying molecular mechanisms for protein overload-induced renal injury remain elusive. The present study examined the role of (pro)renin receptor (PRR) in pathogenesis of albumin overload (AO)-induced nephropathy and activation of intrarenal renin-angiotensin system (RAS) in rats. Wistar rats underwent unilateral nephrectomy and were treated for 7 weeks with vehicle, bovine serum albumin (5 g/kg/d via a single i.p. injection) alone or in conjunction with a PRR decoy inhibitor PRO20 (500 μg/kg/d via 3 s.c. injections). The AO rat model exhibited severe proteinuria, tubular necrosis, and interstitial fibrosis, oxidative stress, inflammation, accompanied by elevated urinary N-acetyl-beta-D-glucosaminidase activity and urinary β2-microglobulin secretion, all of which were significantly attenuated by PRO20. Urinary and renal levels of renin, angiotensinogen (AGT), and Ang II were elevated by AO and suppressed by PRO20, contrasting to largely unaltered plasma levels of the RAS parameters. The AO model also showed increased renal expression of full-length PRR and soluble PRR (sPRR) and urinary excretion of sPRR. Taken together, we conclude that PRR antagonism with PRO20 alleviates AO-induced nephropathy via inhibition of intrarenal RAS.

  3. Anxiolytic efficacy of repeated oral capsaicin in rats with partial aberration of oral sensory relay to brain.

    PubMed

    Choi, Young-Jun; Kim, Jin Young; Jin, Wei-Peng; Kim, Yoon-Tae; Lee, Jong-Ho; Jahng, Jeong Won

    2015-07-01

    This study was conducted to examine if taste over load with oral capsaicin improves the adverse behavioural effects induced by partial aberration of oral sensory relays to brain with bilateral transections of the lingual and chorda tympani nerves. Male Sprague-Dawley rats received daily 1 ml of 0.02% capsaicin or water drop by drop into the oral cavity following the bilateral transections of the lingual and chorda tympani nerves. Rats were subjected to ambulatory activity, elevated plus maze and forced swim tests after 11th, 14th and 17th daily administration of capsaicin or water, respectively. The basal and stress-induced plasma corticosterone levels were examined after the end of behavioural tests. Ambulatory counts, distance travelled, centre zone activities and rearing were increased, and rostral grooming decreased, during the activity test in capsaicin treated rats. Behavioural scores of capsaicin rats during elevated plus maze test did not differ from control rats. Immobility during the swim test was decreased in capsaicin rats with near significance (P = 0.0547). Repeated oral capsaicin increased both the basal level and stress-induced elevation of plasma corticosterone in rats with bilateral transections of the lingual and chorda tympani nerves. It is concluded that repeated oral administration of capsaicin reduces anxiety-like behaviours in rats that received bilateral transections of the lingual and chorda tympani nerves, and that the increased corticosterone response, possibly modulating the hippocampal neural plasticity, may be implicated in the anxiolytic efficacy of oral capsaicin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Endogenous alpha-ketol linolenic acid levels in short day-induced cotyledons are closely related to flower induction in Pharbitis nil.

    PubMed

    Suzuki, Masayuki; Yamaguchi, Shoko; Iida, Toshii; Hashimoto, Ikue; Teranishi, Hiromi; Mizoguchi, Masaya; Yano, Fumihiko; Todoroki, Yasushi; Watanabe, Naoharu; Yokoyama, Mineyuki

    2003-01-01

    Alpha-ketol linolenic acid [KODA, 9,10-ketol-octadecadienoic acid, that is 9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid] is a signal compound found in Lemna paucicostata after exposure to stress, such as drought, heat or osmotic stress. KODA reacts with catecholamines to generate products that strongly induce flowering, although KODA itself is inactive [Yokoyama et al. (2000) Plant Cell Physiol. 41: 110; Yamaguchi et al. (2001) Plant Cell Physiol. 42: 1201]. We examined the role of KODA in the flower-induction process of Pharbitis nil (violet). KODA was identified for the first time in seedlings of P. nil grown under a flower-inductive condition (16-h dark exposure), by means of LC-SIM and LC-MS/MS. In addition, the changes in endogenous KODA levels (evaluated after esterification of KODA with 9-anthryldiazomethane) during the flower-inductive phase in short day-induced cotyledons were closely related to flower induction. The KODA concentration sharply increased in seedlings during the last 2 h of a 16-h dark period, while the KODA level showed no significant elevation under continuous light. The increase of KODA level occurred in cotyledonal blades, but not in other parts (petiole, hypocotyls and shoot tip). When the 16-h dark period was interrupted with a 10-min light exposure at the 8th h, flower induction was blocked and KODA level also failed to increase. The degree of elevation of KODA concentration in response to 16-h dark exposure was the highest when the cotyledons had just unfolded, and gradually decreased in seedlings grown under continuous light for longer periods, reaching the basal level at the 3rd day after unfolding. Flower-inducing ability also decreased in a similar manner. These results suggest that KODA may be involved in flower induction in P. nil.

  5. Effects of elevated CO2 and temperature on phytoplankton community biomass, species composition and photosynthesis during an experimentally induced autumn bloom in the western English Channel

    NASA Astrophysics Data System (ADS)

    Keys, Matthew; Tilstone, Gavin; Findlay, Helen S.; Widdicombe, Claire E.; Lawson, Tracy

    2018-05-01

    The combined effects of elevated pCO2 and temperature were investigated during an experimentally induced autumn phytoplankton bloom in vitro sampled from the western English Channel (WEC). A full factorial 36-day microcosm experiment was conducted under year 2100 predicted temperature (+4.5 °C) and pCO2 levels (800 µatm). Over the experimental period total phytoplankton biomass was significantly influenced by elevated pCO2. At the end of the experiment, biomass increased 6.5-fold under elevated pCO2 and 4.6-fold under elevated temperature relative to the ambient control. By contrast, the combined influence of elevated pCO2 and temperature had little effect on biomass relative to the control. Throughout the experiment in all treatments and in the control, the phytoplankton community structure shifted from dinoflagellates to nanophytoplankton . At the end of the experiment, under elevated pCO2 nanophytoplankton contributed 90 % of community biomass and was dominated by Phaeocystis spp. Under elevated temperature, nanophytoplankton comprised 85 % of the community biomass and was dominated by smaller nanoflagellates. In the control, larger nanoflagellates dominated whilst the smallest nanophytoplankton contribution was observed under combined elevated pCO2 and temperature ( ˜ 40 %). Under elevated pCO2, temperature and in the control there was a significant decrease in dinoflagellate biomass. Under the combined effects of elevated pCO2 and temperature, dinoflagellate biomass increased and was dominated by the harmful algal bloom (HAB) species, Prorocentrum cordatum. At the end of the experiment, chlorophyll a (Chl a) normalised maximum photosynthetic rates (PBm) increased > 6-fold under elevated pCO2 and > 3-fold under elevated temperature while no effect on PBm was observed when pCO2 and temperature were elevated simultaneously. The results suggest that future increases in temperature and pCO2 simultaneously do not appear to influence coastal phytoplankton productivity but significantly influence community composition during autumn in the WEC.

  6. Nitric oxide enhances development of lateral roots in tomato (Solanum lycopersicum L.) under elevated carbon dioxide.

    PubMed

    Wang, Huan; Xiao, Wendan; Niu, Yaofang; Jin, Chongwei; Chai, Rushan; Tang, Caixian; Zhang, Yongsong

    2013-01-01

    Elevated carbon dioxide (CO₂) has been shown to enhance the growth and development of plants, especially of roots. Amongst them, lateral roots play an important role in nutrient uptake, and thus alleviate the nutrient limitation to plant growth under elevated CO₂. This paper examined the mechanism underlying CO₂ elevation-induced lateral root formation in tomato. The endogenous nitric oxide (NO) in roots was detected by the specific probe 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA). We suggest that CO₂ elevation-induced NO accumulation was important for lateral root formation. Elevated CO₂ significantly increased the activity of nitric oxide synthase in roots, but not nitrate reductase activity. Moreover, the pharmacological evidence showed that nitric oxide synthase rather than nitrate reductase was responsible for CO₂ elevation-induced NO accumulation. Elevated CO₂ enhanced the activity of nitric oxide synthase and promoted production of NO, which was involved in lateral root formation in tomato under elevated CO₂.

  7. Elevated IL-8 levels during sickle cell crisis.

    PubMed

    Duits, A J; Schnog, J B; Lard, L R; Saleh, A W; Rojer, R A

    1998-11-01

    The vaso-occlusive process (VOC) in sickle cell disease is of a complex nature. It involves intricate interactions between sickle red blood cells, endothelium and probably also leukocytes. As these interactions are regulated by cytokines, we analyzed the role of the potent neutrophil chemokine IL-8 by measuring serum levels in sickle cell patients during sickle cell crisis. These results were compared to nonsymptomatics and healthy controls. In patients having a vaso-occlusive crisis both HbSS and HbSC patients showed significantly enhanced serum IL-8 levels compared to healthy controls. Several of these patients showed extremely elevated serum IL-8 levels which were independent of the crisis inducing factor. Furthermore, a sickle cell patient with VOC as a complication of rhGM-CSF treatment similarly showed high IL-8 serum levels at crisis onset. Nonsymptomatic sickle cell patients serum IL-8 levels were comparable to healthy controls. These results implicate a role for IL-8 at or during (the initiation of) sickle cell crisis.

  8. Regional rat brain noradrenaline turnover in response to restraint stress.

    PubMed

    Glavin, G B; Tanaka, M; Tsuda, A; Kohno, Y; Hoaki, Y; Nagasaki, N

    1983-08-01

    Male Wistar rats were starved for 12 hr and then subjected to either 2 hr of wire mesh "envelope" restraint at room temperature; 2 hr of supine restraint in a specially constructed harness at room temperature or were not restrained. Eight brain regions were examined for NA level and the level of its major metabolite, MHPG-SO4. Plasma corticosterone and gastric ulcer incidence were also measured. All restrained rats displayed marked elevations in MHPG-SO4 levels in most brain regions. In addition, several brain regions in restrained animals showed a reduction in NA level. All restrained rats showed elevated plasma corticosterone levels and evidence of gastric lesions. In general, supine restraint produced greater alterations in regional brain NA turnover, greater evidence of ulcer disease, and higher plasma corticosterone levels than did wire mesh restraint. These data suggest that acute but intense stress in the form of restraint causes markedly altered brain NA activity--a possible neurochemical mechanism underlying the phenomenon of stress-induced disease.

  9. Genes involved in nonpermissive temperature-induced cell differentiation in Sertoli TTE3 cells bearing temperature-sensitive simian virus 40 large T-antigen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabuchi, Yoshiaki; Kondo, Takashi; Suzuki, Yoshihisa

    2005-04-15

    Sertoli TTE3 cells, derived from transgenic mice bearing temperature-sensitive simian virus 40 large T (tsSV40LT)-antigen, proliferated continuously at a permissive temperature (33 deg C) whereas inactivation of the large T-antigen by a nonpermissive temperature (39 deg C) led to differentiation as judged by elevation of transferrin. To clarify the detailed mechanisms of differentiation, we investigated the time course of changes in gene expression using cDNA microarrays. Of the 865 genes analyzed, 14 genes showed increased levels of expression. Real-time quantitative PCR revealed that the mRNA levels of p21{sup waf1}, milk fat globule membrane protein E8, heat-responsive protein 12, and selenoproteinmore » P were markedly elevated. Moreover, the differentiated condition induced by the nonpermissive temperature significantly increased mRNA levels of these four genes in several cell lines from the transgenic mice bearing the oncogene. The present results regarding changes in gene expression will provide a basis for a further understanding of molecular mechanisms of differentiation in both Sertoli cells and cell lines transformed by tsSV40LT-antigen.« less

  10. Impacts of Hurricanes Katrina and Rita on the microbial landscape of the New Orleans area

    PubMed Central

    Sinigalliano, C. D.; Gidley, M. L.; Shibata, T.; Whitman, D.; Dixon, T. H.; Laws, E.; Hou, A.; Bachoon, D.; Brand, L.; Amaral-Zettler, L.; Gast, R. J.; Steward, G. F.; Nigro, O. D.; Fujioka, R.; Betancourt, W. Q.; Vithanage, G.; Mathews, J.; Fleming, L. E.; Solo-Gabriele, H. M.

    2007-01-01

    Floodwaters in New Orleans from Hurricanes Katrina and Rita were observed to contain high levels of fecal indicator bacteria and microbial pathogens, generating concern about long-term impacts of these floodwaters on the sediment and water quality of the New Orleans area and Lake Pontchartrain. We show here that fecal indicator microbe concentrations in offshore waters from Lake Pontchartrain returned to prehurricane concentrations within 2 months of the flooding induced by these hurricanes. Vibrio and Legionella species within the lake were more abundant in samples collected shortly after the floodwaters had receded compared with samples taken within the subsequent 3 months; no evidence of a long-term hurricane-induced algal bloom was observed. Giardia and Cryptosporidium were detected in canal waters. Elevated levels of fecal indicator bacteria observed in sediment could not be solely attributed to impacts from floodwaters, as both flooded and nonflooded areas exhibited elevated levels of fecal indicator bacteria. Evidence from measurements of Bifidobacterium and bacterial diversity analysis suggest that the fecal indicator bacteria observed in the sediment were from human fecal sources. Epidemiologic studies are highly recommended to evaluate the human health effects of the sediments deposited by the floodwaters. PMID:17488814

  11. Physical stress primes the immune response of Galleria mellonella larvae to infection by Candida albicans.

    PubMed

    Mowlds, Peter; Barron, Aoife; Kavanagh, Kevin

    2008-05-01

    Larvae of the greater wax moth (Galleria mellonella) that had been subjected to physical stress by shaking in cupped hands for 2 min showed reduced susceptibility to infection by Candida albicans when infected 24 h after the stress event. Physically stressed larvae demonstrated an increase in haemocyte density and elevated mRNA levels of galiomicin and an inducible metalloproteinase inhibitor (IMPI) but not transferrin or gallerimycin. In contrast, previous work has demonstrated that microbial priming of larvae resulted in the induction of all four genes. Examination of the expression of proteins in the insect haemolymph using 2D electrophoresis and MALDI TOF analysis revealed an increase in the intensity of a number of peptides showing some similarities with proteins associated with the insect immune response to infection. This study demonstrates that non-lethal physical stress primes the immune response of G. mellonella and this is mediated by elevated haemocyte numbers, increased mRNA levels of genes coding for two antimicrobial peptides and the appearance of novel peptides in the haemolymph. This work demonstrates that physical priming increases the insect immune response but the mechanism of this priming is different to that induced by low level exposure to microbial pathogens.

  12. Effects of protease activated receptor (PAR)2 blocking peptide on endothelin-1 levels in kidney tissues in endotoxemic rat mode.

    PubMed

    Jesmin, Subrina; Shimojo, Nobutake; Yamaguchi, Naoto; Mowa, Chishimba Nathan; Oki, Masami; Zaedi, Sohel; Sultana, Sayeeda Nusrat; Rahman, Arifur; Islam, Majedul; Sawamura, Atsushi; Gando, Satoshi; Kawano, Satoru; Miyauchi, Takashi; Mizutani, Taro

    2014-05-02

    Septic shock, the severe form of sepsis, is associated with development of progressive damage in multiple organs. Kidney can be injured and its functions altered by activation of coagulation, vasoactive-peptide and inflammatory processes in sepsis. Endothelin (ET)-1, a potent vasoconstrictor, is implicated in the pathogenesis of sepsis and its complications. Protease-activated receptors (PARs) are shown to play an important role in the interplay between inflammation and coagulation. We examined the time-dependent alterations of ET-1 and inflammatory cytokine, such as tumor necrosis factor (TNF)-α in kidney tissue in lipopolysaccharide (LPS)-induced septic rat model and the effects of PAR2 blocking peptide on the LPS-induced elevations of renal ET-1 and TNF-α levels. Male Wistar rats at 8 weeks of age were administered with either saline solution or LPS at different time points (1, 3, 6 and 10h). Additionally, we treated LPS-administered rats with PAR2 blocking peptide for 3h to assess whether blockade of PAR2 has a regulatory role on the ET-1 level in septic kidney. An increase in ET-1 peptide level was observed in kidney tissue after LPS administration time-dependently. Levels of renal TNF-α peaked (around 12-fold) at 1h of sepsis. Interestingly, PAR2 blocking peptide normalized the LPS-induced elevations of renal ET-1 and TNF-α levels. The present study reveals a distinct chronological expression of ET-1 and TNF-α in LPS-administered renal tissues and that blockade of PAR2 may play a crucial role in treating renal injury, via normalization of inflammation, coagulation and vaso-active peptide. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Saikosaponin D relieves unpredictable chronic mild stress induced depressive-like behavior in rats: involvement of HPA axis and hippocampal neurogenesis.

    PubMed

    Li, Hong-Yan; Zhao, Ying-Hua; Zeng, Min-Jie; Fang, Fang; Li, Min; Qin, Ting-Ting; Ye, Lu-Yu; Li, Hong-Wei; Qu, Rong; Ma, Shi-Ping

    2017-11-01

    Saikosaponin D (SSD), a major bioactive component isolated from Radix Bupleuri, has been reported to exert neuroprotective properties. The present study was designed to investigate the anti-depressant-like effects and the potential mechanisms of SSD. Behavioural tests including sucrose preference test (SPT), open field test (OFT) and forced swim test (FST) were performed to study the antidepressant-like effects of SSD. In addition, we examined corticosterone and glucocorticoid receptor (GR) levels to evaluate hypothalamic-pituitary-adrenal (HPA) axis function. Furthermore, hippocampal neurogenesis was assessed by testing doublecortin (DCX) levels, and neurotrophic molecule levels were also investigated in the hippocampus of rats. We found that unpredictable chronic mild stress (UCMS) rats displayed lost body weight, decreased sucrose consumption in SPT, reduced locomotive activity in OFT, and increased immobility time in FST. Chronic treatment with SSD (0.75, 1.50 mg/kg) remarkably ameliorated the behavioral deficiency induced by UCMS procedure. SSD administration downregulated elevated serum corticosterone levels, as well as alleviated the suppression of GR expression and nuclear translocation caused by UCMS, suggesting that SSD is able to remit the dysfunction of HPA axis. In addition, Western blot and immunohistochemistry analysis showed that SSD treatment significantly increased the generation of neurons in the hippocampus of UCMS rats indicated by elevated DCX levels. Moreover, hippocampal neurotrophic molecule levels of UCMS rats such as phosphorylated cAMP response element binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) were raised after SSD treatment. Together, Our results suggest that SSD opposed UCMS-induced depressive behaviors in rats, which was mediated, partially, by the enhancement of HPA axis function and consolidation of hippocampal neurogenesis.

  14. Inhibition of MPP+-induced mitochondrial damage and cell death by trifluoperazine and W-7 in PC12 cells.

    PubMed

    Lee, Chung Soo; Park, Se Young; Ko, Hyun Hee; Song, Jin Ho; Shin, Yong Kyoo; Han, Eun Sook

    2005-01-01

    Opening of the mitochondrial permeability transition pore has been recognized to be involved in cell death. The present study investigated the effect of trifluoperazine and W-7 on the MPP+-induced mitochondrial damage and cell death in undifferentiated PC12 cells. Calmodulin antagonists (trifluoperazine, W-7 and calmidazolium) at 0.5-1 microM significantly reduced the loss of cell viability in PC12 cells treated with 500 microM MPP+. Trifluoperazine and W-7 (0.5-1 microM) inhibited the nuclear damage, the loss of the mitochondrial transmembrane potential followed by cytochrome c release, and the elevation of intracellular Ca2+ levels due to MPP+ in PC12 cells and attenuated the formation of reactive oxygen species and the depletion of GSH. Calmodulin antagonists at 5-10 microM exhibited a cytotoxic effect on PC12 cells, and compounds at 10 microM did not attenuate cytotoxicity of MPP+. Calmodulin antagonists (0.5-1 microM) significantly reduced rotenone-induced mitochondrial damage and cell death, whereas they did not attenuate cell death and elevation of intracellular Ca2+ levels due to H2O2 or ionomycin. The results show that trifluoperazine and W-7 exhibit a differential inhibitory effect against cytotoxicity of MPP+ depending on concentration. Both compounds at the concentrations less than 5 microM may attenuate the MPP+-induced viability loss in PC12 cells by suppressing change in the mitochondrial membrane permeability and by lowering the intracellular Ca2+ levels.

  15. Protective effect of Ganoderma lucidum polysaccharide against carbon tetrachloride-induced hepatic damage in precision-cut carp liver slices.

    PubMed

    Liu, Yingjuan; Zhang, Chunyun; Du, Jinliang; Jia, Rui; Cao, Liping; Jeney, Galina; Teraoka, Hiroki; Xu, Pao; Yin, Guojun

    2017-10-01

    The aim of the present study was to investigate the protective effects of Ganoderma lucidum polysaccharide (GLPS) against carbon tetrachloride (CCl 4 )-induced hepatotoxicity in vitro in common carp. Precision-cut liver slices (PCLSs), which closely resemble the organ from which they are derived, were employed as an in vitro model system. GLPS (0.1, 0.3, and 0.6 mg/ml) was added to PCLS culture system before the exposure to 12 mM CCl 4 . The supernatants and slices were collected to detect molecular and biochemical responses to CCl 4 and PCLS treatments. The levels of CYP1A, CYP3A, and CYP2E1 were measured by ELISA; the mRNA expressions of TNF-α, IL-1β, IL-6, and iNOS were determined by RT-PCR; and the relative protein expressions of c-Rel and p65 were analyzed by western blotting. Results showed that GLPS inhibited the elevations of the marker enzymes (GOT, GPT, LDH) and MDA induced by CCl 4 ; it also enhanced the suppressed activity of antioxidant enzymes (SOD, CAT, GSH-Px, T-AOC). The treatment with GLPS resulted in significant downregulation of NF-κB and inflammatory cytokine mRNA levels and significant decreases in the hepatic protein levels of CYP1A, CYP3A, and CYP2E1. These results suggest that GLPS can protect CCl 4 -induced PCLS injury through inhibiting lipid peroxidation, elevating antioxidant enzyme activity, and suppressing immune inflammatory response.

  16. Rapamycin reduces renal hypoxia, interstitial inflammation and fibrosis in a rat model of unilateral ureteral obstruction.

    PubMed

    Liu, Chun-feng; Liu, Hing; Fang, Yi; Jiang, Su-hua; Zhu, Jia-ming; Ding, Xiao-qiang

    2014-06-01

    The purpose of this study was to explore effects of rapamycin on renal hypoxia, interstitial inflammation and fibrosis, and the expression of transforming growth factor β1 (TGF-β1), vascular endothelial growth factor (VEGF), Flk-1 and Flt-1 in a rat model of unilateral ureteral obstruction (UUO). Male Sprague-Dawley rats (n=36) were randomly divided into three groups (n=12 per group): sham surgery, UUO and UUO plus rapamycin (0.2 mg/kg/d). Serum creatinine (Scr), blood urea nitrogen, uric acid, triglycerides, cholesterol and 24-h urine protein levels were measured. The extent of interstitial fibrosis was determined by Masson's trichrome staining. ED-1 positive macrophages, type III collagen, hypoxia, TGF-1, VEGF, Flk-1, and Flt-1 mRNA and protein expressions were detected using immunohistochemical staining, real-time PCR and Western blot. UUO induced an elevation in Scr, renal hypoxia, inflammation, interstitial fibrosis, TGF-β1, VEGF, Flk-1, and Flt-1 mRNA and protein expression levels (P < 0.05). Rapamycin alleviated the UUO-induced renal hypoxia, infiltration of inflammatory cells and tubulointerstitial fibrosis (at days 3 and 7). Rapamycin also down-regulated the UUO-induced elevated expression levels of TGF-β1 and Flt-1 mRNA and protein (P < 0.05). Rapamycin decreased VEGF mRNA and protein expression at day 3, and increased Flk-1 mRNA and protein expression at day 7, compared with the UUO group (P < 0.05). Rapamycin shows beneficial effects by reducing UUO-induced renal hypoxia, inflammation and tubulointerstitial fibrosis.

  17. Dexamethasone Suppresses Oxysterol-Induced Differentiation of Monocytic Cells

    PubMed Central

    Son, Yonghae; Kim, Bo-Young; Eo, Seong-Kug; Park, Young Chul; Kim, Koanhoi

    2016-01-01

    Oxysterol like 27-hydroxycholesterol (27OHChol) has been reported to induce differentiation of monocytic cells into a mature dendritic cell phenotype. We examined whether dexamethasone (Dx) affects 27OHChol-induced differentiation using THP-1 cells. Treatment of monocytic cells with Dx resulted in almost complete inhibition of transcription and surface expression of CD80, CD83, and CD88 induced by 27OHChol. Elevated surface levels of MHC class I and II molecules induced by 27OHChol were reduced to basal levels by treatment with Dx. A decreased endocytosis ability caused by 27OHChol was recovered by Dx. We also examined effects of Dx on expression of CD molecules involved in atherosclerosis. Increased levels of surface protein and transcription of CD105, CD137, and CD166 by treatment with 27OHChol were significantly inhibited by cotreatment with Dx. These results indicate that Dx inhibits 27OHChol-induced differentiation of monocytic cells into a mature dendritic cell phenotype and expression of CD molecules whose levels are associated with atherosclerosis. In addition, we examined phosphorylation of AKT induced by 27OHChol and effect of Dx, where cotreatment with Dx inhibited the phosphorylation of AKT. The current study reports that Dx regulates oxysterol-mediated dendritic cell differentiation of monocytic cells. PMID:27340507

  18. Dexamethasone Suppresses Oxysterol-Induced Differentiation of Monocytic Cells.

    PubMed

    Son, Yonghae; Kim, Bo-Young; Eo, Seong-Kug; Park, Young Chul; Kim, Koanhoi

    2016-01-01

    Oxysterol like 27-hydroxycholesterol (27OHChol) has been reported to induce differentiation of monocytic cells into a mature dendritic cell phenotype. We examined whether dexamethasone (Dx) affects 27OHChol-induced differentiation using THP-1 cells. Treatment of monocytic cells with Dx resulted in almost complete inhibition of transcription and surface expression of CD80, CD83, and CD88 induced by 27OHChol. Elevated surface levels of MHC class I and II molecules induced by 27OHChol were reduced to basal levels by treatment with Dx. A decreased endocytosis ability caused by 27OHChol was recovered by Dx. We also examined effects of Dx on expression of CD molecules involved in atherosclerosis. Increased levels of surface protein and transcription of CD105, CD137, and CD166 by treatment with 27OHChol were significantly inhibited by cotreatment with Dx. These results indicate that Dx inhibits 27OHChol-induced differentiation of monocytic cells into a mature dendritic cell phenotype and expression of CD molecules whose levels are associated with atherosclerosis. In addition, we examined phosphorylation of AKT induced by 27OHChol and effect of Dx, where cotreatment with Dx inhibited the phosphorylation of AKT. The current study reports that Dx regulates oxysterol-mediated dendritic cell differentiation of monocytic cells.

  19. Elevated serum gastrin is associated with a history of advanced neoplasia in Barrett's esophagus.

    PubMed

    Wang, Judy S; Varro, Andrea; Lightdale, Charles J; Lertkowit, Nantaporn; Slack, Kristen N; Fingerhood, Michael L; Tsai, Wei Yann; Wang, Timothy C; Abrams, Julian A

    2010-05-01

    Proton pump inhibitors (PPIs) are frequently prescribed to patients with Barrett's esophagus (BE), but in a subset, they can induce significant hypergastrinemia. Elevated levels of gastrin have been associated with tumorigenic effects in a number of gastrointestinal cancers. We decided to investigate the association between serum gastrin levels and dysplasia in BE. We performed a cross-sectional study and enrolled patients with BE without dysplasia, low-grade dysplasia (LGD), high-grade dysplasia (HGD), or adenocarcinoma (AC), as well as gastroesophageal reflux disease controls, all chronically taking PPIs. Fasting serum gastrin was measured, and data were collected on patient characteristics, medication use, and the highest degree of BE neoplasia. A total of 95 patients were enrolled. The mean age was 64.7 (+/-10.0) years, and 70.5% were male. The median serum gastrin level was 40 pM. There was no significant difference in gastrin levels with increased degrees of BE neoplasia (overall P=0.68). In multivariable analysis, the highest quartile of gastrin was associated with significantly increased odds of advanced neoplasia (HGD or AC) (odds ratio (OR): 5.46, 95% confidence interval (CI): 1.20-24.8). In BE patients taking PPIs, an elevated serum gastrin is associated with a history of HGD or AC. Prospective studies are needed to determine whether patients with nondysplastic BE and elevated serum gastrin are at increased risk for neoplastic progression.

  20. Evidence That in Uncontrolled Diabetes, Hyperglucagonemia Is Required for Ketosis but Not for Increased Hepatic Glucose Production or Hyperglycemia

    PubMed Central

    Meek, Thomas H.; Dorfman, Mauricio D.; Matsen, Miles E.; Fischer, Jonathan D.; Cubelo, Alexis; Kumar, Monica R.; Taborsky, Gerald J.

    2015-01-01

    Several lines of evidence implicate excess glucagon secretion in the elevated rates of hepatic glucose production (HGP), hyperglycemia, and ketosis characteristic of uncontrolled insulin-deficient diabetes (uDM), but whether hyperglucagonemia is required for hyperglycemia in this setting is unknown. To address this question, adult male Wistar rats received either streptozotocin (STZ) to induce uDM (STZ-DM) or vehicle and remained nondiabetic. Four days later, animals received daily subcutaneous injections of either the synthetic GLP-1 receptor agonist liraglutide in a dose-escalating regimen to reverse hyperglucagonemia or its vehicle for 10 days. As expected, plasma glucagon levels were elevated in STZ-DM rats, and although liraglutide treatment lowered glucagon levels to those of nondiabetic controls, it failed to attenuate diabetic hyperglycemia, elevated rates of glucose appearance (Ra), or increased hepatic gluconeogenic gene expression. In contrast, it markedly reduced levels of both plasma ketone bodies and hepatic expression of the rate-limiting enzyme involved in ketone body production. To independently confirm this finding, in a separate study, treatment of STZ-DM rats with a glucagon-neutralizing antibody was sufficient to potently lower plasma ketone bodies but failed to normalize elevated levels of either blood glucose or Ra. These data suggest that in rats with uDM, hyperglucagonemia is required for ketosis but not for increased HGP or hyperglycemia. PMID:25633417

  1. Inhibition of tumor necrosis factor alpha reduces the outgrowth of hepatic micrometastasis of colorectal tumors in a mouse model of liver ischemia-reperfusion injury.

    PubMed

    Jiao, Shu-Fan; Sun, Kai; Chen, Xiao-Jing; Zhao, Xue; Cai, Ning; Liu, Yan-Jun; Xu, Long-Mei; Kong, Xian-Ming; Wei, Li-Xin

    2014-01-08

    Patients with colorectal cancer (CRC) often develop liver metastases, in which case surgery is considered the only potentially curative treatment option. However, liver surgery is associated with a risk of ischemia-reperfusion (IR) injury, which is thought to promote the growth of colorectal liver metastases. The influence of IR-induced tumor necrosis factor alpha (TNF-α) elevation in the process still is unknown. To investigate the role of TNF-α in the growth of pre-existing micrometastases in the liver following IR, we used a mouse model of colorectal liver metastases. In this model, mice received IR treatment seven days after intrasplenic injections of colorectal CT26 cells. Prior to IR treatment, either TNF-α blocker Enbrel or low-dose TNF-α, which could inhibit IR-induced TNF-α elevation, was administered by intraperitoneal injection. Hepatic IR treatment significantly promoted CT26 tumor growth in the liver, but either Enbrel or low-dose TNF-α pretreatment reversed this trend. Further studies showed that the CT26 + IR group prominently increased the levels of ALT and AST, liver necrosis, inflammatory infiltration and the expressions of hepatic IL-6, MMP9 and E-selectin compared to those of CT26 group. Inhibition of TNF-α elevation remarkably attenuated the increases of these liver inflammatory damage indicators and tumor-promoting factors. These findings suggested that inhibition of TNF-α elevation delayed the IR-enhanced outgrowth of colorectal liver metastases by reducing IR-induced inflammatory damage and the formation of tumor-promoting microenvironments. Both Enbrel and low-dose TNF-α represented the potential therapeutic approaches for the protection of colorectal liver metastatic patients against IR injury-induced growth of liver micrometastases foci.

  2. Inhibition of tumor necrosis factor alpha reduces the outgrowth of hepatic micrometastasis of colorectal tumors in a mouse model of liver ischemia-reperfusion injury

    PubMed Central

    2014-01-01

    Background Patients with colorectal cancer (CRC) often develop liver metastases, in which case surgery is considered the only potentially curative treatment option. However, liver surgery is associated with a risk of ischemia-reperfusion (IR) injury, which is thought to promote the growth of colorectal liver metastases. The influence of IR-induced tumor necrosis factor alpha (TNF-α) elevation in the process still is unknown. To investigate the role of TNF-α in the growth of pre-existing micrometastases in the liver following IR, we used a mouse model of colorectal liver metastases. In this model, mice received IR treatment seven days after intrasplenic injections of colorectal CT26 cells. Prior to IR treatment, either TNF-α blocker Enbrel or low-dose TNF-α, which could inhibit IR-induced TNF-α elevation, was administered by intraperitoneal injection. Results Hepatic IR treatment significantly promoted CT26 tumor growth in the liver, but either Enbrel or low-dose TNF-α pretreatment reversed this trend. Further studies showed that the CT26 + IR group prominently increased the levels of ALT and AST, liver necrosis, inflammatory infiltration and the expressions of hepatic IL-6, MMP9 and E-selectin compared to those of CT26 group. Inhibition of TNF-α elevation remarkably attenuated the increases of these liver inflammatory damage indicators and tumor-promoting factors. Conclusion These findings suggested that inhibition of TNF-α elevation delayed the IR-enhanced outgrowth of colorectal liver metastases by reducing IR-induced inflammatory damage and the formation of tumor-promoting microenvironments. Both Enbrel and low-dose TNF-α represented the potential therapeutic approaches for the protection of colorectal liver metastatic patients against IR injury-induced growth of liver micrometastases foci. PMID:24397824

  3. Both hypothyroidism and hyperthyroidism increase plasma irisin levels in rats.

    PubMed

    Atici, Emine; Mogulkoc, Rasim; Baltaci, Abdulkerim Kasim; Menevse, Esma

    2017-11-28

    Background A recently discovered hormone, irisin is accepted to be significantly involved in the regulation of body weight. Thyroid functions may be, directly or indirectly, associated with irisin. Aim The aim of the present study is to determine the effect of experimental thyroid dysfunction on irisin levels in rats. Methods The study registered 40 adult male Sprague-Dawley rats, which were allocated to groups as follows: 1. Control; 2. Hypothyroidism induced by injection of 10 mg/kg/day intraperitoneal propylthiouracil (PTU) for 3 weeks; 3. Hypothyroidism (PTU 2 weeks) + L-thyroxin (1.5 mg/kg/day for 1 week); 4. Hyperthyroidism induced in rats by 3-week thyroxin (0.3 mg/kg/day); 5. Hyperthyroidism + PTU. At the end of the study, blood samples were collected to quantify free triiodothyronine (FT3), free triiodothyronine (FT4) and irisin levels. Results FT3 and FT4 levels were reduced in hypothyroidism and were significantly elevated in hyperthyroidism (p < 0.001). Irisin values, on the other hand, were found to be elevated in both hypothyroidism and hyperthyroidism groups (p < 0.001). Conclusion The results of the study suggest that irisin values increase in thyroid dysfunction, hypo- and hyperthyroidism, and that when hypothyroidism is corrected by thyroxin administration and hyperthyroidism by PTU injection, plasma irisin values go back to normal.

  4. Isolation, characterization and hypolipidemic activity of ferulic acid in high-fat-diet-induced hyperlipidemia in laboratory rats

    PubMed Central

    Jain, Pankaj G.; Surana, Sanjay J.

    2016-01-01

    Prosopis cineraria (L.) Druce (Leguminosae) (syn. Prosopis spicigera L.) has antidiabetic and antioxidant potential. Earlier we reported its hypolipidemic activity obtained from ethanol extract (ET-PCF). Object of this work was to isolate ferulic acid (FA) from ET-PCF and evaluate hypolipidemic activity against high-fat diet (HFD)-induced hyperlipidemic laboratory rats. ET-PCF was subjected to flash column chromatography to isolate FA. The chemical structure of the isolated compound was elucidated by UV, IR, 1H NMR,13C NMR and LC-MS. Further, the antihyperlipidemic effect of FA (10, 20 and 40 mg/kg, p.o.) in HFD-induced hyperlipidemic rats was investigated. Hyperlipidemia was induced in male Sprague-Dawley rats by feeding with HFD for 60 days. Lipid parameters such as total cholesterol (TC), Low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG) levels were measured in serum and hepatic tissue. Hepatic oxido-nitrosative stress (SOD, GSH, MDA and NO) were also determined. Histological evaluation of liver tissue was carried out. The structure of the isolated compound was characterized based on spectral data and confirmed as FA. HFD induced an alteration in serum, and hepatic lipid profile (triglyceride, cholesterol, HDL, and LDL) was significantly restored (p < 0.001) by administration of FA (20 and 40 mg/kg, p.o.). The elevated level of oxido-nitrosative stress in liver was significantly reduced (p < 0.001) by FA (20 and 40 mg/kg, p.o.). Histological aberration induced in the liver after HFD ingestion were restored by FA administration. Ferulic acid isolated from ET-PCF showed hypolipidemic effects in HFD-induced hyperlipidemic rats via modulation of elevated oxido-nitrosative stress. PMID:28096790

  5. Cat odour-induced anxiety--a study of the involvement of the endocannabinoid system.

    PubMed

    Sütt, Silva; Raud, Sirli; Areda, Tarmo; Reimets, Ain; Kõks, Sulev; Vasar, Eero

    2008-07-01

    Recent evidence suggests the involvement of the endocannabinoid (EC) system in the regulation of anxiety. The aim of present work was to study the role of the EC system in cat odour-induced anxiety in rats. Materials and methods Male Wistar rats were exposed to cat odour in home and motility cages. Exposure of rats to elevated zero-maze was used to determine changes in anxiety. Effect of rimonabant (0.3-3 mg/kg), antagonist of CB1 receptors, was studied on cat odour-induced alterations in exploratory behaviour. Real-time PCR was used to determine gene expression levels of EC-related genes in the brain. Anxiogenic-like action of cat odour was evident in the elevated zero-maze. Cat odour increased the expression of FAAH, the enzyme responsible for the degradation of anandamide, in the mesolimbic area. By contrast, in the amygdala and periaqueductal grey (PAG) levels of NAPE-PLD, the enzyme related to the synthesis of anandamide, and FAAH were remarkably decreased. Cat odour also decreased the expression of enzymes related to metabolism of 2-archidonoyl-glycerol in the amygdala and PAG. Pre-treatment of rats with rimonabant (0.3-3 mg/kg) reduced the exploratory behaviour of rats, but did not affect cat odour-induced changes. Exposure to cat odour induces anxiogenic-like effect on the behaviour in rats. Cat odour also causes moderate increase in expression of EC-related genes in the mesolimbic area, whereas significant down-regulation is established in the amygdala and PAG. Relation of predator odour-induced anxiety to the inhibition of the EC system in the amygdala and PAG is supported by behavioural studies where blockade of CB1 receptors by rimonabant induces anxiogenic-like action.

  6. Nootropic activity of Celastrus paniculatus seed.

    PubMed

    Bhanumathy, M; Harish, M S; Shivaprasad, H N; Sushma, G

    2010-03-01

    The effect of Celastrus paniculatus Willd. (Celastraceae) seed aqueous extract on learning and memory was studied using elevated plus maze and passive avoidance test (sodium nitrite induced amnesia rodent model). The aqueous seed extract was administered orally in two different doses to rats (350 and 1050 mg/kg) and to mice (500 and 1500 mg/kg). The results were compared to piracetam (100 mg/kg, p.o.) used as a standard drug. Chemical hypoxia was induced by subcutaneous administration of sodium nitrite (35 mg/kg), immediately after acquisition training. In elevated plus maze and sodium nitrite-induced amnesia model, Celastrus paniculatus extract has showed statistically significant improvement in memory process when compared to control. The estimation of acetylcholinesterase enzyme in rat brain supports the plus maze and passive avoidance test by reducing acetylcholinesterase activity which helps in memory performance. The study reveals that the aqueous extract of Celastrus paniculatus seed has dose-dependent cholinergic activity, thereby improving memory performance. The mechanism by which Celastrus paniculatus enhances cognition may be due to increased acetylcholine level in rat brain.

  7. Numerical analysis of quantitative measurement of hydroxyl radical concentration using laser-induced fluorescence in flame

    NASA Astrophysics Data System (ADS)

    Shuang, Chen; Tie, Su; Yao-Bang, Zheng; Li, Chen; Ting-Xu, Liu; Ren-Bing, Li; Fu-Rong, Yang

    2016-06-01

    The aim of the present work is to quantitatively measure the hydroxyl radical concentration by using LIF (laser-induced fluorescence) in flame. The detailed physical models of spectral absorption lineshape broadening, collisional transition and quenching at elevated pressure are built. The fine energy level structure of the OH molecule is illustrated to understand the process with laser-induced fluorescence emission and others in the case without radiation, which include collisional quenching, rotational energy transfer (RET), and vibrational energy transfer (VET). Based on these, some numerical results are achieved by simulations in order to evaluate the fluorescence yield at elevated pressure. These results are useful for understanding the real physical processes in OH-LIF technique and finding a way to calibrate the signal for quantitative measurement of OH concentration in a practical combustor. Project supported by the National Natural Science Foundation of China (Grant No. 11272338) and the Fund from the Science and Technology on Scramjet Key Laboratory, China (Grant No. STSKFKT2013004).

  8. Sodium fluoride affects zebrafish behaviour and alters mRNA expressions of biomarker genes in the brain: Role of Nrf2/Keap1.

    PubMed

    Mukhopadhyay, Debdip; Priya, Pooja; Chattopadhyay, Ansuman

    2015-09-01

    Sodium fluoride (NaF), used as pesticides and for industrial purposes are deposited in the water bodies and therefore affects its biota. Zebrafish exposed to NaF in laboratory condition showed hyperactivity and frequent surfacing activity, somersaulting and vertical swimming pattern as compared to the control group. Reactive oxygen species level was elevated and glutathione level was depleted along with increased malondialdehyde content in the brain. Levels of glutathione-s-transferase (GST), catalase (CAT) and superoxide dismutase were also elevated in the treatment groups. Expression of mRNA of nuclear factor erythroid 2 related factor 2 (Nrf2) and its inhibitor Kelch-like ECH-associated protein 1 (Keap1) during stress condition were observed along with Gst, Cat, NADPH: quinone oxidoreductase 1(Nqo1) and p38. Except Keap1, all other genes exhibited elevated expression. Nrf2/Keap1 proteins had similar expression pattern as their corresponding mRNA. The findings in this study might help to understand the molecular mechanism of fluoride induced neurotoxicity in fish. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Anti-apoptotic effect of esculin on dopamine-induced cytotoxicity in the human neuroblastoma SH-SY5Y cell line.

    PubMed

    Zhao, Da-Long; Zou, Li-Bo; Lin, Sheng; Shi, Jian-Gong; Zhu, Hai-Bo

    2007-11-01

    Dopamine (DA), as a neurotoxin, can elicit severe Parkinson's disease-like syndrome by elevating intracellular reactive oxygen species (ROS) levels and apoptotic activity. In this study, we examined the effect of esculin, which was extracted from Fraxinus sielboldiana blume, on DA-induced cytotoxicity and the underlying mechanism in human neuroblastoma SH-SY5Y cells. Our results suggest that the protective effects of esculin (10(-7), 10(-6) and 10(-5) M) on DA-induced cytotoxicity may be ascribed to its anti-oxidative properties by reducing ROS level, and its anti-apoptotic effect via protecting mitochondrion membrane potential (DeltaPsim), enhancing superoxide dismutaese (SOD) activity and reduced glutathione (GSH) levels, and regulating P53, Bax and Bcl-2 expression. In addition, esculin inhibited the release of cytochrome c and apoptosis-inducing factor (AIF), and the protein expression of activated caspase 3. These data indicate that esculin may provide a useful therapeutic strategy for the treatment of progressive neurodegenerative diseases such as Parkinson's disease (PD).

  10. Protective effects of silymarin against acetaminophen-induced hepatotoxicity and nephrotoxicity in mice.

    PubMed

    Bektur, Nuriye Ezgi; Sahin, Erhan; Baycu, Cengiz; Unver, Gonul

    2016-04-01

    This study was designed to estimate protective effects of silymarin on acetaminophen (N-acetyl-p-aminophenol, paracetamol; APAP)-induced hepatotoxicity and nephrotoxicity in mice. Treatment of mice with overdose of APAP resulted in the elevation of aspartate aminotransferase (AST), alanine transaminase (ALT), blood urea nitrogen (BUN), and serum creatinine (SCr) levels in serum, liver, and kidney nitric oxide (NO) levels and significant histological changes including decreased body weight, swelling of hepatocytes, cell infiltration, dilatation and congestion, necrosis and apoptosis in liver, and dilatation of Bowman's capsular space and glomerular capillaries, pale-stained tubules epithelium, cell infiltration, and apoptosis in kidney. Posttreatment with silymarin 1 h after APAP injection for 7 days, however, significantly normalized the body weight, histological damage, serum ALT, AST, BUN, SCr, and tissue NO levels. Our observation suggested that silymarin ameliorated the toxic effects of APAP-induced hepatotoxicity and nephrotoxicity in mice. The protective role of silymarin against APAP-induced damages might result from its antioxidative and anti-inflammatory effects. © The Author(s) 2013.

  11. Circulating Plasma and Exosomal microRNAs as Indicators of Drug-Induced Organ Injury in Rodent Models

    PubMed Central

    Cho, Young-Eun; Kim, Sang-Hyun; Lee, Byung-Heon; Baek, Moon-Chang

    2017-01-01

    This study was performed to evaluate whether microRNAs (miRNAs) in circulating exosomes may serve as biomarkers of drug-induced liver, kidney, or muscle-injury. Quantitative PCR analyses were performed to measure the amounts of liver-specific miRNAs (miR-122, miR-192, and miR-155), kidney-specific miR-146a, or muscle-specific miR-206 in plasma and exosomes from mice treated with liver, kidney or muscle toxicants. The levels of liver-specific miRNAs in circulating plasma and exosomes were elevated in acetaminophen-induced liver injury and returned to basal levels by treatment with antioxidant N-acetyl-cysteine. Circulating miR-146a and miR-206 were increased in cisplatin-induced nephrotoxicity and bupivacaine-induced myotoxicity, respectively. Taken together, these results indicate that circulating plasma and exosomal miRNAs can be used as potential biomarkers specific for drug-induced liver, kidney or muscle injury. PMID:28208010

  12. Accumulation of methylglyoxal increases the advanced glycation end-product levels in DRG and contributes to lumbar disk herniation-induced persistent pain.

    PubMed

    Liu, Cui-Cui; Zhang, Xin-Sheng; Ruan, Yu-Ting; Huang, Zhu-Xi; Zhang, Su-Bo; Liu, Meng; Luo, Hai-Jie; Wu, Shao-Ling; Ma, Chao

    2017-08-01

    Lumbar disk herniation (LDH) with discogenic low back pain and sciatica is a common and complicated musculoskeletal disorder. The underlying mechanisms are poorly understood, and there are no effective therapies for LDH-induced pain. In the present study, we found that the patients who suffered from LDH-induced pain had elevated plasma methylglyoxal (MG) levels. In rats, implantation of autologous nucleus pulposus (NP) to the left lumbar 5 spinal nerve root, which mimicked LDH, induced mechanical allodynia, increased MG level in plasma and dorsal root ganglion (DRG), and enhanced the excitability of small DRG neurons (<30 μm in diameter). Intrathecal injection of MG also induced mechanical allodynia, and its application to DRG neurons ex vivo increased the number of action potentials evoked by depolarizing current pulses. Furthermore, inhibition of MG accumulation by aminoguanidine attenuated the enhanced excitability of small DRG neurons and the mechanical allodynia induced by NP implantation. In addition, NP implantation increased levels of advanced glycation end products (AGEs) in DRG, and intrathecal injection of MG-derived AGEs induced the mechanical allodynia and DRG neuronal hyperactivity. Intrathecal injection of MG also significantly increased the expression of AGEs in DRG. Importantly, scavenging of MG by aminoguanidine also attenuated the increase in AGEs induced by NP implantation. These results suggested that LDH-induced MG accumulation contributed to persistent pain by increasing AGE levels. Thus generation of AGEs from MG may represent a target for treatment of LDH-induced pain. NEW & NOTEWORTHY Our study demonstrates that methylglyoxal accumulation via increasing advanced glycation end-product levels in dorsal root ganglion contributes to the persistent pain induced by lumbar disk herniation, which proposed potential targets for the treatment of lumbar disk herniation-induced persistent pain. Copyright © 2017 the American Physiological Society.

  13. The acute toxicity of inhaled beryllium metal in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haley, P.J.; Finch, G.L.; Hoover, M.D.

    1990-01-01

    The authors exposed rats once by nose only for 50 min to a mean concentration of 800 [mu]g/m[sup 3] of beryllium metal to characterize the acute toxic effects within the lung. Histological changes within the lung and enzyme changes within bronchoalveolar lavage (BAL) fluid were evaluated at 3, 7, 10, 14, 31, 59, 115, and 171 days postexposure (dpe). Beryllium metal-exposed rats developed acute, necrotizing, hemorrhagic, exudative pneumonitis and intraalveolar fibrosis that peaked at 14 dpe. By 31 dpe, inflammatory lesions were replaced by minimal interstitial and intraalveolar fibrosis. Necrotizing inflammation was observed again at 59 dpe which progressed tomore » chronic-active inflammation by 115 dpe. Low numbers of diffusely distributed lymphocytes were also present but they were not associated with granulomas as is observed in beryllium-induced disease in man. Lymphocytes were not elevated in BAL samples collected from beryllium-exposed rats at any time after exposure. Lactate dehydrogenase (LDH), [beta]-glucuronidase, and protein levels were elevated in BAL fluid from 3 through 14 dpe but returned to near normal levels by 31 dpe. LDH increased once again at 59 dpe and remained elevated at 171 dpe. [beta]-Glucuronidase and protein levels were slightly, but not significantly, elevated from 31 through 171 dpe.« less

  14. Effect of elevated CO2 on phosphorus nutrition of phosphate-deficient Arabidopsis thaliana (L.) Heynh under different nitrogen forms

    PubMed Central

    Niu, Yaofang; Chai, Rushan; Zhang, Yongsong

    2013-01-01

    Phosphorus (P) nutrition is always a key issue regarding plants responses to elevated CO2. Yet it is unclear of how elevated CO2 affects P uptake under different nitrogen (N) forms. This study investigated the influence of elevated CO2 (800 µl l–1) on P uptake and utilization by Arabidopsis grown in pH-buffered phosphate (P)-deficient (0.5 µM) hydroponic culture supplying with 2mM nitrate (NO3 −) or ammonium (NH4 +). After 7 d treatment, elevated CO2 enhanced the biomass production of both NO3 −- and NH4 +-fed plants but decreased the P amount absorbed per weight of roots and the P concentration in the shoots of plants supplied with NH4 +. In comparison, elevated CO2 increased the amount of P absorbed per weight of roots, as well as the P concentration in plants and alleviated P deficiency-induced symptoms of plants supplied with NO3 −. Elevated CO2 also increased the root/shoot ratio, total root surface area, and acid phosphatase activity, and enhanced the expression of genes or transcriptional factors involving in P uptake, allocation and remobilization in P deficient plants. Furthermore, elevated CO2 increased the nitric oxide (NO) level in roots of NO3 −-fed plants but decreased it in NH4 +-fed plants. NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) inhibited plant P acquisition by roots under elevated CO2. Considering all of these findings, this study concluded that a combination of elevated CO2 and NO3 − nutrition can induce a set of plant adaptive strategies to improve P status from P-deficient soluble sources and that NO may be a signalling molecule that controls these processes. PMID:23183255

  15. Pretreatment of Gymnema sylvestre revealed the protection against acetic acid-induced ulcerative colitis in rats

    PubMed Central

    2014-01-01

    Background Overproduction of free radicals and decreased antioxidant capacity are well-known risk factors for inflammatory bowel diseases. Gymnema sylvestre (GS) leaves extract is distinguished for its anti-diabetic, antioxidant and anti-inflammatory properties. Present study is designed to evaluate the preventative activities of GS against acetic acid (AA)-induced ulcerative colitis in Wistar rats. Methods Experimentally ulcerative colitis (UC) was induced by AA in animals pretreated with three different doses of GS leaves extract (50, 100, 200 mg/kg/day) and a single dose of mesalazine (MES, 300 mg/kg/day) for seven days. Twenty four hours later, animals were sacrificed and the colonic tissues were collected. Colonic mucus content was determined using Alcian blue dye binding technique. Levels of thiobarbituric acid reactive substances (TBARS), total glutathione sulfhydryl group (T-GSH) and non-protein sulfhydryl group (NPSH) as well as the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were estimated in colon tissues. Colonic nucleic acids (DNA and RNA) and total protein (TP) concentrations were also determined. Levels of pro-inflammatory cytokines including interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) as well as prostaglandin E2 (PGE2) and nitric oxide (NO) were estimated in colonic tissues. The histopathological changes of the colonic tissues were also observed. Results In AA administered group TBARS levels were increased, while colonic mucus content, T-GSH and NP-SH, SOD and CAT were reduced in colon. Pretreatment with GS inhibited TBARS elevation as well as mucus content, T-GSH and NP-SH reduction. Enzymatic activities of SOD and CAT were brought back to their normal levels in GS pretreated group. A significant reduction in DNA, RNA and TP levels was seen following AA administration and this inhibition was significantly eliminated by GS treatment. GS pretreatment also inhibited AA-induced elevation of pro-inflammatory cytokines, PGE2 and NO levels in colon. The apparent UC protection was further confirmed by the histopathological screening. Conclusion The GS leaves extract showed significant amelioration of experimentally induced colitis, which may be attributed to its anti-inflammatory and antioxidant property. PMID:24507431

  16. Pretreatment of Gymnema sylvestre revealed the protection against acetic acid-induced ulcerative colitis in rats.

    PubMed

    Aleisa, Abdulaziz M; Al-Rejaie, Salim S; Abuohashish, Hatem M; Ola, Mohammed S; Parmar, Mihir Y; Ahmed, Mohammed M

    2014-02-10

    Overproduction of free radicals and decreased antioxidant capacity are well-known risk factors for inflammatory bowel diseases. Gymnema sylvestre (GS) leaves extract is distinguished for its anti-diabetic, antioxidant and anti-inflammatory properties. Present study is designed to evaluate the preventative activities of GS against acetic acid (AA)-induced ulcerative colitis in Wistar rats. Experimentally ulcerative colitis (UC) was induced by AA in animals pretreated with three different doses of GS leaves extract (50, 100, 200 mg/kg/day) and a single dose of mesalazine (MES, 300 mg/kg/day) for seven days. Twenty four hours later, animals were sacrificed and the colonic tissues were collected. Colonic mucus content was determined using Alcian blue dye binding technique. Levels of thiobarbituric acid reactive substances (TBARS), total glutathione sulfhydryl group (T-GSH) and non-protein sulfhydryl group (NPSH) as well as the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were estimated in colon tissues. Colonic nucleic acids (DNA and RNA) and total protein (TP) concentrations were also determined. Levels of pro-inflammatory cytokines including interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) as well as prostaglandin E2 (PGE2) and nitric oxide (NO) were estimated in colonic tissues. The histopathological changes of the colonic tissues were also observed. In AA administered group TBARS levels were increased, while colonic mucus content, T-GSH and NP-SH, SOD and CAT were reduced in colon. Pretreatment with GS inhibited TBARS elevation as well as mucus content, T-GSH and NP-SH reduction. Enzymatic activities of SOD and CAT were brought back to their normal levels in GS pretreated group. A significant reduction in DNA, RNA and TP levels was seen following AA administration and this inhibition was significantly eliminated by GS treatment. GS pretreatment also inhibited AA-induced elevation of pro-inflammatory cytokines, PGE2 and NO levels in colon. The apparent UC protection was further confirmed by the histopathological screening. The GS leaves extract showed significant amelioration of experimentally induced colitis, which may be attributed to its anti-inflammatory and antioxidant property.

  17. Duration of rise in free fatty acids determines salicylate's effect on hepatic insulin sensitivity

    PubMed Central

    Pereira, Sandra; Yu, Wen Qin; Frigolet, María E; Beaudry, Jacqueline L; Shpilberg, Yaniv; Park, Edward; Dirlea, Cristina; Nyomba, B L Grégoire; Riddell, Michael C; Fantus, I George; Giacca, Adria

    2013-01-01

    We have shown in rats that sodium salicylate (SS), which inhibits IkBa kinase B (IKKB), prevents hepatic and peripheral insulin resistance caused by short-term (7 h) i.v. administration of Intralipid and heparin (IH). We wished to further determine whether this beneficial effect of SS persisted after prolonged (48 h) IH infusion, which better mimics the chronic free fatty acid (FFA) elevation of obesity. Hence, we performed hyperinsulinemic euglycemic clamps with tritiated glucose methodology to determine hepatic and peripheral insulin sensitivity in rats infused with saline, IH, IH and SS, or SS alone. SS prevented peripheral insulin resistance (P<0.05) caused by prolonged plasma FFA elevation; however, it did not prevent hepatic insulin resistance. In skeletal muscle, protein levels of phospho-IkBa were augmented by prolonged IH administration and this was prevented by SS, suggesting that IH activates while SS prevents the activation of IKKB. Markers of IKKB activation, namely protein levels of phospho-IkBa and IkBa, indicated that IKKB is not activated in the liver after prolonged FFA elevation. Phosphorylation of serine 307 at insulin receptor substrate (IRS)-1, which is a marker of proximal insulin resistance, was not altered by IH administration in the liver, suggesting that this is not a site of hepatic insulin resistance in the prolonged lipid infusion model. Our results suggest that the role of IKKB in fat-induced insulin resistance is time and tissue dependent and that hepatic insulin resistance induced by prolonged lipid elevation is not due to an IRS-1 serine 307 kinase. PMID:23328071

  18. Elevated central venous pressure: a consequence of exercise training-induced hypervolemia?

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Mack, G. W.; Nadel, E. R.

    1991-01-01

    Resting blood volumes and arterial and central venous pressures (CVP) were measured in 14 men before and after exercise training to determine whether training-induced hypervolemia is accompanied by a change in total vascular capacitance. In addition, resting levels of plasma arginine vasopressin (AVP), atrial natriuretic peptide (ANP), aldosterone (Ald), and norepinephrine (NE) were measured. The same measurements were conducted in seven subjects who did not undergo exercise and acted as controls. Exercise training consisted of 10 wk of controlled cycle exercise for 30 min/day, 4 days/wk at 75-80% of maximal O2 uptake (VO2max). A training effect was verified by a 20% increase in VO2max, a resting bradycardia, and a 9% increase in blood volume. Mean arterial blood pressure was unaltered by exercise training, but resting CVP increased by 16% (P less than 0.05). The percent change in blood volume from before to after training was linearly related to the percent change in CVP (r = 0.903, P less than 0.05). As a consequence of elevations in both blood volume and CVP, the volume-to-pressure ratio was unchanged after exercise training. Plasma AVP, ANP, Ald, and NE were unaltered. Our results indicate that elevated CVP is a consequence of training-induced hypervolemia without alteration in total effective venous capacitance.

  19. Oxalate, inflammasome, and progression of kidney disease

    PubMed Central

    Ermer, Theresa; Eckardt, Kai-Uwe; Aronson, Peter S.; Knauf, Felix

    2016-01-01

    Purpose of review Oxalate is an end product of metabolism excreted via the kidney. Excess urinary oxalate, whether from primary or enteric hyperoxaluria, can lead to oxalate deposition in the kidney. Oxalate crystals are associated with renal inflammation, fibrosis and progressive renal failure. It has long been known that as glomerular filtration rate (GFR) becomes reduced in chronic kidney disease (CKD), there is striking elevation of plasma oxalate. Taken together, these findings raise the possibility that elevation of plasma oxalate in CKD may promote renal inflammation and more rapid progression of CKD independent of primary etiology. Recent findings The inflammasome has recently been identified to play a critical role in oxalate-induced renal inflammation. Oxalate crystals have been shown to activate the nucleotide-binding domain, leucine-rich repeat inflammasome 3 (also known as NALP3, NLRP3 or cryopyrin), resulting in release of Interleukin-1β and macrophage infiltration. Deletion of inflammasome proteins in mice protects from oxalate-induced renal inflammation and progressive renal failure. Summary The findings reviewed in this article expand our understanding of the relevance of elevated plasma oxalate levels leading to inflammasome activation. We propose that inhibiting oxalate-induced inflammasome activation, or lowering plasma oxalate, may prevent or mitigate progressive renal damage in CKD, and warrants clinical trials. PMID:27191349

  20. Age-dependent effect of high cholesterol diets on anxiety-like behavior in elevated plus maze test in rats.

    PubMed

    Hu, Xu; Wang, Tao; Luo, Jia; Liang, Shan; Li, Wei; Wu, Xiaoli; Jin, Feng; Wang, Li

    2014-09-01

    Cholesterol is an essential component of brain and nerve cells and is essential for maintaining the function of the nervous system. Epidemiological studies showed that patients suffering from anxiety disorders have higher serum cholesterol levels. In this study, we investigated the influence of high cholesterol diet on anxiety-like behavior in elevated plus maze in animal model and explored the relationship between cholesterol and anxiety-like behavior from the aspect of central neurochemical changes. Young (3 weeks old) and adult (20 weeks old) rats were given a high cholesterol diet for 8 weeks. The anxiety-like behavior in elevated plus maze test and changes of central neurochemical implicated in anxiety were measured. In young rats, high cholesterol diet induced anxiolytic-like behavior, decreased serum corticosterone (CORT), increased hippocampal brain-derived neurotrophic factor (BDNF), increased hippocampal mineralocorticoid receptor (MR) and decreased glucocorticoid receptor (GR). In adult rats, high cholesterol diet induced anxiety-like behavior and increase of serum CORT and decrease of hippocampal BDNF comparing with their respective control group that fed the regular diet. High cholesterol diet induced age-dependent effects on anxiety-like behavior and central neurochemical changes. High cholesterol diet might affect the central nervous system (CNS) function differently, and resulting in different behavior performance of anxiety in different age period.

  1. FGF21 improves glucose homeostasis in an obese diabetes-prone mouse model independent of body fat changes.

    PubMed

    Laeger, Thomas; Baumeier, Christian; Wilhelmi, Ilka; Würfel, Josefine; Kamitz, Anne; Schürmann, Annette

    2017-11-01

    Fibroblast growth factor 21 (FGF21) is considered to be a promising therapeutic candidate for the treatment of type 2 diabetes. However, as FGF21 levels are elevated in obese and diabetic conditions we aimed to test if exogenous FGF21 is sufficient to prevent diabetes and beta cell loss in New Zealand obese (NZO) mice, a model for polygenetic obesity and type 2 diabetes. Male NZO mice were treated with a specific dietary regimen that leads to the onset of diabetes within 1 week. Mice were treated subcutaneously with PBS or FGF21 to assess changes in glucose homeostasis, energy expenditure, food intake and other metabolic endpoints. FGF21 treatment prevented islet destruction and the onset of hyperglycaemia, and improved glucose clearance. FGF21 increased energy expenditure by inducing browning in subcutaneous white adipose tissue. However, as a result of a compensatory increased food intake, body fat did not decrease in response to FGF21 treatment, but exhibited elevated Glut4 expression. FGF21 prevents the onset of diet-induced diabetes, without changing body fat mass. Beneficial effects are mediated via white adipose tissue browning and elevated thermogenesis. Furthermore, these data indicate that obesity does not induce FGF21 resistance in NZO mice.

  2. Inhibition of adenosine metabolism induces changes in post-ictal depression, respiration, and mortality in genetically epilepsy prone rats.

    PubMed

    Kommajosyula, Srinivasa P; Randall, Marcus E; Faingold, Carl L

    2016-01-01

    A major cause of mortality in epilepsy patients is sudden unexpected death in epilepsy (SUDEP). Post-ictal respiratory dysfunction following generalized convulsive seizures is most commonly observed in witnessed cases of human SUDEP. DBA mouse models of SUDEP are induced by audiogenic seizures (AGSz) and show high incidences of seizure-induced death due to respiratory depression. The relatively low incidence of human SUDEP suggests that it may be useful to examine seizure-associated death in an AGSz model that rarely exhibits sudden death, such as genetically epilepsy-prone rats (GEPR-9s). Adenosine is released extensively during seizures and depresses respiration, which may contribute to seizure-induced death. The present study examined the effects of inhibiting adenosine metabolism on the durations of post-ictal depression (PID) and respiratory distress (RD), changes in blood oxygen saturation (% SpO2), and the incidence of post-seizure mortality in GEPR-9s. Systemic administration of adenosine metabolism inhibitors, erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA, 30 mg/kg) with 5-Iodotubericidin (5-ITU, 3mg/kg) in GEPR-9s resulted in significant changes in the duration of AGSz-induced PID as compared to vehicle in both genders. These agents also significantly increased the duration of post-seizure RD and significantly decreased the mean% SpO2 after AGSz, as compared to vehicle but only in females. Subsequently, we observed that the incidences of death in both genders 12-48 h post-seizure were significantly greater in drug vs. vehicle treatment. The incidence of death in females was also significantly higher than in males, which is consistent with the elevated seizure sensitivity of female GEPR-9s developmentally. These results support a potentially important role of elevated adenosine levels following generalized seizures in the increased incidence of death in GEPR-9s induced by adenosine metabolism inhibitors. These findings may also be relevant to human SUDEP, in light of the elevated adenosine levels that occur post-ictally in humans and its respiratory depressant actions. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Perinatal Bisphenol A Exposure Induces Chronic Inflammation in Rabbit Offspring via Modulation of Gut Bacteria and Their Metabolites

    PubMed Central

    Veeramachaneni, D. N. Rao; Walters, William A.; Lozupone, Catherine; Palmer, Jennifer; Hewage, M. K. Kurundu; Bhatnagar, Rohil; Amir, Amnon; Kennett, Mary J.; Knight, Rob

    2017-01-01

    ABSTRACT Bisphenol A (BPA) accumulates in the maturing gut and liver in utero and is known to alter gut bacterial profiles in offspring. Gut bacterial dysbiosis may contribute to chronic colonic and systemic inflammation. We hypothesized that perinatal BPA exposure-induced intestinal (and liver) inflammation in offspring is due to alterations in the microbiome and colonic metabolome. The 16S rRNA amplicon sequencing analysis revealed differences in beta diversity with a significant reduction in the relative abundances of short-chain fatty acid (SCFA) producers such as Oscillospira and Ruminococcaceae due to BPA exposure. Furthermore, BPA exposure reduced fecal SCFA levels and increased systemic lipopolysaccharide (LPS) levels. BPA exposure-increased intestinal permeability was ameliorated by the addition of SCFA in vitro. Metabolic fingerprints revealed alterations in global metabolism and amino acid metabolism. Thus, our findings indicate that perinatal BPA exposure may cause gut bacterial dysbiosis and altered metabolite profiles, particularly SCFA profiles, leading to chronic colon and liver inflammation. IMPORTANCE Emerging evidence suggests that environmental toxicants may influence inflammation-promoted chronic disease susceptibility during early life. BPA, an environmental endocrine disruptor, can transfer across the placenta and accumulate in fetal gut and liver. However, underlying mechanisms for BPA-induced colonic and liver inflammation are not fully elucidated. In this report, we show how perinatal BPA exposure in rabbits alters gut microbiota and their metabolite profiles, which leads to colonic and liver inflammation as well as to increased gut permeability as measured by elevated serum lipopolysaccharide (LPS) levels in the offspring. Also, perinatal BPA exposure leads to reduced levels of gut bacterial diversity and bacterial metabolites (short-chain fatty acids [SCFA]) and elevated gut permeability—three common early biomarkers of inflammation-promoted chronic diseases. In addition, we showed that SCFA ameliorated BPA-induced intestinal permeability in vitro. Thus, our study results suggest that correcting environmental toxicant-induced bacterial dysbiosis early in life may reduce the risk of chronic diseases later in life. PMID:29034330

  4. Dietary-induced hyperthyroidism marginally affects neonatal testicular development.

    PubMed

    Rijntjes, Eddy; Wientjes, Anna T; Swarts, Hans J M; de Rooij, Dirk G; Teerds, Katja J

    2008-01-01

    The objective of this study was to determine whether dietary-induced mild fetal/neonatal hyperthyroidism influenced the initiation of spermatogenesis and the development of the adult-type Leydig cell population. Previously, the effects of neonatally induced hyperthyroidism have been investigated in rats using rather high doses (5 to 10 microg/100 g body weight) of tri-iodothyronine, which not only influenced testicular development, but also negatively affected the general body condition of the animals. To induce hyperthyroidism the diet of the dams was supplemented with 15 mug thyroxine (T(4))/100 g body weight 2 weeks prior to mating and the dams and their offspring were kept on this diet until sacrifice. Pups were killed between days 7 and 64 after birth. At the age of 12 days plasma thyroid-stimulating hormone (TSH) levels tended to be lower in hyperthyroid pups, and from the age of 15 days onwards plasma TSH levels were significantly lower in hyperthyroid animals. Concomitantly, plasma T(4) levels were significantly elevated. From the age of 12 days onwards, plasma follicle-stimulating hormone levels were lower in hyperthyroid animals compared with age-matched control groups. Sertoli cell differentiation did not seem to be influenced by the mild hyperthyroid condition, as no difference in tubule lumen formation was observed between euthyroid and hyperthyroid animals. Nevertheless, a small effect on the progression of spermatogenesis was observed 15 days after birth, as the most advanced type of germ cells in the control testis were pachytene spermatocytes, whereas in the hyperthyroid testis these were leptotene and zygotene spermatocytes. Leydig cell proliferation was decreased in the hyperthyroid pups at the age of 15 days and slightly elevated at later ages, suggesting a possible slower onset of the proliferative activity of these cells than in the euthyroid control animals. Taken together, the present results suggest that even mild dietary-induced hyperthyroidism transiently affects the development of the adult-type Leydig cell population as well as the initial progression of spermatogenesis.

  5. Irradiation induces regionally specific alterations in pro-inflammatory environments in rat brain

    PubMed Central

    Lee, Won Hee; Sonntag, William E.; Mitschelen, Matthew; Yan, Han; Lee, Yong Woo

    2010-01-01

    Purpose Pro-inflammatory environments in the brain have been implicated in the onset and progression of neurological disorders. In the present study, we investigate the hypothesis that brain irradiation induces regionally specific alterations in cytokine gene and protein expression. Materials and methods Four month old F344 × BN rats received either whole brain irradiation with a single dose of 10 Gy γ-rays or sham-irradiation, and were maintained for 4, 8, and 24 h following irradiation. The mRNA and protein expression levels of pro-inflammatory mediators were analysed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and immunofluorescence staining. To elucidate the molecular mechanisms of irradiation-induced brain inflammation, effects of irradiation on the DNA-binding activity of pro-inflammatory transcription factors were also examined. Results A significant and marked up-regulation of mRNA and protein expression of pro-inflammatory mediators, including tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1), was observed in hippocampal and cortical regions isolated from irradiated brain. Cytokine expression was regionally specific since TNF-α levels were significantly elevated in cortex compared to hippocampus (57% greater) and IL-1β levels were elevated in hippocampus compared to cortical samples (126% greater). Increases in cytokine levels also were observed after irradiation of mouse BV-2 microglial cells. A series of electrophoretic mobility shift assays (EMSA) demonstrated that irradiation significantly increased activation of activator protein-1 (AP-1), nuclear factor-κB (NF-κB), and cAMP response element-binding protein (CREB). Conclusion The present study demonstrated that whole brain irradiation induces regionally specific pro-inflammatory environments through activation of AP-1, NF-κB, and CREB and overexpression of TNF-α, IL-1β, and MCP-1 in rat brain and may contribute to unique pathways for the radiation-induced impairments in tissue function. PMID:20148699

  6. Protective effect of thymoquinone improves cardiovascular function, and attenuates oxidative stress, inflammation and apoptosis by mediating the PI3K/Akt pathway in diabetic rats.

    PubMed

    Liu, Hui; Liu, Hong-Yang; Jiang, Yi-Nong; Li, Nan

    2016-03-01

    Thymoquinone is the main active monomer extracted from black cumin and has anti‑inflammatory, antioxidant and anti‑apoptotic functions. However, the protective effects of thymoquinone on cardiovascular function in diabetes remain to be fully elucidated. The present study aimed to investigate the molecular mechanisms underling the beneficial effects of thymoquinone on the cardiovascular function in streptozotocin‑induced diabetes mellitus (DM) rats. Supplement thymoquinone may recover the insulin levels and body weight, inhibit blood glucose levels and reduce the heart rate in DM‑induced rats. The results indicated that the heart, liver and lung to body weight ratios, in addition to the blood pressure levels, were similar for each experimental group. Treatment with thymoquinone significantly reduced oxidative stress damage, inhibited the increased endothelial nitric oxide synthase protein expression and suppressed the elevation of cyclooxygenase‑2 levels in DM‑induced rats. In addition, thymoquinone significantly suppressed the promotion of tumor necrosis factor‑α and interleukin‑6 levels in the DM‑induced rats. Furthermore, administration of thymoquinone significantly reduced caspase‑3 activity and the promotion of phosphorylated‑protein kinase B (Akt) protein expression levels in DM‑induced rats. These results suggest that the protective effect of thymoquinone improves cardiovascular function and attenuates oxidative stress, inflammation and apoptosis by mediating the phosphatidylinositol 3‑kinase/Akt pathway in DM‑induced rats.

  7. Blocking mitochondrial cyclophilin D ameliorates TSH-impaired defensive barrier of artery.

    PubMed

    Liu, Xiaojing; Du, Heng; Chai, Qiang; Jia, Qing; Liu, Lu; Zhao, Meng; Li, Jun; Tang, Hui; Chen, Wenbin; Zhao, Lifang; Fang, Li; Gao, Ling; Zhao, Jiajun

    2018-05-01

    Endothelial cells (ECs) constitute the defensive barrier of vasculature, which maintains the vascular homeostasis. Mitochondrial oxidative stress (mitoOS) in ECs significantly affects the initiation and progression of vascular diseases. The higher serum thyroid stimulating hormone (TSH) level is being recognized as a nonconventional risk factor responsible for the increased risk of cardiovascular diseases in subclinical hypothyroidism (SCH). However, effects and underlying mechanisms of elevated TSH on ECs are still ambiguous. We sought to investigate whether cyclophilin D (CypD), emerging as a crucial mediator in mitoOS, regulates effects of TSH on ECs. SCH patients with TSH > = 10mIU/L showed a positive correlation between serum TSH and endothelin-1 levels. When TSH levels declined to normal in these subjects after levothyroxine therapy, serum endothelin-1 levels were significantly reduced. Supplemented with exogenous thyroxine to keep normal thyroid hormones, thyroid-specific TSH receptor (TSHR)-knockout mice with injection of exogenous TSH exhibited elevated serum TSH levels, significant endothelial oxidative injuries and disturbed endothelium-dependent vasodilation. However, Tshr -/- mice resisted to TSH-impaired vasotonia. We further confirmed that elevated TSH triggered excessive mitochondrial permeability transition pore (mPTP) opening and mitochondrial oxidative damages in mouse aorta, as well as in cultured ECs. Genetic or pharmacological inhibition of CypD (the key regulator for mPTP opening) attenuated TSH-induced mitochondrial oxidative damages and further rescued endothelial functions. Finally, we confirmed that elevated TSH could activate CypD by enhancing CypD acetylation via inhibiting adenosine monophosphate-activated protein kinase/sirtuin-3 signaling pathway in ECs. These findings reveal that elevated TSH triggers mitochondrial perturbations in ECs and provide insights that blocking mitochondrial CypD enhances the defensive ability of ECs under TSH exposure. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Silibinin ameliorates Aβ25-35-induced memory deficits in rats by modulating autophagy and attenuating neuroinflammation as well as oxidative stress.

    PubMed

    Song, Xiaoyu; Zhou, Biao; Cui, Lingyu; Lei, Di; Zhang, Pingping; Yao, Guodong; Xia, Mingyu; Hayashi, Toshihiko; Hattori, Shunji; Ushiki-Kaku, Yuko; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2017-04-01

    Alzheimer's disease (AD) is a progressive, neurodegenerative disease. Accumulating evidence suggests that inflammatory response, oxidative stress and autophagy are involved in amyloid β (Aβ)-induced memory deficits. Silibinin (silybin), a flavonoid derived from the herb milk thistle, is well known for its hepatoprotective activities. In this study, we investigated the neuroprotective effect of silibinin on Aβ 25-35 -injected rats. Results demonstrated that silibinin significantly attenuated Aβ 25-35 -induced memory deficits in Morris water maze and novel object-recognition tests. Silibinin exerted anxiolytic effect in Aβ 25-35 -injected rats as determined in elevated plus maze test. Silibinin attenuated the inflammatory responses, increased glutathione (GSH) levels and decreased malondialdehyde (MDA) levels, and upregulated autophagy levels in the Aβ 25-35 -injected rats. In conclusion, silibinin is a potential candidate for AD treatment because of its anti-inflammatory, antioxidant and autophagy regulating activities.

  9. Effect of Prolonged Exposure to Elevated Carbon Monoxide and Carbon Dioxide Levels on Red Blood Cell Parameters during Submarine Patrols

    DTIC Science & Technology

    1975-12-01

    rise in Hb, Hct. and red cells, to compensate for the anoxic stress induced by higher carboxyhemoglobin levels (HbCO). Inhalation of CO2 in higher...expected to cause an equilibrium value of 8-50% carboxyhemoglobin (HbCO). Under these conditions, Schulte (1961) did not find any gross changes in...according to Stewart (1974). Carboxyhemoglobin levels of 1-5% cause an increased blood Cow to vital organs, which compensates for the loss of oxygen

  10. Alcohol Consumption as a Response to Anxiety Level and Alcohol Expectancy

    DTIC Science & Technology

    1991-01-01

    perspective. British Journal of Addiction , 85, 31-40. Zuckerman , M., Lubin, B., Vogel, L., & Valerius, E. (1964). Measurement of experimentally induced affects. Journal of Consulting and Clinical Psychology, 28, 418-425. ...and drug use levels, which were elevated among U.S. soldiers serving in Viet Nam, returned to near pre-combat levels after these soldiers returned to...demographic survey assessed participants’ age, sex, race, marital status, and history of family alcohol or drug abuse. All subjects were asked to

  11. Physiological requirements for 20-hydroxyecdysone-induced rectal sac distention in the pupa of the silkworm, Bombyx mori.

    PubMed

    Suzuki, Takumi; Sakurai, Sho; Iwami, Masafumi

    2010-06-01

    Successful insect development is achieved via appropriate fluctuation of ecdysteroid levels. When an insect's ecdysteroid level is disrupted, physiological and developmental defects occur. In the pupa of the silkworm, Bombyx mori, the rectal sac is an essential organ that operates as a repository for degraded ecdysteroids, and it can be distended by administration of 20-hydroxyecdysone (20E). Our previous study showed that rectal sac distention appears 4 days after 20E administration. Hemolymph ecdysteroid levels, however, decrease to lower level during this period. Thus, the timing of the rectal sac distention does not match with that of ecdysteroid elevation. Here, we examine how 20E induces rectal sac distention. A ligature experiment and ecdysteroid quantification showed that continuous 20E stimulation induces rectal sac distention. Thorax tissue contributed to the continuous 20E stimulation needed to induce distention. Ecdysteroid released from the thorax tissue may be converted to 20E by ecdysone 20-hydroxylase to produce continuous 20E stimulation. Thus, the ecdysone metabolic pathway plays a critical role in rectal sac distention. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Antidiabetic Activity of Aqueous Leaves Extract of Sesbania sesban (L) Merr. in Streptozotocin Induced Diabetic Rats

    PubMed Central

    Pandhare, Ramdas B.; Sangameswaran, B.; Mohite, Popat B.; Khanage, Shantaram G.

    2011-01-01

    The aqueous leaves extract of Sesbania sesban (L) Merr. (Family: Fabaceae) was evaluated for its antidiabetic potential on normal and streptozotocin (STZ)-induced diabetic rats. In the chronic model, the aqueous extract was administered to normal and STZ- induced diabetic rats at the doses of 250 and 500 mg/kg body weight (b.w.) p.o. per day for 30 days. The fasting Blood Glucose Levels (BGL), serum insulin level and biochemical data such as glycosylated hemoglobin, Total Cholesterol (TC), Triglycerides (TG), High Density Lipoproteins (HDL) and Low Density Lipoproteins (LDL) were evaluated and all were compared to that of the known anti-diabetic drug glibenclamide (0.25 mg/kg b.w.). The statistical data indicated significant increase in the body weight, liver glycogen, serum insulin and HDL levels and decrease in blood glucose, glycosylated hemoglobin, total cholesterol and serum triglycerides when compared with glibenclamide. Thus the aqueous leaves extract of Sesbania sesban had beneficial effects in reducing the elevated blood glucose level and lipid profile of STZ-induced diabetic rats. PMID:23407749

  13. Environment-, drug- and stress-induced alterations in body temperature affect the neurotoxicity of substituted amphetamines in the C57BL/6J mouse.

    PubMed

    Miller, D B; O'Callaghan, J P

    1994-08-01

    In the companion paper we demonstrated that d-methamphetamine (d-METH), d-methylenedioxyamphetamine (d-MDA) and d-methylenedioxymethamephetamine (d-MDMA), but not d-fenfluramine (d-FEN), appear to damage dopaminergic projections to the striatum of the mouse. An elevation in core temperature also was associated with exposure to d-METH, d-MDA and d-MDMA, whereas exposure to d-FEN lowered core temperature. Given these findings, we examined the effects of temperature on substituted amphetamine (AMP)-induced neurotoxicity in the C57BL/6J mouse. Levels of striatal dopamine (DA) and glial fibrillary acidic protein (GFAP) were taken as indicators of neurotoxicity. Alterations in ambient temperature, pretreatment with drugs reported to cause hypothermia in the mouse and hypothermia induced by restraint stress were used to affect AMP-induced neurotoxicity. Mice received d-METH (10 mg/kg), d-MDA (20 mg/kg) or d-MDMA (20 mg/kg) every 2 hr for a total of four s.c. injections. All three AMPs increased core temperature and caused large (> 75%) decreases in striatal dopamine and large (> 300%) increases in striatal glial fibrillary acidic protein 72 hr after the last injection. Lowering ambient temperature from 22 degrees C to 15 degrees C blocked (d-MDA and d-MDMA) or severely attenuated (d-METH) these effects. Pretreatment with MK-801 lowered core temperature and blocked AMP-induced neurotoxicity; elevation of ambient temperature during this regimen elevated core temperature and markedly attenuated the neuroprotective effects of MK-801. Pretreatment with MK-801 also lowered core temperature in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice but did not block 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Effect of Exercise-Induced Lactate Elevation on Brain Lactate Levels During Hypoglycemia in Patients With Type 1 Diabetes and Impaired Awareness of Hypoglycemia.

    PubMed

    Wiegers, Evita C; Rooijackers, Hanne M; Tack, Cees J; Groenewoud, Hans J M M; Heerschap, Arend; de Galan, Bastiaan E; van der Graaf, Marinette

    2017-12-01

    Since altered brain lactate handling has been implicated in the development of impaired awareness of hypoglycemia (IAH) in type 1 diabetes, the capacity to transport lactate into the brain during hypoglycemia may be relevant in its pathogenesis. High-intensity interval training (HIIT) increases plasma lactate levels. We compared the effect of HIIT-induced hyperlacticacidemia on brain lactate during hypoglycemia between 1 ) patients with type 1 diabetes and IAH, 2 ) patients with type 1 diabetes and normal awareness of hypoglycemia, and 3 ) healthy participants without diabetes ( n = 6 per group). All participants underwent a hypoglycemic (2.8 mmol/L) clamp after performing a bout of HIIT on a cycle ergometer. Before HIIT (baseline) and during hypoglycemia, brain lactate levels were determined continuously with J-difference-editing 1 H-MRS, and time curves were analyzed using nonlinear mixed-effects modeling. At the beginning of hypoglycemia (after HIIT), brain lactate levels were elevated in all groups but most pronounced in patients with IAH. During hypoglycemia, brain lactate decreased ∼30% below baseline in patients with IAH but returned to baseline levels and remained there in the other two groups. Our results support the concept of enhanced lactate transport as well as increased lactate oxidation in patients with type 1 diabetes and IAH. © 2017 by the American Diabetes Association.

  15. Teucrium polium reversed the MCD diet-induced liver injury in rats.

    PubMed

    Amini, Rahim; Yazdanparast, Razieh; Aghazadeh, Safiyeh; Ghaffari, Seyed H

    2011-09-01

    In the present study, we evaluated the ability of Teucrium polium ethyl acetate fraction, with high antioxidant activity, in the treatment of nonalcoholic steatohepatitis (NASH) in rats and its possible effect on factors involved in pathogenesis of the disease. To induce NASH, a methionine and choline deficient (MCD) diet was given to N-Mary rats for 8 weeks. After NASH development, MCD-fed rats were divided into 2 groups: NASH group that received MCD diet and NASH + T group which was fed MCD diet plus ethyl acetate fraction of T. polium orally for 3 weeks. Histopathological evaluations revealed that treatment with the extract has abated the severity of NASH among the MCD-fed rats. In addition, the fraction reduced the elevated levels of hepatic tumor necrosis factor-alpha (TNF-α) and transforming growth factor-beta (TGF-β) gene expression and also the elevated level of malondialdehyde (MDA). In addition, the extract increased the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and enhanced the level of hepatic glutathione (GSH). Moreover, the fraction treatments lowered caspase-3 level and the phosphorylated form of C-Jun N-terminal kinase (JNK) and augmented the phosphorylated level of extracellular regulated kinase1/2 (ERK1/2). These results indicate that the ethyl acetate fraction of T. poium effectively reversed NASH, mainly due to its strong antioxidant and anti-inflammatory properties.

  16. Synergistic protective role of mirazid (Commiphora molmol) and ascorbic acid against tilmicosin-induced cardiotoxicity in mice.

    PubMed

    Abdel-Daim, Mohamed M; Ghazy, Emad W; Fayez, Mostafa

    2015-01-01

    Tilmicosin (TIL) is a long-acting macrolide antibiotic approved for the treatment of cattle with Bovine Respiratory Disease. However, overdose of TIL has been reported to induce cardiotoxicity. The purpose of our experiment was to evaluate the protective effects of Commiphora molmol (mirazid (MRZ); myrrh) and (or) ascorbic acid (AA) against TIL-induced cardiotoxicity in mice. MRZ and AA were orally administered using stomach gavage, either alone or in combination for 5 consecutive days, followed with a single TIL overdose. TIL overdose induced a significant increase in serum levels of cardiac damage biomarkers (AST, LDH, CK, CK-MB, and cTnT), as well as cardiac lipid peroxidation, but cardiac levels of antioxidant biomarkers (GSH, SOD, CAT, and TAC) were decreased. Both MRZ and AA tended to normalize the elevated serum levels of cardiac injury biomarkers. Furthermore, MRZ and AA reduced TIL-induced lipid peroxidation and oxidative stress parameters. MRZ and AA combined produced a synergistic cardioprotective effect. We conclude that myrrh and (or) vitamin C administration minimizes the toxic effects of TIL through their free-radical-scavenging and potent antioxidant activities.

  17. A method for determining average beach slope and beach slope variability for U.S. sandy coastlines

    USGS Publications Warehouse

    Doran, Kara S.; Long, Joseph W.; Overbeck, Jacquelyn R.

    2015-01-01

    The U.S. Geological Survey (USGS) National Assessment of Hurricane-Induced Coastal Erosion Hazards compares measurements of beach morphology with storm-induced total water levels to produce forecasts of coastal change for storms impacting the Gulf of Mexico and Atlantic coastlines of the United States. The wave-induced water level component (wave setup and swash) is estimated by using modeled offshore wave height and period and measured beach slope (from dune toe to shoreline) through the empirical parameterization of Stockdon and others (2006). Spatial and temporal variability in beach slope leads to corresponding variability in predicted wave setup and swash. For instance, seasonal and storm-induced changes in beach slope can lead to differences on the order of 1 meter (m) in wave-induced water level elevation, making accurate specification of this parameter and its associated uncertainty essential to skillful forecasts of coastal change. A method for calculating spatially and temporally averaged beach slopes is presented here along with a method for determining total uncertainty for each 200-m alongshore section of coastline.

  18. Impairment of TrkB-PSD-95 Signaling in Angelman Syndrome

    PubMed Central

    Cao, Cong; Rioult-Pedotti, Mengia S.; Migani, Paolo; Yu, Crystal J.; Tiwari, Rakesh; Parang, Keykavous; Spaller, Mark R.; Goebel, Dennis J.; Marshall, John

    2013-01-01

    Angelman syndrome (AS) is a neurodevelopment disorder characterized by severe cognitive impairment and a high rate of autism. AS is caused by disrupted neuronal expression of the maternally inherited Ube3A ubiquitin protein ligase, required for the proteasomal degradation of proteins implicated in synaptic plasticity, such as the activity-regulated cytoskeletal-associated protein (Arc/Arg3.1). Mice deficient in maternal Ube3A express elevated levels of Arc in response to synaptic activity, which coincides with severely impaired long-term potentiation (LTP) in the hippocampus and deficits in learning behaviors. In this study, we sought to test whether elevated levels of Arc interfere with brain-derived neurotrophic factor (BDNF) TrkB receptor signaling, which is known to be essential for both the induction and maintenance of LTP. We report that TrkB signaling in the AS mouse is defective, and show that reduction of Arc expression to control levels rescues the signaling deficits. Moreover, the association of the postsynaptic density protein PSD-95 with TrkB is critical for intact BDNF signaling, and elevated levels of Arc were found to impede PSD-95/TrkB association. In Ube3A deficient mice, the BDNF-induced recruitment of PSD-95, as well as PLCγ and Grb2-associated binder 1 (Gab1) with TrkB receptors was attenuated, resulting in reduced activation of PLCγ-α-calcium/calmodulin-dependent protein kinase II (CaMKII) and PI3K-Akt, but leaving the extracellular signal-regulated kinase (Erk) pathway intact. A bridged cyclic peptide (CN2097), shown by nuclear magnetic resonance (NMR) studies to uniquely bind the PDZ1 domain of PSD-95 with high affinity, decreased the interaction of Arc with PSD-95 to restore BDNF-induced TrkB/PSD-95 complex formation, signaling, and facilitate the induction of LTP in AS mice. We propose that the failure of TrkB receptor signaling at synapses in AS is directly linked to elevated levels of Arc associated with PSD-95 and PSD-95 PDZ-ligands may represent a promising approach to reverse cognitive dysfunction. PMID:23424281

  19. Impairment of TrkB-PSD-95 signaling in Angelman syndrome.

    PubMed

    Cao, Cong; Rioult-Pedotti, Mengia S; Migani, Paolo; Yu, Crystal J; Tiwari, Rakesh; Parang, Keykavous; Spaller, Mark R; Goebel, Dennis J; Marshall, John

    2013-01-01

    Angelman syndrome (AS) is a neurodevelopment disorder characterized by severe cognitive impairment and a high rate of autism. AS is caused by disrupted neuronal expression of the maternally inherited Ube3A ubiquitin protein ligase, required for the proteasomal degradation of proteins implicated in synaptic plasticity, such as the activity-regulated cytoskeletal-associated protein (Arc/Arg3.1). Mice deficient in maternal Ube3A express elevated levels of Arc in response to synaptic activity, which coincides with severely impaired long-term potentiation (LTP) in the hippocampus and deficits in learning behaviors. In this study, we sought to test whether elevated levels of Arc interfere with brain-derived neurotrophic factor (BDNF) TrkB receptor signaling, which is known to be essential for both the induction and maintenance of LTP. We report that TrkB signaling in the AS mouse is defective, and show that reduction of Arc expression to control levels rescues the signaling deficits. Moreover, the association of the postsynaptic density protein PSD-95 with TrkB is critical for intact BDNF signaling, and elevated levels of Arc were found to impede PSD-95/TrkB association. In Ube3A deficient mice, the BDNF-induced recruitment of PSD-95, as well as PLCγ and Grb2-associated binder 1 (Gab1) with TrkB receptors was attenuated, resulting in reduced activation of PLCγ-α-calcium/calmodulin-dependent protein kinase II (CaMKII) and PI3K-Akt, but leaving the extracellular signal-regulated kinase (Erk) pathway intact. A bridged cyclic peptide (CN2097), shown by nuclear magnetic resonance (NMR) studies to uniquely bind the PDZ1 domain of PSD-95 with high affinity, decreased the interaction of Arc with PSD-95 to restore BDNF-induced TrkB/PSD-95 complex formation, signaling, and facilitate the induction of LTP in AS mice. We propose that the failure of TrkB receptor signaling at synapses in AS is directly linked to elevated levels of Arc associated with PSD-95 and PSD-95 PDZ-ligands may represent a promising approach to reverse cognitive dysfunction.

  20. BMS-777607 promotes megakaryocytic differentiation and induces polyploidization in the CHRF-288-11 cells.

    PubMed

    Nurhayati, Retno Wahyu; Ojima, Yoshihiro; Taya, Masahito

    2015-04-01

    Introduction of a polyploidy inducer is a promising strategy to achieve a high level of polyploidization during megakaryocytic (MK) differentiation. Here, we report that a multi-kinase inhibitor, BMS-777607, is a potent polyploidy inducer for elevating high ploidy cell formation in the MK-differentiated CHRF-288-11 (CHRF) cells. Our result showed that BMS-777607 strongly inhibited cell division without affecting cell viability when detected at day 1 after treatment. As a consequence, the high ploidy (≥8N) cells were accumulated in culture for 8 days, with an increase from 16.2 to 75.2 % of the total cell population. The elevated polyploidization was accompanied by the increased expression level of MK marker, CD41 (platelet glycoprotein IIb/IIIa, GPIIb/IIIa), suggesting that BMS-777607 promoted both polyploidization and commitment of MK-differentiated CHRF cells. Platelet-like fragments (PFs) were released by mature CHRF cells. Based on a flow cytometry assay, it was found that the PFs produced from BMS-777607-treated cells tended to have larger size and higher expression of GPIIb/IIIa, a receptor for platelet adhesion. Taken together, these results suggested that BMS-777607 promoted MK differentiation of CHRF cells and increased the functional property of platelet-like fragments.

  1. Biomonitoring of the Genotoxic and Hepatotoxic Effects and Oxidative Stress Potentials of Itraconazole in Pregnant Rats.

    PubMed

    El-Shershaby, Abdel-Fattah; Dakrory, Ahmed I; El-Dakdoky, Mai H; Ibrahim, Jehane; Kassem, Fatma

    2015-04-01

    Pregnant women are more susceptible to both vaginal colonization and infection by yeast. One hundred million fungal infected patients have been treated worldwide with itraconazole (Caputo, 2003. Itraconazole was administrated orally to pregnant rats at doses of 75, 100, or 150 mg/kg during gestational days (GD) 1 to 7 or GD 8 to 14 or GD 14 to 20. The genotoxicity and hepatotoxicity of the antifungal drug itraconazole were assessed during different periods of pregnancy using different methods. It was found that itraconazole was a genotoxic drug for both mothers and fetuses. This finding was observed via significant elevation in the estimated comet assay parameters (percentage of fragmented DNA, tail moment, and olive moment), percentage of fragmented DNA measured by diphenylamine assay and mixed smearing and laddering of DNA fragments of liver samples. In addition, itraconazole caused significant elevation in the level of hepatic malondialdehyde and depletion in the catalase activity and glutathione level. Furthermore, itraconazole induced histopathological alterations in the hepatic tissues of both mothers and fetuses. These findings indicate that itraconazole administration at doses of 75, 100, or 150 mg/kg during pregnancy induced maternal and fetal toxicity that could be induced by the genotoxicity and the oxidative damage. © 2015 Wiley Periodicals, Inc.

  2. Allergic asthma induced in rhesus monkeys by house dust mite (Dermatophagoides farinae).

    PubMed

    Schelegle, E S; Gershwin, L J; Miller, L A; Fanucchi, M V; Van Winkle, L S; Gerriets, J P; Walby, W F; Omlor, A M; Buckpitt, A R; Tarkington, B K; Wong, V J; Joad, J P; Pinkerton, K B; Wu, R; Evans, M J; Hyde, D M; Plopper, C G

    2001-01-01

    To establish whether allergic asthma could be induced experimentally in a nonhuman primate using a common human allergen, three female rhesus monkeys (Macaca mulatta) were sensitized with house dust mite (Dermatophagoides farinae) allergen (HDMA) by subcutaneous injection, followed by four intranasal sensitizations, and exposure to allergen aerosol 3 hours per day, 3 days per week for up to 13 weeks. Before aerosol challenge, all three monkeys skin-tested positive for HDMA. During aerosol challenge with HDMA, sensitized monkeys exhibited cough and rapid shallow breathing and increased airway resistance, which was reversed by albuterol aerosol treatment. Compared to nonsensitized monkeys, there was a fourfold reduction in the dose of histamine aerosol necessary to produce a 150% increase in airway resistance in sensitized monkeys. After aerosol challenge, serum levels of histamine were elevated in sensitized monkeys. Sensitized monkeys exhibited increased levels of HDMA-specific IgE in serum, numbers of eosinophils and exfoliated cells within lavage, and elevated CD25 expression on circulating CD4(+) lymphocytes. Intrapulmonary bronchi of sensitized monkeys had focal mucus cell hyperplasia, interstitial infiltrates of eosinophils, and thickening of the basement membrane zone. We conclude that a model of allergic asthma can be induced in rhesus monkeys using a protocol consisting of subcutaneous injection, intranasal instillation, and aerosol challenge with HDMA.

  3. Allergic Asthma Induced in Rhesus Monkeys by House Dust Mite (Dermatophagoides farinae)

    PubMed Central

    Schelegle, Edward S.; Gershwin, Laurel J.; Miller, Lisa A.; Fanucchi, Michelle V.; Van Winkle, Laura S.; Gerriets, Joan P.; Walby, William F.; Omlor, Amanda M.; Buckpitt, Alan R.; Tarkington, Brian K.; Wong, Viviana J.; Joad, Jesse P.; Pinkerton, Kent B.; Wu, Reen; Evans, Michael J.; Hyde, Dallas M.; Plopper, Charles G.

    2001-01-01

    To establish whether allergic asthma could be induced experimentally in a nonhuman primate using a common human allergen, three female rhesus monkeys (Macaca mulatta) were sensitized with house dust mite (Dermatophagoides farinae) allergen (HDMA) by subcutaneous injection, followed by four intranasal sensitizations, and exposure to allergen aerosol 3 hours per day, 3 days per week for up to 13 weeks. Before aerosol challenge, all three monkeys skin-tested positive for HDMA. During aerosol challenge with HDMA, sensitized monkeys exhibited cough and rapid shallow breathing and increased airway resistance, which was reversed by albuterol aerosol treatment. Compared to nonsensitized monkeys, there was a fourfold reduction in the dose of histamine aerosol necessary to produce a 150% increase in airway resistance in sensitized monkeys. After aerosol challenge, serum levels of histamine were elevated in sensitized monkeys. Sensitized monkeys exhibited increased levels of HDMA-specific IgE in serum, numbers of eosinophils and exfoliated cells within lavage, and elevated CD25 expression on circulating CD4+ lymphocytes. Intrapulmonary bronchi of sensitized monkeys had focal mucus cell hyperplasia, interstitial infiltrates of eosinophils, and thickening of the basement membrane zone. We conclude that a model of allergic asthma can be induced in rhesus monkeys using a protocol consisting of subcutaneous injection, intranasal instillation, and aerosol challenge with HDMA. PMID:11141508

  4. Elevated PGC-1α activity sustains mitochondrial biogenesis and muscle function without extending survival in a mouse model of inherited ALS.

    PubMed

    Da Cruz, Sandrine; Parone, Philippe A; Lopes, Vanda S; Lillo, Concepción; McAlonis-Downes, Melissa; Lee, Sandra K; Vetto, Anne P; Petrosyan, Susanna; Marsala, Martin; Murphy, Anne N; Williams, David S; Spiegelman, Bruce M; Cleveland, Don W

    2012-05-02

    The transcriptional coactivator PGC-1α induces multiple effects on muscle, including increased mitochondrial mass and activity. Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, adult-onset neurodegenerative disorder characterized by selective loss of motor neurons and skeletal muscle degeneration. An early event is thought to be denervation-induced muscle atrophy accompanied by alterations in mitochondrial activity and morphology within muscle. We now report that elevation of PGC-1α levels in muscles of mice that develop fatal paralysis from an ALS-causing SOD1 mutant elevates PGC-1α-dependent pathways throughout disease course. Mitochondrial biogenesis and activity are maintained through end-stage disease, accompanied by retention of muscle function, delayed muscle atrophy, and significantly improved muscle endurance even at late disease stages. However, survival was not extended. Therefore, muscle is not a primary target of mutant SOD1-mediated toxicity, but drugs increasing PGC-1α activity in muscle represent an attractive therapy for maintaining muscle function during progression of ALS. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Activation of the canonical nuclear factor-κB pathway is involved in isoflurane-induced hippocampal interleukin-1β elevation and the resultant cognitive deficits in aged rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zheng-Qian; Rong, Xiao-Ying; Liu, Ya-Jie

    Highlights: •Isoflurane induces hippocampal IL-1β elevation and cognitive deficits in aged rats. •Isoflurane transiently activates the canonical NF-κB pathway in aged rat hippocampus. •NF-κB inhibitor mitigates isoflurane-induced IL-1β elevation and cognitive deficits. •We report a linkage between NF-κB signaling, IL-1β expression, and cognitive changes. -- Abstract: Although much recent evidence has demonstrated that neuroinflammation contributes to volatile anesthetic-induced cognitive deficits, there are few existing mechanistic explanations for this inflammatory process. This study was conducted to investigate the effects of the volatile anesthetic isoflurane on canonical nuclear factor (NF)-κB signaling, and to explore its association with hippocampal interleukin (IL)-1β levels andmore » anesthetic-related cognitive changes in aged rats. After a 4-h exposure to 1.5% isoflurane in 20-month-old rats, increases in IκB kinase and IκB phosphorylation, as well as a reduction in the NF-κB inhibitory protein (IκBα), were observed in the hippocampi of isoflurane-exposed rats compared with control rats. These events were accompanied by an increase in NF-κB p65 nuclear translocation at 6 h after isoflurane exposure and hippocampal IL-1β elevation from 1 to 6 h after isoflurane exposure. Nevertheless, no significant neuroglia activation was observed. Pharmacological inhibition of NF-κB activation by pyrrolidine dithiocarbamate markedly suppressed the IL-1β increase and NF-κB signaling, and also mitigated the severity of cognitive deficits in the Morris water maze task. Overall, our results demonstrate that isoflurane-induced cognitive deficits may stem from upregulation of hippocampal IL-1β, partially via activation of the canonical NF-κB pathway, in aged rats.« less

  6. Detection of receptor ligands by monitoring selective stabilization of a Renilla luciferase-tagged, constitutively active mutant, G-protein-coupled receptor

    PubMed Central

    Ramsay, Douglas; Bevan, Nicola; Rees, Stephen; Milligan, Graeme

    2001-01-01

    The wild-type β2-adrenoceptor and a constitutively active mutant of this receptor were C-terminally tagged with luciferase from the sea pansy Renilla reniformis. C-terminal addition of Renilla luciferase did not substantially alter the levels of expression of either form of the receptor, the elevated constitutive activity of the mutant β2-adrenoceptor nor the capacity of isoprenaline to elevate cyclic AMP levels in intact cells expressing these constructs. Treatment of cells expressing constitutively active mutant β2-adrenoceptor-Renilla luciferase with antagonist/inverse agonist ligands resulted in upregulation of levels of this polypeptide which could be monitored by the elevated luciferase activity. The pEC50 for ligand-induced luciferase upregulation and ligand affinity to bind the receptor were highly correlated. Similar upregulation could be observed following sustained treatment with agonist ligands. These effects were only observed at a constitutively active mutant of the β2-adrenoceptor. Co-expression of the wild-type β2-adrenoceptor C-terminally tagged with the luciferase from Photinus pyralis did not result in ligand-induced upregulation of the levels of activity of this luciferase. Co-expression of the constitutively active mutant β2-adrenoceptor-Renilla luciferase and an equivalent mutant of the α1b-adrenoceptor C-terminally tagged with green fluorescent protein allowed pharmacological selectivity of adrenoceptor antagonists to be demonstrated. This approach offers a sensitive and convenient means, which is amenable to high throughput analysis, to monitor ligand binding to a constitutively active mutant receptor. As no prior knowledge of receptor ligands is required this approach may be suitable to identify ligands at orphan G protein-coupled receptors. PMID:11350868

  7. Astroglial pentose phosphate pathway rates in response to high-glucose environments

    PubMed Central

    Takahashi, Shinichi; Izawa, Yoshikane; Suzuki, Norihiro

    2012-01-01

    ROS (reactive oxygen species) play an essential role in the pathophysiology of diabetes, stroke and neurodegenerative disorders. Hyperglycaemia associated with diabetes enhances ROS production and causes oxidative stress in vascular endothelial cells, but adverse effects of either acute or chronic high-glucose environments on brain parenchymal cells remain unclear. The PPP (pentose phosphate pathway) and GSH participate in a major defence mechanism against ROS in brain, and we explored the role and regulation of the astroglial PPP in response to acute and chronic high-glucose environments. PPP activity was measured in cultured neurons and astroglia by determining the difference in rate of 14CO2 production from [1-14C]glucose and [6-14C]glucose. ROS production, mainly H2O2, and GSH were also assessed. Acutely elevated glucose concentrations in the culture media increased PPP activity and GSH level in astroglia, decreasing ROS production. Chronically elevated glucose environments also induced PPP activation. Immunohistochemical analyses revealed that chronic high-glucose environments induced ER (endoplasmic reticulum) stress (presumably through increased hexosamine biosynthetic pathway flux). Nuclear translocation of Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2), which regulates G6PDH (glyceraldehyde-6-phosphate dehydrogenase) by enhancing transcription, was also observed in association with BiP (immunoglobulin heavy-chain-binding protein) expression. Acute and chronic high-glucose environments activated the PPP in astroglia, preventing ROS elevation. Therefore a rapid decrease in glucose level seems to enhance ROS toxicity, perhaps contributing to neural damage when insulin levels given to diabetic patients are not properly calibrated and plasma glucose levels are not adequately maintained. These findings may also explain the lack of evidence for clinical benefits from strict glycaemic control during the acute phase of stroke. PMID:22300409

  8. Elevated levels of branched-chain amino acids have little effect on pancreatic islet cells, but L-arginine impairs function through activation of the endoplasmic reticulum stress response.

    PubMed

    Mullooly, Niamh; Vernon, Wendy; Smith, David M; Newsholme, Philip

    2014-03-01

    Recent metabolic profiling studies have identified a correlation between branched-chain amino acid levels, insulin resistance associated with prediabetes and susceptibility to type 2 diabetes. Glucose and lipids in chronic excess have been reported to induce toxic effects in pancreatic β-cells, but the effect of elevated amino acid concentrations on primary islet cell function has not been investigated to date. The aim of this study was to investigate the effect of chronic exposure to various amino acids on islet cell function in vitro. Isolated rat islets were incubated over periods of 48 h with a range of concentrations of individual amino acids (0.1 μm to 10 mm). After 48 h, islets were assessed for glucose-dependent insulin secretion capacity, proliferation or islet cell apoptosis. We report that elevated levels of branched-chain amino acids have little effect on pancreatic islet cell function or viability; however, increased levels of the amino acid l-arginine were found to be β-cell toxic, causing a dose-dependent decrease in insulin secretion accompanied by a decrease in islet cell proliferation and an increase in islet cell apoptosis. These effects were not due to l-arginine-dependent increases in production of nitric oxide but arose through elicitation of the islet cell endoplasmic reticulum stress response. This novel finding indicates, for the first time, that the l-arginine concentration in vitro may impact negatively on islet cell function, thus indicating further complexity in relationship to in vivo susceptibility of β-cells to nutrient-induced dysfunction.

  9. Interdependence of skeletal sclerosis and elevated circulating levels of 1,25-dihydroxyvitamin D in osteopetrotic (op and tl) rats.

    PubMed

    Popoff, S N; Osier, L K; Zerwekh, J E; Marks, S C

    1994-01-01

    Osteopetrosis describes a heterogeneous group of inherited, metabolic bone disorders characterized by reduced bone resorption which coexists with elevated circulating levels of 1,25-dihydroxyvitamin D [1,25(OH)2D]. To determine whether or not skeletal sclerosis and high concentrations of 1,25(OH)2D are interdependent, this study used two distinct, nonallelic osteopetrotic mutations in the rat, osteopetrosis (op) and toothless (tl). The op rat is a mutation in which skeletal sclerosis can be cured (mutant) or induced (normal) following the transfer of normal or mutant osteoclast progenitors, respectively. Although these procedures are ineffective in rats of tl stock, infusions of pharmacological doses of macrophage colony-stimulating factor (CSF-1) can stimulate bone resorption and eliminate most of the excess skeletal matrix in tl mutants. This study examined the effects of cure/induction in neonatal mutant/normal rats of op stock and CSF-1 infusions in mutant rats of tl stock on skeletal (bone resorption) and serum [1,25(OH)2D] parameters as a function of time after treatment. Osteopetrotic mutants transplanted (cured) with normal spleen cells demonstrated cellular changes in osteoclast phenotype within 2-3 days followed by histologic and radiographic evidence for increased bone resorption that culminated in a normal appearance of the skeleton by 4 weeks. The markedly elevated serum levels of 1,25(OH)2D observed in untreated mutants fell significantly in transplanted mutants by the end of the first week and were similar to those in normal littermates at 3 and 4 weeks. Normal littermates transplanted (induced) with mutant spleen cells showed a progressive increase in skeletal sclerosis paralleled by significant increases in circulating levels of 1,25(OH)2D.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Elevated Thyrotropin in Bipolar Youths Prescribed Both Lithium and Divalproex Sodium

    ERIC Educational Resources Information Center

    Gracious, Barbara L.; Findling, Robert L.; Seman, Christopher; Youngstrom, Eric A.; Demeter, Christine A.; Calabrese, Joseph R.

    2004-01-01

    Objective: To examine the effect of combined lithium and divalproex sodium on thyroid-stimulating hormone (TSH) levels in children and adolescents with bipolar disorders and to identify risk factors for lithium-induced hypothyroidism. Method: Bipolar youths aged 5 to 17 years participating in an open-label clinical trial received treatment with…

  11. Stress-induced ascorbic acid depletion and cortisol production in two salmonid fishes

    USGS Publications Warehouse

    Wedemeyer, Gary

    1969-01-01

    Interrenal ascorbic acid and serum cortisol were measured in non-specificity stressed yearling coho salmon and rainbow trout.Interrenal ascorbate was markedly decreased during stress but increased to normal if adaptation occurred.Serum cortisol was elevated by non-specific stress and remained high after interrenal ascorbate had returned to initial levels.

  12. DIVALENT METAL TRANSPORTER-1 REGULATION BY IRON AND VANADIUM MODULATES HYDROGEN PEROXIDE-INDUCED DNA DAMAGE IN LUNG CELLS

    EPA Science Inventory

    The divalent metal transporter-1 (DMT1) participates in the detoxification of metals that can damage lung epithelium. Elevated iron levels increase the expression of DMT1 in bronchial epithelial cells stimulating its uptake and storage in ferritin, thus making iron unavailable t...

  13. Iodinated Contrast Media Can Induce Long-Lasting Oxidative Stress in Hemodialysis Patients

    PubMed Central

    Hwang, Seun Deuk; Kim, Yoon Ji; Lee, Sang Heun; Cho, Deok Kyu; Cho, Yun Hyeong; Moon, Sung Jin; Lee, Sang Choel

    2013-01-01

    Purpose Due to their comorbidities, dialysis patients have many chances to undergo radiologic procedures using iodinated contrast media. We aimed to assess time-sequenced blood oxidative stress level after contrast exposure in hemodialysis (HD) patients compared to those in the non-dialysis population. Materials and Methods We included 21 anuric HD patients [HD-coronary angiography (CAG) group] and 23 persons with normal renal function (nonHD-CAG group) scheduled for CAG, and assessed 4 oxidative stress markers [advanced oxidation protein products (AOPP); catalase; 8-hydroxydeoxyguanosine; and malondialdehyde] before and after CAG, and subsequently up to 28 days. Results In the nonHD-CAG group, only AOPP increased immediately after CAG and returned to baseline within one day. However, in the HD-CAG group, all four oxidative stress markers were significantly increased starting one day after CAG, and remained elevated longer than those in the nonHD-CAG group. Especially, AOPP level remained elevated for a month after contrast exposure. Conclusion Our study showed that iodinated contrast media induces severe and prolonged oxidative stress in HD patients. PMID:24142649

  14. HDAC Inhibition Induces Increased Choline Uptake and Elevated Phosphocholine Levels in MCF7 Breast Cancer Cells

    PubMed Central

    Ward, Christopher S.; Eriksson, Pia; Izquierdo-Garcia, Jose L.; Brandes, Alissa H.; Ronen, Sabrina M.

    2013-01-01

    Histone deacetylase (HDAC) inhibitors have emerged as effective antineoplastic agents in the clinic. Studies from our lab and others have reported that magnetic resonance spectroscopy (MRS)-detectable phosphocholine (PC) is elevated following SAHA treatment, providing a potential noninvasive biomarker of response. Typically, elevated PC is associated with cancer while a decrease in PC accompanies response to antineoplastic treatment. The goal of this study was therefore to elucidate the underlying biochemical mechanism by which HDAC inhibition leads to elevated PC. We investigated the effect of SAHA on MCF-7 breast cancer cells using 13C MRS to monitor [1,2-13C] choline uptake and phosphorylation to PC. We found that PC synthesis was significantly higher in treated cells, representing 154±19% of control. This was within standard deviation of the increase in total PC levels detected by 31P MRS (129±7% of control). Furthermore, cellular choline kinase activity was elevated (177±31%), while cytidylyltransferase activity was unchanged. Expression of the intermediate-affinity choline transporter SLC44A1 and choline kinase α increased (144% and 161%, respectively) relative to control, as determined by mRNA microarray analysis with protein-level confirmation by Western blotting. Taken together, our findings indicate that the increase in PC levels following SAHA treatment results from its elevated synthesis. Additionally, the concentration of glycerophosphocholine (GPC) increased significantly with treatment to 210±45%. This is likely due to the upregulated expression of several phospholipase A2 (PLA2) isoforms, resulting in increased PLA2 activity (162±18%) in SAHA-treated cells. Importantly, the levels of total choline (tCho)-containing metabolites, comprised of choline, PC and GPC, are readily detectable clinically using 1H MRS. Our findings thus provide an important step in validating clinically translatable non-invasive imaging methods for follow-up diagnostics of HDAC inhibitor treatment. PMID:23626839

  15. Effect of Tide Elevation on Extratropical Storm Surge in Northwest Europe

    NASA Astrophysics Data System (ADS)

    Keshtpoor, M.; Carnacina, I.; Yablonsky, R. M.

    2016-12-01

    Extratropical cyclones (ETCs) are the major storm surge-generating meteorological events in northwest Europe. The total water level increase induced by these ETCs is significantly influenced by the local tidal range, which exceeds 8 meters along the southwestern UK coastline. In particular, a surge-generating ETC during high tide may put coastal assets and infrastructure in risk. Also, during low tide, the risk of surge induced by extreme ETC events is diminished. Here, the effect of tidal elevation on storm surge is investigated at 196 tide gauges in northwest Europe. A numerical, hydrodynamic model was developed using Delft3D-FM framework to simulate the coastal hydrodynamics during ETCs. Then, 1750 historical events were simulated to investigate the pattern of coastal inundation. Results suggest that in areas with a large tidal range ( 8 meters) and during the time period surrounding high or low tide, the pattern of coastal hydrodynamics is governed by tide and not storm surge. This result is most evident near the English Channel and Bristol Channel, where low frequency maximum water levels are observed when storm surge is combined with high tide. In contrast, near the tidal phase reversal, coastal hydrodynamics responds primarily to the storm surge, and low frequency maximum water elevation largely depends on the surge. In the areas with a small tidal range, ETC strength determines the pattern of coastal inundation.

  16. Combination of Vildagliptin and Pioglitazone in Experimental Type 2 Diabetes in Male Rats.

    PubMed

    Refaat, Rowaida; Sakr, Ahmed; Salama, Mona; El Sarha, Ashgan

    2016-09-01

    Preclinical Research The majority of studies on vildagliptin and pioglitazone have focused on their combination in glycemic control. The aim of the present study was to investigate their effects in combination on (i) hyperglycemia-induced oxidative stress and inflammation and (ii) on organs involved in the pathophysiology of diabetes, pancreas, kidney and liver. Type 2 diabetes was induced using low-dose streptozotocin in male Wistar rats. Diabetic rats were treated for 4 weeks, with vildagliptin (10 mg/kg/day), pioglitazone (10 mg/kg/day) and their combination. Diabetic rats showed elevated fasting serum glucose, fasting serum insulin, serum transaminases together with a deleterious lipid profile and elevated serum creatinine and urea concentrations. Serum levels of the inflammatory markers tumor necrosis factor-α (TNF-α) and nitrite/nitrate were also elevated compared to normal rats. Oxidative stress was manifested by lowered hepatic reduced glutathione (GSH) and increased malondialdehyde (MDA) levels. Pancreatic sections from diabetic rats showed degenerated islets with poorly maintained architecture that was prevented by drug treatment. Pioglitazone was generally more effective than vildagliptin in the studied parameters except for the lipid profile where the effect of both drugs was comparable and for the liver enzymes and renal parameters where vildagliptin was more effective. The combination of vildagliptin and pioglitazone produced superior effects than either drug alone. Drug Dev Res 77 : 251-257, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Gastroprotective effect of cyanidin 3-glucoside on ethanol-induced gastric lesions in rats.

    PubMed

    Li, Chun-Ying; Xu, Hong-De; Zhao, Bing-Tian; Chang, Hyo-Ihl; Rhee, Hae-Ik

    2008-12-01

    This study investigated the in vivo protective effect of cyanidin 3-glucoside (C3G) against ethanol-induced gastric lesions in rats. The experimental rats were treated with 80% ethanol after pretreatment with various doses of C3G (4 and 8 mg/kg of body weight), and the control rats received only 80% ethanol. Oral pretreatment with C3G significantly inhibited the formation of ethanol-induced gastric lesions and the elevation of the lipid peroxide level. In addition, pretreatment with C3G significantly increased the level of glutathione and the activities of radical scavenging enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, in gastric tissues. These results suggest that the gastroprotective effect of C3G removes the ethanol-induced lipid peroxides and free radicals and that it may offer a potential remedy for the treatment of gastric lesions.

  18. Protective effects of tropisetron on cerulein-induced acute pancreatitis in mice.

    PubMed

    Rahimian, Reza; Zirak, Mohammad Reza; Seyedabadi, Mohammad; Keshavarz, Mojtaba; Rashidian, Amir; Kazmi, Sareh; Jafarian, Amir Hossein; Karimi, Gholamreza; Mousavizadeh, Kazem

    2017-09-01

    Acute pancreatitis (AP) causes morbidity and mortality. The aim of the present study was to investigate the protective effect of tropisetron against AP induced by cerulein. Cerulein (50μg/kg, 5 doses) was used to induce AP in mice. Six hours after final cerulein injection, animals were decapitated. Hepatic/pancreatic enzymes in the serum, pancreatic content of malondialdehyde (MDA), pro-inflammatory cytokines and myeloperoxidase (MPO) activity were measured. Tropisetron significantly attenuated pancreatic injury markers and decreased the amount of elevated serum amylase, lipase, alanine aminotransferase (ALT), aspartate aminotransferase (AST), MPO activities and pro-inflammatory cytokines levels caused by AP in mice. Tropisetron didn't affect the pancreatic levels of MDA. Our results suggest that tropisetron could attenuate cerulein-induced AP by combating inflammatory signaling. Further clinical studies are needed to confirm its efficacy in patients with AP. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Intestinal macrophage/epithelial cell-derived CCL11/eotaxin-1 mediates eosinophil recruitment and function in pediatric ulcerative colitis.

    PubMed

    Ahrens, Richard; Waddell, Amanda; Seidu, Luqman; Blanchard, Carine; Carey, Rebecca; Forbes, Elizabeth; Lampinen, Maria; Wilson, Tara; Cohen, Elizabeth; Stringer, Keith; Ballard, Edgar; Munitz, Ariel; Xu, Huan; Lee, Nancy; Lee, James J; Rothenberg, Marc E; Denson, Lee; Hogan, Simon P

    2008-11-15

    Clinical studies have demonstrated a link between the eosinophil-selective chemokines, eotaxins (eotaxin-1/CCL11 and eotaxin-2/CCL24), eosinophils, and the inflammatory bowel diseases, Crohn's disease and ulcerative colitis (UC). However, the cellular source and individual contribution of the eotaxins to colonic eosinophilic accumulation in inflammatory bowel diseases remain unclear. In this study we demonstrate, by gene array and quantitative PCR, elevated levels of eotaxin-1 mRNA in the rectosigmoid colon of pediatric UC patients. We show that elevated levels of eotaxin-1 mRNA positively correlated with rectosigmoid eosinophil numbers. Further, colonic eosinophils appeared to be degranulating, and the levels positively correlated with disease severity. Using the dextran sodium sulfate (DSS)-induced intestinal epithelial injury model, we show that DSS treatment of mice strongly induced colonic eotaxin-1 and eotaxin-2 expression and eosinophil levels. Analysis of eosinophil-deficient mice defined an effector role for eosinophils in disease pathology. DSS treatment of eotaxin-2(-/-) and eotaxin-1/2(-/-) mice demonstrated that eosinophil recruitment was dependent on eotaxin-1. In situ and immunofluorescence analysis-identified eotaxin-1 expression was restricted to intestinal F4/80(+)CD11b(+) macrophages in DSS-induced epithelial injury and to CD68(+) intestinal macrophages and the basolateral compartment of intestinal epithelial cells in pediatric UC. These data demonstrate that intestinal macrophage and epithelial cell-derived eotaxin-1 plays a critical role in the regulation of eosinophil recruitment in colonic eosinophilic disease such as pediatric UC and provides a basis for targeting the eosinophil/eotaxin-1 axis in UC.

  20. Facing warm temperatures during migration: cardiac mRNA responses of two adult Oncorhynchus nerka populations to warming and swimming challenges.

    PubMed

    Anttila, K; Eliason, E J; Kaukinen, K H; Miller, K M; Farrell, A P

    2014-05-01

    The main findings of the current study were that exposing adult sockeye salmon Onchorhynchus nerka to a warm temperature that they regularly encounter during their river migration induced a heat shock response at an mRNA level, and this response was exacerbated with forced swimming. Similar to the heat shock response, increased immune defence-related responses were also observed after warm temperature treatment and with a swimming challenge in two different populations (Chilko and Nechako), but with some important differences. Microarray analyses revealed that 347 genes were differentially expressed between the cold (12-13° C) and warm (18-19° C) treated fish, with stress response (GO:0006950) and response to fungus (GO:0009620) elevated with warm treatment, while expression for genes involved in oxidative phosphorylation (GO:0006119) and electron transport chain (GO:0022900) elevated for cold-treated fish. Analysis of single genes with real-time quantitative PCR revealed that temperature had the most significant effect on mRNA expression levels, with swimming and population having secondary influences. Warm temperature treatment for the Chilko population induced expression of heat shock protein (hsp) 90α, hsp90β and hsp30 as well as interferon-inducible protein. The Nechako population, which is known to have a narrower thermal tolerance window than the Chilko population, showed even more pronounced stress responses to the warm treatment and there was significant interaction between population and temperature treatment for hsp90β expression. Moreover, significant interactions were noted between temperature treatment and swimming challenge for hsp90α and hsp30, and while swimming challenge alone increased expression of these hsps, the expression levels were significantly elevated in warm-treated fish swum to exhaustion. In conclusion, it seems that adult O. nerka currently encounter conditions that induce several cellular defence mechanisms during their once-in-the-lifetime migration. As river temperatures continue to increase, it remains to be seen whether or not these cellular defences provide sufficient protection for all O. nerka populations. © 2014 The Fisheries Society of the British Isles.

  1. Exercise-induced ST-segment elevation during treadmill exercise testing.

    PubMed

    Patanè, Salvatore; Marte, Filippo

    2010-09-03

    The exercise electrocardiogram is a commonly used non-invasive and inexpensive method for detection of electrocardiogram (ECG) changes secondary to myocardial ischemia. It has been reported that in patients with a first myocardial infarction and without residual ischemia, exercise-induced ST-segment elevation in Q leads is related to a more damaged coronary microcirculation and to less viable myocardium. Exercise-induced ST-segment elevation is a rare phenomenon in patients without prior myocardial infarction. When occurring purely during exercise, coronary lesions are frequent and often severe, and on the other hand ST-segment elevation of the recovery phase is frequently associated with normal arteries or less severe lesions. We present a case of exercise-induced ST-segment elevation in a 51-year-old Italian man. Coronary angiography revealed a significant left anterior descending coronary artery stenosis, a significant circumflex coronary artery stenosis, a significant first obtuse marginal coronary artery stenosis and a significant second obtuse marginal coronary artery stenosis. Percutaneous transluminal coronary angioplasty with implantation of stents was successfully performed. Also this case is illustrative of the rare phenomenon of exercise-induced ST-segment elevation. Copyright © 2008 Elsevier B.V. All rights reserved.

  2. Juvenile growth of the tropical sea urchin Lytechinus variegatus exposed to near-future ocean acidification scenarios

    PubMed Central

    Albright, Rebecca; Bland, Charnelle; Gillette, Phillip; Serafy, Joseph E.; Langdon, Chris; Capo, Thomas R.

    2012-01-01

    To evaluate the effect of elevated pCO2 exposure on the juvenile growth of the sea urchin Lytechinus variegatus, we reared individuals for three months in one of three target pCO2 levels: ambient seawater (380 µatm) and two scenarios that are projected to occur by the middle (560 µatm) and end (800 µatm) of this century. At the end of 89 days, urchins reared at ambient pCO2 weighed 12% more than those reared at 560 µatm and 28% more than those reared at 800 µatm. Skeletons were analyzed using scanning electron miscroscopy, revealing degradation of spines in urchins reared at elevated pCO2 (800 µatm). Our results indicate that elevated pCO2 levels projected to occur this century may adversely affect the development of juvenile sea urchins. Acidification-induced changes to juvenile urchin development would likely impair performance and functioning of juvenile stages with implications for adult populations. PMID:22833691

  3. Juvenile growth of the tropical sea urchin Lytechinus variegatus exposed to near-future ocean acidification scenarios.

    PubMed

    Albright, Rebecca; Bland, Charnelle; Gillette, Phillip; Serafy, Joseph E; Langdon, Chris; Capo, Thomas R

    2012-09-01

    To evaluate the effect of elevated pCO(2) exposure on the juvenile growth of the sea urchin Lytechinus variegatus, we reared individuals for three months in one of three target pCO(2) levels: ambient seawater (380 µatm) and two scenarios that are projected to occur by the middle (560 µatm) and end (800 µatm) of this century. At the end of 89 days, urchins reared at ambient pCO(2) weighed 12% more than those reared at 560 µatm and 28% more than those reared at 800 µatm. Skeletons were analyzed using scanning electron miscroscopy, revealing degradation of spines in urchins reared at elevated pCO(2) (800 µatm). Our results indicate that elevated pCO(2) levels projected to occur this century may adversely affect the development of juvenile sea urchins. Acidification-induced changes to juvenile urchin development would likely impair performance and functioning of juvenile stages with implications for adult populations.

  4. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration.

    PubMed

    Mor, Danielle E; Tsika, Elpida; Mazzulli, Joseph R; Gould, Neal S; Kim, Hanna; Daniels, Malcolm J; Doshi, Shachee; Gupta, Preetika; Grossman, Jennifer L; Tan, Victor X; Kalb, Robert G; Caldwell, Kim A; Caldwell, Guy A; Wolfe, John H; Ischiropoulos, Harry

    2017-11-01

    Parkinson's disease (PD) is defined by the loss of dopaminergic neurons in the substantia nigra and the formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated both dopamine levels and α-synuclein expression. Nigrally targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine levels without damaging neurons in non-transgenic mice. In contrast, raising dopamine levels in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable Caenorhabditis elegans models, expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. These data suggest that a unique mechanism links two cardinal features of PD: dopaminergic cell death and α-synuclein aggregation.

  5. Fusarium proliferatum strains change fumonisin biosynthesis and accumulation when exposed to host plant extracts.

    PubMed

    Górna, Karolina; Pawłowicz, Izabela; Waśkiewicz, Agnieszka; Stępień, Łukasz

    2016-01-01

    Fumonisin concentrations in mycelia and media were studied in liquid Fusarium proliferatum cultures supplemented with host plant extracts. Furthermore, the kinetics of fumonisin accumulation in media and mycelia collected before and after extract addition was analysed as well as the changes in the expression of the FUM1 gene. Fumonisin content in culture media increased in almost all F. proliferatum strains shortly after plant extracts were added. The asparagus extract induced the highest FB level increase and the garlic extract was the second most effective inducer. Fumonisin level decreased constantly until 14th day of culturing, though for some strains also at day 8th an elevated FB level was observed. Pineapple extract induced the highest increase of fum1 transcript levels as well as fumonisin synthesis in many strains, and the peas extract inhibited fungal growth and fumonisin biosynthesis. Moreover, fumonisins were accumulated in mycelia of studied strains and in the respective media. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. An experimental study of the influence of elevated buoyancy levels on flame spread rate over thermally thin cellulosic materials

    NASA Technical Reports Server (NTRS)

    Shang, P. C.; Altenkirch, R. A.; Eichhorn, R.

    1978-01-01

    The role of buoyancy on the flame spread rate over paper and its effect on extinction was studied by changing the gravity level and pressure. It was found that the flame spread rate decreases as the buoyancy induced flow increases. A method for correlating flame spread data using dimensionless parameters is presented. The Damkohler number is shown to be the dependent variable.

  7. Increased 2,3-Diphosphoglycerate During Normocapnic Hypobaric Hypoxia,

    DTIC Science & Technology

    Maintenance of normal plasma pH at high altitude (HA) by acetazolamide has been shown to prevent the HA-induced change in 2,3- diphosphoglycerate (DPG...had significant elevations in DPG above sea- level values after two days. Mean corpuscular hemoglobin concentrations (MCHC) remained within normal...limits during the first two days, then decreased significantly below sea- level values in Group I (days 3-5) and Group II (days 4-5). Thus prevention of

  8. Reduction of enhanced rabbit intraocular pressure by instillation of pyroglutamic acid eye drops.

    PubMed

    Ito, Yoshimasa; Nagai, Noriaki; Okamoto, Norio; Shimomura, Yoshikazu; Nakanishi, Kunio; Tanaka, Ryuichiro

    2013-01-01

    L-Pyroglutamic acid (PGA) is an endogenous molecule derived from l-glutamate. We demonstrate the effects of PGA on intraocular pressure (IOP) in experimentally induced ocular hypertension in rabbits. In the in vitro and in vivo transcorneal penetration studies, the PGA solution (PGA in saline) did not penetrate the rabbit cornea. On the other hand, the penetration of PGA was improved by the addition of zinc chloride and 2-hydroxypropyl-β-cyclodextrin (HPCD), and PGA penetration was enhanced with increasing HPCD concentration. Therefore, PGA solutions containing 0.5% zinc chloride and 5% or 10% HPCD (PGA/HPCD(5% or 10%) eye drops) were used to investigate the effects for IOP in this study. An elevation in IOP was induced by the rapid infusion of 5% glucose solution (15 mL/kg of body weight) through the marginal ear vein or maintaining under dark phase for 5 h. In the both models, the induced elevation in IOP was prevented by the instillation of PGA/HPCD eye drops, and the IOP-reducing effect enhanced with increasing HPCD concentration in the drops. Nitric oxide (NO) levels elevated in the aqueous humor following the infusion of 5% glucose solution, and this increase was also suppressed by the instillation of PGA/HPCD eye drops. In conclusion, the present study demonstrates that the instillation of PGA/HPCD eye drops has an IOP-reducing effect in rabbits with experimentally induced ocular hypertension, probably as a result of the suppression of NO production.

  9. The Common Inhalational Anesthetic Sevoflurane Induces Apoptosis and Increases β-Amyloid Protein Levels

    PubMed Central

    Dong, Yuanlin; Zhang, Guohua; Zhang, Bin; Moir, Robert D.; Xia, Weiming; Marcantonio, Edward R.; Culley, Deborah J.; Crosby, Gregory; Tanzi, Rudolph E.; Xie, Zhongcong

    2009-01-01

    Objective: To assess the effects of sevoflurane, the most commonly used inhalation anesthetic, on apoptosis and β-amyloid protein (Aβ) levels in vitro and in vivo. Subjects: Naive mice, H4 human neuroglioma cells, and H4 human neuroglioma cells stably transfected to express full-length amyloid precursor protein. Interventions: Human H4 neuroglioma cells stably transfected to express full-length amyloid precursor protein were exposed to 4.1% sevoflurane for 6 hours. Mice received 2.5% sevoflurane for 2 hours. Caspase-3 activation, apoptosis, and Aβ levels were assessed. Results: Sevoflurane induced apoptosis and elevated levels of β-site amyloid precursor protein-cleaving enzyme and Aβ in vitro and in vivo. The caspase inhibitor Z-VAD decreased the effects of sevoflurane on apoptosis and Aβ. Sevoflurane-induced caspase-3 activation was attenuated by the γ-secretase inhibitor L-685,458 and was potentiated by Aβ. These results suggest that sevoflurane induces caspase activation which, in turn, enhances β-site amyloid precursor protein–cleaving enzyme and Aβ levels. Increased Aβ levels then induce further rounds of apoptosis. Conclusions: These results suggest that inhalational anesthetic sevoflurane may promote Alzheimer disease neuropathogenesis. If confirmed in human subjects, it may be prudent to caution against the use of sevoflurane as an anesthetic, especially in those suspected of possessing excessive levels of cerebral Aβ. PMID:19433662

  10. Measure of anxiety-related behaviors and hippocampal BDNF levels associated to the amnesic effect induced by MK-801 evaluated in the modified elevated plus-maze in rats.

    PubMed

    Hill, Ximena López; Richeri, Analía; Scorza, Cecilia

    2015-08-01

    Non-competitive N-methyl-d-aspartate receptor (NMDA-R) antagonists impair rodent cognition. Specifically, MK-801, the most potent NMDA-R antagonist, induces an amnesic effect on the modified elevated plus maze (mEPM) learning test in rodents, which reflects spatial long-term memory. However, alterations in anxiety-related behaviors could overlap this amnesic effect. Accumulated evidence supports the role of brain-derived neurotrophic factor (BDNF) in learning and memory processes and deficits in hippocampal BDNF function, which underlie cognitive impairments, have been extensively reported. Therefore, we investigated if changes in anxiety-related behaviors and hippocampal BDNF levels are related with the amnesic effect induced by MK-801 in the mEPM.Transfer latency (TL) as an index of spatial memory in the mEPM was used. TL1 was evaluated 30 min after saline/MK-801 injection (day 1, acquisition session) while learning/memory performance was measured 24 h later at TL2 (day 2, retention session). Also at TL2, two other experimental groups were added to measure the anxiety-related behaviors using the classic EPM and BDNF protein levels by ELISA. To evaluate if amnesia endures, an additional session was recorded on day 3 (TL3) and BDNF levels were measured.While TL1 was not significantly modified by MK-801, TL2 was increased compared to the control group indicating an amnesic effect. This effect was not mimicked by anxiety-related behaviors and it was associated to a significant attenuation of BDNF levels. During the third post-training day, the cognitive performance of MK-801-treated animals was improved and an increased BDNF protein expression in the hippocampus accompanied this change

  11. Interdependent genotoxic mechanisms of monomethylarsonous acid: Role of ROS-induced DNA damage and poly(ADP-ribose) polymerase-1 inhibition in the malignant transformation of urothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wnek, Shawn M.; Kuhlman, Christopher L.; Camarillo, Jeannie M.

    2011-11-15

    Exposure of human bladder urothelial cells (UROtsa) to 50 nM of the arsenic metabolite, monomethylarsonous acid (MMA{sup III}), for 12 weeks results in irreversible malignant transformation. The ability of continuous, low-level MMA{sup III} exposure to cause an increase in genotoxic potential by inhibiting repair processes necessary to maintain genomic stability is unknown. Following genomic insult within cellular systems poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger protein, is rapidly activated and recruited to sites of DNA strand breaks. When UROtsa cells are continuously exposed to 50 nM MMA{sup III}, PARP-1 activity does not increase despite the increase in MMA{sup III}-induced DNA single-strandmore » breaks through 12 weeks of exposure. When UROtsa cells are removed from continuous MMA{sup III} exposure (2 weeks), PARP-1 activity increases coinciding with a subsequent decrease in DNA damage levels. Paradoxically, PARP-1 mRNA expression and protein levels are elevated in the presence of continuous MMA{sup III} indicating a possible mechanism to compensate for the inhibition of PARP-1 activity in the presence of MMA{sup III}. The zinc finger domains of PARP-1 contain vicinal sulfhydryl groups which may act as a potential site for MMA{sup III} to bind, displace zinc ion, and render PARP-1 inactive. Mass spectrometry analysis demonstrates the ability of MMA{sup III} to bind a synthetic peptide representing the zinc-finger domain of PARP-1, and displace zinc from the peptide in a dose-dependent manner. In the presence of continuous MMA{sup III} exposure, continuous 4-week zinc supplementation restored PARP-1 activity levels and reduced the genotoxicity associated with MMA{sup III}. Zinc supplementation did not produce an overall increase in PARP-1 protein levels, decrease the levels of MMA{sup III}-induced reactive oxygen species, or alter Cu-Zn superoxide dismutase levels. Overall, these results present two potential interdependent mechanisms in which MMA{sup III} may increase the susceptibility of UROtsa cells to genotoxic insult and/or malignant transformation: elevated levels of MMA{sup III}-induced DNA damage through the production of reactive oxygen species, and the direct MMA{sup III}-induced inhibition of PARP-1.« less

  12. CYP2E1 Potentiates Ethanol-induction of Hypoxia and HIF-1α in vivo

    PubMed Central

    Wang, Xiaodong; Wu, Defeng; Yang, Lili; Gan, Lixia; Cederbaum, Arthur I

    2013-01-01

    Ethanol induces hypoxia and elevates HIF-1α in the liver. CYP2E1 plays a role in the mechanisms by which ethanol generates oxidative stress, fatty liver and liver injury. The current study evaluated whether CYP2E1 contributes to ethanol-induced hypoxia and activation of HIF-1α in vivo and whether HIF-1α protects against or promotes CYP2E1-dependent toxicity in vitro. Wild type (WT), CYP2E1-knockin (KI) and CYP2E1 knockout (KO) mice were fed ethanol chronically; pair fed controls received isocaloric dextrose. Ethanol produced liver injury in the KI mice to a much greater extent than in the WT and KO mice. Protein levels of HIF-1α and downstream targets of HIF-1α activation were elevated in the ethanol-fed KI mice compared to the WT and KO mice. Levels of HIF prolylhydroxlase 2 which promotes HIF-1α degradation were decreased in the ethanol-fed KI mice in association with the increases in HIF-1α. Hypoxia occurred in the ethanol-fed CYP2E1 KI mice as shown by an increased area of staining using the hypoxia-specific marker pimonidazole. Hypoxia was lower in the ethanol-fed WT mice and lowest in the ethanol fed KO mice and all the dextrose-fed mice. In situ double staining showed that pimonidazole and CYP2E1 were co-localized to the same area of injury in the hepatic centrilobule. Increased protein levels of HIF-1α were also found after acute ethanol treatment of KI mice. Treatment of HepG2 E47 cells which express CYP2E1 with ethanol plus arachidonic (AA) acid or ethanol plus buthionine sulfoximine (BSO) which depletes GSH caused loss of cell viability to greater extent than in HepG2 C34 cells which do not express CYP2E1. These treatments elevated protein levels of HIF-1α to a greater extent in E47 cells than C34 cells. 2-Methoxyestradiol, an inhibitor of HIF-1α, blunted the toxic effects of ethanol plus AA and ethanol plus BSO in the E47 cells in association with inhibition of HIF-1α. The HIF-1α inhibitor also blocked the elevated oxidative stress produced by ethanol/AA or ethanol/BSO in the E47 cells. These results suggest that CYP2E1 plays a role in ethanol-induced hypoxia, oxidative stress and activation of HIF-1α and that HIF-1α contributes to CYP2E1-dependent ethanol-induced toxicity. Blocking HIF-1α activation and actions may have therapeutic implications for protection against ethanol/CYP2E1-induced oxidative stress, steatosis and liver injury. PMID:23669278

  13. Skeletal Muscle Myofibrillar and Sarcoplasmic Protein Synthesis Rates Are Affected Differently by Altitude-Induced Hypoxia in Native Lowlanders

    PubMed Central

    Holm, Lars; Haslund, Mads Lyhne; Robach, Paul; van Hall, Gerrit; Calbet, Jose A. L.; Saltin, Bengt; Lundby, Carsten

    2010-01-01

    As a consequence to hypobaric hypoxic exposure skeletal muscle atrophy is often reported. The underlying mechanism has been suggested to involve a decrease in protein synthesis in order to conserve O2. With the aim to challenge this hypothesis, we applied a primed, constant infusion of 1-13C-leucine in nine healthy male subjects at sea level and subsequently at high-altitude (4559 m) after 7–9 days of acclimatization. Physical activity levels and food and energy intake were controlled prior to the two experimental conditions with the aim to standardize these confounding factors. Blood samples and expired breath samples were collected hourly during the 4 hour trial and vastus lateralis muscle biopsies obtained at 1 and 4 hours after tracer priming in the overnight fasted state. Myofibrillar protein synthesis rate was doubled; 0.041±0.018 at sea-level to 0.080±0.018%⋅hr−1 (p<0.05) when acclimatized to high altitude. The sarcoplasmic protein synthesis rate was in contrast unaffected by altitude exposure; 0.052±0.019 at sea-level to 0.059±0.010%⋅hr−1 (p>0.05). Trends to increments in whole body protein kinetics were seen: Degradation rate elevated from 2.51±0.21 at sea level to 2.73±0.13 µmol⋅kg−1⋅min−1 (p = 0.05) at high altitude and synthesis rate similar; 2.24±0.20 at sea level and 2.43±0.13 µmol⋅kg−1⋅min−1 (p>0.05) at altitude. We conclude that whole body amino acid flux is increased due to an elevated protein turnover rate. Resting skeletal muscle myocontractile protein synthesis rate was concomitantly elevated by high-altitude induced hypoxia, whereas the sarcoplasmic protein synthesis rate was unaffected by hypoxia. These changed responses may lead to divergent adaptation over the course of prolonged exposure. PMID:21187972

  14. Activated platelets are the source of elevated levels of soluble CD40 ligand in the circulation of inflammatory bowel disease patients.

    PubMed

    Danese, S; Katz, J A; Saibeni, S; Papa, A; Gasbarrini, A; Vecchi, M; Fiocchi, C

    2003-10-01

    The CD40/CD40L system, a key regulator and amplifier of immune reactivity, is activated in inflammatory bowel disease (IBD) mucosa. To determine whether plasma levels of sCD40L are elevated in Crohn's disease (CD) and ulcerative colitis (UC) patients compared with normal controls, to investigate the cellular source of sCD40L, and to explore CD40L induction mechanisms. CD, UC, and normal control subjects were studied. The concentration of sCD40L in plasma and supernatants of freshly isolated platelets and autologous peripheral blood T cells (PBT) was measured by ELISA. Surface CD40L expression level was measured by flow cytometry in resting and thrombin activated platelets, and unstimulated and CD3/CD28 stimulated PBT before and after coculture with human intestinal microvascular endothelial cells (HIMEC). Compared with normal controls, plasma sCD40L levels were significantly higher in both CD and UC patients and proportional to the extent of mucosal inflammation. Platelets from IBD patients displayed a significantly higher surface CD40L expression than those from control subjects, and released greater amounts of sCD40L than autologous PBT. Contact with IL-1beta activated HIMEC induced significant upregulation of CD40L surface expression and release by platelets. Elevated levels of sCD40L in the circulation of IBD patients reflect enhanced surface expression and release of CD40L by platelets. This phenomenon translates to an increased platelet activation state apparently induced by passage through an inflamed mucosal microvascular bed, a conclusion supported by the positive correlation of plasma sCD40L levels with the extent of anatomical involvement by IBD. These results suggest that platelet-endothelial interactions critically contribute to activation of the CD40 pathway in IBD.

  15. Spaceflight Activates Protein Kinase C Alpha Signaling and Modifies the Developmental Stage of Human Neonatal Cardiovascular Progenitor Cells.

    PubMed

    Baio, Jonathan; Martinez, Aida F; Bailey, Leonard; Hasaniya, Nahidh; Pecaut, Michael J; Kearns-Jonker, Mary

    2018-02-12

    Spaceflight impacts cardiovascular function in astronauts; however, its impact on cardiac development and the stem cells that form the basis for cardiac repair is unknown. Accordingly, further research is needed to uncover the potential relevance of such changes to human health. Using simulated microgravity (SMG) generated by two-dimensional clinorotation and culture aboard the International Space Station (ISS), we assessed the effects of mechanical unloading on human neonatal cardiovascular progenitor cell (CPC) developmental properties and signaling. Following 6-7 days of SMG and 12 days of ISS culture, we analyzed changes in gene expression. Both environments induced the expression of genes that are typically associated with an earlier state of cardiovascular development. To understand the mechanism by which such changes occurred, we assessed the expression of mechanosensitive small RhoGTPases in SMG-cultured CPCs and observed decreased levels of RHOA and CDC42. Given the effect of these molecules on intracellular calcium levels, we evaluated changes in noncanonical Wnt/calcium signaling. After 6-7 days under SMG, CPCs exhibited elevated levels of WNT5A and PRKCA. Similarly, ISS-cultured CPCs exhibited elevated levels of calcium handling and signaling genes, which corresponded to protein kinase C alpha (PKCα), a calcium-dependent protein kinase, activation after 30 days. Akt was activated, whereas phosphorylated extracellular signal-regulated kinase levels were unchanged. To explore the effect of calcium induction in neonatal CPCs, we activated PKCα using hWnt5a treatment on Earth. Subsequently, early cardiovascular developmental marker levels were elevated. Transcripts induced by SMG and hWnt5a-treatment are expressed within the sinoatrial node, which may represent embryonic myocardium maintained in its primitive state. Calcium signaling is sensitive to mechanical unloading and directs CPC developmental properties. Further research both in space and on Earth may help refine the use of CPCs in stem cell-based therapies and highlight the molecular events of development.

  16. Agmatine ameliorates atherosclerosis progression and endothelial dysfunction in high cholesterol-fed rabbits.

    PubMed

    El-Awady, Mohammed S; Suddek, Ghada M

    2014-06-01

    The aim of this work was to explore possible effects of agmatine, an endogenous inhibitor of inducible nitric oxide synthase (iNOS), against hypercholesterolemia-induced lipid profile changes and endothelial dysfunction. Hypercholesterolemia was induced by feeding rabbits with a high-cholesterol diet (HCD, 0.5%) for 8 weeks. Another HCD-fed group was orally administered agmatine (10 mg/kg/day) during weeks 5 through 8. Serum lipid profile, malondialdehyde (MDA), nitric oxide (NO) and lactate dehydrogenase (LDH) were determined. Aorta was isolated to analyse vascular reactivity, atherosclerotic lesions and intima/media (I/M) ratio. HCD induced a significant increase in serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglycerides and high-density lipoprotein cholesterol (HDL-C). Agmatine administration significantly decreased HCD-induced elevations in serum TC and LDL-C, MDA, LDH and NO while significantly increased HDL-C levels. Additionally, agmatine significantly protected against HCD-induced attenuation of rabbit aortic endothelium-dependent relaxation to acetylcholine. HCD and agmatine did not significantly influence aortic endothelium-independent relaxation to sodium nitroprusside. Moreover, agmatine significantly reduced the elevation in aortic atherosclerotic lesion area and I/M ratio. This study is the first to reveal that agmatine has the ability to ameliorate hypercholesterolemia-induced lipemic-oxidative and endothelial function injuries possibly by its antioxidant potential and/or iNOS inhibition. © 2014 Royal Pharmaceutical Society.

  17. Morphological and functional characterization of non-alcoholic fatty liver disease induced by a methionine-choline-deficient diet in C57BL/6 mice.

    PubMed

    Itagaki, Hiroko; Shimizu, Kazuhiko; Morikawa, Shunichi; Ogawa, Kenji; Ezaki, Taichi

    2013-01-01

    Non-alcoholic fatty liver disease (NAFLD), including non-alcoholic steatohepatitis (NASH), appears to be increasingly common worldwide. Its histopathology and the effects of nutrition on liver function have not been fully determined. To elucidate the cellular mechanisms of NAFLD induced by a methionine-choline-deficient (MCD) diet in mice. Particular focus was placed on the role of phagocytic cells. Male C57BL/6 mice were fed an MCD diet for 30 weeks. A recovery model was also established wherein a normal control diet was provided for 2 weeks after a period of 8, 16, or 30 weeks. Mice fed the MCD diet for ≥ 2 weeks exhibited severe steatohepatitis with elevated serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. Steatohepatitis was accompanied by the infiltration of CD68-positive macrophages (Kupffer cells). The severity of steatohepatitis increased in the first 16 weeks but was seen to lessen by week 30. Fibrosis began to develop at 10 weeks and continued thereafter. Steatohepatitis and elevated serum hepatic enzyme concentrations returned to normal levels after switching the diet back to the control within the first 16 weeks, but fibrosis and CD68-positive macrophages remained. The histopathological changes and irreversible fibrosis seen in this model were caused by prolonged feeding of an MCD diet. These results were accompanied by changes in the activity of CD68-positive cells with temporary elevation of CCL-2, MMP-13, and MMP-9 levels, all of which may trigger early steatohepatitis and late fibrosis through phagocytosis-associated MMP induction.

  18. Tetrachloro-p-benzoquinone induces hepatic oxidative damage and inflammatory response, but not apoptosis in mouse: The prevention of curcumin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Demei; Hu, Lihua; Su, Chuanyang

    2014-10-15

    This study investigated the protective effects of curcumin on tetrachloro-p-benzoquinone (TCBQ)-induced hepatotoxicity in mice. TCBQ-treatment causes significant liver injury (the elevation of serum AST and ALT activities, histopathological changes in liver section including centrilobular necrosis and inflammatory cells), oxidative stress (the elevation of TBAR level and the inhibition of SOD and catalase activities) and inflammation (up-regulation of iNOS, COX-2, IL-1β, IL-6, TNF-α and NF-κB). However, these changes were alleviated upon pretreatment with curcumin. Interestingly, TCBQ has no effect on caspase family genes or B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X (Bax) protein expressions, which implied that TCBQ-induced hepatotoxicity is independent ofmore » apoptosis. Moreover, curcumin was shown to induce phase II detoxifying/antioxidant enzymes HO-1 and NQO1 through the activation of nuclear factor erythroid-derived 2-like 2 (Nrf2). In summary, the protective mechanisms of curcumin against TCBQ-induced hepatoxicity may be related to the attenuation of oxidative stress, along with the inhibition of inflammatory response via the activation of Nrf2 signaling. - Highlights: • TCBQ-intoxication significantly increased AST and ALT activities. • TCBQ-intoxication induced oxidative stress in mice liver. • TCBQ-intoxication induced inflammatory response in mice liver. • TCBQ-intoxication induced hepatotoxicity is independent of apoptosis. • Curcumin relieved TCBQ-induced liver damage remarkably.« less

  19. Colostrum supplementation protects against exercise - induced oxidative stress in skeletal muscle in mice

    PubMed Central

    2012-01-01

    Background This study examined the effects of bovine colostrum on exercise –induced modulation of antioxidant parameters in skeletal muscle in mice. Adult male BALB/c mice were randomly divided into four groups (control, colostrum alone, exercise and exercise with colostrum) and each group had three subgroups (day 0, 21 and 42). Colostrum groups of mice were given a daily oral supplement of 50 mg/kg body weight of bovine colostrum and the exercise group of mice were made to exercise on the treadmill for 30 minutes per day. Total antioxidants, lipid hydroperoxides, xanthine oxidase and super oxide dismutase level was assayed from the homogenate of hind limb skeletal muscle. Results Exercise—induced a significant oxidative stress in skeletal muscles as evidenced by the elevated lipid hydroperoxides and xanthine oxidase levels. There was a significant decrease in skeletal muscle total antioxidants and superoxide dismutase levels. Daily colostrum supplement significantly reduced the lipid hydroperoxides and xanthine oxidase enzyme level and increased the total antioxidant levels in the leg muscle. Conclusion Thus, the findings of this study showed that daily bovine colostrum supplementation was beneficial to skeletal muscle to reduce the oxidant-induced damage during muscular exercise. PMID:23173926

  20. Cocaine-induced locomotor activity is increased by prior handling in adolescent but not adult female rats

    PubMed Central

    Maldonado, Antoniette M.; Kirstein, Cheryl L.

    2017-01-01

    Adolescence is a period of transition that is associated with increased levels of stress and a heightened propensity to initiate drug use. Neuronal development is still occurring during this transitional period, which includes the continued development of the dopamine system during the adolescent period. In the present study, the effects of pre-test handling on cocaine-induced locomotor activity were investigated among female adolescent and young adult rats upon presentation to a novel environment. On postnatal days (PND) 41–44 and 56–59 animals were handled (b.i.d.) in the colony room for 3 min. On PND 45 or PND 60, animals were removed from the colony room, weighed, and administered an acute injection of either cocaine or saline and presented to a novel environment where behavior was recorded for 30 min. Adolescent females (PND 45) that were handled prior to cocaine administration demonstrated elevated levels of cocaine-induced activity relative to their age-matched non-handled counterparts and also to their handled-adult counterparts. In contrast, among non-handled animals, young adults (PND 60) exhibited elevated drug-induced locomotion at several time points during the trial. Non-handled adolescent animals demonstrated the previously described “hyporesponsive” behavioral profile relative to their non-handled adult counterparts. The results from the present experiment indicate that adolescent animals may be more sensitive to basic laboratory manipulations such as pre-test handling, and care must be taken when utilizing adolescent animals in behavioral testing. Handling appears to be a sensitive manipulation in elucidating differences in cocaine-induced behavioral activation between ages. PMID:16176824

  1. Dai-Kenchu-To, a Herbal Medicine, Attenuates Colorectal Distention-induced Visceromotor Responses in Rats.

    PubMed

    Nakaya, Kumi; Nagura, Yohko; Hasegawa, Ryoko; Ito, Hitomi; Fukudo, Shin

    2016-10-30

    Dai-kenchu-to (DKT), a traditional Japanese herbal medicine, is known to increase gastrointestinal motility and improve ileal function. We tested our hypotheses that (1) pretreatment with DKT would block the colorectal distention-induced visceromotor response in rats, and (2) pretreatment with DKT would attenuate colorectal distention-induced adrenocorticotropic hormone (ACTH) release and anxiety-related behavior. Rats were pretreated with vehicle or DKT (300 mg/kg/5 mL, per os). Visceromotor responses were analyzed using electromyography in response to colorectal distention (10, 20, 40, 60, and 80 mmHg for 20 seconds at 3-minutes intervals). Anxiety-related behavior was measured during exposure to an elevated-plus maze after colorectal distention. Plasma ACTH and serum corticosterone levels were measured after exposure to the elevated-plus maze. Colorectal distention produced robust contractions of the abdominal musculature, graded according to stimulus intensity, in vehicle-treated rats. At 40, 60, and 80 mmHg of colorectal distention, the visceromotor responses of DKT-treated rats was significantly lower than that of vehicle-treated rats. At 80 mmHg, the amplitude was suppressed to approximately one-third in DKT-treated rats, compared with that in vehicle-treated rats. Smooth muscle compliance and the velocity of accommodation to 60 mmHg of stretching did not significantly differ between the vehicle-treated and DKT-treated rats. Similarly, the DKT did not influence colorectal distention-induced ACTH release, corticosterone levels, or anxiety-related behavior in rats. Our results suggest that DKT attenuates the colorectal distention-induced visceromotor responses, without increasing smooth muscle compliance, ACTH release or anxiety-related behavior in rats.

  2. Elevated plasma free fatty acids increase cardiovascular risk by inducing plasma biomarkers of endothelial activation, myeloperoxidase and PAI-1 in healthy subjects.

    PubMed

    Mathew, Manoj; Tay, Eric; Cusi, Kenneth

    2010-02-16

    CVD in obesity and T2DM are associated with endothelial activation, elevated plasma vascular inflammation markers and a prothrombotic state. We examined the contribution of FFA to these abnormalities following a 48-hour physiological increase in plasma FFA to levels of obesity and diabetes in a group of healthy subjects. 40 non-diabetic subjects (age = 38 +/- 3 yr, BMI = 28 +/- 1 kg/m2, FPG = 95 +/- 1 mg/dl, HbA1c = 5.3 +/- 0.1%) were admitted twice and received a 48-hour infusion of normal saline or low-dose lipid. Plasma was drawn for intracellular (ICAM-1) and vascular (VCAM-1) adhesion molecules-1, E-selectin (sE-S), myeloperoxidase (MPO) and total plasminogen inhibitor-1 (tPAI-1). Insulin sensitivity was measured by a hyperglycemic clamp (M/I). Lipid infusion increased plasma FFA to levels observed in obesity and T2DM and reduced insulin sensitivity by 27% (p = 0.01). Elevated plasma FFA increased plasma markers of endothelial activation ICAM-1 (138 +/- 10 vs. 186 +/- 25 ng/ml), VCAM-1 (1066 +/- 67 vs. 1204 +/- 65 ng/ml) and sE-S (20 +/- 1 vs. 24 +/- 1 ng/ml) between 13-35% and by > or = 2-fold plasma levels of myeloperoxidase (7.5 +/- 0.9 to 15 +/- 25 ng/ml), an inflammatory marker of future CVD, and tPAI-1 (9.7 +/- 0.6 to 22.5 +/- 1.5 ng/ml), an indicator of a prothrombotic state (all p < or = 0.01). The FFA-induced increase was independent from the degree of adiposity, being of similar magnitude in lean, overweight and obese subjects. An increase in plasma FFA within the physiological range observed in obesity and T2DM induces markers of endothelial activation, vascular inflammation and thrombosis in healthy subjects. This suggests that even transient (48-hour) and modest increases in plasma FFA may initiate early vascular abnormalities that promote atherosclerosis and CVD.

  3. Effect of (4a) a novel 5-HT3 receptor antagonist on chronic unpredictable mild stress induced depressive-like behavior in mice: an approach using behavioral tests battery.

    PubMed

    Kurhe, Yeshwant; Mahesh, Radhakrishnan; Gupta, Deepali; Thangaraj, Devadoss

    2015-01-01

    The inconsistent therapeutic outcome necessitates designing and identifying novel therapeutic interventions for depression. Hence, the present study deals with the investigation of antidepressant-like effects of a novel 5-HT3 receptor antagonist (4-phenylpiperazin-1-yl) (quinoxalin-2-yl) methanone (4a) on chronic unpredictable mild stress (CUMS) induced behavioral and biochemical alterations. Animals were subjected to different stressors for a period of 28 days. On day 15 after the subsequent stress procedure, mice were administered with (4a) (2 and 4 mg/kg p.o.), escitalopram (10 mg/kg p.o.), or vehicle (10 mL/kg p.o.) until day 28 along with the CUMS. Thereafter, behavioral battery tests like locomotor score, sucrose preference test, forced swim test (FST), tail suspension test (TST), and elevated plus maze (EPM) were performed. Biochemical assays like lipid peroxidation, nitrite levels, reduced glutathione (GSH), catalase, and superoxide dismutase (SOD) were estimated in the mice brain homogenate. (4a) Dose dependently attenuated the behavioral alterations by increasing the sucrose consumption, reducing the immobility time in FST and TST, increasing the open arm number of entries and time in EPM. Furthermore, biochemical alterations were reversed by (4a) as examined by reduced lipid peroxidation and nitrite levels and elevated antioxidant enzyme levels like GSH, catalase and SOD. (4a) exhibits antidepressant potential by reversing the CUMS induced behavioral and biochemical changes in mice.

  4. Stress-induced changes in brain serotonergic activity, plasma cortisol and aggressive behavior in Arctic charr (Salvelinus alpinus) is counteracted by L-DOPA.

    PubMed

    Höglund, E; Kolm, N; Winberg, S

    2001-10-01

    Arctic charr (Salvelinus alpinus) were tested for aggressive behavior using intruder tests, before and after 2 days of dyadic social interaction. Following social interaction, half of the dominant and half of the subordinate fish were given L-DOPA (10 mg/kg, orally), whereas the remaining dominant and subordinate fish were given vehicle. One hour following drug treatment, the fish were tested for aggressive behavior again in a third and final intruder test, after which blood plasma and brain tissue were sampled for analysis of plasma cortisol concentrations and brain levels of monoamines and monoamine metabolites. Subordinate fish showed a reduction in the number of attacks launched against the intruder, as well as an increase in attack latency, as compared to prior to dyadic social interactions. Social subordination also resulted in an elevation of brain serotonergic activity. Fish receiving L-DOPA prior to the final intruder test showed shorter attack latency than vehicle controls. Drug treatment was a stressful experience and vehicle controls showed elevated plasma cortisol levels and longer attack latency as compared to before treatment. L-DOPA-treated fish showed lower plasma levels of cortisol and lower serotonergic activity in certain brain areas than vehicle controls. These results suggest that L-DOPA counteracts the stress-induced inhibition of aggressive behavior, and at the same time inhibits stress-induced effects on brain serotonergic activity and plasma cortisol concentrations.

  5. Ultraviolet radiation-induced cataract in mice: the effect of age and the potential biochemical mechanism.

    PubMed

    Zhang, Jie; Yan, Hong; Löfgren, Stefan; Tian, Xiaoli; Lou, Marjorie F

    2012-10-19

    To study the effect of age on the morphologic and biochemical alterations induced by in vivo exposure of ultraviolet radiation (UV). Young and old C57BL/6 mice were exposed to broadband UVB+UVA and euthanized after 2 days. Another batch of UV-exposed young mice was monitored for changes after 1, 2, 4, and 8 days. Age-matched nonexposed mice served as controls. Lens changes were documented in vivo by slit-lamp biomicroscopy and dark field microscopy photographs ex vivo. Lens homogenates were analyzed for glutathione (GSH) level, and the activities of thioredoxin (Trx), thioltransferase (TTase), and glyceraldehyde-3-phosphate dehydrogenase (G3PD). Glutathionylated lens proteins (PSSGs) were detected by immunoblotting using GSH antibody. Western blot analysis was also done for the expression levels of TTase and Trx. Both age groups developed epithelial and superficial anterior subcapsular cataract at 2 days postexposure. The lens GSH level and G3PD activity were decreased, and PSSGs were elevated in both age groups, but more prominent in the older mice. TTase and Trx activity and protein expression were elevated only in the young mice. Interestingly, lens TTase and Trx in the young mice showed a transient increase, peaking at 2 days after UV exposure and returning to baseline at day 8, corroborated by lens transparency. The lenses of old mice were more susceptible to UV radiation-induced cataract. The upregulated TTase and Trx likely provided oxidation damage repair in the young mice.

  6. Identification of aldo-keto reductase (AKR7A1) and glutathione S-transferase pi (GSTP1) as novel renal damage biomarkers following exposure to mercury.

    PubMed

    Shin, Y-J; Kim, K-A; Kim, E-S; Kim, J-H; Kim, H-S; Ha, M; Bae, O-N

    2017-01-01

    The kidney is one of the main targets for toxicity induced by xenobiotics. Sensitive detection of early impairment is critical to assess chemical-associated renal toxicity. The aim of this study was to identify potential nephrotoxic biomarkers in rat kidney tissues after exposure to mercury (Hg), a representative nephrotoxicant, and to evaluate these new biomarkers employing in vivo and in vitro systems. Mercuric chloride was administered orally to Sprague-Dawley rats for 2 weeks. Proteomic analysis revealed that aldo-keto reductase (AKR7A1) and glutathione S-transferase pi (GSTP1) were significantly elevated in kidney after Hg exposure. While the levels of conventional nephrotoxic clinical markers including blood urea nitrogen and serum creatinine were not elevated, the mRNA and protein levels of AKR7A1 and GSTP1 were increased upon Hg exposure in a dose-dependent manner. The increases in AKR7A1 and GSTP1 were also observed in rat kidneys after an extended exposure for 6 weeks to low-dose Hg. In in vitro rat kidney proximal tubular cells, changes in AKR7A1 and GSTP1 levels correlated well with the extent of cytotoxicity induced by Hg, cadmium, or cisplatin. AKR7A1 and GSTP1 were identified as new candidates for Hg-induced nephrotoxicity, suggesting that these biomarkers have potential for evaluating or predicting nephrotoxicity.

  7. Protective Effects of Ethanolic Extracts from Artichoke, an Edible Herbal Medicine, against Acute Alcohol-Induced Liver Injury in Mice

    PubMed Central

    Tang, Xuchong; Wei, Ruofan; Deng, Aihua; Lei, Tingping

    2017-01-01

    Oxidative stress and inflammation are well-documented pathological factors in alcoholic liver disease (ALD). Artichoke (Cynara scolymus L.) is a healthy food and folk medicine with anti-oxidative and anti-inflammatory properties. This study aimed to evaluate the preventive effects of ethanolic extract from artichoke against acute alcohol-induced liver injury in mice. Male Institute of Cancer Research mice were treated with an ethanolic extract of artichoke (0.4, 0.8, and 1.6 g/kg body weight) by gavage once daily. Up to 40% alcohol (12 mL/kg body weight) was administered orally 1 h after artichoke treatment. All mice were fed for 10 consecutive days. Results showed that artichoke extract significantly prevented elevated levels of aspartate aminotransferase, alanine aminotransferase, triglyceride, total cholesterol, and malondialdehyde. Meanwhile, the decreased levels of superoxide dismutase and glutathione were elevated by artichoke administration. Histopathological examination showed that artichoke attenuated degeneration, inflammatory infiltration and necrosis of hepatocytes. Immunohistochemical analysis revealed that expression levels of toll-like receptor (TLR) 4 and nuclear factor-kappa B (NF-κB) in liver tissues were significantly suppressed by artichoke treatment. Results obtained demonstrated that artichoke extract exhibited significant preventive protective effect against acute alcohol-induced liver injury. This finding is mainly attributed to its ability to attenuate oxidative stress and suppress the TLR4/NF-κB inflammatory pathway. To the best of our knowledge, the underlying mechanisms of artichoke on acute ALD have been rarely reported. PMID:28891983

  8. Protective Effects of Ethanolic Extracts from Artichoke, an Edible Herbal Medicine, against Acute Alcohol-Induced Liver Injury in Mice.

    PubMed

    Tang, Xuchong; Wei, Ruofan; Deng, Aihua; Lei, Tingping

    2017-09-11

    Oxidative stress and inflammation are well-documented pathological factors in alcoholic liver disease (ALD). Artichoke ( Cynara scolymus L.) is a healthy food and folk medicine with anti-oxidative and anti-inflammatory properties. This study aimed to evaluate the preventive effects of ethanolic extract from artichoke against acute alcohol-induced liver injury in mice. Male Institute of Cancer Research mice were treated with an ethanolic extract of artichoke (0.4, 0.8, and 1.6 g/kg body weight) by gavage once daily. Up to 40% alcohol (12 mL/kg body weight) was administered orally 1 h after artichoke treatment. All mice were fed for 10 consecutive days. Results showed that artichoke extract significantly prevented elevated levels of aspartate aminotransferase, alanine aminotransferase, triglyceride, total cholesterol, and malondialdehyde. Meanwhile, the decreased levels of superoxide dismutase and glutathione were elevated by artichoke administration. Histopathological examination showed that artichoke attenuated degeneration, inflammatory infiltration and necrosis of hepatocytes. Immunohistochemical analysis revealed that expression levels of toll-like receptor (TLR) 4 and nuclear factor-kappa B (NF-κB) in liver tissues were significantly suppressed by artichoke treatment. Results obtained demonstrated that artichoke extract exhibited significant preventive protective effect against acute alcohol-induced liver injury. This finding is mainly attributed to its ability to attenuate oxidative stress and suppress the TLR4/NF-κB inflammatory pathway. To the best of our knowledge, the underlying mechanisms of artichoke on acute ALD have been rarely reported.

  9. Evaluation of the usefulness of novel biomarkers for drug-induced acute kidney injury in beagle dogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiaobing; Graduate School of Peking Union Medical College, Dongcheng District, Beijing, 100730; Ma, Ben

    As kidney is a major target organ affected by drug toxicity, early detection of renal injury is critical in preclinical drug development. In past decades, a series of novel biomarkers of drug-induced nephrotoxicity were discovered and verified in rats. However, limited data regarding the performance of novel biomarkers in non-rodent species are publicly available. To increase the applicability of these biomarkers, we evaluated the performance of 4 urinary biomarkers including neutrophil gelatinase-associated lipocalin (NGAL), clusterin, total protein, and N-acetyl-β-D-glucosaminidase (NAG), relative to histopathology and traditional clinical chemistry in beagle dogs with acute kidney injury (AKI) induced by gentamicin. The resultsmore » showed that urinary NGAL and clusterin levels were significantly elevated in dogs on days 1 and 3 after administration of gentamicin, respectively. Gene expression analysis further provided mechanistic evidence to support that NGAL and clusterin are potential biomarkers for the early assessment of drug-induced renal damage. Furthermore, the high area (both AUCs = 1.000) under receiver operator characteristics (ROC) curve also indicated that NGAL and clusterin were the most sensitive biomarkers for detection of gentamicin-induced renal proximal tubular toxicity. Our results also suggested that NAG may be used in routine toxicity testing due to its sensitivity and robustness for detection of tissue injury. The present data will provide insights into the preclinical use of these biomarkers for detection of drug-induced AKI in non-rodent species. - Highlights: • Urinary NGAL, clusterin and NAG levels were significantly elevated in canine AKI. • NGAL and clusterin gene expression were increased following treatment with gentamicin. • NGAL and clusterin have high specificity and sensitivity for detection of AKI.« less

  10. Putative free radical-scavenging activity of an extract of Cineraria maritima in preventing selenite-induced cataractogenesis in Wistar rat pups

    PubMed Central

    Anitha, Thirugnanasambandhar Sivasubramanian; Muralidharan, Arumugam Ramachandran; Annadurai, Thangaraj; Jesudasan, Christdas Arul Nelson; Thomas, Philip Aloysius

    2013-01-01

    Purpose To investigate the possible free radical-scavenging activity of an extract of Cineraria maritima on selenite-induced cataractous lenses in Wistar rat pups. Methods In the present study, Wistar rat pups were divided into three experimental groups. On P10, Group I (control) rat pups received an intraperitoneal injection of 0.89% saline. Rats in groups II (selenite-challenged, untreated) and III (selenite-challenged, C. maritima treated) received a subcutaneous injection of sodium selenite (19 μmol/kg bodyweight); Group III rat pups also received an intraperitoneal injection of the extract of C. maritima (350 mg/kg bodyweight) once daily P9–14. Both eyes of each pup were examined from P16 until P30. Cytochemical localization of nitroblue tetrazolium salts and generation of superoxide, hydroxyl, and nitric oxide levels were measured. The expression of the inducible nitric oxide synthase gene was evaluated with reverse transcription-PCR. Immunoblot analysis was also performed to confirm the differential expression of the inducible nitric oxide synthase protein. Results Subcutaneous injection of sodium selenite led to severe oxidative damage in the lenticular tissues, shown by increased formation of formazan crystals, elevated generation of superoxide, hydroxyl, and nitric oxide radicals, and elevated inducible nitric oxide synthase gene and protein expression that possibly contributed to the opacification of the lens and thus cataract formation. When rat pups were treated with intraperitoneal administration of the extract of C. maritima, the generation of free radicals as well as the messenger ribonucleic acid and protein expression of inducible nitric oxide synthase were maintained at near normal levels. Conclusions The data generated by this study suggest that an ethanolic extract of C. maritima possibly prevents cataractogenesis in a rat model by minimizing free radical generation. PMID:24357923

  11. Losartan attenuates chronic cigarette smoke exposure-induced pulmonary arterial hypertension in rats: possible involvement of angiotensin-converting enzyme-2.

    PubMed

    Han, Su-Xia; He, Guang-Ming; Wang, Tao; Chen, Lei; Ning, Yun-Ye; Luo, Feng; An, Jin; Yang, Ting; Dong, Jia-Jia; Liao, Zeng-Lin; Xu, Dan; Wen, Fu-Qiang

    2010-05-15

    Chronic cigarette smoking induces pulmonary arterial hypertension (PAH) by largely unknown mechanisms. Renin-angiotensin system (RAS) is known to function in the development of PAH. Losartan, a specific angiotensin II receptor antagonist, is a well-known antihypertensive drug with a potential role in regulating angiotensin-converting enzyme-2 (ACE2), a recently found regulator of RAS. To determine the effect of losartan on smoke-induced PAH and its possible mechanism, rats were daily exposed to cigarette smoke for 6months in the absence and in the presence of losartan. Elevated right ventricular systolic pressure (RVSP), thickened wall of pulmonary arteries with apparent medial hypertrophy along with increased angiotensin II (Ang II) and decreased ACE2 levels were observed in smoke-exposed-only rats. Losartan administration ameliorated pulmonary vascular remodeling, inhibited the smoke-induced RVSP and Ang II elevation and partially reversed the ACE2 decrease in rat lungs. In cultured primary pulmonary artery smooth muscle cells (PASMCs) from 3- and 6-month smoke-exposed rats, ACE2 levels were significantly lower than in those from the control rats. Moreover, PASMCs from 6-month exposed rats proliferated more rapidly than those from 3-month exposed or control rats, and cells grew even more rapidly in the presence of DX600, an ACE2 inhibitor. Consistent with the in vivo study, in vitro losartan pretreatment also inhibited cigarette smoke extract (CSE)-induced cell proliferation and ACE2 reduction in rat PASMCs. The results suggest that losartan may be therapeutically useful in the chronic smoking-induced pulmonary vascular remodeling and PAH and ACE2 may be involved as part of its mechanism. Our study might provide insight into the development of new therapeutic interventions for PAH smokers.

  12. Branched Chain Amino Acids Cause Liver Injury in Obese/Diabetic Mice by Promoting Adipocyte Lipolysis and Inhibiting Hepatic Autophagy.

    PubMed

    Zhang, Fuyang; Zhao, Shihao; Yan, Wenjun; Xia, Yunlong; Chen, Xiyao; Wang, Wei; Zhang, Jinglong; Gao, Chao; Peng, Cheng; Yan, Feng; Zhao, Huishou; Lian, Kun; Lee, Yan; Zhang, Ling; Lau, Wayne Bond; Ma, Xinliang; Tao, Ling

    2016-11-01

    The Western meat-rich diet is both high in protein and fat. Although the hazardous effect of a high fat diet (HFD) upon liver structure and function is well recognized, whether the co-presence of high protein intake contributes to, or protects against, HF-induced hepatic injury remains unclear. Increased intake of branched chain amino acids (BCAA, essential amino acids compromising 20% of total protein intake) reduces body weight. However, elevated circulating BCAA is associated with non-alcoholic fatty liver disease and injury. The mechanisms responsible for this quandary remain unknown; the role of BCAA in HF-induced liver injury is unclear. Utilizing HFD or HFD+BCAA models, we demonstrated BCAA supplementation attenuated HFD-induced weight gain, decreased fat mass, activated mammalian target of rapamycin (mTOR), inhibited hepatic lipogenic enzymes, and reduced hepatic triglyceride content. However, BCAA caused significant hepatic damage in HFD mice, evidenced by exacerbated hepatic oxidative stress, increased hepatic apoptosis, and elevated circulation hepatic enzymes. Compared to solely HFD-fed animals, plasma levels of free fatty acids (FFA) in the HFD+BCAA group are significantly further increased, due largely to AMPKα2-mediated adipocyte lipolysis. Lipolysis inhibition normalized plasma FFA levels, and improved insulin sensitivity. Surprisingly, blocking lipolysis failed to abolish BCAA-induced liver injury. Mechanistically, hepatic mTOR activation by BCAA inhibited lipid-induced hepatic autophagy, increased hepatic apoptosis, blocked hepatic FFA/triglyceride conversion, and increased hepatocyte susceptibility to FFA-mediated lipotoxicity. These data demonstrated that BCAA reduces HFD-induced body weight, at the expense of abnormal lipolysis and hyperlipidemia, causing hepatic lipotoxicity. Furthermore, BCAA directly exacerbate hepatic lipotoxicity by reducing lipogenesis and inhibiting autophagy in the hepatocyte. Copyright © 2016. Published by Elsevier B.V.

  13. Losartan attenuates chronic cigarette smoke exposure-induced pulmonary arterial hypertension in rats: Possible involvement of angiotensin-converting enzyme-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han Suxia; He Guangming; Wang Tao

    Chronic cigarette smoking induces pulmonary arterial hypertension (PAH) by largely unknown mechanisms. Renin-angiotensin system (RAS) is known to function in the development of PAH. Losartan, a specific angiotensin II receptor antagonist, is a well-known antihypertensive drug with a potential role in regulating angiotensin-converting enzyme-2 (ACE2), a recently found regulator of RAS. To determine the effect of losartan on smoke-induced PAH and its possible mechanism, rats were daily exposed to cigarette smoke for 6 months in the absence and in the presence of losartan. Elevated right ventricular systolic pressure (RVSP), thickened wall of pulmonary arteries with apparent medial hypertrophy along withmore » increased angiotensin II (Ang II) and decreased ACE2 levels were observed in smoke-exposed-only rats. Losartan administration ameliorated pulmonary vascular remodeling, inhibited the smoke-induced RVSP and Ang II elevation and partially reversed the ACE2 decrease in rat lungs. In cultured primary pulmonary artery smooth muscle cells (PASMCs) from 3- and 6-month smoke-exposed rats, ACE2 levels were significantly lower than in those from the control rats. Moreover, PASMCs from 6-month exposed rats proliferated more rapidly than those from 3-month exposed or control rats, and cells grew even more rapidly in the presence of DX600, an ACE2 inhibitor. Consistent with the in vivo study, in vitro losartan pretreatment also inhibited cigarette smoke extract (CSE)-induced cell proliferation and ACE2 reduction in rat PASMCs. The results suggest that losartan may be therapeutically useful in the chronic smoking-induced pulmonary vascular remodeling and PAH and ACE2 may be involved as part of its mechanism. Our study might provide insight into the development of new therapeutic interventions for PAH smokers.« less

  14. Differential Responses of Polyamines and Antioxidants to Drought in a Centipedegrass Mutant in Comparison to Its Wild Type Plants

    PubMed Central

    Liu, Mingxi; Chen, Jingjing; Guo, Zhenfei; Lu, Shaoyun

    2017-01-01

    Centipedegrass (Eremochloa ophiuroides [Munro] Hack.) is an important warm-season turfgrass species with low turf maintenance requirements. However, our knowledge on physiological adaptation of centipedegrass to drought stress is limited. Physiological responses to drought in a gamma-ray-induced mutant 22-1 as compared with two wild type (WT) lines were analyzed for understanding of drought tolerance mechanism of centipedegrass. The mutant showed an elevated drought tolerance with higher levels of relative water content, net photosynthetic rate (A) and stomatal conductance (gs) and lower levels of ion leakage and malondialdehyde (MDA) under drought stress as compared with WT plants. A showed significant correlation with gs and MDA. Higher levels of antioxidant enzymes activities, non-enzyme antioxidants, and polyamines including putrescine (Put), spermidine (Spd), and spermine (Spm) were maintained in 22-1 than in WT plants. Superoxide dismutase (SOD), catalase (CAT), ascorbate-peroxidase (APX), and glutathione reductase (GR) activities and ascorbic acid (AsA) content were significantly correlated with both Put and Spd levels, and reduced glutathione level was correlated with Put during drought stress. Exogenous application of Put, Spd, and Spm increased drought tolerance and activities of SOD, CAT, APX, and GR in WT plants. The results suggest that higher levels of polyamines and antioxidant defense system are associated with the elevated drought tolerance in 22-1, which may improve protection on photosynthesis against drought induced oxidative damage. PMID:28559909

  15. Muscle-specific inflammation induced by MCP-1 overexpression does not affect whole-body insulin sensitivity in mice.

    PubMed

    Evers-van Gogh, Inkie J A; Oteng, Antwi-Boasiako; Alex, Sheril; Hamers, Nicole; Catoire, Milene; Stienstra, Rinke; Kalkhoven, Eric; Kersten, Sander

    2016-03-01

    Obesity is associated with a state of chronic low-grade inflammation that is believed to contribute to the development of skeletal muscle insulin resistance. However, the extent to which local and systemic elevation of cytokines, such as monocyte chemoattractant protein 1 (MCP-1), interferes with the action of insulin and promotes insulin resistance and glucose intolerance in muscle remains unclear. Here, we aim to investigate the effect of muscle-specific overexpression of MCP-1 on insulin sensitivity and glucose tolerance in lean and obese mice. We used Mck-Mcp-1 transgenic (Tg) mice characterised by muscle-specific overexpression of Mcp-1 (also known as Ccl2) and elevated plasma MCP-1 levels. Mice were fed either chow or high-fat diet for 10 weeks. Numerous metabolic variables were measured, including glucose and insulin tolerance tests, muscle insulin signalling and plasma NEFA, triacylglycerol, cholesterol, glucose and insulin. Despite clearly promoting skeletal muscle inflammation, muscle-specific overexpression of Mcp-1 did not influence glucose tolerance or insulin sensitivity in either lean chow-fed or diet-induced obese mice. In addition, plasma NEFA, triacylglycerol, cholesterol, glucose and insulin were not affected by MCP-1 overexpression. Finally, in vivo insulin-induced Akt phosphorylation in skeletal muscle did not differ between Mcp-1-Tg and wild-type mice. We show that increased MCP-1 production in skeletal muscle and concomitant elevated MCP-1 levels in plasma promote inflammation in skeletal muscle but do not influence insulin signalling and have no effect on insulin resistance and glucose tolerance in lean and obese mice. Overall, our data argue against MCP-1 promoting insulin resistance in skeletal muscle and raise questions about the impact of inflammation on insulin sensitivity in muscle.

  16. Induction of plant defense gene expression by plant activators and Pseudomonas syringae pv. tomato in greenhouse-grown tomatoes.

    PubMed

    Herman, M A B; Davidson, J K; Smart, C D

    2008-11-01

    Plant activators provide an appealing management option for bacterial diseases of greenhouse-grown tomatoes. Two types of plant activators, one that induces systemic acquired resistance (SAR) and a second that activates induced systemic resistance (ISR), were evaluated for control of Pseudomonas syringae pv. tomato and effect on plant defense gene activation. Benzothiadiazole (BTH, SAR-inducing compound) effectively reduced bacterial speck incidence and severity, both alone and in combination with the ISR-inducing product. Application of BTH also led to elevated activation of salicylic acid and ethylene-mediated responses, based on real-time polymerase chain reaction analysis of marker gene expression levels. In contrast, the ISR-inducing product (made up of plant growth-promoting rhizobacteria) inconsistently modified defense gene expression and did not provide disease control to the same level as did BTH. No antagonism was observed by combining the two activators as control of bacterial speck was similar to or better than BTH alone.

  17. Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: A rapid invivo screening method for nanotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei Ronghui; Department of Public Health, Xi'an Jiaotong University, Xi'an 710061; Wu Chunqi

    2008-10-15

    Despite an increasing application of copper nanoparticles, there is a serious lack of information concerning their impact on human health and the environment. In this study, the biochemical compositions of urine, serum, and extracts of liver and kidney tissues of rats treated with nano-copper at the different doses (50, 100, and 200 mg/kg/d for 5 d) were investigated using {sup 1}H NMR techniques with the pattern recognition methods. Serum biochemical analysis and histopathological examinations of the liver and kidney of all the rats were simultaneously performed. All the results indicated that the effects produced by nano-copper at a dose ofmore » 100 or 50 mg/kg/d were less than those induced at a higher dose of 200 mg/kg/d. Nano-copper induced overt hepatotoxicity and nephrotoxicity at 200 mg/kg/d for 5 d, which mainly involved scattered dot hepatocytic necrosis and widespread renal proximal tubule necrosis. Increased citrate, succinate, trimethylamine-N-oxide, glucose, and amino acids, accompanied by decreased creatinine levels were observed in the urine; furthermore, elevated levels of lactate, 3-hydroxybutyrate, acetate, creatine, triglycerides, and phosphatide and reduced glucose levels were observed in the serum. The predominant changes identified in the liver tissue aqueous extracts included increased lactate and creatine levels together with reduced glutamine and taurine levels, and the metabolic profile of the kidney tissue aqueous extracts showed an increase in lactate and a drop in glucose. In the chloroform/methanol extracts of the liver and kidney tissues, elevated triglyceride species were identified. These changes suggested that mitochondrial failure, enhanced ketogenesis, fatty acid {beta}-oxidation, and glycolysis contributed to the hepatotoxicity and nephrotoxicity induced by nano-copper at 200 mg/kg/d for 5 d. An increase in triglycerides in the serum, liver and kidney tissues could serve as a potential sensitive biomarker reflecting the lipidosis induced by nano-copper. The data generated from the current study completely supports the fact that an integrated metabolomic approach is promising for the development of a rapid invivo screening method for nanotoxicity.« less

  18. MCG101-induced cancer anorexia-cachexia features altered expression of hypothalamic Nucb2 and Cartpt and increased plasma levels of cocaine- and amphetamine-regulated transcript peptides.

    PubMed

    Burgos, Jonathan R; Iresjö, Britt-Marie; Smedh, Ulrika

    2016-04-01

    The aim of the present study was to explore central and peripheral host responses to an anorexia-cachexia producing tumor. We focused on neuroendocrine anorexigenic signals in the hypothalamus, brainstem, pituitary and from the tumor per se. Expression of mRNA for corticotropin-releasing hormone (CRH), cocaine- and amphetamine-regulated transcript (CART), nesfatin-1, thyrotropin (TSH) and the TSH receptor were explored. In addition, we examined changes in plasma TSH, CART peptides (CARTp) and serum amyloid P component (SAP). C57BL/6 mice were implanted with MCG101 tumors or sham-treated. A sham-implanted, pair‑fed (PF) group was included to delineate between primary tumor and secondary effects from reduced feeding. Food intake and body weight were measured daily. mRNA levels from microdissected mouse brain samples were assayed using qPCR, and plasma levels were determined using ELISA. MCG101 tumors expectedly induced anorexia and loss of body weight. Tumor-bearing (TB) mice exhibited an increase in nesfatin-1 mRNA as well as a decrease in CART mRNA in the paraventricular area (PVN). The CART mRNA response was secondary to reduced caloric intake whereas nesfatin-1 mRNA appeared to be tumor-specifically induced. In the pituitary, CART and TSH mRNA were upregulated in the TB and PF animals compared to the freely fed controls. Plasma levels for CARTp were significantly elevated in TB but not PF mice whereas levels of TSH were unaffected. The plasma CARTp response was correlated to the degree of inflammation represented by SAP. The increase in nesfatin-1 mRNA in the PVN highlights nesfatin-1 as a plausible candidate for causing tumor-induced anorexia. CART mRNA expression in the PVN is likely an adaptation to reduced caloric intake secondary to a cancer anorexia-cachexia syndrome (CACS)‑inducing tumor. The MCG101 tumor did not express CART mRNA, thus the elevation of plasma CARTp is host derived and likely driven by inflammation.

  19. Downregulation of Glutamine Synthetase via GLAST Suppression Induces Retinal Axonal Swelling in a Rat Ex Vivo Hydrostatic Pressure Model

    PubMed Central

    Yoshitomi, Takeshi; Zorumski, Charles F.; Izumi, Yukitoshi

    2011-01-01

    Purpose. High levels of glutamate can be toxic to retinal GCs. Thus, effective buffering of extracellular glutamate is important in preserving retinal structure and function. GLAST, a major glutamate transporter in the retina, and glutamine synthetase (GS) regulate extracellular glutamate accumulation and prevent excitotoxicity. This study was an examination of changes in function and expression of GLAST and GS in ex vivo rat retinas exposed to acute increases in ambient pressure. Methods. Ex vivo rat retinas were exposed to elevated hydrostatic pressure for 24 hours. The expression of GLAST and GS were examined using immunochemistry and real-time PCR analysis. Also examined were the effects of (2S,3S)-3-[3-[4-(trifluoromethyl) benzoylamino] benzyloxy] aspartate (TFB-TBOA), an inhibitor of glutamate transporters, and l-methionine-S-sulfoximine (MSO), an inhibitor of GS. Results. In this acute model, Western blot and real-time RT-PCR analyses revealed that substantially (75 mm Hg), but not moderately (35 mm Hg), elevated pressure depressed GLAST expression, diminished GS activity, and induced axonal swelling between the GC layer and the inner limiting membrane. However, at the moderately elevated pressure (35 mm Hg), administration of either TFB-TBOA or MSO also induced axonal swelling and excitotoxic neuronal damage. MSO did not depress GLAST expression but TFB-TBOA significantly suppressed GS, suggesting that downregulation of GS during pressure loading may result from impaired GLAST expression. Conclusions. The retina is at risk during acute intraocular pressure elevation due to downregulation of GS activity resulting from depressed GLAST expression. PMID:21775659

  20. Downregulation of glutamine synthetase via GLAST suppression induces retinal axonal swelling in a rat ex vivo hydrostatic pressure model.

    PubMed

    Ishikawa, Makoto; Yoshitomi, Takeshi; Zorumski, Charles F; Izumi, Yukitoshi

    2011-08-22

    PURPOSE. High levels of glutamate can be toxic to retinal GCs. Thus, effective buffering of extracellular glutamate is important in preserving retinal structure and function. GLAST, a major glutamate transporter in the retina, and glutamine synthetase (GS) regulate extracellular glutamate accumulation and prevent excitotoxicity. This study was an examination of changes in function and expression of GLAST and GS in ex vivo rat retinas exposed to acute increases in ambient pressure. METHODS. Ex vivo rat retinas were exposed to elevated hydrostatic pressure for 24 hours. The expression of GLAST and GS were examined using immunochemistry and real-time PCR analysis. Also examined were the effects of (2S,3S)-3-[3-[4-(trifluoromethyl) benzoylamino] benzyloxy] aspartate (TFB-TBOA), an inhibitor of glutamate transporters, and l-methionine-S-sulfoximine (MSO), an inhibitor of GS. RESULTS. In this acute model, Western blot and real-time RT-PCR analyses revealed that substantially (75 mm Hg), but not moderately (35 mm Hg), elevated pressure depressed GLAST expression, diminished GS activity, and induced axonal swelling between the GC layer and the inner limiting membrane. However, at the moderately elevated pressure (35 mm Hg), administration of either TFB-TBOA or MSO also induced axonal swelling and excitotoxic neuronal damage. MSO did not depress GLAST expression but TFB-TBOA significantly suppressed GS, suggesting that downregulation of GS during pressure loading may result from impaired GLAST expression. CONCLUSIONS. The retina is at risk during acute intraocular pressure elevation due to downregulation of GS activity resulting from depressed GLAST expression.

Top